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Ethanol plants are centrifuging off oil from the thin stillage stream as it has added 

market value currently.  The impact of oil removal on cattle performance has been 

minimally researched.  Thus four trials, one growing, one digestion, and two feedlot, 

were designed to determine the energy and feeding value of de-oiled distillers grains in 

beef cattle diets.  

In growing cattle diets, diet concentration of modified distillers grains plus 

solubles (MDGS) impacted cattle performance more than oil content.  Ending BW, ADG, 

and G:F did not differ between cattle fed de-oiled or full fat MDGS, however cattle fed 

de-oiled MDGS had lower DMI than those fed full fat MDGS.  No significant differences 

in fiber digestibility were observed between de-oiled and full fat MDGS treatments.  The 

energy value of de-oiled MDGS in growing cattle diets was calculated to be 124% the 

value of corn.   

In finishing steer diets, increasing diet concentrations of de-oiled MDGS 

increased G:F.  However, decreasing MDGS fat content from 12.0% to 7.2% decreased 

steer performance by 3.4%.  No significant interactions were observed when increasing 

concentrations of de-oiled wet distillers grains plus solubles (WDGS) were fed with 

steam flaked (SFC) or dry rolled corn (DRC).  Comparison of steer performance when 
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de-oiled and full fat WDGS are fed in SFC and DRC diets resulted in no significant 

differences also.  

In growing and finishing diets small differences in cattle performance have been 

observed.  Energy values for distillers grain in growing diets are still high with no 

improvements in fiber digestibility being observed.  In finishing diets where distillers 

grains were fed at 30-35%, de-oiled distillers grains have 89% the feeding value of full 

fat distillers grain.   

 

Key Words: corn processing, digestion, de-oiled, finishing, growing   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgements 

I would like to begin by thanking my family.  They have supported me throughout 

my academic career as well as with everything I have pursued in life and without their 

love and support I would not be the person I am today.  My parents have taught me so 

much and have instilled within me a passion for agriculture and the lifestyle that comes 

with it.  My dad is the smartest man that I know and if I am able to be half the 

businessman he is one day I would be truly blessed.  He has a love of this industry and 

has passed that passion on to me.  My mom is the rock of the family.  She is always there 

to listen to and encourage me.  My mom is my biggest fan and the most compassionate 

woman I know.  My sister, Sydney, has had to put up with my hectic schedules and 

stressed attitude for two years as we have lived together.  She always knows how to cheer 

me and is one of the most beautiful and giving people I know.  I will truly miss not living 

with her anymore. My brother, Beau, shares my passion for cattle which is something I 

have cherished.  He is a very kind-hearted and hardworking man and I hope that one day 

we can work in this industry together. 

Next I would like to thank Corey. You have had to put up with me being stressed 

now for three years. Thank you for staying by my side through the ups and downs and for 

always being there to cheer me up!  You truly are my best friend and I’m thankful to have 

you in my life. 

Also, I would like to thank my bestie, Jana Harding.  She is the most talented, 

caring, hardworking, cattle-loving, beautiful woman that I know.  I feel so blessed to 

have met her while in graduate school.  It will be hard to leave her but we have the type 

of friendship that will last forever. 

A big thank you also needs to be given to Drs. Galen Erickson, Jim MacDonald, 

Terry Klopfenstein, and Matt Luebbe.  You have all been so instrumental in my growth 

in graduate school and I thank you for all the opportunities that graduate school has 

presented me with.  You have all believed in me and I have thus been able to do things I 

never thought possible of myself.  Thank you for all of your support, guidance, and 

patience.  Between the internship program and graduate school you have helped me to 

become a more confident individual and for that I am very grateful.  

Finally, I would like to thank ALL of my fellow graduate students.  You have 

become some of my closest friends.  You are all talented and hardworking individuals 

who have taught me much and who I know will do great things in this industry.  I 

appreciate all that you have done for me and for your ability to put up with my antics.  I 

will miss you all but look forward to working with you in the future.  

 



v 

 

Table of Contents 

 Table of contents…………………………………………………………………………v 

Chapter I………………………………………………………………………………....1 

Review of Literature…………………………………………………………….1 

Introduction………………………………………………………….…..1 

Dry Milling……………………………………………………………….3 

   Introduction…………………………………..…………………...3 

   Process…………………………………………………………….3 

Nutrient Composition……………………………………………………5 
   Introduction……………………………………………………….5 

   Variability…………………………………………………………6 

Distillers Grains in Finishing Diets …………………………………….9 
   Introduction……………………………………………………….9 

   Optimal Concentrations and Feeding Value………………………9 

    DDGS…………………………………………………….10 

    MDGS…………………………………………………....11 

    WDGS……………………………………………………13 

Distillers Grains in Forage-Based Diets……………………………….15 

   Introduction………………………………………………………15 

                                   Low-Quality Forages……………………………………………..15 

Distillers Grains and Corn Processing………………………………...20 
   Introduction………………………………………………………20 

   Corn Processing………………………………………………….20 

   Feeding Distillers Grains with Processed Corn………………….21 

  Fat Removal…………………………………………………………….25 

Introduction…………………………….………………………...25 

Lipolysis and Biohydrogenation……….………………………...26 

Intestinal Digestion of Fatty Acids……….……………………...29 

Reason for Feeding Fat in Beef Cattle Diets…………………….30 

Fat Supplementation and Cattle Performance...…………….…....31 

Methods of Fat Extraction in Dry Milling Process……………....35 

            Pre-Fermentation Fractionation………………………………….36 

   Feeding Pre-Fractionated Distillers Grains………………………37 

   Post-Fractionation………………………………………………..40 

   Feeding Post Fractionated Distillers Grains……………………..40 

  Objectives………………………………………………………………..44 

  Literature Cited………………………………………………………...45 

Chapter II……………………………………………………………………………..58 

Energy Value and Digestibility of De-oiled Modified Distillers Grains Plus 

Solubles (MDGS) in Growing Cattle Diets 

ABSTRACT...……………………………………………………………………58 

INTRODUCTION……………………………………………………………….59 

MATERIALS AND METHODS………………………………………………...60 

 Exp. 1…………………………………………………………………….60 

 Exp. 2……………………………...……………………………………..64 

RESULTS AND DISCUSSION…………………………………………………66 



vi 

 

 Exp. 1 ……………………………………………………………………66 

 Exp. 2…………………………………………………………………….69 

LITERATURE CITED……………………………………………………......…72 

Chapter III………………………………………………………………………………80 

Energy Value of De-oiled Modified Distillers Grains Plus Solubles (MDGS) 

Wet Distillers Grains Plus Solubles (WDGS) in Finishing Cattle Diets 

ABSTRACT……………………………………………………………………...80 

INTRODUCTION……………………………………………………………….82 

MATERIALS AND METHODS………………………………………………...82 

 Exp. 1…………………………………………………………………….82 

 Exp. 2…………………………………………………………………….85 

RESULTS AND DISCUSSION…………………………………………………87 

 Exp. 1…………………………………………………………………….87 

 Exp. 2…………………………………………………………………….90 

LITERATURE CITED………………………………………………………….95 

 

 

 

 

 



1 

 

Chapter I 

REVIEW OF LITERATURE 

Introduction 

Starting in the mid-1970s ethanol production increased significantly. Events such 

as the oil embargo of 1973, the Iranian revolution of 1978, and the initiation of Federal 

gasoline standards promoted oil prices to increase rapidly (Shapouri et al., 2002).  A 

concern over the security of national energy supplies developed and resulted in a push for 

fuel ethanol to be used as a gasoline extender (Shapouri et al., 2002).  Also during this 

time, the Environmental Protection Agency (EPA) was looking for an alternative to lead 

fuel additives.   Due to ethanol’s high octane content, it was selected to be a standard 

octane enhancer (Shapouri et al., 2002).  As we fast forward into the twenty-first century, 

U.S. ethanol production increased by 9 billion gallons between 2000 and 2009 

(Wallander et al., 2011).   

Ethanol is produced from the fermentation of starch in cereal grains such as 

wheat, sorghum, corn and barley.  In the United States however, corn is the predominant 

grain of choice for 98% of the ethanol plants due to its energy efficiency of 134% energy 

output per input (RFA Ethanol Pocket-Book, 2014).  Evidence of the increase in demand 

of corn for ethanol production can be seen in the roughly 10 percent increase in acres 

planted to corn from 2000-2009 (Wallander et al., 2011).   The dry milling process by 

which ethanol is produced is also favorable to livestock producers in that ethanol 

byproducts can be fed to livestock as either a high quality protein or energy source 

(Klopfenstein, 2007).  Cattle producers have found value in feeding distillers grain to 

both growing and finishing cattle.  In 2011, U.S. ethanol refineries used 5 billion bushels 

of corn to yield 13.9 billion gallons of ethanol and 39 million metric tons of livestock 
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feed (RFA, 2014c).  Of that livestock feed, 35.7 million metric tons were distillers grains 

with the remainder in the form of gluten feed and gluten meal (RFA, 2014c).  From each 

bushel of corn (56 lbs.), there are 2.8 gallons of ethanol and 17-18 pounds of livestock 

feed produced (RFA Ethanol Pocket book 2014).  Today there are approximately 200 

ethanol plants that in total produce 15 billion gallons of ethanol (RFA Ethanol Pocket 

book 2014). 

Currently over half of Nebraska’s ethanol plants are finding added market value 

in removing a portion of the oil from distillers grains via centrifugation of the thin stillage 

and selling this oil to non-ruminant feed companies and the biodiesel industry.  Not 

surprisingly, cattle feeders were concerned that removing oil from distillers grain would 

decrease its energy value and its subsequent feeding value in beef cattle diets.  To address 

these concerns, Jolly et al., (2013) conducted two metabolism trials, a growing trial, and 

two feedlot studies to evaluate the effects of de-oiled condensed distillers solubles and 

distillers grains on cattle performance and carcass characteristics.  Prior to oil removal via 

centrifugation of the thin stillage, numerous studies had been conducted on the optimal 

inclusion level, energy value, digestibility, and associative effects of feeding distillers 

grains in beef cattle diets.  This review will focus on rumen lipolysis and 

biohydrogenation, distillers grains fed to growing and finishing cattle, and the associate 

effects of distillers grains and processed corn.   

Fermentation of the starch comprising cereal grains to produce ethanol occurs by 

two primary milling procedures; wet milling or dry milling.  Approximately 90% of the 

industry uses the dry milling process to produce ethanol (RFA Ethanol Pocket book 

2014).  Both the wet milling and the dry milling industries have byproducts that are used 
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in the livestock industry as feed resources.  Distillers grains plus solubles (DGS) and 

condensed distillers solubles (CDS) are the primary feed byproducts of the dry milling 

industry, whereas corn gluten feed is the feed byproduct of the wet milling industry 

(Erickson et al, 2007).  

 

Dry Milling 

Introduction.   

Wheat, grain sorghum, barley, corn, or mixtures of these grains are sources of 

starch used for fermentation to ethanol in the dry milling process.  Portions of the cereal 

grains utilized may be of lower quality without being detrimental to the end-product 

(Stock et al., 2000).  Corn, the primary cereal grain utilized in distillers grain production, 

(RFA Pocketbook-2014) is high in zein protein.  Zein protein is high in ruminally 

undegradable protein (RUP), thus distillers grains are an excellent source of RUP as each 

gram of distillers grains is about 63% RUP (Castillo-Lopez et al., 2013).      

Process.   

As the process begins, the grain is screened, removing debris and then ground to a 

flour-like consistency by a hammermill (ICM, 2013).  The floury grain is mixed with 

water and the mixture’s pH is adjusted to 5.8. Alpha-amylase is then added, creating what 

is now called slurry.  Heating of the slurry to 82-88°C for 30-45 minutes occurs next to 

reduce the slurries viscosity (ICM, 2013).  Next, the primary liquefaction phase of the dry 

milling process begins.  During this phase, the slurry is pumped through a pressurized jet 

cooker at 105°C for five minutes and then cooled using a vacuum flash condenser (ICM, 

2013).  The secondary liquefaction phase requires that the slurry mixture set for 1-2 hours 
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at 82-87°C to allow alpha-amylase the time to break down starch molecules down into 

short chain dextrins (ICM, 2013).  Slurry pH and temperature are again adjusted as 

another enzyme, glucoamylase, is added.  After the addition of the second enzyme, the 

mixture, now referred to as mash, is pumped into fermentation tanks where the 

glucoamylase breaks down the dextrins into glucose (ICM, 2013).  Yeast is then added to 

the mash converting the sugar to ethanol and carbon dioxide.  Fermentation of the mash 

is allowed to continue for 50-60 hours, with the products of this process being 15% 

ethanol, solids from the corn, and yeast (ICM, 2013).  Fermented mash is then pumped 

into a multi-column distillation system and heat is added.  The distillation process utilizes 

the differing boiling points of ethanol and water to separate off the ethanol.  When the 

resulting product leaves the distillation columns it is 95% ethanol by volume (190 proof).  

At the bottom of the distillation columns lie the remaining residues from the grains.  Non-

fermentable solids and water are what comprises the residue, and this is referred to as 

whole stillage.   Whole stillage is then pumped out of the columns into centrifuges 

whereas the distilled ethanol is pumped to a molecular sieve system still at 190-proof 

strength (ICM, 2013).   The molecular sieve system contains specialized sieve beads that 

absorb water molecules while letting ethanol molecules pass through.  Ethanol at the 

conclusion of this step is 100% ethanol by volume or 200-proof.  From here ethanol goes 

to on-site storage tanks where it will be denatured (ICM, 2013).  The whole stillage that 

have been pumped to the centrifuge, and removed from the ethanol, are then separated 

into a wet cake and thin stillage.  Wet cake is 30-35% DM and thin stillage is 5% DM 

(Erickson et al., 2007) at this point in the production process.   Wet cake can be dried 

down to produce modified distillers grains (MDG) at 45-50% DM or dried down even 
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further producing dry distillers grains (DDG) at roughly 91% DM (Erickson et al., 2007).  

Thin stillage is pumped to evaporators where water is removed producing condensed 

distillers solubles (CDS) or syrup that is 30-35% DM (Erickson et al., 2007).  Condensed 

distillers solubles can be added back to the WDG, MDG, or DDG at varying proportions 

to wet distillers grains plus solubles (WDGS), modified distillers grains plus solubles 

(MDGS), or dry distillers grains plus solubles (DDGS).  Throughout the remainder of this 

review, the preceding notations of the three main distillers byproducts will be used.  As 

water is removed from distillers grains, the feeding value decreases.  When WDGS, 

MDGS, and DDGS are included at 20-40% concentrations in the diet (DM-basis) their 

feeding value in comparison to corn is 143-130% for WDGS, 124-117% for MDGS, and 

a constant112% for DDGS.  As moisture content of distillers grains decreases, so does 

the feeding value in comparison to corn.  The feeding value also decreases as the 

concentration of distillers grains in the diet increases for both WDGS and MDGS, but 

remains constant with increasing inclusions of DDGS (Bremer et al., 2011).   

Distillers Grains Nutrient Composition 

Introduction.   

Though starch from many grain sources can be fermented to produce distillers 

grain, corn is the primary grain utilized (Wallander et al., 2011).  Corn is comprised of 

approximately two-thirds starch, thus when removed, the remaining nutrients increase 

approximately three-fold in the DGS byproduct (Stock et al., 2000).  To illustrate this, 

crude protein (CP) content of corn is roughly 8.0-9.0% and increases to a little over 

30.0% in DGS.  The same is true for phosphorus (P) which increases from 0.30% in corn 

to 0.90% in DGS and NDF which increases from 9.0% to approximately 35% (Stalker et 
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al., 2010).  Sulfur, however, does not increase three-fold due to sulfuric acid being added 

during dry milling to control pH (Erickson et al., 2007).  The sulfur concentration in corn 

is 0.10-0.15% (NRC, 1996), whereas distillers grains contain 0.70% (Erickson et al., 

2007 and Buckner et al., 2011).    

Benton et al. (2010) reviewed numerous published articles to summarize the 

nutrient composition of DG.  The authors found that the average nutrient composition for 

distillers grains was 31.5% CP, 10.5% fat, 6% starch, 43.2% NDF, 0.51% P, and 0.57% 

S.  In this review there was low variation observed for CP, NDF, and P and S with CV 

10.7, 10.5, 8.4, and 6.3%, respectively.  The authors observed a higher CV for fat and 

starch content of DG with CV of 31.4 and 36.3%, respectively.  They attributed the 

greater variations in fat and starch content to the amount of CDS added back to wet, 

modified, and dry distillers grains (Erickson et al., 2007).  If all of the CDS is added back 

to the distillers grains, then 20% of the byproduct is CDS and 80% is distillers grains 

(Corrigan et al. 2008).   

Nebraska plants are currently also finding added market value in removing  a 

portion of oil from the thin stillage constituent via centrifugation, thus the concentration 

of fat in DGS is variable from plant to plant.  Prior to centrifugation from the thin 

stillage, the fat content increased from 4% in corn to 12% in the DG (Stalker et al., 2010).  

Currently the fat content of DGS are 7-8% (Jolly et al., 2013).  As there is plant to plant 

variability in DGS feeds and their nutrient contents, it is crucial for cattle feeders to know 

the nutrient content of the feed they are purchasing before feeding it to their cattle.   

Variability.   
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Buckner et al., (2011) conducted a study where the nutrient composition of wet 

DGS and modified DGS produced at six different Nebraska ethanol plants was compared 

in their variability to one another.  Distillers grain samples were taken from four to five 

locations of the byproduct pile during loading for 10 loads being taken out by semi-trucks 

from the plant each sampling day.  Samples were collected for five consecutive days, and 

across four months.  Fifty samples were collected per period per plant for a total of 200 

samples being collected per plant across 4 months.  Samples were analyzed for DM, CP, 

P, S, and fat contents.  Mean crude protein concentrations ranged from 31.0 to 32.2% and 

mean P concentrations ranged from 0.78 to 0.91% in DGS across all plants with low 

variability.  Fat and sulfur values were more variable between plants in this experiment.  

Average sulfur concentrations were the most variable during period one of the study 

where plant averages ranged from 0.71-1.06%.  These highly variable values were 

reported to the individual plants allowing the plants to make adjustments that were 

evident in the final three periods of this study.  Following the adjustment phase, mean 

sulfur concentrations were 0.71 to 0.84%.  Spiehs et al., (2002), sampled ten plants 

throughout South Dakota and Minnesota and found sulfur values to range from 0.33 to 

0.74% with high variability.  These authors also found average DM, CP, P, and fat 

concentrations to be 89.3, 30.2, 0.89, and 10.9%, respectively, for plants in these two 

states.  Finally the determination of the average fat content of DGS across the six plants 

sampled was determined to range from 10.3 to 13.0%.  Buckner et al., (2011) reported 

that the nutrient values of DGS produced in Nebraska was on average 31.0% CP, 0.84% 

P, 0.77% S, and 11.9% fat.   
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Belyea et at.(2004) conducted a five year study from 1997 to 2001 in which the 

nutrient composition of corn prior to dry mill processing was compared to the distillers 

byproduct.  Corn was sampled from storage bins one day each month of the trial.  On this 

day, samples were collected every two hours of the twenty-four hours and samples were 

composited and analyzed for DM, CP, fat content, crude fiber content, and starch content.  

Nutrient values found for corn were similar to those reported in the 1996 NRC: 9.18 ± 

0.09% CP, 4.21 ± 0.06% fat, and 71.4 ± 0.32% starch.  Samples of dry DGS differed in 

their nutrient content when compared to values reported in the 1996 NRC.  The nutrient 

content of dry DGS was found to be: 31.30 ± 0.21% CP, 11.90 ± 0.11% fat, and 5.10 ± 

0.26% starch.  This study showed no significant correlations in nutrient content between 

corn and dry DGS.  Variations in dry DGS looked to be attributed to dry milling 

processing methods and most likely to the composition of distillers solubles (DS) and the 

proportion of DS added back to the distillers grains. 

Holt and Pritchard (2004) conducted a study where the nutrient composition of 

corn co-products produced in four dry milling ethanol plants was compared.  Plant 

averages were also compared to values in the 1996 NRC and the cracked corn utilized for 

byproduct production.  Four corn co-products sampled were; dry DGS, modified DGS, 

Blended DGS (dry DGS blended with wet DGS), wet DGS, and CDS.  Overall the lowest 

variations in nutrient composition were observed in the cracked corn used for ethanol 

production suggesting that the dry milling process between plants caused variation in the 

byproducts produced.  Mean nutrient values for dry DGS were 90.0% DM, 33.3% CP, 

42.7% NDF, 13.2% ADF, 95.9% OM and 13.1% fat.  Mean nutrient values of modified 

DGS were 58.9% DM, 29.7% CP, 34.9% NDF, 10.9% ADF, 94.7% OM, and 16.7% fat.  
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Solubles were 23.4% DM 19.8% CP, 90.5% OM, and 32.1% fat on average.  The wet 

DGS was 31.4% DM, 35.5% CP, 42.3% NDF, 12.1% ADF, 96.2% OM, and 12.1% fat.  

Dry matter content of dry DGS varied slightly between plants (P < 0.05) and ranged from 

89.80% to 90.91%.  Crude protein and NDF content varied between plants (P < 0.05) and 

ranged between 30.68% and 36.71% for CP and from 37.34% and 48.91% for NDF.  The 

ADF and OM values also significantly differed in DDGS produced from the four plants 

(P < 0.05).  Acid detergent fiber values ranged from 10.94% to 16.00% and the OM 

content of DDGS ranged from 96.12% to 95.77%. Three plants produced WDGS and the 

DM content between each plant differed significantly (P < 0.05) and ranged from 29.52% 

to 36.48%.  Crude protein, NDF, and ADF values varied significantly between the three 

plants also (P < 0.05).  Crude protein values ranged from 34.39% to 36.18%, NDF values 

ranged from 36.10% to 48.18%, and ADF values ranged from 9.81% to 16.93%.  Organic 

matter content significantly differed between plants as did fat content (P < 0.05) and 

ranged from 97.25% to 95.77% for OM and ranged from 11.04% to 13.12% for fat 

content.  Changes to DG are continually being made and thus cattle feeders need to be 

diligent in knowing the nutrient content of the product that they are buying and feeding.        

   

Feeding Ethanol Byproducts (Distillers Grains) to Beef Cattle 

Introduction.   

Fermenting cereal grains to produce alcohol has been a technology employed for 

many years, however not until the mid-19
th

 century did grain byproducts from the alcohol 

fermentation process begin to be utilized as a livestock feed source (Klopfenstein et al., 

2007).  In 1945, the Distillers Feed Research Council, later renamed the Distillers Grain 
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Technology Council, was started with the purpose of conducting research on distillers 

grains as a livestock feed (Distillers Grain Technology Council, 2014).  Distillers grains 

were initially fed to beef cattle as a source of protein.  Corn distillers grains have a three-

fold increase in crude protein after starch removal, making it an excellent source of 

protein for the beef animal (Klopfenstein et al., 1978).  In the 1990s, ethanol production 

increased and so did the amount of distillers grains available to cattle feeders.  This 

increase in availability resulted in a shift in the approach cattle feeders took when feeding 

distillers grains.  As availability increased so did the concentration of distillers grains in 

the diet.  

Optimal Concentrations and Feeding Value.  

Feeding distillers grains at concentrations between 15-20% on a DM basis is a 

strategy to provide supplemental protein to the beef animal (Erickson et al., 2007).  Zein 

is the primary protein found in corn and thus is the primary protein constituent found in 

DG as well.  Approximately 60% of zein protein consumed by a ruminant is rumen 

undegradable protein (McDonald, 1954).  Distillers grains protein is approximately 63% 

(Castillo-Lopez et al., 2013) and when fed as a protein source will need to have a source 

of ruminally degradable intake protein (RDP) supplemented also in order to meet the 

metabolizable protein (MP) requirements of the animal (Erickson et al., 2007).  

Ruminally undegradable protein is more efficiently used by the ruminant as it bypasses 

VFA production allowing the energy from protein (when fed in excess of requirements) 

to be used primarily by the animal itself (Owens and Zinn, 1988).  When DGS are fed at 

concentrations greater than 15%, it is supplying both protein and energy to the ruminant 

animal (Klopfenstein, 2007).  As there are three main types of DGS based on DM content 
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(dry, modified, or wet), titration experiments and meta-analysis have been conducted in 

order to determine the optimal inclusion concentrations and feeding values of each of the 

types.  Each of the trials included in this review are based upon feed ingredients 

commonly used in commercial feedyards in Nebraska.    

DDGS.     

As discussed previously, dry DGS are roughly 90% DM.  Wet grains are dried 

during production, resulting in increasing concentrations of acid detergent insoluble 

nitrogen (ADIN), a measure of heat damage.  Ham et al., (1994) conducted a trial to 

determine the effects of drying DGS on finishing cattle performance and found no 

differences in performance or carcass characteristics were observed as ADIN 

concentration increased in the finishing diet.   

To determine the optimal concentration of dry DGS on finishing cattle 

performance, Buckner, et al. (2007) fed dry DGS at 0, 10, 20, 30, 40, or 50% on a DM 

basis replacing DRC in a finishing trial.  The remainder of all diets consisted of 7.5% 

forage (10% corn silage + 2.5% ground alfalfa hay) and 6% supplement.  As dry DGS 

increased in the diet, final BW responded quadratically (P = 0.04) and cattle tended to 

respond quadratically for DMI (P = 0.08), with greatest values for cattle consuming 20% 

dry DGS diets.  Feed efficiency tended to improve linearly as dry DGS concentration 

increased in the diet (P = 0.08).  Feeding value of dry DGS in the diet tended to respond 

quadratically (P = 0.07).  The feeding value of DDGS at 10 and 20% concentrations in 

the diet was 124%, whereas when the diet concentration increased to 30 or 40%, the 

feeding value of dry DGS dropped to 108% the value of corn.  Hot carcass weight tended 

to respond quadratically to increasing concentrations of dry DGS in the diet (P = 0.07), 
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following the trend of final BW where cattle consuming 20% dry DGS had the heaviest 

carcasses. Marbling score, REA, fat depth, and calculated yield grade were not 

significantly different between treatments (P ≥ 0.24).  This study agrees nicely with what 

Benson et al., (2005) observed when they fed  0, 15, 25, or 35% DDGS and observed that 

DMI responded quadratically and was greatest at 15% concentration of DDGS in the diet 

(P = 0.05).  Daily gains tended to increase with increasing concentrations of DDGS (P = 

0.11); whereas HCW, fat depth, and yield grade did increase with increasing DDGS diet 

concentrations (P ≤ 0.05).  Similarly, Gordon et al., (2002) fed DDGS at 0, 15, 30, 45, 

60, or 75% of the diet to feedlot heifers and observed that DMI, ADG, and G:F were 

greatest in heifers consuming 15% dry DGS but decreased as dry DGS was increasingly 

added to the finishing diet (P < 0.05).  Feeding 30% dry DGS resulted in performance 

similar to feeding no dry DGS at all.   

Bremer et al., summarized 4 trials conducted at the University of Nebraska-

Lincoln (UNL) where dry DGS was fed to finishing cattle at 0-40% concentrations in the 

diet.  The authors reported that DMI increased quadratically (P = 0.03) and was greatest 

in cattle feed 30-40% dry DGS.  Daily gains and G:F increased linearly (P < 0.01) with 

increasing concentrations of dry DGS and were 1.83 and 0.162, respectively, when dry 

DGS was fed at 40% of the diet DM.  The feeding value of dry DGS was calculated to be 

112% the value of corn when included at 10-40% of the finishing diet.  

 

MDGS. 

             Huls et al., (2008) fed modified DGS at 0, 10, 20, 30, 40, 50% of the diet DM 

replacing a 1:1 blend of HMC/DRC with increasing modified DGS inclusions.  The 
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authors found that increasing the concentration of modified DGS in the diet caused a 

quadratic increase in final BW (P < 0.01) with cattle consuming 20% modified DGS in 

the diet being the heaviest.  Dry matter intake decreased quadratically (P = 0.01) and 

ADG increased quadratically (P < 0.01) when modified DGS concentration increased 

from 10 to 50% of the diet.  Cattle fed 20% modified DGS diets, gained the greatest at 

1.80 kg/d.  A decrease in DMI and an increase in daily gains caused a linear improvement 

in G:F (P < 0.01).  Cattle consuming 50% modified DGS were numerically the most 

efficient (G:F = 0.172).  Carcass weights increased quadratically with increasing 

concentrations of modified DGS, and cattle consuming the 20% modified DGS diets had 

the heaviest carcasses (P < 0.01).  Marbling scores tended to linearly increase (P = 0.10) 

and fat depth tended to quadratically increase (P = 0.12) as MDGS was increasingly 

added to the diet.  Calculated yield grade did respond with a quadratic increase (P = 0.04) 

as cattle consuming 20% MDGS offered the most lean product.  Replacing the 

HMC:DRC blend with MDGS, resulted in a feeding value for MDGS of 123% when 

included at 10% of the diet DM and decreased to 109% when included at 50% of the diet.  

Optimal cattle performance was observed between 20 and 40% inclusion of MDGS in the 

diet, but MDGS could be fed to a concentration of 50% of the diet DM with improvement 

in that observed above the HMC/DRC blend.  

Bremer et al., (2011) conducted a meta-analysis of 4 UNL finishing trials (Adams 

et al., 2008; Huls et al., 2008; Luebbe et al., 2008; Nuttelman et al., 2010) in which 

modified DGS was fed from 0 to 40% of the diet DM.  Authors reported that DMI and 

ADG responded quadratically to increasing concentrations of modified DGS in the diet 

(P < 0.01) and were maximized at 20-30% concentrations in the diet.  Feed efficiency 
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increased linearly with increasing concentrations (P < 0.01) and was 0.165 at 40% 

modified DGS diet concentrations.  The feeding value of modified DGS was calculated to 

be 128% that of corn when included at 10% of the diet DM and decreased to 117% the 

value of corn when modified DGS diet concentration increased to 40%.     

WDGS. 

Bremer et al., (2011) conducted a meta-analysis of University of Nebraska-

Lincoln (UNL) feedlot trials (Larson et al., 1993; Ham et al., 1994; Al-Suwaiegh et al., 

2002; Vander Pol et al., 2005; Godsey et al.,2008a,b; Luebbe et al., 2008; Meyer et al., 

2008; Wilken et al., 2008; Corrigan et al., 2009; Rich et al., 2009; Vander Pol et al., 

2009; Loza et al.,2010; Moore et al., 2010; Nuttelman et al., 2010; Rich et al., 2010; 

Sarturi al., 2010) where wet DGS replaced DRC or HMC in the diet.  Authors reported 

that a quadratic decrease in DMI (P = 0.01) and a quadratic increase in ADG (P < 0.01) 

resulted in a linear improvement in G:F (P < 0.01) as wet DGS concentration increased.  

Dry matter intake was lowest in finishing diets where WDGS was included at 50% of the 

diet DM, ADG was greatest at 20%, and G:F was increased up to 50% inclusion in the 

diet.  Fat depth increased linearly (P < 0.01) and marbling scores quadratically (P = 0.05) 

with increasing concentrations of WDGS in the diet.  Feeding value of WDGS responded 

cubically to increasing concentrations (P = 0.05).  Concentrations of 10% in the diet 

resulted in the highest feeding values, 151% of corn, and decreased to 113% the feeding 

value of corn as the concentration of WDGS increased to 50%.   

Ham et al., (1994) compared feeding 40% wet DGS or dry DGS to finishing cattle 

fed 85% DRC and supplement.  The authors reported that feeding a corn byproduct of 

either moisture type resulted in greater gains and higher G:F (P < 0.05) compared to 
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cattle fed DRC alone.  Comparing wet DGS to dry DGS resulted in similar gains (P > 

0.10), however cattle fed wet DGS had lower DMI (P < 0.05) and thus were more 

efficient (P < 0.05). 

Nuttelman et al., (2011) conducted the first trial where dry DGS, modified DGS, 

and wet DGS were all fed and compared within the same study.  The three distillers 

grains types were fed at 20, 30, or 40% of the diet on a DM basis replacing at 60:40 blend 

of HMC:DRC.  A negative corn-based control diet was fed for energy value comparisons.  

No interactions were reported for distillers grain type and level, thus the main effects will 

be discussed.  Final BW and ADG did not differ between distillers grains types (P = 0.51 

and P = 0.30, respectively).  However, DMI between type did differ (P < 0.01) in that 

cattle consuming dry DGS ate 12.3 kg/d, cattle fed modified DGS ate 12.0 kg/d, and 

cattle fed wet DGS diets ate 11.2 kg/d.  With significant differences in DMI and no 

changes in ADG, an improvement in G:F resulted from increasing the moisture content of 

the distillers grain (P < 0.01).  Cattle fed WDGS, MDGS, and DDGS, had feed 

efficiencies of 0.165, 0.158, and 0.150, respectively.  The authors reported that the 

feeding value of wet DGS, modified DGS, and dry DGS in comparison to the 

HMC:DRC, was 145.7, 126.5, and 109.3%, respectively and the feeding value of wet 

DGS was 136.0% and 117.9% greater than DDGS and MDGS, respectively.  On average 

DGS were 130% the feeding value of corn when fed to finishing cattle.  A tendency for 

fat depth differences between treatments was reported (P = 0.15) but HCW, marbling 

score, and LM area did not differ between distillers grain treatments (P ≥ 0.50).  As the 

concentration of distillers grains increased in the diet, no significant differences were 

reported for final BW, DMI, or ADG (P ≥ 0.24).  A linear increase in G:F did occur as 
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the concentration of distillers grains in the diet increased from 20 to 40%.  A tendency for 

linear improvement in fat depth did occur (P = 0.12) as distillers grain inclusion 

increased, otherwise no other carcass characteristics differed as concentration of distillers 

grains increased (P > 0.18).  When comparing the control to 20, 30 or 40% distillers grain 

in the diet, final BW (P = 0.05), ADG (P = 0.04), G:F (P = 0.04) improved 

quadratically.  Dry matter intake decreased linearly (P = 0.01) in comparison to the 

control and HCW weight (P < 0.01) and fat depth (P < 0.01) increased linearly.  No 

significant differences between the control and distillers grains diets were found when 

reporting marbling score or LM area (P  > 0.63).     

Distillers Grains in Forage-Based Diets 

Introduction. 

            Prior to entering the feedlot as calf-feds or yearlings, beef cattle typically 

consume high-forage diets either prior to weaning or in a backgrounding system.  Forage 

diets common to Nebraska beef cattle consist of low- or high-quality harvested forages, 

meadows, range, or corn residue.  Distillers grains can be supplemented as a source of 

protein, energy, and phosphorus (Stalker et al., 2010) in these forage diets.  As Loy et al., 

(2007) and Morris et al., (2005) have reported, supplementing DDG in low- or high-

quality forage diets increases ADG.  Wilken et al., (2009) reported that when comparing 

DDGS and MDGS in forage diets, DMD and NDFD are similar between DDGS and 

MDGS, thus type of DGS isn’t what affects cattle performance, but rather forage type.  

As starch is removed during ethanol production, dietary fiber contained within distillers 

grains is increased that does not illicit a negative associated response when fed with a 
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higher fiber diet because distillers grains contain a highly-digestible fiber source 

(Klopfenstein, 2001; Stalker et al., 2010).     

Low Quality-Forages. 

Distillers grains can be a source of protein and energy for these growing cattle.  

When DDGS was supplemented to cattle consuming low- and high-quality forage diets, 

forage intake decreased and ADG increased (Morris et al., 2005 and Loy et al., 2008) 

Determining why distillers grain supplementation in high forage diets results in increases 

in ADG was addressed by MacDonald et al., (2007) when the authors supplemented 

heifers on smooth bromegrass pastures with DDG, corn gluten meal (CGM) or corn oil 

(OIL).  Corn gluten meal was a source of RUP, which is low in rapidly growing forages, 

and OIL was a source of fat.  Both CGM and OIL were added into the diet at 

concentrations that caused the CGM diet to be equal in RUP to the DDGS diet and the 

OIL diet was equal in fat to the DDGS diet.  The authors reported that DDGS caused an 

increase in ADG (P < 0.01), and CGM tended to cause an increase in ADG (P = 0.14) but 

at a rate that was 39% of gains exhibited in DDGS supplemented cattle.  This value of 

39% suggests that supplemental RUP accounts for approximately one-third of the 

increase in ADG for cattle supplemented DDGS.   Corn oil supplementation did not 

increase ADG (P = 0.25) and tended to result in lower gains than cattle fed CGM (P = 

0.09).  The additive effect of fat and RUP contained within DDG appears to be the cause 

of favorable gains when supplemented in forage diets.        

Increasing stocking rates and reducing the use of harvested forages are of 

economic importance to cattle producers.  Loy et al., (2007)  conducted a digestion study 

to determine the energy value and effect on forage intake when DRC or DDGS were 
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supplemented to cattle fed ad-libitum chopped grass hay (CP = 8.9%).  Steers were either 

supplemented (DRC or DDGS) daily or on alternate days at 0.40% BW or 0.80% BW, 

respectively.  A control diet of grass hay with no supplementation was also evaluated.  

The authors found that control heifers consumed more kg per day of grass hay than those 

heifers being supplemented (1.88 vs. 1.66% BW/d) with either DRC or DDGS (P < 

0.01).  Total DMI (grass hay and supplement) was lower for the control cattle versus 

those supplemented (P < 0.01).  Dry matter intake did not differ between cattle 

supplemented DRC or DDGS (P = 0.45) and tended to be lower in cattle supplemented 

on alternate days compared to those heifers supplemented daily (P = 0.08).   Heifers 

supplemented on alternate days consumed fewer and larger meals (P < 0.01), and spent 

less time feeding (P < 0.01) than those heifers supplemented daily.  Average rumen pH 

was greater in the control heifers over those who were supplemented (6.30 vs. 6.18, P = 

0.05).  Control heifers also had greater rates and extents of NDF disappearance than 

supplemented heifers (P = 0.04), and rate of hay NDF disappearance was slower in DRC 

supplemented heifers compared to DDGS supplemented heifers (P = 0.02).   

In another study conducted by Loy et al., (2008) DRC, DRC + corn gluten meal 

(CGM), or DDGS was supplemented at 0.21 or 0.81% of BW, daily or 3 times a week to 

growing heifers consuming an ad libitum grass hay diet.  The authors reported that DMI 

of grass hay decreased as the concentration of supplement increased (P < 0.01), but that 

total DMI over the length of the trial was greater in cattle supplemented at high levels 

over those receving low levels of supplementation.  Comparing DDGS, DRC, and 

DRC+CGM, supplementation strategies showed no significant differences in DMI (P = 

0.27) and was 4.67, 4.70, and 4.83 kg/d, respectively.  A supplementation type by 
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concentration interaction was observed for ADG and G:F (P < 0.01).  At low 

concentrations of supplementation, heifers gained more and were more efficient when fed 

DDGS compared to the DRC and DRC+CGM supplemented heifers that performed 

similarly to one another.  At the high supplementation level, heifers fed DDGS or 

DRC+CGM had similar ADG and G:F (P = 0.85) and both outperformed those heifers 

supplemented DRC alone (P < 0.01).  At the low concentration of supplementation, 

DDGS had 130% the energy value of DRC, and at the high concentration of 

supplementation the energy value decreased to 118% that of DRC.  This decline in 

energy value as DDGS supplementation concentration increased may be due to the fat 

content of the diet and thus the hindrance of fiber digestion by rumen microorganisms.  

Fat concentrations greater than 5% have been shown to hinder fiber digestion in the 

rumen (Corrigan et al., 2009), and in the Loy et al., (2008b) study, the fat content of the 

high DDGS diet was 5.2%. 

To continue, Ahern et al., (2014) fed increasing concentrations (0, 0.33, 0.67, or 

1.0% of BW) WDGS, DDGS, or a MIX (67% WDGS + wheat straw) to cattle fed 

decreasing concentrations of a 60% sorghum silage, 40% alfalfa forage diet.  The authors 

observed no concentration by supplementation, type interactions except for DMI.  As the 

concentration of WDGS, MIX, or DDGS increased in the diet, a linear increase in DMI 

also occurred (P < 0.01). Cattle fed MIX and WDGS diets consumed similar amounts of 

forage (P = 0.94), however both were less than that consumed by cattle fed DDGS diets 

(P < 0.01).  No significant treatment differences were reported for ending BW, ADG, or 

G:F for the main effect of supplementation type (P ≥ 0.12).  As the main effect of 
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concentration of supplement increased, ending BW, ADG, and G:F increased linearly (P 

< 0.01).   

In a meta-analysis conducted by Griffin et al., (2012), 20 studies (13 pasture 

grazing and 7 confinement) were compiled and analyzed, utilizing 790 steers and heifers 

to determine the response to varying levels of DDGS in forage-based diets on gain and 

forage intake.  The authors reported  linear responses in ending BW and ADG for pasture 

fed cattle (P < 0.01) and quadratic response for these two measurements in confinement 

cattle studies (P < 0.01).  They attributed these differences between pasture and 

confinement cattle to the metabolizable protein requirements of the animals utilized.  

Confinement cattle were lighter than pasture-grazed cattle and thus their requirements for 

metabolizable protein were higher.    

Furthermore, Nuttelman et al., (2010) conducted a trial to evaluate the energy 

value of WDGS compared to DRC in high forage diets.  DRC was fed at 22.0, 41.0, or 

60.0% concentrations in the diet (DM-basis) and WDGS was fed at 15.0, 25.0, or 35.0% 

concentrations of the diet DM.  The remainder of all diet consisted of 30.0% sorghum 

silage and decreasing concentrations of grass hay with increasing concentrations of either 

DRC or WDGS.  Dry matter intake was held constant between treatments.  Ending BW 

was numerically greater in cattle consuming WDGS (P = 0.13).  With equal DMI and 

greater ADG (P < 0.01), cattle fed WDGS were more efficient than those fed DRC (P < 

0.01).  At 15.0, 25.0, and 35.0% concentrations in the diet, the energy value of WDGS 

was calculated to be 146, 149, and 142%, respectively, the energy value of DRC. 

Nebraska also has an abundant forage source in corn residue.  Distillers grains 

high energy (108% TDN in forage-based diets) and protein (~30%) make it an excellent 



21 

 

protein and energy source to beef cattle grazing corn residue.  Gustad et al., (2006) 

supplemented steer calves grazing corn residue for 95 d with 1.5, 2.5, 3.5, 4.5, 5.5, or 6.5 

lb/hd/d of DDGS that contained 12.4% fat and 30.1% CP.  The authors reported a 

quadratic increase in ADG with increasing concentrations of supplementation (P < 0.01).  

Gains ranged from 0.90 to 1.80 lb/d and were maximized at 5.5 lb/hd/d of DDGS.  Thirty 

steers were utilized as a control in this study and were supplemented with the 

aforementioned levels of DDGS when fed a diet consisting of 70.9% brome hay and 

29.1% sorghum silage.  Forage intake decreased by 27% as DDGS supplementation 

increased from 1.5 to 6.5 lb/hd/d.  In a study by Jones et al., (2014) steers grazing 

irrigated or non-irrigated corn residue were supplemented with MDGS or DDGS at 0.3, 

0.7, or 1.1% of BW.  The authors observed no distillers grain type, irrigation type, and 

diet inclusion interactions (P = 0.12).  Jones et al., (2014) did report however that average 

daily gains increased quadratically (P = 0.01) with increasing levels of supplementation 

for calves grazing irrigated or non-irrigated corn residue.  Calves gained 1.55, 2.02, and 

2.12 lb/day when supplemented at 0.3, 0.7, and 1.1% of BW, respectively.  The authors 

noted that feed refusals were observed for steers supplemented at 0.7 and 1.1% MDGS or 

DDGS of BW and correlated refusals to their quadratic responses to gain.  Jones et al., 

(2014) then deemed the optimal inclusion for steers grazing irrigated corn reside to be 

1.0% of BW and 0.9% of BW for steers grazing non-irrigated corn residue and 

supplemented with either MDGS or DDGS.  Steers supplemented MDGS gained 1.92 

lb/d whereas DDGS supplemented steers gained 1.88 lb/d thus gains were not statistically 

different between treatments (P = 0.51).  Steers grazing non-irrigated corn residue gained 

more (2.02 lb/d, P < 0.01) than steers grazing irrigated corn residue (1.77 lb/d).   
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Corn Processing and Distiller Grains 

Introduction. 

          Feeding corn to beef cattle increases efficiency in the feedlot (Hale, 1973; Theurer, 

1986).  As starch comprises approximately two-thirds of the corn kernel (Huntington et 

al, 1997), the feedlot cattle’s ability to utilize starch is crucial (Theurer et. al, 1986).  To 

increase the availability of starch for ruminal digestion, corn is often processed.  In a 

survey of nutritionists conducted by Vasconcelos and Galyean in 2007, the three most 

common corn processing methods are steam-flaking corn (SFC), ensiling high moisture 

corn (HMC), and dry rolling corn (DRC).  For the purpose of this review, DRC and SFC 

processing methods will be more heavily focused on as they were the methods used for 

experimentation.   

Corn Processing. 

              Owens et al., (1997) conducted a review where data were compiled from 183 

DRC studies, 117 HMC trials, and 53 trials where SFC was fed.  A total of 16, 228 head 

of cattle were included in the review.  Dry matter intake significantly decreased as the 

intensity of corn processing increased from DRC to HMC to SFC (P < 0.05).  Daily gains 

were similar between DRC and SFC diets (1.45 and 1.43 kg/d, respectively) but cattle 

consuming HMC diets gained significantly less (1.37 kg/d, P < 0.05).  Feed efficiency 

was statistically similar between DRC and HMC diets (0.152 and 0.156, respectively, P > 

0.05), however when cattle were fed SFC diets they were significantly more efficient 

(0.170, P < 0.05).  The authors found that when compared to DRC diets, HMC diets had 

102% the feeding value, whereas SFC diets had a feeding value of 112% compared to 



23 

 

DRC diets.  Cooper et al., (2002a) fed DRC, HMC, and SFC to finishing feedlot steers 

within the same trial.  The authors observed that when comparing feed efficiency across 

diets, cattle fed HMC were 102% more efficient than those consuming DRC diets, 

whereas the SFC fed cattle were 113% more efficient than the DRC fed cattle.  These 

values agreed with the review that Owens et al., (1997). 

As the intensity of corn processing increases, the susceptibility of starch for 

rumen digestion also increases.  Galyean et al., (1976) observed starch digestibilities of 

78, 89, and 83% for DRC, HMC, and SFC based diets, respectively.  In a review of 14 

experiments conducted from 1986 to 1995, Huntington et al., (1997) reported starch 

digestibilities of 76.2, 89.9, and 84.8% for DRC, HMC, and SFC based diets, 

respectively.  Cooper et al., (2002b) observed ruminal starch digestibilities of 76.2, 91.7, 

and 89.6%, for DRC, HMC, and SFC based diets, respectively.   When comparing to the 

results of Owens et al., (1997) and Cooper et al., (2002a) trials, cattle fed SFC based diets 

were more efficient, and as Galyean et al., (1976), Huntington et al., (1997), and Cooper 

et al., (2002b) trials all showed that more starch is being digested in the rumen when 

HMC is fed. 

Another factor to consider when increasing the intensity of corn processing, is the 

increase in RDP requirements for beef cattle (Erickson and Klopfenstien, 2002), due to 

the increase in energy in the rumen (NRC, 1996). Microbial production of protein is 

limited by the amount of energy the microbes are receiving, or the amount of protein that 

is degradable in the rumen and thus available to the microbes (Erickson and Klopfenstein, 

2002).  When RDP is limiting, starch digestion is hindered and animal performance 

declines (Erickson and Klopfenstein, 2002).  Therefore, RDP requirements need to 
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account for the amount of energy microbes will be utilizing along with the RDP content 

of ration ingredients.  Shain et al., (1998) estimated the DIP requirements for cattle fed 

DRC based diets.  The authors found that supplementing 0.9% urea, or 6.5% DIP as a 

percent of DM was sufficient to meet the DIP requirements of the animal.  Cooper et al., 

(2002a) evaluated the DIP requirements for cattle fed DRC, HMC, or SFC-based diets by 

conducting three finishing trials.  Authors observed that DIP requirements were 6.3, 10.0, 

and 8.3%  on average for DRC, HMC, and SFC-based diets, respectively.   

Feeding Processed Corn with Distillers Grains. 

          As the intensity of corn processing increases, the effect of distillers grains inclusion 

with corn processing needs to be evaluated.  In a study conducted by Vander Pol et al., 

(2008) various corn processing methods were compared.  Dry rolled corn, HMC,  a 1:1 

blend of DRC and HMC, or SFC were fed in feedlot finishing diets containing 30% wet 

DGS.  Final BW, DMI, and ADG were greatest for cattle fed DRC diets, lowest for SFC 

fed cattle, and intermediate for cattle fed the HMC only and DRC:HMC blend (P < 0.01). 

Intermediate DMI and ADG allowed cattle fed the HMC only and DRC:HMC blend with 

30% wet DGS to be the most efficient (0.182 and 0.185) followed by DRC treatments 

(0.179) and SFC fed cattle (0.176, P < 0.01).  Hot carcass weights, fat depth 

measurement, and marbling scores also followed performance data trends in that DRC 

fed cattle were heavier, fatter, and had greater marbling than DRC:HMC blend cattle 

followed by SFC treatments (P < 0.01).   

             Corrigan et al., (2009a) saw similar results to Vander Pol et al., (2008) in a study 

conducted to evaluate the effects of increasing concentrations of wet DGS (0, 15, 27.5, 

and 40% on a DM basis) replacing DRC or SFC.  An interaction was observed between 
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corn processing method and level of wet DGS for final BW, ADG, and G:F.  Final BW 

and ADG increased linearly as WDGS increased in DRC fed cattle (P < 0.10).  A 

quadratic response was observed when WDGS was added to SFC diets (P < 0.05) with 

gains being greatest when WDGS was included at 15% of the diet DM.  Just as Vander 

Pol et al. (2008) observed, Corrigan et al., (2009a) observed a decrease in DMI as wet 

DGS concentration in the diet increased resulting in an improvement in G:F (P < 0.01).  

Corrigan et al., (2009a) observed a linear increase in HCW for DRC fed cattle (P < 0.01) 

and a quadratic increase in SFC fed cattle (P < 0.05).  Fat depth was greater at lower 

concentrations with increasing intensity of corn processing as were marbling scores (P ≤ 

0.04).  Conversely Luebbe et al., (2011) found that when WDGS replaced either DRC or 

SFC at 15, 30, 45, or 60% on a DM basis, no interactions were observed. Cattle fed SFC 

had greater final BW, ADG, and G:F than DRC fed cattle (P < 0.01).  Carcass 

characteristics of HCW and fat depth also followed these performance trends and were 

greater in SFC fed cattle over DRC fed cattle (P ≤ 0.05).  Calculated YG also tended to 

be greater in SFC fed cattle (P = 0.07), but no differences in dressing percentage, LM 

area, KPH, or marbling scores were detected between corn processing methods (P ≥ 

0.48).  A linear decrease was reported for final BW, ADG, and G:F for the main effect of 

WDGS concentration in the diet (P < 0.01).  These aforementioned measurements were 

greatest for cattle fed 15-30% WDGS.  Dry matter intake also decreased as WDGS was 

increased in the diet (P < 0.01).  The authors suggested that this decrease in intake could 

be due to high sulfur and fat contents of diets with increasing concentrations of WDGS 

(Klopfenstein et al, 2008).  Fat content of the 45% WDGS diet was 7.05% fat and 

increased to 8.25% fat in the 60% WDGS diet.  This increased in fat content resulted in a 
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7.9% reduction in DMI.  Calculated dietary NEm and NEg values decreased quadratically 

with increasing concentrations of WDGS (P ≤ 0.02).  Furthermore, HCW, fat depth, 

calculated YG, marbling score, and dressing percentage decreased with increased WDGS 

inclusion (P ≤ 0.05), whereas no significant treatment differences were observed for LM 

area or KPH measurements (P ≥ 0.20).    

Furthermore, Buttrey et al., (2012) evaluated the effects of corn processing 

method (DRC vs. SFC) at low concentrations of DGS in the diet (0 or 20% on a DM 

basis) on cattle performance.  The authors observed no interactions between corn 

processing method and WDGS inclusion at this low concentration (P ≥ 0.34), the main 

effects were reported.  Final BW and ADG were not significantly different between corn 

processing methods (P ≥ 0.62), however, DMI was significantly greater for DRC fed 

cattle as has been reported previously (Vander Pol et al. 2008, Corrigan et al. 2009a, and 

Bremer et al. 2011) compared to SFC.  The decrease in DMI, and no effect on ADG 

resulted in a 9.0% improvement in feed efficiency for SFC fed cattle (P < 0.03).  Dietary 

NEm and NEg were also greater for SFC fed cattle over those fed DRC (P < 0.01).  Final 

BW, ADG, G:F, NEm, and NEg were not statistically different between treatments for the 

main effect of wet DGS concentration (P ≥ 0.14).  Overall it appears as corn processing 

intensity increases DMI decreases when distillers grains are included in the diet.  

Including distillers grains in the diet resulted in greater overall performance over 0% 

inclusion of distillers, and though data has been variable in terms of Final BW, ADG, 

G:F, and carcass characteristics, it seems that less distillers grains need to be included in 

the diet when replacing SFC compared to DRC.  Optimum inclusion of wet DGS fed with 

DRC is 40%.    
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Nichols et al., (2012) fed 0 or 35% wet DGS with a increasing ration of SFC:DRC 

(0:100, 25:75, 50:50, 75:25, and 100:0) to finishing steers.  The authors reported that 

significant interaction was observed for G:F (P = 0.03).  When wet DGS was not 

included in the diet, feeding 100% SFC resulted in 11.2% improvement in feed efficiency 

over DRC.  When wet DGS concentration increased to 35% in the diet, the 100% SFC 

only improved G:F by 2.1% over the 100% DRC diet.  This study further solidifies the 

point that less DGS need to be fed in finishing diets with increasing intensity of corn 

processing.  

Fat Removal 

Introduction.  

          Cereal grains, cereal grain byproducts, and minimal forages are common feed 

ingredients comprising beef feedlot rations.  Lipids comprise a portion of each of these 

ingredients and provide a source of energy for the ruminant animal (Zinn et al., 1994).  

Forages are comprised primarily of galactolipids and the poly unsaturated fatty acid 

(PUFA) linolenic acid (cis-9, cis-12, cis-15-18:3), whereas triglycerides and linoleic acid 

(cis-9, cis-12-18:2) are more abundant in cereal grains and their byproducts (Lock et al., 

2004).  Triglycerides are compounds containing a single glycerol comprised of three 

carbons combined via ester linkages to three fatty acid molecules.  A galactolipid is a 

three carbon glycerol molecule attached to two fatty acids and one galactose molecule.  

Phospholipids are the third source of lipids in the ruminant’s diet and they are similar to 

galactolipids except that the galactose molecule is replaced with a phosphate group 

(Jenkins, 2007).  Both linoleic and linolenic are classified as unsaturated fatty acids.  

Unsaturated fatty acids possess at least one double bond, where hydrogen atoms have 

been eliminated.  Ruminants consume feeds abundant in unsaturated fatty acids, but 
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produce meat and milk that are more concentrated with saturated fatty acids, or fatty 

acids devoid of double bonds (Pavan et al., 2007 and Duckett et al., 2009).  Lipid 

composition of non-ruminant meat products is similar to the feed resources that they 

consume (Lock et al., 2004), so it appears logical that events occurring within the rumen 

result in the conversion of unsaturated fatty acids contained in feed materials to saturated 

fatty acids comprising ruminant meat and milk products.  The microorganisms inhabiting 

the rumen are responsible for the conversion of poly unsaturated fatty acids (PUFA) to 

saturated fatty acids(SFA) (Jenkins, 2007).  This process of transforming PUFA to SFA 

is known as biohydrogenation.  

          Dietary fat content can affect the digestibility of various feed ingredients.  Dietary 

fat concentrations should not exceed 3% of DM in forage-based diets (Moore et al., 1986, 

Gilbrey et al., 2006, and Hess et al., 2008) as greater concentration in the diet suppresses 

fiber digestion in the rumen.  In concentrate-based diets, dietary fat concentrations can be 

as high as 9.4% of DM inclusion before deleterious effects on ruminal digestion occur 

(Kucuk et al., 2004; Atkinson et al., 2006).   

          Rumen digestion of lipids occurs via two main processes; lipolysis and 

biohydrogenation.  In short, lipolysis is the hydrolysis of ester linkages of glycerol and 

fatty acids to produce VFAs from glycerol and liberated free fatty acids, and 

biohydrogenation is the process of hydrating the double bonds of unsaturated fatty acids 

so as to saturate them.  Rumen metabolism of lipids is dependent upon rumen pH and 

ruminal fat concentration (Van Nevel and Demeyer, 1996).     

Lipolysis and Biohydrogenation. 
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As triglycerides and galactolipids enter the rumen, microbial lipases hydrolyze the 

ester linkages of the complex fatty acids as lipolysis occurs.   Free fatty acids, glycerol, 

and galactose are the products of lipolysis (Garton et al., 1961; Dawson et al., 1977).  

Following lipolysis, glycerol and galactose are rapidly fermented to volatile fatty acids 

(VFAs) (Van Soest, 1994).  Upon the completion of lipolysis, liberated unsaturated fatty 

acids are biohydrogenated. Biohydrogenation is the process of saturating the double 

bonds of unsaturated fatty acids with hydrogen atoms to produce single bonded saturated 

fatty acids.  Beam et al. (2000) conducted an in vitro experiment where soybean oil 

(esterified triglyceride) was added to ground grass hay at 0, 2, 4, 6, 8, or 10% wt/wt 

concentrations to determine the extent of lipolysis and biohydrogenation of the forage.  

At 2% concentration of soybean oil, the rate of lipolysis was 41.4%/h.  Rate of lipolysis 

significantly linearly decreased (P < 0.05) to 22.6%/d as the concentration of soybean oil 

increased up to 10%.  This trend was also observed for rate of biohydrogenation of C18:2 

as the concentration of soybean oil increased from 2 to 10% (P < 0.05).  Van Nevel and 

Demeyer (1996) conducted an in vitro experiment in which HCl was added to incubation 

flasks of soybean oil in order to obtain pH values of 6.8, 6.3, 5.9, 5.6, and 5.2.  The 

concentration of soybean oil in each flask was either 40 or 80 mg.  It was observed that at  

pH ≤ 6.0, lipolytic activity was significantly inhibited and that this inhibition was 

magnified when the concentration of soybean oil was increased.  In order to see a 50% 

reduction in lipolytic activity, a pH of 5.5 was needed.  Ruminal pH values do not 

typically drop this dramatically unless cattle are consuming a high-concentrate diet.   

Biohydrogenation activity on fatty acids was influenced by a low pH to a lesser extent 

than lipolysis.  Thus ruminal depressions in microbial biohydrogenation activity are 
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probably due more to reduced substrates coming from lipolysis rather than reductions in 

biohydrogenation itself (Van Nevel and Demeyer, 1996). 

 Ruminal breakdown of lipids is driven by microbial enzymatic activity (Dawson 

1977). Ciliated protozoa, anaerobic bacteria, and anaerobic fungi are the three primary 

inhabitants of the rumen (Jenkins et al., 2008).  Bacteria have been found to be the main 

contributors to rumen biohydrogenation.  These bacteria are classified into one of two 

groups; Group A or Group B (Kemp and Lander, 1984).  Group A bacteria, which have a 

greater presence within the rumen, are bacteria with the ability to biohydrogenate PUFA 

to trans 18:1 fatty acids.  Group B bacteria, which are fewer in number, are able to 

biohydrogenate trans18:1 or other intermediates to stearic acid (Harfoot and Hazlewood, 

1997).  The duties performed by Group A and B bacteria contribute to a large 

concentration of trans 18:1 intermediates in the rumen rather than stearic acid fatty acids.   

Butyrivibio fibriosolvens, a species of bacteria, have been identified to biohydrogenate 

fatty acids producing conjugated fatty acids and trans-11-18:1 intermediates in the 

biohydrogentation of linoleic acid (Polan et al., 1964 and Kepler et al., 1966).  

Unsaturated fatty acids are toxic to rumen bacteria in large quantities, thus ruminal 

transformation is crucial to survival of certain bacterial species (Lock , 2006).  

Identifying the microbial species responsible for conversion of intermediates to stearic 

acid (18:0) has proved more difficult.  The Rowett Research Institute has more recently 

worked to identify the bacterial species needed for conversion of trans-11-18:1 to stearic 

acid (Jenkins et al., 2008).  They found that eleven of the twenty-six most prominent 

bacterial species found in the rumen had the ability to metabolize linoleic acid.   Three 

different strains of Butyrivibrio and two strains of Clostridium proteoclasticum were 
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identified as producers of trans-11-18:2.  Clostridium proteoclasticum was also identified 

as being able to biohydrogenate trans-11-18:2 to stearic acid (Jenkins et al., 2008).  

Clostridium proteoclasticum is closely related to Butyrivibrio as found in research 

published by Attwood et al., (1996), Kopecny et al., (2003), and Paillard et al., (2007).     

 Ciliated protozoa comprise approximately half of the rumen’s microbial biomass 

(Williams, 1989).  Protozoa have a negative associative relationship with bacteria in that 

they ingest large quantities of bacteria as their energy source.  Protozoal fatty acids are 

known to be highly unsaturated in comparison to bacterial fatty acids, thus could be a 

source of unsaturated fatty acids in ruminant meat and milk products (Harfoot and 

Hazlewood, 1997). This fact has led some to conclude that both bacteria and protozoa 

have the ability to biohydrogenate fatty acids (Wright et al., 1959 and 1960).  Bacterial 

consumption by protozoa has led others to doubt this theory.  Dawson and Kemp (1969) 

looked at how defaunation affected biohydrogenation of lipids.  They found that 

biohydrogenation only decreased slightly and concluded that protozoa were not essential 

to biohydrogenation.   

 Degree of ruminal biohydrogenation is significant when looking at the fatty acid 

profile entering the duodenum. Lock et al., (2005) conducted a review discussing the 

significance of this concept .  The authors stated that linoleic acid concentration in dairy 

diets is high due to the amount of forage consumed.  Linoleic acid, however, is only 

absorbedd at the small intestine at approximately 21% of that which is consumed.  Stearic 

acid, though ingested in smaller quantities in high forage diets, is absorbed at a rate of 

almost 800% of that which is consumed.  The high concentration of steric acid entering 
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the small intestine illustrates how active bacteria are in ruminal biohydrogenation of 

PUFA.   

Intestinal Digestion of Fatty Acids.   

 Absorption of fatty acids occurs in the jejunum.  Lipid composition, available for 

absorption in the jejunum, is similar to that flowing from the rumen (Moore and Christie, 

1984).  Of the fatty acids entering the duodenum, 80 to 90% are attached to feed particles 

with the remainder being in the form of microbial phospholipids.  Prior to absorption, 

however, the hydrophobic fatty acid needs to be solubilized in order to cross the unstirred 

water layer (Baumen et al., 2003).  For this to occur, a micelle needs to be formed.  As 

fatty acids enter the duodenum, secretions from the gall bladder and pancreas flow into 

the small intestine to provide the necessary supplies for micelle formation (Baumen et al., 

2003).  Bile from the gall bladder supplies bile salts and lecithin which precipitate fatty 

acids from feed components and bacteria (Baumen et al., 2003).  From the pancreas, 

enzymes essential for the conversion of lecithin to lysolecithin, are secreted.  The 

combination of bile salts, fatty acids, and lysolecithin form a micelle (Baumen et al., 

2003).  When the micelle enters the epithelial cells of the jejunum, the fatty acids and 

lecithin are absorbed and the bile salts are removed and recycled back through the system 

(Lock, 2006).  Triglycerides combine with cholesterol, phospholipids and protein to form 

a chylomicron that transports fat to the body via the lymphatic system to large body 

veins.  Once at the veins, the chylomicron adheres to the endothelium of the capillary.  

Here it is hydrolyzed by lipoprotein lipases freeing the fatty acids from the 

monoacylglycerol.  The remainder of the chylomicron is now referred to as the 
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chylomicron remnant and upon hydrolysis is transported back to the liver in the 

circulatory system (Lock, 2004).   

Fat in Beef Cattle Diets. 

 Fat is supplemented in cattle diets increase the energy density of the diet (NRC, 

1996).  Compared to the typical carbohydrates cattle consume, those found in forages and 

cereal grains, supplemental fat has a little over 2 times the energy value of carbohydrates 

(Hess et al., 2007), which is why fat is added to diets to improve performance.  Popular 

supplemented fat sources found in beef cattle diets are rendered beef tallow and pork 

grease fat byproducts ( tallow or grease), poultry fat, mixed feed grade fat ( blends of 

tallow, grease, poultry fat, and restaurant grease), feed grade vegetable oil (canola oil, 

soybean oil, and soap stocks), and oil seeds without fat extraction (canola seeds); (Lock 

et al., 2004).  Another excellent source of fat for cattle diets is condensed distillers 

solubles which is often added back to DGS as well as the energy from fat found in DGS 

themselves.   

Fat Supplementation and Cattle Performance. 

 Up until the 1980’s, it was reported that fat supplementation over 5% of the diet 

DM hindered gains in feedlot cattle (Zinn, 1989a).  However, these depressions appear to 

be dependent upon the grain source that comprises the basis of the diet as well as the 

source of fat being supplemented.  Fat supplemented to barley, sorghum, or wheat-based 

diets has been shown to improve ADG and G:F in feedlot diets (Brethour et al., 1986; 

Zinn, 1989a; Brandt and Anderson, 1990).  By contrast, when supplemental fat was 

included in corn-based diets, the results are variable (Haaland et al., 1981; Gramlich et 

al., 1990; Huffman et al., 1992).  Haaland et al. (1981) found that adding 5% protected 



34 

 

tallow to steam-flaked corn diets maximized DMI, ADG, and G:F (P < 0.05).  Gramilich 

et al. (1990) found that when tallow was added to a dry-rolled corn (DRC) based diet at 

4% on DM-basis, ADG was maximized and feed efficiency was the greatest.  Huffman et 

al., (1992) conducted two experiments utilizing DRC-based diets with differing levels 

and types of supplemental fat.  The authors found that when bleacheable fancy tallow 

was fed at 0, 2, 4, or 6% (DM basis) with 0 or 7.5% forage, there was no effect on ADG 

or G:F in the 7.5% forage diet, but that in the all concentrate diet, ADG and G:F 

decreased linearly (P < 0.01, and P = 0.08, respectively).  When Huffman et al. (1992) 

fed 0% fat, 4% bleacheable tallow, or 4% blended animal-vegetable fat with 0 or 7.5% 

forage, the authors found that across both forage levels the addition of supplemental fat to 

the DRC-based diet increased ADG and G:F (P < 0.01).  Zinn, (1989a) noted that the 

greatest responses to feeding fat are seen in diets where acidosis control is maximized.    

          Condensed distillers solubles fed alone or when added back to distiller grains 

provide an excellent source of energy in growing or finishing beef cattle diets.  

Supplementation of these two corn byproducts in forage-based diets increase ADG and 

decreases forage intake (Morris et al., 2005).  Decreased forage intake and increased 

gains appear to be caused by the additive effects of supplemental RUP and fat in the 

forage diet.  MacDonald et al., (2007) conducted an experiment to determine the 

magnitude of contribution both supplemental protein and energy in the form of fat had on 

forage fed cattle.  Dry distillers grain, corn gluten meal (CGM), and corn oil were 

supplemented to cattle on smooth brome pasture.  The authors reported that feeding dry 

DGS increased ADG (P < 0.01) and CGM tended to increase gains (P = 0.14) but at a 

rate that was 39% that of exhibited by dry DGs supplemented cattle.  This value of 39% 
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suggests that supplemental RUP accounts for approximately one-third of the increase in 

ADG for cattle supplemented dry DGS.  Corn oil supplementation, however, did not 

elicit increased ADG (P = 0.25) and tended to decrease gains compared to CGM 

supplemented cattle (P = 0.09).  Looking to digestive kinetics with fat supplementation in 

forage-based diets, Gilbrey et al., (2006) fed increasing concentrations of CDS (0, 5, 15, 

or 20% on a DM basis) to cattle consuming a switchgrass diet (Panicum virgatum L.).  

Ruminal OM and NDF digestibility increased linearly (P < 0.01), however OM and NDF 

total tract digestibility were unaffected (P > 0.05).  No treatment differences in average 

ruminal pH were observed for this trial (P > 0.05).   This was not the same effect reported 

when corn oil was supplemented to fescue grass diets by Pavan et al., (2007).  The 

authors observed linear decreases in DM, OM, and NDF total tract digestibility as corn 

oil supplementation increased.  Corrigan et al., (2009b) attributed the differences 

observed between these two studies to the CP content of each supplemental source of fat 

and thus conducted three separate trials to illustrate this.  In the first trial, the authors 

supplemented increasing concentrations of dry DGS (0.25, 0.50, 0.75, or 1.0% of BW) 

with increasing concentration of CDS added back to them (0.0, 5.4, 14.5, 19.1, or 22.1% 

of dry DGS DM) to a basal diet of 58.8% alfalfa hay, 39.2% sorghum silage, and 2% of a 

formulated supplemented fed ad-libitum.  The fat content of DDG with CDS inclusion of 

0.0, 5.4, 14.5, 19.1, and 22.1% was 6.9, 8.9, 10.4, 12.7, and 13.3%, respectively. A DDG 

supplementation level by CDS level interaction was observed for ADG and G:F (P < 

0.01).  As DDG supplementation increased, a cubic response in ADG was observed when 

0.0 (P = 0.04), 14.5 (P < 0.10), and 19.1% (P = 0.09) CDS was added to the DDG.  As 

DDG supplementation increased, a cubic response in G:F was also observed when 0.0 (P 
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= 0.07) and 14.5% (P < 0.10) was added to the DDG.  No significant interactions were 

reported for total DMI or final BW however a linear decrease in DMI of the forage was 

the result of increased dry DGS supplementation and subsequent increase of fat content 

of the diet (P < 0.01).  This decrease in forage intake the authors attributed to the 

increased energy supplied to the diet by increasing concentrations of DDG 

supplementation.   A quadratic increase in final BW as DDG supplementation increased 

was also observed (P = 0.06).  No significant trends were observed with increasing 

concentrations of CDS in the DDGS (P ≥ 0.18).  In the second trial conducted by 

Corrigan et al.,(2009) DDG was supplemented to steers fed a 58.8% alfalfa hay, 39.2% 

brome hay, and 2% supplement diet.  The DDG was supplemented at 1.0% of BW and 

had either 0.0 or 22.1% CDS added back to it in order to evaluate the effects of protein 

and fat content on DM, OM, and NDF digestibility.  No treatment differences were 

observed for DM, OM, or NDF total tract digestibility (P ≥ 0.14).  Ether extract 

digestibility was greater for cattle fed the 22.1% CDG diets.    The final experiment by 

Corrigan et al., (2009b) utilized two duodenally and ruminally cannulated Holstein steers 

to estimate DM and CP digestion of the DDG treatments and basal diet fed in the first 

experiment.  A linear increase in ruminal DM digestibility (P < 0.01) and a quadratic 

increase in lower tract and total tract digestibility (P ≤ 0.03) was observed as the 

concentration of CDS in the DDG increased.  The authors concluded that though the 

cubic interaction for ADG and G:F observed with increasing inclusions of CDS in DDG 

is unclear it appears that the level of CDS in the diet is critically responsible for 

performance responses in ADG and G:F for forage-based diets.             
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 In order to determine the effects of increasing concentrations of CDS added to 

finishing diets, Pesta et al., (2012) fed 0.0, 9.0, 18.0, 27.0, or 36.0% CDS replacing a 

blend of DRC and HMC.  A linear decrease in DMI (P < 0.01) was observed as CDS 

concentration increased while a quadratic increase in ADG and G:F (P ≤ 0.02) was 

observed.  Vander Pol et al. (2009) conducted two separate experiments to determine the 

effects of WDGS inclusion on steer performance and digestibility in finishing diets.  In 

Trial 1, was a 2 × 3 factorial where WDGS was fed at 0, 20, or 40% concentration in the 

diet and corn oil was fed at 0, 2.5% or 5% in the diet.  The 20% WDGS and 2.5% corn 

oil diets had the same fat concentration and the 40% WDGS and 5% corn treatment diets 

had the same fat content.  An interaction between corn byproduct type and concentration 

was observed for ADG and G:F.  As increasing concentrations of corn oil were included 

in the diet, ADG linearly decreased (P = 0.04) whereas no significant effect was observed 

in ADG when increasing concentrations of WDGS were included in the diet (P > 0.50).  

Feed efficiency also decreased linearly as corn oil diet concentration increased (P = 

0.10), but was unaffected by increasing concentrations of WDGS added to the diet (P > 

0.20).  Cattle fed 20 or 40% WDGS diets were more efficient than their control (P < 

0.01).  In the digestion study by the same authors,  ruminally and duodenally cannulated 

steers were fed 40% WDGS, 2 composites diets (one containing corn bran plus corn oil 

and the other corn containing corn gluten meal plus corn oil), or DRC-based diet with or 

without corn oil supplementation.  The authors found cattle fed 40% WDGS had greater 

molar concentrations of propionate and reduced acetate:propionate ratios compared to 

steers in other treatments (P < 0.01).  Total tract fat digestibility and a greater 

concentration of unsaturated fatty acids in duodenal fluid where also found in steers fed 
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40% WDGS (P < 0.01) compared to steers in other treatments.  The authors thus 

concluded that the greater energy value and subsequent feeding value of WDGS over 

corn could be due to greater propionate production, greater fat digestibility, and more 

unsaturated fatty acids reaching the lower tract for digestion.  Scott et al., (1998) reported 

that as corn steep is increasingly added to finishing diets, acetate:propionate decrease.  

Corn steep is quite similar to CDS found in WDGS, minus the fat content, thus this 

appears to support observations reported by Vander Pol et al., (2009).   

          When 40% WDGS is added to the diet, there is an increase in the concentration of 

unsaturated fatty acids flowing to the lower tract is important.  Plascencia et al., (2003) 

reported that saturated fatty acids are less digestible in the duodenum compared to 

unsaturated fatty acids.  Atkinson et al., (2006) further supports the results of Vander Pol 

et al., (2009) as they reported that high concentrate diets promote reductions in 

biohydogenation in the rumen, resulting in increased flow of unsaturated fatty acids to the 

lower tract.  Lock et al., (2005) further supported this as they observed that digestibility 

of fatty acids decreases with increasing chain length, however fatty acid digestibility 

actually increases with the prevalence of double bonds.  The authors reported that for 

16:0, 18:0, 18:1, 18:2, and 18:3 fatty acids, intestinal digestibility was 75, 72, 80, 78, and 

77% for each, respectively.  

Methods of Fat Extraction in Dry Milling Process. 

          Ethanol production has increased from 60 million gallons in the 1970’s to 15 

billion gallons in 2014.  Out of nearly 200 ethanol plants in production across the United 

States, approximately 75% are removing oil and selling this oil to non-ruminant food 

industries or to the biofuel industry (RFA, Pocketbook Guide to Ethanol, 2014).   Two 
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primary methods are utilized to remove this oil; pre-fermentation fractionation and 

centrifugation of the thin stillage following fermentation.     

Pre-Fermentation Fractionation.  

          Pre-fermentation fractionation is a technology utilized by the ethanol industry to 

increase production efficiency and remove oil with added market value (Buckner et al., 

2011).  Pre-fermentation fractionation is the process of separating the corn kernel into its 

endosperm, germ, and bran (pericarp and tip cap) fractions (Lin et al., 2011).  The 

endosperm fraction comprises approximately 83% of the corn kernel (RFA, 2014), is 

high in starch, and is the corn component fermented to produce ethanol and distillers 

byproducts (Kleinhans et al., 2005).  Bran, which is composed primarily of carbohydrates 

is a component used in ruminant diets primarily.  The germ, which comprises 

approximately 12% of the kernel, is the oil-rich corn constituent (RFA, 2014).  Two 

methods of pre-fractionation are currently employed; wet fractionation and dry 

fractionation (Lin et al., 2011).  Wet fractionation requires that the corn kernel be soaked 

in water, incubated with glutathione reductase (GSH) and protease enzymes, and then 

sent to the grinder for degermination.  Pericarp fiber, or bran, will be highly associated 

with the germ portion of the kernel at this time, but these two components will be 

separated out from the endosperm.  The pericarp and germ blended portion are then dried 

and aspirated, separating the bran and germ from one another (Rausch and Belyea, 2006).  

Dry fractionation is similar to wet fractionation; however the corn is tempered with steam 

and hot water before being sent to the degerminator.  At the degerminator the endosperm 

is readily separated off from the other kernel components.  The pericarp and germ are 
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separated into their individual constituents after going through the rollermill and 

subsequently being sifted in their dry forms (Rausch and Belyea, 2006).   

When comparing the nutrient composition of pre-fractionated distillers grains to 

distillers grains without oil removal there are some marked differences in crude protein 

(CP) and fat concentrations of each byproduct (RFA, 2014)  Distillers grains produced in 

plants implementing pre-fractionation technologies are more concentrated in protein, and 

have a fat content equal to or less than the corn kernel from which they were derived 

(RFA, 2014).  Pre-fractionated distillers grain can have a protein content as high as 

37.0% and a fat content as low as 2.0%, both of which are dependent upon the pre-

fractionation technology used as well as the efficiency of that technology (RFA, 2014).  

Feeding Pre-Fractionated Distillers Grains. 

 Research conducted on pre-fractionated corn byproducts is limited.  Depenbusch 

et al. (2008), however, conducted a study where partially pre-fractionated DDGS (FRAC) 

was fed at 13% concentration in the diet and compared to a diet containing 13% normally 

processed DDGS (TRAD) and a 0% DDGS control.  The authors found that DMI, ADG, 

and G:F were not significantly different between the control, TRAD, or FRAC treatments 

(P ≥ 0.46).  When performance comparisons were made between TRAD and FRAC, it 

was observed that cattle consuming the TRAD diet had greater DMI than those 

consuming FRAC diets (P ˂ 0.01), but ADG and G:F were not significantly different 

between treatments (P ≥ 0.07).  No statistical differences in carcass measurements were 

observed in this study.  The authors concluded that feeding low levels of partially pre-
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fractionated DDGS to cattle did not significantly affect performance when compared to 

the performance observed in traditionally produced DDGS.  

Conversely, Gigax et al. (2012) compared feeding a 35% (DM-basis) pre-

fractionated, low oil WDGS (LFAT) diet to 35% full fat WDGS (NFAT) diet and a 0% 

WDGS control diet.  Wet distillers grains plus solubles replaced a 1:1 blend of DRC and 

HMC.  The fat content of LFAT was 6.7%, whereas the fat content of NFAT was 12.9%.  

The authors found that final BW and thus HCW were greater in cattle fed NFAT diets (P 

= 0.04).  Dry matter intake was similar between all treatments (P = 0.99), but ADG was 

greatest in cattle consuming NFAT diets (P = 0.02), with gains being similar in the LFAT 

and control diets.  A tendency for cattle fed NFAT to be more efficient at the bunk 

existed (P = 0.12), but as was seen in the study by Godsey et al., (2010) carcass 

characteristics did not differ across treatments (P ≥ 0.25).   

Buckner et al. (2011) fed Dakota Bran, a pre-fermentation fractionated corn 

byproduct, with  CP and fat contents of 14% and 11%, respectively.  The corn byproduct 

Dakota Bran was fed at 15 or 30% of diet (DM-basis) and compared to equal 

concentrations of traditionally produced DDGS.  A 70:30 blend of ground brome grass 

hay and alfalfa haylage comprised the remainder of all diets.  The crude protein and fat 

contents of DDGS was 30% and 11%, respectively.  No concentration by corn byproduct 

type interactions existed in this study.  As the concentration of either byproduct increased 

in the diet, so did ending BW, DMI, ADG, and G:F (P < 0.01). NEm and NEg values for 

the diet also increased as corn byproduct inclusion increased (P < 0.01).  The main effect 

of corn byproduct type showed that feeding DDGS resulted in a tendency of heavier 

ending BW (370 vs. 366 kg, P = 0.06) and a tendency for a greater NEg value (0.97 vs. 
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0.93, P = 0.08) for the diet.  Daily gains improved when DDGS was fed by 0.07 kg (P = 

0.05) and feed efficiency improved by 5.5% over cattle consuming Dakota Bran diets.  

Another study by the same authors (Buckner et al., 2011) was conducted where feedlot 

cattle were fed 0, 15, 30, or 45% Dakota Bran or 30% DDGS.  As Dakota Bran was 

increased in the diet, final BW, ADG, G:F, and HCW improved linearly (P < 0.01).  

Calculated energy values tended to increase linearly also as Dakota Bran concentration in 

the diet increased (P = 0.14).  When comparing 30% Dakota Bran vs. 30% DDGS 

performance, finishing cattle responded similarly to both diets.  

Finally, E-corn, which is a pre-fractionated, low fat corn byproduct which is 

comprised of the remaining material after the starch is distilled off as ethanol and the 

corn oil is removed, was fed to finishing beef cattle by Godsey et al. (2010).  E-corn was 

fed at 0, 20, 40, or 60% concentration in the diet on a DM basis along with 30% WDGS 

or 30% wet corn gluten feed (WCGF) in a 2 × 4 factorial arrangement of treatments.  No 

corn byproduct type by E-corn inclusion interactions existed in this study (P > 0.10).  The 

main effect of E-corn concentration in the diet resulted in no significant differences in 

final BW (P = 0.49), but DMI responded quadratically with increasing concentrations of 

E-corn in the diet (P = 0.04).  Dry matter intake was similar in cattle fed diets containing 

0 to 40% E-corn, but 60% E-corn replacing DRC in the diet, reduced DMI.  No 

difference in ADG (P > 0.10) were noted when E-corn was increased to the diet, but G:F 

responded cubically (P = 0.02).  Feed efficiency was highest when E-corn was included 

at 20 or 60%, but poorest when E-corn replaced corn at 0 or 40% inclusions in the diet.  

The authors stated that replacing DRC with E-corn at 60% on a DM basis would result in 

similar live animal performance while decreasing DMI.  Looking to carcass 
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characteristics, HCW was not different between treatments (P = 0.49), but marbling, fat 

thickness, and calculated yield grade linearly decreased with increasing inclusions of E-

corn.  The main effect of corn byproduct type resulted in no significant differences in 

final BW (P = 0.75), however, DMI was lower in cattle consuming WDGS diets (P ˂ 

0.01) and ADG was similar between treatments (P > 0.10), thus WDGS fed steers were 

6% more efficient than steers consuming WCGF diets (P = 0.02).  No significant 

differences were observed for any carcass measurement when comparing the two corn 

byproducts.  The authors reported that the feeding value of E-corn replacing DRC in the 

diet was 118% at 20% concentrations in the diet, but reduced to 101% when E-corn was 

included at 60%.  This could be due the decreasing fat content of the diet with increasing 

concentrations of E-corn included.   

As the literature suggests, cattle performance is variable when feeding pre-

frationated corn byproducts in comparison to DGS byproducts with no oil removal.  

These variances in cattle performance could be due to the pre-fractionation method used 

or the remaining nutrients comprising the diet.  Further research is needed on effects to 

cattle performance if this methodology of oil removal becomes more prevalent.  

Post-Fractionation. 

          Removal of fat following fermentation is referred to as post-fractionation.  This 

process is conducted by centrifuging oil from the thin stillage prior to evaporation of the 

thin stillage to produce CDS (RFA, 2014).  Traditionally processed distillers grains (no 

oil removal) have a fat content of approximately 12-13%, whereas after centrifugation, 

fat content of distillers grains is between 7 and 9%.  
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Feeding Post-Fractionated Distillers Grains.  

          As over half of Nebraska’s ethanol plants are removing oil from distillers grains 

via centrifugation of the thin stillage, it is not surprising that cattle feeders were 

concerned.  Reducing fat and thus the potential energy value of distillers grains could 

impact cattle performance.  To address this concern, Jolly et al. (2013) looked at the 

effects of feeding de-oiled CDS in growing cattle fed forage-based diets.  De-oiled (6.3% 

fat) and full fat (20.1% fat) CDS, produced at the same plant were fed at 20 or 40% of the 

diet (DM-basis).  A control diet containing no CDS was also fed for comparison.  The 

remainder of all diets consisted of 80:20 blend of brome hay and sorghum silage.  Fat 

content of the control diet was 1.47%. Fat content was 2.39 and 3.23% for the de-oiled 

and full fat 20% CDS diets, respectively, and 5.15 and 8.83% for the de-oiled and full fat 

40% CDS diets.  The full fat, 40% CDS diet contains a greater fat content than what is 

typically fed to growing cattle consuming a forage-based diet.  The authors observed no 

statistical CDS fat content by CDS concentration interaction (P ≥ 0.14).  Steer consuming 

full fat CDS diets tended to be more efficient (P = 0.07) than those fed de-oiled CDS 

diets.  Cattle consuming full fat CDS at 20% inclusion in the diet were 13.4% more 

efficient than cattle consuming 20% de-oiled CDS diets.  At the 40% inclusion level, no 

substantial differences in G:F were present which could be attributed to the high fat 

concentration in the diet hindering fiber digestion (Loy et al., 2008).  Concentration of 

CDS in the diet caused linear improvements, in both de-oiled and full fat CDS diets, for 

ending BW, DMI, ADG, and G:F as the concentration of CDS in the diet increased from 

20 to 40% (P < 0.01). 
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          Another component of this same trial by Jolly et al., (2013) was that 40% de-oiled 

or full fat CDS was fed with either wheat straw or grass hay.  The authors reported a 

tendency for a interaction between fat content and forage type for DMI (P = 0.06).  No 

significant difference in intake were observed for cattle fed the grass diet, but cattle fed 

the full fat wheat straw diet ate 5.2 kg/d compared to 6.1 kg/d consumed by cattle fed de-

oiled CDS.  No other interactions were reported for this study, and when looking to the 

main effect of fat content of CDS, no treatment differences were reported (P ≥ 0.40).  

However, ending BW, DMI, ADG, and G:F were significantly greater for cattle fed grass 

hay over wheat straw (P < 0.01).   

          Jolly et al., (2013) conducted a finishing trial to compare the effects of feeding 

27% de-oiled or full fat CDS to 40% de-oiled or full fat MDGS when replacing a 

DRC:HMC blend.  Inclusion of CDS at 27% and MDGS at 40% was conducted as Pesta 

et al. (2012) and Bremer et al., (2011), respectively found that G:F was maximized when 

CDS and MDGS were fed at these concentrations in finishing feedlot diets.  A 0% corn 

byproduct diet was also fed for comparison.  The remainder of all diets consisted of 12% 

corn silage and 5% supplement and decreasing concentrations of a HMC:DRC blend with 

increasing corn byproduct inclusion. The authors reported that the fat content of de-oiled 

and full fat CDS was 6.0 and 21.1%, respectively, and 9.2 and 11.8% for de-oiled and full 

fat MDGS, respectively.  The fat content of the diets was then 4.43% for the HMC:DRC 

control, 4.72% for the de-oiled CDS diet, 8.80 for the full fat CDS diet, 6.12% for the de-

oiled MDGS, and 7.19% for the full fat MDGS diet.  The authors reported no interactions 

between fat content and corn byproduct type.  All diets containing corn byproducts 

resulted in greater G:F than did the HMC:DRC control (P < 0.01). When comparing G:F 
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values for de-oiled and full fat CDS or MDGS no significant differences were observed 

for performance or carcass characteristics (P ≥ 0.44).  Though not statistically significant 

(P = 0.29), a small numerical difference in G:F existed between de-oiled and full fat CDS 

treatments.  Cattle fed de-oiled CDS were 2.75% more efficient than cattle fed full fat 

CDS.  Only a 0.57% difference existed between de-oiled and full fat MDGS treatments 

for G:F.  When comparing the effect of corn byproduct type, no significant differences 

were observed for DMI, ADG, or G:F between treatments (P ≥ 0.58).  No significant 

differences in carcass characteristics were observed between steers fed either of the corn 

byproduct types (P ≥ 0.29).  Another finishing trial conducted by the same authors 

evaluated the effects of feeding 35, 50, or 65% de-oiled or full fat WDGS.  Wet distillers 

grains plus solubles replaced the HMC and DRC.  A control diet containing no WDGS 

was also fed for comparison. Corn silage at 12% (DM basis) and 5% supplement 

comprised the remainder of all diets.  Both de-oiled and full fat WDGS were produced 

from the same plant for this trial.  No linear or quadratic interactions existed for final 

BW, ADG, or G:F (P ≥ 0.31), however, DMI decreased linearly as concentration of 

WDGS increased in the diet for both de-oiled and full fat WDGS diets (P < 0.01).  The 

decrease in DMI was not equal between diets containing de-oiled or full fat WDGS.  Oil 

content as a main effect showed that ADG was greater in cattle consuming de-oiled 

WDGS diets (P < 0.01), but final BW, DMI, G:F, and all carcass measurements were not 

statistically different between treatments (P ≥ 0.52).  A quadratic response to DMI with 

increasing concentration of WDGS in the diet (P < 0.01) did occur with cattle fed 35% 

WDGS diets consuming the most per day.  A linear improvement in G:F was observed 

with increasing concentration of WDGS in the diet (P < 0.01), with a tendency for a 
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linear increase in calculated yield grade also being observed (P = 0.08).  No linear or 

quadratic significance was reported for final BW, ADG, HCW, LM area, fat depth, or 

marbling (P ≥ 0.13) as WDGS concentrations increased in the diet.  The authors 

concluded that removing a portion of the oil from distillers grains via centrifugation did 

not significantly affect finishing performance when fed with a HMC and DRC blend.   

         Finally to determine how de-oiled or full fat CDS (27% DM-basis) or MDGS (40% 

DM-basis) affected total tract digestibility, Jolly et al., (2013) also conducted a digestion 

study.  Fat content of corn byproducts was 8.7 and 15.4% for de-oiled and full fat CDS, 

respectively, and 9.2 and 12.3% for de-oiled and full fat MDGS, respectively.  DM and 

OM intakes and digestibility did not differ between de-oiled or full fat CDS or MDGS (P 

≥ 0.17).  NDF intake, however, was greater in full fat CDS diets (P = 0.02) compared to 

de-oiled CDS diets and tended to be greater in full fat MDGS diets (P = 0.08) over de-

oiled MDGS diets.  Total tract digestibility of NDF was greater in full fat CDS diets over 

de-oiled CDS diets (P = 0.02), but did not differ between MDGS varieties (P = 0.90).   

Objectives. 

          It appears that when oil is removed from distillers grains via centrifugation of the 

thin stillage portion, and then these CDS are added back to the wet grains, there are 

minimal effects on cattle performance in growing and finishing diets.  Though the 

experiments conducted by Jolly et al, (2013) have alleviated some concerns for cattle 

feeders, more questions still need to be answered.  Therefore the objectives of this 

research were to 1) determine the effects of de-oiled MDGS in growing cattle 

performance and rumen digestion compared to full fat MDGS 2) to determine the optimal 
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concentration of de-oiled MDGS in a finishing cattle diet and 3) to determine the effects 

of corn processing with de-oiled WDGS compared to full fat WDGS.      
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Chapter II 

 

DE-OILED DISTILLERS GRAINS IN GROWING CATTLE DIETS 

Energy Value and Digestibility of De-oiled Modified Distillers Grains Plus Solubles 

(MDGS) in Growing Cattle Diets  

M.L. Bremer, S.J. Peterson, A.K. Watson, A. L. Shreck, J.L. Harding, T.J. Klopfenstein, 

G.E. Erickson, and J.C. MacDonald  

Department of Animal Science, University of Nebraska, Lincoln, NE 68583 

Abstract 

Two experiments determined the energy value of de-oiled modified distillers 

grains plus solubles (MDGS) and its effects on DM, OM, and NDF digestibility in 

forage-based growing diets (2.54 cm ground corn residue).  In Exp. 1, 60 crossbred 

yearling steers (initial BW = 299 ± 25kg) were assigned to treatments organized in a 2 × 

2 + 1 factorial with factors of MDGS concentration (20 or 40%) and MDGS oil content 

(7.2%, for de-oiled vs. 12.0% for full fat).  A control diet of 40% dry rolled corn (DRC) 

was also included for comparison.  Exp. 2 utilized 6 yearling steers (Initial BW = 495 ± 

56 kg) and 6 steer calves (Initial BW = 228 ± 49 kg) in two identical 2 x 2 factorial 

arrangements of treatments with factors of oil content of MDGS (de-oiled, 7.2% fat vs. 

full fat 12.0% fat) and MDGS concentration (20 vs. 40% DM basis).  Periods were 21 d 

long with a 7 d adaptation period, a 7 d pre-collection dosing period (TiO2 via rumen 

bolus), and finally 7 d for collection with continued dosing.  Wireless pH probes 

collected measurements continually during the collection period for the yearling steers.  

In Exp. 1 no MDGS concentration by fat content interactions between de-oiled and full 

fat MDGS (P ≥ 0.58) were observed.  Feeding 40% MDGS resulted in greater ending 

BW, DMI, ADG, and G:F (P < 0.01) compared to 20% MDGS.  Steers fed de-oiled 
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MDGS had a greater DMI than those fed full fat MDGS (P = 0.05).  Ending BW, ADG, 

and G:F were not different between de-oiled and full fat MDGS (P ≥ 0.26).  Steers fed 

40% DRC performed intermediately to the 20 and 40% MDGS cattle, respectively.  The 

energy value of MDGS relative to corn was calculated to be 124% for these growing 

calves.  In Exp. 2 no MDGS concentration by oil content interactions were observed (P ≥ 

0.68).  Additionally, the main effect of MDGS oil content was not significant (P ≥ 0.08), 

however DMD, OMD, and NDFD were all greater at 40% concentration of MDGS in the 

diet (P ≤ 0.03) than at 20% inclusion.  Rumen pH was not different between treatments 

(P ≥ 0.51).  Removing oil via centrifugation did not impact steer performance in these 

studies.  Both de-oiled and full fat MDGS are more digestible in a forage-based diet if 

included at 40% concentrations compared to 20% diet concentrations.      

Key words: corn residue, distillers grains, oil removal 
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Introduction 

Adding distillers grains plus solubles to high forage growing diets provides a 

source of protein and energy that improves animal performance (Bremer, 2010).  

Increasing concentrations of distillers grains in high forage diets decreases forage intake 

while increasing average daily gain (Morris et al., 2005; Corrigan et al., 2009).   Fat 

within distillers grains provides an excellent source of energy.  Historically, distillers 

grains have contained 12-13% fat (Buckner et al., 2011).  Corrigan et al., (2009), found 

that feeding high levels of fat, a concern when distillers grains are added at high 

concentrations in the diet, hinders rumen fiber digestion.  Optimal fat concentration to 

maximize ADG and feed efficiency in high quality forage-based diet was between 3.6-

4.5% (Corrigan et al., 2009).  Today Nebraska’s ethanol plants remove oil from the thin 

stillage stream (condensed distillers solubles, CDS) via centrifugation and add it back to 

distillers grains to produce a de-oiled product.  Jolly-Breithaupt et al., reported that when 

de-oiled and full fat CDS were fed in forage-based diets to growing calves that a 

numerical difference in G:F existed though no statistical difference was observed (P = 

0.14).  Cattle fed 20% full fat CDS were 13.4% more efficient than steers fed de-oiled 

CDS diets.  No difference existed between de-oiled of full fat G:F values at 40% 

concentrations of CDS in the diet.  Lack of numerical differences at 40% concentrations 

could be due to high fat content of both diets resulting in similar efficiencies if fiber 

digestion was hindered.  The impact of de-oiled distillers grains on forage digestion in 

growing cattle is poorly understood however.  Thus, the objective of this research was to 

determine the energy value of de-oiled MDGS at 20 or 40% concentrations in a forage-

based growing diet and to determine if feeding de-oiled MDGS impacts nutrient (i.e. 

fiber) digestion similar to feeding de-oiled CDS.   
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Materials and Methods 

Exp. 1 

An 84-d growing study utilized 60 crossbred steer calves (BW = 229 ± 25 kg) that 

were individually fed using the Calan gate system (American Calan Inc., Northwood, 

NH)  at the University of Nebraska-Lincoln Agricultural Research and Development 

Center (ARDC), near Ithaca, NE.  Upon arrival at the feedlot, steers were vaccinated with 

a modified live viral vaccine (Bovi-Shield Gold 5, Zoetis Animal Health, Madison, NJ), 

Haemophilus somnus bacterin (Somubac, Zoetis Animal Health, Madison, NJ), and 

received Permectrin Pour-On (Bayer Health Care LLC, Pittsburgh, PA).  Approximately 

16 d after initial processing, steers were revaccinated with a modified live viral vaccine 

(Bovi-Shield Gold 5, Zoetis Animal Health, Madison, NJ), Haemophilus somnus bacterin 

(Somubac, Zoetis Animal Health, Madison, NJ), and a pinkeye vaccinate (Piliguard 

Pinkeye +7, Merck Animal Health, Summit, NJ).  Prior to the start of the trial, steers 

were limit fed a diet consisting of 25% alfalfa, 25% grass hay, and 50% Sweet Bran at 

2.0% BW for 5 d to minimize variations in gut fill (Watson et al, 2013; Stock et al., 

1983).  Steers were then weighed on three consecutive d with weights averaged to 

determine initial BW.  Steers were blocked into six BW blocks based on initial BW and 

then assigned randomly to one of 5 treatments within block.  Treatments were organized 

in a 2 × 2 + 1 factorial design, with 5 total treatments (Table 1) and 12 steers per 

treatment.  Factors were concentration of distillers grains (20 vs 40% of the diet DM) and 

fat content of modified distillers grains plus solubles (MDGS); either de-oiled (7.2% fat) 

or full fat (12.0% fat).  Both de-oiled and full fat MDGS were purchased prior to the start 

of the study from Green Plains Renewable Energy (Central City, NE) and stored at the 

feedlot until needed in silo bags.  Production of both products at the same plant was 
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achieved by producing the de-oiled product on one day and then the following day 

shutting off the centrifugation of the thin stillage stream to allow the production of a full 

fat CDS product that was then added back to the distillers grains to produce full fat de-

oiled distillers grain plus solubles.  A 40% (DM basis) dry rolled corn (DRC) diet was 

used as the control.  Corn stover (ground through a 2.54 cm screen) and 5% supplement 

comprised the remainder of all five diets.  All diets were formulated to meet the 

metabolizable protein requirements using the 1996 NRC model.  Cattle consuming the 

40% DRC control or 20% distillers grains diets had urea supplemented at 1.65% of the 

diet to meet metabolizable protein requirements.  Diets were also formulated to provide 

200 mg / steer of monensin daily (Rumensin, Elanco Animal Health, Indianapolis, IN).  

All steers received a Ralgro implant (Intervet Inc., Merck Animal Health, Summit, NJ) 

on d 21 of the study.  

   Feed refusals were collected weekly, weighed, and then dried in a 60°C forced air 

oven for 48 hours to calculate an accurate DMI for individual steers.  Feed bunks were 

evaluated and feed offered was adjusted daily to allow ad libitum intake.  At the 

conclusion of the study, steers were limit fed for 5 d a diet of 25% alfalfa, 25% grass hay, 

and 50% Sweet Bran at 2.0% BW and then were weighed on three consecutive d and 

averaged to determine an accurate ending BW. 

 Feed ingredients were analyzed to determine DM (Association of Analytical 

Chemist [AOAC], 1999 method 4.1.03), CP (AOAC, 1999 method 990.03) using a 

combustion-type N analyzer (Leco FP 528 Nitrogen Autoanalyzer, St. Joseph, MI), sulfur 

(TruSpec Sulfur Add-On Module, Leco Corporation, St. Joseph, MI), NDF (Van Soest et 

al., 1991) incorporating heat stable α-amylase (Ankom Technology, Macedon, NY) at 1 
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ml per 100 ml of NDF solution (Midland Scientific, Omaha NE) along with the addition 

of 0.5 g of Na2SO3 to the NDF solution, and ether extract.  Ether extract was evaluated 

utilizing the biphastic lipid extraction method described by Bremer et al. (2010).  

Ingredients were weighed in triplicate (0.5 g) into a 16 x 100 screw top glass culture tube 

and vortexed with 4 mL of a 50:50 hexane and diethyl ether solution (5 to 6 mL of 

solution used if determining fat content of forages).  Tubes were then placed in a 50° C 

heating block for 9 hours.  After 9 hours, tubes were removed and allowed to cool for 10 

minutes before 3 mL of dilute HCl (1 drop HCl/40 mL ddH2O) were added to them, 

vortexed, and then centrifuged at 1000 x g for 60 minutes at 25° C.  After centrifugation, 

the lipid layer was pipetted and expelled into a separate tube.  The procedure was then 

repeated as 2 mL of the 50:50 hexane and diethyl ether were again added to the culture 

tubes and centrifuged.  The lipid layer was removed a second time and then the tube 

weighed to determine fat content of the feed ingredient. 

Data were analyzed using the GLIMMIX procedure of SAS (SAS Inc., Cary, NC) 

as a 2 × 2 + 1 factorial arrangement of treatments to evaluate the interaction of MDGS 

concentration (20% vs. 40%) and fat content (de-oiled vs. full fat).  If no interaction was 

detected (P < 0.05), main effects were evaluated.  Additionally, an F-test was used to 

determine the response to the 40% DRC control to other treatments.  Treatment means 

were separated using a t-test (P < 0.05) when the F-test was significant (P < 0.05).   

Using the 1996 NRC, the energy value of MDGS relative to DRC was calculated 

by using the observed ADG (Loy et al., 2008).  First, the TDN of MDGS and corn stalks 

was set at 108% and 43%, respectively.  Then the NE adjusters were set so that the 

observed ADG was achieved in the model for 20% and 40% MDGS inclusion (Block et 
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al., 2006).  This resulted in NE adjusters of 131% and 106% for 20% and 40% MDGS, 

respectively.  The change in NE adjuster per change in ADG was calculated to determine 

the NE adjuster required to achieve the ADG for the 40% DRC control (116%).  Finally, 

the TDN of DRC was adjusted to achieve the observed gain for the 40% DRC control.  

The resulting TDN for DRC was estimated to be 87% which is similar to a previous 

estimated TDN of DRC in forage based diets of 83% (Loy, 2003).  The TDN of DRC 

was compared to the TDN of MDGS to provide a relative energy value of MDGS to DRC 

in a growing, forage-based diet.   

 

Exp. 2 

 An 84-d digestion study utilized twelve (6 yearling (initial BW = 1093 ± 56) and 

6 calf-fed (initial BW = 502 ± 49) ruminally cannulated steers in a row × column 

transformation experimental design.  Treatments were organized in a 2 × 2 factorial 

arrangement (Table 3.).  Concentration of MDGS (20 vs. 40%) and fat content of MDGS 

(de-oiled vs. full fat content) were the factors examined.  Both de-oiled and full fat 

MDGS were purchased prior to the start of the study from Green Plains Renewable 

Energy (Central City, NE) and stored at the ARDC near Ithaca, NE until needed in silo 

bags.  The remainder of all diets consisted of 2.54 cm grind corn residue and 4% of a 

formulated supplement to provide 200mg/hd/d Rumensin and 90 mg/hd/d Tylan.  The 

20% distillers grains diets contained 1.32% urea to meet the ruminally degradable protein 

(RDP) requirements. In addition metabolizable protein requirements of the animals were 

met with distillers grains and predicted microbial protein.  Steers were housed in 2.4 × 

1.5 m
2
 individual concrete slatted floor pens in a temperature controlled room (25° C) 
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and with ad libitum access to food and water.  Cattle were fed once daily at 0800 and 

refused feed was removed from bunks prior to feeding.  Ingredient samples were taken 

during collection periods prior mixing of diets, composited by period, and frozen at -20° 

C.  A subsample of feed resfusals was dried for 48 h in a 60°C forced air oven to 

determine DM and allow for adjustments in DMI.  After ingredients were freeze dried 

they were ground through a 1-mm screen utilizing a Willey Mill (Thomas Scientific, 

Swedesboro, NJ).    

This study was comprised of four, 21-d periods.  Cattle were acclimated to 

treatment diets through days 1-15 and dosed with titanium dioxide (TiO2) on days 8-20.  

Fecal and diet samples as well as orts were collected on days 15-21.  Titanium dioxide 

was used as a marker for digestibility measurements, and was administered via rumen 

bolus twice daily (at 0800 and 1200) at 7.5 g per dosage.  Fecal grab samples were 

collected from the yearling steers at 0800, 1200, and 1600 each day on d 15-21.  Fecal 

samples were composited by day on a wet-basis by day and then freeze dried.  After fecal 

samples were freeze dried they were ground through a 1-mm screen utilizing a Willey 

Mill (Thomas Scientific, Swedesboro, NJ) and then composited dry by period for each 

steer.  The wet ash method of TiO2 analysis was utilized (Myers et al., 2004) in order to 

determine titanium concentration in feces to calculate fecal output.  Fecal samples were 

weighed in duplicate to a mass of 0.5 g per 250 ml macro Kjeldahl digestion tube. A 

reaction catalyst containing 3.5 g of K2SO4 and 0.4 g of CuSO4 was also added to each 

tube prior to the addition of 13 ml of concentrated H2SO4.  Tubes were then swirled to 

allow proper mixing of reagents and then digested at 420° C for 2 h.  After digestion, 

tubes were removed from heat and cooled for a minimum of 30 min.  After cooling, 10 
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ml of 30% H2O2 was poured into each tube, swirled for mixing, and then the tube was 

again allowed to cool for another 30 min.  The liquid mixture within the tube was brought 

to a total weight of 100 g with the use of ddH2O and then filtered through Whatman No. 

541 filter paper to remove any precipitate.  Absorbency was measured at 410 nm after 

calibration of the spectrophotometer using TiO2 standards prepared prior to analysis.  

Fecal and ingredient samples were analyzed for DM (AOAC, 1999 method 

4.1.03), CP (AOAC, 1999 method 990.03) using a combustion-type N analyzer (Leco FP 

528 Nitrogen Autoanalyzer, St. Joseph, MI), sulfur (TruSpec Sulfur Add-On Module, 

Leco Corporation, St. Joseph, MI), OM, NDF (Van Soest et al., 1991) incorporating heat 

stable α-amylase (Ankom Technology, Macedon, NY) at 1 ml per 100 ml of NDF 

solution (Midland Scientific, Omaha NE) along with the addition of 0.5 g of Na2SO3 to 

the NDF solution, and ether extract (Bremer et al., 2010).  Orts were collected daily 

throughout the collection period and analyzed for DM (AOAC, 1999 method 4.1.03) for 

accurate calculation of DMI.  Utilizing DM, OM, and NDF contents of ingredients 

comprising the diet and the fecal matter excreted DM, OM, and NDF output and 

digestibility was determined. 

Wireless pH probes (Dascor, Inc., Escondido, CA) were inserted into the rumen to 

collect pH measurements continuously the last 7 d of the period.  Measurement were 

recorded every minute (1,440 measurements/d) and downloaded at the conclusion of each 

period.  Measurements of pH include average, minimum, and maximum ruminal pH 

values.     

 The GLIMMIX procedure (SAS Inc., Cary, NC) was used to analyze intake, fecal 

output, digestibility, and pH data as a 2 × 2 factorial arrangement of treatments.  Because 
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both yearling and calf-fed steers were used in this study, the effect of animal age and its 

interactions with dietary treatment was tested with significance at P ≤ 0.05. If no 

significant interactions were observed, the effects of concentration of distillers grains and 

fat content were presented irrespective of steer age.   Included in the model were the 

fixed effects, animal, age, distillers grains concentration, distillers grain oil content, as 

well as the interaction between all of the fixed effects. 

 

Results and Discussion 

Exp. 1 

Nutrient content of diet ingredients is found in Table 1. Consistent with our 

objectives, the fat content of the MDGS was 7.2% and 12.0% for de-oiled and full fat, 

respectively.  No MDGS concentration by fat content interactions (P  ≥ 0.58) were 

observed for this study (Table 3), thus the main effects of diet concentration and fat 

content of MDGS will be discussed separately. 

Concentration of MDGS 

 Ending BW, DMI, ADG, and G:F were significantly greater in cattle fed 40 vs. 

20% MDGS (Table 4., P < 0.01).  Nuttelman et al., 2010 observed a tendency for greater 

ending BW (P = 0.13) and significant increases in ADG (P < 0.01) with increasing 

concentrations of WDGS in forage-based diets.  Ahern et al., 2014 also observed linear 

increases in ending BW, ADG, and G:F with increasing levels of distillers grain 

supplementation (P < 0.01) in a 60:40 sorghum silage and alfalfa hay diet.  Morris et al., 

(2005) and Loy et al., (2003) saw decreases in forage intake with increasing 

concentrations of distillers grains in the diet though total DMI (distillers grains + forage) 

increased with increasing concentrations of distillers grains.  In these two studies, steers 
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were fed their forage source and distillers grains separately, whereas in the current study, 

diets containing corn residue and MDGS were mixed prior to feeding.  Furthermore, Jolly 

et al., (2013) observed increased ending BW, DMI, ADG, and G:F (P < 0.01) for both de-

oiled and full fat CDS when its concentration was increased a forage-based diet.  

Increasing the concentration of de-oiled MDGS in the diet results in increased ending 

BW, ADG, and G:F as would be expected if full fat MDGS was supplemented in forage-

based diet.         

Fat Content of MDGS 

Steers receiving diets with 7.2% fat MDGS included had a greater DMI when 

compared to steers fed 12.0% fat MDGS (P = 0.05, Table 3.).  Dry matter intake was 5.8 

and 5.4 kg, for de-oiled and full fat treatments, respectively.  Contrary to our results, in 

the study by Corrigan et al., (2009), as the concentration of CDS, and thus fat content, of 

DDGS increased in the forage-based diet no differences in DMI were observed.  Also in 

the current study, ending BW (350 vs. 346 kg, P = 0.39) and ADG (0.59 vs 0.54 kg/d, P 

= 0.26) were not significantly different between steers fed de-oiled or full fat MDGS 

diets.  However steers fed diets containing 12.0% fat MDGS numerically gained less than 

those consuming 7.2% fat MDGS diets causing G:F to be unaffected (0.099 vs 0.099, P = 

0.85).  Jolly et al., (2013) also reported no differences in ADG between cattle fed de-

oiled and full fat CDS diets, but there was  tendency (P = 0.07) for cattle fed full fat CDS 

to be 13.4% more efficient than those fed de-oiled CDS at 20% concentrations.  When 

the same authors compared de-oiled vs. full fat CDS fed at 40% concentrations with 

either wheat straw or grass hay, no significant differences in G:F were observed between 

varying oil contents of distillers grains (P = 0.40).  The effect of fat on rumen fiber 
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digestion as seen in studies by Corrigan et al., (2009) and Jolly et al., (2013) is contrary 

to what was observed in the current trial as the fat content of CDS combined with 

distillers grains to produce MDGS is lower than when CDS is fed alone.  

Energy Value 

Steers consuming the 40% DRC control diet tended to be lighter at the conclusion 

of the study compared to the those steers receiving the 40% full fat MDGS diet (P = 0.08, 

Table 3.).  The DMI of steers consuming DRC did not differ from steers fed 40% de-

oiled or full fat MDGS (P ≥ 0.28), and ADG and G:F were intermediate for steers fed the 

DRC control diet compared to steers fed 20% or 40% inclusion of either full fat or de-

oiled MDGS.  Loy et al., (2007) observed that DMI did not differ between steers 

supplemented DRC or DDGS in forage-based diets (P ≥ 0.45).  The authors also reported 

that steers supplemented with DDGS had greater ADG and G:F than those supplemented 

DRC (P  < 0.01).  Similarly, Nuttelman et al., (2010) observed that ADG and G:F were 

greater in steers supplemented WDGS in high forage diets compared to DRC 

supplemented steers when DMI was held constant by design.  In the current experiment, 

the energy value of MDGS relative to corn was calculated to be 124%.  Loy et al., (2008) 

observed that the energy value of DDGS was 130% for low concentrations of DDGS and 

118% for greater concentrations of DDGS supplementation when compared to DRC.  

Nuttelman et al., (2010) found that when fed at 15%, 25%, and 35% of the diet (DM-

basis), WDGS had 146, 149, and 142% the energy value, respectively, compared to DRC 

supplemented steers fed forage-based diets.  The results of the current study suggest that 

removing oil from thin stillage to create MDGS fat content of 7.2% vs. 12.0% does not 

alter steer performance in forage-based diets.  Further reduction of corn oil in MDGS 
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may result in decreased performance, thus supplementary research will be required if 

additional oil is removed from distillers grains.  

 

Exp. 2 

 Nutrient composition of diet feed ingredients are presented in Table 1.  Both  Exp. 

were conducted simultaneously and the same diet ingredients were utilized for both Exp, 

therefore analysis of diet ingredients were conducted by period for the digestion study 

and then utilized for both Exp.  No interactions between concentration of MDGS and 

MDGS fat content were detected for this study (P ≥ 0.68), thus main effects are presented 

(Table 5.).   

Concentration of MDGS 

 Similar to previous observations, (Nuttleman et al., 2010; Ahern et al., 2014), 

increasing the concentration of distillers grains from 20 to 40% in the diet significantly 

increased DM intake, OM intake (P < 0.01), and tended to increase NDF intake (P = 

0.10, Table 5.).  DM digestibility and OM digestibility were greater in steers consuming 

40% MDGS (P ≤ 0.02) compared to 20% MDGS, was expected given that MDGS 

replaced corn residue.  Average ruminal pH was not different between steers consuming 

either 20 or 40% MDGS (P = 0.85, Table 6.). 

Fat Content of MDGS 

Steers consuming full fat MDGS diets tended to consume more DM, OM, and 

NDF per day than did steers consuming de-oiled MDGS diets (P  = 0.15, P = 0.15, and P 

= 0.08, respectively).  When comparing digestibility (Table 5.) and rumen pH values 

(Table 6.) between steers consuming de-oiled versus those consuming full fat MDGS, no 
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significance between MDGS types existed (P ≥ 0.45).  Therefore, these data suggest that 

oil removal from distillers grains plus solubles does not improve digestibility in forage-

based diets similar to those fed in this study, which is contrary to previous work which 

altered fat concentration by changing solubles concentration (Jolly et al., 2013).  The 

current Exp. suggests that growing steers tend to consume more when fed full fat MDGS 

diets compared to when fed de-oiled MDGS diets.  This is contrary to what would be 

expected as typically steers consuming forage-based diets of a lower fat content have 

greater DMI than those being fed a forage-based diet of a higher fat content.  Fat hinders 

fiber digestion in the rumen thus typically decreasing intake.  However, the digestibility 

of full fat MDGS diets was not different from the digestibility exhibited by steers 

consuming de-oiled MDGS diets (P ≥ 0.45).  Therefore, the dietary fat concentration 

(5.35%) in the full fat MDGS diet did not appear to depress fiber digestion in this study.  

Feeding de-oiled MDGS to growing steers consuming high forages diets does not appear 

to hinder steer performance or fiber digestion when compared to feeding full fat MDGS. 
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Table 1. Nutrient Composition of Diet Ingredients, % (DM-basis). 

Ingredient DO
1
 MDGS

2 
Full MDGS

 
Corn Residue

3 
DRC

 

   DM, % 45.3 47.8 90.50 91.1 

   NDF, % 37.5 38.4 80.8 10.5 

   CP, % 35.5 32.6 6.7 9.9 

   Fat, % 7.2 12.0 1.0 4.0 

   Sulfur, % 0.63 0.57 0.10 0.16 
1
 DO = de-oiled, Full = full fat, DRC = dry rolled corn.

 

2
 MDGS = modified distillers grains plus solubles.

 

3
 Ground through a 2.54 cm screen 
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Table 2. Diet composition of de-oiled or full fat MDGS
1
 diets fed to growing steers.  

 Control
 

De-Oiled MDGS Full Fat MDGS
 

Ingredient, % of DM 0 20 40 20 40 

De-oiled MDGS -- 20.0 40.0 -- -- 

Full Fat MDGS -- -- -- 20.0 40.0 

DRC 40.0 -- -- -- -- 

Corn Stover 55.0 75.0 55.0 75.0 55.0 

Fine Ground Corn 1.68 1.68 3.41 1.68 3.41 

Limestone 1.19 1.19 1.11 1.19 1.11 

Salt 0.30 0.30 0.30 0.30 0.30 

Tallow 0.10 0.10 0.10 0.10 0.10 

Urea
2 

1.65 1.65 0.00 1.65 0.00 

Rumensin-90
3 

0.01 0.01 0.01 0.01 0.01 

Trace Mineral Premix
4 

0.05 0.05 0.05 0.05 0.05 

Vitamin ADE Premix
5 

0.02 0.02 0.02 0.02 0.02 

Diet Composition (% diet DM)     

NDF 48.64 68.10 68.28 59.44 59.80 

CP 12.28 16.76 16.18 17.89 16.73 

Fat 2.25 2.25 3.45 3.25 5.45 

Sulfur 0.12 0.19 0.30 0.18 0.28 
1 

MDGS = modified distillers grains plus solubles. 
2 

Urea was added to supplements formulated for control and 20% distillers grain diets to meet metabolizable protein 

requirements. 
3 

All diets formulated to provide 200 mg/steer daily of Rumensin. 
4
 Premix contained 6.0% Zn, 5.0% Fe, 4.0% Mn, 2.0% Cu, 0.28% Mg, 0.2% I, 0.05% Co. 

5
 Premix contained 30,000 IU of Vitamin A, 6,000 IU of Vitamin D, 7.5 IU of Vitamin E per gram. 
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Table 3. Diet composition of de-oiled or full fat MDGS
1
 fed at 20 or 

40% to ruminally fistulated steers. 

 20
2 

40
 

Item DO
3 

FF
 

DO
 

FF
 

De-oiled MDGS
 

20.0 -- 40.0 -- 

Full fat MDGS
 

-- 20.0 -- 40.0 

Corn Residue 75.0 75.0 55.0 55.0 

Fine Ground Corn 1.68 1.68 3.41 3.41 

Limestone 1.19 1.19 1.11 1.11 

Salt 0.30 0.30 0.30 0.30 

Tallow 0.10 0.10 0.10 0.10 

Urea
4 

1.65 1.65 0.00 0.00 

Rumensin-90
5 

0.01 0.01 0.01 0.01 

Trace Mineral Premix
6 

0.05 0.05 0.05 0.05 

Vitamin ADE Premix
7 

0.02 0.02 0.02 0.02 

Nutrient Composition    

NDF, % 68.10 68.28 59.44 59.80 

CP, % 12.13 11.55 17.89 16.73 

Fat, % 2.19 3.15 3.43 5.35 

Sulfur, % 0.20 0.19 0.31 0.28 
1 

MDGS = modified distillers grains plus solubles 
2
 20 and 40 = % concentration of MDGS in the diet on DM-basis.. 

3
 DO = de-oiled MDGS, FF = full fat MDGS. 

4
 Urea was added to supplements formulated for 20% distillers grain diets to meet             

metabolizable protein requirements. 
5
 All diets formulated to provide 200 mg/steer daily Rumensin. 

6
 Premix contained 6.0% Zn, 5.0% Fe, 4.0% Mn, 2.0% Cu, 0.28% Mg, 0.2% I, 0.05% Co. 

7
 Premix contained 30,000 IU of Vitamin A, 6,000 IU of Vitamin D, 7.5 IU of Vitamin E 

per gram. 
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Table 4. Performance of steers fed de-oiled or full fat MDGS
1
 at 20 or 40% inclusion in forage-based diets. 

                                                                                                                             20 % MDGS
 

40% MDGS
 

40% DRC   P-values
2
 

 DO
3 

FF
 

DO
 

FF
 

Control SEM F-Test Conc.
 

Type
 

Int
 

Initial BW, kg 299 300 300 300 299 2 0.98 0.83 0.90 0.58 

Ending BW, kg 332
a
 330

a
 367

c
 362

b,c
 350

b
 5 <0.01 <0.01 0.39 0.64 

DMI, kg/d 5.3
a 

4.9
a 

6.2
b 

5.9
b 

5.9
b 

0.2 <0.01 <0.01 0.05 0.95 

ADG, kg 0.39
a 

0.35
a 

0.78
c 

0.73
c 

0.60
b 

0.05 <0.01 <0.01 0.26 0.85 

G:F 0.072
a 

0.071
a 

0.126
c 

0.127
c 

0.102
b 

0.01 <0.01 <0.01 0.85 0.98 
1
 MDGS = modified distillers grains plus solubles; DRC = dry rolled corn.  

2 
Conc. = Main effect of MDGS concentration in the diet; Type = Main effect of de-oiled vs. full fat MDGS; Int = Interaction of MDGS 

concentration and MDGS type.  
3 

DO = de-oiled MDGS; FF = full fat MDGS.  
abc 

Within a row, means without a common superscript differ (P  ˂ 0.05).  
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Table 5. Effects of de-oiled or full fat MDGS
1
 fed at 20 or 40% on intake, fecal output, and total tract 

digestibility of DM, organic matter, and NDF. 

Distillers Level 20
2 

40
 

 P-values 

Distillers Type DO
3 

FF
 

DO
 

FF
 

SEM Conc.
 

Type
4 

Int
 

DM         

   Intake, kg 6.02 6.64 7.77 7.72 0.51 <0.01 0.27 0.40 

   Fecal Output, kg 2.82 2.85 3.14 2.94 0.29 0.56 0.73 0.66 

   Digestibility, % 52.38 56.63 59.99 60.79 2.68 0.08 0.44 0.49 

OM         

   Intake, kg 5.40 5.95 7.06 6.98 0.46 <0.01 0.20 0.39 

   Fecal Output, kg 2.23 2.25 2.56 2.37 0.24 0.42 0.69 0.63 

   Digestibility, % 58.03 61.47 64.04 64.87 2.44 0.13 0.51 0.51 

NDF         

   Intake, kg 3.92 4.36 4.64 4.62 0.31 0.04 0.16 0.28 

   Fecal Output, kg 1.78 1.70 1.97 1.87 0.18 0.40 0.61 0.91. 

   Digestibility, % 53.94 59.35 58.27 57.41 3.00 0.87 0.62 0.25 
1 

MDGS = modified distillers grains plus solubles.  
2 

20 and 40 = % concentration of MDGS in the diet. 
2
 DO = de-oiled, FF = full fat. 

3
 Conc. = Main effect of MDGS concentration in the diet; Type = Main effect of de-oiled vs. full fat MDGS; Int = Interaction of MDGS   

concentration and MDGS type. 
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Table 6. Average, minimum, and maximum ruminal pH value of steers fed de-oiled or full fat MDGS
1
. 

 Concentration Type  

 20
2 

40
 

P-value De-oiled
3 

Full Fat
 

P-value SEM 

Average pH 6.92 6.75 0.40 6.90 6.78 0.55 0.16 

Minimum pH 6.44 6.27 0.32 6.40 6.31 0.58 0.15 

Maximum pH 7.43 7.17 0.56 7.49 7.11 0.41 0.37 
1
 MDGS = modified distillers grains plus solubles. 

2
 20 and 40 = % concentration of MDGS in the diet. 

3
 De-oiled and full fat MDGS. 
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Chapter III 

 

DE-OILED DISTILLERS GRAINS IN FINISHING CATTLE DIETS 

Energy Value of De-oiled Modified Distillers Grains Plus Solubles (MDGS) in 

Finishing Cattle Diets  

M.L. Bremer, C.J. Bittner, D.B. Burken, M.E. Harris, J.A. Hansen, K.H. Jenkins, M.K. 

Luebbe, and G.E. Erickson 

Department of Animal Science, University of Nebraska, Lincoln, NE 68583 

Abstract 

Two finishing experiments were conducted to evaluate the effects of feeding de-oiled 

distillers grains on cattle performance.  Exp. 1 utilized 378 calf-fed steers (initial BW = 

363 ± 17 kg) fed for 153 d.  De-oiled MDGS (7.2% fat) was fed at 0, 15, 30, 45 or 60% 

(DM-basis).  Two additional diets containing full fat (12.0% fat) MDGS from the same 

plant were fed at 15 or 30% (DM-basis) and analyzed as a separate 2 × 2 factorial.  All 

treatments had 6 replications.  Exp. 2 utilized 320 yearling steers (initial BW = 397 ± 

38kg) fed 128 d.  Data were analyzed as 2 separate factorials. The first factorial was a 

2×3 factorial with 3 concentrations of de-oiled WDGS in the diet (0, 17.5, or 35%; DM 

basis) fed with either dry rolled (DRC) or steam flaked (SFC) corn.  The other was a 2×2 

factorial with two additional diets containing 35% full fat WDGS fed with either DRC or 

SFC to compare to 35% de-oiled WDGS diets.  All treatments had 5 replications. Full fat 

and de-oiled WDGS were produced at separate plants.  In Exp. 1 final BW and ADG 

increased linearly as de-oiled MDGS was increased in the diet (P = 0.02).  A linear 

increase was observed in G:F (P < 0.01) as concentration of de-oiled MDGS increased, 

whereas twelfth-rib fat thickness and marbling increased quadratically (P ≤ 0.01).  In the 

embedded 2×2 factorial, an interaction existed for G:F at 30% inclusion of MDGS, 

decreasing the fat content from 12.0% to 7.2% decreased G:F in steers by 3.3%  (P = 
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0.07).  In Exp. 2 no WDGS concentration by corn processing method interaction existed 

when evaluating the 2×3 factorial (P ≥ 0.15).  Steers fed DRC had greater DMI compared 

to steers fed SFC (P = 0.02) and similar ADG (P = 0.23); however, G:F was improved 

for steers fed SFC (P  = 0.01).  Increasing the concentration of WDGS in the diet linearly 

increased final BW, ADG, G:F, HCW and fat depth (P < 0.01), whereas marbling scores 

increased quadratically (P = 0.01).  No corn processing by WDGS type interactions were 

observed in the embedded 2 × 2 factorial (P ≥ 0.29).  Fat content of WDGS did not 

significantly impact G:F (P = 0.14); however steers fed full fat WDGS were numerically 

3.8% more efficient.  Steers fed SFC had greater G:F (P = 0.05) than steers fed DRC as 

expected.  Overall, slight decreases in G:F were observed (3.3-3.8%) when removing a 

portion of oil from distillers grains.    

Key words: corn processing, distillers grains, feedlot cattle, fractionation, oil. 
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Introduction 

Traditionally, increasing the concentration of distillers grains plus solubles in 

finishing feedlot diets causes a linear improvement in G:F (Watson et al., 2014; Bremer 

et al., 2011). However with ethanol plants currently centrifuging oil from the thin stillage 

constituent and utilizing this oil in non-ruminant feed sectors or the biodiesel industry, 

cattle performance may be impacted.  Jolly et al., (2014) compared feeding de-oiled 

(7.2% fat) wet distillers grains plus solubles (WDGS) to full fat (12.4% fat) WDGS at 35, 

50, or 60% (DM-basis) concentrations in the diet.  Dry matter intake was greater in cattle 

fed de-oiled WDGS compared with full fat, leading to a 2.6% numerical improvement in 

G:F.  Determining the optimal inclusion of de-oiled distillers grains in finishing diets is 

yet to be researched.   

Corn is processed to improve rumen starch digestibility and thus steer 

performance (Cooper et al., 2002a, Huntington et al., 1997).  As the intensity of corn 

processing increases, the concentration of full fat distillers grains needed to optimize 

steer performance (i.e. G:F) decreases (Vander Pol et al., 2008; Corrigan et al., 2009).  

Whether corn processing interacts with de-oiled distillers grains has not been researched.  

Thus the objectives of these two studies were: 1) to evaluate the effects of feeding de-

oiled MDGS at increasing concentrations in the diet, 2) to determine the optimal 

concentration of de-oiled WDGS fed with DRC or SFC diets and 3) to determine the 

feeding value of de-oiled MDGS or WDGS relative to full fat distillers grains plus 

solubles in beef finishing diets. 

 Materials and Methods  

Exp 1. 
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Three hundred and seventy-eight cross bred steer calves (initial BW = 363 ± 17 

kg) were utilized in a 154-d finishing trial conducted at the University of Nebraska-

Lincoln Agricultural Research and Development Center (ARDC) near Mead, NE.  All 

animal use procedures were reviewed and approved by the University of Nebraska 

Institutional Animal Care and Use Committee.  Upon arrival at the feedlot, steers were 

vaccinated with a modified live viral vaccine (Vista Once SQ, Merck Animal Health, 

Summit, NJ), injectable endectocide (Cydectin, Zoetis Animal Health, Madison, NJ), and 

received pour-on dewormer (SafeGuard Pour-On, Merck Animal Health).  

Approximately 16 d after initial processing, steers were revaccinated with a modified live 

viral vaccine (Vista 5, Merck Animal Health) and a pinkeye vaccinate (Piliguard Pinkeye 

+7, Merck Animal Health).  At this time steers were also treated with an antibiotic 

(tilmicosin injection; Micotil, Elanco Animal Health, Greenfield, IN).  Steers were 

managed on corn residue for approximately 90-d while being supplemented with 2.27 

kg/d (DM-basis) of Sweet Bran until initiation of the trial on January 18, 2013.  Five days 

prior to the start of the trial, steers were limit fed at 2.0% BW a 50% alfalfa hay and 50% 

Sweet Bran (DM-basis) diet (Watson et al., 2013).  Steers were then weighed on two 

consecutive days to obtain an accurate initial BW (Stock et al., 1983).  Using d 0 BW, 

steers were stratified by BW, blocked into three weight blocks (heavy, medium, or light) 

and assigned randomly to pens within block.  Forty-two pens were assigned randomly to 

one of 7 treatments with 9 steers per pen. There were 6 replications per treatment with 2 

replications per block. Treatments (Table 1) consisted of de-oiled MDGS replacing corn 

at 0, 15, 30, 45, or 60% of the diet (DM basis).  Two additional diets were evaluated  

where full fat  MDGS was fed at 15 or 30% of diet DM to allow for an embedded 2 × 2 
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factorial analysis with 15 or 30% de-oiled MDGS. In all diets as distillers grains was 

added to the ration, the 1:1 blend of HMC and DRC was substituted.  Twelve percent 

corn silage and 5% of a formulated supplement comprised the remainder of all diets (DM 

basis).  Diets containing 0 or 15% distillers grains were supplemented with urea to meet 

or exceed the ruminally degradable protein (RDP), and thus the MP requirements of the 

steers (NRC, 1996).  Monensin (Rumensin, Elanco Animal Health) and tylosin (Tylan,, 

Elanco Animal Health) were fed via a supplement at 360 mg/steer and 90 mg/steers daily, 

respectively. 

Steers were implanted with Revalor®-XS (Merck Animal Health) on d 0.  On d 

154 steers were weighed by pen live and shipped to the commercial abattoir (Greater 

Omaha Packing Co. Inc., Omaha, NE) where they were harvested the following morning.  

On the day of harvest, slaughter order, liver, and HCW measurements were recorded.  

After a 48-chill, camera measurements were collected for LM area, fat depth, and 

marbling scores.  Yield grade was calculated using the USDA YG equation of Boggs and 

Merckel (1993): [YG = 2.5 (0.98425 * 12
th

 rib fat thickness, cm) + (0.2 * % KPH) + 

(0.00837 * HCW, kg) - (0.0496 * LM area, cm
2
)].  A standard 2% KPH was used in the 

yield grade calculation. Final BW, ADG, and G:F were calculated using HCW adjusted 

to a common dressing percentage of 63%.   

Data were analyzed using a GLIMMIX procedure of SAS as a randomized block 

design with pen as the experimental unit.  Linear and quadratic contrasts were conducted 

on performance and carcass data of steers fed increasing levels of de-oiled MDGS. The 

model statement included the effect of MDGS concentration on each response variable.  

This analysis was performed to determine the optimal concentration of de-oiled MDGS to 
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include in feedlot diets similar to those fed in Exp. 1.  The embedded 2 × 2 factorial was 

analyzed for oil content (de-oiled vs. full fat) by MDGS concentrations (15% vs. 30%) 

interactions.  The model statement included the effect of MDGS concentration and oil 

content for each response variable.  Pair-wise comparisons were made for distillers grain 

oil content within 15% and 30% inclusions if the interaction was significant.  This 

analysis was conducted to determine performance and carcass characteristic differences 

between steers fed de-oiled and full fat MDGS at low diet concentrations (15%) and at 

concentrations commonly utilized in feedlot currently (30%).   The prevalence of liver 

abscesses due to treatment were first totaled on a per pen basis, and then averaged across 

treatments prior to being analyzed in similar method as was conducted on the other 

performance and carcass data measurements.   

The feeding value of de-oiled MDGS relative to full fat MDGS was calculated as 

the difference between the G:F observed for de-oiled MDGS and full fat MDGS divided 

by the G:F value of the full fat MDGS diet.  This value was then divided by the 

proportion of MDGS in the corresponding diet.  This value plus one, and multiplied by 

100, gives feeding value relative to the DRC and HMC blend replaced (Bremer et al., 

2011 and Klopfenstein et al., 2008).  The feeding value of increasing concentrations of 

de-oiled MDGS was also calculated.  This calculation was performed by taking the G:F 

value of the respective diet containing de-oiled MDGS, subtracting the G:F of the 0% 

MDGS diet (control), dividing this number by the G:F of the respective MDGS diets, and 

then finally dividing that number by the concentration of MDGS in the diet.  This value 

plus one and multiplied by 100 gives the feeding value of the diet relative to the control.  

Treatment NEm and NEg values were also calculated, using equations found in the 1996 
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NRC, on a per pen basis.  Inputs for these calculations included: initial shrunk BW, final 

shrunk BW, target shrunk final weight, DMI, and ADG.   These calculated energy values 

were also analyzed using the GLIMMIX procedure of SAS by pen to determine treatment 

averages.  The model statement calculated treatment averages for type by level 

interactions within block.  

Exp 2. 

Three hundred and twenty yearling steers (initial BW = 398 ± 39 kg) were utilized 

in a 128-d finishing study conducted at the Panhandle Research and Extension Center 

(PREC) research feedlot near Mitchell, NE.  All animal use procedures were reviewed 

and approved by the University of Nebraska Institutional Animal Care and Use 

Committee.Upon arrival, steers were vaccinated with a modified-live vaccine (Express 5-

way, Boehringer Ingelheim Vetmedica, Inc., St. Joseph, MI), Clostridium Chauvoei-

Septicum-Novyi-Sordellii-Perfringens Types C&D-Haemophilus Somnus Bacterin-

Toxoid injectable (Vision 7 with somnus, Merck Animal Health, Baton Rouge, LA), a 

pour-on parasitic (Ivomec Pour-on, Merial LTC, Duluth, GA), tagged, and branded.   

Prior to the start of the trial, cattle were limit fed at 2.0% of BW a diet consisting of 15% 

wheat straw, 35% corn silage and 50% WDGS for 5-d to minimize the effect of gut fill 

(Watson et al., 2013).  Steers were weighed on d 0 and d 1 after the limit feeding period 

and these weights were averaged for an accurate initial BW (Stock et al., 1983).  Using d 

0 BW, steers were blocked into three weight blocks (heavy, medium, or light) and then 

assigned randomly to pen within block.  There were 40 total pens with 8 head assigned to 

each pen.  Pens within block were assigned randomly to one of eight treatments (Table 2) 

allowing for 5 replications per treatment.  
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Treatments were organized in a 2 × 3 + 2 factorial arrangement (Table 2) with 

factors being corn processing method of DRC or SFC [flake density targeted at 0.360 

kg/L (28 lb/bu)] and concentration of de-oiled WDGS in the diet of 0, 17.5, or 35% on a 

DM-basis.  Steam flaked corn was processed at and purchased from a commercial yard 

near the research feedlot and received 3 times a week when steers were on their finishing 

rations.  Two additional diets containing more fat were fed at 35% of the diet (DM-basis).  

These additional diets allowed for the analysis of an embedded 2 × 2 factorial with 

factors of corn processing method (DRC vs. SFC) and (full fat vs. de-oiled) WDGS fed at 

35% of the diet (DM-basis).  The remainder of all diets consisted of 15% corn silage, and 

6% supplement with increasing concentrations of WDGS replacing corn, urea, and 

soybean meal.  Urea and soybean meal were added to diets containing 0 or 17.5% WDGS 

to meet or exceed the MP requirements of the steers (NRC, 1996).  Monensin (Rumensin, 

Elanco Animal Health) and tylosin (Tylan,, Elanco Animal Health) were fed with a 

micromachine at 360 mg/steer and 90 mg/steer daily, respectively.  Full fat WDGS was 

received from Renova Energy in Torrington, Wyoming and de-oiled WDGS was received 

from Bridgeport Ethanol in Bridgeport, NE every 10-14 d during the experiment.   

Steers were implanted on d 1 with Revalor-XS (Merck Animal Health).   On d 

109, the heavy BW block was shipped to a commercial abattoir (Cargill Meat Solutions, 

Fort Morgan, CO) for harvest.  The medium and light blocks were shipped to the same 

plant on d 128.  Hot carcass weights and liver scores were collected on the day of harvest 

and after a 48-h chill the LM area, fat thickness, and marbling score data.  Yield grade 

was calculated similar to Exp. 1 except that KPH was called by Diamond T carcass data 

collection services (Yuma, CO).  
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Data were analyzed using the GLIMMIX procedure of SAS with pen as the 

experimental unit.  The model statement for the 2 × 3 factorial included corn processing 

type by de-oiled distillers grains concentration interactions for each response variable. No 

interaction between corn processing method and concentration of de-oiled WDGS was 

detected (P ≥ 0.15), thus linear and quadratic contrasts were used to evaluate the effect of 

concentration of de-oiled WDGS in the diet on performance and carcass characteristics. 

A model statement including the interaction between WDGS oil content(de-oiled vs. full 

fat) of distillers grains and corn processing method was utilized for the analysis of the 

embedded 2 × 2 factorial with significance declared at (P ≤ 0.05).  The prevalence of 

liver abscesses per treatment was determined using the GLIMMIX procedure of SAS for 

all treatments analyzed in this experiment. Prevalence of liver abscesses was determined 

on a per pen basis and then averaged across treatments with the interactions analyzed in 

both the 2 × 3 factorial and the 2 × 2 factorial model statements. In the 2 × 3 factorial, the 

prevalence of an interaction between WDGS diet concentration and corn processing 

method was not significant in the number of  liver abscesses was not present, thus a 

binomial analysis for liver abscesses based on increasing concentrations of de-oiled 

WDGS was also conducted. 

The feeding value of increasing concentrations of de-oiled WDGS in comparison 

to both DRC and SFC controls was calculated (Bremer et al., 2011; Klopfenstein et al., 

2008) using similar calculations as those described in Exp. 1.  Treatment NEm and NEg 

values were also calculated, using equations similar to those utilized in Exp. 1, on a per 

pen basis.  These energy values were also analyzed using the GLIMMIX procedure of 

SAS by pen to determine treatment averages. 
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Results and Discussion 

Exp1. 

De-oiled MDGS were 45.3% DM, 7.2% fat, 35.5% CP, 37.5% NDF, and 0.63% 

S.  Full fat MDGS was 47.8% DM, 12.0% fat, 32.6% CP, 38.4% NDF, and 0.57% S.  

Buckner et al., (2011) found that average CP for 6 Nebraska ethanol plants ranged from 

31.0-32.2%.  The authors reported that S ranged from 0.71-0.84% across the 6 ethanol 

plants that were sampled.  In a 5 year study by Belyea et al., (2004), nutrient values of 

distillers grains were 31.3% CP and 11.9% fat.  When Benton et al. (2010) reviewed 

numerous published articles to summarize the nutrient composition of distillers, the 

authors found that the average nutrient composition for distillers grains was 31.5% CP, 

10.5% fat, 43.2% NDF, and 0.57% S.  Both full fat and de-oiled MDGS in Exp. 1 had 

similar nutrient values in respect to DM, CP, NDF, and S contents as has been reported in 

previous research.  Agreeing with our hypothesis the de-oiled product had a lower fat 

content in comparison to the full fat MDGS variety, thus we were able to determine a 

performance difference did exist when de-oiled MDGS was fed at 15 and 30% diet 

concentrations in comparison to full fat MDGS in feedlot diets similar to those fed in 

Exp. 1.  Also, with de-oiled MDGS being fed at increasing diet concentrations, cattle 

performance from Exp.1 could be compared to what had been previously reported by 

Bremer et al., (2011) and Watson et al., (2014).  With a de-oiled MDGS product, the 

potential to feed higher concentrations without detrimentally affecting steer feedlot 

performance is a viable hypothesis. 
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In Exp. 1 as de-oiled MDGS concentration increased, final BW and ADG 

increased linearly (P = 0.02; Table 3).  Dry matter intake was unaffected by increasing 

MDGS diet concentrations, however due to the linear increase in ADG, G:F increased 

linearly also as MDGS diet concentration increased (P  < 0.01).  Watson et al., (2014) 

and Bremer et al., (2011) reported that DMI and ADG increased quadratically (P < 0.01) 

with increasing concentrations of distillers in grains in finishing beef cattle diets.  Dry 

matter intake and ADG were maximized at roughly 30% concentrations of distillers 

grains (DM-basis) for both performance measurements in these two studies.  In both of 

these studies, G:F also increased linearly as distillers grains diet concentrations increased 

(P ≤ 0.01).  Increases in G:F continued even at maximal inclusion of distillers grains 

(Watson et al., (2014) fed MDGS up to 40% of the diet (DM-basis) and Bremer et al., 

(2011) fed WDGS up to 50% of the diet (DM-basis)).   In the current study, both NEm 

and NEg improved linearly with increasing concentrations of de-oiled MDGS (P = 0.01).  

At 15% concentrations of de-oiled MDGS, NEm for the diet was 1.85 Mcal/kg and this 

value increased to 1.90 Mcal/kg when de-oiled MDGS diet concentration increased to 

60%.  Diet NEg values also increased as de-oiled MDGS diet concentrations increased 

from 15 to 60% (1.21 and 1.26 Mcal/kg, respectively).  The feeding value of MDGS 

compared to the HMC:DRC control diet decreased with increasing concentrations of 

MDGS in the diet.  At 15% MDGS diet concentrations, the feeding value of distillers 

grains was 132% that of corn, which decreased to 111% the value of corn as diet 

concentrations of MDGS increased to 60%.  Watson et al., (2014) also reported that as 

MDGS diet concentrations increased the feeding value of distillers grains decreased from 

128% when diet concentrations were 10% (DM-basis) to 117% at 40% MDGS diet 
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concentrations (DM-basis).  Bremer et al., (2011) also reported decreases in feeding 

value with increasing concentrations of WDGS.  The authors reported that WDGS 

feeding value decreased from 151% to 113% the value of corn when diet concentration 

increased from 10 to 50% (DM-basis).  In this study, it appears that de-oiled MDGS can 

be fed up to 60% of the diet (DM-basis) and without hindering steer performance, though 

the feeding value above the control continues to decrease with increasing de-oiled MDGS 

concentrations.    

Hot carcass weight increased as de-oiled MDGS was added to the diet (P = 0.02).   

Longissimus muscle area was not statistically different between treatments (P ≥ 0.17), 

however linear increases in 12
th

-rib fat depth (P < 0.01) and marbling scores (P = 0.05) 

were observed as de-oiled MDGS concentration in the diet increased.  Linear 

improvements in 12
th

-rib fat thickness and marbling scores are likely related to the linear 

improvements observed for ADG.  Watson et al., (2014) observed a tendency for a linear 

improvement in marbling (P = 0.10) and a quadratic increase in fat depth (P = 0.12), with 

calculated yield grade also increasing quadratically (P = 0.04) with increasing 

concentrations of MDGS.  In the meta-analysis conducted by Bremer et al., (2011), 

marbling increased quadratically (P = 0.05) and fat depth increased linearly (P < 0.01) 

with increasing MDGS diet concentrations.  In Exp. 1 the prevalence of liver abscesses 

was not different among treatments (P ≥ 0.63).  Yield grade however, did increase 

linearly with increasing concentrations of de-oiled MDGS in the diet (P = 0.03).  Steers 

fed 30% de-oiled MDGS had the highest carcass yield (3.22). 

 Analysis of the embedded 2 × 2 factorial showed that no significant differences in 

final BW, DMI, or ADG were observed in cattle fed either de-oiled or full fat MDGS at 
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15 or 30% concentrations in the diet (P ≥0.26)   A tendency for an interaction between oil 

content and concentration of MDGS in the diet on G:F (Table 3; P = 0.07) was observed.  

Cattle consuming full fat MDGS diets at 30% inclusion were 3.4% (P = 0.07) more 

efficient than their de-oiled MDGS counterparts.  No differences in G:F were observed 

when comparing de-oiled to full fat MDGS at 15 or 30% concentrations.  However, 

numerically, cattle fed full fat MDGS at 30% (DM-basis) were 3.3% more efficient than 

steers fed 30% de-oiled MDGS.   This numerical difference was not observed at 15% 

concentrations of de-oiled or full fat MDGS.  Jolly et al., (2013) reported that DMI 

decreased linearly with increasing concentrations of both de-oiled and full fat WDGS (P 

< 0.01), otherwise no other interactions between WDGS fat content and WDGS 

concentration existed.  For the main effect of WDGS oil content, Jolly et al, (2013) 

reported that ADG was greater for cattle fed de-oiled WDGS diets (P < 0.01) compared 

to cattle fed full fat WDGS.   In the current study, the  NEm and NEg values calculated for 

the treatment diets had a tendency to be greater for the full fat MDGS diets (P = 0.12, and 

P = 0.10, respectively) compared to the de-oiled MDGS diet.  At 30% concentration of 

MDGS in the diet, NEm  of the diet tended to be greater in the full fat diet compared to 

the de-oiled diet (P = 0.06), and NEg values were greater in the full fat diet compared to 

the de-oiled diet.  No differences in NEm and NEg were observed between full fat and de-

oiled diets fed at 15% concentrations of MDGS in the diet (P ≥ 0.73).  At 15% MDGS 

concentrations, de-oiled MDGS had 109% the feeding value of full fat MDGS, but when 

MDGS concentration increased to 30%, the feeding value of de-oiled MDGS decreased 

to 89% the value of full fat MDGS. 
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When comparing the carcass characteristics of cattle fed either 15 or 30% de-oiled 

vs. full fat MDGS, HCW, LM area, fat depth, marbling score, yield grade, and liver 

abscess prevalence did not differ (P > 0.26) in Exp. 1.  No difference in carcass 

characteristics in Exp. 1 is similar to what Jolly et al., (2013) observed when comparing 

de-oiled MDGS to full fat MDGS when included at 40% (DM-basis) of the diet (P > 

0.44).  

The results of this study suggest increasing the inclusion of de-oiled MDGS in a 

beef feedlot diet improves G:F similar to previous work with full fat MDGS (Watson et 

al., 2014).  Impacts of oil removal appear to be dependent upon dietary inclusion. In this 

study no significant differences were observed when de-oiled or full fat MDGS was fed 

at 15% of the diet, which may be difficult to detect due to low inclusions.  When the 

concentration of MDGS increased to 30% in the diet, cattle consuming full fat MDGS 

diets were 3.4% more efficient. 

Exp 2. 

No WDGS concentration by corn processing method interaction was observed 

when evaluating the 2×3 factorial (Table 5, P ≥ 0.15). Lack of an interaction between 

corn processing method (DRC vs. SFC) and WDGS diet concentration agrees with 

studies conducted by Buttrey et al., (2012) and Luebbe et al., (2011).  Buttrey  et al., 

(2012) looked at the interaction of corn processing when WDGS was included in the diet 

at 0 or 22% (DM-basis); whereas Luebbe et al., (2011) looked at low concentrations 

(15%) and also greater diet concentrations (30, 45, and 60%, DM-basis) when studying 

its interactions with either DRC or SFC.  The lack of an interaction in Exp. 2 differs from 

what Corrigan et al., (2009) reported, however.  These authors reported that final BW, 
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and ADG increased linearly in DRC diets (P < 0.01), and quadratically in SFC diets (P < 

0.05) with increasing WDGS inclusion.  The authors also reported that G:F improved 

linearly in DRC diets (P < 0.01) with increasing concentrations of WDGS in the diet, but 

no such improvements in G:F were reported for SFC fed cattle.  Nichols et al., (2012) fed 

0 or 35% WDGS (DM-basis) with increasing concentrations of a SFC:DRC blend (0:100. 

25:75, 50:50, 75:25, and 100:0) and reported a significant interaction for G:F (P = 0.03).  

When 0% WDGS were included cattle fed 100% SFC diets were 11.2% more efficient 

than cattle fed 0% WDGS and 100% DRC diets.  When WDGS diet concentration 

increased to 35% (DM-basis) the improvement in efficiency seen in SFC cattle decreased 

to 2.1% compared to cattle fed 35% WDGS and 100% DRC.  Though in Exp. 2 no 

statistical interaction for G:F can be reported, biologically there appears to an interaction.  

More replications in this trial may have yielded the interaction that biology is pointing to.   

In Exp. 2 the main effect of corn processing method illustrated that steers fed 

DRC had greater DMI (P = 0.02) and similar ADG (P = 0.23) compared to steers 

consuming SFC diets.   Luebbe et al., (2012) reported that when 0% WDGS were fed 

with SFC and DRC, DMI tended to be greater in DRC fed cattle compared to those fed 

SFC (P = 0.06).  In Exp. 2, G:F was improved in steers fed SFC (P  = 0.01) over DRC 

diets whether WDGS was fed or not.  When comparing the control diets of each corn 

processing method (0% WDGS diets with either DRC or SFC), a 10.2% improvement in 

G:F was observed in cattle fed SFC over DRC.  This improvement in G:F agrees with 

previous research, (Nichols et al., 2012) where the difference in G:F between corn 

processing methods was 10.0%.  Luebbe et al., (2012) reported an 11.1% improvement in 

G:F in SFC fed cattle compared to DRC fed cattle (P < 0.01).  Observations in Exp. 2 due 
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to corn processing are similar to what Owens et al., (1997) found in their meta-analysis. 

The authors reported that when intensity of corn processing increased, DMI decreased, 

gains were similar between DRC and SFC fed cattle, and cattle consuming SFC were 

more efficient than those fed DRC.  Zinn et al., (2002) reported an even steeper increase 

in the feeding value of SFC over DRC of 118%.  In Exp. 2, steers fed SFC had greater 

marbling scores than those fed DRC diets (P = 0.03) and there was a tendency for cattle 

in SFC treatments to have a higher prevalence of liver abscesses (Table 5).  

Increasing the concentration of WDGS in either the SFC or DRC diets resulted in 

a linear improvement in final BW and ADG (P < 0.01).  Again these observations are 

similar to what has been reported in other numerous research trials (Bremer et al., 2011, 

Watson et al., 2014, and Benson et al., 2011).  In Exp. 2, no differences in DMI were 

observed with increasing concentrations of WDGS in the diet (P = 0.68).  No difference 

in DMI, along with greater ADG with increasing concentrations of WDGS resulted in a 

linear increase in G:F with increasing WDGS diet concentrations (P  < 0.01).  Luebbe et 

al., (2012) reported that in SFC diets, DMI responded quadratically with increasing 

WDGS concentrations (P < 0.01) and steers fed 15 and 30% WDGS had the greatest 

DMI.  Luebbe et al., (2012) also reported that final BW and ADG linearly decreased (P ≤ 

0.05) with increasing WDGS diet concentrations in SFC diets, thus G:F linearly 

decreased with increasing WDGS concentrations (P < 0.01).   In Exp. 2, diet NEm and 

NEg diet values linearly increased as WDGS diet concentration increased (P < 0.01).  

Luebbe et al., (2012) reported that diets containing SFC had significantly greater NEm 

and NEg values compared to DRC diets (P < 0.01) in their study.  In the current study, 

HCW, fat depth, and yield grade linearly increased with increasing concentrations of 
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WDGS (P < 0.01).  Luebbe et al., (2012) reported no differences in marbling (P ≥ 0.48), 

but observed higher NEm and NEg values in SFC over DRC diets.  Final BW, HCW, LM 

area, and fat depth (P ≥ 0.21) did not differ between steers fed DRC or SFC diets in Exp. 

2 whereas Luebbe et al., (2012) observed significant increases in final BW, HCW, and fat 

depth in SFC fed cattle over those consuming DRC diets.     

In Exp. 2, for the main effect of concentration of WDGS in the diet, a linear 

increase in final BW, ADG, HCW and fat depth (P < 0.01) was observed as WDGS 

concentration in the diet increased (Table 5).  Similar observations were reported by 

Watson et al., (2014) and Bremer et al, (2011) however, they observed a quadratic 

increase in ADG rather than a linear one.  Furthermore, a linear improvement in G:F was 

detected  as  the concentration of WDGS in the diet increased (P < 0.01) similar to what 

Bremer et al., (2011) and Watson et al., (2014) reported for feed efficiency.  In Exp. 2, 

increasing the concentration of WDGS from 0 to 17.5% caused a 5.2% improvement in 

G:F and increasing the concentration of WDGS from 17.5 to 35% caused a 3.5% 

improvement in G:F.  In the current study when WDGS was added to DRC diets, the 

feeding value was 154% that of the DRC control diet when WDGS were included at 

17.5% and decreased to 140% that of the control as WDGS diet concentration increased 

to 35%.  When WDGS was added to SFC diets, the feeding value was 116% that of the 

SFC control diet when WDGS was included at 17.5% and decreased slightly to 114% the 

feeding value of the control when WDGS diet concentration increased to 35%.  Bremer et 

al., (2011) and Watson et al., (2014) also reported that the feeding value of WDGS in 

comparison to corn decreased as distillers grain concentrations increased.  Bremer et al., 

(2011) reported that the feeding value decreased from 150 to 113% the value of corn as 
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WDGS diet concentration increased from 10 to 50% (DM-basis) and Watson et al., 

(2014) reported that feeding value decreased from 132 to 111% as MDGS diet 

concentration increased from 10 to 40% of the diet (DM-basis).  In the current 

experiment, a linear increase in NEm and NEg for both DRC and SFC diets was observed 

as de-oiled WDGS was added to the diet (P < 0.01).  Marbling scores increased 

quadratically (P = 0.01) with increasing concentrations of WDGS.  Cattle fed 17.5% de-

oiled WDGS had the greatest marbling scores.  Again, Watson et al., (2014) observed a 

tendency for a linear improvement in marbling (P = 0.10) and a quadratic increase in fat 

depth (P = 0.12), with calculated yield grade also increasing quadratically (P = 0.04) with 

increasing concentrations of MDGS.  In the meta-analysis conducted by Bremer et al., 

(2011), marbling increased quadratically (P = 0.05) and fat depth increased linearly (P < 

0.01) with increasing MDGS diet concentrations.   

In the embedded 2 × 2 factorial (Table 6), which compared de-oiled WDGS 

(7.9% fat content) to full fat WDGS (11.3% fat) fed at 35%, there were no corn 

processing method by WDGS fat content interactions (P ≥ 0.15).    For the main effect of 

WDGS fat content, steers tended to have greater final BW (P = 0.12) if they were fed full 

fat WDGS over de-oiled WDGS.  Dry matter intake also tended (P = 0.12) to be greater 

in de-oiled WDGS diets.  Fat content of WDGS did not significantly impact G:F (P = 

0.14), which is similar to what Jolly et al., (2013) observed, however cattle fed full fat 

WDGS in Exp. 2 were  2.7% more efficient than their de-oiled WDGS counterparts  in 

DRC diets and numerically 5.2% more efficient in SFC-based diets.  There was a 

tendency for cattle consuming full fat fat WDGS diets to have greater final BW, HCW, 

DMI (P = 0.12), and marbling scores (P = 0.11) compared to cattle consuming de-oiled 
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WDGS diets.  Average daily gain, LM area, and fat depth (P ≥ 0.18) did not significantly 

differ between WDGS types, whereas Jolly et al., (2013) reported that ADG was greater 

in cattle fed de-oiled WDGS diets compared to those fed full fat WDGS.   In Exp. 2, 

there was a tendency for the full fat WDGS diet to have a greater NEm value compared to 

the de-oiled WDGS diet (P = 0.06), conversely the calculated NEg value for the full fat 

WDGS diet was significantly greater than for de-oiled WDGS diet (P = 0.03).  

Just as Owens et al., (1997) reported, the main effect of corn processing method 

(for the 2 × 2 in Exp. 2) showed that steers fed SFC had improved G:F (P = 0.05) 

compared to those fed DRC.  No differences in final BW, ADG, HCW, LM area, fat 

depth, or marbling scores (P ≥ 0.26) were observed when comparing SFC and DRC diets, 

however DMI did differ as steers fed DRC consumed more feed than did SFC fed cattle 

(P < 0.05).  In DRC diets, the feeding value of de-oiled WDGS was 92% the value of full 

fat WDGS; whereas in SFC diets, the feeding value of de-oiled WDGS decreased to 85% 

the value of full fat WDGS.   

This study suggests that increasing the concentration of de-oiled WDGS in the 

diet while feeding either SFC or DRC improves G:F.  As concentration of WDGS in both 

the DRC and SFC diets increased, so did G:F.  Traditionally, as intensity of corn 

processing increases, the concentration of distillers grains in the diet should decrease due 

to the negative associative affect that is apparent between corn processing intensity and 

increasing concentrations of WDGS (Corrigan et al., 2009 and Nichols et al., (2012).  As 

the concentration of WDGS was capped at 35% on DM basis, the effects of high fat or 

sulfur content that could be inhibiting performance in SFC fed cattle was not observed 

(Luebbe et al., 2012).  Removing a portion of the oil, via centrifugation of the thin 
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stillage, did not significantly impact G:F in this study.  Feeding full fat WDGS, however, 

numerically improved G:F by 4.0% suggesting oil removal may have a small effect on 

the energy value of WDGS and subsequently on the effects of feed efficiency in finishing 

cattle. 
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Table 1.  Dietary treatments evaluating the effect of de-oiled MDGS
1
 being increasingly added to the 

diet in Exp. 1.  

 De-oiled MDGS 

(%, DM Basis) 

Full Fat MDGS
 

(%, DM Basis) 

MDGS 

Concentration
 

0
3 

15
 

30 45 60 15
 

30 

Ingredient        

De-oiled MDGS
 

0.00 15.0 30.0 45.0 60.0 -- -- 

Full Fat MDGS
 

-- -- -- -- -- 15.0 30.0 

Corn Silage 12.00 12.0 12.0 12.0 12.0 12.0 12.0 

High Moisture Corn
 

41.50 34.0 26.5 19.0 11.5 34.0 26.5 

Dry Rolled Corn
 

41.50 34.0 26.5 19.0 11.5 34.0 26.5 

Supplement
2        

   Fine Ground Corn
 

0.70 2.18 2.60 2.60 2.60 2.18 2.60 

   Limestone 1.74 1.72 1.89 1.89 1.89 1.72 1.89 

   Salt 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

   Urea 1.68 0.38 -- -- -- 0.38 -- 

   Tallow 0.01 0.13 0.13 0.13 0.13 0.13 0.13 

   Rumensin-90 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

   Tylan-40 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

   Potassium Chloride 0.48 0.20 -- -- -- 0.20 -- 

   Trace Mineral 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

   Vitamin A,D,E 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Dietary Composition ,%       

 NDF 12.50 19.97 21.43 25.89 30.35 17.18 21.70 

 CP 13.18 13.55 16.51 20.53 24.56 12.05 15.63 

 Fat  3.24 3.78 4.32 4.86 5.40 4.50 5.76 

 S 0.15 0.21 0.29 0.36 0.43 0.20 0.29 
1 MDGS = modified distillers plus solubles for both de-oiled and full fat varieties.  
2 Formulated to provide 360 mg/hd/d or Rumensin® and 90 mg/hd/d Tylan® in supplement.  
3 Urea was included in diets containing 0 and 15% MDGS diets to meet the MP requirements of the steers. 
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Table 2. Dietary treatments evaluating the effect of de-oiled WDGS
1
 being increasingly added to SFC

2
 or 

DRC diets in Exp. 2. 

 SFC
 

DRC
 

De-oiled WDGS  0 17.5 35 35
3 

0 17.5 35 35
3 

Inclusion         

SFC
 

74.44 60.75 44.0 44.0 -- -- -- -- 

DRC
 

-- -- -- -- 74.44 60.75 44.0 44.0 

De-oiled WDGS
 

0.00 17.50 35.00 -- 0.00 17.50 35.00 -- 

Full fat WDGS
 

-- -- -- 35.00 -- -- -- 35.00 

Corn Silage 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 

Soybean Meal
4 

3.56 0.10 -- -- 3.56 0.10 -- -- 

Urea 1.00 0.65 -- -- 1.00 0.65 -- -- 

Supplement
5,6,7         

   Potassium Chloride 0.30 -- -- -- 0.30 -- -- -- 

   Limestone 1.69 1.66 1.68 1.68 1.69 1.66 1.68 1.68 

Dietary Composition         

   CP, % 12.39 14.07 16.36 15.45 12.39 14.07 16.36 15.45 

   Fat, % 2.67 3.57 4.43 5.62 2.67 3.57 4.43 5.62 

   Ca, % 0.63 0.62 0.63 0.63 0.63 0.62 0.63 0.63 

   P, % 0.24 0.34 0.46 0.46 0.24 0.34 0.46 0.46 

   Mg, % 0.12 0.16 0.20 0.20 0.12 0.16 0.20 0.20 

   K, % 0.63 0.54 0.68 0.70 0.63 0.54 0.68 0.70 

   S, % 0.10 0.18 0.26 0.20 0.10 0.18 0.26 0.20 

   Na, % 0.0014 0.0349 0.0697 0.0949 0.0014 0.0349 0.0697 0.0949 

   Zn, mg/kg 17.45 23.23 36.79 36.79 17.45 23.23 36.79 36.79 

   Fe, mg/kg 55.26 59.85 68.48 93.30 55.26 59.85 68.48 93.30 

   Mn, mg/kg 13.58 14.45 16.55 17.25 13.58 14.45 16.55 17.25 

   Cu, mg/kg 2.89 2.54 3.22 3.23 2.89 2.54 3.22 3.23 
1 WDGS = wet distillers grains plus solubles. 
2 SFC= steam flaked corn, DRC = dry rolled corn. 
3 Full fat WDGS included in diet. 
4 Soybean meal and urea was added to diets containing 0 or 17.5% WDGS via liquid supplement to meet the MP requirements for steers. 
5 Supplement added to diet via micromaching to provide 360 mg/steer Rumensin® and 90 mg/steer Tylan®.  
6 Supplemented formulated to contain, 30 mg/kg Zn, 50 mg/kg Fe, 10 mg/kg Cu, 20 mg/kg Mn, 0.1 mg/kg Co, 0.5 mg/kg I, and 0.1 mg/kg Se. 
7 Supplement formulated to contain, 10670 IU/kg Vitamin A, 1342 IU/kg Vitamin D, and 77 IU/kg Vitamin E. 
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Table 3. Performance and carcass data for steers fed increasing inclusions of de-oiled MDGS
1 

in Exp. 1.  

 De-oiled MDGS, % Diet DM  P-value
2 

Item 0 15 30 45 60 SEM Lin Quad 

Performance         

Initial BW, kg 360 360 359 359 360 0.5 0.40 0.86 

Final BW, kg
3 

586 605 604 601 601 6.4 0.02 0.57 

DMI, kg/d 10.5 10.9 10.9 10.5 10.5 0.2 0.59 0.32 

ADG, kg 1.47 1.60 1.60 1.56 1.58 0.04 0.02 0.57 

G:F
 

0.140
 

0.147
 

0.147
 

0.149
 

0.150
 

0.002 <0.01 0.86 

Feeding Value,
4 

-- 132 % 116 % 113% 111%    

Energy Values
5         

NEm, Mcal/kg 1.83 1.85 1.85 1.90 1.90 0.01 <0.01 0.41 

NEg, Mcal/kg 1.19 1.21 1.21 1.26 1.26 0.01 <0.01 0.38 

Carcass Characteristics        

HCW, kg 369 381 381 379 379 3.7 0.02 0.57 

LM area, cm
2 

82.58 83.55 80.84 82.06 82.26 1.35 0.17 0.85 

12
th

-rib fat, cm 1.24
 

1.37
 

1.57
 

1.47
 

1.45
 

0.08 <0.01 0.69 

Marbling Score
6 

490
 

527
 

535
 

523
 

506
 
 12 0.05 0.17 

Yield Grade 2.73
a 

2.92
ab 

3.22
b 

2.95
ac 

2.63
ac 

0.17 0.03 0.96 

Liver Abscesses, % 12 12 8.9 9.6 13.0 0.27 0.24 0.71 
1 MDGS = modified distillers grains plus solubles.  
2 Lin = P-value for the linear response to de-oiled MDGS inclusion: Quad = P- value for the quadratic response to de-oiled MDGS inclusion.  
3 Final BW was calculated from HCW using a common dressing percentage of 63%. 
4 Feeding value of MDGS relative to the HMC:DRC control diet.  
5 Values calculated by pen, using 1996 NRC equations. 
6 Marbling Score: 400 - small°, 500 = modest°. 
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 Table 4. Performance, carcass data, and feeding value of comparisons between cattle fed de-

oiled and full fat MDGS
1
 in Exp. 1.  

 15% MDGS
1 

30% MDGS
1 

  P-value
2 

Item De-oiled Full Fat De-oiled Full Fat SEM Int.
3 

15 30 

Performance         

Initial BW, kg 360 359 359 360 0.4 0.37 0.37 0.72 

Final BW, kg
4 

605 596 604 609 6.0 0.26 0.31 0.57 

DMI, kg/d 10.9 10.7 10.9 10.7 0.2 0.85 0.37 0.59 

ADG, kg 1.60 1.55 1.60 1.63 0.04 0.28 0.32 0.59 

G:F
 

0.147
ab 

0.145
a 

0.147
ab 

0.152
b 

0.0009 0.07 0.48 0.07 

Net Energy Values
5         

NE Maintenance, Mcal/kg 1.85 1.85 1.85 1.89 0.003 0.12 0.75 0.06 

NE Gain, Mcal/kg 1.21 1.21 1.21 1.26 0.003 0.10 0.73 0.05 

Feeding Value
6 109% -- 89% --     

Carcass Characteristics        

HCW, kg 381 376 381 383 3.8 0.26 0.30 0.57 

LM area, cm
2 

83.54 81.81 80.85 80.98 0.10 0.49 0.36 0.95 

12
th

-rib fat, cm 1.37 1.37 1.32 1.52 0.01 0.92 0.82 0.71 

Marbling Score
7 

527 516 535 525 5 0.97 0.53 0.56 

Yield Grade 2.92 2.88 3.22 3.20 0.11 0.63 0.84 0.92 

Liver Abscesses, % 12.0 7.4 8.9 7.7 0.03 0.60 0.34 0.83 
1 MDGS = modified distillers grains plus solubles.  
2 15 = P-value for pair-wise contrast between de-oiled and full fat MDGS at 15% concentration; 30 = P –value for  

pair-wise contrast between de-oiled and full fat MDGS at 30% concentration.  
3 Int. = P-value for interactions between concentration of MDGS and oil content of MDGS. 
4 Final BW was calculated from HCW using a common dressing percentage of 63% 
5 Values calculated by pen, using 1996 NRC equations. 
6 Feeding Value Calculation = divide treatment G:F value by the full fat MDGS G:F value  within each diet  

concentration, take that value and subtract 1,  and then divide by the concentration of de-oiled MDGS in the diet. 
7 Marbling Score : 400 = small°, 500 = modest °. 

 

 

 

 

 

 

 

 

 



 

 

 

Table 5. Effect of corn processing method with increasing concentrations of de-oiled WDGS
1
 in the finishing diet. 

 DRC
2 

SFC
  P-values

3 
 

Item 0 17.5 35 0 17.5 35 SEM Int.
 

CPM
 

Linear
 

Quadratic
 

Performance            

   Initial BW, kg 389 390 390 388 388 389 1.4 0.80 0.06 0.39 0.94 

   Final BW, kg
4 

582 596 605 591 597 606 6.4 0.57 0.37 <0.01 0.84 

   DMI, kg/d 12.5 12.3 12.3 12.0 12.0 12.2 0.2 0.25 0.02 0.68 0.42 

   ADG, kg 1.59 1.71 1.78 1.67 1.72 1.79 0.05 0.53 0.23 <0.01 0.84 

   G:F
 

0.127 0.139 0.145 0.140 0.144 0.147 0.004 0.15 0.01 <0.01 0.50 

Net Energy Values
5
            

  NE maintenance, Mcal/kg 1.68 1.76 1.81 1.79 1.81 1.83 0.01 0.25 <0.01 <0.01 0.35 

  NE gain, Mcal/kg 1.06 1.15 1.17 1.15 1.19 1.19 0.007 0.22 <0.01 <0.01 0.38 

Calculated Feeding Valu6
7 -- 154% 140% -- 116% 114%      

Carcass Characteristics            

   HCW, kg 367 376 381 372 376 381 4.1 0.60 0.37 <0.01 0.82 

   LM area, cm
2 

72.9 72.9 72.9 72.9 72.9 73.7 1.3 0.99 0.74 0.77 0.82 

   Fat depth, cm 1.12 1.19 1.32 1.19 1.27 1.29 0.05 0.53 0.21 <0.01 0.91 

   Marbling Score
7 

416 451 425 440 468 446 15 0.94 0.03 0.47 <0.01 

   Yield grade 3.46 3.62 3.76 3.52 3.68 3.72 0.13 0.86 0.54 <0.01 0.56 

   Liver abscesses, % 7 16 10 14 18 22 5 0.97 0.10 0.28 0.26 
1 WDGS = wet distillers grains plus solubles. 
2 DRC = dry rolled corn, SFC = steam flaked corn. 
3 CPM = main effect of corn processing method of DRC or SFC,   Conc. = main effect of concentration of WDGS in the diet, Linear and Quadratic P –values for the main    

  effect of concentration of WDGS  in the diet, Int. = interaction between corn processing method and concentration of WDGS in the diet.     
4 Calculated from hot carcass weight, adjusted to a common dressing percentage of 63%. 
5 Values calculated by pen using 1996 NRC equations.  
6  Feeding Value Calculation = divide treatment G:F value by the 0% WDGS control G:F value  within each corn processing method, take that value 

  and subtract 1,  and then divide by the concentration of de-oiled WDGS in the diet. 

7 Marbling Score: 400 = small°, 500 = modest°.  

1
0

9
 



 

 

 

 

 

Table 6. Comparing De-oiled and Full Fat WDGS
1
 at 35% Concentration in DRC

2
 and SFC diets  

 DRC
 

SFC  P-values
3 

Item De-oiled 

WDGS
 

Full Fat 

WDGS
 

De-oiled 

WDGS
 

Full Fat  

WDGS
 

SEM Int.
 

CPM
 

Type 

Performance          

   Initial BW, kg 390 390 389 390 0.9 0.86 0.53 0.46 

   Final BW, kg
5 

605 610 606 615 5.9 0.69 0.59 0.12 

   DMI, kg/d 12.3 12.2 12.2 12.0 0.2 0.54 0.26 0.12 

   ADG kg 1.78 1.81 1.78 1.82 0.05 0.62 0.46 0.18 

   G:F
 

0.144 0.148 0.147 0.155 0.006 0.43 0.05 0.14 

Net Energy Value
6
         

  NE maintenance, Mcal/kg 1.85 1.83 1.83 1.92 0.02 0.15 0.18 0.06 

  NE gain, Mcal/kg 1.17 1.19 1.19 1.28 0.01 0.18 0.07 0.03 

Calculated Feeding Value
7 92% --- 85% --     

Carcass Characteristics       

   HCW, kg. 381 385 381 387 3.6 0.69 0.58 0.12 

   LM area, cm
2 

73.10 73.56 73.36 74.40 1.47 0.80 0.61 0.52 

   Fat depth, cm 1.32 1.32 1.30 1.37 0.08 0.37 0.52 0.37 

   Marbling score
8 

427 462 488 455 18 0.29 0.58 0.11 

   Yield grade 3.8 3.8 3.7 3.8 0.2 0.58 1.0 0.58 

   Liver abscesses, % 10.0 22.0 6.0 10.0 4 0.61 0.14 0.06 
1 WDGS = wet distillers grains plus solubles.  
2DRC = dry rolled corn, SFC = steam flaked corn. 
4 CPM = main effect of corn processing method (DRC or SFC), Type = main effect of type of WDGS (de-oiled or full fat fat). 

 Int. = interaction between corn processing method and WDGS type. 
5 Calculated from hot carcass weight, adjust to a common dressing percentage of 63%. 
6 Values calculated by pen using 1996 NRC equations. 
7 Feeding Value Calculation = divide treatment G:F value by the 0% WDGS control G:F value  within each corn processing method, take that value 

  and subtract 1,  and then divide by the concentration of de-oiled WDGS in the diet. 
8 Marbling score: 400 = small°, 500  = modest°. 
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