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Advisor: Ashley Hall 

For decades, the use of DNA as a biological tool has revolutionized forensic 

investigations. The primary use of this genetic evidence is for identification of a victim or 

suspect through short tandem repeat (STR) profiling. However, the usefulness of this 

evidence can be compromised through inhibition of PCR, damage to the DNA, or low 

copy number. Here, we investigate damage induced to DNA by environmental factors. 

    UV light is known to damage DNA by the formation of cyclobutane pyrimidine 

dimers, 6-4 photoproducts, and strand breaks. These lesions can stall polymerase action 

or misincorporate bases during extension. Oxidative damage is also common to 

environmentally exposed samples and can occur by microbial digestion or radiation. The 

primary lesion associated with oxidative damage is the formation of 8-oxoguanine, which 

can result in base modification.  

A novel assay involving a glycosylase and S1 enzymatic digestion to convert 

damage lesions to double strand breaks was developed to investigate damage associated 

with environmental exposure. Both reactions have enzyme activity in the same buffer, 

thus samples can be processed in the same tube to minimize the loss of DNA by transfer. 

Because double strand instead of single strand breaks are evaluated, samples can be 



 

 

evaluated on a native agarose gel which is more sensitive than damage detection 

techniques such as an alkaline agarose gel. 

 Following optimization of the glycosylase plus S1 reaction, this assay was used as 

a tool to asses UV and oxidative damage in bloodstains exposed to the environment. The 

physiological stains were left uncovered to the environment for time points ranging from 

1 day to 6 months. A sharp decrease in yield was observed for DNA exposed to the 

environment for more than 5 days. Samples exposed to environmental insults for 3 and 5 

days exhibited both UV and oxidative damage as well as strand breaks. Oxidative 

damage was determined to constitute a higher number of damage lesions than UV 

damage. STR profiling revealed this damage did not result in a loss of genetic profile 

through 5 days of exposure.



i 

 

ACKNOWLEDGEMENTS 

 

I would like to first thank my advisor, Dr. Ashley Hall, who guided me through 

the completion of this work. I am extremely appreciative for the opportunity to join her 

lab and further my education. Her research experience and guidance were invaluable to 

me throughout my thesis. Dr. Hall has many creative and inspiring research strategies 

that are applicable to the field of forensic science and I am grateful that I was able to be a 

small part of these research endeavors. I also appreciate her patience and understanding 

while serving as her research assistant. Dr. Hall has been a tough but fair mentor, who 

pushed me to my intellectual limits and greatly influenced my development as a scientist.  

 My two other committee members were also large contributors to my success. 

Drs. Melanie Simpson and Nick Miller constantly made me question and evaluate my 

research which lead me to develop a better understanding of its purpose and whether or 

not my objectives were being met. Their guidance was helpful in troubleshooting various 

problems that arose throughout my graduate career. I would also like to acknowledge 

those who donated body fluids needed for research during the course of this study as my 

experiments would not be possible without these donations. 

Finally, I would like to thank my friends and family, who supported me in this 

endeavor and understood that my free time for seeing them was at a premium. 

Specifically, I am thankful for my parents, Mark and Patty, who instilled a hardworking 

mindset in me from an early age. They encourage me to be a better person and support 

me when facing life’s obstacles. They value education and imparted those ideals onto me 

as well as their other children. Finally, I would like to thank my girlfriend, Kimmie Fox, 



ii 

 

who never complained when I would come home stressed, stayed by my side all night 

while I was working on papers, and always made sure I was well-fed. I truly could not 

have made it this far without her support.  

  



iii 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................. i 

LIST OF FIGURES ....................................................................................................... vii 

LIST OF TABLES ......................................................................................................... ix 

ACRONYMS ...................................................................................................................1 

Chapter 1: Literature Review ...............................................................................................3 

Introduction ..................................................................................................................4 

STR Profiling ................................................................................................................4 

Evaluating Low Copy Number Samples ......................................................................6 

UV Damage ..................................................................................................................9 

Oxidative Damage ......................................................................................................11 

Hydrolysis ...................................................................................................................14 

Characterization of Damaged Samples.......................................................................15 

Sources of Environmental Damage ............................................................................17 

Quantification of DNA damages ................................................................................19 

Recent DNA damage Detection Methods ..................................................................21 

PCR Inhibition ............................................................................................................24 

Base Excision Repair ..................................................................................................25 

Repair/ Recovery of STR Profiles ..............................................................................27 



iv 

 

Chapter 2: UV and Oxidative Damage Detection in DNA by Glycosylase Plus S1 

Enzyme Reaction ...............................................................................................................31 

Introduction ....................................................................................................................32 

Materials and Methods ...................................................................................................34 

Preparation of Synthetic Oligonucleotides .................................................................34 

Damage Assays...........................................................................................................36 

Oxidative Damage Assay ...........................................................................................36 

UVC Damage .............................................................................................................37 

DNA Extraction ..........................................................................................................37 

Quantification .............................................................................................................38 

Qubit Fluorometer ......................................................................................................38 

Enzymatic Digest ........................................................................................................38 

Formamidopyrimidine DNA Glycosylase (FPG) .......................................................38 

Pyrimidine Dimer Glycosylase (T4PDG) ...................................................................39 

Nt.BstNBI ...................................................................................................................39 

S1 Nuclease ................................................................................................................40 

Glycosylase + S1 assay...............................................................................................40 

Gel Electrophoresis .....................................................................................................41 

Native Agarose Gel Preparation .................................................................................41 

Alkaline Agarose Gel Preparation ..............................................................................41 



v 

 

Results and Discussion ...................................................................................................43 

Synthetic Oligonucleotide Damage Visualization ......................................................43 

Synthetic Oligonucleotide Buffer Optimization .........................................................45 

Genomic DNA Damage ..............................................................................................46 

Optimizing the S1 reaction .........................................................................................48 

Restriction enzyme + S1 Nuclease Assay ..................................................................50 

Conclusion ......................................................................................................................54 

FIGURES .......................................................................................................................56 

Chapter3: Evaluation of Enviormentally Damaged Forensic Stains .................................75 

Introduction ....................................................................................................................76 

Materials and Methods ...................................................................................................78 

Environmental Damage ..............................................................................................78 

DNA Extraction ..........................................................................................................79 

qPCR ...........................................................................................................................80 

Glycoslyase plus S1 reaction ......................................................................................81 

Average Length Analysis ...........................................................................................81 

STR analyses ..............................................................................................................82 

Post PCR Detection ....................................................................................................82 

Results and Discussion ...................................................................................................83 

Environmental Conditions ..........................................................................................83 



vi 

 

Quantification of DNA in Environmental Samples ....................................................83 

Experimental Design ..................................................................................................85 

Oxidative Damage in Environmental Samples ...........................................................86 

UV Damage in Environmental Samples .....................................................................87 

Number Average Molecular Weight ..........................................................................88 

Conclusion ......................................................................................................................90 

FIGURES .......................................................................................................................93 

TABLES .........................................................................................................................97 

References ....................................................................................................................101 

 

  



vii 

 

LIST OF FIGURES 

Figure 1-Thymine Dimer Formation by UV Light. ...........................................................11 

Figure 2- Mechanism of 8-oxo-guanine Formation by Oxidation. ....................................14 

Figure 3 – The Five Enzymatic Steps of the Mammalian BER Pathway ..........................26 

Figure 4. Validation of Oxidative Damage Protocol .........................................................56 

Figure 5. Validation of UVC Damage Protocol.................................................................57 

Figure 6. Comparison of Glycylglycine and NEB Buffer reactions with FPG Enzyme ...58 

Figure 7. Comparison of Glycylglycine and NEB Buffer reactions with T4PDG 

Enzyme. .............................................................................................................................59 

Figure 8. Visualization of Genomic DNA after Extraction ...............................................60 

Figure 9. Visualization of Oxidative Damage in Genomic DNA Samples .......................61 

Figure 10. Visualization of UV Damage in Genomic DNA Samples ...............................62 

Figure 11. Nt.BstNBI Enzyme Titration ............................................................................63 

Figure 12. Concentration Optimization of S1 Reaction with Nt.BstNBI Substrate ..........64 

Figure 13. Comparison of Glycylglycine and Promega Buffer Reactions with S1 

Endonuclease. ....................................................................................................................65 

Figure 14. Incubation Optimization for S1 Nuclease. .......................................................66 

Figure 15. Glycosylase plus S1 Endonuclease Reaction with Positive Control 

Oligonucleotides. ...............................................................................................................68 

Figure 16. T4PDG plus S1 Endonuclease Reaction with Genomic DNA. ........................69 

Figure 17. Comparison of T4PDG plus S1 assay to Alkaline Agarose Gel. .....................70 

Figure 18. FPG plus S1 Endonuclease Reaction with Genomic DNA. .............................71 

Figure 19. Comparison of FPG plus S1 assay to Alkaline Agarose Gel. ..........................72 



viii 

 

Figure 20. Sensitivity Comparison between Native Gel and Alkaline Agarose Gel. ........73 

Figure 21. Physical State of Blood stains. .........................................................................93 

Figure 22. FPG plus S1 Assay to Detect Environmental Oxidative DNA Damage. .........94 

Figure 23. T4PDG plus S1 Assay to Detect Environmental UV DNA Damage ...............95 

Figure 24. STR Profiles of the Environmental Samples. ...................................................96 

 

  



ix 

 

LIST OF TABLES 

Table 1. Weather Information of the Samples Exposed to Environmental Damage. ........97 

Table 2. Quantification of the Environmentally Exposed Samples by qPCR. ..................98 

Table 3. Average Molecular Weight Values Associated with the Oxidative Damage 

Assay. .................................................................................................................................99 

Table 4. Average Molecular Weight Values Associated with the UV Damage Assay ...100 



1 

 

ACRONYMS 

6-4 PPs- 6–4 photoproducts 

8-oxoguanine- 8-oxo-7,8-dihydroguanine  

AP site- apurinic/apyrimidinic site 

BER- base excision repair 

bp- base pair 

BSA- bovine serum albumin 

CE- capillary electrophoresis 

Cq- quantification cycle 

CODIS- combined DNA index system 

CPD- cyclobutane pyrimidine dimer 

DNA- deoxyribonucleic acid  

DSB- double strand break 

FPG- formamidopyrimidine dimer glycosylase 

LCN- low copy number 

Lord-Q- long-run rtPCR technique for DNA damage quantification 

NAMW- number average molecular weight.  



2 

 

NEB- New England Biolabs 

PCR- polymerase chain reaction 

qPCR- quantitative polymerase chain reaction 

RFLP- restriction fragment length polymorphism 

RFU- relative fluorescent unit 

Thymine glycol- 5,6-dihydroxy-5,6-dihydrothymidine 

SSB- single strand break 

STR- short tandem repeat 

T4PDG- T4 pyrimidine dimer glycosylase 

UV- ultraviolet 

  



3 

 

 

 

 

 

 

 

 

CHAPTER 1 

LITERATURE REVIEW 

  



4 

 

Introduction 

Genotyping by short tandem repeat (STR) profiling has become a staple of the 

field of forensic science and a means by which valuable individual trace evidence is 

generated for investigators. STR profiles have a high power of discrimination which 

ultimately can aid in criminal investigations to associate evidence with an individual. 

Because DNA is a highly reactive chemical structure, it is subject to insults that could 

take away this power of discrimination by complicating STR analysis. Specifically, 

damage due to ultraviolet (UV) radiation and oxidative damage has been known to affect 

the primary structure of DNA, which can affect the utilization of this type of evidence. 

Limited research has been conducted in regards to what type of damage is 

typically seen in the DNA collected from bodily fluids found at crime scenes. This 

information could be valuable in determining DNA repair strategies to recover genotypic 

profiles and restore the power of discrimination associated with the collected evidence.  

STR Profiling  

STR profiling has shown to be of immense importance in the analysis of 

evidence. Sources of DNA can be found at nearly every crime scene and thus a genetic 

profile is a key piece of evidence in criminal investigations. Due to the highly 

polymorphic nature of the alleles used in STR profiling, there is a high level of variance 

between the profiles of different individuals. Thirteen loci are required to be correctly 

typed for the profile to be submitted to the combined DNA index system (CODIS) (1). 

The probability that a certain genotype is present in a given population is determined by 

multiplying the frequencies of each allele. These allelic frequencies are calculated based 
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on equations derived from the Hardy-Weinberg equilibrium (2). The Hardy-Weinberg 

equilibrium is a set of assumptions that can be used to calculate the genotype frequency 

from the frequencies of the different alleles.  When 13 or more loci are correctly called, 

the probability of another person in the population having that same genotypic profile can 

be more than 1 in 1 trillion (3). 

An STR profile is generated by amplification of variable regions of DNA using a 

multiplex of different primers. These primers are tagged with different fluorescent dyes 

and anneal to loci typically containing repeat elements at a length between 2-5 bp. These 

STRs are selected for inclusion within this multiplex because they are highly 

polymorphic, which allows profiles to be distinguishable. PCR produces amplicons that 

contain sequences of DNA that correlate to the alleles of the loci.  

The most common method of detecting the amplicons produced by the multiplex 

reaction is to use capillary electrophoresis (CE). This technique is high throughput and 

highly sensitive (4). Briefly, amplicons, generated by PCR, are injected into the capillary 

containing polymer. The polymer creates a matrix through which the amplicons are 

separated by the application of an electrical current; similar to how a matrix created by 

agarose separates DNA based on its molecular weight when gel electrophoresis is 

performed. Once the amplicons reach the laser detection window, the fluorescent tags 

contained on the primers are excited and emit fluorescence measured in relative 

fluorescent units (RFU). Because the primers are labeled with different dye sets, multiple 

loci, correlating to the same size range, can be detected in a single run based on the color 

of fluorescence emitted. A lane standard, labeled with a dye separate from the STR loci, 

is always run congruently with each injection as it will serve as both a positive control for 
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CE and as a marker for the base pair size of the amplicons. Thus, each fluorescent peak 

represents an allele of the genotype which can be identified based on the dye used to label 

its primers and the length of the amplicon, based on the migration through the capillary. 

For STR loci, alleles usually vary by different multiples of the repeat unit. Population 

statistics is then used as a tool to analyze the data and describe the probability that same 

genotype exists in a given population. 

Evaluating Low Copy Number Samples 

Low quantity DNA has been known to cause issues in STR profiling. Samples 

containing a quantity of DNA below 100 pg are termed low copy number (LCN) and 

typically exhibit a variety of stochastic characteristics (5). These effects can compromise 

the ability to genotype the DNA and determine the source of the genetic material (6). The 

characteristics of stochastic effects include allelic drop in and drop out, increased stutter 

peaks, and heterozygous peak imbalance (7). Though many techniques have been 

researched, none have been able to completely eliminate the existence of these negative 

effects in LCN samples. 

Drop in and drop out alleles are common stochastic effects seen in LCN samples. 

Allelic drop out is due to the preferential amplification of one allele at one or more 

heterozygous loci (8). This effect is often seen first in loci with larger amplicons in 

degraded DNA. Allelic drop in, on the other hand, results from the noise associated with 

LCN samples. Artifacts and background noise can lead to extra peaks in the generated 

electropherogram that complicate the results thus making genotyping difficult (9).  

Multiple peaks in the genotype can also result from unexpected DNA in the 
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sample either due to multiple donors related to the genetic sample or outside 

contamination. A mixed donor sample contains more than one source of DNA. The 

individual profiles of each donor must be known to determine which alleles are 

associated with each individual. Collection of the evidence could also lead to extraneous 

DNA in the sample. This contamination of a second source of DNA from the 

investigators can occur directly at the crime scene or after the sample has been collected 

(5). Many labs will generate genetic profiles of everyone on staff before the collection of 

evidence in an attempt to reduce the effect of this contamination.  

 An increase in stutter peaks is another stochastic effect associated with low copy 

number or degraded samples. Stutter peaks result from the slipped strand mispairing 

during the extension step of PCR (10). The slippage typically takes place when the 

polymerase pauses allowing the duplex DNA to “breath” and a strand to loop out of the 

rest of the sequence upon annealing back to the template. If the nascent strand becomes 

mis-aligned, then additional DNA bases will be inserted after polymerase extension. If 

the mis-alignment occurs in the template sequence, a deletion would result with the 

looped out region being left out. This process has a greater likelihood of forming with 

repetitive elements as the strand has a tendency to anneal to a different repetitive 

sequence resulting formation of a looped out sequence. If these products are generated 

early in the cycle, they will continue to be amplified during the PCR process. The 

percentage of stutter peak in relation to the parent peak is variable, making calling the 

correct alleles in the genotype difficult (6). Thus, only RFU peaks at or below the 

threshold of 15 to 20% of the parent peak are termed stutter peaks that can be removed 

from analysis.  
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Finally, an increase in heterozygote allele imbalance within a locus can occur in 

LCN samples (9). The same stochastic sampling and amplification effects that cause 

drop-out alleles also cause the large difference in relative fluorescence units seen between 

alleles, and can create difficulties when trying to characterize heterozygosity at a certain 

locus. It is sometimes difficult to determine whether a second peak in the data is a result 

of heterozygous imbalance or stutter.  

Recently, research has been conducted to obtain STR profiles from small amounts 

of starting genetic material. LCN DNA is associated with cases in which minimal 

amounts of genetic material can be found including, but not limited to, touch samples, 

bedding, or sweat (11).  A variety of tactics have been employed to try to increase the 

quality of the profile obtained from these samples including: increased cycle number, 

reduced PCR reagent volume, and post-PCR product cleanup (9). 

Increasing the number of cycles during PCR amplification is the most common 

method of analyzing trace amounts of DNA in order to generate a reliable profile. The 

standard number of cycles is 28, which can be increased to 34 with minimal effort. In 

theory, this small increase in cycle number enhances the PCR product by over 3 billion 

copies (5). However, this product increase also includes amplification of artifacts related 

to the LCN samples. Increasing cycle number increases stochastic effects such as 

heterozygous imbalance, stutter products, drop-in and profile imbalance (8).  

A reduced PCR reagent volume is another useful method to obtain a genetic 

profile from LCN samples. Lowering the PCR reagent volume will increase molecular 

crowding of the reagents, thus heightening the chance of molecules colliding into one 
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another to form a reaction (12). This means that smaller amounts of starting DNA can 

produce results similar to larger-scale reactions that contain a higher quantity of DNA 

and a larger reagent volume (13). For example, 0.5 ng of DNA in a 10 µL PCR reaction 

volume should produce an identical profile to 2 ng of the same DNA in a 40 µL reaction. 

Reagents including polyethylene glycol, dextran, and bovine serum albumin (BSA) could 

also be added to the reaction to increase molecular crowding in vitro.  

Post-PCR purification is a technique that is useful in producing the highest 

resolution profiles during CE analysis. This purification removes ions that compete with 

DNA during electrokinetic injection. The injection typically lasts 5 sec, so to obtain the 

highest electropheric peak, the sample should be as pure as possible. Studies have shown 

that the peak heights, measured in RFU, can be increased by up to four times by 

purification using Minelute columns (Qiagen, Valencia, CA) (14). By removing 

unwanted ions in the sample, a full profile could be obtained from as little as 20 pg of 

DNA, equivalent to the human genomic DNA contained in four cells (14). Though peak 

heights can be increased by this method, there are a number of stochastic effects also 

observed which include stutter peaks and heterozygous imbalance.   

UV Damage 

Ultraviolet light can be classified into three different ranges including UVA (320-

400 nm), UVB (280-320nm), or UVC (100-280nm). The most lethal of these forms is 

UVC; however, this wavelength is absorbed by the atmosphere before reaching the 

Earth’s surface and does not pose a threat in regards to cases of damaging DNA. Thus, 

the portion of the UV light spectrum that would affect forensic type samples includes 

UVA and UVB light. Of the total energy of this spectrum, UVA accounts for 90-99% and 
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UVB 1-10% of the rays that reach the Earth’s surface (15).  

Though UV formation has not be extensively studied in a forensic context, it has 

been studied in genetic disease and cancer research. Thus, many of the molecular 

mechanisms have already been determined in model systems. This includes mechanisms 

of the formation as well as the repair of this damage.  

UV light exposure has the potential to cause a variety of lesions in DNA. The 

most prevalent of these in the physiological B conformation is the formation of 

cyclobutane pyrimidine dimers (CPDs) accounting for 75% of the UV damage; however, 

the formation of this lesion is dependent on the sequence content (16, 17). Recently, it 

was shown that CPD hotspots typically form around repeat elements, such as Alu (18). 

These sequences have a unique chromatin environment that allows for rearrangement 

during repair. Cyclobutane pyrimidine dimers are predominantly located between 

adjacent thymine (TT) base pairs, but formation also occurs between TC, CT, or CC 

adjacent bases (19). UV light causes a saturation of the 5,6 double bond between 

pyrimidine bases which leads to covalent linkages and the formation a cyclobutane ring 

(20). The predominant conformation of this ring structure is cis-syn with the minor form 

being trans-syn isomers which are formed at a rate of 2% of that of the cis-syn isomer 

(21). This ring formation could disrupt base stacking and complementary pairing in the 

native B-DNA conformation leading to polymerase stalling or misincorporation of bases 

during PCR extension (19).  

6–4 photoproducts (6-4 PPs) are another alteration to the structure of DNA caused 

by UV radiation. This alteration occurs, as indicated by its name, when a sigma bond is 
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formed between the C6 position of one pyrimidine and the C4 position of an adjacent 

pyrimidine. An intermediate is needed for the reaction to proceed. Transfer of the C4 

hydroxyl or amino group on one pyrimidine to the C5 bond of other base forms an 

oxetane intermediate (22). Both dimers could lead to changes in the length of both the 

major and minor grooves of DNA due to alterations of the helix structure (23). Such 

alterations will interfere with the replication and transcription machinery by weakening 

the affinity of the polymerase for the local and global structure of the DNA substrate 

(19).

 

Figure 1-Thymine Dimer Formation by UV Light. Thymine dimer formation by UV 

light proceeds in either the cis or trans conformation. Figure from Douki (24). 

Oxidative Damage 

Another important and common type of damage in forensic DNA samples is 

oxidative damage. Oxidative damage is formed due to exposure to OH radicals, one-

electron oxidants and singlet oxygen (25). This can be due to either ionizing radiation or 

metabolic processes (26). Though a multitude of different lesions can be induced by 
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oxidative insults, the primary form of damage is the alteration of the guanine base to 8-

oxo-7,8-dihydroguanine, commonly referred to as 8-oxoguanine. This residue is typically 

used as a biomarker of oxidative stress because it is formed by any of the above 

mentioned sources (27). 8-oxoguanine is formed by hydroxyl attack of guanine leading to 

the generation of 8-hydroxy-7,8-dihydro-7-yl, a radical intermediate (27). Oxidation of 

this intermediate leads to the formation of 8-oxo-guanine, while reduction produces 

formamidopyrimidine (FAPY).  

In terms of the effect oxidative damage has on genotyping samples, 8-oxo-

guanine can result in a miscoding of bases during PCR amplification as the guanine base 

would pair with an adenine instead of cytosine (28).  If this miscoding were to occur in 

the primer region, the primers may not bind due to the primer sequence no longer 

possessing complementarity to the target sequence. This would prevent the polymerase 

from initiating replication to the target DNA with base modifications to the 5’ end of the 

primer region would have a more pronounced effect (29). Oxidation could also lead to 

the formation of hydrations that are not recognized by Taq polymerase and inhibit PCR 

amplification (30).  The alteration of bases leading to mutagenic lesions could interfere 

with SNP typing, which assays for single nucleotide mutations as a means of 

distinguishing an individual. This technique requires more SNP sites to obtain the same 

power of discrimination observed with STR profiling, which is a major reason why STR 

profiling is often favored. 

In addition to the alteration of guanine bases, thymine bases are another base 

subject to oxidative stress. Six different oxidative products can be formed by the reaction 

of a hydroxyl with thymine consisting of four cis and trans diastereomers of 5,6-
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dihydroxy-5,6-dihydrothymidine (thymine glycol) and the methyl oxidation products 5-

(hydroxymethyl)-2’-deoxyuridine and 5-formyl-2’-deoxyuridine (27). Thymine glycol is 

the primary lesion to thymine bases. Typically, the initial step of this alteration involves 

an addition of the hydroxyl to C5 bond, but addition of the hydroxyl can also occur, to a 

lesser extent, at the C6 bond (31).  Thymine glycol modification can block polymerase 

replication and in fewer instances cause base mutations to the DNA (32).  

Other modification by oxidative damage include strand breaks, modifications to 

the sugar residue, abasic sites, and protein cross-links. Hydroxyl radicals have been 

known to mediate strand breaks at the C3, C4, and C5 of the 2-deoxyribose sugar moiety 

(33). Modifications of sugar can result in tandem and interstrand 2-deoxyribose base 

adducts (34). Free radicals can interact with protein in the chromatin to form covalent 

DNA-protein-cross links. Thus, oxidative damage has the ability to affect the structure of 

DNA through number way, many of which could affect STR profiling or produce base 

mutations.  
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Figure 2- Mechanism of 8-oxo-guanine Formation by Oxidation. Hydroxyl radical 

attack to guanine results in the formation of the 8-hydroxy-7,8-dihydro-7-yl radical 

intermediate. Further oxidation (denoted by –e-) results in generation of 8-oxo-guanine 

and reduction (denoted by +e-) forms FAPY. Adapted from Cadet et al. (27). 

 

Hydrolysis 

Hydrolysis can release nucleic acids by hydrolytic cleavage of the glycosyl bonds 

of DNA in aqueous solution. This was experimentally determined initially by using 14C-

labeled purine and pyrimidines to measure the rate at which bases were released as a 

function of temperature, pH, and ionic strength (35, 36). In vivo, the strand breaks due to 

hydrolysis of cells is countered by repair strategies of the organism initiated by AP 

endonucleases (37). With regard to forensic samples, most repair enzymes would no 

longer be active as the cells are no longer physiologically active and are categorized as in 

the dry state. Hydrolysis as a result of the loss of bases has been observed in ancient 

DNA. Depurination is the most important route of decay for ancient DNA as pyrimidines 

are released at a mere 5% of this rate (37). A loss of base is often followed by β 

elimination reaction which break the sugar-phosphate backbone leading to strand 

scission. Besides base loss, hydrolysis can also modify bases. Hydrolytic deamination 

8-hydroxy-7,8-

dihydro-7-yl 

Guanine 

8-oxoguanine 

FAPY 
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results in a loss of the amine group for adenine, cytosine, 5-methylcytosine and guanine 

with cytosine being the residue most prone to this reaction (37). Loss of an amine group 

often results in misincorporation of bases during PCR as this modification disrupts base 

pairing.  

Analysis of hydrolysis of DNA in the forensically relevant dry state found that the 

mechanism of damage is the same for hydrated and dry state samples; however, 

hydrolysis rates were much faster in the hydrated samples as compared to the dry state 

(38). Using HPLC analysis, depurination was found to be more significant than 

deamination reactions in the dried blood stains. A duplex configuration of DNA offers 

some protection from hydrolysis for both states of DNA as there is less opportunity for 

water molecules to interact with the pyrimidines and purines (37, 39). Thus, for both 

ancient DNA and contemporary forensic stains depurination is the most significant 

damaging factor by the hydrolysis mechanism.  

Characterization of Damaged Samples 

Few researchers have undertaken the task of understanding what DNA damage 

typically comprises an environmentally damaged forensic (body fluid) stain. This 

information could be useful for development of repair/recovery strategies and also give 

clues about the length of time DNA could survive in a given environmental scenario. 

Unfortunately, environmental damage studies can be difficult to control when looking at 

samples exposed to the elements. For this reason, some researchers have chosen to look 

at how each component affect STR profiling.  

 Hall and Ballantyne worked on characterizing the UV component of 
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environmental damage. They found that strand breaks were a more common source of 

damage than CPDs when exposed to UVC light and proposed that dehydrated DNA is 

less likely to form thymine dimers than hydrated DNA due to changes in conformation 

(40). Later, they analyzed the UVB and UVA component of UV damage and found that 

UVA had no effect on the ability to generate an STR profile, but with sufficient UVB 

damage, allelic dropout was observed (41). They theorized that oxidative damage could 

also play a role in this dropout, but more sensitive assays for detection would need to be 

administered in order to determine this. Of the sources of DNA tested, bloodstains were 

the first to exhibit allele dropout followed by cell-free solubilized DNA and allele 

dropout was not present in cell-free dehydrated DNA (41). Though the cellular milieu 

affords the DNA some protection from damage, other cell components including 

photosensitizers and the iron in heme could have promoted the damage that resulted in 

profile loss for the bloodstains.  

Looking at the overall damaged induced, McNally et al. analyzed environmentally 

damaged samples of forensic cases in New York City (42). Their research examined the 

effect that exposure to environmental conditions has on restriction fragment length 

polymorphism (RFLP) analysis. The authors first examined the DNA on a native agarose 

gel to determine if it was of sufficient quality to be evaluated using RFLP. Native gel 

electrophoresis showed that over half of the 100 samples analyzed contained degraded 

DNA demonstrating how common damage is to case like samples. RFLP analysis was 

performed only on the samples that were not degraded or only partially degraded and 

results were obtained for some samples. 

Ballantyne et al also examined forensic stains that were subject to environmental 
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damage in Orlando, Florida. The objective of this experiment was to investigate methods 

of recovering STR profiles from damages or degraded samples (43). Bloodstains were 

left outside, uncovered for time points extending from 0 until 9 weeks. Partial allelic 

dropout was observed after 3 days and a complete loss of the profile after 7 days (43). 

Researchers theorized that the rapid amount of damage formed was due to strand breaks 

induced by microorganisms. Onori et al. exposed bloodstains and tissues to various 

environmental locale such as open air, buried, and wet scenarios (44). Bloodstains in a 

wet environment were the first to exhibit dropout of the allelic profile and decreased 

quantification; however, allelic dropout was seen in both dry and wet bloodstains as well 

as the tissue samples within a week of deposition. Thus, all samples types were subject to 

allelic dropout but the most rapid loss of profiling data occurred in wet samples. This 

demonstrates that more damage and loss of genotyping ability could be due to hydrolysis, 

adoption of the hydrated B-form DNA confirmation or damaging agents having better 

access to DNA due to the solution chemistry versus the A-form associated with 

dehydrated DNA.  

Sources of Environmental Damage 

 Environmental insults to DNA can originate from a variety of sources. Large 

contributors to this damage include microorganisms and atmospheric conditions; both of 

which will vary depending on the geographic location of the sample and local 

environment. It is believed that environmental damage is responsible for the majority of 

damage lesions to DNA recovered from physiological stains at a crime scene although it 

has not been demonstrated conclusively which type of environmental damage is the 

major contributor. This damage can result in a loss of signal in STR profiling making 
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genotyping problematic for investigators.   

Microorganisms play a significant role in the damage induced to DNA. After 

death, the cell releases nutrients that encourage the growth of these organisms (30). 

Immunological barriers within the body are no longer physiologically active, thus growth 

of the microbes is no longer restricted. The microbe digestion can produce acidic 

byproducts which lead to a decrease in blood pH and a conversion to more anaerobic 

conditions in bodily fluids (45). Decreases in pH could lead to an increase in the rate of 

depurination reaction as this reaction is acid catalyzed (35, 46).  Physiological stains 

found within or near soil deposits are subject to microbes found in that environment. The 

majority of soil microorganisms contain nucleases that induce double strand breaks 

(DSB) to the structure of DNA, thus causing damage to the samples that are in proximity 

to them (47). These strand breaks reduce the allelic signal during genotyping especially at 

larger amplicons.  

Another common source of the DNA damage for forensically relevant stains is the 

effects of weather on the samples. As previously mentioned, the sun’s rays contain UVB 

and UVA radiation, which can produce a variety of lesions to DNA.  Humidity and heat 

have been shown to promote the degradation of nucleic acids by increasing microbial 

growth and generation of ROS (45, 48). In fecal DNA studies, rainfall has been shown to 

result in a significant loss of genotyping ability in environmental samples (49). 

Precipitation can increase the rate of hydrolysis as well as wash away the DNA from the 

substrate to which it is bound. Samples left in wet conditions for more than 7 days were 

unable to be genotyped. The length of time the samples were subjected to the rain had 

more of an influence on the damage induced than the amount of rain itself. This is 
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another indication of the affect solution chemistry and B-form confirmation in DNA 

could have on accelerating damage in DNA.  

 In addition to the adverse effects of weather, many chemical agents are also 

capable of breaking down nucleic acids and inducing damage to DNA. In terms of 

chemicals relevant to forensic stains, cleaning agents are quite common and known to 

modify DNA. Chlorinated bleach was found to have the largest effect on the ability to 

generate an STR profile in a time-dependent manner (50). Bleach is toxic and able to 

serve as strong oxidizing agent. Luminol, a common chemical agent used to visualize 

blood at crime scenes, and soap were found to have no effect on the ability to generate a 

profile regardless of the surface on which the bloodstain was deposited (51)    

Quantification of DNA damages  

DNA damage detection assays have been established for many years. Most of 

these techniques suffer from a lack of sensitivity that could be useful for evaluative 

environmental samples. The more sensitive techniques often do not provide enough 

information or accuracy for determination of DNA damage.  

A classic technique that is an adequate means of measuring damage to DNA is 

single cell gel electrophoresis, also known as the comet assay. Briefly, individual cells 

are lysed in agar, incubated with a glycosylase, then electrophoresis is performed at a 

high pH and the results are viewed by fluorescent microscopy (52). Damaged DNA 

appears in the form of a comet with its tail pointing towards the anode due to the 

formation of single strand breaks. Undamaged cells will retain their DNA because it is 

still bound by structural proteins. This method has been experimented with as a possible 
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means of measuring the post mortem interval based on the accumulation of DNA 

damage; however, the results were not consistent enough for accurate determination (53). 

Limitations of this method include the need for a viable single cell suspension, 

overlapping comets and limited information on fragment size (52, 54). This assay is also 

time consuming and requires specialized lab equipment to be able to view the fluorescent 

molecules by microscope, which is not ideal.  

Another method used in DNA damage quantification is alkaline agarose gel 

electrophoresis, which also detects single strand breaks. In alkaline gel electrophoresis, 

samples are run in a high pH environment where the hydrogen bonds between double 

stranded DNA are denatured and can thus be visualized as single strands (55). Samples 

are run with standard molecular biology equipment used for gel electrophoresis (56). 

After electrophoresis, the gel must be soaked in a neutralization solution so that the DNA 

can be stained. This technique requires large amounts of extracted DNA (up to 200 ng per 

sample) and analysis time is at least triple of that compared with native agarose gels. 

Gas chromatography/mass spectrometry (GC/MS) was used to determine the 

extent of oxidative damage in bone and tissue of ancient DNA samples (57). GC-MS is 

often utilized for its ability to detect a multitude of different damaged bases. This 

technique has the ability to recognize over 25 oxidized and reduced bases in either 

isolated or cellular DNA (58). However, this method can overestimate oxidative damage 

as derivatization at high temperatures in the presence of air can lead to the measurement 

of “artificial” oxidation of undamaged DNA bases (59). Also, at least 30 µg of DNA is 

required for analysis (60).  
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 Finally, immunoassay techniques have also been used to quantify DNA damage. 

The slot blot immunoassay has been used to detect UV damage (61). Briefly, denatured 

DNA is immobilized on a nitrocellulose membrane in slot shaped well. The antibody that 

selects for the CPDs, anti-T<>T antibody, is incubated in the well, followed by the 

addition of a secondary enzyme-linked antibody raised against the primary antibody. 

Chemiluminescence from this reaction can be detected with less than 150 pg of DNA 

(62).  The enzyme-linked immunosorbant assay (ELISA) has also been used to detect 

CPD formation in DNA (63). The ELISA assay detects unknown antigen associated with 

UV photoproducts by capture and detection antibodies. The sample antigen binds with 

the immobilized capture antibodies. Detection antibodies are then employed to complex 

with the captured antigen. Finally, enzyme linked antibodies are bound to the detection 

antibody which, after the addition of substrate, results in colorimetric reaction that can be 

used to visualize the presence of CPDs. The radioimmunoassay has been used as a 

sensitive means of detecting UV damaged products (64). In a radioimmunoassay, a 

known quantity of antigen is made radioactive, mixed with a known quantity of antibody 

and the unknown sample containing an unknown quantity of antigen. Known radioactive 

antigen competes with the unknown and the ratio indicates the presence of unknown 

antigen. Antibodies to detect both CPD and oxidative damage products have been 

developed (65, 66). Cross reactivity with antibodies is a limitation of this method as 

antibodies often bind to normal guanine bases when using the immunoassay to detect the 

presence of 8-oxoguanine (67).  

Recent DNA damage Detection Methods 

More sophisticated methods of damage detection have been developed in recent 
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years. These new methods include the use of quantitative PCR, advanced 

chromatographic techniques, and microfluidic devices. Though many improve upon the 

sensitivity or accuracy measurements, each technique still has its own flaw. No technique 

has been shown to be applicable for detection in all situations.  

 Quantitative polymerase chain reaction (qPCR) has been explored as a possible 

method of damage quantification. As with many PCR assays, this approach only requires 

nanogram amounts of DNA for analysis. Using different primer sets that are specific to 

either nuclear or mitochondrial DNA, it is possible to simultaneously compare DNA 

damage in both these regions (68). The amplification of the target DNA of these regions 

is compared to the amplification of an internal, shorter sequence that is less likely to be 

damaged. This ratio is used to determine the amount of damage in the sample. More 

recently, the long-run rtPCR technique for DNA damage quantification (LORD-Q) 

method has been examined as a means of DNA quantification. This method is very 

similar to the previous method of quantification; however, probe sequences greater than 3 

kb are employed to increase the sensitivity of detection (69).  This was accomplished by 

addition of a high fidelity polymerase, KAPA2G Fast DNA polymerase, the use of a 

second-generation fluorescent DNA dye ResoLight, and screening multiple candidate 

primers (69). While these techniques are very sensitive, the downside is that is they only 

assay for polymerase stalling damage and are unable to distinguish the different types of 

damage that may be present in the sample. 

 The qPCR technique has been applied to forensic science research. A triplex was 

developed to amplify an STR loci THO1, a 67 bp amplicon nuCSF, and an internal 

positive control synthetic oligonucleotide to assess PCR inhibition within the assay (70). 
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As with the above mentioned qPCR strategies, the smaller amplicon is less sensitive to 

damage and the ratio between THO1 and nuCSF can be used to determine damage to the 

DNA. The assay was tested on a variety of damaged substrates and the ratio was found to 

be in good agreement with the extent of damage. 

Microfluidic devices have also been examined for use in damage detection. Song 

and colleagues created an oligonucleotide chip that contains several 20mer fluorescently 

labeled sequences anchored to a silicon chip (71). This chip-bound DNA is damaged then 

incubated with a glycoslyase that induces single strand breaks at CPD lesions sites. To 

detect the fluorescent signal emitted by excitation of the fluorescently labeled sequences, 

these researchers created a homemade laser detection device to excite the 20mers 

contained within the chip. A loss of the fluorescent signal is indicative of damage 

induced and strand break formation. The advantage to this method is that it is highly 

sensitive due to the ability to detect the strand breaks by laser fluorescence (71). It is also 

qualitative as different glycosylase enzymes can be used to measure different types of 

damage (72). The drawback is that the technology is expensive because it requires a 

complex laser detection system.  

Many chromatographic techniques have also been employed for the measurement 

of DNA damage. Though other HPLC methods can be used, HPLC–ESI-MS/MS is 

considered the gold standard as analysis by this method yields a higher signal to cell 

background ratio (73). This technique combines separation by HPLC with the specificity 

and sensitivity of electrospray ionization mass spectrometry. It is accurate, recognizes a 

multitude of damaged bases and analysis time is short; however, the disadvantage is that 

this analysis is expensive and 20 µg of DNA is needed for accurate detection, which is 
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not often present in DNA found in forensic case samples (58, 60). Also, the accuracy of 

the instrument is reduced near steady state levels of oxidative damage (58). 

PCR Inhibition 

 Inhibition of the PCR reaction is another complication to consider when 

evaluating an STR profile. Often, this occurs due to environmental agents present in the 

sample. This inhibition is difficult to distinguish from degradation as both will cause a 

decrease in the allelic peaks. Inhibition is the most common cause of amplification failure 

if sufficient quantities of template are present (74). Inhibitors can bind to the DNA, 

inhibit polymerase or both.  

 Many different compounds have been found to inhibit the PCR reaction. Among 

them, humic compounds are a common source of inhibition which bind to DNA when in 

contact with soil (75). Humic compounds are fractionated into humic acid (HA) which 

may chelate the magnesium ions needed for polymerase activity or entrap DNA, making 

it inaccessible (76, 77). Collagen is also capable of inhibition through binding to the 

DNA and inhibiting the polymerase (78, 79). Calcium and tanic acid are both inhibitors 

of Taq polymerase. Calcium competes with magnesium for binding sites while tanic acid 

chelates the magnesium leaving less available for the polymerase (79). Heme, a 

component of bloodstains, has also been shown to inhibit PCR through binding of Taq 

polymerase; however, DNA extracted by ethanol precipitation is unlikely to contain these 

compounds due to their solubility (80). 

 Several methods to overcome PCR inhibition have been proposed and shown to 

be affective at mitigating the negative effects on STR profiling. A common, and also 
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simplistic, approach is to dilute the DNA sample in water (81). Though effective, diluting 

samples of low copy number introduces further complications to profiling as previously 

discussed. In instances where Taq polymerase is being inhibited, concentrations of the 

polymerase can be increased to overcome the competitive inhibition. Amplification 

facilitators are also employed to improve the specificity of PCR. Finally, silica based 

extraction prior to PCR is a robust technique employed to remove a variety of inhibitors. 

It was found to be more effective than the commonly used phenol/chloroform extraction 

method and to be applicable to a variety of samples (82, 83). 

Base Excision Repair 

Understanding the base excision repair (BER) pathway is key to many of the 

proposed repair methods of DNA lesions as well as DNA damage detection techniques. 

BER is a cellular mechanism used to remove damaged bases. The primary goal is to 

repair the sites of lesions in order to maintain genomic integrity within the organism. The 

first step in repair is recognition of the damaged bases by DNA glycosylases that have the 

ability to recognize a variety of different lesions. Briefly, these enzymes move along the 

DNA and cleave the lesion once it is detected, leaving the sugar phosphate backbone 

intact and creating an abasic (AP) site. This AP site is then incised by glycosylase 

associated AP lyase activity. The damaged base is removed, strand is nicked and the gap 

is filled by a polymerase, typically DNA polymerase β in mammals (84). The final 

process is to seal the remaining nick using DNA ligase.  
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Figure 3 – The Five Enzymatic Steps of the Mammalian BER Pathway. From Sinha 

& Häder (16). 

Glycosylases associated with BER have been well studied for their use in 

detecting DNA damage. The enzyme T4 endonuclease V is capable of detecting thymine 

dimers within the primary structure of the DNA. X ray crystallographic analysis of this 

enzyme reveals that it contains three alpha helices and five reverse loops (85). Before 

binding to damaged site, the enzyme nonspecifically scans the DNA through electrostatic 

forces (86, 87). T4 endonuclease V cleaves at the 5’ glycosylic bond of the pyrimidine 

associated with the CPD (88). A sequential AP lyase activity then cleaves the 3’ 

phosphodiester bond leaving α,β-unsaturated aldehyde and a 5’terminal 

phosphomonoester (89). 

 FPG (formamidopyrimidine [fapy]-DNA glycosylase) acts in a similar fashion to 

T4 endonuclease V. FPG recognizes open-ring purines and 8-hydroxypurines within the 

primary structure of DNA (90). Once the DNA damage is recognized by N-glycosylase 

activity, the strand is sharply everted through a pocket in the active site (91). It is likely 

that the bending process provides a clear path for the base out of the base stack by 
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disrupting the duplex structure (92). The remaining AP site is occupied by hydrophobic 

residues (91). AP lyase activity carries out β-elimination and strand scission at the 3’ AP 

site. Enzymatic hydrolysis of the phosphodiester backbone results in the formation of a 

single nucleotide gap at the sequence location previously occupied by an oxidative lesion. 

Both these enzyme are used to detect damaged bases in damage detection assays. The 

level of damage is correlated to the amount of strand breaks observed.   

Repair/ Recovery of STR Profiles 

 Repair of the primary structure of DNA has been investigated by a number of 

forensic scientists. The ability to repair DNA means that there is a greater likelihood that 

the STR profile can be recovered and serve as evidence in court. Though tremendous 

efforts have been made, a consistent method of DNA repair of environmentally-damaged 

samples has not yet been determined.  

 A popular repair technique among researchers has been the PreCR™ mix 

developed by New England Biolabs (93). This technique uses a cocktail of different 

glycosylases and enzymes to remove damaged bases so that polymerase extension can 

proceed. Incubation time is around 50 minutes before amplification of the sample. Initial 

reports of this method show very little increase in the ability to generate an STR profile 

(94). A quantity of at least 50 ng of DNA and the need for additional hands-on time made 

initial implementation of this technique unappealing. Modifications to the manufacture’s 

protocol have decreased the starting quantity of the reaction to 1 ng which can be 

analyzed as part of thermocycling (95). The reaction volume and concentration of the 

reagents were also adjusted to improve upon the manufacturer’s protocol. The 

concentration of enzymes was decreased by one-fourth as compared to the previous 
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protocol, thus saving resources and improving the ability to recover the profile. Although 

some success was seen in repairing UV damage, little to no effect was observed when the 

repair mix was applied to “real world” case samples (94-96). 

 The Restorase™ enzyme mixture has a similar function to the developed PreCR 

technique. This repair mix blends repair enzymes with long PCR DNA polymerase to 

improve STR profiling (97). The Restorase enzyme mix is designed to recover the 

amplification ability of samples exposed to acid, alkylating agents, heat, and/or light as 

this damage blocks the progression of the polymerase.  The mix is added directly to the 

PCR reaction but a pre-incubation step is needed before amplification. Restorase was 

compared directly to the manufacture’s protocol for the PreCR reaction and found to 

recover more of the STR profile; however, the restoration ability of both protocols was 

marginal compared to no treatment (94). The Restorase mix was used on membrane 

bound DNA from previous cases involving RFLP and found to have little effect on 

profile recovery (98).  

 Instead of repairing the damage to the template, some researchers have opted to 

either avoid this damaged area or bypass it completely. Translesion polymerases were 

employed as a means of bypassing these lesion areas during amplification (99). This 

mechanism requires multiple polymerases in a single reaction to achieve. After Taq 

polymerase stalls at a lesion site, the Y- family translesion polymerase will bind to the 

template and proceed with extension until it is past the site of damage. These Y- family 

polymerases are low fidelity and have a larger active site than Taq polymerase (100). The 

spacious active site of Y-family polymerases reduces the stringency of binding allowing 

damage bases to be recognized by this active site that would otherwise block Taq 
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polymerase. Using a blend of Dpo4 like thermostable Y-family and Taq polymerases, 

researchers were able to significantly increase amplification of UV damaged DNA at the 

Alu locus (99). Further application of this method on different satellite markers and from 

different damaged sources is being investigated.  

 Decreasing the size of the amplicons is another way to avoid potentially damaged 

DNA segments. The “miniSTR” approach reduces the size of all amplicons within the 

CODIS STR primer regions (101). Larger amplicons have a greater probability to 

become damaged, so decreasing the size decreases the availability of substrate that could 

potentially be damaged. This should increase the likelihood of obtaining results when 

performing CE analysis. Application of this method requires no additional equipment and 

results are directly comparable to those within the CODIS database (101). Initially, the 

miniplex contained only three to six different loci; however, it has since been expanded 

to include non-CODIS loci that increase the power of exclusion (101-103). Larger loci 

within the CODIS database were not able to be reduced while still functioning as a 

reliable genetic marker.  

Though success has been seen with recovering profiles damaged solely by UV 

light, environmental samples or samples damaged by multiple agents are still difficult to 

repair. The miniSTR method has been the most success as it is able to best recover DNA 

subjected to strand breaks. It is not known however, if a combination of repair enhanced 

genotyping techniques could further recover a genetic profile or what the major type of 

damage is within the environmental samples.  
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This chapter illustrates the complexity of DNA damage and the efforts made to 

measure and/or repair these lesions. It is apparent this damage negatively affects STR 

profiling, thus the ability to recover/repair this damage is vital to the recovery of this lost 

evidence. Further research endeavors into the types of DNA damage found in forensic 

and environmentally exposed samples will allow for better development of repair 

strategies that could assist in the recovery of genetic profiles. 
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CHAPTER 2 

UV AND OXIDATIVE DAMAGE DETECTION IN DNA BY GLYCOSYLASE 

PLUS S1 ENZYME REACTION 
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Introduction 

Genotyping by short tandem repeat profiling is considered to be an extremely 

valuable source of evidence by forensic scientists. Profiles generated from DNA have led 

to the determination of innocence and guilt for many cases in the criminal justice system. 

Though its value is undeniable, DNA as a source of evidence is subject to damage at the 

scene of the crime, thus compromising its utility for identification.  Environmental 

damage is a known contributor to the loss of a genetic profile and loss of this valuable 

evidence.  Specifically, UV irradiation and oxidative damage by the sun’s rays have been 

known to affect the primary structure of DNA.  

UV light can cause strand breaks, base modifications, and photoproduct 

formation. One of these base modifications is the formation of cyclobutane pyrimidine 

dimers (CPD) which are predominantly located between adjacent thymine base pairs. UV 

irradiation saturates the 5,6 double bond between bases which forms a cyclobutane ring 

(20). Research examining UVC damage to forensically relevant contemporary stains 

determined that strand breaks are the most likely cause of genetic profile loss and that 

thymine dimers are less likely to be formed in dehydrated DNA than hydrated DNA due 

to changes in conformation (40). UVB damage was shown to be more likely to cause 

allelic dropout while UVA damage had little effect on the ability to generate an STR 

profile (41).  

Oxidative damage is formed after exposure to OH radicals, one-electron oxidants 

and singlet oxygen reactions (25). This damage can be induced by either ionizing 

radiation or metabolic processes of aerobic microorganisms (26). The primary form of 

damage is the alteration of the guanine base to 8-oxo-7,8-dihydroguanine (8-oxoguanine) 
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which can result in a miscoding of bases during PCR amplification. If this miscoding 

were to occur in the primer region, the primers may not bind, preventing the polymerase 

from initiating replication de novo (29). 

A commonly used means of measuring the quantity of damage to DNA is single 

cell gel electrophoresis, also known as the comet assay. Briefly, individual cells are lysed 

in agar, electrophoresis is performed at a high pH and the results are viewed by 

fluorescent microscopy (52). Damaged DNA appears in the form of a comet with its tail 

pointing towards the anode. Limitations of this method are the need for a viable single 

cell suspension, overlapping comets, and limited information on fragment size (52, 54). 

This assay is also time consuming and requires specialized lab equipment.  

Another method employed is alkaline agarose gel electrophoresis to measure 

single strand breaks. Alkaline gels work by creating a high pH environment where double 

stranded DNA is denatured and can thus be visualized as single strands (55). This 

technique requires large amounts of DNA (up to 200 ng per sample) and the analysis time 

is at least triple of that seen with native agarose gels. More recent techniques have been 

proposed to quantify DNA damage including: microfluidic devices, HPLC and 

fluorescent detection (27). Although the measured quantifications are accurate and 

sensitive, the downfall of these techniques is that they must be performed with 

specialized equipment. 

The goal of this research was to develop a method of DNA damage detection 

suited to detecting damage lesions in environmental samples. This information could be 

useful in determining what types of damage are accounted for in environmental samples 
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and better construct repair and recovery strategies around this knowledge. The proposed 

method is inexpensive, requires no specialized equipment and is implemented with less 

time on the bench compared to an alkaline agarose gel. The idea is to visualize the 

damage in the same manner as with alkaline gel electrophoresis except using native 

agarose gel reagents and equipment common to most molecular laboratories. This is 

accomplished by inducing single strand breaks at the sites of damage using different 

DNA glycosylases in the same manner as would be done for detection on the alkaline gel. 

After the initial enzyme digestion, S1 nuclease is used to cleave the DNA opposite these 

nicked sites in the same tube as the reaction buffer is compatible with both enzymes. 

Thus, sites of DNA damage are converted to apparent double strand breaks instead of 

single strand breaks that can be visualized by native gel. True double strand breaks are 

formed by a single excision event, while apparent double strand breaks here are formed 

by two separate reactions. Having a buffer compatible with both enzymes means the 

entire assay can be completed in a single tube which reduces analysis time as well as the 

loss of DNA between transfers. The strand breaks are visualized as a degradation pattern 

when run on a native agarose gel as more strand breaks fragment the template leading to 

those fragments migrating faster on the gel. Thus, the number of apparent double strand 

breaks visualized is indicative of damage formed due to either oxidation or UV light.  

Materials and Methods 

Preparation of Synthetic Oligonucleotides 

The two synthetic oligonucleotides were synthesized by Integrated DNA 

technologies (Coralville, IA, USA). The sequences were constructed into a 2056 bp pIDT 

smart vector with ampicillin resistance. The sequence of the oligo AluSx (appendix A) 
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was taken from the AluSx locus. Alu is a short interspersed element that is found in a 

high copy number throughout the human genome. The Sx denotes the subfamily of Alu 

that this locus belongs to. The AluSx sequence contains a high number of guanine bases 

on both strands of the DNA. The other damage oligo, UVC3BPDAM (appendix B), 

contains two adjacent thymine dimers every three base pairs on opposite strands of the 

DNA. 

The plasmid insert was amplified by polymerase chain reaction using 1 ng of 

template. The 25 µl reaction mix contained 10 pmol of M13F and M13R primers (IDT), 

1x Colorless GoTaq® Flexi Buffer (Promega Corporation, Madison, WI, USA), 2.5 units 

GoTaq® DNA polymerase (Promega), 1.5 mM MgCl2 (Promega), and 100 µM DNTPS 

(Promega). PCR was performed with an initial denaturation of 3 minutes at 94°C 

followed by 25 cycles of denaturation at 94°C for 30 seconds, annealing at 58 °C for 30 

seconds, extension at 72°C for 30 seconds, with a final extension of 72°C for 5 minutes. 

Multiple samples were amplified then purified using 100K Amicon® ultra 

centrifugation devices (Millipore Corporation, Billerica, MA, USA). The amplified 

sample volumes were combined into a single Amicon® filter and centrifuged at 14,000 x 

g for 5 minutes. Four hundred microliters of sterile water was used to wash the filter 

containing the DNA sample twice. After each wash, the filter device was centrifuged at 

14,000 x g for 5 minutes. After the final wash, the filter was inverted and placed in a new 

tube, then centrifuged at 1,000 x g for 2 minutes. The eluate containing the purified PCR 

product was quantified using the Qubit Fluorometer (Life Technologies, Carlsbad, CA, 

USA).   
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Damage Assays 

Oxidative Damage Assay 

Oxidative damage was induced in both genomic DNA and the synthetic control 

oligonucleotide using methylene blue as a photosensitive producer of singlet oxygen 

(104). Two hundred nanograms of DNA was incubated in a solution containing 0.03% 

methylene blue, and 1x PBS in a 20 µl volume in a 0.6 mL tube (Fisher, Norcross GA). 

The samples were exposed to various amount of light energy supplied by a desk lamp 

containing a single 60 watt incandescent bulb. This light is absorbed by methylene blue at 

a wavelength of 550-700 nm (105). The methylene blue acts as a photosensitizer that 

absorbs the light energy and excites the oxygen molecules in solution. These molecules 

are then able to participate in singlet oxygen reactions that convert guanine to 8-

oxoguanine. The lid of the tubes were left open so that the lamp light would not be 

blocked. A light source was placed 7 cm above the tubes containing the samples. A petri 

dish filled with 20 mL of water was placed between the samples and the light source to 

absorb infrared light that could produce unwanted single strand breaks.  

After exposure to lamp light, the volumes contained within each tube were 

immediately combined into a single 1.5 mL tube (Fisher). Cold absolute ethanol and 

sodium acetate were added. The tube containing this solution was placed in a -20°C 

freezer for at least 30 minutes. The DNA was then washed twice with a solution of 70% 

ethanol and centrifuged at 17,000 g for 5 minutes after each wash. Sterile water was 

added to re-suspend the DNA and the solution was heated at 56°C for 2 hours as this 

amount of time was deemed sufficient to resolubilize the DNA.  



37 

 

UVC Damage 

Samples were damaged under UV fluorescent light using the UV Stratalinker 

1800 (Stratagene, LaJolla, CA, USA). The Stratalinker has five bulbs that deliver light 

energy at 254 nm. The energy output of the Stratalinker is dependent on the bulb type and 

will decrease with the age of the bulb. Thus, the amount of energy per minute was 

determined based on the time it takes to deliver one Joule of energy to the UV sensor 

contained within the unit. This value was calculated every two weeks to monitor the 

delivery of UV energy. Each sample to be damaged was placed in a polypropylene 

microcentrifuge tube, and concentrated to 200 ng/µl. The tubes were placed on their side 

on the floor of the Stratalinker. 

DNA Extraction 

DNA extraction was performed using the Qiagen QIAamp Mini Blood Kit 

(Qiagen, Valencia, CA). When extracting the DNA used as a standard for the damage 

assays, 200 µl of neat semen was pipetted directly into the 1.5 mL tube. After adding the 

sample to the tube, a quantity of 400 µl of 1x sterile PBS (Fisher Scientific), 20 µl 

Qiagen protease and 40 µl of 0.39M DTT were added to each sample and vortexed. Four 

hundred microliters Buffer AL was combined with the previous solution and mixed 

quickly to ensure a proper digest of the cell membrane. Samples were incubated at 56°C 

for 10 minutes. After incubation, 400 μl absolute ethanol was added. The liquid from 

both tubes was then centrifuged at 6000 x g for 1 minute in a QIAamp Mini spin column 

using 700 μl aliquots until all of the liquid had passed through the column. The filtrate 

was discarded and 500 μl Buffer AW1 was added to the column without wetting the rim, 

then centrifuged at 6000 x g for 1 minute. The filtrate was discarded again and 500 μl 
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Buffer AW2 was added to the column, then centrifuged at 6000 x g for 3 minutes. The 

filtrate was removed and the solution centrifuged at 6000 x g for 1 minute to ensure no 

buffer AW2 remained. Finally, the DNA was eluted by the addition of 50 µL of sterile 

water, incubated at room temperature for 1 minute, and then centrifuged at 6000 x g for 1 

minute.  

Quantification 

Qubit Fluorometer 

The Qubit fluorometer (Life Technologies) uses molecular dyes that will only 

bind to the target of interest, either DNA, RNA or protein. When bound, fluorescence is 

emitted that can be quantified on a standard curve generated prior to the quantification of 

samples.  This standard curve is obtained using the two DNA standards included in the 

Qubit kit. DNA samples were quantified using dsDNA HS kit (Life Technologies). One 

hundred and ninety-nine microliters of this working solution, containing buffer and the 

molecular dye, was combined with 1 µL of sample. After addition of the sample, the 

tubes were incubated at room temperature for two minutes to achieve maximum 

fluorescent readings. This is the amount of time needed for the molecular dye to bind to 

the DNA substrate and provide an adequate level of detection. 

Enzymatic Digest 

Formamidopyrimidine DNA Glycosylase (FPG) 

Formamidopyrimidine DNA Glycosylase (New England Biolabs, Ipswich, MA,) 

is an N-glycosylase with AP-lyase activity which recognizes damaged guanine bases, 

primarily 8-oxoguanine. Other damaged lesions recognized by this enzyme include 2,6-
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diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4,6-diamino-5-

formamidopyrimidine (FapyAde) (90).  The damaged base is flipped out of the helix by 

N-glycosylase action and AP-lyase generates a single strand gap by cleavage of the 3’ 

and 5’ sites surrounding the AP site. The enzymatic reaction was performed with 2 units 

of FPG per 200 ng of DNA in 1x NE Buffer 1 (New England Biolabs) (10 mM Bis-Tris-

Propane-HCl, 10 mM MgCl2, 1 mM DTT, pH 7 @ 25°C). The solution was incubated 

over night at 37°C. The reaction was stopped by heat at 65°C for 20 minutes which 

denatures the enzyme.  

Pyrimidine Dimer Glycosylase (T4PDG) 

Pyrimidine Dimer Glycosylase (New England Biolabs) recognizes cis-syn CPDs 

with glycosylase activity and associated AP lyase activity to generate a single strand gap 

at sites of UV damage. The enzymatic reaction contained 10 units per 200 ng of DNA in 

1x T4PDG Reaction Buffer (New England BioLabs) (10 mM Bis-Tris-Propane-HCl, 10 

mM MgCl2, 1 mM DTT, pH 7 @ 25°C). The reaction was incubated overnight at 37°C 

then stopped with heat at 65°C for 20 minutes.   

Nt.BstNBI 

Nt.BstNBI (New England Biolabs) is an endonuclease that cleaves double 

stranded DNA substrate to produce single stranded nicks. The naturally occurring 

enzyme generates these nicks at a 3’ recognition site. The reaction contained 10 U/200 ng 

Nt.BstNBI in 1x NE Buffer 3 (New England Biolabs) (100mM NaCl, 50mM Tris-HCl, 

10mM MgCl2 ,1mM DTT, pH 7.9@25°C). The solution was incubated for 30 minutes at 

55°C then stopped by heating at 80°C for 20min. The digested DNA was then purified by 
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30 K Amicon® ultra centrifugation tubes (Millipore) by combining the volumes of the 

samples into a filter followed by centrifugation at 3,500 x g for 45 minutes. The use of 

this size filtration unit instead of the 100k ultra device was used to increase DNA yields. 

The filter was washed twice with 400 µL of water and spun down each time at 3,500 x g. 

The filter was then inverted and centrifuged at 1,000 x g to elute the DNA.  

S1 Nuclease 

S1 nuclease will cleave single stranded DNA opposite the single strand gap, while 

leaving double stranded DNA intact. The reaction was performed with 5 U/200 ng of S1 

nuclease in 1x S1 Nuclease Reaction buffer (Promega) (20mM Tris-HCl (pH 7.5 at 

25°C), 0.1mM ZnCl2, 50mM NaCl and 50% (v/v) glycerol).  The reaction mixture was 

incubated one hour at 37°C then stopped by the addition of 2 µL of 0.5 M EDTA and 

heat at 70°C for 10 minutes.  

Glycosylase + S1 assay 

An assay to qualitatively and quantitatively measure DNA damage was developed 

using multiple enzyme digestion and visualized by native agarose gel. In a 10 µl reaction, 

100 ng of DNA substrate was first digested with either FPG, to detect oxidative damage, 

or T4PDG, to detect cyclobutane pyrimidine dimers, in 2 µL of glycylglycine buffer 

compatible with both enzymatic reactions (0.22M glycylglycine buffer (pH 6.8 at 25°C), 

1 M NaCl, 4.3 mM DTT, 27% glycerol in water). The glycylglycine buffer was chosen as 

it has enzyme activity at pH ranges associated with both the glycosylase reaction and the 

S1 nuclease reaction. Sodium chloride is added as a cofactor for the enzyme and DTT 

prevents crosslinking through sulfide bonding that could disrupt activity. After overnight 
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incubation at 37°C, the reaction was stopped with heat at 65°C for 20 minutes. 5 units of 

S1 nuclease was then added to the tubes containing the glycosylase digested samples 

along with 2 µL of the same glycylglycine buffer, 0.001M zinc acetate, pH 4.02 

(Amresco LLC Solon, OH), and 0.3M NaCl in a final 20 µL reaction. Zinc acetate and 

sodium chloride can serve as cofactors for the reaction. Zinc acetate also lowers the pH of 

the solution to a range more optimal for S1 nuclease digestion. This solution was 

incubated at 37°C for 1 hour then stopped by addition of 2 µL of 0.5 M EDTA and heat 

at 70°C for 10 minutes. 

Gel Electrophoresis 

Native Agarose Gel Preparation 

One percent agarose gels were made using 1x TAE (40 mM Tris acetate, 2 mM 

EDTA) and the appropriate amount of molecular grade agarose (IBI Scientific, Peosta, 

IA, USA). Samples were prepared in 6x loading buffer (0.25% bromophenol blue, 0.25% 

xylene cyanol, 30% glycerol in water) then loaded into the wells of the gel. Electrical 

current was applied to the samples to migrate the DNA through the gel matrix. Either λ 

HindIII or a 100 bp ladder was used for size comparison. Gels were stained with ethidium 

bromide (Amresco) or SYBR gold and visualized using a BioRad Gel doc XR+ 

molecular imager (BioRad Hercules, CA, USA).   

Alkaline Agarose Gel Preparation 

One percent alkaline gels were made using the appropriate amount of molecular 

grade Agarose (IBI Scientific) in a gel digest buffer (50 mM NaCl, 1mM EDTA). The gel 

was soaked in alkaline gel running buffer (30mM NaOH, 1mM EDTA) for at least 30 
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minutes before the samples were loaded in the gel. The gel must be soaked in sodium 

hydroxide so that the when run the DNA samples are added to the wells, the DNA will 

denature during electrophoresis. To each sample an equal amount of Alkaline gel loading 

buffer (50mM NaOH, 1mM EDTA, 2.5% glycerol, .025% bromocresol green 0.25%) 

buffer was added. The entire sample was loaded into the wells of the gel. λ HindIII was 

used as a molecular weight marker for all samples due to the inability of the 100 bp 

ladder to be resolved into discrete bands after being denatured. Electrophoresis was 

performed at 100V for 2.5 hours. Afterwards, the gel was soaked in neutralization buffer 

(1 M Tris-HCl pH 7.6, 1.5 M NaCl), and then stained with SYBR gold (Life 

Technologies) for 1 hour. At this point, the gel was visualized using the BioRad Gel doc 

XR+ molecular imager.    

Average Length Analysis 

 Gel images were analyzed using Quantity One 1-D Analysis Software Version 

4.6.9 (Bio-Rad). Each lane was divided into multiple boxes that covered the fluorescent 

smear of DNA, so that the volume and molecular weight of each box could be calculated. 

The molecular weight standards, λHindIII and the 100 bp ladder, were used to generate a 

dispersion curve based on the distance traveled along the gel. After the molecular weight 

of each box was calculated, that value was multiplied by the percentage of the volume 

that the box occupied as part of the entire volume of the fluorescent smear. The final 

average molecular weight was generated by adding up these percent molecular weight 

values.  
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Results and Discussion 

Synthetic Oligonucleotide Damage Visualization  

The positive control synthetic oligonucleotides were designed incorporating 

sequences containing base pairs known to be sites susceptible to either oxidative or UV 

damage. Two oligonucleotides were constructed so that one could serve as a positive 

control for the formation of 8-oxoguanine and the other for the formation of cyclobutane 

thymine dimers.  The oxidative damage oligonucleotide, AluSX, is 565 bp and contains 

multiple guanine bases on both sides of the DNA strand (Appendix A). A guanine base is 

the preferred site of 8-oxoguanine formation, thus the goal was to implement as many 

guanine pairs as possible into the sequence so that there would be ample sites for the 

formation of this lesion. The other 565 bp oligonucleotide, UVCDAM, was designed 

with two consecutive thymine bases alternating every three base pairs on opposite 

strands, allowing for the measurement of thymine dimer formation (Appendix B). 

Thymine dimers comprise approximately two-thirds of the total CPD formation and thus 

are the major alteration to the DNA in the presence of UV radiation while DNA is in the 

physiological B form (106). Based on the sequence composition, these oligos are able to 

serve as a positive controls for the glycosylase reactions.  

The AluSx oligo was oxidatively damaged using a protocol previously developed 

involving methylene blue and incandescent desktop light exposure (104). This protocol 

has been shown to generate 8-oxoguanine damage with few single strand breaks resulting 

from this damage in the AluSx oligo (Figure 4). DNA samples were digested with FPG 

then run on alkaline and native gels. Analysis of the digestions on alkaline gel gave 
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information about the single strand breaks induced by FPG digestion. A native gel was 

also run to determine that no double strand breaks were present. The enzyme FPG 

releases the damaged bases and leaves an AP site which is cleaved by an associated AP-

lyase activity. Without the addition of this enzyme, few strand breaks were observed. 

Loss of the high molecular weight band was visualized only in the FPG enzyme digested 

sample containing both the methylene blue dye and lamp exposure. This indicates, as 

stated in the literature, both components are required for oxidative damage as methylene 

blue acts as a photosensitizer which uses the lamp light as energy for the reaction (105). 

The no light exposure and no dye controls demonstrated that having either light exposure 

or dye alone is not enough to form oxidative damage. This is evident by the retention of 

the high molecular weight band even in the presence of the FPG enzyme which would 

recognize sites of oxidative damage. The no enzyme controls confirmed that no heat, pH, 

or chemical damage was induced at any point throughout the protocol as this samples 

contained few single strand breaks. Thus, this protocol was used in future experiments 

involving the generation of oxidative damage by laboratory methods. 

For optimization of the UVCDAM oligo, DNA was subjected to UVC irradiation 

in a Stratalinker for varying amounts of light energy doses ranging from 0.15 J/cm2 to 9 

J/cm2 (Figure 5). Afterwards, the enzyme T4PDG was used to cleave the glycosidic bond 

and phosphodiester bond that surround the pyrimidine dimer. This leaves a nick in the 

DNA that is visualized as a single strand break during alkaline agarose gel 

electrophoresis. The alkaline agarose gel confirms the presence of strand breaks that 

result in a decrease of the average molecular weight with increasing UVC exposure. CPD 

formation was present after 15 minutes and loss of the high molecular weight band 
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occurred after one hour. The no T4PDG enzyme controls shows that no strand breaks 

were formed as a result of UVC irradiation. When visualized on a native agarose gel after 

T4PDG treatment, the damaged DNA will not show a smear pattern because single strand 

breaks cannot be visualized by native agarose gels. 

Synthetic Oligonucleotide Buffer Optimization 

 In order for the glycosylase reaction to be combined with S1 nuclease, a reaction 

buffer needed to be selected in which each of these enzymes could have activity. A buffer 

containing glycylglycine was chosen due to its ability to maintain pH at ranges 

corresponding to the enzymes used in this research and its low toxicity to DNA. The 

optimal pH ranges of the buffer are 2.5-3.8 and 7.5-8.9 correlating to S1 nuclease and 

glycosylase activity, respectively (107). This buffer was tested alongside with the buffer 

supplied by New England Biolabs (NEB) to ensure that the enzyme has comparable 

activity in both buffers. Samples treated with either the FPG or T4PDG enzymes were 

run on denaturing alkaline agarose gels (Figures 6 and 7). The FPG enzyme produced 

nearly identical amounts of strand breaks when the reaction was performed with either 

the glycylglycine buffer or the NEB buffer 1 (Figure 6). The same was true for the 

T4PDG enzyme in which digestion with either buffer produced a similar smear pattern 

when visualized on the gel (Figure 7). A smear pattern is indicative of single strand 

breaks as the high molecular weight DNA is cleaved into smaller fragments that migrate 

a farther distance towards the anode. No enzyme controls and no damage controls were 

included in both reactions to ensure that strand breaks were not being formed in samples 

that were not damaged or were damaged but did not contain the glycosylase enzyme. A 

slight smear pattern was observed for the oxidative damage samples containing no FPG 
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enzyme. This indicated that the process of the oxidative damage protocol could have 

induced a small number of single strand breaks possibly due to heat or strand breaks 

formed by hydroxyl attack.     

Genomic DNA Damage 

The same damage protocols were demonstrated with genomic DNA instead of the 

oligonucleotides. The first step was to extract genomic DNA to use as a standard 

template for the damage assays (Figure 8). Single strand breaks can be produced during 

the extraction process that could affect the data when trying to determine strand break 

formation due to the glycosylase enzyme digestion. Blood stains, buccal swabs, and 

semen samples were investigated based on DNA yield and amount of single strand 

breaks. Ultimately, it was determined by alkaline gel electrophoresis that semen produced 

the highest quantity of DNA and the lowest amount of single strand breaks after 

extraction. Buccal swabs produced a large amount of DNA but contained single strand 

breaks, possibly due to enzymatic digestion by salivary enzymes or bacteria in the oral 

mucosa (108). Blood cells produced few single strand breaks, but yielded low quantities 

of DNA as only white blood cells contain nuclear DNA. The one caveat of sperm cell 

extraction was that the samples needed to be digested before being allowed to dry. It is 

likely that the mechanical stress of dehydration and rehydration is the reason for these 

observed single strand breaks after dehydration of the sperm samples. 

 Once the genomic DNA was extracted, the process was similar to that seen with 

the oligonucleotides. Damage protocols that generated oxidative and UV damage in the 

oligonucleotide samples were used with the genomic DNA samples. The same single 

source genomic DNA was subjected to oxidative damage by methylene blue plus light 
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and UVC damage by UV Stratalinker. The delivery of UV light needed to damage the 

genomic samples was shorter because the number of single strand breaks formed was 

higher in the genomic samples. This is likely due to the increased availability of targets as 

possible damage sites. The increased base pair size of the genomic DNA means there are 

more base pairs that could become altered or damaged and thus more sites for the 

glycosylases to cleave single strand breaks.  

The damaged DNA was then digested by either FPG or T4PDG in glycylglycine 

buffer and run on denaturing alkaline agarose gel (Figure 9 and 10). AluSx and 

UVC3BPDAM were included as positive controls because damage was already 

demonstrated with these substrates. Genomic samples oxidatively damaged showed 

decreased average molecular weight with increasing exposure to lamp light when 

digested with FPG (Figure 9). Double strand break formation was observed in the 30 

minute damaged sample signified by a degradation of the high molecular weight band. 

This is likely due to apparent double strand breaks which would result in a faster 

migration of the DNA towards the anode as compared to the no damage control. All no 

enzyme controls showed fewer strand breaks than the damaged, enzyme digested 

samples. 

 UV damaged genomic samples were also visualized by alkaline agarose gel 

(Figure 10). Increasing the delivery of UV light to the samples resulted in an increased 

loss of the high molecular weight band. No enzyme controls maintained their high 

molecular weight band as well as the no damage control with enzyme incubation. This 

indicates that few strand breaks were formed as a result of UV damage or overnight 

incubation. UVC3BPDAM oligo confirmed the activity of the enzyme and gave a result 



48 

 

similar to those previously seen (Figure 5).  

Optimizing the S1 reaction 

The S1 reaction was optimized by first generating an appropriate substrate that 

could serve as a positive control template. The enzyme Nt.BstNBI is an endonuclease 

that induces a single strand nick four bases after the recognition site GAGTC (109). This 

enzyme was used to generate a single strand nicked substrate that could be used as a 

substrate with which the S1 nuclease reaction could be optimized. Different 

concentrations of Nt.BstNBI were tested to determine the concentration at which single 

strand break formation began and when over-digestion of the substrate occurred (Figure 

11a). Enzyme concentrations of less than 5 units did not produce single strand breaks on 

the double strand genomic template. After the addition of 30 units, over digestion was 

observed and double strand breaks began to form as indicated by the native gel (Figure 

11b). Ultimately, 10 units of enzyme produced the most reproducible single strand breaks 

with minimal double strand break formation (Figure 12a). The result is a nicked double 

strand template of DNA that could serve as substrate for the S1 reaction. A no enzyme 

control was included to demonstrate that few strand breaks were visualized without the 

Nt.BstNBI endonuclease.  

Using the Nt.BstNBI digested substrate, the optimal concentration of S1 nuclease 

was calculated based on the visualization of double strand breaks. The DNA substrate 

previously digested by Nt.BstNBI at a concentration of 10 units was used as a standard 

DNA substrate for the S1 reaction (Figure 12a). After incubation of multiple samples 

containing Nt.BstNBI, samples were heated to denature the enzyme. To ensure no buffer 

remnants interfered with the S1 nuclease reaction, the Nt.BstNBI digested DNA was 
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purified by Amicon® Ultra 30K centrifugal filter device. The Nt.BstNBI digested 

substrate could then be further digested with the S1 nuclease to optimize the 

concentration of enzyme needed for the formation of double strand breaks. Again, 

increasing enzyme concentrations were used to determine the proper unit amount. A no 

enzyme negative control was included to confirm that few double strand breaks were 

present with digestion by the Nt.BstNBI enzyme alone. A concentration of 5 units of S1 

nuclease was determined necessary for the visualization of double strand breaks. 

Concentrations less than this resulted in a retained high molecular weight band when 

visualized by native agarose gel (Figure 12b).  

The S1 reaction was then demonstrated to have activity in the glycylglycine 

buffer that was compatible with the T4PDG and FPG enzymes (Figure 13). To achieve 

the same activity seen with the manufacturer’s buffer, zinc acetate and sodium chloride 

was added to the glyclglycine buffer. Zinc acetate serves as a cofactor and also lowers the 

pH of the reaction (110). S1 activity is pH sensitive and works optimally at a pH of 4.5 

(111). Sodium chloride stabilizes helical structures within nucleic acids facilitating the 

binding of S1 nuclease to the DNA (112). The resulting reaction after addition of these 

reagents was shown to be comparable to that of the S1 nuclease in buffer supplied by 

Promega (Figure 13). The no enzyme control again showed that double strand breaks 

were not occurring before enzyme digestion. 

To optimize the incubation time of the S1 nuclease, an enzymatic digest with 

multiple incubation times and different enzyme conditions was performed (Figure 14). S1 

was added to samples digested with Nt.BstNBI and not digested with this enzyme in 

glyclglycine buffer. The S1 endonuclease reaction was incubated in a water bath for 30 
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minutes, 60 minutes, or overnight. It was determined that double strand breaks occur as 

quickly as 30 minutes after incubation with the S1 endonuclease on Nt.BstNBI digested 

substrate; however, better reproducibility of this digest was observed with a 60 minute 

incubation time. Without the addition of S1 nuclease, very few double strand breaks were 

visualized in both Nt.BstNBI digested substrate and double stranded genomic DNA. S1 

nuclease was unable to generate double strand breaks without a nicked template to use as 

substrate. No strand breaks were seen without the addition of either enzyme, indicating 

that heat and pH buffer did not induce significant damage.  

Restriction enzyme + S1 Nuclease Assay 

Using the synthetic oligonucleotides as positive damage controls, a novel assay 

for the measurement of damaged genomic DNA samples was optimized.  This assay 

employs the same DNA glycosylases, FPG and T4PDG, to remove damaged bases; 

however, to visualize double strand breaks, the enzyme S1 nuclease is used to cleave 

opposite the single strand nicks just as was seen with the Nt.BstNBI digested substrate.  

The reaction involves a two-step enzymatic digestion first by a glycosylase to 

nick the DNA at sites of damage, then by the S1 nuclease to cleave opposite these sites of 

damage to generate double stranded breaks that could subsequently be visualized on a 

native gel. Using the same glycosylase enzymatic reaction that was optimized previously, 

the genomic standard DNA and the positive control oligos were first digested in the 

glyclglycine buffer with either the T4PDG or FPG enzyme depending on whether the 

sample was damaged by UVC irradiation or oxidation respectively.  After incubation and 

abolishment of enzyme activity, reagents for the S1 nuclease reaction were added directly 

to the tubes containing the glycosylase reaction to reduce the pH and provide cofactors 
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for S1 activity. The samples were incubated again in the presence and absence of the S1 

enzyme. After S1 enzyme activity was terminated by the addition of EDTA and heat, the 

samples were visualized on a native agarose gel stained with ethidium bromide.  

This assay was evaluated on the positive oligonucleotide controls as this DNA has 

been shown to be damaged by denaturing alkaline agarose gel. Only the oligo samples 

digested with both the endonuclease and S1 nuclease showed a smear pattern indicative 

of single strand break formation (Figure 15b). Incubation with the S1 nuclease alone was 

unable to generate double strand breaks without a single stranded substrate. The single 

strand breaks generated by either FPG or T4PDG were not visualized on the native 

agarose gel. Finally, the no enzyme controls show that the heat of the different 

incubations was not enough to generate double strand breaks in the DNA samples. An 

alkaline agarose gel was run using the same DNA to show that the results generated by 

this assay are similar to those seen by glycosylase digestion alone on an alkaline gel 

(Figure 15a). Enzymes in both assays were able to decrease the average molecular weight 

of the oligo.  

The glycosylase/endonuclease reaction was then taken a step further to 

demonstrate damage detection in genomic DNA samples (Figure 16 and 18). The positive 

control oligos were again included as damage detection was already demonstrated in 

these samples. The oligonucleotide samples could therefore confirm the activity of the 

enzymes serving as a positive control for the overall reaction. 

 For the genomic DNA samples, increasing the length of time for damage 

exposure of the samples corresponded to a decrease in the average molecular weight for 
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both the samples damaged with UVC irradiation and methylene blue plus lamp light. This 

was observed in samples that were digested using both the glycosylase and S1 nuclease 

enzymes. For the FPG plus S1 assay, a small amount of double strand breaks were 

observed after 30 minutes of exposure to methylene blue plus light when digested with 

FPG alone (Figure 18). This could be explained by clustered damage as the same DNA 

visualized by alkaline agarose gel had a degraded high molecular weight band indicative 

of double strand break formation (Figure 9). Clustered damage is defined as two 

consecutive strand breaks on opposite strands of DNA that occur within one helical turn 

and thus form an apparent double strand break (113). Oxidative damage in close 

proximity could lead to the formation of apparent double strand breaks that are visualized 

as a smeared band on a native gel and have a degraded high molecular weight band on an 

alkaline gel. This migration of the high molecular weight band means that the inflicted 

double strand breaks caused, the now fragmented, high molecular weight DNA to migrate 

faster resulting in these products to moving further down the gel. The 30 minute damaged 

–FPG/+S1 lane indicated that single strand breaks could have already been present from 

the oxidative damage mechanisms as digestion by S1 nuclease alone resulted in a 

decrease in number average molecular weight (NAMW). NAMW is used to determine 

the molecular mass of polymers and is defined as the molecular weight of the sample 

divided by the number of molecules in the sample. 

The results were compared to a known damage detection method. Figure 19 

shows the gel images of the alkaline agarose gel method and the FPG plus S1 assay. The 

smear patterns produced are similar showing that this method could be a more sensitive 

substitution to alkaline agarose gels. Less fluorescence of the glycosylase plus S1 assay 
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smear patterns could be due to the using ethidum bromide instead of SYBR gold which is 

a more sensitive stain. This issue could have been resolved by staining with SYBR gold 

after low signal was observed with ethidum bromide staining.   

 Similar visualization of damage was seen when samples were incubated with the 

T4PDG enzyme and S1 nuclease as increasing damage resulted in decreasing molecular 

weight (Figure 16). The synthetic oligo was again used as a positive control for the 

overall reaction as it was previously shown to produce double strand breaks by this assay. 

Only when enzymatically digested with both T4PDG followed by S1 nuclease did the 

oligo show a diminished high molecular weight band. Nt.BstNBI digested substrate was 

used as a positive control for the activity of S1 nuclease (Figure 16). When incubated 

with the S1 enzyme, a smear pattern was observed and without the enzyme few double 

strand breaks were present. The genomic samples were also incubated in the presence and 

absence of the different enzymes and were damaged with UVC light with varying 

amounts of energy delivered. All no damage controls maintained the high molecular 

weight band, showing no strand break formation and indicating that strand breaks were 

not formed by the processing of the samples. A decrease in the high molecular weight 

band was visualized for the T4PDG digested sample of the 0.8 J/cm2 damage genomic 

sample and increasingly in the 2.4 J/cm2 damaged sample. As this level of damage was 

not seen with the no enzyme, it is likely that apparent double strand breaks were formed 

as a result of clustered damage induced by the T4PDG digestion as CPD lesions could 

have formed within one helical turn. The increased delivery of UV light would generate 

more damage sites that could possibly form within 10 bp. Strand breaks associated with 

UV damage could have also formed as a decrease of NAMW was seen in sample 
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digested with only S1 nuclease meaning that this enzyme was able to induce double 

strand breaks to the single strand breaks formed by this damage. Samples digested by 

both enzymes T4PDG and S1 showed a dramatic decrease in the average molecular 

weight indicating that damaged sites were nicked then further digested by S1 nuclease to 

form double strand breaks. Smear patterns formed by these enzymes when visualized by 

native gel and those results observed when incubated with T4PDG alone and visualized 

by alkaline agarose gel both exhibited a pattern of increasing damage with decreasing 

molecular weight  (Figure 17). This demonstrates that using this assay the relative 

damages could be compared in other samples in an environmental context to determine 

which component is the most damaging.  

 The sensitivity of the native gel and alkaline agarose gel was compared to 

quantitate the differences in the sensitivities of the two methods (Figure 20). 

Fluorescence could be seen for samples down to 1 ng of DNA when stained with SYBR 

gold on a native agarose gel. With the same staining process, the lowest amount of DNA 

needed to visualize fluorescence was 105 ng with the alkaline agarose gel. In terms of a 

reliable signal, preferred for densitometry analysis, it was determined that 15 ng was 

needed for the native agarose gel and 150 ng for the alkaline agarose gel. Thus, the native 

gel technique has ten times greater sensitivity.  

Conclusion 

Gel electrophoresis is an already established technique for the visualization of 

DNA and has previously been used in DNA damage studies. Formerly, a high pH 

environment was required, as seen in the comet assay and denaturing alkaline agarose gel 

electrophoresis techniques. The glycosylase plus S1 nuclease technique removes the 
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requirement for a high pH environment because double strand breaks, instead of single 

strand breaks, are being visualized. Thus, samples can be run on a native agarose gel 

which is common to most laboratories and there is no need to denature the DNA strands. 

The resulting gel image of this method is comparable to the alkaline agarose method for 

both FPG and T4PDG enzyme digestion. The advantage of this method is a smaller 

quantity of DNA is required for analysis and less time on the bench is needed to complete 

the assay. The entire reaction is performed inside a single tube which decreases the loss 

of sample and simplifies analysis.  

 This technique has downstream applications related to DNA repair and DNA 

damage studies. Increased sensitivity is useful when studying environmentally damaged 

DNA as often times only low quantities can be recovered. In terms of DNA repair, the 

glycosylase plus S1 assay could be used to determine what damage has occurred in a 

forensic stain and also determine if strand breaks have been reduced due to DNA repair. 

Information about what type of damage comprises a damaged forensic stain is useful for 

the creation of competent repair strategies. Ultimately, recognizing and quantifying DNA 

damage is the first step to the possible recovery of STR profiles lost due to environmental 

insults.   
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FIGURES 

Time 
(min) 

60 0 60 60 0 60 

Dye - + + - + + 

FPG - - - + + + 

Avg bp 650 590 570 620 580 330 

 

Figure 4. Validation of Oxidative Damage Protocol. Alkaline gel illustrating the ability 

to damage DNA samples using methylene blue and desk lamp light exposure. Time 

specifies the length of exposure to lamp light in minutes. + indicates that a certain 

reagent, either methylene blue or FPG, was added during sample processing and – 

indicates it was excluded. λ HindIII was used as a ladder for molecular weight evaluation. 

The 60 minute oxidative damaged DNA was also used in Figure 6. 
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Figure 5. Validation of UVC Damage Protocol. Alkaline gel containing UVCDAM3BP 

DNA exposed to varying amounts of UVC light damage induced by Stratalinker 1800 

and enzymatic digestion by T4PDG. Samples were then visualized with staining in 

SYBR gold. Once again, λ HindIII was used a reference for molecular weight 

determination. The DNA damaged for 9 J/cm2 was selected for use in Figure 7.  

 

 

 

 

Damage 
(J/cm2) 

0 0.15 0.75 2.25 4.5 9 0 0.15 0.75 2.25 4.5 9 

T4PDG + + + + + + - - - - - - 

Avg bp 535 535 522 444 413 367 520 528 533 540 540 540 
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Glycylglycine 
Buffer 

- + - + - + - + 

NEB buffer + - + - + - + - 

Damage 
(min) 

0 0 60 60 0 0 60 60 

FPG + + + + - - - - 

Average bp 562 567 307 307 658 660 592 607 

                                        

Figure 6. Comparison of Glycylglycine and NEB Buffer reactions with FPG 

Enzyme. Alkaline gel comparing enzymatic activity between the buffer containing 

glycylglycine and the buffer supplied by New England Biolabs with the enzyme. Samples 

were oxidatively damaged by methylene blue plus visible light and digested with FPG. 

The ladder, λ HindIII, was included as a reference for molecular weight determination. 
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Glycylglycine 
Buffer 

- + - + - + - + 

NEB buffer + - + - + - + - 

Damage 
(J/cm2) 

0 0 9 9 0 0 9 9 

T4PDG + + + + - - - - 

Avg bp 519 540 350 349 527 515 519 523 

                         

Figure 7. Comparison of Glycylglycine and NEB Buffer reactions with T4PDG 

Enzyme. Alkaline gel comparing enzymatic activity in the buffer containing 

glycylglycine and in the buffer supplied by the manufacter (NEB). Samples were 

exposure to UVC and enzymatic digestion by T4PDG. Damage indicates the length of 

time the samples were exposed to UVC irradiation. λ HindIII was included for molecular 

weight determination. 
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Figure 8. Visualization of Genomic DNA after Extraction. Alkaline gel illustrating 

that few single strand breaks were seen in genomic DNA samples after Qiagen 

Extraction. Four hundred microliters of sample was extracted for each tube except 8 

which was the extraction blank. λ HindIII was included as a reference for molecular 

weight determination. 

 

 

 

 

 

 

Extraction 
tube # 

1 2 3 4 5 6 7 8 
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Figure 9. Visualization of Oxidative Damage in Genomic DNA Samples. Alkaline gel 

illustrating single strand breaks seen in genomic DNA samples after exposure to 

methylene blue and lamp light for various lengths of time. The oligo AluSx is used to 

confirm the enzyme activity and serve as a positive control for the reaction. λ HindIII was 

included as a reference for molecular weight determination. This same DNA samples 

were incubated simultaneously with samples prepared for Figure 18 for the glycosase 

plus S1 reaction on native gel. 

 

 

 

 

DNA AluSx Genomic 

Damage 
(min) 

0 60 0 60 0 15 30 0 15 30 

FPG + + - - + + + - - - 

Avg bp 510 410 540 540 11k 4.1k 2.4k 14k 11k 12k 
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Figure 10. Visualization of UV Damage in Genomic DNA Samples.  Alkaline gel 

illustrating single strand breaks seen in genomic DNA samples after exposure to UVC 

and enzymatic digestion by T4PDG. The oligo UVCDAM3BP is used as a positive 

control for enzymatic digestion. λ HindIII is shown as a reference for molecular weight 

determination. Aliquots of this DNA were incubated simultaneously with samples in 

Figure 16. 

 

 

 

DNA UVCDAM3BP Genomic 

Damage 
(J/cm2) 

0 6.6 0 6.6 0 0.8 2.4 0 0.8 2.4 

T4PDG + + - - + + + - - - 

Avg bp 520 430 520 530 28k 14k 12k 29k 29k 30k 
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A. 

Nt.BstNBI 
(units) 

0 10 5 10 30 

Avg bp 27k 8.2k 13k 8.2k 5.5k 

                                    

B. 

Nt.BstNBI 
(units) 

0 3 5 10 30 x x x x x x x x 

Avg bp 22k 17k 19k 17k 11k x x x x x x x x 

                    

Figure 11. Nt.BstNBI Enzyme Titration. A. Different concentrations of Nt.BstNBI 

enzyme were incubated with genomic DNA and visualized by alkaline agarose gel detect 

single strand breaks. B. The same DNA was visualized by native gel to determine the 

presence of DSB. Lanes marked with an “x” were not included in analysis and are 

unrelated to the experiment. λ HindIII was included as a molecular weight reference. 
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A) 

Nt.BstNBI + - 

Avg bp 2k 23k 

                       

B) 

Nt.BstNBI + + + + + + 

S1 (units) - .3 .6 1 5 10 

Avg bp 31k 31k 31k 31k 2.1k 2.0k 

                       

Figure 12. Concentration Optimization of S1 Reaction with Nt.BstNBI Substrate. A. 

Substrate generated as a positive control for the S1 reaction. The enzyme Nt.BstNBI 

generates single strand breaks visualized by alkaline gel. S1 cleaves these nicked sites to 

form double strand breaks. This Nt.BstNBI digested DNA was used as a control for 

Figures 16 and 18. B. A range of enzyme concentrations were tested to determine the 

activity needed for the visualization of double strand breaks. λ HindIII is shown as a 

reference for the evaluation of molecular weight. 
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S1 + - + - 

Glycylglycine 
Buffer 

- - + + 

S1 Buffer + + - - 

Avg bp 2.4k 13k 2.4k 11k 

                         

Figure 13. Comparison of Glycylglycine and Promega Buffer Reactions with S1 

Endonuclease. Native agarose gel comparing digestion in reactions containing either the 

glycylglycine buffer or the S1 nuclease reaction buffer supplied by Promega. + indicates 

which buffer was added to the reaction and whether the S1 enzyme was included in each 

sample. Nt.BstNBI digested genomic DNA was used as substrate for the reaction.  λ 

HindIII was included as a reference for molecular weight determination. 
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Nt.BstNBI + + + - - - + + + - - - 

S1 + + + + + + - - - - - - 

incubation 
(minutes) 

30 60 N 30 60 N 30 60 N 30 60 N 

Avg bp 3.2k 4.2k 3.0k 42k 37k 46k 54k 25k 23k 31k 28k 37k 

                         

Figure 14. Incubation Optimization for S1 Nuclease. Native agarose gel illustrating 

double strand breaks in genomic DNA samples after exposure to both Nt.BstNBI and S1 

enzymatic digestion. Incubation indicates the time that the samples were incubated at 

37°C during S1 enzymatic digestion. N denotes that the samples were left to incubate 

overnight. λ HindIII was included for molecular weight determination. 
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A. 

DNA template U U A A U U A A 

Damage (min)   0 60   0 60 

Damage 
(J/cm2) 

0 6.6   0 6.6   

FPG - - + + - - - - 

T4PDG + + - - - - - - 

Avg bp 496 395 576 390 543 560 547 594 

                    

B. 

DNA 
template 

U U A A U A U A U A U A U A U A G G 

Damage (min)   0 60  0  60  0  60  0  60 0 0 

Damage 
(J/cm2) 

0 6.6   0  6.6  0  6.6  0  6.6    

Nt.BstNBI - - - - - - - - - - - - - - - - + + 

S1 - - - - + + + + + + + + - - - - + - 

FPG - - + + - - - - - + - + - - - - - - 

T4PDG + + - - - - - - + - + - - - - - - - 

Avg bp 440 470 580 580 500 590 500 580 500 580 330 300 440 500 420 460 5.3k 40k 
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Figure 15. Glycosylase plus S1 Endonuclease Reaction with Positive Control 

Oligonucleotides. A. Alkaline agarose gel demonstrating single strand breaks induced by 

the glycosylase alone. This same DNA was visualized on a native gel below. B. Native 

agarose gel illustrating double strand breaks seen in the control oligo samples AluSx (A) 

and UVCDAM3BP (U), after exposure to either oxidative or UVC damage and 

enzymatic digestion. Genomic (G) DNA digested with Nt.BstNBI was included as a 

control for the S1 reaction. 100 bp ladder and λ HindIII was included for molecular 

weight determination.  
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DNA UVCDAM3BP Genomic 

Damage 
(J/cm2) 

0 6.6 0 6.6 0 6.6 0 6.6 0 0.8 2.4 0 0.8 2.4 0 0.8 2.4 0 0.8 2.4 0 0 0 

T4PDG + + - - + + - - + + + - - - + + + - - - - - - 

S1 - - + + + + - - - - - + + + + + + - - - + - - 

Nt.BstNBI - - - - - - - - - - - - - - - - - - - - + + - 

Avg bp 380 415 450 460 420 120 420 440 43k 35k 32k 40k 27k 36k 36k 7k 5k 34k 36k 39k 4.6k 38k 22k 

              

Figure 16. T4PDG plus S1 Endonuclease Reaction with Genomic DNA. Native 

agarose gel illustrating double strand breaks seen in genomic DNA samples after 

exposure to both T4PDG and S1 enzymatic digestion. Damage indicates the time that the 

samples were exposed to UVC irradiation. λ HindIII is shown as a reference for the 

evaluation of molecular weight. 
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Damage 
(J/cm2) 

0 0.8 2.4 0 0.8 2.4 

T4PDG + + + + + + 

S1 + + + - - - 

Avg bp 36k 7k 5k 28k 14k 12k 

                      

Figure 17. Comparison of T4PDG plus S1 assay to Alkaline Agarose Gel. Figure 

shows the native agarose gel with T4PDG and S1 enzymatic digestion (left) stained with 

ethidium bromide and the alkaline agarose gel with T4PDG digestion alone (right) 

stained with SYBR gold. The same damaged template was used for both methods. 
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DNA AluSx Genomic 

Damage 
(minutes) 

0 60 0 60 0 60 0 60 0 15 30 0 15 30 0 15 30 0 15 30 0 0 0 

FPG + + - - + + - - + + + - - - + + + - - - - - - 

S1 - - + + + + - - - - - + + + + + + - - - + - - 

Nt.BstNBI - - - - - - - - - - - - - - - - - - - - + + - 

Avg bp 440 300 450 460 460 250 470 460 34k 27k 22k 33k 32k 28k 35k 11k 2.3k 35k 35k 35k 7k 28k 21k 

         

Figure 18. FPG plus S1 Endonuclease Reaction with Genomic DNA. Native agarose 

gel illustrating double strand breaks seen in genomic DNA samples after exposure to both 

FPG and S1 enzymatic digestion. Damage denotes the length of time the samples were 

exposed to lamp light during oxidative damage protocol. Both λ HindIII and a 100 bp 

ladder were included for molecular weight evaluation. 
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Damage 
(minutes) 

0 15 30 0 15 30 

FPG + + + + + + 

S1 + + + - - - 

Avg bp 35k 11k 2.3k 11k 4.1k  2.4k 

                   

Figure 19. Comparison of FPG plus S1 assay to Alkaline Agarose Gel. Figure shows 

the native agarose gel with FPG and S1 enzymatic digestion (left) stained with ethidium 

bromide and the alkaline agarose gel with FPG digestion alone (right) stained with SYBR 

gold. The same damaged template was used for both methods. 
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A) 

DNA   
input(ng) 

50 25 15 10 5 1 

                                                 

 

B) 

                                       

Figure 20. Sensitivity Comparison between Native Gel and Alkaline Agarose Gel. 

Sensitivity of both the (A) native agarose gel and (B) alkaline agarose gel. Single source 

genomic DNA was serial diluted across a range of concentrations for both gel techniques. 

For the alkaline gel, DNA was damaged by delivery of 0.8 J/cm2 of UVC energy to the 

samples and digested with T4PDG overnight. The final lane denoted by (-) contains 

genomic DNA not subjected to UVC irradiation or incubation in a heat bath. Both gels 

were stained with SYBR gold.  λ HindIII was included for molecular weight 

determination. 

T4PDG + + + + + - - - - - (-) 

DNA 
input(ng) 

200 150 105 75 45 200 150 105 75 45 200 



74 

 

Appendix A 

AluSx Sequence (290bp) 

GCGGGCGGAGGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGG

AGGAAGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGA

AACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGCGCGCGC

CTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGG

GAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGC

GACAGAGCGAGACTCCGTCTCAAAAAAAA. 

Appendix B 

UVCDAM3BP Sequence (290bp) 

GCAGCAGATTAGAATGTTACAAGGTTATAACCTTATAACATTGCAAGATTCG

AACATTCGAACCTTCGAAGATTCTAAGGTTCGAAGGTTCGAAGATTCGAACG

TTCGAATCTTCTAATATTGCAAGATTCTAAGATTGTAACGTTGCAACCTTGCA

ACATTGCAAGGTTAGAACGTTCTAATATTGGAACATTAGAAGGTTGCAACGT

TCGAATGTTAGAACGTTGCAACGTTGGAACATTGCAATGTTATAATATTGGA

ATCTTAGAACATTGTAACCTTACAGTGTA. 
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CHAPTER 3 

EVALUATION OF ENVIORMENTALLY DAMAGED FORENSIC STAINS 
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Introduction 

Damage to the primary structure of DNA can create many problems for forensic 

analysis. The primary issue is that this damage can inhibit polymerase extension resulting 

in a decreased ability to genotype. Few researchers have examined the type of damage 

that is contained within a contemporary forensic stain exposed to environmental insults. 

This information could be valuable for the development of strategies to recover the lost 

profiling data.  

It is common to encounter damage to DNA found in environmental samples at a 

crime scene. McNally et al analyzed forensic case environmentally damaged samples in 

New York City (114). Their research examined the effect that exposure to the 

environment has on restriction fragment length polymorphism (RFLP) analysis.  The 

authors first examined the DNA on a native agarose gel to determine if it was of 

sufficient quality to be evaluated using RFLP. Native gel electrophoresis showed that 

over half of the 100 samples analyzed contained at least partially degraded DNA. Only 

DNA that was degraded or partially degraded was evaluated using RFLP. Thus, RFLP 

profiles were obtained for the majority of samples tested.   

Onori et al. exposed bloodstains and tissues to various environmental scenarios 

such as open air, buried, and wet scenario (44). Bloodstains in a wet environment were 

the first to exhibit dropout of the allelic profile and decreased quantification; however, 

allelic dropout was seen in both dry and wet bloodstains as well as the tissue samples 

within a week of deposition. This indicates when all other factors are similar, blood 

exhibits degradation of DNA faster than that in the dry state. This is likely due the ability 

of different damage reagents to act in solution by either diffusion of radicals or hydrolysis 
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reactions.  

 Forensic physiological stains are subjected to an array of biotic and abiotic factors 

that can damage DNA. UV light, heat, humidity, and microorganisms could induce 

lesions as well as strand breaks to the DNA. After death, the cell releases nutrients that 

encourage the growth of these microbes, which in turn induce strand breaks (115). Stains 

deposited near soil sites could also become damaged by soil microorganisms that contain 

nucleases capable of breaking down the structure of DNA (47).  

Atmospheric conditions also impact the intensity of damage on the samples. The 

sun’s rays contain UVB and UVA radiation which can cause in the formation of 

cyclobutane pyrimidine dimers, 6-4 photoproducts and strand breaks. UV light can also 

lead to oxidative damage through several mechanisms. UVA light can excite oxygen 

molecules by photosensitizer reactions, while UVB can cleave cellular water, leading to 

the formation of reactive oxygen species (ROS) (116). ROS can participate in chemical 

reactions resulting in the formation of 8-oxo-guanine, the most predominate oxidative 

lesion (117).  These oxidation lesions typically result in base modification rather than 

inhibition of polymerase extension.   

 Humidity and heat could also promote the degradation of nucleic acids. Many 

microbes thrive under these environmental conditions (45). These factors could also 

increase the nuclease activity of the enzymes leading to increased strand breaks. Moisture 

due to humidity results in DNA adopting the biological B confirmation rather than the 

more compact A form characteristic of dehydrated DNA, which contains more base pairs 

per helical turn and tighter rotational turn angle. B form DNA is more susceptible to UV 
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damage as the base stacking favors the formation of cyclobutane pyrimidine dimers. Heat 

can increase the generation of ROS and hydrolytic reactions in solution, resulting in 

increased oxidative damage and strand breaks (48).  

Environmental damage to the primary structure of DNA is common to 

physiological stains discovered at the scene of the crime. These alterations diminish the 

ability to recover STR profiles from the DNA. The goal of this research was to detect the 

level of UV and oxidative damage in “case like” samples that are fully exposed to the 

environment. Detection of the type and intensity of damage imposed on DNA is the first 

step in developing a protocol for DNA repair.  Using an assay previously developed to 

detect laboratory induced damage, environmentally damaged samples were quantitatively 

and qualitatively analyzed on native agarose gels following digestion by glycosylase and 

S1 nuclease.  

Materials and Methods 

Environmental Damage 

Fresh blood was taken from two unrelated donors by venipuncture. The blood was 

stored in vials containing 7.2mg EDTA (Fisher Scientific, Norcross GA) and 

immediately spotted on previously bleached then dried cotton substrate within 24 hours. 

EDTA is used as an anticoagulant to prevent clotting of the blood. The bleached cotton 

substrate was stapled to Whatman grade no. 42 filter paper (Fisher Scientific) and an 

identification card. 20 blood stains containing 50 µl of blood were spotted on each card. 

The cards containing the blood spots were dried under a fume hood overnight then 

transported to a secure, outside location. 
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Samples exposed to the environment were pinned to poster board. The poster 

board was held down with bricks. Each identification card corresponded to a different 

time point. Time points ranged from no exposure to 6 months (Table 1). The temperature, 

humidity, and precipitation were recorded for each week from the Lincoln, NE airport 

(KLNK). When collecting each time point, a photograph was taken to record the state of 

the sample, then the sample was placed in a plastic bag as to avoid exposure to water 

while being stored in the freezer. The samples were stored at -20 °C until DNA 

extraction.  

DNA Extraction 

DNA extraction was performed using the QiaAmp DNA Blood Mini Kit (Qiagen, 

Valencia, CA). Each blood stain was cut into pieces and placed into an extraction tube. 

After adding the sample to the tube, 400 µl of 1x sterile PBS (Fisher Scientific), and 20 

µl Qiagen protease were added to each sample and vortexed. 400 l Buffer AL was 

combined with the previous solution and mixed quickly to ensure proper digest of the cell 

membrane. Samples were incubated at 56°C for 10 minutes. After incubation, 400 μl 

absolute ethanol was added. The cotton substrate was removed and placed into a new 

tube containing a spin basket, then centrifuged at 17,000 g for 5 minutes. The liquid from 

both tubes was then centrifuged at 6000 x g for 1 minute in a QIAamp Mini spin column 

with 700 μl aliquots until all of the liquid had passed through the column. The filtrate was 

discarded and 500 μl Buffer AW1 was added to the column without wetting the rim, then 

centrifuged at 6000 x g for 1 minute. The filtrate was discarded again and 500 μl Buffer 

AW2 was added to the column, then centrifuged at 6000 x g for 3 minutes. Filtrate was 

removed and the solution centrifuged at 6000 x g for 1 minute to ensure no buffer AW2 
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remained. Finally, the DNA was eluted by the addition of 50 µL of sterile water, 

incubated at room temperature for 1 minute, and then centrifuged at 6000 x g for 1 

minute.  

 In some cases, DNA was extracted from more than one stain for a given time 

point to increase yield. In this case, the volumes of extracted DNA were combined into a 

single 30 K Amicon ultra centrifugal filter device (Millipore Corporation, Billerica, MA, 

USA) followed by centrifugation at 3,500 x g for 45 minutes. The filter was washed 

twice with 400 µL of water and spun down each time at 3,500 x g for 45 minutes. The 

filter was then inverted and centrifuged at 1,000 x g to remove the DNA.  

qPCR 

The DNA from each time point was quantified by qPCR using SYBR green 

chemistry. The forensic protocol for quantification was developed from Nicklas and Buel 

(118).  A standard curve was obtained using a human DNA standard denoted A314 

(Promega, Madison, WI, USA). The eight standard concentrations ranged from 50 ng/µL 

of DNA to 0.023 ng/µL with a 3x dilution between standards. The master mix contained 

0.4 pmoles of Alu PCR primers GTCAGGAGATCGAGACCATCCC (forward) and 

TCCTGCCTCAGCCTCCCAAG (reverse) (Sigma-Aldrich, St. Louis, MO) and 1x 

SYBR® Select Master Mix (Life Technologies Carlsbad, CA, USA). The total reaction 

consisted of 8 µL of master mix and 2 µL of DNA template.  PCR was performed using 

the CFX connect Real Time Detection instrument (Bio-Rad, Hercules, CA, USA)  with 

an initial denaturation of 95°C for 2 minutes followed by 30 cycles of 95°C denaturation 

for 15 seconds, 68°C annealing for 30 seconds, and 72°C extension for 30 seconds. Melt 

curve analysis was performed starting at 72°C and raising 1°C every 5 seconds until 95°C 
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was reached. This was performed to determine if multiple products were being formed 

through during the reaction. Results were visualized using CFX Manager™ Software 

v3.1 (Bio-Rad). 

Glycoslyase plus S1 reaction 

In a 10 µl reaction, 15 ng of DNA substrate was first digested with either FPG, to 

detect oxidative damage, or T4PDG, to detect cyclobutane pyrimidine dimers, in 2 µL of 

glycyl-glycine buffer compatible with both the glycosylase reaction and the subsequent 

S1 reaction (.22M glycylglycine buffer (pH 6.8 at 25°C), 1 M NaCl, 4.3 mM DTT, 27% 

glycerol in water).  After overnight incubation at 37°C, the reaction was stopped with 

heat at 65°C for 20 minutes. In the same tube, 5 units of S1 nuclease were then added to 

the glycosylase digested samples along with 2 µL of the same glycyl-glycine buffer, 

0.001M zinc acetate, pH 4.02 (Amresco LLC Solon, OH), and 0.3M NaCl in a now 20 

µL reaction. As previously mentioned, Zinc acetate was added to decrease the pH of the 

solution which favored S1 nuclease activity. Zinc acetate and sodium chloride were 

added as cofactors for the reaction. The S1 reaction was incubated at 37°C for 1 hour 

then stopped by addition of 2 µL of 0.5 M EDTA and heat at 70°C for 10 minutes. 

Average Length Analysis 

 Gel images were analyzed using Quantity One 1-D Analysis Software Version 

4.6.9 (Bio-Rad). Each lane was divided into multiple boxes that covered the fluorescent 

smear of DNA, so that the volume and molecular weight of each box could be calculated. 

The molecular weight standards, λHindIII and the 100 bp ladder, were used to generate a 

dispersion curve based on the distance traveled along the gel. After the molecular weight 
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of each box was calculated, that value was multiplied by the percentage of the volume 

that the box occupied as part of the entire volume of the fluorescent smear. The final 

average molecular weight was generated by adding up these percent molecular weight 

values.  

STR analyses  

One nanogram of DNA was amplified using a PCR master mix containing 

multilocus PowerPlex primers. The 25 µL reaction mix consisted of 0.5 units of GoTaq® 

DNA polymerase (Promega), 1x Colorless GoTaq® Flexi Buffer (Promega),  2.5 mM 

MgCl2 (Promega), and 250 µM DNTPS (Promega), and 2 µL of PowerPlex primer mix. 

Thermocycling was performed using the Geneamp PCR system 9700 instrument 

(Applied Biosystems Foster City, CA, USA). Cycling conditions included: an initial 

denaturation temperature of 95°C for 5 minutes, 10 cycles of a denaturation at 94°C for 

30 seconds, annealing at 60°C for 30 seconds, extension at 70°C for 45 seconds, 22 

cycles of a denaturation at 90°C for 30 seconds, annealing at 60°C for 30 seconds, 

extension at 70°C for 45 seconds, with a final extension of 60°C for 30 minutes.  

Post PCR Detection 

Post PCR product was detected by injection into the 3130 genetic analyzer 

(Applied Biosystems). A 0.5 µL aliquot of post PCR product was added to 9 µL of Hi-Di 

formamide (Life Technologies) and 1 µL of ILS 600 (Promega). ILS serves as a positive 

control and molecular marker for the base pair length. The plate containing the samples 

was heated at 95°C for 3 minutes then snap cooled to 4°C for 3 minutes to separate the 

strands of DNA. The samples were injected into the capillary using the 
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PPPLEX16_AUG_2011_5V_5S protocol (5s injection, 15 kV, 60°C) with foundation 

data collection software version 3.0 (Applied Biosystems). Amplicons were separated by 

electric current through the POP 7 polymer (Life Technologies) and then excited when 

reaching the laser detection window. The resulting fluorescence was measured in RFU by 

Genemapper software version 4.0 (Applied Biosystems).  

Results and Discussion 

Environmental Conditions  

Blood stains were exposed to direct sunlight in an unenclosed patio starting in 

July 2013 in Lincoln, Nebraska. The samples were left uncovered and fully exposed to 

environmental insults, including moderate to high temperatures, precipitation, and high 

humidity. Table 1 shows the recorded weather results for each time point. Precipitation 

first accumulated on the samples within three days of being deposited. High humidity 

values started around 95% and decreased with time. The average high temperature 

remained around 27°C for the first month and after six months this value decreased to 

19°C. The pictures taken of the bloodstains show fading and color change with time 

(Figure 21). Rain is likely to be the cause for the fading of the stains as the heme in the 

blood was washed away from the cotton substrate. Aging of the bloodstains results in 

oxidation of the iron atoms which changes heme to hematin (119). This could explain the 

color change from dark red to brown seen in the aged samples.  

Quantification of DNA in Environmental Samples 

The bloodstains were quantified by qPCR to determine the concentration of DNA 

(Table 2). The graph below Table 2 shows that the amount of DNA increased from the 0 
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day time point to the 5 day time point. It is possible that this is the result of jumping PCR. 

Jumping PCR occurs when the DNA template becomes damaged and fragmented so that 

these degraded fragments could act as primer for the extension of other PCR products 

(120). Here, environmental insults could have yielded fragmented DNA, which served as 

PCR primers. Thus, a potential increase in available primers could lead to an increase in 

the amplification of DNA during qPCR cycling, resulting in a lower quantification cycle 

(Cq) that could be interpreted as a higher DNA starting concentration. The Cq denotes 

the PCR cycle at which the relative fluorescence signal passed the threshold value. Thus, 

a lower Cq value would correlate to higher amount of starting template. After day 5, there 

is a sharp decrease in the quantified DNA template. Microorganisms are capable of 

colonizing a bloodstain within one day and produce nucleases that induce strand breaks 

(121). This, in combination with the hydrolysis reaction from the moisture of the rain 

water and possible washing away of the DNA from the cotton substrate, could be 

possible reasons for the low quantifications seen after five days of environmental 

exposure. This added hydration could be from rainfall as precipitation more than doubled 

between the day 5 and day 14 samples.  

As was previously determined, the glycosylase plus S1 assay was found to have 

reliable sensitivity down to 10 ng of DNA (Chapter 2, Figure 20). It was determined that 

day 0, day 3, and day 5 samples contained sufficient quantities of DNA for analysis with 

this assay. Because it was suspected that the day 5 samples had an artificially higher 

concentration due to jumping PCR, a lower concentration for the day 5 sample was 

estimated using a linear regression line derived from the data points of the day 3 and day 

14 samples. This estimated concentration for day 5 was determined to be 2.9 ng/µL. 
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Experimental Design 

 After determining DNA concentrations for environmentally damaged samples, the 

samples were analyzed using both the T4PDG and FPG plus S1 assays to detect both UV 

and oxidative damage by CPD and 8-oxoguanine presence. The T4PDG plus S1 assay 

was employed for the determination of UV damage. This assay detects CPDs which are 

the primary form of damage by UV light when DNA is in the physiological B form 

confirmation, which is associated with hydrated DNA. Oxidative damage was determined 

through the formation of 8-oxoguanine. The FPG plus S1 reaction recognizes this lesion. 

Briefly, the glycosylase enzyme, either FPG or T4PDG, recognizes the damaged base, 

removes the lesion, and leaves a single strand gap. S1 nuclease then cleaves the strand 

opposite the single strand nick to produce apparent double strand breaks (DSB) that is 

visualized by native agarose gel.   

 For both assays, the no exposure and damaged samples for both control genomic 

DNA and the positive control oligo were included to validate the glycosylase plus S1 

reaction (Figure 22 and 23). The oligo controls contain either a high number of thymine 

dimer, used in UVC3BPDAM to detect CPDs, or a high number of guanines, used in 

AluSx to detect 8-oxoguanine. The Nt.BstNBI enzyme with and without S1 digestion was 

used as a positive control for the activity of the S1 enzyme. Control genomic DNA that 

was not subjected to either incubation or damage was used as a control to ensure no 

DSBs are produced during extraction process or dehydration/rehydration of the sample. 

All samples were incubated in the presence and absence of enzyme. For the 

environmental samples, this was useful for determining the amount of strand breaks 

present before the addition of the enzymes. Comparison of the enzyme digested samples 
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to the no enzyme controls revealed what component of the visualized fluorescent smear is 

due to oxidative DNA damage because the enzyme digested DNA contained more strand 

breaks than the no enzyme digest control. A smeared fluorescent pattern indicated the 

presence of strand breaks, as the smaller fragmented DNA migrated a farther distance 

towards the anode.  

Oxidative Damage in Environmental Samples 

 Upon visual inspection, the environmentally damaged samples contained 

increasing strand breaks with increasing days of exposure in the samples without enzyme 

digestion (Fig. 22, lanes 8-10). With enzyme digestion, a regression of the high molecular 

weight band and a decrease in the number average molecular weight (NAMW) was 

observed (Fig. 22, lanes 1-3). NAMW is used to determine the molecular weight of 

polymers and is defined as the total molecular weight of the sample divided by the 

number of molecules in the sample. This decrease in NAMW continued with prolonged 

exposure to the environment. A smear pattern was visualized in the oligo control for only 

the 60 minute damaged sample digested by FPG (Fig. 22, lane 7). For the genomic 

controls, 15 minutes of oxidative damage was also demonstrated a reduced NAMW 

compared to the no enzyme controls (Fig. 22, lane 5).  This indicates that the FPG plus 

S1 reaction functioned as was demonstrated previously (Fig. 18, chapter 2).  Degradation 

of the high molecular weight band in the S1 digested Nt.BstNBI substrate confirmed that 

the S1 enzyme reaction functioned correctly (Fig. 22, lane 15). A genomic DNA control 

not subject to incubation was included for comparison to the no enzyme controls to 

ensure few strand breaks are induced due to heat (Fig. 22, lane 17). 

 The presence of oxidative lesions with increasing exposure could be due to 
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various factors. Oxidative damage is a result of the aerobic metabolism of 

microorganisms. These organisms are known to rapidly colonize biological fluids present 

outdoors. The added hydration from rainfall could lead to greater diffusion of free radical 

species, which would allow microorganisms to better access the DNA and produce 

oxidative lesions. Finally, the UV exposure to the samples could lead to production 

singlet oxygen or hydroxyl radicals from cleavage of the water molecules surrounding the 

cell. As stated, hydroxyl radicals can participate in ROS-mediated reactions to produce 8-

oxo-guanine.  

UV damage in Environmental Samples 

 For the T4PDG plus S1 reaction, the same environmentally exposed DNA 

template was used (Figure 23). Again, the genomic DNA and positive control oligo were 

included for validation of the T4PDG plus S1 reaction. S1 enzyme controls and no 

incubation genomic DNA were also included as controls for the reaction. Samples were 

grouped by the presence or absence of enzymes during incubation. No enzyme 

environmental controls appeared to have the same general smearing pattern as was seen 

with the no enzyme controls during the FPG plus S1 experiment (Fig. 23, lanes 8-10). A 

decrease in NAMW was visualized in the day 5 sample incubated with both enzymes 

when compared to the no enzyme control indicating the presence of CPD damage (Fig. 

23, lanes 3 and 10). The genomic DNA control only showed the presence of smearing 

when exposed to UVC damage and digestion by T4PDG (Fig. 23, lane 5). The damaged, 

digested oligo control exhibited a slight reduction in NAMW as compared to the no 

enzyme control (Fig. 23, lane 7). Taken together, the T4PDG enzyme detected CPDs 

present in the damaged samples. The Nt.BstNBI control confirmed that S1 digestion 
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results in the formation of double strand breaks (Fig. 23, lane 15). Again, genomic DNA 

not subjected to incubation was included to compare to the no enzyme controls that 

underwent incubation (Fig. 23, lane 17).  

Number Average Molecular Weight 

Densitometry analysis of the samples was performed to quantitate the difference 

in number average molecular weight (NAMW) between the various samples (Table 3). 

Comparison of the no enzyme controls to the digested samples indicated that larger 

differences in NAMW resulted from the cleavage of damage lesions as the environmental 

exposure increased. FPG plus S1 environmental samples had the largest differences in 

base pairs, indicating more oxidative damage was observed (Fig. 22, lanes 3 and 10). 

Large differences in the genomic control samples demonstrated the ability of the FPG 

and T4PDG enzyme to decrease the average molecular weight by inducing apparent 

double strand breaks after digestion with both enzymes (Fig. 22 and 23, lanes 5 and 12). 

Base pair difference was also calculated for the Nt.BstNBI substrate incubated with and 

without the S1 enzyme (Fig. 22 and 23, lane 15 and 16). A large reduction in average 

molecular weight was seen with the addition of S1 in both experiments, meaning the 

enzyme was able to induce apparent DSB to nicked substrate. Differences when 

comparing the no enzyme, no damage control (Fig. 22 and 23, lane 1) to the enzyme 

digested, no damage control (Fig. 22 and 23, lane 8) could be due to small changes in 

DNA migration of the gel or differences in densitometry readings due to specks of 

fluorescence in the gel.   

 Based on evaluation of the no enzyme controls of the environmentally exposed 

DNA, a significant amount of the damage to the samples appears to be caused by double 
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strand breaks or clustered damage induced by either the processing of the samples or 

environmental factors. The 0 day, no enzyme control indicated that some level of double 

strand breaks were induced, likely due to dehydration and rehydration of the samples and 

possibly due to the extraction process. The NAMW of the no enzyme day 5 sample was 

around 2,000 bp less than that of the no enzyme day 3 and day 0 samples, meaning that a 

significant number of strand breaks were induced before the addition of damage detection 

enzymes. This difference could be due to either hydrolysis as rainfall accumulated 

between the day 3 and day 5 samples or by microbial digestion of the DNA as these 

organisms are known to induce double strand breaks. T4PDG and S1 digestion resulted in 

a decrease of 1,700 bp, meaning that CPD formation was present. The added hydration 

could have promoted DNA to adopt the physiological B conformation resulting in greater 

probability of CPD formation. CPDs are typically observed less frequently in the 

dehydrated A conformation. 8-oxo-guanine was observed at a higher level than CPDs as 

incubation with FPG and S1 resulted in a reduction of the average molecular weight by 

2,200 bp. This does not appear to be unusual as oxidative damage can result from UV 

light and microbe metabolism (Fig. 22, lanes 1-3). Iron found in heme of the red blood 

cells could participate in Fenton reactions to generate OH radicals also leading to 

oxidative damage (122). 

STR Profiling  

To evaluate the effect the damage induced to the environmentally exposed 

samples has on the ability to generate a genetic profile, STR profiling was performed 

(Figure 24). Each sample was analyzed using a 16 loci multiplex containing PowerPlex 

primers. It was determined that five days of environmental exposure was not enough to 
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result in allelic drop out. The 0 day, 3 day, and 5 day time points profiles all contained 

full profiles. Though strand breaks and base modifications were observed in the samples, 

the damage was not sufficient enough to stall polymerase action. As stated earlier, 

quantifications of DNA dropped markedly after 5 days from 2.9 ng/ul to 0.09 ng/ul. Thus 

less template was available for analysis. Only those samples that could be compared to 

the glycosylase plus S1 assay were evaluated with STR profiling.    

Conclusion 

 DNA damage as a result of environmental insults is a common reason that genetic 

profiles are unable to be obtained from samples collected at outdoor crime scenes. Repair 

of these lesions could aid in the recovery of this genetic information.  The first step 

toward repairing environmentally damaged DNA is to detect the type and intensity of 

damage imposed.  In this study, assays were employed that were previously developed to 

detect damage from 2 types of environmental insults: UV and oxidative. Samples 

exposed to the environment were evaluated with the glycosylase plus S1 assay to 

determine the amount of UV and oxidative damage observed with time. Due to low DNA 

quantification, not all time points could be tested and thus the information gathered was 

limited; however, differences between the no enzyme control and those incubated with 

both enzymes demonstrate alterations to the primary structure of DNA by oxidative and 

UV damage. For both 8-oxoguanine and CPD formation, base alterations were observed 

within 3 days of being deposited outside. This difference was confirmed through 

densitometry analysis and determination of the average molecular weight of the degraded 

DNA. Oxidative damage appeared to be present in a higher quantity than UV damage 

after 5 days. This finding had yet to be determined in the literature as previous assays to 
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detect oxidative damage in physiological stains were either concealed by strand breaks 

induced by other damaging agents or did not possess the sensitivity to detect these 

lesions. 

Strand breaks were observed with increasing environmental exposure in the no 

enzyme incubated samples. These breaks are likely due to nuclease digestion by 

microorganisms and hydrolysis reactions. After rainfall at day 3, a greater increase in this 

damage was observed. Generally, microorganism growth and hydrolysis rates are 

accelerated in the presence of water. UV and oxidative agents are also capable of 

inducing single strand breaks to the primary structure of DNA. This is consistent with 

literature as other studies have found strand breaks to be a major insult in physiological 

stains (40,41). Strand breaks observed in the 0 day time point are likely due to 

dehydration and rehydration of the sample. 

In addition to strand breaks, hydration could also have played a role in the 

formation of UV and oxidative DNA damage lesions. An aqueous solution could further 

enable hydroxyl radicals to access the DNA to form 8-oxoguanine lesions, while also 

allowing DNA to adopt the B form confirmation. Researchers have proposed that DNA in 

the B form is more suitable to CPD formation due to the spatial relationship of the bases 

in this confirmation (40). The high humidity environment could also increase hydration 

levels that play a role in DNA confirmation as well as diffusion of damaging agents. Heat 

is likely to increase hydrolytic reactions and the generation of ROS species that 

participated in oxidative damage and stand break formation. 

 Taken together, these results demonstrate that UV and oxidative damage is 
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present in environmentally exposed DNA within a short time span of being deposited 

outside, but strand breaks appear to account for the majority of damage. Different 

environmental scenarios must also be assessed to determine the effect on oxidative and 

UV damage levels. Samples placed in different environment locale, different seasons, and 

different geographic locations would be useful to determine the level with which these 

factors affect damage to DNA within physiological stains. Increased knowledge of 

environmental DNA damage would be useful for forensic investigators at the scene to 

understand the length of time before DNA is too degraded to generate a profile. It would 

also benefit forensic researchers studying repair of the DNA and recovery of genetic 

profiles.  

  



93 

 

FIGURES 
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Figure 21. Physical State of Blood Stains. Blood stains subjected to environmental 

damage for time points ranging from 3 days to 180 days. Pictures were taken after 

removal from the environment and dried under a fume hood overnight.  
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Lane number 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 

Environment 
Damage (days) 

0 3 5 0 0 0 0  0 3 5 0 0 0 0 0 0 0 

Damage 
(minutes) 

0 0 0 0 15 0 60  0 0 0 0 15 0 60 0 0 0 

FPG + + + + + + +  - - - - - - - - - - 

S1 + + + + + + +  - - - - - - - + - - 

Nt.BstNBI - - - - - - -  - - - - - - - + + - 

Avg. MW (bp) 5.3k 4.7k 1.9k 14k 5.4k 610 490  5.8k 6k 4.2k 15k 19k 610 620 10k 16k 18k 

       

Figure 22. FPG plus S1 Assay to Detect Environmental Oxidative DNA Damage. 

Native agarose gel illustrating double strand breaks seen in DNA samples after exposure 

to environmental conditions. Samples were incubated with FPG and S1 to detect for the 

presence of oxidative damage. Controls were included to determine enzyme activity. 

Damage denotes the length of time the samples were exposed to incandescent lamp light 

during the oxidative damage protocol. Both λ HindIII and a 100 bp ladder were included 

for molecular weight evaluation. 
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Lane number 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 

Environment 
Damage (days) 

0 3 5 0 0 0 0  0 3 5 0 0 0 0 0 0 0 

Damage 
(J/cm2) 

0 0 0 0 0.8 0 6.6  0 0 0 0 0.8 0 6.6 0 0 0 

T4PDG + + + + + + +  - - - - - - - - - - 

S1 + + + + + + +  - - - - - - - + - - 

Nt.BstNBI - - - - - - -  - - - - - - - + + - 

Avg. MW (bp) 8.3k 7.4k 2.8k 26k 12k 630 610  8.3k 8.8k 4.5k 26k 18k 680 690 12k 25k 19k 

       

Figure 23. T4PDG plus S1 Assay to Detect Environmental UV DNA Damage Native 

agarose gel illustrating double strand breaks seen in genomic DNA samples after 

exposure environmental damage. Samples were digested with T4PDG and S1 to detect 

for the presence of CPDs. Controls were included to monitor digestion of the different 

enzymes. Damage denotes the length of energy delivered to samples with the UV 

Stratalinker. Both λ HindIII and a 100 bp ladder were included for molecular weight 

evaluation. 
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Figure 24. STR Profiles of the Environmental Samples. From the left: day 0, day 3, 

and day 5 profiles. Because two blood donors were used to generate enough biological 

material for the study, the day 0 samples originated from a different donor than the day 3 

and day 5 samples. Electropherograms were produced by Genemapper software.   
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TABLES 

 

Samples Days Avg high 
humidity(%) 

Average 
humidity(%) 

Precipitation 
(in) 

Days of 
Rain 

Avg high 
temp (°C) 

Day 3 3 92 67 0.72 1 23.5 

Day 5 5 95.2 71.2 0.72 1 26.7 

Day 14 14 93.6 71.8 1.47 3 27.6 

Month 
1 

31 90.7 69.8 1.83 6 29.0 

Month 
6 

180 85.3 64.1 8.09 26 17.8 

 

Table 1. Weather Information of the Samples Exposed to Environmental Damage. 

Information includes the average high humidity, average humidity, total precipitation and 

average high temperature throughout the course of the time point.  
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Samples Days quantification 
(ng/ul) 

volume 
(ul) 

yield (ng) yield (ng) 
per stain 

Day 0 0 1.27 45 57.15 14.2875 

Day 3 3 4.18 45 188.1 47.025 

Day 5 5 6.97 44 306.68 76.67 

Day 14 14 0.0976 45 4.392 1.098 

1 month 31 0.001 47 0.047 0.01175 

6 months 180 0.000211 46 0.009706 0.002427 

 

                   

 

 

Table 2. Quantification of the Environmentally Exposed Samples by qPCR. 

Quantification values generated by CFX manager software. A graph was generated from 

the total quantity of DNA related to the days of environmental exposure.   
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Average 
bp +FPG 

Average 
bp -FPG 

Difference 
in bp 

0 day 5285.4 5825.9 540.6 

3 day 4733.4 6022.9 1289.5 

5 day 1881.6 4168.6 2287.0 
0 min 
genomic 14320.2 14675.3 355.0 
15 min 
genomic 5446.0 18506.0 13060 

0 min Alusx 610.4 611.0 0.58 

60 min Alusx 491.2 622.5 131.3 

 

 
Average 
bp +S1 

Average 
bp -S1 

Difference 
in bp 

+NtBstNBI 9663.805 16170.72 6506.916 
 

 

Table 3. Average Molecular Weight Values Associated with the Oxidative Damage 

Assay. Values were calculated by dividing each fluorescent stain into smaller portions 

and adding the percentage molecular weight of each division. Information about the 

molecular weight was generated by quantity one software and the final values were 

calculated in Microsoft excel.   
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Average bp 
+T4PDG 

Average bp 
-T4PDG 

Difference 
in bp 

0 day 8239.2 8285.8 46.6 

3 day 7381.1 8861.9 1480.8 

5 day 2791.6 4504.3 1712.7 

0 min genomic 25639.3 25987.2 347.8 

15 min genomic 12252.8 18147.6 5894.8 

0 min UVC3BP 627.8 677.2 49.4 

60 min UVC3BP 608.5 695.3 86.8 

 

 
Average bp 
+S1 

Average bp 
-S1 

Difference 
in bp 

+Nt.BstNBI 12206.5 24518.9 12312.4 

 

 

Table 4. Average Molecular Weight Values Associated with the UV Damage Assay. 

Values were calculated by dividing the fluorescent staining into smaller portions and 

adding the percentage molecular weight of each division. Information about the 

molecular weight was generated by Quantity One software and the final values were 

calculated in Microsoft excel.   
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