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Protein synthesis and proper folding is an essential process for all organisms.  In 

eukaryotes proteins of the secretory pathway are synthesized and inserted into the lumen or 

membrane of the endoplasmic reticulum.  Eukaryotic cells maintain a mechanism for removal of 

proteins unable to fold properly.  This process is known as ER-associated degradation (ERAD).  

A  poorly functioning ERAD can lead to a build-up of misfolded proteins which has been 

implicated in several degenerative diseases such as Alzheimer’s, Amyotrophic lateral sclerosis, 

and Parkinson’s.  Thus, the study of how proteins are recognized, extracted from the ER, and 

degraded is essential for determining methods for maintaining protein solubility and stability, and 

prevention of toxic accumulation of protein aggregates. 

Our lab has previously identified Pca1, a cadmium exporting P1B-type ATPase in 

Saccharomyces cerevisiae.  A genetic knockout screen led to the discovery that Pca1 expression 

is controlled post-translationally through the ERAD pathway.  Specifically, the ERAD-Cytoplasm 

(ERAD-C, indicating the location of the misfolding) pathway utilizes the E3 ubiquitin ligase 

Doa10 to ubiquitinylate substrates.   

We further tested the mechanism by which Pca1 an eight transmembrane domain 

containing protein was extracted from the ER membrane for degradation in the cytoplasm. 

Surprisingly, we determined that the proteasome itself is essential for this process.   

Finally, we sought to determine the requirements of cadmium sensing and rescue from 

ERAD as well as the molecular factors involved in recognition of the degron of Pca1.  



Biophysical characterization revealed cadmium specific binding.  A random-mutagenesis screen 

identified residues required for degradation of Pca1.  Bioinformatical study of the Pca1 degron 

structure identified a hydrophobic patch that when broken with amino acid substitution stabilized 

the protein.  It was also determined that interaction with a known recognition factor of ERAD, 

Ssa1, was much weaker in the presence of a hydrophilic substitution or cadmium 

supplementation. 

Collectively, our results revealed a mechanism in which Pca1 is regulated post-

translationally through the ubiquitin proteasome system.  We were also able to apply our findings 

of Pca1 to another ERAD-C substrate.  Pca1 is an excellent model for the study of the ERAD-C 

pathway as it is short-lived and rapidly stabilized by the supplementation of cadmium.     
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Introduction  
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Forward. 

Heavy metal toxicity is a major health concern as many diseases are related to its toxic 

accumulation.  Many organisms have evolved highly regulated mechanisms to bind, sequester 

and extrude these metals.  In this thesis I will concentrate on the Cd
II
 exporting P1b-Type ATPase 

in S. cerevisiae, Pca1.  In particular I will focus on the mechanism of post translational regulation 

through ER-associated degradation.  I will also investigate the elements of Pca1 which are 

essential for its ER-associated degradation and the constituents involved.  The following is an 

introduction containing the current knowledge of Cd
II
 metabolism in eukaryotes, P-type ATPase 

ion transporters, and ER-function and ER-associated degradation. 

 

 

1.1 Cadmium 

This section is modified from the following chapter: 

Cadmium Transport in Eukaryotes. Encyclopedia of Inorganic and Bioinorganic Chemistry. 1–12. 2013. 

Smith, N., Wei, W. and Lee, J. 

1.1.1 Properties  

First identified as an element in 1817, Cd
II
 has garnered significant attention because of 

several cases of serious human diseases associated with Cd exposure and its high toxicity. Cd is a 

relatively abundant mineral normally present in the earth’s crust. Cd
II
 has no physiological or 

biological role save in one organism, Thalassiosira weissflogii where Cd can replace Zn in 

carbonic anhydrase II under times of Zn deficiency [2].    The chemical similarities of Cd
II
 to 

several nutritional divalent metals such as Zn allow it to enter the cells and disrupt normal 

biological processes that rely on nutritional metals [3].  
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It is estimated that about 25,000 to 30,000 tons of Cd is released into the environment 

each year (1), approximately one-half is liberated from the weathering of rocks, and the other half 

is produced by industrial activities. Mining and smelting for copper (Cu) and zinc (Zn) produces 

Cd as a by-product. Human exposure via occupations and contaminated foods leads to serious 

damage to multiple organs, such as lung, kidney, bone, and testis depending on the route, dose, 

and duration of exposure. Gastrointestinal and respiratory symptoms were observed about 150 

years ago among persons using Cd powder as a polishing agent [4]. Since then, diverse 

experimental studies on Cd toxicity using animal models and occasional cases of human 

intoxication were reported, which was culminated by the Itai-Itai disease in Japan in 1957. 

Consumption of rice harvested from paddy rice plants that were cultivated using Cd-contaminated 

water resulted in renal osteomalacia. More recent epidemiological studies have shown that Cd
II
 

manifests adverse effects at low exposure levels on sensitive population groups, such as persons 

with diabetes [5]. The adverse effects of Cd on biological systems rely on diverse mechanisms 

that remain to be further elucidated.  Fungi and plants can be exposed to high levels of Cd
II
 at the 

direct interface between organisms and growth environment.  

 

1.1.2 Acquisition 

Organisms are unlikely to have evolved mechanisms for active uptake of Cd
II
 as it does 

not have any functional role.  Progress in mechanistic understanding of metal metabolism has 

shown that the pathways involved in acquisition of nutritional metals are the gateways for Cd
II
 

because of broad substrate specificity and/or similar chemical characteristics of Cd
II
 with those 

metals, especially Zn
II
 and Ca

II
.  The Nramp family of transporters is widely distributed from 

bacteria to humans with some distinct tissue and organelle expression patterns [6]. In humans, 

Nramp2 (DMT1, DCT1) is responsible for the majority of non-heme iron uptake from the diet. 

DMT1 is located on the apical side of mature villi in enterocytes and the cell surface as well as 

3



endosomal vesicles in peripheral organs and tissues suggesting tissue-specific distinct modes of 

action. DMT1 and other Nramp members transport not only Fe
II
 but also other nutritional and 

toxic metals such as Cd
II
, Ni

II
, Zn

II
, Co

II
, Mo

II
, and Hg

II 
[7]. 

Smf1 and Smf2 are Nramp family metal transporters in yeast S. cerevisiae that display 

the same broad substrate specificity as other transporters in this family [8].  While these 

transporters are considered  Mn
II
 importers, their expression levels are well correlated to Cd

II
 

toxicity. This clearly supports the functional roles for Smf1 and Smf2 in Cd
II
 uptake. The third 

Nramp transporter in yeast, Smf3, localizes at the vacuolar membrane to mobilize vacuole-stored 

iron; however, its metal selectivity has not been defined.    

Many different Zn transporters have been implicated in Cd
II
 uptake [6, 9]. In yeast S. 

cerevisiae, Zrt1 and Zrt2 are two major transporters responsible for high- and low-affinity Zn
II
 

uptake, respectively. They are closely related (about 44% amino acid sequence identity) 

transporters that belong to the ZRT (zinc-regulated transporter) and IRT (iron-regulated 

transporter)-related Protein (ZIP) family of transporters. Cd
II
 transport and toxicity assays in the 

cells in which Zn transporters are deleted or over-expressed demonstrated the roles for these Zn
II
 

transporters in Cd
II
 uptake. Zn

II
 as well as Cd

II
 and Co

II 
(but less effectively than Zn

II
) trigger 

post-translational control of Zrt1 through ubiquitinylation followed by degradation in the vacuole 

[10].  

The similar ionic radius between Cd
II 

and Ca
II 

(0.95 Å vs1.00 Å) allows certain types of 

Ca
II
 channels/transporters to become the entry routes for Cd

II
 into cells [6]. In yeast S. cerevisiae 

Mid1, which functions as a stretch-activated Ca
II
-permeable cation channel in response to 

pheromone, has been determined to have a Cd
II 

uptake capability [11]. Contribution of voltage-

dependent Ca
II
 channels (VDCC) in Cd toxicity in mammals is supported by down regulation of 

the channels in Cd-resistant cell lines that were selected from Cd-sensitive cells. Cd
II
 was shown 
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to inhibit VDCC, which may be a mechanism for Cd
II
-induced perturbation of Ca

II 
metabolism 

[12].  

1.1.3 Mechanism of toxicity 

High affinity for Cd to thiol groups is believed to be the primary determinant of its 

biological effects. Direct binding and indirect effects (e.g., oxidative modification) of Cd on Cys 

residues leads to impairment of various biochemical pathways such as redox homeostasis, DNA 

repair, signal transduction, and metabolism [3]. Chemical mimicry of nutritional divalent metals 

leads to competition of Cd
II
 for these ions’ metabolic pathways and binding sites. For example 

Zn
II
 and Cd

II
 are located in the same column of the periodic table and exist as divalent cations in 

biological environments. In vitro assays have shown that Cd
II
 can functionally replace Zn

II
 in 

several enzymes; Cd
II
 competes with Zn

II
 for transcription factors Sp1 and p53, which control the 

expression of multiple genes that are critical for cell growth and death [13, 14].  Cd
II
 displays 

much higher affinity to thiol groups relative to Zn
II
 and other nutritional metal ions. 

Characterization of Cd
II
-induced disorders has identified the molecules, pathways, and organs 

that are particularly sensitive to Cd toxicity [3].  

  

1.1.4 Oxidative stress 

Cd
II
 is a redox-inactive divalent metal; however, several lines of evidence indicate that 

Cd
II
 can exhibit its toxic effect through the production of reactive oxygen species (ROS) [15]. 

The presence of a thiol group on the cysteine residue of glutathione (GSH) and its high 

concentration (1~10 mM) in the cells allows for its role as a redox buffer. High levels of GSH in 

comparison to oxidized GSSG are vital for redox homeostasis.  Cd
II
 disrupts the GSH/GSSG ratio 

by the formation of bis(glutathionato)cadmium (Cd-SG2) complexes which leads to reduced GSH 

levels and impairment of GSH-dependent enzymes such as glutathione peroxidases, glutathione 
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S-transferases, and glutaredoxins. Moreover, likely through its binding to active site Cys residues, 

Cd
II 

inhibits glutathione reductase which reduces GSSG to replenish the GSH pool and 

thioredoxin that plays a role to reduction of oxidized cysteine residues. Consequently, 

inactivation of these critical anti-oxidant molecules and enzymes by Cd
II
 induces oxidative stress. 

ROS-induced damage of cellular macromolecules and perturbation of cell signaling are well-

characterized causal factors of diverse disorders. This argument is also supported by high Cd
II
 

sensitivity of cells that possess compromised anti-oxidant systems [3, 15].  

1.1.5 Perturbation of the endoplasmic reticulum  

Cd
II
 causes endoplasmic reticulum (ER) stress, however; the underlying mechanisms 

remain to be further defined. ER stress that is associated with mis-folding or assembly problems 

of secretory proteins activates ER stress response regulators to induce the unfolded protein 

response (UPR). It was shown that Cd
II
 activates UPR in yeast S. cerevisiae, and cells lacking 

Hac1 UPR regulator are hypersensitive to Cd
II
 but not to arsenite and mercury suggesting the ER 

as a sensitive target of Cd
II 

[16]. This ER stress and UPR in response to  Cd
II
 is conserved in 

mammalian cells [17]. In addition to mRNA splicing of XBP1, the functional counterpart of yeast 

Hac1, two other known branches of mammalian UPR, PERK, and ATF6 are both activated by 

Cd
II 

stress [18]. The UPR plays a critical role for overcoming ER stress by inhibiting new protein 

synthesis and controlling expression of genes encoding molecular factors for protein refolding 

and degradation. However, ER stress and UPR also induce expression of apoptotic factors and 

activate signaling pathways involved in cell death. This might explain Cd
II
-triggered tissue injury 

as a consequence of ER stress. Despite these observations supporting Cd
II
-induced ER stress, the 

causing factor(s) mediating Cd
II
 effects, such as oxidative stress, selective Cd

II
 transport into the 

ER, and perturbation of Ca
II
 homeostasis are not well defined. It is intriguing despite Cd

II
’s 

affinity for thiols, no obvious problem in disulfide bond formation in the ER was observed. 

Hence, oxidative stress might not be a primary factor of ER stress under Cd
II
 exposure conditions. 
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Disruption of the Ca
II
 homeostasis in the ER might change Ca

II
-dependent processes to induce 

protein misfolding [19]. Alternately, either Ca
II
 release from the ER as a consequence of ER 

stress could mediate Cd
II 

toxicity or up regulation of Ca
II
 uptake pathways in response to ER 

stress might serve as a self-poisoning mechanism under Cd
II
-induced ER stress. Disruption of Ca

II
 

homeostasis in the ER leads to cell death by disruption of the mitochondria through 

depolarization, inhibition of ATP generation, and release of apoptosis inducing factor (AIF) and 

endonuclease G [19]. Cd-induced apoptosis is diminished by mitochondrial Ca
II 

uniporter 

inhibitors suggesting the roles for Ca
II
 in conveying Cd

II
-triggered cell death. Hence, the 

mitochondria appears to be another major target organelle of Cd
II
 toxicity [20]. 

1.1.6 Detoxification 

Once Cd
II
 enters cells, it interacts with various cellular molecules primarily due to its 

high affinity for thiol groups. To defend against these toxic effects, cells should have Cd 

detoxification mechanisms, such as chelation, conversion to less toxic forms, sequestration at 

subcellular compartments, or efflux. Heavy metal-binding peptides including metallothioneins 

(MTs) and glutathione (GSH) (γ-Glu-Cys-Gly) are the first defense players against Cd toxicity.  

Metallothioneins (MTs) are small (5~10 kD in most cases) Cys-rich (e.g., 20 Cys in mammalian 

MTs) peptides which play vital roles for detoxification of heavy metals through metal-thiolate 

cluster formation [21, 22]. They have been found throughout the animal and plant kingdoms, 

fungi, and some prokaryotes. The N- and C-terminal metal binding domains coordinate multiple 

metals (7 Cd
II
 ions in mammalian MTs, but 2-12 depending on the metal, MTs, and experimental 

conditions).  Yeast S. cerevisiae genome carries two MTs, Cup1 (61 aa) or Crs5 (69 aa).  Excess 

copper induces expression of Cup1 via transcription regulator Ace1 [23]. Although Cd
II
 and Zn

II
 

do not induce Cup1 expression, Cup1 is able to bind to Cd
II
 as well and confers Cd

II
 resistance.  

Crs5-mediated copper resistance is evident only when Cup1 is not present indicating it may 
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function as a backup of Cup1 and/or possess distinct role(s). Consistently, basal expression of 

Crs5 is relatively high and induction by copper is moderate relative to Cup1 [24]. 

Glutathione (GSH) is an abundant (1~10 mM in most cell types) tripeptide composed of 

Glu, Cys, and Gly. It has been identified in eukaryotes, Gram-negative bacteria, and a few Gram-

positive bacteria where it serves as a major redox buffer. Various cellular processes, including 

redox homeostasis, storage and transport of Cys, maintenance of structure and function of 

proteins, metabolism of xenobiotics and heavy metals, and enzyme reactions rely on GSH [21]. 

The thiol group (SH) of cysteine is primarily responsible for the biological activities of GSH 

through its redox activities and disulfide bond formation. GSH is essential for many organisms as 

indicated by lethality upon deletion of GSH synthesis enzymes.  

GSH can form complexes with many heavy metal ions including Cd
II
. It occurs non-

enzymatically but an enzymatic reaction for this complex formation has been proposed as well.  It 

was shown in S. cerevisiae, the bis(glutathionato)cadmium (Cd-SG2) complex is a major species, 

which can be sequestered into the vacuole and may be exported out of the cells. GSH in the 

vacuole and extracellular milieu are recycled for GSH synthesis after degradation by γ-glutamyl-

transpeptidase to Glu and Cys-Gly, which is further cleaved by dipeptidase. Cytoplasmic GSH, 

also cleaved by the Dug peptidase complex, is slowed down by Cd. It is interesting to note a 

report indicating that elevated GSH levels confers Cd resistance in mammalian cells by down 

regulation of ZIP8 Cd importer expression through the suppression of Sp1, a transcription factor 

for ZIP8 [25]. This illustrates a new mode of action of GSH in conferring Cd resistance.  

Vacuolar sequestration of Cd that forms complexes with GSH via a transporter-mediated 

mechanism has been characterized in fungi. ATP-binding cassette (ABC) transporters (e.g., Ycf1 

in S. cerevisiae) are known to be responsible for such transport activities. Despite conserved 

structural similarities in mammalian ABC (MRP) transporters (e.g., 12 ABCC transporters in 
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human genome) with those of yeast and plants, their roles in heavy metal metabolism remain to 

be ascertained [26, 27]. 

Of the two P1B-Type ATPases present in the yeast genome, (Ccc2 and Pca1), Cu
I
 

transport by Ccc2 to the secretory pathway has been confirmed in yeast S. cerevisiae while the 

function of Pca1 has been more obscure [28]. Recent studies clearly demonstrated that by 

mediating Cd extrusion Pca1 plays a major role in Cd defense in yeast S. cerevisiae [29, 30]. 

Intriguingly, Pca1 contains a G970R loss-of-function mutation in all examined yeast S. cerevisiae 

lab strains. Natural yeast strains express functional Pca1, which is a primary factor conferring 

higher Cd resistance in the strains relative to laboratory strains. Pca1 transcription is constitutive 

and steady state Pca1 protein levels are extremely low.  However, Cd in the culture media rapidly 

induces Pca1 protein expression by inhibiting Pca1 turnover through a unique and interesting 

mechanism. This mode of Pca1 expression control appears to be important not only for rapid 

response to Cd toxicity but also for activation of Pca1 specifically by Cd
II
 but not by Zn

II
 or other 

nutritional divalent metals. Constitutive expression of Pca1 would lead to a loss of nutritional 

metals as a consequence of the broad metal specificity of Pca1 like other members in this family 

of transporters [29, 30]. Figure 1 represents the current understanding of Cd
II
 metabolism in S. 

cerevisiae and mammals. 
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Figure 1. Cellular factors involved in cadmium uptake, chelation, sequestration, export, and transcription responses. 

Divalent metal ion transporters, calcium channels, cation channels/transporters, ATP-binding cassette transporters, and 

P1B-type ATPases are responsible for cadmium translocation across the membrane. Glutathione (GSH) and 

metallothionein (MT) form complexes with cadmium, which chelates cadmium and provides substrates of some 

transporters. Cd-SG2 indicates the bis(glutathionato)cadmium complex. 
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1.2 P-type ATPases 

P-Type ATPases are a family of membrane proteins which utilize ATP hydrolysis to 

actively transport ions and lipids across membranes [31, 32]. This family is large and 

ubiquitously expressed.  P-type ATPases  are present in almost all organisms from bacteria to 

humans although a few parasitic bacteria appear to have no P-type ATPases [33].  They also have 

a wide range of function including establishing and maintaining electrochemical gradients, 

muscle contraction, cellular signaling, delivery of cofactors to specific cellular compartments, and 

removal of toxic heavy metals through extrusion from the cell [29, 31, 32, 34].  The P-type 

ATPase family is divided into five branches (I-V) where each branch can contain several 

subgroups. For example there are up to seven subfamilies for the P1b-type ATPases [35].   Type I 

P-type ATPases are ion pumps which can be broken into two sub classes P1A- and P1b-Type.  1A 

is a relatively small group of bacterial ion pumps.  Unlike most P-type ATPases which transport 

cations such as H
I
, Na

I
, K

I
, Mg

II
, and Ca

2+
,  P1B-Type is a much larger group ranging from 

bacteria to humans, and they are involved in the transport of transition metal ions such as Cu
I
, 

Cu
II
, Ag

I
, Pb

II
, Zn

II
, and Cd

II 
[31].  Type II and III are involved in generating and maintaining 

membrane potential. IV and V are closely related to Type-I; however, IV is a class of transporter 

known as a “flipase” involved in lipid transport and have only been found in eukaryotes [31, 36]. 

Type-V is often referred to as the orphan transproters and no specific substrate has been identified 

for this class of transporters [32, 37].   

The field of study regarding P1B-Type ATPases has been well established due to the 

discovery that the mutations in two Cu transporting P1B-type ATPases, ATP7a (MNK) and 

ATP7b (WND), are responsible for Menke’s and Wilson’s disease [38-40].  These proteins 

function in the secretion and excretion of Cu in humans. The yeast S. cerevisiae Ccc2 is a close 

homolog of these proteins and functions in Cu
I
 delivery to the secretory pathway [41, 42]. Pca1 is 

also a member of the P1B-Type ATPase family and provides Cd
II
 resistance through excretion of 
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the toxic heavy metal [29]. Recently, the crystal structure of a homolog from Legionella 

pneumophila was solved opening new doors of study for determination of mutational changes, 

structure changes during the catalytic cycle, and domain function determination [43].   

1.2.1 Mechanism of transport 

The mechanism of ion transport for P-Type ATPases follows the Post-Albers cycle which 

was established using Na
I
 and K

I
 as the substrates being transported [44]. The metal ion binds to 

the E1-form of the ATPase at the cytoplasmic side of the transporter which triggers 

phosphorylation by ATP forming the E1-P state. This is then converted to the E2-P form which 

cannot phosphorylate ADP and subsequently leads to a reduced affinity for the metal and 

releasing of the metal to the other side of the membrane.  The release of Pi allows for a reset of 

the protein to the E2 state so it can restart the cycle (Figure2) [31, 44]. 

 

 

 

 

 

 

 

Figure 2. Mechanism of P-type ATPase metal transport.  (i) Metal (M) and ATP bind to the E2 state of the protein followed by release of ADP 

to from the E1-P state (ii).  The metal’s affinity for the protein lessens and is released to form the E2-Pi state (iii).  (iv) Pi is released to allow 

for the cycle to start over. 
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1.2.2 Structure 

P-1B-type ATPases are comprised of three primary cytoplasmic domains essential for 

function, the N (nucleotide binding), P (phosphorylation), and A (actuator) domains [32].  P1B-

type ATPases differ from other P-type ATPases because they contain eight transmembrane (TM) 

domains instead of the standard ten. They contain an extra two TM helices at the N-terminal end 

of the protein but have lost the final four TM helices present in other family members [31].  A 

conserved CPX/SPC motif present in the 6
th
 TM helix serves as a putative metal transporting site 

although it is evident residues in the 7
th
 and 8

th
 TM domains are important for transport and ion 

selectivity as well [43, 45].  P1B-type ATPases also contain conserved N-terminal metal binding 

domains (MBD) in which the number of repeats can vary [46].  Characterization of these domains 

has been attempted for ATP7b and ATP7a as well as their yeast homolog CCC2 [47, 48].  The 

consensus GMTCXXCXXXIE where the CxxC forms the metal binding pocket was determined 

in ATP7a and ATP7b each of which have six of these N-terminal MBDs while Ccc2 contains two 

[48].  Cu
I
 chaperones ATOX1 in humans and Atx1 in yeast have been shown to deliver Cu

I
 to 

these MBDs [49, 50].  It has been hypothesized that these domains play a role in delivery of Cu
I
 

to the transportation channel or a role in regulating the ATPase.  It was found through truncation 

and chimera ATX1-CCC2MBD creation the MBDs appear to convey Cu to another Cu binding 

site in CCC2 indicating a functional role in activity [47]. 

Regulation of P-type ATPases is important for maintaining proper ion homeostasis within 

cells.  This can occur at both the transcription and post-translational level.  AtHMA4, a plant P1B-

type ATPase, is transcriptionally regulated in response to metal accumulation [51, 52].  ATP7a 

and ATP7b are regulated in response to Cu
I
 by their sub-cellular localization.  Under times of 

high, Cu, ATP7a mobilizes from the golgi to the plasma membrane to export Cu and prevent 

toxicity [53, 54].  ATP7b functions under normal Cu levels as a transporter of Cu into the 

secretory pathway; however, under high Cu conditions it mobilizes to the membrane of liver cells 
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for excretion of Cu into the bile to prevent the toxic accumulation of Cu [54]. Pca1 is also 

regulated at the post translational level by its substrates levels.  In the absence of Cd, Pca1 is 

rapidly turned over; however in the presence of Cd
II
, Pca1 is rapidly stabilized [30].  Thus, Pca1 

expression and stability is dependent on its substrate.  

1.3 Protein synthesis and the secretory pathway 

Protein members of the secretory pathway are synthesized by the ribosome and inserted 

into the endoplasmic reticulum (ER) lumen or membrane through the sec61 translocon [55-57]. 

This allows for maturation and folding, an essential step for the formation of functional proteins.  

The oxidative environment of the ER allows for di-sulfide bond formation through the actions of 

protein disulfide isomerases which can both form and break disulfide bonds [58].  Other 

modifications, such as N-linked glycosylation also take place in the lumen.  Luminal chaperone-

complexes, such as the Hsp70 Kar2 (Bip in mammalian cells) which includes the Hsp40/DnaJ-

like proteins Jem1 and Scj1, are essential for holding and folding mis/unfolded proteins. These 

complexes also function in the degradation of the malformed peptides [59, 60].    Following 

successful maturation, proteins are then moved through the secretory pathway to reach their 

location of function.   Transport of these cargo proteins through the secretory pathway requires 

vesicle formation. Budding and release from the ER, these vesicles are formed by the coating of a 

region of the ER membrane with Coat protein complex II (COPII).  These COPII vesicles move 

to the golgi where they fuse with the golgi, and the COPII proteins are removed. Retro-grade 

transport is carried out in a similar fashion with COPI proteins forming the vesicle at the Golgi 

for returning escaped luminal proteins or proteins which escaped degradation to the ER [61]. 

1.3.1 ER quality control/UPR 

In the event of failed protein folding/refolding at the ER, the malformed protein must be 

removed to prevent the toxic accumulation and aggregation of these proteins through activation 
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of the unfolded protein response (UPR) a conserved pathway from yeast to humans. In yeast, 

UPR, is triggered by the homodimerization of IRE1 an ER resident transmembrane protein 

kinase/endonuclease which splices the mRNA of Hac1 (Xbp1 in mammals) leading to its 

translation as a transcription factor [62, 63].  The mammalian pathway contains two additional 

branches in which Atf6 and PERK in addition to Ire1 function at the ER to activate a response 

[64]. In yeast Hac1 mobilizes to the nucleus and binds to DNA by recognizing the unfolded 

protein response element (UPRE) and up regulates several genes coding for proteins involved in 

the degradation of misfolded proteins as well as several chaperone-like proteins which maintain 

solubility and enhance secretion of functional proteins [65].  At the same time, transcription of 

nonessential secretory proteins is suppressed to limit the flux through the secretory pathway.   

Many of the targets are members of the ER-associated degradation (ERAD) system [66].  

Through this system misfolded ERAD substrates are first recognized, ubiquitinylated, and then 

degraded by the cytosolic proteasome.  The malfunctioning of ERAD leads to the chronic 

accumulation of malformed proteins, and this continual induction of the unfolded protein 

response will result in cell death.  The toxic accumulation and aggregation of misfolded proteins 

has been linked several degenerative disorders such as amyotrophic lateral sclerosis, Alzheimers, 

and Parkinson’s disease [67-70].   

1.3.2 ER-Associated degradation system of Saccharomyces cerevisiae 

The ERAD system contains three major pathways in Saccharomyces cerevisiae 

commonly known as ERAD-L, ERAD-M, and ERAD-C [71].  These refer to the location of the 

misfolded region of the substrate: luminal, membrane, and cytosolic respectively.  Proteins 

containing misfolded regions in the lumen and cytosol are ubiquitinylated via the E3 ubiquitin 

ligase Hrd1.  Membrane proteins containing a cytosolic misfolded region are ubiquitinylated by 

the Doa10 E3 ligase.  These three pathways are conserved in mammalian cells; however, 

mammalian cells contain several characterized E3 ubiquitin ligases which function in ERAD.  
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GP78, an orthologue of yeast Hrd1, hHrd1 an N-terminal homologue of Hrd1, and Teb4, a Doa10 

homologue, have been identified in the ER membrane to carry out the ubiquitin ligase activity in 

mammalian ERAD.  Cytoplasmic E3s such as CHIP, SCF
FBX2

, and Parkin have also been 

identified in mammals as potential ERAD ubiquitin ligases [72-74]. Many additional factors are 

involved to deliver substrates to the ubiquitin ligase complex and following ubiquitinylation, 

extraction, and degradation at the proteasome (See table 1 for list of ERAD components and 

function and Figure 3 for a schematic of ERAD in S. cerevisiae). 

1.3.3 Recognition of ERAD-L and ERAD-M substrates 

  The Hsp70, Kar2 (Bip in mammalian cells), has been implicated in the recognition of 

ERAD substrates containing a luminal misfolded region [75].  Kar2 is not alone in this process as 

several other proteins have also been connected to this process.  Scj1 and Jem1 are two 

DnaJ/Hsp40 proteins which interact with Kar2 and help with recognition.  Kar2 in conjunction 

with Scj1 and Jem1 recognize misfolded proteins by binding to exposed hydrophobic regions to 

maintain their solubility [60].  In the event of failure to re-fold, the protein is escorted to ERAD 

machinery in a Kar2 dependent manner.  Other proteins involved in this process include the lectin 

yos9 which recognizes misfolded N-linked glycosylated proteins and helps with delivery of these 

to Hrd1 [76, 77].  Htm1/Mnl1, in conjunction with PDI1 again assists in the destruction of 

glycoproteins through modification of the N-linked glycan to Man7GlcNac2 (Mannose7, N-

acetylGlucosamine2), which is a signal for destruction on the target substrate [78].   

1.3.4 Recognition of ERAD-C substrates 

ERAD substrates containing a cytoplasmic misfolded region appear to be recognized as 

degradation substrates through the action of resident cytoplasmic proteins. The cytoplasmic 

Hsp70 chaperones have long been considered as protein complexes which function to refold 

un/misfolded proteins by binding to exposed hydrophobic or oily patches [79]. Hsp70s contain 
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two functional domains: a nucleotide binding domain in which ATP binds and is hydrolyzed to 

ADP and a substrate binding domain [80, 81].  Hsp70s require a co-chaperone, Hsp40, for proper 

holdase and refolding function [82].  Hsp70 substrate binding is accomplished by binding to 

exposed hydrophobic regions on proteins. Release of the substrate requires nucleotide exchange 

factor activity to form an ATP-Hsp70-Hsp40 complex [79, 83]. Rebinding of a polypeptide 

stimulates hydrolysis of ATP. A nucleotide exchange factor allows for the switching of this 

complex from the ADP-ATP bound state. Yeast contains three types of nucleotide exchange 

factors Sse1/2, (Hsp110s), Fes1 (HspBP1) and Snl1 (Bag-1, Bag protein homologues) [84, 85]. 

Recently however, it been determined that Hsp70s chaperones do not only function in the 

refolding of misfolded proteins but also in escorting misfolded proteins to degradation [84, 86, 

87].  These protein complexes function in a similar manner as the luminal Hsp70 Kar2 as that 

they require both Hsp40 co-chaperone and nucleotide exchange factors.   

Ssa1 and Ssa2 are two Hsp70s in yeast that have been implicated in the degradation of 

the ERAD-C substrate Ste6*, a mutated form of the alpha factor transporter Ste6.  Their genetic 

mutation leading to a temperature dependent loss of function resulted in increased stability of 

Ste6*[87].  This role for Ssa1 and Ssa2 in degradation is not limited to ERAD.  Ssa Hsp70s have 

also been identified as factors in cytoplasmic ubiquitin proteasome substrates specifically with 

Fes1 functioning as a nucleotide exchange factor.  A proteasome substrate dihydrofolate 

reductase (DHFR) mutant requires Hsp70, ssa1 and Hsp40, ydj1 as well as a nucleotide exchange 

factor, Fes1, for its efficient degradation [84].  The mechanism by which proteins are selected for 

degradation over holding/refolding is still unclear.  It does appear the nucleotide binding domain 

is very important for this activity. Ssa1 and Ssa2 were shown to have distinct activities regarding 

the prion propagation of [URE3] and the degradation through the vacuole of FBPase the 

gluconeogenic enzyme. Ssa1 and Ssa2 differ in only four residues. By mutating only a single 

residue G83 in the nucleotide binding domain of Ssa2 to the Ala contained in Ssa1, [URE3] 
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propagation was reduced in a similar manner to Ssa1 wild type expression indicating the 

importance of this domain in determining the function of stability versus degradation [88].  The 

interacting factors may also play an important role as the nucleotide exchange factor, Sse1, is 

indicated in the regulated degradation of ER substrates, whereas Fes1 has been linked to the 

degradation of cytoplasmic substrates [84, 85].  The Hsp40 bound to Ssa1 also appears to be 

important as Ydj1 is indicted in the degradation of Ste6* through ERAD, but the degradation of 

the short-lived GFP was shown to require Sis1 (HSP40), whereas Ydj1 expression led to its 

stabilization [89, 90].   It is important to note these mechanisms of chaperone assisted degradation 

are conserved in mammals. The NEF HSP110 has been shown to increase degradation of the 

pathogenic mutant form, cystic fibrosis transmembrane conductance regulator, CFTR Δ508 [91]. 

Chaperone assisted degradation is also not limited to the ubiquitin proteasome pathway. 

Chaperone mediated autophagy is a developing field in which it has been determined the 

degradation of specific substrates through autophagy often times require the binding of a 

chaperone for direction to the autophagosome [92]. 

1.3.5 Ubiquitinylation of misfolded proteins 

After recognition, ERAD substrates are directed to ubiquitinylation machinery where 

ubiquitin (ub) is covalently conjugated to the target substrate through the є-amino group of lysine 

residues.  This process requires three specific enzymes referred to as E1, E2, and E3.  E1, or 

ubiquitin activating enzyme, generates a Ub thioester bond between itself and Ub in an ATP 

dependent manner.  This Ub-E1 complex then transfers the Ub to the E2, ubiquitin conjugating 

enzyme, again through a thioester bond.  Here with the help of an E3 ubiquitin ligase the Ub 

group is transferred to the substrate.  This transfer is either direct from the E2 where the E3 acts 

as a facilitator as is the case with U-box and RING domain E3 active site containing proteins, or 

Ub is first transferred to the E3 from the E2 where it is then attached to the substrate as with 

HECT domain containing E3s [71].  Hrd1 and Doa10, the E3s of ERAD in S. cerevisiae are both 
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RING domain proteins facilitating Ub of substrates through the E2 conjugating enzymes Ubc7, 

Ubc6, and Ubc1 [93-95].  Ubc6 is an integral membrane protein of the ER but Ubc7 requires an 

adaptor protein, Cue1, to maintain ER association [96].  Doa10 utilizes both Ubc6 and Ubc7 

whereas Hrd1 requires Ubc7 for function and at least in the case of CPY*, carboxy-peptidase 

yscY-S255R, a mutated form of the vacuolar carboxypeptidase Y.  Ubc6 and 7 are conserved in 

higher organisms, UBC6e and UBCH7 in mammals. Ubc6e like its yeast counterpart is tethered 

to the ER membrane, whereas UBCH7 is recruited to the membrane by a Cue like domain present 

on the E3 ligase GP78 [60, 71]. 
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1.3.6 Retro translocation, extraction and degradation of misfolded proteins 

ERAD substrates are members of the secretory pathway and reside in the lumen or ER 

membrane and must eventually reach the proteasome for degradation. Several candidates have 

been proposed for the retrotranslocon, or channel which allows for movement of proteins from 

the ER to the cytosol, without a specific protein exclusively performing this role. Sec61 and 

derlin1 as well as the E3 ubiquitin ligases themselves have been proposed as possible 

retrotranslocation channels [97, 98].  There are several lines of evidence indicating Sec61 may 

Figure 3. Working model of ERAD in yeast S. cerevisiae ERAD-M and L substrates (red star indicates location of 

mutation/misfolding) are ubiquitnated through the hrd1 E3 ubiquitin ligase complex.  Lumenal factors involved in recognition 

and delivery of substrates to Hrd1 include, Yos9, Kar2-Jem1-Scj1 complex, Htm1/Mnl1, and PDI.  Der1, Usa1 and Hrd3 are 

involved in recognition of substrates as well.  Cue1, C, functions as a dock for the E2 ubiquitin conjugating enzyme Ubc7, 7, just 

as Ubx2 functions as the platform for Cdc48-npl4-ufd1 complex membrane association.  The ERAD-C pathway substrates are 

recognized by cytoplasmic chaperones; Ssa1-Ydj1-Hlj1, and delivered to the Doa10 complex for ubiquitnation. Ubc6, 6, is also 

involved in this pathway and functions as an E2 conjugating enzyme.  Cytoplasmic components include poly-ubiquintation 

enzymes such as Ufd2 and deubiquitnation enzymes, Otu1.  The adaptor proteins Rad23, Dsk2, and Png1 have been found to 

help in degradation of ERAD substrates as well.  The proteasome degrades the ubiquitinated substrates.  This figure is adapted 

from [1].  
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function not only as the translocon for insertion of secretory proteins into the ER following 

translation but also in the reverse for removal of proteins from the ER.  Mutation of Sec61 results 

in the stalled ERAD of substrates, delaying the export of CPY* from the lumen.  It was also 

found this does not work alone. Der1, Hrd1, and Kar2 were also indicated to work in conjunction 

with Sec61; however, a specific mechanism has not been determined [75, 99, 100].  This was also 

studied using the Deg1-Sec62 chimera, shows deg1 is a degradation signal that targets Matα2, a 

transcriptional repressor, for Doa10 dependent degradation.  Here Sec61 mutation led to 

stabilization of the protein for post-translational modification, but mutation of the channel itself 

had no effect on the degradation of the chimera [101]. 

The idea that E3s may function as the retrotranslocon is an appealing hypothesis as both 

of the E3 ubiquitin ligases contain several TM domains which do not appear to be necessary for 

ubiquitin ligase function, (six for Hrd1 and fourteen for Doa10). In vitro study of the integral 

membrane ERAD-M substrate HMG2p (HMG CoA reductase yeast homolog) degradation 

revealed the necessity of Hrd1 for dislocation from the membrane.  This dislocation from the 

membrane did not require Hrd1 transmembrane domain indicating it was not the translocon [102].  

This study also ruled out Sec61 and Der1 as being involved in this process.  This study 

emphasized the importance of the Cdc48 complex, homolog to the mammalian p97. Cdc48 is an 

AAA-ATPase and has been determined to work in dislocation of proteins from and through the 

ER membrane for ERAD.  Cdc48 forms a complex with Npl4 and Ufd1 proteins which have been 

determined help bind poly-ubiquitinylated proteins. These proteins may be involved in their 

recognition and are conserved in mammalian cells.  Cdc48 is recruited to the ER membrane by 

Ubx2 allowing for close association with ERAD machinery and substrates [103].  It has also been 

shown to interact with ERAD components, Hrd1 and Der1 in yeast, and in mammalian cells, 

GP78 [104, 105].  The Cdc48-ufd1-Npl4 complex contains ubiquitin binding domains which 

function to bind to ubiquitinylated substrates but are also able to bind non-ubiquitinylated 
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substrates [106].  Once bound to the substrate, it can function in an ATP-dependent manner to 

extract proteins from the membrane.  Mutation of Cdc48 prevents degradation of many ERAD 

substrates from all three pathways resulting in their inability to be removed from the ER lumen or 

membrane [71]. 

Aside from Ufd1 and Npl4, Cdc48 contains other interacting partners which have been 

implicated in the ERAD of some substrates.  Ufd2, an E4 ubiquitin ligase, binds to the Cdc48 

complex and functions to extend ubiquitin chains on degradation substrates [107].  Ufd2 binds to 

the C-terminal tail of Cdc48 and competes for binding with Ufd3, a protein involved in regulating 

ubiquitin and ubiquitin pools.  Ufd2 is conserved in humans (UFD2a, E4B); however unlike the 

yeast Ufd2, E4B binds to the N-terminus of p97 and conveys the same function [107].  

Ubiquitinylation by an E3 ligase is not always sufficient for efficient degradation. E3s add ~3 

ubiquitin groups to a given substrate further ubiquitinylation is carried out by E4s which function 

as chain extension enzymes.  The exact necessity for this is not known; however, it is certain that 

poly-ubiquitinylation is important for efficient degradation of substrates and has been 

hypothesized to function as a ratcheting mechanism allowing ubiquitin binding proteins to 

maintain interaction with a substrate during degradation.  There are several ubiquitin receptors on 

the 26S proteasome, specifically on the 19s regulatory particle, Rpn10, Rpn13, and ATPase5 

[71].  E4 ligases also exist on the proteasome itself. Hul5 is a proteasome resident protein which 

has been implicated in the ERAD of a synthetic ERAD-L substrate through its function in 

ubiquitin chain extension [108, 109].  Recently another cdc48 resident protein (VMS1) has been 

identified to function in degradation of Ub-proteasome substrates.  There is, however, conflicting 

data on whether it has a role in the degradation of ERAD substrates [110, 111].  

Cdc48 associates directly with the 19s regulatory particle of the 26s proteasome which is 

mediated by Rad23 and Dsk2, ubiquitin-like domain and ubiquitin associated domain containing 

proteins.  They bind poly-ubiquitinylated substrates and direct them to the proteasome for 
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degradation.  Rad23 has been shown to interact with both Ufd2 on Cdc48 and the proteasome, 

Rpn1, bridging the gap between the proteasome and Cdc48 and allowing for efficient degradation 

[71, 112]. Rad23 also interacts with Png1, a de-glycosylating enzyme, to degrade glycosylated 

ricin A chain [113].  A deglycosylation event may be necessary to allow the substrate to be fed 

into the proteasome for degradation and prevent any steric hindrance the glycosyl group may 

cause.    

During the course of degradation and following poly-ub, de-ub occurs prior to 

proteolysis.  This allows for the recycling of ubiquitin as well as the entrance of a substrate into 

the proteasomes catalytic core.  In mammals the de-ubiquitinylating enzyme for ERAD has been 

identified as ataxin-3, and its mutation slows the degradation of the ERAD substrate TCRα [114].  

In addition mutation of ataxin-3 also induces the UPR further supporting its role in ERAD.  De-

ubiquitinylation is also a means of controlling expression of proteins in the cell.  Usp25, a 

ubiquitin specific protease in mammalian cells, can extend the life of the ERAD substrate CD3δ, 

which is ubiquitinylated by Hrd1 for degradation.  Usp25 removes the ubiquitin from CD3δ 

thereby rescuing it from ERAD [115].   Despite the multitude of data regarding the extraction of 

proteins from and through the ER membrane during ERAD, retrotranslocation of substrates 

remains a hotly debated subject.  There are several data supported hypotheses which exist about 

the fate of ERAD polytopic substrates following ubiquitinylation.   First, the protein is fully 

extracted from the membrane through the action of the CDC48 complex and present in the 

cytoplasm as a full-length protein.  The substrate is then escorted to the proteasome for 

degradation (Figure 4) [1, 87]. Second, the protein is cleaved by the proteasome prior to 

extraction. Then the small pieces are extracted and taken to the proteasome for degradation. This 

is a possibility as it has been displayed that the proteasome has endoproteolytic activity and is not 

simply used for degradation of the whole protein [116].  Finally the proteasome itself is involved 

in the extraction of the substrate for degradation.  This is appealing as release of a hydrophobic 
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poly-topic protein into the hydrophilic environment of the cytoplasm could result in massive 

protein aggregation and would require many factors to maintain solubility.  Supporting this, the 

19s regulatory particle of the proteasome has been implicated in this process [117].  These 

hypotheses will be tested in Chapter two. 

1.3.7 Proteasome structure and degradation 

The 26s proteasome is a large multi-protein complex comprised of a catalytic core 20s 

and a 19s regulatory particle/cap. The 20s core can exist independently of the 19s and vice versa.  

The 20s core is comprised of twenty-eight subunits forming a cylinder containing four stacked 

rings of seven subunits each [118]. This ring structure is:
 
α1–7, β 1–7, β1–7, α1–7 in yeast where 

each subunit of each ring is different.   Only the α3 subunit is non-essential as it is replaced with 

the α4 under certain circumstances [119].  The α rings provide a docking location for the 19s 

regulatory particle, whereas the β rings form the active sites.  There are three different forms of 

active sites which differ in activity.  There is a chymotrypsin-like site in the β5 subunit as well as 

a trypsin-like domain contained in the β2. The β1 subunit houses a post-glutamyl peptide 

hydrolytic (PGPH) domain[120].  These differences allow for substrate specificity [121].  

The 19s regulatory particle is comprised of seventeen subunits which function in 

recognition, unfolding, and feeding of substrates to the 20s core.  There is also evidence that the 

19s regulatory particle plays a pivotal role in extraction of proteins from/through the membrane 

[60, 122, 123].  This is accomplished through the activity of six AAA-ATPases, Rpt1-6.  Other 

subunits of this structure are involved in binding ubiquitinylated substrates and de-

ubiquitinylating substrates to allow for degradation through the 20s activity [124].   
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Figure 4. Potential mechanism for polytopic protein dislocation from the ER and the role of the proteasome. (i) Direct 

feeding of the polytopic protein into the proteasome without dislocation from the ER.  (ii) The proteasome first cleaves 

cytoplasmic loops followed by direct feeding of the cleavage products into the proteasome for degradation. (iii) The 

protein substrate is first dislodged completely from the membrane followed by degradation in the cytoplasm by the 

proteasome. (iv) The cytoplasmic loops are first cleaved by the proteasome then the cleavage products are dislodged 

from the ER membrane and degraded in the cytoplasm.  This figure is adapted from [1]. 

 

1.3.8 The specific ER-associated degradation of characterized substrates: 

The ERAD of several substrates has been well characterized with the major factors 

involved being identified.  This is especially true for the ERAD-M substrate 3-hydroxy-3-

methylglutaryl coenzyme A (HMG CoA) reductase (HMG2 in yeast) and the ERAD-L substrate 

CPY*. Both are directed through Hrd1 for ubiquitinylation, although mammalian cells utilize 

gp78 and trc8 for degradation of HMG CoA reductase [125].The mammalian HMG CoA-
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reductase performs the rate-limiting step of cholesterol synthesis, and its degradation is regulated 

by sterol composition in the membrane.  When there is an abundance of sterols integrated into the 

membrane, HMG CoA reductase is targeted to GP78 for ubiquitinylation and degradation.  This 

occurs through interaction with insigs1 via its N-terminal domain [125].  The N-terminal 

transmembrane domain of HMG-CoA reductase functions as the required and sufficient domain 

for degradation [126].  This domain contains no catalytic activity, and when removed, the 

remaining catalytic domain remains functional [126, 127].  A sterol sensing domain within HMG 

CoA reductase recognizes the sterol composition of the membrane and leads to the binding of 

HMG CoA reductase to insigs-1 which interacts with GP78 allowing for GP78 dependent 

ubiquitinylation [125, 128].  Recently, it has been determined a similar mechanism, using either 

insigs-1 or insigs-2 functions to link HMG CoA reductase to the E3 Trc8 for ubiquitinylation and 

degradation [125]. This displays the role for multiple E3s in the degradation of a single 

substrate. Under times of low sterol levels, HMG CoA reductase is not degraded as it does not 

interact with insigs-1 or 2 and is able to perform its function in regulated cholesterol synthesis.  

The mechanism is very similar in yeast with HMG2 although the feedback is not through sterols, 

instead flux through the cholesterol synthesis pathway is key [129].  HMG2 recognizes farnesyl 

pyrophosphate (FPP) levels.  FPP is an intermediate in the cholesterol biosynthetic pathway.  

Under conditions in which FPP levels are elevated, HMG2 is degraded rapidly, and conversely 

under times of limited FPP, HMG2 is more stable [130]. Recent studies have claimed that 

geranylgeranyl pyrophosphate (GGPP) is the more likely signal [127, 129]. When exposed to FPP 

or GGPP, HMG2 undergoes structural changes which leads to its recognition as a misfolded 

protein [129]. Although FPP and GGPP are not sterols, the conserved sterol sensing domain still 

stimulates the ERAD of HMG2 in a GGPP dependent manner [129].   

CPY*, a mutated form of the vacuolar carboxy-peptidase Y containing a S255R, is turned 

over through the ERAD-L system.  After translation and transportation into the ER lumen, it is 
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folded and glycosylated. With the 255R mutation, it is unable to be secreted to the vacuole and is 

instead recognized as and ERAD substrate and directed to Hrd1 for ubiquitinylation and 

degradation.  CPY* has long been used as a model for the study of ERAD-L and determining the 

constituents involved.  The study of CPY* has led to the discovery of a carbohydrate-retention 

mechanism for preventing the secretion of CPY* to the vacuole [60].  The glycosylation of CPY* 

is necessary for this function.  The glycosylation modification is trimmed by glucosidases 1 and 2 

followed by Mns1 [131].  This functions as a timer for folding.  If folding is unsuccessful, CPY* 

is recognized by Htm1. As previously described, this binds Man8GlcNAc2 and leads to 

modification of this group to Man7GlcNac2, which acts as a signal for degradation [78].  The 

previously discussed Hsp70 chaperone complex, Kar2 Jem1p and Scj1p, function in the regulated 

degradation of CPY* providing the escort services required for direction to the membrane 

resident machinery [75].  PDI is also required for efficient degradation of CPY* as removal of 

PDI enzymatic activity resulted in stabilization and loss of export of CPY* to the cytosol [132].  

Other ERAD components identified in CPY* degradation include Der1 and Hrd3. These may 

play a role in recognition and retrotranslocation of CPY* for ubiquitinylation by the cytoplasmic 

Ring-domain of Hrd1.  The hypothesized retrotranslocon for CPY* is sec61 where both hrd3 and 

Der1 may play a role in this [60].  The AAA-ATPase Cdc48 also plays an important role in the 

extraction and removal of CPY* from the ER.  Study of the extraction of CPY* displayed Cdc48 

itself is sufficient for extraction of CPY* from the membrane, and the components of the 26s 

proteasome, specifically the AAA-ATPases on the 19s proteasome, are not required for this 

process [95].    

As for the determination of the factors involved in the degradation of ERAD-C 

substrates, Ste6* has been utilized.  Ste6* contains a Q1249X which causes a premature stop 

codon and change in N-glycosylation leading to its degradation through the ERAD-C pathway via 

Doa10 dependent ubiquitinylation [133, 134].  Ste6* is recognized by cytoplasmic Hsp70 
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chaperone complexes directing it to the Ubc7 Doa10 complex for ubiquitinylation.  Cdc48 

activity as well as Ufd2 poly-ubiquitinylation is required for the efficient degradation of the 

protein [87]. 

A more unique substrate is the cytosolic/nuclear protein Matα2 whose degradation is 

dependent on the ERAD-C machinery, Doa10, ubc7, and ubc6 despite not being an ER-resident 

protein.  Matα2 also contains a unique degron, (minimal region required for degradation) Deg1, a 

67 amino acid stretch which can be transplanted onto other proteins leading to their regulated 

degradation through the ERAD system [94]. Matα2 is a transcriptional repressor involved in 

governing yeast, Saccharomyces cerevisiae, cell type.  There are three cell types: two haploid 

forms referred to as, a and α , as well as a diploid a/α formed by the mating of the two haploid 

cells [135].   These types are all controlled via the MAT locus, which codes for specific genes 

determining cell type such as Matα2. It was determined Matα2 was short lived in α cells but quite 

stable in the diploid a/α cells [136].  Matα2 forms a heterodimer with Mata1 in diploid cells 

which is responsible for this stability.  A 19aa region was determined to be the essential 

determinant of the Deg1 degron, aa14-32.  This region forms an amphipathic helix necessary for 

the formation of a coiled-coil interaction between Matα2 and Mata1. In haploid cells, this 

interaction does not occur leading to rapid Matα2 turnover [135]. 

Pca1 is a cadmium-extruding P-type ATPase that plays a major role for cadmium 

detoxification in yeast Saccharomyces cerevisiae. PCA1 contains a cysteine rich N-terminal, 

cadmium responsive domain, which targets Pca1 for degradation in the absence of cadmium to 

the proteasome.  Cadmium rapidly up regulates PCA1 by preventing its ubiquitinylation and 

subsequent degradation by the proteasome [30].  This makes Pca1 unique in that its expression is 

dependent on its substrate directly leading to its stabilization through a post-translational 

mechanism.  Pca1 is not inherently misfolded, but it appears to be recognized as such. Removal 

of the N-terminal domain, aa1-392, results in complete stabilization of Pca1, and the specific 
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determinants of how this domain functions in Pca1 degradation will be discussed in later chapters 

[30].  As Pca1 is a P1b-type ATPase, multi-transmembrane domain containing protein member of 

the secretory pathway, degradation at the cytosolic proteasome requires a mechanism by which 

Pca1 is extracted from the membrane and degraded. The mechanism by which this occurs has not 

been established and will be discussed in the following chapters as well many of the players in 

Pca1 degradation (Figure 5).   
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Figure 5.  The following chapters will focus on the mechanism of Pca1 degradation (i).  The 

mechanism of polytopic membrane protein extraction to the proteasome (ii).  The mechanism of 

CdII sensing of Pca1 and the factors involved in recognition of Pca1 for degradation (iii). 
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Table 1 

Component  Location Yeast Mammals 

Recognition       

Hsp70 family ER  

 BiP (also known as 

Kar2) BIP (also known as GRP78) 

  Cytoplasm Ssa1 HSP70 and HSC70 

Hsp40 family ER  Scj1 and Jem1 ERDJ1−5 and p58IPK 

  Cytoplasm Ydj1 and Hlj1  

HDJ1−2, HSJ1 and Cys 

string protein 

Nucleotide-exchange 

factor ER  

Sil1 (also known as 

Sls1) and Lhs1 SIL1, GRP170 and BAP 

  Cytoplasm Snl1, Fes1 and Sse1 

BAG1−2, HSPBP1 and 

HSP110 

Small Hsps Cytoplasm Hsp26 and Hsp42 α-Crystallin 

Hsp90 family  ER Unknown GRP94 

  Cytoplasm Hsp82 and Hsc82 HSP90 

Protein disulphide 

isomerase  ER Pdi1 and Eps1 

PDI, ERP29, ERP57, ERP72 

and ERDJ5 

α-Mannosidase-like 

ER or ER 

membrane 

Htm1 (also known as 

Mnl1) EDEM1−3 

Mannose-6-phosphate 

receptor-like ER Yos9 OS9 and XTP3-B 

UBL domain containing ER membrane Usa1  HERP 

Sec61 complex ER membrane 

Sec61 complex and 

Ssh1 complex Sec61 complex 

Derlins ER membrane Dfm1 and Der1 Derlin-1−3 

Regulators?  ER membrane Usa1  HERP 

    Ubx2  unkown 

    Unknown  VIMP, BAP31 and SVIP 

E1 ubiquitin-activating 

enzyme  Cytoplasm Uba1 UBE1 

E2 ubiquitin-conjugating 

enzyme ER membrane Ubc6 UBC6e 

  

Membrane 

associated  Ubc7–Cue1 complex 

UBCH7 (also known as 

UBC7) 

  Cytoplasm Not established UBCH5 

E3 ubiquitin ligase ER membrane Hrd1–Hrd3 complex HRD1–SEL1L complex 

    Doa10 

TEB4 (also known as 

MARCH IV) 

    Unknown  

GP78 and RMA1 (also 

known as RNF5) 

  Cytoplasm  Rsp5 NEDD4−2 
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    Unknown 

Parkin, CHIP and SCFFBX2 

or SCF2FBS2 

E4 chain-extension 

enzyme Cytoplasm Ufd2 UFD2a 

Cdc48 complex 

Membrane 

associated Cdc48–Ufd1–Npl4 p97–UFD1–NPL4 

UBL and UBA domain 

containing Cytoplasm Rad23 and Dsk2 RAD23 

Deglycosylating enzyme 

membrane 

associated Png1  Peptide N-glycanase 

  or cytoplasm     

De-ubiquitylating enzyme Cytoplasm Unknown Ataxin-3 

Ubiquitin receptor 

19S 

proteasomal 

cap Rpn10  RPN10 (also known as S5a) 

    Rpn13  RPN13 

    Rpt5  

RPT5 (also known as TBP1 

or S6) 
Table 1. This table contains a list of identified ERAD components and their function in yeast and with their 

mammalian counterparts. This table is adapted from [71] with minor modifications. 

  

31



 

1.4 Works Cited 

1. Nakatsukasa, K. and J.L. Brodsky, The recognition and retrotranslocation of misfolded 

proteins from the endoplasmic reticulum. Traffic, 2008. 9(6): p. 861-70. 

2. Lane, T.W., et al., Biochemistry: a cadmium enzyme from a marine diatom. Nature, 2005. 

435(7038): p. 42. 

3. Moulis, J.M., Cellular mechanisms of cadmium toxicity related to the homeostasis of 

essential metals. Biometals, 2010. 23(5): p. 877-96. 

4. Jarup, L., et al., Health effects of cadmium exposure--a review of the literature and a risk 

estimate. Scand J Work Environ Health, 1998. 24 Suppl 1: p. 1-51. 

5. Cuypers, A., et al., Cadmium stress: an oxidative challenge. Biometals, 2010. 23(5): p. 

927-40. 

6. Reddi, A.R., L.T. Jensen, and V.C. Culotta, Manganese homeostasis in Saccharomyces 

cerevisiae. Chem Rev, 2009. 109(10): p. 4722-32. 

7. Gunshin, H., et al., Cloning and characterization of a mammalian proton-coupled metal-

ion transporter. Nature, 1997. 388(6641): p. 482-8. 

8. Sasaki, A., et al., Nramp5 is a major transporter responsible for manganese and 

cadmium uptake in rice. Plant Cell, 2012. 24(5): p. 2155-67. 

9. He, L., et al., Discovery of ZIP transporters that participate in cadmium damage to testis 

and kidney. Toxicol Appl Pharmacol, 2009. 238(3): p. 250-7. 

10. Gitan, R.S., et al., Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs 

through endocytosis and vacuolar degradation. J Biol Chem, 1998. 273(44): p. 28617-

24. 

11. Clemens, S., et al., The plant cDNA LCT1 mediates the uptake of calcium and cadmium 

in yeast. Proc Natl Acad Sci U S A, 1998. 95(20): p. 12043-8. 

32



12. Gavazzo, P., E. Morelli, and C. Marchetti, Susceptibility of insulinoma cells to cadmium 

and modulation by L-type calcium channels. Biometals, 2005. 18(2): p. 131-42. 

13. Meplan, C., K. Mann, and P. Hainaut, Cadmium induces conformational modifications of 

wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol 

Chem, 1999. 274(44): p. 31663-70. 

14. Youn, C.K., et al., Cadmium down-regulates human OGG1 through suppression of Sp1 

activity. J Biol Chem, 2005. 280(26): p. 25185-95. 

15. Hartwig, A., Mechanisms in cadmium-induced carcinogenicity: recent insights. 

Biometals, 2010. 23(5): p. 951-60. 

16. Gardarin, A., et al., Endoplasmic reticulum is a major target of cadmium toxicity in yeast. 

Mol Microbiol, 2010. 76(4): p. 1034-48. 

17. Liu, F., et al., Cadmium induces the expression of Grp78, an endoplasmic reticulum 

molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect, 2006. 

114(6): p. 859-64. 

18. Yokouchi, M., et al., Atypical, bidirectional regulation of cadmium-induced apoptosis via 

distinct signaling of unfolded protein response. Cell Death Differ, 2007. 14(8): p. 1467-

74. 

19. Biagioli, M., et al., Endoplasmic reticulum stress and alteration in calcium homeostasis 

are involved in cadmium-induced apoptosis. Cell Calcium, 2008. 43(2): p. 184-95. 

20. Shih, Y.L., et al., Cadmium toxicity toward caspase-independent apoptosis through the 

mitochondria-calcium pathway in mtDNA-depleted cells. Ann N Y Acad Sci, 2005. 1042: 

p. 497-505. 

21. Mendoza-Cozatl, D., et al., Sulfur assimilation and glutathione metabolism under 

cadmium stress in yeast, protists and plants. FEMS Microbiol Rev, 2005. 29(4): p. 653-

71. 

33



22. Klaassen, C.D., J. Liu, and B.A. Diwan, Metallothionein protection of cadmium toxicity. 

Toxicol Appl Pharmacol, 2009. 238(3): p. 215-20. 

23. Welch, J., et al., The CUP2 gene product regulates the expression of the CUP1 gene, 

coding for yeast metallothionein. EMBO J, 1989. 8(1): p. 255-60. 

24. Jensen, L.T., et al., Enhanced effectiveness of copper ion buffering by CUP1 

metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J 

Biol Chem, 1996. 271(31): p. 18514-9. 

25. Aiba, I., A. Hossain, and M.T. Kuo, Elevated GSH level increases cadmium resistance 

through down-regulation of Sp1-dependent expression of the cadmium transporter ZIP8. 

Mol Pharmacol, 2008. 74(3): p. 823-33. 

26. Paumi, C.M., et al., ABC transporters in Saccharomyces cerevisiae and their interactors: 

new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol 

Rev, 2009. 73(4): p. 577-93. 

27. Li, Z.S., et al., The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-

conjugate pump. J Biol Chem, 1996. 271(11): p. 6509-17. 

28. Yuan, D.S., A. Dancis, and R.D. Klausner, Restriction of copper export in 

Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory 

pathway. J Biol Chem, 1997. 272(41): p. 25787-93. 

29. Adle, D.J., et al., A cadmium-transporting P1B-type ATPase in yeast Saccharomyces 

cerevisiae. J Biol Chem, 2007. 282(2): p. 947-55. 

30. Adle, D.J. and J. Lee, Expressional control of a cadmium-transporting P1B-type ATPase 

by a metal sensing degradation signal. J Biol Chem, 2008. 283(46): p. 31460-8. 

31. Kuhlbrandt, W., Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell 

Biol, 2004. 5(4): p. 282-95. 

32. Palmgren, M.G. and P. Nissen, P-type ATPases. Annu Rev Biophys, 2011. 40: p. 243-66. 

34



33. Axelsen, K.B. and M.G. Palmgren, Evolution of substrate specificities in the P-type 

ATPase superfamily. J Mol Evol, 1998. 46(1): p. 84-101. 

34. Huda, K.M., et al., Global calcium transducer P-type Ca(2)(+)-ATPases open new 

avenues for agriculture by regulating stress signalling. J Exp Bot, 2013. 64(11): p. 3099-

109. 

35. Smith, A.T., K.P. Smith, and A.C. Rosenzweig, Diversity of the metal-transporting P1B-

type ATPases. J Biol Inorg Chem, 2014. 19(6): p. 947-60. 

36. Pomorski, T., et al., Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for 

phospholipid translocation across the yeast plasma membrane and serve a role in 

endocytosis. Mol Biol Cell, 2003. 14(3): p. 1240-54. 

37. Sorensen, D.M., et al., Towards defining the substrate of orphan P5A-ATPases. Biochim 

Biophys Acta, 2014. 

38. Mercer, J.F., et al., Isolation of a partial candidate gene for Menkes disease by positional 

cloning. Nat Genet, 1993. 3(1): p. 20-5. 

39. Yamaguchi, Y., et al., Expression of the Wilson disease gene is deficient in the Long-

Evans Cinnamon rat. Biochem J, 1994. 301 ( Pt 1): p. 1-4. 

40. DiDonato, M. and B. Sarkar, Copper transport and its alterations in Menkes and Wilson 

diseases. Biochim Biophys Acta, 1997. 1360(1): p. 3-16. 

41. Fu, D., T.J. Beeler, and T.M. Dunn, Sequence, mapping and disruption of CCC2, a gene 

that cross-complements the Ca(2+)-sensitive phenotype of csg1 mutants and encodes a 

P-type ATPase belonging to the Cu(2+)-ATPase subfamily. Yeast, 1995. 11(3): p. 283-

92. 

42. Yuan, D.S., et al., The Menkes/Wilson disease gene homologue in yeast provides copper 

to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A, 

1995. 92(7): p. 2632-6. 

35



43. Gourdon, P., et al., Crystal structure of a copper-transporting PIB-type ATPase. Nature, 

2011. 475(7354): p. 59-64. 

44. Albers, R.W., Biochemical aspects of active transport. Annu Rev Biochem, 1967. 36: p. 

727-56. 

45. Arguello, J.M., Identification of ion-selectivity determinants in heavy-metal transport 

P1B-type ATPases. J Membr Biol, 2003. 195(2): p. 93-108. 

46. Sharma, S. and A. Rosato, Role of the N-terminal tail of metal-transporting P(1B)-type 

ATPases from genome-wide analysis and molecular dynamics simulations. J Chem Inf 

Model, 2009. 49(1): p. 76-83. 

47. Morin, I., et al., Dissecting the role of the N-terminal metal-binding domains in activating 

the yeast copper ATPase in vivo. FEBS J, 2009. 276(16): p. 4483-95. 

48. Lutsenko, S., et al., N-terminal domains of human copper-transporting adenosine 

triphosphatases (the Wilson's and Menkes disease proteins) bind copper selectively in 

vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J Biol Chem, 

1997. 272(30): p. 18939-44. 

49. Banci, L., et al., Metal binding domains 3 and 4 of the Wilson disease protein: solution 

structure and interaction with the copper(I) chaperone HAH1. Biochemistry, 2008. 

47(28): p. 7423-9. 

50. Banci, L., et al., The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. 

Nat Chem Biol, 2006. 2(7): p. 367-8. 

51. Williams, L.E. and R.F. Mills, P(1B)-ATPases--an ancient family of transition metal 

pumps with diverse functions in plants. Trends Plant Sci, 2005. 10(10): p. 491-502. 

52. Mills, R.F., et al., Functional expression of AtHMA4, a P1B-type ATPase of the 

Zn/Co/Cd/Pb subclass. Plant J, 2003. 35(2): p. 164-76. 

36



53. Petris, M.J., et al., Ligand-regulated transport of the Menkes copper P-type ATPase efflux 

pump from the Golgi apparatus to the plasma membrane: a novel mechanism of 

regulated trafficking. EMBO J, 1996. 15(22): p. 6084-95. 

54. Pase, L., et al., Copper stimulates trafficking of a distinct pool of the Menkes copper 

ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool. 

Biochem J, 2004. 378(Pt 3): p. 1031-7. 

55. Lippincott-Schwartz, J., T.H. Roberts, and K. Hirschberg, Secretory protein trafficking 

and organelle dynamics in living cells. Annu Rev Cell Dev Biol, 2000. 16: p. 557-89. 

56. Brodsky, J.L. and W.R. Skach, Protein folding and quality control in the endoplasmic 

reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol, 

2011. 23(4): p. 464-75. 

57. Deshaies, R.J., et al., Assembly of yeast Sec proteins involved in translocation into the 

endoplasmic reticulum into a membrane-bound multisubunit complex. Nature, 1991. 

349(6312): p. 806-8. 

58. Tu, B.P. and J.S. Weissman, Oxidative protein folding in eukaryotes: mechanisms and 

consequences. J Cell Biol, 2004. 164(3): p. 341-6. 

59. Casagrande, R., et al., Degradation of proteins from the ER of S. cerevisiae requires an 

intact unfolded protein response pathway. Mol Cell, 2000. 5(4): p. 729-35. 

60. Kostova, Z. and D.H. Wolf, For whom the bell tolls: protein quality control of the 

endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J, 2003. 22(10): 

p. 2309-17. 

61. Brandizzi, F. and C. Barlowe, Organization of the ER-Golgi interface for membrane 

traffic control. Nat Rev Mol Cell Biol, 2013. 14(6): p. 382-92. 

62. Schroder, M., R. Clark, and R.J. Kaufman, IRE1- and HAC1-independent transcriptional 

regulation in the unfolded protein response of yeast. Mol Microbiol, 2003. 49(3): p. 591-

606. 

37



63. Malhotra, J.D. and R.J. Kaufman, The endoplasmic reticulum and the unfolded protein 

response. Semin Cell Dev Biol, 2007. 18(6): p. 716-31. 

64. Schroder, M. and R.J. Kaufman, The mammalian unfolded protein response. Annu Rev 

Biochem, 2005. 74: p. 739-89. 

65. Ng, D.T., E.D. Spear, and P. Walter, The unfolded protein response regulates multiple 

aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality 

control. J Cell Biol, 2000. 150(1): p. 77-88. 

66. Novoa, I., et al., Feedback inhibition of the unfolded protein response by GADD34-

mediated dephosphorylation of eIF2alpha. J Cell Biol, 2001. 153(5): p. 1011-22. 

67. Viana, R.J., A.F. Nunes, and C.M. Rodrigues, Endoplasmic reticulum enrollment in 

Alzheimer's disease. Mol Neurobiol, 2012. 46(2): p. 522-34. 

68. Mercado, G., P. Valdes, and C. Hetz, An ERcentric view of Parkinson's disease. Trends 

Mol Med, 2013. 19(3): p. 165-75. 

69. Ansari, N. and F. Khodagholi, Molecular mechanism aspect of ER stress in Alzheimer's 

disease: current approaches and future strategies. Curr Drug Targets, 2013. 14(1): p. 

114-22. 

70. Walker, A.K. and J.D. Atkin, Stress signaling from the endoplasmic reticulum: A central 

player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life, 2011. 63(9): p. 

754-63. 

71. Vembar, S.S. and J.L. Brodsky, One step at a time: endoplasmic reticulum-associated 

degradation. Nat Rev Mol Cell Biol, 2008. 9(12): p. 944-57. 

72. Younger, J.M., et al., Sequential quality-control checkpoints triage misfolded cystic 

fibrosis transmembrane conductance regulator. Cell, 2006. 126(3): p. 571-82. 

73. Imai, Y., M. Soda, and R. Takahashi, Parkin suppresses unfolded protein stress-induced 

cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem, 2000. 275(46): p. 

35661-4. 

38



74. Yoshida, Y., et al., E3 ubiquitin ligase that recognizes sugar chains. Nature, 2002. 

418(6896): p. 438-42. 

75. Plemper, R.K., et al., Mutant analysis links the translocon and BiP to retrograde protein 

transport for ER degradation. Nature, 1997. 388(6645): p. 891-5. 

76. Quan, E.M., et al., Defining the glycan destruction signal for endoplasmic reticulum-

associated degradation. Mol Cell, 2008. 32(6): p. 870-7. 

77. Gauss, R., et al., A complex of Yos9p and the HRD ligase integrates endoplasmic 

reticulum quality control into the degradation machinery. Nat Cell Biol, 2006. 8(8): p. 

849-54. 

78. Clerc, S., et al., Htm1 protein generates the N-glycan signal for glycoprotein degradation 

in the endoplasmic reticulum. J Cell Biol, 2009. 184(1): p. 159-72. 

79. Mayer, M.P. and B. Bukau, Hsp70 chaperones: cellular functions and molecular 

mechanism. Cell Mol Life Sci, 2005. 62(6): p. 670-84. 

80. Rudiger, S., A. Buchberger, and B. Bukau, Interaction of Hsp70 chaperones with 

substrates. Nat Struct Biol, 1997. 4(5): p. 342-9. 

81. Zhuravleva, A. and L.M. Gierasch, Allosteric signal transmission in the nucleotide-

binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc Natl 

Acad Sci U S A, 2011. 108(17): p. 6987-92. 

82. Fan, C.Y., S. Lee, and D.M. Cyr, Mechanisms for regulation of Hsp70 function by 

Hsp40. Cell Stress Chaperones, 2003. 8(4): p. 309-16. 

83. Shaner, L., R. Sousa, and K.A. Morano, Characterization of Hsp70 binding and 

nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry, 2006. 45(50): p. 

15075-84. 

84. Gowda, N.K., et al., Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-

dependent degradation of misfolded cytosolic proteins. Proc Natl Acad Sci U S A, 2013. 

110(15): p. 5975-80. 

39



85. Abrams, J.L., et al., Hierarchical functional specificity of cytosolic heat shock protein 70 

(Hsp70) nucleotide exchange factors in yeast. J Biol Chem, 2014. 289(19): p. 13155-67. 

86. Guerriero, C.J., K.F. Weiberth, and J.L. Brodsky, Hsp70 targets a cytoplasmic quality 

control substrate to the San1p ubiquitin ligase. J Biol Chem, 2013. 288(25): p. 18506-20. 

87. Nakatsukasa, K., et al., Dissecting the ER-associated degradation of a misfolded 

polytopic membrane protein. Cell, 2008. 132(1): p. 101-12. 

88. Sharma, D. and D.C. Masison, Single methyl group determines prion propagation and 

protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and 

Ssa2p. Proc Natl Acad Sci U S A, 2011. 108(33): p. 13665-70. 

89. Tutar, L. and Y. Tutar, Ydj1 but not Sis1 stabilizes Hsp70 protein under prolonged stress 

in vitro. Biopolymers, 2008. 89(3): p. 171-4. 

90. Han, S., Y. Liu, and A. Chang, Cytoplasmic Hsp70 promotes ubiquitination for 

endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma 

membrane ATPase, PMA1. J Biol Chem, 2007. 282(36): p. 26140-9. 

91. Young, J.C., The role of the cytosolic HSP70 chaperone system in diseases caused by 

misfolding and aberrant trafficking of ion channels. Dis Model Mech, 2014. 7(3): p. 319-

29. 

92. Kaushik, S. and A.M. Cuervo, Chaperone-mediated autophagy. Methods Mol Biol, 2008. 

445: p. 227-44. 

93. Hampton, R.Y., R.G. Gardner, and J. Rine, Role of 26S proteasome and HRD genes in 

the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic 

reticulum membrane protein. Mol Biol Cell, 1996. 7(12): p. 2029-44. 

94. Swanson, R., M. Locher, and M. Hochstrasser, A conserved ubiquitin ligase of the 

nuclear envelope/endoplasmic reticulum that functions in both ER-associated and 

Matalpha2 repressor degradation. Genes Dev, 2001. 15(20): p. 2660-74. 

40



95. Jarosch, E., et al., Protein dislocation from the ER requires polyubiquitination and the 

AAA-ATPase Cdc48. Nat Cell Biol, 2002. 4(2): p. 134-9. 

96. Biederer, T., C. Volkwein, and T. Sommer, Role of Cue1p in ubiquitination and 

degradation at the ER surface. Science, 1997. 278(5344): p. 1806-9. 

97. Plemper, R.K., et al., Endoplasmic reticulum degradation of a mutated ATP-binding 

cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J 

Biol Chem, 1998. 273(49): p. 32848-56. 

98. Knop, M., et al., Der1, a novel protein specifically required for endoplasmic reticulum 

degradation in yeast. EMBO J, 1996. 15(4): p. 753-63. 

99. Wiertz, E.J., et al., Sec61-mediated transfer of a membrane protein from the endoplasmic 

reticulum to the proteasome for destruction. Nature, 1996. 384(6608): p. 432-8. 

100. Plemper, R.K., et al., Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p 

suggest a retro-translocation complex mediating protein transport for ER degradation. J 

Cell Sci, 1999. 112 ( Pt 22): p. 4123-34. 

101. Rubenstein, E.M., et al., Aberrant substrate engagement of the ER translocon triggers 

degradation by the Hrd1 ubiquitin ligase. J Cell Biol, 2012. 197(6): p. 761-73. 

102. Garza, R.M., B.K. Sato, and R.Y. Hampton, In vitro analysis of Hrd1p-mediated 

retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl 

(HMG)-CoA reductase. J Biol Chem, 2009. 284(22): p. 14710-22. 

103. Neuber, O., et al., Ubx2 links the Cdc48 complex to ER-associated protein degradation. 

Nat Cell Biol, 2005. 7(10): p. 993-8. 

104. Zhong, X., et al., AAA ATPase p97/valosin-containing protein interacts with gp78, a 

ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem, 2004. 

279(44): p. 45676-84. 

41



105. Schuberth, C. and A. Buchberger, Membrane-bound Ubx2 recruits Cdc48 to ubiquitin 

ligases and their substrates to ensure efficient ER-associated protein degradation. Nat 

Cell Biol, 2005. 7(10): p. 999-1006. 

106. Ye, Y., H.H. Meyer, and T.A. Rapoport, Function of the p97-Ufd1-Npl4 complex in 

retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated 

polypeptide segments and polyubiquitin chains. J Cell Biol, 2003. 162(1): p. 71-84. 

107. Bohm, S., et al., Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation 

depend on Cdc48 binding. Mol Cell Biol, 2011. 31(7): p. 1528-39. 

108. Kohlmann, S., A. Schafer, and D.H. Wolf, Ubiquitin ligase Hul5 is required for 

fragment-specific substrate degradation in endoplasmic reticulum-associated 

degradation. J Biol Chem, 2008. 283(24): p. 16374-83. 

109. Leggett, D.S., et al., Multiple associated proteins regulate proteasome structure and 

function. Mol Cell, 2002. 10(3): p. 495-507. 

110. Heo, J.M., et al., A stress-responsive system for mitochondrial protein degradation. Mol 

Cell, 2010. 40(3): p. 465-80. 

111. Tran, J.R., L.R. Tomsic, and J.L. Brodsky, A Cdc48p-associated factor modulates 

endoplasmic reticulum-associated degradation, cell stress, and ubiquitinated protein 

homeostasis. J Biol Chem, 2011. 286(7): p. 5744-55. 

112. Baek, G.H., I. Kim, and H. Rao, The Cdc48 ATPase modulates the interaction between 

two proteolytic factors Ufd2 and Rad23. Proc Natl Acad Sci U S A, 2011. 108(33): p. 

13558-63. 

113. Kim, I., et al., The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol, 

2006. 172(2): p. 211-9. 

114. Wang, Q., L. Li, and Y. Ye, Regulation of retrotranslocation by p97-associated 

deubiquitinating enzyme ataxin-3. J Cell Biol, 2006. 174(7): p. 963-71. 

42



115. Blount, J.R., et al., Ubiquitin-specific protease 25 functions in Endoplasmic Reticulum-

associated degradation. PLoS One, 2012. 7(5): p. e36542. 

116. Liu, C.W., et al., Endoproteolytic activity of the proteasome. Science, 2003. 299(5605): 

p. 408-11. 

117. Lipson, C., et al., A proteasomal ATPase contributes to dislocation of endoplasmic 

reticulum-associated degradation (ERAD) substrates. J Biol Chem, 2008. 283(11): p. 

7166-75. 

118. Murata, S., Multiple chaperone-assisted formation of mammalian 20S proteasomes. 

IUBMB Life, 2006. 58(5-6): p. 344-8. 

119. Kusmierczyk, A.R., et al., A multimeric assembly factor controls the formation of 

alternative 20S proteasomes. Nat Struct Mol Biol, 2008. 15(3): p. 237-44. 

120. Groll, M., et al., Crystal structure of the 20 S proteasome:TMC-95A complex: a non-

covalent proteasome inhibitor. J Mol Biol, 2001. 311(3): p. 543-8. 

121. Adams, J., The proteasome: structure, function, and role in the cell. Cancer Treat Rev, 

2003. 29 Suppl 1: p. 3-9. 

122. Werner, E.D., J.L. Brodsky, and A.A. McCracken, Proteasome-dependent endoplasmic 

reticulum-associated protein degradation: an unconventional route to a familiar fate. 

Proc Natl Acad Sci U S A, 1996. 93(24): p. 13797-801. 

123. Morris, L.L., et al., Sequential Actions of the AAA-ATPase Valosin-containing Protein 

(VCP)/p97 and the Proteasome 19 S Regulatory Particle in Sterol-accelerated, 

Endoplasmic Reticulum (ER)-associated Degradation of 3-Hydroxy-3-methylglutaryl-

coenzyme A Reductase. J Biol Chem, 2014. 289(27): p. 19053-66. 

124. Verma, R., et al., Role of Rpn11 metalloprotease in deubiquitination and degradation by 

the 26S proteasome. Science, 2002. 298(5593): p. 611-5. 

43



125. Jo, Y., et al., Sterol-induced degradation of HMG CoA reductase depends on interplay of 

two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc Natl Acad Sci U S A, 2011. 

108(51): p. 20503-8. 

126. Jingami, H., et al., Partial deletion of membrane-bound domain of 3-hydroxy-3-

methylglutaryl coenzyme A reductase eliminates sterol-enhanced degradation and 

prevents formation of crystalloid endoplasmic reticulum. J Cell Biol, 1987. 104(6): p. 

1693-704. 

127. Garza, R.M., P.N. Tran, and R.Y. Hampton, Geranylgeranyl pyrophosphate is a potent 

regulator of HRD-dependent 3-Hydroxy-3-methylglutaryl-CoA reductase degradation in 

yeast. J Biol Chem, 2009. 284(51): p. 35368-80. 

128. Sever, N., et al., Accelerated degradation of HMG CoA reductase mediated by binding of 

insig-1 to its sterol-sensing domain. Mol Cell, 2003. 11(1): p. 25-33. 

129. Theesfeld, C.L., et al., The sterol-sensing domain (SSD) directly mediates signal-

regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-

methylglutaryl (HMG)-CoA reductase isozyme Hmg2. J Biol Chem, 2011. 286(30): p. 

26298-307. 

130. Gardner, R.G. and R.Y. Hampton, A highly conserved signal controls degradation of 3-

hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J Biol 

Chem, 1999. 274(44): p. 31671-8. 

131. Nakatsukasa, K., et al., Mnl1p, an alpha -mannosidase-like protein in yeast 

Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation 

of glycoproteins. J Biol Chem, 2001. 276(12): p. 8635-8. 

132. Gillece, P., et al., Export of a cysteine-free misfolded secretory protein from the 

endoplasmic reticulum for degradation requires interaction with protein disulfide 

isomerase. J Cell Biol, 1999. 147(7): p. 1443-56. 

44



133. Huyer, G., et al., A striking quality control subcompartment in Saccharomyces 

cerevisiae: the endoplasmic reticulum-associated compartment. Mol Biol Cell, 2004. 

15(2): p. 908-21. 

134. Huyer, G., et al., Distinct machinery is required in Saccharomyces cerevisiae for the 

endoplasmic reticulum-associated degradation of a multispanning membrane protein and 

a soluble luminal protein. J Biol Chem, 2004. 279(37): p. 38369-78. 

135. Johnson, P.R., et al., Degradation signal masking by heterodimerization of MATalpha2 

and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell, 

1998. 94(2): p. 217-27. 

136. Hochstrasser, M., et al., The short-lived MAT alpha 2 transcriptional regulator is 

ubiquitinated in vivo. Proc Natl Acad Sci U S A, 1991. 88(11): p. 4606-10. 

 

 

 

45



Chapter 2: 

Cadmium induces expression of its exporter through rescue from ER-
associated degradation 

 

Note: The results described in this chapter have been published all text is modified from the 

original version. 

The citation is: David Adle, Wenzhong Wei, Nathan Smith, Joshua J. Bies, and Jaekwon Lee, 

Cadmium-mediated rescue from ER-associated degradation induces expression of its exporter. 

Proc Natl Acad Sci U S A, 2009. 106(25): p. 10189-94.[1]  
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2.1 Abstract 

The environmental contaminant Cd is highly toxic and implicated in a number of 

diseases.  In yeast Saccharomyces cerevisiae the P-type ATPase Pca1 has been identified to 

extrude Cd from cells and is a major component of the yeast Cd detoxification system.  Pca1 

expression is dictated by the presence of its N-terminal region.  Pca1 is rapidly turned over in an 

N-terminal dependent manner; however, addition of Cd to growth media leads to a rapid 

stabilization of Pca1.  In the following chapter, we will display that Pca1 degradation is mediated 

through the ER-associated degradation (ERAD) pathway which functions in maintaining 

homeostasis of the secretory pathway through degradation of misfolded proteins. Unexpectedly, 

this pathway is also involved in the Cd-dependent regulation of Pca1 and represents the role of 

this pathway in not only degradation of misfolded proteins but also expressional control of 

functional proteins.  This mechanism allows yeast to rapidly respond to the presence of Cd by 

continual synthesis of Pca1.  This mechanism may be true of other ERAD substrates in which 

Pca1 can be used as a model.   
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2.2 Introduction   

Many metal ions such as copper, iron, and zinc play essential roles for the 

sustenance of life, acting as cofactors and structural elements for a wide variety of 

enzymes and proteins.  However delicate control of metal homeostasis is required as too 

much of these essential metals are toxic.  In addition there is a wide range of non-

physiological metals which are purely detrimental to the cell.  Organisms have refined 

excretion and detoxification methods for survival [2, 3].  Cd is a highly toxic, heavy 

metal pollutant which has been implicated in a wide variety of illnesses such as renal 

dysfunction, cancer, and reproduction problems [4].  S. cerevisiae contains Pca1, an eight 

transmembrane domain containing protein charged with excretion of Cd from the cell.  

Pca1 is a member of the P1b-Type ATPase family which is highly conserved from 

mammals to bacteria [5, 6].   

Previously our lab determined that Pca1 is a substrate of the ubiquitin proteasome 

system which is rapidly degraded in the absence of its substrate, Cd.  This degradation is 

carried out via its N-terminal cytosolic domain (aa1-392) prior to secretion from the ER 

[7].  In the presence of Cd, Pca1 is rapidly stabilized in an N-terminal dependent manner.  

An independent degron (aa250-350) was determined to be sufficient for both degradation 

and Cd-dependent stabilization [7].   

The normal mode of degradation of a secreted plasma membrane protein is via 

endocytosis following ubiquitinylation and subsequent lysosomal degradation. Given 

Pca1’s Cd dependent stabilization and proteasome dependent degradation, Pca1 therefore 

represents a noteworthy manner in which expression and secretion of a functional protein 

is controlled.  
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To determine the components involved in Pca1 degradation, we developed a screen 

utilizing genetic knockouts to identify genes required for Pca1 turnover.  We determined 

the ER-associated degradation system.  Specifically, the Doa10 pathway was required for 

Pca1 expressional control.  Member proteins of the secretory pathway are inserted into 

the ER following translation.  Here they are properly folded and matured via post 

translational modification such as disulfide formation and glycosylation.  In the event of 

mutation or stress, a protein may fail to fold properly, a large buildup of these malformed 

proteins leads to the induction of the unfolded protein response (UPR), which in turn up-

regulates the expression of proteins charged with refolding or removing misfolded 

proteins [8].  The system involved in eliminating misfolded proteins is the ERAD 

pathway which alleviates the stress induced by the accumulation of abnormal proteins [9, 

10].  Pca1 differs from these ERAD substrates as it is a naturally occurring un-mutated 

protein and apparent monomer which has its expression controlled through the ERAD 

system [9, 10].  As Cd is extremely toxic environmental contaminate and not always 

present, it is possible that yeast developed this system of control of Pca1 for a rapid 

response sensing and removal of Cd. 
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2.3 Experimental procedures 

2.3.1 Selection of yeast mutants which stabilize expression of Pca1: Green fluorescent 

protein (GFP) was N-terminally fused to Pca1 and this construct was transformed into an 

individual deletion pool containing all non-essential deletions (4,848) in S. cerevisiae (Open 

Biosystems). Approximately 400,000 transformed colonies were collected and diluted to A600=1 

through re-suspension in sterilized water.  Cells containing a high GFP-Pca1 fluorescence, 

indicative of slowed turnover of Pca1, were sorted by flow cytometry and plated on selective SC 

media.  The strong GFP signal was confirmed by confocal microscopy.  Specific gene deletions 

were identified using a PCR amplification primer set of unique 20-base “tag” sequences [11]. 

2.3.2 Half-life determination using cyclohexamide:  Logarithmically growing cells 

were treated with 100ug/mL cyclohexamide to halt protein synthesis.  Ice-cold kill buffer (PBS 

containing 15mM NaN3 and 15mM NaF) was added to equal volume of cells (15mL) at the 

indicated time points.  No cyclohexamide was added to time point 0. Protein extraction was 

performed on the cells in which extracts were used for SDS/PAGE and western blot analysis [7].  

Membranes were probed using anti-HA primary antibodies and horseradish peroxidase (HRP) 

conjugated-anti-rabbit secondary antibodies.  Chemiluminescence was used to detect Pca1.  

Phosphoglycerate kinase (PGK) was used as a loading control and probed for using anti-PGK 

primary antibodies and HRP-conjugated anti-mouse secondary antibodies.  Quantification was 

performed using Total Lab TL 100 software; PGK was used for normalization. 

2.3.3 Autoradiography and 64Cu blotting:  3HA-tagged Pca1 aa250-350 and 3HA-

tagged Pca1 aa250-350 Δcys (all cysteine residues are mutated to alanine) were subjected to anti-

HA immunoprecipitation from Δdoa10 cells using anti-HA conjugated beads (Pierce).  

Immunoprecipitates were used for SDS/PAGE and transferred onto a nitrocellulose membrane.  

Metal binding buffer [12] was used to equilibrate the membranes.  The membranes were then 
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probed for 1hr with 10uCi 
64

Cu (~1 uM CuCl2) (Isotrace Technique) followed by extensive 

washing prior to autoradiography and protein staining (MemCode)(Pierce).  5-fold excess of non-

radioactive competitor ions were used for 
64

Cu competition assays. 

2.3.4 Pca1 (aa250-350) limited Trypsin proteolysis: Δdo10 cells expressing 3HA-Pca1 

aa250-350 or 3HA-tagged Pca1 aa250-350 Δcys were cultured with or without 50μM CdCl2 for 

1hr.  Cytosolic fractions were prepared and subjected to treatment with trypsin (Sigma) on ice for 

10 minutes prior to addition of soybean trypsin inhibitor, 0.2μg/mL (Fluka BioChemika) for 15 

minutes.  Anti-HA immunoblotting was used to determine trypsin proteolysis patterns. 

2.3.5 Yeast strains and growth conditions: The majority of the strains used in this study 

are from the Saccharomyces genome deletion project [11] purchased from Open Biosystems.  

Double knockouts were created by homologous recombination using PCR-based gene deletion 

pFA6a-His3MX6 as a template [13].  Gene specific primers were utilized to confirm deletion.  

Yeast cells were cultured in synthetic complete (SC) or YPD media as previously described [6]. 

2.3.6 Plasmid construction, expression, and transformation: A glyceraldehyde-3-

phosphate dehydrogenase (GPD) gene promoter was used for expression of all constructs unless 

specified [14].  GFP and HA tags were inserted into a C- or N-terminal artificially generated site 

using flanking Not1 restriction enzyme sites on the GFP or triple-HA.  An unfolded protein 

response element UPRE reporter construct was generously provided by Peter Walter (University 

of California, School of Medicine, San Francisco).  This construct contains four tandem repeats 

of a 22 nucleotide UPRE upstream of a disabled Cyc1 promoter which was fused to the LacZ 

gene [15].  An HA-tagged Ste6* expression plasmid was generously provided by Susan Michaelis 

(John Hopkins School of Medicine, Baltimore).  The overlap extension method was utilized to 

carry out site directed mutagenesis [16].  The lithium acetate procedure was used for plasmid 
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transformation into yeast cells.  All transformations were grown at 30
o
C on SC media for 

selection [17]. 

2.3.7 Protein extraction and Immunoblotting: Protein extracts were prepared using 

glass bead disruption in PBS containing protease inhibitor (complete Mini; Roche) 5mM ETDA 

and 1% Triton X-100. For SDS/PAGE and immunoblot, lysates were denatured for 15 minutes in 

SDS sample buffer containing 25mM DTT.  Denatured protein was subjected to SDS/PAGE and 

transfer to nitrocellulose membrane for probing with specific antibodies. 

2.3.8 Immunoprecipitation for Ubiquitin detection: Cell lyates were prepared by glass 

bead disruption in PBS containing protease inhibitors (Roche complete mini), 5mM N-

ethylmaleimide, 1mM PMSF and 1% TritonX-100.  HA tagged proteins were subjected to 

immunoprecipitation using HA-Tag IP/Co-IP kit (Pierce) according to manufacturer’s 

specifications. Protein was eluted using 2X SDS sample buffer at 37
o
C for 15 minutes.  100mM 

DTT was added for denaturing of the protein for an additional 15 minutes at 37
o
C.  Ubiquitin 

conjugation was detected using mouse monoclonal anti-mono-ubiquitin antibody (Covance). 

2.3.9 Chemical crosslinking and microsome preparation:  Preparation of microsomes 

was performed as previously described [18].  Cells were disrupted by glass bead vortexing for 

10x30sec alternating on /off ice in 300μL lysis buffer (20mM HEPES, 50mM KoAc, 2mM 

EDTA, 100mM sorbitol, 1mM DTT, 1mM PMSF, and HALT protease inhibitors (Pierce)).  

250uL of buffer88 (20mM HEPES, 50mM KOAc, 250mM sorbitol,  and 5mM MgOAc) was then 

added .  Lysate was then subjected centrifugation at 300g for 3 minutes to remove cell debris and 

glass beads.  Supernatant was transferred to a clean microcentrifuge tube, and the beads were 

rinsed with an additional 250μL of buffer88 and collected.  The supernatant was the subjected to 

centrifugation at 18,000rpm for 20 minutes at 4
o
C.  The supernatant was removed, and the 

remaining microsomal pellet was re-suspended in 150uL of 0.2M Triethanolamine, pH 8.0. 
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100ug/mL of dimethyl 3,3’-dithiobispropionimidate (DTBP) a water soluble membrane 

permeable, thiol-reversible crosslinker was added to the microsomes and incubated for 1hr on ice.  

Cross-linked was quenched with 40uL of 1M Tris (pH7.5) on ice for an additional 20 minutes.  

Cell pellets were again attained by centrifugation at 18,000 RPM for 15 minutes at 4
o
C.  Pellets 

were then washed in ice cold PBS and solubilized in 100μL of PBS containing 1% SDS at 37
o
C 

for 30 minutes.  Trition X-100 was added for a final concentration of 1.5% and incubated on ice 

for an additional 30 minutes.  Lysate was then subjected to anti-HA immunoprecipitation for 

isolation of HA tagged proteins using anti-HA antibody conjugated sepharose beads (Pierce) at 

4
o
C overnight.  Proteins were eluted using 2X SDS sample buffer and cross-linking was reversed 

with the addition of 100uM DTT at 37
o
C for 30 minutes.  Elutates were then subjected to 

SDS/PAGE and immunoblot analysis. 

2.3.10 LacZ Reporter assay:  β-galactosidase expression/activity was determined as 

previously described [19].  1 O.D.600nm of cells were re-suspended in Z buffer and permeabilized 

with 0.1% SDS and choloform.  200uL of 4mg/mL ortho-Nitrophenyl-β-galactoside (ONPG) in Z 

buffer was added to the permeabilized cell mixture.  500uL Na2CO3 was used to quench the 

reaction.  Β-Galactosidase levels are reported in miller units [A420/(Tmin)(VmL)(A600) 

2.3.11 Oligomycin resistance assay: Wild-Type (WT) or Δdoa10 cells expressing either 

Yor1-GFP, Pca1 (aa1-392)-Yor1-GFP or empty vector were grown in selective SC media until 

mid-log phase. ~5uL of A600 cells were spotted on solid YPEG media either containing 0 or 10uM 

CdCl2.  Cells were incubated at 30
o
C for 2 days prior to photograph. 

2.3.12 In-vitro trypsin proteolysis of Pca1 degron:  Pca1 aa250-350 was cloned into 

the PGEX-6p-1 (Amersham Pharmica Biotech Inc.)  vector for fusion to glutathione sulfur 

transferase (GST).  The resulting GST-250-350Pca1 construct was expressed in Escherichia coli 

and protein lysate was prepared and subjected to incubation with glutathione sepharose for 
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immobilization of the GST fusion construct.  The 250-350Pca1 region was liberated in metal 

binding buffer (100mM Tris-HCl pH 7.0, 50mM NaCl, 100mM sucrose 10% glycerol, 1mM DTT 

and 0.1% Triton X-100) with PreScission protease (Amersham).  1 ug/mL of Trypsin (sigma) was 

added to the Pca1 250-350 peptides for 10 minutes on ice followed by addition of 0.2 ug/mL of 

soybean trypsin inhibitor (Fluka BioChemika) for 15 minutes on ice.  Coomassie blue staining 

was utilized to visualize proteolytic patterns. 
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2.4 Results 

2.4.1 In the absence of cadmium, Pca1 expression is controlled via ER-associated 

degradation. To determine the components involved in Pca1 degradation, we performed a screen 

of genetic mutants which displayed defective Pca1 turnover.  GFP-Pca1 was transformed into a 

collection of viable genetic knockouts with each cell lacking a single gene [11].  Cells were 

selected based on the emission of a high-GFP signal using a cell-flow cytometer.  This indicated 

the turnover of Pca1 was disrupted in a particular cell. (Figure 1) 

Surprisingly, cells lacking CUE1 were identified as containing high Pca1 expression 

(Figure 1B-D).  CUE1 is an ER resident membrane protein which recruits the cytosolic E2 

ubiquitin conjugating enzyme Ubc7 to the ER [20].  Cue1 is an important protein involved in the 

ERAD system, which led us to investigate other primary components of the ERAD pathway, 

specifically the E2 ubiquitin conjugating enzymes Ubc6 and Ubc7 as well as the E3 ubiquitin 

ligases Doa10, and Hrd1 [21-24]. ERAD substrates in yeast are degraded via Hrd1 or Doa10 

depending on the location of misfolding.  If the malformed region of the protein is in the lumen of 

the ER (ERAD-L) or membrane (ERAD-M) the protein is ubiquitinylated by Hrd1, if the 

misfolded region is cytoplasmic (ERAD-C) the protein is ubiquitinylated by doa10 [9, 10].   Pca1 

was stabilized by the lack of UBC7 or DOA10 but not HRD1 (figure 2A).  This is consistent with 

the location of the cytosolic degron (aa250-350).  Cycloheximide chase corroborated the roles of 

Doa10 and Ubc7 in Pca1 degradation and established no role for Hrd1 (Figure 2B).  Doa10 

dependent ubiquitinylation was verified as it was dramatically reduced in Δdoa10 cells. 

Unfortunately, our screen was unable to pick-up any other mutants beside CUE1 indicating a lack 

of saturation in our library.  A more thorough screening may reveal other factors involved in Pca1 

turnover including Ubc7 and Doa10. Taken together these data demonstrate the role of the 

ERAD-C pathway in Pca1 degradation. 
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Figure 1  Genetic screen of factors involved in Pca1 degradation. (A) Schematic of genetic screen used to determine 

factors involved in Pca1 turnover.  (B) Confocal microscopy of GFP-Pca1 in WT and Δcue1 cells (identified in the 

screen) (C) Immunoblot of 3HA Pca1 expressed in WT or Δcue1 cells, PGK used as a loading control. (D) 

Cyclohexamide (CHX) chase of 3HA Pca1 expressed in WT or Δcue1 cells treated with CHX for the indicated time 

points the right panel displays quantification by pixel density at each time point.  

 

 

 

 

 

Figure 2 Pca1 is degraded through ERAD. (A) 

Confocal microscopy of GFP-Pca1 in WT, Δcue1, 

Δubc7, Δdoa10, Δhrd1 cells.  (B) Cyclohexamide 

chase of 3HA-Pca1 in WT, Δhrd1, Δdoa10, 

Δhrd1Δdoa10 cells.  PGK is used as a loading 

control.  The lower panel displays quantification 

based on pixel density normalizing to PGK. (C) 

Ubiquitinylation determination of Pca1 in WT 

versus Δdoa10 cells. Immunoprecipitaiton of 3HA 

pca1 was followed by probing with anti-ubiquitin, 

and anti HA.  
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2.4.2 Pca1 Cd sensing and degradation occur prior to secretion from the ER.  Since Pca1 is 

turned over through the ubiquitinylation activity of Doa10, an integral ER membrane protein, we 

believed Pca1 regulation through ERAD occurred prior to secretion form the ER.  To test this line 

of reasoning, we utilized the Sec23-1 temperature sensitive mutant which is defective in COPII 

vesicle trafficking from the ER to the Golgi [25].  By preventing secretion of Pca1, we saw no 

change in the rate of Pca1 degradation indicating that this turnover does not require transport 

from the ER (Figure 3A).  We next sought to determine the role for the Cdc48/Npl4/Ufd1 AAA-

type ATPase, a known component in the degradation of other ERAD-C substrates such as 

Ste6*[26].  By using a temperature sensitive mutant of this complex, Cdc48-3, we determined 

that Cdc48/Npl4/Ufd1 complex plays a significant role in Pca1 degradation as Pca1 is more stable 

in the mutant strain vs its isogenic wild-type strain when incubated ate restrictive temperature 

(Figure 3B).  Because the degradation of Pca1 occurs at the ER, it would make since that 

cadmium sensing would also occur at this location.  Predictably presentation of Pca1 with Cd 

results in stabilization of Pca1 despite ER exit being blocked (Figure 3C). 

2.4.3 Cd dependent stabilization is specific to Pca1. 

To verify the role of Cd in stabilizing Pca1 is specific to Pca1, we examined the 

possibility that Cd may affect ER homeostasis and ERAD functionality.  It is also possible that 

the ERAD system may become inundated by the accumulation of misfolded/damaged proteins 

through the toxic effects of Cd.  We addressed this through examination of the unfolded protein 

response as this will be induced under misfolded protein accumulation [8, 27].  We expressed the 

URP reporter construct (UPRE-LacZ) and monitored induction of the UPR [15]. Although Pca1 

is an ERAD substrate, no appreciable increase in the expression of the reporter gene was 

identified when Pca1 was over expressed (Figure 4A). Cd levels required for rapid up-regulation 

of Pca1 expression also did not lead to any major response in UPR induction (Figure 4B).  

Further evidence indicating Cd dependent stabilization and rescue from ERAD is specific to Pca1 
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is displayed in figure 3C where Cd supplementation did not induce Ste6*p stabilization. The 

cytoplasmic N-terminus of Pca1 is sufficient for targeting to ERAD. 

 

 

 

 

 

 

 

 

 

Figure 3 Pca1 cadmium sensing and regulation of Pca1 expression occurs at the ER.  3HA-Pca1 expressed in 

Sec23 and the temperature sensitive sec23-1 which blocks ER to Golgi transport when placed at restrictive temperature 

(37OC for 30 minutes) were subjected to cyclohexamide chase for the indicated times (A). (B) Cyclohexamide chase of 

3HA-Pca1 was expressed in CDC48 and the temperature sensitive mutant cdc48-3 after being placed at restrictive 

temperature (37oC for 30 minutes) and anti-HA western blot analysis.  PGK is used as a loading control.  (C) Western 

blot analysis of 3HA Pca1 in sec23-1 cells placed at restrictive temperature prior to culture with cyclohexamide and 

with or without 50uM CdCl2. 

 

 

 

 

 

 

 

Figure 4 Specificity of cadmium dependent stabilization of Pca1.  (A) a LacZ reporter assay of the unfolded protein 

response  in WT cells expressing the UPRE-LacZ reporter construct co-currently with Pca1 (+), 50uM CdCl2 1hr [Cd 

(+)] and 2mM DTT 1hr [DTT (+)] where indicated.  Western blot analysis of 3HA-Pca1 expression when cells are 

treated with 50uM CdCl2 or  2mM DTT for 1hr. Western blot analysis of Ste6*-HA expressed in WT or Δdoa10 cells 

with or without 50uM CdCl2 1hr (C).  PGK is used as a loading control. 
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Abnormal proteins of the secretory pathway are often controlled via check points to 

ensure their quality, and this inhibits their secretion from the ER.  For example, secretion is 

prevented when the ERAD pathway is disabled [26, 28].  We utilized the oligomycin exporting 

ATP-binding cassette (ABC) transporter, Yor1, to address this issue as it must be secreted to the 

plasma membrane for function.  By fusing the N-terminal regulatory domain of Pca1 1-392 to 

Yor1, we could determine if Yor1 is able to escape the ER or if the degron of Pca1 prevented this 

[29].  If this is the case no oligomycin resistance would occur unless the cells were supplemented 

with Cd.  We tested oligomycin resistance; in agreement with its rapid degradation, Pca1 (1-392) 

Yor1-GFP was unable to confer oligomycin resistance on media lacking Cd (Figure 5A middle).  

Supplementation of Cd resulted in resistance (Figure 5A right) as did genetic deletion of doa10 

with or without Cd supplementation.  Collectively, these results display that Pca1 (1-392) Yor1-

GFP is secreted when turnover is prevented despite the absence of Cd.  This is consistent with our 

previous finding that deletion of the N-terminus (1-392) of Pca1 does not lead to a loss of 

function or secretion. 

Next, we sought to determine if the degron of Pca1 is sufficient for degradation of a 

cytosolic substrate.  By fusing the degron, Pca1 250-350, to GFP we determined that it is 

degraded through ERAD specifically Doa10 and in a Cd dependent manner (Figure 5B).  Again 

indicating the specificity of Cd for the Pca1 degron, Cd supplementation had no effect on the 

cytoplasmic Doa10 substrate GFP-CL1 (Figure 5B) [30]. 

2.4.4 Pca1 Physically interacts with Doa10.  We hypothesized that the degron of Pca1 is 

necessary for Doa10 interaction.  Microsomes were prepared from cells containing Doa10-

13myc, (Doa10-myc) and HA tagged Pca1 either with or without the N-terminus (HA-Pca1 

Δ392) [6, 18].  As a positive control for this interaction, HA-Ste6* was utilized [18].  Purified 

microsomes were treated with dimethyl dithiobispropionmidate (DTBP) a membrane permeable 

thio-reversible crosslinker.  Immunoprecipitation was performed using anti-HA conjugated 
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Sepharose beads to pull down HA-tagged proteins.  Doa10 was pulled down with HA-Pca1 and 

HA-Ste6* but not HA-Pca1 Δ392 (Figure 6) indicating requirement of the N-terminal degron for 

Doa10-Pca1 interaction. 

2.4.5 Metal binding and metal dependent conformational change of the Pca1 degron.  As 

previously demonstrated, both Cd and Cu can prevent Pca1 degradation, thus we hypothesized 

that metal binding to this degron would result in hiding of the degradation signal [7]. To display 

metal binding of the degron, HA-Pca1 250-350 was immunoprecipitated using anti-HA 

Sepharose beads and mobilized to a nitrocellulose membrane.  Autoradiography of the 

nitrocellulose membrane incubated with 
64

Cu(II) showed cysteine dependent binding to HA-Pca1 

(250-350) as no binding was detected in the construct bearing a mutation of all seven cysteine 

residues to alanine (Figure 7A).  Cu(II) and Cd(II) but not Zn(II) were able to compete with 

64
Cu(II) for binding to the HA-Pca1 (250-350) peptide as displayed by loss of signal in Figure 7B.   

To identify conformational change in the degron upon the addition of Cd, we used a 

limited trypsin proteolysis assay.  This allowed us to determine conformational change by 

observing a difference in trypsin degradation patterns.  Cells were cultured with or without Cd 

and varying concentrations of trypsin (Figure 7C).  We determined that there was some protection 

against trypsin proteolysis in cells treated with Cd, but there was no protection of the peptide 

lacking the seven cysteine residues [7].   
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Figure 5 The N-terminal regulatory domain does not function as an ER retention signal.  (A) Oligomycin 

resistance assay of WT or Δdoa10 cells expressing Yor1-GFP, or Pca1(1-392) Yor1-GFP.  Cells were spotted on YPEG 

solid media plates with (+) or without (-) 2.5ug/mL oligomycin, or 10uM CdCl2.  (B) Western blot analysis of GFP-

Pca1(250-350), GFP-CL1 or GFP expressed in WT or Δdoa10 cells cultured with (+) or without (-) 50uM CdCl2 for 

1hr.  PGK is used as a loading control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Pca1 N-terminal regulatory domain is essential for interaction with Doa10.  Empty vector, 3HA-Pca1, 

3HA-Δ392Pca1 (lacking the first 392 amino acids) or Ste6*-HA were transformed into WT cells or WT cells 

containing a chromosomally integrated Doa10-13myc.  These cells were subjected to microsomal isolation and 

chemical cross-linking followed by anti HA immunoprecipitation.  Immunoprecipitates were subjected to reduction 

with DTT to break the cross-linking and SDS/PAGE for determination of interaction.  Western blots were probed with 

anti-HA and Anti-myc antibodies.   
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Figure 7 Conformational change and metal binding of the Pca1 degron. 3HA Pca1 250-350 with or without (Δ) 

cysteine residues were expressed in Δdoa10 cells.  (A) HA-tagged Pca1 constructs were immunoprecipitated and 

subjected to 64Cu blotting with 1uM CuCl2, uCi which was followed by autoradiography.  The asterisk on the lower 

panel indicates a  nonspecific band.  (B) A 5-fold excess of non-radioactive metal ions were added and 64Cu blotting 

was perfomed.  (C) Anti-Ha immunoblot was performed on cell lysates prepared from cells treated with or without 50 

uM CdCl2 for 1 hour and increasing concentrations of Trypsin (as indicated). 

 

 

 

 

 

 

 

 

 

Figure 8 Model of Pca1 regulation through ERAD. Cadmium sensing occurs via the N-terminal cytosolic extension 

which lead to conformational changes rescuing Pca1 from degradation through the ERAD pathway. 
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2.5 Discussion 

The data presented herein reinforces the model presented in Figure 8, in which Pca1 a 

plasma membrane protein is post translationally controlled via an unexpected mechanism at the 

endoplasmic reticulum.  After synthesis, Pca1 is rapidly turned over by the ERAD-C ubiquitin 

proteasome system in the absence of Cd.  This degradation is mediated by an N-terminal degron 

which senses Cd and induces a conformational change resulting in rescue from ERAD.  This 

mechanism allows for rapid response to cadmium by the up-regulation of Pca1 protein levels. 

As cadmium is a highly toxic environmental contaminant in which the levels fluctuate, it 

is valuable for the cell to continually synthesize a cadmium exporter.  In the absence of Cd, there 

is no need for a high level of Pca1, so ERAD immediately following synthesis is able to maintain 

cellular homeostasis by keeping Pca1 levels low.  Another possible advantage for maintenance of 

low Pca1 levels in the absence of Cd is the potential for non-specific metal export of essential 

metals.  This has been identified in other P1B-Type ATPases, thus the continual turnover of Pca1 

would prevent the unwanted export of nutritional metals needed for cell growth and survival [31]. 

ERAD is in place to remove un- or mis-folded proteins preventing their accumulation 

which leads to toxicity and eventual cell death [9, 10]. About 30% of all proteins are rapidly 

turned over following synthesis by the proteasome [32].  It is commonly thought that these 

proteins are comprised of misfolded or partially synthesized ribosome products which come from 

translation errors.  These small peptides can act as both viral and host peptides to be presented to 

MHC class I molecules [33].  Our results display another yet unexamined task for ERAD in 

which the careful manipulation of a plasma membrane protein is controlled via a substrate 

dependent degron. 

Pca1 post translational regulation at the ER may serve as a largely uncharacterized 

mechanism by which the cell is able to control the expression of protein members of the secretory 
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pathway.  Indeed ERAD component machinery have been shown to be involved in the regulated 

degradation of proteins.  Apolipoprotein B is degraded at the ER in a co-translational manner, 

when lipid efflux from the liver is low [34, 35].  Sterol, in particular cholesterol, synthesis is 

regulated through the ERAD system in which the rate-limiting step is mediated by the ER-

resident HMG-CoA reductase [36].  A sterol-sensing domain within HMG-CoA reductase 

dictates the ERAD of this protein.  Additionally the yeast protein, MATa1 is degraded via Doa10 

and the binding of MATα2 to Mata1 prevents its degradation.  Pca1 differs from these examples 

in that its degradation is mediated through an N-terminal degron which is masked by the presence 

of its substrate [23, 37].  While there appears to be a mounting of evidence of expressional 

control of other ion channel members of the secretory pathway, the role of ERAD has not been 

studied in this process. For example, the ubiquitin proteasome system has been established in 

control of opioid receptors, aquaporin, ATP sensitive K
+
 channels, and acetylcholine receptor 

[38-41].  Opioid receptors are of special interest as up to 60% of newly synthesized delta opioid 

receptor proteins are degraded prior to secretion to the cell surface; however; the presence of the 

membrane permeable opioid ligand enhances opioid receptor maturation and secretion [42].  It is 

worthy to determine if this receptor functions in the manner we established for Pca1 in this study. 

From this study, we were able to establish the interaction between Doa10 and Pca1. It is 

still unknown however; if any other molecular factors are necessary for recognition of Pca1 as a 

degradation substrate.  Doa10 interaction may be downstream of initial recognition of Pca1, and 

other molecular factors involved in this have not been identified.   

The mechanism by which Pca1’s degron is recognized by degradation machinery is still 

unknown.  The current prevailing hypothesis is that misfolded proteins expose normally buried 

hydrophobic residues to the cytosolic surface which is recognized and directed to degradation.  

Matα2 displays a degron, Deg1, comprised of an amphipathic helix which is hydrophobic in 

nature [37].  There is no clear sequence similarity between Pca1 degron and Deg1.  Stuctural 
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studies of the Pca1 degron both with and without Cd would be ideal for identifying the structural 

components necessary for recognition by the ERAD machinery.  The application of this study 

would be broad impacting as we can utilize the information, project the requirements for 

degradation of ERAD-C substrates, and further apply this to identify other substrates which 

contain similar degradation signals.  While Pca1 250-350 degron does not have any significant 

sequence similarity with known proteins, we can identify potential metal binding sites of Pca1 

family members in plants [31].  We were unable, however, to determine if these proteins are 

regulated in a similar manner.  It will be worthy to study this further in the future.   

Here, we have demonstrated that Pca1 is regulated in a degron and substrate dependent 

manner in a novel and intricate manner to dictate its expression immediately following 

transcription.  These data display that small molecules substrates or metabolites may play an 

integral role in the regulation of protein secretion as is the case with Pca1. 
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Chapter 3: 
ER-associated Degradation of Pca1, a Polytopic Protein, 

via Interaction with the Proteasome at the Membrane 
 

Note: The results presented in this chapter are to be published with the following authors: 

Nathan Smith, David J. Adle, and Jaekwon Lee 
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3.1 ABSTRACT 

Endoplasmic reticulum-associated degradation (ERAD) plays a critical role for 

destruction of terminally misfolded proteins at the secretory pathway. The system also regulates 

expression levels of several proteins such as Pca1p cadmium exporter in the yeast S. cerevisiae. 

However, the mechanism by which ERAD substrates, including Pca1p and other polytopic 

proteins are targeted to the proteasome in the cytosol remains to be elucidated. Our study 

determined the roles for the molecular factors involved in dislodging Pca1p and two other ERAD 

substrates from the ER. In the cells where proteolytic activities of the 20S proteasome are 

inactivated, poly-ubiquitinylated Pca1p is predominantly stabilized at the ER membrane 

suggesting that the proteasome is required for not only destruction but also extraction of Pca1p 

from the ER. Pca1p formed a complex with the proteasome at the membrane in a Doa10 E3 ligase 

dependent manner. Cdc48p is required for recruiting the proteasome to Pca1p. While Ufd2p E4 

ubiquitin chain extension enzyme is involved in efficient degradation of Pca1p, the defect of 

Pca1p’s poly-ubiquitinylation in ufd2Δ cells did not affect formation of a complex between Pca1p 

and the proteasome. Ste6*p, another integral membrane protein undergoing ERAD through the 

Doa10p-dependent pathway, displayed the same outcomes observed for Pca1p. However, poly-

ubiquitiated Cpy1*p, a luminal ERAD substrate, was detected in the cytosol independent of 

proteolytic activities of the 20S proteasome. Thus, identifcation of Pca1p as a new ERAD 

substrate and chaterization of the process revealed that extraction and degradation of polytopic 

membrane proteins for ERAD is a coupled event in the 26S proteasome that is recruited to 

ubiquitinylated substrates while they reside at ER membrane. This cellular strategy could be 

evolved to relieve the dilemma of solubilization of hydrophobic peptides in the cytosol during 

ERAD.  
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3.2 INTRODUCTION 

Secretory proteins are inserted into the membrane or lumen of the endoplasmic reticulum 

(ER) for folding and maturation followed by subcellular trafficking [1-6]. A significant portion of 

proteins suffer failure in the processes which result in inactive conformation and aggregation [6]. 

Organisms have evolved the systems to deal with refolding and removal of terminally misfolded 

proteins. Disruption of folding or buildup of misfolded proteins in the ER induces unfolded-

protein response (UPR) to enhance folding capacity and reduce new protein synthesis [8, 9]. 

Terminally misfolded proteins at the secretory pathway are targeted for the ubiquitin-proteasome 

dependent removal; this is known as ER-associated degradation (ERAD) [10-15]. Excess 

turnover or buildup of aggregated proteins is attributed to numerous diseases, such as cystic 

fibrosis, diabetes, amyotrophic lateral sclerosis, and Alzheimer’s and Parkinson’s disease. 

Several individual substrates and molecular factors involved in ERAD have been 

characterized [16-19]. For instance in the yeast Saccharomyces cerevisiae, misfolded ER luminal 

proteins and proteins carrying misfolding(s) at the transmembrane region(s) are ubiquitinylated  

by the E3 ubiquitin ligase Hrd1p, whereas, proteins carrying misfolding at the cytosolic region(s) 

are ubiquitinylated by Doa10p. Some overlap between these two E3 enzymes was observed for a 

few substrates [20-23]. In congress with the E3 ubiquitin ligases, several other components, such 

as E2 ubiquitin conjugating enzymes, E4 ubiquitin extension enzymes, and molecular factors 

(e.g., chaperones) work for recognition and direction of substrates to ubiquitin ligases and the 

proteasome [11, 19, 22]. As the proteasome is in the cytosol, ERAD substrates should be 

mobilized from the ER lumen or dislodged from the membrane to be destructed [1]. The Cdc48p 

AAA-ATPase (p97 in mammals) is thought to provide a primary driving force in the process [16, 

20, 24].  Translocation of luminal ERAD substrates to the cytosol could occur through translocon 

(translocation channel) formed with several proteins, such as Sec61p [5, 25-32], and E3 ubiquitin 

ligases possessing multi-transmembrane domains (e.g., Hrd1p) [33-35]. E4 ubiquitin chain 
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extension enzymes (e.g., Ufd2p, Hul5p) facilitate ERAD through poly-ubiquitinylation [16, 36, 

37].  

Despite significant progress in the identification and characterization of molecular factors 

involved in ERAD, the mechanisms how proteins in the ER are targeted to the cytoplasmic 

proteasome remained to be elucidated [11, 16, 36]. Integral membrane proteins might be 

dislodged from the membrane and escorted to the proteasome for destruction [16]. However, this 

requires the cells to extract proteins containing hydrophobic regions and maintain their solubility 

in the cytosol. Thus, direct loading into the proteasome during the extraction from the membrane 

as a full-length protein or fragmented pieces could be a mechanism resolving the problem [36].  

Our previous study showed that expression of Pca1p cadmium exporting P-type ATPase in 

the yeast S. cerevisiae is dependent upon the ERAD pathway [38]. In the absence of cadmium 

Pca1p is rapidly turned over through Doa10p-mediated ubiquitinylation and the proteasome; 

however, when cadmium is present the protein is rescued from ERAD and secreted to the plasma 

membrane where it functions as a cadmium exporter [38, 39]. A degron at the N-terminal 

cytosolic domain is responsible for ERAD of Pca1p and also senses cadmium to rescue Pca1p 

from ERAD. Given its rapid turnover, degron rather than misfolding dependent ERAD, and 

control of the process by cadmium, Pca1p is a unique example among ERAD substrates. 

Moreover, the well-established experimental systems in yeast and conserved mechanisms for 

ERAD between yeast and mammals allow Pca1p to be a useful model substrate for gaining a 

better understanding of the mechanisms underlying ERAD of polytopic membrane proteins.   

Here we characterized the roles for the molecular factors involved in dislodging ERAD 

substrates from the ER including Pca1p, another membrane protein Ste6*p [40] and the luminal 

protein Cpy1*p [19]. Subcellular location, physical interaction of the substrates with the 

proteasome, and their turnover rates were determined. Our data suggests that distinct from Cpy*p, 

extraction and degradation of Pca1p and Ste6*p are coordinated by their interaction with the 
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proteasome to the ER membrane, which is likely significant for avoiding the release of membrane 

proteins to the cytosol in the process of ERAD. 
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3.3 Experimental procedures  

3.3.1 Yeast Strains and Growth Conditions - A BY4741 haploid S. cerevisiae strain (MATa 

his3_1, leu2_0, met15_0,ura3_0) and null mutants of particular gene(s) including hul5::KanMX6 

(hul5Δ), ufd2::KanMX6 (ufd2Δ), pdr5::KanMX6 (rpn5Δ), and doa10::KanMX6 (doa10Δ) were 

purchased from OpenBiosystems. A pdr5::KanMX6 (rpn5Δ) strain background was used for 

experiments in which new protein synthesis was blocked by cycloheximide (CHX) co-culture. 

Strains of doa10::His3 or ufd2::His3 in a rpn5Δ strain (doa10Δrpn5Δ, and ufd2Δrpn5Δ, 

respectively) were generated by homologous recombination of a deletion cassette as previously 

described [41]. Yeast cells were cultured in synthetic complete (SC) medium (2 % dextrose, 0.2 

% amino acid mixture, and 0.67 % yeast nitrogen base) lacking specific amino acid(s) if plasmid 

selection is necessary. Cells were cultured at 30 
o
C unless specified. To inactivate Cdc48p, a 

strain expressing a temperature-sensitive CDC48 allele (cdc48-3) was shifted to restrictive 

temperature 37 
o
C for 30 min [42]. For cycloheximide (CHX) chase, cells at the mid-log phase 

were co-cultured with CHX (Sigma, 100ug/mL) for a period as indicated in each experiment.  

3.3.2 Plasmid Construction - A single copy yeast vector p416-GPD [43] was used for 

glyceradehyde-3-phosphate dehydrogenase gene promoter-mediated constitutive expression of 

PCA1, N-terminal truncated PCA1, and CPY1* [39]. Hemagglutinin (HA) epitope tagging and 

green fluorescent protein (GFP) fusion at the N-terminus of Pca1p were conducted as previously 

described [39].  C-terminal c-myc epitope tagging of Pca1p was achieved by PCR cloning using a 

primer containing c-myc sequence prior to the stop codon. Cpy1*p possesses the G255R 

substitution to be targeted to ERAD [19]. Site-directed mutagenesis was accomplished by a 

primer overlap extension method [44]. Two c-myc epitopes were inserted in the C-terminus of 

CPY1* for Western blotting analysis using anti-myc antibodies. Common molecular biology 

techniques, including plasmid amplification using Escherichia coli and purification, followed 
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previously established methods [92]. Plasmid transformation into yeast was performed using the 

lithium acetate method [45]. 

3.3.3 Fluorescence Microscopy - Cells cultured in SC media were mixed with phosphate-

buffered saline (PBS) containing NaN3 (15 mM) and NaF (15 mM) to limit cellular activities. 

Cells were collected by centrifugation and subjected to confocal microscopy as described [39].  

3.3.4 Fractionation of Cell Lysates – Yeast cells were broken by vortexing (1 min X 5 

times) with glass beads in the PBS lysis buffer containing 1mM PMSF 5mM EDTA HALT 

protease inhibitor cocktail and subjected to centrifugation (4 
o
C, 1,000 x g, 10 min) to remove 

large cell debris and unbroken cells. The supernatant was collected for fractionation of soluble 

proteins and the pellet containing integral membrane proteins by centrifugation (4 
o
C, 100,000 x 

g, 1 hr). Flotation sucrose gradient fractionation was performed as previously described [46]. 

Briefly, yeast cells were broken using glass beads in the lysis buffer (50 mM HEPES, 150 mM 

NaCl, 5mM EDTA, 1 mM DTT, 1 mM PMSF, HALT protease inhibitors). Sucrose gradient (0.25 

M, 1.5 M, ~1.7 M [200 μl cell lysate and 600 μl 2.3 M sucrose], and 2.3 M in descending order) 

was spun at 4 
o
C at 100,000 x g for 5 hrs.  Twelve fractions (300 μL each) were then taken from 

the top. 

3.3.5 In Vivo Crosslinking and Immunoprecipitation - Cells expressing Pca1p tagged with 

HA epitope were co-cultured with a 20S proteasome inhibitor MG132 (20 μM) for 2 hrs. Cells 

were collected by washing twice in ice-cold PBS and re-suspended in PBS containing MG132 

and a membrane permeable thiol-reversible cross-linker, dimethyl 3,3’-dithiobispropionimidate 

(DTBP) (100 g/l final concentration), for 30 min at room temperature with gentle rocking.  

Cells were then washed in the lysis buffer (50 mM Tris-HCl (pH 7.4), 5 mM EDTA, protease 

inhibitor cocktail (Halt, thermo scientific), and 1 mM phenylmethanesulfonyl fluoride (PMSF) 

(Sigma) to quench crosslinking reaction. Cells were then broken by glass bead disruption (10 X 1 

min in ice). Lysates were collected and fractionated by centrifugation at 100000g for 30 minutes. 

The resulting pellet was washed two times in ice-cold PBS and re-suspended in PBS containing 
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Triton X-100 (1 %) and protease inhibitors. Immunoprecipitation was performed using a kit 

(Profound
TM

 c-Myc Tag IP/Co-IP application set, Thermo Scientific) according to the 

manufacturer’s specifications.  

3.3.6 Immunoblotting - Yeast cells broken by vortexing (5 X 1 min) with glass beads in the 

lysis buffer (PBS containing 1 mM PMSF, 50 mM Halt protease inhibitor cocktail, 5 mM 

ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100). Soluble fraction was obtained by 

centrifugation (15 minutes at 21000g). Protein concentrations were measured using a kit (BCA, 

Pierce) according to the manufacturer’s specifications. Samples were denatured in a reducing 

SDS sample buffer containing dithiothreitol (DTT, 25 mM) for 15 min at 37 °C, and samples 

were subjected to polyacrylamide gel electrophoresis (PAGE).  Gels were transferred to 

nitrocellulose membrane and hybridized with primary antibodies against HA epitope (Rockland, 

600-401-384), Rpn5p subunit of the 19S proteasome (Abnova, PAB 15594), c-myc epitope 

(ABM, G019), or ubiquitin (Covance, MMS-257P). 3-phosphoglycerate kinase (PGK) was 

detected using anti-PGK antibodies (Invitorgen, 459250) to determine equal loading. Horseradish 

peroxidase-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology Inc.) or sheep anti-mouse 

IgG (Santa Cruz Biotechnology Inc) was used as secondary antibodies. Western Pico 

Chemiluminesence (Pierce) was used to detect antibody bound proteins.  
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3.4 RESULTS 

3.4.1 Pca1p remains in the membrane when the proteasome is inhibited – Pca1p, a 

cadmium-exporting P1B-type ATPase in yeast, is a polytopic protein (Fig. 1A) that undergoes 

ERAD in the absence of cadmium [38]. Doa10p, an E3 ligase, the proteasome, and a degron 

identified within amino acids 250 and 350 at the N-terminal cytosolic domain (Fig. 1A) are 

required for Pca1p turnover [39]. Given this uniqueness and eight predicted transmembrane 

helices of Pca1p, we sought to determine if ERAD of Pca1p relies on known molecular factors of 

ERAD and how this polytopic protein is degraded by the proteasome working in the cytosol. To 

determine subcellular localization and turnover rates of Pca1p, we fused green fluorescent protein 

(GFP) or epitope, such as triple hemaglutinin (3HA) and two c-myc (2Myc) at the N- or C-

terminus (Fig. 1A). All these PCA1 alleles are fully functional and display cadmium-dependent 

ERAD (data not shown). 

We first determined subcellular distribution of GFP-Pca1p when proteolytic activities of the 

proteasome are inhibited by MG132 [47] co-culture or Cdc48 AAA-ATPase is inactivated at a 

restrictive temperature (Fig. 1B). Cdc48p is a known critical player in dislodging ERAD 

substrates from the ER [48]. A strain possessing temperature-sensitive CDC48 allele (cdc48-3) 

was used to inactive this essential gene [42] at a restrictive temperature 37
o
C. Cells were pre-

cultured with cycloheximide to inhibit new Pca1p synthesis. Given that the half-life of Pca1p is 

less than 5 min [39], the majority of remaining Pca1p should be ubiquitinylated species. Pca1p 

fused with GFP at the N-terminus (GFP-Pca1p) is not detectable in wild type (WT) control cells 

because of rapid turnover as demonstrated previously [39]; however, Pca1p is highly expressed 

when the proteasome or Cdc48p is inactivated (Fig. 1B). Co-localization of Pca1-GFP with 

Sec63p, an ER resident protein, indicates that Pca1p remains in the ER membrane under the 

experimental conditions. These results suggest that ubiquitinylated Pca1p cannot be extracted 
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from the ER membrane without the function of proteolytic activity of the proteasome and 

inactivation of Cdc48 AAA-type ATPase.     

We next addressed the possibility of denatured or fragmented Pca1p might be accumulated in 

the cytosol. Pca1p fused with 3HA and 2Myc (Fig. 1A) was expressed in WT, cdc48-3, and 

doa10Δ cells. Western blotting analyses of total cell extract using anti-HA or Myc antibodies 

displayed signals at the locations corresponding to full-length Pca1p (* in Fig. 1C). The signals of 

higher molecular weight than full-length Pca1p particularly in WT cells co-cultured with a 

proteasome inhibitor MG132 likely reflect ubiquitinylated Pca1p species. All Pca1p fragments 

below full-length Pca1p were also in cells lacking Doa10p (doa10Δ), the major E3 ligase of 

Pca1p. Considering the fact that Pca1 ubiquitinylation is hardly detectable in doa10Δ cells [38], 

those fragments are irrelevant to ERAD.  Unfortunately when probing with anti-myc antibodies 

only full length was detectable and all lower molecular weight fragments were non-specific as 

seen by the empty vector control (lane 1 Figure 1C middle panel)      

To determine distribution of Pca1p in membrane and cytosol, total cell lysates were 

fractionated by ultra-centrifugation (100,000 x g for 30 min) to supernatant (S) and pellet (P) 

containing soluble and integral membrane proteins, respectively (Fig. 1D). Western blot analysis 

detected full-length and higher molecular weight Pca1p species at the “P” fraction but not “S” 

fraction (Fig. 1D). Immuno-precipitation of Pca1p from the “S” and “P” fractions with anti-HA 

antibodies followed by western blotting using anti-ubiquitin antibodies (Fig. 1E) further 

confirmed that most of ubiquitinylated Pca1p species are in the “P” fraction. These results 

suggest that Pca1p in the cells deficient of proteolytic activities of the proteasome or Cdc48p 

function resides in the membrane.  
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Figure 1 Localization of Pca1p at the membrane of the cells in which the proteasome or Cdc48 AAA-type 

ATPase is inactivated. (A) A schematic depiction of Pca1p. The black squares indicate eight transmembrane 

helixes. Green fluorescent protein (GFP) or triple HA epitope was fused at the N-terminus (filled circle). Myc 
epitope is fused at the C-terminus (empty circle). The unfilled square indicates the amino acid 250-350 region 
containing a degron. (B) Subcellular distribution of Pca1p determined by fluorescent microscopy. Expression 

plasmids of GFP-fused Pca1p and red fluorescent protein (RFP)-fused Sec61p, an ER-resident protein, were 
co-transformed into WT control cells and a strain containing a temperature-sensitive allele of CDC48 (cdc48-3). 
Mid-log phase cells were co-cultured at the indicated temperature with and without MG132 for 2hr. 
Cyclohexamide was added to the media 1 hr before collecting cells. The cdc48-3 cells cultured at 23 

o
C were 

shifted to 37 
o
C for 30 min. Subcellular distribution Pca1-GFP was visualized by confocal fluorescent 

microscopy. (C) Detection of Pca1p and its fragments by immuno-blotting. Pca1p fused with 3HA and Myc 

epitope was expressed in a control strain lacking PDR5 (WT), a strain expressing cdc48-3 allele, and a doa10Δ 
strain. WT and cdc48-3 cells were pre-cultured with MG132 for 2 hrs and at 37 

o
C for 30 min, respectively. Total 

cell extracts prepared by glass bead disruption and Triton X-100 (1%) solubilization were subjected to Western 
blotting using anti-HA and -Myc antibodies. The blots were also probed with anti-Pgk1p antibodies to determine 
equal loading. (D) Fractionation of Pca1p to determine subcellular distribution of Pca1p. Total lysates (T) of the 
cells that were cultured as described in (C) were prepared by glass bead disruption followed by removing un-

broken cells (300 x g for 10 min centrifugation). The samples were separated to soluble (S) and pellet (P) 
fractions by centrifugation (100,000 x g for 30 min).  The T, S and P fractions were solubilized (1% Triton X-100) 
and subjected to Western blot analysis using Anti-HA and -Myc antibodies. (E) Detection of majority of 

ubiquitinylated Pca1p at the P fraction. Pca1p in the S and P fractions obtained from WT cells as described 
above was immuno-precipitated using anti-HA antibodies. Pca1p protein and its ubiquitinylation status were 
determined by Western blotting using anti-HA and -ubiquitin (Ub) antibodies, respectively. The asterisk indicates 
the location where full-length non-ubiquitinylated Pca1p migrates. 
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3.4.2 Pca1p in the pellet fraction exists as membrane-integrated species - The results 

presented in Fig. 1 suggest that Pca1p is not dislodged from the membrane without the activities 

of the proteasome and Cdc48p. However, Pca1p could be extracted out of the membrane but 

associated with the membrane or form cytosolic aggregates or large complexes that could be 

pulled down to the pellet fraction. To address these concerns, the membrane fractions were 

incubated with Na2CO3 (0.2 M, pH 11) to release peripheral membrane proteins to soluble (S) 

fraction [49]. Under this condition all Pca1p species, including Pca1p fragments that migrate 

faster than full-length Pca1p, remain in the pellet factions of WT cells co-cultured with MG132, 

Cdc48p-inactive cells, and doa10Δ cells (Fig. 2A). However, Triton X-100 (1%) released Pca1p 

to the “S” fraction near completely (Fig. 2A), suggesting that Pca1p does not form a large 

complex or aggregate that can be pelleted by centrifugation (100,000 x g).  

To confirm further Pca1p’s membrane localization, cell lysates were subjected to a sucrose 

density gradient fractionation [46] (Fig. 2B). If Pca1p is in membrane vesicles, it will float to the 

low-density fractions. Cell lysate was loaded at the layer of 1.7 M sucrose. Centrifugation 

followed by Western blotting analysis of collected fractions displays that the majority of full-

length Pca1p is floated to the low-density fractions similar to that of Pca1p(Δ392) lacking the 

degron, which is distinct from Pgk1p, a soluble protein (Fig. 2B). Treatment of the cell lysate 

with Triton X-100 (1%) followed by the same experiment resulted in migration of Pca1p at the 

fractions detecting Pgk1p (Fig. 2B). Most of Pca1p species, excluding a few small fragments, 

were detected at the membrane fractions (Fig. 1C, upper panel).  

Pca1p with different degrees of ubiquitinylation could be spread widely on SDS-PAGE as 

Pca1p species of diverse molecular weight, which results in no detection by Western blot. 

Samples obtained by sucrose density gradient fractionation were subjected to treatment of a de-

ubiquitinylation enzyme (Usp2) followed by Western blotting analysis of Pca1 using anti-HA 

antibodies (Fig. 1C, lower panel). No Pca1p was identified in the fractions containing soluble 
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proteins. Next to ascertain ubiquitinylation status of Pca1p in the fractions containing membrane 

vesicles (including 4, 5, and 6) and soluble proteins (including 10, 11, and 12), Pca1p was 

immunoprecipitated using anti-HA antibodies and then probed with antibodies against ubiquitin 

and HA epitopes (Fig. 2D). Most of ubiquitinylated Pca1p species were detected at the fractions 

containing floated membrane vesicles. The soluble protein fractions contain only a few ubiquitin-

conjugated Pca1p fragments likely corresponding to cleaved N-terminal cytosolic portion of 

Pca1p. Collectively, these results suggest that Cdc48p alone cannot dislodge Pca1p from the 

membrane for ERAD if Mg132 inhibits the proteolytic activities of the proteasome.  

 

3.4.3 Pca1p interacts with the proteasome at the ER membrane in an E3 ligase and its 

degron dependent manner – Given the potential role for the proteasome in extraction of Pca1p 

from the ER, we next determined if the proteasome forms a complex with Pca1p at the ER 

membrane. WT and doa10Δ cells expressing C-terminal 2Myc epitope-tagged wild-type control 

Pca1p and Pca1p lacking N-terminal 392 amino acids which contains a degron (Pca1(degronΔ)) 

were co-cultured with an inactivator of the 20S proteasome, MG132, and then a membrane 

permeable thiol–reversible cross-linker, dimethyl 3,3'-dithiobispropionimidate (DTBP). 

Membrane fractions were isolated as described in Fig. 1D, washed, and solubilized (1% Triton X-

100). Samples were then subjected to anti-myc immuoprecipitation. After elution, cross-links 

were broken and protein interaction was visualized by Western blot. Pca1p was found to form a 

complex with Rpn5p, a 19s proteasomal subunit [50], and 20S subunits at the membrane (Figs. 

3A and 3B). The complex formation between Pca1p and Rpn5p was dependent on DOA10 

encoding an E3 ligase for Pca1p and a degron in Pca1p (Fig. 3A). These results indicate that 

when Pca1p is ubiquitinylated by Doa10p, it recruits the proteasome while it resides at the 

membrane.  

  

82



  

250 

130 
95 
72 
55 

36 

250 

130 
95 
72 
55 

36 

kDa     S   P   S    P   S   P  

A 

WT + MG132 

kDa   S   P    S    P    S    P  

cdc48-3 at 37 
o

C 

kDa 

250 

130 
95 
72 
55 

36 

Anti-HA 

 S     P    S    P    S    P  

doa10Δ 

  Top                          Load                 Bottom 
  

kDa 
250 
130 
95 
72 
55 

36 
Anti-HA 

    1   2   3   4     5    6    7    8      9   10   11   12 

    Top                       Load                 Bottom 
     

C 

Pca1 

     1   2   3   4    5    6     7    8     9    10    11  12 

Pca1 
(Δdegron) 

B 

Pgk1 

Pca1 
TX-100  

Figure 2 Detection of fragmented or ubiquitinylated Pca1p by subcellular fractionation. (A) Pca1p and its 

degradation intermediates are embedded in the membrane. Pca1p fused with triple HA and Flag epitopes at 
the N- and C-termini, respectively, was expressed in a control strain lacking PDR5 (WT), a strain expressing 
cdc48-3 temperature sensitive allele, and a doa10Δ strain. WT and cdc48-3 cells were pre-cultured with 
MG132 (20 uM, 2 hrs) and at 37 oC (30 min), respectively. Total cell lysates were prepared by glass bead 
disruption followed by centrifugation (300 x g for 10 min) to remove unbroken cells. Pellet fractions obtained by 
centrifugation (100,00 x g for 30 min) of total cell lysate were re-suspended in phosphate-buffered saline (PBS) 
with and without Na2CO3 or Triton X-100. The suspensions were incubated for 30 min on ice and then 
centrifuged at 100,000 × g for 30 min. The supernatant (S) was precipitated in trichloroacetic acid (10 %) and 
washed two times with acetone. The pellet (P) was solubilized with PBS containing detergent (1% Triton X-
100). Samples were denatured in SDS sample buffer (37 

o
C, 15 min) and analyzed by Western blot using anti-

HA antibodies. (B) Fractionation of Pca1p by flotation sucrose gradient. WT cells expressing 3HA and Myc 

tagged Pca1p or Pca1(degronΔ)p lacking first 392 amino acid containing a degron were co-cultured with 
MG132 for 2 hrs. Cyclohexamide was added to the media 1 hr before collecting cells. Total cell lysates were 
prepared by glass bead disruption followed by centrifugation (300 x g for 10 min) to remove un-broken cells. 
Samples were loaded at the layer of 1.7M sucrose density at a 0.25 to 2.3M gradient from the top to bottom. 
After centrifugation (100,000 x g, 5 hrs), the collected fractions were subjected to Western blotting. An aliquot 
was incubated with Triton X-100 (1%) on ice for 30 min before the fractionation to extract Pca1p out of the 
membrane. Obtained fractions were subjected to Western blot analyses of Pca1p and Pca1(degronΔ)p using 
anti-HA antibodies. Presented data reflects full-length Pca1p and Pca1(degronΔ)p. Pgk1p was detected as a 
marker of soluble proteins. (C) Distribution of full-length, ubiquitinylated, and fragmented Pca1p species 

determined by flotation sucrose gradient. Fractions obtained as described in (B) were subjected to Western blot 
analysis of Pca1p with and without treatment of deubiquitinylation enzyme after fractionation as described 
previously [7]. (D) Detection of ubiquitinylated Pca1p from fractions containing membrane and cytosolic 

proteins. Total cell lysates were fractionated as described in (B) and solubilized by detergent (1% Triton X-100). 
Using anti-HA antibodies, Pca1p was immuno-precipitated from pooled fractions 4, 5 and 6 (4+5+6) and 10, 11 
and 12 (10+11+12) containing membrane and cytosolic proteins, respectively. The samples were subjected to 
Western blotting using anti-ubiquitin (Ub) and -HA antibodies.  
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A remaining question is if Pca1p is a unique case of interaction with the proteasome at the 

membrane in the process of ERAD or other poly-topic membrane proteins undergoing ERAD 

manifest a similar pattern observed for Pca1p. Ste6*p is a mutated form of the alpha factor 

transporter Ste6p in yeast [40], which causes a premature stop codon and a change in N-

glycosylation. Ste6*p is also targeted for degradation via the Doa10p, Cdc48p, and proteasome 

dependent pathway [16, 40, 51]. Subcellular fractionation showed that Ste6*p remained in the 

membrane fraction under proteasome inhibition conditions (data not shown). Flotation sucrose 

gradient fractionation also showed that Ste6*p remains in the membrane when cells are co-

cultured with a proteasome inhibitor (data not shown). The same experiment described in Fig. 3A 

showed that Ste6*p pulled down a proteasome subunit Rpn5p in a Doa10p-dependendent manner 

(Fig. 3C). Therefore, Ste6*p also attracts the proteasome to the ER membrane when it is 

ubiquitinylated by Doa10p.   

 

3.4.4 A need of Cdc48p in the complex formation between Pca1p and the proteasome – 

Cdc48p is a critical molecular factor for ERAD of Pca1p and many other proteins [16, 38, 42].  

Nevertheless, its role(s) for ERAD of integral membrane proteins remain to be determined. In 

particular, given the requirement of both the proteasome and Cdc48p for extraction and 

degradation of Pca1p (Figs. 1 and 2A), the role of Cdc48 in the ERAD of Pca1p in conjunction 

with the proteasome is elusive. ATPase activities of Cdc48p are believed to contribute to the 

retro-translocation of ubiquitinylated luminal proteins for ERAD [42], and Cdc48p also escorts 

them to the proteasome as demonstrated by a physical interaction between Cdc48p and the 

proteasome [42]. To test a hypothesis that Cdc48p might recognize ubiquitinylated Pca1p to 

recruit the proteasome, we ascertained if the proteasome forms a complex with Pca1p in the cells 

expressing inactive Cdc48p. Indeed, no significant physical interaction between Pca1p and Rpn5p 

subunit of the proteasome was detected when a strain expressing a temperature sensitive cdc48-3 

allele was cultured at a restrictive temperature (Fig. 4A).  
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Figure 3. Pca1p forms a complex with the proteasome at the membrane in a Doa10p dependent 
manner. Pca1p, Pca1(degronΔ)p deleting first 392 amino acids, and Ste6*p were expressed in WT and 

DOA10 E3 ligase knockout (doa10Δ) strains. Two Myc and three HA epitope were tagged at the C-terminus 

of Pca1p and Ste6*, respectively. Cells were co-cultured with cell permeable reversible cross-linker (DTBP, 

100 ug/ml) and MG132 (20 uM), an inhibitor of proteasomal proteolytic activities, for 2 hrs. Protein extracts 

were obtained from the cells by glass bead disruption and Triton X-100 (1%) solubilizition. The samples 

were subjected to immune-precipitation using anti-Myc. Co-immunoprecipitation of Pca1p and Ste6*p with 

Rpn5p, a subunit of 19S regulatory particle (A and C), and 20S catalytic core particle (B) was detected by 

Western blotting. 
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Figure 4 Cdc48p plays a role in Pca1p’s complex formation with the proteasome and poly-
ubiquitinylation. (A) A physical association between Pca1p and Rpn5p, a subunit of 19S regulatory particle, 

determined by co-immunoprecipitation. Pca1p tagged with triple HA epitope at the N-terminus (HA-Pca1) was 

expressed in a strain carrying a temperature-sensitive CDC48 allele (cdc48-3). The cells at mid-log phase were 

cultured at a permissive temperature (23 oC, + Functional Cdc48) or shifted to a restrictive temperature (37 oC, 

- Functional Cdc48) for 30 min with a cell permeable reversible cross-linker (DTBP, 100 ug/ml) and MG132 

(20 uM), an inhibitor of protolytic activities of the proteasome, for 2 hrs. Protein extracts obtained by glass 

bead disruption isolation of the pellet fraction as previously described (see methods and materials) and Triton 

X-100 (1%) solubilizition used for immunoprecipitation using anti-HA antibodies. Co-immunoprecipitation of 

Rpn5p, a subunit of 19S regulatory particle was detected by Western blot. (B) Poly-ubiquitinylation of Pca1p 

as a functional of Cdc48p activities. To determine ubiquitinylation status of Pca1p, the samples obtained by 

immuno-precipitation as described above were subjected to Western blotting using anti-ubiquitin antibodies. 
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Cdc48 also interacts with other molecular factors involved in ERAD such as E4 ubiquitin chain 

extension enzyme Ufd2p [52]. To gain a better understanding of the defect in Pca1p’s ERAD and 

complex formation with the proteasome, we determined ubiquitinylation status of Pca1p in the 

Cdc48 inactive cells. Immunoprecipitation of Pca1p using anti-HA antibodies followed by West 

blot analysis of Pca1p using anti-ubiquitin antibodies showed a slight ubiquitinylation deficiency 

in the cells expressing non-functional Cdc48p (Fig. 4B). This could reflect that defect in Cdc48p 

leads to a problem in recruiting E4 ligase such as Ufd2p and/or presenting mono-ubiquitinylated 

Pca1p to Ufd2p.  

 

3.4.5 Ufd2p, an E4 Ubiquitin Extension Enzyme for Pca1p, did not affect complex 

formation between Pca1p and the proteasome - Deficiency of ubiquitin chain extension 

observed in Cdc48p-defective cells (Fig. 4B) could cause the lack of a complex formation 

between Pca1p and the proteasome (Fig. 4A) and ultimately, ERAD deficiency of Pca1p (Fig. 

1B). Following ubiquitinylation by E3 ligase(s), E4 ubiquitin chain extension enzymes, such as 

Ufd2p and Hul5p in yeast, have been implicated in the degradation of several ERAD substrates 

[16, 36, 52, 53]. Ufd2p interacts with Cdc48p and Rad23p in the process of substrate delivery to 

the proteasome [28]. It is intriguing that Ufd2p regulates turnover of only a subset of Doa10p 

substrates [37], and Hul5p is a component of the proteasome [36, 54, 55]. We ascertained the 

roles for poly-ubiquitinylation in ERAD and the interaction of Pca1p with the proteasome in 

ufd2Δ and hul5Δ strains. Cycloheximide chase of Pca1p revealed no significant difference in 

half-life (T1/2) of Pca1p expressed in WT and hul5Δ cells; however, ufd2Δ leads to significant 

extension of the T1/2 of Pca1p (~30 min) (Figs. 5A and 5B). This result suggests that Ufd2p is 

required for efficient turnover of Pca1p. Immuno-precipitation of Pca1p followed by 

immunoblotting using anti-ubiquitin antibodies supported that Ufd2p is a major E4 enzyme of 

Pca1p (Fig. 5C). In the ufd2Δ cells, Pca1p was detected at the membrane fractionation but not at 
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the soluble fraction (Fig. 5D) suggesting that in the ufd2Δ cells the majority of Pca1p remains in 

the membrane.    
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Figure 5 Formation of a complex between Pca1p and the proteasome is independent of poly-ubiquitinylation 
status of Pca1p. (A) Significant reduction of turnover rate of Pca1p in Ufd2 gene knockout (ufd2Δ) cells. Pca1p tagged 

with two Myc epitope at the C-terminus (Pca1-Myc) was expressed in WT, ufd2Δ, and hul5Δ strains. Cycloheximide 

(CHX) chase and Western blotting determined Pca1p levels. Protein extracts were prepared by glass bead disruption 

and Triton-X 100 (1%) solubilization. Pgk1p was probed as a loading control. (B) Pca1p levels presented in (A) were 

quantitated from four repeats. (C) Defect in poly-ubiquitinylation of Pca1p in a ufd2Δ strain. An expression construct of 

Pca1p tagged triple HA and one Flag epitope at the N and C-terminus, respectively, was transformed in a ufd2Δ strain. 

Total cell lysates (T) were obtained from ufd2Δ cells with and without co-culture with MG132 for 30 min by glass bead 

disruption and then removing un-disrupted cells and large particles by centrifugation (300 x g for 5 min). The detergent-

solubilized S and P fractions were subjected to immune-precipitation using anti-HA antibodies followed by West 

blotting using anti-ubiquitin (Ub) and –HA antibodies. (D) Total cell lysates (T) descriced in (C) were subjected to 

separation to soluble (S) and pellet (P) fractions by centrifugation (100,000 x g for 30 min). After solubilization with 

Triton-X 100 (1%), Western blot using Anti-HA, -Flag, and -Pgk1p antibodies determined distribution of Pca1p species 

in the S and P fractions. (E) Formation of a complex between Pca1p and Rpn5p, a subunit of the proteasome. After co-

culturing the cells with a permeable reversible cross-linker (DTBP, 100 ug/ml) and MG132, an inhibitor of proteasomal 

proteolytic activities, protein extracts were obtained from the cells by glass bead disruption and detergent (1% Triton X-

100) solubilizition. The samples were subjected to immunoprecipitation using anti-Myc antibodies. Rpn5p in the 

samples was detected by Western blotting using anti-Rpn5p antibodies. 
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 As Ufd2p is required for efficient degradation of Pca1p, we next sought to determine if 

polyubiquitinylation by Ufd2p is necessary for the interaction of Pca1p with the proteasome. In-

vivo cross-linking and co-immunoprecipitation showed that Pca1p is still able to interact with the 

proteasome in the absence of Ufd2p (Fig. 5E). This indicates that Ufd2p-dependent ubiquitin 

chain extension presented in Fig. 5C is not required for formation of a complex between Pca1p 

and the proteasome. 

 

3.4.6 Retro-translocation of a soluble ERAD substrate without functional proteasome – 

Maturation and trafficking of vacuolar carboxypeptidase Y (Cpy1p) in yeast is dependent on ER 

[56]. Cpy1p containing a G255R mutation (Cpy1*p) is degraded through the ERAD pathway [19, 

56-59]. We have employed Cpy1*p as an example of an ER luminal protein to elaborate the 

hypothesis that soluble ERAD substrates can be retro-translocated prior to being targeted to the 

proteasome.  

When WT yeast cells were co-cultured with a proteasome inhibitor MG132, Cpy1*p was 

detected as full-length and poly-ubiquitinylated forms in the soluble fraction (Fig. 6A, 3
rd

 and 4
th
 

panels). Rpn5p, a subunit of 19S proteasome, was co-immunoprecipitated with Cpy1*p in soluble 

protein fraction but not pellet fraction (Fig. 6A, 2nd panel) indicating that Cpy1*p forms a 

complex with the proteasome in the cytosol. However, Cpy1*p in the cells lacking Hrd1p E3 

ligase targeting Cpy1*p for ERAD remains at the pellet fraction along with Kar2p, an ER luminal 

protein (Fig. 6B); thus, detection of Cpy1*p in soluble fraction followed by poly-ubiquitinylation 

(Fig. 6A) is a consequence of ERAD progress of Cpy1*p rather than it leaking from the ER 

during sample preparation. Collectively, these results suggest that Cpy1*p ubiquitinylated by 

Hrd1p is retro-translocated to the cytosol without proteolytic activities of the proteasome.  This is 

distinct from Pca1p.   
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Figure 6 Distribution Cpy1*p in the cells where the proteolytic activities of the proteasome are inhibited. 
Cpy1*p tagged with one Myc epitope at the C-terminus was expressed in WT control and hrd1Δ cells. Cells were 

co-cultured with MG132 (20 uM, 2 hrs), an inhibitor of proteasomal proteolytic activities, and a cell permeable 

reversible cross-linker (DTBP, 100 ug/ml, 30 min). The reaction was stopped with Tris-HCl (50 mM, pH 7.4). 

Total cell lysates (T) were prepared by glass bead disruption, and then un-broken cells were removed by 

centrifugation (300 x g for 5 min).  Samples were subjected to separation of soluble (S) and pellet (P) fractions by 

centrifugation (100,000 x g for 30 min). Protein extracts were obtained by solubilization the samples with 

detergent (1% Triton X-100). To determine the physical interaction between Cpy1*p and Rpn5p, the samples were 

subjected to immunoprecipitation using anti-Myc antibodies followed by Western blotting using anti-Rpn5 and -

Myc antibodies (A 2nd and 3rd panels). Ubiquitinylation status was determined by probing the blots with anti-

ubiquitin (Ub) antibodies (A, Top panel). Cpy1*p and were detected by Western blot using anti-Myc antibodies 

(A-B). The blots were also probed with antibodies against Kar2p, an ER-resident protein (B and D). 
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3.5 DISCUSSION 

The mechanisms underlying retro-translocation of substrates of ERAD from the ER to the 

cytosol for destruction remain unclear. This process for membrane proteins is additionally 

complex because they should be dislodged from the lipid bilayer to a hydrophilic environment. 

Our data indicates that polytopic ERAD substrates undergo proteasomal degradation at the ER 

membrane via recruiting the proteasome rather than being extracted to the cytosol prior to being 

targeted to the proteasome, which is distinct from the process of Cpy1*p, a soluble substrate in 

the lumen of the ER. Several lines of evidence suggest that membrane proteins undergoing 

ERAD are fed into the proteasome while they reside in the membrane in an E3 ligase and Cdc48p 

but not poly-ubiquitinylation dependent manner. Destruction of the substrates at the ER 

membrane would be advantageous for cells by minimizing the burdens of extraction and 

solubilization of membrane proteins in the cytosol. These results shed some new light on this vital 

but under characterized cellular process.  

Our study confirmed a significant role for Cdc48p in ERAD of Pca1p; however, the mode of 

action of Cdc48p appears to be substrate specific. Three distinct but overlapping ERAD pathways 

L, M, and C recognize misfolded lesions in luminal proteins, transmembrane helix(s), and 

cytosolic domain(s) of integral membrane proteins, respectively [20]. Given the catalytic domain 

of E3 ligases involved in ERAD is on the cytosolic face of the ER membrane, luminal ERAD 

substrates should be trans-located first at least partially to the cytosolic face of the ER membrane 

[60]. It has been proposed that Sec61p, Hrd1p, Der1p, and/or Usa1p form a complex for substrate 

translocation across the membrane [33, 61, 62]. Cdc48p (p97/VCP in higher eukaryotes), a 

hexameric complex of AAA-type ATPase, plays diverse roles in ERAD [63, 64] although the 

mechanistic details remain to be defined and there is experimental evidence arguing a rather non-

essential role [65]. Cdc48p and its cofactors, Ufd1 and Npl4, are recruited to the ER via Ubx2p to 

disassemble ubiquitin-conjugated substrates from the ubiquitinylation machinery in the 

membrane and unfold for the delivery to the proteasome. By interacting with E4 ligase (e.g., 
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Ufd2p) and other proteolytic factors (e.g., Rad23p), Cdc48p appears to serve as a scaffold as well. 

Thus, Cdc48p is a critical player in dislodging ubiquitinylated substrates from the ER [63, 64]. 

Our data indicates that Cdc48p is a significant player in ERAD of Pca1p, which is consistent to 

previous reports. Nevertheless, it is interesting to note an impaired complex formation between 

the proteasome and Pca1p if Cdc48p is inactivated. Cdc48p might be involved in initial 

recruitment of the proteasome by unfolding polytopic proteins and presenting them to the 

proteasome. This argument is in line with a previous report displaying Cdc48’s cooperation with 

the proteasome for turnover of Insig-1, an ERAD-M substrate [66]. However, a recent report 

indicated that functional defect of Cdc48p does not affect association of the proteasome with the 

Hrd1p E3 ligase complex [67]. Given differences in ERAD pathways, substrates, and 

experimental systems (e.g., in vitro vs in vivo experiments, natural vs artificial substrates, and 

soluble vs membrane substrates) in the previous reports, a model encompassing all studies about 

functions and mechanisms of action of Cdc48p cannot be established yet. Nevertheless, our in 

vivo chemical cross-linking of the Pca1p complex clearly indicates that Cdc48p plays a 

significant role for recruiting the proteasome to Pca1p in the ERAD process.   

Distinct from the ERAD-L pathway dealing with soluble substrates, a concern in ERAD of 

integral membrane proteins (ERAD-M and -C pathways) would be the extraction of proteins from 

the lipid bilayer and solubilization at the cytosol. Several models addressing this issue have been 

proposed [16, 68]. Integral membrane proteins could be first dislodged from the membrane to the 

cytosol and then delivered to the proteasome. Cdc48p and/or unknown translocation machinery in 

the membrane could be involved in the process. Alternatively, the proteasome could be recruited 

to ubiquitinylated substrates while they are at the membrane. AAA-type ATPases in the 19S 

regulatory particle of proteasome could be a driving force of substrates extraction from the 

membrane followed by direct feeding to the 20S. Given the endo-proteolytic activities of the 

proteasome [69], fragmentation of substrates via proteolysis of cytosolic loop might facilitate 

extraction of transmembrane helices. Intra-membrane proteases, such as rhomboid-family 
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proteins, could also play a role in the substrate fragmentation process [70-72]. It is intriguing to 

note previous studies reporting somewhat inconsistent data regarding this process. Several studies 

detected full-length and fragments of integral membrane proteins (e.g., Ste6*p, CFTR, and 

MHCI) in the cytosol when the proteins undergo ERAD [16, 73-75]. An in vitro reconstitution 

assay system found that prior to degradation, Ste6*, a well-characterized ERAD-C substrate, is 

dislodged from the membrane [16]; however, it is worth pointing out that only a small fraction of 

Ste6*p was released from the membrane under the experimental conditions. Inactivation of 20S 

proteasome in an in vitro ERAD assay of CFTR displayed relatively minor effects on membrane 

extraction and release of its degradation intermediates [73]. Distinct from these in vitro 

experiments, our study conducted in cells showed no detectable cytoplasmic full-length Pca1p or 

its fragments associated with ubiquitinylation when 20S activities of the proteasome are inhibited. 

Rather, Pca1 remained in membrane fraction despite functional Cdc48p and active 19S 

proteasome. Therefore, only minimal amount of Pca1p and Ste6*might be extracted to the 

cytosol, and the 20S proteasome could play a vital role for removing polytopic proteins from the 

membrane. These results suggest that cooperation between Cdc48p and the 26S proteasome is 

required for dislodging polytopic proteins from the membrane. Pca1p extraction and proteolysis 

by the 20S therefore could be coupled; thus, our results reflect that in the absence of 20S 

peptidase activities, a complex containing Pca1p and the 19S and 20S proteasomes stalls at the 

ER membrane. 

Detection of the complex containing Pca1p and subunits of 19S and 20S proteasome at the 

membrane in a ubiquitin ligase dependent manner suggests that Pca1p ubiquitinylated by an E3 

enzyme attracts the proteasome while it resides at the ER membrane. Consistently, no full-length 

Pca1p was detected in the cytosol of cells which is distinct from accumulation of poly-

ubiquitinylated Cpy*p, a luminal protein undergoing ERAD, in the cytosol as a complex with the 

proteasome. The proteasomes are localized mainly in the nucleus and cytosol as free or nuclear 

envelope and ER network-attached forms [76-78]. The clustering of the proteasomes on the ER 
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membrane is particularly eminent in the yeast S. cerevisiae (>80% total proteasome) relative to 

mammals (<20%) [77].  Sts1p (Cut8p in fission yeast) is a critical molecular factor involved in 

enriching the proteasome at the nuclear envelope [79, 80], while the counterpart at the ER 

membrane remains to be identified. The proteasome might be associated with the ER via physical 

interaction with ER membrane protein(s), which could be reminiscent of Ubc6p/7p and Cdc48p 

that are recruited to the ER membrane by Cue1 and Ubx2p, respectively [81-83]. Physical 

proximity of the proteasome to the ER could be in favor of efficient recognition of substrates for 

ERAD. Moreover, as we showed for Pca1p and Ste6*p, the enrichment of the proteasome at the 

ER membrane might reflect the complexes between the proteasome and proteins undergoing 

ERAD. High demand of ERAD might control the composition and dynamics of the proteasomes 

for an efficient completion of the task. The 26S, 20S, and 19S proteasomal particles are known to 

exist in a dynamic equilibrium [78]. The assembly, subunit composition, modifications of amino 

acid residues, interaction with regulators(s) if any, and subcellular distribution are changed in 

response to cellular cues and stresses [76]. It would be interesting to examine if ER stresses 

would lead to recruitment of the proteasomes to the ER membrane.  This could be better accessed 

in mammals displaying relatively minor steady state localization of the proteasome to the ER [84, 

85]  

The significance of polyubiqitination of membrane proteins in ERAD remains as an 

intriguing question. The regulatory particles of the proteasome contain several functional 

components, including AAA-Type ATPase, E4 ubiquiting ligase(s), and de-ubiquitinylation 

enzyme(s). These enzymes are significant players for recognition of ubiquitin-tagged substrates, 

unfolding, poly-ubiquitinylation, translocation into the catalytic sites, and deubiquitinylation for 

rescuing ubiquitin from substrates [86]. Hul5p, an E4 enzyme associated in the regulatory particle 

of yeast, is involved in proteolysis of proteins by the proteasome [55]. It was shown that Hul5p is 

involved in ERAD of chimeric derivatives (e.g., CTL* and Sec61-2L) of well-characterized 

substrates [36] and proteasome-dependent degradation of cytosolic proteins that are damaged 
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under heat stress [54]. However, knockout of UFD2 gene encoding another E4 ligase did not 

affect the heat-induced ubiquitylation [54], indicating target specificity in E4 enzyme activation 

and/or requirement. Our study on the turnover rate of Pca1p in hul5Δ and ufd2Δ strains showed 

that the Ufd2p but not Hul5p is involved in ERAD of Pca1p, confirming target specificity of E4 

ligases. Significant remaining turnover of Pca1p in a ufd2Δ strain (t1/2= ~ 0.5 hr) relative to that in 

a strain lacking DOA10, encoding E3 ligase for Pca1p (t1/2= ~ 2 hr) [38] suggests that poly-

ubiquitinylation may not be essential for ERAD but rather enhance its efficiency. Alternatively, 

given three other E4 ligases in addition to HUL5 and UFD2 in the genome of the yeast S. 

cerevisiae [87], not only Ufd2p but also other E4 ligase(s) might target Pca1p for ERAD. 

However, we disproved this by showing near absence of poly-ubiquitinylated Pca1p in ufd2Δ 

cells. The molecular basis of substrate specificity of E4 ubiquitin ligase and the significance(s) of 

poly-ubiquitinylation in ERAD remain to be defined. It is interesting to note that although Pca1p 

turnover is slow in ufd2Δ cells and there is drastic reduction of poly-ubiquitinylation of Pca1p in 

the cells, Ufd2p deficiency does not result in any significant effect on the formation of a complex 

between Pca1p and the proteasome at the membrane. These results indicate that 

polyubiquitinylation of substrates might not be a determinant of initial interaction with the 

proteasome but rather promotes efficient processing of substrates by the proteasomes.  

The underlying mechanism of Hrd1p E3 ligase dependent ERAD-L and M pathways are 

better characterized relative to those of ERAD-C pathway dealing with Pca1p and Ste6*p. 

Nevertheless, it appears that there is no convincing model accommodating the results of previous 

studies. It has been proposed that Hrd1p’s transmembrane helixes play a critical role in retro-

translocation of Cpy1*p, a luminal ERAD substrate [33, 62]; however, the roles for Sec61p as a 

retro-translocation channel were reported as well [88, 89]. While Hrd1p is required for 

ubiquitinylation of ERAD-M substrates [90], in vitro retro-translocation study of Hmg2p showed 

that it occurs in the absence of Hrd1p transmembrane helixes [91].  
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Identification of Pca1p as a target for ERAD-mediated expression control [38, 39] and results 

presented herein provided an opportunity for a better understanding of ERAD of polytopic 

proteins. Further studies on proteasome-dependent turnover of membrane proteins in the ER and 

other organelles of yeast and higher eukaryotes would determine if the recruitment of the 

proteasome to ubiquitinylated substrates while those are embedded in the membrane is a 

conserved mechanism.  
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4.1 ABSTRACT 

The active control of protein turnover is a critical cellular process regulating biochemical 

pathways and destructing terminally misfolded or damaged proteins. Pca1p, a cadmium exporter 

in yeast, is rapidly degraded by the ER-associated degradation (ERAD) system in the absence of 

cadmium via a cis-acting degron rather than folding defect. Cadmium induces Pca1p expression 

in a manner dependent on the degron, suggesting cadmium-mediated masking of the signal that 

recruits molecular factors involved in ERAD of Pca1p. However, the characteristics and 

mechanisms of action of the degron in Pca1p and most of those in other proteins remain to be 

determined. Our data presented herein indicates the Pca1’s degron senses cadmium via specific 

cysteine residues to induce conformational change. Random mutation of the degron followed by 

selection of those losing its degron functionality revealed that distribution of amino acid residues 

and secondary structure comprise the signal for recruiting molecular factors for degradation. In 

particular, hydrophobic amino acids and cadmium binding of the degron are critical for 

determining its interaction with the an Hsp70 chaperone, Ssa1p. These results illustrate a new 

mode of regulation of a degron.  This might be useful for a better understanding of other degrons 

and regulated turnover of proteins. 
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4.2 INTRODUCTION  

Protein degradation plays a significant role for the expression control of proteins in response to 

cellular cues followed by regulation of a number of biochemical pathways [1-4]. The system also 

destructs terminally misfolded and damaged proteins to prevent their accumulation and 

aggregation [5-8]. In line with these vital roles, defects in proteostasis in association with genetic 

and epigenetic problems, cellular stress, and/or reduced cellular capacity are attributed to multiple 

diseases such as neurodegenerative diseases, cystic fibrosis, diabetes, and cancer [12-14].   

Regulated turnover of proteins should be highly target specific and dynamic to be able to respond 

to cellular needs. Molecular factors recognize the degradation signal or ‘degron’ in targets to 

initiate the process. The conditional exposure of degrons and/or activities of molecular factors 

involved in the process could determine the fate of targets [1, 15, 16]. Degrons can be masked or 

exposed through diverse mechanisms such as post-translational modifications (e.g., 

phosphorylation, hydroxylation, glycosylation), protein-protein interactions, and binding of 

specific metabolites [18-22]. Despite this conceptual frame and many examples undergoing 

regulated turnover, only a few degrons have been identified and characterized. For instance, IkB 

phosphorylation or Cys modification of Keap1 leads to their dissociation from NF-kB and Nrf2, 

respectively, to stabilize these transcription regulators [21]. Hydroxylation of specific proline 

residues of HIF-1 recruits a ubiquitin ligase complex [23, 24]. Given defining degron as a regions 

of  proteins that can be transferred to other proteins with the maintenance of their characteristics 

[1, 25], a degron in Metα2p transcription repressor in yeast has been relatively well characterized. 

Dimerization of Metα2p with Meta1p hides the degron [26], indicating an exposure control of a 

degron through protein multimerization. The degron forms an amphipathic helix, and 

hydrophobic face of the helix appears to be a primary signal for recruiting degradation machinery 

[26]. Similar characteristics were also found in a degron of mammalian GSK1 [27]. These 

characterizations of degrons reveal diverse and sometimes similar mechanisms in regulated 
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turnover of proteins. Nevertheless, the biophysical characteristics and mechanisms of regulation 

of degrons remain unknown in most cases.      

 

The cells also degrade unassembled, misfolded, or damaged proteins to prevent toxicity of these 

abnormal proteins. Translational error, protein denaturation and damage by stresses such as heat, 

metals, and defects in maturation, including multimerization, glycosylation, or cofactor binding, 

all result in production of proteins that are non-functional and prone to aggregation [28, 29]. For 

instance, the ER-associated degradation (ERAD) system controls the quality of proteins that are 

first targeted to the lumen or membrane of the ER for distribution to different cellular 

compartments and membranes [30-34].  Defect in protein maturation, such as folding, multimer 

assembly, and glycosylation, results in destruction primarily by the ubiquitin/proteasome system 

in the cytosol. Several model substrates possessing mutations, such as CFTR, Cpy1*p, and 

Ste6*p, as well as natural proteins, such as ApoB, and Hmg2p, have been extensively studied [28, 

35-38]. While many different molecular factors involved in the process have been identified [39], 

the mechanistic details remain to be investigated. For instance, it is still unclear how the 

degradation machinery recognizes terminally misfolded proteins relative to those undergoing 

folding, refolding, or maturation.     

Ubiquitin is often utilized as a ”tag” for degradation of proteins [4, 15, 39, 40]. The proteasome is 

a major destination for degradation of those proteins [41, 42]. The consecutive action of E1 

activation enzyme, E2 conjugating enzyme, and E3 ligase of ubiquitin attach ubiquitin to mainly 

Lys residue(s) of targets [39]. Multiple E1, E2, and E3 enzymes in organisms displayed target 

specificity as well as redundancy [28, 39]. E4 enzymes extend the ubiquitin length by adding 

additional ubiquitin to existing ubiquitin moiety to promote degradation presumably via efficient 

delivery to and/or recognition by the proteasome  [39]. There is also mounting evidence for the 

role of the Hsp70p chaperones in the degradation of proteins including several ERAD substrates 

[28, 43-46], which can resolve at least partially how the substrates of degradation pathways are 
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recognized initially. The cells express diverse molecular chaperones, including Hsp110, Hsp90, 

Hsp70, Hsp40, and smaller chaperones [35, 47, 48]. It has been believed that they are essential 

molecular factors for prevention of protein aggregation during synthesis, folding, refolding after 

denaturation, and delivery of substrates of ubiquitinylation to E3 ligase [49]. For instance, Hsp70 

chaperones are often considered to be involved in refolding of misfolded proteins in an attempt to 

maintain solubility and stability of the protein [49].  These proteins often work in congress with a 

co-chaperone (Hsp40), and their activity is dependent on nucleotide exchange (ATP and ADP) 

mediated by nucleotide exchange factors (NEFs) [49, 50].  

We have documented that Pca1p in the yeast S. cerevisiae is a cadmium exporting P-type ATPase 

contains a degron at the cytoplasmic N-terminus [18, 51]. The degron residing between 250
th
 and 

350
th
 amino acids is responsible for rapid turnover of Pca1p and another protein fused with the 

sequence via the ER-associated degradation (ERAD) pathway [18, 51]. Cadmium in the culture 

media rapidly upregulates Pca1p via the degron dependent mechanism [51]. Given high affinity 

of cadmium to the thiol and seven Cys residues within the degron, cadmium could directly bind 

to the degron as a mechanism of cadmium sensing [18] followed by masking the degron. This 

ERAD-mediated expression control of cell surface protein via a degron rather than misfolding or 

assembly defect as well as the masking of the degron by cadmium illustrates a unprecedented 

mechanism of protein turnover.  

This study employed Pca1p, as a new and unique ERAD substrate to gain better insights into the 

characteristics of degrons and the mechanism by which cadmium controls accessibility of the 

degron. Our results presented herein suggest that direct cadmium binding via Cys residues in the 

degron in Pca1p alter the secondary structure and exposure of hydrophobic residues of the degron 

to avoid attraction of molecular chaperons and ubiquitinylation enzymes. 
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4.3 Experimental procedures 

4.3.1 Yeast strains and growth conditions - BY4741 haploid S. cerevisiae strain (MATa his3_1, 

leu2_0, met15_0,ura3_0) and null mutants including pdr5::KanMX6, doa10::KanMX6, 

ydj1::KanMX6, Sse1::KanMX6, Sse2::KanMX6, Snl1::KanMX6, Fes1::KanMX6 were obtained 

from the Open Biosystems. All yeast cells were cultured in synthetic complete (SC) medium 

which contains 2% dextrose, 0.2% amino acid mixture, and 0.67% yeast nitrogen base and lacks 

the specific amino acid(s) necessary for plasmid selection.  Cells were cultured at 30
o
C unless 

specified. The cells were co-cultured with a proteasome inhibitor (MG132, 20 uM for 2 hrs) as 

indicated in experiments. 

4.3.2 Plasmid construcion – A single copy yeast plasmid, p416-GPD [52], was used for GPD1 

gene promoter-mediated constitutive expression of PCA1 and its mutant alleles, including L296S, 

C298A/C300A, C311A/C312A, S291C/C298S/L306C/C311S, I299N, I299T, F318L, I299L, 

L296S, Y203S, and N301L. Triple hemaglutinin (3HA) and double c-myc (2Myc) epitope were 

inserted after start codon and before stop codon of PCA1, respectively, for detection of Pca1p 

expression. The fusion of these epitopes did not alter function of Pca1p [51]. PCA1 mutant alleles 

were created with PCR-based site-directed mutagenesis using an over-lapping primer method 

[53]. The coding sequence of SSA1 was PCR amplified using a gene-specific primer set and 

inserted into the BamHI/XhoI restriction sites of p415-GPD plasmid [53] for expression in yeast. 

HA epitope was fused at the C-terminus. To purify glutathione sulfur transferase (GST)-fused 

Pca1p fragment encompassing amino acids 250 to 350 region (GST-Pca1(250-350)) by E. coli 

expression, the nucleotide sequence obtained by PCR using a gene-specific primer set flanked 

with BamH1 restriction site and a stop codon followed by Xho1 at the 5’ and 3’, respectively, 

was  inserted into the pGEX-6P-1 vector.  

YOR1 expression construct in p415-GPD vector was prepared by PCR amplification of 

the coding sequence of YOR1 gene in BY4741 strain using a gene specific primer set followed by 

ligation of it into XbaI and XhoI restriction enzyme sites of the vector. NotI site was artificially 
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inserted right after the start codon. 3HA epitope-fused PCA1(1-390) was inserted into the NotI 

site. Site-directed mutagenesis was conducted by the primer overlap extension method [54] to 

create HindIII and PstI sites flanking the PCA1(250-350) region without altering amino acids.       

Plasmid amplification and purification using Escherichia coli was followed previously 

established molecular biology methods  [55, 56] [110]. Yeast plasmid transformation was 

performed using a lithium acetate method [57]. 

4.3.3 Purification of Pca1(250-350)p peptide - BL21 E. coli cells expressing pGEX-6P-1 vector 

containing GST-Pca1(250-350)p or GST were grown to mid log phase and induced with 50uM 

IPTG over night at 18
o
C. Cells were collected and lysed by sonication in the lysis buffer (50mM 

Tris-HCl pH 7.2, 100mM sucrose, 10% glycerol, 500mM NaCl, 1mM tris(2-

carboxyethyl)phosphine (TCEP), 1mM Pepstatin A and 1mM PMSF). Lysates were then 

incubated with Triton X-100 (1%) at 4
O
C for 30 min and then centrifuged at 11,000g to remove 

all debris.  The resulting lysate was added to a glutathione agarose column (Pierce) and incubated 

overnight with gentle rocking at 4
o
C. The column was washed with the wash buffer (20mM Tris-

HCl pH7.2, 100mM sucrose 10% glycerol, 150mM NaCl, 1mM TCEP, and 15mM octyl-beta-

glucoside (BOG)). Then treated with 100 units Prescission protease (GE Life Sciences) in the 

wash buffer. This protein was then used for biophysical characterization of Pca1(250-350)p [56].   

4.3.4 Metal-induced tyrosine quenching of Pca1(250-350) determined by spectroscopy.-  

Binding of Cd
2+

 to Pca1250-350 [in 50 mM Tris-HCl (pH 7.4) in the presence of 1 mM TCEP] 

through addition of increasing concentrations of CdCl2 (0.625 μM after mixing)  was monitored 

by the quenching of Pca1250-350 tyrosine fluorescence. Excited at 280 nm where the emission 

was collected and filtered ensuring only emissions past 280 nm were collected [58].   

4.3.5 Isothermal titration calorimetry (ITC) - Purified Pca1(250-350)p (10uM X amount) was 

placed into the reaction chamber of MicroCal VP-ITC microcloriometer and 5uM CdCl2 was 

added.  The reaction was monitored for eighteen injections with at total runtime of 90 min and the 

resulting data was plotted using MicroCal Origin. This was repeated with CdCl2 against the 
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sample buffer to exclude CdCl2 binding to the components in the reaction buffer specifically 

TCEP. 

4.3.6 Inductively coupled plasma mass spectrometry (ICSPMS) - Cells were co-cultured with 

CdCl2 (1uM for 0 - 60 min) at the mid log phase (OD600=~0.8). At each time point cells were 

collected and washed once in the worm media containing 10mM EDTA to remove CdCl2 sticking 

to the cell surface. Cells were then thoroughly washed in ice-cold H2O containing 10mM EDTA. 

Cells (OD600=5) were collected and digested in 600uL of 10% nitric acid 70
o
C for 2hrs. Metal 

levels in the samples were measured by ICPMS as described previously [59]. Cadmium 

concentration in the cell was calculated using the average cell number 3x10^7 per each OD600=1 

and the average cell volume 42x10^-15L of cells at exponential growth phase [60]. 

4.3.7 Generation of a PCA1(250-350) library containing random mutations – PCA1(250-

350) was PCR amplified under an error-prone condition [61] using a primer set franked with 

HindIII and PstI sites at the 5’ and 3’ ends, respectively. This generated a library of PCA1(250-

350) fragments containing a single amino acid change randomly per three fragments. PCR 

products were replaced the corresponding fragment of a plasmid containing a N-terminal in-frame 

fusion of PCA1(1-390) with YOR1 (described above ‘Plasmids’ section). After transformation 

approximately 6,000 E. coli colonies were obtained, which is corresponding to the possibility that 

the library covers 20X possibilities of each amino acid mutation. The resulting colonies were 

pooled together and subjected to plasmid extraction.  

4.3.8 Selection of PCA1(1-390)-YOR1 plasmids containing mutation(s) in Pca1(250-350) 

which stabilize Yor1p to confer oligomycin resistance - PCA1(1-390)-YOR1 plasmids 

containing random mutation(s) in Pca1(250-350) were transformed to yor1Δ yeast strain. 

Replicative plating of the colonies (~30,000) to plates containing oligomycin (1ug/mL) selected 

yeast cells conferring Yor1p-dependnet oligomycin resistance. Cells able to grow on oligomycin 

plates were considered positive and selected for culturing for plasmid extraction. The plasmid 

was extracted from the yeast cells as described previously [62] and amplified using E. coli. 
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Sequencing of the plasmids identified the residues that were mutated within the PCA1(250-350) 

of the plasmids. 

4.3.9 Cell growth assay on solid media containing oligomycin and/or cadmium – Cell growth 

assays were completed as previously described [18]. Briefly wild-type strains expressing Pca1 (1-

392)-Yor1, Yor1 or mutant Pca1 (1-392)-Yor1 were cultured in SC selective media to mid-log 

phase. Cells (~5μL, A600 = 0.1) were spotted on solid YPEG media[18], prepared  without the 

addition of cadmium and with or without the addition of oligomycin (1μg/mL). Plates were 

incubated at 30 °C for 2 days prior to photography. 

4.3.10 Immunoblotting - Cells were broken using glass bead disruption in lysis buffer (PBS 

containing 0.1mM PMSF (phenylmethanesulfonylfluoride, Sigma), protease inhibitor cocktail 

(Complete mini, Roche), 0.1mM EDTA and 1% Triton X-100). Protein concentration of samples 

was measured using a BCA kit (Pierce) following manufacturer’s instructions.  Samples were 

denatured using the sample buffer containing dithiothreitol (25 mM) and subjected to 

denaturation at 37 °C for 15 minutes. SDS-PAGE was transferred to nitrocellulose membrane and 

proteins were detected using rabbit anti-HA monoclonal antibodies (Rockland, 600-401-384), 

mouse anti-myc antibodies (ABM, G019), and mouse anti-3-phosphoglycerate kinase antibodies 

(Pgk1) (Invitorgen, 459250). Horseradish peroxidase-congugated goat anti-rabbit IgG (Santa 

Cruz Biotechnology Inc., SC-2005) and goat anti-mouse IgG (Santa Cruz Biotechnology Inc., 

SC-2004) were secondary antibodies. West Pico Chemilluminesence (Thermo Scientific) was 

used for illumination of antibody bound proteins.  

4.3.11 Co-immunoprecipitation to determine physical interaction between Pca1p and Ssa1p 

- 3HA-Pca1-2Myc with and without L296S substitution and empty vector (p416-GPD) were co-

expressed with Ssa1-HA in Δpdr5 cells. Cells at the mid log phase (OD600= ~0.8) were treated 

with MG132 (20uM) for 2hr followed by collection and washing in ice cold PBS and then re-

suspended in PBS containing MG132 (20uM) and 100g/L of the membrane permeable thiol-

reversible crosslinker dimethyl 3,3’-dithiobispropionimidate (DTBP) (Thermo Scientific)  

114



reversible crosslinker dimethyl 3,3’-dithiobispropionimidate (DTBP) (Thermo Scientific)  

(producer), a cell-permeable cross-linker, or 30min at room temperature with gentle rocking.  

Cells were then placed on ice and washed in the lysis buffer (50mM Tris-HCl pH7.4, 0.1mM 

EDTA, 0.1mM PMSF, protease inhibitor cocktail (Complete Mini, Roche) to quench the reaction. 

Cells lysates were obtained via glass bead disruption in the lysis buffer. Samples were spun down 

at 300g for 3min to remove debris and unbroken cells. The lysates were then centrifuged at 

100,000g for 30min to create a pellet fraction.  Pellets were treated with Trition X-100 (1%) for 

30min at 4
o
C with gentle rocking for membrane solubilization.  Protein concentration was 

measured using a BCA kit (Pierce). Cell lysates (1 mg) were incubated with anti-myc beads using 

a Profound
TM

 c-Myc Tag IP/Co-IP kit (Thermo Scientific) according to the manufacturer’s 

specifications.  Eluted proteins were treated with DTT (150 mM) to break the cross links and 

incubated at 37
o
C for 30 min. the resulting solution was run on SDS-PAGE followed by 

immunoblotting to detect interaction between Pca1p and Ssa1p. 

4.3.12 Alignment of Pca1(271-320) with the corresponding sequence of Pca1-like proteins in 

other fungi –  Pca1 (271-320) sequence was obtained from the yeast genome database, 

yeastgenome.org and NCBI BLAST was used for identification of closely related sequences [63].  

After obtaining related sequences from other fungi (Aspergillus fumigatus, A.f., Gibberella zeae, 

G.z.  Penicillium janthinellum, P.j.  Aspergillus clavatus, A.c. Botryotinia fuckeliana, B.f. and 

Sclerotinia sclerotiorum S.s) these sequences were aligned using ClustalW2  

http://www.ebi.ac.uk/Tools/msa/clustalw2/ [11]. 

4.3.14 Prediction of secondary structure of Pca1(250-350) [and Pca1(271-320)] –  Pca1 230-

350 sequence was submitted I Tasser, http://zhanglab.ccmb.med.umich.edu/I-TASSER/ for 3D 

structure prediction.  The Highest scoring match was selected [64]. 

  Helical wheel projections were completed by submitting Pca1 271-306 to 

http://rzlab.ucr.edu/scripts/wheel/wheel.cgi.  Secondary structure prediction was also carried out 
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through submission of Pca1 271-320 and Pca1 271-320(I299N) to I-Tasser. Hydrophobic cluster 

analysis was performed using Pca1 250-350, and Pca1 250-350 containing either the I299N or 

L296S mutations [17] using the HCA portal through Expasy, http://mobyle.rpbs.univ-paris-

diderot.fr/cgi-bin/portal.py?form=HCA#forms::HCA.   
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4.4 RESULTS 

4.4.1 Determination of cadmium sensing by Pca1(250-350) peptide – Several lines of evidence 

[18, 51] indicate that Pca1p in the yeast S. cerevisiae undergoes a rapid turnover by the ER-

associated degradation (ERAD) system in a cadmium and degron-dependent mechanism. To gain 

a better understanding of how the ERAD machinery recognizes Pca1p in the absence of cadmium 

and how cadmium masks the signal, we thought to further characterize the degron in Pca1p. 

Glutathione S-transferase (GST) fused Pca1(250-350) peptide encompassing from 250
th
 to 350

th
 

amino acids was expressed in E. coli and subsequently purified using glutathione (GSH) agarose 

followed by cleavage of the GST (Fig.1A). The purified peptide was subjected to UV florescence 

spectroscopy. Although this region does not contain any Trp residues, it does contain six Tyr 

residues and we were able to follow the change in emission spectra with the introduction of 

cadmium (Fig.1B). Cadmium and copper both affected the emission spectra of the peptide but not 

zinc; this is consistent with in vivo data displaying that cadmium and copper but not zinc inducing 

stabilization of Pca1p in a manner dependent on the degron [9, 18, 51]. Isothermal titration 

calorimetry (ITC) was utilized to determine the binding affinity of cadmium with Pca1(250-350). 

As expected the peptide was able to bind cadmium (Fig.1C). The disassociation constant of Kd = 

~6 μM was determined for this peptide when presented with CdCl2 by 1/K (Fig. 1C lower panel). 

The observed stoichiometric ratio of Cd
2+

 binding was one Cd
2+

 ion to one peptide.  

Given Pca1p’s rescue from the ERAD when cells are co-cultured with cadmium less than 

1 μM concentration, the Kd value was higher than anticipated. We addressed a possibility of 

intracellular cadmium accumulation over time to induce Pca1p stabilization. Indeed, cadmium 

concentration of the cells co-cultured with 1 μM CdCl2 reached ~6 μM and ~15 μM after 5 min 

and 30 min, respectively (Fig. 2A). The cadmium accumulation was correlated well with Pca1p 

stabilization (Fig. 2B). While it is necessary to note the differences between in vivo and in vitro 

environments affecting available cadmium to Pca1(250-350), this data indicates that the ~6 μM 

Kd for cadmium binding to the Pca1(250-350) is relevant. 
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Figure 1. Cadmium binding to Pca1(250-350).  A, Purification of Pca1(250-350) peptide 

containing a cadmium-responsive degon. B, Tyrosine quenching with the addition of metals using 

excitation emission spectroscopy. 2uM Pca1 + CdCl2, CuCl2, and ZnCl2 at the concentrations 

from 0 to 6.25 uM in a cumulative manner and emission intensity were monitored. (How is data 

converted to arbitrary unit?) C, Binding of cadmium to Pca1(250-350) determined by Isothermal 

titration calorimetry (ITC). 5uM Pca1 (250-350) was titrated with 5uM CdCl2 over 90 minutes. 

 

118



  

     0      5    15    30  min 

Pca1p 

Pgk1p 

CdCl
2  

(1 μM) 

B 

0

5

10

15

20

NT 0' 15' 30' 60'

C
a
d
m

iu
m

 (
μ

M
) 

A 

Figure 2. Accumulation of cadmium in the yeast S. cerevisiae and Pca1p up-regulation. A, BY4741 yeast cells 

in which PCA1 is non-functional because of natural mutation [9] were co-cultured with CdCl2 (1uM in the media) 

at the mid log phase and collected at the indicated time points. Total cell-associated cadmium was measured by 

inductively coupled plasma mass spectrometry. Cellular cadmium concentration was calculated based on cell 

numbers of the samples and volume of each cell. The data indicates average and standard deviation of nine 

experiments. B, Determination of Pca1p stabilization as an indicator of cellular cadmium accumulation. BY4741 

cells expressing functional Pca1p fused with N-terminal triple HA epitope (3HA) by the constitutive GPD1 gene 

promoter were cultured as described above A. Cell lysates were prepared. Western blotting analysis using anti-HA 

antibodies visualized cadmium-induced expression of Pca1p. Pgk1p was detected with specific antibodies to 

determine equal loading. A representative figure of two repeats is presented.    
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4.4.2 Roles for cysteine residues of Pca1(250-350) in cadmium sensing - Cys residues are 

openly targeted by cadmium because of its high affinity for thiols [65]. Pca1(250-350) contains 

seven Cys residues including those in the CXCX10CC motif (X= any amino acid) (Fig. 3A). To 

determine if these residues are involved in the cadmium sensing, the Cys residues were 

substituted with Ala (Fig. 3B). Cells expressing PCA1 alleles possessing the mutations were 

cultured with and without cadmium (1 uM, 30 min), and steady state Pca1p levels was measured 

by Western blot.  As expected WT Pca1p showed dramatic up-regulation of Pca1p when cells 

were treated with cadmium. Both the CxC and CC motif mutations revealed that Pca1p responds 

to cadmium albeit less effectively (less than 50% relative to control Pca1p) indicating that 

substitution of CxC or CC to Ala is unable to completely abolish cadmium sensing. Given the 

remaining sensing, the other five Cys residues could sense cadmium in the absence of two Cys 

residues at the CXC or CC.  However, when all seven Cys residues were substituted to Ala, there 

was a complete loss of cadmium-induced Pca1p stabilization. It is also intriguing to note the 

elevated steady state expression levels of Pca1p possessing Ala substitution of CC or all seven 

Cys. This could suggest inefficient recognition of Pca1p by the ERAD machinery. Nevertheless, 

the expression of Pca1p possessing Ala substitution of all Cys residues in Pca1(250-350) is less 

than 10% levels of Pca1p in the cells co-cultured with cadmium (Fig. 3B) suggesting that the Ala 

substitutions do not perturb the major signal attracting the ERAD machinery. 

In an effort to determine if the Cys residues work in congress to coordinate cadmium or if 

it was simply due to nonspecific thiol affinity of cadmium, Cys298 in the CxC and C311 in the 

CC were switched with S291 and S306, respectively. This broke the CXC and CC motifs but 

maintained the same seven Cys residues in Pca1(250-350). The complete loss of cadmium 

sensing of Pca1(S291C,C298S,S306C,C311S) (Fig. 3C), which was reflected by the lack of 

cadmium-induced stabilization, indicates the existence of a specific binding site for cadmium 

within Pca1(250-350). Pca1(S291C,C298S,S306C,C311S) still displayed a Doa10p-dependent 

turnover as its expression is high in a doa10Δ strain lacking E3 ligase which is responsible for 
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Pca1p turnover. Collectively, these results suggest that the distribution of Cys residues is critical 

for cadmium sensing likely via cadmium coordination.  

  

Figure 3. Roles for cysteine residues of Pca1(250-350) in cadmium-induced Pca1p stabilization. A, Amino acid sequence of 

Pca1(250-350) with cysteine (C) residues in bold. CXC and CC are underlined. Serine (S) residues that exchange their positions 

with the first C residues of the CXC and CC are underlined. B. The GPD1 gene promoter-mediated expression constructs of 

functional Pca1p with and without site directed mutation of Cys residues in Pca1(250-350) were transformed to BY4741 yeast 

strain where the chromosomal PCA1 is deleted. All these PCA1 were fused with N-terminal triple HA epitope (3HA) to detect 

Pca1p by Western blotting. Cells co-cultured with CdCl2 (1 uM for 30 min) at the mid log phase were subjected to total cell 

lysate preparation by glass bead disruption in the buffer containing Triton X-100 (1%).  Western blotting with anti-HA 

antibodies determined expression levels of Pca1p. Pgk1p levels were used to determine equal loading. A representative figure of 

four repeats is presented. C. The graph presents average and standard deviation of four experiments. Data reflects the steady state 

expression levels Pca1p possessing site-directed mutation(s) relative to those of wild-type control Pca1p. D, A graph representing 

the relative induction of Pca1 by supplementation of 1uM CdCl2 vs no supplementation for each construct.  E, Expression levels 

of Pca1p possessing S291C, C298S, S306C and C311S were determined in WT control and doa10Δ cells as described in B. A 

representative data of two experiments is presented. 
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4.4.3 Identification of residues in Pca1(250-350) that are involved in its functionality as a 

degron - While our data presented in Figs. 1, 2 and 3 and published previously [51] indicates that 

a degron in Pca1(250-350) is masked by cadmium sensing by Cys residues, these Cys residues 

are not essential for recognition of Pca1p by the ERAD system. We next sought to identify amino 

acid residues composing the degron in Pca1(250-350). This is a significant question because the 

identity and characteristics of most of degrons are poorly defined despite regulated turnover of 

numerous proteins.  

 To be defined as a degron, the in frame fusion of Pca1(1-392) containing Pca1(250-350) 

with other proteins, such as CaCRP1p and Yor1p [18, 51], results in regulation of their expression 

in degron, ERAD, and cadmium-dependent manners. Yor1p is a multidrug resistance protein that 

effluxes oligomycin, a mitochondrial toxin [66], to confer cell growth. Given the rapid turnover 

of Pca1(1-392)-Yor1p, expression of it does not confer oligomycin resistance in yeast cells (Fig. 

4A ); however, cadmium co-culture stabilizes Pca1(1-392)-Yor1p to allow cell growth on the 

media containing lethal concentration of oligomycin (Fig. 4A). If the amino acid residue(s) within 

Pca1(250-350) necessary for its degron characteristics are substituted by different amino acid(s), 

Pca1(1-392)-Yor1p would be stabilized without cadmium co-culture followed by oligomycin 

resistance. We employed this experimental system to identify residues in Pca1(250-350) that are 

required for recognition by the ERAD machinery. PCA1(250-350) fragments possessing random 

mutation(s) were generated by an error-prone PCR method [61]. The pool of PCA1(250-350) 

fragments franked with restriction enzyme sites was ligated with the corresponding enzyme sites 

artificially created at the same location in Pca1(1-392)-Yor1p. This generated a Pca1(1-392)-

Yor1p expression library containing random mutation(s) at the region of Pca1(250-350). This 

library was transformed in yeast cells, and then the cells were selected on solid media contacting 

oligomycin but not cadmium at the concentration displaying no growth of cells that express wild-

type Pca1(1-392)-Yor1p (Fig. 4B). Pca1(1-392)-Yor1p expression plasmids were retrieved from 
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growing colonies. Sequencing of Pca1(250-350) region of the plasmids identified mutations. 

Retransformation of each plasmid to yeast cells followed by olgomycin resistance confirmed 

functionality of Pca1(1-392)-Yor1p (Fig. 4B). Pca1(1-392)-Yor1p possessing mutation(s) 

conferred growth of cells at different degrees suggesting each mutation resulted in different 

effects. When mobilized PCA1(1-392) possessing mutations (e.g., I299N, I299T, and L296S) that 

confer the strongest growth of cells on oligomycin plates back to the full-length PCA1, these 

mutations result in cadmium independent stabilization of the protein (Figs. 4C and 4D). To 

determine specificity of the identified mutation, we also introduced unidentified mutations, 

including I299L, Y302S, and N301L. These PCA1 alleles did not lead to Pca1p stabilization but 

resulted in slight less steady state Pca1p levels. This effect is more evident for PCA1(N301L) 

(Fig. 4D). Collectively, these results suggest that amino acid composition is a critical determinant 

of the degron.  

While mutations were introduced randomly throughout PCA1(250-350), all of mutations 

except a few that were identified in combination with other mutation(s) were within PCA1(271-

320) (Fig. 4B). This suggests that this region might contain major signal(s) to be a degron. 

Database searches for proteins containing homologous sequences of Pca1(271-320) identified 

only Pca1-like proteins in other fungi (Fig. 5). The corresponding sequence of Pca1(271-320) in 

the identified proteins displayed several conserved amino acids (Fig. 5), including CXC and CC 

that are important for cadmium sensing, and L299, L296, and E309 that are critical for the 

functionality of the degron (Fig. 4B). This indicates that Pca1p in other fungi might be regulated 

by cadmium in a similar manner in S. cerevisiae but the primary amino acid sequence of 

Pca1(250-350) is not sufficient to identify other degrons. 
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Figure 4. Identification of residues required for the functional role of Pca1(250-350) as a degron. A, A GPD1 

gene promoter-mediated expression construct of Yor1p fused with Pca1(1-390) at the N-terminus (Pca1(1-390)-

Yor1) was transformed into BY4741 yeast cells. Triple HA epitopes (3HA) were fused right after start codon. 

Growth of the cells expressing empty vector and Pca1(1-390)-Yor1 was examined on solid synthetic complete (SC) 

media lacking leucine (SC-leu) to select plasmid with and without supplementation of oligomycin and/or CdCl2 at 

the indicated concentrations. Cells (~5 ul) at the mid log phase in liquid SC-leu media were spotted on the plates 

and cell growth was photographed in 2 days. B, Pca1(250-350) fragments containing random mutation(s) generated 

by error-prone PCR and franked with HindIII and PstI sites were replaced the corresponding fragment in Pca1(1-

392)-Yor1 by restriction enzyme digestion followed by ligation of the fragments. The plasmid library was 

transformed into yeast cells to select cells that can grow on solid media containing lethal concentration of 

oligomycin. Plasmids were retrieved from growing cells and subjected to sequencing. Transformation of the 

obtained plasmids into yeast cells and examination of oligomycin resistance confirmed specificity of the function 

conferred by Pca1(1-392)-Yor1 possessing mutation(s). Growth of BY4741 yeast cells expressing empty vector, 

wild-type control Pca1(1-392)-Yor1, or selected plasmids containing amino acid substitution(s) within the 

Pca1(250-350) were examined on solid SC-leu media containing oligomycin (1 μg/ml). Cells (~5 ul) at the mid log 

phase in the liquid SC-leu were spotted on the solid SC-leu media and cell growth was photographed in 3 days. The 

relative oligomycin resistance of cells were rated using cells expressing Pca1(1-392)-Yor1 containing Pca1(I299N) 

substitution as the highest “5” (full growth) and wild-type control Pca1(1-392)-Yor1 as the lowest “0” (no growth). 

Several plasmids contain more than one mutation. The quantitation reflects a confirmation by at least two 

experiments. C and D, Western blot using anti-HA antibodies determined steady state expression levels of Pca1p 

with and without indicated site-directed mutations. Triple HA epitope (3HA) were fused at the N-terminus (3HA-

Pca1p). The GPD1 gene promoter-mediated expression constructs of 3HA-Pca1p were transformed into BY4741 

cells lacking chromosomal PCA1. Cell lysates were prepared using a buffer containing Triton X-100 (1%) by glass 

bead disruption of cells that were collected at the mid log phase. A representative figure of four experiments is 

presented. D, Three other mutations (I299L, Y302S, N301L) that were not identified by the selection presented in 

B determined specificity of the effects of amino acid substitution on Pca1p stability. The results are quantitated and 

presents as folds change in expression levels of Pca1p possessing indicated mutation relative to that of control 

wild-type Pca1p. The asterisks indicate p<0.01. 
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Figure 5. Alignment of Pca1(271-320) sequence with the corresponding sequence of 
Pca1-like proteins in other fungi. Blast search of the NCBI database for proteins that 

possess amino acid sequence similarities with Pca1p was conducted. Other fungi, 

including A. fumigatus (A.f), G. zeae (G.z), P. janthinellum (P.j), A. clavatus (A.c), and 

B. fuckeliana (B.f), possess Pca1-like proteins that are corresponding to Gene bank 

numbers 3510005, 156536662, 4708560, 2791550, and 5432339, respectively. The 

amino acid sequence of Pca1(271-320) was aligned with the corresponding sequence of 

those in the identified proteins ClustalW2, http://www.ebi.ac.uk/Tools/msa/clustalw2/ 

[11]. Asterisk indicates all sequences aligned contain the same residue at that location. A 

double dot (:) indicates that most of the amino acids at the indicated location are very 

similar. A single dot (.) represents a somewhat similar conservation of amino acid type. 
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125

http://www.ebi.ac.uk/Tools/msa/clustalw2/


  

Figure 6. Prediction of secondary structure of Pca1(250-350) and distribution of amino acid substitution affecting Pca1p 
expression. A, Predicted structure of Pca1(250-350) obtained by I-TASER (Zhang Y, 2008). B, Distribution of amino acids 

within the Pca1(271-306) helix predicted by 

http://rzlab.ucr.edu/scripts/wheel/wheel.cgi?sequence=ABCDEFGHIJLKMNOP&submit=Submit [10] Diamonds, circles, 

triangles, and pentagons indicate hydrophobic, hydrophilic, potentially negative charged, and potentially positively charged 

residues, respectively. C, Predicted secondary structure of Pca1(271-320) containing all confirmed mutations that affects Yor1p-

mediated oligomycin resistance when fused with Yor1p (Fig. 4C). D, Perturbation of the secondary structure of Pca1(271-320) 

by I299T substitution. E, Formation of a hydropholic patch by amino acids within Pca1 (271-306) obtained by hydrophobic 

cluster analysis  http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=HCA#forms::HCA [17]. Amino acids that are 

involved in the formation of the hydropholic patch are indicated by the outline.  The amino acids are present via their one letter 

identification except for glycine residues which are represented by a black diamond, serine, which are black squares with a dot 

in the middle, and threonine which are represented by black open squares. F, Disruption of a hydropholic patch within 

Pca1(271-320) by I299N or L296S substitution.  
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4.4.4 Characteristics of the degron in Pca1(250-350) – Given no sequence similarity of 

Pca1(250-350) with any known protein, we predicted its secondary structure of it using the I-

TASSER program [64]. A long helix encompassing Pca1(271-306) followed by a unstructured 

loop and two short beta sheets was observed (Fig. 6A). The CXC and CC motifs are localized 

near the end of the helix and in the middle of loop, respectively. Another Cys residue is at the 1st 

beta sheet. The helix was amphipathic (Fig. 6B). It was is intriguing to note that all single 

mutations negating the degron in Pca1(250-350) were all distributed within Pca1(271-320) 

corresponding to the helix, loop, and first beta sheet (Fig. 6C). Mutations within the helix reflect 

the reduction of hydrophobicity (Figs. 4C, 4D, and 4E, and Fig. 6C). The hydrophobic residues in 

the helix form a patch (Fig. 6E), which is consistent to amphipathic nature of the helix (Fig. 6B). 

Three mutations, including I299T, I299N, L296S, that lead to a dramatic increase in Pca1 

stabilization (Fig. 4C and 4D) perturbed the cluster to alter the helix structure (Figs. 6D and 6F). 

Collectively, these data suggest that the pattern of amino acid distribution is a critical determinant 

of the degron and cadmium sensing by the Cys residues at the region perturb the characteristic to 

negate its functionality as a degron. 

4.4.5 Interaction between Pca1(250-350) and Ssa1, a Hsp70, in cadmium and amino acid 

composition dependent manner – In addition to protein maturation and refolding of denatured 

proteins,  previous research  implied critical roles for molecular chaperones in protein turnover 

[28, 43, 67, 68]. For instance, ERAD substrates are recognized by molecular chaperones, 

especially Hsp70s, to be targeted to ubiquitinylation machinery [28, 69]. Surface exposure of 

hydrophobic residues in unfolded, misfolded or denatured proteins is considered as a primary 

determinant of recruiting molecular chaperones [49]. The hydrophobic patch in the helix of 

Pca1(250-350) (Fig. 6B and 6C) which is predicted to localized in the cytosol [9] might attract 

molecular chaperones, and cadmium sensing could induce conformational change to hide the 

signal. We elaborated this hypothesis by determining a physical interaction between Ssa1p, a 

Hsp70, and Pca1p in the cells expressing WT control PCA1 or PCA1 possessing L296S 
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substitution which leads to stabilization of Pca1p without cadmium co-culture. The cells co-

expressing double Pca1p tagged with two c-myc epitopes (Pca1-2myc) and HA epitope tagged 

Ssa1p (Ssa1-HA) using the constitutive GPD1 gene promoter were cultured with and without 

cadmium in the media (1 μM, 1hr). To prevent rapid turnover of Pca1p, MG132, a proteasome 

inhibitor was also added to the media (20μM 30min prior to collection). After treating cells with a 

cell-permeable cross linker (DTBP, 100μg/ml for 30 min), membrane fractions were obtained by 

glass bead disruption followed by Triton X-100 solubilization. Pca1p-2Myc was immuno-

precipitated using anti-myc antibodies and probed with anti-myc antibodies and anti-HA 

antibodies to detect Pca1p and Ssa1p, respectively (Fig. 7A). While similar levels of Pca1p was 

immunoprecipitated, Ssa1p association with Pca1p was less than 15% (13.4±1.5%, n=2) of 

control cells if the cells were co-cultured with cadmium (Fig. 7A). This result clearly suggests 

that cadmium sensing by Pca1p interferes with recruitment of Ssa1 protein presumably by 

masking the hydrophobic patch within Pca1(271-320). To address this, we compared complex 

formation of Ssa1p with control Pca1p and Pca1p(L296S) which is stable and perturbs the 

hydrophobic patch in the Pca1(271-320) region (Fig. 6F). Indeed, the poll-down efficiency of 

Ssa1p by Pca1(L296S)p was less than 20% (15.7±5%, n=2) relative to that of control Pca1p. 

These results indicate that cadmium and the characteristics of amino acids within the degron, 

such as hydrophobicity, affect Pca1p’s interaction with Ssa1p, a known molecular factor of 

ERAD. 
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3HA-Ssa1p 

Figure 7. Physical interaction between Pca1(250-350)p and a Hsp70p in a cadmium and amino acid 
composition-dependent manner. A, BY4741 yeast cells expressing Pca1p tagged with two c-myc epitope 

(Pca1-2Myc) and Ssa1p tagged with triple HA epitope (3HA-Ssa1) by the constitutive GPD1 gene promoter 

were co-cultured with and without CdCl2 (1 μM) for 1hr at the mid log phase and treated with the membrane 

permeable cross linker DTBP (100ug/mL). Cell lysates were prepared by glass bead disruption with isolation of 

the pellet fraction followed by Triton X-100 (1%) solubilization. Samples were subjected to Western blot using 

anti-HA and –myc antibodies. Pgk1p was detected using specific antibodies to determine equal loading. 

Immunoprecipitation of Pca1-2Myc in the lysates was carried out using anti-myc conjugated beads (Pierce). 

Pca1-2Myc and 3HA-Ssa1 in the eluted samples were detected by Western blot using anti-myc and -HA 

antibodies. B, The experiments described in A were conducted in cells expressing an empty vector, Pca1-2Myc, 

and Pca1(L296S)-2Myc along with 3HA-Ssa1. L296S indicates the substitution of Leu at 296th amino acid in 

Pca1p to Ser. Cells were collected at the mid log phase without cadmium co-culture.  
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4.5 DISCUSSION 

Every single protein in cells theoretically contain embedded signal(s) determining its life 

span and potential to be a target of quality control in association with diverse reasons ranging 

from genetic mutation to translational error to cellular stress. Nevertheless, it remains to be 

determined if there are common and/or client-specific characteristic(s) in the signals. With the 

continuous efforts for identification of such signals from different targets, one could come up 

with algorisms by which the signal(s) in each protein could be predicted and provide methods for 

controlling the signals via physiological or pharmacological approaches. This is an important 

issue because various diseases are implicated with imbalance in protein expression and turnover 

[12, 70-72]. 

Despite many examples of regulated turnover of proteins, the identity and mode of control of 

degradation signals have been defined for only few of them. Our study illustrates the 

characteristics of a degron in Pca1p, which leads to a better understanding of the mechanism 

underlying regulated turnover of Pca1p cadmium exporter and other proteins. While the 

amphipathic helix characteristics of a portion of Pca1p’s degron are similar to those of Matα2p in 

yeast [26] and GSK1 in mammals [27], it contains unique amino acid residues that appear to be 

involved in inactivation of the degron in response to cadmium sensing. The results presented in 

this manuscript reflect one of best-characterized degrons.  

Cadmium inactivates the degron in Pca1p [18, 51], which explains the mechanism underlying 

rapid up-regulation of Pca1p expression at the cell surface when cadmium accumulation is high. 

Our in vitro studies conducted using purified Pca1(250-350) clearly displayed cadmium and 

copper but not zinc sensing by the peptide. This result is consistent to that of in vivo 

determination of metal-induced stabilization of Pca1p determined in cells [9, 51]. It is worth 

noting that copper-induced stabilization was evident in Δ ace1cells defective in metallothionein 

(MT) induction but not wild type (WT) cells [9], which indicates that copper sensitivity to 

Pca1(250-350) is low relative to Ace1p and MT. Despite cadmium binding to MT distinct from 
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mammalian cells in which MT expression is regulated by cadmium and several other metal ions, 

the activation Ace1p in yeast S. cerevisiae that control MT expression, copper-specific [73]. 

Consistently, cadmium-induced stabilization of Pca1p was observed in WT cells [9]. The 

selectivity of Pca1(250-350) to cadmium versus zinc is intriguing because of the similar 

characteristics between the elements and documented examples of sharing binding sites and 

transporters [65, 74-76].   

Given the critical role of Pca1(250-350) as a sensor of cadmium to stabilize Pca1p, the 

relatively high Kd ~6 μM of Pca1(250-350) for cadmium was an unanticipated outcome. It was 

shown that CueR transcription activator of copper efflux genes in E. coli manifests zeptomolar 

sensitivity to free Cu
+
 [77]. It was surprising to note that cells co-cultured with 1 μM CdCl2 

accumulate ~ 6 uM cadmium within 5 min, which was correlated with Pca1p stabilization. 

Therefore, our in vitro results could reflect cadmium sensing by Pca1(250-350) in vivo. Another 

possibility is that cadmium sensing by Pca1(250-350) is promoted by specific factor(s). 

Glutathione (GSH) is an abundant (low mM concentration) tri-peptide that is vital for cell growth 

and cadmium detoxification through chelation and conveying cadmium complexes to YCF1 

cadmium transporter in the vacuole [111]. Our study however indicated that Pca1(250-350)’s 

cadmium binding in vitro is not affected by reduced and oxidized GSH and cysteine in the 

reaction buffer (data not shown). This suggests that cadmium binding affinity is higher for 

Pca1(250-350) relative to that of GSH and free cysteine. Assessment of cadmium-induced Pca1p 

stabilization in the absence of GSH in vivo was not lead to clear answer (data not shown), which 

seems to be primarily attributed to essential roles of GSH in yeast cell growth [78].  Studies on 

characterization of molecular factors for copper metabolism revealed the roles for 

metallochaperones for subcellular distribution of copper [79]. It is intriguing that Atx1p 

metallochaperone can bind both cadmium and copper [80]; thus, Atx1p may be involved in 

subcellular trafficking of cadmium for Pca1p, which could increase the efficiency of cadmium 

sensing. However, our previous data showed that Pca1p-mediated cadmium resistance is not 
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affected in the absence of known copper chaperones [59]. These results do not ignore the 

possibility of unidentified cadmium-specific metallochaperone(s) that are involved in cadmium 

delivery to the degron in Pca1(250-350). 

The half-life of proteins is determined by various mechanisms such as intrinsic signatures 

(e.g., N-terminal amino acid, PEST sequences), cellular regulation (e.g., post-translational 

modification of targets recruiting degradation machinery), folding failure, and damage [1, 81-83]. 

Cadmium-induced masking of the degron is an interesting example of regulation of protein 

turnover.  Small molecules such as inorganic elements, xenobiotics, substrates, ligands, and 

metabolites could be widely involved in cellular control of protein stability. This process is 

analogous to allosteric and feedback regulation of protein activities, but only a few examples 

have been reported. It was shown that cell permeable agonists and antagonists elevated 

expression of wild-type and mutated δ opioid receptors that are degraded by ERAD [84]. Binding 

of estrogen to the estrogen receptor α (ERα) controls the pathways of its turnover [85]. Turnover 

of apolipoprotein B (ApoB) and Hmg2p in response to limitation of lipid molecules and surplus 

of intermediates of sterol biosynthesis, respectively, are other examples of ligand-dependent 

protein turnover [22, 86, 87]. Further studies on the mechanisms of the processes and 

identification of additional targets undergoing similar mode of regulation could confirm if it is a 

prevalent way of controlling protein turnover.  

 The core sequence of the degron Pca1(271-320) contains 5 Cys residues and most of the 

identified residues that affect functionality of the degron. While no metal-sensing degron has 

been characterized previously, Cys is a common residue of metal binding sites in proteins [88]. It 

is worth noting that several other P1B-type ATPase family members in mammals and plants to 

which Pca1p belongs, possess under-characterized metal-binding sites at the N- or C-terminus 

[89, 90]. Several of them are required for the function of the transporters [90], but their roles for 

regulation of activities, expression, and/or subcellular trafficking remain to be defined. Metal 

sensing transcription regulators such as Mac1p and Ace1p in yeast and MTF-1 in higher 
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eukaryotes, including mammals, also rely on Cys residues that likely bind with metal ions as a 

sensing mechanism [91].  Other common amino acid residues involved in metal sensing are 

histidine and methionine. For instance, a histidine-rich cluster mediates the ubiquitinylation and 

degradation of a human zinc importer to protect against zinc cytotoxicity [92].  The degron in 

Pca1p contains one Met and His residues and manifests a specificity in sensing cadmium and 

copper but not zinc and iron, which illustrates a metal specificity ([9]; Fig. 1B).  

  Only Pca1-like proteins in other fungi contain a similar amino acid sequence to Pca1(271-

320), which indicates that the primary sequence of the degron in Pca1p does not provide useful 

information for identifying degrons in other unrelated proteins. Our several attempts for obtaining 

secondary and tertiary structures of Pca1(250-350) containing the degron with and without 

cadmium sensing have not been successful which is primarily attributed to solubilization problem 

of purified peptide at concentrations required for in solution experiments and crystallization. 

Nevertheless, identification of amino acid residues within Pca1(271-350) that are responsible for 

its function as a degron revealed a critical role of the residues forming a hydrophobic patch on a 

predicted amphipathic helix of Pca1(271-306). The exposer of hydrophobic residues at the 

surface of proteins resulting from misfolding and denaturation has been considered as a signal for 

recruiting molecular factors involved in refolding and destruction [26, 93].  Given Pca1p 

stabilization by site-directed substitution of several other amino acids in the predicted loop and 

beta-sheet that follows, the amphipathic helix suggests that those mutations could mimic 

cadmium sensing to induce conformational changes of the helix to perturb the degradation signal 

and/or be part of the degradation signal. The degradation signals of two known ERAD substrates, 

Metα2 of yeast and mammalian Sgk1, have been characterized as amphipathic helixes [26, 27]. 

Intermolecular interaction masks the signal in Metα2 [26]; however, it is uncertain whether the 

degron in Sgk1 is regulated by cellular cues as a mechanism of expression control. A non-biased 

selection of peptides that can serve as signals for ERAD in yeast S. cerevisiae when it is fused 

with another protein identified 16 to 50 amino acid peptides that are highly hydrophobic [94]. 
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Determination of the contribution of each amino acid in one of the peptide by site-directed 

mutagenesis confirmed that both a patch of bulky hydrophobic residues and positive charged 

residues were found to be essential, which was distinct from the degrons in Metα2 and Sgk1 [95]. 

These previous reports are consistent to our results indicating the roles for hydrophobic residues 

and two positively charged residues, including R288 and K309, in ERAD of Pca1p (Fig. 6C). Our 

study also identified a negative charged residue E309 as an important component of the degron 

(Fig. 6C), which is unique for Pca1p.  

Nevertheless, all these characterized signals targeting proteins for ERAD do not display 

any sequence homology with other known proteins except their orthologues in other organisms. 

With these limited examples of characterized degrons for ERAD, it is evident that the primary 

amino acid sequence is not sufficient to predict degrons in proteins undergoing regulated 

turnover. Integration of secondary and tertiary structures of particular protein and its interactions 

with other proteins and small molecules might achieve the goal.  

Regulated turnover and ERAD are largely dependent on ubiquitinylation followed by 

degradation at the proteasome [39]. E3 ubiquitin ligases are major molecular factors for making 

substrates expose degradation signals [96]. While substrate-specific mediators for recruiting 

protein degradation apparatus have been identified [97], several lines of evidence indicate that 

molecular chaperones rather than E3 enzymes are primarily responsible for recognition of the 

substrates [47, 98-100].  Many of molecular chaperones were initially characterized as heat-stress 

induced proteins (HSP) that play critical roles for protein folding [49]. Thus, the dual roles for 

HSP, folding and degradation, are intriguing, and it is still unclear exactly what determines the 

fate of clients of HSP. Our data displayed that Ssa1p, an Hsp70, physically interacts with Pca1p 

in a cadmium and degron functionality dependent manner, and the reduced interaction assessed 

by less efficient immune-precipitation of Ssa1p with Pca1p is correlated with stabilization of 

Pca1p. Given surface exposure of hydrophobic residues as a signal for recruiting molecular 

chaperones, the result supports the notion that the patch of hydrophobic amino acids at the helix 
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Pca1(271-306) is recognized by Ssa1p. Identification and characterization of other molecular 

factors involved in presenting Pca1p for ubiquitinylation such as Pca1p specific mediator(s), 

Ssa1p co-chaperones, nucleotide exchange factors of Ssa1p, and/or other HSP family members 

warrants further studies.        

Our results indicate that cadmium serves as a natural chemical chaperone masking the degron 

in Pca1p for elevating its cell surface expression. Given the implications of rapid and inefficient 

turnover of proteins in various human diseases, therapeutic control of protein turnover is an 

important research topic. Identification of small molecules that can improve maturation and 

secretion of CFTRΔF508, which is associated with the most common lethal genetic disease in 

Caucasians, has been actively explored [101]. For instance, co-culture of cells expressing 

CFTRΔF508 with glycerol, known to stabilize proteins in their native conformation, restored, its 

chloride transport function [102, 103] The effects of glycerol were also observed for a mutated 

hERG potassium channel [104] and yeast Hmg2p [105].   The therapeutic potential of chemical 

chaperones in neurodegenerative diseases manifesting accumulation of misfolded proteins, such 

as Alzheimer, Parkinson, Huntington, and prion diseases has been proposed as well [106]. It is 

intriguing to note that inorganic elements are contributing factors of these disorders; this could be 

through direct binding, metal-catalyzed generation of reactive oxygen followed by protein 

damage, and/or stabilization of specific conformation of peptide implicated in each disease [107-

109].  Nevertheless, our studies on cadmium and copper as a folding factor of a degron in Pca1p 

to lead to beneficial outcomes provides a new conceptual frame for further determination of 

chemical chaperone roles of other element, especially abundant ions, such as potassium, sodium, 

magnesium, and chloride.   

 

ACKNOWLEDGEMENTS 
This work was supported by National Institutes of Health grants ES16337 (to J. L.) and 

P30RM103335 (to The Nebraska Redox Biology Center). The authors thank Lee lab members, 

including E. Shuman, for technical assistance and helpful discussions and Dr. Ben Arentson for 

helpful discussion.  

 

135



4.6 Works Cited 

1. Ravid, T. and M. Hochstrasser, Diversity of degradation signals in the ubiquitin-

proteasome system. Nat Rev Mol Cell Biol, 2008. 9(9): p. 679-90. 

2. Hochstrasser, M., Ubiquitin-dependent protein degradation. Annu Rev Genet, 1996. 30: 

p. 405-39. 

3. Varshavsky, A., The ubiquitin system, an immense realm. Annu Rev Biochem, 2012. 81: 

p. 167-76. 

4. Hochstrasser, M., Protein degradation or regulation: Ub the judge. Cell, 1996. 84(6): p. 

813-5. 

5. Shang, F. and A. Taylor, Ubiquitin-proteasome pathway and cellular responses to 

oxidative stress. Free Radic Biol Med, 2011. 51(1): p. 5-16. 

6. Zhang, K. and R.J. Kaufman, Signaling the unfolded protein response from the 

endoplasmic reticulum. J Biol Chem, 2004. 279(25): p. 25935-8. 

7. Babst, M., Quality control: quality control at the plasma membrane: one mechanism 

does not fit all. J Cell Biol, 2014. 205(1): p. 11-20. 

8. Ruggiano, A., O. Foresti, and P. Carvalho, Quality control: ER-associated degradation: 

protein quality control and beyond. J Cell Biol, 2014. 204(6): p. 869-79. 

9. Adle, D.J., et al., A cadmium-transporting P1B-type ATPase in yeast Saccharomyces 

cerevisiae. J Biol Chem, 2007. 282(2): p. 947-55. 

10. Schiffer, M. and A.B. Edmundson, Use of helical wheels to represent the structures of 

proteins and to identify segments with helical potential. Biophys J, 1967. 7(2): p. 121-35. 

11. Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the sensitivity 

of progressive multiple sequence alignment through sequence weighting, position-

specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994. 22(22): p. 

4673-80. 

136



12. Ansari, N. and F. Khodagholi, Molecular mechanism aspect of ER stress in Alzheimer's 

disease: current approaches and future strategies. Curr Drug Targets, 2013. 14(1): p. 

114-22. 

13. Bukau, B., J. Weissman, and A. Horwich, Molecular chaperones and protein quality 

control. Cell, 2006. 125(3): p. 443-51. 

14. Mollereau, B., S. Manie, and F. Napoletano, Getting the better of ER stress. J Cell 

Commun Signal, 2014. 

15. Erales, J. and P. Coffino, Ubiquitin-independent proteasomal degradation. Biochim 

Biophys Acta, 2014. 1843(1): p. 216-21. 

16. Schrader, E.K., K.G. Harstad, and A. Matouschek, Targeting proteins for degradation. 

Nat Chem Biol, 2009. 5(11): p. 815-22. 

17. Moriuchi, H., et al., Hydrophobic cluster analysis predicts an amino-terminal domain of 

varicella-zoster virus open reading frame 10 required for transcriptional activation. Proc 

Natl Acad Sci U S A, 1995. 92(20): p. 9333-7. 

18. Adle, D.J., et al., Cadmium-mediated rescue from ER-associated degradation induces 

expression of its exporter. Proc Natl Acad Sci U S A, 2009. 106(25): p. 10189-94. 

19. Kanarek, N., et al., Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold 

Spring Harb Perspect Biol, 2010. 2(2): p. a000166. 

20. Alkalay, I., et al., Stimulation-dependent I kappa B alpha phosphorylation marks the NF-

kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc Natl Acad 

Sci U S A, 1995. 92(23): p. 10599-603. 

21. Fukutomi, T., et al., Kinetic, thermodynamic, and structural characterizations of the 

association between Nrf2-DLGex degron and Keap1. Mol Cell Biol, 2014. 34(5): p. 832-

46. 

137



22. Fisher, E.A. and H.N. Ginsberg, Complexity in the secretory pathway: the assembly and 

secretion of apolipoprotein B-containing lipoproteins. J Biol Chem, 2002. 277(20): p. 

17377-80. 

23. Bruick, R.K. and S.L. McKnight, A conserved family of prolyl-4-hydroxylases that 

modify HIF. Science, 2001. 294(5545): p. 1337-40. 

24. Paltoglou, S. and B.J. Roberts, HIF-1alpha and EPAS ubiquitination mediated by the 

VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to 

other RING E3 ligases. Oncogene, 2007. 26(4): p. 604-9. 

25. Varshavsky, A., Naming a targeting signal. Cell, 1991. 64(1): p. 13-5. 

26. Johnson, P.R., et al., Degradation signal masking by heterodimerization of MATalpha2 

and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell, 

1998. 94(2): p. 217-27. 

27. Arteaga, M.F., et al., An amphipathic helix targets serum and glucocorticoid-induced 

kinase 1 to the endoplasmic reticulum-associated ubiquitin-conjugation machinery. Proc 

Natl Acad Sci U S A, 2006. 103(30): p. 11178-83. 

28. Nakatsukasa, K., et al., Dissecting the ER-associated degradation of a misfolded 

polytopic membrane protein. Cell, 2008. 132(1): p. 101-12. 

29. Ross, C.A. and M.A. Poirier, Protein aggregation and neurodegenerative disease. Nat 

Med, 2004. 10 Suppl: p. S10-7. 

30. Ellgaard, L. and A. Helenius, Quality control in the endoplasmic reticulum. Nat Rev Mol 

Cell Biol, 2003. 4(3): p. 181-91. 

31. Hampton, R.Y. and T. Sommer, Finding the will and the way of ERAD substrate 

retrotranslocation. Curr Opin Cell Biol, 2012. 24(4): p. 460-6. 

32. Jahn, T.R. and S.E. Radford, The Yin and Yang of protein folding. FEBS J, 2005. 

272(23): p. 5962-70. 

138



33. McCracken, A.A. and J.L. Brodsky, Assembly of ER-associated protein degradation in 

vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol, 1996. 132(3): p. 291-8. 

34. Ellgaard, L., M. Molinari, and A. Helenius, Setting the standards: quality control in the 

secretory pathway. Science, 1999. 286(5446): p. 1882-8. 

35. Kostova, Z. and D.H. Wolf, For whom the bell tolls: protein quality control of the 

endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J, 2003. 22(10): 

p. 2309-17. 

36. Hampton, R.Y. and J. Rine, Regulated degradation of HMG-CoA reductase, an integral 

membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol, 1994. 125(2): p. 

299-312. 

37. Jensen, T.J., et al., Multiple proteolytic systems, including the proteasome, contribute to 

CFTR processing. Cell, 1995. 83(1): p. 129-35. 

38. Pariyarath, R., et al., Co-translational interactions of apoprotein B with the ribosome and 

translocon during lipoprotein assembly or targeting to the proteasome. J Biol Chem, 

2001. 276(1): p. 541-50. 

39. Vembar, S.S. and J.L. Brodsky, One step at a time: endoplasmic reticulum-associated 

degradation. Nat Rev Mol Cell Biol, 2008. 9(12): p. 944-57. 

40. Johnson, E.S., et al., Ubiquitin as a degradation signal. EMBO J, 1992. 11(2): p. 497-

505. 

41. Marques, C., et al., Ubiquitin-dependent lysosomal degradation of the HNE-modified 

proteins in lens epithelial cells. FASEB J, 2004. 18(12): p. 1424-6. 

42. Loayza, D. and S. Michaelis, Role for the ubiquitin-proteasome system in the vacuolar 

degradation of Ste6p, the a-factor transporter in Saccharomyces cerevisiae. Mol Cell 

Biol, 1998. 18(2): p. 779-89. 

43. Guerriero, C.J., K.F. Weiberth, and J.L. Brodsky, Hsp70 targets a cytoplasmic quality 

control substrate to the San1p ubiquitin ligase. J Biol Chem, 2013. 288(25): p. 18506-20. 

139



44. Summers, D.W., et al., The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase 

Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLoS One, 2013. 

8(1): p. e52099. 

45. Sharma, D. and D.C. Masison, Single methyl group determines prion propagation and 

protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and 

Ssa2p. Proc Natl Acad Sci U S A, 2011. 108(33): p. 13665-70. 

46. Kriegenburg, F., et al., A chaperone-assisted degradation pathway targets kinetochore 

proteins to ensure genome stability. PLoS Genet, 2014. 10(1): p. e1004140. 

47. Verghese, J., et al., Biology of the heat shock response and protein chaperones: budding 

yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev, 2012. 

76(2): p. 115-58. 

48. Goeckeler, J.L. and J.L. Brodsky, Molecular chaperones and substrate ubiquitination 

control the efficiency of endoplasmic reticulum-associated degradation. Diabetes Obes 

Metab, 2010. 12 Suppl 2: p. 32-8. 

49. Mayer, M.P. and B. Bukau, Hsp70 chaperones: cellular functions and molecular 

mechanism. Cell Mol Life Sci, 2005. 62(6): p. 670-84. 

50. Shaner, L., R. Sousa, and K.A. Morano, Characterization of Hsp70 binding and 

nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry, 2006. 45(50): p. 

15075-84. 

51. Adle, D.J. and J. Lee, Expressional control of a cadmium-transporting P1B-type ATPase 

by a metal sensing degradation signal. J Biol Chem, 2008. 283(46): p. 31460-8. 

52. Sikorski, R.S. and P. Hieter, A system of shuttle vectors and yeast host strains designed 

for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 1989. 122(1): 

p. 19-27. 

53. Mumberg, D., R. Muller, and M. Funk, Yeast vectors for the controlled expression of 

heterologous proteins in different genetic backgrounds. Gene, 1995. 156(1): p. 119-22. 

140



54. Ho, S.N., et al., Site-directed mutagenesis by overlap extension using the polymerase 

chain reaction. Gene, 1989. 77(1): p. 51-9. 

55. Kabisch, U., et al., Type III secretion chaperones ShcS1 and ShcO1 from Pseudomonas 

syringae pv. tomato DC3000 bind more than one effector. Microbiology, 2005. 151(Pt 1): 

p. 269-80. 

56. Smith, D.B. and K.S. Johnson, Single-step purification of polypeptides expressed in 

Escherichia coli as fusions with glutathione S-transferase. Gene, 1988. 67(1): p. 31-40. 

57. Gietz, R.D., et al., Studies on the transformation of intact yeast cells by the LiAc/SS-

DNA/PEG procedure. Yeast, 1995. 11(4): p. 355-60. 

58. Moxley, M.A., et al., Evidence for hysteretic substrate channeling in the proline 

dehydrogenase and Delta1-pyrroline-5-carboxylate dehydrogenase coupled reaction of 

proline utilization A (PutA). J Biol Chem, 2014. 289(6): p. 3639-51. 

59. Wei, W., et al., YCF1-mediated cadmium resistance in yeast is dependent on copper 

metabolism and antioxidant enzymes. Antioxid Redox Signal, 2014. 21(10): p. 1475-89. 

60. Jorgensen, P., et al., Systematic identification of pathways that couple cell growth and 

division in yeast. Science, 2002. 297(5580): p. 395-400. 

61. McCullum, E.O., et al., Random mutagenesis by error-prone PCR. Methods Mol Biol, 

2010. 634: p. 103-9. 

62. Singh, M.V. and P.A. Weil, A method for plasmid purification directly from yeast. Anal 

Biochem, 2002. 307(1): p. 13-7. 

63. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-

10. 

64. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 

2008. 9: p. 40. 

65. Moulis, J.M., Cellular mechanisms of cadmium toxicity related to the homeostasis of 

essential metals. Biometals, 2010. 23(5): p. 877-96. 

141



66. Epping, E.A. and W.S. Moye-Rowley, Identification of interdependent signals required 

for anterograde traffic of the ATP-binding cassette transporter protein Yor1p. J Biol 

Chem, 2002. 277(38): p. 34860-9. 

67. Plemper, R.K., et al., Mutant analysis links the translocon and BiP to retrograde protein 

transport for ER degradation. Nature, 1997. 388(6645): p. 891-5. 

68. Gowda, N.K., et al., Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-

dependent degradation of misfolded cytosolic proteins. Proc Natl Acad Sci U S A, 2013. 

110(15): p. 5975-80. 

69. Zhang, Y., et al., Hsp70 molecular chaperone facilitates endoplasmic reticulum-

associated protein degradation of cystic fibrosis transmembrane conductance regulator 

in yeast. Mol Biol Cell, 2001. 12(5): p. 1303-14. 

70. Viana, R.J., A.F. Nunes, and C.M. Rodrigues, Endoplasmic reticulum enrollment in 

Alzheimer's disease. Mol Neurobiol, 2012. 46(2): p. 522-34. 

71. Walker, A.K. and J.D. Atkin, Stress signaling from the endoplasmic reticulum: A central 

player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life, 2011. 63(9): p. 

754-63. 

72. Mercado, G., P. Valdes, and C. Hetz, An ERcentric view of Parkinson's disease. Trends 

Mol Med, 2013. 19(3): p. 165-75. 

73. Furst, P., et al., Copper activates metallothionein gene transcription by altering the 

conformation of a specific DNA binding protein. Cell, 1988. 55(4): p. 705-17. 

74. He, L., et al., Discovery of ZIP transporters that participate in cadmium damage to testis 

and kidney. Toxicol Appl Pharmacol, 2009. 238(3): p. 250-7. 

75. Meplan, C., K. Mann, and P. Hainaut, Cadmium induces conformational modifications of 

wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol 

Chem, 1999. 274(44): p. 31663-70. 

142



76. Youn, C.K., et al., Cadmium down-regulates human OGG1 through suppression of Sp1 

activity. J Biol Chem, 2005. 280(26): p. 25185-95. 

77. Changela, A., et al., Molecular basis of metal-ion selectivity and zeptomolar sensitivity by 

CueR. Science, 2003. 301(5638): p. 1383-7. 

78. Spector, D., J. Labarre, and M.B. Toledano, A genetic investigation of the essential role 

of glutathione: mutations in the proline biosynthesis pathway are the only suppressors of 

glutathione auxotrophy in yeast. J Biol Chem, 2001. 276(10): p. 7011-6. 

79. Robinson, N.J. and D.R. Winge, Copper metallochaperones. Annu Rev Biochem, 2010. 

79: p. 537-62. 

80. Heo, D.H., et al., Cd2+ binds to Atx1 and affects the physical interaction between Atx1 

and Ccc2 in Saccharomyces cerevisiae. Biotechnol Lett, 2012. 34(2): p. 303-7. 

81. Varshavsky, A., The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A, 

1996. 93(22): p. 12142-9. 

82. Rechsteiner, M. and S.W. Rogers, PEST sequences and regulation by proteolysis. Trends 

Biochem Sci, 1996. 21(7): p. 267-71. 

83. Ulrich, H.D., Natural substrates of the proteasome and their recognition by the ubiquitin 

system. Curr Top Microbiol Immunol, 2002. 268: p. 137-74. 

84. Petaja-Repo, U.E., et al., Ligands act as pharmacological chaperones and increase the 

efficiency of delta opioid receptor maturation. EMBO J, 2002. 21(7): p. 1628-37. 

85. Tateishi, Y., et al., Ligand-dependent switching of ubiquitin-proteasome pathways for 

estrogen receptor. EMBO J, 2004. 23(24): p. 4813-23. 

86. Fisher, E., E. Lake, and R.S. McLeod, Apolipoprotein B100 quality control and the 

regulation of hepatic very low density lipoprotein secretion. J Biomed Res, 2014. 28(3): 

p. 178-93. 

143



87. Hampton, R.Y. and R.M. Garza, Protein quality control as a strategy for cellular 

regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem Rev, 

2009. 109(4): p. 1561-74. 

88. Giles, N.M., et al., Metal and redox modulation of cysteine protein function. Chem Biol, 

2003. 10(8): p. 677-93. 

89. Smith, A.T., K.P. Smith, and A.C. Rosenzweig, Diversity of the metal-transporting P1B-

type ATPases. J Biol Inorg Chem, 2014. 19(6): p. 947-60. 

90. Arguello, J.M., Identification of ion-selectivity determinants in heavy-metal transport 

P1B-type ATPases. J Membr Biol, 2003. 195(2): p. 93-108. 

91. Waldron, K.J., et al., Metalloproteins and metal sensing. Nature, 2009. 460(7257): p. 

823-30. 

92. Mao, X., et al., A histidine-rich cluster mediates the ubiquitination and degradation of 

the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J Biol Chem, 

2007. 282(10): p. 6992-7000. 

93. Fredrickson, E.K., et al., Exposed hydrophobicity is a key determinant of nuclear quality 

control degradation. Mol Biol Cell, 2011. 22(13): p. 2384-95. 

94. Gilon, T., O. Chomsky, and R.G. Kulka, Degradation signals for ubiquitin system 

proteolysis in Saccharomyces cerevisiae. EMBO J, 1998. 17(10): p. 2759-66. 

95. Gilon, T., O. Chomsky, and R.G. Kulka, Degradation signals recognized by the Ubc6p-

Ubc7p ubiquitin-conjugating enzyme pair. Mol Cell Biol, 2000. 20(19): p. 7214-9. 

96. Ardley, H.C. and P.A. Robinson, E3 ubiquitin ligases. Essays Biochem, 2005. 41: p. 15-

30. 

97. Brodsky, J.L. and R.J. Wojcikiewicz, Substrate-specific mediators of ER associated 

degradation (ERAD). Curr Opin Cell Biol, 2009. 21(4): p. 516-21. 

144



98. Shiber, A. and T. Ravid, Chaperoning proteins for destruction: diverse roles of Hsp70 

chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. 

Biomolecules, 2014. 4(3): p. 704-24. 

99. Bozaykut, P., N.K. Ozer, and B. Karademir, Regulation of protein turnover by heat shock 

proteins. Free Radic Biol Med, 2014. 

100. Brodsky, J.L., The protective and destructive roles played by molecular chaperones 

during ERAD (endoplasmic-reticulum-associated degradation). Biochem J, 2007. 404(3): 

p. 353-63. 

101. Lukacs, G.L. and A.S. Verkman, CFTR: folding, misfolding and correcting the 

DeltaF508 conformational defect. Trends Mol Med, 2012. 18(2): p. 81-91. 

102. Brown, C.R., et al., Chemical chaperones correct the mutant phenotype of the delta F508 

cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones, 

1996. 1(2): p. 117-25. 

103. Morello, J.P., et al., Pharmacological chaperones: a new twist on receptor folding. 

Trends Pharmacol Sci, 2000. 21(12): p. 466-9. 

104. Zhou, Z., Q. Gong, and C.T. January, Correction of defective protein trafficking of a 

mutant HERG potassium channel in human long QT syndrome. Pharmacological and 

temperature effects. J Biol Chem, 1999. 274(44): p. 31123-6. 

105. Shearer, A.G. and R.Y. Hampton, Structural control of endoplasmic reticulum-associated 

degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA 

reductase. J Biol Chem, 2004. 279(1): p. 188-96. 

106. Cortez, L. and V. Sim, The therapeutic potential of chemical chaperones in protein 

folding diseases. Prion, 2014. 8(2). 

107. Ayton, S., P. Lei, and A.I. Bush, Metallostasis in Alzheimer's disease. Free Radic Biol 

Med, 2013. 62: p. 76-89. 

145



108. Mizuno, D., et al., Involvement of Trace Elements in the Pathogenesis of Prion Diseases. 

Curr Pharm Biotechnol, 2014. 

109. Lovejoy, D.B. and G.J. Guillemin, The potential for transition metal-mediated 

neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci, 2014. 6: p. 

173. 

110. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. 

Struhl (1987) Current Protocols in Molecular Biology, Greene Publishing 

Associates/Wiley Interscience, New York. 

111. Smith, N., Wei, W. and Lee, J. 2013. Cadmium Transport in Eukaryotes. Encyclopedia of 

Inorganic and Bioinorganic Chemistry. 1–12. 

 

 

 

 

 

 

146



5. Summary and Conclusions 

5.1 Final discussion 

The results discussed in this thesis demonstrate a mechanism by which Pca1, an ERAD-C 

substrate, is regulated via a specific sequence known as a degron.  The degradation of Pca1 is 

predicated on the presence or absence of cadmium.  Under conditions in which cadmium is not 

present, Pca1 is degraded through the ERAD pathway in which Doa10 is the E3 ubuiquitin ligase 

and essential for this process [1].  These results display the first example of ERAD in which a 

fully functional secretory protein is regulated by its substrate for rapid expression.   

It will be beneficial to determine if the mechanism by which Pca1 is degraded/regulated 

can be applied to other substrates of the secretory pathway.  Expressional control of many 

proteins that are not required to be constitutively expressed may be regulated in such a manner.   

The advantage of this mechanism for Pca1 to the cell is due to the toxicity of cadmium.  The 

continual synthesis and degradation of the protein allows for a rapid up-regulation of expression 

of Pca1 in the event of exposure to cadmium.  However, the cell may not want to continually 

express Pca1 as many transporters lack high levels of fidelity and export of essential elements 

could be detrimental to the cells survival. 

We also determined that the proteasome is required for extraction of both Pca1 and 

another ERAD-C substrate Ste6* from the ER membrane [2]. This result displayed a mechanism 

in which cells are able to degrade polytopic proteins and prevent release of these proteins into the 

cytosol where maintenance of solubility would be a taxing factor.   Cdc48 was also determined to 

be important for substrate interaction with the proteasome, specifically in the case for Pca1. The 

exact function of Cdc48 in removing proteins from the membrane has yet to be determined but 

we can speculate that it may be important for recruiting the proteasome to the ubiquitinylated 

substrate.  This will be worthy to test to determine the exact mechanism by which Cdc48 is 

required for substrate-proteasome interaction as Cdc48 is implicated in the turnover of many 

different substrates [3, 4].  We further displayed the requirement of Ufd2, a Cdc48 resident E4 
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ubiquitin chain extension enzyme, for efficient degradation of Pca1 [5].  We also determined that 

although Ufd2 functions in poly-ubiquitinylation of Pca1, this process is not essential for Pca1 

interaction with the proteasome.  It is interesting to note that the poly-ubiquitinylation enzyme not 

Hul5 was implicated in Pca1 degradation despite its convenient location on the 26S proteasome 

[6].  This indicates that there is substrate specificity for poly-ubiquitinylation, and it would be 

worthwhile to define the determinants for this process. 

Finally, we sought to determine the structural and environmental elements which led to 

the recognition of Pca1 for degradation and what changes occurred by the addition of cadmium to 

allow for rescue from said degradation.  Utilizing the degron of Pca1 (250-350), we determined 

specificity and KD for cadmium binding.  Unfortunately, we were unable to go beyond this point 

with biophysical characterization due to the propensity of this peptide to aggregate.  We also 

determined that two cysteine motifs were required for the sensing of cadmium and rescue of Pca1 

from ERAD.  We further established a random mutagenesis screen which led to the discovery of 

single mutations within the degron that rescued Pca1 from ERAD.  These mutations seemed to be 

clustered in the Pca1 (271-320) region.  Modeling of this region revealed a hydrophobic patch as 

well as an amphipathic helix.  Site directed mutagenesis to disrupt this hydrophobic patch and 

amphipathic helix stabilized Pca1 indicating that the mechanism of sensing may be through the 

exposure of hydrophobic residues.  We hypothesized that cadmium presentation to the degron 

may also disrupt/mask this hydrophobic exposure and lead to stabilization of the protein.  Indeed, 

we saw a dramatic decrease in interaction with both site directed mutation and cadmium 

supplementation with the Hsp70 Ssa1, a known component of the ERAD-C system involved in 

recognition of substrates as well as maintaining an established role for refolding of misfolded 

proteins [2, 7].   We also sought to determine if Pca1 degron was conserved.  We found that it is 

only conserved in other fungi; however, the discovery of an amphipathic helix within Pca1 (271-

320) could allow for the establishment of a mechanism for other ERAD-C substrates.  A cytosolic 

Doa10 substrate Matα2 has been shown to contain an amphipathic helix [8].  The development of 
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mechanism by which known substrates are recognized and degraded.  Further understanding of 

protein degradation as demonstrated in this thesis can also lead to therapeutic approaches for 

increased secretion of degradation of desired proteins. As mentioned above, increased secretion 

of CFTRΔF508 is of particular interest in the battle against cystic fibrosis [9]. 

A further interesting note is the role of chaperones.  We displayed the interaction of Ssa1 

with Pca1 in a cadmium and hydrophobic patch dependent manner.  Chaperones are commonly 

considered to be involved in refolding/rescue of proteins from degradation [7].  There is also a 

plethora of evidence suggesting a role in protein degradation [2, 10, 11].  The determinants of 

what signals refolding as opposed to degradation for these chaperones is poorly understood.  Pca1 

will be an important tool for defining this mechanism as it is a short-lived protein that can be 

easily rescued from degradation and its interaction with Ssa1 is dependent on the nature of its 

degron. 
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