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Paradigm shifts in invasiveness, recovery time, cosmesis, and cost have been seen
within the field of general surgery through major advances in surgical technology. Some
of the most advanced types of general surgery now include Minimally Invasive Surgery
(MIS), LaparoEndoscopic Single-Site (LESS) surgery, and Natural Orifice Translumenal
Endoscopic Surgery (NOTES). One of the newest and rapidly developing catalysts is
robotic platforms. Such platforms have improved ergonomics and control, increased
workspace and dexterity, and have surpassed the efficacy of many non-robotic platforms

such as traditional laparoscopic surgical tools.

This thesis presents the design and development of a four-degree-of-freedom (4-
DOF) miniature in vivo surgical robot with distributed motor control for laparoendoscopic
single-site surgery. The robotic platform consists of a two-armed robotic prototype,
distributed motor control system, insufflated insertion device, and a remote surgeon

interface.



“Make everything as simple as
possible, but not simpler.”
Albert Einstein
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Chapter 1. Introduction

General surgery was traditionally performed using a large open incision. This
allowed the surgeon to directly manipulate the tissue with full visualization of the surgical
site. In the last 50 years, there has been a large push towards minimizing invasiveness
through techniques known as Minimally Invasive Surgery (MIS). There are many benefits
to MIS including faster recovery time, reduced risk of infection, and improved cosmesis
[1]. Laparoscopic surgery, a form of MIS, uses long rigid tools that are inserted through 3-
5 small incisions in the abdominal wall. Some procedures, such as colon resection, may
also require an addition larger incision of approximately 3-4 cm in size for specimen
removal [2]. This type of MIS has been widely adopted for many routine procedures [3].
However, the complexity of the procedure is greatly increased due to the unintuitive control
of long rigid tools coupled with diminished visual feedback and dexterity [4]. Most
complex procedures are rarely done laparoscopically. Out of 300,000 colon resections
performed in the United States annually, less than twenty percent are performed as

laparoscopic procedures [5].

Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a “scarless” form of
MIS. NOTES takes advantage of a natural orifice, such as the esophagus, to access the
peritoneal cavity. This form of MIS is particularly complex and requires specialized
instruments that are generally sub-inch in diameter and flexible for atraumatic insertion
through the natural lumen [6]. This form of MIS has a further reduction in risk of infection,
faster recovery time, and improved cosmesis compared to laparoscopic MIS due to the

elimination of all external incisions.



Laparo-Endoscopic Single Site (LESS) surgery is a form of MIS that takes
advantage of a preexisting scar within the umbilicus. LESS surgery has been seen as a
viable bridge to NOTES [7]. However, this method is not as complex as NOTES but is
inherently limited in visualization and triangulation due to the constraints of working
through a single access port. LESS surgery often requires specialized bent and/or
articulating surgical tools and multi-lumen ports. These specialized tools are frequently
crossed at the incision site for improved triangulation, requiring extensive training. This
advanced form of MIS has additional benefits over laparoscopic MIS such as improved

patient cosmesis, reduced hospital stay, and reduced cost [5], [8].

A completely insertable in vivo robotic prototype has been developed to address
some of the limitations seen with manual tools during LESS procedures. LESS is an
attractive minimally invasive technique for complex procedures such as colon resection
which require a 3-4 cm incision for anastomosis and specimen removal [2]. The miniature
in vivo robotic device that has been developed can be inserted through a small incision in
the umbilicus. The device has two dexterous four-degree-of-freedom (4-DOF) arms with
interchangeable end-effectors. This system offers access to each of the four abdominal
quadrants, improved visualization and triangulation, and more intuitive control. An

example of this system is shown in Figure 1.1.



Figure 1.1: Miniature in vivo Surgical Robot.

This thesis presents the design and development of a miniature in vivo surgical
robot with distributed motor control for LESS surgery. The device, motor control system,
and insertion device will be examined. In addition, this system will be compared to

predicate devices and future work will be discussed.



Chapter 2. Background

Section 2.1: Minimally Invasive Surgery

Section 2.1.1: Laparoscopic Surgery

Through technological breakthroughs, traditional open surgeries were slowly
shifting to laparoscopic procedures throughout the late 1980s and early 1990s [9], [10].
Laparoscopic surgery began to replace the large open incision with 3-5 small incisions of
approximately 5-12 mm in diameter. Specialized single-lumen ports called trocars are
inserted into each of the small incisions. These ports allow the peritoneal cavity to be
insufflated without loss of pressure [5]. Trocars allow surgical tools such as a needle driver,
grasper, and laparoscope to be inserted interchangeably between all of the available ports.
Although laparoscopic surgery is more difficult than traditional methods, the benefits to
patients have helped it to become a very popular form of MIS [6]. Surgical instruments for
laparoscopic surgery are typically rigid and vary from 5-12 mm in diameter and 25-45 cm

long.

Section 2.1.2: Natural Orifice Translumenal Endoscopic

Surgery (NOTES)

Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an advanced form
of MIS which eliminates all external incisions. NOTES was originally envisioned as the
predecessor to laparoscopy. There are many benefits to the patient if the peritoneal cavity
is accessed through a natural orifice. Kalloo et al. were the first to demonstrate the

feasibility of NOTES during an animal model study [6]. Additional feasibility studies have



followed and successful NOTES procedures have been performed on humans [11].
However, this form of MIS has proven to be too difficult with the current state-of-the-art
tools to be widely adopted. Surgical tools that are used via a natural orifice are typically

based on a flexible scope with a working channel for mm-size tools.

Section 2.1.3: LaparoEndoscopic Single-Site (LESS)

Surgery

LaparoEndoscopic Single-Site (LESS) surgery is a more realistic evolution of MIS.
LESS surgery is a technique that involves placing all instruments through a single access
point. This 20-35 mm incision is typically made at the umbilicus, a preexisting scar. This
advanced form of MIS improves upon patient benefits, compared to laparoscopic surgery,
such as patient cosmetics, hospital stay, and cost [5], [8]. A specialized multi-lumen port
is used to provide access to the surgical site. Articulated tools, which are generally crossed
at the access point, enhance the capabilities of the surgeon and allow them to approach the
surgical site from different angles. These tools help to restore some of the triangulation and
visualization that is lost while maximizing range of motion and minimizing internal and
external crowding. While LESS surgery is more difficult, multiple procedures have been
performed in humans including cholecystectomies, appendectomies, splenectomies,

nephrectomies, and colectomies [12], [13].

Section 2.2: Robotic Minimally Invasive Surgery



Section 2.2.1: Robotic Laparoscopic Surgery

As the fields of medicine and robotics have advanced, there has been an increase
interest in using robotics to improve surgical outcomes [14]. Surgical robots offer many
advantages over traditional tools such as intuitive control, improved ergonomics, and
increased precision. The Automated Endoscopic System for Optimal Positing (AESOP)
was the first clinically used surgical robot [15]. AESOP was a robotic endoscopic camera
assistant that provided a stable view of the surgical site and could be repositioned via voice
control. It was the first Food and Drug Administration (FDA) approved surgical robot,

achieving approval in 1994.

Figure 2.1: The da Vinci® Surgical System, model Xi (©2014 Intuitive Surgical, Inc.)

At this time, the da Vinci® Surgical System (Intuitive Surgical, Sunnyvale, CA) is

the most advanced commercially available robotic system for general surgery. The newest



model, the da Vinci® Xi Surgical System, is shown in Figure 2.2. The surgical system
improves upon dexterity and visualization through the use of stereoscopic vision and
specialized EndoWrist® laparoscopic instruments. Other improvements include motion
scaling, tremor reduction, intuitive control, and telerobotic operation [16]-[18]. The
surgeon operates the robot from a remote user interface while the surgical system is
positioned above the patient at the operating table. Some of the limitations of previous
versions of the da Vinci® Surgical System include reposting, robot arm collisions,
crowding of the surgical site, size, and high cost [18], [19]. Complex surgical procedures,
such as colon resection, often require multiple access positions. This is often seen with
traditional laparoscopy as well. For example, a sigmoid colectomy would require the
robotic cart of the da Vinci® Surgical System to be positioned in two different locations as
shown in Figure 2.2. The task of undocking from the first location and docking to the new
location is a timely, costly process. Reposting of the robotic cart provides improved
triangulation and visualization of the surgical target. Some of these concerns have been
addressed with the new system [20]. The improvements include an overhead boom that
will help to facilitate fast 4-quadrant surgery and free up space within the surgical field to
allow unobstructed access to the patient. However, this system still faces some of the
downfalls of traditional laparoscopy including limited workspace and degradation or

complete loss of haptic feedback.
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Figure 2.2: The location of the ports and robotic cart for a robotic assisted sigmoid colectomy: A) The lower
left oblique location of the robotic cart, B) The left vertical location of the robotic cart. (Baik et al.)

Other researchers are also actively pursuing the area of surgical endoscopy.
Research platforms include CoBRASurge [21], Raven [22], Mirosurge [23], and CURES
[24]. These systems have been developed to combat the high price and large size of the da
Vinci® surgical system. Although these systems are smaller and less expensive than the da
Vinci® surgical system, they are still limited by the constraints of the access point.
Mirosurge has partially improved upon its predecessors by restoring the sense of touch to
the surgeon through the use of a force/torque sensor at the tool’s end-effector and haptic

interface [25].

Section 2.2.2: Robotic NOTES (R-NOTES)

Research is also being conducted towards the realization of NOTES. One example

of this type of robotic platform was developed by Rentschler et al. as described in [26].



Once the device is inserted into the peritoneal cavity through a natural lumen, helical drive
wheels are used to traverse the abdominal cavity. The modular devices can be equipped
with various types of end-effectors to provide surgical assistance [27]. These devices are
inexpensive and can be easily transported. Another example of R-NOTES devices include
those developed by Nelson et al. as described in [28]-[30]. These device are tubular in
shape and include steerable and articulating snake like mechanisms, material handlers, and
tool changing mechanisms. Although, there has been success with simple R-NOTES
procedures, more complex operations will require additional dexterity and workspace than
what current platforms provide. R-NOTES devices will need to be further developed before

they will be considered clinically viable.

Section 2.2.3: Robotic LESS Surgery (R-LESS)

LaparoEndoscopic Single-Site (LESS) surgery is considered a more realistic
evolution for MIS robotic platforms. Both companies and research groups are actively
performing research in this area. Intuitive Surgical has developed two types of single-port
systems. The first uses curved cannulas to improve dexterity and triangulation, shown in
Figure 2.3. Although capable, the adoption of this system has been limited due to the
external arms of the system colliding together [31]. The most recent FDA approved single-
port robotic system, the da Vinci® Sp™ Surgical System, delivers an articulating 3D
camera along with three fully articulating EndoWrist® instruments through a single 25-
mm cannula, shown in Figure 2.4, [32]. This system is not yet commercially available but

is projected to be compatible with the da Vinci® Xi Surgical System.
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Figure 2.3: The da Vinci® system set up to perform an R-LESS procedure using curved cannulas (©2014
Intuitive Surgical, Inc.)

In addition to the commercially available R-LESS systems, numerous research
groups are attempting to create a miniature in vivo surgical robot that places some or all of
the actuators inside of the peritoneal cavity. Dario et al. have developed a Single-Port
lapaRoscopy bimaNual roboT (SPRINT), [33]. This bi-manual robot has two six-DOF
arms with end-effectors. Each arm is 18 mm in diameter and is designed to be inserted
individually through a single 30 mm diameter cannula. The device is controlled via a haptic
interface device. Only 4 of the 6 positional DOFs per arm are actuated by in vivo motors.
The two proximal DOFs and the end-effectors’ open/close actuation are externally

actuated. These external DOFs constrain the device to the location of the access point.
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Figure 2.4: The da Vinci® Sp™ Surgical System (©2014 Intuitive Surgical, Inc.)

The Advanced Surgical Technologies Laboratory at the University of Nebraska-
Lincoln has been developing in vivo surgical devices since the early 2000s. The group has
developed various types of platforms such as magnetically mounted imaging robots, two
wheeled mobile robots, and rigidly mount single-port robotic devices [34]-[42]. The most
recent developments have been two-armed miniature in vivo surgical robots for use in R-
LESS procedures. These multi-functional devices can be inserted through a single incision
to perform general surgical procedures within multiple quadrants of the peritoneal cavity.
Successful in vivo procedures include colectomies, cholecystectomies, and a hysterectomy
[43]. This thesis will present a new, miniaturized version of the predicate devices with
distributed motor control and a device that will allow the robot to be inserted into the

abdominal cavity under insufflation, shown in Figure 2.5.
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Figure 2.5: EB2.0 Design
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Chapter 3: Motivation

Section 3.1: Overview

Single-port surgery has many benefits but is inherently difficult due to the
constraints of a single access point. Dexterous in vivo robotic platforms aim to replace
standard laparoscopic tools, while improving the standard of care. The basic robot design
consists of two arms that can be inserted together or individually through a single small
incision. Once inserted, only a central rod is protruding from the insertion site. This rod
allows the robot to be rigidly supported to the operating table or grossly positioned, if
needed. For NOTES applications this central rod would be replaced by a magnetic handle

that would affix the device to the wall of the abdominal cavity.

Each arm is designed to meet or exceed the capabilities of traditional laparoscopic
tools. The device can be completely inserted into the abdominal cavity under insufflation
using a custom insertion device. Since the device is completely inserted into the cavity
there are no kinematic restrictions due to the access point. The device is designed to have
two symmetric arms, similar to the kinematics of the left and right arms of a human. Each
arm of this device is designed to have four degrees of freedom with open/close actuation
of the end-effectors. Each arm consists of a ‘Torso’, ‘Upper arm’, and ‘Forearm’. The
symmetric arms have a 2-DOF shoulder joint, a 1-DOF elbow joint, and a 1-DOF rotation
of the end-effector. The end-effector’s rotational DOF is decoupled and has no effect on
the Cartesian positioning of the end-effector. Each arm can be independently controlled
using a set of haptic controllers. Video feedback is provided to the surgeon by a traditional

endoscope or custom stereoscopic camera pair.
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Section 3.2: Design Requirements

A number of factors should be considered when developing in vivo surgical robots.
Some of these factors include: force, velocity, dexterity, workspace, and size. The robotic
device must have adequate force, velocity, and dexterity to perform surgical procedures. It
must also have a large enough workspace to complete the surgical procedure. Robotic
workspace can be defined as the volume that the device can reach. Because this device has
multiple manipulators, the union of the two arms’ workspaces will be considered the
workspace of the entire device. The intersection of the two arms’ workspaces must be
maximized to allow the arms to cooperatively complete surgical tasks throughout a large
volume of the entire workspace. A large workspace also prevents the need for the robot to
be grossly repositioned multiple times during a surgery. However, coupling such a device

with a robotic gross positioning system may be beneficial [44].

It is difficult to quantify forces and speeds required to manipulate tissue and
perform surgical tasks because of the preliminary stage of this type of device. Currently,
the most prevalent available data is from laparoscopic procedures. BlueDRAGON
recorded the forces directly applied to the tool handle by the surgeon. Due to the unknown
interference with the access point, it is impossible to accurately determine the applied tissue
force. However, it can be safely assumed that the required forces are not higher than the
reported forces that were applied to the tool handle. The BlueDRAGON, developed by the
BioRobotics Lab at the University of Washington, was used to measure forces and speeds
of various surgical procedures [45]-[47]. The raw data from these studies found that forces
applied along the axis of the tool were on the order of 20 N, while forces applied

perpendicular to the axis of the tool were on the order of 5 N. This dataset was further
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analyzed to determine the velocity design specifications for a spherical robotic
manipulator. From the raw data, the calculated angular velocities for the axes perpendicular
to the laparoscopic tool were 0.432 rad/sec and 0.486 rad/sec, while the angular velocity
around the axis of the tool was 1.053 rad/sec. The linear velocity along the axis of the tool
was 72 mm/sec. From the reported approximate tool length of 100-150 mm, the upper limit

of the velocity design requirement can be approximated.

Another study was completed in an open-surgery setup that recorded the force
needed to stretch the mesocolon for dissection [48]. For this study, clamps were applied to
the mesocolon in series with a spring scale. The surgeon then applied tension to the sigmoid
mesocolon at an angle of approximately 60 degrees relative to horizontal. The average pull
force per clamp was 1.9+0.6 N, with a maximum of 3.1 N. Using the data from this study,
Lehman et al. assumed that the remainder of the applied forces was evenly distributed
between the remaining axes [35]. The summarized force and velocity design requirements

are shown in Table 3.1 and Table 3.2.

Predicate devices have demonstrated that a two-armed miniature in vivo surgical
robot is a feasible method for performing surgical procedures. They have also demonstrated
that such devices can be inserted through a single incision and be grossly positioned

throughout the abdominal cavity through the use a protruding rod [43], [49].

The most recent predicate devices have two arms that are introduced individually
into the abdominal cavity to reduce the necessary size of the access incision. This type of
insertion technique would be a cumbersome task to complete during a NOTES procedure.

Lehman et al. developed a device that would become flexible for insertion through a natural
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orifice and could be grossly positioned throughout the abdominal cavity using a magnetic

handle [50]. However, this device required minor assembly once inside the abdominal

cavity.

Table 3.1: Average Force Design Requirements

Force Direction

Value (N)

Fx
Fy

F.

0.8

0.8

2.2

Table 3.2: Average Velocity Design Requirements

Rotational Velocity

Value (mm/sec)

Vx
Vy

V;

wGrasper

70

70

72

1.053 rad/sec

From these observations a list of requirements were derived: 1) the device should

be developed such that a protruding rod or magnetic attachment system could be used to

grossly position the robotic platform, 2) the two arms of the robotic device should be

permanently coupled together to ease the insertion process, 3) following introduction into

the cavity no additional steps should be required by the surgeon except for gross
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positioning, and 4) force and speed requirements should be met, as set forth in Table 3.1

and Table 3.2, through a large area of the robotic workspace.
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Chapter 4. Eric-Bot 2.0 System Description

The Advanced Surgical Technologies Lab at the University of Nebraska-Lincoln
has developed numerous iterations of multi-functional two-armed in vivo surgical robots.
The first generation of devices were developed specifically for NOTES applications. These
devices were compact with at most three-DOFs per arm and lacked position control. The
next generation of devices were designed specifically for LESS surgery. The simplified
access to the abdominal cavity allowed the number of DOFs to be increased with larger
motors equipped with encoders for position control. These changes allowed the devices to
complete more advanced surgical procedures. The first of these devices were too large to
be inserted into the abdominal cavity through a 20-35 mm incision. However, these original
devices validated that a miniature, two-armed surgical robot was capable of performing
complex surgical procedures. The second generation of this type of device, specifically
designed for LESS surgery, have been composed of two arms that are individually inserted
into a non-insufflated abdominal cavity. Once inserted, the two arms are assembled
together and secured via a central insertion rod. This rod protrudes from the incision site
and can be rigidly attached to the operating table. A specialized gel port is used to create a

seal between the abdominal incision and the insertion rod.

Eric-Bot 2.0 (EB2.0) is a two-armed multi-quadrant robotic platform that has been
developed for LESS surgery. This platform is based on previous research from our group
and can be used as a stepping stone towards NOTES. EB2.0 was designed to eliminate the
need for additional assembly tasks once inserted into the abdominal cavity. In addition, the

device is equipped with a distributed motor control system and custom insertion device
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that allows insufflated insertion into the abdominal cavity. The progression of surgical

devices from the Advanced Surgical Technologies Lab is shown in Figure 4.1.

Shoulder Yaw
Nut in Guide
Shoulder Yaw
Lead Screw

8mm
PMDC Motor

Cautery
Forearm

Grasper

Forearm
Translation Rotation 6mm
Gear Set Gear Set PMDC Motors

Figure 4.1: Evolution of miniature in vivo surgical devices from the Advanced Surgical Technologies Lab at
the University of Nebraska-Lincoln. A) First generation of surgical devices developed for NOTES (Lehman
etal.), B) First generation of surgical devices developed for LESS surgery (Wood et al.), C) Second generation
of surgical devices developed for LESS surgery (Wortman et al.), D) EB2.0 third generation of surgical devices
developed for LESS surgery.

Section 4.1: Kinematic Model

A kinematic model of the right arm of EB2.0 is shown below in Figure 4.2. The
base frame {0}, not shown, is -6 mm along the X axis from frame {1}. The plane of
symmetry is located at (0, 0, 0) parallel to the YZ plane. Frames {1} and {2} are located at
the shoulder of the device between the torso and upper arm. Frame {3} is located at the

elbow joint between the upper arm and forearm. Frame {4} is located at the tip of the end-
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effector. The degrees of freedom as shown on the actual device with corresponding

link/body naming convention are shown in Figure 4.3.

Figure 4.2: Kinematic model of EB2.0. Frame {1} is located at (6, 0, 0) [mm].

: _1,1'ESho§11der Pitch
62: Shoulder Yaw
63: Elbow Yaw

"~ 04: End Effector Roll

Figure 4.3: EB2.0 with labeled degrees of freedom and link naming convention.
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Section 4.1.1: Forward Kinematics

Using the kinematic model, the transformation matrixes between frames can be
derived. A transformation matrix is used to describe the location of frame {i} relative to
the previous frame {i-1} [51]. The derivation of the transformation matrix between frames
{2} and {3} is shown in Figure 4.4. Traditionally, the Denavit-Hartenberg (DH) notation
is used to affix reference frames to the links of a robotic manipulator [51]. Each link is
summarized by 4 link parameters. These parameters can be used to derive the
transformation matrices between frames or construct the original kinematic model.
However, the DH notation often results in multiple solutions. Based on the simplicity of

the model and to eliminate any uncertainty a geometric method was used.

C; 0 S
ng[o 1 0]

—S; 0 C
0
p=| o
—87.5
, i-1 -1
> (2 = TR TP
7, 0 1

X, =|X; cos(03) HZ; sin(B3)
Zz = _X3 Sln(eg) + ZgCOS(Gg)

Figure 4.4: Derivation of the transformation matrix between frames {2} and {3}.

Equations X2 and Z can be written solving for point P, while only using variables
X3, Z3, and 03. 03 is defined as the positive rotation between frames {2} and {3}. Matrix R
is the rotation matrix that is populated using equations X, and Z,. Matrix P is the vector

from frame {2} to frame {3}. A transformation matrix can be formed using Equation 4-1.
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Equation 4-1

i_liT _ [i_liR i_ll-P]
0 1

The forward kinematics of the right arm of the robot can be constructed by
multiplying all of the transformation matrices together in order from 9T to *~1T. Following

the derivation described above the following transformation matrices were formed:

Equation 4-2
1 0 0 O
op |0 G =S 0
1 0 S, C 0
0 O 0 1
Equation 4-3
c, 0 S, 0
ip-|0 1 0 0
2 _SZ 0 CZ _LO
0 0 O 1
Equation 4-4
C; 0 S; 0
2p [0 1 0 0
3 -S, 0 C3 -,
0 0 O 1
Equation 4-5
1 0 0 O
3 »_10 1 0 O
=10 0 1 —L,
0 0 0 1

where Cn = c0s(0n), Sn = sin(0n), Lo=10.7 mm, L1 =87.5 mm, and L, = 95.3 mm.

The Cartesian coordinates corresponding to the forward kinematics of the robot can
be extracted from the single transformation matrix that is formed by multiplying all of the
transformation matrices together. The extracted forward kinematics, matrix P, of EB2.0 is

shown below in Equation 4-6, Equation 4-7, and Equation 4-8.
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Equation 4-6
X = —Ly(C3S3 + S;C3) — Ly S,
Equation 4-7
Y == L2(81CZC3_515253) + L181C2 + L()Sl
Equation 4-8

Z= _LZ(C1C2C3 - C1$ZS3) —L;C1C; — LoCy

Section 4.1.2: Workspace

The entire workspace of the robotic device is defined as the union of the reachable
workspace of the right and left arm of the robotic prototype. Robotic workspace can be
defined as the volume that the manipulator can reach. The workspace can be
mathematically found using the forward kinematics and joint limits. However, for this
device if 01 is removed, it becomes a planar device. Therefore, the workspace of the device
can be found by tracing the minimum and maximum reach of the planar device and
revolving this trace about the axis of 01. The workspace of the planar device is shown in
Figure 4.5. The area of a single slice within the prototype’s workspace is 305.0 cm?. The

volume of the entire workspace is 7431.2 cm?®,
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Figure 4.5: EB2.0 superimposed on top of a slice of the entire robotic workspace at 01 = 0 degrees.

The intersecting workspace of the surgical robot is very important. Tasks such as
suturing, dissection, and tissue manipulation often require the arms to cooperatively
complete these surgical tasks. The intersecting workspace of the planar device and the
intersecting workspace volume of EB2.0 are shown in Figure 4.6. The area of a single slice
within the prototype’s intersecting workspace is 142.7 cm?, accounting for 46.8% of the

entire workspace. The volume of the intersecting workspace is 3838.2 cm?.
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Figure 4.6: Left: EB2.0 superimposed on top of a slice of the intersecting robotic workspace at 01 = 0 degrees.
Right: EB2.0 with the intersecting workspace of the device.
The previous workspace plots where formed using the joints limits shown in Table
4.1. The specific design of each joint will be discussed in detail within Chapter 4, Section
4.2. In addition, 62 was limited to O degrees in the positive rotational direction to eliminate
collisions between the upper arms and 63 was limited to 0 degrees in the negative rotational
direction to prevent the device from passing through a singularity. Based on intelligent
interference control, the joint range of 82 could be increased to 35 to -90 degrees, listed as
02, alternative iN Table 4.1. Using 02, aemative the workspace and intersecting workspace would
be increased by 40.8% and 45.8% respectively. The area of the entire workspace is 429.6
cm?, while the intersecting workspace accounts for 208.1 cm?. The increased workspace
and intersecting workspace are shown in Figure 4.7. The original intersecting workspace

is also shown for comparison.
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Table 4.1: EB2.0 of joint limits, right arm.

Joint

Range (Degrees)

Positive Rotation

01
02

92, alternative

03

4510 -80

0to -90

3510-90

0to 135

ZtoY

Zto X

Zto X

Zto X

Figure 4.7: EB2.0 superimposed on top of a slice of the entire robotic workspace at 61 = 0 degrees. Black:
original interesting workspace, Green + Black: interesting workspace using 02, aiternative, Green + Black + Red:
robotic workspace using 02, aiternative.

The area of the entire workspace of the most recent previously developed miniature

in vivo surgical robot, TB2.0, is 169.5 cm?, while the intersecting workspace accounts for

52.7 cm?. Ignoring 02, aienative the entire workspace of EB2.0 is 79.9% larger, while the

intersecting workspace is 170.8% larger.
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Section 4.1.3: Jacobian Matrix

The Jacobian matrix is the first order partial derivative of the forward kinematics.
This matrix is used to study both velocities and static forces of robotic manipulators [51].
The Jacobian matrix written in vector notion from frame {0} is shown in Equation 4-9.

Equation 4-9

5(X,Y,2)

O =—%5

In the case of the present robotic prototype, 64 can be ignored when calculating the
Jacobian matrix. This DOF does not affect the position of the end-effector and is decoupled
from the system. Therefore, a 3 X 3 Jacobian matrix for EB2.0 can be formed, shown in
Equation 4-10. The matrix was calculated using MAPLE (Maplesoft, Waterloo, ON). The

code used to calculate the Jacobian matrix can be found in Appendix A.

Equation 4-10

0 _(C2C3 - 5253)1'2 = GL, —(C2C3 - 5253)1'2
0
](9) = _(615253 - C1C2(:3)L2 + C,G,Ly _(5152C3 - 516253)1‘2 = 55,1, _(5152C3 + 516253)1‘2
_(515253 - 516263)L2 +5,GLy ((:152(:3 + C1C253)L2 + €151, (615263 + C1€253)L2

where Cn = c0s(0n), Sh = sin(6n), Lo=10.7 mm, L1=87.5 mm, and L> = 95.3 mm

The determinant of the Jacobian matrix can be analyzed to determine the
singularities of the device, expressed in Equation 4-11. A singularity of EB2.0 exists when
03 = 0 degrees. In this configuration, motion of the end-effector is possible along only two
Cartesian directions, the directions perpendicular to the arm. The mechanism has lost one

DOF in this configuration. This type of singularity is classified as a workspace-boundary
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singularity because it only exists at the edge of the manipulator’s workspace. A singularity

can also arise if the angular velocity or torque approaches infinity.

Section 4.1.4: Theoretical Abilities

DET[J(6)] =0

Equation 4-11

Brushless DC motors with integrated planetary gearheads and Hall effect sensors

were used throughout the robotic prototype. Brushless DC motors have many advantages

over brushed DC motors such as increased lifespan, high efficiency, low electrical noise,

and improved heat dissipation. In addition, brushless motors can be sterilized which would

be required for FDA approval. Some companies, such as Maxon Motor, offer brushless

motor options that are rated up to at least 100 autoclave cycles [52]. However, brushless

DC motors sometimes require complex and expensive control systems. The motor

specifications for each joint are shown in Table 4.2. The specific joint design and motor

selection is discussed in detail within Chapter 4, Section 4.2.

Table 4.2: EB2.0 joint characteristics.

Joint Stall No-Load | Internal | Efficiency, | External
Torque, 7, | Speed, | Gearhead, n Reduction,

(mNm) | on (rpm) N, (%) Ny

01 1.63 45,600 256:1 65 1:1
02 0.73 46,500 1024:1 55 8:5

03 0.73 46,500 1024:1 55 8:5

04 0.73 46,500 256:1 55 7:5
05, Grasper 0.73 46,500 256:1 55 2:1
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As previously stated, the Jacobian matrix can be used to find the end point velocities
and static forces of robotic manipulators. The relationship that relates joint torques to static
endpoint forces and angular velocities to endpoint velocities is shown in Equation 4-12 and
Equation 4-13 respectively. Based on the knowledge of the theoretical motor capabilities

the theoretical endpoint capabilities can be derived across the workspace of the prototype.

Equation 4-12
= %7() °F

Equation 4-13

% = %(8)6

Section 4.1.4.1: Manipulability
The Jacobian matrix can also be used to determine the dexterity of a robotic
manipulator. Yoshikawa used the Jacobian matrix to determine the dexterity of a
manipulator by defining the manipulability measure, o, [53]. The manipulability measure

is defined in Equation 4-14.

Equation 4-14

w = \/det(](ﬁ’))]T(Q))

The manipulability of EB2.0 was calculated across the workspace of the right arm.
These results were normalized and plotted in MATLAB® (Mathworks®, Natick, MA)
using the surface function, shown in Figure 4.8. The value 1 represents the highest
manipulability while O represents the lowest. The code that was used to calculate and plot
the manipulability measure across the workspace and the original plot can be found in

Appendix B.
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Figure 4.8: EB2.0 manipulability measure, right arm.

Section 4.1.4.2: Forces

Using Equation 4-12 and known joint torques from Table 4.2, the static endpoint
forces can be found along each of the principal Cartesian axes. The theoretical joint torques

can be calculated using Equation 4-15.

Equation 4-15

T=n'TS'NI'NE

Once the maximum individual joint torques were found, the theoretical static
endpoint force in each Cartesian direction was calculated and plotted across the workspace.
The results were plotted using the surface function in MATLAB®, as shown in Figure 4.9.
The code that was used to calculate and plot the static endpoint force in each principal

Cartesian axis can be found in Appendix B.
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Figure 4.9: EB2.0 static endpoint force in each principal Cartesian axis, right arm (Please note that the force
scale for each individual plot is different: Fx: 10-0.8 [N], Fy: 4-0.8 [N], Fz: 10-2.2 [N]).

This analysis assumes no gravity and massless arms. While not exact, the values

found are a reasonable estimation of the prototype’s abilities. At the worst case scenario,

when the arm is positioned parallel to the negative-Z axis, the torque, 7,4, required to

compensate for gravity is showed in Equation 4-16. This compensation accounts for

approximately 3.5% of the maximum intermittent torque allowed by the gearhead of the

10-mm Maxon motor. At the worst case scenario, when the insertion rod is perpendicular

to the operating table and the arm is parallel to the X axis, gravity accounts for

approximately 18% and 4.9% of the maximum intermittent torque allowed by the gearhead

of the 6-mm Faulhaber motor for should yaw and elbow yaw, as shown in Equation 4-17
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and Equation 4-18 respectively. A free body diagram (FBD) of each case is shown in Figure
4.10. Acceleration limits have not been set for this device. These limits will be set during

future benchtop testing. Additionally, a dynamic analysis of the system will be completed.

Equation 4-16

87.5 95.3
Tg1 = 35 [g] [(10.7 + T) + (10.7 +87.5+ T)] [mm] = 7mNm

Equation 4-17

Tg2 = 35 [g] [(872—5) + (87.5 + 9!;—3)] [mm] = 6.3 mNm

Equation 4-18

95.3
743 = 35 [g] (T) [mm] =~ 1.7 mNm

T To1 Y
Torso L) -7

\LT grav ‘LT grav

ATez TT93 Z

0SI0],

N7 T grav \I;E grav

Figure 4.10: Free body diagram (FBD) of EB2.0 when gravity fully acts on each body. Top: FBD for shoulder
pitch, Bottom: FBD for shoulder and elbow yaw.
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To further understand the capabilities of EB2.0, the calculated static endpoint force
in each principal Cartesian axis was compared and the minimum value was plotted across
the workspace. The results were plotted using the surface function in MATLAB®, as
shown in Figure 4.11. The code that was used to calculate and plot the minimum static

endpoint force across the workspace and the original plot can be found in Appendix B.

It should be noted that a large majority of the workspace meets or exceeds the
values set forth earlier within Chapter 3, Section 3.2. In addition, all of the endpoint force
deficiencies are seen at the boundary of the workspace, where one or more of the DOFs
are lost. Force deficiency plots can be found in Appendix B. The deficiency plots show in

detail how the force capabilities decrease as the singularity is approached.

Figure 4.11: EB2.0 minimum static endpoint force, right arm (Forces are in Newtons with a scale from 0.8-3

[ND.
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Section 4.1.4.3: Velocities

Using Equation 4-13 and known no-load angular velocities from Table 4.2, the
endpoint velocity can be found along each of the principal Cartesian axes. The theoretical

no-load angular velocity can be calculated using Equation 4-19.

Equation 4-19
Wni

Wjoint = m
Once the individual joint no-load angular velocities were found, the theoretical
endpoint velocity in each Cartesian direction was calculated and plotted across the
workspace. The results were plotted using the surface function in MATLAB®, as shown
in Figure 4.12. The code that was used to calculate and plot the endpoint velocity in each

principal Cartesian axis can be found in Appendix B.

This analysis assumes no gravity and massless arms. While not exact, the values
found are a reasonable estimation of the prototype’s abilities. Based on the worst case
scenario, when gravity fully acts on the body of interest as shown in Figure 4.10, the
maximum torque required for gravity compensation can be calculated as shown in Equation
4-16, Equation 4-17, and Equation 4-18. The provided speed-to-torque gradient, found in
Appendix C, can be used to calculate the revised no-load speed for each joint as shown in
Equation 4-20. The recommended speed at 7, and the no-load speed can also be compared
using the speed-torque curve for each motor which is provided in Appendix C. There is no
significant change in no-load speed for any of the joints. Additionally, the revised no-load

speed is greater than the recommended maximum angular velocity for each joint.
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Equation 4-20

Wnirevisea = (Speed — to — torque gradient) * (Topqy — Tg)
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Figure 4.12: EB2.0 endpoint velocity in each principal Cartesian axis, right arm (Please note that the
velocity scale for each individual plot is different: Vx: 70-800 [mm/s], Vy: 70-1000 [mm/s], Vz: 72-500

To further understand the capabilities of EB2.0, the calculated endpoint velocity in
each principal Cartesian axis was compared and the minimum value was plotted across the
workspace. The results were plotted using the surface function in MATLAB®, as shown
in Figure 4.13. The code that was used to calculate and plot the minimum endpoint velocity

across the workspace and the original plot can be found in Appendix B.

It should be noted that a large majority of the workspace meets or exceeds the

values set forth earlier within Chapter 3, Section 3.2. The endpoint velocity deficiencies
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are seen where one or more of the DOFs are lost and are unable to contribute to the endpoint
velocity in one of the principal Cartesian axes. Velocity deficiency plots can be found in
Appendix B. The deficiency plots show in detail how the velocity capabilities decrease as

the singularity is approached.

1120

1110

1100

80
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Figure 4.13: EB2.0 minimum endpoint velocity, right arm (Velocity is in mm/sec with a scale from 70-150
[mm/sec]).

Section 4.2: Physical Design

As previously stated, EB2.0 is composed of two arms, each with four degrees of
freedom. Each arm has three segments/links which are labeled as ‘Torso’, ‘Upper Arm’,
and ‘Forearm’. The left and right arms are symmetric about the YZ plane. An isometric
view of EB2.0 is shown in Figure 4.14. Each segment/link is labeled and will be discussed

in detail in the following sections.
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Cautery

Grasper

Figure 4.14: Isometric view of EB2.0.

Section 4.2.1: Torso

The torso of the robot is shared between the right and left arm, and houses the first
DOF of the 2-DOF shoulder joint for each arm. This DOF provides shoulder pitch.
Shoulder pitch is powered by an 8 Watt, 10-mm brushless DC motor with 256:1 integrated
gearhead and Hall effect sensor package from Maxon Motor (Sachseln, Switzerland). The
data sheet for this motor combination can be found in Appendix C. The internal gearhead
is mated to a spur gear set with a 1:1 gear ratio which is assembled to a 90 degree 1:1 bevel
gear set to provide rotation perpendicular to the axis of the motor. A cross section of this

joint is shown in Figure 4.15.
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Figure 4.15: EB2.0 torso cross section view.

All shaft to spur gear mates are coupled using a “D-shaped” geometry, as shown in
Figure 4.16. This type of mechanical mate rotationally fixes the two parts, while allowing

disassembly.

Y

Figure 4.16: EB2.0 “D-shaped” geometry spur gear to shaft mate.

All shafts are supported by two deep-groove ball bearings at a spacing greater than
2 times the inner diameter. Bearings are shown in red within Figure 4.15. A motor control
board is also shown within the cross-section view. The master control board is responsible
for sending and receiving update commands sent from the host computer. It also relays

updates from the local control boards. The master board also has a copy of the local control
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boards, responsible for controlling shoulder pitch for the right and left arms of the robotic
prototype. The control system will be discussed in detail in Chapter 4, Section 4.3. The 10-
mm brushless motor is secured in the motor housing by a mechanical friction clamp, shown

in Figure 4.17.

Figure 4.17: EB2.0 10mm motor clamp.

Section 4.2.2: Upper Arm

The upper arm of the prototype device provides two DOFs, shoulder and elbow
yaw. These joints are identical copies. A cross-section view is shown in Figure 4.18.
Similar to the torso, both joints consist of a spur and bevel gear set. However, these joints
are powered by a smaller 1.5W 6-mm brushless DC motor with 1024:1 integrated gearhead
and Hall effect sensor package from Faulhaber (Schénaich, Germany). The data sheet for
this motor combination can be found in Appendix C. The internal gearhead is mated to a
spur gear set with an 8:5 gear ratio which is assembled to a 90 degree 1:1 bevel gear set to
provide rotation perpendicular to the axis of the motor. All shaft to spur gear mates are
coupled using a “D-shaped” geometry, like previously shown in Figure 4.16. The 6-mm

brushless motor is secured in the motor housing by a mechanical friction clamp, like
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previously shown in Figure 4.17. Additionally, all shafts are supported by two deep-groove
ball bearings at a spacing greater than 2 times the inner diameter. Bearings are shown in
red in Figure 4.18. A local motor control board, not shown, is also housed within the upper
arm. The local control board has two motor drivers and is responsible for controlling
shoulder and elbow yaw. Additional details about the control system will be discussed in

Chapter 4, Section 4.3.

Spur Gear Set 6-mm Motor
Bevel Gear Set Preload Screw

Hall Effect Sensor

Output Link  Bearings Motor
Internal Gearhead

Figure 4.18: EB2.0 upper arm cross section view.

Section 4.2.3: Forearms

Three different forearm designs were developed for EB2.0. Each of the forearm
designs could be interchanged with different surgical tools for the specified surgical task.
For general surgical procedures such as a colectomy, a grasper and a monopolar
electrocautery device are the essential tools. Typically, for a right-handed surgeon the left
hand controls the grasper, while the right hand is used to control the cautery, which requires
a steady and precise hand. It should be noted that the right and left end-effectors are easily

interchangeable. For this prototype only a monopolar hook cautery device, grasper, and
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surgical shears were developed. However, with minor alterations many other surgical tools

could be retro-fitted for this device.

Section 4.2.3.1: Monopolar Hook Cautery

A single-DOF forearm was designed specifically for a monopolar hook cautery.
This forearm only actuates the end-effector roll DOF and consists of a 6-mm motor, spur
gear set, monopolar hook cautery, and slip ring. A cross section view is shown in Figure
4.19. Similar to the upper arm, a 6-mm motor combination with a 256:1 internal gearhead
from Faulhaber (Schonaich, Germany) was used. However, due to space constraints the
motor is glued within the motor housing. The internal gearhead is mated to a spur gear set
with an 8:5 gear ratio. All shaft to spur gear mates are coupled using a “D-shaped”
geometry. Additionally, all shafts are supported by two deep-groove ball bearings at a
spacing greater than 2 times the inner diameter. Bearings are shown in red in Figure 4.19.
A slip ring is used to provide electrical connection between the monopolar hook cautery

and the electrosurgical generator, allowing unlimited rotation of the end-effector.

Spur Gear Set
Slip Ring  6-mm Motor

Bearings

!

Cautery Preload Nut
Internal Gearhead Motor  Hall Effect Sensor

Figure 4.19: EB2.0 monopolar hook cautery cross section view.



42

Section 4.2.3.2: Grasper End-Effector

A 2-DOF forearm was designed for an open and close type of end-effector such as
a grasper, needle driver, or surgical shears. This forearm actuates the open and close action
of the end-effector using a custom linear screw drive. End-effector roll is performed at the
distal tip of the forearm using a standard spur gear set. This forearm consists of two 6-mm
motors with spur gear sets, a linear screw drive, and the selected end-effector, in this case
a grasper. A cross-section view is shown in Figure 4.20. The 6-mm motor that actuates the
open/close actuation is not shown. Similar to the upper arm, a 6-mm motor combination
with a 256:1 internal gearhead from Faulhaber was used for both end-effector actuations.
The internal gearhead for the open and close actuation is mated to a spur gear set with an
8:5 gear ratio, while the other gearhead is mated to a spur gear set with a 12:5 gear ratio.
All shaft to spur gear mates are coupled using a “D-shaped” geometry. Additionally, all
shafts are supported by two deep-groove ball bearings at a spacing greater than 2 times the
inner diameter. Bearings are shown in red in Figure 4.20. This forearm is equipped with a

local control board, responsible for both end-effector actuations.
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Figure 4.20: EB2.0 2-DOF forearm cross section view.

Based on the configuration of this forearm, the linear screw drive is coupled to the
end-effector roll actuation. Both DOFs must be actuated at the same rate for the end-

effector to roll without the grasper opening or closing.

The jaws of the grasper are part of a 4-bar-linkage that is driven by the linear screw
drive. A cross-section view of the linkage is shown in Figure 4.21. One of the 4-bar-
linkages is labeled. Over time, this type of linkage has been proven as a more stable
mechanism as compared to a pin and slot type of 4-bar-linkage that was used with predicate

devices. Deformation was often seen in the slot, causing severe backlash.
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Figure 4.21: EB2.0 grasper cross section view.

Section 4.2.3.3: Alternate Grasper End-Effector

An alternative grasper design has been developed that decouples the two end-
effector actuations by moving grasper roll to the proximal end of the forearm. The joint
design is otherwise nearly identical to the previously discussed forearm. A cross-section
view is shown in Figure 4.22. This alternative configuration allows the prototype device to
have two grasper-type end-effectors for surgical tasks such as suturing. Previously, only
one grasper type forearm was allowed due to space constraints. The alternative forearm is
equipped with a local control board, responsible for both end-effector actuations. However,
this forearm design does not allow unlimited rotation of the end-effector because of the

cabling between the upper arm and forearm.
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Figure 4.22: EB2.0 alternative grasper forearm design cross section view.

Section 4.2.4: Bevel Gear Manufacturing

A non-standard manufacturing technique, lost wax investment casting, was used to
manufacture all of the bevel gears for EB2.0. Wood et al. developed NB1.0 using modified
commercial-off-the-shelf (COTS) bevel gears. The shoulder yaw joint consisted of a link
and mating bevel gear. Looking at specifically the joint between frame {1} and {2} of
EB2.0, five individual parts would be required if traditional manufacturing techniques were
used: 2 modified COTS bevel gears, 2 bearing shafts, and 1 link. This comparison is shown
in Figure 4.23. In addition to the part count difference, there is almost a 35% cost savings
between the two manufacturing methods. The cost break-down between traditional and
non-traditional manufacturing techniques for EB2.0 is shown in Table 4.3. This price
comparison is for 6 units. A greater cost savings will be seen as the number of units are

increased.
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Figure 4.23: Joint design comparison using traditional (top) versus non-traditional (bottom) manufacturing
techniques.

The investment-cast bevel gears were manufactured out of 316 stainless steel (SS).
A major difference in the surface finish of the bevel gears based on manufacturing
techniques can be seen. The final parts required some surface finishing and minor touchups
where the bearings were seated. As a precaution the bevel gears were buffed using a
scouring pad to remove any excess material. Some of the original parts and one touched-

up part are shown in Figure 4.24.



Table 4.3: EB2.0 joint cost using traditional versus non-traditional manufacturing techniques.

. Traditional Non-Traditional
Joint
Parts Cost Parts Cost
1 Bevel Gear $105 Bevel Gear Lot Cost
Input
Shaft $135
1-2 | 2x Bevel Gear $210 Link 1-2 Lot Cost
2x Shaft $270
Link $365
2 Bevel Gear $105 Bevel Gear Lot Cost
Input
Shaft $135
3 Bevel Gear $105 Bevel Gear Lot Cost
Input
Shaft $135
3-4 | Bevel Gear $105 Link 3-4 Lot Cost
Shaft $135
Link $365

Total: $2170 $1420
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Figure 4.24: Lost wax investment cast bevel gears. The bearing seats on the far right part have been touched
up. The other two parts are as cast.

Section 4.2.5: Flexibility Methods

The automation of the task of making this type of robotic device flexible for
insertion through a natural orifice will be one of the most important topics in the coming
years. Novel flexibility mechanisms will be required to allow a smoother transition to
NOTES. One of the most promising devices provides an additional benefit that would help

to make the device more human friendly.

An electropermanent magnetic clutch has been developed that would allow the
clutch to become “programmable.” This type of magnetic technology has been used in
other types of robotic devices such as modular robotics [54]. Such a clutch can become

completely flexible for insertion through a natural orifice, become rigid once inside the
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abdominal cavity, and can be tuned to a torsional stiffness between the two extremes, while
consuming a minimal amount of power. This type of magnetic technology is similar to an
electromagnet; however, it only consumes power when changing the magnetic field
strength. Gilpin et al. proposed a method for assembling such devices by using two
different types of permanent magnet materials wrapped in copper coil and caped with soft-
iron poles, as shown in Figure 4.25. One of the permanent magnets is Neodymium-lron-
Boron (NdFeB), and the other is Alnico V. Both of the materials have essentially the same
magnetization; however, the magnetic field of Alnico V can be switched about 100 times
easier than the neodymium magnet. Thus, Alnico V can be easily coerced, changing the
overall magnetization of the electropermanent magnet from approximately zero to twice
the strength of a single magnetic core. The opposing side of the clutch would be equipped
with a standard diametrically magnetized rare earth magnet or some type of multi-pole
magnet. The original concept drawing of the electropermanent magnetic clutch design is
shown in Figure 4.26. Inadvertently, this type of transmission system provides a compliant
mate between the input and output of the joint, while adding an elasticity constant to the
joint dependent on the magnetization of the electropermanent magnet. In theory, this type
of transmission system could be directly mounted to the motor shaft, due to the separation
forces from the bevel gear set being decoupled from the input. Many advantages can be
envisioned with this type of transmission such as reduced rate of joint failure, reduced
unforeseen patient trauma, and ability to become flexible for insertion through a natural

orifice.
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Figure 4.25: Electropermanent magnet assembly.
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Figure 4.26: Original concept drawing for an electropermanent magnetic clutch.

A preliminary design of the electropermanent magnetic clutch (EPMC) with an
opposing multi-pole magnet is shown in Figure 4.27. The control strategy of this joint
designed is based on the theory of a series-elastic actuator, where the angular deflection
between the electropermanent magnet and the multi-pole magnet can be measured and a

joint torque could be derived. As described in Chapter 4, Section 4.1.4, the end point force
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can then be found from the known joint torques, eliminating the need for an additional

sensor to measure the interaction forces.

Rare Earth Magnet
Red: North, Blue: South

N

Electropermanent Magnet

/

Figure 4.27: Preliminary design for an electropermanent magnetic clutch (EPMC).

Relative motion between the electropermanent magnet and the rare earth magnet
generates both attractive and repealing forces. Analyzing the top half of the EPMC, an
attractive force is generated by the red sector, while a repealing force is generated by one
of the blue sectors depending on the direction of relative motion. Hence, % of the magnet
is generating a resistive force. If the resistive force is applied at the center of mass of each
sector, the minimum radius from the center of the rare earth magnet is based on the largest
sector. The minimum radius is 0.0707 inches. The attractive and repealing force was based
on a 4" diameter by 0.125” thick NdFeB, Grade N52 magnet from K&J Magnetics, Inc.
that was capable of generating a maximum pull force of 4.59 Ibs. The maximum torque
that could be transmitted by the EPMC is shown in Equation 4-21. The estimated allowable
torque of the EPMC is capable of transmitting the maximum continuous torque of the 6-

mm Faulhaber motor, while only 78.6% of the maximum intermittent torque.
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Equation 4-21

3
T = 0.0707 [in] = 4.59 [Ibf] * (Z) = 0.243 Ibf - in > 27.5 mNm

The presented flexibility method is a novel concept would allow the device to
achieve an infinite number of joint states from flexible to rigid and anywhere between. The
current transmission capabilities of the preliminary design are not applicable to the current

device. Future benchtop testing will reveal the actual torque capabilities.

Section 4.2.6: Vision System

Carlson et al. developed a high-definition stereoscopic vision system for medical
applications as shown in Figure 4.28, [55]. This system provides two 720p HD video
streams at 30 frames per second (fps). A set of low profile, variable focus liquid lenses
from Varioptic (Lyon, France) have been combined with the camera system. The

integration of the HD stereoscopic vision system with EB2.0 is shown in Figure 4.29.

Image Sensors

Figure 4.28: High-definition stereoscopic vision system (Carlson et al.).
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Figure 4.29: Integration of EB2.0 with the high-definition stereoscopic vision system (Carlson et al.).

The current vision system is too large for the current insertion cannula, however
the system provides a very stable viewing platform. The liquid lenses have no moving parts
and allow the surgeon to quickly and accurately focus on different items of interest

throughout the surgical procedure.

The camera feedback could then be viewed on a 3-dimensional (3D) viewing
system that uses mirrors to redirect the viewer’s eyes to 2 independent monitors referred
to as a mirror stereoscope, as shown in Figure 4.30. Commercial-off-the-shelf (COTS) 3D
viewing systems could also be used such as the Oculus Rift (Oculus VR®) or a 3D

television with polarized glasses.
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Figure 4.30: 3-dimensional viewing system, mirror stereoscope (http://www.3dfocus.co.uk/).

Section 4.2.7: Size Comparisons

The prototype device, EB2.0, has been designed to be approximately the size of a
single arm of the predicate device, TB2.0. A single arm of the predicate device has been
successfully inserted into the abdominal cavity through a single incision. The size

comparison of EB2.0 and a single arm of TB2.0 is shown in Figure 4.31.
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Figure 4.31: Size comparison of EB2.0 and a single arm of TB2.0. Top left: isometric view of size comparison.
Top Right: front view of size comparison. Bottom: top view of size comparison.

Section 4.3: Control System

Section 4.3.1: Hardware and Communication

All previously developed miniature in vivo surgical robotic prototypes from the
Advanced Surgical Technologies Lab were controlled using via external motor controllers.
This architecture required all of the motor leads to pass through the access site. For
example, TB2.0 presented by Wortman [38] had 54 conductors passing through the
incision site. The bundle of 54 wires is approximately 11 mm in diameter, accounting for
over 30% of the access site for a standard LESS surgical procedure. To eliminate this large

bundle of wires and associated external control hardware, Bartels [56] has developed a
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distributed motor control system for miniature in vivo surgical robots. The conceptual
diagram of the distributed motor control system is shown in Figure 4.32. Bartels et al.
provided the basis for the software and hardware architecture for an in vivo robot with
brushed DC motors. The third version of this distributed control system for brushless DC

motors will be described herein.

Communication Channel

Motor Motor Motor

Controller 1 Controller 2 Controller n

o o

Figure 4.32: Conceptual diagram of the distributed motor control system (Bartels et al.).

Control
Computer

Section 4.3.1.1: Brushless DC Distributed Motor Control

The brushless DC motor control board was based on the second version of the
hardware that was developed by Bartels [56]. The current prototype, version 3 (V3), of the
distributed motor control system (DMCS) is shown in Figure 4.33. Only one of the two
identical motor control circuits is labeled. The schematic documents can be found in

Appendix D.



57

3-phase Brushless DC Microcontroller
Motor Driver

RS-485 Line Driver

Bus In

Bus Out

Pogo Pin

Potentiometer Interface Motor Connector

! BLL‘C CONTRDL BUA!?D M
va2) [ IO

8] 122013 ﬂ L
=

—
C-’ —

s ===
Ls
DESIGNED BY:
&RIC
%ARK\HCKA

Figure 4.33: Board layout for distributed motor control system V3, Top: front side of PCB, Bottom: back side
of PCB.

The major changes to the electrical hardware between V2 and V3 of the DMCS is
the replacement of the brushed DC H-Bridge with a three-phase motor controller, addition
of Gecko (Harwin, Portsmouth, England) connectors for the differential serial bus, pogo
pin programming header, and spring contact potentiometer interface. All other electrical
items such as the microcontroller, RS-485 line driver, and voltage regulator remained the

same between V2 and V3. The replacement of the brushed DC H-Bridge was an obvious
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change between versions. The L6229Q (STMicroelectronics, Geneva, Switzerland) was
selected based on its small footprint and ability to provide a peak current of 2.8 Amps. A
large amount of time was often devoted to soldering the serial communication bus for both
previous versions of the DMCS. Failures also occurred due to poor strain relief of this
delicate connection. A miniaturized, high reliability connector from Harwin (Portsmouth,
England) was added to V3 of the DMCS. The Gecko connector features 2A conductors,
keyway polarization, and retention latches to ensure a secure connection. Each wired
assembly also features a snap-in housing and back epoxy potting well for additional strain

relief.

A pogo pin programming header interface was also added to minimize the footprint
of the board. A pogo pin is a temporary electrical connection that is often used for in-circuit
programming or with automatic test equipment [57]. A cross section view of a pogo pin is
shown in Figure 4.34. This type of programming header allows the programming pins to
be placed in a previously unusable place on the board. V3 of the DMCS with the pogo pin
programming header jig is shown in Figure 4.35. The last major change was the addition
of a spring contact interface of the potentiometer. This change allowed the board to be
completely removed from the robotic prototype for possible debugging. Previous versions
provided solder tabs for the potentiometer; while sufficient, the spring contacts did not
necessarily provide an additional failure point but added convenience when problems

arose.
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Figure 4.34: Cross section view of a pogo pin.

Figure 4.35: DMCS V3 with the pogo pin programming header jig.

Section 4.3.2: Inverse Kinematics

The inverse kinematics of the prototype can be solved using a geometric approach.
A geometric approach is used based on the assumption that frames {1} and {2} intersect.
This assumption greatly simplifies the inverse kinematics solution; which can be broken
up into two parts, theta 1 and a planar device. The surgeon uses visual feedback to ensure
the device is tracking his/her exact movements. Based on this theory, the assumption that
frames {1} and {2} intersect is valid. A solution will be proposed for the right arm of the

device as follows. A projection of the robot arm, R, onto the YZ plane at a positive pitch
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angle of 01 is shown in Figure 4.36. Using the inverse trigonometric function, arctangent
with two arguments, 01 can be found, shown in Equation 4-22. Using the Pythagorean
theorem, the length of R can be found, shown in Equation 4-23.

Equation 4-22

0, = atan2(Y,abs(Z))

Equation 4-23

R= YZ+22

Figure 4.36: Projection of the robot arm, R, on to the YZ plane.

The planar orientation of the robotic arm can be used to find 6, and 63. A projection
of the planar arm onto the XR plane is shown in Figure 4.37, where plane R is defined as
the plane that contains the robotic arm and is perpendicular to the YZ plane with an angular

offset of 6, from the XZ plane.
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Figure 4.37: Planar orientation of the robotic arm projected on to the XR plane, where plane R is defined as
the plane that contains the robotic arm and is perpendicular to the YZ plane with an angular offset of 61 from
the XZ plane.

The shoulder yaw angle, 02, is the complimentary angle of the sum of angles § and

v as shown in Equation 4-24.

Equation 4-24
6, =-— B~
272

Similar to 61, angle B can be found, shown in Equation 4-25.

Equation 4-25
B = atan2(R, —X)
Angle y can be found using the law of cosines with the known link lengths of L;

and L2, shown in Equation 4-26. This angle can be both +y or -y depending on if the

desired X-coordinate is positive or negative.
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Equation 4-26

L%2+L%—L%>:,{+¢,ifx<0

= tcos™! .
Y = £ cos ( TR Cif x>0

The length L1 is calculated using the Pythagorean theorem, shown in Equation
4-27.

Equation 4-27
le =\/x2+1'2 =\/X2+y2+22

Finally, the supplementary angle of 63 can be found using the law of cosines and

the known lengths of L1 and L2, shown in Equation 4-28.

Equation 4-28

L2 +12%2—12
6y = 1 — cos! (#

2L,L,

Section 4.3.3: Surgical User Interface

All of the recent robotic platforms developed by the Advanced Surgical
Technologies Lab at UNL have been designed for teleoperation. This ability allows the
device to be deployed in extreme environments with applications such as long-duration
space flight, battlefields, and remote and rural areas such as the South Pole. The remote

surgical user interface is shown in Figure 4.38.

Geomagic® Touch™ Haptic Devices (formerly Sensable Phantom Omni) are used
to provide haptic feedback to the user. Currently, the only haptic feedback that is available
to the user is the virtual workspace boundary of the device. This information is provided
to ensure the operator remains within the usable workspace. Additionally, motion scaling

and tremor reduction are provided by these devices to ensure smooth and actuate motion
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of the device’s end-effectors. Tremor reduction is implemented by applying a virtual

9

“viscosity” to the controller’s workspace, which effectively removes small muscle
twitches. The controllers also have a two-button interface which is used to control the open
and close actuation of the grasper. A set of foot pedals is provided to allow the surgeon to

lock/unlock each arm individually or to clutch into a more ergonomic position. The

Haptic Controllers

- Foot Pedals

Figure 4.38: Remote surgeon user interface for EB2.0.
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standard foot pedal setup for operating the electrocautery generator, used to activate the

monopolar electrocautery device, is also provided, not shown in Figure 4.38.

Section 4.4: Insufflated Insertion

The most recent previously developed prototypes required a time consuming and
difficult insertion process. The typical insertion of these devices requires brute force to lift
the abdominal wall, while each arm is individually twisted and contorted into the cavity
under no visualization. The arms are then blindly assembled together using a central
insertion rod. A gel port is then placed over the incision and the device to create a seal for
insufflation; during this time the device typically sits on the organ floor. Severe ingress is

often seen, causing electrical shorts and damage to the external electronics.

Frederick et al. have developed various methods for introducing such devices into
the abdominal cavity under insufflation [58]. Some of the devices are shown in Figure 4.39.
The most complex of these devices, such as Figure 4.39 A, was heavy, extremely complex,
and crowded the surgical site but nevertheless was able to sustain insufflation throughout
the insertion process; while simpler, non-intrusive devices, Figure 4.39 B, C, D, failed to
maintain insufflation. A simplified insertion method would be required for wide spread

adoption.
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Figure 4.39: Subset of insertion devices that were developed to allow non-uniform shaped devices to be
insertion into the abdominal cavity under insufflation. A: Canister type device that extends the pressurized
environment into the canister, allowing the surgeon to insert and/or remove his/her hands into the pressurized
environment and insert the device under insufflation; B, C, D: Standalone, custom insertion port that seals
against non-uniform objects; E, F, G: Deployment of a 4-bar-linkage that allows the overall diameter of the
arms to be minimized for insertion, E, and expand once fully inserted; F, G (Frederick et al.).

A simpler insertion method was developed for EB2.0 that would allow a single
motion to insert the device into the abdominal cavity under insufflation. A large majority
of the devices proposed by Frederick et al. required more than one step, [58]. The insertion
protocol developed for EB2.0 is similar to a piston-cylinder, where the insertion rod of the
device is linearly advanced and the robot is introduced into the abdominal cavity under full
visualization. The insertion system has a conical port that is wedged into the single incision.
A conical structure was used to all the device to account for variability in the incision size.
Sutures are then used to secure the system to the incision. A cross section view of the
insertion device is shown in Figure 4.40 and the insertion protocol is shown in Figure 4.41.
A linear bushing is used to provide a smooth and accurate insertion into the abdominal

cavity, while a radial wiper seal is used to sustain insufflation.
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Figure 4.40: Cross section view of the insertion device for EB2.0.

B) Insertion

System \

A)

3cm —
Insertion Rod

Figure 4.41: Introduction of EB2.0 into the abdominal cavity through a 3 cm diameter access port. A) Robotic
platform stored within access port, B) & C) Insertion of the robotic platform into the abdominal cavity, D)
Robotic platform secured to the abdominal wall by magnet, ready for surgical procedure to begin. The robotic
vision system and communication and power tether is not shown.

The main advantage of this system is its ability to reach all four quadrants of the
abdominal cavity. The robotic prototype, EB2.0, has two DOFs relative to the insertion

device. EB2.0 can independently rotate and translate about the axis of the insertion rod.
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The insertion device has two DOFs relative to the patient. The insertion device can pitch
and yaw due to elastic deformation of the abdominal wall, resulting in a conical workspace.
After insertion, EB2.0 can be rotated about a fulcrum at the incision site to access multiple
quadrants of the abdominal cavity. The articulation of EB2.0 from the upper abdominal
quadrant to the lower abdominal quadrant at an angle of 45 degrees relative to vertical is
shown in Figure 4.42. Throughout this articulation, the insertion device remains fixed to
the incision site. A video of the articulation has been created to help eliminate confusion,

[59].

Figure 4.42: Articulation of EB2.0 from the upper abdominal quadrant to the lower quadrant about a fulcrum
located at the access point. Top: top view, Bottom: side view. A video of the articulation can be found at [59].
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Chapter 5. Conclusions and Future Work

This thesis presents several advancements in the field of single-incision robotic
surgery. A miniature in vivo surgical robot has been developed with an insufflated insertion
protocol and distributed motor control. A high-definition stereoscopic camera system has
also been integrated. The theoretical analysis of the devices capabilities were presented and
are in line with the proposed requirements and the capabilities of predicate devices. An
increase of 79.9% in workspace and 170.8% in intersecting workspace was seen compared
to TB2.0, while the diameter a single arm of TB2.0 is larger than the entire diameter of the
prototype EB2.0. The entire workspace was increased by increasing the link length of
EB2.0. The intersecting workspace was increased by decreasing the distance between the
right and left arm of EB2.0. A preliminary design of an electropermanent magnetic clutch
has been developed that would allow the device to become flexible for insertion through a

natural orifice but then become rigid to perform the surgical procedure.

Several benchtop tests will be performed to verify the efficacy of the device. These
results will be compared to the theoretical capabilities and the results from predicate
devices. Based on the results, in vivo animal experiments will shortly follow. Additional
work will include reliability tests in an effort to obtain FDA clearance as a multi-functional

surgical robot for LESS procedures. In addition, sterilization will also have to be addressed.
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cos(t2) ~ 2 + sin(t2) *~ 2 * sin(tl) ™ 2 + cos(tZ) ~ 2 * sin(tl) *
2y S L1 /S L2 / sin(t3); sin(tl) / (-L2 * cos(tl) ™~ 2 * sin(t2) *
sin(t3) + LZ * cos(tl) ™ 2 * cos(tZ) * cos(t3) - L2 * sin(t2) *
sin(t3) * sin(tl) ~ 2 + L2 * cos(tZ) * cos(t3) * =sin(tl) ~ 2 + L1
* cos(tl) *~ 2 * cos(t2) + L1 * cos(t2) * sin(tl) ~ 2 + cos(tl) *
2 * offset + sin(tl) ™~ 2 * Offset) (sin(tZ) * sin(t3) - cos(t2) *
cos(t3)) * cos(tl) / (cos(tl) ~ 2 * sin(t2) ~ 2 + cos(tl) ~ 2 *
cos(t2) *~ 2 4+ sin(t2) *~ 2 * sin(tl) ™ 2 + cos(t2) *~ 2 * sin(tl) *
2) /L1 / sin(t3) (-sin(t3) * sin(t2) * L2 4+ LZ * cos(t2) * cos
(t3) + cos(t2) * L1) * cos(tl) / (cos(tl) ™ 2 * sin(t2) *~ 2 + cos
(tl) ~ 2 * gos(t2) ~ 2 4+ =zin(t2) ~ 2 * gin(tl) ™ 2 + cos(t2) ~ 2
* sin(tl) "~ 2) J Ll J L2 / sin(t3):1:
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Appendix B. Theoretical Abilities and Supporting

Material

clear all
close all
clc
clf

%% Joint Parameters
theta2min=-90*pi/180;
theta2max=0*pi/180;
theta2step=.25*pi/180;

theta3min=0*pi/180;
theta3max=135*pi/180;
theta3step=.25*pi/180;

%% Joint Length
Offsetz = -.42%25.4;
OffsetX = 6;

L1 = 3.445*25.4;

L2 = 3.75*25.4;

% T = (stall torque) * (Motor Gear Head Ratio) * (External Gear Head
% Ratio) * (Motor Gear Head Efficiency)
% w = ((no load speed)/ (Motor Gear Head Ratio))*(1/ (External Gear Head
% Ratio))*(rpm to rad/sec converstion)

$ Motor 1: 315171 + 218418 64:1 (Maxon Motors USA)
% Motor 2: 0620K006B + 06/1K 1024:1 (MicroMo)
% Motor 3: 0620K006B + 06/1K 1024:1 (MicroMo)

Motor Specs [mNm] 271.2320 657.8176 657.8176
1) = (1.63)*(256)*(1/1)*(.65);

2) = (.73)*(1024) (16/10) ( 55);

3) = (.73)*(1024)*(16/10) *(.55);

%% Motor Speed [rad/s]

o
wm(l) = ((45600)/(256))*(1/60) 2*pi);
wm (2) ((46500)/(1024))*(10/16)*(1/60) * (2*pi);
wm (3) ((46500)/(1024))*(10/16)* (1/60) * (2*pi);

n=0; m=0;
for t2= thetaZmin:thetalstep:thetaZmax
m=m+1;
n=0;
for t3= theta3min:theta3step:theta3max
n=n+1;
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%% Forward Kinematics with tl1 = 0, YF = 0

XF(m,n) = —-(cos(t2)*sin(t3) + sin(t2)*cos(t3))*L2 - sin(t2)*L1
+ OffsetX;

ZF (m,n) = (sin(t2)*sin(t3) - cos(t2)*cos(t3))*L2-cos(t2)*L1l +
OffsetZ;

%% Jacobian Calculation Frame Zero, tl = 0

J = [0 =(cos(t2) * cos(t3) - sin(t2) * sin(t3)) * L2 - cos(t2)
* L1 -(cos(t2) * cos(t3) - sin(t2) * sin(t3)) * L2; -(sin(t2) * sin(t3)
- cos(t2) * cos(t3)) * L2 + cos(t2) * L1 0 0; 0 —-(-sin(t2) * cos(t3) -
cos(t2) * sin(t3)) * L2 + sin(t2) * L1 -(-sin(t2) * cos(t3) - cos(t2) *
sin(t3)) * L2;];

%% Jacobian Transpose Calculation Frame Zero, tl = 0
Jt = [0 -(sin(t2) * sin(t3) - cos(t2) * cos(t3)) * L2 + cos(t2)
* L1 0; -(cos(t2) * cos(t3) - sin(t2) * sin(t3)) * L2 - cos(t2) * L1 O

-(-sin(t2) * cos(t3) - cos(t2) * sin(t3)) * L2 + sin(t2) * L1; -
(cos (t2) * cos(t3) - sin(t2) * sin(t3)) * L2 0 -(-sin(t2) * cos(t3) -
cos(t2) * sin(t3)) * L2;]1;

%% Jacobian transpose, inverse

Jti = [0 —-(cos(t2) * sin(t3) + sin(t2) * cos(t3)) / (cos(t2) *
2 + sin(t2) ~ 2) / L1 / sin(t3) (L2 * cos(t2) * sin(t3) + L2 * cos(t3)
* sin(t2) + sin(t2) * L1) / (cos(t2) ~ 2 + sin(t2) ~ 2) / L1 / L2 /

sin(t3); 0.lel / (L2 * cos(t2) * cos(t3) - L2 * sin(t2) * sin(t3) +
cos(t2) * L1l) 0 0; 0 —-(cos(t2) * cos(t3) - sin(t2) * sin(t3)) /

(cos (t2) ~ 2 + sin(t2) ~ 2) / L1 / sin(t3) (L2 * cos(t2) * cos(t3) - L2
* sin(t2) * sin(t3) + cos(t2) * L1) / (cos(t2) ~ 2 + sin(t2) ~ 2) / L1
/ L2 / sin(t3);];

%% Manipulability Measure
w(m,n) = sqgrt(abs(det (J*Jt))):;

%% Force and Velocity

F = Jti*T'; % [mNm/mm]
Fx(m,n)=abs (F(1));
Fy(m,n)=abs (F(2));
Fz (m,n)=abs (F(3));
V = J*wm'; % [mm/sec]
Vx (m,n)=abs (V(1));
Vy (m, n)=abs (V(2));
Vz (m,n)=abs (V(3));
end
end
YF = zeros (size(XF));

%% Find Maximum Manipulability
maxw=max (max (w) ) ;
%% Normalize Manipulability
for m=1l:size (w,1)

for n=1l:size (w,2)



w(m,n)=w(m,n)/maxw;
end
end

% Limit Maximum Force to 40 Nm, find minimum F and V
for m=l:size(Fx,1)
for n=1:size(Fx,2)
if Fx(m,n) > 40
Fx(m,n) = 40;
end
if Fz(m,n) > 40
Fz(m,n) = 40;
end
if Fy(m,n) > 40
Fy(m,n) = 40;

end

Fmin(m,n) = min([Fx(m,n) Fy(m,n) Fz(m,n)]);

Vmin(m,n) = min([Vx(m,n) Vy(m,n) Vz(m,n)]);

end

end
5555555555555 5555%5%%%555%5%5%%55%5%5%5%%55%55%5%5%%5%5%5%5%5%%%5%5%5%5%5%%%5%5%5%5%5%%
%% Plot Workspace Mesh
figure (1)

surface (ZF,XF,YF,w, 'facecol', 'no', '"edgecol', '"interp', "linew', 2);
view (90, 90)

colorbar;

colormap ('default")

xlabel ('Z [mm]")

ylabel ("X [mm]")

zlabel ('Y [mm]")

title ('EB2 Workspace')

saveas (gcf, '"EB2Workspace.jpg')
caxis ([0 0.571);

%% Plot Minimum Force Mesh
surface (ZF,XF,YF,Fmin, 'facecol', 'no', 'edgecol', "interp', "linew',2);

$% view(1l);

caxis ([0.8 371);

title('EB2 Minimum Force (N)')
saveas (gcf, "EB2MinF.jpg")
caxis ([0 0.8]);

Al 1 3 Al
saveas (gcf, "EB2MinF0to8.jpg"')
8990000000000 00000000000000000000000000000000000000000000000000005
OO0OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODO©O©O™©™©

%% Plot Fx Mesh

surface (ZF,XF, YF,Fx, 'facecol', 'no', 'edgecol', "interp', "linew', 2);
$% view (1) ;

caxis ([0.8 10]);

title ('"EB2 Fx (N)')



saveas (gcf, "EB2Fx.jpg")
caxis ([0 0.871);

saveas (gcf, 'EB2Fx0to8.jpg")
9990909099090090000009000000009009009000009
OO0OOO0OOOOOOOOOOOOOOOOOOOOOO™©
oo h

[SRNe)

caxis ([0.8 47);
title('EB2 Fy (N)'")
saveas (gcf, '"EB2Fy.jpg')
caxis ([0 0.871);

,XF,YF,Fy, 'facecol', 'no',

surface (ZF,XF,YF,Fz, 'facecol', 'no"',

$% view (1) ;
caxis([2.2 10]);
title('EB2 Fz (N)")

saveas (gcf, '"EB2Fz.jpg")
caxis ([0 2.2]);

saveas (gcf, 'EB2Fz0to22.Jpg’
99090000000000000000000000009
O0O0OOO0OOOO0OOOOOOOOOODOOOOOOOOO™©
oo

0

Plot Minimum Velocity Me
surface (ZF,XF,YF,Vmin, 'f

%% view (1) ;

caxis ([70 1501);

title ('EB2 Minimum Velocity
saveas (gcf, "EB2MinV.jpg")
caxis ([0 7071);

saveas (gcf, "EB2MinV0270

OOOOﬁOOOOOOOOOOOOOOOOOOOOOO
%% Plot Vx Mesh

surface (ZF,XF,YF,Vx, 'facecol"',

caxis ([70 800]);

title ('ER2 Vx (mm/sec)')
saveas (gcf, "EB2Vx.jpg")
caxis ([0 701]);

3% Plot Vy Mesh

acecol',

'no

'edgecol',

'edgecol’,

]
4

(mm/sec)

surface (ZF,XF,YF,Vy, 'facecol"',

caxis ([70 10007) ;
title ('EB2 Vy (mm/sec)
saveas (gcf, 'EB2Vy.jpg'

%% Plot Vz Mesh

surface (ZF,XF,YF,Vz, 'facecol', 'no"',

caxis ([70 50071);
title('EBR2 Vz (mm/sec)')
saveas (gcf, "EB2Vz.jpg')

, 'edgecol’,

'edgecol’',

")

'edgecol’',

'interp',

'interp',

'interp',

'interp',

'interp'

'linew’

'linew',

'linew',

'linew'

, 'linew'

r2)

;1 2) 3

o
o
o

;1 2)

o
o
o

~e
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caxis ([0 7071);
saveas (gcf, "EB2Vz0270.9pg")
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EB2 Workspace
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Figure 0.1: EB2.0 manipulability measure, right arm.
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Figure 0.2: EB2.0 minimum static endpoint force, right arm.
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EB2 Fx (N)
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Figure 0.3: EB2.0 static endpoint force deficiencies in the X principal Cartesian axis, right arm.

EB2 Fy (N)
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Figure 0.4: EB2.0 static endpoint force deficiencies in the Y principal Cartesian axis, right arm.
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EB2 Fz (N)
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Figure 0.5: EB2.0 static endpoint force deficiencies in the Z principal Cartesian axis, right arm.

EB2 Vx (mm/sec)
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Figure 0.6: EB2.0 endpoint velocity deficiencies in the X principal Cartesian axis, right arm.
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EB2 Vz (mm/sec)
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Figure 0.7: EB2.0 endpoint velocity deficiencies in the Z principal Cartesian axis, right arm.
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Appendix C. Brushless DC Motor Data Sheets

maxon EC motor

EC 10 @10 mm, brushless, 8 Watt

A wilh Hall sengars B senscrless
w
[ATo.01] E— =9
[L]goesc] 5
" E
£ 288
=< g 9
007 0
sl o . 0.5 -0.07 0.55 -0.05
0.4
] a
S 2 5.7 ma, 1106
LI .
M 1:4
I Siock pragram Part Numbers.

Standard pragram
Special program (an request)

A wiah Hall sansors|
B sensoress)

517D 3517 315172 315173
315174 JIE175 315176 315177

Values at nominal voltage

1 Mominal voltaga ) B £ ) 12 18
2 Mo load spead pm 49200 52500 53200 ST100
3 Mo load cument A 160 1E 0.4 L3
4 Morinal speed FpiTH A1700 45600 46800 S0900
B Mominal lorque {max. confinuous lorgus) mbdm 17 183 182 181
& Mominal curent {max. conlinuous curment) A ] 141 0.843 o0&
7 Stall iorque mikim i2 i3 a7 16.6
& Starting current L 10.4 B.05 6.46 5.27
% Max afficiency i 77 8 78 9
Characteristics
10 Terminal rasistanca phase to phasa 0 0575 192 1.86 342
11 Terminal inductance phasa to phase mH  0.00998 0.0198 0.0342 0.0671
12 Torgque constant LT 118 161 212 297
13 Spesad conslant Y 8340 5820 4500 3220
14 Bpeadlomue gradent rpenimim 4180 4110 3040 3700
15 Mechanical birme constan 0] 3.03 297 285 2.68
16 Rotar inariia gem® .06 0,088 0.0683 D08
| Specifications _______________|
Thermal data

. Conlinuous operation
17 Tharmal resistance housing-ambeant - In ob=arvalion of above listed thermal resistance

1B Tharmal resistance winding-housing flines 17 and 18} the masmum pemissibe windng

19 Tharmal ime constant windng

20 Thermal time censtant motar 315170 i e B, R ) il
21 Arnbient lempe alune -4 = Thiemat kmit.
22 Max_ permissible winding temperabure

Mechanical data (preloaded ball bearings) Short term operation
23 Max. permissible spasd G500 rpm The motor may be briefly overoaded (recurring).
24 fxial play at axigload < 10N 0 mm

>»10HN max. 0,14 mim

25 Radial play preloaded = Aassigned power rating
26 Max axial lead (dyramic) 0EN M [mim]
a7 Max farcs for press its {atatic) 12N T

(stase, shaft supported) 250N
26 Max radial Inadng. 5 mm from fange ZN

Other specifications
20 Nuriber of pole paing 1

30 Mumber of phases 3 Planelary Gearhead
31 Waight of motor 13g @10mm
i i 0.01 - 0.15 Nm
Walues listed in the table are nominal, Papa 233
CGHHOL"HI'I with Hall sensors sensorless
Vha 4.5..24 VDG Motor windng 1
Pln 2 Hall sensor 3 Matar windng 2
Fin3 Hall sensar 1 Matar windng 3
Pin 4 Hall sensor 2 NG,
Pin & GND
Pin & Matar winding 3
Firi & Matar winding 1 =
Adapter Part numbser Part numiber ESCON Madule 505 a2
seep. 33 220300 220310 ESCON 50/5 a2
Connectar  Part number Part number DEGS BNS. ase
Tyeo 1-BAB53-1 BA955-4 DEL: MO 24/ acn
Molex 52207-1185 52207-0485 DEC Madule B0 25
Malex 520891113 520450419 L =

Pin for design with Hall sensars:
FPE, 11-pol, Pitch 1.4 mm, top contact styls

164 maxon EC motor Juna 2013 aditicn { subjaci o changa



Planetary Gearhead GP 10 A 10 mm, 0.01-0.15 Nm

Technical Data

Flanatary Gaarhaad straight testh

1-0.35 Cutput shalt stalnless sleel
L Esaring al oulpul preloaded ball bagrings
2 g Radial play, § mem from fange ma, 0.08 mm
d 1 Aial play a1 axal load =2M o mim
B B =2N max, 0.04 men
4 = r _ ol Max. permissible axial load 5N
ul =l- ool Max. pammissible force for press fits M
H R B Senge of rodation, drive to oulput =
—_=L g Recammended inpud speed « 12000 rpm
Recommandad temparature rangs 15, 480°G
Extended range &5 oplion 40, A+100°G
L Humbes of stagas 1 2 3 4 5

5 015 Ma. radial load, & mm
0. b - fram Pange SN fON 15N 20N 25N

I Siook pragram
Standard pragram
Special program (an request)

Gearhead Data

1 Reduction

2 Aeduction absalute

3 Max, mofor shaft dameter mm
4 MNumbar of stages

5 Max, confinuous torquea Nm
& Intarmittanitly permissiole forque at gaar output  Nm
7 Max. efficiency “a
B Weight a
6 Average backlash v load N
10 Mass inertia gea?
11 Gearhaad langth L1 i

| el luregh | | angh |

maxon Modular System

+ Mator Page  +Sensor'Brake  Pags
RE 10, .75 W 475

RE 10, 0.75W 75 MR 2950295
RE 10, 0.75 W 75 MERE 10 312

RE 101.5W TETT

RE 101.5W 7T MR 2050208
RE 10, 1.5W Erd MERe 10 al2
Aemax 12 1111112

Amax12,08W 112 MR 295208
EC 10, 2W 154

EC 52flat 05W 205
EG 10fiat 02W 207

Sty 2013 silition ! subjact o changs

Part Numbers

218415 21416

FALCALI 218413

| aazeze | aspapa [EEFTETRIREREYET]

4:1 18:1 Bd:1 10241 4:1 181 a4 268:1 10244
4 16 G4 1024 4 16 Gid 256 1024
1.2 1.2 1.2 1.2 1.2 12 1.2 1.2 1.2
1 2 3 ] 1 -] 3 4 5
0.0 0030 DDy @150 0.0 0030 LR ) 0150 0150
D023 0.050 DAL 0200 o.o20 00s0 D50 0.200 0200
a0 E1 73 58 B 81 TE BE 59
BT 72 T BT L 72 T B2 87
15 148 2.0 25 1.5 18 2.0 2.2 25
0.005 0005 0.006 0.0DE L0056 0.008 0.008 0.005 0005
104 141 172 X4 235 104 141 17z 204 235
Owerall bength [mim] = Motor langth + gaarhaad lengh + |serson
275 e 343 Irs 40.6
333 o 401 433 454
358 333 424 45.6 48.7
3581 aBa a9 451 4832
40.9 448 477 0O E4.0
432 469 ED.0 E32 58.3
anzy 5.4 a5 a7 44.8
358 395 426 45.8 4.9
3.2 399 43.0 452 43.3

230 267 208 350 36,1
145 18.2 21.3 24.5 27.8

mason gear 233

maxon gear
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Brushless DC-Servomotors

1 Meminal voltage
2 Terminal resistance, phase-phase

3 Qutput power !

4 Efficiency

5 Mo-load speed na

6 No-load current (with shaft e 1,0 men) lo

7 stall torgue MH

& Friction torque, static Ca

9 Friction torque, dynamic Cv

10 Speed constant kn

11 Back-EMF constant ke

12 Torque constant km

12 Cuwrrent constant ki

14 Slope of n-M curve AnAM
15 Terminal inductance, phase-phasa L

16 Mechanical time constant Tm

17 Rotor inertia 1

18 Angular acceleration O m

19 Thermal resistance

20 Thaermal tima constant

21 Oparating temperatura ranga:
— mator —2._
— goil, max. permissible

Twl {Twz | 1/149

22 Shaft bearings
23 Shaft load max.:

—radial at 10 DOOS0 DOD rpm (3.7 mm from maunting flange) 2,01,
—axial at 10 DONS0 000 rpm (push-an anly) 0,610,
axial at standstill (push-an enly) 10
24 Shaft play:
~ radial 0.0
= axial = o

25 Housing material
26 Weight
27 Direction of retation

Ren 1/ Rtha 14/ E&0

+100
+125

ball bearings, preleaded

5
2

aluminium, black anodized

2.5
electronically reversible

2> FAULHABER
0,36 mMNm

For combination with
Gearheads:
061

Encader:

PAZ-50, HKM3-64

Drive Electrenias:

Speed Controller, Mation Controller

12

91 59,0 [e
1,47 1,44 W
52 50 b
a& 500 35 600 pm
0,062 0,020 A
0,73 0,57 miNm
0,023 0,023 mNm
1,010%  1,0-10F | mNmirpm
8451 3282 rpmiv
0,118 0,305 TR
1,13 23 mN A
0,B8% 0,344 AdmNm
68 054 66 533 rpmimim
26 187 wH
[ [ ms
0,0085 0,0095 gem®
763 601 “10%rad/s*

K

]

°C

“C

N

N

N

mm

mm

a

28 Speedupto Pl macs,
29 Torque up to "7 Me s
30 Current upto '3 I maoe

F 3t 40 000 rpm
# thermal resistance R 2 by 55% reduced

100000 100000 | rpm
0,351 0,356 mHm
0,367 0,144 A
1.49 Watt
M [mim]

n [rpm]
ne max. = 100 000 rpm
100 000
S0 000
80 000
70000
B0 000
50000 n =40 000 rpm
a0 000
30000
20 000 Me max. = 0,36 mNm
10 000
0 + t t
o 010 015 020 025 030 035
Rec area for i P
For notes on technbcal data and litetime performance
reder ta “Technical Infoemation”,
[Editbon 2011 - 2012 Fage 12

0,40

& DR FRITZ FAULHABER GMEH & 00 KG
Specifications subject to change withaut natice
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2> FAULHABER

Options

K1855;

Muotors for operation with Motion Controllers
MCEL 3003 S/C, MCBL 3006 5/C

=)

0 0,009 -0,03
o603 eSams  el,0-002 ©1,75 -0.05
| | =
A1 Ma,5x0,5 o005 Al
# 0,02
—
1
®
16,7202 | e
e
20 | | 51503 3.35 18

5,505 4203
t | .
1 8 |
03 003 I

4,5 20,07

0620 K 0620 C for Gearheads D61

Recommended connector Flaxboard
Mk - TF Connectar,  ciroudts; 0.5mm pitch,
N0, 527450896, Tap Cansact Style.
1 8
4 Coil winding 3 x 120° Connaction
1 Phase ©
T 2 Phase B
3 Hall sensor ©
4 s
————— 5 anho
6 Hall sensar A
7 Hall sensar B
| B Phase

For nates on technical data and lifetime performance
refer ta “Technical Infeemastion™,
Edlition 2011 = 2012 Fage 22

& DR FRITZ FAULHASER GMEH & £0. KG
Specifications subject to changpe withaut notice



Planetary Gearheads

Series 06/1

2> FAULHABER
25 mNm

Fer combination with
DC-Micrometors
Brushless DC-Motors
Stepper Mators

Heusing material eel
Geartrain matarial steel
Raecemmaendad max. input speed tor:

— continuous eparation 8000 rpm
Backlash, at no-load %3*

Bearings on cutput shaft

Shaft load, max.:

= radial (35 mm from rmounting face)

- axial

Shaft press fit force, max.

Shaft play

- radial (2,5 mm from mounting face)
anial

Oparating temperature range

sintered bearings

s
Mumber of gear stages 1 2 3
Continuous torgue mhm ral 25 25
Intermittent torgue mMm a5 EL 35
Mass without motos, ca. q 2 2,8 34
Efficiency, max. Yo 90 80 70
Direction of rotation, drive to output = - =
Raduction ratio a1 161 64:1
[exact)
L2 [mm] = length witheut metor 32 11,9 146
L1 [mm] = length with motor DE15C..5 24,2 26,9 236

DE20C. 25,2 31,9 346
ADMOEZD,..-05 1E8 21,5 24z

Far meee com binations see takile.
Exsmple of combination with 0615...5.

-0,002

0 0,02
06005 034001 ©14008
a
lu,s-n.n:
2
LUBECE
2802
0.5, 4
— -
L2 0,25 4,5 0,2
L1205
061

For nates on technical data and lifetime performance
radur ta “Tachnical Infeemstion”,
Edlition 2014

25611

17,3
32,3
37,3
26,5

steel
steel
8 000 rpm
)
ball bearings
=3N
=3N
=5N
= 0,06 mm
0,05 mm
=30, +100°C
5 B
25 25
35 35
a4 5
55 48
= =

10241 40961

20,0 22,7
35,0 37,7
40,0 2,7
29,6 32,3

=l

0 -0,002
ad-0,08 01,5 -0,008
[
1,3-0,03
T
g | I
I | s
|_ 41502
[ as

e S M LY

5,4.£0,2

0B K (L1, L2=4+1)

& DR FAITZ FAULHABER GMBH & £0.KG
Specificatians subject o change without notice.
wev EaamatoLIom
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D. Distributed Motor Control

Appendix
Schematics

+ 1 4 1
g W] sogqagda])
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