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The Time Invariance Principle, Ecological (Non)Chaos, and
A Fundamental Pitfall of Discrete Modeling

Bo Dengﬁl

Abstract: This paper is to show that most discrete models ugkfor population dynamics in
ecology are inherently pathological that their predications cannot be independently verified
by experiments because they violate a fundamental principgl of physics. The result is used
to tackle an on-going controversy regarding ecological chas. Another implication of the
result is that all continuous dynamical systems must be modied by differential equations.
As a result it suggests that researches based on discrete nebidg must be closely scrutinized
and the teaching of calculus and differential equations musbe emphasized for students of
biology.

1. Introduction. No models in ecology are better known than the Logistic Mahave played
a greater role in the development of the chaos theory ([292093,27]). Surprisingly, however,
there is not a greater controversy than what was generateédebsnodel’s prediction that one-
species populations are inherently chaotic.

The key prediction of the Logistic Map;,.1 = Q(x,,r) := rz,(1 — z,), says that increase
in the intrinsic reproduction rateleads to chaotic dynamics for the population Contradicting
evidence existed before the chaos theory was popularizedatogy. For example, in a 1971
study of an aquatic system, McAllister and LeBrasseur |[8hpwed that enrichment led to stable
equilibrium. Extensive search for field chaos came up egeaipty-handed. For example, well-
established geographic patterns on microtine specie$ {8} showed that ecological systems
tend to stabilize down the north-to-south latitude gratjieorrelating well with the ultimate energy
abundance from the Sun towards the equator. The most coenmsiek hunt for ecological chaos
was down by Ellner and Turchin ([115]). They used 3 differepahunove exponent estimators on
a large collection of empirical data. Out of their 21 fieldalséts, not a single set scored a positive
Lyapunove exponent by two of the 3 estimators. Out of theitabOdata sets, only two scored a
positive Lyapunove exponent by two estimators. The inesul@oconclusion is overwhelming —
ecological chaos is not to be expected in the wild. (Altholagforatory chaos is possible with
stringent setups, such systems are never simple. In factithension required is 3 or higher, c.f.
[14,[6].)

The glaring irreconcilability between the theory and rgatian only lead to one logical con-
clusion: the theory is wrong. Otherwise, ecology would be definitive branch of science that
logic imperative would have failed. The purpose of this papéo make a case that the Logistic
Map and most discrete models used in ecology and life scserarenot be models famyphysical
process, population dynamics in particular, and their jptexhs cannot béndependentlyerified
by experiments.
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2. Time Invariance Principle. This conclusion rests on a fundamental principle of phykald
since the time of Copernicus in the 15th century that a play$av should be the same anywhere
and anytime in the universe. In other words, a law must ta&ks@ime mathematical form, derivable
from experiments carried out at independently chosen tanelsspaces. As a result, the mathe-
matical formulation of a law must be endowed with such timearmance property. Taken to be
self-evident, we state the principle in the following fortation more suited for the issues under
consideration:

Time Invariance Principle (TIP): A physical law has the same mathematical form to
every independent choice of observation time.

This principle has an important implication to dynamicatgyns as laws of physical processes.
To be precise, let be the set of state variables gnte the set of parameters of a physical process.
As a dynamical system, changes in timeé. Suppose an observation is made at0 and the state
is zo. Another observation is made at time- 0 and the state is;. Then, as a physical law, is
governed by a function, denoted by= ¢,(z, p), depending on the observation timhehe initial
stater,, and the system paramegerAs a default requirement, it must satisfy the unitary ctodi

¢0($0,p) = Zo,

that is, with time increment O, the layy, leaves every state fixed. Now by the Time Invariance
Principle, if another observation is made> 0 unit time later, the same function forfa;), =
¢s(z¢, p) must hold. Most importantly, the functiofy must satisfy the following group property
and the unitary condition

(71)s = Os(w4,p) = Gs(D4(20,D), P) = Psyt(T0, P) = Ty, AN (70, p) = o, 1)

which together is referred to beingP-conforming That is, if an observation is madetime
after the initial observation, and another is madene later, then the result must be the same if
only one observation is made+ t time after the initial observation. More generally, thetestat
s + t after an initialz, is the same state atafter an intermediate state which is the state at
after the same initiak:,. A violation of this property that, ,(zo, p) # ¢s(¢i(z0, p), p) implies
that either such an “experiment” is not reproducible, irelependent observation times inevitably
lead to irreconcilable conclusions, or such a functionainf@ does not govern the laws that the
experiment is about to establish.

An immediate consequence to the Time Invariance Principllea following result.

Lemma 1. If TIP-conforming dynamical system(z, p) is continuously differentiable at = 0
and anyz in its domain of definition, them(¢) = ¢;(x¢, p) must be the unique solution to an
initial value problem of a differential equation:

dx(t)
dt

= Fy(x(t),p), =(0) = xo,
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where
Oon

F¢({L',p) = %(xvp) heo

is called the generating vector field of.

Proof. Because is differentiable and is TIP-conformingl(1), we have thédwaing derivative

d..'lf(t) — lim Cbt—l—h(anp) B ¢t(x07p) — lim ¢h(¢t(x07p)7p) - ¢O(¢t($07p))
dt h—0 h h—0 h
_ 9¢n _
= a—h(¢t(x07p)7p) o Fy(z(t), p),
showingz(t) is a solution of the equation. Sinég(x, p) is continuous differentiable in because
¢¢(x, p) is, the solution to the initial value problem is unique. O

We now conclude that Logistic Map does not model any poputadiynamics subject to time
independent observations. More precisely, we have theviiallg result.

Theorem 1. There does not exist a continuously differentiable, TIRfgoming, 1-dimensional
dynamical system,(z, r) so thato,, (z,r) = Q(x,r) at any time,, and for allz from any interval
containingl0, 1] for which @ is the Logistic Map and is the intrinsic growth rate with > 3.

Proof. By the preceding lemma;(t) = ¢;(xo, ) is the solution of an autonomous differential
equationr’ = F(x) generated by. Since the system is 1-dimensional, it does not allow pé&riod
solutions. However, the Logistic Map has a period-2 orhitfo- 3 which would correspond to a
periodic solution to the TIP-conforming flow if it were truleat ¢, (x,r) = Q(x,r) for somet,.

A contradiction. O

This conclusion not only applies to the Logistic Map, bubais most other discrete maps in
ecology. Tablé1l lists some popular discrete models in ggoldo be more precise, the same
argument can be used to show the following. The generalizmckBon-Holt map is not TIP-
conforming fory > 1 and largeb. The same for the Bernoulli model far > 1, the Richard
map, the Ricker map for large Applying the same argument for 2-dimensional TIP-coniogn
functionals shows they are solutions to 2-dimensionalrautmus differential equations which do
not allow orientation reversing periodic orbits which octmthe Nicholson-Bailey map.

For 3-dimensional or higher systems, the argument aboviyer dimensional systems do
not apply. However, here is a diagnostic test for possible-Adnconformity. More specifi-
cally, we certainly assume that all biological processesgamverned by physical laws that are
TIP-conforming, allowing time-independent observatiowl &erification on their states. Assume
observation is made every unit of time angl is the state at timé¢ = n. Because the state is
TIP-conforming, we must have

Ty = O1(Tp_1,7) = G1(I1(Tn—2,7),7) = -+ = @] (w0, 7)

where the exponent stands for iterative composition. Thezg
an(l'o, T) = ¢?('~T07 T)v
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Table 1: TIP-nonconforming Maps

Generalized Beverton-Holt{([30, 19,12Q])V,,; = H(bh%, v £1
Bernoulli | N;;; = aN;,(mod1)
Logistic | Nyp1 = N[l +7(1 — N;/K)]
Richard ([36])| Niy1 = N [L+7(1 — (N/K)™"], m# 1
Ricker ([37]) | Niy1 = Nyexp(r(1 — N;/K))

Nt+1 = Nt eXp(—aPt)

Nicholson-Baile
y (5] { Pry1 = Ni(1 — exp(—al?))

Ly = bA, eXp<_CclLt - CcaAt)
LPA ([14]) P = Li(1 — )
At+1 = Pt eXp(—CpaAt) —|— At(]- — /,La)

[0 fi o fea fk-
so 0 -+ 0 0

Leslie (25]) | Nov = | 0 s, --- 0 0 |N,
0 0 si1 0

that is, thenth iterative composition of); must have thesame functional fornas itself. This
property can be used as a diagnostic tespfobableTIP-nonconformity. For example, theh
iterate of the Logistic Map is &"-degree polynomial with evolving coefficients for eachThis
implies that the map is very unlikely to be TIP-conformingaese of the ever-changing functional
forms of its iterates or its TIP-conforming functional wdlde extremely complex, in which case
it is unlikely that such a complex functional happens tosfata stringent condition such as the
TIP-conformity and at the same time arises from a relatigatyplistic modeling exercise that
is typical of most discrete modeling. This diagnostic temt e used to cast a serious doubt
on the TIP-conformity of the model under consideration. ikinthe 1- and 2-dimensional maps
discussed above, for which the preceding theorem providiegiaitive means to determine their
TIP-nonconformity, we can only conjecture based on themiehry diagnostic test that the LPA
map and the Leslie matrix are very unlikely to be TIP-confoign The same can be said for
all nonlinear models in cell-automata in games of life thegytare very unlikely to model any
physical processes subject to TIP-conformity. Without-€tformity, independent observations
cannot verify nor establish such maps as models, theorié¢sys.

3. DiscussionsThe suggestion that biological research based on disciabs s build on a shaky
scientific ground inevitably leads to a few questions: Osdhée Time Invariance Principle con-
sistent with other known physical principles? Two, what @re TIP-conforming alternatives to
discrete modeling in ecology? Three, can TIP-nonconfognmvaps be justified and under what



circumstances? Four, contradicting to predictions byialtreéte, chaotic maps in theoretical ecol-
ogy, why chaos is rare in the wild? We will exam these issue®remainder of the discussion.

Consistency With The Principles of Relativity. The Copernican idea that physical laws must be
universal in space and time has guided many great theonpg/sics. Einstein’s theories of special
and general relativity are two of the most celebrated examprhe Time Invariance Principle is
simply a corollary of the same idea that governs dynamicadgsses.

One consequence of Einstein’s theory of special relatigitthat there is no absolute time.
TIP captures this time-relativity aspect of his theory tog tonvenience of our discussion. As an
example to make the point, consider two inertial frames Witime 2 moving at a constant velocity
v with respect to Frame 1. Assume at the origin of Frame 1 tlseae bn-going dynamical process.
Let f;(x) be the law deducted by observers of Frame 1 over a time irtewih initial statex.
Due to the time dilation effect of special relativity for Fna 2, observers in Frame 2 will not see
the same outpuf;(z) even though or precisely because they use the same clockriereal ¢.
Instead, they will seg, (z) for 7 = t/y > t,v = /1 — v2/c2 with ¢ being the speed of light. That
is, both will see the same law but at two different observatimes because of their best intention
to use synchronized clocks at rest. This effect is equivdtetwo observers in the same inertial
frame using independent sampling times.

At the center of the special relativity lies the Lorentz &&mmation, relating space-time co-
ordinates between two inertial frames. Lét= (¢, =, y, z) be the space-time coordinate of Frame
1 andX, = (t,, ., ¥, 2,) be the space-time coordinate of Frame 2 moving at a constéottity
v with respect to Frame 1, say along the sarvexis. LetX, = L,(X) be the Lorentz Transfor-
mation between the two coordinates. It is well-known thaatisfies this self-consistent Composi-
tional Invariance Property thdt, (X,) = L,(L,(X)) = L,(X) wherew = (u+v)/(1 + uv/c?)
with ¢ being the speed of light. That is, a third frame, Frame 3, mgpwt a velocityu relative
to Frame 2 along the-axis is a frame moving at a velocity relative to Frame 1. The oper-
ation (u,v) — w defines the so-called Lorentz group. The Lorentz Transfoomas one of
the most well-known nontrivial and linear maps in physiattis compositionally invariant. The
TIP-conforming group property is just a simpler kind of tmere generalize@€ompositional In-
variance Property Stochastic matrixes (those which have non-negativessdind whose columns
each sums to 1) form another well-known class of compogtlgmnvariant linear maps.

Most Dynamical Systems Should Be Modeled By Differential Egations. It is a well-known
simple fact that ifp(¢, o, p) is the solution of a differential equatiafi = F'(z, p) with ¢ the time,
xo the initial state at = 0, andp the parameter, then it always satisfies the TIP-conformiogm
property

p(t + s, 20,p) = @(t, (s, 20, D), D),
for continuously differentiable right-hand sidé. Continuous-time and probabilistic processes
can be modeled by stochastic differential equations whieh satisfy the TIP-conforming group

property [1), c.f. [[26]. In additions, the same group prop& satisfied for hyperbolic PDE for
age-structured populations, for parabolic PDE for reactidfusion and traveling wave phenom-
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ena, and for delayed differential equations. In such cdkesstates lie in some functional spaces
which are infinitely dimensional. (Hence, by differentigjuations for the remainder of the dis-
cussion we also mean to include such infinite dimensionaops with or without stochasticity,
and as an extension by deterministic dynamical systems seemkan to include probabilistic
processes modeled by stochastic differential equatianaifiech it is the statistics in the means,
variances, distributions, etc. of some state variablestitdeome TIP-conforming, evolving deter-
ministically.)

TIP-conforming processes are not restricted to detertignientinuous-time processes only.
In fact, true discrete probabilistic processes can be Bifarming. For example, the process
of coin tossing has the same probability distribution $gtig ¢, = ¢; with ¢,, representing
the distribution at the:uth tossing, i.e., the same probabilistic law at any iterdtéhe process.
Also, stochastic processes modeled by Markov chains arenargl TIP-conforming because their
transition matrixes have the same functional form for allates.

The conclusion is that all (sufficiently differentiable,ntmuous-time) TIP-conforming laws
are governed by differential equations. Hence, it is adleséo model all biological systems
whose states are subject to independent time observatidiffésential equations in order to avoid
the TIP-nonconforming trap that discrete maps can eadilynfa. For true discrete probabilistic
processes not modeled by differential equations, one nigstkcthe models TIP-conformity, for
which stochastic matrixes represent one class of TIP-confw, discrete, probabilistic models.

The practitioner-dependent subjectiveness and arhigrssiof picking time increments in dis-
crete modeling cannot be more apparent than modeling sgstéwvarious time scales. For ex-
ample, when modeling a system of two species, such as an-zdggéankton system or a plant-
herbivore system, of which one operates at a faster time socad the other operates at a slower
time scale, what time step a discrete modeler should chdbsé® picks the fast time scale to be
her discrete time increment, she will end up fixing the slogmecies population as a parameter
rather than an evolving variable, and missing out the pdjmuis temporal booms and busts. If
she picks the slow time scale, she will end up aggregatingyhamics of multiple generations of
the faster species, missing out its temporal booms and bastell. Whatever choice she makes,
it is very likely that her choice will not be honored by any @pEndent modeler. Worse still, if
her model is not TIP-conforming, which is extremely liketer model is doomed. On the other
hand, differential equation modeling does not have thigigoale misalignment problem of dis-
crete modeling, which is easily dealt with by singularly tpebed differential equations, which
will be discussed further later.

TIP-Conformal Model — Derivation by One-Life Rule. Any textbook derivation of the Logistic
Map as an one-species population model seems logicallydsgetit cannot be substantiated by
independent time observation. The inescapable conclisitrat TIP must have been violated in
all derivations. Two alternative fixes are proposed below.

The first proposed fix follows the standard derivation of tlogistic Map with modification
to the functional form of theer-capita growthof the species. The Logistic Map is the result of



assuming a linear functional for the per-capita growth dsvis

Tn41 — Tp —b—mx
- n
T '

whereb is the maximal per-capita growth rate, andis the mortality rate due to intraspecific
competition. All empirical data (c.f.[ [34]), collected iadendently for different systems, with
uncoordinated time increments, point to a density-depaindiecreasing per-capita growth. That
is, the decreasing monotonicitygsialitatively TIP-conforming for one-species per-capita growth.
Although the linear functional is qualitatively TIP-comfoing, it must have failed quantitatively,
in particular at high population density. For example, € trensity isc,, = (9+b) /m, then the per-
capita growth i$ — m(9 + b)/m = —9, implying paradoxically that each individual dies 9 times
during the given interval of time, possible only for mythgical cat. Furthermore, the per-capita
growth anykth generation into the futuréz,, . — z,,)/x,, fails to be strictly decreasing in, at
hight growth rate- for any k£ > 2. This implies that the per-capita growth measured at a imé t
intervalt = 1 decreases in the population density, but does not when meshat) say, two units
of time interval witht = 2. In other words, independent experiments would give cdidtiag
outcomes in the per-capita growth functionals if the Lagisap were right, a not-so-surprising
paradoxical effect of the map’s TIP-nonconformity. Sucboinsistencies are not limited to the
Logistic Maps alone. In fact, they plague all one-dimenalanaps from Tablg]1, most of which
are failed attempts to correct the Logistic Map.

Our proposed fix assumes instead

Tpy1 —Tp  b—maz,

Tn, 1+ max,

Like the linear growth functional, it also decreasesrjp qualitatively TIP-conforming. More
importantly, the per-capita growth is bounded below frem and approaches1 only asz,, —
oo. Thatis,individuals die, but each dies at most once in any fixed pesfdione — a self-evident
but both fundamental and universal principle for all orgams which is referred to as ti@ne-Life

Rule As a result, the model is
b+ 1)z, T,

n = = =D ny 'y )
Tntl 1+ mx, 14+ ma, 1(@n,mm)

wherer = b+ 1 > 1. This results in the Beverton-Holt model which was first ubgdBeverton
and Holt in 1956 for fishery studies {[2]), but not derivednrthe One-Life Rule as we did here.

It is simple to check that the Beverton-Holt model is TIP4mwming — the composition of
two B maps is anotheB map:

By(x,,7,m) = Bi(x,,7,m) = Bi(x,, 7%, m(1+71)).

In fact, one can demonstrate in general,

rk—1
r—1

),

By(zp,m,m) = Bf(mn,r, m) = Bl(xn,rk,m
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whose definition then can be extended to any continuousttime

rt—1 rtxy

)= 1 +m’f__11

xy = Byi(xg,7,m) := Bi(zo,7",m _—

Zo

That is, any choice of fixed time increments leads to the sametibnal form. More importantly,
the discrete Beverton-Holt map is simply the time-1 Poi@gaap of the continuous counterpart,
and in this sense it cannot be regarded ais@discrete map.

Also, as a consistency check, one can easily show that theapéa growth over any time
intervalt is always a decreasing function of the initial populatigrbecause

t_ 1 — =L
x,—x9 T —1l—mi=xg
1

,Z'O 1 _‘_mTt_

r—1 Lo
and that the One-life Rule is always satisfied since
lim 20— g,

zo—o0 X

The Ricker model is an improvement over the Logistic Map et ihdoes obey the One-Life
Rule. But it is not TIP-conforming and produces the sameglagjical chaos prediction for one-
species population.

TIP-Conformal Model — Derivation by Mass Balance Law. The second derivation can be
best argued in terms of stoichiometry. It recognizes thabrganism is a package of elemental
elements, obeying the law of mass conservation. For exargtles use carbon (C) as a basic
unit to measure an individual organism’s biomass for a grezies system. Arbitrarily fix a time
increment, say = 1 for definitiveness. Let, andz,,; be the numbers of individuals for the
current generation and the “next” generation respectivaety NV be the amount of C available in
the interval, i.e., a constant flux in C. Letbe the amount of C that is needed during the period
for each individual which is to make to the next generatian, the per-capita maintenance cost in
C. Leta be the efficiency rate, which measures the proportionafith@new generation that each
individual of the current generation gives rise to for eanit af resource in C. It is the per-capita
growth-to-consumption ratio. TheN — cz,,; IS the amount available for transition to the next
generation, and the product 8f — cz,, .1, a, andz,, gives the next generation’s population:

Tpr1 = (N — cxpy1) X a X x,.

Simplify to obtain
rT,

Tpa1 = with r = Na, m = ac,

14+ ma,
the same Beverton-Holt model obtained above.

The Beverton-Holt model for one-species population is itptalely consistent with all em-
pirical studies cited in [34, 31, 15]. In particular, anytial non-zero population converges to an



equilibrium:

lim z, = lim B,(x¢,r,m) = lim Bi(xg, T, m,)

n—oo n—oo n—oo
. r™"xg r—1
= lim T = ,

n—oo | + mﬁxo m

for which» > 1 as a default assumption. In the context of the stoichiomitrywhich » =
Na, m = ca, we see that the greater the nutrient infl\ixthe greater the stable equilibrium. The
same holds for smaller per-capita maintenancecastwell. The model predicts that prosperity or
efficiency or both promote stability, not chaos, consisteittt experimental findings such as [31].

TIP-Equivalence Example — The Logistic Equation.As an illustration, consider the continuous-
time Beverton-Holt model

rtz
14+ mi=ty,

r—1

Identical to the discrete case, itis also straightforwarchteck the TIP-conforming group property

Ty = Bt($077"7 m) =

Bgyi(xo,m,m) = Bs(By(xg,r,m),r,m).

Thus, the generating differential equation to whighs a solution is obtained as

dx d
d—tt = %Bwh(ﬁoﬂ“, m)|h=0
d

|
= %Bh(xtﬂ’a m)|h:0 = (1117" —m nrlxt) Ty,

the Logistic Differential Equation! The per-capital gréwtate is linear which can be arbitrar-
ily negative at high population density. This does not \ieldne One-Life Rule which is for the
per-capital growth in a fixed time interval rather than thetamtaneous rate. The analysis above
reaffirms a view that the Logistic Differential Equation ig@od population model. By our argu-
ment it is because it is TIP-equivalent to the Beverton-Hadel.

Justifications of TIP-nonconforming Maps in Theoretical Emlogy. Continuous models of food
chains of three species or more can exhibit chaotic dynamviush has been known since the ear-
lier days of the chaos theory, see for examples,[[22, 17, 2,138[24]. One particularly effective
method to establish the existence of chaos in such moddis iméthod of singular perturbation,
see for examples, [7] B] ©,/10,/11]. At the so-called sindiutat, some Poincaré return maps are
one-dimensional, nonlinear, and chaotic. However, sugbsrage not obtained by fixed time inter-
val samplings. Instead, they are event return maps. Forgeasuch a map may be defined when
one of the predators reaches local maximums in populatiositye for which to occur the mo-
ments in time cannot be independently chosen. Such evemt&éimaps are different from fixed
time-step Poincaré maps in 3 critical ways: First, the danggime for the former covers a con-
tinuum range of interval, conditioned on the occurrencenefévent. Second, the event Poincaré
maps are not TIP-conforming, but the fixed time-step Pomoaaps are like their continuous time
flows. Third, the fixed time-step Poincaré maps are alwalesast 1-dimensional higher than their
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event counterparts. One-dimensional event return maps anany types, including the unimodal
type of which the Logistic Map is prototypical as demon&tdan the cited references. In conclu-
sion, discrete event Poincaré maps are used as auxiliaapsrte understand continuous models
which generate them. They alone do not model the underlipingess in any timendependent
fashion.

Discrete maps also play an irreplaceable role in numerigpiaimations. In fact, the Lo-
gistic Map is a discretization of the Logistic Differenti@afjuation. It is not TIP-conforming for
anyr but it is a good approximation of the TIP-conforming contias model whem is near 1.
Similarly, TIP-nonconforming maps generated as numegchemes to approximate continuous
models do serve useful and important purposes in theokratchpractical applications. But they
are relevant only within their realistic ranges. For examijii has always been an unjustifiable
extrapolation to large of the Logistic Map that it becomes artificial and problematvore ad
hoc still than the Logistic Map, the Ricker Map is not a discratian of any known differential
equation, further removed from TIP-conformity. SimilardyLeslie matrix should have been de-
rived as a discretization of the linearization of its PDE miupart of the age-structured population
intended by the matrix, which unfortunately was not alwdyesdase. Such a discretization of the
linear PDE should impose constraints on the time step andghancrement. Outside such con-
straints, the Leslie model may become problematic as isdke for the Logistic Map. With the
above rather thorough analysis of the Logistic Map, one icaibn seems hard to miss that dis-
crete models without underlining TIP-conforming origimgyhave limited if not all questionable
scientific values.

Enrichment and Efficiency Stabilization Principles. As pointed out in the introduction that em-
pirical studies do not support the hypothesis of chaoticgpecies population at high reproductive
per-capita rate, or high efficiency rate. In fact, the Bemeitiolt model implies diametrically the
opposite. For higher dimensional systems, the same oppdghotomy existed, and it can also
be reconciled by TIP-conforming models.

On one hand, chaotic dynamics do occur in models for threeieper more in food chains
and webs ([22/ 17, 21,32, 124,135,(8,[9] 10} 11,14, 5, 13]), as aseln laboratory models of
3-dimensional systems[ ([6]). Also, almost all models eithibe same paradoxical effect that
high reproductive efficiency leads to chaotic populationaiypics. Recent analysis froin [12,/ 13]
concluded that this “Chaos Paradox” is an artifact of thetMadian exponential growth model
for populations. In addition to its projected unboundedwglofallacy, the Malthusian model,
P’ = rP, also violates the One-Life Rul¢P(t) — Fy) /Py = e" — 1, not going to—1 as P, — oc.

As pointed out in[[12, 13], this Malthusian pathology hidesimost all continuous models in the
literature, and paradoxical results are inevitable. ThedBment Paradox[([38]), the Biological

Control Paradox ([28]), the Competition Exclusion Prireif[1]), and the Chaos Paradox are of
the most notorious.

On the other hand, however, assuming logistic growth fosgadicies provides a sufficient rem-
edy to all these paradoxes, the Chaos Paradox in partidedarexample, consider the following
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food chain equations

(
. alX
X=X —di —mX) - ———
( ! ! m ) 1 + hlalX
. bgCLlX CLQY
Y=Y|——do—mpY | - ——W—Z
(1 Fhax 2T ) 1+ hyayY (2)
. bgCI,QY
Z=7—22 _ _dy—myZ
<1 + hQCLgY 3 s )

The result of[[13] shows that all chaotic attractors biftedato either limit cycles or steady states
as the top-predator’s reproductive efficiency paranigtercreases, and that the limit cycles further
bifurcate into steady states if the predator’s reprodectificiency parameteér, also increases. In
fact, one can show that all chaos attractors must bifurcébes steady state by increasing any two
of the three reproductive efficiency parameter,irb,, bs. In other words, efficiency promotes
ecological stability, a result of evolution if the hypotiehlolds that evolution promotes species
efficiency as a survival fitness.

TIP-conformity is a necessary but not a sufficient requineinier physical laws. Comparing
to most studied in the literature, the food chain model (2)vabis significantly better because
of two features incorporated into the model. First, with itheusion of parametersi,, ms, ms,
intraspecific competitions are taken into consideratianafbspecies which leads to the logistic
growth rate for individual species ([40]) which in turn conins to the One-Life Rule. Second,
the Holling Type Il predation functional form([23]) is uséar all predators. The importance of
this particular form lies in the fact that it is TIP-confomgi from its own derivation, and more
generally it satisfies the Composition Invariance Prireiplo see this, we recall from Holling’s
original mechanistic derivation that = X is the number of preyX, encountered in a unit
time by one predatory”, or the encounter rate, aridis the handling time per kill of the prey,
andr = s = 1f;f§x is the number of handled kills in one unit time by one predatothe
predation rate. This functional form is TIP-conforming foe following reasons. If one breaks
the handling time down to, say, per-killing tinkg, and per-consuming time. with ~ = h, + h.,
then Holling’s derivation will give rise to the kill rate, = H?"TW as a function of killing time and
encounter rate, and the consumption rate- 1+’;fcm as a function of consuming time and Kill rate.
It is straightforward to check that

Te

ro— Tk _ 1+hgre _ Te
© ldhery 1A herges 14 (et ho)re

That is, the rate function has the same mathematical forardégss the temporal cut-off or defi-
nition of handling time, the essence of TIP-conformity anchpositional invariance.

In conclusion, theoretical and qualitative predictiondhs food chain mode[{2) are consis-
tent with those of the Beverton-Holt model as well as reléwmpirical findings that enrichment
and efficiency promote ecological stability. The consisyemay not be coincidental, because all
compartmental constituents of the model are mechanisti€#P-conforming.

11



Concluding Remarks. Empirical data almost always are collected at discretedinmiscrete
modeling is an intuitive response to that reality to fit dederdata by discrete models. However, a
discrete model has little to say about data collected atidifft discrete times of the same process if
the process permits. If itis not TIP-conforming, it doesmatdel the underlying process subject to
time independent observation. This may underlie many gttema stochastic inclusion to discrete
modeling, attributing noise or stochasticity as the cheise of the irreconcilability between a
theory and reality when in fact TIP-nonconformity of the ahe may have been the problem.
TIP-nonconforming event maps are secondary structuresharéntly higher dimensional TIP-
conforming differential equations. They rarely have aetb$orm formula with system parameters
in plain sight for meaningful manipulations because of tggragating procedures that produce
them. Even in such cases, they are not closer in capturingritierlying physical laws for the
processes than the TIP-conforming differential equatibasmodel the processes. Given all these
considerations, this paper advocates a typical approaciseaontinuous models to fit discrete
data. Such models are open to the scrutiny of all obsenatiarried out at any discrete times.
This approach makes sure the models are necessarily @ontsistits internal and conceptual
construct, allowing the modelers to modify and to refine thvg@thin the realm of TIP-conformity.

Our TIP-equivalence result for fixed time-step Poincar@srend differential equations implies
that 1 and 2 dimensional TIP-conforming maps cannot be ahhetause 1 and 2 dimensional
differential equations of continuously differentiablect@r fields cannot be chaotic. Equivalently,
chaotic 1 and 2 dimensional maps must be TIP-nonconforrmang, at the best arise as event
Poincaré maps of 3 or higher dimensional differential ¢igna. As a result such maps do not
model any physical processes at a time-independent fasH@mce an ecological conclusion can
be made unequivocally that single- and two-species papuldiynamics cannot be chaotic. That
the controversy has lasted this long was due to the combimafia few understandable factors.
To name a few obvious: First, the derivations of all populiaciete ecological models seemed
logical, but TIP-nonconforming nevertheless. Seconddgause of their TIP-nonconformity, all
predictions could not be independently and objectivelyadpced, leading to the inevitable con-
fusing state between a seeming reasonable theory and ampramaising reality. Thirdly, the field
irreproducibility of all low dimensional chaos theory wasngeniently masked by the inherited
unpredictability of all chaotic systems. And fourthly, timeeconcilability was also conveniently
masked by a noisy reality that is for most biological expetins and observations.

Comparing to differential equations, discrete maps areee#s teach, easier to do research
with. But we should not compromise the Time Invariance Rpiegust for the simplicity appeal
of discrete modeling. TIP-conformity is the minimal ne@gscondition a conceptually consis-
tent model must satisfy. More importantly, the requiremientundamental to all branches of
science, governing the reproducibility of experiments.cd&ese of these reasons, usage of TIP-
nonconforming maps is difficult to justify in most circumst@s. This conclusion has some
important implications to both research and training: Bp#st and future researches based on
discrete models must be scrutinized against their TIParomty and be justified for their TIP-
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nonconformity. The subject of discrete modeling may havestde-emphasized in the classrooms
and be viewed through the lens of TIP-conformity. On the otrend, training in calculus and
differential equations must be further enhanced and greatiphasized for future generations of
theoretical biologists.
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