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Microalgae are gaining attention as a potential feedstock for the production of biodiesel, 

mainly derived from triacylglycerols (TAG). In many algae, TAG synthesis increases 

dramatically upon certain stresses but this is often accompanied by growth retardation. 

Rational improvements to strain productivity are limited by the scant knowledge on algal 

lipid metabolism and gene regulatory mechanisms. In this context, systems-level 

approaches aimed at understanding and modeling metabolic and regulatory networks may 

enable hypothesis-driven genetic engineering strategies. The green microalga 

Chlamydomonas reinhardtii accumulates significant amounts of TAGs under nutrient 

starvation and provides a genetically tractable model for manipulating biosynthetic 

pathways. In order to gain insight into Chlamydomonas TAG metabolism and regulation, 

we have examined both the transcriptome of strain CC-125 grown photoautotrophically 

in nutrient-replete or nitrogen-depleted media and the corresponding changes in 

microRNA population. While the production of microRNAs (miRNAs) by 

Chlamydomonas reinhardtii has been established for several years, little is known about 

how they target transcripts for regulation or what roles they play in cellular processes, in 



 

particular whether they play a role in regulating the accumulation of TAG in nitrogen-

depleted media. To characterize functional miRNAs in Chlamydomonas, we identified 

small RNAs associated with Flag-tagged-AGO3 by affinity purification and deep 

sequencing in cells grown heterotrophically and cells grown photoautotrophically in 

nitrogen-replete and nitrogen-deplete media and used these small RNAs to determine 

changes in the miRNA populations across these three conditions.  We determined the role 

that these miRNAs play in regulating the response to nitrogen-deplete media by searching 

the genes that are differentially expressed in that condition for potential targets of these 

miRNA. 
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CHAPTER 1- INTRODUCTION 

Overview 

The work for this dissertation is to examine what biological roles microRNAs 

(miRNAs) perform in the green alga Chlamydomonas reinhardtii. It is divided into three 

main parts.  The first part (Chapter 2) investigates the changes in gene expression across 

the transcriptome between C. reinhardtii cells grown photoautotrophically in minimal 

media with and without a source of nitrogen.  The second part (Chapter 3) uses small 

RNAs (sRNAs) associated with Argonaute-family protein AGO3 to predict canonical 

miRNAs expressed in cells grown in heterotrophic conditions and to predict the targets of 

those canonical miRNAs.  The third part (Chapter 4) uses the criteria for canonical 

miRNAs and target prediction established in Chapter 2 to determine the changes in 

miRNA populations in the conditions used for part one and determine which of the genes 

that are differentially expressed in those conditions are potential targets for miRNAs. 

The work on the transcriptomic changes between cells grown in nitrogen-replete 

and nitrogen-deplete media focuses primarily on the pathways relating to triacylglycerol 

(TAG) biosynthesis and degradation, and the competing pathway of starch biosynthesis 

and degradation for four time points (0h, 24h, 48h, and 144h after being transferred to 

nitrogen-deplete media).  TAG, which C. reinhardtii accumulates under certain stress 

conditions including nitrogen starvation, is a very energy dense neutral lipid that can be 

converted into diesel fuel.  While C. reinhardtii itself is not an ideal candidate to use for 

bio-diesel production because of its relatively low lipid content even under conditions in 

which it accumulates lipids, as a model algae insights gained into how algae accumulate 



 

 

2 
TAG will allow more efficient engineering of naturally high oil content algae to make 

bio-diesel production more economically viable.  The previous work on this topic has 

been performed on cells grown in heterotrophic conditions in which they can use acetate 

as a carbon source without the need for photosynthesis.  The work presented here, 

however, is performed on cells grown photoautotrophically, restricting the amount of 

carbon available for the production of lipids or starch.  The metabolic pathways analyzed 

in this part were constructed by combining existing annotations for all of the pathways 

and using manually curated similarity-based searches from fungus and land plants to 

identify unnanotated genes in each of the pathways.  The gene expression levels for all of 

the genes were compared between each of the time points to determine which genes were 

differentially expressed and when, revealing when the cells are preferentially storing 

carbon and energy in either starch or TAG.   

miRNAs, which are part of the RNA interference (RNAi) machinery, are a widely 

conserved eukaryotic mechanism for controlling gene expression at a transcript level by 

either triggering the degradation of the target transcript through cleavage or by blocking 

the production of protein from the transcript through translational repression.  While the 

biosynthesis and mechanism of action differs slightly between plants, animals, and 

fungus, the core machinery is present in nearly all eukaryotic lineages.  The machinery 

has been confirmed to be absent from relatively few unicellular and simple multicellular 

species.  In contrast, there are no known cases of the machinery being absent from 

complex multicellular species with multiple tissue types, where they appear to play a 

critical role in maintaining cell specialization and tissue differentiation.  In many 



 

 

3 
unicellular organisms, such as C. reinhardtii, however, it remains unclear what role they 

play in the cells, despite their widespread conservation. 

The work presented here attempts to determine whether miRNA-associated gene 

regulation plays a role in the response to nitrogen starvation that leads to the 

accumulation of TAG by predicting the miRNAs present in the cells and predicting 

which transcripts they are targeting.  We based these predictions on small RNAs that 

were already associated with AGO3, reducing the possibility of sequenced reads being 

from unrelated degradation products.  To determine which of the AGO3-associated 

sRNAs are cannonical miRNAs as opposed to other types of small interfering RNAs 

(siRNAs), all of the sequences sRNAs were mapped to the genome to attempt to 

reconstruct the miRNA precursors (pre-miRNAs).  To determine which genes in C. 

reinhardtii are being regulated by miRNAs in a given condition, this work searches the 

transcriptome for potential binding for both cleavage and translational repression using 

the predominant reads from the pre-miRNAs that meet the criteria of canonical miRNAs.  

This work determines how miRNAs are involved in the regulation of the response to 

nitrogen starvation by comparing the changes in the miRNA populations and the 

corresponding change in the genes they are predicted to target between the nitrogen-

replete and nitrogen-deplete conditions used to TAG accumulation. 

The remainder of this chapter provides an introduction to the biosynthesis and 

function of miRNAs, current approaches for the prediction of miRNAs and their targets, 

and presents what is currently known about miRNAs in algae. 

 



 

 

4 
Review of Literature 

Summary of microRNA function 

 RNA interference (RNAi) provides cells with a delicate means of translational 

repression through a variety of mechanisms. MicroRNAs (miRNAs) are one component 

of RNAi machinery, which consists of approximately 21 nucleotide (nt) RNA fragments 

[1]. These fragments are derived from small hairpin loops up to ~300 base pairs (bp) in 

length that are processed by the Dicer family of proteins. This short fragment is in turn 

used in the RNA-induced silencing complex (RISC) machinery to repress translation of 

target mRNA, either by preventing translation, or by cleaving the mRNA [2]. In order for 

this repression to occur, the RISC complex, with the miRNA present within it, binds to 

the target mRNA, using the miRNA to bind in a sequence specific manner.  The extent of 

the complementarity between the miRNA and the mRNA plays a major role in 

determining whether silencing occurs through cleavage or translational repression. 

However, this correlation is not absolute [2].  Each step is described in detail in the 

following sections. 

 

microRNA processing 

 Mature miRNAs can be derived from two sources: expressed endogenously within 

cells, or externally introduced in the form of double stranded RNA (dsRNA) [1]. The 

focus here will be on endogenously expressed miRNAs, though the final steps in 

processing and function are shared between both sources, as well as other types of small 

interfering RNAs (siRNAs). miRNAs are differentiated from other types of siRNAs by 

the characteristic, imperfect hairpin loop they form prior to processing, due to sequences 



 

 

5 
containing inverted repeats, also known as reverse compliments, allowing the single 

stranded RNA (ssRNA) to fold back onto itself, forming the loop structure [3]. These 

inverted repeats are reflected in the genomic sequence, which plays an important role in 

computational detection of de novo miRNAs [4].  

 For all of the organisms that produce miRNAs, he genomic sequences for miRNA 

are located in a variety of regions throughout their genomes [5]. While most are found 

either in intergenic regions or introns (in either sense or antisense orientations) of protein-

coding genes, they can also be found within introns and exons on non-protein-coding 

genes and, rarely, in the exons of protein-coding genes [1].   Additionally, in many 

organisms, certain regions of the genome contain several miRNA loci in 

disproportionately high numbers.  These regions are known as miRNA clusters, and the 

miRNAs contained in them may be controlled by the same or similar regulating factors.  

 miRNA precursors are transcribed into what is called the primary microRNA (pri-

miRNA) (Figures 1.1, 1.2).  The pri-miRNA structures, which can be several kilobases 

long in some species, are processed within the nucleus in a similar manner to mRNAs 

[5].  As with mRNA, most pri-miRNA are transcribed by RNA polymerase II, although 

some instances of transcription by RNA polymerase III (used primarily for transcription 

of ribosomal RNAs) have been identified [3].  For intronic pri-miRNAs, the mRNA 

containing them must first be spliced to release the pri-miRNA before miRNA-specific 

processing can continue.   

 In animals, the pri-miRNA is processed and cleaved by the Drosha protein, which 

contains both RNase III domains and a double stranded RNA-binding domain (dsRBD) 

(Figures 1.1, 1.2) [1].  Drosha forms a protein complex with either Pasha or DGCR8 
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proteins, depending on the species.  These proteins also contain two dsRBD domains, and 

are thought to play a crucial role in sequence recognition for the activity of Drosha.  

Additionally, these cofactors help to determine where on the pri-miRNA structure Drosha 

cleaves.  This complex functions by cleaving the pri-miRNA into a smaller hairpin loop 

structure, ~60-100bp in length, termed the preliminary miRNA (pre-miRNA). During 

cleavage, Drosha leaves two unpaired nucleotides at the 3’ end of the pre-miRNA. Once 

processed by Drosha, the pre-miRNA is exported from the nucleus into the cytoplasm by 

the nuclear export protein exportin-5 [1].   

 In the final step of miRNA processing prior to the sequence being loaded into the 

effector complex that performs the gene silencing, the pre-miRNA is cleaved by Dicer 

(Figures 1.1, 1.2) [1]. The Dicer protein is another RNase III protein, which functions 

only in the cytoplasm of animals, cleaves the loop section of the pre-miRNA, leaving 

only the small, dsRNA fragment containing the actual miRNA sequence and its 

compliment (often referred either as the guide and passenger miRNAs or miRNA and 

miRNA*, respectively). The Dicer protein acts as a measuring stick to ensure the final 

product is the proper length (~21nt). As with the Drosha, cleavage by Dicer leaves two 

unpaired nucleotides at the 3’ end of the opposite strand, leaving two nucleotides 

available for both of the strands in the duplex. The short duplex formed by Dicer is not 

highly stable, with the miRNA* strand quickly separating and degrading while the 

miRNA itself is loaded into the effector complex [1].   

  Contrary to miRNA processing in animals, plants, including Chlamydomonas and 

Volvox, lack the Drosha protein and its cofactors (see Figures 1.3, 1.5 and 1.6) [1].  

Instead, Dicer-like proteins, predominantly DCL1, process the pri-miRNA within the 
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nucleus, cutting the pri-miRNA in two locations instead of the one in animals, allowing 

the immediate release of the miRNA/miRNA* duplex within the nucleus [6]. In this step, 

the protein HYL1, which is also localized to the nucleus, binds to the RNA and fills the 

role of Pasha/DCR1.  Finally, HASTY and other nuclear exporters export the duplex out 

of the nucleus.  Once in the cytoplasm, the duplex is unwound, and the miRNA is loaded 

into the effector complex, again leaving the miRNA* to be rapidly degraded [6].   Figure 

1.1 summarizes the biosynthesis pathway in C. reinhartii. 

 

RISC complex structure and function 

  For miRNAs, as with other siRNAs, the effector complex within which the 

miRNAs function is the RNA-induced silencing complex (RISC) [7]. The complex 

consists of the Argonaute (AGO) protein into which the miRNA is fitted (Figure 1.3) [8]. 

AGO is a widely conserved family of proteins found in almost all eukaryotes, as well as 

some archea and eubacteria.  The AGO protein itself consists of several domains, 

including the PAZ domain, into which the 3’-end of the miRNA is loaded, the MID 

domain, which secures the 5’-end, and the PIWI domain, which contains the catalytic site 

for mRNA binding and cleavage [8].  

 In its inactive state prior to the miRNA binding, the AGO protein has a very closed 

structure, concealing the catalytic sites [9].  In order to facilitate the binding of the 

miRNA to the PAZ domain, the structure hinges open in the N-terminal domain and 

pivots slightly, exposing the region of the PAZ domain that contains the RNA-binding 

sites for the 3’-end of the miRNA (corresponding to the two unpaired nucleotides in the 

miRNA/miRNA* duplex) [7].  The first nucleotide of the 5’-end of the miRNA is 



 

 

8 
secured within the MID domain, with the binding sites turned in towards the protein, 

making this nucleotide inaccessible to bind with target mRNAs [8].  In this conformation, 

nucleotides 2-8 from the 5’-end of the miRNA (known as the seed region for its role in 

seeding the catalytic reaction between AGO and the mRNA) face outward into the 

channel that will eventually contain the mRNA, while the remaining nucleotides are 

initially inaccessible and do not play an initial role in target selection [7]. 

 In order to facilitate introduction of the mRNA strand into the central channel of the 

AGO protein, the AGO protein goes through an additional conformational change similar 

to the first [8].  In this stage, it hinges open further, creating a space in the central channel 

wide enough for the mRNA to pass through, and to facilitate bulges formed by imperfect 

pairing or gaps between the miRNA and mRNA sequence [10].  Because the miRNA 

structure is fixed against the AGO protein, however, bulges can only be present within 

the mRNA sequence, and not within the miRNA [8].   Within the bound complex, 

cleavage is depending on perfect base pairing between nucleotides 10 and 11, and 

without this binding, silencing can only occur through translational repression (Figure 

1.3). It has been proposed that the binding of the seed region to the mRNA triggers the 

release of the remaining nucleotides of the miRNA and bringing the mRNA into the 

catalytic site of the PIWI domain [2].  However, the crystal structure for such a 

configuration has not yet been resolved, leaving open the question of how, 

mechanistically, the complementarity between the miRNA and target mRNA affects 

target recognition and cleavage.   

  In addition to the binding between the miRNA and target sequence, the type of 

repression that occurs also depends on the specific AGO protein containing the miRNA 
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[11]. In humans, there are at least 4 main AGO proteins: hAGO1, hAGO2, hAGO3, and 

hAGO4. Both hAGO2 and hAGO3 associate with miRNA, but only hAGO2 displays 

cleaving activity.  Instead, hAGO3 functions by localizing mRNA to p-bodies within the 

cytoplasm, regardless of complementarity.  In this case, the gene is still silenced through 

translational repression, and still leads to target degradation within the p-bodies.  

However, such localization effects leave open the possibility that other AGO proteins 

could localize targeted mRNAs to different locations in the cells or could repress 

translation in a manner that does not negatively affect the stability of the mRNA [11]. 

 

Evolution of the miRNA machinery 

 The machinery for the RNAi machinery is nearly ubiquitous in eukaryotic cells, 

with the core machinery likely present in the last eukaryotic common ancestor (LECA) 

[12, 13].  The core machinery for RNAi, a PIWI superfamily protein, a DICER-like 

protein, and an RNA dependent RNA polymerase (RdRP), appear to derive from a 

variety of prokaryotic sources, including both bacteria and archaea, but seem to have all 

been present in the last eukaryotic common ancestor (LECA) (Figure 1.5) [12-15].  The 

PIWI superfamily protein, of which AGO is a member, forms the core of the RNAi 

machinery in all of its forms, and is classically defined as containing a PIWI, MID, and 

PAZ domain, as with AGO described above (Figure 1.5) [13, 15].  These proteins are 

most similar to the prokaryotic PIWI  (pPIWI) and pPIWI-RE families of proteins, which 

primarily associate with DNA/RNA hybrids and are thought to play a role in defending 

the cells against foreign DNA and mobile genetic elements [16-20].  These pPIWI 

proteins are found primarily in Archaea, however, the main catalytic feature of the PIWI 
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superfamily proteins, the RNaseH fold found within the PIWI domain, closely resembles 

the Endonucleos V family of proteins, including EndoV in bacteria and UvrC in archaea, 

which are highly conserved in both lineages [13, 21].  This distribution of domains 

suggest that the PIWI family of proteins originated from the UrvC family of proteins, and 

that the classic PIWI structure found in the LECA was already largely present in the 

archaeal pPIWI proteins [13, 22].  

In contrast, the DICER-like proteins, which consist of two RNaseIII domains and 

a dsRNA-binding domain (dsRBD), is much more similar to the bacterial Type II 

CRISPR protein, which also processes dsRNA in a similar manner to eukaryotic Dicer-

like proteins [23].  A phylogenetic analysis performed by Burroughs et al. [13] suggests 

that all eukaryotic RNaseIII domains share a common origin that is closely related to the 

bacterial RNaseIII domains, such as the one in CRISPR.  Additionally, the transition 

from domain distribution in CRISPR, with one RNaseIII domain and a dsRBD, to that of 

Dicer-like proteins with two concurrent RNaseIII domains and a dsRBD, appears to have 

occurred at least as early as the LECA [13].  The final piece of the core RNAi machinery, 

RdRP, appears instead to have originated from a DNA dependent RNA polymerase 

(DdRP) in bacteriophages which was adapted to use an RNA template [24, 25].  How and 

when these proteins from a wide range of prokaryotic sources first coalesced into a single 

organism remains an open question, but follows a trend of other eukaryotic specific 

processes such as the acquisition of the spliceosome and the formation of pores in the 

nuclear envelope [26, 27] 

The earliest RNAi machinery, however, likely processed sense-antisense (s-as) 

transcripts that form double stranded RNA (dsRNA) rather than the small hairpin 
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structures characteristic of miRNA, based on the presence of the former exclusive of the 

latter among some basal eukaryotes, including the chromalveoalte ciliate Tetrahymena 

thermophila and the kinetoplastid Trypanosoma brucei (Figuress. 1.5, 1.6) [13, 28-32].  

The processing of independently transcribed miRNAs appears to have arisen sometime 

between the branching of ciliates and the branching of plants from the fungal and 

metazoan lineages given their presence in the later lineages as well as the apicomplexa 

Toxoplasma gondii and the amoebazoan mycetozoa Dictyostelium discoideum [32-34].  It 

is important to note, however, that the diplomonad Giardia lamblia and the parabasalid 

Trichomonas vaginalis also appear to process independently transcribed hairpin 

structures that resemble miRNAs, at least one of which has also been shown to perform 

post-transcriptional gene silencing [35-37].  While remains unclear how structurally and 

functionally similar the Giardia and Trichomonas hairpin-derived small RNAs are to 

plant and animal miRNAs (which in themselves have a number of differences in their 

biogenesis and function, see Figure 1.4 [38]) they may either indicate the emergence of 

miRNAs occurred closer to the LECA than previously thought or convergent evolution of 

miRNA-like regulation in the two lineages.  The number of loss events necessary for the 

former scenario, however, make the latter scenario much more probable.   

 

Loss of miRNAs 

 While the processing of miRNAs from independently transcribed hairpins appears 

to have evolved before the split between plant lineages from fungal and metazoan 

lineages, there have been a number of species in the these lineages that have lost some or 

all of the RNAi machinery (Figures 1.6, 1.7, 1.8) [12, 13, 39-41].  In general, these loss 



 

 

12 
events occur at early branches of these lineages, and occur in unicellular species such as 

the Choanoflagellida Monosiga brevicollis [41], several algae, including Osterococcus 

and Micromonas [42], and several fungi, including the Unikonta Saccharomyces 

cerevisiae [39, 40].  Additionally, these loss events can either involve the loss of the 

entire RNAi machinery, as in the cases mentioned above, or only of miRNA processing 

specifically, as in the Placazoa Trichoplax adherens, which, while multicellular, does not 

differentiate cell types [41, 43]. 

 The loss of RNAi in fungi is particularly interesting, as, contrary to the earlier 

belief that the loss of RNAi was a random occurrence, the presence or absence of RNAi 

greatly impacts the ability of the cells to maintain the killer system [40].  The killer 

system, which allows the host organism to produce and excrete toxins to kill competing 

cells in their environment, is comprised of two viral components: the satellite dsRNA M 

(which are separate from the viral particles) and the L-A dsRNA mycovirus [44].  The M 

dsRNAs encode the toxins used in the killer system as well as the proteins necessary to 

protect the host cell from the toxin produced, while the L-A mycovirus encodes the 

toxins that allow the cells to kill other cells in the surrounding environment as well as the 

proteins necessary to protect itself against the toxins produced.  However, the M dsRNAs 

cannot reproduce independently of the L-A mycovirus, and loss of the L-A virus leads to 

loss of the killer system as a whole.  In cells that contain the killer system, both the M 

dsRNAs and the L-A mycovirus are maintained and replicated in the cytoplasm of the 

cells [44].  This system is found in many of the fungal species that have lost RNAi (see 

Figure 1.7).  For Saccharomyces cerevisiae, the RNAi system was experimentally 

restored by introducing Dicer and Ago from Saccharyomyces castelli, a close relative of 
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S. cerevisiae that retains the RNAi pathway [40].  While the reintroduced pathway 

functionally silenced endogenous transposons, it had no observable impact on the growth 

rate or survivability of the cells in lab conditions.  However, in addition to silencing 

transposons, the RNAi machinery also processed the dsRNA in both the M satellites and 

L-A mycovirus, similar to the role of RNAi in viral defense for other organisms.  By 

silencing the L-A mycovirus, the RNAi system prevented the replication of the M 

satellites, and the killer system was quickly lost, rendering the cells susceptible to the 

toxins produced by cells without the reintroduced RNAi machinery [40].  For these 

fungal cells, the evolutionary benefits of harboring and maintaining the killer system to 

reduce competition appear to outweigh the cost of losing RNAi. 

 As mentioned previously, the loss of miRNAs generally occurs in unicellular or 

simple multicellular (multicellular organisms without cell differentiation) organisms, and 

there appears to be a positive correlation, at least within the plant and animal lineages, 

between the increased complexity of an organism an increase in the number of miRNAs 

contained within the genome (See Figures 1.8, 1.9) [41, 45].  Within two distantly related 

algal lineages, green alga (Chlorophyceae) and brown alga (Phaeophyceae), miRNAs 

have been categorized for two species that have independently evolved multicellularity 

with different cell types, Volvox carteri and Ectocarpus siliculosus, respectively [46, 47].  

For both algae, target prediction of the miRNAs identified showed an over-representation 

of proteins involved in triggering and maintaining the different cell types.  This mirrors 

the role that a subset of miRNAs play in higher plants and animals [6, 48-54].  The 

targeting of developmental genes in these distantly related algae suggests that, at least for 

some lineages, miRNAs became entwined in the regulation of developmental genes very 
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early on in the independent evolution of multicellularity, rendering them essential for the 

organism’s proper development and survival [12, 13].  Outside of these lineages with 

strong conservation of a subset of miRNAs (see Figures 1.8, 1.9), however, loss events 

across several lineages (including some algae, but not Chlamydomonas, see Figure 1.6) 

suggest that RNAi may not be essential for survival [12, 13, 55]. 

 

Evolution of miRNAs 

 There have been several studies recently that have looked at the population 

genetics in animal and certain plant miRNAs to try to identify how the miRNAs and their 

targets are coevolving and what constraints are placed upon mutations within the 

miRNAs and their targets [56-63].  Studies about the polymorphisms in miRNAs have 

focused primarily on the relationship between the miRNA and their targets [56-58].  A 

study of polymorphisms in human miRNAs found ~400 single nucleotide polymorphisms 

(SNPs) across all of the miRNA and miRNA-binding sites investigated, of which the 

majority (~250) created the potential for novel targets for those miRNAs [56]. While the 

majority of the SNPs had distributions consistent with neutral evolution, SNP densities in 

both the miRNA sequence itself and the sequence of the miRNA binding sites show that 

polymorphisms capable of preventing regulation are subject to purifying selection. 

Interestingly, two SNPs in potential miRNA binding sites that allow the miRNA to target 

additional genes (one located in a taurine receptor and the other a subunit for the actin 

related protein 2/3 complex) show evidence positive selection when comparing the 

occurrence of the SNPs in humans and chimps compared to other primates.  It is not clear 

what functional advantages regulating these targets could provide. 
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Similar evidence of purifying selection is found in higher plants.  In the 

angiosperm Arabidopsis, along with strong constraints against sequence variation in 

either the miRNA or the target, with polymorphism rates much lower than in the regions 

surrounding the binding sites [57].  Additional research in the angiosperm Oryza sativa 

also showed that certain miRNAs are maintained through purifying selection during 

evolution protecting against loss of regulation for certain genes or the deleterious 

regulation of others, allowing only variation that produces no functional change, results 

neutral de novo targets, or introduces a selective advantage [58]. 

 Despite the constraints on variation for existing miRNAs, studies looking at the 

wider evolution of miRNA populations between species have found that new miRNAs 

can arise spontaneously, giving rise to a plasticity in the overall miRNA populations [59-

63].  In plants, this can be seen in the number of miRNAs that are either species-specific 

or that are contained in only a few very closely related species [59, 60]. Within 

Arabidopsis, there is evidence, based on the lack of similarity in the pre-miRNA 

sequence to any other region of the genome, that these sequences can arise from random 

sequences that form small or partial hairpin forming sequences in transcripts [61].  The 

spontaneous production of novel miRNAs from random sequences could account for 

large number of unique miRNA sequences between A. thaliana and A. lyrata, roughly 

13% of the total miRNA sequences for each species, despite the relatively recent 

speciation [62].   

There are many possible mechanisms for novel miRNAs to evolve in both plants 

and animals.  In plants, where it is common for not only the binding site of the miRNA to 

be highly complementary to the mature miRNA, but also for the region surrounding the 
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binding site to be complementary to part of the pre-miRNA, one possibility is a partial 

inverted duplication of part of the target sequence (Figure 1.10a) [64, 65].  Such inverted 

duplication can occur as the result of the genomic rearrangements and segmental 

duplications the evolution of plants [66].  Another similar possibility, which appears 

possible in both plants and animals, is the insertion of transposable elements creating an 

inverted repeat (Figure 1.10b) [67-69].  In both of these cases, in addition to formation of 

inverted repeats in the genome, the sequences must also contain sufficient promoter 

regions to be transcribed, giving rise to a number of potential hairpin sequences in the 

genomes that are either too weakly transcribed to be functional, or not transcribed at all, 

which has a significant impact on the prediction of non-conserved miRNAs that evolve in 

such a manner (see miRNA prediction below).  One final possibility, which is more likely 

in animals with their low degree of complementarity between the miRNAs and their 

targets than in plants, is that any transcript that forms a hairpin structure could be 

processed by the miRNA machinery (Figure 1.10c) [70, 71].  In this model, a huge 

variety of small RNAs could be processed and loaded into the RISC complex, regardless 

of whether they are able to target a transcript.  When these new sequences do arise, the 

level of expression for each is also subjected to the same selective pressure as 

polymorphisms, allowing tight control of the regulatory roles these miRNA play within 

the cells [63].  

 

miRNA prediction 

 A variety of approaches have been developed to predict miRNAs, both purely 

computationally and by using a combination of computational and experimental methods, 
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most notably using high throughput RNA sequences (RNAseq or NGS) [72-77].  A brief 

description of a few of these methods can be found in Table 1.1.  The purely 

computational methods can be further divided into similarity-based methods, which look 

at the conservation of the predicted pre-miRNA sequence or structure, and ab initio 

methods that solely on the features of the sequence being considered [72, 73].  These 

computational methods, regardless of whether or not they depend on homology, include 

several approaches that are either entirely heuristic or depend on machine learning for 

making and filtering predictions [73, 78].   Determining the accuracy of methods is 

difficult, especially in multi-cellular organisms with specialized tissues.  While numerous 

regions of the genomes are capable of being folded into pre-miRNA like hairpin 

structures, not every hairpin produces an miRNA.  Additionally, many miRNAs are 

tissue specific, making the determination of true negative examples extremely difficult, 

which has a significant impact on the training of machine-learning based approaches, as 

well as the testing for all approaches.   

 One feature that is shared across all prediction methods, regardless of whether 

they are similarity-based or ab initio based approaches, utilize machine learning, or 

incorporate experimental data, is the prediction of the secondary structure of the pre-

miRNA transcript [72, 73, 78, 79].   The basis for this step is to determine whether 

Dicer/Drosha in animals or DCL proteins in plants could process the sequence of the 

predicted miRNA into the duplex containing the mature miRNA.  The size of the hairpin 

generated differs between plants (roughly 250nt in length [80, 81]) and animals (roughly 

110nt in length [74, 82, 83]) to reflect the differences in miRNA biogenesis between the 

two lineages.  At a minimum, these secondary structure predictions are used solely to 
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determine whether the potential pre-miRNA would be capable of forming the requisite 

hairpin structure before using other methods, such as similarity-based searches, to 

determine the likelihood of being a real pre-miRNA, such as in C-mii [84].  In other 

cases, especially ab initio prediction methods, the minimum free energy (MFE) of the 

predicted structure, number and location of mismatches, or the relationship between the 

sequence and predicted structure are used for prediction, such as in miRNAminer, 

MiRFinder, MiPred, or NOVOMIR [80, 82, 83, 85].  As a result, the quality of the 

secondary structure prediction is essential for the accurate prediction of miRNAs, 

regardless of the method used.  In cases where the secondary structure is predicted using 

different conditions than the organisms normally live, for instance differences in 

temperature, salinity, or pH, the predicted structure could differ wildly from what would 

occur in the cell, leading in turn to inaccurate miRNA predictions regardless of the 

method used [86]. 

 The similarity-based methods for predicting miRNAs are based on the assumption 

that mature miRNAs that are essential for the organism’s survival will be conserved 

between closely related species [82, 84, 87, 88].  These methods usually involve using 

known miRNAs to search a new genome either using only the mature miRNA sequence, 

such as MapMi and miRminer [82, 87], or by using the entire pre-miRNA sequence, such 

as in ProMir II or C-mii [84, 88].  In the cases where only the mature miRNA is used, the 

sequence is extended upstream and downstream to attempt to recover the pre-miRNA 

sequence.  In both cases, sequences that meet the conservation threshold are folded as 

described above.  Because there are a number of conserved hairpin structures, all of these 

methods use additional filters, either on the structure of the hairpin itself or in the patterns 
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of conservation to ensure positive predictions [89].  Algorithms such as miRNAminer 

that use the entire pre-miRNA for the initial search will generally also include a threshold 

(in this case 80% homology) for the conservation of the mature miRNA itself [82].  For 

algorithms that use the pattern of conservation within the hairpin, the number of 

substitutions in the sequences of the mature miRNA, miRNA*, remaining stem, and loop 

structure are compared under the assumption that the selective pressure to remain 

unchanged will be highest for the mature miRNA sequence and be progressively lower 

for the remaining sequences [73].  It is important to note, however, that these approaches 

cannot detect novel miRNAs, including any species-specific miRNAs. 

 Another approach, used by RNAmicro, allows the detection of conserved 

miRNAs without the need for already known miRNAs or pre-miRNA structures by 

leveraging comparative genomics to align and search entire genomes for possible pre-

miRNA structures [90].  In this approach, the entire genomes are aligned against each 

other using RNAz [91, 92] (it is designed to detect a wide range of conserved non-coding 

RNAs (ncRNAs), of which miRNAs are a subset) or a similar alignment method.  The 

resulting alignment is folded using RNAalifold, which predicts the conserved secondary 

structure instead of the secondary structure of the individual sequences, as is the case for 

the other similarity-based methods.  If the conserved secondary structure resembles a 

hairpin, which the authors term almost hairpins, the conserved structure and the 

individual sequences are analyzed by a support vector machine (SVM).  This SVM, 

which is  trained on data from known metazoan miRNAs, classifies the sequences as 

either pre-miRNAs or other ncRNA based on the sequence composition (predominately 

the G/C content of the sequence) and the thermodyanimcs of the predicted hairpin 
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structure.  However, because the SVM is trained on only metazoan miRNAs, this 

algorithm would be unreliable for prediction of miRNAs in other lineages [90].  

Additionally, even though this approach does not require sequence similarity to any 

known miRNAs and is thus able to detect novel conserved miRNAs, because it depends 

on the alignment and conserved secondary structure of two different genomes, it still 

shares the limitation of other similarity-based methods that it cannot detect any species-

specific miRNAs. 

 In order to overcome the limitations of similarity-based searches and find species-

specific or novel miRNAs, ab initio methods make no assumptions about conservation of 

miRNAs between, instead basing their predictions solely on the features of the potential 

miRNA in organism being searched [75, 80, 83, 85, 93, 94].  These methods primarily 

focus on the sequence itself, the distribution and location of gaps and mismatches in the 

hairpin structure, the combination of the sequence and structure of the hairpin and the 

MFE of the hairpin (the MFE of miRNA containing hairpins has been reported to be 

lower than those of most non-miRNA hairpins) [85].  Because the differences in 

sequence and structure between true and false positive predictions are often very subtle, 

most recently developed ab initio methods rely on machine-learning based approaches to 

distinguish between the two cases which are generally trained on published data (see 

Table 1.1).  However, because only a subset of miRNAs are probably known for each 

organism and very few known true negative miRNA-like hairpins are known, it remains 

unclear to what extent overfitting is occurring in these methods.  Studies that have used 

these algorithms on separate data sets from which they were trained, whether within the 

same lineage or different lineages, often report much lower performance than the original 
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publication [95].  An additional source of problems for these algorithms comes from the 

data used for training itself.  Many of these algorithms use miRNA sequences deposited 

in miRBase [96].  However, the validity of some of the miRNAs and pre-miRNA 

structures deposited in the database (and by extension used to train these algorithms) is of 

dubious quality and may not represent real miRNAs [97-99].  Some work has been done 

to strengthen the reliability of these annotated sequences, but such work is still being 

done only on a species by species basis as additional experimental evidence becomes 

available [100, 101].  

To overcome some of the issues of overtraining within an individual method, 

ensemble methods such as MiRenSVM produce multiple machine-learning classifiers 

each based on subsets of the training data available and combining the results of each 

classifier to make an overall prediction [93].  In the case of MiRenSVM, each SVM is 

trained using similar features to other ab initio methods (a combination of sequence and 

structural information, the sequence composition, and thermodynamic characteristics of 

the secondary structure) using a random sampling of positive and negative examples from 

the training set proportional to the number of SVMs used.  To combine the predictions of 

each individual SVM, MiRenSVM uses a combination of Majority Vote, in which the 

overall classification is whichever classification majority of the individual SVMs 

predicts, and Mean Distance, where each example being tested is classified only by the 

SVM that most closely matches that sample.  However, the authors do not explain how 

the algorithm handles samples where the two aggregation schemes disagree.  In their 

tests, which are also performed on sequences from miRBase and are thus also subjected 

to some of the quality control issues described above, this ensemble approach does have a 
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overall higher accuracy geometric mean of classifications than individual classification 

methods used for comparison [93].  One important note, however, is that this algorithm 

was designed and tested only on animal miRNAs.  As such, it remains unclear how 

reliable it would be for predicting miRNAs from other lineages. 

 More recently, miRNA prediction programs have started leveraging high-

throughput sequencing technology to combine experimental small RNA data with other 

computational prediction methods to identify expressed miRNAs [74, 76].  These 

algorithms depend on sequence data of all of the small RNAs in the cell, which can then 

be mapped to the organism’s genome to strengthen predictions of miRNA producing 

hairpins.  For both of these algorithms, all of the reads with no more than 30nt between 

them following mapping are grouped.  These groups are then extended in either direction 

to form two putative pre-miRNAs, one for the upstream extenstion and one for the 

downstream extension of the appropriate length for the lineage being searched.  As 

mentioned above, this is 110nt for metazoans [74, 76] and 250nt for plants [81].  A small 

extension is added to the opposing side of the miRNA to balance the two arms of the 

hairpin in true pre-miRNAs.  After the extensions are added, both algorithms perform a 

similar secondary structure analysis to the other methods listed above, with added 

constraints about the distributions of the reads around the hairpin.  In both cases, the most 

highly expressed read from the hairpins that meet all of the criteria are considered the 

mature miRNA, on the assumption that each hairpin will only produce on mature 

sequence [74, 76].  For organisms in which antibodies for the Argonaute proteins are 

available, the small RNA isolation can be further refined by cross-linking the miRNAs to 

the argonaute protein of interest and immunoprecipitating the RISC complex [102, 103].  
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By isolating only small RNAs that are associated with the argonaute proteins, many of 

the extraneous small RNAs, particularly degradation products that are roughly the same 

size as miRNAs, are removed from the library, in turn further strengthening predictions 

that the hairpins identified in the analysis are genuine miRNAs.  However, because these 

methods require miRNAs to be expressed to be predicted, they cannot identify tissue- or 

condition-specific miRNAs not expressed in the sample.  

!

miRNA target prediction 

  The prediction of miRNA targets can be done experimentally or computationally. 

However, experimental detection of targets for novel miRNA sequences is extremely 

limited, and current computational prediction techniques differ widely in both predictions 

and accuracy, requiring additional experimental testing to verify predictions [104]. 

Computational prediction of miRNA targets is particularly challenging given their small 

size and because only a portion of the miRNA needs to be complimentary to suppress 

translation [77]. As described before (section 2), there are two modes for gene silencing, 

one found predominantly in plants and the other found predominantly in animals, which 

coincide to the extent of complementarity present between the miRNA and its targets 

(Figures 1.2, 1.4). In the mode found predominantly in plants, interaction between the 

miRNA and its targets requires complete or near complete complementarity, allowing for 

the exclusion of any sequences with more than a very few mismatches. These interactions 

almost exclusively lead to cleavage of the miRNA. The miRNA binding sites for this 

type of interaction are most commonly found within the coding region of the genes. 

Current models suggest that silencing through translational repression has been almost 
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entirely lost in plants [2]. However, there is a growing body of evidence for this type of 

silencing [105].  

  In contrast, the mechanism of regulation found predominantly in animals allows 

for considerable mismatching (Figures 1.2, 1.4), requiring more complicated rules for 

differentiating true interactions from false ones. These additional rules often focus on 

dividing the microRNA target interaction into two regions; the “seed” region 

corresponding to nucleotides 2–8 from the 5’-end of the miRNA initially exposed in the 

RISC structure, and the “non-seed” region, spanning the remainder of the sequence. Most 

computational models require either complete or near complete complementarity within 

the seed region [106]. The rest of the sequence requires considerably lower, if any, 

complementarity, depending on the model used and type of interaction [2].  

  In some models complementarity in the seed region is sufficient for miRNA/target 

interactions [2]. Most new models, however, include the need for some additional feature, 

either within the non-seed region, or in the mRNA regions flanking the miRNA-binding 

site [104, 107, 108]. These additional features include binding in the non-seed region and 

cobinding sites either for the same or other miRNAs [108], the mRNA secondary 

structure [107], and potential protein-binding sites along the surrounding region [104]. 

Also unlike the interactions found most often in plants, these interactions lead almost 

exclusively to silencing through translational repression, with little or no silencing 

through mRNA cleavage, and the binding sites for these interactions are found most often 

in the 3’-UTRs of the mRNAs they target.  

  Especially for this type of interaction, computational prediction of miRNA targets 

is extremely difficult due to how little specificity it requires. Using only 7nt to query a 
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large number of mRNA sequences can result in several thousand predicted matches, 

while, under even the highest estimates, each miRNA probably does not affect more than 

a few hundred targets, with many estimates well under 100 targets each [2]. As such, 

most computational methods require additional constraints during the search [109].  One 

of the most common of these constraints not based on the features of the interaction itself 

is the inclusion of target site conservation among closely related species.  This 

conservation implies a functional significance, which, if a miRNA is predicted to bind in 

that location, strengthens the probability that that prediction is valid [109]. 

While!most!of!the!current!prediction!programs!are!heuristic!based,!machine6

learning!approaches!represent!a!steadily!growing!approach!to!target!prediction.!!

These!methods!include!TargetBoost,!which!relies!on!genetic!programming!to!spawn!

and!evolve!pattern!sequences!in!order!to!discern!previously!unknown!rules!for!

miRNA/target!interactions!and!several!support!vector!machine!approaches![106].!!

Both!of!these!methods!function!independently,!in!that!they!do!all!of!the!searching!

and!matching!without!external!programs,!and!predict!the!use!of!the!heuristics!used!

above.!!Instead,!they!rely!on!determining!relevant!features!within!the!interaction!

itself.!!For!TargetBoost,!the!genetic!algorithm!part!attempts!to!find!any!necessary!

features!such!as!stretches!of!complimentary!pairings,!such!as!the!seed!region!above,!

or!gaps!or!mismatches!in!certain!regions!of!the!interaction.!!Once!all!of!these!

features!are!determined,!they!are!combined!and!weighted!to!give!the!final!classifier.!!

However,!because!this!approach!is!trained!to!determine!the!specific!characteristics!

of!certain!miRNA,!it!performs!very!poorly!on!detecting!any!interactions!that!deviate!

from!those!specific!patterns.!



 

 

26 
 There are two basic approaches to use SVMs for screening microRNAs.  They can 

either be used on their own, in which they search for potential target sites and model the 

interactions to determine to classify the interactions as real or false without any outside 

program, or they can take the results of another target prediction program and analyze 

only those sequences that are predicted to be interactions to determine which are false 

positives [109].  One example of the first approach is the miTarget SVM, which searches 

up to 10 mRNAs for possible hybridization sites for the miRNA, then builds a feature 

vector based on the first and last half of the miRNA/target hybridization site including 

thermodynamics and the position along the UTR of the hybridization [106].  However, 

the extremely limited number of inputs makes this specific algorithm very ill suited for 

genome wide analyses, using such an approach is very inflexible for comparing the 

results of several different methods, all of which are prone to false positives and could 

benefit from machine learning [109].  By using the second approach, where the SVM is 

used as a post-prediction filter, the results of any prediction method, using any of the 

heuristics listed above or any others, could still benefit from the machine learning. 

 

miRNAs in green algae 

 In the green algae Chlamydomonas reinhardtii and Volvox carteri, microRNAs 

were first described only recently [110-112]. While it would initially seem that miRNA 

target selection in C. reinhardtii would function in a manner consistent with higher 

plants, very few of the miRNAs previously described have identifiable targets searching 

for near complete complementarity. This lack of targets leaves the possibility that these 

miRNAs instead function either largely or primarily through translational repression, in a 
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manner more akin to animals. This possibility is strengthened by growing amounts of 

evidence that in plants, in addition to the silencing by cleavage, plant genes are silenced 

through translation repression, as in animals [105]. Additionally, recent work using 

artificial constructs has shown that C. reinhardtii is capable of regulating protein levels 

through both mechanisms, determined by the complementarity of the seed region and the 

region around the catalytic site [113].  However, it is still unclear how prevalent each of 

the mechanisms are for regulating targeted genes in this species, and almost nothing is 

known about what kinds of genes and pathways these miRNA would be targeting under 

such a model. 

 While little is known about the miRNA/taret interactions in algae, studies have 

characterized both the machinery that processes miRNAs [114] and aids in quality 

control of the miRNAs produced [115] in C. reinhardtii.  C. reinhardtii shares the same 

core processing machinery as higher plants (as shown in Figure 1.1) [115].  This 

machinery includes three AGO proteins, of which AGO-3 appears to be the most 

extensively involved in miRNA function, along with three DCL proteins.  AGO1 and 

DCL1 appear to be primarily involved in the silencing of transposable elements.  The 

quality control of miRNAs is at least partially controlled by the Mut68 protein, which 

appears to function by placing untemplated nucleotides (generally uridyls) at the 3’-end 

of the miRNA molecules, flagging them for degradation [114].  Analysis of the miRNA 

sequences produced by the Mut68 deficient mutant suggest that the DCL proteins are 

much less accurate in processing the miRNAs than previously though, but that the 

misprocessed molecules are rapidly degraded.  However, it is possible that not all of the 

misprocessed miRNAs are immediately degraded, leaving open the possibility that new 
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miRNAs could be produced that provide selective advantages for the cells, allowing for 

rapid changes in the overall miRNA populations in these cells. 
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Figure 1.1: Overview of the standard biosynthesis pathways for the most common 

RNAi pathways 

Taken from [13].  The major biosynthetic pathways are shown, along with the canonical 

molecular machinery to process the initial structures into the mature sequence and, when 

known, the accessory proteins necessary for loading the mature sequence into the RISC 

complex or that associate with the complex after activation. 
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Figure 1.2: Comparison of miRNA processing in plants and animals 

Taken from [12].  The processing of animal miRNAs from either independently 

transcribed hairpins or from the introns of protein-coding genes is split between the 

processing of the pre-miRNA by Pasha and Drosha in the nucleus and processing by 

Dicer in the cytoplasm.  In plants, the processing occurs in the nucleus by consequence 
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processing by DCL1 and only the guide and passenger strands are exported into the 

cytoplasm.
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Figure 1.3: Structure of the RISC complex, showing the central channel with 

associated miRNA and target, and the AGO catalytic site 

Taken from [116]. 
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Figure 1.4: Overview of miRNA function 

Taken from [2].  A) Initial seed region of miRNA is exposed to mRNA.  B) Seed region 

pairs with target.  C and D) If the miRNA and target are highly complimentary, binding 

continues down the channel in the AGO complex, holding the target close to the AGO 

catalytic site and allowing cleavage of the target.  E) If there is not extensive 

complimentarity between the miRNA and its target the expression of the target will be 

repressed through translational repression.  
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Figure 1.5: Overview of the evolution of the RNAi pathways and the proliferation of 

the RNAi machinery 
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Taken from [13].  The timeline for the development of different types of RNAi and the 

related machinery from the prokaryotic origins through later branching animals.  

Ampersands next to the protein structure indicates that the protein has originated early in 

the timeline, but the timing of when it became involved in an RNAi pathway is unclear.  

Asterisks next to the even name indicate uncertainty about the timing of the event 

labeled.   
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Figure 1.6: Time line for the loss and expansion of the core RNAi proteins across 

several lineages 
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Taken from [13].  Additional details of the loss events for kinetoplastid (bottom) and 

fungi (top) are shown in boxes.  
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Figure 1.7: Phylogeny of the RNAi machinery and compatibility with the 

endogenous dsRNA virus Killer in budding yeasts 

Parts taken from [39, 40] and merged.  A) Phylogeny of three major fungal lineages 

showing Zygomycota (gray), Basidiomycota (blue), and Ascomycota, which is further 

divided into Taphrinomycotina (green), Pezizomycotina (yellow), and the buding yeasts 

Saccharomycotina (orange) [39].  The presence or absence of the core RNAi machinery 

within each species is indicated by (+) if present and function, (-) if absent, and (ψ) for 

pseudogenes.   Species which contain additional RNaseIII containing genes are indicated 

with (*) (See Figure 1.6).  B)  Phylogeny of the same three fungal lineages showing the 

presence of the RNAi machinery (green highlight), and compatibility with the 

endogenously produced, cytoplasmically inherited dsRNA virus Killer (blue highlight) 

[40]. 

 

  



 

 

46 

 

Figure 1.8: Distribution of miRNAs in metazoa 

Taken from [41].  The phylogeny of a subset of metazoa is shown, along with the number 

of predicted miRNA genes in the genomes of each organism.  Also shown are the 

predicted loss of miRNAs in the Placazoa Trichoplax adherens, which does maintain the 

core machinery for other types of RNAi, and the complete loss of RNAi in the 

Choanoflagellida Monosiga brevicollis. 
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Figure 1.9: Number of miRNA genes and miRNA gene families in plants 

Taken from [45].  A) The estimated number of distinct miRNA encoding genes within 

genomes of certain plants.  B) The estimated number of miRNA gene families coding for 

similar or identical mature miRNAs.  The number within the boxes at the branch points 

indicate the estimated number of miRNA genes or gene families contained within the 
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ancestral species that are shared between the two branches.  The (+/-) indicate the lineage 

or species specific gains or losses of those ancestral conserved miRNAs. 
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Figure 1.10: Models of evolution for novel miRNAs 

Taken from [12].   A) The inverted duplication model in plants, where a segment of the 

target sequence is duplicated in tandem, with one duplication inverted, forming a hairpin 

structure when transcribed. B) The transposable element model.  Similar to the inverted 

duplication model in A, when transposable elements insert into the genome, they can 

form inverted repeats, which can then form into hairpins processed by the RNAi 

machinery.  C) Random selection model of evolution, where any transcribed regions that 

form hairpins may be processed by the RNAi machinery.  Many of these randomly 
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processed miRNA may have no targets until random mutations render them sufficiently 

complimentary to a target transcript. 
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Table 1.1: Summary of selected miRNA prediction algorithms 

Method Approach 
Predominant 

lineage 
Sequence 
selection Major features Ref 

miRNAminer Similarity-
based 
heuristic 

Mammalian Results of 
BLAST search 
for query pre-
miRNA 

Folding energy, 
minimal base-
pairing, hairpin-
shape, position of 
mature miRNA, 
mismatches in 
hairpin within 
mature miRNA 

[82] 

miRTRAP sRNA 
sequencing 
based 
heuristics 

C. intestinalis Contiguous read 
sequence 

Size of contiguous 
read region, read 
distribution, 
hairpin structure 

[76] 

MiRFinder ab initio 
SVM 

D. melanogaster Genomic search 
for short 
hairprins 

Folding energy, 
pairing of 
hypothetical 
miRNA, pairing 
of hairpin 
branches 

[85] 

miRPara ab initio 
SVM 

Plant or animal Sliding window 
of genomic 
sequence 

Sequence 
composition, size 
of hairpin, size of 
loop, percent 
unpaired 

[75] 

MiPred ab initio 
Random 
Forest 

Human User provided Probability of 
MFE for 
sequence, MFE, 
nucleotide and 
structural features 

[83] 

MapMi Similarity-
based 
heuristic 

Metazoa Extended 
genomic 
sequence around 
mapped reads 

Hairpin structure, 
mismatches in 
hairpin, MFE 

[87] 

ProMiR II Similarity-
based or ab 
initio 
machine 
learning 

Metazoa Sliding window 
of genomic 
sequence 

Proximity to 
known miRNAs, 
conservation of 
pre-miRNA, 
MFE, G/C ratio, 
entropy 

[88] 

NOVOMIR ab initio 
HMM 

Plant Sliding window 
of genomic 
sequence 

Size and shape of 
hairpin, MFE, 
nucleotide and 
structural features 

[80] 

MiRenSVM ab initio 
ensemble 
SVM 

Metazoa User provided Hairpin structure 
(allows multiple 
loops), MFE, 
nucleotide and 
structural features 

[93] 

miRDeep sRNA Plant or animal Contiguous read Read distribution, [74, 
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sequencing 
based 
heuristics 

sequence hairpin structure 81, 
117] 

C-mii Similarity-
based 
heuristic 

Plant User provided Conservation of 
pre-miRNA, 
hairpin structure 

[84] 

RNAmicro Similarity-
based SVM 

Metazoa Genomic 
alignment 

Sequence 
conservation, 
hairpin structure, 
G/C ratio, MFE, 
thermodynamic 
stability 

[90] 
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Abstract 

While the existence of small RNAs in C. reinhardtii has been established for several 

years, little is known about how they target transcripts for regulation or what role(s) they 

play in cellular processes. To define functional microRNAs (miRNAs) in 

Chlamydomonas, we characterized small RNAs associated with an argonaute protein, 

AGO3, by affinity purification and deep sequencing. Using a stringent set of criteria for 

canonical miRNA annotation, we identified 39 suitable precursor miRNAs, which 

produce 46 unique, AGO3-associated miRNA sequences including 11 previously 

reported C. reinhardtii miRNAs and 35 novel ones. We also attempted to identify 

miRNA target transcripts, based on the complementarity of predicted miRNAs with the 
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respective binding sites. Recent results with reporter constructs have indicated that 

Chlamydomonas miRNAs may regulate target genes through either transcript cleavage or 

translation repression. Thus, potential targets were divided into two categories depending 

on the extent of complementarity to a given miRNA, those likely to be regulated through 

cleavage and those likely to be regulated through translational repression. The search for 

cleavage targets identified 75 transcripts. However, only 6 of them showed at least a 2-

fold up-regulation of mRNA levels in a mutant strain almost devoid of miRNAs. The 

search for translational repression targets, which used complementarity criteria more 

stringent than those experimentally required for a reduction in target protein levels, 

identified 493 transcripts. Additionally, we experimentally validated endogenous targets 

regulated through cleavage and translational repression in vivo.  Our results emphasize 

the difficulty of identifying genuine miRNAs and miRNA targets in Chlamydomonas 

reinhardtii and suggest that at least some miRNAs might regulate endogenous genes 

primarily through translational repression. 
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Introduction 

Decreasing fossil fuel and its impact on global warming led to an increasing demand for 

its replacement by sustainable renewable biofuels. Microalgae may offer a potential 

feedstock for renewable biofuels. They have fast growth rate, permit the use of non-

arable land and non-potable water, and do not affect the supply of food and other crop 

products [1-5]. The interest in microalgae as potential source for biofuel production is 

due to the high lipid contents in some species, which is of great importance for the food 

and energy industries [6].  

The unicellular photosynthetic microalga Chlamydomonas reinhardtii is regarded 

as non-oleaginous [7]. While under optimal growth conditions, it synthesizes fatty acids 

principally for esterification into membrane lipids [8], under conditions limiting to 

growth, particularly nutrient deprivation, it slows down the cell proliferation and alters 

the lipid biosynthetic pathways towards the formation and accumulation of the neutral 

lipid triacylglycerols (TAGs) [8]. TAGs are one of the most energy-rich forms of reduced 

carbon available from nature [9]. They can be converted to biodiesel by trans-

esterification with methanol in the presence of an acid or alkali catalyst [6, 9, 10]. 

Nutrient deprivation also stimulates a considerable increase in the biosynthesis of starch 

granules [5, 8, 11-14] accompanied by a reduction in chlorophyll levels [15-17]. Since 

their total lipid accumulation is only 20% in wild-type strains and 40% for starchless 

mutants [18-20], C. reinhardtii is unlikely to be chosen for biofuel production. However, 

it is a model alga whose complete genome is available and used as a reference to 

understand metabolic and regulatory networks involved in lipid metabolism and TAG 

accumulation. 
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For economic viability and sustainability of algal biofuels, it is essential to 

understand the basic biology of these microalgae, particularly the effects of 

environmental stresses on cellular metabolisms and the regulation of biosynthetic 

pathways of fatty acids and TAGs, as well as carbon fixation and allocation [20]. Neutral 

lipid biosynthesis and turnover have been studied in higher eukaryotes particularly yeast, 

mice, and the model plant Arabidopsis thaliana where extensive knowledge exists on 

lipid metabolism and several key enzymes identified [21-26]. However, these pathways 

are not fully documented in microalgae and little is known about the enzymes involved in 

the formation, accumulation, or degradation of TAGs. More research is needed to 

understand signal perception and transduction under stress and different molecular 

mechanisms leading to TAG and starch accumulations. In this context, rapidly 

developing systems-level “omics” analyses (transcriptomics, proteomics, metabolomics), 

which are both sensitive and quantitative [27], and the availability of annotated C. 

reinhardtii genome (http://genome.jgi-psf.org/chlamy/chlamy.home.html) allow us to 

investigate changes in response to nutrient deprivation. It may provide useful hypotheses 

for microalgal strain improvement to optimize their biofuel production.  

Since nitrogen deprivation is most effective in inducing TAG accumulation, using 

RNAseq technology, we analyzed gene expression changes occurring in C. reinhardtii in 

response to N-depletion, under strictly photoautotrophic conditions, over an extended 

treatment up to 144 hours. Other groups have been using high-throughput approaches to 

analyze the transcriptome or the proteome of C. reinhardtii in response to environmental 

stress conditions [20, 27-31]. However, all their analyses were performed under 

photoheterotrophic growth conditions. The objectives of this study are to analyze the 
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transcript levels from C. reinhardtii cultures growing in both N-replete and N-depleted 

media, identify relevant enzyme-encoding genes, and reconstruct the metabolic pathways 

involved in the biosynthesis and degradation of precursor molecules that may have 

potential for biofuel production. 

 

Results 

Global expression profiles and reads assembly 

Chlamydomonas reinhardtii cells grown photoautotrophically under both N-replete and 

N-deplete conditions were harvested from cultures at various time points during the 

course of N-depletion corresponding to 24, 48, and 144 hours, as well as from cells 

growing in N-replete medium, in order to isolate total RNA for transcriptomic analyses. 

Assembled sequences were subjected to BLAST similarity searches and the components 

of the different metabolic pathways were identified based on orthology relationships to 

known lipid and starch biosynthesis and catabolism pathways from land plants, mainly 

Arabidopsis thaliana, and fungi. Stringent analysis of the transcriptomic data identified 

907 genes that showed at least 3-fold differential transcript change with a q-value ≤ 0.05 

in one or more time points after N-depletion compared to the N-replete condition (Figure 

2.1a). Among them, 40 genes could be assigned into the functional groups described in 

this study (Figure 2.1b). Genes with known putative functions were assigned to different 

metabolic pathways associated with biosynthesis and catabolism of TAG, starch, and 

proteins. These genes are listed in Table 2.1. Previous analysis showed biochemical 

changes in these metabolic pathways during N-depletion, with an overall decrease in the 
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total and soluble protein content, and a drastic increase in the accumulation of starch and 

TAGs under photoautotrophic conditions [17]. 

 

Fatty acid and triacylglycerol metabolism pathways 

Nutrient starvation in C. reinhardtii, particularly N-depletion, led to the production and 

accumulation of high amounts of TAGs accompanied by a breakdown of proteins, 

ribosomes, and cell membranes [17, 31]. Recycled compounds might be used for de novo 

TAG biosynthesis [25]. These changes in metabolic pathways of N-depleted 

photoautotrophically-grown Chlamydomonas cells were highlighted by our 

transcriptomic analysis, which allowed determining the transcript abundance of the genes 

and gene families encoding for key enzymes involved in fatty acid and TAG metabolic 

pathways. These pathways with major key enzymes are represented in Figure 2.2.  

In microalgae as in plants, fatty acids (FAs), the building blocks of various types 

of lipids, are synthesized in the chloroplast by the fatty acid synthase II (FAS II) 

complex, which represents the major pathway of plant FA synthesis [32], leading to the 

production of palmitic acid (C16:0) and stearic acid (C18:0), the precursors for the 

synthesis of cellular membranes and neutral lipids [33]. Subcellular localization analyses 

of FAS II enzymes using PredAlgo [34] show that these are mainly targeted to the 

chloroplast (Table 2.1). In photoautotrophically-grown Chlamydomonas cells, a general 

trend toward downregulation of the genes encoding enzymes of the chloroplastic FAS II 

complex was observed under N-depletion conditions. At least 3-fold decrease in 

transcript levels was observed for two putative pyruvate dehydrogenase complex (PDH)-

encoding genes (au5.g11028_t1 and au5.g1301_t1, Figure 2.2 and Table 2.1). PDH 
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catalyzes the conversion of pyruvate into acetyl-CoA by a process called pyruvate 

decarboxylation. Acetyl-CoA is then converted to malonyl-CoA through an irreversible 

reaction catalyzed by acetyl-CoA carboxylase (ACCase). ACCase is the key enzyme in 

FA biosynthesis; we noted that two putative ACCase-encoding genes were significantly 

downregulated (au5.g1722_t1 and au5.g1722_t2, Figure 2.2 and Table 2.1) in N-depleted 

Chlamydomonas cells. ACP-S-malonyl transferase (MAT) catalyzes the transfer of 

malonyl-CoA to malonyl-ACP, the carbon donor for FA elongation reactions. Isoforms 

of the condensing enzyme β-ketoacyl-ACP synthase (KAS) carry out all elongation 

reactions using malonyl-ACP. In this study, we found a putative KAS I (au5.g9840_t1, 

Figure 2.2 and Table 2.1) that was significantly downregulated. After each condensation 

reaction, a sequence of reduction, dehydration, and another reduction carried out 

respectively by three enzymes, β-ketoacyl-ACP reductase (KAR), β-hydroxyacyl-ACP 

dehydrase (HD), and enoyl-ACP reductase (EAR), leads to the production of C16:0 and 

C18:0 fatty acids. Two putative KAR-encoding genes (au5.g10590_t1 and au5.g2990_t1, 

Figure 2.2 and Table 2.1) and one putative EAR-encoding gene (au5.g13296_t1, Figure 

2.2 and Table 2.1) were significantly downregulated in this study. We also found that a 

putative Δ9 acyl-ACP desaturase (AAD)-encoding gene (au5.g7079_t1, Figure 2.2 and 

Table 2.1), involved in the production of unsaturated FAs, was significantly 

downregulated, while putative fatty acyl-ACP thioesterase A and B (FATA and FATB) 

that cleave the acyl chain from acyl carrier protein (ACP) and release the free FA 

remained unchanged. In C. reinhardtii, a distinct pathway uses acyltransferases in the 

chloroplast to allow the transfer of FAs directly from ACP to glycerol-3-phosphate (G3P) 

producing lysophosphatidic acid (LPA) and phosphatidic acid (PA) [25, 35, 36]. PA is 



 

 

60 
then dephosphorylated into DAG, which is converted to TAG by the transfer of a third 

acyl group. In this analysis, we found that major putative chloroplastic genes involved in 

TAG assembly such as glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidyl 

acyltransferase (LPAT), and phosphatidic acid phosphatase (PAP) remained unchanged 

while a putative diacylglycerol acyltransferase-like gene (DGAT-like, au5.g14782_t1, 

Figure 2.2 and Table 2.1) showed significant upregulation in response to N-depletion. 

Chlamydomonas DGAT-like shows high similarity to the phytyl ester synthase 1 and 2 

(PES1 and PES2) genes of the esterase/lipase/thioesterase family of acyltransferases in A. 

thaliana, which have diacylglycerol acyltransferase and phytyl ester synthesis activities 

in the chloroplast [37]. PES1 and PES2 are highly upregulated in A. thaliana during 

senescence and N-depletion [37].  

On the other hand, TAG assembly and accumulation in the cytosol occur through 

the Kennedy pathway using acyl-CoA and glycerol-3-phosphate (G3P) as precursors. The 

acyl-CoA is generated in the cytosol by esterification of free FAs to coenzyme A carried 

out by acyl-CoA synthetase (ACS). Free FAs are imported from the chloroplast. G3P is 

produced by the action of several enzymes namely the glycerol 3-phosphate 

dehydrogenase (GPDH) converting the cytosolic dihydroxyacetone phosphate (DHAP) to 

G3P and by the action of glycerol kinase (GK) on free glycerol, both DHAP and glycerol 

are imported from the chloroplast. We found here significant upregulation in transcripts 

encoding two putative cytosolic GPDH genes (au5.g2028_t1 and au5.g2031_t1, Figure 

2.2 and Table 2.1) with N-depletion. A strong increase in transcript levels was also 

observed for a few DGAT genes encoding the final step of TAG synthesis by the transfer 

of a third fatty acid to the vacant position 3 of DAG. By similarity searches, we identified 
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six genes encoding for putative type-2 DGATs in the transcriptome of photoautotrophic 

Chlamydomonas cells. One of these genes (DGTT1, au5.g4218_t1, Figure 2.2 and Table 

2.1) was highly responsive to N-depletion showing a significant increase in transcript 

abundance. This was consistent with findings from other groups that analyzed 

Chlamydomonas response to N-depletion under photoheterotrophic conditions (Miller et 

al., 2010; Boyle et al., 2012). Transcriptome analysis also allowed identification of other 

genes involved in the TAG biosynthesis pathways that significantly increased with N-

depletion, particularly the putative major lipid droplet protein-encoding gene (MLDP, 

au5.g15585_t1, Figure 2.2 and Table 2.1) and a lysophospholipid acyltransferase 

(LPLAT, au5.g13569_t1, Figure 2.2 and Table 2.1). MLDP is unique to green algae and 

when suppressed by RNA interference, Moellering and Benning [31] observed an 

increase in lipid droplet size but not in TAG content. LPLAT functions by converting 

lysophopholipids (LPL) to phospholipids (PL). Overall, a general trend toward 

upregulation of the genes encoding enzymes involved in TAG assembly and 

accumulation was observed under N-depletion conditions. Gene expression levels 

presented as Reads per Kilobase per Million (RPKM) and log2(Fold Change) of the 

GPDH, LPLAT, DGTT1, and MLDP transcripts showing significant upregulation with N-

depletion are represented in Figure 2.3.  

Additionally, we analyzed the transcript abundance of genes encoding for 

enzymes involved in the catabolism of TAGs and FAs recycling by β-oxidation (Figure 

2.2). We identified several candidate lipases involved in the breakdown of TAGs by 

hydrolysis of ester bonds that link fatty acyl chains to the glycerol backbone. We found 

two transcripts encoding for putative TAG/DAG lipases (TAGL, au5.g7029_t1 and 
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au5.g12306_t1, Figure 2.2 and Table 2.1) that showed significant downregulation in 

response to N-depletion. Surprisingly, other candidate TAGLs showed an increase in 

transcripts abundance. These lipases might be involved in membrane remodeling and 

lipid recycling producing additional FAs that may be converted to TAGs [30]. In 

Chlamydomonas, β-oxidation pathway involves the enzymes acyl-CoA oxidase (AOX), 

multi-functional protein (dienoyl-CoA reductase/enoyl-CoA dehydrogenase) (MFP), and 

ketoacyl-CoA thiolase (KAT). These remove two carbons from the acyl chain during 

each cycle and release an acetyl-CoA that is recycled in the chloroplast or mitochondria, 

transcripts encoding these enzymes remained mostly unchanged.  

 

qPCR, RNAi, and semi-quantitative RT-PCR  

To confirm the differential gene expression observed with RNAseq data, we analyzed the 

abundance of selected transcripts by quantitative real-time PCR. The steady-state mRNA 

abundance of glycerol 3-phosphate dehydrogenase (GPDH, au5.g2028_t1), 

lysophospholipid acyltransferase (LPLAT, au5.g13569_t1), major lipid droplet protein 

(MLDP, au5.g15585_t1), and diacylglycerol acyltransferase (DGTT1, au5.g4218_t1) was 

determined by qPCR in cells grown in N-replete medium and in cells depleted of N for 

24, 48, and 144 hours as shown in Figure 2.4. These results confirm the marked 

difference in relative transcript abundance of these genes between N-replete and N-

depleted cells. Moreover, given the considerable increase of DGTT1 mRNA content 

during N-depletion (Figure 2.3 and 2.4), it can be concluded that DGTT1 significantly 

contribute to the TAG production and accumulation in N-depleted Chlamydomonas cells. 

We tested this hypothesis by RNA interference used to knockdown the expression of 
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DGTT1 in the wild-type strain CC-124. TAG accumulation in one RNAi strain was 

reduced by 20% (Figure 2.5) when cells were subjected to 48 hours N-depletion.  

RNAseq was performed independently twice. A few genes involved in TAG 

metabolism pathways encoding for acyl carrier protein (ACP), lysophosphatidyl 

acyltransferase (LPAT), phosphatidic acid phosphatase (PAP), betaine lipid synthase 

(BTA), acyl-CoA synthase (ACS), acyl-CoA oxidase (AO), and enoyl-CoA reductase 

(EH) showed a marked difference with the mRNA level at the control time points 

between the two experiments. We analyzed the expression of these genes by semi-

quantitative RT-PCR using cells grown under N-replete (control) and N-depleted 

conditions to confirm the biological non-technical aspects of these differences. Some of 

these genes such as ACP, LPAT, and AO show clear difference in the expression patterns 

knowing that the same conditions were used for the two experiments (Figure A.1). 

 

Starch metabolism pathways 

In parallel with TAG accumulation,  N-deprivation also increased the starch content in 

Chlamydomonas cells grown in photoautotrophic medium. This observation was 

confirmed previously by enzymatic determination of starch contents that reached a peak 

after 72 hours N-depletion, and then decreased after 144 hours [17]. Based on the 

transcriptome analysis, we identified genes and gene families encoding for enzymes 

involved in the biosynthesis and degradation of starch in N-depleted 

photoautotrophically-grown Chlamydomonas cells. These metabolic pathways are 

represented in Figure 2.6. 
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 Starch accumulating in Chlamydomonas cells is composed of two types of 

molecules, amylose and amylopectin. Amylopectin forms the major fraction and accounts 

for 65-90% of the total starch granule [38, 39]. The pathway for starch biosynthesis 

involves the enzyme fructose bisphosphate aldolase (FBA) that catalyzes a reversible 

reaction generating fructose 1,6-phosphate from dihydroxyacetone phosphate (DHAP) 

and glyceraldehyde 3-phosphate (GAP). Fructose 1,6-bisphosphatase 

(FBP) converts fructose 1,6-bisphosphate to fructose 6-phosphate (F6P) involved in 

gluconeogenesis and Calvin cycle. F6P is converted to glucose 6-phosphate (G6P) 

through a reversible reaction catalyzed by the enzyme phosphoglucose isomerase (PGI). 

Phosphoglucomutase (PGM) generates glucose 1-phosphate (G1P) from G6P. ADP-

glucose pyrophosphorylase (AGPase) uses G1P and ATP to generate ADP-glucose and 

inorganic pyrophosphate. AGPase catalyzes the rate-limiting step in the biosynthesis of 

starch. When starch biosynthesis was blocked by mutation of one AGPase subunit in 

Chlamydomonas, TAG content increased 30-fold compared to wild-type cells after 48 

hours N-depletion in the presence of acetate [14, 40]. Soluble starch synthase (SSS) uses 

ADP-glucose to generate amylose, an essentially unbranched α-1,4-linked polyglucan, 

and starch branching enzyme (SBE) introduces 1,6-glycosidic bonds to the elongated α-

1,4-linked polyglucan generating starch. We identified several candidate genes in the 

transcriptome data involved in the biosynthesis of starch. Despite the significant increase 

in starch content, we found that the transcripts abundance remained unchanged in 

response to N-depletion. Moreover, two transcripts encoding for putative SSS 

(au5.g10852_t1 and au5.g7473_t1, Figure 2.6 and Table 2.1) showed significant 

downregulation.  
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In photosynthetic eukaryotic cells, the degradation of starch occurs mainly in the 

chloroplast via α-amylases (AMYA), debranching enzymes (DBEs), glucan water 

dikinase (GWD), β-amylases (AMYB), and results in the formation of two neutral sugars, 

glucose and maltose. α-amylases (AMYA) catalyze the hydrolysis of starch to large-

branched glucans. We identified three transcripts that encode for putative α-amylases in 

Chlamydomonas; one of them (au5.g15170_t1, Figure 2.6 and Table 2.1) was 

significantly downregulated in this study. DBEs, also called isoamylases (ISAs), catalyze 

the hydrolysis of 1,6-glycosidic bonds in starch yielding long linear glucan chains. Starch 

phosphorylase (PHOB) catalyzes the reaction that generates G1P. On the other hand, 

GWD is a glucan-phosphorylating enzyme that stimulates breakdown of starch granules 

by β-amylases. AMYB cleave the non-reducing end of α-1,4-glucan chains yielding 

maltose. We also identified three transcripts that encode for putative β-amylases, one of 

them (au5.g12805_t1, Figure 2.6 and Table 2.1) was significantly downregulated. 

Transcript encoding for putative α-glucosidase (GAA) enzyme (au5.g11038_t1, Figure 

2.6 and Table 2.1) was significantly upregulated in this analysis. GAA hydrolyses 

maltose and maltodextrin to α-D-glucose, which may be degraded in the mitochondria to 

produce energy. With exception to amylases and α-glucosidase, transcripts abundance for 

putative genes encoding enzymes involved in starch degradation remained unchanged in 

response to N-depletion (Figure 2.6).  

 

Proteolysis, amino acid degradation, and carbon metabolism genes 

The total and soluble proteins decreased substantially in N-depleted Chlamydomonas 

cells [17]. Under stress conditions, proteins with chaperone activity are responsible for 
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recognizing the protein substrate in its unfolded/unstable form, and introduce it into the 

proteolytic chamber for degradation [41]. Most of the cell compartments have proteases 

involved in protein biogenesis and degradation, starting from maturation of precursors, to 

activation of signaling components, and finally to degradation of damaged proteins [41]. 

We identified in our transcriptome analysis few transcripts encoding for putative 

enzymes involved in different proteolytic metabolic pathways that were differentially 

regulated under N-depletion in photoautotrophically-grown C. reinhardtii cells (Table 

2.1). The transcripts encoding for putative GMP synthetase (GUA, au5.g13735_t1, 

Figure 2.7 and Table 2.1), metalloproteases like deiminase/IAA-amino acid 

hydrolase/aminoacylase (M20, au5.g4278_t1, au5.g4678_t1, au5.g12930_t1, Figure 2.7 

and Table 2.1), and serine carboxypeptidase (S10, au5.g9131_t1, Figure 2.7 and Table 

2.1) were significantly upregulated.  

 Amino acids are broken down into metabolites that can be either oxidized into 

CO2 and H2O or used for gluconeogenesis. Amino acids may be glucogenic, ketogenic or 

both,these are degraded to TCA intermediates like pyruvate, α-ketoglutarate, succinyl-

CoA, fumarate, oxaloacetate, acetyl-CoA, or acetoacetate. Our transcriptome analysis 

showed no change in the expression levels of the transcripts encoding for the enzymes 

involved in the TCA cycle except for one putative succinate dehydrogenase (SDHA, 

au5.g5444_t1, Figure 2.7 and Table 2.1) that catalyzes the conversion of succinyl-CoA to 

fumarate and was significantly downregulated. Glucogenic amino acids like alanine, 

cysteine, glycine, serine, and threonine are broken down to yield pyruvate. We identified 

one transcript in Chlamydomonas encoding for putative alanine-glyoxylate transaminase 

(AGT, au5.g9130_t1, Figure 2.7 and Table 2.1) that was significantly upregulated in this 
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metabolic pathway (Figure 2.7). Pyruvate can be converted into oxaloacetate or acetyl-

CoA to enter the TCA cycle. Asparagine and aspartate are degraded to oxaloacetate. Our 

data showed upregulation of one transcript encoding for putative enzyme aspartate amino 

transferase (AAT, au5.g12556_t1, Figure 2.7 and Table 2.1) under N-depletion 

conditions. Arginine, glutamate, glutamine, histidine, and proline are all degraded by 

conversion to glutamate, which in turn is oxidized to α-ketoglutarate by glutamate 

dehdrogenase. In our analysis, we found one transcript encoding for putative agmatine 

deiminase (ADI, au5.g1160_t1, Figure 2.7 and Table 2.1) that was significantly 

upregulated. Conversion of certain amino acids such as arginine through the agmatine 

deiminase (ADI) pathway, generates ATP, which may help Chlamydomonas cells survive 

the N-depletion stress, mostly common in some bacterial systems [42]. The arginase 

enzyme, which is common in eukaryotes, converts arginine to ornithine and urea. This 

enzyme is absent in Chlamydomonas, suggesting that urea cycle is not present, and this is 

in contrast to plants and the diatom Thalassiosira [43]. Our analysis showed upregulation 

of two putative enzymes argininosuccinate synthase (AS, au5.g15792_t1, Figure 2.7 and 

Table 2.1) and argininosuccinate lyase (ASL, au5.g1397_t1, Figure 2.7 and Table 2.1). In 

mammalian cells, argininosuccinate synthase catalyzes the condensation of citrulline and 

aspartate to form argininosuccinate, the immediate precursor of arginine. 

Argininosuccinate lyase then splits argininosuccinate to release fumarate and arginine 

[44]. In Chlamydomonas, glyoxylate cycle can generate one molecule of succinate as the 

net product from two molecules of acetate. In this study, our transcriptome analysis 

showed two putative enzymes, isocitrate lyase (ICL, au5.g13056_t1, Figure 2.7 and Table 

2.1) and malate synthase (MLS, au5.g2123_t1, Figure 2.7 and Table 2.1) that were 
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significantly downregulated in N-depleted photoautotrophically-grown Chlamydomonas 

cells. Transcript abundance for the putative enzyme, phosphoenolpyruvate carboxykinase 

(PCK, au5.g9626_t1, Figure 2.7 and Table 2.1), which catalyzes the committed reaction 

of gluconeogenesis, decreased more than 25-fold compared to the N-replete cells under 

photoautotrophic conditions. Similar studies by Miller et al. [30] showed that changes in 

transcript abundance of genes encoding enzymes of primary metabolism such as 

gluconeogenesis, glyoxylate cycle, and the photosynthetic carbon fixation cycle were 

markedly decreased following N-deprivation under photoheterotrophic conditions. 

 

Discussion 

In this study, using RNAseq technology, we analyzed the transcriptome profiles 

of nitrogen-deprived C. reinhardtii cells, and provided genome-wide insights into the 

changes in metabolic pathways that led to the accumulation of significant amounts of 

TAGs. Neutral lipid analysis in the model alga C. reinhardtii has been motivated by the 

interest in green microalgae as a potential feedstock for the production of renewable 

biofuels [45]. Comparison of transcriptomic changes of strain CC-125 grown 

photoautotrophically in N-replete or N-depleted media, by parallel sequencing of cDNA 

libraries, identified the changes in gene expression and cellular metabolism under N-

depletion conditions. In order to gain a better understanding of the processes controlling 

the formation and accumulation of TAG in microalgae, we identified relevant enzyme-

encoding genes involved in the biosynthesis and degradation of TAG, starch, proteins, 

and amino acids. 
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In C. reinhardtii, carbon metabolism pathways changed significantly after 

inoculation of the cells in N-depleted media; starch and TAG synthesis increased, while 

protein and ribosome synthesis decreased. Moreover, major cellular activities such as 

photosynthesis and cell division were reduced or completely inhibited. Energy-rich 

compounds such as TAG and starch are synthesized by competing metabolic pathways 

[46]. They share common precursor molecules (e.g. pyruvate, acetyl-CoA). Moreover, 

turnover of some compounds, such as proteins and ribosomes, might provide metabolites 

for biosynthesis of TAG and starch under nutrient deprivation conditions. In A. thaliana, 

lipid metabolism pathways account for over 100 enzymatic reactions and 600 proteins 

[47]. Despite major progress in recent years, fatty acids and TAG biosynthesis and 

degradation pathways are still not well understood in microalgae. In the present study, we 

found that the majority of transcripts encoding putative enzymes involved in the fatty 

acid biosynthetic pathway were downregulated or remain unchanged under N-depletion 

conditions over an extended period up to 144 hours. This was counterintuitive since 

Chlamydomonas cells were in a high neutral lipid accumulation state and acyl groups 

synthesized in the chloroplast by the FAS II complex form major components of the TAG 

molecules. Moreover, only a few transcripts involved in TAG biosynthetic machinery 

were significantly upregulated under the same conditions. However, on a genomic scale, 

transcripts expression level does not always correlate with protein abundance, which may 

explain the increase in TAG content under N-depletion. 

Although TAG metabolism pathways were not extensively studied at the 

biochemical or molecular levels, it is generally believed that TAG accumulation in 

microalgae, under growth-limiting conditions, is due to DAG acylation by the 
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endoplasmic reticulum (ER)-resident acyltransferases, particularly the diacylglycerol 

acyltransferases (DGATs), or by recycling of polar membrane lipids, which may be 

catalyzed by phospholipid: diacylglycerol acyltransferase (PDAT) [5, 48]. In A. thaliana, 

PDAT is critical for neutral lipid accumulation in seeds [49]. We found here a putative 

type-2 DGAT, the DGTT1 that was highly responsive to N-depletion at the transcript 

level. DGTT1 was almost undetectable under N-replete control conditions and showed 

many fold increase in N-depleted cells (Figure 2.3 and 2.4). Therefore, DGTT1 might be 

a key enzyme in TAG biosynthesis under photoautotrophic growth conditions. When we 

used RNAi to downregulate the expression of DGTT1, we found a slight reduction in 

TAG content. This slight decrease in TAG content may be due to the presence of other 

acyltransferases in the Chlamydomonas genome that can counterbalance the loss of 

DGTT1. While Boyle et al. [48] found that PDAT was significantly upregulated at the 

transcript level in N-depleted Chlamydomonas cells grown under photoheterotrophic 

conditions, our data showed that the transcript levels of putative PDAT (au5.g8928_t1) 

remained unchanged throughout the experiment. Also in this study, glycerol 3-phosphate 

dehydrogenase (GPDH), which catalyzes the formation of glycerol 3-phosphate (G3P) 

and the lysophospholipid acyltransferase (LPLAT), which adds an acyl group to 

lysophospholipids (LPL) to produce phospholipids (PL), showed significant increase in 

expression with GPDH showing 10-fold increase in transcript level after 24 hours and 

30-fold increase after 144 hours, while LPLAT showed 12-fold increase in transcript level 

after 144 hours N-depletion (Figure 2.4). Genes encoding these enzymes may represent 

potential targets for the biotechnological improvement of TAG accumulation in 

microalgae since they seem to contribute extensively to TAG accumulation in 
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Chlamydomonas. We also found that the transcript encoding the structural protein named 

major lipid droplet protein (MLDP) was significantly upregulated in N-depleted 

Chlamydomonas cells. Moellering and Benning [31] used RNAi to downregulate the 

expression of MLDP and found that the lipid bodies increase in size with N-depletion but 

no change in TAG content in photoheterotrophically-grown Chlamydomonas cells. They 

suggested that MLDP work by preventing lipid body fusion [31].  

Starch accumulates in photosynthesis-capable organisms through redirection of 

fixed carbon into storage [50]. In photosynthetic organisms, starch biosynthesis pathways 

share common precursor molecules with lipid biosynthesis pathways, and redirection of 

these precursors from the starch production by blocking the step catalyzed by AGPase, 

led to an increase in TAG accumulation [40].  N-deprivation under photoautotrophic 

conditions stimulated high levels of starch accumulation that occurred very rapidly upon 

incubation in N-depleted medium. Starch increased ~14-fold after 2 days incubation of 

Chlamydomonas cells in N-depleted medium compared to cells growing in N-replete 

medium [17]. Despite this considerable starch accumulation, we found no significant 

increase in transcripts encoding for enzymes involved in starch synthesis after 

transcriptomic analyses. In C. reinhardtii, starch accumulates as particles associated with 

the pyrenoid or as a pool of starch granules located in the chloroplast stroma [38]. 

Therefore, diverse metabolic pathways control starch biosynthesis and degradation [39]. 

One starch catabolic pathway involves the β-amylases, which hydrolyze starch into 

maltose that is enzymatically converted by α-glucosidase (GAA) to D-glucose, which 

may be used to produce the central metabolite pyruvate during glycolysis. Pyruvate may 

then be converted into acetyl-CoA, the precursor for fatty acids biosynthesis. While 
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transcripts encoding for β-amylases were downregulated, transcript encoding for GAA 

(au5.g11038_t1) was the only one in starch metabolism that showed significant 

upregulation in N-depleted Chlamydomonas cells. GAA showed many fold increase in 

transcript level at later time points, after 144 hours incubation in N-depleted media, when 

starch decreased and TAG continued accumulating. GAA, involved in starch degradation 

through the β-amylases pathways, may play a major role in starch recycling and 

providing the metabolites for the production of TAGs.  

The protein content of N-depleted Chlamydomonas culture decreased steadily 

over time. Our transcriptomic data showed that cells subjected to N-depletion display a 

downregulation of transcripts encoding for enzymes required for amino acid biosynthesis 

and an upregulation of few transcripts encoding for proteases involved in protein 

degradation. Genes encoding for enzymes of the glyoxylate pathway, TCA cycle, and the 

gluconeogenesis show decrease or no change in expression following N-depletion. 

Amino acids recycled through the TCA cycle generate intermediates that might be 

converted to oxaloacetate (OAA), pyruvate, and acetyl CoA, the precursor for the fatty 

acid biosynthesis. Therefore, under N-depletion conditions, amino acids degradation 

yields intermediates that might be either directed towards fatty acid biosynthesis through 

acetyl CoA or used by the TCA cycle to produce ATP.  

The high throughput transcriptomics-based data described in this work and the 

identification of major enzymes-encoding genes involved in TAG, starch, and protein 

metabolic pathways provide major insights into the biochemical and molecular changes 

that take place in N-depleted C. reinhardtii cells grown in photoautotrophic media. 

Mining the RNAseq data allowed us to identify targets for metabolic engineering that 
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might have the potential for increasing biofuel production from microalgae. In this study, 

few genes involved in the Kennedy pathway for TAG accumulation showed significant 

increase in the expression level. There are a number of potential explanations for why 

few genes change in expression despite the marked accumulation of both starch and 

TAG. One distinct possibility is posttranslational modification of the proteins involved in 

these pathways. These changes could either to activate proteins involved in these 

pathways, or block critical enzymes in competing pathways. Such modifications would 

allow for dramatic changes in enzyme function without any change in transcript levels. 

Further testing would be required to determine whether these modifications play a role in 

any of these pathways. However, the small number of genes with significant changes in 

expression provides promising targets for genetic engineering to increase TAG 

accumulation in these cells. In particular, DGTT1 would make a promising target for 

overexpression. These findings provide important knowledge required for 

biotechnological improvement of next-generation biofuel production in C. reinhardtii or 

in other green microalgae.  

 

Materials and methods 

Strain and culture conditions 

Chlamydomonas reinhardtii strain CC-125 was initially grown 

photoautotrophically to the middle of the logarithmic phase (~3 x 106 cells mL-1) in 

nitrogen-replete high salt (HS) medium (Sueoka, 1960) under continuous illumination 

(250 µmol m-2 s-1 photosynthetically active radiation) on an orbital shaker (190 rpm) at 

25 oC and ambient levels of CO2. These pre-cultured cells were collected by 



 

 

74 
centrifugation and resuspended at a density of 5 x 105 cells mL-1 in regular HS media or 

in the same media lacking nitrogen (HS-N). Cells used for different analyses were 

harvested after resuspension at regular time courses (0, 24, 48, and 144 hours).  

 

Total RNA isolation  

Total RNA was isolated with TriReagent (Molecular Research Center, Inc.) in 

accordance with the manufacturer’s instructions from C. reinhardtii grown under N-

replete and N-deplete conditions. Agarose gel electrophoresis (1.5%) was used to monitor 

the quality of the extracted RNA by checking the integrity of the RNA bands. The 

purified total RNA concentration was measured using a Thermo Scientific NanoDrop 

2000c spectrophotometer. Total RNA isolated from these cells was used in 

transcriptomic, real-time quantitative polymerase chain reaction, and semi-quantitative 

polymerase chain reaction experiments. 

 

Transcriptome analysis  

Transcriptomic changes in C. reinhardtii grown photoautotrophically under N-

replete and N-deplete conditions were measured using RNAseq. Experiments were 

performed independently twice and libraries were sequenced with the Illumina GAIIx 

analyzer. The Illumina reads from both experiments were mapped to the Augustus v5.0 

transcript models for C. reinhardtii (available from http://genome.jgi-

psf.org/Chlre4/Chlre4.download.ftp.html). The reads were first trimmed to 36 nucleotides 

in length to remove low quality 3!-ends before mapping. The alignment was performed 

using Burrows-Wheeler Aligner (BWA; v0.5.7) [51] with a seed length of 25, allowing 2 
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mismatches. A perl script was used to ensure that only reads that uniquely matched with a 

single transcript were counted. Raw gene counts were determined by counting the 

number of reads aligned to each transcript. To examine transcript abundance, gene 

expression was analyzed as Reads per Kilobase per Million (RPKM), which normalizes 

the read counts based on both transcript length and total number of reads, using the 

following formula:  

RPKM =
109C
NL

 

where C is the number of reads mapped to the transcript, N is the total number of mapped 

reads in the library, and L is the length of the transcript in nucleotides (Mortazavi et al., 

2008). To determine the change in expression, each of the three time points during the N-

deplete condition were compared pairwise with the control (N-replete) condition for each 

experiment. Differences in gene expression were examined as log2(Fold Change), where 

Fold Change refers to the ratio of RPKM values, at each time point, between treatment 

and control. Statistical analysis of the data was performed using the DESeq package [52]. 

The q-values for each time point were calculated using both replicates. All transcripts that 

have at least one time point with a q-value ≤ 0.05 and at least a 3-fold change in 

expression (a log2(Fold Change) of 1.585) are considered significant.  

 The functional annotations for each gene were assigned based on a combination 

of homology with genes in Arabidopsis thaliana involved in each of the pathways and 

conserved domains. Homology with A. thaliana was determined by reciprocal blastp 

searches [53] between the Augustus v5 protein models and the A. thaliana proteins from 

the TAIR database [54]. Additional putative genes were identified using a PFAM search 

for conserved domains consistent with each enzyme [55]. All functional annotations were 
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curated by manually inspecting the existing annotations for each gene, removing any 

genes already assigned to other pathways. Subcellular localization was determined by the 

localization of the top hit in A. thaliana with further analysis performed using the 

PredAlgo subcellular localization prediction algorithm for each enzyme with a significant 

change in expression [34]. 

 

Real-time quantitative polymerase chain reaction 

Real-time PCR (qPCR) was performed on the Light-Cycler Instrument (iCycler 

iQ real-time PCR detection system; Bio-Rad) using RT2 SYBR Green mastermix 

(Qiagen). qPCR data are represented as the fold change in mRNA abundance relative to 

the nitrogen-replete RNA sample and are normalized to the endogenous reference 

gene Actin using the cycle threshold (Ct) 2−ΔΔCt method, where ΔΔCt is the difference in 

the threshold cycles [56], according to the manufacturer's software (Bio-Rad). All 

experiments were performed in experimental replicates, and each sample was analyzed in 

technical triplicate. All our real-time PCR procedures and analysis follow the MIQE 

guidelines [57]. 

 

Semi-quantitative RT-PCR 

Complementary DNA (cDNA) synthesis was performed using the Invitrogen 

first-strand synthesis kit with the oligo(dT) primer. Polymerase chain reaction was 

performed for 35 cycles at 94 °C for 30 s, 58 °C for 30 s, 72 °C for 30s in a reaction 

containing 2.5 mM dNTPs, and 2.5 µM oligonucleotide primers. Gene-specific 

oligonucleotide primers were designed to amplify transcripts and these were as follows: 
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522363-PAP-F1: 5’-ATCACCAACTGCCTCAAGCTG-3’ and 522363-PAP-R1: 5’-

AGCAGCCAGAAGGTCAGGAA-3’; 522556-PAP-F1: 5’-

CTCTGTACGTGCTGGTGTTCGT-3’ and 522556-PAP-R1: 5’-

GTACCTGCCCACCAGGTTGAT-3’; 514476-ACP-F: 5’-

CTGTCGATGATCCGCAAGTC-3’ and 514476-ACP-R: 5’-

TTCTCCTCCAGAGCCATCAT-3’; 524437-BTA-F: 5’-

GCTCGTACCTGTCCCAAGAC-3’ and 524437-BTA-R: 5’-

CGGCCAATCCACACGTAGTA-3’; 522727-LPAT-F: 5’-

GTGTGAACGACCCCACCTAC-3’ and 522727-LPAT-R: 5’-

TGATGATTTCCAGCTCGTTG-3’; 513002-ACS-F: 5’-

CACGACAACCTGGAGTATGC-3’ and 513002-ACS-R: 5’-

CGTACAGCGGCACAGACACC-3’; 516987-AO1-F: 5’-

ATGGAGTTCAGCCAGTGCTT-3’ and 516987-AO1-R: 5’-

CCTCCTCGTACAGCTTGCTC-3’; 516819-AO3-F: 5’-

TCATGTACGCCGACTACAGC-3’ and 516819-AO3-R: 5’-

CAGTACTTGCTGGCCTCGTC-3’; 512138-AO4-F: 5’-

GGCCCAGAAGTACTGGATCA-3’ and 512138-AO4-R: 5’-

CACACGCACGTTGTCAAACC-3’; 516986-EH-F: 5’-

AGGCCCAGTATCGGGTAGAT-3’ and 516986-EH-R: 5’-

CATCGTTGATGGAGTTGTCG-3’. Actin semi-quantitative RT-PCR was performed as 

a positive control for all reactions. The primers were as follows: ACT-Cod-F: 5'-

GACATCCGCAAGGACCTCTAC-3' and ACT-Cod-R: 5'-
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GATCCACATTTGCTGGAAGGT-3'. Reaction products were visualized after 

electrophoresis on a TBE plus 1.5 % agarose gel containing ethidium bromide.  
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Figure 2.1: Summary of the differential expression data 

A) Venn diagram showing the number of genes significantly upregulated (red) or 

downregulated (blue) between each time point. B) The number of differentially expressed 

genes for each of the pathways studied. 
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Figure 2.2: Pathways for fatty acid (FA) biosynthesis, TAG biosynthesis and 

degradation, and subcellular localization in C. reinhardtii 

Expression of the corresponding genes in N-deprived cells relative to cells grown in 

nutrient replete medium is indicated by different colors: black, no significant change in 

expression; red, significantly upregulated transcripts; and blue, significantly 

downregulated transcripts. Abbreviations: DLD, dihydrolipoamide dehydrogenase; PDH, 

pyruvate dehydrogenase complex; ACCase, acetyl-CoA carboxylase; ACP, acyl-carrier 

protein; MAT, ACP-S-malonyl transferase; KAS, β-ketoacyl-ACP synthase; KAR, β-
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ketoacyl-ACP reductase; HD, β-hydroxyacyl-ACP dehydrase; EAR, enoyl-ACP 

reductase; AAD, Δ9 acyl-ACP desaturase; FAT, fatty acyl-ACP thioesterase; GPAT, 

glycerol-3-phosphate acyltransferase; LPAT, lysophosphatidyl acyltransferase; PAP, 

phosphatidic acid ahosphatase; DGAT-Like, diacylglycerol acyltransferase-like; GPDH, 

glycerol-3-phosphate dehydrogenase; G3Pase, glycerol-3-phosphatase; ACS, acyl-CoA 

synthetase; GK, glycerol kinase; DGAT, diacylglycerol acyltransferase; PDAT, 

phospholipid:diacylglycerol acyltransferase; BTA, betaine lipid synthase; EPT, 

ethanolamine phosphotransferase; LPLAT, lysophospholipid acyltransferase; ACBP, 

acyl-CoA binding protein; MLDP, major lipid droplet protein; TAGL, 

triacylglycerol/diacylglycerol lipase; AOX, acyl-CoA oxidase; MFP, multi-functional 

protein (dienoyl-CoA reductase/enoyl-CoA dehydrogenase); KAT, ketoacyl-CoA 

thiolase. See Table 2.1, Figure 2.3, and Figure A.2 for the transcripts whose expressions 

were identified to be significantly differentially expressed.  
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Figure 2.3: Expression analysis of significantly upregulated transcripts associated to 

FA and TAG metabolic pathways 

The four enzyme families included (colored red in Figure 2.2) are: A. glycerol 3-

phosphate dehydrogenase (GPDH), B. diacylglycerol acyltransferase (DGAT) C. 

lysophospholipid acyltransferase (LPLAT), and D. major lipid droplet protein (MLDP). 

Expression levels are presented as Reads per Kilobase per Million (RPKM) and log2(Fold 

Change) for two independent experiments.  
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Figure 2.4: Real-time (qPCR) analysis of significantly upregulated TAG 

biosynthesis genes identified by RNAseq 

Relative abundance of A. Glycerol 3-Phosphate Dehydrogenase (GPDH), B. 

Lysophospholipid Acyltransferase (LPLAT), C. Major Lipid Droplet Protein (MLDP), 

and D. Diacylglycerol Acyltransferase (DGTT1) mRNAs were normalized to Actin in 

wild-type C. reinhardtii cells grown in nutrient replete medium, or wild-type cells grown 

in N-depleted medium for 24, 48, and 144 hours. Error bars represent standard deviations 

from three independent biological replicates. 
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Figure 2.5: Triacylglycerol contents (nanograms per 1000 cells) determined by gas 

chromatography analysis after 48h nitrogen starvation 

Values correspond to the average of three independent experiments. 
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Figure 2.6: Pathways for starch biosynthesis and degradation, and subcellular 

localization in C. reinhardtii 



 

 

91 
Expression of the corresponding genes in N-deprived cells relative to cells grown in 

nutrient replete medium is indicated by different colors: black, no significant change in 

expression; red, significantly upregulated transcripts; and blue, significantly 

downregulated transcripts. Abbreviations: FBA, fructose bisphosphate aldolase; FBP, 

fructose-1,6-bisphosphatase; PFK, 6-phospho fructokinase; PGI, phosphoglucose 

isomerase; PGM, phosphoglucomutase; AGPase, ADP-glucose pyrophosphorylase; SSS, 

soluble starch synthase; SBE, starch branching enzyme; GWD, glucan water dikinase; 

AMYA, α-amylase; DBE, debranching enzyme; PHOB, starch phosphorylase; DPE/STA, 

4-α-glucanotransferase; AMYB, β-amylase; SEX, 6-phosphogluco starch phosphatase; 

ISA, isoamylase; GAA, α-glucosidase. See Table 2.1 and Figure A.3 for the transcripts 

whose expressions were identified to be significantly differentially expressed. 
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Figure 2.7: Overview of the amino acid degradation pathway and TCA cycle in C. 

reinhardtii 

Expression of the corresponding genes in N-deprived cells relative to cells grown in 

nutrient replete medium is indicated by different colors: black, no significant change in 

expression; red, significantly upregulated transcripts; and blue, significantly 

downregulated transcripts. Abbreviations: ADI, agmatine deiminase; AOC, copper amine 

oxidase; AGT, alanine-glyoxylate transaminase; AS, argininosuccinate synthase; ASL, 

argininosuccinate lyase; SDHA, succinate dehydrogenase; AGT, alanine-glyoxylate 

transaminase; ACAA, acetyl-CoA acyltransferase; AAT, aspartate aminotransferase; CS, 

citrate synthase; ACO, aconitrate hydratase; IDH, isocitrate dehydrogenase; OGDH, 2-

oxoglutarate dehydrogenase E1 component; DLST, 2-oxoglutarate dehydrogenase E2 

component; LSC, succinyl-CoA synthase; MDH, malate dehydrogenase; ISL, isocitrate 
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lyase; MLS, malate synthase; PCK, phosphoenolpyruvate carboxylase. See Table 2.1, 

Figure A.4 and for the transcripts whose expressions were identified to be significantly 

differentially expressed. 
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Table 2.1: Summary of differentially expressed genes 

Enzyme Symbol Aug5 Model 
Name

Predicted 
Localization

0h 24h 48h 144h

Pyruvate dehydrogenase PDH au5.g11028_t1 C 166.13 64.25 68.57 35.17
Dihydrolipoamide dehydrogenase DLD au5.g1301_t1 SP 66.04 19.57 23.25 10.94
Acetyl-CoA carboxylase ACCase au5.g1722_t1 O 111.05 30.67 34.35 14.06

au5.g1722_t2 O 145.37 40.22 45.17 17.47
ACP-S-malonyl transferase MAT au5.g5494_t1 C 322.21 35.14 43.71 11.87
β-ketoacyl-ACP synthase KASI au5.g9840_t1 C 266.95 89.53 118.35 71.65
β-ketoacyl-ACP reductase KAR au5.g10590_t1 C 101.24 34.19 40.74 14.82

au5.g2990_t1 M 117.83 27.30 16.18 9.28
Enoyl-ACP reductase EAR au5.g13296_t1 C 304.23 131.40 110.80 54.65
Δ9 acyl-ACP desaturase AAD au5.g7079_t1 C 79.59 57.83 47.96 21.03
Diacylglycerol acyltransferase DGAT au5.g14782_t1 O 1.31 3.97 3.71 5.91

au5.g4218_t1 O 0.45 4.85 8.42 11.82
Glycerol 3-phosphate dehydrogenase GPDH au5.g2028_t1 C 8.10 48.36 122.76 119.18

au5.g2031_t1 O 1.26 5.57 11.43 16.31
Lysophospholipid acyltransferase LPLAT au5.g13569_t1 O 1.93 11.98 18.99 25.30
Major lipid droplet protein MLDP au5.g15585_t1 O 45.03 188.07 268.19 370.06
Triacylglycerol/diacylglycerol lipase TAGL au5.g7029_t1 SP 36.63 11.16 5.80 12.69

au5.g12306_t1 O 8.40 2.72 2.28 2.40

Soluble starch synthase SSS au5.g10852_t1 C 101.45 29.39 20.80 14.87
au5.g7473_t1 C 114.61 123.57 67.93 8.65
au5.g6335_t1 O 1.79 7.03 6.96 7.51

α-amylase AMYA au5.g15170_t1 O 15.52 4.83 1.53 1.91

β-amylase AMYB au5.g12805_t1 M 26.18 11.40 4.94 5.68
α-glucosidase GAA au5.g11038_t1 O 1.36 2.85 2.53 6.32

GMP synthetase GUA au5.g13735_t1 O 2.18 98.78 82.18 97.05
Deiminase/IAA-amino acid 
hydrolase/aminoacylase

M20 au5.g4278_t1 SP 1.76 5.19 7.79 10.45

au5.g4678_t1 SP 0.51 4.39 4.93 7.56
au5.g12930_t1 O 3.73 11.63 12.79 18.76

Serine carboxypeptidase S10 au5.g9131_t1 SP 13.00 41.17 39.87 51.68

Agmatine deiminase ADI au5.g1160_t1 M 1.31 46.90 63.32 50.03
Copper amine oxidase AOC au5.g987_t1 O 3.39 17.26 22.68 29.91
Alanine-glyoxylate transaminase AGT au5.g4992_t1 C 24.32 89.13 74.95 103.58
Aspartate aminotransferase AAT au5.g12556_t1 SP 12.76 45.49 36.43 47.36
Argininosuccinate synthase AS au5.g15792_t1 C 76.32 378.55 256.92 284.37
6-phosphogluconate dehydrogenase PGD au5.g3600_t1 O 27.59 100.18 88.41 95.06
Argininosuccinate lyase ASL au5.g1397_t1 O 10.50 47.52 33.22 35.08
Succinate dehydrogenase SDHA au5.g5444_t1 M 71.55 45.71 17.54 28.39
Isocitrate lyase ICL au5.g13056_t1 O 2451.26 1024.68 148.18 128.13
Malate synthase MLS au5.g2123_t1 O 882.50 392.10 83.90 92.90
Phosphoenolpyruvate carboxylase PCK au5.g9626_t1 C 479.04 252.41 29.47 19.18

Amino Acid Degradation

Protein Degradation

Starch Metabolism

RPKM

TAG Metabolism
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Genes in the fatty acid biosynthesis, TAG biosynthesis and degradation, starch 

biosynthesis and degradation, protein degradation, and amino acid degradation pathways 

that are differentially expressed in nitrogen replete (0h) and nitrogen deplete (24h, 48h, 

and 144h) growth conditions. The Reads per Kilobase per Million (RPKM) values 

represent the mean value of both experiments.  Abbreviations for localization: C, 

chloroplast; M, mitochondria; SP, secretory pathway; ER, endoplasmic reticulum; O, 

other. 
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Abstract 

The existence of small RNAs in Chlamydomonas reinhardtii has been established for 

several years but little is known about their role(s) in the regulation of endogenous 

transcripts and cellular processes. To define functional microRNAs (miRNAs) in 

Chlamydomonas, we characterized small RNAs associated with an argonaute protein, 

AGO3, by affinity purification and deep sequencing. Using a stringent set of criteria for 

canonical miRNA annotation, we identified 39 precursor miRNAs, which produce 46 

unique, AGO3-associated miRNA sequences including 11 previously reported miRNAs 

and 35 novel ones. We also attempted to identify miRNA targets, based on the 

complementarity of miRNAs with candidate binding sites. Recent results with reporter 

constructs have indicated that Chlamydomonas miRNAs may regulate target genes 

through either transcript cleavage or translation repression. Thus, potential targets were 

divided into two categories depending on the extent of complementarity to a given 

miRNA, those likely to be regulated through cleavage and those likely to be regulated 

through translational repression. The search for cleavage targets identified 77 transcripts. 

However, only six of them showed an increase in mRNA levels in a mutant strain almost 

devoid of miRNAs. The search for translational repression targets, which used 

complementarity criteria more stringent than those experimentally required for a 

reduction in target protein levels, identified 506 transcripts. We also examined 

experimentally candidate targets regulated through cleavage or translational repression. 

Our results emphasize the difficulty of identifying genuine miRNAs and miRNA targets 

in C. reinhardtii and suggest that at least some miRNAs might regulate endogenous 

genes through translational repression.  Formatted for submission to Genetics. 
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Introduction 

RNA interference (RNAi) provides cells with a delicate means of gene expression 

regulation through a variety of mechanisms [1-3]. MicroRNAs, components of the RNAi 

machinery, consist of endogenously encoded 20-24 nucleotide (nt) RNA fragments [1]. 

In plants and some green algae, these fragments are predominantly derived from small 

hairpin loops up to ~300 base pairs (bp) in length that are processed by RNase III 

enzymes, the Dicer-like (DCL) family of proteins [3, 4]. In Arabidopsis thaliana, most 

miRNAs are generated by DCL1 in two processing steps, from the initial transcript (the 

primary miRNA or pri-miRNA) to a smaller hairpin miRNA precursor (pre-miRNA) and 

then to a short duplex consisting of the miRNA and its complementary sequence (the 

miRNA* or passenger strand) [3, 5]. The RNA duplex is then loaded into the RNA-

induced silencing complex (RISC), which contains an Argonaute (AGO) protein as a key 

component and becomes active upon removal of the miRNA* strand. The active RISC 

can repress expression of target mRNAs by either preventing translation or by cleaving 

the transcript [2].  

The extent of complementarity between miRNA and target mRNA has been 

proposed to play a major role in determining whether silencing occurs through cleavage 

or translational repression [2]. The first nucleotide at the 5’ end of a miRNA is secured 

within the Mid (middle) domain of Argonaute, making this nucleotide inaccessible to 

bind with target mRNAs, although it is important for determining miRNA loading into 

distinct AGOs (Figure 3.1) [6-11]. In this conformation, nucleotides 2-8 from the 5’ end 

of a miRNA (known as the seed region for its role in nucleating the pairing between an 
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AGO-associated miRNA and its mRNA target) face outward into the channel that will 

eventually contain the mRNA, while the remaining nucleotides are at first inaccessible 

and do not play an initial role in target selection (Figure 3.1) [12, 13]. In land plants, the 

complementarity of miRNAs and targets is often nearly perfect, resulting in cleavage of 

the target sequence between nucleotides 10 and 11 of the miRNA [14-17]. In animals, by 

contrast, miRNAs frequently display extensive mismatching with their targets and 

regulate target expression through translational repression and/or transcript 

destabilization independent of AGO-mediated cleavage [18-21]. There is a growing body 

of evidence indicating that plants can perform this type of regulation as well; however, it 

still appears to be much less common than regulation through direct cleavage [22-25].  

In the green alga Chlamydomonas reinhardtii, miRNAs have been described 

relatively recently, based on deep sequencing of total cellular small RNA populations [4, 

26-28]. However, the validity of many predicted Chlamydomonas miRNAs has been 

questioned of late because of their large hairpin precursor structures and the apparent 

imprecise processing of the small RNAs (sRNAs) [29, 30]. C. reinhardtii possesses a 

core miRNA/sRNA processing and effector machinery similar to that in higher plants [4]. 

This machinery includes three AGO proteins along with three DCL proteins. AGO1 and 

DCL1 appear to be primarily involved in the silencing of transposable elements whereas 

AGO3 seems to be most extensively involved in miRNA functions [4]. The quality 

control of miRNAs is at least partially directed by the MUT68 protein, which functions 

by placing untemplated nucleotides (generally uridyls) at the 3’ end of the miRNA 

molecules, flagging them for degradation [28]. 

Little is known about miRNA/target interactions in green algae. Based on the 
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phylogenetic relationship to land plants, early studies suggested that miRNAs in C. 

reinhardtii would function primarily through cleavage, in a manner similar to those in 

higher land plants [26, 27]. However, very few of the circa 50 Chlamydomonas small 

RNAs deposited in miRBase have identifiable targets with near perfect complementarity. 

This lack of easily recognizable targets leaves open the possibility that miRNAs may 

function either largely or primarily through translational repression, in a manner more 

akin to those in animals. This possibility is strengthened by recent evidence, using 

artificial constructs, demonstrating that such regulation is possible in C. reinhardtii [31]. 

Thus, it remains unclear whether the majority of the described Chlamydomonas sRNAs 

are truly miRNAs, what their potential targets are, and by which mechanism(s) the may 

regulate endogenous gene expression. 

In animals, the non-RISC-associated passenger strand is very labile and it has been 

suggested that the high stability of miRNAs reflects their RISC association, implying that 

sequencing of total cellular small RNA populations accurately reflects the RISC-

associated sRNA populations [32]. This assumption has been recently challenged by 

studies suggesting that only a fraction of mature miRNAs is in fact AGO associated [33-

35]. It remains uncertain whether this also applies to land plants and green algae but, to 

increase the likelihood of defining a set of functional, RISC-bound miRNAs in 

Chlamydomonas, we first identified AGO3-associated sRNAs by deep-sequencing. From 

these sequences, putative miRNAs, meeting canonical criteria, were selected and used to 

predict interacting targets by computational means. Lastly, the mechanism(s) of target 

repression was examined for a pair of small RNAs. Our results suggest the existence of a 

limited set of genuine miRNAs in C. reinhardtii, some of which may regulate target 
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transcripts preferentially by translation repression. However, this analysis is limited by 

the lack of a fully sequenced Chlamydomonas nuclear genome (see Discussion).  

 

Materials and Methods 

Transgenic strains, mutants, and culture conditions 

Chlamydomonas cells were routinely grown in Tris-acetate-phosphate (TAP) medium 

[36]. Strain Maa7-IR44s, containing an inverted repeat transgene targeting the 3’ UTR of 

the MAA7 gene (encoding Tryptophan synthase β subunit), has been previously described 

[36]. Mut-20, deleted for Tudor Staphylococcal Nuclease 1 (TSN1) and almost devoid of 

miRNAs, was obtained in an insertional mutagenesis screen designed to isolate mutants 

defective in RNAi-mediated translation repression [36]. For the isolation of AGO3-

associated small RNAs, we fused the FLAG tag [37] to the N-terminal end of 

Chlamydomonas AGO3 (g16859). This construct was placed under the control of psaD 

regulatory sequences and transformed into Maa7-IR44s (Figure B.1). A similar construct 

was made fusing the FLAG tag to the coding sequence of the bleomycin gene and 

transformed into Maa7-IR44s. 

    

Isolation of AGO3-associated small RNAs, library preparation, and sequencing 

FLAG-tagged AGO3 was affinity purified from a cell lysate as previously described for a 

TAP-tagged protein [38]. RNAs associated with AGO3 were purified with TRI reagent 

(Molecular Research Center) and contaminant DNA was removed by DNase I treatment 
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(Ambion) (MA et al. 2013). Construction of cDNA libraries and Illumina sequencing 

were then carried out as previously reported (IBRAHIM et al. 2010). 

 

Small RNA mapping and profiling 

Sequenced reads were first mapped to version 9.1 of the phytozome C. reinhardtii 

genome [39], by using version 3.02 of Novoalign (www.novocraft.com) with the miRNA 

flag and with a score threshold of 15. Mapped reads were filtered to remove those 

showing alignments with gaps or mismatches as well as those that mapped to more than 5 

locations in the genome. Both the total population of sequenced reads and the population 

of reads mapped to the genome were profiled based on length. Genome mapped reads 

were also classified as matching the chloroplast or the mitochondrial genomes, rRNAs, 

snRNAs, snoRNAs, tRNAs, other non-coding RNAs (ncRNAs), or transposable 

elements. The chloroplast and mitochondrial genomes were taken from Genbank 

(accession numbers BK000554 and NC_001638.1 respectively) along with the rRNAs, 

snRNAs, snoRNA, tRNAs, and ncRNAs sequences. Transposons sequences were taken 

from Repbase [40]. The sequence logo to show nucleotide composition bias by position 

was made using version 3.3 of Weblogo analyzing all unique reads 21nt in length [41]. 

 

Genomic clustering of sRNAs and miRNA identification 

After removing those reads that mapped to known non-coding RNA categories, 

transposons, the chloroplast or the mitochondrial genomes, potential sRNA reads were 

processed following the steps illustrated in Figure 3.2A. The reads were first clustered by 

genomic location such that there was no more than 200 nt between adjacent reads, 
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regardless of strand. The reads on both strands in the same genomic location were placed 

in the same cluster. These clusters were analyzed further to differentiate pre-miRNA 

structures from other sRNA structures. The genomic sequence for each strand of the 

cluster was folded using version 2.1.5 of RNAfold from the Vienna RNA package [42]. 

Clusters with a genomic sequence < 50 nt or >1000 nt in length were excluded from 

folding, as they were deemed unlikely to code for canonical miRNAs [29]. Clusters 

containing sequence gaps (i.e., unsequenced genomic regions) were also excluded since 

the secondary structure folding of these regions cannot be unambiguously predicted. The 

secondary structures were parsed to determine if they fold into a hairpin. However, 

clusters whose highest expressed reads had more than four mismatches with the opposing 

arm of the hairpin were removed from further analyses, following the criteria set up by 

Tarver, Donoghue [29] for the annotation of plant miRNAs where complementary base 

pairing between the mature and star sequences is fairly precise with fewer than four 

mismatches and any asymmetric bulges involving only one or two nucleotides. The 

putative miRNA* sequence for the highest expressed read of each cluster was determined 

using the hairpin fold and the genomic sequence, with a two nucleotide offset to allow for 

the 3’ overhang in the miRNA/miRNA* duplex. Clusters remaining after this filtering 

were manually curated based on the accuracy of processing of the 5’ end of the 

predominant reads and the frequency of predominant reads present [29]. The miRNA* 

sequences for clusters with more than one predominant read were also determined 

manually based on the secondary structure.  
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MicroRNA target prediction 

Figure 3.2B illustrates the process used for the prediction of miRNA targets. Potential 

miRNA binding sites were determined by searching version 9.1 of the C. reinhardtii 

transcriptome using version 2.1 of RNAhybrid [43]. This algorithm returns the most 

energetically favorable pairing for each miRNA/target pair. The obtained hybrid pairs 

were filtered based on the number and location of gaps, wobbles, and mismatches to limit 

the predictions to only those that could regulate targets in a projected manner. For 

cleavage targets, this search required perfect matching for nucleotides 2-8 (the seed 

region, Figure 3.1B) and nucleotides 9-12 (the catalytic or center region, Figure 3.1B), 

and no more than three GU wobbles and three mismatches or a gap of more than one 

nucleotide in the remaining sequence. For translational repression targets, the constraints 

for the catalytic region were relaxed to allow up to three mismatches or wobbles, with the 

constraints for the seed-region and the 3’ end pairing remaining the same. Additionally, 

translational repression targets needed at least one mismatch or wobble in the catalytic 

region to keep the two sets of predicted targets non-overlapping. MicroRNA encoding 

transcripts, which may also be targeted for degradation by their encoded miRNAs, were 

removed from the analysis. 

Putative roles of the predicted targets were evaluated by using the annotations of 

Chlamydomonas genes (if available) as well as conserved protein domains. Manual 

annotations were taken from the Algal Functional Annotation site [44], and are based on 

the protein annotations uploaded to Phytozome [45]. Conserved protein domains were 

found by searching version 27.0 of the Pfam-A database [46] using as queries the protein 

sequences of the predicted targets from version 9.1 of Phytozome with an e-value cutoff 
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of 1 using version 2.2.29 of BLASTp [47]. For proteins with multiple copies of the same 

domain, each domain is only reported once. 

 

RNA analyses and quantitative PCR assays 

Total cell RNA was purified with TRI reagent, following the manufacturer’s instructions. 

For small RNA analyses, total RNA samples were resolved on 15% polyacrylamide/7M 

urea gels and electroblotted to Hybond-XL membranes (GE Healthcare). Blots were 

hybridized with 32P-labeled DNA probes using the High Efficiency Hybridization System 

as previously described (IBRAHIM et al. 2010). Specific miRNAs were detected by 

hybridization with DNA oligonucleotides labeled at their 5’ termini with [γ-32P]ATP and 

T4 Polynucleotide Kinase (New England Biolabs) [36]. Putative cleavage sites of the 

Cre17.g697550 transcript were examined using a 5’ RACE approach with the GeneRacer 

kit (Life Technologies), as previously described (MOLNAR et al. 2007; YAMASAKI et al. 

2013). First and nested PCR amplifications were performed using the following primers: 

g697550(Race)-R1 (5’-CCTTGCACTTGAGGCACTGCACAA-3’) and g697550(Race)-

R2 (5’-CGTGTGGGGGCGGGATGAT-3’). For quantitative PCR analyses, DNase I 

treated RNA samples were used as template for first-strand cDNA synthesis using an 

oligo(dT)18 primer and SuperScript III reverse transcriptase (Life Technologies). Primer 

pairs for the quantitative PCR amplifications were as follows: for Cre17.g697550, 

g697550-F (5’-GAGAGGATCGCGGACAACC-3’) and g697550-R (5’-

AGGACCGGTAGATGCTCTTGG-3’); and for Cre16.g683650, g683650-F (5’-

CAGTTTGAGCCCGACCTACG-3’) and g683650-R (5’-CCACGCCGCACTCCAGC-

3’). DNA fragments were amplified and quantified with the RT2 SYBR 
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Green/Fluorescein qPCR mastermix (Qiagen) using the iCycler Real Time PCR 

Detection System (Bio-Rad). 

 

Differential gene expression analysis 

RNA samples from Maa7-IR44s and Mut-20, grown photoheterotrophically in TAP 

medium, were purified with TRI reagent and treated with DNase I. Standard RNA-seq of 

the samples was then performed using an Illumina Genome Analyzer II [48]. Sequencing 

reads from both cell lines were mapped to the C. reinhardtii transcript models in version 

9.1 of phytozome [39]. Reads were first trimmed to 36 nucleotides in length, to remove 

low quality 3’ end sequences before mapping. The alignment was performed using 

Bowtie2 [49] with a seed length of 25, allowing 2 mismatches, and a maximum hit of 1. 

Only reads that uniquely matched with a single transcript were counted. Raw gene counts 

were determined by counting the number of reads aligned to each transcript. Transcript 

abundance was examined as Reads per Kilobase per Million (RPKM), which normalizes 

the read counts based on both transcript length and total number of reads, using the 

following formula:  

 

where C is the number of reads mapped to the transcript, N is the total number of mapped 

reads in the library, and L is the length of the transcript in nucleotides [50]. To determine 

changes in gene expression, transcript abundance for each transcript was compared 

pairwise between Mut-20 and its parental strain Maa7-IR44s. Differences in gene 

expression were examined as log2(Fold Change), where Fold Change refers to the ratio of 

RPKM =
109C
NL
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RPKM values between the Mut-20 and the Maa7-IR44s (control) strains. Statistical 

analysis to determine the significance of gene expression changes was performed using 

version 1.16 of DESeq, for samples without replicates [51]. 

 

Immunoblot analysis 

The Chlamydomonas Cre16.g683650 protein was immunodetected, following a standard 

procedure (MA et al. 2013), by overnight incubation at 4 °C with a 1:10,000 dilution of a 

rabbit antibody raised against a C-terminal peptide (GIKPSAHKRGGVRM) conjugated 

to KLH (GenScript). A modification-insensitive polyclonal antibody (Abcam ab1791) 

was used to detect histone H3. 

 

Results 

Identification of AGO3 associated small RNAs 

A FLAG-tagged AGO3, under the control of the psaD promoter, was introduced into the 

Maa7-IR44s strain [36] and its functional competence evaluated by examining its 

subcellular localization (Figure B.1) and its association with the translationally repressed 

MAA7 transcript (Figure B.2). Small RNAs associated with AGO3 were then isolated by 

co-immunoprecipitation with the FLAG-tagged protein. Deep sequencing of the 

corresponding small RNA library generated 20,589,616 reads (675,917 unique reads), of 

which 12,482,999 (117,241 unique) mapped perfectly to the genome. Both the full library 

as well as the genome matching reads revealed that 93% of the AGO3-associated sRNAs 

are between 20-22nt in length (Figure 3.2A and 3.2B). Additionally, 98% of the sRNAs 
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have an U as the 5’ nucleotide (Figure 3.2E), suggesting a strong preference by AGO3 

for both length and starting nucleotide. Only 3% of the mapped reads matched known 

noncoding RNAs or transposable elements (Figure 3.2C and 3.2D). 

 

MicroRNA prediction 

MicroRNAs were predicted based on the criteria outlined by Tarver et al. [29] (Figure 

3.3A). To differentiate miRNAs from other small RNAs, all mapped reads were clustered 

by genomic location such that within each cluster no reads were more than 200 nt apart, 

regardless of strand, to allow identification of putative pre-miRNAs in each cluster. 

Genomic sequences for each strand of each cluster were folded using RNAfold to 

determine the secondary structure of putative pre-miRNAs [42]. In order to be classified 

as a miRNA precursor, a cluster was required to fold into a hairpin, and have no more 

than two predominant 5’ processing sites. In addition, the main reads were required to 

have no more than four mismatches in the opposing arm of the hairpin [29]. Using these 

criteria, we identified 39 suitable pre-miRNAs, which produce 46 unique miRNA 

sequences (Table 3.1). Of these 46 miRNAs, 28 also had their respective miRNA* 

present in the library, while the remaining 18 did not (see Discussion). We found 11 

previously reported C. reinhardtii miRNAs, and identified 35 novel ones. The 46 

miRNAs accounted for 3,475,268 reads (roughly 30%) of the 12,482,999 genome-

mapped reads (Figure 3.2C and Table 3.1). The folding data and matching reads for all of 

these clusters can be found in Figure B.3. 

The expression of a subset of miRNAs was verified by northern blot analyses 

(Figure 3.4A). Intriguingly, an abundant sequence in the small RNA library (based on 



 

 

110 
read frequency) did not have an identifiable precursor in the Chlamydomonas genome. 

Yet, the corresponding small RNA (designated miR B) was easily detected in RNA blots 

(Figure 3.4A) and appears to be a functional miRNA-like molecule (see below). Since the 

current version of the C. reinhardtii genome contains sequence gaps, we hypothesize that 

the precursor transcript encoding miR B might be located in an unsequenced region of the 

genome. In support of this interpretation, for another small RNA (designated miR C), that 

also is detectable in northern blots (Figure 3.4A) and appears to be functional (see 

below), the putative pre-miRNA includes a sequence gap that precludes its unambiguous 

folding into the expected stem-loop structure (Figure 3.4B).  

 

MicroRNA target prediction 

Target prediction for the identified 46 miRNA sequences relied on complementarity 

between the miRNAs and putative binding sites on transcripts (Figure 3.3B). The binding 

sites were uncovered using RNAhybrid to search against the Chlamydomonas 

transcriptome in phytozome version 9.1 [43, 45]. Potential targets were divided into two 

categories, depending on the extent of complementarity to a miRNA, those likely to be 

regulated through cleavage and those likely to be regulated through translational 

repression. Cleavage targets were set to require perfect matching between nucleotides 2-8 

of the miRNA (the seed region; Figure 3.1B) and between nucleotides 9-12 (the catalytic 

or center region, where AGO-mediated cleavage of the target occurs; Figure 3.1B). In 

addition, they could have no more than three mismatches and three GU wobbles in the 

remainder of the miRNA/target hybrid, or a gap of more than one nucleotide (Figure 

3.3B). 
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Based on the above criteria, we identified 77 target transcripts but none 

corresponded to a perfect miRNA:mRNA match. To provide some validation for these 

findings, we examined transcript abundance of the putative targets in an RNAi defective 

mutant, Mut-20, and in its parental strain, Maa7-IR44s. Mut-20 contains a deletion of the 

gene coding for Tudor Staphylococcal Nuclease 1 (TSN1) (Figure B.4), a protein 

previously implicated in RNA interference in metazoans, although its exact molecular 

role remains undefined [52, 53]. Intriguingly, in Trypanosoma brucei a protein (TbRIF5) 

containing tandem Staphylococcus nuclease (SNase) domains physically associates with 

a Dicer-like protein [54], suggesting a possible involvement of proteins with SNase 

motifs in small RNA biogenesis [55]. Notably, Chlamydomonas Mut-20 displays greatly 

reduced levels of all tested small RNAs (Figure 3.4A; YAMASAKI et al. 2013) and, thus, 

transcripts targeted for direct cleavage by RISC would be expected to show increased 

accumulation in this mutant background. Yet, only six of the predicted targets showed at 

least a two-fold increase in transcript abundance in Mut-20 relative to the wild type 

control, and these changes were not statistically significant at an adjusted p-value <0.05. 

Interestingly, only one of these six predicted targets has a functional annotation, 

corresponding to a respiratory burst oxidase implicated in biotic stress responses.  

Putative translational repression targets were set to require perfect matching in the 

seed region and no more than three mismatches and three GU wobbles in the 3’ end of 

the hybrid duplex. However, unlike the pairing interaction for cleavage targets, they were 

allowed to have one, but no more than three, mismatches or GU wobble pairs in the 

catalytic region (Figure 3.3B). These criteria are more stringent than what has been 

experimentally demonstrated as necessary for a reduction in target protein levels in C. 
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reinhardtii, based on tests with reporter constructs [31]. However, despite these stringent 

requirements, we identified 506 transcripts potentially repressed at the translational level, 

or more than 10 putative target sites per predicted miRNA on average. The great potential 

for translation control, taken together with the limited number of putative cleavage 

targets that showed increased transcript abundance in Mut-20, poses questions as to the 

actual mechanism(s) of endogenous gene regulation by miRNAs in Chlamydomonas; 

particularly since even sRNAs derived from inverted repeat transgenes and perfectly 

complementary to a target transcript are capable of inhibiting protein synthesis without or 

with only minimal mRNA destabilization [36]. 

 

sRNA-mediated endogenous gene regulation 

To gain insight into how miRNAs and other sRNAs regulate endogenous genes in C. 

reinhardtii, we examined mRNA abundance, and in one case also protein abundance, for 

targets of two small RNAs in Mut-20 and in the Maa7-IR44s strain. We chose to test miR 

B, even though it has no identifiable precursor RNA encoded in the Chlamydomonas 

genome (see above), because it is the only small RNA for which we could 

computationally find an unambiguous, perfectly complementary target transcript (Figure 

3.5A), albeit coding for a protein of unknown function (Cre17.g697550). As expected for 

RISC-mediated target cleavage, 5’RACE assays on RNA samples isolated from the strain 

with a wild type background (Maa7-IR44s) detected Cre17.g697550 transcripts 

predominantly truncated in between the residues hybridizing to nucleotides 10 and 11 of 

miR B (Figure 3.5A). Moreover, as anticipated for a mRNA regulated by miRNA-
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directed cleavage, the Cre17.g697550 transcript abundance increased considerably in 

Mut-20 (Figure 3.5B). 

To examine whether Chlamydomonas sRNAs can regulate endogenous target 

transcripts by translation repression, we chose to test miR C because its predicted binding 

site in a protein kinase encoding mRNA (Cre16.g683650) displays several features 

similar to those characterized as involved in miRNA-mediated translation inhibition in 

animal systems [29]. The miR C binding site in Cre16.g683650 is located in the 3’ UTR, 

partly overlapping the stop codon, and it contains a mismatch with nucleotide 10 of the 

sRNA, which would preclude AGO-mediated cleavage (Figure 3.6A). As mentioned 

above, miR C maps next to a gap in the genome and, as a consequence, cannot be folded 

into a canonical hairpin with the miRNA sequence contained within the double stranded 

RNA stem, although extending the sequence out in either direction it does form a long 

hairpin structure (Figure 3.4B). As previously proposed for this kind of Chlamydomonas 

small RNAs mapping next to sequence gaps [26], miR C could correspond to a genuine 

miRNA or to a small interfering RNA (siRNA) processed from a very long double 

stranded RNA precursor. Interestingly, the transcript abundance of the miR C target, 

Cre16.g683650, was reduced in Mut-20 relative to the wild type (Figure 3.6B). In 

contrast, the protein abundance, detected by immunoblotting, was slightly increased in 

the mutant background (Figure 3.6C). These observations suggested that Cre16.g683650 

is indeed translationally repressed in wild type Chlamydomonas cells and that this 

repression is at least partly relieved in Mut-20, as expected for a sRNA/miRNA regulated 

transcript (see Discussion for details) 
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Discussion  

miRNA populations in C. reinhardtii 

The small RNAs associated with AGO3 show a strong bias for a length of ~21 nt and the 

presence of uracil as the 5’-nucleotide, both for unique as well as redundant reads. The 

same trends were reported in the original studies describing miRNAs in C. reinhardtii, 

which characterized total cellular small RNA populations [26, 27], but are much more 

pronounced in the AGO3-associated sRNAs. In particular, uracil was the most prevalent 

5’-nucleotide in both of the previous reports, but it was present in less than 50% of the 

unique reads and a considerable number of small RNAs started with other nucleotides, 

most notably adenine [26, 27]. Since 80% of the AGO3-associated unique reads (98% of 

total mapped reads) begin with an uracil (Figure 3.2E), it seems likely that the more 

variable sRNAs sequenced in studies of total cellular small RNA populations represent 

those associated with all three Chlamydomonas AGO proteins, implying that AGO1 

and/or AGO2 may have different preferences than AGO3 for the first nucleotide of a 

sRNA. Alternatively, as suggested for animal systems [35], only a fraction of mature 

sRNAs might be AGO associated in Chlamydomonas and total cellular small RNA 

populations may also include processed small RNAs that are not ordinarily incorporated 

into RISC. As a methodological drawback, the 5’-nucleotide bias had a significant impact 

on the identification of miRNAs* in libraries of AGO3-associated small RNAs, as those 

miRNAs* that begin with a nucleotide other than U are much less likely to be represented 

in the library. Because of this technical issue, the presence of the miRNA* sequence in 

the library was not used as a criteria for selecting canonical miRNAs. 
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By clustering all of the small RNAs associated with AGO3 based on their genomic 

locations, we were able to identify putative precursor RNA hairpins and classify the 

clusters as generating canonical miRNAs or other types of sRNAs, according to the 

characteristics of the hairpins and how the dominant reads appeared to be processed from 

them. Using the criteria set forth by Tarver et al. [29], we identified 35 novel miRNAs 

and confirmed 11 of the previously identified miRNAs, which together account for ~30% 

of the genome mapped small RNAs associated with AGO3 (Figure 3.2C). In principle, 

this would suggests that although AGO3 might play an important role in miRNA-

mediated gene regulation in C. reinhardtii, the majority of the sRNAs that are associated 

with it correspond to other types of small RNAs, particularly those derived from very 

long hairpins that give rise to multiple products.  However, a major caveat is that the 

Chlamydomonas nuclear genome is not fully sequenced and frequently small RNA 

sequences appear to lie next to sequence gaps (this work and MOLNAR et al. 2007). Thus, 

for many small RNAs it cannot be unambigously ascertained whether they might 

represent miRNAs or siRNAs (e.g., Figure 3.4B, miR C). Moreover, almost 40% of the 

high quality reads did not have a perfect match to the Chlamydomonas genome and were 

not analyzed further. Yet, at least some of these sequences may represent functional small 

RNAs, as suggested for miR B (Figure 3.5), and may be encoded in unsequenced regions 

of the genome. This technical problem currently prevents a comprehensive analysis of 

small RNA populations in C. reinhardtii. 

Interestingly, the clusters that do meet the criteria for canonical miRNAs tend to 

have fewer mismatches between the miRNA and miRNA* than observed for plants or 

animals, which can have up to four or six mismatches within the duplex, respectively 
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[29]. In contrast, many of the miRNA encoding duplexes in C. reinhardtii show perfect 

complementary (Figure B.3). As a methodological difficulty, perfect complementarity in 

the stem of a hairpin encoding miRNA and miRNA* molecules results in both sequences 

mapping to both strands of the genome in a given cluster. However, mismatches in other 

parts of the hairpin stem often allow the identification of one strand with significant more 

reads mapping to it, suggesting that that strand corresponds to the pre-miRNA (Figure 

B.3). Based on these analyses, the 46 identified canonical miRNAs are encoded almost in 

equal proportion in intergenic regions of the Chlamydomonas nuclear genome or in 

introns or the 3’UTR of predicted (many hypothetical) protein genes (Table 3.1)  

 

miRNA targets and mechanism(s) of endogenous gene regulation 

Despite similarities in the biogenesis of miRNAs between C. reinhardtii and higher 

plants [4, 56], Chlamydomonas miRNAs do not appear to regulate targets primarily 

through the plant model of high complementarity between the miRNA and its target, 

resulting in transcript cleavage [17]. While we identified 77 target transcripts that had 

perfect complementarity to the corresponding miRNAs from nucleotides two to 12 (both 

the seed region and the region around the catalytic domain of AGOs; Figure 3.1B) and no 

more than three mismatches and three GU wobbles in the remaining region, only six of 

the predicted targets (7.8%) showed at least a two-fold increase in transcript level in the 

miRNA deficient Mut-20. The Chlamydomonas RNAi machinery does have the 

capability to operate by target transcript cleavage, as demonstrated with artificial miRNA 

constructs and reporters [26, 27, 31] and suggested by the analysis of the miR B predicted 

endogenous cleavage target Cre17.g697550 (Figure 3.5). However, with the caveat that 
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some predictions may represent false positives (see below), most predicted endogenous 

targets do not appear to be subject to mRNA cleavage and degradation, since the 

anticipated increase in transcript abundance in Mut-20, which is almost devoid of sRNAs, 

was not observed. 

When considering the possibility of miRNA-mediated translational repression in 

Chlamydomonas, even using complementarity criteria far more strict than necessary for 

reduction of protein levels in reporter constructs [31], we predicted on average more than 

10 targets per miRNA (506 target transcripts for 46 miRNAs). However, it is unclear 

what fraction of these predicted targets might correspond to false positives. Again, the 

Chlamydomonas RNAi machinery does have the capability to cause translation 

repression of target transcripts, as demonstrated with inverted repeat transgenic 

constructs [36] and suggested by the analysis of the miR C predicted endogenous target, 

Cre16.g683650 (Figure 3.6). The Cre16.g683650 transcript abundance was reduced in 

Mut-20, suggesting that the mRNA may be stabilized by the presence of a functional 

RNAi machinery. We have previously demonstrated that transcripts translationally 

repressed by sRNA-mediated mechanisms remain associated with polyribosomes [36] 

which may perhaps protect against the action of ribonucleases. Interestingly, despite a 

decrease in Cre16.g683650 mRNA amount to ~40% of wild type levels, the 

corresponding protein was ~20% more abundant in Mut-20 (Figure 3.6), indicating that 

Cre16.g683650 is indeed translationally repressed in the wild type parental strain. 

However, if this case is representative of most endogenous miRNA targets, net changes 

in protein levels between mutant and wild type strains are fairly small making it very 

difficult the validation of predicted translation repression targets on a large scale. 
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Moreover, relaxing the miRNA:mRNA complementarity constraints for translational 

repression causes the number of predicted targets to rapidly increase, with nearly every 

gene in the Chlamydomonas transcriptome predicted to be a target by requiring only 

perfect pairing to the miRNA seed region (data not shown).  

For both higher plants and animals, target prediction uses evolutionary conservation 

of the miRNA binding site to reduce the number of potential false positives [57-59]. 

However, the recent profiling of small RNAs and miRNAs in the green alga Volvox 

carteri, the closest relative to C. reinhardtii with a published genome, indicated that there 

is very little, if any, conservation of miRNAs between these two species [60]. Other 

features that are commonly used to reduce the number of potential false positives are the 

accessibility of the target site and the change of free energy for binding [61], the 

nucleotide composition of the miRNA and target analyzed with machine learning-base 

classifiers [62-64], and the presence of certain RNA-binding sites for protein modules 

overlapping the miRNA binding site [65-68]. Minimum free energy hybridization criteria 

incorporated into RNAhybrid [43] were used in our searches for targets whereas some of 

the other criteria would require a larger set of confirmed targets to implement machine 

learning based analyses and/or knowledge of RNA-binding sites for specific protein 

domains. Nonetheless, our results suggest, as recently described for reporter constructs 

[31], that miRNA regulation of endogenous transcript expression in Chlamydomonas 

may not involve the extensive complementarity that is typical of land plants [17] and may 

mainly operate, at least for certain targets, by translation repression. Yet, given the 

limitations outlined above, it remains uncertain what proportion of predicted 

Chlamydomonas targets is genuine. 
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Evolutionary role of miRNAs in green algae 

In multicellular plants and animals, miRNAs play key roles in maintaining cell/tissue 

differentiation, and disruption in the production of miRNAs leads to abnormal growth, 

cancer, or is fatal to the organisms [69, 70]. However, the lack of miRNA conservation 

among examined green algae (as well as with any other organism; Nozawa, et al. 2012), 

the identification of few predicted targets with known function(s), and the modulatory 

nature of the regulation of some targets (~20% change in protein levels between wild 

type and an RNAi defective mutant) raise questions about the biological role(s) of 

miRNAs in C. reinhardtii. Furthermore, the miRNA deficient mutant, Mut-20, has no 

discernable phenotype when grown under laboratory conditions (data not shown), 

implying that miRNAs are not essential for cell survival. This is consistent with the 

observation that many unicellular eukaryotes, particularly those with small nuclear 

genomes, seem to have lost entirely the RNAi machinery or have retained only a basic set 

of RNAi components [71-74]. Whereas RNAi does play a role in transposon silencing in 

Chlamydomonas (CASAS-MOLLANO et al. 2008) and possibly in defense responses 

against (currently unidentified) viruses, defining the function of miRNAs will require 

additional work. For instance, miRNAs may only have a modulatory role in controlling 

gene expression under optimal laboratory conditions but they may become important 

regulators under certain stress conditions 

The lack of miRNA conservation with V. carteri also raises questions about how 

these small RNAs are evolving in algae. The two main possibilities are that miRNAs are 

transient, with a very fast evolutionary turnover, or that all of the miRNAs evolved 
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independently in the two lineages after their divergence. MicroRNAs as accidental 

products may explain their limited functional role and justify a putative fast turnover rate 

in C. reinhardtii. As proposed in plants and animals [30, 69], hairpins may randomly 

form both in introns and in transcribed intergenic regions as the genome evolves. The 

RNAi machinery will process transcribed RNA hairpins generating endogenous small 

RNAs and potential miRNAs. However, these hairpins will evolve neutrally unless a 

processed small RNA confers a selective advantage or disadvantage to the cell. As a 

result, miRNA precursors could evolve, be processed for a certain amount of time, then 

accumulate sufficient mutations so that they are no longer processed into small RNAs, 

and eventually be lost from the genome, that is a pattern of birth-and-death evolution 

[30]. Despite V. carteri being the closest relative of C. reinhardtii with a sequenced 

genome, the two species diverged approximately 200 million years ago [25], possibly 

enough time for the complete divergence of fast evolving genome encoded miRNAs. 

Interestingly, while the miRNAs in higher plants that maintain tissue differentiation are 

highly conserved, those that are species specific often appear to follow this rapid turnover 

model of evolution [30, 69]. 

 

Conclusions 

There is much work left to be done to understand what role(s) miRNAs play in C. 

reinhardtii, and why many small RNAs are produced in relatively high quantities yet play 

a small, seemingly non-essential role for the cells. With the caveat posed by the lack of a 

fully sequenced Chlamydomonas genome, our results suggest that most of the AGO3-

associated small RNAs in C. reinhardtii are not canonical miRNAs and that regulation of 
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endogenous targets by miRNA-mediated cleavage is rare. While miR B, which does 

result in cleavage, almost completely abolishes expression of its target, many miRNAs 

predicted to operate by translational repression appear to either stabilize the mRNA target 

(as for miR C) or have no effect on transcript levels.  Moreover, based on the analysis of 

the miR C target, these miRNAs seem to have only a modulatory effect on target protein 

levels. Indeed, C. reinhardtii miRNAs do not appear to regulate any gene essential for 

cell survival under laboratory conditions. It is tempting to speculate that the RNAi 

machinery initially evolved, in the common ancestor of eukaryotes, as a defense response 

against viruses and other genomic parasites [75] and that regulatory miRNAs evolved at a 

latter time mostly controlling newly arisen processes such as cell differentiation and 

development in multicellular organism. In unicellular eukaryotes, miRNAs arising as 

accidental products of random genome evolution may have no role in regulating 

ancestral, core cellular functions but may possibly be involved in more recently evolved 

responses to specific abiotic and/or biotic stresses. 
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Figure 3.1: Structure of a canonical miRNA and its target transcript within an 

argonaute (AGO) protein 

(A) Structure of the Thermus thermophilus RISC complex with an miRNA (in red) and a 

perfectly complementary target RNA (in blue), based on the 3D structure (PDB ID 

4NCB, visualized using Chimera) [13, 76]. (B) Illustration of the duplex between the 

miRNA and its target RNA sequence. The miRNA is shown in red, and is oriented 3’ to 

5’ with the 5’ most nucleotide bound to the Mid domain of AGO. The target sequence is 

shown in black, with the cleavage site indicated between nucleotides 10 and 11 of the 

miRNA and located within the AGO PIWI domain. The catalytic and seed regions are 

indicated by surrounding blue and red boxes, respectively.  
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Figure 3.2:  Criteria and flowcharts for predicting canonical miRNAs and their 

targets 
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Criteria and flowcharts for predicting canonical miRNAs (A) and their targets (B). 
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Figure 3.3: Classification of AGO3-associated Chlamydomonas small RNAs 

 (A) Size distribution of small RNAs associated with AGO3, displaying the frequencies 

for all reads in the library (blue) and for the reads that map to the genome (red). (B) Size 

distribution of unique small RNAs associated with AGO3. (C) Abundance (read counts) 

of all AGO3-associated small RNAs matching different categories of sequences. (D) 
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Abundance (read counts) of unique AGO3-associated small RNAs matching different 

categories of sequences. (E) Nucleotide composition by position for all unique small 

RNAs 21nt in length, represented in the sequence logo [41]. 
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Figure 3.4: Detection of Chlamydomonas miRNAs by northern hybridization and 

predicted precursor structure for miR C 

(A) Northern blot analyses of small RNAs isolated from the indicated strains and 

detected with probes specific for each miRNA. The same filters were reprobed with the 
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U6 small nuclear RNA sequence as a control for equivalent loading of the lanes. CC-124, 

wild-type strain; Maa7-IR44s, CC-124 transformed with an IR transgene designed to 

induce RNAi of MAA7 (encoding tryptophan synthase β subunit); and Mut-20, TSN1 

deletion mutant. (B) The putative secondary structure of the sequence surrounding miR C 

was obtained with RNAfold. The miRNA sequence is shown in red. The pre-miRNA 

structure is taken from nucleotides 3389811 to 3390377 of the minus strand of 

Chromosome 4.  This corresponds to 152 bases upstream and 393 bases downstream of 

the miRNA sequence, and is based on boundaries of the small RNA clustering.  The 

entire pre-miRNA is contained within an intron of SRR18 (Cre04.g227500).  
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Figure 3.5: Analysis of the miR B target Cre17.g697550 

 (A) Diagram of the Cre17.g697550 gene (encoding a predicted protein of unknown 

function) indicating the miR B-binding site within the coding sequence. Hybridization of 

miR C to the target site is shown below. The arrows and numbers indicate the position 

and frequency of 5’-termini of truncated target mRNAs examined by 5’ RACE PCR. (B) 

Quantitative RT-PCR analysis of Cre17.g697550 transcript levels in the indicated strains. 

Values are means +/- SD of three independent experiments. 
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Figure 3.6: Analysis of the miR C target Cre16.g683650 

(A) Diagram of the Cre16.g683650 gene (encoding a predicted protein kinase) indicating 

the miR C-binding site overlapping the stop codon. Hybridization of miR C to the target 

site is shown below. The mismatch to nucleotide 10 of the miRNA would prevent 

cleavage of the target mRNA. (B) Quantitative RT-PCR analysis of Cre16.g683650 

transcript levels in the indicated strains. Values are means +/- SD of three independent 
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experiments. (C) Immunoblot analyses of Cre16.g683650 and histone H3 (loading 

control) protein levels. The graph represents densitometric quantitation of the 

Cre16.g683650 immunoblot signals (normalized to H3). Values are means +/- SD of 

three independent experiments.  
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Table 3.1: AGO3-associated candidate miRNAs in C. reinhardtii 

Clustera Aliasb miRNA Oc Chrd Starte Locationf Genef PFam Af Countg 

1130 cr.02052 TTCGAAAAGTTGCACAGCGCC + 1 5106348 Intron Cre01. 
g035500 

PI3K_C2, PI3Ka, 
PI3_PI4_kinase 

631 

2675a cre-
miR1174.1 

TACCGGGCGTGGGGAGGGCAGG - 10 3399959 3' UTR Cre10. 
g444300 

 896822 

2675b cre-
miR1174.2 

TTACGGCTCCTTCTTATCGGC + 
- 

10 3399983 
3399872 

Intergenic 
3' UTR 

 
Cre10. 
g444300 

 647884 
 

3318   TCAATTGCTCTTTCTGATG - 10 6282547 3' UTR Cre10. 
g465000 

Pkinase 3165 

3704*   TGCACGTTGGTAAACAGTCCC - 11 1442258 3' UTR g11660  20465 
3708   TAGTGCCAGCGCGCTCTCGGC - 11 1448250 Intergenic   3004 
3772*   TGGAAAATCGAGGCCGCTGGC + 

- 
11 
 

1713373 
1713298 

5' UTR 
Intergenic 

g11713  6521 

3911*   TGGATGGTCGAAACCGCGTACA - 11 2529518 3' UTR Cre11. 
g476000 

 1595 

3965*   TGGAGACTGTACGAGAGGCCA - 11 2856089 3' UTR Cre11. 
g477700 

 1237 

4832a*   TTCGAGGTCGGCTGGAAGGTC + 12 2444603 Intergenic   1847 
4832b*   TGAACATAAAGCAAGACTTC + 

- 
12 2444685 

2444818 
Intergenic 
5' UTR 

 
g12428 

 881 

5094*   TCAATAACGGACCTGGAGGAC + 
- 

12 3183096 
3183213 

Intergenic 
3' UTR 

 
g12598 

 1181 

5858 cr.02116 TTCAGGTAGCGGGACCAGGTG - 12 6402228 Intron g13222 zf-CW, PWWP, 
Chromo, 
SNF2_N, 
Helicase_C 

130801 

6589*   TCTGACCGGTCGGTGCTGCCG + 12 9542589 Intron g13796  4758 
7085a   TGACTCTCACTCCTACTCGGC + 

- 
13 2001158 

2001092 
Intergenic 
3' UTR 

 
g14171 

 37202 

7085b   TTCCACCTGACTGCTTGCTGA - 13 2001069 3' UTR g14171  12380 
8319 cr.01824 TCCACGTTCTCGCCGCGCAGG + 14 1950136 Intergenic   6989 
8563a  TGCGGGGCCCGCAGGTAGCTGC - 14 321886 Intron Cre14.  704 
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g629200 
8563b miR910 AGCAGCGTCGGGCTCGACCGC - 14 3218785 Intron Cre14. 

g629200 
 625 

9303   TGGATGTTGCTTGCTGGATAC + 
- 

16 185156 
185089 

Intergenic 
3' UTR 

 
Cre16. 
g694950 

 183618 
Pkinase 

9770a* miR1157 TTGATGTCCGCTGGGAGCTGG + 
- 

16 2231294 
2231401 

3' UTR 
Intergenic 

Cre16. 
g658782 

 7159 

9770b*   TGCGAGCTGCGGAATGGCGAC + 16 2231221 3' UTR Cre16. 
g658782 

 1753 

9770c*   TGCGTAGGACGTGGTAGGCGC - 16 2231112 Intergenic   1908 
11846   TGAGTGGTGGTCGACGGCAAT + 17 3137574 3' UTR Cre17. 

g721553 
 3013 

12364   TCGGAGAAGCGGGTAGCTGA + 
- 

17 5152874 
5152806 

Intergenic 
5' UTR 

 
g17790 

 122990 

12551a   TAAACAGACAAGGCGACCGACA - 17 6144115 3' UTR g17937  18839 
12551b   TCGCCTTGTCTGTTTATGTGG + 

- 
17 6144121 

6144182 
Intergenic 
3' UTR 

 
g17937 

 9949 

12615*   TGCAAAATCAAGACCGGGGGA + 
- 

17 6674056 
6674164 

Intergenic 
Intergenic 

  1243 

12905 cr.02798 TGGCCGTACTACTATTGTC - 2 739369 3' UTR Cre02. 
g078500 

 5494 

14705*   TCGGAAAGGAATCCAACGGCC + 
- 

2 9101230 
9101131 

Intron 
Intergenic 

g2826  14785 

14711*   TGAACACGGCGAGCATCAGCGG + 2 9121266 3' UTR g2830  1231 
14712   TGCTTGCGCCCTCTAGCCGTC + 

- 
2 9129575 

9129507 
3' UTR 
Intergenic 

g2831  8955 

14719   TCGTGCTCGTCATCCCCTCG + 
- 

2 9173370 
9173305 

3' UTR 
Intergenic 

g2836  8513 

16411*   TGCGGTGAATGTGAATGATGG + 
- 

3 6573968 
6573895 

3' UTR 
Intergenic 

Cre03. 
g195950 

 4117 

17284*   TGACCACCCTGCAGCTGACGC - 4 1804340 Intron g4741 Exostosin 2415 
17620 miR1153, 

cr.02052 
TGGGCCATCGTATTACTATCAG + 4 3100623 Intron Cre04. 

g225700 
 377890 

17755*   TAACTTAGTCGTCACAAGGCG + 4 3694795 Intergenic   1588 
18100a   TCGGTCAGCATTTCGTTTGG + 5 935314 Intergenic   91516 
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18100b   TACCCGGAGTGGACGTCTTGC + 5 935397 Intergenic   15493 
19166   TTGGGCGGCGTTGTAAGATT + 

- 
6 2201623 

2201668 
Intergenic 
Intron 

 
g5972 

 86172 
WD40 

19538 miR1162, 
cr.02386 

TGTTGTAGTAGTTTAGCCCTGC + 6 3067434 Intron Cre06. 
g274550 

Pkinase, 
Pkinase_Tyr 

307549 

20399   TAGAGCTCGAAGAACTTGGGA + 6 6776173 Intergenic   362932 
20462 miR1152, 

cr.01969 
TAAGAAGGTGCGCTGTCTTGA - 6 7063794 Intron g6871 UBA_e1_thiolCys

, UBACT, ThiF, 
UAE_UbL 

1701 

21642   TCGACGCGGTGATGGGCCTGG + 7 2713524 CDS Cre07. 
g331114 

 2702 

22587   TGGCTTTCGTCGGTCCTAGG + 8 121861 
121923 

Intergenic 
3' UTR 

 
g8351 

 26418 
- 

25074   TTGGACGCGGACCCGGCGCAG + 9 6518859 
6519021 

Intron 
Intergenic 

g10105 TENA_THI-4 26633 
- 

aAsterisks in the cluster number indicate that no miRNA* was identified in the small RNA library. Letters in the cluster number 

indicate the existence of more than one predominant product. 

b Names for previously identified miRNAs are taken from Molnar, et al. (2007), Zhao, et al. (2007), and Yamasaki, et al. (2013) 

cStrand orientation of the mapped reads. In cases where the miRNA is processed from a region of the hairpin where the two arms are 

perfectly complementary, the miRNA will map to both strands within the same locus. In these cases, the coordinates and region are 

shown for both strands (see Figure B.3). 

dChromosome where the cluster is located. 

eStart location for the miRNA (5’ nucleotide), relative to the + strand. For reads that map to the – strand, this represents the position of 

the miRNA 3’ nucleotide. 
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fIf the miRNA maps to a gene, the location of the miRNA within the gene is shown along with information about the gene itself 

including conserved Pfam A domains.  

gReads counts for each miRNA are shown in absolute numbers and are not normalized by library size.
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CHAPTER 4- Changes in miRNA populations between heterotrophic, 

photoautotrophic, and nitrogen deplete conditions for the green alga 

Chlamydomonas reinhardtii 

Introduction 

 While the biological role of microRNAs (miRNAs) in unicellular organisms such 

as Chlamydamonas reinhardtii remains unclear, one possibility is that they are involved 

in the cell’s response to environmental stress similar to higher plants [1-8]. In these stress 

conditions, such as nutrient deprivation (including nitrogen), a subset of the overall 

miRNA population is differentially or uniquely expressed [6-9]. These condition specific 

miRNAs often have very few, if any, targets within the metabolic pathways involved in 

the stress response. They instead generally target transcription factors, RNA and DNA 

binding proteins, enzymes involved in post-translational modification of proteins, and 

protein kinases, making the overall impact of the differential expression difficult to 

determine. For miRNAs differentially expressed during nitrogen starvation in 

Arabidopsis thaliana, only a handful of experimentally validated targets across all of the 

differentially expressed miRNAs identified were metabolic enzymes, two of which (a 

fucosyltransferase and haloacid dehalogenase-like hydrolase) are involved in 

carbohydrate metabolism and the rest, interestingly, appear to be involved in copper 

homeostasis [7].  

An analysis of putative miRNAs differentially expressed during sulfur starvation 

in C. reinhardtii similarly had very few metabolic enzymes predicted as targets [3]. 

However, given the difficulty in predicting functional targets for miRNAs in C. 
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reinhardtii makes the reliability of the predictions questionable without further 

experimental analysis (See Chapter 3). Indeed, several of the predicted targets that are 

essential for the cell’s acclimation to sulfur deprivation are upregulated when the 

miRNAs predicted to target them are also upregulated [3, 10]. This expression pattern 

makes it unlikely that these targets are regulated by cleavage as predicted, though these 

genes could still be targeted by translational repression, especially under the model that 

these miRNAs modulate final protein levels rather than silencing their targets. 

Studies examining miRNA populations between species have found that new 

miRNAs can arise spontaneously, culminating in a plasticity in the overall miRNA 

populations [11-15]. In plants, this can be seen in the number of miRNAs that are either 

species-specific or that are contained in only a few very closely related species [11, 12]. 

Within Arabidopsis, there is evidence that these sequences can arise from random 

sequences that form small or partial hairpins transcripts [13]. The spontaneous production 

of novel miRNAs from random sequences could account for a large number of unique 

miRNAs sequences between A. thaliana and A. lyrata, roughly 13% of the total miRNA 

sequences for each species, despite their relatively recent speciation [14]. As these novel 

miRNAs arise in plants, they are initially very lowly expressed, while miRNAs conserved 

between species generally show higher expression levels [16].  

Here, in order to identify a possible role of miRNAs in C. reinhardtii, we 

investigate the changes in overall population of miRNAs and their targets of C. 

reinhardtii cells grown in heterotrophic conditions, in photoautotrophic conditions with a 

source of nitrogen, and in photoautotrophic conditions without a source of nitrogen to 

determine how miRNAs are involved in the response to nitrogen starvation. Our results 
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suggest that, as in Arabidopsis, very few of the predicted targets are metabolic enzymes. 

The low expression of condition-specific miRNAs is similar to newly evolved miRNAs 

identified in higher plants, while the miRNAs expressed across all conditions tended have 

a much higher expression. 

 

Materials and Methods 

Transgenic strains, mutants, and culture conditions 

Chlamydomonas cells were routinely grown photoheterotrophically in Tris-acetate-

phosphate (TAP) medium [17] or photoautotrophically in nitrogen-replete high salt 

(HS+N) medium (Sueoka, 1960). Cells from the nitrogen-replete HS medium were 

collected by centrifugation and resuspended at a density of 5 x 105 cells mL-1 in regular 

HS media or in the same media lacking nitrogen (HS-N). Strain Maa7-IR44s, containing 

an inverted repeat transgene targeting the 3’ UTR of the MAA7 gene (encoding 

Tryptophan synthase β subunit), has been previously described [17]. Mut-20, deleted for 

Tudor Staphylococcal Nuclease 1 (TSN1) and almost devoid of miRNAs, was obtained in 

an insertional mutagenesis screen designed to isolate mutants defective in RNAi-

mediated translation repression [17]. For the isolation of AGO3-associated small RNAs, 

we fused the FLAG tag [18] to the N-terminal end of Chlamydomonas AGO3 (g16859). 

This construct was placed under the control of psaD regulatory sequences and 

transformed into Maa7-IR44s (Figure B.1). A similar construct was made fusing the 

FLAG tag to the coding sequence of the bleomycin gene and transformed into Maa7-

IR44s.  
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Isolation of AGO3-associated small RNAs, library preparation, and sequencing 

FLAG-tagged AGO3 was affinity purified from a cell lysate as previously described for a 

TAP-tagged protein [19]. RNAs associated with AGO3 were purified with TRI reagent 

(Molecular Research Center) and contaminant DNA was removed by DNase I treatment 

(Ambion) (MA et al. 2013). Construction of cDNA libraries and Illumina sequencing 

were then carried out as previously reported (IBRAHIM et al. 2010). 

 

Small RNA mapping and profiling 

Sequenced reads were first mapped to version 10 of the phytozome C. reinhardtii 

genome [20], by using version 3.02 of Novoalign (www.novocraft.com) with the miRNA 

flag and with a score threshold of 15. Mapped reads were filtered to remove those 

showing alignments with gaps or mismatches as well as those that mapped to more than 

five locations in the genome. The expression level in counts per pillion (CPM) for each 

read was determined by the formula:  

!"# = !10
!!
!  

where C is the number of reads in the library and N is the total number of mapped reads 

in the library. Genome mapped reads were also classified as matching the chloroplast or 

the mitochondrial genomes, ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), 

small nucleolar RNAs (snoRNAs), transfer RNAs (tRNAs,) other non-coding RNAs 

(ncRNAs), or transposable elements. The C. reinhardtii chloroplast and mitochondrial 

genomes were taken from Genbank (accession numbers BK000554 and NC_001638.1, 

respectively) along with the rRNAs, snRNAs, snoRNA, tRNAs, and ncRNAs sequences. 

Transposons sequences were taken from Repbase [21].  
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Genomic clustering of sRNAs and miRNA identification 

After removing those reads that mapped to known non-coding RNA categories, 

transposons, the chloroplast or the mitochondrial genomes, potential small RNA (sRNA) 

reads were processed following the steps illustrated in Figure 3.2A. The reads were first 

clustered by genomic location such that there was no more than 200 nt between adjacent 

reads, regardless of strand. The reads on both strands in the same genomic location were 

placed in the same cluster. These clusters were analyzed further to differentiate pre-

miRNA structures from other sRNA structures. The genomic sequence for each strand of 

the cluster was folded using version 2.1.5 of RNAfold from the Vienna RNA package 

[22]. Clusters with a genomic sequence < 50 nt or >1000 nt in length were excluded from 

folding, as they were deemed unlikely to code for canonical miRNAs [23]. Clusters 

containing sequence gaps (i.e., unsequenced genomic regions) were also excluded since 

the secondary structures of these regions cannot be unambiguously predicted. The 

secondary structures were parsed to determine if they fold into a hairpin. However, 

clusters whose highest expressed reads had more than four mismatches with the opposing 

arm of the hairpin were removed from further analyses, following the criteria proposed 

by Tarver, Donoghue [23] for the annotation of plant miRNAs where complementary 

base pairing between the mature miRNA and miRNA* sequences is fairly precise with 

fewer than four mismatches and any asymmetric bulges involving only one or two 

nucleotides. The putative miRNA* sequence for the highest expressed read of each 

cluster was determined using the hairpin fold and the genomic sequence, with a two 

nucleotide offset to allow for the 3’-overhang in the miRNA/miRNA* duplex. The 
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remaining clusters were filtered using a classifier based on a support vector machine 

(SVM) [24]. The descriptors used for the SVM classifier are: the accuracy of processing 

of the 5’-end of the predominant reads, the frequency of predominant reads present, size 

of the pre-miRNA hairpin structure, and the extent of complementarity between the two 

arms of the hairpins, all of which are based in the criteria for canonical miRNAs in 

Tarvers, et al. [23]. The accuracy of the 5’ processing is determined by the percentage of 

reads that overlap with the potential miRNA sequences that start at the same 5’ 

nucleotide as the potential miRNA sequence.  The classifier was trained on the manually 

curated list of 46 positive and 154 negative miRNAs generated in Chapter 3. The 

classifier was generated using version 3.18 of libsvm [24] with a radial basis function 

kernel, with the parameters c = 8.0 and g = 0.03125, which were determined by a grid 

search over the parameters. This classifier was verified with a 4-fold cross validation and 

had an overall accuracy rate of 87%, with a sensitivity of 0.734, a specificity of 0.932, 

and a MCC of 0.690. These predictions were used as a pre-filter for classification and 

both the positive and negative predictions were further manually curated to ensure they 

remain consistent with the predictions made in Chapter 3. 

 

MicroRNA target prediction 

The process used for the prediction of miRNA targets is illustrated Figure 3.2B. Potential 

miRNA-binding sites were determined by searching version 10 of the C. reinhardtii 

transcriptome using version 2.1 of RNAhybrid [25]. This algorithm returns the most 

energetically favorable pairing for each miRNA/target pair. The obtained hybrid pairs 

were filtered based on the number and location of gaps, wobbles, and mismatches to limit 



 

 

147 
the predictions to only those that could regulate targets in a projected manner. For 

cleavage targets, this search required perfect matching for nucleotides 2-8 (the seed 

region, Figure 3.1B) and nucleotides 9-12 (the catalytic or center region, Figure 3.1B), 

and no more than three GU wobbles and three mismatches or a gap of more than one 

nucleotide in the remaining sequence. For translational-repression targets, the constraints 

for the catalytic region were relaxed to allow up to three mismatches or wobbles, with the 

constraints for the seed-region and the 3’-end pairing remaining the same. Additionally, 

translational-repression targets needed at least one mismatch or wobble in the catalytic 

region to keep the two sets of predicted targets non-overlapping. MicroRNA-encoding 

transcripts, which may also be targeted for degradation by their encoded miRNAs, were 

removed from the analysis. 

Putative roles of the predicted targets were evaluated by using the annotations of 

Chlamydomonas genes (if available) as well as conserved protein domains. Manual 

annotations were taken from the Algal Functional Annotation Tool [26] which are based 

on the protein annotations uploaded to Phytozome [27]. 

 

Total RNA isolation  

Total RNA was isolated with TriReagent (Molecular Research Center, Inc.) in 

accordance with the manufacturer’s instructions from C. reinhardtii grown under N-

replete and N-deplete conditions. Agarose gel electrophoresis (1.5%) was used to monitor 

the quality of the extracted RNA by checking the integrity of the RNA bands. The 

purified total RNA concentration was measured using a Thermo Scientific NanoDrop 

2000c spectrophotometer. Total RNA isolated from these cells was used in 
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transcriptomic, real-time quantitative polymerase chain reaction, and semi-quantitative 

polymerase chain reaction experiments. 

 

Transcriptome analysis  

Transcriptomic changes in C. reinhardtii grown photoautotrophically under N-replete and 

N-deplete conditions were measured using RNAseq. Experiments were performed 

independently twice and libraries were sequenced with the Illumina GAIIx analyzer.  One 

library was sequenced at the Joint Genomic Institute (JGI), the other library was 

sequenced on the Univeristy of Nebraska-Lincoln campus. The Illumina reads from both 

experiments were mapped to the Augustus v5.0 transcript models for C. reinhardtii 

(available from http://genome.jgi-psf.org/Chlre4/Chlre4.download.ftp.html). The reads 

were first trimmed to 36 nucleotides in length to remove low quality 3!-ends before 

mapping. The alignment was performed using Burrows-Wheeler Aligner (BWA; v0.5.7) 

[28] with a seed length of 25, allowing 2 mismatches. A perl script (A. Voshall, 

unpublished) was used to ensure that only reads that uniquely matched with a single 

transcript were counted. Raw gene counts were determined by counting the number of 

reads aligned to each transcript. To examine transcript abundance, gene expression was 

analyzed as Reads per Kilobase per Million (RPKM), which normalizes the read counts 

based on both transcript length and total number of reads, using the following formula:  

 

where C is the number of reads mapped to the transcript, N is the total number of mapped 

reads in the library, and L is the length of the transcript in nucleotides (Mortazavi et al., 

RPKM =
109C
NL
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2008). To determine the change in expression, each of the three time points during the N-

deplete condition were compared pairwise with the control (N-replete) condition for each 

experiment. Differences in gene expression were examined as log2(Fold Change), where 

"Fold Change" refers to the ratio of RPKM values, at each time point, between treatment 

and control. Statistical analysis of the data was performed using the DESeq package 

(version 1.18) [29]. The q-values (adjusted p-values from DESeq) for each time point 

compared to time 0 were calculated using both replicates. All transcripts that have at least 

one time point with a q-value ≤ 0.05 and at least a 3-fold change in expression (a 

log2(Fold Change) of 1.585) are considered significant. The Augustus v5 transcript IDs 

were converted to the current Phytozome 10 transcript IDs using the transcript name 

conversion file on the Phytozome 10 website (http://genome.jgi.doe.gov/ 

pages/dynamicOrganism Download.jsf?organism=PhytozomeV10) along with the gene 

name, description, and PANTHR annotations. MapMan annotations for the genes 

targeted miRNA in HS+N and HS-N conditions were taken from version 1.0 of the 

MapMan Chlamydomonas annotations 

(http://mapman.gabipd.org/web/guest/mapmanstore), which are based on the Phytozome 

9 transcript models [30]. The first two categories of the bin numbers were used to 

determine the functional category for the target genes. 

 

Arabidopsis miRNA and target prediction 

The miRNA prediction and expression information for A. thaliana and A. lyrata were 

taken from Ma et al. [31]. The miRNA and gene expression levels for each biological 

replicate (given in raw read counts) were converted to CPM using the formula given 
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above using the total library size reported by the authors. The average expression for A. 

lyrata, which consisted of three libraries, was the average of the CPMs calculated for 

each miRNA across all three libraries. Species-specific miRNAs were determined by 

comparing the miRNA names present between the datasets for A. thaliana and A. lyrata 

and cross-referenced with the in-text results. Targets for the species-specific miRNAs 

were predicted using version 1.6 of Target Finder [32], searching against version 10 of 

the TAIR A. thaliana transcriptome (taken from Phytozome 10) and the Phytozome 10 

version of the A. lyrata transcriptome [27]. All of the predictions were taken as-is from 

each reference, with no manual curation or filtering. 

 

Comparison of miRNA expression and number of predicted targets 

All of the statistical analyses were performed in R using standard libraries. The 

histograms of miRNA expression were generated by binning each miRNA into 

expression categories of 500 CPM based on their average CPM.  miRNAs that had no 

identifiable targets or only targeted the transcript that they are derived from  were 

excluded from all further analyses as these miRNAs would not have an evolutionary 

constraint on their expression level. A cutoff of 500 CPM was used to differentiate highly 

expressed (≥500 CPM) and lowly expressed (<500 CPM) miRNAs, which was chosen 

due to the the distributions of expressions and target number observed in C. reinhardtii. 

The numbers of targets between highly expressed and lowly expressed miRNAs were 

compared using the Welch's t-tests as well as Wilcoxon Rank Sum (MWW), and Cohen’s 

d was used to determine the effect size for the two groups. 
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Results 

Changes in miRNA population between conditions 

Using the criteria established in Chapter 3, we identified 102 miRNA sequences across 

three growth conditions: TAP media, HS+N, and HS-N (Figure 4.1, Table 4.1). These 

predictions include 45 of the 46 miRNAs identified in the photoheterotrophic media 

(TAP) used in Chapter 3 as well as 57 additional miRNA sequences. The sequence that 

was present in the Chapter 3 but removed here was misclassified in Chapter 3 due to 

human error in determining the precision of the 5’ processing and did not meet the 

criteria specified.  Nine additional miRNAs were identified in TAP that were not 

identified in Chapter 3, which meet all of the criteria specified but were misclassified in 

Chapter 3 due to human error in identifying predominant reads in the clusters.  In total, 

54 of the 102 miRNAs identified here are present in TAP.  Of the 48 additional miRNAs 

identified in this analysis with photoautotrophic (HS) media, two are present in miRBase 

(cre-miR918 and cre-miR9897) and the remaining 46 are novel predictions. The majority 

(60 of the 102) miRNAs are shared between at least two conditions, with roughly a 

quarter (29 of 102) common between all three conditions. While Chlamydomonas grown 

photoheterotrophically in TAP media had the most condition specific miRNAs (19 of 

102), there are more many more miRNAs (48 of 102) that are specific to photoheterophic 

conditions, of which 25 are common to Chlamydomonas grown in photoheterotrophic 

conditions regardless of the presence of a nitrogen source than specific to TAP. As 

expected, there are no miRNAs found in both TAP (which contains a nitrogen source) 

and HS-N media that are not also found in HS+N media.  
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 While the predicted miRNA population varies between conditions, only one 

predicted miRNA (miR_t42) is completely missing from libraries for the other conditions 

(Table 4.1). For the remaining 101 miRNA, the pre-miRNA structure is still transcribed 

and processed, but no longer meets the criteria to be classified as a miRNA. For most of 

the sequences, this occurs because the 5’ processing of the predominant reads no longer 

satisfies the requirements, which becomes more common as the read count for the 

predominant reads decreases (data not shown). In the case miR_t42, the pre-miRNA is 

also transcribed in all conditions, with the remaining predominant reads still present. 

However, it only meets the requirements for miRNA classification within TAP media.  

 The expression for miRNAs also varies between conditions, including clusters 

that meet the criteria for miRNA classification in all three conditions (Table 4.1). Most of 

these variations are within an approximately 2-fold change between conditions. Although 

some miRNAs show differences in expression levels, e.g., 3-fold change with miR1153, 

without more replicates, the results are inconclusive. 

 

Changes in predicted miRNA targets between conditions 

Changing miRNA populations in each condition result in the corresponding changes in 

the predicted targets for both cleavage and translational repression for those conditions 

(Figure 4.2A and 4.2B). Differences in the number of targets predicted for each miRNA 

lead to large variations in the number of condition specific targets identified, ranging 

from an average of 1.6 cleavage targets and 11 translational repression targets per 

miRNA in TAP specific miRNAs (30 targets and 209 targets respectively for 19 miRNA) 

to an average of 5.2 cleavage targets and 12.4 translational repression targets for HS+N 
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specific miRNAs (73 targets and 174 targets, respectively, for 14 miRNAs) (Table 4.1). 

The average number of targets for miRNAs exclusive to HS+N and HS-N media is 

skewed heavily by miR_t59, which alone accounts for roughly half of the predicted 

targets for both modes of regulation (48 of 90 cleavage targets and 242 of 444 

translational repression targets). Excluding this one miRNA, the number targets per 

miRNA is comparable to that of the TAP-specific and miRNAs common to TAP and 

HS+N, with an average of 1.8 cleavage targets and 8.4 translational repression targets per 

miRNA. Three of the predicted miRNAs (one TAP-specific, and two common to HS+N 

and HS-N) had no predicted targets for either mode of regulation. 

 As shown in Figure 4.3A, the vast majority of the predicted miRNAs have low 

levels of expression (lower than 500 CPM), and these miRNAs tend to have a higher 

number of predicted targets than those with higher expression (Figure 4.4 and Table 4.1). 

This trend is most visible in the extreme cases. While the most highly expressed miRNAs 

have no more than 4 cleavage targets and 9 translational repression targets, those that 

have extremely low expression were predicted to have up to 48 cleavage targets and 242 

targets for a single miRNA. When the miRNA population was divided into two 

categories: low expression miRNAs (average expression less than 500 CPM) and high 

expression (average expression greater or equal to 500 CPM), the average number of 

targets per miRNA was significantly different (Figure 4.6, blue boxes). The lowly 

expressed miRNAs have an average of 5.11 (+- 8.76; n=47) cleavage targets per miRNA, 

whereas highly expressed miRNAs average only 1.78 (+- 1.56; n=18) cleavage targets 

per miRNA (p = 0.0154 with a two-tailed Welch's t-test, p = 0.0156 for MWW, Cohen’s 

d = 0.538).  This trend is also present for translational repression targets, but with smaller 
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differences between highly expressed and lowly expressed miRNAs that are not 

significantly different.  The lowly expressed miRNAs have an average of 15.31 (+- 

31.12; n=70) translational repression targets per miRNA, whereas highly expressed 

miRNAs average only 7.56 (+- 31.12; n=27) translational repression targets per miRNA 

(p = 0.053 with a two-tailed Welch's t-test, p = 0.267 for MWW, Cohen’s d = 0.290).   

 

Comparison with newly evolved, species-specific miRNAs in Arabidopsis 

Because the low expression and high target count for many of the miRNAs identified in 

C. reinhardtii resemble the descriptions of newly evolved miRNAs in higher plants [13, 

14, 31-33], we performed the same analyses on miRNAs specific to Arabidopsis thaliana 

and A. lyrata. Similar to what we observed with the C. reinhardtii miRNAs, the vast 

majority of the species-specific miRNAs in both Arabidopsis species are lowly expressed 

(< 500 CPM) (Figures 4.3B and 4.3C). They also show the same relationship between the 

expression level of the miRNAs and the number of predicted targets (Figures 4.5A and 

4.6). The difference is most prominent in A. thaliana, with an average of 9.25 (+- 8.948; 

n=40) cleavage targets per lowly expressed miRNA and only 2.75 (+- 0.957; n=4) targets 

per highly expressed miRNA (p < 0.0001 with two-tailed Welch's t-test, p = 0.075 

MWW, Cohen’s d = 1.318). The trend is still present in A. lyrata, with an average of 4.73 

(+- 4.981; n=34) targets per lowly expressed miRNA and 2.80 (+- 1.095; n=5) targets per 

highly expressed miRNA. However, because only a few of the A. lyrata specific miRNAs 

with an average expression greater that 500 CPM have identifiable targets and the 

difference between the two groups of miRNAs are smaller, the difference is not 

significant (p = 0.058 with a two-tailed Welch's t-test, p = 0.915 for MWW, Cohen’s d = 
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1.008).  The relationship between the number of predicted targets and the expression of 

the miRNA for species-specific miRNAs in Arabidopsis is in sharp contrast the 

relationship for miRNAs conserved between the two species, for which many highly 

expressed miRNAs have ~20 predicted targets (Figures 4.5B and 4.5C). 

 

miRNA targets related to nitrogen starvation 

To determine what role miRNAs play in the response to nitrogen starvation, we examined 

the predicted targets of miRNAs that present in either HS+N or HS-N excluding all of the 

miRNAs that are found in both or neither condition. The HS+N miRNAs include those 

that are HS+N-specific and those that are found in both TAP and HS+N. The HS-N 

miRNAs are only those that are HS-N exclusive, as there are no miRNAs found in both 

TAP and HS-N, but not HS+N (Figure 4.1). These combinations result in 84 cleavage 

targets and 215 translational repression targets potentially regulated by miRNAs HS+N, 

but not HS-N, and conversely 31 cleavage targets and 101 translational repression targets 

potentially regulated in HS-N, but not HS+N (Figure 4.2 and Table 4.1). The vast 

majority of these targets in both conditions have no known function (Figures 4.6 and 4.7). 

Very few of the targets that do have known functions are metabolic enzymes. Instead 

they have a wide variety of roles within the cells, including transcription factors, DNA 

and RNA binding proteins, posttranslational modification of proteins, and transporters. 

 Of the 84 cleavage targets and 215 translational repression targets in HS+N, five 

and ten, respectively, are significantly differentially expressed during nitrogen starvation 

(Table 4.2). However, none of these differentially expressed targets showed at least a 2-

fold change in expression in the miRNA-deficient Mut20 cells, and several of them are 
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down-regulated during nitrogen starvation, despite the absence of the miRNA targeting 

them in HS-N conditions. Similarly, of the 31 cleavage targets and 101 translational 

repression targets in HS-N, only three cleavage targets and three translational repression 

targets are significantly differentially expressed during nitrogen starvation. As for HS+N, 

a number of these targets are up-regulated during nitrogen starvation, despite the 

differential presence of the miRNAs targeting them. However, one of the cleavage 

targets, FAP281, is down-regulated during nitrogen starvation, and shows the 3-fold up-

regulation in Mut20 expected for a cleavage target. The remaining differentially 

expressed targets again have no known function. Those that do have predicted functions 

perform a variety of non-metabolic functions, with only three of the 21 targets predicted 

to have metabolic activity. 

 

Discussion 

The changes in miRNA population between the three conditions investigated in this 

study, cells grown phototrophically in TAP media, photoautotrophically in HS media 

with a nitrogen source (HS+N), and photoautotrophically in HS media without a nitrogen 

source (HS-N), sheds light onto how gene regulation by miRNAs change in response, as 

well as the relationship between the expression level of miRNAs and the constraints on 

the number of potential targets for that miRNA. When comparing the predicted targets 

for both cleavage and translational repression for the miRNAs that are differentially 

present between HS+N and HS-N conditions, the target functions closely resemble those 

of Arabidopsis during nitrogen starvation [7]. For both organisms, very few of the 

transcripts targeted are metabolic enzymes, with most the targets instead comprising a 



 

 

157 
wide range of non-metabolic roles, including transcription factors, DNA and RNA 

binding proteins, post-translational protein modification, transporters, and ion channels. 

While most of these targets do not show an increase in expression in the Mut20 cells that 

lack miRNA what would be expected for true cleavage targets, they could still represent 

translational repression targets or the expression in the mutant could be altered by other 

compensatory mechanisms. These targets could allow each of the miRNA to have a far-

reaching impact on abundance, stability, and function of proteins and metabolic pathways 

far beyond the scope of the individual miRNA targets. While these miRNAs do not 

appear to play a large role in directly regulating the metabolic pathways surrounding lipid 

production, it remains possible that these pathways are still impacted by the downstream 

effects of miRNA gene silencing. 

 In addition to the targets that are similar between Chlamydomonas and 

Arabidopsis in nitrogen starvation, two of the 21 differentially expressed targets (DHC13 

and FAP281) are related to flagella in Chlamydomonas, including the only predicted 

cleavage target that shows the expected two-fold up-regulation in the Mut20 cells that 

lack miRNA. While not related to the accumulation of lipids seen during nitrogen 

starvation, these targets are still interesting as nitrogen starvation triggers gamete 

formation in Chlamydomonas, which entails a remodeling of the flagella to accommodate 

mating [34, 35]. DHC13 (also known as ODA11) is a flagellar outer arm dynein heavy 

chain alpha protein, which provides a major structural component for the outer dynein 

arm and plays a role in flagellar motility [36, 37]. According to Phytozome 10, FAP281 

is a coiled-coil protein found in the flagellar proteasome, and the transcript is up-

regulated during regeneration, however its exact role is not known [38, 39]. The impact 



 

 

158 
of this regulation remains unclear, as the miRNA-deficient Mut20 cells do not appear to 

have any swim-speed or mating phenotypes, despite lacking this regulatory mechanism 

(data not shown).  

 The expression pattern for the miRNAs that are condition specific or present in 

only two out of the three conditions is also intriguing. Especially for miRNAs that are 

specific to HS+N or present in HS+N and TAP, but not HS-N, the overall expression of 

the miRNAs is much lower than for the miRNAs that are present in all three conditions, 

with an average expression level 1/20th that of the miRNAs present in all three conditions 

(Table 4.1). The expression pattern for these miRNAs resembles those found in newly 

evolved miRNAs in higher plants, where as new miRNAs emerge, they are first 

expressed at a very low level and may or may not be functional (see Figures 4.3B, 4.3C, 

4.5A, and 4.6), whereas miRNAs that become conserved between species often exhibit a 

much higher expression level, regardless of the number of targets (Figures 4.5B, 4.5C) 

[13-16, 31-33]. This possibility is further strengthened by the relationship between the 

number of predicted targets (both cleavage targets and translational repression targets) 

and the average expression for the miRNAs across all of the conditions that it is predicted 

in (Figure 4.4). As the average expression for the miRNA sequence increases, there is a 

marked decrease in the number of potential targets, especially above 500 CPM. 

Conversely, the miRNAs that have many targets (more 7 cleavage targets or than 30 

translational repression targets) have among the lowest expression levels. In particular, 

increasing expression appears to provide an evolutionary constraint on the number of 

genes targeted for each miRNA. If the miRNAs are not expressed at a high enough level 

to be functional or have a significant impact, there are no constraints on the number or 
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type of genes they are complementary to, and thus are predicted to target. Similarly, the 

expression levels of those miRNAs with many targets or targets that would be 

detrimental to target would also be constrained to prevent them from becoming 

functional. For example, miR_t39, which is encoded within three separate pre-miRNA 

structures in HS+N and HS-N media and has a relatively high expression level with an 

average expression of 2499 CPM, has no identifiable targets. It indicates that this miRNA 

is not constrained even though its expression level is not low. Presumably this miRNA 

would continue to evolve neutrally until either it accumulates mutations and indels until 

degenerated and lost or the mature miRNA becomes sufficiently complementary to a 

target transcript for it to bind, at which point the constraints apparent for the miRNAs 

with identifiable targets would also apply to this miRNA. 

There are many possible mechanisms for novel miRNAs to evolve in both plants 

and animals. In plants, where it is common for not only the binding site of the miRNA to 

be highly complementary to the mature miRNA, but also for the region surrounding the 

binding site to be complementary to part of the pre-miRNA, one possibility is a partial 

inverted duplication of part of the target sequence [40, 41]. Such inverted duplication can 

occur as the result of the genomic rearrangements and segmental duplications the 

evolution of plants [42]. Another similar possibility, which appears possible in both 

plants and animals, is the insertion of transposable elements creating an inverted repeat 

[43-45]. In both of these cases, in addition to formation of inverted repeats in the genome, 

the sequences must also contain sufficient promoter regions to be transcribed, giving rise 

to a number of potential hairpin sequences in the genomes that are either too weakly 

transcribed to be functional, or not transcribed at all, which has a significant impact on 
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the prediction non-conserved miRNAs that evolve in such a manner. One final 

possibility, which is more likely in animals with their low degree of complementarity 

between the miRNAs and their targets than in plants, is that the miRNA machinery could 

process any transcript that forms a hairpin structure [46, 47]. In this model, a huge variety 

of small RNAs could be processed and loaded into the RISC complex, regardless of 

whether they are able to target a transcript. As it appears to be the case here, when these 

new sequences do arise, the level of expression for each is also subjected to selective 

pressure, allowing tight control of the regulatory roles these miRNA play within the cells 

[15, 16].  

 This analysis also highlights the importance of the growth conditions used for 

performing miRNA analysis. While both TAP (which contains acetate and provides 

photoheterotrophic conditions for the cells) and HS (which does not contain a carbon 

source and provides photoautotrophic conditions) are considered standard growth 

conditions, roughly 30% of the total miRNAs identified are specific to one or the other 

conditions, and three times as many miRNAs shared between HS+N and HS-N 

conditions than between TAP and HS+N (Figure 4.1, Table 1). Coupled with the 

observation that only one of the miRNAs are completely absent in any condition, but 

rather that the processing of the pre-miRNAs causes those miRNAs to meet the criteria in 

some conditions but not in others, this can cause miRNAs identified in one experiment to 

no longer appear to be a canonical miRNA in a second experiment despite still being 

present in the library if any changes are made to the growth conditions. To what extent 

this variation occurs within the same condition remains an open question that further 

replication of the Ago3 cross-linking experiment will be necessary to answer.   
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Figure 4.1: Comparison of predicted miRNAs TAP, HS+N, and HS-N growth media 
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Figure 4.2 Comparison of predicted miRNA targets in TAP, HS+N, and HS-N 

growth media 

Venn diagrams show the overlap of the number of predicted miRNA cleavage targets (A) 

and translational repression targets (B) across each of the three growth conditions. 
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Figure 4.3 Distributions of miRNA expression levels for C. reinhardtii and species 

specific miRNAs in A. thaliana and A. lyrata 
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The dashed line at 500 CPM represents the cutoff between lowly expressed and highly 

expressed miRNA across all three species. 
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Figure 4.4 Relationship between miRNA expression level and number of targets in 

C. reinhardtii 

Scatter plot shows the relationship between the expression level of an miRNA and the 

number of targets (blue diamonds for cleavage and orange squares for translational 

repression) predicted for that miRNA in C. reinhardtii. The dashed line at 500 CPM 

represents the cutoff between lowly expressed and highly expressed miRNA. 
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Figure 4.5 Relationship between miRNA expression level and number of targets in 

A. thaliana and A. lyrata 

Scatter plots shows the relationship between the expression level of an miRNA and the 

number of targets predicted for that miRNA for (A) species specific miRNA in A. 

thaliana (red) and A. lyrata (green), (B) conserved miRNAs in A. thaliana and (C) 

conserved miRNAs in A. lyrata. The dashed line at 500 CPM represents the cutoff 

between lowly expressed and highly expressed miRNA. 
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Figure 4.6 Comparison of the number of targets between lowly expressed and highly 

expressed miRNAs 

Boxplots show the number of cleavage targets for miRNAs with low expression (<500 

CPM) and high expression (≥500 CPM) in C. reinhardtii (blue), A. thaliana (red), and A. 

lyrata (green). The mean numbers of targets (x̅) for each category are shown above the 

boxes. The target numbers are compared between the two expression level groups: *p < 

0.05 and **p < 0.0001 (Two-tailed Welch's t-test). 
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Figure 4.6: Mapman bins for cleavage targets differentially regulated in HS+N (A) 

and HS-N (B) media.  
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Figure 4.7: : Mapman bins for translational repression targets differentially 

regulated between HS+N (A) and HS-N media (B).
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Table 4.1: List of predicted miRNAs 

Read miRNA Aliasa TAPb 
TAP 
CPMc 

HS+
N 

HS+N 
CPM HS-N 

HS-N 
CPM 

Cleavage 
targetsd 

TR 
targets 

TTCGAAAAGTTGCACAGCGCC miR_t94 -- 1130  31  -- (7) -- (13) 0 2 
TACCGGGCGTGGGGAGGGCAGG miR_t10 miR9897-5p 2675  43557  1857  45759  3871  34052  1 9 
TTACGGCTCCTTCTTATCGGC miR_t90 miR9897-3p 2675  31467  1857  39880  3871  27972  2 5 
TGCTTGGATCCGTTTGGATGG miR_t69 -- -- (12) -- (41) 4648  58  1 15 
TCGGAAGGGAGAACGGTGGCC miR_t39 -- -- (1041) 2251, 

3680, 
5595 

3273  4654, 
7413, 
11395 

1724  0 0 

TCGGAAGGGAGAACGGTGGTC miR_t40 -- -- (988) 2251, 
3680, 
5595 

3409  4654, 
7413, 
11395 

1842  1 10 

TGGACAGCGAACAACTTTGAGC miR_t71 -- -- (429) -- (46) 4654, 
11395 

1387  2 10 

TCAATTGCTCTTTCTGATG miR_t30 -- 3318  154  2358  90  4837  272  0 5 
TCAGATAGAGCAATTGATG miR_t31 -- -- (15) 2358  58  4837  101  0 6 
TGCACGTTGGTAAACAGTCCC miR_t55 -- 3704  994  2690  671  -- (594) 1 5 
TGCAGGGGGACTTAGTGGAGA miR_t56 -- 3704  228  2690  107  -- (103) 1 6 
TAGTGCCAGCGCGCTCTCGGC miR_t24 -- 3708  146  2699  409  5482  662  7 15 
TGGAAAATCGAGGCCGCTGGC miR_t70 -- 3772  317  2729  2457  5570  556  0 0 
TGGATGGTCGAAACCGCGTACA miR_t75 -- 3911  77  -- (15) -- (21) 0 3 
TGGAGACTGTACGAGAGGCCA miR_t73 -- 3965  60  2890  81  5847  45  0 3 
TGGAGACTGAACGAGAGGC miR_t72 -- -- (15) 2890  26  -- (8) 1 5 
TTTCGAGGTACGAGGACCGGT miR_t101 -- -- (19) 3163  93  -- (59) 1 3 
TACGTCGGCGCCAGCTTCACC miR_t13 -- -- (9) 3542  40  -- (2) 14 5 
TTCGAGGTCGGCTGGAAGGTC miR_t95 -- 4832  90  3548  816  -- (353) 4 18 
TCAATAACGGACCTGGAGGAC miR_t29 -- 5094  57  -- (13) -- (23) 0 1 
TGGCATGGCTGGAGGAGCAGG miR_t78 -- -- (64) 3952  282  8069  131  2 14 
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TTCAGGTAGCGGGACCAGGTG miR_t91 miR1157 5858  6353  4247  1515  8689  3762  4 5 
TCTGACCGGTCGGTGCTGCCG miR_t46 -- 6589  231  -- (126) -- (39) 1 9 
TCGCGGTACAGGCTCTTAGGC miR_t37 -- -- (666) 4707  1544  9668  2572  7 10 
TAGCATCGTACCGTAATTGT miR_t18 -- -- (22) 5047  125  10379  212  0 3 
TAGCATCGTACCGTTATTGT miR_t19 -- -- (5) 5047  27  10379  48  1 9 
TGACTCTCACTCCTACTCGGC miR_t50 -- 7085  1807  5048  3534  10380  2599  1 3 
TTCCACCTGACTGCTTGCTGA miR_t93 -- 7085  601  -- (39) -- (109) 1 16 
TCCACGTTCTCGCCGCGCAGG miR_t32 -- 8319  339  5973  62  -- (84) 4 3 
TCGAGATGCCCCTGCAGTACC miR_t34 -- 8319  38  5973  33  -- (30) 0 7 
AGCAGCGTCGGGCTCGACCGC miR_t2 miR910 8563  30  6153  39  12470  54  0 29 
TGCGGGGCCCGCAGGTAGCTGC miR_t64 -- 8563  34  -- (2) -- (1) 9 34 
TGCGGCCTGGTTTATTGGAGA miR_t63 -- -- (1625) 6204  143  12551  462  1 18 
TGGATGTTGCTTGCTGGATAC miR_t76 -- 9303  8918  6666 13144 13325  7059  1 1 
TAAGCCGGGGTTGGTAGCAAC miR_t8 -- 9303  1535  -- (339) -- (182) 0 4 
TTGATGTCCGCTGGGAGCTGG miR_t98 -- 9770  348  -- (83) -- (162) 1 22 
TGCGTAGGACGTGGTAGGCGC miR_t66 -- 9770  93  -- (16) -- (32) 0 6 
TGCGAGCTGCGGAATGGCGAC miR_t57 -- 9770  85  -- (227) -- (165) 7 25 
TGCACGCTGTGACTGTCTAGC miR_t54 -- -- (103) -- (97) 15652  221  4 15 
TGGCTGGTGAATTTGTAGTAG miR_t80 -- -- (351) 8193  163  16325  389  2 14 
TATGACTGACAGCAGGGTGCC miR_t27 -- -- (32) 8193  121  16325  317  1 4 
TGCGCGAGGATGAGATGCTGG miR_t61 -- -- (50) 8314  117  16579  38  3 21 
TGAGTGGTGGTCGACGGCAAT miR_t51 -- 11846  146  8411  72  16786  76  0 2 
TCGGAGAAGCGGGTAGCTGA miR_t41 -- 12364  5973  8753  5831  17472  3599  2 15 
GAGAACATCAAGGAGCTGCGG miR_t3 -- -- (39) 8762  78  17485  50  0 2 
TAAACAGACAAGGCGACCGACA miR_t5 -- 12551  915  8879  1038  17767  478  2 1 
TCGCCTTGTCTGTTTATGTGG miR_t36 -- 12551  483  8879  36  17767  101  8 61 
TAAACAGACAAGGCGACCGA miR_t4 -- 12551  76  8879  62  17767  51  0 0 
TGCAAAATCAAGACCGGGGGA miR_t52 -- 12615  60  -- (16) -- (6) 0 3 
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TGGCCGTACTACTATTGTC miR_t79 -- 12905  267  9173  428  18300  695  1 35 
TAGGAACAAGGACGGAGGCGC miR_t21 -- -- (26) 9395  132  -- (99) 1 3 
TGTGATGGGTGTCAAGGGCC miR_t88 -- -- (10) 9395  55  -- (24) 1 14 
TTGACACTCATCACACTGGC miR_t97 -- -- (38) 9395  30  -- (42) 1 4 
TCGATGTTGTTGCGCTGCGGC miR_t35 -- -- (429) 9510, 

9511 
964  19015  1520  3 5 

TCGGTGTTGTTGCGCTGCGGC miR_t44 -- -- (114) 9510  363  19015  472  1 13 
TGCTGCGGCGTGCTGCTGGACC miR_t67 -- -- (340) -- (4) 19015  105  17 37 
TGCGCAAGAAGCTGGACCTCG miR_t58 -- -- (73) 9900  86  19822  40  3 13 
TCGGAAAGGAATCCAACGGCC miR_t38 -- 14705  718  10470  866  20969  976  1 1 
TGAACACGGCGAGCATCAGCGG miR_t48 -- 14711  60  -- (9) -- (2) 9 28 
TGCTTGCGCCCTCTAGCCGTC miR_t68 -- 14712  435  10475  265  20977  229  4 18 
TAGAGGGCGCAAGCACGCA miR_t17 -- -- (39) 10475  110  20977  60  0 2 
TCGTGCTCGTCATCCCCTCG miR_t45 -- 14719  413  10491  116  21002  145  3 16 
TAGCCGTCAGGAGCTGTGAGC miR_t20 -- -- (15) -- (15) 21002  73  2 10 
TGGAGGGCGCAAGCACGCAACG miR_t74 -- 14719  47  10491  24  -- (13) 1 2 
TAGTCAGAACAGAGCACTAGC miR_t23 -- -- (10) 10497  136  21011  440  0 0 
TGCGGTGAATGTGAATGATGG miR_t65 -- 16411  200  11646  202  23405  270  2 17 
TGACCACCCTGCAGCTGACGC miR_t49 -- 17284  117  -- (10) -- (3) 1 9 
TGGTGATGCTCTGAGTTGGGC miR_t86 -- -- (36) 12071  192  24260  170  1 15 
TACCTCCACCACACTACCCACC miR_t11 -- -- (320) 12111  445  -- (815) 9 19 
TAGTGTGGTGGAGGTAGCAGG miR_t25 -- -- (560) 12111  418  -- (117) 4 8 
TGGTCGTAGTGAGCGAGTGAAG miR_t85 -- -- (100) 12340  126  -- (139) 0 2 
TGGGCCATCGTATTACTATCAG miR_t83 miR1153-5p 17620  18353  12524  5658  25083  6066  2 6 
TAACTTAGTCGTCACAAGGCG miR_t6 -- 17755  77  -- (2) -- (51) 0 0 
TGCGCAGCGGCATCATCTGGA miR_t59 -- -- (7) 12646  39  25305  41  48 242 
TCGGTCAGCATTTCGTTTGG miR_t43 -- 18100  4445  -- (427) -- (622) 0 5 
TCGGTCAGCATCTCGATTGGC miR_t42 -- 18100  1010  -- 0  -- 0  1 24 
TACCCGGAGTGGACGTCTTGC miR_t9 -- 18100  752  -- (2816) -- (1663) 0 6 
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TACCTGAAGCGGACATCTTGC miR_t12 miR918 18100  225  -- (484) -- (279) 0 4 
TGCGGAGTGTGAAAGGGCTGC miR_t62 -- -- (56) -- (50) 25611  90  2 4 
TTGAACAACTCTCCCACGCTG miR_t96 -- -- (44) 12945  362  -- (50) 1 3 
TTTGGCTGTCCCTTGCATGAGC miR_t102 -- -- (38) -- (8) 25938  126  2 8 
TGAAAAGTGTGGAATGGGCGG miR_t47 -- -- (35) 13213  151  26384  89  2 2 
TTCCACACTTTTCACGCCTCT miR_t92 -- -- (523) 13213  107  26384  118  2 3 
TTGGGCGGCGTTGTAAGATT miR_t100 -- 19166  4185  13545  634  27033  623  1 30 
TGTTGTAGTAGTTTAGCCCTGC miR_t89 miR1162-3p 19538  14937  13708  8622  27350  7821  2 5 
TAGAGCTCGAAGAACTTGGGA miR_t15 -- 20399  17627  -- (1553) -- (7832) 0 7 
TAGAGCTCGAAGAACTTGGGAAGG miR_t16 -- -- (12984) -- (303) 28483  15292  0 1 
TGGGAAGGAGGACGGTCACGC miR_t82 -- -- (69) 14240  119  28483  66  2 11 
TAGAGCTCGAAGAACTTGGG miR_t14 -- -- (754) 14240  2089  -- (2009) 1 3 
TAAGAAGGTGCGCTGTCTTGA miR_t7 miR1152 20462  83  14276  89  28573  47  5 4 
TGGGCTGTAATGACGGGACG miR_t84 -- -- (817) 14374  1866  28800  2063  2 6 
TGTCAATGACAGTCCTGCAG miR_t87 -- -- (33) 14687  42  -- (25) 0 10 
TATCGGGCGGCAAGCAAGGCGC miR_t26 -- -- (9) 15016  53  30117  95  1 4 
TATTGACGCGCTGCACCAAGC miR_t28 -- -- (4) -- (23) 30117  33  1 1 
TCGACGCGGTGATGGGCCTGG miR_t33 -- 21642  131  15037  170  30154  310  3 12 
TGCAAGGGCTGCGAGCAGGAG miR_t53 -- -- (34) 15230  262  30575  72  7 15 
TAGGACCGACGAAAGCCACT miR_t22 -- 22587  416  15726  105  31500  198  2 2 
TGGCTTTCGTCGGTCCTAGG miR_t81 -- 22587  1283  15726  90  31500  120  2 1 
AAAAGAAGGTCGCCGAGCTCG miR_t1 -- -- (39) 17342  192  -- (30) 2 1 
TGGATTGATCCCAGCCAGGCG miR_t77 -- 25047  3912  17556  8357  34925  6200  0 3 
TTGGACGCGGACCCGGCGCAG miR_t99 -- 25074  1294  17579  923  34946  871  0 9 
TGCGCAGCTGCTCCTCCTTCT miR_t60 -- -- (97) 17579  107  -- (69) 37 94 

aAlias names are taken from miRBase, Tarvers et al., Shu and Hu, and Nozawa et al. 

bCluster numbers for each growth condition are given if the read meets the criteria for miRNAs in that condition 
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cNumbers in parenthesis represent the expression of the reads (in CPM) for conditions where the read does not meet the criteria for 

miRNAs 

dNumber of predicted targets 
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Table 4.2: HS+N and HS-N miRNA targets differentially expressed between conditions 

Target miRNA 

Direction of 
differential 
expressiona Gene name 

Mut20 
log2(FC) 

Panther predicted 
function Mode of regulation 

HS+N Differentially expressed targets 
    Cre01.g012750.t1.1 miR_t14 Up -- 0.34 VOLTAGE AND 

LIGAND GATED 
POTASSIUM 
CHANNEL 

Cleavage 

Cre03.g145127.t1.1 miR_t60 Down DHC13 -0.80 DYNEIN HEAVY 
CHAIN FAMILY 
PROTEIN 

Cleavage 

Cre04.g216826.t3.1 miR_t60 Up -- -- -- Cleavage 
Cre05.g244300.t1.1 miR_t60 Up -- 0.31 -- Cleavage 
Cre12.g488500.t1.2 miR_t60 Down ARC6 -0.57 -- Cleavage 
Cre01.g003376.t1.1 miR_t60 Up -- 0.67 DNAJ HOMOLOG 

SUBFAMILY C 
MEMBER 

Translational 
Repression 

Cre02.g086650.t1.2 miR_t60 Down -- -0.33 STRUCTURAL 
MAINTENANCE OF 
CHROMOSOMES 
SMC FAMILY 
MEMBER, 
STRUCTURAL 
MAINTENANCE OF 
CHROMOSOMES 
PROTEIN 2 

Translational 
Repression 

Cre03.g143987.t1.1 miR_t60 Down -- -1.45 -- Translational 
Repression 
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Cre03.g199450.t1.2 miR_t60 Down MINE2 -0.35 -- Translational 
Repression 

Cre04.g224500.t1.1 miR_t88 Down -- -1.40 ATP-BINDING 
CASSETTE 
TRANSPORTER 

Translational 
Repression 

Cre04.g225750.t2.1 miR_t11 Up -- -0.15 - Translational 
Repression 

Cre06.g289400.t2.1 miR_t87 Down -- 0.40 3',5'-CYCLIC 
PHOSPHODIESTERA
SE PDE-3-
RELATED,CYCLIC 
NUCLEOTIDE 
PHOSPHODIESTERA
SE 

Translational 
Repression 

Cre10.g441700.t1.1 miR_t60 Down -- 0.34 -- Translational 
Repression 

Cre02.g089650.t1.1 miR_t95 Down -- -0.99 -- Translational 
Repression 

Cre10.g432600.t1.1 miR_t56 Down -- -0.52 ARYLSULFATASE Translational 
Repression 

       
HS-N Differentially expressed targets     
Cre05.g242301.t1.1 miR_t102 Up -- 0.86 -- Cleavage 
Cre16.g668700.t1.2 miR_t67 Down -- -0.13 -- Cleavage 
Cre18.g749747.t1.1 miR_t67 Down FAP281 1.80 -- Cleavage 
Cre01.g007901.t3.1 miR_t54 Up -- -- MULTIDRUG 

RESISTANCE 
PROTEIN 

Translational 
Repression 

Cre07.g338000.t1.2 miR_t71 Down MCM2 1.25 DNA REPLICATION 
LICENSING FACTOR 

Translational 
Repression 
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MCM2,DNA 
REPLICATION 
LICENSING FACTOR 

Cre12.g551700.t1.2 miR_t67 Up -- -0.48 -- Translational 
Repression 

Cre12.g555803.t1.1 miR_t67 Down -- -0.37 NADH 
DEHYDROGENASE-
RELATED,APOPTOSI
S-INDUCING 
FACTOR 2 

Translational 
Repression 

aDirection of the change in expression during nitrogen starvation. 
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CHAPTER 5- Conclusions 

The overall conclusion from our studies in Chlamydomonas was that miRNAs do not 

play a direct role in the transcriptomic response to nitrogen starvation seen in Chapter 2.  

None of the differentially expressed genes identified in the metabolic pathways relating 

to TAG biosynthesis and degradation, starch biosynthesis, or amino acid metabolism 

were directly targeted by miRNAs that are differentially expressed between HS+N and 

HS-N conditions.  Instead, these miRNAs target many genes that are capable of 

propagating the effects of the regulation across many pathways, albeit in currently 

unpredictable ways.  The exact impacts of these miRNAs are difficult to determine, 

however, as the vast majority of the predicted targets have no known function, including 

nearly all of the targets that are differentially expressed during nitrogen starvation.  

Coupled with the difficulty in verifying predicted targets, especially those predicted to 

regulate genes through translational repression, much work remains to be done to create a 

clear picture of what functional role miRNAs play in this and other unicellular organisms. 

 The results presented here do have implications for the evolution of miRNAs in 

Chlamydomonas, especially when comparing the expression of miRNAs between 

different growth conditions.  These results reflect what has been seen in other organisms, 

especially higher plants, for the evolution of novel miRNAs within a species.  As these 

miRNAs first evolve, they often show very weak expression and may or may not have 

any functional targets.  As they transition from being evolutionarily transient to being 

conserved between species, the expression is generally higher.  This trend is reflected in 

the expression levels of miRNAs between conditions, with those expressed in all three 
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conditions generally showing several fold higher read counts than those found in only 

one or two of the conditions.  Additionally, the number of targets predicted for an 

individual miRNA is negatively correlated with the average expression for that miRNA, 

suggesting that, again similar to newly evolved miRNA in higher plants, selective 

pressure over which genes are regulated increases as expression of the miRNA increases.  

The presence of an miRNA with new predicted targets, but a relatively high level of 

expression, also supports the hypothesis that many of these miRNAs are newly evolved 

and have not yet (and may never) acquire a definite regulatory role. 

 The differential expression of miRNAs in different growth conditions lays the 

foundation for these cells to be able to utilize the miRNA machinery to adapt to changing 

environmental conditions. Furthermore, Chlamydomonas is unique in that is a model 

organism which expresses miRNAs, but in which RNAi deficient mutants are not lethal.  

This combination makes Chlamydomonas a strong candidate for studying the evolution 

of miRNAs, and establishing the functional role that this mode of regulation may have 

played for early eukaryotes prior to the evolution of multicellularity. 
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Appendix A- Supplemental figures for Chapter 2 

 

Figure A.1:  Expression of TAG metabolism genes in C. reinhardtii during nitrogen 

deprivation under photoautotrophic conditions 

Cells were grown for the indicated times in HS medium with (+N) or without (-N) 

nitrogen. Transcript abundance corresponding to specific genes showing a marked 

difference with the mRNA level between control time points of both experiments was 

analyzed by semi-quantitative RT-PCR with Actin as control. Examined genes included 
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those encoding for Acyl-Carrier Protein (ACP), lysophosphatidyl acyltransferase (LPAT), 

phosphatidic acid phosphatase (PAP), betaine lipid synthase (BTA), acyl-CoA synthase 

(ACS), acyl-CoA oxidase (AO), and enoyl-CoA reductase (EH). 
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Supplemental Figure 2: Expression analysis for significant FA and TAG enzymes 
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Figure A.2: Expression analysis of significantly differentially expressed transcripts 

associated to FA and TAG metabolic pathways 

Names in red are transcripts with at least one significant time point. Plus signs over bars 

indicate time points that are significant.  

0 

25 

50 

75 

-6 

-4 

-2 

0 

2 

4 

+ + 

L.  TAG/DAG Lipase (TAGL) 
R

P
K

M
 

Lo
g 2

(F
C

) 

g2
68

2 

g9
32

1 

g1
38

92
 

g5
51

7 

g5
29

2 

g9
34

6 

g7
75

5 

g5
37

2 

g7
02

9 

g1
00

15
 

g6
63

 

g1
20

39
 

g7
01

9 

g3
04

8 

g1
37

64
 

g1
54

58
 

g1
10

14
 

g1
23

06
 

g1
44

32
 

g1
44

03
 

g9
05

 

g2
11

6 

g1
39

39
 

g2
68

2 

g9
32

1 

g1
38

92
 

g5
51

7 

g5
29

2 

g9
34

6 

g7
75

5 

g5
37

2 

g7
02

9 

g1
00

15
 

g6
63

 

g1
20

39
 

g7
01

9 

g3
04

8 

g1
37

64
 

g1
54

58
 

g1
10

14
 

g1
23

06
 

g1
44

32
 

g1
44

03
 

g9
05

 

g2
11

6 

g1
39

39
 

447 
525 208 

133 



 

 

191 

 

Figure A.3: Expression analysis of significantly differentially expressed transcripts 

associated to starch metabolic pathways 
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Supplemental Figure 3: Expression analysis for significant starch enzymes 
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Names in red are transcripts with at least one significant time point. Plus signs over bars 

indicate time points that are significant. 
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Supplemental Figure 4: Expression analysis for significant protein and amino acid enzymes 
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Figure A.4: Expression analysis of significantly differentially expressed transcripts 

associated to protein and amino acid catabolic pathways 

Names in red are transcripts with at least one significant time point. Plus signs over bars 

indicate time points that are significant. 
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Appendix B– Supplemental figures for Chapter 3 

 
Figure B.1: Immunofluorescence localization of FLAG-tagged AGO3 in C. 

reinhardtii. 

The panels indicate DAPI staining of nuclear and organellar DNA (DAPI, blue), 

immunolocalization of epitope-tagged AGO3, detected with an antibody conjugated to 

Alexa Fluor 488 (AGO3, green), the merged images (Merged), and the phase contrast 

images of the cells (Phase). Representative images are shown with the location of the 

nucleus indicated by n. AGO3 displayed predominantly cytoplasmic localization with a 

punctuated appearance. Maa7-IR44s-(FLAG-AGO3), transgenic strain expressing a 

FLAG-tagged AGO3 under the control of the psaD promoter. Maa7-IR44s, parental, non-

transgenic strain (used as a negative control). 
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Figure B.2: FLAG-tagged AGO3 associates with the MAA7 transcript, which is 

translationally repressed by small RNAs in the Chlamydomonas strain Maa7-IR44s 

[1]. (A) Immunoprecipitations were performed with an anti-FLAG antibody on the 

indicated strains. Total RNA associated with the immunoprecipitated proteins was 

purified and used as template in RT-PCR reactions to detect the MAA7 and ACT1 

transcripts (right panels). Total RNA isolated from the cell lysates (prior to 

immunoprecipitation) was used as template in RT-PCR reactions to determine input 

transcript levels (left panels). The MAA7 transcript co-immunoprecipitated with FLAG-

tagged AGO3, at levels well above those detected as background in 

immunoprecipitations with a FLAG-tagged BLE protein. This suggested that the 

introduced FLAG-tagged AGO3 is functional and associates with an sRNA-repressed 
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mRNA. In contrast, the ACTIN1 (ACT1) transcript, not targeted for regulation by small 

RNAs, was only detected at background levels in the immunoprecipitates. Maa7-IR44s-

(FLAG-AGO3), transgenic strain expressing a FLAG-tagged AGO3 under the control of 

the psaD promoter. Maa7-IR44s-(FLAG-BLE), transgenic strain expressing a FLAG-

tagged BLE protein (conferring resistance to bleomycin). (B) Immunoblot analysis of the 

FLAG-AGO3 protein, detected with an anti-AGO3 antibody [2], in the indicated strains. 

Similar loading of the lanes was verified by Coomassie-blue staining of an equivalent gel 

(not shown).   
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Figure Apx B.3: Mut-20 contains a deletion encompassing the Tudor Staphylococcal 

Nuclease 1 (TSN1) gene 

 Diagram of the TSN1 (g11863) gene and surrounding chromosomal regions. The red 

horizontal bar indicates the extent of the deletion in Mut-20. PCR analyses of genomic 

DNA in Mut-20 and in the parental strain, Maa7-IR44s, are shown below the diagram. 
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