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CHAPTER 1. INTRODUCTION 

1.0. General background 

In recent decades substantial progress has been made in improving the quality of 

surface waters in the United States (Hawkins et al., 2000; EPA, 2000; EP A, 2001); 

nevertheless, much work remains to be done in assessing the state of impairment of lake 

waters. Impairment implies that the existing water quality of a lake, as measured by 

selected criteria (e.g., nitrogen, phosphorus, chlorophyll-a, Secchi depth), exceeds a 

threshold value or standard that presumably reflects optimal attainable lake water quality 

conditions (or "reference" conditions) (Hughes, 1995; EPA, 2000; EPA, 2001). Such 

impaired waters are not suitable for designated uses such as drinking, irrigation, 

recreation or fishery (Carpenter et al., 1998). The management of lake water quality 

requires an effective means to establish which lakes are most impaired (and, hence, may 

require restoration) and which lakes are least impaired. 

It is estimated that about 43 percent of the 16.4 million hectares comprising the 

United States' lake area have been adequately assessed for water quality (EPA, 2000). 

Of the lakes that have been assessed, 45 percent are "impaired" and 9 percent of the 

impaired lakes are listed as threatened. Nutrients exported from agricultural lands 

contribute about 50 percent of water quality problems in impaired lakes (Figure 1.1) 

(EPA, 2000). Water quality standards are particularly difficult to establish for lakes 

located in areas highly modified by humans, such as agricultural landscapes of the 

Midwest. In these areas (a) few, if any, lakes may represent pre-settlement "reference" 

conditions, and (b) many lakes are human constructed (e.g., reservoirs). The principal 



objective ofthis research is to develop and evaluate an approach for establishing lake 

water quality standards using watershed-based classification of lakes. 
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Lakes are inland water bodies that serve as sources of drinking water, flood 

control, and outdoor recreation in addition to providing habitat for many wildlife species. 

The different types oflakes include natural lakes, reservoirs, and sand pits (or gravel pits) 

(Whittier et ai., 2001). Natural lakes were created as a result of geologic processes like 

glacial movement, while reservoirs in Nebraska were created by communities for flood 

control, drinking water, irrigation, hydroelectric power, and recreation. Sand pits are 

generally by-products of road construction activities where the sand or gravel was 

removed to provide aggregate materials. Natural lakes and sand pits are fed primarily by 

lower order stream and groundwater respectively, so both natural lakes and sand pits 

usually have very small or negligible watersheds. On the other, the primary source of 

water for reservoirs is high order streams. The response of reservoirs to climatic 

conditions is intricately linked to the lakes' morphology and watershed characteristics. 

As such, a watershed approach to lake classification seems more applicable to reservoirs 

than natural lakes and sand pits. Consequently, the focus of this research is on the 

watersheds of Nebraska reservoirs. There are about 6796 reservoirs in Nebraska. While 

each lake is unique, it is impossible to manage all of these lakes individually. Moreover, 

the term lakes and reservoirs will be used interchangeably in the following paragraphs. 

The U.S. Environmental Protection Agency (EPA) is charged with establishing 

national standards and criteria for assessing lake water quality. However, it is 

increasingly evident that a single set of national water quality standards that does not take 

into account the hydrogeologic and ecological differences among lakes will not be viable, 



3 
since lakes have different inherent capacities to meet such standards (EPA, 2000; EPA, 

2001). For example, in Nebraska, the EPA suggested criteria for the management of lake 

phosphorus (30 f(gL- 1
) has likely never been met in Nebraska lakes even under natural 

(pre-settlement) conditions. A more realistic standard might be about 60f(gL-1 (John 

Holz,pers. comm.). This inconsistency is partly due to the fact that Nebraska lakes are 

typically assessed in the same manner as lakes in nearby regions, such as the Ozarks of 

Missouri, which have very different hydrogeologic settings and relatively undisturbed 

environmental conditions. 

A more tenable approach would be to define different standards for groups 

("classes") of lakes determined to be similar to one another in terms of their potential to 

attain a certain level of water quality. Standards could then be established independently 

for lakes in different classes according to a set of "reference" target conditions unique for 

each class. Lake classification is used to group lakes into ecologically relevant or 

environmentally similar classes, enhance our understanding of complex systems, and to 

improve management and decision-making processes (Conquest et aI., 1994; Hawkins et 

aI., 2000). To be effective, a lake classification system designed to assess potential lake 

conditions must be based on environmental variables that underlie, detelmine, and 

explain the patterns of change in physical, chemical or biological water quality 

performances over seasonal or annual cycles (Warren, 1979). It is therefore important to 

differentiate betwecn the natural or potential capacity of a lake to meet a certain level of 

water quality from actual water quality conditions that exist at a specific time of 

sampling. 
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The watershed classification approach that is proposed here is based on the 

premise that in the absenee of human interference, lake ecosystems evolve in response to 

physical, chemical, and biological processes in their watersheds. It reflects an emerging 

emphasis on the watershed framework for water resource management (e.g., Warren, 

1979; Satterlund and Adams, 1992; EPA, 1993; EPA, 1997; National Research Council, 

1999; Mehan 2002; Bolm and Kershner, 2002). The lake watershed provides an 

important spatial framework to develop a classification system because it is the source of 

runoff water, sediments and nutrients for lakes. In general, lake watersheds integrate the 

effects of all the natural and anthropogenic processes on water quality. 

A watershed is a topographically defined area that collects all surface runoff and 

groundwater and discharges them into the lake up to the furthest downstream point 

(Ponce, 1989; Satterland and Adams, 1992). The telm watershed has been used 

synonymously with drainage basin or catchments (Viessman et ai., 1977; Ponce, 1989; 

Satterland and Adams, 1992). Watersheds influence lake water quantity (e.g., peak flows 

and seasonal low flows) and quality (e.g., sedimentation rate and nutrient enrichment or 

eutrophication) (Welch, 1978; Warren 1979; Wetzel, 1983; Frissell et al., 1986; Ponce, 

1989; Satterlund and Adams, 1992; Omemik, 2003). This makes watershed boundaries 

the most appropriate spatial and topographic units for lake classification, assessment, and 

management. 

1.1. Previous Research 

Previous attempts to classify lakes have been based either on actual, measurablc 

biochemical conditions of lakes, or on biogeographic characteristics of ecological regions 

or zones (Vollenweider 1968; Carlson 1977; Schindler 1971; Jensen and Van der Maarcl, 
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1980; Omemik, 1987; Omernik et aI., 1991; Lomnicky, 1995; Niles et al., 1996; 

Heiskary, 2000; Winter, 2001, EPA, 2002a; Jenerette et al. 2002; Moss et al., 2003; 

Detenbeck et al., 2004). Schindler (1971), Carlson (1977), and Heiskary (2000) for 

example, classified lakes based on indices oflake performance that required extensive or 

repeated sampling of lake water quality parameters, e.g. nitrogen, phosphorus, 

chlorophyll-a and Secchi depth. On the other hand, Omemik et al. (1991), Maxwell et al. 

(1995), Hargrove and Luxmoore (1998), Winter (2001), McMahon et al. (2001), EPA 

(2002a) and Moss et al.,(2003) have developed landscape classification systems that may 

represent potential conditions of lakes and other water bodies, based on the 

characteristics of biogeographic or hydrogeologic regions, i.e., ecoregions and hydrologic 

landscapes. 

Existing watershed-based classification systems for lakes and other water bodies 

have most often used actual water quality conditions in combination with topographic, 

soils, land use, and other data (Heywood et aI., 1980; Paulsen et aI., 1998; Momen and 

Zehr, 1998; Emmons et al., 1999; Detenbeck et al., 2000; Hawkins et al., 2000; Johnson 

et al., 2001; Lu and Lo, 2002; Bryd and Kelly, 2003; DeNicola et al., 2004). Momen and 

Zehr (1998), for example, used discriminant function analysis (DFA) oflake water 

chemistry and land use data in a watershed-based lake classification. Emmons et al. 

(1999) compared DFA with a non-parametric statistical method, i.e. a decision tree 

model, in classifying northern Wisconsin lakes based on actual lake water quality data. 

They found that the decision tree method resulted in lower-rates of misclassification and 

more interpretable lake classes than those derived from DFA. Also, decision tree models 

can account for non-linear relationships, variable interactions and missing values in a 



given dataset (Breiman et aI., 1984; Verbyla, 1987; De'ath and Fabricius, 2000). Even 

though decision tree is a promising new tool for lake classifications it has not been 

applied extcnsively. 
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Other watershed-based classification systems and watershed assessments have 

been developed using the smallest (or fourth level) division of U.S. Geological Survey 

hydrologic units, i.e. hydrologic cataloging units (e.g., Smith et al. 1997, Griffiths et al., 

1999; EPA, 2002b; Bryd and Kelly, 2003, Papahicolau et aI., 2003). However, these 

hydrologic units are not topographic watersheds and limitations of their use as surrogates 

for watersheds have been documented (e.g., Verdin and Verdin, 1999; Gesch et aI., 2002; 

Omemik, 2003). 

According to Grigg (1965), "Classifications should be designed for a specific 

purpose since they rarely scrve two purposes equally well". The purpose for classifying 

lakes in this research is in pmi to help the U.S. Environmental Protection Agency to 

establish reasonable attainablc water quality standards ("targets") for groups of lakes that 

are considercd to share similar potential capacity to meet these standards. Classification 

frameworks such as those cited above, while quite effective for a number of applications, 

do exhibit several major shortcomings for setting lake water quality standards. For 

example: 

1. Lake classification based on observed water quality does not provide adequate insights 

into the potential of lakes to meet water quality standards for the following reasons: 

• Human activities, such as land use, impact water quality. 

• Water quality data represent observed water quality conditions, not the potential 

to meet a water quality standard. 



• Extensive and frequent sampling of lakes in a given region is required, and lake 

sampling campaigns can be costly, in terms of personnel and equipment. 

• Sampled lakes may not adequately represent the lakes in a given region. 

• Lake water quality parameters are sometimes so variable that one lake may 

change classes over seasonal or annual cycles. 
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2. Omernik's ecoregions are inappropriate because they were based on sUbjective criteria 

of perceived patterns ofland surface form, climate, vegetation, soils and land use. 

Hence, these ecoregions can not be easily replicated. Also, ecoregion boundaries do not 

coincide with watershed boundaries, and the inclusion ofland use data reflects the impact 

of human activities. 

3. Attempts to delineate ecoregions via quantitative and objective methods (e.g. 

Hargrove and Luxmoore, 1998; Zhou et ai., 2003) are not appropriate because: 

• These ecoregions include aspects of human influence, such as land use. 

• The unit of analysis, e.g. I kilometer pixel of satellite data, does not take into 

consideration the terrain effect of watershed boundaries. 

4. Existing watershed-based classifications are not appropriate because: 

• They include aspects of human influence, such as measured water quality 

condition and land use. 

• They are sometimes based on hydrologic cataloging units which do not conform 

to the natural hydrologic boundaries of the terrain. 

• They are usually based on parametric statistical approaches such as discriminant 

function analysis (DFA) and regression analysis, which presume the use of 



normally distributed data, although most watershed data are multimodal and not 

normally distributed. 
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• Lake classes as well as some watershed data are categorical, and these types of 

data usually require transformations, when using traditional statistical approaches. 

In summary, most lake classifications are based on observed, extant water quality 

data or on environmental variables that are often impacted by human activities and, thus, 

usually cannot be used directly for determining lake classes and subsequently setting lake 

reference conditions; data collection is expensive and time consuming. Regionalization 

schemes, on the other hand, generally use sUbjective criteria for delineating boundaries 

(e.g., ecoregions) which do not coincide with watersheds. In both cases, there is an 

apparent arbitrary and often subjective choice of the number of classes. 

This research focuses on the development of a watershed-based lake classification 

systcm that is based on: topographic boundaries that represent the lake watersheds; 

watershed characteristics that underlie, determine and explain the patterns of change in 

physical, chemical or biological water quality performances of lakes; and non-parametric 

statistical approaches that can account for the multimodal and categorical nature of 

watershed variables and lake classes. 

1.2. Objectives and research questions 

The primary objective of this dissertation is to develop a watershed-based 

approach to classify reservoir watersheds and to evaluate the effectiveness of the 

classification method to account for variations in water quality data that are pertinent to 

reservoir water quality management. The utility of Geographic Information Systems 

(GIS) and decision tree algorithms in developing a watershed-based approach to reservoir 



9 
classification is also evaluated. This work is based on Nebraska reservoirs because most 

of the lakes in the state are constructed and located in agriculturally-dominated 

landscapes. Nebraska has a broad diversity of environments and landscapes, and is 

representative of many mid-latitude regions of the United States. 

The specific research objectives are to: 

I. Determine the optimal number and characteristics of classes of Nebraska reservoirs 

based on their watershed characteristics. The research question that was addressed with 

respect to this objective is, "what watershed characteristics are required to classifY 

reservoirs based on their potential to attain certain water quality standards?" 

An important component of managing reservoir water quality effectively is to 

segregate the reservoirs into similar "groups" or "classes", in terms of their potential to 

achieve certain water quality standards. However, information on the number of classes 

of Nebraska reservoirs is not available. This lack of knowledge limits our understanding 

of the biophysical characteristics of Nebraska reservoir classes and prevents accurate 

estimation of potential reservoir water quality. Such information is useful for many 

applications including predictive modeling of potential water quality impairment of 

reservoirs based on their class membership. 

A vital step in developing a classification is to determine the optimal number of 

classes to be used. This requires partitioning a dataset such that the entities in one group 

are more similar to each other than to those in other groups (i.e., clustering). Similarity 

refers to the distance between two data points (reservoirs), where the distance decreases 

for more similar reservoirs (Gordon, 1999). The fundamental issue in any clustering 

approach is to detennine which number of clusters best describes the class structure (or 



optimal number of classes) of the dataset (i.e., cluster validation). A cluster validation 

approach was used to identify the optimal number of classes that exist among Nebraska 

reservoirs. Additionally, a decision tree model was applied to describe the structure of 

watershed classes. 
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2. Evaluate the watershed-based decision tree classification model to predict the class 

membership of Nebraska reservoirs. The research questions that were addressed with 

respect to this objective are (a) which decision tree rules are optimal for assigning a 

reservoir watershed to a class? (b) how does the level of discrimination achieved by the 

decision tree approach compare to other water resource classification systems, i.e. DFA­

based reservoir watershed classes and ecoregion-derived reservoir classes? 

Once the numbers of underlying lake groups as well as essential watershed 

characteristics have been identified, a rule-based decision trce classification model can be 

used to classify the reservoirs based on their watershed characteristics. There are two 

types of decision tree models, i.e. classification trees and regression trees. Regression 

trees are appropriate when the dependent variable is numeric, whereas classification trees 

are more relevant for instances with categorical dependent variables, e.g. lake class 

(Breiman et al., 1984; Ripley, 1996; De'ath and Fabricius, 2000). As such, a 

classification tree was used in this study. 

According to De'ath and Fabricius (2000), the classification tree model can be 

used for data description (i.e., represent the systematic structure ofthe data) and for 

prediction (i.e., accurately predict the class membership of new observations). A 

classification tree-based predictive model of reservoir watershed classes is developed and 

the performance of classification tree-based reservoir watershed classification method is 
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compared to DFA-based watershed classification system (Momen and Zehr 1998), and 

Omemik's Level IV ecoregions (Omemik 1987; EPA, 2002a). This comparison was 

done to assess the effectiveness of watershed-based classifications and ecoregions in 

accounting for variations in water quality parameters of Nebraska reservoirs; and also to 

detelmine the prediction accuracy of classification tree-based and DFA-based reservoir 

watershed classification methods. 

1.3. Study area 

This research focuses on Nebraska, a state representative of many mid-latitude areas 

having agriculturally-dominated economies (Figure 1.2). The eastern boundary of the 

state is defincd by the Missouri river and the line of 105° W constitutes the westemmost 

boundary. Nebraska encompasses a broad range of climatic, physiographic, land use and 

water quality conditions. Elevations range from about 256 meters in the east to 1654 

meters in the west. About 30 percent of the state is dominated by the Sand Hills, grass 

covered sand dunes predominately devoted to grazing. The climate is characterized by a 

gradient of rainfall and temperature regimes along an cast-west axis. Average annual 

precipitation varies from 36 cm in the northwest to 86 cm in the southeast; temperatures 

vary between -20 to 30 Co (Jolmsgard, 2001; Kuzelka et al., 1993). 

In semiarid agriculturally-dominated environments such as Nebraska, water quality 

impairment stems primarily from the transport of soil sediments, agrochemicals and 

animal wastes via runoff from croplands and livestock operations into streams and lakes. 

There are about 13,500 lakes in Nebraska including natural lakes, reservoirs, and sand 

pits. The condition of Nebraska's lake waters is largely unknown, although it is 

suspected that many are impaired to some degree. Over the past two decades, the 
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Nebraska Depmtment of Environmental Quality (NDEQ) and the School of Natural 

Resources (University of Nebraska-Lincoln) have satnpled about 225 Nebraska lakes and 

have developed a database that describes their chemical and biophysical water quality 

characteristics (Holz, 2002). These data provide a valuable resource for studies oflake 

water quality. Only reservoirs with total surface area greater than 4 hectares (10 acres) 

were considered in this study in order to conform with the U.S. EPA requirements for 

developing nutrient water quality criteria for lakes in the United States (EPA, 2001). 

Furthermore, geospatial datasets that were used in characterizing Nebraska reservoir 

watersheds are available for the entire U.S.; thus, the research approach has potential 

national applications. 

1.4. Structure of the dissertation 

This dissertation is comprised of six chapters. This introductory chapter is followed 

by chapter 2, a review of relevant literature pertaining to lake water quality assessment 

and lake classification. Chapter 3 discusses the first part of the research: the development 

of an updated digital map of Nebraska lakes in order to identify reservoirs in the state and 

to delineate watershed boundaries for selected Nebraska reservoirs. This chapter also 

includes a summary of preliminary statistical analyses of the watershed datasets. Chapter 

4 deals with the implementation of a watershed-based classification approach for 

Nebraska reservoirs. The classification process includes an assessment of the optimal 

number of watershed classes for Nebraska reservoirs. This assessment was based on k­

means clustering algorithm and a unique cluster validation technique. The cluster 

validation approach uses relative criteria that employs indices (in this case, Calinski­

Harabasz statistic) extracted from the clustering results to identify the optimal number of 
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classes. Finally, a classification tree model was used to describe the structure of 

Nebraska reservoir watershed classes and also determine the final structure of the 

reservoir classes (number of classes and classification rules). Chapter 5 describes 

comparisons of the performance of classification tree-based reservoir watershed 

classification method with DFA-based reservoir watershed classification system (Momen 

and Zehr, 1998) and Omernik's Level IV ecoregions derived reservoir classes (Omernik 

1987; EPA, 2002). Chapters 6 wraps up the dissertation report with a summary of major 

research results, conclusions and recommendations for future research. 
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Figure 1.2. Map of Nebraska reservoirs (reservoir size at least 4 hectares). 
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CHAPTER 2. BACKGROUND REVIEW 

2.0. Introduction 

Lakes are inland water bodies that serve as sources of drinking water, flood 

control, outdoor recreation and provide habitat for many wildlife species. The different 

types oflakes include natural lakes, reservoirs and sand pits (or gravel pits) (Whittier et 

aI., 2001). Natural lakes develop as a result of geologic processes like glacial movement, 

while reservoirs are created artificially to meet diverse land use objectives including 

flood control, irrigation, recreation and drinking water supply. Sand pits are generally 

by-products ofroad construction activities where the sand or gravel was mined to provide 

building materials, leaving behind huge craters. 

According to Thornton et al. (1990) and Cooke et al. (1993), lake ecosystems 

analyses generally ignore the differences between lake types because the fundamental 

hydrological and watershed processes that govern the chemistry and biology of natural 

and man-made lakes were thought to be similar. However, there is now increased 

emphasis on treating the different lake types as unique due to the differences in their 

origin, water residence time, and water source (Thornton et aI., 1990; Cooke et aI., 1993; 

EPA, 2000; Whittier et ai., 2001). Whittier et ai. (2001) found significant differences 

between small impoundments and natural lakes. For example, the primary water source 

for natural lakes and sand pits is lower order streams and groundwater respectively while 

reservoirs are mostly fed by higher order streams. Furthermore, the response of a 

reservoir to climatic conditions is intricately linked to its morphology and watershed 

characteristics. 
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Since stream-fed lakes tend to reflect their hydrogeologic setting (watershed 

characteristics) the environmental conditions in the lake watershed can be good indicators 

oflakc watcr quality. Therefore, the following review will be focused on lake and 

watershed characteristics of reservoirs, with the goal of articulating a rationale for a lake 

classification system based on potcntiallake water quality. This will include an overview 

of the lake aging (eutrophication) process, different approaches to lake classification and 

a discussion of some of the factors that affect lake water quality. 

2.1. Lake eutrophication process 

Lake eutrophication (or lake aging) is a slow process by which a lake progresses 

from its creation or youth through sedimentation and nutrient enrichment to extinction 

(Figure 2.1). This process usually occurs over a period of centuries, but anthropogenic 

influences likc agricultural land use can hasten the process to take place over a few 

decades. 

Lake and watershed characteristics interact with geomorphologic or gradational 

processcs that eventually convert the lake into a lacustrine plain (an ancient lake bed), a 

site typical of extinct lakes (Mortimer, 1942; Larson, 1970; Carpenter et al. 1998). The 

primary causes on the lake aging are the deposition and accumulation of soil sediments 

and organic materials (Mortimer, 1942; Wetzel, 1965; Larson, 1970; Wetzel 1983; 

Carpenter et al. 1998). Three key stages in the lake eutrophication process under natural 

conditions were chronicled by Mortimer (1942). The initial or primary phase is 

characterized by a slow increase in lake productivity, followed by a second stage 

evidenccd by a sharp rise in productivity. Continued influx of nutrients and scdiments 

will accelerate decomposition of organic materials at the lake bottom, leading to 
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precipitation of insoluble iron compounds (e.g., ferrous sulfide). Consequently, essential 

nutrients for primary production are bound with iron compounds and become unavailable 

for photosynthesis. The third phase is the point when the lake becomes incapable of 

utilizing the influx of nutrients and these nutrients arc bounded to sediments and 

deposited at the lake bottom. Over centuries, this lake loses its capacity to hold water and 

becomes a lacustrine plain. 

The process described above can be hastened to occur over a few decades, 

especially in agricultural ecosystems. Agricultural activities increasingly expose soil 

particles to erosion and contribute excessive amount of nutrients from fertilizer 

applications in farmlands. The secondary stage in the eutrophication process follows 

closely the influx of non-point sources of nutrients and sediments. These nutrient 

influxes are usually intermittent and closely associated with seasonal and annual cycles of 

agricultural activity, such as planting and plowing, or climatic activities like heavy 

rainfall. The secondary eutrophication phase is usually made evident by cyanobacteria 

blooms, which are the primary causes of fish kills, bad drinking water taste and offensive 

odors that emanate from affected waters. 

Strong anthropogenic influences on lakes and their watersheds tend to change the 

natural eutrophication process as function of the land use and land cover types within the 

lake watershed (Battaglin and Goolsby, 1996; Carpenter et al., 1998). The net gain in 

phosphorus and nitrogen through intensive fertilizer application results in a nutrient 

surplus on croplands, and this is the underlying cause of non-point pollution in 

agriculturally-dominated ecosystems (Carpenter et al. 1998). Along with increased 

anthropogenic influences on lakes and their watersheds, comes the need to manage and/or 
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restore lake water quality. The challenge to lake water quality management in these 

environments lies in identifying the potential capacity ofthese lakes to attain certain 

water quality level, in order to mitigate the acceleration of the lake-aging process. While 

each lake is unique, it is impossible to manage all lakes individually. Lake classification 

is used to group lakes into ecologically similar classes (Conquest e/ aI., 1994). Different 

approaches to lake classification are discussed in the following sections in order to 

articulate the rationale behind the watershed-based lake classification system. 

2.2. Lake classification approaches 

Lake classification is generally designed to enhance our understanding of the 

complex enviromnent and improve lake management and decision-making processes. 

According to Hawkins e/ al. (2000), an effective lake classification should (a) enhance 

our understanding of the effects of spatial and temporal environmental stressors, i.e., 

predicting stressors likely to cause impailment; and (b) help to establish attainable water 

quality conditions, e.g., establish a network of reference lake sites for setting expected 

conditions at potentially impaired sites. However, lake classifications need to be 

designed for a specific purpose since classifications rarely serve two purposes equally 

well (Grigg, 1965). Thus, the review oflake classifications addressed in this study will 

be done with respect to those that facilitate efforts to establish attainable reference water 

quality conditions. There have been several efforts to classify lakes for various 

management goals including nutrient criteria development for fisheries, drinking water, 

and recreational use. These classifications can be summarized as either based on actual 

lake water quality conditions or based on potential lake water quality conditions. 
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2.2.1. Classification of actual water quality conditions 

Four systems for classifying actual lake conditions are in common use. One 

system, based on the trophic state (nutrient richness or primary productivity) of lakes, 

identifies lakes as oligotrophic to eutrophic and is exemplified by the Carlson's trophic 

state index (TSI) (Carlson, 1977). A second system is based on the timing and extent of 

mixing in lakes as well as lake area and depth (Niles et ai., 1996). A third system is 

based on the fishery resources in lakes, i.e., fish type and productivity (Niles et ai., 1996). 

The fourth system is based on multivariate statistics such as discriminant function 

analyses (DFA) of actual lake water quality data (e.g., Heywood et ai., 1980; Willen et 

ai., 1990; Momen and Zehr, 1998; Paulsen et ai., 1998; An and Kim, 2003; DeNicola et 

ai., 2004). Although the second and third classification systems are important for 

fisheries management, the TSI and DFA classification systems are widely used in 

assessing lakes ecosystem functioning for water quality management. 

The aforementioned lake classification approaches all depend on extensive survey 

of biological and/or physical water quality parameters derived from water samples that 

reflect water conditions at the time of observation or sampling. The number of samples 

and the spatial distribution of the sampled lakes will clearly affect the classification 

outcome. Often, the sampling records are from different times and different locations 

(Heiskary and Wilson, 1989). This problem perhaps could be partly resolved by using 

remotely sensed data (e.g., Lathrop, 1992; Dekker and Peters, 1993; Olmanson et ai., 

2001, Yang et ai., 2001; Nelson et ai., 2003). However, there are some limitations to the 

use of multispectral remote sensing data in assessing of lake water quality, such coarse 

spectral resolution (Dekker and Peters, 1993). Hyperspectral sensors like "Hyperion" 



onboard the EO-1 satellite collect scenes in coordination with the Landsat 7 Enhanced 

Thematic Mapper (ETM+) (Earth-Observing-1, 2002). Koponen et aI., (2002) also 

demonstrated the integration of satellite derived and airbome hyperspectral data in lake 

water quality classification. These examples show that remote sensing data may be 

useful in complementing field water sampling data for water quality analysis and in 

identifying lake reference conditions. However, the use ofremote sensing data in 

augmenting lake water quality data is beyond the scope of this research. 
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Lake reference conditions are quantitative descriptions oflake conditions used as 

a standard of comparison. Although reference conditions are intended to portray pristine 

environmental conditions, it is generally recognized that they realistically pOltray least 

impacted or most sustainable conditions (Hughes, 1995; EPA, 2000; EPA, 2001). There 

are three main approaches to characterizing lake reference conditions; namely, (i) direct 

observation of reference sites or entire lakes in a class, (ii) paleolimnological 

reconstruction of past conditions, and (iii) model-based prediction (EPA, 2000). The 

direct observation of the population oflakes in a given class can be used to develop 

histograms from which different quantile values of reference water quality can be 

derived. Four important actual lake water parameters have been identified as candidate 

variables for setting lake reference conditions, i.e., total phosphorLls (TP), total nitrogen 

(TN), Secchi depth and chlorophyll-a (EPA, 2000). For example, when TP 

concentrations for all minimally impaired lakes are plotted on a distribution curve, the 

75th percentile threshold will represent an acceptable reference condition for TP (Figure 

2.2a). When there are no identifiable minimally impaired reference sites, the 25 th 

percentile ofthe TP concentration for all lakes in a given class will represent a fairly 
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acceptable reference condition (Figure 2.2b) (EPA, 2000). Therefore, the assessment of 

actual lake water quality conditions can play an important role in identifying and 

monitoring changes in lake conditions, once the potential lake classes have been 

identified. 

2.2.2. Classification of potential water quality conditions 

Potential water quality is usually estimated based on landscape characteristics that 

reflect the potential hydrogeologic and ecological conditions that are expected to exist in 

a particular area (Omemik, 1987; Omemik and Bailey, 1997). Examples oflandscape 

classifications include Omernik's ecoregions, Kuchler's potential natural vegetation, U.S. 

Department of Agriculture major land resource area (MLRA) and Winter's hydrologic 

landscape units. Landscape classifications for water quality management should ideally 

be based on the inherent characteristics of a region instead of those characteristics that arc 

subject to anthropogenic influences (EPA, 2000). 

Ecoregions are areas with presumed relative homogeneity in terrestrial and 

aquatic ecosystems and are currently being used to develop lake nutrient criteria by states 

across the nation (EPA, 1996; EPA, 2000; EPA, 2001; Heiskary, 2000). The goal has 

generally been to represent the spatial heterogeneity inherent in most landscapes via 

stratifications (or regionalization) based on presumed similarity in ecosystem function 

within a given strata or region (Omemik et al., 1991; Omemik and Bailey, 1997; EPA, 

2000; EPA, 2001; Heiskary, 2000). However, the relevance of ecoregions as the basis for 

lake classification is not clear because recent studies do not uniformly agree on this issue 

(e.g., Omemik et al., 1991; Hughes et al., 1994; Hawkins et al., 2000; Van Sickle and 
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Hughes, 2000; Johnson et al., 2001; Jenerette et aI., 2002; Rohm et al., 2002; Detenbeck 

et al., 2003 and 2004). 

For example, Van Sickle and Hughes (2000) tested the utility oflandscape 

classification approaches in Oregon, and found that the ecoregions were somewhat useful 

in explaining the variations in lake water quality conditions. Rohm et aI., (2002) also 

found that the spatial patterns in nutrient concentrations from 928 sites across the United 

States corresponded with Omernik level III ecoregions. However, J enerette et al. (2002) 

compared ecoregions with other classification models and suggested that ecoregions may 

not account for the variation in lake water quality data. This assertion was later 

confirmed by Detenbeck et aI., (2003) and (2004) that the use of ecoregions for setting 

water quality criteria may lcad to misrepresentation of reference conditions in the Lake 

Superior region. These findings are in agreement with the observation by Omernik and 

Bailey (1997) that ecoregions may not be the best framework for a particular resource 

problem, despite their broad use in structuring research activities and management of 

natural resources and environments. In fact, Omernik and Bailey (1997) and Omernik 

(2003) cautioned against the apparent misuse and comparisons of ecoregions. 

Despite efforts to promote an ecoregions approach to nutrient criteria 

development, the U. S. EPA expressed a willingness to consider other landscape-based 

lake classification approaches to developing nutrient criteria provided they are 

scientifically defensible (EPA, 2000; EPA, 2001). It is therefore possible to develop 

other landscape classification approaches thal provide a hydrologically consistent 

framework for the lake classification with the aim of setting nutrient water quality criteria 

and standards for similar groups oflakes. 
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The concept of "hydrologic landscapes" was proposed as a way of establishing an 

appropriate framework for water resource assessments, monitoring and management 

(Winter, 1999; Winter, 2001). According to Winter (1999) an effective framework for 

water resource analysis must consider the complete hydrologic system that integrates 

ground water, surface water and climatic variations in a given region. These hydrologic 

landscapes are multiples or variations offundamental hydrologic landscape unit (FHLU) 

(Winter,2001). The FHLUs are therefore defined by land-surface form, geologic texture, 

and climatic setting of the landscape and this can be achieved by integrating geographic 

infonnation systems (GIS) with multivariate statistics (Winter, 2001; Wolock et al., 

2000). However, the hydrologic landscape concept has not been embraced by the water 

resource management community. 

Others researchers (e.g. Hargrove and Luxmoore, 1998; Hatch et al., 200 I; Zhou 

et aI., 2003) have developed spatial clustering and agglomerative methods for landscape 

stratification. However, landscape classifications derived from these approaches are not 

appropriate for assessing lakes water quality impail1l1ent potential. This is because the 

ecoregions generated by Hargrove and Luxmoore (1998) are based on spatial clustering 

of one-kilometer pixel satellite data, and they do not take into consideration the terrain 

effect of watershed boundaries. Also, Zhou et al. (2003) used STATSGO polygons as 

the primary classification units to generate agro-ecoregions of Nebraska. While these 

may be appropriate for other land resource management issues like crop monitoring or 

range management, they are not appropriate for lake water quality management. 

Hatch et al. (2001) also developed agro-ecoregions for agricultural watersheds in 

Minnesota. They used GIS to combine various landscape data and compared the agro-
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ecoregions with hydrologic cataloging units. The limitation to applying these agro­

ecoregions to lake water quality management is the arbitrary nature of selecting the 

number of agro-ecoregions. Also, the agro-ecoregions, like Omernik's ecoregions, are 

based primarily on existing land use conditions. Again, it is important to note that the 

agro-ecoregions developed by Hatch e/ a1. (2001) were intended to be used for major 

watersheds or river basins. Therefore, they are not likely to provide a useful framework 

for lake classification. 

Since lakes tend to reflect their hydrogeologic setting and watershed 

characteristics, it seems reasonable to expect that the environmental conditions as well as 

the nature of change in thcse conditions in a lake's watershed could provide a more 

representative framework within which to characterize the lake potential water quality. 

Omernik and Bailey (1997) and Omernik (2003) have argued that the use of watersheds 

in water resources assessments is complicated by the general lack of agreement on the 

appropriate spatial scale (i.e., basin, watershed, or hydrologic cataloging units) as well as 

difficulties in delineating watershed boundaries. However, the availability of Elevation 

Derivatives for National Applications (EDNA) datasets from the U.S. Geological Survey 

(USGS) provide an optimal basis for delineating watershed boundaries, because the 

digital elevation models (DEM) obtained from EDNA datasets are comprehensive and 

seamless for the conterminous United States (Verdin and Verdin, 1999; Gesch e/ al., 

2002). The EDNA project, previously known as the National Elevation Dataset­

Hydrologic derivatives (NED-H), was aimed at a systematic derivation of standard 

hydrologic derivatives (Verdin, 2000; Kost and Kelly, 2001). Also, recent developments 

in computer modeling have improved the accuracy assessment and reliability of 
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watershed boundary delineation algorithms (Garbrecht and Martz, 2003). These 

developments make the watershed approach to lake classification a more tenable option. 

2.2.3. Watershed-based classification rationale 

The lake watershed provides an important spatial framework to develop a lake 

classification system becausc it is the source of runoff water, sediments and nutrients for 

lakes. A watershed is a topographically defined area of the earth's surface that collects 

runoff water and discharges it at the furthcst downstream point (Ponce, 1989; Satterlund 

and Adams, 1992). Watersheds influence lake water quantity (e.g., peak flows and 

seasonal low flows) and quality (e.g., rate of sedimentation and nutrient enrichment or 

eutrophication) (Welch, 1978; Warren 1979; Wetzel, 1983; Frissell et al., 1986; Ponce, 

1989; Satterlund and Adams, 1992; Bolm and Kershner, 2002; Omernik, 2003). 

Lakes, watersheds, and climatic processes are intimately linked, co-developing 

systems. The aging processes of lake systems are constrained or enhanced by watershed 

processes, while climate also affects the evolution of these watersheds (e.g., vegetation, 

drainage pattern, and soil organic matter content). These co-developing system processes 

regulate the path and net movement of water in the watersheds and consequently, the 

accumulation of sediments and nutrients in lakes. The development of a lake system is 

conceptualized as being determined by the development of the watershed within which 

the lake is located, as well as the potential capacity of the lake to countcract adverse 

influences from the watershed. The potential lake capacity refers to all possible 

developmental directions of a lake when exposed watershed processes, e.g., changes 

induced by anthropogenic activities (Warren, 1979). 
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As such, any changes (optimal, irregular or catastrophic) in the environment of 

lakes (i.e. watersheds) will invariably be reflected in the response or performance oflakes 

(Warren, 1979). Therefore, the observed performance of lakes (e.g., chlorophyll 

concentration, dissolved solids, and transparency) is a manifestation of the realized 

capacity, i.e. one of all possible performances that could have occurred under different 

developmental paths in the environment of the lake system. Since these observed 

performances could shift with seasonal and annual cycles of changes in climate and 

watershed conditions, it may be improper to classify the lakes based primarily on such 

actual water quality conditions like chlorophyll concentration and dissolved solids. Also, 

there is a huge financial cost in developing an appropriate sampling framework, locating 

all the lakes, and repeated measurements to account for seasonal and annual changes in 

actual water quality conditions. 

For the preceding reasons, a lake classification system must be designed to assess 

potential lake water quality capacity. This classification must be based on watershed 

variables that underlie, determine and explain the patterns of change in physical, 

chemical or biological water quality performances over seasonal or annual cycles 

(Warren, 1979). Also an effective classification tool should be able to distinguish the 

various levels at which the environmental variables influence the segregation oflake 

classes. This issue is addressed in a review of hierarchical classification approaches, as 

described below. 

2.2.4. Hierarchical classification 

Hierarchical classification is based on the concept that ecosystems are affected by 

natural (and anthropogenic) processes that operate at a variety of spatial scales ranging 
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from regional to local level (Frissel et ai., 1986; Allen and Hoekstra, 1992; Lomnicky, 

1995; Maxwell et aI., 1995; Davies et aI., 2000; Edmunson and Mazumder, 2002). 

Furthermore, hierarchical principles make it possible to observe and analyze ecological 

complexity without confusing upper level environmental controls with lower level lake 

water quality possibilities (Allen and Hoekstra, 1992). For example, Lomnicky (1995) 

developed a watershed-based, three-level hierarchical classification for lakes in the 

northern Cascade Mountains of Washington. He found that the primary components of 

the hierarchical classification were lake position relative mountain crest, vegetation zone 

and basin origin. These key components were attributed to the glacially influenced 

landscape ofthe Pacific Northwest U. S. and the predominance of natural lakes in this 

regIOn. 

In another study of sub-arctic Alaskan lakes, Edmunson and Mazumder (2002) 

also examined the influences of climatic setting, morphology, transparency and typology 

on thermal characteristics of the lakes including water temperature, mixing depth, and 

heat content. They found that climatic setting, lake morphology, and lake typology 

showed a hierarchical regulation of growing season characteristics, lake water 

temperature, heat retention and stratification. Bohn and Kershner (2002) also developed 

a watershed-based hierarchical analytic template to improve understanding of the impact 

of non-point pollution sources on stream water quality. It is possible then that watershed­

based lake classifications could serve as the foundation for a hierarchical lake 

classification that integrates the functional and spatial attributes of the landscape (e.g., 

erosion potential) in characterizing potential lake water quality conditions. 
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A simple form of hierarchical classification is the rule-based decision tree. The 

tree is comprised of a sequence of simple questions, the answer to each of which traces a 

path down the tree. The classification or prediction made by the model is determined 

when a final point is reached. The prediction may be qualitative (e.g., least vulnerable 

lakes) or quantitative (e.g., temperature class). A more rigorous form of decision trees is 

the recursive partitioning non-parametric statistical method, which can account for non­

linear relationships, higher order interactions and missing values in a dataset (Breiman et 

a1.1984; Verbyla, 1987; De' ath and Fabricus, 2000). 

Lake water quality datasets often have missing data as well as inconsistencies in 

spatial and temporal sampling frequency. Also, landscape level data may only be 

available at different scales and for different time periods. These dataset problems make 

the use of decision trce (e.g., classification tree) an appropriate choice for dealing with 

lake classification. For example, Emmons et ai. (1999) compared the use of 

classification tree method to discriminant function analysis (DF A) in classifying northern 

Wisconsin lakes based on actual water quality data. They found that the classification 

tree method resulted in lower-rates ofmisclassification and more interpretable lake 

classes than those classes derived by DF A. The classification tree method is therefore 

useful in defining potential lake classes by integrating lake morphology, watershed 

characteristics, and climate datasets. Having discussed the different approaches to lake 

classification, it is now appropriate to review factors that affect lake water quality in 

order to understand the data that may be needed to characterize and group lake 

watersheds. 



2.3. Factors that affect lake water quality 

Factors that affect lake productivity and water quality are usually interrelated and 

often complex (Figure 2.3). Some of these factors include surface area, lake landscape 

position relative to stream order, altitude or elevation, watershed area, mean watershed 

slope, soil erodibility and infiltration rate, as well as precipitation amount, intensity and 

frequency, air temperature, and light energy. The response of stream-fed lakes to 

climatic conditions, are intricately linked to the lakes morphology and watershed 

characteristics. Hence, the following review will be focused on lake and watershed 

characteristics of reservoirs. 
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Landscape position (or lake order) - the influence oflake order on water quality has been 

documentcd for some lakes in the mid-western United States (Kratz et al. 1997; Reira et 

al., 2000; Magnuson and Kratz, 2000). For example, Reira et al. (2000) reported 

significant relationships between lake order and chlorophyll-a, total nitrogen, dissolved 

silica, Secchi depth, pH, calcium, and conductivity. They found that pH, specific 

conductance and calcium oflake water increased significantly with an increase in lake 

order. Total nitrogen and chlorophyll-a were also found to increase with increasing lake 

order. On the other hand, total phosphorus did not show any significant increase with 

increases in lake order. Generally, lake order can provide insights into the geomorphic 

constraint of the landscape on the physical, chemical and biological water quality 

characteristics of lakes. 

Lake dcpth - is a primary determinant of heat retention and the extent ofthermal 

stratification, which in tum can impact nutrient cycling and dissolved oxygen levels of lakes 

(Gorham 1961; Schindler 1971; Wetzel, 1983). Thermal stratification is the process by 
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which lakes develop a layer of dense cooler water that underlies a surface layer of less 

dense, warmer water. The lower layer of water is termed the hypolimnion, the upper 

warmer layer is the epilimnion and the transitional layer, which acts as a barrier between the 

two layers, is the metalimnion. The metalimnion is usually identified by a temperature 

change of 1°C per meter (Wetzel and Likens, 2000). The mixing depth ofthe lake or 

reservoir represents the thickness of the epilimnion. However, maximum lake depth 

controls the extent of mixing of the epilimnion and hypolimnion, which releases nutrients 

(especially phosphorus) and dissolved oxygen from the hypolimnion. Such mixing 

usually result in increased primary production and concentration of chlorophyll-a in the 

epilimnion. The maximum depth of a lake also affects the volume ratio of epilimnion to 

hypolimnion and consequently the primary productivity of lakes. Deeper lakes have 

epilimnion to hypolimnion ratio ofless than one and tend to be less productive and so can 

assimilate higher nutrient loads than shallow lakes. For example, Lampert and Sommers 

(1997) indicated that deep lakes have lower chlorophyll-a concentration in the epilimnion 

than shallow lakes. 

Lake surface area - is another primary detelminant of heat retention and the extent of 

thelmal stratification, which in turn can impact the nutrient cycling and dissolved oxygen 

levels oflakes (Gorham 1961; Schindler 1971; Wetzel, 1983; Wetzel and Likens, 2000). 

Smaller deeper lakes are more likely to stratify than larger and shallow lakes, because the 

mixing potential of larger lakes is increased by the contact between water surface and air 

circulating above the water. Surface area also affects the amount of direct precipitation into 

the lake (Wetzel, 1983). Larger lakes receive more nutrients (especially nitrogen in the form 

ofnitrates) from precipitation than smaller lakes. The hydraulic retention time oflarge lakes 
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is greater than that of smaller lakes. Retention time controls the difference between 

phosphorus and nitrogen concentration in lakes and the surrounding watershed (Lampert 

and Sommers, 1997). According to Canfield et at. (1989), the surface area of a lake can be 

used as a proxy for other factors that affect the internal nutrient cycling and water quality, 

e.g., mean lake depth, depth of mixed area, thickness of ice and snow cover, and 

shoreline development. This is why surface area is a key morphological characteristic in 

the assessment oflake water quality. 

Lake altitude or elevation - is inversely related to the primary productivity (chlorophyll-a) 

of lakes (Canfield et ai., 1989). Lakes in hilly regions are generally less productive (i.e., 

lower concentration of chlorophyll-a) than lakes at lower altitudes. This is because air 

temperature and solar radiation decrease with increasing altitude, which affects the rate of 

photosynthesis (primary productivity) in lakes. The effect of altitude on lake productivity 

co-varies with the latitude of the lake or rcservoir, because latitude integrates the effects 

of day length, length of the growing season, angle of incident solar radiation, and 

temperature on the photosynthetic processes in water bodies. Generally, lakes at lower 

latitudes and altitudes are more productive than lakes located in higher latitudes and 

altitudes (Brylinsky and Mann, 1973). 

Mean watershed slope - water that reaches the soil or land surface via precipitation moves 

down slope in the general direction of the point of minimum gravitational force. The 

slope of a watershed also affects the contact time between soil and water. For example, 

given similar soil permeability and infiltration rate, water moves faster through soils on 

steeper slopes than on flat areas. The inclination (aspect) of the slope is also important in 

detern1ining the physical and chemical properties streams and soil water that enter the 
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lakes. Lakes fed by streams from west facing slopes are more likely to be rich in organic 

matter and have higher temperatures than lakes fed by streams from east facing slopes. 

This is because the west facing slopes receive warmer afternoon solar radiation than the 

east facing slopes. The temperature regime oflakes is critical to primary productivity, 

which contributes to increased organic matter content. Hence the slope and elevation 

together influence the microclimate of a lake. 

Watershed area - the nutrients supplied to lakes (e.g., phosphorus and nitrogen) via 

precipitation and surface runoff are directly proportional to the area of lakes watershed 

area and inversely proportional to the volume or surface area oflakes (Schindler, 1971; 

Satterlund and Adams, 1992; Lomnicky, 1995; Lampert and Sommers, 1997). When the 

watershed area is small with respect to lake area, then the nutrient loading (nitrogen and 

phosphorus) to the lake or reservoir will be low and vice-versa. Also, where the inflow 

water volume is higher than outflow volume from the lake, nutrients and organisms can 

be flushed out before they exceed critical levels that trigger algal blooms (Canfield et ai., 

1989). This effect is usually represented by the ratio oflake area to watershed area, a 

measure of lake flushing rate and hence the potential for nutrient enrichment from runoff 

sources (Figure 2.4). Drainage lakes receive nutrients primarily through surface water 

(i.e. soil erosion by the surface runoff) and atmospheric deposition of nutrients (e.g., 

nitrogen and phosphorus) from precipitation. Schindler (1971) hypothesized that the 

biological productivity of experimental lakes in Ontario, with no cultural or 

anthropogenic nutrient inputs, was directly proportional to ratio of watershed area to lake 

volume. Recent studies indicate that nutrient loading per unit lake volume is a function 

of the ratio of watershed area to lake volume (e.g., Lomnicky, 1995; Lampert and 
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Sommers, 1997). Therefore lakes with low watershed area to lake volume ratio will have 

relatively low nutrient loading, while lakes with high watershed area to lake volume ratio 

will have high nutrient loading. 

The nutrient content of drainage watcr from a watershed is modified as the water 

travels through the terrestrial, stream and wetland (or littoral) arcas before reaching the 

lake (Wetzel, 1983). The area that contributes runoff to the lakes may vary with season 

due to the hydrologic response of the watershed. The hydrologic response (i.e. 

generation of stream flow) of the watershed is explained by the "variable source area 

concept", which states that, "a portion of the watershed actively generates runoff in 

response rainfall or snowmelt" (Hewlett, 1961). This watershed response varies in 

recognizable pattern with season (Satterlund and Adams, 1992). In times of excessive 

rainfall or snowmelt, portions of the watershed that seldom contribute runoff become 

active contributors of runoff, which could reach a lake as either surface water or ground 

water. However, the nature of inflow into the lake and the lake's morphometric 

characteristics will ultimately determine its response to a rainfall or snowmelt event. 

Furthennore, thc delivery ratio of sediments from watersheds to lakes decreases 

with an increase in watershed size (Satterlund and Adams, 1992). The decrease in 

sediment delivery to lakes can be attributed the dampening of velocity as stream runoff is 

routed via various portions of a large watershed to lakes. Since sediments are the primary 

sources of lake nutrients, especially phosphorus, the reduction in sediment delivery may 

counteract the possible increase in nutrient loading due to an increase in the watershed 

area 
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Geology - since lakes are intimately linkcd to their watersheds by movement of materials 

from land to water, lake chemistry is to some extent influenced by the surface geology of 

the watershed. For example, under conditions of limited or absent cultural inputs, 

weathering of sedimcntary rock materials and subsequent transport by runoff to a lake 

will determine the concentration of phosphorus in the lake (Golterman, 1973). This is 

because sedimentary rocks generally have highest concentration of phosphates, followed 

by metamorphic and igneous rock (Golterman, 1973; Canfield et al., 1989). The 

geologic age of weathered rocks (soils) in a watershed also affects the salinity oflake 

water. For example, lakes in watersheds containing young glacial soils exhibit higher 

salinity than lakes in watersheds that contain older weathered soils (Jones and Bachmann, 

1978). 

Soil erodibility (K-factor) - lakes in watersheds where the soil K-factor is high arc likely 

to have higher sediment and nutrient loads due to erosion than lakes in watersheds where 

the soil is less susceptible to erosion (Satterlund and Adams, 1992). Sediments act as 

conveyors of attached nutrients and chemicals like organic nitrogen and phosphorus. 

The velocity of stream runoff affects the energy available to dislodge soil 

particles. However, runoff velocity is influenced by the rainfall intensity and slope of the 

watershed (Satterlund and Adams, 1992). Obviously, an intense rainfall over a hilly area 

is likely to result in more erosion than the same intensity rainfall over a flat area. In 

general, a greater percentage of eroded sediment is delivcred to streams and lakcs with a 

smaller watershed area, steeper slopes and fine-textured soils. On the other hand, the K­

factor of large watersheds is poorly correlated with the transparency of lake water (Secchi 

depth) and lake nutrients (nitrogen and phosphorus) (Satterlund and Adams, 1992). 
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Soil infiltration rate - affects the amonnt of precipitation that enters the lake via stream 

runoff and gronnd water flow. This eventually affects the concentration of dissolved 

solutes (e.g., calcium and sodium) in lake waters. The intensity of precipitation received 

in a watershed will affect the contact time between water and the soil particles. An 

intense and short duration rainfall event will lead to more surface runoff compared to the 

same amount of rainfall over an extended duration. Moreover, fine textured sandy soils 

are likely to have higher infiltration rates than clayey soils. 

Soil permeability - also affects the contact time between the soil particles and water 

passing through the soil. The longer the water stays in the soil column the greater will be 

the concentration of dissolved solutes in the water that eventually reaches the lake as 

seepage water or base flow recharge. Alkalinity of low flow streams and lakes is 

generally correlated to soil permeability (Woo lock et aI., 1989). Water reaching streams 

and lakes via low penneability soil are likely to have high concentration of dissolved 

solutes such as calcium, magnesium and sodium. The slope of the watershed, especially 

along the path of runoff, modifies the effects of the soil permcability on solute 

concentration in streams and lakes. 

Soil organic material - is often deposited as a mixture of peat. The general kinds of peat, 

according to origin are: sedimentary peat (derived from floating aquatic plants, as well as 

remains and fecal material of aquatic animals); moss peat (derived from mosses, 

including Sphagnum); herbaceous peat (derived from herbaceous plants); and, woody 

peat (derivcd from woody plants). In areas where anaerobic decomposition occurs in 

soils, biological nitrification and denitrification can affect the nitrogen flux from 



watersheds into lakes. High levels of organic material input into lake systems affect 

photosynthetic activity (chlorophyll-a) in the lakes in several ways. 
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For example, increased bacterial oxygen consumption at the bottom of a lake may 

change the chemical balance at the sediment-water interface, which influences the 

nutrient diffusion rates from the sediments. This situation can lead to increased 

phosphorus concentration and phytoplankton bloom (Canfield et ai., 1989). However, 

when the amount of carbon in organic material input from the watershed exceeds that of 

phosphorus, the bacteria will compete with phytoplankton for phosphorus, thereby 

reducing the concentration of chlorophyll-a in the lake (Canfield et ai., 1989). 

Soil pH - is a major factor in determining the acidity or alkalinity oflake water, since 

lake pH is strongly correlated to soil pH (Wetzel, 1983; Lampert and Sommers, 1997). 

Soil pH affects the solubility of metallic ions (e.g., aluminum Al l +) and dissociation of 

ammonium ions in soil and lake waters. The solubility of metallic ions including 

aluminum (All +), iron (Fe2'), copper (Cu2+), zinc (Zn21), and lead (Pb2+), increases with 

decreasing pH of soil and lake waters. Since aluminum is a major component of siliceous 

rocks (most common clement in the earth's crust), it is often abundant in most lake 

watersheds and is more likely to be transported by stream runoff into lakes (Lampert and 

Sommers, 1997). Hence, substantial decreases in lake pH will lead to increases in 

dissolved aluminum ion concentrations to toxic levels. A problem associated with high 

pH of soil and lake waters, is the conversion of harmless ammonium ions to toxic 

ammonia. Ammonium ions dominate lake water at pH of less than 8. When the pH 

increases beyond 10.5 (critical point), almost all the ammonium ions are converted into 

ammonia (Lampert and Sommers, 1997). Lakes waters with high pH are likely to 
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experience abrupt disruption of aquatic life (e.g., fish kills) when pH exceeds the critical 

point. Therefore, soil pH controls the solubility of aluminum ions in lake waters and the 

conversion of ammonium ions into toxic ammonia. 

Soil cation exchange capacity (CEC) - controls the weathering process of soils and 

consequently the amount of calcium (Ca21) and magnesium (Mg2+) ions that reaches 

streams and lakes (Wetzel, 1983). CEC also determines the extent to which acidic waters 

draining the soil surface can be neutralized (Wctzel, 1983). Soils with high CEC will 

have enough basic ions like calcium (Ca2+) and magnesium (Mg2+) to neutralize the 

effects of acidic ions, e.g. sodium (Na2+) and aluminum (AI3+) (Wetzel, 1983). Streams 

and lakes in watersheds that have soils with higher CEC are therefore more likely to be 

alkaline waters. 

The general climate of a region also influences the CEC of soils. Under arid 

conditions, atmospheric deposition of salts gradually increases the concentration of 

sodium ions in soil solutions, which result in the gradual replacement of Ca2+ and 

Mg2+ exchange sites with Na2+ions. When the Na2+ ions are flushed into streams or lakes 

during rainstorm or snowmelt, high Na2+ ion concentrations (sodic water) endangers 

aquatic organisms (Wetzel, 1983). 

Soil salinity - is one of the major factors that control the salinity of surface waters (Gibbs 

1970; Wetzel, 1983). Lakes that receive runoff inputs from moderate to strongly saline 

soils tend to contain large amounts of cations (especially C;+ and Mg2+) and thus 

become more alkaline. On the other hand, lakes that receive runoff from non-saline to 

slightly saline soils contain lcsser amount of cations than anions (e.g., Cn and become 

more acidic (Gibbs, 1970; Wetzel, 1983). 
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Lake salinity is also controlled by water source, surface area, atmospheric 

deposition of salts directly into lakes, and the dynamics between evaporation-induced 

fractional crystallization and precipitation. The chemical composition of open lakes (i.e. 

lakes with outlets) is controlled almost entirely by the dissolved ion constituents of runoff 

in the lake watershed (Wetzel, 1983). On the other hand, the salinity of closed lakes (i.e., 

lakes without outlets) is controlled not only by the inputs of dissolved ions in runoff, but 

also by the fate of the dissolvcd ions in evaporation (Hutchison, 1957; Wetzel, 1983). In 

semi-arid regions like parts of Nebraska, some lakes could dry out during drought periods 

thereby exposing nearby lakes to nutrient input via wind action (Wctzel, 1983). 

Furthermore, an intcnse rainfall following a prolonged drought could lead to a sudden 

influx of nutrients to lakes and cause harmful effects such as toxic algal blooms. 

The preceding discussion provides some insight into the lake eutrophication 

process, limitations of previous approaches to lake classification for water quality 

management and a rationale for watershed-based lake classification. The latter approach 

emphasizes the need to employ watershed characteristics that underlie, determine and 

explain the pattems of change in physical, chemical or biological water quality of lakes 

(e.g., watershed area, watershed slope, soil organic matter, soil pH, and soil erodibility). 

A review of the effects some of these watershed characteristics on lake water quality was 

done with respect to available data that were used in the dataset development process 

described in Chapter 3. 
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Figure 2.1. Lake eutrophication (or aging) process. The natural process takes place over 
centuries, but this process can be accelerated to occur in a few decades due to increased 
land use activities, e.g. agricultural land use. Modified after Carpenter et al. (J 998). 
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Figure 2.4. Typical relationship between nutrient loading and the ratio of watershed area 

to lake area. 
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CHAPTER 3. DATASET DEVELOPMENT AND PRELIMINARY ANALYSIS 

3.1. Introduction 

The validity and broad application of the results of any assessment depends on the 

quality of data llsed in that analysis. Hence, it is important to obtain or develop accurate 

datasets that are relevant to the watershed based lake classification and understand the 

nature of their variations. The work reported in this chapter represents the geospatial 

dataset development process and preliminary analyses of the patterns of variation and 

associations of the dataset. This chapter is divided in four sections that reflect: (a) 

development on an up-to-date and comprehensive digital map of Nebraska lakes in order 

identify reservoirs in the state; (b) delineation of watershed boundaries for selected 

Nebraska reservoirs; (c) assessment of whether the sampled reservoirs, used in 

delineating watershed boundaries are representative of all Nebraska reservoirs that are at 

least 4 hectares (or 10 acres) in surface area: and (d) preliminary analysis of spatial 

patterns of variations and correlation analysis of the geospatial dataset of watershed 

characteristics. 

3.2. Mapping Nebraska reservoirs 

Accurate identification of Nebraska reservoirs is necessary to delineate their 

watershed boundaries and develop management criteria for groups or classes of 

reservoirs based on their potential water quality. However, there has been no existing 

digital geospatial dataset that provides a complete depiction of the number and locations 

of all reservoirs in Nebraska. In order to develop a geospatial dataset of Nebraska 
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reservoirs, it was important first to map all Nebraska lakes (Figure 3.1). The types and 

sources of data that were used in this work are summarized in Table (3.1). 

Initially all water features from the latest version of the NRCS (Natural Resources 

Conservation Service) Soil Survey Geographic Database (SSURGO) were extracted and 

used as baseline dataset (or coverage) of water features in a Geographic Information 

Systems (GIS). The baseline dataset was edited to remove any stream-like features and 

artifacts of the SSURGO data capture process (e.g., small polygons associated with many 

large lakes). This GIS coverage was then updated using other data sources, including the 

U.S. Geological Survey (USGS) National Hydrography Dataset (NHD), USGS National 

Land Cover Data (NLCD) and U.S. Census Bureau TIGER (Topologically Integrated 

Geographic Encoding and Referencing) data, to fill gaps in counties where there were no 

available SSURGO data at the time of dataset development. All the datasets were 

projected into Albers Conformal coordinate system and same datum (NADI983) to 

reduce distortions at the edges ofthe data and thus ensure that the data overlay properly 

(ESRI, 1997). 

Polygons in lakes GIS coverage were filtered to remove polygons less than 0.8 

hectares (2 acres) in surface area. This threshold was used to remove additional artifacts 

of all the input data sets (e.g., digitizing errors in TIGER data). The choice of 0.8 hectare 

threshold was based on the fact that it generally reflects the maximum size of polygons 

included in the data as a result of digitizing errors or slivers from data transformations 

during the lake mapping process. The filtered coverage was then edited to generate a 

draft map of Nebraska lakes (Figure 3.2). 



3.2.1. Assigning attributes to lake features 

With a draft digital map of Nebraska lakes assembled (hereafter referred to as 

Nebraska lakes- l), the next step was to characterize the lake polygon features by "lake 

type" in order to segregate the reservoirs from natural lakes and sand pits. The natural 

lakes are found mostly in the Nebraska Sand Hills region, a unique ecological area of 

grass covered sand dunes (Figure 3.3). The sand pits on the other hand were the results 

of land excavations to provide aggregate material for road constructions in the mid­

twentieth century. The primary water source for both natural lakes and sand pits is 

ground water, so these lake types were excluded from any further consideration. 
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The Nebraska Dams inventory dataset (from U.S. Army Corps of Engineers) and 

a sampled Nebraska lakes water quality dataset (I-Iolz, 2002) were used as initial sources 

of reservoir information. Howcver, the projection parameters of the Dams inventory data 

were found to be inaccurate which led to incorrect alignment with Nebraska lakes-I, 

therefore the Dams inventory dataset was recreatcd. This was done using geographic 

coordinate information (latitude and longitude) of the original Dams inventory dataset, 

and the projection was reestablished to the Universal Transverse Mercator (UTM) 

coordinate system. This revised Dams inventory dataset was then reprojected into Albers 

Conformal coordinate system and it aligned better with Nebraska lakes-\. Once the two 

data layers were overlaid correctly, a spatiaijoin function in ArcMap® GIS software was 

used to extract lake type attributes (i.e. reservoirs) from the Dams inventory dataset. 

Next, a polygon coverage of the Nebraska Sand Hills region was overlaid on to 

the Nebraska lakes-\ coverage. All lakes within the Sand Hills region were identified as 

natural lakes, except those already designated as reservoirs or sand pits based on dams 
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inventory and sampled lakes datasets. The remaining lakes (everything excluding the 

Sand Hills Region) were either reservoirs or sand pits and were exported into new lakes 

coverage (Nebraska lakes-2). A preliminary size restriction of 4 hectares was applied to 

separate this new coverage into two sub-layers, because the reservoir classification work 

was the part of an Environmental Protection Agency (EPA) effort to develop nutrient 

criteria for lakcs larger than 4 hectares (EPA, 2001). Thus, the sub-layer with lakes 

larger than 4 hectares was processed first (Nebraska lakes-2a). Unidentified lakes in this 

layer that intersected with Nebraska streams data were identified as reservoirs while the 

rcst were identified as sand pits. The same approach was applied to the sub-layer 

containing lakes smaller than 4 hectares (Nebraska lakes-2b). Again, lakes that did not 

intersect with streams were identified as sand pits while the rest were identified as 

rcservOlrs. 

Both Nebraska lakes-2a and 2b were merged and the resulting coverage 

(Nebraska lakes-3) was panned through, on county by county basis, to verify the correct 

assignment oflake types. Other ancillary data, e.g. coordinate information in tabular 

lakes dataset from Nebraska Department of Environmental Quality, were used to aid the 

revision process. In all, 17 lakes that were initially identified as sand pits were 

reassigned as rcservoirs, while 6 reservoirs were also reassigned as sand pits. Some of 

the lakes were identified as "oxbow lakes", and so a new category oflake type was 

created. In the final step, Nebraska lakes 1 and Nebraska lakes 3 were combined into an 

up-to-date digital map of Nebraska lakes. 
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3.2.2. Final Map of Nebraska lakes 

The final and updated digital map of all Nebraska lakes that are at least 0.8 

hectares (2 acres) is shown in Figure 3.4. This Nebraska lakes map comprises of 13,520 

lakes (i.e. 6796 reservoirs, 3644 natural lakes, 3068 sand pits and 12 oxbow lakes). This 

map is believed to be the most comprehensive and accurate representation of Nebraska 

lakes in a GIS coverage, compared to other Nebraska lake datasets that were available at 

the time of the dataset development (Figures 3.5). All reservoirs larger than 4 hectares 

were extraeted from the updated map of Nebraska lakes (Figure 3.6). The 4 hectares size 

restriction reflects the minimum threshold required for EPA lake nutrient criteria 

development (EPA, 2001). The extracted reservoir coverage (Figure 3.6) was then used 

in the watershed boundary delineation process described below. 

3.3. Delineating reservoir watershed boundaries 

A simple and effective means to delineate watershed boundaries is required for 

the watershed-based reservoir classification. Previous effotis to delineate reservoir 

watershed boundaries for water resource management were limited by atiifacts of county­

based digital elevation models (DEM) sueh as seams. An existing database that is 

commonly used as framework for chat'acterizing lake watersheds is the Hydrologic Unit 

Coverage (HUC). The most comprehensive and nationally available HUC's are based on 

a 8-digit standardized coding system that divides the United States into four hierarchical 

levels, i.e. regions, sub-regions, accounting units (or basins) and cataloging units (or sub­

basins) (U.S. Geological Survey, 1982; Seaber et ai., 1987). However, the current 8-digit 

I-IUCs do not provide sufficient detail in order to easily extract or delineate watershed 



boundary of reservoirs for water quality assessment (Omernik and Bailey, 1997; 

Verdin and Verdin, 1999; Verdin, 2000; Kost and Kelly, 2001; Omernik, 2003). 
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Seamless digital elevation model (DEM) derivatives are available from parallel 

United States Geological Survey (USGS) projects; namely, the National Elevation 

Dataset (NED) and Elevation Derivatives for National Applications (EDNA). According 

to Gesch et al. (2002), the NED was the result of effOlts by the USGS to provide 

1 :24,000-scale DEM data for the conterminous United States. The NED was developed 

by merging the highest resolution and best quality elevation data available across the 

United States into a seamless raster format. The USGS Elevation Derivatives for 

National Applications (EDNA) project, previously known as the National Elevation 

Dataset-Hydrologic derivatives (NED-H), was aimed at a systematic derivation of 

standard hydrologic derivatives (http://edna.usgs.gov/; Kost and Kelly, 2001). 

EDNA datasets arc available for all of the conterminous United States of America 

and they include synthetic streams, sub-catchments (i.e. contributing drainage area for 

each stream reach), and a revised hydrologic unit coding system, all generated from 30-

meter DEM (http://edna.usgs.gov/). The sub-catchments and hydrologic coding system 

were based on a system that uses the Pfafstetter stream numbering scheme for codifying 

river basins (Pfafstetter1989; Verdin and Verdin, 1999; Verdin, 2000). The Pfafstetter 

stream numbering scheme is a self-replicating numbering system based on the topology 

ofthe drainage network and the size ofthe surface area drained by that network. This 

allows for identification numbers of the smallest sub-basins and inter-basins extractable 

from aDEM (PfafstetterI989; Verdin and Verdin, 1999). According to Verdin and 

Verdin (1999), "the appeal of the Pfafstetter's scheme is due to its economy of digits, the 



topological information that the digits carry, and the global applicability of this 

approach". 

3.3.1. Automated delineation of watershed boundary 
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EDNA datasets, obtained from EROS Data Center (EDC), included Pfafstetter 

sub-catchments, modified hydrologic unit boundaries, synthetic (i.e. DEM generated) 

streamlines, flow direction and shaded relief data for all areas that drain into water bodies 

of Nebraska (Pfafstetter, 1989; Verdin and Verdin, 1999; Gesch et aI., 2002; 

http://edna.usgs.gov/). The DEM-based EDNA datasets were used in ArcView@ GIS to 

delineate the watersheds of 88 Nebraska reservoirs (Figure 3.7). These reservoirs were 

selected because their location and type havc been verified and they form part of an 

existing lake water quality database obtained from the School of Natural Resources, 

University of Nebraska - Lincoln (Holz, 2002). 

Watershed boundaries of these reservoirs were delineated using EDNA stage-2 

ArcView@ GIS extension together with the ArcView "Hydro" extension (Olivera et aI., 

2000; USGS, 2001). This process identifies a reservoir's watershed based on stream 

network, stream flow direction and sub-catchments infOlmation available in the EDNA 

dataset (Verdin and Verdin, 1999). The flow direction data is the primary DEM 

derivative that is used in delineating sub-catchment and watershed boundaries. 

After the DEM data was processed to remove spurious sinks, i.e. areas or 

depressions where water enters but cannot exit, a flow direction grid was generated. The 

flow direction grid was comprised of cell values (integers) that indicated the direction of 

water flow from each cell, based on DEM elevation values (Figure 3.8). The direction of 

water flow for each cell in the elevation grid was determined and a value is assigned to 
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the flow direction grid. There were eight valid output water flow directions, with 

respect to the 8-ceU neighborhood surrounding each cell (ESRI, 1992; ESRI, 1997). The 

flow direction grid was then used to generate a flow accumulation grid, which was also 

used to derive the synthetic stream network. The synthetic stream network is created by 

identifying flow accumulation grid cells that had high cell or flow accumulation values 

(ESRI, 1992 ESRI, 1997). 

The EDNA stage-2 ArcView tool was used to aggregate the sub-catchments based 

on the P fafstetter coding systems (Verdin and Verdin, 1999). Where there were 

difficulties in aggregating the sub-catchments (as was the case with some small reservoirs 

in low relief areas), ArcView® GIS "Hydro" extension was used, together with the flow 

accumulation data, to delineate the reservoir watershed boundary (Olivera et aI., 2000). 

The EDNA-derived stream network was useful for locating outputs (or pour-points) from 

which the sub-catchments were delineated. The watershed boundaries of sampled 

Nebraska reservoirs that were derived from EDNA DEM are shown in Figure 3.9. 

3.3.2. Assessing the accuracy of automated watershed boundary delineation 

The watershed boundaries of selected reservoirs were overlaid on digital raster 

graphics (DRG) and manually digitized watershed boundaries, obtained from the 

Nebraska Department of Natural Resources (DNR), to compare the effectiveness of the 

watershed delineation process. The DRG data consisted of scanned images of I :24000 

scale topographic maps. Therefore, the DRG were used as background data for the 

comparisons. For example, an overlay of the DEM derived and DNR digitized watershed 

boundaries of Harry Strunk reservoir on DRG showed relatively little disagreements in 

boundary outline (Figure 3.10). However, it is worth noting that the DEM-derived 



watershed boundary was closer to the dammed portion of the reservoir than the DNR 

boundary. This is particularly important because the USGS guideline for watershed 

boundary delineation emphasizes the need to take into account the dam structure of 

reservoirs (NRCS, 2002). 
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Also, the percentage deviation of the DEM-generated watershed boundaries from the 

digitized watershed boundaries was determined based on watershed topologic, geometric 

and hydrologic parameters such as total drainage area, catchment slope, mean drainage 

density, and total and mean drainage length (Garbrecht and Martz, 2003). This was done 

to ascertain the effectiveness of the automated watershed boundary delineation process. 

This was important to ensure the validity of any subsequent analyses based on the 

watershed boundaries. 

Watershed area was computed from the DEM-derived and DNR-digitized watershed 

boundaries datasets for 18 randomly selected reservoirs (representing about a quarter of 

the all the DEM-derived watershed boundaries). Other watershed parameters were 

obtained by overlaying the watershed boundaries of the 18 selected reservoirs on raster 

(or grids) datasets of slope, drainage network, and drainage density. Summary or "zonal" 

statistics for each watershed parameter (e.g., maximum, minimum, and mean catchment 

slope) were generated for reservoir watershed boundaries using AreMap GIS software. 

This was done for both DEM-derived and DNR-digitized watershed boundaries datasets. 

The DNR-digitized watershed boundaries were used as validation datasets. The percent 

deviation ofDEM-derived watershed boundaries from the validation datasets, based on 

total drainage area for example, was computed as follows: 
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Percent Deviation (%) = 
ABS(AreaDNR - AreaDEM) 

x 100 
AreaDNR 

(3.1) 

where ABS is a function used to transform the difference into absolute values. 

Results of the comparison oftopographic, topologic and hydrologic parameters for 

the 18 selected watersheds showed less than 10 percent deviation ofDEM derived 

watershed boundaries from DNR-digitized watershed boundaries (Table 3.2). The 

watershed parameter values in Table 3.2 represent average values from 18 selected 

watersheds of small, medium and large reservoirs. Each watershed was considered as a 

lumped unit; so the values do not reflect spatial variations within individual watersheds. 

For example, the percent deviations based on total drainage area, drainage density, and 

mean watershed slope were 1.79, 4.12, and 1.84, respectively. It is important to note that 

the deviations of DEM -derived watersheds from DNR validation watersheds were less 

than 5 percent. This is because total drainage area, drainage density, and mean 

watershed slope are critical to the transport of sediment and agricultural pollutants via 

streams to reservoirs (Satterlund and Adams, 1992). 

The aforementioned comparisons indicate that the automated watershed boundary 

delineation process, combined with the EDNA datasets, was effective in delineating 

watershed boundaries for Nebraska reservoirs. The seamless nature of the EDNA 

datasets for the entire area that drains into water bodies in Nebraska also ensured that the 

watershed boundaries conformed to the topography of the state. Despite the fact that the 

watershed boundaries have not been field-checked and standardized, they still provide 

sufficient conformity with local terrain. 
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3.4. Assessing representativeness of sampled Nebraska reservoirs 

The watershed boundary delineation process, discussed in section 3.3, was based 

on reservoirs that were sampled to assess selected water quality parameters including 

secchi depth, chlorophyll, and total phosphorus (Holz, 2002). These reservoirs were 

sampled without any particular statistical sampling design. Also, watershed boundaries 

of some of the sampled reservoirs extend beyond the Nebraska state line and were 

excluded from any analysis. This raises two key questions; namely (i) were sampled 

reservoirs whose watersheds fall within Nebraska (adjusted sampled data) different from 

boundary reservoirs whose watersheds fall outside Nebraska? and (ii) were the adjusted 

sampled reservoirs data (mentioned above) different from all reservoirs (larger than 4 

hectares) whose watersheds fall within Nebraska? 

Nebraska reservoirs that were categorized as follows; Groups land 2 consist of 

sampled reservoirs whose watershed boundaries fall outside Nebraska (8), and within 

(80) Nebraska, respectively; and, Group 3 consists of all reservoirs whose watershed 

boundaries fall within Nebraska and were at least 4 hectares in surface area (954). The 

sampled reservoirs (Groups 1 and 2) make up 9.22 percent reservoirs in Group 3. When 

the reservoir dataset was adjusted to exclude boundary reservoirs, the proportion of 

sampled reservoirs (Group 2) to reservoirs Group 3 declined to 8.39 percent. Knowledge 

of the proportions of the sampled reservoirs to all Nebraska reservoirs that were at least 4 

hectares, provide a context for developing water quality standards. This information on 

the proportion of sampled reservoirs to all Nebraska reservoirs addresses a key 

requirement for the development oflake nutrient criteria guidelines (EPA, 2001). 
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Initially the distributions of all three datasets (Group 1,2, and 3) were 

compared using box-whisker plots. Box-whisker plots can provide a concise picture of 

the distribution of the datasets (Tukey, 1977). The central line in each box represents the 

median value (50'h percentilc) while the edges of the box represent the first quartile (25th 

percentile) and third quartile (75th percentile). The mean area of reservoirs in Groups 1, 

2, and 3 were 2457, 249.35, and 10.21 hectares, respectively (Table 3.2). The average 

area ofreservoirs in Group 3 was relatively small compared to both Groups 1, and 2 

reservoirs. This was due to the large number of small reservoirs in the Group 3 as 

reflected in the median, upper and lower quartile values of the box-whisker plots (Figure 

3.11). 

The next step in assessing the representation of sampled reservoirs was done to 

determine the significance of the abovementioned differences between the datasets; 

specifically Group 1 vs. Group 2, and, Group 2 vs Group 3. The "Npairl way" non­

parametric procedure in SAS® was used to test the significance of the aforementioned 

differences based on Wilcoxon Signed-Rank and Kruskal-Wallis test statistics (SAS 

Institute, 2000). For example, the nOtmal approximation of Wilcoxon Signed-Rank 

paired test (z) for a variable (T) is given as: 

where, j.1.T= 

n(n + 1) 

4 

z 

and 

(3.2) 

~ 
n(n + 1)(2n + 1) 

aT= ______ ~~-----
24 

The null hypothesis (Eo) was that there were no differences between the datasets 

(e.g., Eo: Group III = Group 211, where j.1. is the mean reservoir area). There were three 
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options for stating the alternative hypotheses (Ha). One option was a non-directional 

Ha, also known as two-tailed test (e.g., Ha: Group IJ.l t Group 2J.l) (Sheskin, 2000). There 

were two possible directional or one-tailed alternative hypotheses (i.e. Ha: Group I iJ.> 

Group 2J.l or Ha: Group IJ.l < Group 2J.l). According to Sheskin (2000), the directional Ha 

does not require as large a difference in order to reject the Ho, as compared to the non­

directional Ha. So, the directional Ha was used in this assessment. 

Results of the assessment of differences between the datasets are shown in Table 

3.3. Since the aim of the analysis was to determine whether the sampled reservoirs could 

be used to approximate the distribution of Nebraska reservoirs, it was impoliant that the 

risk of making a Type-I error in wrongly rejecting the null hypothesis (Ho) was 

maintained at the barest minimum. Of the possible confidence levels (95.0%, and 99.0%) 

the 99.0% confidence level offers the least opportunity for rejecting the Ho when there 

was no significant difference between the two datasets. Table 3.3a shows results of 

comparison between Groups I and 2, where a directional Ha (p = 0.01) was used to test 

the significance of the differences. Based on the Wilcoxon (two-sided Pr > Izl) and 

Kruskal-Wallis (Pr > Chi-Square) test there was not be enough difference to reject the 

Ho. Hence the observed differences between Groups I and 2 may be due to chance. 

Also, results of the comparison between Groups 2 and 3 are shown Table 3.3b. The 

difference between the two samples was significant enough, based on Wilcoxon (two­

sided Pr > Izl) and Kruskal-Wallis (Pr > Chi-Square) test, to reject the Ho• 

For this reason, it was anticipated that surface area distribution ofthe adjusted 

sampled reservoir dataset was different than the surface area distribution of all Nebraska 

reservoirs that were at least 4 hectares in size. When other factors such as density of 
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reservoir distribution, climate divisions, and ecological regions were considered, it was 

shown that the adjusted sampled reservoir datasets were well distributed across Nebraska 

and hence could be used to in this study (Figures 3.12a and 3.12b). 

3.5. Derivation of watershed characteristics 

Factors that affect reservoir water quality are usually interrelated and complex. A key 

premise of the watershed-based approach to developing a classification system for 

Nebraska reservoirs is that the system must be designed to assess the potential reservoir 

conditions. According to Warren (1979), such a system should be based on 

environmental variables that underlie, detelmine, and explain the pattems of change in 

physical, chemical or biological water quality perfolmances over seasonal or annual 

cycles. 

Available geospatial datasets for these environmental characteristics were extracted 

for each watershed boundary (see Figure 3.9 and Table 3.1). The datasets included 

watershed area, watershed slope and relief, soil erodibility, soil infiltration rate, soil 

organic matter, soil reaction (pH), soil cation exchange capacity, soil carbonate, soil clay 

content, soil water holding capacity, soil pelmeability, and climate (e.g., precipitation, 

temperature and humidity). 

Watershed area was computed from the watershed boundary data while slope and 

relief data were derived from 30-meter digital elevation models (DEM) obtained from the 

USGS EROS Data Center (EDC) in Sioux Falls, South Dakota. Soil erodibility, soil 

infiltration rate, soil organic matter, soil reaction (pH), soil cation exchange capacity and 

soil carbonate data were derived from the USDAlNRCS State Soil Geographic Database 

(STATSGO) (Soil Survey Staff, 1993; Bliss, 1995). 



Climate data (e.g., precipitation, temperature and humidity) were obtained from 

climatological summaries for the conterminous United States web site 
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(www.daymet.org). Daymet is a model designed to interpolate and cxtrapolate from 

ground-based meteorological stations, an 18-year daily dataset (1980 - 1997) of 

temperature, precipitation, humidity and radiation, over large regions at 1 km resolution 

(Thornton et al., 1997). The climate data for Nebraska were extracted from a much 

larger database of daily weather parameters based on the I-kilometer grids for the entire 

conterminous United States (Thornton et al., 1997). This was necessary to ensure that 

results of the watershed based reservoir classification could be applicable to other parts of 

the United States. The climate data were then clipped to the Nebraska state boundary. 

A subset of 80 reservoir watershed boundaries, i.e. reservoirs in the GIS database 

whose watersheds fall within Nebraska, was used to extract the watershed characteristics 

from the STATSGO, DEM and climate datasets. This was necessary because the 

STATSGO data are tiled by states. Attempting to extract these data for the states that 

surround Nebraska (Colorado, Kansas, South Dakota and Wyoming) was beyond the 

time-frame available for this study. 

All data were rasterized and, when required, resampled to the 30m resolution of the 

DEM data. The watershed boundary coverage was then used to clip the raster layers for 

each watershed characteristic (e.g., soil erodibility). Next, summary or "zonal" statistics 

for each watershed characteristic (e.g., maximum, minimum, and mean erodibility 

values) were generated for the reservoir watershed boundaries using ArcMap® GIS. The 

above process was repeated to derive summary statistics for climate variables such as 

total precipitation, precipitation intensity and maximum temperature. All the summary 
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statistics were then appended to the watershed boundary dataset and the resultant 

information was converted into spreadsheets for further statistical analyses. An 

examination of the spreadsheet data indicated that two reservoirs (Skyview and Box 

Butte) had no summary data and were excluded from any further consideration; so only 

78 reservoirs were used in subsequent analyses. 

3.6. Preliminary analyses of reservoir watershed characteristics datasets 

It is important to understand the patterns of variation in the geospatial dataset that 

were employed in the watershed based reservoir classification process. Analyses of the 

spatial patterns of variation, as well as, sample distribution of each watershed 

characteristic were done to provide insights into appropriate statistical approach and a 

perspective for interpreting the reservoir classiflcation results. Watershed characteristics 

that were examined included watershed size, mean watershed slope and relief, soil 

erodibility, soil infiltration rate, soil organic matter, soil reaction (pH), soil cation 

exchange capacity, soil carbonate, soil clay content, soil water holding capacity, soil 

penneability and climate variables, such as precipitation, temperature and humidity 

(Table 3.1). For example, a GIS map of nine categories of soil infiltration rate shows that 

the highest soil infiltration rates occur in the Sand Hills area of Nebraska while most of 

the state has moderate to low infiltration rates (Figure 3.13). 

Histograms were also used to explore patterns of distributions in the datasets. The 

summary statistics of watershed characteristics data was used (in SAS@ software) to 

generate histograms or bar charts for each dataset. Most of the dataset distributions were 

skewed or multimodal, as evident in the sample distribution of soil infiltration rate and 

watershed relief (Figure 3.14). 
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Subsequently, a Spearman's ranked correlation was also performed for 78 

sampled reservoirs to identify any associations and possible redundancies in the 

watershed data. Results of the correlations analysis showed that soil permeability, for 

example was highly correlated to soil infiltration rate, while watershed relief (difference 

between maximum and minimum elevation) was cOITelated with mean watershed slope 

(Table 3.5a). The correlation analyses of climate data showed that the growing degree 

days (base of 10°C) was highly correlated to all other climate data (precipitation 

intensity, total precipitation, maximum and minimum temperature, and humidity) «Table 

3.5b). Humidity was also highly correlated to minimum temperature (r = 0.99, p < 

0.001). These patterns show that the climate variables are highly interdependent. 

Since we don't know which of these variables has the most significant impact on 

lake water quality, all the variables that were used in the preliminary analysis could be 

retained in any further analyses in order to explore their relative impacts on the reservoir 

classification process, as described in Chapters 4 and 5. This is due to the complexity of 

possible interactions among the variables that could affect lake water quality. 

3.7. Summary 

Results summarized in this chapter include the development of an up-to-date and 

comprehensive GIS map of Nebraska lakes, a vital step in identifying Nebraska 

reservoirs, delineating watershed boundaries, and extracting watershed characteristics 

data. The watershed boundaries were delineated from EDNA datasets, which ensures 

that the results of the watershed-based reservoir classification could be integrated with 

other geospatial datasets in the state and across the conterminous United States. 

Comparisons of DEM-derived watershed boundaries with manually digitized DNR 



watershed boundaries showed less than 10 percent deviation, based on watershed 

parameters such as drainage area and drainage density. Despite the fact that the 

watershed boundaries have not been field-checked and standardized, the extent of 

percentage deviation reflected sufficient conformity with the telTain. 
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Another important feature of the geospatial database development process was 

determination of the ratio of sampled reservoirs to Nebraska reservoirs, as well as a test 

of statistical significance of any difference between the two datasets. This was identified 

as key information needed to provide a context for the development lake nutrient criteria 

guidelines (EPA, 2001). The comparisons of the surface area of sampled reservoirs with 

all Nebraska indicated that there was a difference between the sampled reservoirs and 

Nebraska reservoirs larger than 4 hectares. When other factors such as density of 

reservoir distribution, climate divisions and ecological regions were considered, it was 

shown that adjusted sampled reservoir datasets were spatially well distributed with 

respect to Nebraska reservoirs that were at least 4 hectares. Therefore, use of the 

adjusted sampled reservoir data to characterize the Nebraska reservoirs should be viewed 

in the context of the data employed. 

Zonal or area summary statistics for each watershed characteristics were derived 

for the watersheds characteristics dataset and the resultant information were converted 

into spreadsheets. Preliminary analyses on these data showed that the watershed 

characteristics were not nonnally distributed. Consequently, non-parametric statistical 

approaches become essential for ensuing reservoir classification analyses described in 

Chapters 4 and 5. 
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DEM derived DNR digitized Percent 
watersheds * watersheds * deviation (%) 

Total drainage 52895 53629 1.79 
area (ha) 
Mean drainage 2565 2597 3.55 
length (m) 
Total drainage 405595 404085 6.99 
length (m) 

Mean drainage 1.5926 x 10'4 1.5921 X 10'4 0.996 
density (m'l) 
Drainage 9.79 x 10'2 9.84 X 10'2 4.123 
density (m'l) 
Maximum catchment 21.39 22.37 5.59 
slope (%) 
Mean catchment 3.41 3.42 1.84 
slope (%) 

Table 3.1. Comparison ofDEM derived watersheds to DNR digitized watershed 
boundaries for selected Nebraska reservoirs. 

* Data represents average values from 18 selected watersheds of small, medium and 
large reservoirs. 
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Group 1 Group 2 Group 3 
Number of 
observations 8 80 954 

Mean Area (ba) 2457 249.35 10.21 

1 st quartile (ba) 92.14 14.88 4.44 

2"d quartile (ha) 347.66 36.68 5.91 

3l'd quartile (ba) 3470 112.26 9.47 

Standard deviation 4162 721.07 20.81 

Variance 17320147 519947 433 

Range 11814 5812 389 
Coefficient of % 
variation 169.37 289.18 204 

Skewness 2.06 6.26 12.82 

Kurtosis 4.12 46.07 210 

Table.3.2. Descriptive statistics of Nebraska reservoir datasets. Groups I and 2 consist of 
sampled reservoirs whose watershed boundaries fall outside and within Nebraska, 
respectively; and, Group 3 consists of all reservoirs whose watershed boundaries fall 
within Nebraska. 



a. Group 1 vs. 2 

Group 

1 
2 

N 

8 
80 

S** 
532 

b. Group 2 vs. 3 

Group 

2 
3 

N 

80 
954 

S** 
71883.5 

Sum of Expected 
Scores Under Ho 

532 356 
3384 3560 

Wilcoxon 
Two-Sample Test 

z Pr> IZI 
2.55 0.0109 

Sum of Expected 
Scores UnderHo 

71883.5 41400 
463211.5 493695 

Wilcoxon 
Two-Sample Test 

z Pr> IZI 
11.88 <.0001 

81 

Std. Dev. Mean 
Under Ho Score 

68.9 66.50 
68.9 42.30 

Kruskal-Wallis Test 

Chi-Square 
6.5258 

Std. Dev. 
Under Ho 

2565.66 
2565.66 

Pr> Chi-Square 
0.0106 

Mean 
Score 

898.54 
485.55 

Kruskal-Wallis Test 

Chi-Square 
141.17 

Pr > Chi -Square 
<.0001 

Table 3.3. Comparison of difference between sampled reservoirs and Nebraska 
reservoirs: (a) tests if the distribution of surface area for sampled reservoirs whose 
watersheds within Nebraska, is different from that of boundary reservoirs watersheds 
which fall outside Nebraska; and (b) tests if the distribution of surface area for sampled 
reservoirs whose watersheds within Nebraska is different from that of all reservoirs 
whose watersheds fall within Nebraska and are at least 4 ha in size. 

S** = Wilcoxon Signed Rank statistic. 
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Dataset Data Source" Scale 
Lake boundaries NRCS - (SSURGO) 1 :24,000 (baseline) 

USGS - (NHD& NLCD), 
USCB - (TIGER) 

Lake surface area Calculated 1:24,000 
Lake elevation USGS/EDC - (EDNA) 1 :100,000 
Stream network USGS/EDC - (EDNA) 1: 100,000 
Lake landscape position (lake order) USGS/EDC - (EDNA) 1: 100,000 
Hydrologic unit coverage (HUC) USGS/EDC - (EDNA) 1 :100,000 
Pfafstetter sub-catchments USGS/EDC - (EDNA) 1 :100,000 
Flow direction data USGS/EDC - (EDNA) 1:100,000 
Shaded relief data USGS/EDC - (EDNA) 1: 1 00,000 
Digital elevation model (DEM) USGS/EDC - (EDNA) 1: 1 00,000 
Watershed area Calculated 1 :100,000 
Watershed slope USGS/EDC - (EDNA) 1: 1 00,000 
Watershed relief USGS/EDC - (EDNA) 1:100,000 
Soil erodibility USDA INRCS - (STATSGO) 1 :250,000 
Soil permeability USDA INRCS - (STATSGO) 1 :250,000 
Soil infiltration rate USDA INRCS - (STATSGO) 1 :250,000 
Soil organic matter USDA INRCS - (STATSGO) 1 :250,000 
Soil carbonates USDA INRCS - (STATSGO) 1:250,000 
Soil salinity USDA INRCS - (STATSGO) 1:250,000 
Soil reaction (PH) USDA INRCS - (STATSGO) 1 :250,000 
Soil cation exchange capacity USDA INRCS - (STATSGO) 1:250,000 
Soil available water holding capacity USDA INRCS - (STATSGO) 1:250,000 
Ground water regions CSD 1 :24,000 
Ecoregions (Omernik's Levels 3 and 4) USEPA 1 :250,000 
Land use and land cover USGS/EDC - (NLCD) 1 :24,000 
Natural vegetation CSD 1 :250,000 
Potential natural vegetation (Kuchler) USEPA 1 :250,000 
Nebraska county boundaries USGS 1:24,000 
Geology CSD 1:24,000 
Total precipitation NTSG - (DAYMEI) 1 km resolution 
Precipitation frequency NTSG - (DAYMEI) I km resolution 
Precipitation intensity NTSG - (DAYMEI) 1 km resolution 
Air temperature NTSG - (DAYMEI) I km resolution 
Solar radiation NTSG - (DAYMEI) I km resolution 
Humidity NTSG - (DAYMEI) 1 Ian resolution 
Growing degree days NTSG - (DAYMEI) 1 km reso lution 
Frost free days NTSG - (DAYMEI) 1 km resolution 

Table 3.4. Geospatial datasets available in Nebraska lake classification database. 



*Data Sources: 
USGS - United States Geological Survey 
USDA - United States Department of Agriculture 
NRCS - Natural Resource Conservation Service 
USCB - United States Census Bureau 
USEPA - United States Environmental Protection Agency 
NTSG - Numerical Terradynamie Simulation Group, University of Montana 
DAYMET - Daily Surface and Climatological Summaries (www.daymet.org) 
NHD - National Hydrography Dataset 
STATSGO - State Soils Geographic Database 
SSURGO- Soil Survey Geographic Database 
EDNA - Elevation Derivatives for National Application 
TIGER - Topologically Integrated Geographic Encoding and Refereneing Database 
CSD - Conservation and Survey Division, School of Natural Resources, University 

Of Nebraska - Lincoln 
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Watershed Lake Area RATIO CaC03 CEC COy Erodibility OM Permeability pH Infiltration Salinity 8'""" Relief Elevation Drainage Drainage 
Area{WA) (LA) (lA:WA) total density 

Watershed Area (WA) 1.000 

lake Area (LA) 0.623 1.000 

<.0c()1 

RATIO {LA:WA} ~.343 0.383 1.000 

0.002 Of)()1 

CaC03 0.068 -0.014 ~.042 1.000 

0.554 0.904 0.713 

CEC ~.358 ~~43 0.083 ~.048 1.000 

0.001 0.032 0.458 0.1579 

COy ~.560 -0.292 0.290 -0.149 0.470 1.000 

<.0C()1 0.010 0.010 0.194 <.0C()1 

Erodibility -0.409 -0.441 0.054 0.168 0.186 0.362 1.000 

<.0C()1 <.0C()1 0.637 0.142 0.104 0.001 

OM -0.200 ~.098 0.066 -0.540 0.513 0.<83 0.093 1.000 

0.080 0.392 0.567 <.0C()1 <.0C()1 <.0C()1 0.420 

Permeability 0.527 0.362 -0.172 0>77 -0.415 -0.879 -0.306 ~.365 1.000 

<.0C()1 0.001 0.133 0.014 0.000 <.0C()1 0.000 0.001 

pH 0.079 0.157 0.231 0.690 -0.289 -0.105 0.224 ~ ..... 0.242 1.000 

0.490 0.170 0.042 <.0C()1 0.010 0.361 0.049 <.0C()1 0.033 

Infiltration 0 ..... 0.316 -0.170 0.071 -0.376 ~.638 -0.002 -0.004 0.791 0.217 1.000 

<.0C()1 0.005 0.1315 0.537 0.001 <.0C()1 0.983 0.973 <.0C()1 0.057 

Salinity -0.061 -0.097 0.046 0.713 0.103 0.093 0.113 ~~36 0.023 0.626 -0.099 1.000 

0.599 0.398 0.687 <.0C()1 0.371 0.418 0.326 0.038 0.844 <.0C()1 0.386 

Slope 0.162 0.213 0.073 0.055 -0.152 0.100 0.111 0.165 0.058 0.415 0.346 0.03064 1.000 

0.157 0.061 0.524 0.632 0.183 0.385 0_333 0.150 0.616 0.000 0.002 0.79 

Relief 0.787 0.506 -0.269 0.291 -0.378 -0.378 -0.323 -0.239 0.481 0.414 0.456 0.21292 0.503 1.000 

<.0C()1 <.0c()1 0.017 0.010 0.001 0.001 0.004 0.035 <.0C()1 0.000 <.0c()1 0.0613 <.0c()1 

Elevation 0.135 0.034 -0.059 0.569 ~.329 -0.429 0.012 -0.785 0.341 0.603 0.078 0.39663 -0.088 0.22. 1.000 

0.237 0.766 0.610 <.0C()1 0.003 <.0C()1 0.918 <.0c()1 0.002 <.0c()1 0.500 0.0003 0.443 0.049 

Drainage total 0.433 0.217 -0.197 -0.144 -0.326 -0.379 -0.305 -0.207 0.320 0.00' O~ ... ~~4559 0.175 0.349 0.071 1.000 

<.0C()1 0.057 0.083 0.209 0.004 0.001 0.007 0.069 0.004 0.940 0.029 0.0302 0.125 0.002 0.534 

Drainage density -0.281 -0.137 0.220 -0.339 0.082 -O.on 0.265 0.274 0.026 -0.061 0.176 -0.22581 -0.036 -0.361 -0.085 0.007 1.000 , 

0.013 0.233 0.053 0.002 0.478 0.532 0.019 0.015 
-----

0.824 0.593 0.124 __ 0.0458 0.754 0.001 0.450 0.949 
: 

Table 3.5a. Spearman ranked correlations of watershed and reservoir data (p-values are in italics). 84 
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Extract water features from 

SSURGO Data (baseline dataset) 

Edit & remove stream-like 
features (lakes dataset) 

NLCDdata I 
I NHD data L Update lakes dataset I 

I I 
TIGER data I 

Threshold dataset to lakes larger than 
0.8 hectares (Nebraska lakes- I) 

Dams Inventory & f- Identify lake types - step I ~ Boundary map of 
Sampled lakes data (natural lakes, reservoirs, sand pits) Sand Hills region 

Identify lake types - step 2 
(reservoirs, sand pits) 

Lake size ~ 4 hectares Intersect lakes data with NHD Lake size < 4 hectares 
(Nebraska lakes-2a) streams data & merge (Nebraska lakes-2b) 

Nebraska lakes-2a and 2b 

Visual inspection of merged lakes 
dataset (Nebraska lakes-3) 

Merge Nebraska lakes-I and Comprehensive map of 
Nebraska lakes-3 Nebraska lakes 

Figure 3.1. Process for developing a comprehensive map of Nebraska lakes 



ell 
N . 

A 
D Missing or incomplete SSURGO data 

_ Preliminary lake Polygons 

D Nebraska counties 0 50,000 100,000 200,000 300,000 400,000 
Meters 

Figure 3.2. Lake features after editing SSSURGO data to remove stream-like features . 
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CHAPTER 4. IMPLEMENTATION OF A WATERSHED-BASED 
CLASSIFICATION SYSTEM FOR NEBRASKA RESERVOIRS 

4.0. Introduction 

An important component of managing reservoir water quality effectively is to 
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segregate the reservoirs into similar "groups" or "classes", in tem1S of their potential to 

achieve certain water qualily standards. However, information on the number of classes 

of Nebraska reservoirs is not available. This lack of knowledge limits our understanding 

of the biophysical characteristics of Nebraska reservoir classes and prevents accurate 

estimation of potential reservoir water quality. Such information is useful for many 

applications including predictive modeling of potential water quality impairment of 

reservoirs based on their class membership. 

A vital step in developing a classification is to determine the optimal number of 

classes to be used. This requires partitioning a dataset such that the entities in one group 

are more similar to each other than to those in other groups. Similarity refers to the 

distance between two data entities, where the distance decreases for entities that are most 

alike (Gordon, 1999). Cluster analysis has been commonly employed to group data 

without prior knowledge of the class structure (Tou and Gonzalez, 1974; Hartigan, 1975; 

Hartigan and Wong, 1975; Jain and Dubes, 1988; Eldershaw and Hegland 1997; 

Legendre and Legendre, 1998; Gordon, 1999; Estivill-Castro and Houle, 2001). The 

most commonly used clustering techniques are the k-111eans and single linkage 

algorithms. The single linkage clustering algorithm is a non-iterative approach based 011 

a local connectivity criterion (Jain and Dubes, 1988; Legendre and Legendre, 1998; 

Gordon, 1999). On the other hand, the k-means algorithm is an iterative and non-
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hierarchical clustering method that produces compact and non-overlapping clusters of 

a dataset (Tou and Gonzalez, 1974; Legendre and Legendre, 1998; Gordon, 1999). The 

k-means method aims to minimize the sum of squared distances between all points and 

the cluster centroid (Tou and Gonzalez, 1974; Legendre and Legendre, 1998; Gordon, 

1999). The sum of squared distances (J) is given in as: 

" K 
J = L L U IixJ - z, II' (4.1) 

) = 1 k= 1 

where X = (XI, X2 ... xu) is a set of data points; z = unknown cluster centers; and 

p = crisp Ie x n pattition matrix {I, O} . Initially, the k cluster centers are assigned to k 

randomly chosen data points, which are then partitioned based on the minimum squared 

distance criterion . The cluster centers are subsequently updated to the mean of the points 

belonging to these clusters. The process of pattitioning, followed by updating, is 

repeated until either the cluster centers do not change or there is no significant change in 

the J values of two consecutive iterations (Tou and Gonzalez, 1974; Legendre and 

Legendre, 1998; Gordon, 1999). The fundamental issue in any clustering approach is to 

determine which number of clusters best describes the class structure (or optimal number 

of classes) of the dataset (i.e. cluster validation). 

Several approaches have been used to determine the optimal number of classes for 

a dataset (Milligan and Cooper, 1985; Xie and Beni, 1991; Gordon 1999; Theodoris and 

Koutroumbas, 1999; Halkidi et al., 2002; Tibshirani et al., 2001; Duda et aI. , 2002; 

UjjwaJ and Bandyopadhyay, 2002). These can be grouped into three main categories: use 

of internal criteria, external criteria, and relative criteria. The internal criteria approach to 
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cluster validation involves analyzing the clustering results based on indices derived 

from the data, such as a proximity matrix, while the extemal criteria teclmique involves 

evaluating the clustering results based on a pre-defined structure that requires input from 

the analyst. These two approaches to cluster validation, however, are not appropriate for 

this research because they are based on statistical hypothesis testing which measures the 

degree to which a given dataset agrees with a specified scheme (Legendre and Legendre, 

1998; Gordon, 1999; Theodoris and Koutroumbas, 1999; Halkidi et aI., 2002). 

On the other hand, the relative criteria approach to cluster validation evaluates the 

clustering structure of a given clustering scheme by comparing it to other schemes that 

are based on the same algorithm, but with different parameter values (Gordon 1999; 

Theodoris and Koutroumbas, 1999; Halkid i et al., 2002). For example, a comparison of 

different k-means c luster analysis based on different number of clusters fits the relative 

criteria scheme. Therefore, the relative criteria approach for detem1ining the optimal 

number of clusters was used in this study. 

Research summarized in this Chapter includes: (a) grouping of Nebraska 

reservoirs based on variables that underlie, determine, and explain the patterns of change 

in physical, chemical and biological water quality over seasonal or annual cycles rather 

than environmental stressors li ke land use; (b) statistical cluster validation teclmiques 

were employed to detennine the optimal number of clusters that best describe the class 

structure of Nebraska reservoirs; (c) final detem1ination of optimal number of clusters 

was based on both stati stical inference and water resource management considerations, 

and (d) a watershed-based classification systems for Nebraska reservoirs was developed 

using decision tree inductive algorithms. 
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4.1. Methods 

K-means cluster analysis was used to determine the optimal number of Nebraska 

reservoir watershed classes, For management purposes one would like to have the fewest 

number of classes that can be used to effectively distinguish lakes that bave similar 

capacities to meet water quality standards, For a given a set of parameters (P) associated 

witb a particular clustering algorithm the possible clustering scheme, Ci (i = 2, 3 ... p), is 

defined by tbat clustering algoritbm, The clustering algoritbm (in this case, k-means 

clustering) is then run for all the clustering scbemes, using tbe number of clusters 

between 2 and n, A plot of a clustering index (e.g" Calinski-Harabasz stati stic, Dunn 

index, Cluster Distance, R-Squared, Hubert [' statistic and Davies-Bouldin index) against 

the number of clusters usually higblights a point at which there is a significant local 

change in tbe clustering index (i,e, relative criteria approacb to cluster validation) This 

change in value, which occurs as a "knee" in the plot, represents tbe "optimal" number of 

clusters (or classes) in tbe data set (Milligan and Cooper, 1985; Halkidi et ai" 2002), 

Milligan and Cooper (1985), Tibshirani et ai, (2001) and Ujjwal and Bandyopadhyay 

(2002) examined different cluster validation indices and found that the Calinski-Harabasz 

statistic was one of the best performing indices. Thus, the Calinski-Harabasz statistic 

was used in this research, 

A series of cluster analyses were performed for the 78 reservoir watersheds in 

Nebraska (Figure 4.1), Watershed characteristics that were used in the cluster analysis 

included watershed size, mean watershed slope and relief, soil erodibi lity, soil infiltration 

rate, soil organic matter, soil reaction (pH), soi l cation exchange capacity, soil carbonate, 
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soil clay content, soil water holding capacity, soil permeability and climate variables 

including precipitation, temperature and humidity (Table 4.1). 

The "FASTCLUS" procedure in SAS@ was used to cluster the watershed data into 

numbers of classes ranging between 2 and 25. FASTCLUS finds disjoint and non-

overlapping clusters of observations using k-means clustering method such that, 

observations that are very close to each other are usually assigned to the same cluster, 

while observations that are far apart are assigned to different clusters (SAS Institute, 

2000). The maximum of 25 classes was chosen to reflect a reasonable uppermost Limit of 

watershed management classes based on literature and several clustering attempts. The 

"FASTCLUS" procedure was used here because there is often no need to run the 

procedure to convergence. 

The Calinski-Harabasz statistic (represented by "Pseudo F" in SAS@ output) is 

defined as follows: 

Pseudo F 
[(R 2) /(c - I») 

[(1 - R 2)/(n -c») 
(4.2) 

where R2 = observed overall cOlTelation; c = number of clusters; and, n = number of 

observations (Calinski and Harabasz, 1974; SAS Institute, 2000). The Pseudo F statistic 

was used to assess different clusteling outputs based on the number of classes, by plotting 

Pseudo F values against the number of classes (hereafter referred to as NCL). The output 

ofthe cluster analysis showed that the potential NCL that were likely to reflect the class 

structure of Nebraska reservoirs were 3, 5, 13, 17, and 19. The class membership 

information from the SAS output for potential NCLs were exported into a spreadsheet 

and appended to the watershed characteristics dataset. The dataset was then used in 



ArcMap® GIS software to generate maps showing reservoirs watershed classes for 

each of the potential NCLs. 
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Since there was more than one NCL that corresponded to the local changes in 

Pseudo F values, there was a need for further testing to identify a single NCL that best 

represented the optimal number of classes. Consequently, potential NCLs were evaluated 

using a predictive model, i.e. classification tree (SeeS® decision tree software), to refine 

the selection of the optimal NCLs based on their predictive effectiveness (Tibshirani et 

al. (2001). Although predictive accuracy can be based on a single training model, the 

accuracy is usually increased by using an averaged, weighted prediction error of several 

models as provided by cross-validation enor (Breiman et al., 1984; Ripley, 1996; Goute, 

1997; De'ath and Fabricius, 2000). 

Validation approaches for classification models in geosciences usually involve the 

use of contingency tables (confusion matrix) and Kappa statistic that is usually based on 

field samples (validation data) that are independent of the data used to develop the model 

or classification in question (Congalton, 1991; Congalton and Green, 1999). Fitzgerald 

and Lees, (1994) suggested that the Kappa statistic provides a better measure of the 

classifier model accuracy than the overall accuracy, since it considers i11ter-class 

agreement. The two approaches to accuracy assessment are employed to assess accuracy 

of a classifier model against independently collected and known validation datasets. 

In many cases, there are limited sampled data for training and validation. 

Resubstitution estimates of prediction are commonly used to assess classifier or model 

accuracy based on the same data that are used to train the classifier. However, 

resubstitution estimates are usually optimistic and lead to generalization problem; 



because the resubstitution approach gives little insight on how a classifier or model 

would perform on previously unseen data (Brei man et aI., 1984). 
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Stelunan (2000), suggested a method to evaluate classification model accuracy 

using design-based sampling inferences, and it is also not susceptible to spatial 

autocorrelation. Henebry and Merchant (2001), noted however that despite it's 

usefulness in minimizing the confounding effects of spatial autocOlTelation, design-based 

sampling inferences offer no means to predict the accuracy of unobserved data. 

According to Henebry and Merchant (2001), computer-intensive Monte Carlo error 

analyses can be used to compute the model reliability, which is estimated by the rate at 

which Monte Carlo predictions fall within a user-designated accuracy interval. Henebry 

and Merchant (2001), also highlighted the need to develop new approaches to validating 

models that are based on geospatial datasets. 

Resampling teclmiques are other computer intensive approaches to evaluate 

model accuracy. Particnlarly, when dealing with non-linear models (such as 

classification trees) and geospatial datasets, it is important to obtain a good estimate of 

the generalization error, i. e. average error that a model will make on an infinite size and 

unknown test samples (ref). Resampling techniques provide a method for using all of the 

available data to train, yet still testing the classifier on unseen data (Stone, 1974; Breiman 

et al., 1984; Efron and Tibshirani, 1993; Schaffer, 1993; Kohavi, 1995; Shao and Tu, 

1995). 

Resampling techniques that can compute the aforementioned generalization error 

include: hold-out which consist in removing data from the learning set and keeping them 

for validation; Monte-Carlo cross-validation (or simply cross-validation), where several 
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hold-out validation sets are randomly and sequentially drawn from that dataset; k-fold 

cross-validation, where the initial set is randomly split into k roughly equal parts, each 

one being used successively as a validation set. A special case ofk-fold cross-validation 

where the size of the validation set is I is called the " leave-one-out" method; and, the 

bootstrap which involves drawing validation sets with replacement from the original 

sample and using these sets to estimate the generalization etTors. The recent bootstrap 

632+ is an improved version of the original bootstrap. 

Although Stone (1977), suggested that the above-mentioned Tesampling methods of 

estimating generalization errors are asymptotically roughly equivalent, others have 

pointed out some exceptions and limitations as follows: leave-one-out is less biased but 

its variance is unacceptable; cross-validation is consistent (i.e. converges to the 

generalization eiTor when the size of the sample increases) if the size of the validation set 

grows infinitely faster than the size of the learning set; cross-validation is almost 

unbiased; bootstrap is downward biased but has a very low variance most recent 

bootstrap method (632+) is almost unbiased and also has a low variance (Efron and 

Tibshirani , 1993; Kohavi, 1995; Shao and Tu, 1995). 

According to Stone (1974), cross-validation simply consists of controlled or 

uncontrolled division of data sample into sub-sample. One sub-sample is used to compute 

a statistical predictor of the model, including any necessary estimation, and then the 

model perfolTllance is assessed by measuring its predictions against the other sub-sample. 

Tn this way, the accuracy of the classifier is tested on Wlseen data, and the estimates of 

classifier accuracy are more realistic than resubstitution estimates. Goute (1997) 

suggested that cross-validation error is a better indicator of model accuracy than that 



derived from the split-sample approach, especially when the sample size is relatively 

small (i.e. less than 100). 
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K-fold cross-validation is a more robust form of cross-validation. The data is 

divided into k equal subsets of independent training and test data, such that the first lIkth 

subset of the data is assigned to the first test set, the second lIkth subset is assigned to the 

second test set, and this is done for all k subsets. Thus, the test sets are completely 

independent of each other. For each test set, the remaining data are used to train the 

classifier or model, such that the test and training sets for each partition of the data are 

also independent. Estimates of prediction accuracy are computed for each of the k-fo ld 

partitions, and averaged to give overall prediction accuracy. A lO-fold cross-validation 

was used in this study because it is the typical number of subsets (or partitions) often 

used in k-fold cross-validations (Breiman, 1996; De'ath and Fabricius, 2000). 

A k-fold cross-validated error, where Ie is 10 partitions. was employed to evaluate 

the predicti ve effectiveness of the classification tree model using the potential NCLs (3. 

5.13. 17. and 19) as the dependent variables. Watershed characteristics that were used in 

the cluster analyses were used here as independent explanatory variables in the 

classification tree model. For a given potential number of classes (NCLs), the See5® 

classification tree software was used to compute the error rates for each of 12 separate 

10-fold cross-validation trials and the mean cross-validation error rates of these trials 

were calculated (RuleQuest, 2003). 

Since 3 NCL was the minimum number of classes. the mean cross-validation 

en'or rates for the remaining NCLs (5,13.17. and 19) were nonnalized with respect to 3 

NCL (i.e. the reference NCL). This was done to determine which increase in NCL 
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resulted in least cOlTesponding increase in mean cross-validation error. The 

nonnalized mean cross-validation error rates (NME) were computed as follows: 

NME = I'1ME ME,,_L - ME,,_3 
!::.NCL L - 3 

(4.3) 

where ME is mean cross-validation error rate; NCL is number of classes, n is potential 

NCL; and L is the test NCL. Outputs of the above computation were plotted against the 

potential numbers of clusters and the optimal number of classes that exist among 

Nebraska reservoirs was identified. 

4.2. Results and discussions 

Pseudo F (Calinski-Harabasz statistic) values were obtained from the SAS cluster 

analyses outputs for each potential number of classes (NCL), n = 2, 3, 4 . .. 25 (Table 

4.2). A plot of Pseudo F values against potential NCLs revealed that the NCLs that are 

likely to represent the structure of Nebraska reservoir classes are 3, 5, 13, 17, and 19 

(Figure 4.2). As noted above, cross-validated mean elTor rates were derived from 

classification tree predictive models (Table 4.3). A plot of the nornlali zed cross-validated 

mean error rates against the potential NCLs suggested that the optimal number of 

Nebraska reservoirs classes was 13 (Figure 4.3). In order to understand the relative 

importance of the number of classes, the map of 13 reservoirs classes was compared to 

maps that showed 3, 5, and 13 potential NCLs (Figure 4.4). The maps of 17 and 19 NCL 

were excluded because they did not result in any visible difference from the map of 13 

NCL. The changes in spatial patterns of reservoir watershed classes in the maps appear 

to reflect major environmental conditions that affect lakes processes, as the number of 

clusters changed from 3 to 13 (Maxwell et. ai, 1995). 
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The map of3 NCL shows classes influenced mainly by climate (i.e. maximum 

temperature) and related vegetation patterns in Nebraska (Figure 4.4a). Reservoir 

watersheds in class 1 occupy the tall grass prairie in eastern Nebraska wh ile class 2 and 3 

reservoir watersheds are dominated by the Sand Hills prairie and the Niobrara shrub land, 

shortgrass sage-steppe prairie and Ponderosa pine, respectively. The spatial pattern of 

reservoir watershed classes in the map of 5 NCL reflects the influences of both climate 

and telTain characteristics (such as temperatme and relieD on the watersheds (Figure 

4.4b). The classes in 5 NCL map show additional segregation of classes in the map of 

3 NCL. 

The map of 13 NCL shows spatial patterns in the reservoir watershed classes that 

reflect the patterns of climate and terrain variability, as well as variations in soi l 

characteristics across Nebraska (Figure 4.4c). Reservoir watersheds in the northeastern 

part of Nebraska belonged to class 2. The average size of reservoirs in this group was in 

the lower 25 percentile of the sampled reservoirs. The watersheds of these reservoirs are 

generally small and characterized by low relief, high soil erodibility, and high soil 

organic matter content (Table 4.4). Reservoir watersheds in classes 1 and 13 dominate 

southeastern Nebraska. Reservoirs in class 1 are, on average, smaller than those in class 

13. Also, the average watershed size in class 13 appears to be larger than that of class 1. 

Both watershed classes have high soi l organic matter content and relatively low soi l 

erodibility; however, the watersheds in class 1 have steeper slope and higher relief 

compared to watersheds in class13 . 

Reservoir watersheds in northwestern Nebraska belong to classes 3, 9, 10, and I I. 

Classes 3 and 11 have only one watershed each, whi le classes 9 and 10 have seven and 
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two watersheds respectively. Although classes 10 and 11 are adjacent, they are not 

similar. For example, class 11 watershed has larger area and traverse higher terrain relief 

than class 10 watersheds. In the not1h-central part of the state, there are two reservoirs in 

class 4. These reservoirs are characterized by large watersheds, with relatively low soi l 

organic matter content and high relief. Reservoir watersheds in class 7 are aligned 

diagonally between the central and southwestern part of the state. These watersheds are 

similar to class 4 watersheds, except that they exhibit relatively lower relief. The central 

and southwestern portions of Nebraska are dominated by classes 12 and 8, respectively. 

Class 8 reservoirs are large and they have larger watershed size than reservoirs in class 

12. Also, class 12 watersheds are found in low relief areas compared to those in class 8. 

The aforementioned descriptions of the spatial variability of watershed classes in the map 

of 13 NCL provide a synoptic overview of the general characteristics of these classes. 

Additional discussions with respect to how the watershed characteristics influenced the 

segregation of these classes are provided below. 

Having identified an optimalmunber of Nebraska reservoir classes, a 

classification tree model was used to describe the structure of the different classes as well 

as the variables that contributed to the segregation of these classes (Figure 4.5). The 

rectangular boxes in figure 4.5 represent telminal nodes (i.e. there is no further division 

oftbe group) and are assigned a class number. The oval boxes represent non-terminal 

nodes and require further splitting. The cross-validation prediction enor of the 

classification tree model for reservoir watersheds was 26.33 percent. 

It can be seen tbat soi l organic matter content was responsible for the initial split 

of watershed classes. Watersheds in classes 4, 7, 8, 9, 10, and 12 were relatively poor in 



113 
organic matter, whi le watersheds in classes 1,2, and 13 were rich in organic matter. 

The ability of soils to absorb agricultural effluents like pesticides decreases with a 

decrease in organic matter content (Kumada, 1987; Sparling et ai., 2003). Therefore, it is 

important to note that most of the reservoir classes (viz. classes 4, 7, 8, 9,10, and 12) are 

inherently vu lnerable to pollution from agricultural chemical effluents. Among these 

watersheds, soil cation exchange capacity (CEC) and drainage density were responsible 

for final splits into classes 9 and 12. Also, watershed relief, soi l CEC and pH influenced 

the final splitting into classes 4, 7, and 8, 10. Classes 4 and 7 differed primarily in their 

respective watershed relief. Despite their low drainage density, both groups have 

relatively acidic soils with correspondingly low buffering capacity (CEC of less than 

12.3). Specifically, the low relief reservoir watersheds in class 7 (i.e. relief less than 247 

meters) are even more vulnerable to pesticides or herbicide effluents from agricultural 

activities in their watersheds. 

The segregation of organic-rich reservoir watersheds into classes 1, 2, and 13 was 

influenced by soi l erodibility, watershed slope and organic matter content respectively. 

The reservoirs in these watershed classes are relatively less susceptible to potential 

pollution from agricultural effluents like herbicides. The factors that influenced the final 

segregation of these classes emphasize the importance ofland management practices that 

control soil erosion in these watersheds. This is particularly true for reservoirs in classes 

1 and 2 that have relatively high mean watershed slope and soil erodibility. 

A review of the terminal nodes in figure 4.5 revealed that only nine classes were 

represented by the classification tree instead of 13 classes. Reservoir classes 3, 5, 6, and 

II were missing from the classification tree. This is because the classification tree nodes 
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(classes) that are not sufficiently compact are subsequently split or recombined into 

other nodes (Brei man et al., 1984; De 'ath and Fabricius, 2000). All four reservoir classes 

that were not represented in the classification tree had one watershed each and this is 

indicative of non-compact classes or classification tree nodes. Consequently, the class 

means for the respective watershed characteristics (Table 4.4) that were represented in 

the classification tree (Figure 4.5) were used in a principal component analysis (PCA). 

This was done to identify which classes in the classification tree were closest to the 

missing classes. The first and second principal components (PC) explained 65.1 percent 

of the variation in the data. A plot of PC I and PC2 showed that the missing classes 

(3,5,6, and II) were closer to classes 4,12,13 and 8 respectively in the classification 

tree (Figure 4.6). This asseliion is confirmed by the class distances obtained from 

clusters analysis based on 13 classes (Table 4. 5). Hence, the map of 13 NCL (Figure 

4.4.c) was revised to reflect these similarities. 

4.2.1. Nebraska reservoir watershed classes 

ArcMap@GIS was used to update the attribute table of the map of 13 NCL by 

reassigning reservoir watersheds in class 3 to class 4; class 5 to 12; class 6 to 13; and 

class 11 to class 8. For example, watersheds classes II and 8 in western Nebraska were 

combined in the revised map (9 NCL) (Figure 4.7). Characteristics of the revised 

reservoir classes are described in summarized in Table 4.6. Additional information on 

class membership of each sampled reservoir used in this study is listed in Appendix 1. 

The revised map shows that the water quality of Nebraska reservoirs could be 

characterized based on nine classes. 
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Finally, inversion of the classification tree model (shown in Figure 4.5) was 

explored based on maps that could be generated by equations derived from the 

classification tree leaves or nodes (Appendix 2). ArcMap® GIS was used to generate 

maps for each node in the classification tree. Output maps of the model inversion 

showed that the class ification tree model predictions were consistent with ArcMap 

generated reservoir classes based on equations derived from the classification tree leaves. 

4.3. Summary 

An approach to watershed based classification was developed and it was 

demonstrated to be effective in identifying the optimal class structure of Nebraska 

reservoirs as well as highlighting watershed characteristics that impact the segregation of 

the reservoir classes. Cluster analysis was performed on the watershed characteristics of 

78 selected Nebraska reservoirs in order to determine the optimal number of Nebraska 

reservoir classes. A plot of the Pseudo-F statistic (obtained from the cluster analysis 

output) against the respective number of classes (NCL), suggested that the potential 

number of classes included 3, 5, 13, 17, and 19. Further analysis of the optimal number 

of classes (NCL) was based on the predictive strength of the potential NCL's using See5® 

classification tree software. The outcome of the classification tree modeling suggested 

that the optimal number of Nebraska watershed classes was 13 NCL. The class ification 

tree was used to describe the structure of the Nebraska reservoir classes, and soil organic 

matter content was found to be the most important single variable for segregating the 

watersheds . The cross-validation prediction error of the classification tree model was 

26.33 percent. Finally, the initial 13 NCL map was revised based on the classification 

tree and the revised map suggested that Nebraska reservoirs can be represented by nine 



optimal classes. The characteristics of the nine reservoir classes were subsequently 

described. 
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Although successful, this research clearly suggests the need for additional 

investigation. Additional work that needs to be done includes expanding the ST ATSGO 

datasets to incorporate watersheds that extend into neighboring states (Colorado, Kansas, 

South Dakota, and Wyoming). This wi ll highlight the impact of large reservoirs on the 

classification results, since watersheds ofmost of the large reservoirs in the GIS database 

fall outside the Nebraska state boundary. It is also important to explore the potential 

advantages of higher resolution data (watershed characteristics derived from SSURGO 

database) on the lake classification process. 

The use ofk-means clustering has some limitations such as sensi ti vity to outliers 

or extreme values, susceptibi li ty to the choice of starting points (cluster centroids), and 

tendency to produce classes with most data points concentrated in a few classes 

(Eldershaw and Hegland 1997; Legendre and Legendre, 1998; Gordon, 1999; Estivill­

Castro and Houle, 2001). F1II1her work to address these limitations and compare the 

perfol1llance of existing modifications or alternatives to k-means clustering is needed. 

Additional research in refining the classification tree splitting process could enhance the 

predictive effectiveness of the classification tree output models (Breiman e/ al., 1984; 

De'ath and Fabricius, 2000). It is also important to test the reservoir watershed 

classification procedure by comparing the accuracy of the classification tree derived 

watershed classes to other classification approaches (e.g., discriminant analyses and 

Omernik's ecoregions). 
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Since the geospatial data employed in this study are available for the entire 

U.S. and the automated GIS-based procedures for watershed delineation are also 

nationally available, the watershed-based reservoir classification system described in this 

chapter has potential national app lication. Thl'Ough model refinement, outputs of the 

classification tree procedure for watershed-based reservoir classification promises to 

provide water resources managers an effective decision-support tool in the management 

of reservoir water quality. For example the classification results could inform resource 

managers in the development of reservoir nutrient criteria. 
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Dataset Abbreviation Units Source 

Climate data (annnal means) 
Maximum temperature Temp_max °C DA YMET (www.daymet.org) 
Minimum temperature Temp_min °C DAYMET 
Total precipitation Ppt_tot mm DAYMET 
Precipitation intensity PpUntns mm DAYMET 
Humidity Humidity mmHg DAYMET 
Growing degree days GDD(basc IO"C) degrees DAYMET 

Terrain data 
Lake Area LA ha Updated Nebraska lakes map 
Watershed area WA ha EDNA DEM-derived watersheds 
Lake area: watershed area LA:WA unitless 
Mean watershed slope Slope degrees EDNADEM (edna.usgs. govD 
Mean watershed elevation Relief degrees EDNADEM 
Watershed relief Elevation m EDNADEM 
Total drainage length Dm Tot m EDNA streams (edna.usgs. govD 
Drainage density Om Dnst mm-2 EDNA streams 

Soils biophysical data 

Erodibi li ty Kfact unitless STATSGO (NRCSIUSDA) 
Clay content Clay % weight STATSGO 
Penneability Perm inlu·-1 STATSGO 
lnfiltration rate 1nfilt inhr-1 STATSGO 
Organic matter content OM % weight STATSGO 

Soi ls chemistry data 
Salinity Sal Mmhoss-1 STATSGO 
Soi l reaction pH unitless STATSGO 
Cation exchange capacity CEC unitless STATSGO 
Soil carbonate CaC03 % CaC0 3 STATSGO 

Table 4.1. Some environmental characteristics that affect reservoir water quality. The 
variab les listed above incllide only those that were llsed in the reservoir classification. 



Number of clusters (NCL) Pseudo F 

2 21.49 

3 31.33 

4 27.62 

5 28.06 

6 23.93 

7 22.97 

8 22.86 

9 22.34 

10 22.03 

II 21.69 

12 21.57 

13 23.16 

14 21.04 

15 20.5 

16 20.41 

17 24.63 

18 24.00 

19 25 .5 1 

20 24.82 

21 26.86 

22 24.09 

23 25.47 

24 23.37 

25 25.02 

Table 4.2. Output of cluster analysis using SAS "F ASTCLUS" procedure. Pseudo F 
values were identified for each clustering output based on different number of clusters 
(NCL) 
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Cross-validation Change Normalized 
NCL Mean Error in ME ME 

(ME) 
3 4.77 

5 16.03 11.26 5.63 

13 26.33 6.56 2.16 

17 27.95 1.62 1.66 

19 41.77 13.82 2.31 

Table 4.3. Cross-validation errors derived from classification tree (See5®) predictive models. 



Class 

Watershed 

area (\VA) 

Lake area 

(LA) 

RATIO 

(LA:WA) 

CaCO] 

CEC 

Clay 

Erod ibility 

Organic 

matter 

Permeability 

pH 

Infiltration 

Salinity 

Slope 

Drainage 

total 

Drainage 

density 

H.clicf 

Elevat ion 

Temp. (max.) 

Temp. (min.) 

I)rccipitatioll 

intensity 

I' rccip itatioll 

total 

Humidity 

GDD 
(base IO"C) 
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2 3 4 5 6 7 8 9 10 II 12 13 

6639 2723 13547 202804 77 725 38478 204244 445 8743 46265 1 4164 13738 

473 160 56 9841 58 2430 2577 4108 106 2540 566 2797 136 

0.071 0.059 0.004 0.049 0.751 3.351 0.067 

0.01 1.09 0.69 0.14 1.71 0.00 0.27 

16.64 11.51 7.87 3.54 5.96 25.53 6.05 

31.76 24.52 10.77 3.90 11.30 29.79 8.70 

0.37 0.42 0.30 0. 17 0.28 0.28 0.30 

3. 16 2.70 1.67 1.24 1.27 3.08 1.43 

0.65 1.55 3.7 1 12.71 16.66 0.9 1 9.74 

6.42 6.75 7.25 6.55 7.42 6.40 6.57 

27.86 48. 19 34.45 45.55 15.10 33.56 46. 14 

0.0 1 0.31 0.18 0.00 0.19 0.90 0.04 

3.20 3.22 7.45 3.44 1. 16 0.43 1.69 

2302 2365 3562 2729 2375 1229 2468 

1.79 2.27 1.41 0.68 3.96 3.33 0.97 

76 78 298 534 8 17 11 8 

401 53 1 1386 926 683 468 74 1 

16.98 16.38 13.94 16.06 17.38 16.34 16.54 

4.17 2.68 -1.22 0.90 2.37 2.80 1.87 

1. 11 0.97 0.71 0.85 0.97 1.11 0.94 

78.73 67.1 4 41.69 52.35 54.8 1 68.49 58.26 

989 874 553 719 813 886 794 

4309 4021 2992 3660 4054 4015 3890 

0.020 0.239 0.29 1 

0.07 2.36 1.42 

3.74 24.72 7. 10 

15. 18 46.58 10.90 

0.36 0.50 0.33 

1.63 1.86 1.59 

4.83 0.27 4. 17 

7.03 7.46 7.33 

49.26 2.96 38.88 

0.00 0.87 0.05 

3.58 2.29 3.5 1 

2633 1315 2902 

1.55 1.57 1.48 

269 57 185 

898 1143 1347 

17.69 14.95 17.77 

2. 17 -0.65 0.75 

0.85 0.68 0.63 

50.49 40.87 35.65 

774 581 586 

4039 3236 3769 

0.00 1 0.672 0.010 

1.37 0.00 0.00 

6.26 1.48 36.48 

8.91 21.16 25.58 

0.28 0.41 0.37 

1.78 1.89 

8.1 7 1.26 

7.09 7.28 

44.45 47 .94 

0.46 0.00 

2.25 5.02 

2648 2878 

1.07 3.21 

392 78 

1257 763 

16.80 17.1 0 

0.45 2. 14 

0.68 0.93 

3.01 

0.78 

6.05 

24.36 

0.00 

1.54 

2429 

2.32 

44 

44 1 

17.33 

4.03 

1.06 

38 .1 3 57. 19 75.1 1 

604 804 973 

3622 3979 4324 

Table 4.4. Descriptive characteristics of different Nebraska reservoir watershed classes 
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Class Number of RMS Within-class Nearest In ter-c1ass 
reservoirs distance (radius) Class Distance 

1 30 0.382 2.740 13 2.392 

2 8 0.610 3.348 1 3.309 

3 0 4 6.249 

4 2 0.698 2.367 8 6.027 

5 1 0 12 6.041 

6 1 0 13 9.152 

7 6 0.599 3.357 8 4.257 

8 2 0.273 0.927 11 4.257 

9 7 0.53 1 3.262 2 7.347 

10 2 0.183 0.620 8 4.628 

11 1 0 8 5.885 

12 4 0.621 3.540 2 3.927 

13 l 3 0.459 3.505 2.392 

Table 4.5. Cluster analysis output (based on 13 classes) showing nearest classes and 
interclass distances. 
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Class Number of RMS Within-class Nearest Inter-class 
resel'voirs distance (radius) Class Distance 

1 30 0.382 2.740 13 2.392 

2 8 0.610 3.348 1 3.309 

3 1 0 4 6.249 

4 2 0.698 2.367 8 6.027 

5 1 0 12 6.041 

6 1 0 13 9.152 

7 6 0.599 3.357 8 4.257 

8 2 0.273 0.927 11 4.257 

9 7 0.531 3.262 2 7.347 

10 2 0.183 0.620 8 4.628 

11 1 0 8 5.885 

12 4 0.621 3.540 2 3.927 

13 13 0.459 3.505 1 2.392 

Table 4.5. Cluster analysis output (based on 13 classes) showing nearest classes and 
interclass distances. 



126 

NCL9 NCL13 No. of Description 
classes classes Reservoirs 

RI 30 Located in southeastern Nebraska. Most of the reservoir 
watersheds in this group are small on average; characterized 
by high organic matter content and relatively low erodibility. 
Adjacent to R9, but the watersheds have higher erosion 
potential (steeper slopes) than the R9 watersheds. 

R2 2 8 Located in northeastern Nebraska and average reservoir size 
is in the lower 25th percentile of the data. 
Watersheds are generally small and characterized by low 
relief, high soil erodibility and organic matter content. 

R3 3&4 3 Located in northwestern and north central Nebraska. This 
group is characterized by both large and medium watersheds, 
relatively low soil organic matter content and high relief. 

R4 7 6 Watersheds aligned diagonally between central and 
southwestern Nebraska. Watershed conditions are similar to 
those of R8 and R6 watersheds, except that the R4 
watersheds have lower relief and pH than the R8 and R6 
watersheds, respectively. 

RS 8 & 11 3 Watersheds aligned between southwest and northwestern 
Nebraska. Watersheds in this group are characterized by 
high relief, and alkaline soils with low soil organic matter 
content. 

R6 9 7 Located in northwestern Nebraska and characterized by high 
buffering capacity. This is indicative of the soil and 
vegetation of the Niobrara slll·ub land. 

R7 10 2 Located in northwestern Nebraska and adjacent to R5 
watersheds. However, R7 watersheds are relatively smaller 
and characterized by lower relief and highly alkaline soils as 
compared to R5 watersheds 

R8 5 &12 5 Located in low relief areas along the Platte river valley in 
central Nebraska and characterized by small sized 
watersheds, low soil organic matter content. 

R9 6 & 13 14 Located in southeastern part of Nebraska and adjacent to R I 
watersheds. Watersheds in this group are characterized by 
relatively lower erosion potential and soi l organic matter 
content than RJ watersheds. 

Table 4.6. Nebraska reservoir classes derived from watershed-based classification 
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Figure 4.2 . Plot ofPseudo-F and number of clusters (NCL) of Nebraska reservoir 
watersheds 
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Figure 4.5. Classification tree for Nebraska reservoir classes. Rectangular boxes represent tenninal nodes (classes); oval boxes 
represent non-tenninal nodes that required further splitting. 
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respectively. PCI and PC2 represent principal components 1 and 2 respectively. 
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CHAPTER 5. COMPARISON OF NEBRASKA RESERVOIR CLASSES 
ESTIMATED FROM WATERSHED-BASED CLASSIFICATION 

MODELS AND ECOREGIONS 

5.0. Introduction 

A lake classification can be used to group lakes into ecologically similar 
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classes, enhance our understanding of complex systems, and improve management and 

decision-making processes (Conquest et ai., 1994; Hawkins et aI., 2000). Traditional 

statistical classification approaches, e.g. maximum likelihood classification and 

discriminant function analysis (DFA), have been used commonly in geosciences and 

ecological resource monitoring. However, ecological data that are employed in resource 

classifications are usually complex (with unequal variances) and often contain missing 

information for certain variables. Ecological data are also characterized by multimodal 

distributions, and the relationships among variables are non-linear and involve high-order 

interactions that render traditional statistical techniques ineffective for data exploration, 

pattern recognition and modeling (De'ath and Fabricius, 2000). 

Concerns over the ability of traditional statistical classifiers to effectively classify 

complex ecological data have led to increasing interest in machine learning classification 

tools such as neural networks, genetic algorithms, and decision tree classifiers (German et 

aI., 1999). Machine learning involves the application of inductive algorithms to resolve 

classification problems. Decision tree algorithms (e.g., recursive partitioning) are more 

easily understood and less complicated than neural networks (e.g. , Park et ai., 2003) and 

genetic algorithms (e.g., Chen, 2004), so the focus of this Chapter will be on evaluating 

decision trees as a potential modeling tool in watershed-based reservoir classification for 
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water quality management. Research has shown that decision tree algorithms 

outperform traditional statistical approaches (including DFA classification) in accounting 

for variations in complex data sets for classification tasks (e.g. Breiman el ai.1984; 

Quinlan 1986; Ripley 1996; Verbyla, 1987; Emmons el ai., 1999; German el ai., 1999; 

De' ath and Fabricius, 2000; Rogan el al., 2003; Yang et ai., 2003; Lamon and Stow, 

2004). 

Ecoregions have frequently been used as natural geographic units for aquatic 

ecosystem management and assessment, e.g. to define apriori water resource classes wi th 

respect to potential lake water quality (Olllernik 1987; Olllemik and Bailey, 1997; EPA, 

2002; Rollin et ai., 2002; Olllernik, 2003). Ecoregions represent simi lar ecosystems and 

are based on land forms, land use, climate, potential vegetation and soils (Omernik, 1987; 

Olllernik and Bailey, 1997; EPA, 2002). Previous research has shown that although 

Omernik's ecoregions are useful for general ecosystem management and analysis, they 

do not adequately account for the inherent variations among lake water quality data (e.g. 

Van Sickle and Hughes, 2000; Severn et ai., 2001; Winter, 2001; Jenerette et ai., 2002; 

Detenbeck el ai., 2003 and 2004). The objective of this Chapter is to compare the 

perfolmance of the decision tree-based reservoir watershed classification model of 

Nebraska reservoirs developed in Chapter 4, to a discriminant function analysis (DFA)­

based watershed classification system (Momen and Zehr, 1998) and Omernik's 

ecoregions derived reservoir classes (Omernik, 1987; EPA, 2002). The watershed-based 

reservoir classification is hypothesized to perfonn better than ecoregions in defining 

apriori classes of Nebraska reservoirs. 



139 
5.1. Background 

Supervised, i.e. apriori, classification is useful once we have some knowledge of the 

class labels and the number of classes to be employed. Statistical classifiers attempt to 

identify an output class from a classification scheme (II) to that of the input attributes ('¥) 

for each explanatory variable and input vector (x) by defining the classification problem 

as: 

(5.1 ) 

where m is the number of attributes, Ie is the number of classes, n is the number of 

samples and ris a transformation function. Dunteman (1984) modified equation 5.1 with 

respect to supervised classification following Bayes theorem as: 

(C I ) - p(x I Ck)p(Ck) P k x - "--'---'--'-'--"----'-
p(x) 

(5.2) 

where Ie is the number of classes; p (Ck I x) is the posterior probability of class Ie given the 

input vector x; p(x I Ck) is the conditional probability of an input vector x given class k; p 

(Ck) is the probability that class Ie is present in the data; and, p(x) is the probability of an 

input vector x given any class (Ck). 

The conditional probability function p(x I Ck) is therefore required to compute p 

(Ck I x), however this probability is usually not availab le for most datasets including 

ecological data. Hence, p(x I Ck) is usually computed from a training set as a probability 

density function (pdf) which is often used as a discriminant rule (or fl1l1ct ion) to identify 

the class membership ofa given input vector x (reservoir sample). The type ofpdJused 

in estimating p(x I Ck) determines the type of approximation model. The maximum 

likelihood classification model is a variation of the equation 5.2; it generally uses the 
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Gaussian distribution to calculate the posterior probability of each of k classes, and 

then assigns a new input vector to the class with highest posterior probability (Dunteman, 

1984; Huberty, 1994; Legendre and Legendre, 1998). 

5.1.1. Discriminant function analysis 

The maximum likelihood classifier uses the Bayesian approximation to model the 

volume of a particular class distribution. On the other hand, discriminant function 

analysis (DFA) uses empirical hypothesis testing approaches to determine which linear 

combination of input variab les discriminate between (wo or more naturally occuning 

groups, i.e. models the surface of a class distribution (Dunteman, 1984; Kachigan, 1986; 

Ripley, 1996; Legendre and Legendre, 1998; Tabachnick and Fidell, 2001). The linear 

modeling used in DFA is similar to analysis of variance (ANOVA), multiple linear 

regression, and canonical analyses. The discriminant functions (8) of the linear model is 

computed as a series of linear combinations of input vectors (x) that seek to maximize (he 

separation between training classes as: 

(5 .3) 

The classification problem then reduces to identifying the appropriate funct ion (8) in 

equation 5.3. 

Fisher'S pairwise linear discriminant rule is among the commonly used and 

simplest modifications of the discriminant functions (8) in equation 5.3. Fisher (1936) 

used the morphological characteristics of 150 iris specimens to translate multivariate 

inter-group distances into linear combinations of variables to assist in the segregation of 

three groups of irises. Since this study, others have developed variations of the concept 

to address classification problems invo lving mUltiple groups (Rao, 1952; Knapp, 1978; 
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Klecka, 1980; Huberty, 1994; Ripley, 1996). Where there are more than two 

independent variables, discriminant function analysis, like multiple regression, estimates 

the coefficients (discriminant functions) ofa linear model ofthe classification matrix of 

explanatory variables that can best predict the response variable or classification criterion 

(Legendre and Legendre, 1998). This is followed by computing the discriminant score 

(or structure coefficient) for each observation based on the estimated coefficients. A 

classification rule is then developed by applying the Bayes Theorem to the discriminant 

scores. Further details of the discriminant analysis for ecological data are provided by 

Ripley (1996) as well as Legendre and Legendre (1998). 

Breiman et al. (1984) and Quinlan (1993) discussed the limitations ofDFA and 

these are summarized briefly. Effective use ofDFA must meet the distributional 

assumption that: all the explanatory variables follow a multivariate normal distribution 

for each class of response variable; and, variance-covariance matrices for each class are 

equal. Although the assumption of normality is critical to DF A, the method is usually 

applied irrespective of whether the assumption is true for every explanatory variable 

employed in the analysis. Since the DFA classification method is suitable for 

dichotomous predictor variables, categorical variables need to be h'ansformed into a 

series of dununy variables and this can lead to problems of dimensionality. Moreover, 

the DFA method is not effective in using cases of missing explanatory variables and 

hence observations with missing variables are dropped from the analyses, leading to 

unintended bias due to elimination of variables that might otherwise be critical to 

developing an appropriate classification rule. 
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Common alternatives to the use ofDFA in resolving classification problems 

include the logistic regression and probit models. These alternatives however have 

limitations that are similar to DFA in that they are also dependent on the assumption of 

norn1al distribution of explanatory variables, are only suitable for categorical data and 

may produce biased results when the data set contains missing variables. As such, all the 

preceding statistical classification methods are parametric and not well suited for 

ecological analyses. Studies by Breiman et al. (1984) and Quinlan (J 986) provided 

impetus to interest in decision trees as suitab le alternatives to discriminant analysis . 

Since then, decision tree approaches to ecological analysis and resource classification are 

becoming widespread (e.g., Michaelson et aI., 1987; Hansen et aI., 1996; Friedl and 

Brodley, 1997; Emmons et al., 1999; German et aI., 1999; DeFries and Chan, 2000; 

De'ath and Fabricius, 2000; Friedl et ai., 2000; Witten and Frank, 2000; Rogan et al. , 

2003; Yang et al., 2003; Lamon and Stow, 2004). The work by De'ath and Fabricius 

(2000) on habitat types of coral taxa from Australian central Great Barrier Reef, in 

pariicular, focused attention on the potential of decision trees as "powerjid and yet simple 

technique for ecological applications n . 

5.1.2. Decision tree classifiers 

Decision tree class ifiers are usually implemented as rule-based classifiers (Hunt et 

ai., 1966; Breiman et al., 1984; Quinlan 1986; Verbyla, 1987; Ripley 1996; Mitchell, 

1997; De'ath and Fabricius, 2000; Witten and Frank, 2000). A simple form of rule-based 

classifier is a hierarchical construction (tree) with various levels (leaves) (Figure 5.1). At 

each level a test is applied which is comprised of simple questions, the answer to each of 

which traces a path down the tree. The classification or prediction made by the model is 



detennined when a final point is reached. The prediction may be qualitative (e.g., 

least vulnerable lakes) or quantitative (e.g., temperature greater than 20 CO). 
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A more rigorous form of decision trees employs the recursive partitioning non­

parametric statistical method, which can account for non-linear relationships, higher 

order interactions and missing values in a dataset (Breiman et al. , 1984; Verbyla, 1987; 

De' ath and Fabricius, 2000). There are two types of decision tree models: regression 

trees are appropriate when the dependent variable is numeric, whereas classi fication trees 

are more relevant for instances with categorical dependent variables, e.g. lake class 

(Brei man et aI., I 984; Quinlan 1986; Ripley, 1996; De'ath and Fabricius, 2000). 

The advantages of the decision tree approach (e.g., classification tree) over 

discriminant function analysis (DFA) are summarized in Table 5.1. At first glance, the 

DFA and classification tree decision processes may seem alike due to the use of 

coefficients and splitting equations by both methods. However, they differ significantly 

based on the simultaneous decision-making process ofDFA as opposed to the 

hierarchical decision-making process of classi ficatioJ1 tree. In general , classification tree 

approaches offer several advantages over DFA in dealing with complex ecological 

datasets. The classification tree methods are not limited by prior knowledge of dataset 

distributions, since modeling of these distributions is not required. Thus, classification 

tree algorithms can easily handle multimodal distributions and they have no restrictions 

on sample size, in contrast to Bayesian approximators such as maximum likelihood and 

DFA classifiers. 
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5.1.2.1. Classification tree building process 

Previous authors (Breiman et al .. 1984; Quinlan, 1986 and 1993; Ripley, 1996; 

Mitchell, 1997; De'ath and Fabricius, 2000; Witten and Frank, 2000) have provided 

detailed descriptions of decision tree procedures. Here, only the classification tree 

method is reviewed because it was used to implement the watershed-based classification 

in this study. Classification tree methods discriminate the attribute space of a dataset into 

K disjoint groups, K,. (r= l, 2 " .. k), based on decision rules that are parallel or orthogonal 

to the attribute axis. The classification tree identifies the best possible path (and 

attributes) to partition the feature space and traces a path down the tree from the root 

node (dataset) to leaves (classes). Each node of the tree represents a set of rules that 

progressively refines the classification in a top-down hierarchical approach. 

Classification trees can represent higher levels of complexity or deep trees (where the 

class segregation is difficult) and more simplistic rule sets (short trees) when appropriate. 

The classification tree process involves a binary recursive partitioning of the data 

into successive nodes (Figure 5.2). The process is binary because the parent nodes are 

always split into exactly two subsequent nodes and recursive because the process can be 

repeated by treating each subsequent node as a parent until there are no more splits (i.e. 

terminal nodes or reservoir classes) (Breiman et ai., 1984; Quinlan, 1993). Attributes 

that do not seem to contribute in defining ultimate telminal nodes are usually excluded in 

the final tree structure, leaving only those attributes that influence the overall 

classification process (Quinlan, 1993). 

There are three basic components of classification tree building process: a set of 

questions; splitting criteria; rules for assignjng a class at a terminal node. The set of 
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questions could be in the form of a continuous explanatory variable (is pH ~ 6.48?) or 

a categorical explanatory variable (is z = b?). The splitting criteria generally involve 

impurity function or infol1nation gain (or entropy) approach. The impurity function 

approach was developed by Breiman et al. (1984) and seeks to increase within group 

homogeneity by minimizing their impurity. The commonly used impurity measures are 

Gini diversity index, twoing rule or linear combination splits (Brei man et al.. 1984). For 

example, the Gini index (i) is defined as: 

i(t) = 1- S (5.4) 

where t = tree node, and the impurity function (S) is S = ~ /U /t), 

j = 1, 2, 3 ..... k classes, such that; 

i(t) is maximum, if p (I It) = P (2/t)= ..... = P U/t) 

i(t) is minimum, i(t) =0, if all cases at a node belong to one class 

Given S (splitting function) at tree node t, then a goodness-of-fit criterion (decrease in 

impurity) is applied as: 

b.i(s,t) = i(t) - {pL[i(tL)] + pR[i(tR)]} 

where s = a particular split; 

pL = the proportion of the cases at node t that go into the left child node (t L); 

pR = the proportion of cases at node t that go into the right child node (t R) 

i (t L) = impurity of the left child node; 

i (t R) = impurity of the right child node. 

(5.5) 

The impw'ity function approach is used as the primary rule in Breiman's CART 

software (Breiman, 1984; Salford Systems, 1998). Class assignment involves the use of 

either the plurality rule (assign tel111inal node to a class for which p U/t) is maximum) or 



assigning terminal node to a class for which the expected misclassification cost is 

minimum. Since Breiman's classification tree process depends on probabilities of 

classificat ion, it sometimes tends to mimic parametric statistical approaches (Quinlan, 

1993). 

146 

Infonnation gain (or entropy) criterion, on the other hand, involves the use of 

least amount of information (in bits) to describe each splitting decision at a node in the 

classi fication tree, based on the frequency of each class at that node (Shalmon, 1948; 

R unt et al. , 1966; Quinlan, 1993; Shannon and Weaver, 1999). According to Quinlan 

(1993), for any subset (S) of a population the number of observations in S that belong to 

class (Cj) can be described asfreq(Cj , S). A "communication", indicating that a randomly 

selected observation belongs to some class Cj, has the probability {freq (Cj, S) / lSI}, 

where lSI is the absolute number of observations in the subset S. The information 

transmitted by the communication is defined as: 

(5.6) 

A summation over the classes with respect to their frequencies in S, gives the expected 

information (in bits) on class membership from such a message as: 

(5.7) 

When equation 5.7 is app lied to a training set of observations, info(T) provides a measure 

of the average amount of information required to identify the class of an object in T. Tlus 

amount is also referred to as the entropy of the set T. Again, taking into account a 
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similar measurement after T has been partitioned in accordance with n outcomes of a 

test X; then the expected information is computed as a weighted sum over the T subsets: 

" ITI 
info, (T) = ~ 1;1 .info(Tj) (5.8) 

Based on equation (5.8) above, the information that is gained by partitioning Tin 

accordance with the test X is measured as: 

gain (X) = in/o(T) - ilyoxCT) (5.9) 

According to Quinlan (1993), the gain criterion aims at selecting a test to maximize the 

information gain. However, the gain criterion has significant limitation of bias since it 

favors tests with many outcomes (Quinlan, 1993). This anomaly is resolved by a gain 

ratio criterion in wh ich the potential information is generated by normalizing T into n 

subsets (Quinlan, 1993). The splitting information in equation (5.7) is then modified as: 

" ITI ITI 
split info (X) = ±L:-' * log2(-') 

i-IITI ITI 
(5.10) 

Then the proportion of information generated by the split that aids the classification 

process is given by: 

gain ratio (A) = gain (A) / split infox(X) (5.11) 

If the spl it is relatively insignificant, the split information will be small and the gain ratio 

will become unstable. Consequently, the gain ratio cliterion selects a test to maximize 

the gain ratio (5.11), subject to the constraint that the information gain should be large 

(Quinlan, 1993). 
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5.1.2.2. Classification tree pruning 

The use of splitting criteria intuitively suggests that splitting is only stopped when 

there is no further improvement in the gain ratio or impurity flU1ction. However, a 

stopping rule based on splitting criteria could result in an overlarge tree that "over fi ts" 

the data. Large trees are complicated to interpret and have poor generali zing ab ility. 

Secondly, too large a criterion could blur spl its based on attTibute interactions wlless one 

of the associated main effects is large enough to generate a sp lit (Brei man et al., 1984; 

Quinlan, 1993; Esposito et aI., 1999). The tree pruning process involves removing 

branches and subtrees that are generated due to noise; and when done properly, can 

improve classification accuracy as well as produce more interpretable and simpli fied 

trees (Figure 5.3). Typical approaches to classification tree pruning are "cost­

complexity" pruning (Breiman el al., 1984) and "reduced error" pruning (Quinlan, 1993). 

The effectiveness of pruning methods is constrained when the dataset set is small 

(e.g. less than 100 samples) in which case the original tree is constructed on a smaller 

train ing set. This problem is resolved by obtaining estimates of prediction error; the 

accuracy of these estimates are usually increased by using an averaged weighted 

prediction error of several models as provided by k-fo ld cross-validation error (Stone 

1974; Breiman et al., 1984; Ripley, 1996; Ronchetti et al., 1997; Esposito et al., 1999; 

De'ath and Fabricius, 2000; Bloch et aI., 2002). 

5.1.2.3. Decision tree software 

The suite of recursive partitioning decision tree algorithms and software that have 

been developed over the last two decades include CHAID (Chi-squared Automatic 

Interaction Detection) (Kass, 1980), FACT (Loh and Vanichsetakul, 1988), Breiman' s 
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CART® (Breiman ,1984; Salford Systems, 1998), C4.S and CS/SeeS (Quinlan, 1994; 

RuleQuest 2003) and OCI (Murphy et al., 1994). According to Lim et al. (2000), C4.S is 

one of the best perfolming classification tree algorithms, based on comparisons of 

classification accuracy, training time and number of leave nodes for 32 different decision 

trees algorithms. Hence, the Microsoft Windows version ofC4.S (i.e. SeeS®) was 

employed in this study. 

5.2. Methods 

Previous research work (see Chapter 4) showed that 9 classes may be optimal ill 

describing the inherent structure of Nebraska reservoir classes, and that soil organic 

matter was the key watershed characteristic that contributed to the segregation of these 

classes. Once the numbers of underlying reservoir groups were identified, a classification 

tree predictive model was used to describe the reservoir class structure and also to 

develop the rule-based classification for Nebraska reservoirs as a model for agriculturally 

dominated ecosystems. In this chapter, the classification tree-based watershed 

classification developed in Chapter 4 was compru'ed to Omernick's Level IV ecoregions 

(Omernik, 1987; EPA, 2002) and discriminant function analysis (DFA)-based watershed 

classification methods (Momen and Zehr, 1998). The comparison was a two step 

process: first, the watershed-based classifications were compared to ecoregions to 

determine their abilities to account for variations in water quality parameters of Nebraska 

reservoirs; second, the classification tree-based reservoir classification was compared to 

DFA-based classification with respect to classification accuracy. Comparing different 

classification methods can be problematic since there are different ways to set up each 

classifier. Hence, only default forms of classification tree (SeeS® software) and DFA 
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(implemented in SAS software) were considered without any accuracy enhancements 

(e.g. prior probabilities for DFA and boosting for classification tree respectively). 

5.2.1. Ecoregions and water qnality datasets 

Ecoregions of Nebraska were extracted from a dataset ofOmemik Level IV 

ecoregions of the Conterminous United States (Omemik, 1987; EPA, 2002). The United 

States ecoregions dataset was clipped to GIS polygon coverage of Nebraska using 

ArcMap GIS software. The water quality data for 78 sampled reservoirs were derived 

from existing sampled Nebraska lakes water quality dataset that was obtained from the 

School of Natural Resources, University of Nebraska - Lincoln (Holz, 2002). A GIS 

"point" coverage of the sampled reservoirs was overlaid on Omernik ' s ecoregions of 

Nebraska in order to identify those ecoregions that con'esponded to the 78 sampled 

reservoirs (Figure 5.4). 

The water quality data (collected between 1988 and 2003) were summarized into 

annual means, corresponding to sampling data obtained between May and August of each 

year. For each of the ecoregions (identified in figure 5.4.) and corresponding reservoirs, 

the mean value was determined for the candidate reference water quality parameters that 

have been proposed by the U.S. Environmental Protection Agency (EPA) for use in 

developing lake nutrient criteria. The candidate reference water quality parameters are 

chlorophyll-a, Secchi depth, total phosphorus, total nitrogen and alkalini ty oflake waters 

(EPA, 2001; Severn et ai., 2001). In addition to the preceding water quality parameters, 

two potential agrochemical herbicide pollutants (Atrazine and Alachlor) were included in 

the analysis because the outcome of this study also has implications on how the reservoir 



classification methods could assist in managing non-point SOUTce pollution oflake 

water quality ITom agrochemical effluents via stream runoff. 

5.2.2. DFA-based reservoir classification 

lSI 

Discriminant analysis (DFA) was performed on watershed characteristics of78 

sampled reservoirs that were used in the classification tree-based watershed classification 

in Chapter 4. The distributional assumptions ofDFA (that all the explanatory variables 

must follow a multivariate normal distribution for each class of response variable; and, 

that of equal variance-covariance matl;ces for each class) limit the validity of prediction 

error in assessing the accuracy of DFA classification. Besides, substantive interpretation 

of statistically significant discriminant functions requires structure coefficients, i.e. 

con'elation of each explanatory variable with the discriminant functions (similar to factor 

loadings) (Bray and Maxwell , 1982; Legendre and Legendre, 1998). 

Cun'ently, rules of thumb such as structure coefficients greater than 0.3 or 0.4, are 

used to detelmine which variables load on a discriminant function (Legendre and 

Legendre, 1998; Gordon, 1999). However, the condition for including a variable in the 

interpretation of a discriminant function is that its structure coefficients must be 

significantly different from zero. For sampled ecological datasets with multimodal 

distributions and unequal variances, the structure coefficients may have a large and 

apparently important value but this may not be significantly different from zero 

(Legendre and Legendre, 1998; 10hnson, 1999). It is, therefore, critical to employ other 

means for statistical tests of significance in order to ensure that the accuracy ofDFA for 

sampled ecological datasets is valid for generalization. 
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Resampling approaches (jackknifing, bootstrapping and cross-validation) 

offer non-parametric means to perfolm statistical significance test of structme 

coefficients ofDFA (Stone, 1974; Efron, 1979; Efron and Gong, 1982; Breiman et al. 

1984; Wu, 1986; Efron and Tibshirani 1993; Shao, 1993; Ronchetti et ai., 1997; 

Legendre and Legendre, 1998; Good, 1999; 10lmson, 1999; Efron, 2003). The jackknife 

and bootstrapping methods are used to compute Spearman's ranked correlations, bias­

corrected estimates of standard error and confidence intervals, irrespective of the 

sampling distribution ofthe dataset. The jackknife approach involves resampling without 

replacement, while bootstrapping involves resampling with replacement (Efron, 1979; 

Efi'on and Gong, 1982; Efi'on and Tibshirani, 1993; Good, 1999; Davison et ai., 2003; 

Efron, 2003). Cross-validation is fundamentally different from jackknife and 

bootstrapping in that the latter are used to compute estimates of bias and variances 

whereas cross-validation is used for model selection (S tone, 1974; Shao, 1993 Ronchetti 

et ai. , 1997; Efron, 2003; Wehberg and Schumacher, 2004). 

For tllis reason the cross-validation resampling technique was employed in DFA 

method that was used in this study. The DFA was implemented in SAS@ software using 

"Discrim" procedure with cross-validation option (SAS Institute, 2000). The DFA was 

performed using output of the cluster analysis of watershed characteristics datasets based 

on 13 and 9 classes respectively (see Chapter 4). This was done to explore the 

effectiveness with which the DFA could handle the more complicated 13-class data 

(invo lving 13 classes and single object classes) as compared to the less complicated 9-

class dataset. Accordingly, the cross-validation prediction errors were detenn ined for 

both 13 and 9 class datasets respectively. 
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The predicted reservoir classes (13 and 9 classes respectively), derived from 

the DFA-based watershed classification, were then extracted and ArcMap GIS was used 

to append this information to a watershed characteristics dataset that included predicted 

reservoir classes with respect to classification tree based watershed classification (13 and 

9 classes) and ecoregions. The dataset also included aIIDual meaIl summaries, of growing 

season index period, for water quality parameters (chlorophyll-a, Secchi depth, alkalinity, 

total phosphorus, total nitrogen, Atrazine and Alachlor). 

5.2.3. Comparison of classification methods 

The watershed-based classifications methods, DF A and classification tree 

(See5®), were compared to ecoregions regarding their abilities to account for variations in 

water quality parameters of Nebraska reservoirs. This was done using the concept of 

classification strength, which measures of how strongly different laIldscape classification 

approaches separate reference water quality water conditions (Van Sickle and Hughes, 

2000). A modified version of classification strength (CS) was estimated as the extent to 

which average within-class water quality variations exceeded the average variations 

between reservoir classes. The CS is defined as a function of within-class heterogeneity 

and between-class separation as: 

Where: 

cs = TjJ 

fJ 

II is variability in reference water quality conditions between classes 

(5.12) 



'{jJ = variability in reference conditions within classes; '{jJ is the overall weighted mean 

of within class variances (Wi) (modified from Van Sickle and Hughes, 2000). The 

variance in mean annual water quality is given as: 

where 

(J" = I (Xi - X) ' 
II - I 

i = I , 2 . .. n reservoirs (5.13) 

x = the annual mean value of water quality (e.g. chlorophyll-a) for each reservoi r 

X = the sample mean 

n = the number of reservoirs in each class 

The CS was computed for each water quality parameter and the results were 

summarized into tlu'ee categories as follows: 

I. Biophysical water quality (ch lorophyll-a and Secchi depth) 

11. Chemical nutrient water quality (total phosphorus, total nitrogen and 

alkalinity) 

111. Agrochemical herbicide effluents (Atrazine and Alachlor) 
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Since the aim of the dissertation research was to identify the Nebraska reservoir classes 

that could be used to establish water quality and nutrient criteria, it was expected that a 

decrease in CS value represents an increase in interclass heterogeneity or increase in 

within-class homogeneity. Consequently, the classification approach w ith the lowest CS 

value for the respective water quality categories was considered to be most optimal. 

5.3. Results and discussions 

A map of the sampled reservoirs overlaid on Omernik's Level IV ecoregions of 

Nebraska is shown in figure 5.4. There were 20 out of the 27 Nebraska ecoregions that 



corresponded to the sampled reservoirs locations. However, only 9 of these 

ecoregions had sufficient water quality data or more than one reservoir per ecoregion 

class. As such, 9 ecoregion classes were used in the comparisons of classification 

methods. 

5.3.1. Comparison of classification methods 
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The classification strength (CS) of ecoregions, DFA and classification tree 

(See5®) based classifications are shown in table 5.2.a. These results were summarized 

for comparisons with respect to biophysical, chemical nutrient and agrochemical 

herbicide effluents water quality categories (Table 5.2.b). For each category, the 

classification method with lowest CS value was considered to be most effective. Overall, 

both watershed-based classification approaches (classification trees and DFA) were more 

effective than ecoregions in accounting for the variations in water quality characteristics 

of Nebraska reservoirs. The DFA method was most effective in segregating biophysical 

water quality parameters. Also the classification tree approach was most effective in 

accounting for variations in both nutrients and herbicide water quality parameters. 

Although ecoregions seem to have lower CS values than both watershed-based 

classification methods with respect to total nitrogen and total phosphorus (Table 5.2), the 

relatively high CS value for alkalinity lessens the effectiveness of ecoregions. This is 

paliicularly important because the alkalinity of lake waters detel111ines their natural 

buffering capacity; thus alkalinity helps to regulate pH changes and photosynthetic 

uptake of plant nutrients like phosphorus and nitrogen (Wetzel, 1983; Wetzel and Likens, 

2000). The above results were in agreement with previous findings that ecoregions do 

not adequately account for variations in lake water quality parameters (Van Sickle and 
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Hughes, 2000; Severn et aI., 2001; Jenerette et ai., 2002; Detenbeck et ai., 2003 and 

2004). For example, Jenerette et ai., (2002) tested the hypothesis that Omernik's 

ecoregions will allow for discrimination between lakes ofdifferent water quality and 

suggested that the spatial distribution of lake ecosystems is more complicated than that 

presented by ecoregion bOllndaries. 

Geospatial data employed in this study are avai lab le for the entire United States, 

e.g., US Geological Smvey's Elevation Derivatives for National Applications (EDNA) 

datasets which are based on a seamless 30-meter resolution DEM available for the 

conternlinolls United States (Verd in and Verdin, 1999; Gesch et ai. , 2002; 

http://edna.usgs.gov/). Thus, the comparison between watershed-based classifications 

and ecoregions derived reservoir classes has potential national applications that can 

address the concerns ofOmemik and Bailey (1997) regarding incompatible comparisons 

between ecoregions and other ecological boundaries. 

Is it important to note however that, the use of classification strength is assessing 

the effectiveness of classification methods is dependent sampled water quality data. Box­

whisker plots were generated for each water quality parameter that was used in the 

classification strength comparisons ecoregions, DFA, and classification tree methods 

respectively (Appendix III). Log transformations of the water quality parameters helped 

alleviate the asymmetric distributions of the water quality data. The box-plots highlight 

the extent of variation in the water quality data. In general, the plots in Appendix III 

could provide a useful context for any interpretation of the classification strength 

comparisons between watershed-based reservoir classification methods and ecoregions­

derived reservoir classes. Hence classification strength is to some extent affected by 



limitations of sampling in-lake water quality parameters. These limitations include 

the need for extensive and frequent sampling oflakes in a given region which can be 

costly in terms of manpower and equipment. 
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Subsequent comparison of See5® classification tree and DFA classifications was 

based on their cross-validation prediction errors (Table 5.3). The results showed that the 

classification tree method was more effective in handling the 13-class dataset than the 

DF A classification method. Also, the differences in prediction error rate between the 13-

class and 9-class datasets are 9.49 and 30.30 for classificati0l1 tree and DFA methods 

respectively. Despite the smaller prediction error for DFA with regards to the 9-class 

dataset, the significant jump in prediction elTor from the 13-class dataset shows how 

peliurbations or complexities in a dataset can reduce the predictive effectiveness of the 

DFA method. 

Thus the above results confim1 the assertion that classification trees are most 

useful in dealing with complex datasets, such as ecological data (Brei man et ai., 1984; 

Quinlan 1993; Gennan et al., 1999; De'ath and Fabricius, 2000). Also, the results of 

comparisons between DFA and classification tree methods were in agreement with 

previolls analyses on water quality, geospatial datasets (images and maps), and soft coral 

datasets (Emmons et al., 1999; Gennan et al., 1999; De' ath and Fabricius, 2000). For 

example, Emmons et ai., (1999) found that the decision tree method resulted in lower­

rates ofmisclassification and more interpretable classes of North em Wisconsin lakes than 

DFA-derived classes. 
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5.3.2. Interpretive cIassil1cation interface 

Based on the classification tree models (Figures 5.5), an interpretive classification 

interface was developed to predict the classes to which different reservoir samples belong 

(Figures 5.5). This interface is pmiicularly useful to water resource managers interested 

in identifying the class of a particular lake. A "classifier" button in See5® classification 

tree software invokes the interpreter interface; using the most recent and relevant 

classification tree, interpreter interface prompts for information about the new case to be 

classified (RuleQuest Research, 2003). For example, the classification interface was used 

to predict the class membership of Yankee Hill reservoir and it showed that Yankee Hill 

reservoir will belong to class 1 with 72 percent probability based on soi l organic matter, 

erodibility and mean watershed slope (Figure 5.6). 

5.4. Summary 

A theoretical basis for comparing classification methods was described in this 

chapter. A classification tree-based reservoir watershed classification, developed and 

described in Chapter 4, was compared to Omernik' s Level IV ecoregions and 

discriminant function analysis (DFA)-based watershed classification methods. The 

compm'ison was done to first evaluate the abilities of watershed-based classifications and 

ecoregions to account for variations in water quality parameters of Nebraska reservoirs; 

and second, to determine the predictive effecti veness of classification tree and DFA 

based reservoir watershed classification methods. 

Sampled Nebraska reservoirs (78) were grouped into various classes using the 

above-mentioned classification approaches; namely, classification tree m1d DFA based 

reservoir watershed classifications and ecoregions derived reservoir classes. Also, alillual 
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mean summaries for water quality parameters (chlorophyll-a, Secchi depth, alkalinity, 

total phosphoms, total nitrogen, Atrazine and Alachlor) were generated and appended to 

classification tree, DFA, and ecoregions derived reservoir classes respectively. A 

classification strength metric (measures of how strongly different landscape classification 

approaches separates reference water quality water conditions) was used to evaluate the 

effectiveness of watershed-based reservoir classifications and ecoregions derived 

reservoir classes. The results suggested that both watershed-based classification 

approaches (classification tree and DFA) were more effective than ecoregions in 

accounting for the variations in water quality characteristics of Nebraska reservoirs . This 

outcome was in agreement with previous findings that despite their usefulness in other 

ecological app lications, ecoregions may not adequately account for variations in lake 

water quality parameters. 

Also, the classification tree and DFA-based watershed classification methods 

were compared with respect to their cross-validation prediction errors. The results 

suggest that the classification tree method was more effective in handling the 

complexities of watershed characteristics dataset and reservoir classes. The above results 

confim1 previous conclusions that decision trees are more suited for the ecologically 

complex datasets than traditional statistical approaches (e.g., DFA) to resource 

classification. 

However, classification trees do not allow for the inclusion of prior knowledge of 

known relationships between watershed characteristics and reservoir water quality to 

improve the classification results, e.g. weighting of watershed characteristics using lake 

area (Minka and Picard, 1997). This limitation can be overcome by exploring expert 
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systems (e.g., conditional probability networks) to incorporate prior knowledge of 

watershed characteristics and water quality parameters ill a post-classification process to 

refine the results of the decision tree classification (Lauritzen and Spiegelhalter, 1988; 

Neapolitan, 1990; Heckerman, 1997). 

Much of the known relationships between watershed characteristics and water 

quality parameters have been derived using parametric statistical methods such as 

correlation and linearregression analysis. Regression trees non-parametric approach 

(e.g., Cubist® by RuleQuest Research) can be used to derive simple but ecologically 

interpretable associations between watershed characteristics and water quality 

parameters. This is because the regression trees algorithm uses both numeric and 

categorical explanatory variables (watershed characteristics) in assessing relationships or 

associations among the variables of interest. 

Results of such associations can be used in either pre-processing the input 

variables of classification tree modeling to enhance the splitting process or incorporated 

into post-classification expert systems to refine the classification tree modeling results. 

The regression tree derived associations between watershed characteristics and water 

quality parameters can also be used to rank reservoir watersheds using ArcMap GIS 

weighted combination method (ESRI, 2001). The ranking may be from most vulnerable 

to least impacted watersheds for determining reference conditions in each predetem1ined 

reservoir class. Water quality standards or "targets" can then be developed based on 

reference water quality conditions, for reservoirs in each class. The lake reference 

conditions are quantitative descriptions of "ideal" lake conditions used as standard of 

comparison. Although reference conditions are intended to portray pristine 
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enviromnental conditions, it is generally recognized that they realistically portray 

least impacted or most sustainable conditions (Hughes, 1995; EPA, 2000; EPA, 2001). 

The least impacted watersheds are indicative of candidate lakes sites for the development 

of reference water quality conditions, e.g. via paleolimnological coring. 

An important feature of the SeeS® classification tree software is the interpretive 

classification interface that was developed to predict the classes to which new cases 

belong. A "classi fier" button in SeeS® classification tree software invokes the interpreter 

interface; using the most recent and relevant classification tree, interpreter interface 

prompts for information about the new case to be classified (RuleQuest Research, 2003). 

This interface is particularly useful to water resource managers interested in identifying 

the class membership of a particular lake, in order to explore management options for the 

reservoir in question. 
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Decision tree classification 
Inherently nonparametric: makes no 
assumptions of the distribution of the 
values of predictor (explanatory) variables 

Can handle numerical data of explanatory 
variables that are highly skewed or 
multi modal 

Can handle categorical data with either 
ordinal or non-ordinal structure 

Not influenced by outliers, collinearities, 
and beteroskedaticity in datasets 

Deals effectively with cases of missing 
values of explanatory or predictor variables 
by making use of collinear variables in 
"surrogate" splits 

Identifies splitting variables based on an 
exhaustive search of all possible 
alternatives 

The inverted tree structure makes output 
classes simple to understand and interpret 

Handles hierarchical and non-linear 
relationships among predictor variables 
very well 

Has no restriction on sample size 

Can detect and reveal salient variable 
interactions 
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Discriminant function Analysis (DFA) 
Inherently parametric: assumes nonnally 
distributed data; variance and covariance 
matrices for each class must be equal 

Explanatory variables must follow a 
multivariate normal distribution for each 
class of response variable 

Only suitable for continuous (numerical) 
predictor variables 

Sensitive to data anomalies, e.g. outliers 

Not effective in accounting for cases of 
missing explanatory variables, hence 
variables with missing values are usually 
dropped from analyses 

Segregation of variables is based only on 
linear combinations of explanatory 
variables 

Interpretation of statistically significant 
discriminant functions requires structure 
coefficients (or discriminant scores) 

Can only handle linear relationships an10ng 
predictor variab les 

Prediction accuracy usuaLly decreases after 
a minimum threshold of sample size is 
reached 

Variable interactions must be explored 
using other analyses prior to discriminant 
analyses 

Table 5.1. Differences between classification tree and discriminant function analysis 
(DFA) classification algorithms 



Water Biophysical Parameters 

Secchi Depth 

Chlorophy-a 

Average 

Water Chemistry Parameters 

Alkalinity 

Total Nitrogen" 

Total Phosphorus 

Average 

Agrochemical Herbicide Effluents 

Atrazine 

Alachlor 

Average 
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Classification Strength (CS - W IB*) 

DFA 
Watershed 

Classes 

1.520 

3.090 

2.305 

2.075 

1.047 

2.760 

1.961 

1.4214 

1.877 

1.649 

Ecoregions 

1.053 

5.992 

3.523 

6.584 

0.874 

0.4904 

2.649 

1.301 

1.644 

1.472 

SeeS 
Watershed 

Classes 

1.538 

4.893 

3.215 

2.146 

1.015 

2.532 

1.897 

1.249 

1.37 1 

1.310 

Table 5.2.a. Comparison of classification strength of reservoir classification methods 
* -W is within class variation 

B is between class variations 
** - Adjusted mean value of total nitrogen was used in this analysis 
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Mean Classification Strength 

DFA* Ecoregions See5® ** 
Watershed Watershed 

Classes Classes 

Number of classes 8 9 8 

Water Biophysical Parameters 2.305 3.523 3.215 

Water Chemistry Parameters 1.961 2.649 1.897 

Agrochemical herbicide 1.649 1.472 1.310 
effluents 

Table 5.2.b. Summary of mean classification strength values for reservoir classification methods 
* DFA was implemented using SAS® "Discrim" procedW'e (SAS Inc. , 2000) 
** Classification tree was implemented using See5® software (RuleQuest, 2003) 

Number of classes 

SAS® DFA 

SEES® Classification tree 

Prediction Strength 
(percent cross-validation error) 

13-classes 09-classes 

40.59 10.29 

26.33 16.84 

Table 5.3. Comparison of prediction strength for watershed-based reservoir classification 
methods 



If x, < Y, Then choose C, 

Else choose D 

Ifx, < Y, Then choose A, 
Else choose B 

If xp < Y p Then choose E, 
E lse choose F 

Figure 5.1 . Schematic representation of a simple decision tree process 
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Split the first variable 
(at all possible sp lit points) 

Classification tree 
I + is recursive 

Repeat for all 
Apply a splitting criterion to each variab les 

sp lit point (gain ratio/ impurity) 

! 
Selects the best spli t 

Repeat for all (Highest gain ratio/ lowest impurity) 
non-terminal 

nodes 
Rank all of the best splits 

on each variable 

• Select splitting variab le and its 
sp lit point 

I • • Non-terminal nodes Assign classes to terminal nodes 

Figure 5.2. Schematic representation of the recursive partitioning procedure of 
classification tree algorithms. 

I-
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Overlarge Classification tree 

Pruned Classification tree 

Figure 5.3. Schematic diagrams showing an example of classification tree pruning 
process 



N 

A 
o Sampled reservoirs D Lakes Area • Northeastern Nebraska Loess Hills D Sandy and Silty Tablelands 

Nebraska Ecoregions III Loess and Glacial Drift Hills Q Pine Ridge Escarpment D Scotts Bluff and Wildcat Hills 

Omernik's Level IV D Lower Platte Alluvial Plain D Platte River Valley III Semiarid Pierre Shale Plains 

• Alkaline lakes Area D Missouri Alluvial Plain D Ponca Plains • Smoky Hills 

• Central Nebraska Loess Plains D Moderate Relief Rangeland • Rainwater Basin Plains D Southern River Breaks 

Flat to Rolling Cropland • Nebraska/Kansas Loess Hills ~ Rolling Plains and Breaks D Transitional Sandy Plain 

D Holt Tablelands • Niobrara River Breaks • Rolling Sand Plains • Wet Meadow and Marsh Plain 

• Keya Paha Tablelands • North and South Platee Valley and Terraces D Sand Hills _ Wlite River Badlands 

Figure 5.4. Sampled reservoirs sites overlaid on Omernik' s Level IV Ecoregions of Nebraska 
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CEC $12.3 
n = 19 

DRN_D$ 2.2 
n = 14 

pH $ 6.8 
n=8 

Relief $ 271 
n=6 

I C~~~7 I 

Relief> 271 
n=2 

I C~~~4 I 

OM $ 2.1 
n =26 

CEC > 12.3 
n=7 

Class 9 
n=7 

DRN_D >2.2 
n =5 

pH> 6.8 
n=6 

Class 12 
n = 5 (1) 

OM 
n =78 

PH
n

$=7j17 ) ~ 
~~ 

Class 8 
n = 3 (1) 

Class 10 
n = 3 (1) 

Slope !S 1.94 
n = 12 

n = 12 (1) 

Klact $ 0.37 
n=44 

Slope> 1.94 
n =32 

/ OM $ 2.83 
n=2 

Kfact> 0.37 
n=8 

Class 2 
n=8 

OM > 2.83 
n =30 

n =30 

Figure 5.5. Classification tree for Nebraska reservoir classes. Rectangular boxes represent terminal nodes (classes); oval boxes 
represent non-terminal nodes that required further splitting. 
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Prediction 

h .... 1 
!.:!!!J 

0.72 • 

OM 
KFACT MAX 
SLOpf 

. 2.99916 
0.353676 
2.78175 

Figure 5.6. Example of interpretative classification interface used to predict class 
membership of Yankee Hill Reservoir in southern part of Lincoln, Nebraska. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

"The watershed approach is one of the most important environmental guiding principles ... ; 

failure to !idly incoll)Orate the watershed approach into program implementation will result in 

failure 10 achieve our environmental objectives in many of Ollr nation's waters ". 

Assistant EPA Administrator G. Tracy Mehan, III (Mehan, 2002) 

6.1. Summary 

Public agencies such as the U.S. Environmental Protection Agency (EPA) are 

charged with establishing reasonable attainable water quality standards. The principal 

objective of this research was to define and test a watershed-based classification 

procedure for identifying groups oflakes that have similar potential capacity to meet 

proposed water quality standards. This dissertation research focused on reservoirs in 

Nebraska, an agriculturally-dominated area of the United States. 

Tn this dissertation research, I proposed an approach describing the class structure 

of Nebraska reservoirs based classification of the reservoir watershed conditions. This 

approach was based on the premise that, in the absence of human interference, lake 

ecosystems evolve in response to physical, chemical and biological processes in thei r 

watersheds. Since my interest was in modeling reasonable attainable water quality 

standards for groups of lakes that are considered to share similar potential capacity to 

meet these standards, human factors such as land use were excluded from the analysis. 

A watershed-based, decision tree classification procedure was developed. Results 

suggest that Nebraska reservoirs can be represented by 9 classes, and that so il organic 
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matter content in the watershed was the most important single variable for classifying the 

watersheds. Comparison of the watershed-based decision tree classification approach 

that was employed in this study with other methods showed that: overall the watershed­

based classification approach performed better than Omernik's LevellY ecoregions in 

accounting for variations in water quality characteristics of Nebraska reservoirs; and that 

the decision tree classification method was more effective in handling complex reservoir 

data than a discriminant analysis-based watershed classification method. 

Information on the number and structure of lake classes is useful to water quality 

managers for many applications, including predictive modeling of potential impairment 

of reservoirs water quality based on their class membership. In addition, the findings of 

this research are important to the EPA nutrient criteria (water quality standards) 

development process as they demonstrate all intuitive method to identify lake classes and 

the environmental conditions that are pertinent to these classes. The interpretive 

classification interface provides a simple graphic user interface that eliminates the need 

for in-depth backgrollnd in statistical analysis in order to use the decision tree­

classification method. 

The classification procedure is also useful for other applications, such as 

detennining the categories of other resource and mapping problems. By llsing the cluster 

validation approach to determine optimal number of classes, as described in this 

dissertation, researchers and GIS analysts can reduce the extent of arbitrary selection of 

the number of resource classes. 

6.1.1. Geospatial dataset development and preliminary analysis 

This study focused on classiflcation of reservoir watersheds and hence accurate 
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identification of the locations of Nebraska lakes, thus it was necessary to delineate their 

watershed boundaries. Because there was no existing map that provided a complete and 

accurate depiction of the number and locations of lakes in Nebraska, an updated database 

oflake locations was developed using several data sources and ArcMap GIS software. I 

also employed a simple automated means to delineate reservoir watershed boundaties 

that has potential national applications. Although the dataset development process was 

not a primary objective of the disseltation research, it was critical to the study. 

Outputs of the dataset development process include an up-to-date and 

comprehensive Geographic Infonnation System (GIS) coverage of Nebraska lakes, a vital 

product needed to correctly identify Nebraska reservoirs, delineate watershed boundaries 

using digital elevation models (DEMS) and extract data on watershed characteristics. 

Compat'isons ofDEM-derived watershed boundaries with manually digiti zed watershed 

boundaries, obtained from the Nebraska Department of Natural Resources (DNR), 

showed less than 10 percent deviation based on such watershed parameters as drainage 

area and drainage density. This implies that the automated watershed delineation method 

produced watershed boundaries that were as good as manually-derived boundaries. 

Geospatial data employed deLineating watershed boundaries are available for the entire 

U.S. and the automated GIS-based procedures for watershed delineation are also 

nationally available. Thus, the watershed-based decision tree reservoir classi fication 

described in the preceding chapters has potential national applications. 

The sampled reservoi rs made up 8.39 percent of all Nebraska reservoirs that are at 

least 4 hectares in size. Comparisons of satnpled reservoirs with all Nebraska (based on 

lake area, climate divisions and ecological regions) indicated that there was no significant 
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difference between the sampled reservoirs and Nebraska reservoirs larger than 4 hectares. 

Therefore, conclusions of the study could be assumed to be applicable to most Nebraska 

reservoIrs. 

6.1.2. Implementation of a classification system for Nebraska reservoirs 

Detennining the optimal number of classes is a vital step in developing an 

effective classification strategy. This is because most often, water resource 

classifications are based 011 arb itrary choices of the number of classes to be employed. 

Such a practice limits OUf understanding of the inherent structure and hence the 

biophysical characteristi cs of the lake classes. The use of cluster validation techniques 

coupled with predictive strength evaluation of the number oflake classes provide a 

quantitative basis for identi fying the optimal number of classes. Decision trees were very 

useful supervised classification tool and in describing the structure of the reservoir 

classes, as well as identifying key watershed characteristics that contributed to the 

segregation of the lake classes. 

A cluster analysis was perf01111ed on the watershed characteristics of 78 sampled 

Nebraska reservoirs in order to determine the optimal nwnber of Nebraska reservoir 

classes. A plot of the Pseudo-F statistic (obtained from the cluster analysis output) 

against the respective number of classes (NCL), suggested that the potential number of 

classes included 3, 5, 13, 17, and 19. Further analysis of the optimal NCL was done 

based on the predictive strength of the potential NCL's using See5® classification tree 

software. The outcome of the classification tree modeling suggested that the optimal 

number of Nebraska reservoir watershed classes was 13 NCL. The cross-validation 

prediction enol' of the classification tree model for reservoir watersheds was 26.33 
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percent. The classification tree was later used to describe the structure of the Nebraska 

reservoir classes, and soil organic matter content was found to be the most important 

single variable for segregating the watersheds. Finally, the initial 13 NCL was revised 

based on the number of nodes in the classification tree, indicating that Nebraska 

reservoirs can be represented by nine optimal classes. The spatial di stribution ofthese 

reservoir watershed classes was described, reflecting the hydrogeological and 

biogeographical pattern ofterrain, soil and climate conditions of Nebraska. 

6.1.3. Comparison of reservoir classification methods 

Classification tree-based reservoir watershed classification was compared to 

Omernick's Level IV ecoregions and discriminant function analysis (DFA)-based 

watershed classification methods; first, the watershed-based classilications were 

compared to ecoregions to detelmine their abilities to account for variations in water 

quality parameters of Nebraska reservoirs; second, the classification tree-based reservoir 

classification was compared to DFA-based classification with respect to classification 

accuracy. 

A classification strength metric was used to evaluate the effectiveness of 

watershed-based reservoir classifications and ecoregions derived reservoir classes. The 

results suggested that both watershed-based classification approaches (classification tree 

and DFA) were more effective than Omernik's Level IV ecoregions in accounting for the 

variations in water quality characteristics of Nebraska reservoirs. This result was in 

agreement with previous findings that, despite their usefulness in structuring 

enviromllental and natural resource research and management, Omernik's Level IV 

ecoregions may not adequately account for variations in lake water quality parameters. 
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Also, the classification tree and DFA-based watershed classification methods 

were compared with respect to their cross-validation prediction errors. This comparison 

showed that the classification tree method was more effective than DFA-method in 

handling complex watershed characteristics dataset and reservoir classes. These results 

confirm previous observations that decision trees are more suited for ecologically 

complex datasets than traditional statistical approaches (e.g., DFA) to resource 

classification. 

Even though comparing classification methods can be problematic due to the 

different ways each classifier can be set up, the two-step comparison process that was 

employed in this study provided a substantive means to determine how classification 

methods can account for variations in water quality parameters, as well as a measure of 

classification accuracy. It was apparent that the classiflcation tree method is a promising 

new tool for classifying lakes in order to set water quality standards and explore 

management implications these lakes. 

However, classification trees do not allow for the inclusion of prior knowledge of 

known relationships between watershed characteristics and reservoir water quality to 

improve the classification results, e.g. weighting of watershed characteristics using lake 

area (Minka and Picard, 1997). Therefore, it is important to explore means to incorporate 

meaningful associations between watershed characteristics and water quality parameters 

in order to improve the results of a classification tree analysis. Also, the classification 

tree (decision trees or "inductive" machine learning in general) concept is relatively new 

and users are subject to some limitations including skepticism of decision tree 

methodologies based on unrealistic claims and poor performance of earlier models. 
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6.2. Conclusions 

The first objective of this dissertation was met through the use ofa novel cluster 

validation procedure, coupled with predictive strength analysis of the potential number of 

classes (NCL), to determine the inherent groups of Nebraska reservoirs. A classification 

tree provided further insights into the structure of the watershed-based reservoir classes 

and the environmental conditions that contributed significantly to the segregation of these 

classes. The classification tree was also infOlmative in high lighting the characteristics of 

the watershed-based reservoir classes, as well as the need to revise the number of classes 

from 13 to 9. 

The second research objective was achieved tlu'ough the classification tree-based 

watershed classification algorithm to predict the class membership of new reservoir cases 

and comparisons with ecoregions and traditional statistical approaches to reservoir 

classification. The results of these comparisons substantiated the premise of the 

watershed-based reservoir classification and also provided further proof that 

classification trees are more suitable than discriminant analysis in handling ecologically 

complex datasets. [t is also important to note that there are options (e.g. , boosting) 

available to the analyst to improve the prediction accuracy of the SeeS® classification 

h·ee. However, only the default options of SeeS® were used in this study in order to 

ensure a pragmatic compari son with other classification methods. 

Although successful, there are some factors that could limit broad applications of 

the results of this study. These limitations include: 

I. The use of small scale STATGO dataset to extract watershed 

characteristics infonnation, because the more detailed SSURGO datasets 
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were not completed for Nebraska at the time of this research. 

II. K-means clustering algorithms have inherent tendencies to aggregate most 

of the observations into a few classes, are sensitive to outliers and 

susceptible to the choice of cluster centroids (starting points) 

Ill. No options in classification tree algorithms to incorporate prior knowledge 

of known relationships between watershed characteristics and lake water 

quality, in order to improve the classification results 

IV. Although the watershed boundary delineation method employed in this 

study proved to be effective, it is only applicable to stream fed lakes 

(mostly reservoirs) . As such, groundwater-fed lake types were excluded 

from this study because the hydraulic divide of groundwater table does not 

coincide with the topographic divide; some natural lakes and sand pits are 

therefore likely to have relatively small or negligible surface watersheds. 

However, the delineation of hydraulic-divide of grOlUldwater is limited by 

the lack of a detailed map of the water table. The process of converting 

cutTent bore-hole water levels to groundwater hydraulic-divide would 

require a major project to complete (Gosselin and Chen, pers. comm.). 

v. Despite the graphic user interface provided by the SeeS® classification tree 

software, some resource managers and research analysts do not have in­

depth background in machine leaming algorithms. This may limit the 

incorporation of classification trees as part of the suite of decision support 

systems. 
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6.3. Recommendations for future research 

The aforementioned limitations clearly suggest the need for additional investigations. 

Additional work will be required to: 

I . Compare the advantages of using higher resolution watershed 

characteristics datasets, i. e. 1 :24,000 scale Soil Survey Geographic 

(SSURGO), to the I :250,000 scale ST A TSGO derived watershed 

characteristi cs dataset that was employed in this study. The SSURGO 

dataset is currently being completed nationwide, so such a comparison 

may highlight the potential improvements in lake classification resu lts 

and merits ofthe new SSURGO datasets in establishing lake nutrient 

water quality standards across the United States. 

II. Address limitations ofk-means clustering and compare the performance 

of existing modifications or alternatives to k-means clusteting is needed. 

This is because k-means clustering has limitations sllch as sensitivity to 

outliers or extreme values, susceptibility to the choice of starting points 

(cluster centToids), and tendency to produce classes with most data 

points concentrated in a few classes . 

III. Determine quantitative relationships between watershed characteristics 

(both categorical and numeric explanatory variables) and water quality 

(numeric dependent variables) using regression trees, e.g. Cubist® 

regression tree software (RuleQuest, 2003). Such infonnation from 

regression trees analysis can be used in either pre-processing the input 

variables of classification tree modeling to enhance the splitting process 



or incorporate into post-classification expert systems to refine the 

classification tree modeling results. 
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IV. Explore the use of expert systems (e.g., conditional probability 

networks) to incorporate prior knowledge of explanatory variables 

(watershed characteristics) and water quality (dependent variables) in a 

post-classification process to refine results of classification tree analysis. 

v. Explore options to estimate the contributing catchment areas for ground 

water fed lakes (natural lakes and sand pits) tlu'ough the integration of 

existing groundwater well data, GIS models and remotely sensed ground 

water level datasets. Once this is done, the classification procedure 

described in this study can be applied for natural lakes and sand pits. 

VI. The See5® classification tree software already provides a user-friendly 

graphic user interface for the prediction of the class membership of new 

reservoirs. There is a need to integrate See5® classification tree 

interface and ArcMap® GIS to develop a user-friendly suite of "one­

shop" decision SUppOlt tools for water resource managers and GIS 

analysts. This can be done using the open source codes for 

incorporating classification tree procedure into other applications. 
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