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The dryline is an important focal point for convection initiation, and the subject of 

many studies.  While the most common location for drylines is the southern Great Plains, 

dryline passages and subsequent severe weather outbreaks have been documented in the 

Mississippi River Valley and into portions of the southeastern United States.  Little is 

known about these “eastern” drylines or how often they occur, as no climatologies or 

detailed studies have been published on them.  This thesis presents a fifteen-year 

climatology (1999-2013) of eastern drylines in an effort to identify how often and where 

they typically occur, and to identify synoptic patterns that result in drylines moving 

atypically far eastward.  A computer algorithm was created that objectively identifies 

drylines from the North American Regional Reanalysis (NARR) dataset.   Dryline events 

were divided into regional categories once the climatology of eastern drylines was 

compiled, and mean and anomaly synoptic composites were created of different variables 

for each regional category.  Thirty-nine eastern drylines were identified through the study.  

These events occurred under synoptically-active conditions with amplified upper-air 

patterns, 500 mb shortwave troughs to the west or northwest of the drylines, and strong 

surface cyclones to the north.   
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1. Introduction 

The dryline is an airmass boundary that marks a strong moisture gradient between 

a moist airmass and a dry airmass.   In the United States, the dryline typically sets up 

meridionally over the Plains during spring and marks the gradient between the hot, dry 

air from the Mexican Plateau and the warm, moist air originating over the Gulf of 

Mexico.  The dryline is also a zone of enhanced convergence, which makes it a focal 

point for convection initiation (e.g. Rhea 1966, Schaefer 1974, Schaefer 1986, Hane et al. 

1997, Atkins et al. 1998, Hoch and Markowski 2005, Weiss et al. 2006, Schultz et al. 

2007).   A number of climatologies have been published (e.g., Rhea 1966, Schaefer 1974, 

Hoch and Markowski 2005), but they have all focused on Great Plains drylines.  Hoch 

and Markowski (2005) found that the distribution in dryline longitudes at 0000 UTC 

peaks at near 101°W and that drylines become rare east of 95°W.   However, little is 

known about these drylines that move atypically far eastward due to a lack of climatology 

of these boundaries.  The focus of this project is to study drylines that move east of 95°W 

and to examine the synoptic setup associated with such events.    

This research project has two primary objectives:   

I) Create a fifteen year climatology of dryline passages east of 95⁰W. 

II) Construct composites of synoptic conditions associated with eastern 

drylines. 

This climatology is the first (to the author’s knowledge) to document the 

frequency and importance of dryline passages in the eastern portion of the United States.  

The composites will enable identification of synoptic patterns resulting in continental 

tropical (cT) air being advected atypically far eastward, which will ideally aid forecasters 
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in more accurately forecasting future eastern dryline events. 
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2.  Background 

I.  Formation of the Dryline 

A background zonal water vapor gradient exists across the southern Plains due to 

differential moisture advection, where warm, moist maritime tropical (mT) air from the 

Gulf of Mexico is advected over the eastern Plains and hot, dry (cT) air from the Mexican 

Plateau is advected over the western Plains (Lin 2010).  This differential moisture 

advection results in a large-scale background water vapor gradient generally located over 

the southern Plains.  The background water vapor gradient is amplified through 

differential mixing between the deep cT airmass and the shallow mT airmass (Lin 2010) 

and differential evapotranspiration due to a strong east to west soil moisture gradient 

across the Plains, (Schaefer 1974, Schaefer 1986, Benjamin and Carlson 1986, Sun and 

Wu 1992, Peckham and Wicker 2000).   

In order for the dryline to be established, the existing background water vapor 

gradient needs to be strengthened to form the very sharp moisture gradient that defines 

the dryline.  One mechanism that accomplishes this is lee troughing.  Troughs that form 

in the lee of the Rocky Mountains lead to geostrophic deformation of the wind field, 

which, through stretching and confluence of the moisture gradient, can result in the 

creation of a dryline.  Lee troughing also enhances the southeasterly flow off the Gulf of 

Mexico, increasing convergence along the dryline (Benjamin and Carlson 1986) and 

sharpening the moisture gradient by bringing deeper mT air farther west.  In addition to 

lee troughing, mesoscale frontogenesis along the dryline enhances the moisture gradient 

(Ziegler et al. 1995, Schultz et al. 2007).  
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II.  Quiescent vs. Synoptically-Active Drylines 

It has been suggested that drylines can be divided into quiescent and synoptically-

active categories (Schaeffer 1986, Hane et al. 2002, Hane et al. 2004).  Quiescent drylines 

occur under quiet synoptic conditions.  The motion of quiescent drylines is primarily 

controlled by vertical mixing, which results in the typical eastward movement during the 

day, with westward retrogression after sunset (e.g. Schaefer 1986).  Synoptically-active 

drylines occur under synoptically-active conditions – that is, they often extend 

equatorward from intense low pressure systems (Hane et al. 2002), are located 

downstream from shortwave troughs, and tend to be associated with highly-amplified 

upper-air patterns.  The motion of synoptically-active drylines is primarily controlled by 

synoptic-scale processes, which dominate the small-scale vertical mixing that controls the 

motion of quiescent drylines (Schultz et al. 2007).   In synoptically-active dryline cases, 

synoptic forcing is responsible for advecting the arid air aloft from the Mexican Plateau 

eastward.  Vertical mixing then transports the dry air from aloft down to the surface west 

of the dryline.  Synoptic scale forcing can transport the cT airmass farther eastward than 

vertical mixing alone; thus, synoptically-active drylines often move much farther east 

than quiescent drylines.  It is therefore hypothesized that active synoptic conditions will 

be necessary for the occurrence of drylines east of 96⁰W.   

 

III. Dryline Climatologies 

The few climatologies of drylines published in the literature have focused on 

Great Plains drylines in the spring months.  The first published climatology of the dryline 

was created in 1966 by Rhea and spanned the months of April, May, and June of 1959-
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1962.  Three-hourly surface charts were used for determining the dryline position. Hourly 

radar summaries were examined to find thunderstorm development along identified 

drylines.  Rhea defined drylines as an “organized dew-point discontinuity zone of at least 

10⁰F existing between one or more reporting points and the nearest neighboring reporting 

point” (Rhea 1966, p. 59).  Using this definition, Rhea identified drylines on 45% of days 

included within the study.  The study domain was not mentioned in the paper, nor was 

any information about the location of the observed drylines.   

 Schaeffer (1974) published a climatology of drylines with additional criteria for 

dryline identification.  His climatology consisted of three years (1966 – 1968), and, like 

Rhea, Schaeffer’s climatology focused on the spring months (April, May and June).  

Schaeffer's climatology was based on four criteria used to identify drylines: 

1)  A dewpoint difference of at least 10⁰F was required between reporting stations, 

with the additional requirement that the gradient had to exist between several pairs of 

stations and had to last at least six hours.  

2) Dewpoints in the moist airmass were required to have a mean value of at least 

15oC (50 ⁰F).   

3) The dryline had to exist in the afternoon and the virtual temperature gradient 

needed to be small.   

4) A diurnal change in the direction of the temperature gradient was required. 

Schaeffer identified drylines on 41% of his study days, similar to Rhea's (1966) 

findings.  The domain of Schaeffer’s study was also not mentioned, however it was 

mentioned that drylines that move east of 96°W become too diffuse to be recognizable 

(Schaeffer 1974), suggesting that his climatology consisted only of drylines west of 
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96°W. 

 Hoch and Markowski (2005) created a 30-year (1973-2002) dryline climatology 

for the Great Plains for the months of April, May, and June which showed results for the 

domain 105°W to 93°W.  Like Rhea (1966) and Schaeffer (1974), surface data was used 

by Hoch and Markowski to identify drylines.  Hoch and Markowski's surface data came 

from Automated Surface Observing System (ASOS) stations and only included 0000 

UTC data.  Their qualitative definition of drylines was “confluent boundaries separating a 

dry, continental, tropical airmass from a much more humid airmass” (Hoch and 

Markowski 2005, p. 2133).  The criterion used to identify drylines in their study was a 

specific humidity gradient of at least 3 x 10-8 m-1 (3 g kg-1 per 100 km).  Thirty two 

percent of days included in their study had a 0000 UTC dryline present in the Great 

Plains, with a broad peak in mid to late May.  They found a well-defined peak in 

 0000 UTC dryline position near 101°W longitude and also observed that the 

climatological dryline position drifts westward through the spring.   

 Schultz et al. (2007) constructed a dataset of drylines that occurred in western 

Texas during April, May, and June of 2004 and 2005 using surface data from the West 

Texas Mesonet.  They used this dataset to study the synoptic regulation of dryline 

intensity, and selected drylines that met a number of criteria.  A dewpoint gradient had to 

be present and had to have an eastward (down-terrain) component with the majority of 

the gradient residing in the West Texas Mesonet domain.  The gradient could not be 

attributed to a cold front or warm front and could not be influenced by convective 

outflow.  The gradient needed to increase between 0700 and 1800 local time (LT).  

Finally, the region of maximum dewpoint gradient was required to either slow down its 
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eastward progress or move westward after 1800 LT.   Using these criteria, they found 

drylines to be present on 35% of study days (Schultz et al. 2007).   

 

IV.  Synoptic Analyses 

 Recently, there has been a surge of field projects that have allowed for detailed 

mesoscale observational analysis of drylines.  These projects include Verifications of the 

Origins of Rotation in Tornadoes Experiment (VORTEX; Rasmussen et al. 1994), Central 

Oklahoma Profiler Studies project (COPS-91), and the International H2O Project (IHOP; 

Weckwerth et al. 2004), among others.  Much has been learned about the mesoscale 

processes that control dryline strength and movement from these studies.  However, there 

has been less focus on the larger- (synoptic-) scale processes that contribute to dryline 

strength and movement.   

 Though Hoch and Markowski's  (2005) study of drylines primarily focused on 

Great Plains drylines, they did remark that “virtually all dryline passages east of roughly 

97°W longitude are associated with migrating cyclones” (Hoch and Markowski 2005, p. 

2134-2135).  Examination of atmospheric soundings on dryline days showed a positive 

correlation between westerly momentum in the lower to middle troposphere and dryline 

longitude.  Hoch and Markowski also noted drylines are observed increasingly farther 

west as the spring progresses, which they suggested was most likely due to the retreat of 

the polar jet stream to the north throughout the spring, causing a decrease in the westerly 

component aloft in the region as spring progresses.   

 Schultz et al. (2007) investigated the role of synoptic-scale processes in regulating 

the strength of the dryline.  Their two-year, springtime climatology of dryline days 
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identified a total of 64 cases.  All of the cases were ranked according to dryline intensity 

(∆Td).  Cases in the top quartile were termed strong dryline days, and cases in the bottom 

quartile were termed weak dryline days.  Synoptic composites were created for strong 

and weak drylines, which identified synoptic-scale patterns that regulate dryline intensity.  

The results (Fig. 2.1) showed that the strongest drylines in western Texas had a 250 mb 

jet maximum of 25-30 m s-1 over the eastern Pacific Ocean, a 500 mb slightly negative-

tilted short-wave trough over the western United States approaching Texas, and a surface 

cyclone over eastern New Mexico and western Texas.  In contrast, weak drylines had a 

250 mb jet located much farther poleward over the north central United States and central 

Canada, a 500 mb ridge over the central United States, and a much broader area of low 

pressure over the southwestern United States and northwestern Mexico. 
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Figure 2.1: Strong (left) vs. Weak (right) dryline composites: (a) and (b) 250 mb 
geopotential height; solid lines; contour interval 120 m, wind speed (m s-1), shaded 
according to scale, and wind direction (vectors); (c) and (d) 500 mb geopotential height, 
solid lines; contour interval 60 m; (e) and (f) sea level pressure solid lines; contour 
interval 2 mb.  (Figure 3 from Schultz et al. 2007.) 
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V.  Project Motivation 

The vast majority of research on drylines has focused on drylines in the Great 

Plains region.  While the Great Plains is the preferred location for drylines, forecasting 

experience shows that occasionally drylines will move farther east than 96˚W.  However, 

due to the lack of a dryline climatology east of the Great Plains, it is unknown how often 

the dryline moves farther east.  Additionally, most dryline studies have largely focused on 

quiescent drylines (e.g. Sun and Wu 1992, Peckham and Wicker 2000, Ziegler and 

Rasmussen 1998, Jones and Bannon 2002, Hane et al. 1997), the movement of which is 

dictated by subsynoptic-scale processes.  While Schultz et al. (2007) addressed synoptic 

conditions that contribute to dryline intensity, the literature is relatively quiet on synoptic 

processes that result in drylines moving atypically far eastward. 

Some of the deadliest tornado outbreaks east of the Great Plains have occurred on 

days when the dryline moved east of 96°W.   On March 18, 1925, a severe weather 

outbreak across the Mississippi River Valley included a deadly tornado that tracked from 

southeastern Missouri through Illinois and into Indiana.  This tornado, known as the “Tri-

state tornado,” had a death toll of approximately 695 people and remains the single 

deadliest tornado is United States history (Maddox et al. 2013).  The newly analyzed 

surface analysis for the time of the Tri-state tornado is shown in Fig. 2.2.  Figure 2.3 

shows the meteogram for Cairo, Illinois (location in southern Illinois, shown as red star in 

Fig. 2.2), which clearly shows the dryline passage at 1500 CST, shortly before the 

passage of the cold front.  The dryline moved all the way into southern Illinois in this 

event, allowing for the triple point (the intersection of the cold front, warm front, and the 

dryline) to progress into southeastern Missouri.  The triple point is a favored position for 
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tornadic storms to develop, and was ultimately where the Tri-state tornado developed on 

this day (Moller 2011, Maddox et al. 2013).  Figure 2.4 shows the time progression of the 

location of the synoptic boundaries on 18 March 1925, with the location of the tornado 

marked by colored triangles.  In the case of the Tri-state tornado, an inversion aloft in the 

warm sector (a characteristic typical of warm sectors ahead of drylines) suppressed deep 

convective initiation until about 1500 CST, allowing for the supercell that contained the 

deadly Tri-state tornado to remain very isolated and largely uninfluenced by interactions 

with other storms for over 300 km. 

 

Figure 2.2: Newly-analyzed 1400 CST surface map for 18 March 1925. Fronts and 
dryline are indicated by standard symbols, along with pressure troughs (dashed) and 
mesoscale outflow boundary (dash with double dots).  Pressures and isobars are in mb 
winds are in mph, and temperatures are in °F. Isotherms at 20°F intervals are red.  Red 
star denotes location of Cairo, Illinois, the location of the meteogram from Figure 2.3 
(Figure 8 from Maddox et al. 2013).  
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Figure 2.3: Meteogram for Cairo, Illinois, 18 March 1925.  Pressures are in hPa; 
temperatures are in °F’ dewpoints shows by small circles with “X”; winds are in mph, 
and time is CST.  Clouds and weather conditions also are shown.  Data are from WB 
forms 1001 and 1014, as well as from the original barograph and thermograph traces.  
(Figure 15 from Maddox et al. 2013). 

 
 
 

 

Figure 2.4: Positions of the synoptic low (black dots: 0700, 1200–1900 CST) and 
boundaries adjacent to the warm sector (dryline, warm front, and convective outflow 
boundaries) are shown. The Tri-State tornado (colored triangles) and extrapolated 
supercell positions (stars; 1200, 1700 and 1900 CST) are indicated. The tornado track, 
traced from the data points in Johns et al. (2013), is in dark brown. A thin black line 
connects the synoptic low pressure center and the tornado (or extrapolated supercell) 
position at each time. Supercell positions at 1200, 1700, and 1900 CST were estimated 
using the average speed of the tornado. Only a portion of the outflow boundary is shown 
for 0700 CST.  (Figure 12 from Maddox et al. 2013). 
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The “Super Outbreak” of 1974 was another deadly tornado outbreak that occurred 

on a day when the dryline moved into the Mississippi River Valley (Fig. 2.5) On 3 April 

1974, 148 tornadoes were spawned east of the Mississippi River along three different 

squall lines (Locatelli et al. 2002).  Figure 2.6 shows the tracks of the tornadoes labeled 

by the squall line with which they were associated.  Locatelli et al. found that the most 

violent tornadoes were associated with the second squall line, which was spawned when a 

cold front aloft occluded with the dryline (Locatelli et al. 2002).  

 
 

Figure 2.5:  Surface analysis at 0000 UTC 4 April 1974.  Isotherms (black), 5°F intervals; 
isodrosotherms (gray), 5°F intervals for values � 60°F; squall lines, mesoscale troughs, 
and outflow boundaries, dashed lines. (Figure 26 from Hoxit and Chappell 1975). 
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Figure 2.6: Tracks of tornadoes during the Super Outbreak of 2–5 April 1974. Tornado 
tracks are labeled by the squall line with which they were associated.  Tornadoes 
associated with Squall Line 2 were closely related to a dryline.  (Figure 3 from Locatelli 
et al. 2002). 

 

Barbré et al. (2005) presented a poster on the dryline that occurred in Alabama on 

19 March 2003.  Their study used synoptic weather maps, soundings from 1200 UTC 19 

March 2003 to 0000 UTC 21 March 2003, satellite imagery, Weather Surveillance Radar 

(WSR-88D) and instruments from the University of Alabama in Huntsville’s Mobile 

Integrated Profiling System (MIPS) to perform an in-depth analysis of the dryline event.  
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Despite a highly-sheared environment and little Convective Available Potential Energy 

(CAPE), moisture convergence associated with the dryline was able to initiate storms 

which spawned 22 tornadoes in the region.  This was a very rare event to have a dryline 

move all the way into Alabama, and is an example of how far east a dryline is able to 

move and have a significant impact on severe weather outcome.  

 

Figure 2.7:  Surface analysis from 0000 UTC 20 March 2003 showing station plots and 
4°F isodrosotherms in red.  Note the dryline in eastern Alabama.  Plot courtesy of 
Plymouth State Weather Center. 

 

One of the most significant tornado outbreaks in recent history, which occurred on 

27 April 2011, resulted in 199 confirmed tornadoes and 319 fatalities (Knupp et al. 2013), 

also occurred on a day when the dryline progressed farther east than usual.  Figure 2.8 

shows the 1800 UTC surface analysis on 27 April 2011 by the Hydrometeorological 

Prediction Center (HPC, 2013).  The dryline extended southward from a low pressure 

system through Arkansas and Louisiana, around the location where the first supercells of 
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the outbreak were initiated.  

 

Figure 2.8: Hydrometeorological Prediction Center (HPC) surface analysis from  
1800 UTC 27 April 2011.  From the HPC surface analysis archives.  

 

While different studies have shown that significant severe weather outbreaks have 

occurred on days when drylines move east of 96°W, little is known climatologically 

about these drylines or the severe weather associated with them.  A climatology of eastern 

drylines will give us an idea of how often they occur.   The synoptic composites created 

will enable identification of synoptic patterns resulting in drylines moving atypically 

eastward.  Once these patterns are established, forecasters will be able to more accurately 

forecast future eastern dryline passages based on the synoptic conditions, ideally allowing 

for more accurate advanced warnings of potentially significant severe weather outbreaks 

associated with eastern dryline pass 
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3.  Methodology 

I.  Dryline Identification 

A computer algorithm was written that identified points that fall along drylines in 

the study’s domain (Fig. 3.1) according to three criteria (see Table 3.1 for a bulleted list 

of the criteria). The domain of the study included the entire states of Louisiana, Arkansas, 

Missouri, Iowa, Illinois, Indiana, Mississippi, and Alabama, and parts of the states of 

Kentucky and Tennessee along with a portion of the Florida Panhandle.  Being consistent 

with the approach of Hoch and Markowski (2005), a specific humidity gradient of at least 

3 x 10-8 m-1 (3 g kg-1 per 100 km) is the first requirement to identify drylines.  At this 

point, it becomes necessary to add additional criteria to attempt to separate drylines from 

frontal boundaries.  The first criterion is modified such that the specific humidity value is 

required to be higher to the east than the west of the identified boundary.  The second 

criterion used is a wind shift over 100 km across the boundary, characteristic of the 

dryline.  The winds to the west of the boundary are required to be from between 170˚ and 

280˚.  The winds to the east of the boundary are required to be from between 80˚ and 

190˚w.  This wind shift from westerly or southwesterly to southerly or southeasterly is 

typical of the wind shift across the dryline, where the winds from the east originate over 

the Gulf of Mexico and the winds from the west originate from the Mexican Plateau.  The 

final criterion used in this study is that the temperature gradient is required to be less than 

positive 0.02˚C km-1 from west to east.  Since the dryline is an airmass boundary between 

two tropical airmasses (cT and mT) the temperature gradient across the boundary should 

be fairly small in comparison with a cold front.  The wind shift criteria and the maximum 

temperature gradient criteria eliminate obvious cold fronts in which the winds had any 
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significantly northerly component, or there is a large temperature gradient across the 

boundary.   

The computer algorithm used data from the National Centers for Environmental 

Prediction (NCEP) North American Regional Reanalysis (NARR) dataset (Earth System 

Research Laboratory, 2013).  This is a high-resolution (32 km grid spacing) three-hourly 

atmospheric and land surface hydrology dataset for the North American domain 

(Mesinger et al. 2006). The NARR dataset was introduced in the mid 2000s and was 

developed as a major improvement to earlier datasets due to its resolution and its 

accuracy through the use of additional sources of data, improved data processing, and 

several Eta model developments (Mesinger et al. 2006). While not used yet to specifically 

identify drylines in the published literature, computer algorithms ingesting NARR data 

have been used in other studies to identify mesoscale features (e.g. identification of west 

coast thermal troughs [Brewer et al. 2012] and identification of strong intermountain cold 

fronts [Shafer and Steenburgh 2008]).  

 Each grid point in the domain was run through the algorithm and flagged if it met 

all three criteria.  Flagged points are then run through an additional criterion that required 

two or more adjacent flagged points in order to rule out small scale boundaries or other 

discontinuities.  Flagged points are then organized into a list of dryline days, which are 

manually quality controlled to ensure any remaining obvious fronts, sea-breeze 

boundaries, and outflow boundaries are excluded from the dryline dataset.  Finally, air 

parcels on either side of the remaining flagged identified drylines are run through 

NOAA's Hybrid Single-Particle Langrangian Integrated Trajectory (HYSPLIT) model to 

verify the origins of air parcels and to infer the position of the airmasses relative to the 
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boundaries.  If parcels on the western side of the boundary are shown to originate off the 

Mexican Plateau and parcels on the east side of the boundary are shown to originate from 

over the Gulf of Mexico, then the boundary met all this study's requirements for the 

dryline and is added to the dryline database.   

 

 
 

Figure 3.1:  Study domain outlined in black on a topographical map.  Figure adapted 
from Mesinger et al. 2006. 

 
 
 
 

 

Table 3.1: Bulleted list of criteria used in computer algorithm to flag individual grid 
points  

 

Flagged Grid Point Identification Criteria  

• A specific humidity gradient of at least 3 x 10-8 m-1 (3 g kg-1 (100 
km)-1) 

• Wind direction on the western side of the boundary from between 
170˚ and 280˚.  Wind direction on the eastern side of the boundary 
from between 80˚ and 190˚  

• Temperature gradient across the boundary of < 0.02˚C km-1 
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II.  Synoptic Composites 

Once the database of eastern drylines is created, synoptic features associated with 

the drylines are analyzed.  Drylines are broken into three regional categories in an effort 

to identify synoptic features present at the time of and leading up to drylines in different 

regions.  The regional categories are:  

1)  Louisiana and Arkansas drylines (25 days) 

2)  Missouri, Iowa, and Illinois drylines (16 days) 

3)  Mississippi and Alabama drylines (3 days) 

Drylines used to create the Louisiana and Arkansas region are listed in Table 3.2, the 

Missouri, Iowa, and Illinois drylines are listed in Table 3.3, and the Mississippi and 

Alabama drylines are listed in Table 3.4.  Three drylines overlapped and were included in 

the Louisiana and Arkansas regional composites as well as the Missouri, Iowa, and 

Illinois regional composites.  Twenty-two of the 25 cases (88%) used in the Louisiana 

and Arkansas regional composites are unique to the first region, 13 of the 16 cases (81%) 

used in the Missouri, Iowa, and Illinois regional composites are unique to the second 

region, and 3 of the 3 cases (100%) used in the Mississippi and Alabama regional 

composites are unique to the third region.  Composite fields and images are created for 

each of the regions at the National Oceanic and Atmospheric Administration (NOAA) / 

Earth System Research Laboratory (ESRL) Physical Sciences Division, Boulder, 

Colorado, from their website at http://www.esrl.noaa.gov/psd/.  The NCEP/NCAR 

Reanalysis dataset, a research-quality dataset with data dating back to 1948 (Kalnay et al. 

1996), was used to create the composites.  The variables analyzed are: 250 mb vector 

winds, 500 mb geopotential heights, 850 mb zonal winds, 850 mb meridional winds, 850 
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mb temperatures, and sea-level pressure.  For each variable, mean composites and 

anomaly composites are created and analyzed for dryline days in each region, with 

separate composites created for 24 hours before the event, 12 hours before the event, and 

the time of the event.  The time of the event is chosen as the time at which the dryline 

progressed farthest east.  The anomalies were compared to the 30 year (1981 through 

2010) long-term mean. 

 

Table 3.2: Dates that drylines were analyzed in Louisiana and/or Arkansas 

 

Louisiana and Arkansas 

Dryline Dates 

 

7 February 1999 
10 April 1999 
5 May 1999 

3 January 2000 
13 February 2000 

24 April 2003 
18 November 2003 

5 March 2004 
18 October 2004 
21 February 2005 

9 March 2006 
7 April 2006 
16 April 2006 
2 April 2009 

10 March 2010 
27 April 2011 

23 February 2012 
16 December 2012 
20 December 2012 
10 February 2013 
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Table 3.3: Dates that drylines were analyzed in Missouri, Iowa and/or Illinois 

 

Missouri, Iowa, and Illinois 

Dryline Dates 

 

8 April 1999 
8 March 2000 
18 May 2000 
7 April 2001 
11 April 2001 
4 May 2003 

18 October 2004 
7 April 2006 
7 June 2007 
2 April 2010 

17 February 2011 
10 April 2011 
10 May 2011 

22 February 2012 
15 April 2012 

10 February 2013 

 

 

 

 

Table 3.4: Dates that drylines were analyzed in Alabama and/or Mississippi 

 

Alabama and Mississippi 

Dryline Dates 

19 March 2003 
11 February 2009 
24 January 2010 
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4.  Eastern Dryline Climatology 

A total of 39 eastern drylines were identified between 1999 and 2013.   A map 

with the number of different dryline passages per point identified by the computer 

algorithm after quality control is presented in Fig. 4.1, with the approximate study 

domain outlined in black.  Multiple hits on a single point for the same dryline have been 

removed in order to remove the bias of extra hits associated with slow moving drylines.  

The highest number of dryline passages per point (13) was observed in northwestern 

Louisiana, with the largest number of passages generally concentrated around 

northwestern Louisiana and southwestern Arkansas.  Although northwestern Louisiana 

saw the most dryline passages, there were no dryline passages analyzed in southeastern 

Louisiana.  Points in western Arkansas saw up to 10 passages, while points in western 

Iowa and western Missouri saw up to 6 passages.  It makes sense that the western points 

of the domain generally saw more dryline passages than the eastern points, due to their 

closer proximity to the source of the cT air.  Up to 2 drylines passages were observed in a 

single point in both Illinois and Mississippi.   

The drylines that moved into Alabama and Mississippi did not appear to 

continuously move eastward, but rather appeared to move in a more stepwise fashion.  

This is likely an indication that the cT air in these cases was not advected eastward at low 

levels, but rather likely descended down from the Elevated Mixed Layer (EML) aloft.  

The stepwise movement of a drylines could also be attributed to a limitation of the 

dataset used in the study – the highest temporal resolution for the NARR dataset is three-

hourly.  When drylines moved rapidly eastward, points at which the dryline passed over 

between datasets were not able to be flagged.  This likely resulted in an apparent stepwise  
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Figure 4.1: Number of dryline passages identified by the computer algorithm per point 
after quality control.  Approximate study domain is outlined in black. 
 

movement of the dryline in a number of cases that might not have been entirely accurate 

of the situation, and would have been mitigated by the use of a higher temporal resolution 

dataset. 

Of the number of dryline passages through each state (Fig. 4.2), Arkansas had the 

most passages (19 passages), followed closely by Louisiana (15 passages) and Missouri 

(12 passages).  This climatology shows that, while dryline passages east of the Great 

Plains states are uncommon, they do occur with sufficient frequency to be important in a 

climatological sense.  Drylines move into Louisiana, Arkansas, and Missouri 

approximately once per year, and farther east approximately once per decade.  
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Figure 4.2: Number of drylines observed in each state from 1999 through 2013 

 

Studies of Great Plains drylines have found late May and June to have the most 

dryline passages (Hoch and Markowski 2005, Schultz et al. 2007).  However, eastern 

drylines peak earlier in the year, with the peak occurring between February and April 

(Fig. 4.3).  This is likely due to the tendency for the polar jet and strong surface cyclones 

to be located farther south during these months – features generally required for these 

synoptically-active drylines to move into the Mississippi River Valley.  The relationship 

between the synoptic features and the location of a dryline will be further explained later 

in this section and in section 5.  No drylines are observed in the eastern domain between 

the months of July and September.  The absence of drylines during these months can 

partially be attributed to the North American Monsoon (NAM), which acts to increase 

moisture over the Mexican Plateau during the late summer.  A 30-year dewpoint 

climatology (Robinson 1998) shows an increase in dewpoints over the southwestern 

United States during the months of July, August, and September.  During these months, 

any cT air that does get transported farther east will likely not be dry enough to establish 
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the specific humidity gradient of 3 x 10-8 m-1 (3 g kg-1 (100 km)-1) that is required for this 

study, and thus will not result in a dryline.  Another reason for the lack of eastern drylines 

during the late summer is likely the relative lack of strong westerly momentum aloft in 

the region.   

 
 

Figure 4.3: Number of dryline passages through domain per month 

 

Figure 4.4a shows the farthest east longitude (in degrees West) that each dryline 

was analyzed at throughout the eastern dryline season (October through June).  A linear 

line of best fit (not shown in Fig. 4.4a) has a coefficient of determination (R2) value of 

.01, meaning that almost none of the variation in dryline longitude by time of year can be 

explained by a linear line of best fit (Wilks 2006).  However, a parabolic line of best fit 

(shown in Fig. 4.4a) has a slightly better coefficient of determination value of 

approximately 0.06.  While still a weak correlation, this does point to a more parabolic 

relationship between dryline longitude and time of year (i.e. drylines move farther east 
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during late winter and early spring, and not as far east during fall and late spring).  There 

were no observed drylines that progressed east of 90°W outside of the months of January, 

February, and March (Fig. 4.4a).  Figure 4.4b shows the maximum latitude (in degrees 

North) of each dryline throughout the eastern dryline season.  The coefficient of 

determination value for this plot was 0.27.  The plot shows an increase in dryline latitude 

throughout the dryline season, suggesting that eastern drylines are located farther south in 

late fall and winter, and generally farther north in spring.   

 
 
Figure 4.4a: Maximum observed dryline longitude by month.  Parabolic line of best fit 
overlaid in red. 
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Figure 4.4b: Maximum observed dryline latitude by month.  Linear line of best fit 
overlaid in red. 

 

 The shift in eastern dryline location throughout the season is likely due to the 

northward shift of the polar jet.  In order for drylines to move relatively far east, there 

needs to be high westerly momentum mixed down to the surface.  When the jet is located 

farther south, there is more westerly momentum available to be mixed down to the 

surface, resulting in drylines moving farther east.  Once the polar jet retreats to the north, 

there is significantly less strong westerly momentum available to mix down to the 

surface, resulting in drylines that tend to stay farther west.  The northward progression in 

the location of drylines also coincides with the northward retreat of associated surface 

cyclones.  Since eastern drylines occur under very active synoptic patters and are strongly 

tied to a surface cyclone (more thoroughly discussed in Chapter 6), it makes sense that 

their location would shift northward through the spring as the typical path of surface 

cyclones shifts northward (Dos Santos Mesquita et al. 2008).  By this reasoning, it would 
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make sense that eastern drylines occurring in fall (while very rare) would be located 

farther north than drylines observed in the winter months.  This study only found two 

drylines that occurred in the fall months, which are not enough to make any conclusions 

about the location of fall drylines.   

250 mb jets were present to the west of the dryline for the majority of cases, with 

similar analysis at 850 mb indicating an anomalously strong jet there as well on eastern 

dryline days.  However, comparisons of the strength of the upper-level jet versus the 

easternmost longitude of the dryline (not shown here) revealed no correlation between the 

two factors.  That is to say that the strongest jets to the west of the dryline did not 

necessarily correspond to the farthest east drylines.  The drylines that moved east were 

almost all (with the exception of one case) located equatorward of a surface cyclone 

ahead of the cold front.  One factor that limits how far east a dryline can travel is how 

soon the cold front overtakes the dryline.  One theory on why a stronger jet does not 

necessarily mean the dryline will make it farther east is that a stronger jet would also 

allow the cold front to move faster and potentially overtake the dryline at an earlier stage.  

Figure 4.5 shows the maximum observed dryline longitude versus the maximum 24 hour 

attendant cyclone intensity (the lowest cyclone pressure observed in the 24 hours leading 

up to the dryline event).  There is a slight increase in the eastward location of drylines 

with increasing cyclone intensity, however the correlation is very weak with a coefficient 

of determination value of 0.02.  From this analysis, a typical attendant cyclone strength or 

jet strength and/or location that results in drylines moving atypically eastward cannot be 

proposed.  These events are complex and require a combination of factors which will be 

further examined in Chapter 4.  
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Figure 4.5:  Maximum observed dryline longitude versus attendant cyclone strength 
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5.  NOAA HYSPLIT Model Backwards Parcel Trajectories 

Sixty-hour backward parcel trajectories were modeled using NOAA’s HYSPLIT 

Lagrangian model using Global Data Assimilation System (GDAS) model data in order 

to identify the source of the dry air found just west of the drylines.  Backward parcel 

trajectories for four representative different eastern dryline days are shown in Fig. 5.1.  

For each of the dryline days, the 60 hour backwards parcel trajectories were plotted 

beginning at a time when the dryline moved into the study domain.  The backwards 

trajectories of three different points that represented mT air, cT air, and polar air are 

shown in Fig. 5.1.  The heights indicated in Fig. 5.1 are above ground level, so the 

elevated terrain of the Mexican Plateau is already accounted for.  The backwards parcel 

trajectories provide insight into the processes that resulted in cT air moving atypically 

eastward, specifically the roles of low-level advection versus parcels descending down 

from the elevated mixed layer (EML).  The trajectories show that the movement of cT air 

eastward is often a combination of low-level advection and descent of the drier cT air 

from aloft, with each case being unique.  In the 11 March 2011 Arkansas dryline case 

(Fig. 5.1a), the 200 m parcels appear to have been advected at low levels eastward into 

western Arkansas, while the parcels at 500 m appear to have been lofted upward to 3000 

m and then descended to 500 m in the 18 hours preceding the dryline event.  During a 

Mississippi dryline event on 24 January 2010 (Fig. 5.1b), the air parcels appear to have 

been advected from the Mexican Plateau eastward into Mississippi.  The Iowa dryline on 

17 February 2011 (Fig. 5.1c) and the 23 February 2012 Arkansas dryline (Fig. 5.1d) show 

similar setups to the 11 March 2011 Arkansas dryline (Fig. 5.1a), with the lower level 

(200 m) parcels appearing to have been advected into Iowa and the 500 m parcels 



32 
 

 

appearing to have descended 12 to 24 hours prior to the dryline event.  

 These backwards parcel trajectories seem to suggest that during eastern dryline 

events, both low-level advection of the cT air and/or descent of the EML down to the 

surface can be responsible for the appearance of a surface dryline.  In some cases, the 

EML is advected to the east, and then parcels appear to generally descend to the surface 

on a synoptic scale.  Turbulent mixing likely also contributes to the descent of the 

parcels, however the synoptic-scale wind flow represented in the HYSPLIT trajectories 

cannot resolve turbulent mixing and can only lead to conclusions about general synoptic-

scale descent of parcels from aloft.  In other cases, the cT air seems to originate at lower 

levels and is advected near the surface farther eastward.  Sometimes the process that 

resulted in the cT air moving eastward is not as obvious, or is a combination of the two 

processes.   
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Figure 5.1:  60-hour NOAA HYSPLIT model backward parcel trajectories for parcels 200 
m above ground level (red) and 500 m above ground level (blue) ending on a) 0300 
UTC11 March 2010, b) 2100 UTC 24 January 2010, c) 2100 UTC17 February 2011, and 
d) 0300 23 February 2012.  Smaller markers are plotted every 6 hours, larger markers 
every 24 hours. 
  

 
   
 
 

 

(a) (b) 

(c) (d) 
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6.  Regional Composites 

 

a)  Louisiana and Arkansas Drylines 

 
Synoptic composites were created of 25 days (listed in Table 3.2) on which 

drylines were analyzed in Louisiana and/or Arkansas.  On Louisiana and Arkansas 

dryline days, mean composites of the 250 mb winds showed a jet centered over western 

Texas 24 hours prior to the dryline (Fig. 6.1a), northeastern Texas 12 hours prior to the 

dryline (Fig. 6.1c), and a large jet from mid Texas through Ohio at the time of the dryline 

passage (the time at which the dryline progressed the farthest east; Fig. 6.1e).  Louisiana 

and Arkansas, the location of the drylines for these composites, was located near the 

center of the jet.  Upper-level winds were anomalously high compared to long term 

means over the Midwest during the passage, and over the Mississippi River Valley and 

the Great Plains 12 hours and 24 hours prior to the passage respectively (Fig. 6.1b,d,f).  A 

second, weaker jet was located over the eastern Pacific Ocean off the Pacific Northwest 

coast (Fig. 6.1a,c,e).  

Twenty-four hours prior to the dryline passage, the 500 mb geopotential height 

composites show a trough over the Rocky Mountains (Fig. 6.2a).  By 12 hours prior to 

the dryline passage, the trough has progressed to the central Plains (Fig. 6.2c), and at the 

time of the dryline passage the trough has slightly amplified and is located over the 

central Plains/upper Mississippi River Valley (Fig. 6.2e). 

850 mb zonal winds on these days were anomalously positive (westerly) (up to 8 

m s-1) in the south-central United States leading up to the dryline time and over the 

southern Mississippi River Valley during the dryline event (Fig. 6.3a,c,e).  There were 

also positive anomalies of 850 mb zonal winds (up to 8 m s-1) over the eastern Pacific 
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Ocean off of the Pacific Northwest coast (Fig. 6.3b,d,f).  Negative (northerly) 850 mb 

zonal wind anomalies were present over the northern Plains and northern Great Lakes 

states (Fig. 6.3b,d,f).  850 mb meridional winds were anomalously positive (southerly) to 

the east of the dryline, and anomalously negative to the west of the dryline (Fig. 6.4b,d,f).  

Strong southerlies to the east of the dryline are virtually always observed on dryline days 

(Hoch and Markowski 2005), as they advect mT air onto the continent. 850 mb 

meridional winds are likely indicative of a low-level jet (LLJ) in the cyclone’s warm 

sector.  850 mb temperatures were consistent with the upper-air wind pattern, with 

anomalously cold temperatures observed in the western United States and anomalously 

warm temperatures observed in the eastern United States (Fig. 6.5).   

Analysis of the sea level pressure composites reveals a mean surface cyclone 

located over the southern/central Plains prior to the dryline passage and located over the 

Midwest at the time of the dryline passage (Fig. 6.6a,c,e). The surface cyclone has 

negative anomalies of over 14 mb (Fig. 6.6b,d,f).  A secondary, weaker surface cyclone is 

located off the Pacific Northwest (Fig. 6.6a,c,e). 
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Figure 6.1: 250 mb vector wind (m s-1) composites for Louisiana and Arkansas dryline 
days.   a) composite mean 24 hours prior to event, b) composite anomaly 24 hours 
prior to event, c) composite mean 12 hours prior to event, d) composite anomaly 12 
hours prior to event, e) composite mean at time of event, f) composite anomaly at time 
of event. 
 

(a) (b) 

(c) (d) 

(e) (f) 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.2:  As in Figure 6.1, except 500 mb geopotential height (m) composites for 
Louisiana and Arkansas dryline days. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.3: As in Figure 6.1, except 850 mb zonal wind (m s-1) composites for 
Louisiana and Arkansas dryline days.    
 



39 
 

 

 
 

 
 
 
 
 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.4: As in Figure 6.1, except 850 mb meridional wind (m s-1) composites for 
Louisiana and Arkansas dryline days.  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.5: As in Figure 6.1, except 850 mb temperature (°C) composites for 
Louisiana and Arkansas dryline days. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.6: As in Figure 6.1, except sea level pressure (mb) composites for Louisiana 
and Arkansas dryline days. 
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b)  Missouri, Iowa, and Illinois Drylines 

  

 There were 16 days (listed in Table 3) on which a dryline was analyzed in 

Missouri, Iowa, and/or Illinois.  Only two of these days, 19 October 2004 and 11 

February 2013, were also included in the Louisiana and/or Arkansas composites.  Twelve 

and twenty four hours prior to the dryline passage, a 250 mb jet of similar magnitude as 

observed in the Louisiana/Arkansas composites was located over western Texas and New 

Mexico with positive upper-level wind anomalies located over the central/northern Plains 

(Fig. 6.7a,b,c,d).  At the time of the dryline passage, the upper-level jet had progressed 

slightly eastward and was located over Texas and Oklahoma, with the drylines located in 

the left exit region of the jet (Fig. 6.7d).  Upper-level winds were anomalously strong 

over the upper Mississippi River Valley during the dryline passage (Fig. 6.7f).  

 500 mb geopotential heights composites reveal a trough located over the Rockies 

prior to the dryline passage and the northern Plains during the dryline passage (Fig. 

6.8a,c,d).  The central and western portion of the United States is dominated by troughing 

with negative 500 mb geopotential height anomalies of over 100 m 24 hours prior to the 

passage and around 100 m during the dryline passage (Fig. 6.8b,d,f).  The eastern portion 

of the United States is dominated by 500 mb ridging with positive anomalies of up to 100 

m observed (Fig. 6.8b,d,f).  The shortwave trough observed in the Missouri, Iowa, and 

Illinois dryline composites was of similar magnitude to the shortwave observed in the 

Louisiana and Arkansas composites and had the same slight negative tilt, however it was 

slightly more amplified and was located farther north. 

Like the Louisiana and Arkansas drylines, the 850 mb winds for Missouri, Iowa, 



43 
 

 

and Illinois drylines had positive zonal anomalies to the southeast of the drylines (up to 

10 m s-1) and negative zonal anomalies (up to -6 m s-1) to the north of the dryline, over 

the northern Plains and southern Manitoba (Fig. 6.9b,d,f).  The meridional 850 mb wind 

anomalies were positive (up to 14 m s-1) to the east of the dryline, likely indicating the 

presence of a LLJ, and slightly negative (up to -6 m s-1) to the west (Fig. 6.10b,d,f).  On 

these days, relatively strong southerlies over a large portion of the Mississippi River 

Valley (Fig. 6.10a,c,e) aided in transporting the Gulf of Mexico moisture northward into 

Missouri, Iowa, and Illinois.  850 mb temperature mean composites (Fig. 6.11a,c,e) 

showed a slightly stronger temperature gradient located to the west of Missouri, Iowa, 

and Illinois drylines than was observed in the Louisiana and Arkansas drylines.  The 

temperature anomalies (Fig. 6.11b,d,f) were consequently 2 to 3 degrees stronger than 

those observed in the Louisiana and Arkansas composites.   

A composite pattern like the one in Fig. 6.12 suggests that tendency for cyclones 

to be located over the central US for eastern dryline days. The mean cyclone observed is 

similar in intensity to the mean cyclone observed in association with Louisiana and 

Arkansas drylines, however the mean cyclone for Missouri, Iowa, and Illinois drylines is 

generally located farther north. There is also a weak anomalous area of high pressure 

located over the eastern Pacific and the western Atlantic on these days (Fig. 6.12b,d,f).   
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.7: 250 mb vector wind (m s-1) composites for Missouri, Iowa, and Illinois 
dryline days.   a) composite mean 24 hours prior to event, b) composite anomaly 24 
hours prior to event, c) composite mean 12 hours prior to event, d) composite anomaly 
12 hours prior to event, e) composite mean at time of event, f) composite anomaly at 
time of event. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.8: As in Figure 6.7, except 500 mb geopotential height (m) composites for 
Missouri, Iowa, and Illinois dryline days. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.9: As in Figure 6.7, except 850 mb zonal wind (m s-1) composites for 
Missouri, Iowa, and Illinois dryline days.    
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.10: As in Figure 6.7, except 850 mb meridional wind (m s-1) composites 
for Missouri, Iowa, and Illinois dryline days. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.11: As in Figure 6.7, except 850 mb temperature (°C) composites for 
Missouri, Iowa, and Illinois dryline days. 
 



49 
 

 

 
 
 
 
 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.12: As in Figure 6.7, except sea level pressure (mb) composites for 
Missouri, Iowa, and Illinois dryline days.  
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c)  Alabama and Mississippi Drylines 

 Composites were created of the synoptic conditions on the days of three dryline 

passages (days listed in Table 4) in Mississippi and Alabama.  Drylines that progressed as 

far as Alabama or Mississippi were marked by a very strong 250 mb jet over the 

southeastern United States (Fig. 6.13).  Twenty four hours prior to the dryline moving 

into Mississippi or Alabama, the jet was located quite far south over northern Mexico and 

12 hours prior to the dryline passage, the composite mean jet maximum was located over 

eastern Texas and Louisiana (Fig. 6.13a,c).  A jet of over 60 m s-1 was centered over 

Mississippi and Alabama at the time of the mean dryline passage with large 250 mb wind 

speed anomalies over the Midwest (Fig. 6.13e,f).  The jet observed in these composites 

was 10 to 20 m s-1 stronger than the composite jet observed in the other two regional 

composites. 

 A composite of the 500 mb geopotential heights (Fig. 6.14) showed a large 

negatively-tilted trough of higher amplitude and lower heights than the mean shortwaves 

observed in the other regional composites.  24 hours prior to the passage, the mean trough 

was located over the Rocky Mountains and 12 hours prior to the passage, the trough was 

located over the central United States (Fig. 6.14a,c).  The 500 mb heights were over  

200 m lower than average along the trough 12 and 24 hours prior to the dryline event 

(Fig. 6.14,b,d).  At the time of the dryline passage, the trough was located over the central 

United States and the Mississippi River Valley (Fig. 6.14e).  During and prior to the 

eastern dryline event, the northeastern United States and the Hudson River Valley were 

characterized by mid-level ridging (Fig. 6.14), which likely contributed to the deepening 
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of the upstream trough and the upstream negative height anomalies.  A unique feature 

observed in the 500 mb mean composites to the Mississippi and Alabama drylines was a 

closed low in the 24 and 12 hours prior to the dryline event (Fig. 6.14a,e).  Twenty four 

hours before the dryline was analyzed, this closed low was located over the Four Corners 

region.  Twelve hours before the event, the closed low had progressed to western 

Oklahoma, and by the time of the dryline event, the low was no longer closed.  

 The Alabama and Mississippi drylines days had relatively strong positive 850 mb 

zonal winds over the south-central United States leading up to the eastern dryline event 

and 850 mb zonal winds of up to 14 m s-1 over the southern Mississippi River Valley on 

the day of the dryline (Fig. 6.15a,c,e).  Similar to that of the drylines that occurred in the 

Mississippi River Valley, 850 mb meridional winds were strongly positive  

(up to 20 m s-1) to the east of the dryline and negative to the west of the dryline (Fig. 

6.16a,c,e).   The Alabama and Mississippi 850 mb zonal (Fig. 6.15b,d,f) and meridional 

(Fig. 6.16b,d,f) wind anomalies were about 5 m s-1 stronger than the anomalies observed 

in the drylines farther west.  850 mb temperature anomalies (Fig. 6.17) were also stronger 

in these drylines than were observed in the drylines farther west.  This is consistent with a 

more amplified upper and mid-level air patterns observed in these cases and allowed for 

more intense cyclones to develop.   

 Mean sea level pressure composites showed a deep surface cyclone located north 

of the dryline (Fig. 6.18a,c,d).  It had a negative sea level pressure composite anomaly of 

over 20 mb over the Midwest at the time of the passage and over the Plains prior to the 

dryline passage (Fig. 6.18b,d,f). This mean surface cyclone had a negative pressure 

anomaly of about 5 mb greater than the negative sea level pressure anomaly observed in 
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the other regional composites, indicating a more intense cyclone.
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(b) 

(c) (d) 

(e) (f) 

(a) 

Figure 6.13: 250 mb vector wind (m s-1) composites for Alabama and Mississippi 
dryline days.   a) composite mean 24 hours prior to event, b) composite anomaly 
24 hours prior to event, c) composite mean 12 hours prior to event, d) composite 
anomaly 12 hours prior to event, e) composite mean at time of event, f) composite 
anomaly at time of event. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.14: As in Figure 6.13, except 500 mb geopotential height (m) composites for 
Alabama and Mississippi dryline days. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.15: As in Figure 6.13, except 850 mb zonal wind (m s-1) composites for 
Alabama and Mississippi dryline days. 
 



56 
 

 

 
 
 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.16: As in Figure 6.13, except 850 mb meridional wind (m s-1) composites 
for Alabama and Mississippi dryline days. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.17: As in Figure 6.13, except 850 mb temperature (°C) composites for 
Alabama and Mississippi dryline days. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.13: As in Figure 6.13, except sea level pressure (mb) composites for 
Alabama and Mississippi dryline days. 
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Caution should be applied when comparing the results of the regional composites.  

Due to the constraints of the numbers and locations of drylines identified in this study, 

different numbers of cases were used in creating the regional composites.  25 days were 

included in the composites of Louisiana and/or Arkansas drylines, 16 days were included 

in the composites of Missouri, Iowa, and/or Illinois drylines, and only 3 days were 

included in the composites of Alabama and/or Mississippi drylines.  While it does appear 

that the synoptic conditions were slightly more active on days when drylines moved into 

Alabama and Mississippi, three cases cannot support climatological conclusions.  

However, the three cases indicate preliminary patterns which should be investigated 

further. 

The composites for all three regional dryline events revealed a common synoptic 

setup for eastern drylines with minor variations in the location and strength of the 

synoptic features by region.  The upper-air pattern on eastern dryline days is very 

amplified with relatively large zonal and meridional anomalies.  The composites showed 

that eastern drylines are associated with the polar jet dipping into the southern United 

States with an upper-level jet over or just to the west of the location of the dryline.  Often, 

the polar jet merged with the subtropical jet to the east or the southeast of the dryline 

location. In order for drylines to move east of their typical Great Plains domain, strong 

westerly momentum needs to be present to the west of the dryline.  Jets at different levels 

provide this westerly momentum that is then mixed down to the surface and advects the 

dryline eastward. For drylines that moved into the Mississippi River Valley region (Iowa, 

Missouri, Illinois, Arkansas, and Louisiana) strong jet were observed to the west of the 

dryline (up to 50 m s-1; Fig. 6.1 and Fig. 6.7).  However, drylines that made it even 
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farther east into the southeastern United States (Mississippi and Alabama), were marked 

by jets of even strong magnitude (greater than 60 m s-1; Fig. 6.13).  While the polar jet 

stream dips into the southern part of the United States to the west of the dryline, it retreats 

slightly northward to the east of the dryline, resulting in large upper-air southerly flow 

anomalies over the Midwest.  A relatively amplified upper-air pattern like the ones seen 

on these dryline days would support large low-level baroclinicity and intense 

cyclogenesis.  850 mb temperature mean composites indeed show the strong temperature 

gradients that fueled the intense surface cyclones which played a large role in moving 

these drylines atypically eastward.   

500 mb geopotential height patterns for Mississippi River Valley drylines were 

relatively similar, with shortwave troughs present to the northwest of the dryline 

including negative height anomalies of just over 100 m.  However, drylines that moved 

into Mississippi and Alabama were associated with a negatively-tilted trough with much 

larger negative 500 mb geopotential height anomalies than other eastern drylines.  The 

negatively-tilted trough likely supported the stronger surface cyclone and increased 

baroclinicity, leading to an increase in the low-level wind field.   The negatively-tilted 

trough likely also supported strong upper-level divergence over the surface low, allowing 

for increased ascent over the region.  

The negative mean composite anomalies for drylines that moved into Mississippi 

and Alabama were up to 200 m (100 m greater anomalies than drylines that only moved 

into the Mississippi River Valley).  This mid-level short-wave feature that was associated 

with the eastern drylines is indicative of synoptically-active drylines (Hane 2004), and 

likely plays a large role in advecting the dryline so far east.   
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The eastern drylines were all associated with a surface cyclone to the north of the 

boundary, consistent with the findings of past studies (e.g., Hoch and Markowski 2005).  

Like the other synoptic features, the surface cyclone was anomalously stronger (6 mb 

mean composite negative anomaly) for the Mississippi and Alabama drylines than was 

present for the drylines in the western part of the study’s domain. The 850 mb winds were 

consistent with a surface cyclone, with positive zonal anomalies observed to the south of 

the cyclone and negative zonal anomalies to the north, and positive meridional anomalies 

to the east of the dryline/surface cyclone and negative meridional anomalies to the west.  

While the location of the 850 mb maximum winds shifted north or south slightly for 

drylines in Louisiana, Arkansas, Missouri, Iowa, or Illinois, the magnitude was roughly 

the same.  However, the magnitudes of the 850 mb wind maxima were about 5 m s-1 

greater for drylines that occurred in Alabama and Mississippi than for drylines that 

occurred to the west.  This is consistent with the results of Hoch and Markowski (2005), 

who showed that Great Plains drylines moved farther east with increasing westerly 

momentum between 850 and 500 mb.  This study shows that this relationship between 

low-level westerly winds and maximum dryline longitude translates to eastern drylines as 

well.   Additional composites of vector winds at different levels (not shown here) 

revealed the presence of a composite low-level jet to the east of the location of the dryline 

that was present for each of the regional categories.  The low-level jet was generally 

strongest 12 hours before the event and advected large amounts of mT air into the warm 

sector of the cyclone, allowing for an enhanced moisture gradient across the dryline.   

 Composites of these drylines are similar to the composites of “strong drylines” 

created by Schultz et al. (2007).  Both their composites and the composites of eastern 
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drylines were marked by a jet maximum of over 25 m s-1 over the eastern Pacific Ocean, 

a 500 mb shortwave trough to the northwest of the dryline, and a composite surface 

cyclone with central pressure less than 1004 mb to the north of the dryline (Schultz et al. 

2007).  Their study illustrated the importance of strong large-scale confluence from lee-

troughing in creating very strong synoptically-active drylines much like the ones 

observed in this study.  
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7.  Eastern Dryline Analysis 

  A key finding of this study is that many of the drylines that moved atypically far 

eastward were analyzed incorrectly on the Weather Prediction Center (WPC) / 

Hydrometeorological Prediction Center (HPC)’s surface analyses (HPC 2013).  Hobbs 

(1996) pointed out that in the case of Rocky Mountain cyclones, the dry troughs are often 

misanalysed as cold fronts, a mistake than can happen when forecasters use the 

Norwegian Cyclone Model to describe cyclones in the central United States.  Three case 

studies are shown to illustrate this fact (25 February 2007, 11 February 2009, and 2 April 

2010).  The surface maps analyzed by the WPF (then HPC) are shown in Figs 7.1, 7.4, 

and 7.7, HYSPLIT backwards parcel trajectories are shown in Figs 7.2, 7.5, and 7.8, and 

station plots with 2.78 oC (5°F) dewpoint contours are overlaid in Figs 7.3, 7.6, and 7.9.  

The backwards parcel trajectories are taken from three different points around the 

cyclone, illustrating in all cases the presence of a cP airmass, a cT airmass, and an mT 

airmass in the typical sectors of a lee cyclone. 

The first case, 0300 UTC 25 February 2007 has two cold fronts analyzed in 

association with the cyclone, one becoming partly occluded (Fig 7.1). Backwards 

trajectories (Fig 7.2) show the three distinct airmasses, with the airmass over 

northwestern Louisiana originating over the southwestern United States.  The strong 

dewpoint boundary through Louisiana and eastern Arkansas (Fig 7.3) is therefore the 

boundary between cT and mT air, and as such is the dryline.  The HPC surface analysis 

for the second case, 1800 UTC 11 February 2009 (Fig 7.4), shows a slightly occluded 

cyclone over Illinois with an analyzed cold front extending southward through Alabama 

and a trough extending southwestward through Arkansas and into Texas.  Upon closer 
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examination of the HPC surface map and the station plots (Fig 7.4 and Fig 7.6), it 

becomes apparent that there is an extremely small temperature gradient along the 

analyzed cold front and a very large moisture gradient – characteristics associated with a 

dryline.  The trough extending to the southwest has the typical characteristics of a cold 

front – a large temperature gradient and a smaller moisture gradient.  Backwards 

trajectories from HYSPLIT (Fig 7.5) confirm the origins of the air masses, suggesting 

that the cold front that is analyzed is actually the dryline, and that the trough that is 

analyzed is actually the cold front.  The surface analysis from 2100 UTC 2 April 2010 

(Fig 7.7) shows a surface cyclone located over northern Minnesota with a large cold front 

draped southward extending through Texas and a second cold front located a little farther 

west extending from northeastern Nebraska through Colorado.  The eastern cold front has 

a very weak temperature gradient with a much stronger dewpoint gradient, and the 

western cold front has a much larger temperature gradient.  Analysis of the station plots 

and the air parcel backward trajectories from HYSPLIT (Fig 7.8) reveal that cT air was 

advected all the way from the Mexican Plateau into southwestern Iowa.  This is another 

case where the cold front analyzed to the east is indeed the dryline, and the cold front 

analyzed to the west is the actual cold front.    

The three cases presented above were not atypical.  Many of the drylines 

identified in this study are not analyzed as drylines in the archived surface analyses.  Of 

the 25 cases that the HPC analyses were available for, only 24% of drylines were 

analyzed as such.  Of the rest of the drylines, 11 were analyzed as cold fronts, 2 were 

analyzed as stationary fronts, 1 was analyzed as a trough axis, and 5 were not analyzed as 

any type of boundary.  The variation in the analysis of eastern drylines sheds light on the 
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fact that these boundaries are often times difficult to correctly identify.  When drylines 

move east of the Great Plains, they can often become hybrids between pacific cold fronts 

and drylines, making them difficult to consistently analyze.  Due to the very active upper 

air patterns that these drylines occur under, air parcels often times can be shown to have 

been located over the eastern Pacific Ocean just a few days before moving into the 

eastern portion of the United States.  This causes some forecasters to identify these 

boundaries as pacific cold fronts instead of drylines.  However, once the air parcels have 

moved over the Mexican Plateau, air mass modification takes place, and the air mass (at 

least the lowest couple of kilometers) takes on the characteristics of a cT airmass with 

very high temperatures and very low dewpoints.  It can be argued that the boundary at the 

surface between this modified cT airmass and the mT airmass to the east is indeed the 

dryline instead of a pacific cold front.  A three dimensional study would yield more 

insight into the characteristics of the airmass at higher levels.  Another possible 

explanation for the inconsistencies in the analyses of eastern drylines is that perhaps 

forecasters are not aware that drylines can and do move farther east than the Great Plains.  

A hopeful outcome of this study is to increase forecaster awareness of these boundaries in 

hopes of having drylines analyzed more correctly in the future.  
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Figure 7.1: Hydrometeorological Prediction Center surface analysis for 0300 UTC 25 
February 2007  
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Figure 7.2: 60-hour HYSPLIT backward parcel trajectories for 200 m above ground 
level (red) and 500 m above ground level (blue) for 0300 UTC 25 February 2007.  
Smaller markers are plotted every 6 hours, larger markers every 24 hours. 
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Figure 7.3:  Station plots and 5°F dewpoint contours (in red) for 0300 UTC 25 February 
2007.  Note the strong dewpoint gradient (the dryline) in northern Louisiana/eastern 
Arkansas.  Plot courtesy of the Plymouth State Weather Center 
[http://vortex.plymouth.edu/]. 
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Figure 7.4: Hydrometeorological Prediction Center surface analysis for 1800 UTC 11 
February 2009 
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Figure 7.5: 60-hour HYSPLIT backward parcel trajectories for 200 m above ground 
level (red) and 500 m above ground level (blue) for 1800 UTC 11 February 2009.  
Smaller markers are plotted every 6 hours, larger markers every 24 hours. 
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Figure 7.3:  Station plots and 5°F dewpoint contours (in red) for 1800 UTC 11 February 
2009.  Note the strong dewpoint gradient (the dryline) eastern Mississippi.  Plot courtesy 
of the Plymouth State Weather Center [http://vortex.plymouth.edu/]. 
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Figure 7.7: Hydrometeorological Prediction Center surface analysis for 2100 UTC  
2 April 2010 
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Figure 7.8: 60-hour HYSPLIT backward parcel trajectories for 200 m above ground 
level (red) and 500 m above ground level (blue) for 2100 UTC 2 April 2010. Smaller 
markers are plotted every 6 hours, larger markers every 24 hours. 
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Figure 7.9:  Station plots and 5°F dewpoint contours (in red) for 2100 UTC 2 April 2010.  
Note the strong dewpoint gradient (the dryline) extending through eastern Kansas into 
southwestern Iowa.  Plot courtesy of the Plymouth State Weather Center 
[http://vortex.plymouth.edu/]. 
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8.  Conclusions 

A study of eastern drylines was completed in an effort to learn more about these 

boundaries and to ultimately increase forecaster awareness of drylines east of their 

typical domain.  The primary conclusions for this study are: 

• Thirty nine eastern drylines were identified between 1999 and 2013.  Arkansas 

experienced the most dryline passages, followed by Louisiana and then by Missouri.   

• The peak in eastern drylines occurred earlier (February through April) than the peak in 

southern Great Plains drylines.   

• A weak correlation between maximum observed dryline longitude and month of the 

year was observed, with drylines moving farthest east during the winter months.  The 

location of eastern dryline longitude shifted slightly northward throughout the winter 

and spring.   

• Amplified upper-air patterns were observed on the eastern dryline days, with 250 mb 

jets observed to the west, northwest, or southwest of the drylines.  The strongest jets 

were observed in the Mississippi and Alabama dryline cases.  500 mb geopotential 

height composites revealed mid-level shortwave troughs generally located to the 

northwest of the drylines, with slight negative tilts observed in association with the 

Mississippi River Valley drylines and stronger negative tilts observed in association 

with the southeastern drylines.  Strong mid-level negative height anomalies were seen 

across the central United States for all days, with mid-level positive height anomalies 

observed over the northeastern United States. 850 mb analyses showed strong low-level 

westerlies generally centered to the west of the drylines (again, stronger jets for the 
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southeastern drylines than for the Mississippi River Valley drylines).  850 mb winds 

showed a low-level jet east of the dryline and 850 mb temperatures showed strong 

temperature gradients that likely aided in rapid cyclogenesis at the surface.  Sea-level 

pressure composites showed strong surface cyclones located poleward of the drylines, 

with the some of the strongest cyclones observed in the southeastern drylines.  

• Analysis of the surface maps analyzed by the Hydrometeorological Prediction Center 

for the dryline days showed that it is not uncommon for eastern drylines to be 

misanalysed as cold fronts.   

Future work will include extending the climatology to a full 30 years, creating 

additional synoptic composites (e.g. high-amplitude trough events, negatively-tilted 

trough events, different cyclone strength events), and an in-depth study on the role that 

eastern drylines play in severe weather outbreaks.  
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