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MAJOR ARTICLE

Antifibrotic Therapy in Simian
Immunodeficiency Virus Infection Preserves
CD4" T-Cell Populations and Improves Immune
Reconstitution With Antiretroviral Therapy

Jacob D. Estes,* Cavan Reilly,® Charles M. Trubey,’ Courtney V. Fletcher,? Theodore J. Cory,’ Michael Piatak Jr,*
Samuel Russ,' Jodi Anderson,' Thomas G. Reimann,' Robert Star,® Anthony Smith,2 Russell P. Tracy,” Anna Berglund,’
Thomas Schmidt,' Vicky Coalter,’ Elena Chertova,’ Jeremy Smedley,’ Ashley T. Haase,? Jeffrey D. Lifson," and
Timothy W. Schacker'

'Department of Medicine, “Department of Microbiology, and *Department of Biostatistics, University of Minnesota, Minneapolis; “Frederick National
Laboratory, Leidos Biomedical Research, and ®National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda,
Maryland; 8College of Pharmacy, University of Nebraska Medical Center, Omaha; and ’Department of Pathology and Laboratory Medicine, University of
Vermont, Burlington

Even with prolonged antiretroviral therapy (ART), many human immunodeficiency virus-infected individuals
have <500 CD4" T cells/uL, and CD4" T cells in lymphoid tissues remain severely depleted, due in part to fi-
brosis of the paracortical T-cell zone (TZ) that impairs homeostatic mechanisms required for T-cell survival. We
therefore used antifibrotic therapy in simian immunodeficiency virus-infected rhesus macaques to determine
whether decreased TZ fibrosis would improve reconstitution of peripheral and lymphoid CD4" T cells. Treat-
ment with the antifibrotic drug pirfenidone preserved TZ architecture and was associated with significantly
larger populations of CD4" T cells in peripheral blood and lymphoid tissues. Combining pirfenidone with
an ART regimen was associated with greater preservation of CD4" T cells than ART alone and was also asso-
ciated with higher pirfenidone concentrations. These data support a potential role for antifibrotic drug treat-
ment as adjunctive therapy with ART to improve immune reconstitution.

Keywords. HIV; fibrosis; immune reconstitution; fibroblastic reticular cell network; T-cell depletion.

Normal T-cell homeostasis and immune system func-
tion depend on the organized structure of the paracort-
ical T-cell zone (TZ) of secondary lymph nodes (LNs).
Here, the fibroblastic reticular cell network (FRCn) pro-
vides a highly organized framework where T cells and
antigen-presenting cells interact by rolling along the ex-
terior surface of the FRCn, directed in their movement
via interaction of cell-associated L-selectin adhesion
molecules with peripheral LN node addressins on the
FRCn [1-5]. These hollow FRCn fibers also form a
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conduit system for delivery of soluble antigen and cyto-
kines, and provide a source and access to growth factors
critical for T-cell survival and proliferation such as in-
terleukin 7 (IL-7) [1, 6-10].

Human immunodeficiency virus (HIV) infection sig-
nificantly damages the FRCn, which leads to T-cell
depletion and limits immune reconstitution with anti-
retroviral treatment (ART). Regulatory T cells are recruited
into lymphoid tissues where the virus is replicating and
produce transforming growth factor B (TGF-B) [11].
While TGF-B moderates the immunopathologic conse-
quences of immune activation, it also induces fibro-
blasts to produce collagen and other extracellular
matrix proteins that eventually replace the FRCn, re-
sulting in loss of the important T-cell survival cytokine
IL-7 [11-13] and leading to naive T-cell depletion [14].

Given the key roles of collagen in CD4" T-cell loss be-
fore initiation of ART [15,16] and immune reconstitution
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with ART [17] and the key role of TGF- in driving lymphoid
tissue fibrosis, we reasoned that interfering with this process
could preserve and restore CD4" T-cell populations. We investi-
gated the potential benefit of the antifibrotic drug pirfenidone (5-
methyl-1-phenylpyridin-2-one), which is a pyridone molecule
that inhibits TGF-B-signaling pathways [18-20]. Pirfenidone
has been effective in preventing or reversing fibrosis in several ex-
perimental models of fibrosis [21-26].

We used a nonhuman primate model of simian immunodefi-
ciency virus (SIV) infection, having previously shown that the
lymphoid tissue fibrosis seen in HIV-infected humans is recapit-
ulated in SIV-infected rhesus macaques [12, 14]. Our experi-
ments were designed to determine whether antifibrotic therapy
limits loss of CD4" T cells in lymphoid tissues and improves im-
mune reconstitution. We show that SIV-infected animals treated
with pirfenidone have significantly less TZ collagen and signifi-
cantly greater numbers of CD4" T cells in peripheral blood and
LNs than untreated controls and that pirfenidone in combination
with ART significantly improves restoration of CD4" T-cell pop-
ulations. These data provide a rationale for testing antifibrotic
drugs as adjunctive treatment in HIV infection to slow progres-
sion of disease and improve immune reconstitution.

MATERIALS AND METHODS

Protocol Description
Experimental Design
We used a 2-step approach. In the first series of experiments, we
initiated pirfenidone treatment at the time of SIV infection to
determine whether LN fibrosis could be prevented and whether
the rate of CD4" T-cell loss would be decreased. In the second
experiment, we infected a group of animals and waited 6 weeks
(ie, until onset of early chronic infection) before starting pirfe-
nidone therapy, to see whether collagen formation in the LN
could be reversed, as this more closely recapitulates timing of
therapy in HIV infection. Preliminary pharmacokinetic studies
identified 200 mg/kg as a dose providing targeted serum levels.

In experiment 1, we used 22 animals divided into 6 groups
(Figure 1A) followed for 24 weeks after infection. Group A
(n = 3) were controls and did not receive any antifibrotic or an-
tiretroviral therapy; group B (n = 3) received pirfenidone from
week 2 before infection through 12 weeks after infection;
group C (n = 3) received ART only, starting 8 weeks after infec-
tion; group D (n = 3) received pirfenidone, starting 2 weeks be-
fore infection, and ART, starting 8 weeks after infection, with
both regimens continued through 24 weeks after infection;
group E (n = 5) received ART only, starting 6 weeks after infec-
tion and continuing through 24 weeks after infection; and
group F (n = 5) received pirfenidone, starting 2 weeks before in-
fection, and ART, starting 6 weeks after infection.

In experiment 2, in which pirfenidone therapy was started 6
weeks after infection, we used 12 animals divided into 2 groups

(Figure 1B) and followed through 24 weeks after infection.
Group G (n =6) started pirfenidone treatment and ART 6
weeks after infection, and group H (n = 6) started ART only 6
weeks after infection.

In vivo primate studies were conducted at the National Can-
cer Institute, National Institutes of Health (NIH; Bethesda,
Maryland), and at Bioqual (Rockville, Maryland). Animals
were housed and cared for in accordance with American Asso-
ciation for Accreditation of Laboratory Animal Care (AAA-
LAC) standards in AAALAC-accredited facilities, and all
animal procedures were performed according to protocols ap-
proved by the Institutional Animal Care and Use Committees
of the University of Minnesota, by the National Cancer Insti-
tute, and by Bioqual. Animals were screened to exclude the
major histocompatibility complex class I alleles Mamu B*17
and B*08, to exclude spontaneous control of viral replication
[27, 28]. Animals were inoculated intravenously with 30 50%
monkey infective doses of SIVmac239 (courtesy of Dr
R. Desrosiers, Harvard Medical School/New England Primate
Research Center). Pirfenidone was obtained from InterMune
(Brisbane, California) for the 3 group B animals; for the other
groups, it was obtained through the NIH AIDS Research and
Reference Reagents Program. The dose was 200 mg/kg, orally,
twice daily, which provided serum levels equivalent to those
that were shown in clinical trials to be effective in humans
with idiopathic pulmonary fibrosis.

In experiment 1, we used PMPA (20 mg/kg/day) and emtri-
citabine (FTC; 50 mg/kg/day), administered subcutaneously,
and the integrase strand transfer inhibitor L-870812 (Merck Re-
search Laboratories, West Point, Pennsylvania) at 100 mg, ad-
ministered twice daily with food. In experiment 2, we used
FTC and PMPA (at the same doses) plus raltegravir (100 mg
twice daily orally), darunavir (400 mg twice daily orally), and
ritonavir (100 mg twice daily orally).

Plasma Viral Load
SIV RNA in plasma was quantified using a quantitative, real-
time polymerase chain reaction assay [29].

Quantitative Image Analysis

High magnification images from whole tissue scans were
obtained with an Aperio Scanscope (Aperio, Vista, California)
after trichrome, picrosirius red, or antibody staining. We used
Photoshop CS5 (Adobe, San Jose, California) to quantify the
positively stained area of the tissue, using specialized plug-in
tools from Reindeer Graphics (Reindeer Graphic, Asheville,
North Carolina) as detailed previously [15, 17, 30].

Inflammation and Fibrosis Candidate Biomarkers

D-dimer levels were measured by the STAR automated coa-
gulation analyzer (Diagnostica Stago), using an immunotur-
bidometric assay (Liatest D-DI; Diagnostica Stago, Parsippany,
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Figure 1. Protocol schema. Timeline of protocol events are shown. A, Events for the first set of experiments, in which pirfenidone therapy was started
before the time of infection. Pirfenidone treatment was started 2 weeks before infection, to ensure steady state levels of drug in groups B, D, and E at the
time of infection. Pirfenidone therapy was discontinued in group B after 12 weeks, to determine whether collagen levels increased after treatment ces-
sation. In groups D and F, pirfenidone therapy was continued from 2 weeks before infection through the full 24 weeks of postinfection follow-up. B, Events
for the second experiment, in which pirfenidone treatment was started 6 weeks after infection. Abbreviations: ART, antiretroviral therapy; SIV, simian
immunodeficiency virus.

New Jersy). Interleukin 6 (IL-6) levels were measured by the quan- Minnesota). Levels of serum C-terminal propeptide of type I
titative sandwich enzyme immunoassay technique (Quantiglo collagen (CICP) were measured using a commercial sandwich en-
Human IL-6 Immunoassay; R&D Systems, Minneapolis, = zyme immunoassay according to the manufacturer’s instructions
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(Metra CICP, Quidel, San Diego, California). Levels of serum
hyaluronan were measured using a commercial, competitive
enzyme-linked immunosorbent assay according to the manufac-
turer’s instructions (Echelon Biosciences, Salt Lake City, Utah).

Flow Cytometry

Freshly isolated cells (peripheral blood mononuclear cells
[PBMCs] or lymph node mononuclear cells [LNMCs]) were
immunophenotyped using the following antibody panel: CD4
Pacific Blue (clone OKT4; BioLegend), CCR5 phycoerythrin
(PE; clone 3A9; BD Biosciences), CD28 ECD (clone CD28.2;
Beckman Coulter, Miami, Florida), CD95 PE-Cy5 (clone
DX2; BD), CD8 PE-Cy7 (clone SK1: BD), CD38 allophyco-
cyanin (APC; clone OK10; NIH Nonhuman Primate Reagent
Resource), CD3 APC-Cy7 (clone SP34-2; BD), and Ki67 fluo-
rescein isothiocyanate (clone B56; BD). Surface and intracellular
staining were performed using the eBioscience Fix/Perm
reagents and protocol.

Statistical Analysis

To test for differences between 2 independent groups, 2-sample
t tests were used. To test for differences between groups over
time when there were only data for 2 time points, differences
over time were computed for each animal, and a 2-sample ¢
test was used to test for differences over time. In addition,
mixed-effects models were used to analyze data obtained from
these longitudinal studies. For the CD4" T-cell outcomes and
extent of fibrosis, we assumed that after infection there is a lin-
ear trajectory over time, with slopes that are potentially pirfeni-
done dependent upon administration of pirfenidone. We also
considered extensions of these models that allowed for nonlin-
ear trajectories ( parameterized as polynomials), but none of the
variables we investigated supported nonlinear trajectories in the
sense that the regression coefficients for the nonlinear terms
were not statistically significant. The test for the effect of pirfe-
nidone, then, is the test for a difference in slopes over time be-
tween the group of animals receiving pirfenidone and those
animals not receiving pirfenidone. These models also have ef-
fects for which experiment the animals was from and whether
the animal was receiving ART at the time the data were collect-
ed. Logarithmic transformations were used before model fitting.
To test for differences in pSmad2,3 levels between animals given
pirfenidone and those not given pirfenidone, a mixed-effects
model was fit that modeled the log of pSmad2,3 levels as de-
pending on time (parameterized so each time point had its
own parameter), group membership, baseline pSmad2,3 level,
and the interaction between time and group membership. The
test for a group difference was then conducted using a likelihood
ratio test for the model just described, compared with a model
that had no effect of pirfenidone. All mixed-effects models were
fit using the Ime routine in the nlme package for the R statistical
software language, version 2.15.

RESULTS

No Effect of Pirfenidone on Viral Replication

Animals receiving ART had a significant decrease in plasma
viral load, as expected (P <.0001). Consistent with other non-
human primate models of SIV infection, the ability of the reg-
imen to fully suppress viral replication was incomplete, but all
animals experienced at least a 3-log reduction in plasma vire-
mia, with one third ultimately suppressing replication to
below the limits of detection (50 copies/mL). We found no di-
rect effect of pirfenidone on viral replication over time (P = .41).

Pirfenidone Therapy Inhibits Fibrosis in the TZ When Started at
the Time of Infection and Reverses Fibrosis in Chronic Infection
We used 4 different established methods to assess lymphoid tis-
sue fibrosis in vivo: (1) a modified trichrome stain, (2) immu-
nohistochemistry (IHC) analysis for collagen type I, (3) IHC
analysis for fibronectin, and (4) picrosirius red staining to iden-
tify collagen fibers. Although each assay identified a different
component of the fibrotic scar in lymphoid tissue, we used the
modified trichrome or picrosirius red histological staining ap-
proaches for all quantitative image analyses throughout this
study, because these methods are not based on identification
of a single extracellular matrix protein within the fibrotic scar,
because we have extensively published on the trichrome ap-
proach [12,15-17, 30], and because all methods gave compara-
ble results when compared to quantitative IHC for collagen type
1 and fibronectin.

Pirfenidone treatment beginning 2 weeks before infection
and continued through 24 weeks after infection significantly
limited lymphoid tissue fibrosis (Figure 2A) and was associated
with a lower rate of collagen formation (P =.005). Animals that
did not receive pirfenidone had a statistically significant in-
crease in collagen formation, compared with baseline (P <
.0001; 95% confidence interval [CI] for the rate of change,
.196-.424; Figure 2B). Importantly, the proportion of the TZ
occupied by collagen in the 3 animals receiving no ART and
no pirfenidone (group A) was similar to levels previously re-
ported in HIV-infected humans [11]. In striking contrast,
there was no significant change from baseline in the amount
of collagen in the 11 animals treated with pirfenidone (e,
groups B, D, and F; P=.609; 95% CI for the rate of change,
—.141 to .241). These results, adjusted for the effect of ART, ex-
periment-specific effects, and time, demonstrate that the effect
of pirfenidone on the rate of collagen deposition is independent
of the effect of ART.

In the second experiment, we started pirfenidone therapy 6
weeks after infection (groups G and H; Figure 1B) and com-
pared changes in TZ collagen between groups. Pirfenidone ther-
apy was associated with a reduction in levels of TZ fibrosis
(Figure 2B). Comparison of week 6 and week 24 collagen levels
between the 2 groups showed them to be significantly different
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Figure 2. Quantitative analysis of paracortical T-cell zone (TZ) collagen between treatment groups. A, Representative sections from biopsy specimens
obtained at week 24 from 2 animals, one treated with pirfenidone and one not treated with pirfenidone. Sections of lymph node (LN) specimens were
stained with antibodies to collagen |, fibronectin, trichrome (collagen fibers staining blue), and picrosirius red. All 4 methods demonstrated significant
increases in collagen in the animal that did not receive pirfenidone, compared with the animal that did. B, Results of quantitative image analyses on
trichrome-stained sections (experiment 1) and picrosirius red—stained sections (experiment 2) of tissues obtained from before and during therapy to de-
termine whether there were significant changes in TZ collagen within each group over time. In experiment 1, in which pirfenidone therapy was started at the
time of infection, there was no significant increase in TZ collagen over 24 weeks in groups B, D, and F, which received pirfenidone (P=.609 relative to
baseline), but there was a significant increase from baseline in groups A, C, and E, which did not receive pirfenidone (P<.0001 relative to baseline). In
experiment 2, the animals that did not receive pirfenidone had progressively greater amounts of collagen in the TZ at each time point, whereas in the
animals that received pirfenidone there was an increase in TZ collagen in the first 6 weeks after infection, as expected, but after 18 weeks of pirfenidone
therapy there was a significant decrease in TZ collagen (P=.0356, by the 2 sample ¢ test) and a significant difference in the total amount of TZ collagen
between groups (P=.0068, by the 2 sample t test). Abbreviations: ART, antiretroviral therapy; SIV, simian immunodeficiency virus.
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Figure 3. Transforming growth factor B (TGF-B) and pSmad2,3 expression in animals receiving or not receiving pirfenidone treatment. We analyzed tissue
specimens from groups E and F for quantitative differences in TGF-B and pSmad2,3 levels. A, Representative images of immunohistochemistry analysis of
TGF-B and pSmad2,3 expression, showing comparable frequencies of TGF-B—expressing cells in both groups. However, there was a significant decrease in
pSmad2,3 expression in animals that received pirfenidone (group F). Quantitative image analysis demonstrated significant differences in levels of pSmad2,3

staining between treatment groups. Abbreviation: TZ, paracortical T-cell zone.

(P =.0356, by the 2-sample t test), with the pirfenidone group
showing a significant decline (P = .0068, by the 2-sample  test)
and levels in the animals not receiving pirfenidone continuing
to increase.

We examined the mechanism for pirfenidone-based inhibi-
tion of collagen formation and found that it was associated
with reductions in phosphorylated SMAD2,3 (pSMAD?2,3)
but not TGF-B protein expression (Figure 3).

Pirfenidone Treatment Is Associated With Preservation of CD4*
T Cells in Both Peripheral Blood and LNs When Initiated at the
Time of Infection

We next measured the impact of pirfenidone therapy on chang-
es in peripheral blood CD4" T-cell populations. PBMC samples
from animals starting pirfenidone therapy at the time of infec-
tion (groups A-F) were analyzed by flow cytometry to assess
the total CD4" T lymphocyte population and the relative

subpopulations of naive, effector memory, and central memory
CD4" T cells. Mixed-effects models that controlled for the effect
of ART, experimental effects and time indicate that pirfenidone
had a statistically significant impact on limiting the rate of decay
of the total CD4" T-cell count in peripheral blood (P <.0001;
Figure 4). Similar models applied to the CD4" T-cell subsets
demonstrated a significant decline in the numbers of all 3 sub-
sets in animals that did not receive pirfenidone (P <.0001 for
naive cells, P=.0061 for central memory cells, and P <.0001
for effector memory cells), but the rate of decay of naive and
central memory CD4" T cells was significantly slower in ani-
mals that received pirfenidone (P =.0006 and P <.0001, respec-
tively). Moreover, the 95% CI for the rate of change in the
central memory population among animals receiving pirfeni-
done was .0075-.0218 (log percent of cells) per day, indicating
that central memory cells are actually increasing over time.
Thus, treatment with pirfenidone was associated with a slower
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Figure 4. Pirfenidone therapy is associated with preservation of CD4* T
cells in peripheral blood mononuclear cells. Comparison of the mean chan-
ge from baseline in the percentage of T cells expressing CD4 for the groups
receiving pirfenidone (B, D, and E) to that for the groups that did not receive
pirfenidone (A, C, and F) revealed a significant difference in the rate of
decay of CD4" T cells (P<.0001).

rate of decline in the total CD4" T-cell population and increases
in the population of central memory cells in peripheral blood. Of
interest, we found no significant difference in the frequency of
Ki67" cells in peripheral blood between animals starting pirfeni-
done therapy at the time of infection and controls, but there was a
trend toward an increased frequency of Ki67" cells in peripheral
blood among animals receiving pirfenidone (P =.0515).

The impact of pirfenidone therapy on CD4" T-cell populations
among animals in which this treatment was started at the time of
infection was even more pronounced in LNs (Figure 5 and
Supplementary Figure 1). The rate of change in the overall
CD4" T-cell frequency, in addition to the frequency of each pop-
ulation subset, was found to be significantly impacted by pirfeni-
done (P <.0001 for the overall count, P <.0001 for the naive
population, P=.0017 for the central memory population, and
P =.0003 for the effector memory population). The 95% confi-
dence interval for the rate of change in the overall count was
.006-.032 cells/y, indicating that pirfenidone treatment was asso-
ciated with an increase in the overall CD4" T-cell count. There
was an estimated 14% increase over 24 weeks in overall CD4"
T-cell levels in LNs, compared with an 8% reduction among an-
imals not receiving pirfenidone. We did not detect a significant
difference in the size of the peripheral blood or LN CD4" T-cell
population in animals starting pirfenidone therapy 6 weeks after
infection. This may be because reversing fibrosis is a slow and in-
efficient process and the duration of this study was only 24 weeks.

FRCn Preservation With Pirfenidone Treatment
Desmin is a marker for the FRCs that make up the FRCn, and
desmin levels are significantly decreased in association with

collagen deposition in the TZ in SIV-infected macaques [13].
We compared immunostaining for desmin in the TZ of LN ob-
tained before infection and 24 weeks after infection from ani-
mals in groups C and D (all of which were treated with
pirfenidone prior before infection). There was significant loss
of the FRCn in the control animals that did not receive pir-
fenidone, but there was no significant change from baseline
in the pirfenidone-treated animals (P =.005, by the 2 sample
t test; Figure 6). The 95% CI for the change over time in the
pirfenidone-treated group was —.0290 to .0521, whereas it was
—.1073 to —.0903 in the group that did not receive pirfenidone
(Figure 6B).

We next measured desmin staining for the animals that re-
ceived pirfenidone 6 weeks after infection, for comparison to
findings for the group that did not receive pirfenidone. Al-
though we did not detect significant differences in the amount
of TZ desmin between the groups, there was a trend toward in-
creased desmin levels in the pirfenidone-treated group
(P=.0698, by the 2 sample ¢ test).

Serum Markers of Fibrosis

We measured levels of 4 inflammatory biomarkers as potential
correlates for fibrosis in lymphoid tissue: (1) p-dimer, a small
protein that is a byproduct of fibrin degradation; (2) the inflam-
matory cytokine IL-6; (3) hyaluronan, a high-molecular-weight
anionic polysaccharide composed of repeating disaccharides of
glucuronate acetylglucosamine that is an indicator of tissue fi-
brosis and was recently linked to mortality in patients with
HIV infection [31];and (4) C-terminal propeptide of type I col-
lagen (CICP), which increases with collagen synthesis and is
produced in a constant molar ratio to type I collagen [32].
We measured these biomarkers in serum samples from groups
E and F and found that pirfenidone therapy was associated with
a 31% reduction in CICP levels over the 24-week study period
(P =.032 for CICP; 95% CI, —.311 to —.015 ng/ml). There was
no significant difference in measures of hyaluronan (95% CI,
—.057 to .020 ng/ml), p-dimer (95% CI, —.030 to .046 ug/ml),
and IL-6 (95% CI, —.080 to .023 pg/ml). Thus, CICP may
have potential as a serum marker of antifibrotic treatment
activity.

DISCUSSION

We have previously shown that lymphoid tissue TZ fibrosis as-
sociated with SIV and HIV infection is a significant factor in
both CD4" T-cell loss and incomplete immune reconstitution
with ART [12,17,30]. In this study, we show that lymphoid tis-
sue fibrosis can be prevented and potentially reversed with anti-
fibrotic therapy, which may have a significant CD4" T-cell
benefit. We did not show a significant CD4" T-cell gain when
pirfenidone was given 6 weeks after infection and believe this
was due to the animals receiving drug for only 18 weeks. It is
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Figure 5. Pirfenidone therapy is associated with preservation of the total, naive, and central memory populations of CD4* T cells in lymphatic tissues. A,

Comparison of the area of the paracortical T-cell zone (TZ) containing total, naive, and central memory CD4* T cells between groups B, D, and F (all of which
received pirfenidone) and groups A, C, and E (all of which did not receive pirfenidone). Pirfenidone therapy was associated with preservation of CD4* T cells,
whereas the groups that did not receive pirfenidone had significant decreases. B, The fractional change in TZ CD4* T-cell populations over time in the
individual treatment groups (group A, no treatment; group B, pirfenidone only; groups C and E, antiretroviral therapy [ART] only; and groups D and F, pirfe-

nidone plus ART).

likely that a longer period of therapy will be required to more
completely restore the FRCn and have a significant increase
on CD4" T cell count.

We chose pirfenidone as an agent with the potential to inhib-
it lymphoid tissue fibrosis, based on in vitro and in vivo data
demonstrating an ability to prevent collagen formation and re-
store normal tissue architecture and function in diseases associ-
ated with fibrosis [18-20, 22-24, 26, 33-36]. We did not
establish that pirfenidone blocks production of TGF-p but did
show that it inhibits TGF-B-dependent pSmad2,3 signaling, re-
sulting in prevention of fibrosis and substantial protection of
the FRCn. We found that starting pirfenidone therapy and
ART after 6 weeks of infection led to a significant decrease in
TZ collagen and a trend toward increasing restoration of the
FRCn (ie, increasing desmin).

Pirfenidone was safe and effective when given at the treat-
ment doses we used. The pharmacokinetic characteristics at a
dose of 200 mg/kg are comparable to published pharmacokinet-
ic data in humans [4, 37].

We identified a potential biomarker to monitor the effects of
antifibrotic therapy, which could circumvent the difficulties in
obtaining and analyzing large numbers of longitudinal LN

biopsy specimens. We looked at several serum markers of in-
flammation in our study, including IL-6 and p-dimer, levels
of which did not correlate with TZ fibrosis or changes in
CD4" T-cell populations. However, when we examined changes
in hyaluronan and CICP levels, we found significant differences.
Of interest, this may be a reason that hyaluronan has been
linked to disease progression and survival [31]. It will be impor-
tant to identify and validate markers such as these as we con-
template clinical efficacy trials.

There is now little doubt of the importance of lymphatic fibro-
sis as a key factor contributing to the pathogenesis of HIV infec-
tion. It is a significant cause of CD4" T-cell depletion in untreated
individuals and a significant cause of impaired immune reconsti-
tution, despite good control of viral replication and normalization
of immune activation during ART. Collagen deposition into the
TZ occurs in a disease-stage-dependent fashion, with increasing
levels seen with progression toward AIDS. It seems likely that a
strategy of early initiation of antifibrotic therapy would provide
the best opportunity for improved immune reconstitution when
combined with effective ART, and, if initiated early, such adjunc-
tive antifibrotic therapy may only need to be used for a limited
time, until effective viral suppression is achieved.
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Figure 6. Evidence for preservation and restoration of the fibroblastic reticular cell network (FRCn). A, Results of immunohistochemistry analysis with
antibodies against desmin, illustrating differences in the size of the FRCn in 2 representative animals at baseline and the final time point. Animal 5122 did
not receive pirfenidone, and there was significant depletion of the FRCn. In contrast, animal 5124 received pirfenidone, and there was preservation of the
FRCn. B, Findings of quantitative image analysis of the size of the FRCn in groups C and D (group C is the control group, which did not receive pirfenidone,
and group D is the treated group that started pirfenidone at the time of infection). There was a significant decrease in the FRCn in animals that did not
receive pirfenidone (group C), but there was preservation of the FRCn in animals that received pirfenidone (group D). C, Findings of quantitative image
analysis for animals that received pirfenidone 6 weeks after infection (experiment 2; group H), compared with those for animals that did not receive pirfe-
nidone (experiment 2; group G). Although the difference did not achieve statistical significance (P=.064), there was a trend toward restoration of the FRCn
with pirfenidone treatment. Abbreviations: NS, not significant; TZ, paracortical T-cell zone.
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Supplementary Table 1: Mean, Median and standard deviation for potential serum
markers of fibrosis

No pirfenidone pirfenidone
Median Mean sd Median Mean sd
HA 553.5 743.9 435.57 553.5 634.9 471.6
D-dimer | 0.3250 0.3975 0.2252 0.4200 0.5620 0.3907
sCD14 8377 5846 4055 7012 5232 3847
IL6 1.265 1.637 1.900 1.065 1.402 1.101
CICP 27.30 31.07 11.33 18.79 16.46 14.6




Supplementary figure 1: Flow cytometry analysis of LNMC from groups A (untreated) and B (on pirfenidone).
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