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Chemical treatment and decreased particle size are methods used to improve 

digestibility and utilization of the available nutrients in low quality forages. Previous 

research has indicated that chemically treated corn residue can take the place of corn 

when included in finishing rations containing distillers grains. Also, decreasing particle 

size utilizing methods such as pelleting has been shown to improve DMI and ADG. 

However, limited research has been completed on use of chemical treatment and pelleting 

in growing and receiving rations. Also, an ideal distillers inclusion has not yet been 

identified when including alkaline treated stalks in finishing rations. Therefore, a 

finishing study, a receiving study, two growing studies, and a digestion study were 

completed to evaluate the effects of alkaline treatment and pelleting on cattle 

performance, carcass characteristics, and diet digestibility. For the finishing study, data 

suggest that feeding 10 or 20% treated corn residue with 40% modified distillers grains 

plus solubles (MDGS) gives comparable performance and carcass traits compared to a 

corn based control diet. However, if 20% MDGS is fed no more than 10% treated residue 

should be included. Growing studies indicated that chemical treatment improved DMI, 

ADG, and G:F when compared to untreated equivalents. However a greater G:F 



 

 

 

 

improvement (8%) was noted with treated wheat straw, while a 2% improvement was 

observed for treated corn residue. For the digestion study, chemical treatment was not 

shown to improve residue digestibility in growing calves. Pelleting was shown to 

improve DMI and ADG, however better G:F was noted with unpelleted diets fed to 

growing calves. When a pelleted complete feed was tested as a receiving ration, DMI was 

improved due to pelleting however ADG and G:F did not surpass observed performance  

paired with the unpelleted control. 
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 INTRODUCTION  

 Throughout history, the majority of beef consumed was slaughtered directly off of 

grass. However, due to the worlds growing population and continued demand for animal 

proteins, a significant beef supply cannot be provided solely on roughages. To keep up 

with increasing demand and to utilize surplus grains, the cattle feeding industry 

developed in the 1940s and 1950s (Corah, 2008) since diets high in energy increase feed 

efficiency and growth. In recent history however, corn use as a primary ingredient has 

been problematic because of food vs. fuel competition. High prices are partially due to 

ethanol production but were also affected by the drought that encompassed the central 

portion of the United States. Alternative feedstuffs are needed in order to decrease 

producers input costs. 

 More land has been transitioned to farm ground for corn production because of 

improved profitability. One possible low cost feed alternative resulting from corn 

production is corn residue. At least 1 kg of residue is produced in the field for each 

kilogram of grain produced (Fahey et al., 1993; Klopfenstein, 1978). In 2013, an average 

of 4,034 kg of grain per acre was produced in the United States (NASS, 2014), which 

means 4,034 kg of corn residue production per acre. The majority of this residue remains 

in the field post-harvest. With future technological advances in crop production, grain 

yield will continue to increase resulting in increased residue too. Therefore, a review of 

literature was completed to understand various ways to optimize the use of corn residue. 

   

   

 



11 
 

 

 

Distillers Grains 

 The rapid growth of the ethanol industry has positively impacted beef cattle 

production due to the availability of distillers co-products. Two-thirds of corn grain is 

starch (Stock et al., 2000). Because starch is removed during the distilling process of 

ethanol production, the nutrients remaining in the corn kernel are increased 3-fold when 

compared to corn grain (Klopfenstein, 2008). With the addition of starch to high forage 

diets, ruminal organic acid production is increased (Burrin and Britton, 1986). Decreased 

ruminal pH leads to competition between starch and fiber fermenting bacteria, and 

consequently decreased fiber digestion (Stalker et al., 2010). However due to absence of 

starch, distillers grains do not cause negative associative effects on fiber digestion 

(Stalker et al., 2010), and reduce the risk of acidosis (Stock et al., 1990). Corn-coproducts 

contain highly digestible fiber that does not disrupt digestibility of forage fiber (Stalker et 

al. 2010), improving overall dietary forage digestion and utilization.  

Wet distillers grains (35% DM; WDG) can be dried to create modified distillers 

grains (50% DM; MDG) as well as dried distillers grains (90% DM; DDG). However, 

moisture level impacts performance. According to a meta-analysis by Bremer et al. 

(2011), WDGS contains 130-143% the feeding value of corn across inclusion levels. In 

the same analysis, MDGS were found to be 117-124% that of corn, while DDGS was 

112% of corn over all evaluated concentration levels (Bremer et al., 2011). Dry matter 

intake has been shown to increase with increasing distillers DM% while improvements in 

ADG and G:F are noted with increasing moisture content (Firkens et al., 1985; Nuttelman 

et al., 2011) indicating a response to increased dietary energy. An eight study meta-

analysis completed by Bremer et al. (2008) compared various dietary inclusions of 
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WDGS (0-50%, DM basis). Dry matter intake was greatest at the 20% inclusion level 

(10.33 kg/d) with the highest ADG being observed at the 30% level. However, a linear 

increase was observed for G:F with greatest efficiency (0.174) noted at the 50% level. In 

all diets, WDGS was shown to have an improved feeding value (126-145%) when 

compared to the corn based control. In a study by Vander Pol (2006), greatest ADG and 

G:F was observed with 30 and 40% WDGS inclusion with optimal ADG occurring at 

30% and maximum efficiency at 40%. Despite increased cattle performance, some have 

found decreased DM and OM digestibility in distillers grain diets when compared to corn 

based (May, 2008; Corrigan et al., 2009; Vander Pol et al., 2009). However, Corrigan et 

al. (2009) speculated that decreased digestibilities were most likely due to increased 

intake of the WDGS diets leading to increased passage rates and therefore decreased 

digestibility.  

 Lipids  Distillers grains contain a high lipid content of approximately 11.9% 

according to a six plant average collected by Buckner et al. (2011). This high fat content 

could be partially responsible for increased feeding value when compared to corn. 

However, if large amounts of distillers are fed, DMI may be inhibited if dietary fat 

exceeds 8% (Zinn, 1994). Because corn is the initial product of the distillers grain 

process, its seems practical to assume that corn oil and distillers lipids would be 

comparably metabolized. However, Vander Pol et al. (2009) compared dry rolled corn 

(DRC) diets with supplemental corn oil with a WDGS based diet. Corn oil was added to 

the diets to create a fat content similar to that of the distillers grains diets. It was 

concluded that fat provided from WDGS and corn oil were digested differently. Total 

tract digestibility of fat as well as DMI in the WDGS diet was greater when compared to 
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DRC with corn oil. This occurrence was due to increased ruminal hydrogenation of the 

corn oil fatty acids when compared to the lipids in WDGS. Additionally, Duckett et al. 

(2002) stated that additional corn oil inclusion led to increased ruminal biohydrogenation 

of 18- carbon unsaturated fatty acids. Plascencia et al. (2003) explained that reduced 

intestinal digestibility of fat is due to extensive ruminal biohydrogenation. However, fat 

found within distillers grains may be partially protected from complete ruminal 

biohydrogenation, allowing for an increased fatty acid flow to the duodenum (Vander Pol 

et al., 2009). Nutrients absorbed in the small intestine can be utilized by the animal more 

efficiently (Vander Pol et al., 2009), which could explain the increase in feeding value.  

 Due to corn oil removal for separate marketing, recent research exploring effects 

of de-oiled distillers grain (9% fat; DM basis) has been completed. Jolly et al. (2013) 

studied the outcome of feeding 40% inclusion of MDGS with oil (11.8% fat) and with 

corn-oil removal (9.2% fat). Cattle fed MDGS regardless of fat content had improved 

final BW, ADG, G:F, and HCW when compared to the corn based control (P < 0.02). 

However, no differences due to MDGS fat content were detected (P > 0.44). In the same 

study, comparable results were observed when comparing de-oiled condensed distillers 

solubles (6.0% fat; CDS) to normal CDS (21.1% fat). In a similar study by Jolly et al. 

(2014) normal (12.4% fat) and de-oiled WDGS (7.9% fat) were fed at three inclusions 

(35%, 50%, 65%; DM basis). Gain of cattle fed de-oiled WDGS diets was increased by 

1% (P < 0.01) when compared to those consuming normal WDGS based diets.  However, 

DMI for de-oiled cattle was numerically improved by 4% (P = 0.52) creating a 2.6% 

numerical G:F improvement (P = 0.58) for cattle fed normal WDGS. To summarize, 

feeding distillers grains after removal of 22 to 36% of the total fat does not statistically 
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impact performance. From this it can be concluded that minimal fat removal does not 

impact DGS performance when compared to a corn based control diet. 

 Protein  Distillers is considered a protein source if fed at 15 to 20% of the diet. 

However, unlike many other sources of protein, over half of CP in DGS is undegradable 

in the rumen (undegradable intake protein, UIP). Distillers grains are approximately 63% 

UIP (Lopez, 2012), subsequently when included in diets as an energy source (>20% 

dietary inclusion) deficiencies in degradable intake protein (DIP) and metabolizable 

protein excess occur (Klopfenstein, 2008). Cattle are capable of recycling excess MP to 

rumen as a source of DIP, therefore supplemental urea is not always required. Stalker et 

al. (2004) tested the effect of added urea to diets with additional MP from DDG and 

found that urea did not improve performance when compared to DDG diets. Jenkins et al. 

(2011) completed two finishing studies where urea supplementation in DGS diets was 

tested. In the first experiment, factors included DDG (10 or 20%; DM basis) either with 

or without supplemental urea. Urea was added at 0 or 0.80% for 10% DDG diets and 0 or 

0.63% for the 20% DDG diets. Diets containing supplemental urea were formulated to 

meet predicted DIP requirement following urea addition. Supplemental urea did not 

affect (P > 0.40) performance, however a 3.5% numerical G:F improvement was noted 

for heifers fed urea and 10% DDG when compared to those fed 10% DDG with no 

supplemental urea. Similarly, numerical increases were observed for final BW (1.2%) 

and ADG (4.8%). This data implies that at 20% DDG, adequate amounts of urea are 

being recycled, and DIP requirements are being met. However, for with diets containing 

only 10% DDG additional dietary urea is necessary. For the second experiment (Jenkins 

et al., 2011), urea was supplemented at 0, 0.5, and 1.0% to diets containing DRC and 
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either 10 or 25% WDGS. All diets were DIP deficient except the one containing urea at 

1.0%. No differences due to urea inclusion were detected for DMI, carcass adjusted 

ADG, final BW (P > 0.30), or G:F (P > 0.11). This suggests that when DGS are fed at 

inclusions greater than 20% (DM basis), recycled urea is an adequate source of DIP 

supporting the results of the first experiment. 

 Sulfur Distillers grains contain an exceptional amount of sulfur (0.79% DM basis; 

Buckner et al., 2008) because of sulfuric acid use during fermentation and cleaning 

throughout the dry-milling process (Vanness et al., 2009). Evidence from Gould (1998) 

and Sarturi et al. (2013) indicates that sulfur toxicity can negatively impact animal 

performance and health due to the potential development of polioencephamalacia (PEM). 

Sarturi et al. (2013) observed decreased DMI and ADG in cattle consuming diets high in 

sulfur. The National Research Council (1996) recommends that sulfur levels not exceed 

0.40% of dietary DM. However, Vanness et al. (2009) and analyzed PEM risk with 

increasing dietary S levels and reported a low PEM incidence (0.14%) up to dietary 

sulfur level of 0.46% (Nichols et al., 2012). However, increasing dietary roughage 

amount may reduce the negative impacts of sulfur (Nichols et al., 2012; Morine et al., 

2014).  

Observed performance improvements with feeding distillers grains have been 

attributed to a variety of factors. Vander Pol et al. (2009) suggested improved cattle gains 

and efficiency are due to greater propionate production and greater fat digestibility of 

distillers grains. Ham et al. (1994) stated that corn replacement with distillers grains may 

cause a shift in organic matter digestion to the small intestine. Previous reports have 

associated a lower tract digestion shift to improvements in efficiency (Blaxter, 1962; 
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Black and Tribe, 1973). However, others attribute improved feed efficiency to a 

reduction in subacute acidosis (Farlin, 1981; Firkens et al., 1985). 

Corn Residue as a Roughage Source 

Cattle are unique in that they are able to consume a variety of diet combinations 

ranging in combination from 100% forage to 100% grain. However, due to increased 

efficiency of production and growth rate, the majority of feedlot diets contain 80 to 85% 

concentrate (Vasconcelos and Galyean, 2007). Unfortunately, diets high in starch can 

negatively impact intake and gain (Stock et al., 1990). Adding fiber to feedlot diets 

reduces the risk of metabolic disorders including acidosis and bloat (Galyean and 

Goetsch, 1993). Therefore, roughages are typically included at an average 8.3 to 9.0% of 

the majority of finishing diets in the cattle feeding industry (Vasconcelos and Galyean, 

2007). However, in a consulting nutritionist survey it was reported that feedlots year-

round roughage averages fall into a range of 0-13.5% of dietary DM (Vasconcelos and 

Galyean, 2007). Vasconcelos and Galyean., (2007) determined that 100% of feedlot 

consultants utilize corn as their primary grain ingredient. Because of its high demand in 

the cattle feeding industry, and other industries such as ethanol production, the amount of 

corn produced annually must be maintained. According to the USDA, a tendency for 

increased corn production has been observed over the previous years, and in 2013, a 

stated 95.3 million acres were planted in the U.S. alone (NASS). For each kilogram of 

grain produced, at least one kilogram of residue is produced (Klopfenstein, 1978). 

Burken et al. (2013a) reported that as corn grain yield is increased, corn plant dry matter 

yield also increases with little effect on nutritive quality. There is no doubt that corn 

residue is abundant. And with continued improvement in grain hybrids and management 
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methods, corn residue production will continue to increase making it an obvious 

roughage option in the feeding industry. 

Cell Wall Development. Energy from forage is largely obtained from 

fermentation of the plant cell wall and solubles by rumen microorganisms. More rapid 

live weight gain requires a large intake of forage and digestibility of these cell walls 

(Wilson, 1993). Unlike seeds, vegetative tissues contain a large percentage (35% to 80%) 

of their OM in the cell walls that provide structural integrity to the plant (Jung and Allen, 

1995).  

The plant cell wall can be separated into distinct portions. The primary cell wall 

makes up the outermost cell wall portion and is laid down while other cells are 

developing and dividing. The primary wall is thin and flexible to allow for elongation of 

the plant cell. The wall of enlarging plant cells is composed of approximately 30% 

cellulose, 30% hemicellulose, and 35% pectin with perhaps 1-5% structural protein, on a 

dry weight basis (Cosgrove, 1997). Cellulose microfibrils linked with hydrogen bonds 

make up the main portion of the primary wall. Adjacent walls are separated by a middle 

lamella, which predominantly consists of unstructured pectic substances.  

When cell elongation ceases, secondary wall thickening begins. During this phase 

the cell wall becomes progressively thicker as it grows from the inner edge of the primary 

wall toward the center of the plant cell (Jung and Allen, 1995). During secondary wall 

growth, cellulose is still laid down however pectins are no longer being placed. 

Deposition of the lignin polymer commences with the initiation of secondary wall 

thickening (Terashima et a., 1993). Inclusion of lignin initially takes place in the middle 

lamella and the primary wall, and then progresses into the secondary wall. This lignin 
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deposition process leads to the largest lignin concentration being located in the outer edge 

of the cell in the primary wall region while the center of the cell remains essentially 

lignin free. Thus, the more mature a plant becomes, the less digestible it will be. 

Carbohydrate Constituents Cellulose is considered a cell wall carbohydrate and 

is also the most abundant component of the cell wall. The chemical structure of cellulose 

is a linear polysaccharide polymer consisting of thousands of glucose monosaccharide 

units connected by beta-acetal linkages. Although cellulose is found in primary and 

secondary cell walls, the degree of polymerization of cellulose is different in each 

(McNeil et al., 1984). Baker et al. (1959) defines degree of polymerization as “an 

estimate of the average number of glucose units per chain forming a sub-unit of a given 

cellulose. This estimate gives an indication of the composition of the cellulose, or the 

predominance of short or long chains”. As a plant matures, the cell walls are thickened 

leading to greater polymerization of the plant. The polymer chains then make up the 

crystalline structure of cellulose. The degree of crystallinity of cellulose has been found 

to affect the rate of degradation by rumen microbes (Siu, 1951). The greater the degree of 

crystallinity, the slower microbial cellulose degradation will be (Baker et al., 1959). 

However, degree of polymerization is not always related to decreased digestibility (Baker 

et al., 1959).  

Hemicellulose is a non-cellulosic carbohydrate whose backbone, complete with 

β1-4 linkages, is similar to that of cellulose with xyloglucans and arabinoxylans being the 

most prevalent. Hemicelluloses form a network with cellulose microfibrils by binding 

with cellulose or attaching contiguous microfibrils, however they are not able to form 

microfibrils on their own.  
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Characteristics of Lignin As a general rule, the development of the secondary 

cell wall is accompanied by lignification. This second wall growth signifies the beginning 

of plant maturity, which agrees with the paradigm of digestibility decreasing as plant 

maturity increases. The negative relationship between the digestibility of forage and 

lignin concentration has been observed for 80 years (Woodman and Stewart, 1932). 

Lignin has been recognized as a limiting factor of total cell wall digestibility as 

lignification negatively impacts polysaccharide degradation by rumen microbes (Jung 

and Deetz, 1993; Chesson, 1993; Akin et al., 1975). However, the rate and extent of cell 

wall degradation may be influenced by the concentrations of the distinctly separate lignin 

fractions. 

The two distinctive parts of lignin that are covalently bound to forage cell walls 

are core and noncore lignin (Hartley, 1972; Jung and Deetz, 1993). Core lignins are 

highly compressed polymeric matrices that form covalent links with hemicelluloses. In 

order to determine core lignin content, an acid detergent fiber analysis using 72% H2SO4 

must be completed (acid detergent lignin, ADL; Goering and Van Soest, 1970). The 

mechanisms by which core lignin places a limit on polysaccharide digestion is most 

likely due to its physical protection of cell wall carbohydrates as well as its hydrophobic 

qualitites (Kerley et al., 1988). According to Jung and Deetz (1993) the lack of physical 

access of hydrolytic enzymes to cell wall polysaccharides due to steric hindrance seems 

to be a major limiting factor in cell wall degradation. Furthermore, because of lignins 

hydrophobicity, water is not able to enter the internal portion of the cell wall limiting the 

attachment of hydrophilic enzymes and other rumen microbes. 
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Although greater importance is placed on the relationship between core lignin and 

its effect on digestibility of fiber, noncore lignin concentration has also been found to 

play a role in limiting fiber digestibility. Noncore lignins are classified as low molecular 

weight phenolic monomers with the two major phenols being p-coumaric and ferulic. 

Within the noncore lignins, p-coumaric acid is predominantly correlated with the core 

lignin fraction of cell walls whereas ferulic acid primarily links to the hemicellulose fiber 

fraction (Jung, 1989). Many have stated that noncore lignin may play more of a chemical 

role in reductions of cell wall polysaccharide digestibility because of anitimicrobial 

properties. Akin (1982) found that a 0.1% addition of p-coumaric and ferulic acid to a 

rumen fluid medium resulted in increased lag time or reduced microbial growth rates 

when compared to the control medium. When p-coumaric was added at a 0.2% level, 

degradation of cell walls was prevented when compared to the control where the same 

tissues were rapidly degraded. Similarly, Jung and Fahey (1984) reported a negative 

correlation between both p-coumaric and ferulic acids and fiber digestion in sheep when 

consuming a grass variety when compared to a legume. However, Jung (1985) found 

ferulic acid to have a greater inhibitory impact on cellulose degradability than p-

coumaric. 

Disruption of the carbohydrate binding lignin structure should lead to greater cell 

wall polysaccharide digestibility due to increased attachment and infiltration of rumen 

microbes. Complete core lignin removal from the cell wall with permanganate oxidation 

was shown to increase the microbial degradation of cell wall polysaccharides (Barton and 

Akin, 1977). Kerley et al. (1985) determined that if a portion of the total plant lignin is 

broken down by hydrogen peroxide treatment, this 50% delignification allowed 
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attachment of rumen microbes leading to rapid degradation of carbohydrates. These data 

suggest that chemical breakdown of lignin can increase the efficiency of total cell wall 

degradability.  

Effect of NDF on intake, performance, and rumen metabolism Voluntary 

consumption of feed is a key determinant of cattle performance (Arelovich et al., 2008). 

Although palatability is an important factor when considering intakes (Grovum, 1988) 

forage fiber amount (NDF) is considered a valuable predictor of total amount consumed 

(Van Soest, 1994). Dietary intakes are regulated physiologically by reticulo-rumen fill, 

and also externally by factors such as chemical composition of the diet (Arelovich et al., 

2008). Intakes are negatively impacted and therefore ADG and G:F when NDF is present 

at high levels (Gill et al. 1981). Conversely when roughage NDF is absent, intake is also 

reduced and performance suffers (Mertens, 2010).  Therefore, it is ideal to have a NDF 

optimum. Galyean and Defoor (2002) stated that a low roughage inclusion in concentrate 

diets reduces the potential for digestive upset while maximizing energy intake. In 2001 it 

was determined the nutritionist majority recommended finishing diets contain anywhere 

from 4.5 to 13.5% roughage (Galyean and Gleghorn, 2001). However, according to a 

general nutritionist survey by Vasconcelos and Galyean (2007), the range had been 

narrowed to 8 to 9% roughage. Woods (1969) compared a complete concentrate diet to 

others with increasing roughage inclusion. As roughage increased from 0 to 15 percent, 

the greatest intakes were observed at the 15% inclusion. However the greatest gains and 

efficiency were observed at the 5% roughage level. Arelovich et al. (2008) concluded that 

in finishing beef cattle, DMI was increased 0.21 kg/d for every 1% unit increase in 

dietary NDF within a 7.5 to 35.5% range of dietary NDF. However in the same article, it 
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was concluded that dairy cow DMI declined by 0.21 kg/d for every 1% NDF unit 

increase within 22.5 to 45.8% total dietary NDF. Gill et al. (1981) examined increasing 

roughage blend inclusions from 8 to 24% (1/3 ground alfalfa hay, 2/3 corn silage) of the 

diet combined with corn (high-moisture, steam-flaked, or a mixture of the two). Once 

again, the authors observed greater DMI with increasing amounts of roughage while 

ADG remained constant throughout. The lack of gain improvement resulted in worsened 

G:F with increasing roughage. Bartle et al. (1994) evaluated the effects of inclusion level 

(10, 20, 30%, DM basis) as well as roughage source (cottonseed hulls vs. alfalfa) in diets 

containing steam flaked sorghum. The authors concluded that for both roughages, 

increasing inclusion resulted in increased DMI. No significant difference in ADG was 

observed between 10 and 20% alfalfa, however a decrease occurred after increasing 

inclusion to 30%. In diets containing cottonseed hulls, ADG decreased as inclusion 

increased. 

Consumption of forages is essential as it plays a role in creating the ideal 

environment essential for proper rumen function. Forage fiber maintains rumen activity 

by stimulating contractions and creating a location for microbial attachment so they do 

not leave the rumen prematurely (Tamminga, 1993). Generally speaking, fiber sources 

are less digestible than starches. Therefore, rumination tends increases with roughage 

consumption (Welch and Smith, 1969; Dong Ho Bae et al., 1979). Because rumination 

involves regurgitation from the rumen and then remastication, re-insalivation will occur 

(Ruckebusch, 1988). Due to the buffering qualities of saliva, occurrence of digestive 

upset is further reduced (Church, 1988). Diet composition can also affect the ruminal 

environment, and therefore fiber digestibility. Fiber in forage-based diets has been found 
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to be more digestible than fiber found in high concentrate finishing rations. Mertens and 

Loften (1980) observed that supplementing a high forage diet with starchy concentrates 

increases lag time and decreases fiber digestibility. Most likely the low pH environment 

created by rapid starch fermentation is not an ideal habitat for fiber digesting microbes 

(Mertens and Loften, 1980; Tamminga, 1993, Caton and Dhuyvetter, 1997).  

Roughage in Finishing Cattle Diets Containing Byproducts   

Because starch is removed during the dry milling process, the remaining fiber, 

protein, and fat portions become more concentrated (Bremer et al., 2008). Furthermore, 

the moisture content of WDGS and MDGS improves palatability, and reduces separation 

and sorting of ingredients that are less palatable (Bremer et al., 2008). Also, the protein 

content of DGS reduces the need for other high protein ingredients (Bremer et al., 2008). 

Therefore, adequate performance can be achieved by including cheaper forages of lesser 

quality in distillers grains based feedlot rations. Because dietary fiber is increased when 

starch is decreased (corn-replaced), corn-milling byproducts can also work to reduce the 

risk of digestive upset, therefore improving G:F (Klopfenstein, 2001).  

Research has been completed on increasing forage content in distillers grains 

diets. In a study by Hales et al. (2013) the effects of  increasing roughage inclusion with 

alfalfa at 2%, 6%, 10% and 14% of dietary DM were examined. In each instance, 

increased forage replaced DRC in the diet, while WDGS remained constant at 25%. Dry 

matter intake increased linearly with increased alfalfa hay inclusion. Final BW, ADG, 

and G:F responded quadratically, increasing from 2 to 6%, then decreasing from 6 to 

14% alfalfa hay inclusion. Loza et al. (2010) evaluated effects of increasing 

concentrations of alfalfa hay (0.0, 2.5, 5.0, 7.5%; DM basis) in diets containing 
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increasing concentrations of sweet bran and WDGS. A tendency for DMI improvement 

(P = 0.06) was observed with 7.5% alfalfa hay when compared to diets with less, 

however roughage level did not affect ADG or G:F. When comparing a 0% roughage 

inclusion to 7.5% within a diet containing a 75% byproduct blend, 33% of cattle 

consuming the diet containing no roughage were removed for PEM. A meta-analysis 

completed by Nichols et al. (2012) concluded that as roughage levels increase in finishing 

rations, risk of PEM decreases accordingly. Roughage inclusion in high byproduct diets 

may inhibit negative effects associated with H2S due to its ability to control rumen pH 

(Morine et al., 2014). 

Addition of roughage NDF generally leads to improved DMI which may lead to 

an increased energy intake in many cases. However, it is important that diets are 

formulated to meet a NDF optimum inclusion so that intakes and gain are maximized 

(Galyean and Defoor, 2003). Shain et al. (1999) compared performance of yearling steers 

fed diets with no roughage to diets formulated to provide equal amounts of NDF from 

alfalfa or wheat straw. Roughage diets contained either 10% alfalfa (42.8% NDF) or 

5.2% wheat straw (82.0% NDF), so diets contained approximately 4.27% NDF from 

roughage, with DRC as a primary ingredient. The authors observed that roughage 

addition increased DMI, however there were no DMI differences between the two 

roughage treatments. Increased ADG and improved G:F was observed in cattle 

consuming the alfalfa diet, however no differences in ADG and G:F were detected 

between the wheat straw and no roughage diet. This indicates that replacing a high 

quality forage source with one of lower quality on an NDF basis may not result in 

comparable cattle performance in diets containing DRC. However, others have had 
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greater success utilizing the NDF replacement strategy in distillers grains based diets. 

Benton et al. (2007) evaluated high or low inclusions of varying roughage sources (alfalfa 

hay, corn silage, or corn stalks) providing equivalent concentrations of roughage NDF in 

diets containing 30% WDGS. Alfalfa hay was included at 4 or 8%, corn silage at 6 or 

12%, and corn stalks 3 or 6% of diet DM. Low inclusion diets contained approximately 

2.46% NDF while the high inclusion diets contained approximately 4.93% NDF from 

roughage sources. Both DMI and ADG were improved with roughage addition when 

compared to the 0% roughage control. Significant differences in G:F were not apparent 

between roughage level and source, illustrating the impact that distillers grains have 

when included in diets containing low quality roughages. 

Research has evaluated the effects of distillers grains on NDF digestibility. 

Corrigan et al. (2009) found that NDF apparent total tract digestibility did not vary (P = 

0.80) when 40% WDGS was compared to 0% in HMC, DRC, and SFC diets. Similarly 

Vander Pol et al. (2009) found that NDF total tract digestibility did not differ between 40 

WDGS and a DRC based control. Conversely, Ham et al. (1994) conducted a metabolism 

study where NDF total tract digestibility for a WDGS diet was significantly greater (P < 

0.10) than that associated with a DRC control. Vander Pol et al. (2009) discovered that a 

40% WDGS diet maintained an increased NDF ruminal digestibility when compared to a 

DRC based control. Nuttelman et al. (2011) noted that when 40% distillers grains 

(WDGS, MDGS, or DDGS) diets were compared, no difference in NDF digestibility was 

detected between distillers grains types, however a corn based control diet had a lower 

NDF digestibility (P < 0.06) when compared to WDGS and DDGS. Other studies have 

also noted a lack of significance when comparing NDF digestibility between distillers 
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and corn based diets (Bremer et al., 2010; Pesta et al., 2012). It can be concluded that 

despite decreased digestibility with increased NDF inclusion, the cattle were still utilizing 

the dietary nutrients in the same way. Furthermore, distillers grains contain highly 

digestible fiber which does not compete with microbes when it comes to digestion of 

forage fiber.  

 

 

Chemical Treatment 

The abundance of crop residues makes it a logical ruminant feed source, however 

when grain is harvested, the residues have matured to a state of high lignification. 

Research has been completed indicating increases in digestible fiber with chemical 

treatment, along with improvements in DMI, ADG, and G:F (Klopfenstein, 1978; Berger 

et al., 1979; Galyean and Goetsch, 1993). Treatment of straw with NaOH was first tested 

in Germany during the 1880s. During the period of 1890 to 1917 all treatment methods 

with sodium hydroxide were based around the assumption that boiling followed by a 

washing process was necessary to achieve improved digestibilities (Homb, 1984). 

However, in a paper by Fingerling (1924) it was stated that a low coal supply initiated 

studies of cold treatment with NaOH. “Geheimrat” E. Beckmann at Kaiser Wilhelm-

Institut near Berlin developed the original method of NaOH treatment without boiling 

(Homb, 1984). The original Beckmann method required the straw to be soaked in a 1.5-

2% NaOH solution for 3 days to make up for the low temperature (Homb, 1984). The 

Beckmann method was found to increase OM digestibility of rye straw from 45.7% in 

untreated straw to 71.2% in treated straw with a NaOH inclusion of 1.5% (Homb, 1984). 
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Higher usage rates of NaOH inclusion were not tested in this study. Although there are 

several advantages to this process (Fingerling, 1924), there were two major 

disadvantages. The wastewater was contaminated with residual NaOH making it harmful 

to the environment, and because the treated forages were washed before feeding, a large 

portion of the solubilized fiber was lost (Fahey et al., 1993). However, Thomann (1921) 

found that out of the DM that was retained, almost all of the cellulose remained while 20-

30% of the lignin and 8-15% of the polysaccharides were found to disappear. In the 130 

years since this primary chemical treatment research was completed, chemical treatments 

have dramatically improved. Although techniques have changed, the motives of chemical 

treatment have remained the same. A number of chemicals have been tested, but what 

qualities should the ideal chemical possess? Owen et al. (1984) stated that the ideal 

chemical should: 1) be effective in improving digestibility and/or intake, 2) be 

economically feasible when comparing the cost of treatment to improved nutritive value, 

3) be readily available and remain available, 4) be non-toxic to animals and the 

environment, 5) should be a nutrient in itself that is required by the animal, and 6) be 

non-hazardous to handle and non-corrosive to machinery. Although there are physical 

forms of treatment available in addition to chemical, the hydrolytic and oxidative 

chemical processes will be primarily focused on in this section. Physical forms of 

treatment will be discussed later.  

Forage Response to Treatment. Feed characteristics that should be considered for 

chemical treatment are plant maturity as well as whether the plant is classified as a 

monocot or dicot. Older, more lignified plants are considered ideal for chemical treatment 

since no benefits of chemical treatment have been observed with cell solubles. If the plant 
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in question is not lignified and the cell soluble components are readily available, a 

negative effect will most likely be observed following treatment (Atwell, 1990). When 

plant family is considered, monocots have a greater concentration of both p-coumaric and 

ferulic acid. The presence of these phenols suggests that a large number of 

polysaccharide-lignin bonds are present. Conversely, in dicots polysaccharides and 

lignins exist in in independent sections of the plant (Fahey et al. 1993). Some have 

determined that alkaline treatment of dicots is less effective, suggesting that ester bonds 

of the lignin-hemicellulose complexes in dicots are less prominent than those in 

monocots (Ben-Ghedalia et al., 1982). However, some uncertainty still remains as to 

whether the lignin in monocots and dicots differs enough to affect fiber utilization (Fahey 

et al., 1993). 

Hydrolytic treatment Voluntary intake, ADG, G:F, and digestibility, are often 

enhanced by chemical treatments (Galyean and Goetsch, 1993). Specifically however, 

hydrolytic forms of treatment (NaOH, NH3, Ca(OH)2) have been shown to increase 

digestibility by chemically altering the natural arrangements and bonding of cell wall 

components. Fahey et al. (1993) stated that this occurs mainly by disrupting the lignin-

hemicellulose matrix. Hydrolytic agents are able to solubilize a portion of the 

hemicellulose while the cellulose content remains virtually unchanged (Klopfenstein, 

1978), along with the lignin content (Berger, 1979; Klopfenstein et al., 1972; Ololade et 

al., 1970). Klopfenstein (1978) summarized that the hydrolytic treatment mode of action 

involves: 1) solubilization of hemicellulose, 2) increasing extent of cellulose and 

hemicellulose digestion and 3) increasing rates of cellulose and hemicellulose digestion. 
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Some of the earliest experiments testing chemically treated forages involved 

sodium hydroxide (Homb, 1984; Fingerling, 1924). Because of its historical presence and 

efficacy, NaOH can be considered a cornerstone in the world of chemical treatment. In a 

24 study summary, Fahey et. al (1993) states that following treatment with NaOH, DM 

intake of crop residue was improved by 22%. In the same review, the results of 32 studies 

examining NaOH treated crop residues reported a 30% increase in DM digestibility. 

Klopfenstein et al. (1972) found that treatment of corn cobs with 4% NaOH increased 

DM digestibility by 11.2% when compared to the non-treated control. However, in vitro 

DM digestibility was found to increase 9.7% when in vivo only increased by 2.5%. 

Similarly, Berger et al. (1979) found that in vitro DM digestibility improved with 

increasing level of NaOH treatment but was found to be greater than in vivo at the 4% 

NaOH level. It is possible that the excess sodium intake occurring with NaOH treated 

forages may have a negative effect on digestion thereby explaining why in vivo results 

are less than in vitros. With increasing NaOH inclusion, there is also an observed 

decrease in rumen retention time leading to an increasing escape of potentially digestible 

fiber (Berger, 1979). Willms et al. (1991) established that steers fed an alkaline hydrogen 

peroxide-treated wheat straw (AHPWS) showed a decrease in DM intake when compared 

to a corn silage control. The same steers also had decreased ADG and feed efficiency 

compared to the control ration. The poor performance of the AHPWS diet was partly 

attributed to increased maintenance requirements caused by wetter pens due to increased 

urination. The authors also stated another factor impacting performance could have been 

the negative impacts of increased Na and K intakes on ionophores. Similarly, Spears and 
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Harvey (1987) reported that increasing Na and K in the presence of lasalocid was shown 

to decrease ADG and increase F:G. 

 To avoid the potential risks associated with NaOH treatment, treatment with NH3 

can be utilized. Ammoniation is another form of hydrolytic treatment whose added value 

as a protein source makes it practical (Klopfenstein, 1978) despite the fact that its added 

digestibility is lower than that of treatment with NaOH (Males, 1987). However, 

ammoniation has still been proven to improve both intakes and digestibility (Fahey et al., 

1993; Morris and Mowat, 1980). In a twenty-one study summary, Fahey et al. (1993), 

compared NH3 treated crop residues to untreated and observed that DMI was increased 

by 22%. A thirty-two study summary (Fahey et al., 1993) indicated a 15% increase in 

DM digestibility following treatment with ammonia. Another positive attribute is its role 

in reducing mandatory protein supplementation. Sundstøl and Coxworth (1984) showed 

that treatment with NH3 was an effective method of decreasing the amount of 

supplemental protein normally required with treated residue diets. When treatment with 

NH3 is compared to NaOH, there is little doubt that treatment via ammoniation increases 

safety while reducing labor. The gaseous form of NH3 reduces physical contact with the 

chemical, and the process of fumigating a tightly covered bale stack minimizes the 

handling and processing of the residue. Sundstøl and Coxworth (1984) concluded that the 

efficacy of the process is determined by the amount of NH3 used, length of treatment, the 

DM content and type of material being treated. In a study completed by Morris and 

Mowat (1980), data were collected on yearling steers fed ground and/or ammoniated corn 

stover. Treatments consisted of untreated chopped, untreated ground, ammoniated 

chopped, and ammoniated ground. Urea was added to the untreated rations to make 
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treatments isonitrogenous. With both chopped and ground rations, ammoniation 

increased intake of DM by 22%. Ammoniation was also found to increase DM, OM, and 

NDF digestibility by 9%, 9%, and 14%, respectively. Paterson et al. (1981) completed 

lamb digestibility and steer growth trials to assess NH3 treatment of cornstalks. In trial 1, 

cornstalks were treated with either 0, 2, 3, or 4 g NH3/100 g of DM. The lambs DMI was 

shown to increase with increasing addition of NH3. Digestibility of DM improved from 

36.8 to 47.0% with 2% NH3, however further improvements were not observed with the 3 

and 4% levels. In the second trial, growing steers were offered stalks collected on two 

separate harvest dates that were either treated or not treated with ammonia. Steers fed 

corn stalks harvested immediately after high-moisture corn showed increased DMI and 

ADG. Feed efficiency numerically favored steers offered the early harvest stalks, 

however significant differences (P > 0.10) were not detected. Ammoniation was shown to 

increase ADG and G:F in both early and late harvest stalks when compared to stalks that 

were untreated.  Ammoniation of wheat straw was tested in a study completed by Zorilla-

Rios et al. (1985). The 3.5% NH3 treatment was shown to increase crude protein content 

from 4.6% to 9.3%. Also improved was IVDMD, increasing to 47.6% when compared to 

the control at 37.3%. However, no differences were observed for NDF, ADF, or 

hemicellulose content. Ammoniation was shown to improve voluntary intake of treated 

straw by greater than 30% as well as to increase fragility of the wheat straw. Fragility is 

thought to lead to increased intakes because of ease of mechanical breakdown and 

therefore a more rapid rate of passage (Allen and Mertens, 1987). Ammoniation can be 

an effective form of chemical treatment, especially if an increase in dietary protein is 
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desired. However, there are other readily available feedstuffs that are also a good source 

of protein without having to complete the ammoniation process. 

 The use of calcium hydroxide was previously avoided because early work 

suggested it was ineffective when used individually (Bass et al., 1982). Waller and 

Klopfenstein (1975) (as cited by Klopfenstein, 1978) noted that 4% treatment of corn 

cobs with sodium hydroxide created considerably greater gains than cobs treated with 4% 

calcium oxide. However, it’s positive attributes include safer handling, less chemical 

expense, it leaves behind no Na residue (Owen, 1984), and the Ca residual is beneficial to 

the animal (Rounds et al., 1976). Initial work using Ca(OH)2 in combination with NaOH 

was found to positively surpass the performance observed when NaOH was used 

individually for treatment. Rounds et al. (1976) concluded that when corn cobs were 

treated and ensiled with 3% NaOH plus 1% Ca(OH)2 there was an increase in daily gain, 

dry matter intake, and feed efficiency when compared to those treated with only 4% 

NaOH. In a study by Waller and Klopfenstein (1975) it was evident that the sodium and 

calcium hydroxide combination created higher overall daily gains as well as improved 

efficiencies when compared to either of the hydroxides individual performance in 

growing calves. In the same study (Waller and Klopfenstein, 1975), the combination was 

also evaluated in sheep which confirmed a 3:1 treatment ratio (NaOH:Ca(OH)2) 

outperformed a treatment combination of 4:0. Waller (1976) (cited by Klopfenstein, 

1978) concluded that cellulose digestion was 75.7% when treated with a calcium and 

sodium hydroxide combination. When used individually, digestion of cellulose was at 

71.7 and 71.0% for sodium and calcium hydroxide respectively. Klopfenstein and Owen 

(1981) summarized performance data from two growth trials utilizing treated wheat straw 
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(supplemented with protein, Ca, and P) completed by Asadpour (1978). It was noted that 

straw treated with calcium and ammonium hydroxide resulted in improved daily gains 

and feed conversions when compared to the untreated control. Lambs fed only ammonia 

or an ammonia/calcium combination had improved efficiencies compared to those 

consuming straw treated with only Ca(OH)2. There was no significant difference between 

digestibility of straw diets treated with either 4 or 5% Ca(OH)2, however an ADG 

advantage was observed for the straw treated with 5% Ca(OH)2. When compared to the 

control, individual Ca(OH)2 treatment improved DM and NDF digestibility by an average 

increase of 9.0 and 9.9% respectively. A numerical increase in DMI, ADG and G:F was 

also observed in the 4 and 5% Ca(OH)2 treatments. 

 As a result of these completed studies, it is obvious that varying factors may 

impact efficacy of chemical treatment. Paterson et al. (1980) conducted lamb digestion 

trials testing various moisture levels (20, 40, or 60%) of 85% residue diets (cobs, 

cornstalks, or wheat straw) on digestibility following chemical treatment with 5% 

Ca(OH)2. Lambs fed corn cobs and wheat straw at 40% moisture numerically had greater 

DMI, DM and cell wall digestibility when compared to lambs consuming the Ca(OH)2 

treated residues at 20 or 60% moisture. Conversely, corn stalk DMI was observed to 

improve with increasing moisture inclusion while maximal DM and cell wall digestibility 

was observed at 20%. A second experiment reported by Paterson et al. (1980) assessed 

the effect of residue moisture on chemical treatment. Stover treated with 5% Ca(OH)2 and 

containing altering amounts of moisture (25, 30, 35, 40, and 45%) were evaluated. 

Comparable to the previous experiment, DMI was observed to increase with moisture 

content within the chemically treated diets. The authors stated that throughout the study it 
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was observed that residue at 60% moisture fermented, 40% moisture showed traces of 

mold following 5-10 days of storage, and 20% moisture did not appear to contain enough 

moisture to elicit a reaction. This was attributed to the dustiness of the diets and the 

failure of the Ca(OH)2 to attach to the residue. It was recommended that treatment be 

paired with a moisture level between 20 and 40% to allow for Ca(OH)2 reaction with the 

residue, but still dry enough so fermentation can be avoided. Shreck (2011) further 

assessed the effect of low (35%) and high (50%) moisture on corn stover, cobs and wheat 

straw. The residues were exposed to chemical treatment combinations of either 5:0, 4:1, 

or 3:2 (Ca(OH)2:NaOH, DM basis, %). Chemical treatment improved IVDMD of all 

residues, however DMD was greatest for treatments containing NaOH and also for those 

at 50% moisture. Within 50% moisture, 3% Ca(OH)2:2% NaOH increased IVDMD 

14.5% and 10% when compared to 5% CaO for cobs and straw, respectively. The largest 

IVDMD increase for stalks was observed with the 4:1 treatment. Increases in DMI and 

overall digestibility from Ca(OH)2 treatment can be attributed to moisture content of the 

treated forage. Reasearch indicates that 50% is the ideal moisture level that increases 

microbial attachment and therefore maximizes treatment (Allen and Mertens, 1987; 

Shreck, 2011). Paterson et al. (1980) evaluated treatment reaction rates. Treatment ratios 

of 5:0, 1:4, and 3:2 (Ca(OH)2:NaOH, DM basis, %) were applied to corn cobs that were 

ensiled for varying amounts of time (0, 2, 5, 7, 10, 14, and 21 days). An increase in 

digestibility from 52% to 28% after 10 days of reaction was observed with 5% Ca(OH)2 

treatment, after d 10 no further improvement was noted. Treatment with 1 or 2% NaOH 

reached maximum digestibility between days 2 and 5 (~70% DMD), and no further 

improvement was noted after d 5. This work suggests that anaerobic storage will not 
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improve after storing for more than 6-7 days. Shreck (2011) hypothesized that 

temperature may effect rate and extent of reaction. Therefore, varying temperatures (30 

or 40oC) of anaerobic storage following treatment with either 5% Ca(OH)2 or 3% 

CaO+2%NaOH was evaluated. Digestibility increased with temperature by 

approximately 1 percentage unit. However when 3% CaO+2%NaOH was compared to 

5% CaO, digestibility was increased 5 percentage units (P < 0.01) when NaOH was 

included across temperatures. Crop residue type, reaction length, moisture level, and 

perhaps ambient temperature all play a role in efficacy of hydrolytic treatment.  

Due to digestibility improvements with CaO treatment, and the complementary 

nature of distillers grains on digestibility of fiber, finishing studies have been completed 

evaluating the use of CaO crop residues as a corn replacement. Shreck et al. (2012) 

evaluated the substitution of corn with 20% treated or untreated crop residues (corn cobs, 

wheat straw, corn stover) in 40% WDGS diets. Dry matter intake was not different (P = 

0.30) across treatments. However, alkaline treated wheat straw and corn stover improved 

ADG by 6.1 and 1.3% compared to the untreated control diet. Similar G:F (P > 0.05) was 

observed between the control and treated stover and straw diets. Another study completed 

by Shreck et al. (2013) compared different alkaline treated corn stalk and MDGS ratios 

(2:1 or 3:1; MDGS:treated stalks) in diets containing dry rolled corn. The authors 

concluded cattle that are fed a maximum of 20% treated residue, at least 25% dry rolled 

corn, while maintaining a 3:1 ratio of MDGS to CaO treated residue, have similar DMI 

and ADG when compared to cattle fed 5% untreated roughage and 56% corn. Similarly, 

Johnson et al. (2013) compared diets with 20% CaO treated or untreated corn stover with 

to a control diet containing 5% untreated corn residue. All diets contained 40% MDGS. 
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Similar DMI was observed between treatments (P > 0.42), however treated corn residue 

increased ADG (11.4%) and improved G:F (13.3%) when compared to the untreated corn 

stover diet. No statistical differences (P > 0.05) in ADG or G:F were observed between 

the control diet and 20% treated corn residue diet. However, treated residue numerically 

improved G:F by 2.3% when compared to the control diet. This research indicates that 

CaO treated crop residue can be utilized as a corn replacement. However, the reported 

studies all contained at least 35% distillers grains. Therefore, the effect of reducing 

distillers inclusion while utilizing CaO treated crop residue as a corn replacement remain 

in question. 

 Oxidative treatment  When compared to hydrolytic agents, oxidative agents have 

increased combustibility and therefore extreme caution must be used during handling. For 

this reason, many have avoided oxidative treatment of residues. However, Chang and 

Allen (1971) stated (as cited by Fahey et al., 1993) that oxidative treatments attack and 

degrade a large percentage of cell wall lignin. This creates the possibility of practicality 

in improving forage digestibility. Klopfenstein et al. (1972) researched the possibility of 

using NaOH as well as 4:0 and 4:3 (Na2O2:H2O2, DM, %) for the treatment of corn cobs 

fed to wethers. Both DM digestibility and lignin content were improved by NaOH and 

peroxides when compared to the untreated control. However, in this study there did not 

appear to be a significant difference between hydrolytic and oxidative, which supports 

use of hydrolytic treatment. 

Physical Treatment  Physical alterations can be applied to roughages to increase 

intakes and efficiency. The first step of fiber breakdown is rumen microbial attachment. 

Therefore, processes that decrease particle size such as grinding and pelleting crush cell 
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walls creating more surface area for microbial attack. Grinding increases particle density, 

which allows for continued flow from the rumen to the small intestine shortly after 

ingestion (Hooper and Welch, 1985). Because fibrous materials spend less time in the 

rumen, an increase in voluntary intakes can occur (Minson, 1990) leading to decreased 

rumen retention. In a study by Pearce and Moir (1964), chaffed roughage was fed to 

sheep that were either allowed to ruminate normally versus sheep whose rumination was 

restricted by use of a muzzle as a means to increase ruminal retention time. Increased 

retention was accompanied by improvements in DM, OM, and crude fiber digestibilities 

when compared to normal retention. This indicates that increased rate of passage can 

impede on the time allowed for microbial fiber breakdown, and therefore have a negative 

impact on digestibility. However, increased intakes and utilization may compensate for 

decreased digestibility (Van der Honing, 1975). Shain et al. (1996) fed treatments 

containing equal levels of NDF (alfalfa or straw) ground to a size of 3/8”, 3”, or 5”.  

Daily gain and efficiencies were improved as particle size was reduced with no 

significant differences in DMI. Shreck et al. (2011) tested the effects of reduced roughage 

particle size (1 or 3 inch) of corn stover prior to alkaline chemical treatment. Compared 

to an untreated 3-inch control, chemical treatment effectively degraded 30% of the forage 

NDF leading to increased ADG and G:F. When particle size was reduced to 1-inch, ADG 

and G:F were also improved.  

Pelleting is a particle reducing process that may alleviate storage as well as shrink 

loss issues with roughage handling and processing. Pelleting is also associated with 

increased intakes. The majority of research completed reports DMI improvements of 8 to 

26% when compared to non-pelleted rations (Minson, 1963; Beardsley, 1964; Campling 
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and Freer, 1966; Minson and Milford, 1968; Coleman et al., 1978). Campling and Freer 

(1966) examined the effects of grinding and pelleting roughages on voluntary intake and 

digestibility of dried grass and oat straw. Intakes of pelleted oat straw was 26% greater 

than that of long straw, while dried grass intakes remained similar. However in both 

cases, digestibility of ground roughages was lower than that of long roughages. Beardsley 

(1964) reviewed six studies in which pelleted forage sources were tested against their 

native forms. Throughout the review, pelleting was shown to increase DMI by at least 

8%. In the same review, the author also found that grinding and pelleting forage sources 

can increase ADG by as much as 100%, and can improve G:F by as much as 35%. 

McCroskey et al. (1961) tested the use of high and low forage rations that were either 

pelleted or mixed. Results indicated that if feeding a high roughage diet with low 

concentrate inclusion, pelleting increases DMI, ADG and G:F. However, if low roughage 

is fed with a high level of concentrate, feeding a mixed ration is more efficient. Others 

have observed a decrease in dry matter digestibility when pelleted forages are compared 

to their normal form (Campling and Freer, 1966; Minson and Milford, 1968; Greenhalgh 

and Reid, 1973). In a study by Greenhalgh and Reid (1973), pelleting reduced dry matter 

digestibility by 10 percentage units when compared to the long stem form, while Minson 

and Milford (1968) observed a 6.8 percentage unit decrease. Decreased digestibility 

values can most likely be attributed to decreased ruminal retention time because of an 

increased rate of passage. However, decreased digestibility is often offset by increased 

DMI. Improved performance often associated with pelleting, as well as elimination of 

conventional forage use, and transportation and storage ease make pelleting an attractive 

option.  



39 
 

 

 

Based on the reviewed studies, it appears as if crop residues are currently and will 

continue to remain in abundance. Chemical treatment of residue with CaO is an effective, 

yet environmentally friendly way to enhance forage digestibility while also supplying a 

mineral required by the animal. Physical alterations of residue can improve intakes and in 

some cases DMI and ADG.  Distillers grains enhance cattle performance, even with 

addition of chemically treated residue. However, the majority of the research was 

completed with diets containing at least 35% distillers grains. It is questionable whether 

previously observed performance with CaO treated crop residue will be maintained if 

dietary distillers grains inclusions are decreased. Also, minimal research has been 

completed on the effects of feeding pelleted, CaO treated crop residue, or a combination 

to growing calves. Therefore, the objectives of this research were: 1) to compare 

performance and morbidity of newly received calves fed a complete pelleted feed 

containing primarily corn residue to those of calves fed a high quality receiving diet, 2) to 

determine the optimum level of enhanced forage residues and distillers grains in diets on 

the finishing performance and carcass traits in calf-fed steers, and 3) to determine the 

effect of feeding pelleted alkaline treated residue to growing calves. 
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ABSTRACT 

A receiving study compared effects of feeding a complete pelleted feed (PELCR) 

to a mixed receiving diet on performance and morbidity of newly received calves. The 

pellets consisted primarily of corn residue and were designed to replace a conventional 

grain and forage diet. The study utilized crossbred steer calves (n = 1318; initial BW = 

266 ± 1.57 kg) in two separate locations (Agricultural Research and Development Center, 

ARDC; Panhandle Research and Development Center, PHREC). Within location, steers 

were blocked by date received and source then assigned randomly to pen. Pens were 

assigned randomly to a distillers grains based control diet (CON) consisting of 32% 

distillers grains, 32% dry rolled corn, 32% alfalfa, and 4% supplement or PELCR. A 

treatment by location interaction was observed for DMI (P = 0.03). At PHREC, no 

difference in DMI was observed (5.8 vs. 5.9 kg/day for CON and PELCR respectively; P 

= 0.46), however DMI was greater for PELCR at ARDC (6.7 vs. 7.0 kg/day for CON and 

PELCR respectively; P < 0.01). No treatment by location interaction was detected for 

ADG or G:F (P > 0.18). The PELCR decreased ADG and G:F (P < 0.01) compared to the 

CON. Morbidity tended to be less (P = 0.13) for PELCR. Receiving calves on PELCR 

may have a positive effect on DMI, but a negative effect on ADG and G:F when 

compared to a traditional receiving diet. However, use of the complete feed may result in 

reduced morbidity for high-risk calves.  

Key Words: beef cattle, corn residue, pellet, receiving  
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INTRODUCTION 

 There are many challenges to consider when receiving new calves into feedlots. 

For example, stressors from weaning, marketing and transportation may cause loss of 

appetite, shrink or loss of body mass (Hutcheson and Cole, 1986), compromised digestive 

and rumen function, and a challenged immune system (Loerch and Fluharty, 1999). 

Hutcheson (1980) noted that appetite remains depressed during the first 1 to 3 weeks 

following arrival. Nutrition and stress interact in different ways, 1) stress produces or 

aggravates nutrient deficiencies, and 2) nutritional deficiencies prevent the animal’s 

ability to respond to a stress (Hutcheson and Cole, 1986). Bovine respiratory disease 

(BRD), is the greatest health challenge to feedlot cattle in the United States, accounting 

for 75% of morbidity and 50 to 70% of mortality (Edwards, 1996; Galyean et al., 1999; 

Loneragan et al., 2001). Approximately 91% of BRD diagnosis in calves occurs within 

the first 27 d following arrival (Buhman et al., 2000). According to Galyean and Hubbert 

(1995) a positive correlation between nutrition and health exists, therefore receiving 

programs need to maximize intakes (~1.5% BW) to improve immune function. Due to 

potential increased cost and limited availability of forages, alternative sources must be 

considered.  

Because of annual corn yield improvements (Edgerton, 2009), abundant amounts 

of corn residue make it a practical source to incorporate into feedlot diets. Pelleting corn 

residue allows for transport from areas with abundant residue to areas with greater cattle 

numbers (Klopfenstein, 1978), allowing for reduced amounts of traditional forage sources 

typically needed in feedlots. Additionally, pelleting increases feed intake by 15 to 26% 

(Beardsley, 1964; Campling and Freer, 1966; Minson and Milford, 1968), which may aid 
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in reduction of health problems associated with depressed intakes. A complete pelleted 

feed consisting primarily of corn residue may replace a conventional grain and forage 

receiving diet, therefore eliminating the need to mix a starter diet. Little research has been 

completed on feeding complete pelleted feeds to newly received calves. Therefore, the 

objective of this study was to compare animal performance and incidence of BRD when 

feeding a complete pelleted feed or a high quality receiving diet commonly used in 

Nebraska.  

MATERIALS AND METHODS 

All procedures used for these experiments involving animal care were approved 

by the University of Nebraska-Lincoln Institutional Animal Care and Use Committee. 

This experiment was replicated at the University of Nebraska-Lincoln 

Agricultural Research and Development Center (ARDC) near Mead, NE; and the 

Panhandle Research Extension Center (PHREC) near Mitchell, NE. Calves used in this 

experiment were purchased from sale barns through order buyers in Nebraska, and were 

received in October of 2012 at both ARDC and PHREC. Upon arrival, steers were 

allowed access to water and were processed, weighed, and allocated to treatment within 

12 hours. In both locations, initial processing included: individual identification with an 

ear tag; collection of individual weights; a modified live virus vaccine for IBR, BVD, 

PI3, respiratory syncytial virus, mannheimia haemolytica, and pasteurella multocida 

bacteria (Vista Once, Merck Animal Health, Desoto, KS); injectable anthelmintic 

(Cydectin Injectable, Boehringer Ingelheim, St. Joseph, MO); and drenched with an oral 

anthelmintic drench (Safe-Guard, Merck Animal Health, Desoto, KS).  
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 A control receiving diet was included in the study, and was formulated to produce 

acceptable performance. The control consisted of 32% wet (PHREC) or modified 

(ARDC) corn distillers grains, 32% alfalfa hay, 32% dry-rolled corn (DRC), and 4% 

supplement (DM basis; CON), the complete pelleted feed (Iowa Agricultural Bio Fiber, 

Harlan, IA; PELCR) consisted of 35% corn residue and a blend of grain by-products and 

minerals (Table 1). The PELCR contained a combination of plant extracts (RumeNext®, 

ADM, Quincy, IL), whereas CON provided 150 mg/steer daily of monensin (Rumensin, 

Elanco Animal Health, Indianapolis, IN). Both diets were formulated to provide 125 

mg/steer daily of decoquinate (Deccox, Zoetis, Florham Park, NJ). Free-choice hay was 

not offered in the bunk. Feed bunks were assessed at approximately 0600 h and were 

managed for ad-libitum intake at both locations. Accrued feed refusals were removed 

from feed bunks and were dried for 48 h at 60O C in a forced-air oven (Model LBB2-21-

1, Despatch, Minneapolis, MN)  to determine DM (AOAC, 1999; method 4.2.03). 

Weekly ingredient samples were collected and analyzed for DM content.   

 This experiment utilized a total of 1368 newly received steer calves. The 

Agricultural Research and Development Center received 818 of these over four days 

(BW = 265 ± 22 kg; 50 pens, average of 16 steers/pen), had eight initial BW blocks 

according to source and date received, and two diets with 20 replications per treatment. 

The Panhandle Research and Extension Center received the remaining 550 calves (BW = 

264 ± 23 kg; 60 pens, 8 or 13 steers/pen), which were split into 3 blocks by the same 

process utilized at ARDC. At PHREC, the same two diets were fed, with 30 replications 

per treatment. This experiment was designed as a generalized randomized block design 

with two locations. Steers in both locations were assigned randomly within block to pens, 
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and pen was assigned randomly to treatment. The number of steers per pen was balanced 

by treatment within block. Calves were fed for 23, 24 or 25 days at ARDC and for 25 

days at PHREC in soil surfaced pens. Throughout the study, calves were evaluated daily 

using the DART system (Holland et al., 2010). Steers meeting one or more of these 

criteria were treated with an antibiotic approved for treatment of BRD (Micotil, Elanco 

Animal Health, Indianapolis, IN; Zuprevo, Merck Animal Health, Desoto, KS; Draxxin, 

Zoetis, Florham Park, NJ) and returned to their pen. At ARDC and PHREC, a total of 4 

calves died while on trial. At the end of the receiving period, steers were limit-fed 

(Watson et al., 2013) a diet consisting of 50% alfalfa and 50% corn gluten feed (ARDC) 

or 50% WDGS (PHREC) at 2% of the BW for 5-7 days before weighing for ending BW 

to minimize gut fill variation. Ending BW was an average of 2-day weights (Stock et al. 

1983) taken on the final two days of limit feeding.   

 The net energy equations in the NRC (1996) were used to determine the energy 

concentration of the CON and PELCR. Dietary TDN of CON was estimated by applying 

known TDN values (alfalfa, 50%; DRC, 90%; MDGS, 108%) to the dietary components. 

Then, the energy adjusters were manipulated so that calculated animal performance of 

CON matched observed animal performance. Subsequently, the energy adjusters used for 

CON were held constant, and the TDN of PELCR was adjusted until calculated animal 

performance matched observed animal performance. Therefore, the NEm and NEg values 

for PELCR are relative to CON (Table 1). 

 Data were analyzed using the MIXED procedure of SAS (Version 9.2, SAS Inst. 

Inc. Cary, NC). Within location, steers were blocked by source nested within date 

received, resulting in eight blocks for ARDC and three blocks for PHREC. At ARDC, 
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each treatment was replicated 20 times, while treatment replication was 30 at PHREC. 

The number of steers per pen was balanced by treatment within block. Steers that died (n 

= 4) during the experiment were removed from the analysis. Three of the steers were on 

the pelleted treatment and causes of death included, a congested heart, BRD, and one 

death was non-health related. The fourth steer was on the control treatment, and cause of 

death was Atypical Interstitial Pneumonia. The statistical model included treatment, 

location, treatment x location interaction, and block nested within location. Morbidity 

incidence was evaluated as the number of first treatments (number of steers treated in the 

pen divided by the total number of steers in the pen). Additionally, the rate of two or 

more treatments was calculated as the number of steers treated two times divided by the 

total number of steers treated once. Morbidity data were analyzed with the GLIMMIX 

procedure of SAS using a binomial distribution and a logit-link function. 

RESULTS AND DISCUSSION 

Throughout the discussion of the results, it is important to note that despite the 

pelleting difference between the two treatments, dietary composition also varied. In this 

study, CON was formulated to be a traditional high quality receiving ration. However, 

PELCR consisted primarily of corn residue and was calculated to provide 86% the net 

energy of CON. The experimental approach was to compare a new feed product to a 

common diet that was expected to elicit good performance. Since the diets differed in 

ingredient composition, physical form (pelleting vs. total mixed ration), and feed 

additives, the dietary treatments should be evaluated as feeding systems without making 

inference to dietary ingredients, pelleting, or feed additive use. 
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A treatment x location interaction was observed for DMI (P = 0.03; Table 2). At 

PHREC, no difference (P = 0.46) in DMI was observed. However, at ARDC feeding 

PELCR resulted in a 4.8% increase (P < 0.01) in DMI when compared to CON. The 

resulting intakes for the current study are interesting, considering the majority of research 

completed on pelleted feeds reports DMI improvements of 8 to 26% when compared to 

non-pelleted rations (Beardsley, 1964; Campling and Freer, 1966; Minson and Milford, 

1968). In a symposium on forage utilization by Beardsley (1964), six studies were 

reviewed in which forage sources in their normal form were compared against pelleted 

forms. In each of the studies, DMI increased by a minimum of 8%. However, the pellet 

composition consisted of 100% forage. Beardsley (1964) also reviewed several studies in 

which 100% alfalfa pellets were compared against pellets containing 50-70% alfalfa 

combined with 30-50% concentrate. These data indicated that pelleted forage containing 

30-50% concentrate still resulted in a DMI improvement, however the response was 

much less than what was observed with the 100% alfalfa pellets. The decreased particle 

size associated with the pellet likely creates a more rapid rate of passage from the 

reticulo-rumen allowing for an increase in feed intake. However, when relating these 

studies to the current experiment, the calves used at both ARDC and PHREC may have 

had greater overall intakes than what would typically be observed for calves in a 

receiving situation (DMI = 2.3% of BW for ARDC and PHREC). Therefore, greater 

overall intakes could have made it more difficult to determine a difference between the 

two treatments for DMI. Also, the diets were not the same composition. The interaction 

between treatment and location was evaluated by graphing the amount of DM offered 

daily at each location. Figures 1 and 2 illustrate daily DM offered to CON and PELCR at 
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ARDC and PHREC, respectively. At ARDC, DMI for both treatments appear similar 

over the first 14 days, after which the PELCR intakes continued to increase while CON 

remained constant (Figure 1). However, at PHREC (Figure 2), DMI for both treatments 

increased at a comparable rate throughout the trial. 

Feeding PELCR resulted in decreased ADG (P < 0.01) at both ARDC (-17.6%) 

and PHREC (-15.1%) compared to CON. This contrasts with studies by Meyer et al. 

(1959a,b) and Beardsley (1964) in which increased gains (average of 22.3%) were 

observed with pelleted rations when compared to unpelleted. However, in both scenarios, 

cattle fed pelleted diets also exhibited significantly increased intakes (average of 17.6% 

increase), which may have contributed to the noted ADG improvements. Campling and 

Freer (1966) also examined the effects of grinding and pelleting roughages and reported 

that although increased DMI was observed, apparent digestibility was decreased when 

compared to long stemmed roughages. This is supported by data from Greenhalgh and 

Reid (1973) where pelleting reduced dry matter digestibility by 10 percentage units when 

compared to the long stem form. Decreased digestibility values are most likely due to 

decreased ruminal retention time. Typically, apparent digestibility is reduced with 

pelleted diets, however in the majority of these situations, increased intake of digestible 

nutrients tends to offset a decrease in digestibility. However, in the current study, 

dramatic intake improvements were not observed with the pelleted diet, most likely 

accounting for the reduced ADG. Because PELCR was shown to slightly improve DMI 

while decreasing overall ADG, G:F was reduced when calves were fed PELCR at both 

locations (ARDC: 0.247 vs 0.193; PHREC: 0.241 vs 0.200; P < 0.01) when compared to 

CON. Despite differences due to pelleting, dietary ingredient differences between the two 
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treatments are of significance. The pelleted complete feed (corn residue as a primary 

ingredient) was compared to a more traditional receiving ration containing distillers 

grains. Previously, distillers inclusion in receiving diets has been found to increase DMI 

and ADG (Drouillard et al. 1999). Also, the control diet contained monensin while the 

pelleted feed contained RumeNext creating a supplement discrepancy. The fact that the 

pellet did not produce ADG and G:F at the level of the control diet is not surprising, 

however the observed results noted with the pelleted treatment can be considered 

acceptable with ADG averaging 1.29 kg and G:F averaging 0.197. 

 A treatment x location interaction was observed for the percentage of steers pulled 

two or more times (P = 0.03; Table 2). There were no differences (P = 0.72) in the 

percentage of calves treated two or more times at ARDC. However, a decrease (P = 0.03) 

in second pulls at PHREC was observed in the PELCR when compared to CON (1.0 vs. 

9.5% of calves pulled two or more times) for PELCR and CON respectively. At PHREC, 

calves experienced a higher morbidity rate overall (P < 0.01). However, the number of 

steers requiring a second treatment at PHREC was low. At both locations, there was a 

tendency (P = 0.13) for number of calves pulled and treated for BRD at least once to be 

less for PELCR when compared to CON. The greater incidence of morbidity at PHREC 

may have negatively influenced DMI and ADG (Gardner et al., 1999). In a review by 

Rivera et al. (2005) the effect of increasing dietary forage and morbidity from 6 separate 

studies was analyzed. The regression showed that there was a tendency for morbidity 

rates to decline when dietary energy concentration was decreased (increased forage 

amounts). However, the observed change was small (i.e. increasing roughage by 20% 

would decrease morbidity by 1.35%; Rivera et al., 2005). This observation is supported 
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by Lofgreen et al. (1975, 1981) who noted increased morbidity as concentrate (dietary 

energy concentration) was increased from 55 to 90% in receiving diets. However, in 

contrast to these results, Fluharty and Loerch (1996) found that as dietary concentrate 

increased from 70 to 85%, morbidity was not affected by diet. For the current study, the 

energy concentration of PELCR was found to be 86% of CON based on estimates of 

dietary NEm and NEg (Table 2). Therefore, the observed reduced morbidity may be at 

least partially related to the reduced dietary energy concentration associated with PELCR. 

IMPLICATIONS 

Receiving calves on a pelleted residue and byproduct complete feed may have a 

positive effect on DMI, but a negative effect on ADG and G:F compared to a high-quality 

receiving diet. Use of pelleted residue may result in reduced morbidity for high-risk 

calves. While steer performance was less desirable compared to the high quality diet fed 

in this experiment, steers fed the pelleted residue diet gained 1.29 kg/day with a G:F of 

approximately 0.192 to 0.200 which is considered acceptable performance when the 

quality of the control diet is considered. Therefore, receiving calves on a complete feed 

consisting of pelleted corn residue may be a viable option for producers if it is 

competitively priced. 
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Table 1. Dietary treatment by location fed to received calves  
 ARDC PHREC 

Ingredient, % DM Control Pellet4 Control Pellet4 

WDGS1 - - 32 - 
MDGS1 32 - - - 
Alfalfa Hay 32 - 32 - 
Dry Rolled Corn 32 - 32 - 
Supplement2,4 4 - 4 - 
Complete Feed3,4,5 - 100 - 100 
NEm, Mcal/kg 2.07 1.76 2.14 1.94 
NEg, Mcal/kg 1.40 1.14 1.44 1.27 
     
Nutrient composition, %     
   CP 18.46 15.89 19.30 15.89 
   NDF 32.83 47.04 25.41 47.04 
   Ca 0.36 1.28 0.48 1.28 
   P 0.48 0.68 0.40 0.68 
   K 1.65 1.40 1.20 1.40 
   S 0.32 0.40 0.28 0.40 
   Mg 0.21 0.44 0.28 0.44 

1WDGS=wet corn distillers grains plus solubles; MDGS=modified corn distillers grains 
plus solubles 
2Formulated to provide 150 mg/steer daily monensin (Rumensin, Elano Animal  
Health, Indianapolis, IN). 
3 Contained a combination of plant extracts (RumeNext, ADM, Quincy, IL). 
4Formulated to provide 125 mg/steer daily of decoquinate (Deccox, Zoetis,  
Florham Park, NJ). 
5Consisted of 35% corn residue and a blend of grain by-products and minerals. 
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1 ARDC = Agricultural Research and Development Center, Mead, NE; PHREC = Panhandle Research  
and Extension Center, Mitchell, NE. 
2 Control = 32% Alfalfa, 32% modified or wet distillers grains, 32% dry-rolled corn, 4% supplement  
Pellet = complete pelleted feed consisting primarily of corn residue, and a blend of by-products and minerals. 
3Main effect of treatment. 
4Main effect of location. 
5Treatment x location interaction. 
6 Percentage of calves treated once. 
7 Percentage of calves treated two or more times/number of calves treated once. 
a,b,c Means within a row without a common superscript are different, (P < 0.05). 
d Death due to Bovine Respiratory Disease (BRD). 
e Death was non-health related. 
f Death due to Acute Interstitial Pneumonia (AIP). 
g Death due to congested heart. 
 

Table 2. Calf performance and health data of steers fed a complete pelleted feed or control diet at two 
locations 

 ARDC1 PHREC1  P-values 
Item Control2 Pellet2 Control2 Pellet2 SEM Trt3 Location4 Interaction5 

Initial BW, kg 265 264 267 268 3.7 0.82 0.05 0.66 
Ending BW, kg 305 296 302 298 3.6 <0.01 0.88 0.20 
DMI, kg/day 6.70b 7.04a 5.82c 5.88c 0.15 <0.01 <0.01 0.03 
ADG, kg 1.67 1.38 1.41 1.20 0.07 <0.01 <0.01 0.18 
Gain:Feed 0.247 0.193 0.241 0.200 0.003 <0.01 0.75 0.17 
Morbidity         
     First Pull, %6 20.64 17.36 42.18 38.18 0.02 0.13 <0.01 0.85 
     Second Pull, %7 9.52a 11.27a 9.48a 0.95b 0.03 0.07 0.03 0.03 
Dead, n 1d 2e,f 0 1g --- --- --- --- 
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Figure 1. Dry matter feed offered to steers fed at the Agricultural Research 

and Development Center. The control diet was considered to be a traditional 
high quality receiving ration and contained: 32% DRC, 32% MDGS or WDGS, 
32% alfalfa hay, and 4% supplement. The complete pelleted feed (Iowa 
Agriculture Biofiber) consisted of 35% corn residue and a blend of grain 
byproducts and minerals (Treatment x Location; P = 0.03). 
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Figure 2. Dry matter feed offered to steers fed at the Panhandle Research and 

Extension Center. The control diet was considered a high quality receiving ration and 
contained: 32% DRC, 32% MDGS or WDGS, 32% alfalfa hay, and 4% supplement. The 
complete pelleted feed (Iowa Agriculture Biofiber) consisted of 35% corn residue and a  
blend of grain byproducts and minerals. 
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ABSTRACT 

 Three experiments utilized 2 x 2 factorial arrangements of treatments to determine 

effects of pelleting and alkaline treatment of residues on performance and digestion of 

steers. In Exp. 1, 480 steers (initial BW = 312 ± 8 kg) evaluated pelleting and alkaline 

treatment (5% CaO + H2O vs. none). In Exp. 2, ruminally fistulated yearlings (n = 6; 

initial BW = 497 ± 25 kg) and calves (n = 6; initial BW = 228 ± 22 kg) evaluated dietary 

digestibility of 20 or 40% modified distillers grains plus solubles (MDGS) and alkaline 

treatment (5% CaO + H2O vs. none). In Exp. 3, 460 steers (initial BW = 331 ± 20 kg) 

evaluated alkaline treatment (5% CaO + H2O vs. none) and residue type (corn residue vs. 

wheat straw). In Exp. 1, pelleting increased DMI, and ADG (P < 0.01), but reduced G:F 

(P < 0.01). Alkaline treatment improved DMI, and ADG (P < 0.01) and slightly 

improved G:F (P < 0.05). In Exp. 2, CaO did not affect digestibility (P > 0.37). Feeding 

40% MDGS increased DMD, and OMD (P < 0.10) compared to 20% MDGS. In Exp. 3, 

wheat straw increased DMI and ADG (P < 0.01) and tended (P = 0.07) to improve G:F 

compared to corn residue. Alkaline treatment increased DMI and ADG (P < 0.01) and 

tended (P = 0.06) to improve G:F compared to untreated. Overall, pelleting increased 

DMI and ADG but reduced G:F whereas chemical treatment increased ADG and G:F.  

Key Words: chemical treatment, corn residue, growing calves, pelleting, wheat straw 
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INTRODUCTION 

Commodity markets are highly variable (NASS, 2014), and in most cases 

commodity price increases are paired with a production expansion (NASS, 2014). In the 

case of high corn prices, this situation can negatively impact the supply of hay as land 

typically used for forage production is converted to land for corn production. Thus, 

forage supply is reduced and forage prices increase. However, an increase in grain 

production is paired with an increase in availability of crop residue. Klopfenstein (1978) 

reported that increases in grain yield results in a proportional increase in the amount of 

residue. While replacement of higher quality forage sources with corn residue would be 

less expensive, maturity at the time of grain harvest leads to residue digestibility of 

approximately 50% or less (Klopfenstein, 1978). 

 Feeding values of low quality forage sources can be improved by alkaline 

treatment with calcium oxide. Klopfenstein (1978) stated that chemical treatment 

increases the extent of cellulose and hemicellulose digestion, while also increasing the 

rate of digestion. This can likely be attributed to the swelling of the forage, thereby 

allowing microbial attachment (Tarkow and Feist, 1968). Chemically treated forages 

have been reported to have increased digestibility when compared to untreated forages 

(Shreck, 2011), and result in acceptable finishing performance when fed in combination 

with distillers grains (Shreck, 2012a).  

Because the first step of fiber breakdown is rumen microbial attachment, 

processes that decrease particle size such as grinding and pelleting increase total surface 

area allowing for faster microbial attachment (Bowman and Firkins, 1993). Decreasing 

particle size increases density allowing for continued flow from the rumen to the small 
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intestine shortly after ingestion (Hooper and Welch, 1985). Other research indicates that 

rate of passage can impede the time allowed for microbial fiber breakdown and therefore 

have a negative effect on digestibility (Pearce and Moir, 1964). However, it has been 

observed that increased intakes and utilization may compensate for decreased 

digestibility (Van der Honing, 1975). Pelleting densifies bulky forages, which allows for 

forage transport from areas with abundant forage sources to areas with greater cattle 

numbers. Additionally, it has been observed that reducing particle size prior to calcium 

oxide treatment improves the feeding value of chemically treated forages (Shreck, 

2012b). However, little work has evaluated pelleting and calcium oxide treated forages in 

growing diets.  

The objectives of this research were to: 1) evaluate the effects of calcium oxide 

treatment of corn residue and pelleting in growing diets containing distillers grains, 2) 

determine the effects of calcium oxide treatment of forage in combination with MDGS on 

nutrient digestion in a forage based diet, and 3) evaluate treated wheat straw and corn 

residue in growing calf diets. 

 

 

 

MATERIALS AND METHODS 

All procedures used for these experiments involving animal care were approved 

by the University of Nebraska-Lincoln Institutional Animal Care and Use Committee.  
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Exp. 1 

 Four hundred eighty yearling crossbred steers (BW = 313 ± 8 kg) were utilized in 

an 80-d growing study to determine the effects of calcium oxide treated corn residue and 

pelleting in diets containing distillers grains on growing calves. Steers were received as 

calves in October and November, 2012 and initial processing included three individual 

identifications with tags; collection of individual weights; vaccination with a modified 

live virus vaccine for IBR, BVD, PI3, respiratory syncytial virus, mannheimia 

haemolytica, and pasteurella multocida bacteria (Vista Once, Merck Animal Health, 

Desoto, KS); injectable anthelmintic (Cydectin Injectable, Boehringer Ingelheim, St. 

Joseph, MO); and an oral anthelmintic drench (Safe-Guard, Merck Animal Health, 

Desoto, KS). Cattle were vaccinated approximately 12 d later with a vaccine for pinkeye 

prevention (Piliguard Pinkeye + 7, Merck Animal Health, Desoto, KS), a booster against 

viral infections (Vista 5, Merck Animal Health, Desoto, KS), and prophylaxis for BRD 

associated with Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni 

(Micotil, Elanco Animal Health, Greenfield, IN). Prior to the start of the study, calves 

grazed cornstalk residue and received a SweetBran supplementation daily at a rate of 2.27 

kg/hd. Ten days prior to the start of the growing study, all cattle were vaccinated for 

prevention of disease caused by Clostridium chauvoei, septicum, novyi, sordellii, 

perfringens Types C & D, and Haemophilus somnus (Vision 7/Somnus, Merck Animal 

Health, De Soto, KS) and were poured for external parasite control (Permectin, Bayer 

HealthCare, Shawnee Mission, Kansas).  Steers were limit fed (Watson et al., 2013) a 

diet of 50% corn gluten feed and 50% alfalfa (DM basis), at 2% of BW for 5 d prior to 

the start of the study. Initial BW was collected on d 0 and d 1 of the trial to reduce gut fill 
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effects (Stock et al., 1983). A randomized block design was utilized with a 2 x 2 

treatment factorial. Factors included diets that were either pelleted (Iowa Agricultural 

BioFibers, Harlan, IA; PEL) or unpelleted (NPEL) in combination with corn residue that 

was either alkaline treated (CaO or Ca(OH)2; TRT) or residue that remained free of 

chemical treatment (UNT; Table 1). Unpelleted diets contained modified corn distillers 

grains plus solubles (MDGS) to aid in binding of the diet, whereas the pelleted rations 

contained dried distillers grains plus solubles (DDGS) in order to maintain efficacy of the 

pelleting process. Distillers grains was included at 36% (DM basis) in all of the diets 

(Table 1). Crop residue for all diets was purchased as round bales prior to the start of the 

study from the same source. Initially, corn residue to be used for NPEL was tub ground 

(Mighty Giant, Jones Manufacturing, Beemer NE) through a 7.62 cm screen and stored in 

a covered commodity bay. Based on research completed by Shreck et al. (2011), crop 

residues were treated with 5% CaO (DM basis) at 50% DM. Therefore, chemical 

treatment of NPEL consisted of CaO (5% of total DM; Standard Quicklime, Mississippi 

Lime Co., Kansas City, MO), and ground residue hydrated to 50% DM with water. Feed 

trucks dispensed NPEL residue into a concrete bunker that was subsequently covered 

with plastic. This process was completed every two weeks continuously throughout the 

trial so that residue treatment occurred at least 7 d prior to feeding. The pelleted residue 

was treated with 6.6% Ca(OH)2 in place of CaO which provided the same hydroxide 

units as 5% CaO. Approximately 50% of residue for PEL was treated with a moisture 

content of 35% prior to being blended with the remainder of the residue and pelleted. 

Untreated residue was ground and stored in the commodity bay with no added moisture 

or chemical. Modified distillers grains plus solubles were obtained from a commercial 
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ethanol plant (Green Plains, Central City, NE) and delivered as needed (approximately 1 

semi-load/wk). All growing diets contained 4% supplement formulated to provide 200 

mg/steer daily monensin (Elanco Animal Health, Greenfield, IN). All ingredients were 

weighed and mixed in a Roto-Mix feed truck (Dodge City, KS). Throughout the study, 

feedbunks were evaluated daily at approximately 6:30 a.m. and were managed so calves 

were consuming feed at ad libitum intake. Accumulated feed refusals were removed from 

the feed bunks and were dried for 48 h at 60° in a forced-air oven (Model LBB2-21-1, 

Despatch, Minneapolis, MN) to determine DM (AOAC Method 935.29). Orts were 

assessed weekly and on average refusals were found to make up less than 1% of the daily 

total DM offered.  

 Calcium from limestone was replaced by calcium oxide (71.4% Ca) and calcium 

hydroxide (69% Ca) in treated diets. On d 1 of the trial, steers were implanted with 36 mg 

zeranol (Ralgro; Merck Animal Health). Ending BW were collected similar to initial BW, 

where steers were limit-fed for 5 d the same diet at an estimated 2% of BW and weighed 

two consecutive days prior to feeding.  

 Steers were sorted into four weight blocks, stratified by BW within block, and 

assigned randomly to pens. Each treatment was replicated seven times, with the number 

of steers per pen being balanced by treatment within block (16 or 24 steers/pen). Each 

weight block contained one replication with the exception of block 3 which contained 

four replications. Nine steers were treated for foot rot and one steer died while on study. 

The steer that died while on trial was removed from the analysis, however the foot rot 

treated calves remained in the analysis.  
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Data were analyzed using the MIXED procedure of SAS (Version 9.2, SAS Inst. 

Inc. Cary, NC) as a generalized randomized block design with pen as the experimental 

unit. The model included block, effects of pelleting, chemical treatment, and interaction 

of pelleting and chemical treatment. Significance was established at P ≤ 0.05 for all 

values. 

Exp. 2 

 A digestion study was conducted to evaluate rumen metabolism and digestibility 

of treated crop residue in combination with de-oiled MDGS. Ruminally fistulated 

yearling steers (n = 6; initial BW = 497 ± 25 kg) and steer calves (n = 6; initial BW = 228 

± 22 kg) were assigned randomly using a row x column transformation (independent 

squares for yearlings and calves) and acclimated to each diet for four 21-d periods, 

separated into a 14 d adaptation period and 7 d of collection. This experiment included a 

2 x 2 factorial arrangement of treatments. Factors included chemical treatment of corn 

residue [none (UNT) vs 5.0% CaO + 50.0% moisture (TRT)] and de-oiled MDGS 

inclusion level (20 vs 40%). 

 All corn residue for the current study was ground through a 2.54 cm screen. 

Chemical treatment consisted of CaO (5% of total DM; Standard Quicklime, Mississippi 

Lime Co., Kansas City, MO), and ground residue hydrated to 50% with water. The 

residue mixture was combined in a Roto-Mix feed truck (Dodge City, KS), and dispensed 

into a concrete bunker that was subsequently covered with plastic. This process was 

completed every two weeks continuously throughout the trial at the Agricultural 

Research and Development Center (ARDC) Research Feedlot (Ithaca, NE) so that residue 

treatment occurred at least 7 d prior to feeding. High moisture ingredients (treated residue 
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and MDGS) were collected from ARDC approximately two times per week, or as 

needed. Mixed feeds and wet feed ingredients were transported to the Animal Science 

Complex (Lincoln, NE) in 208 L barrels and stored in a 4° C walk in cooler prior to 

mixing to maintain quality and prevent mold growth. Diets (Table 2) were mixed in a 

stationary ribbon mixer (Model S-5 Mixer; H.C. Davis Inc, Bonner Springs, KS). Steers 

were given ad libitum access to feed and were fed once daily at 0800 h. The supplement 

made up 4% of the diet (DM basis), and was formulated to provide 200 mg/steer daily of 

monensin (Rumensin-90; Elanco Animal Health) daily. Feed refusals were collected 

daily prior to feeding from d 14 to 19 within each period. From ort samples, a steer 

within period sample was composited, and then dried at 60°C in a forced air oven (Model 

LBB2-21-1, Despatch, Minneapolis, MN) to determine DM content (AOAC Method 

935.29). Individual intakes were determined daily by establishing the difference between 

amount of feed offered and orts collected on a DM basis. Fecal outputs were offset with 

intakes two days prior to account for a 48 h passage lag (Van Soest, 1994) 

 Titanium dioxide (TiO2) was used as an external marker to determine fecal output 

estimates. All yearlings and calves were dosed intraruminally with 7.5 g of TiO2 twice 

daily at 0800 and 1600 hr. Approximately 300 g of feces (rectal grab samples) was 

collected at 0800, 1200, and 1600 hr from the yearlings throughout the collection period 

(d 14 to 19). One daily fecal grab sample was collected from the calves throughout the 

collection period at 0800 hr. All fecal samples were composited on a wet basis into a 

daily composite, then lyophilized (Virtis Freezmobile 25ES, SP Industries, Warminster, 

PA). Following the freeze dry process, daily samples for individual animals were 

composited on a dry basis by period, and stored for analysis. 
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 Dried diet samples, orts, ingredient, and fecal samples were ground to pass 

through a 2-mm screen using a Wiley mill (No. 4, Thomas Scientific, Swedesboro, NJ). 

A subsample was then ground using a Wiley mill through a 1-mm screen for laboratory 

analysis. All samples were composited by period. Diet, orts, ingredient, and fecal samples 

were analyzed for NDF (Van Soest et al., 1991) and OM. Ash was determined using a 

muffle furnace set at 600°C for 6 h (AOAC, 1999; method 4.1.10). Organic matter was 

calculated based on total ash content. Period composites of treated and untreated stalk 

samples were assayed for in vitro NDF digestion analysis using procedures outlined by 

Goering and Van Soest (1970). Fecal samples were analyzed for Ti concentration 

according to procedures outlined by Myers et al. (2004). Fecal samples were diluted 10:1 

and analyzed for Ti concentration with a sphectrophotometer. Digestibility was 

caluculated using the following equation: Digestibility (%) = 100 – (100 * feed 

concentration/digesta concentration) as reported by Owens and Hanson (1992). 

 Submersible, wireless pH probes (Dascor Inc, Escondido, CA) were placed into 

the rumen of each yearling to monitor individual ruminal pH on d 12 within each period. 

Each probe was weighted to ensure the probe remained in the ventral sac of the rumen. 

Prior to the start of each period pH probes were calibrated by submersing probes in pH 4 

and 7 standard solutions. Ruminal pH was recorded over the collection period (d 16-21) 

every minute continuously for each period. On the first d of each period, prior to the start 

of the next diet, probes were removed from each animal and the pH data was downloaded 

and probes were recalibrated. Ruminal pH measurements from each period were adjusted 

using beginning and ending calibration values to ensure accurate pH measurements.  
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 Data for ruminal pH were analyzed by period using the GLIMMIX procedure of 

SAS. Data were analyzed as a repeated measures analysis with d repeated and an 

autoregressive [AR(1)] covariance structure was found to provide best fit (Littell et al., 

1998). The model included d and treatment as fixed effects and steer was considered a 

random effect. Time and area of ruminal pH < 5.6 as well as magnitude of pH change 

were calculated using the process described by Cooper et al. (1999). 

 Digestibility and intake data were analyzed using the MIXED procedure of SAS. 

The model included animal, period, distillers level, and treatment as fixed effects. Main 

effects of chemical treatment, distillers level, and age as well as the interactions were 

tested. Significance was established at P ≤ 0.05 for all values. 

Exp. 3 

 Four hundred sixty yearling crossbred steers (Initial BW = 331 ± 20 kg) were 

utilized in a 69-d growing study. Steers were received as calves in October and 

November of 2011, and initial processing included: individual identification with an 

eartag, collection of individual weights, vaccination for prevention against Infectious 

bovine rhinotracheitis, BVD types I & II, PI3, and BRSV (Bovi-Shield Gold 5, Pfizer 

Animal Health, New York, NY), prevention of disease caused by Clostridium chauvoei, 

septicum, novyi, sordellii, perfringens Types C & D, and Haemophilus somnus (Vision 7 

Somnus, Merck Animal Health, De Soto, KS), prevention against disease caused by 

Mannheimia (Pasteurella) haemolytica Type A1 (One Shot, Zoetis, Florham Park, NJ), 

and prevention against internal and external parasites (Dectomax Injectable, Zoetis, 

Florham Park, NJ). Following initial processing, steers were vaccinated for prevention of 

pinkeye (Piliguard Pinkeye + 7, Merck Animal Health, Desoto, KS), and provided a 
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booster against viral (Bovashield Gold 5, Pfizer Animal Health, New York, NY) and 

clostridial (Vision-7 Somnus, Merck Animal Health, De Soto, KS) infections. Steers 

grazed corn residue for approximately 90 d following initial processing until the start of 

the trial on February 23, 2012. Fifteen days prior to the start of the study, all steers were 

treated for prevention of internal and external parasites (Phonectin, Bio Agri Mix LP, 

Mitchell, ON). Steers were limit fed (Watson et al., 2013) a mix containing 47.5% wet 

corn gluten feed, 47.5% alfalfa hay, and 5% supplement (DM basis) at 2% of BW for 5 d 

prior to weighing to determine initial BW on d 0 and d 1 (Stock et al., 1983). Treatments 

(Table 3) were set up in a 2 x 2 factorial arrangement with factors consisting of alkaline 

treatment (AT) or not (NT) and residue type as either corn residue or wheat straw. The 

AT was treated using 5% CaO (standard quicklime; Mississippi Lime Company, Kansas 

City, Mo) and carried out using a patented process with successive tub grinders 

(Performance Plus Liquids, Inc., Palmer, NE). Wheat straw was tub ground (Mighty 

Giant, Jones Manufacturing, Beemer NE) through a 7.62 cm screen. Chemical treatment 

of wheat straw consisted of CaO (standard quicklime, Mississippi Lime Co.), water, and 

ground residue, weighed and mixed into feed trucks (Roto-Mix, Dodge City, KS).  In 

both corn residue and wheat straw treatments, the mixture was calculated to be 50% DM 

with calcium oxide added at 5% of the total DM. Treated corn residue and treated wheat 

straw DM averaged 57.6 and 49.6%, respectively. Treated residues were both dispensed 

into a bagger (Model 2W08; Kelly-Ryan, Blain, NE) operating at approximately 1379 

kPa for anaerobic storage over the duration of the trial. Treatment of crop residues was 

completed 30 d prior to the initiation of the trial. Untreated residues were ground and 

stored in covered commodity bays (no chemical or moisture added). Wet distillers grains 
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plus solubles were acquired from a nearby commercially producing ethanol plant 

(Abengoa Bioenergy, York, NE) and delivered as needed (average of 1 semi-load 

weekly). Treated diets contained sufficient amounts of Ca (3.35% from CaO treatment) 

and dry meal supplement was included at 1%. Untreated diets had supplement inclusion 

of 3.0% and limestone was added (1.58% of diet DM) to maintain a Ca:P of 1.2:1. Both 

supplements were formulated to supply monensin (Elanco Animal Health, Greenfield, 

IN) at a rate of 200 mg/steer daily. Feedbunks were evaluated daily at approximately 

0630 h and cattle were managed for ad libitum intake so that only traces of feed were left 

each morning at feeding. Steers were fed once daily. Accumulated feed refusals were 

removed from bunks and dried for 48 h at 60°C in a forced-air oven (Model LBB2-21-1, 

Despatch, Minneapolis, MN) to determine DM content (AOAC Method 935.29). 

Ingredient samples were collected weekly and DM determined using the same process as 

used for orts.  

 Monthly diet composite samples were assayed for in vitro DM disappearance 

(IVDMD; Tilley and Terry, 1963). Inoculum for IVDMD was obtained by collecting a 

mixture of rumen fluid (strained through four layers of cheesecloth) from two steers 

consuming a 30% dried distillers grains plus solubles (DDGS) and 70% brome hay diet. 

Inoculum was mixed with McDougall’s buffer at a 1:1 ratio along with 1 gram of urea/L 

of rumen fluid (McDougall, 1948). A 0.5 g sample was added to a 200 mL test tube and 

50 mL of inoculum was added. Test tubes were placed in a water bath at 39°C for 48 h. 

Fermentation was ceased by adding 6 mL of 20% HCl and 2 mL f 5% pepsin per test 

tube. Residue was filtered, dried at 100°C, and weighed to determine IVDMD.  
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 The experiment was structured as a generalized randomized block design with 

three weight blocks (light, medium, heavy). Steers (19/pen) were assigned randomly 

within block to pens, and pen was assigned randomly to treatment (5 

replications/treatment). Each block contained one replication with the exception of block 

3 which contained three replications. Data were analyzed using the MIXED procedure of 

SAS with block as a fixed effect. Main effects of chemical treatment and residue, as well 

as the interaction were tested. If an interaction was significant (P < 0.05), simple effect 

means were separated with a t-test using the pDiff option. Significance was declared at P 

≤ 0.05 for all values.  

RESULTS AND DISCUSSION 

Exp. 1 

 There were no pellet x chemical treatment interactions (P > 0.18; Table 4) 

observed in this experiment. As expected, DMI was greater (12.2 vs. 9.8 kg/d; P < 0.01) 

for PEL diets when compared to NPEL. The large increase in DMI due to pelleting may 

be related to increased passage rate from reduced particle size of the pellet. Improved 

DMI with pelleting has been replicated a number of times, with increases ranging from 

15 to 26% when compared to mixed rations (Beardsley, 1964; Campling and Freer, 1966; 

Minson and Milford, 1968). The 25.1% DMI improvement observed in the current study 

falls within the range observed in previous studies.  

Ending BW was greater in cattle fed PEL (P < 0.01) compared to NPEL (427 vs. 

417 kg respectively). Pelleting improved ADG by 9.1% (1.43 vs. 1.31; P < 0.01). Similar 

outcomes were observed by Meyer et al. (1959a,b) and Beardsley (1964) where increased 

gains were observed with pelleted rations. However, because the percentage increase for 
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DMI was greater than that for ADG in the current study, there was an 11% reduction in 

G:F when PEL was fed (0.133 vs 0.118; P < 0.01). Campling and Freer (1966) examined 

the effects of grinding and pelleting roughages and reported that although increased DMI 

was observed, apparent digestibility was decreased when compared to long stemmed 

roughages. This is supported by data from Greenhalgh and Reid (1973) where pelleting 

reduced DM digestibility by 10 percentage units compared to the long stem form. In a 

preliminary in situ study by Sewell et al. (2009), pelleted corn residue was compared 

against its native form. The authors observed that in situ DM disappearance was 

improved by 10.5% due to pelleting (data unpublished). Therefore, decreased 

digestibility values are most likely due to decreased ruminal retention time because of 

pelleting. However, in the current study and similar to previous work, increased intake of 

digestible nutrients appeared to offset any decreased digestibility.  

 As hypothesized, steers consuming TRT had greater ending BW, DMI, and ADG 

compared to UNT. Chemical treatment of residue with CaO or Ca(OH)2 increased ending 

BW (428 vs 417 kg; P < 0.01). Steers fed TRT had a 6.1% increase in DMI (11.3 vs. 

10.7; P < 0.01) compared to UNT. Chemical treatment also resulted in a 9.6% increase in 

ADG (1.43 vs. 1.30; P < 0.01) and a 3.9% improvement in G:F (0.128 vs. 0.123; P < 

0.05) when compared to UNT. These performance improvements remain consistent with 

previously completed work comparing treated corn residue to untreated (Rounds et al., 

1976; Waller, 1976; Shreck, 2012a,b; Johnson et al., 2013) with chemical treatment 

improving ADG and G:F.  

Although no interactions between pelleting and chemical treatment were observed 

(P > 0.18), numerical improvements in ADG and G:F were noted when TRT was used in 
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combination with PEL. Chemical treatment increased ADG in PEL by 11.1% and by 

8.8% in NPEL. Improved G:F due to chemical treatment was 6.1% in PEL and 1.5% in 

NPEL. The large observed response of treatment in pelleted diets is most likely due to the 

decreased particle size. Shreck et al. (2012b) evaluated chemical treatment of both 2.54 

and 7.62 cm ground corn residue, and found feeding value CaO treated stover was 

increased with the 2.54 cm grind size. Garrett et al. (1976) applied an alkaline treatment 

to wheat rice straw via a pelleting process, and reported that ADG and G:F were 

improved due to chemical treatment and pelleting. However in the current study, the 

observed G:F improvement by CaO for the unpelleted diets was relatively small 

compared to previously completed studies. Johnson et al. (2013), and Shreck et al. 

(2012a,b) observed G:F improvements with CaO treatment ranging from 5 to 17.4% 

compared to untreated corn residue. However, studies by Johnson et al. (2013) and 

Shreck et al. (2012a,b) were completed with blends of HMC and DRC in addition to 

distillers grains and treated residue. Therefore, it can be concluded that high forage diets 

containing CaO treated forages may not markedly improve G:F of growing cattle 

efficiency. 

Exp. 2 

There were no chemical treatment x distillers level interactions (P ≥ 0.67; Table 

5) observed for intakes or digestibilities. Chemical treatment did not impact (P ≥ 0.37) 

DM, OM, or NDF digestibilities (P > 0.30; Table 5). These results were unexpected 

when considering previous research. Shreck et al. (2011) observed a 47.2% improvement 

in in vitro dry matter digestibility (IVDMD) of crop residue following treatment with 5% 

CaO. Similarly, Shreck et al. (2013) observed that when 25% CaO treated or untreated 
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corn residue was fed with 40% WDGS, DM and OM digestibility were increased by 17.9 

and 18.3% respectively (P < 0.01) with chemical treatment. For the current study, steers 

consuming treated diets tended (P = 0.11) to have reduced NDF intake compared to 

steers consuming untreated (8.3 vs. 9.5 kg/day for treated and untreated respectively), 

while DM intakes were not different (7.0 vs 6.8 kg/d for treated and untreated 

respectively; P = 0.79). Comparably, Shreck et al. (2013) observed a decrease in NDF 

intake with treated corn residue diets (3.1 vs. 3.7 kg/d). This suggests that treatment with 

CaO partially solubilized NDF, therefore decreasing NDF intake. Lab analysis of forage 

used in the current experiment indicated that CaO solublilized NDF by 10 percentage 

units relative to the untreated residue (Table 6). Presumably treatment with CaO partially 

solubilized NDF, thereby decreasing NDF intake, as the remaining portion is less 

digestible. Adjusted NDF values were also included on Table 5. Because the 

hemicellulose portion of fiber was partially solubilized (primarily cellulose and lignin 

remaining), it is not part of the initial NDF measurement. However, when cattle consume 

the treated forage, they are also consuming the solubilized NDF portion. Therefore, for 

the adjusted NDF values, the calculated NDF value for untreated stalks was used to 

determine NDF intake of the treated residue diets. This accounts for the fact that the 

increased digestibility numbers occur within the animal and not prior to the stalks being 

consumed. After this adjustment, chemical treatment did not impact NDF intake or 

digestibility statistically (P > 0.17). However, numerically cattle offered treated diets 

consumed more NDF (4794 vs. 4309 g for treated and untreated respectively), and 

increased digestibility was observed with treated diets (61.3 vs 55.7% for treated and 

untreated respectively). Overall, greater DM and OM digestibilities were noted with 40 
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MDGS inclusion (P ≤ 0.05). Increasing distillers inclusion also increased DM, OM, and 

NDF intakes (P ≤ 0.05). Luepp et al. (2009) offered steers ad libitum hay and 

supplemented dried distillers grains plus solubles (DDGS) at 0, 0.3, 0.6, 0.9, and 1.2% of 

BW daily. As supplementation of DDGS increased, total dietary OM intake increased 

linearly (P < 0.01), as did total tract OM digestibility (P < 0.01). However, NDF intakes 

remained consistent across treatments (P > 0.24). Loy et al. (2003) compared DDGS 

supplements formulated for low (0.21% BW daily) and high (0.81% BW daily) gain. The 

authors concluded that with increased daily DDGS supplementation, total DMI was 

increased by 17.9% (P < 0.01). Buckner et al. (2007) observed a trend for increased DMI 

(3.7%) when MDGS was increased from 15 to 30% (DM basis) in a forage based 

growing diet.  

There was no observed age x treatment interaction (P > 0.63). However, 

significant age differences were observed for DM, OM, and NDF intakes (P < 0.01; 

Table 7) with yearlings consuming more daily when compared to the calves. There a 

tendency for OM to be more digestible (P = 0.08) in yearlings than in calves. Also, 

numerical DMD and NDFD increases were observed with the yearlings, however the 

increases were not statistically significant (P > 0.14). It is expected that there will be 

some intake differences due to age. However, as observed in the current experiment, 

there was still a similar treatment response within both age groups (data not provided).  

Interactions were noted for maximum, average, and minimum ruminal pH (P < 

0.01; Table 8) as untreated residue had greater maximum and average pH within 20 

MDGS (P ≤ 0.10) whereas chemical treatment resulted in similar values within 40 

MDGS. Minimal pH data responded similarly (P ≥ 0.26). This agrees with data from 
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Shreck et al. (2013) where treated stalks fed with 40% WDGS numerically increased 

ruminal pH values, since alkaline treated residue will increase ruminal pH. 

Our hypothesis for the current study was that dietary inclusion of alkaline treated 

corn residue would increase diet digestibility when compared to diets with untreated 

residue in growing diets. It is unclear why treatment with CaO did not improve DM or 

OM digestibility when considering the results of previous research. Though, consistent 

with earlier studies, increasing MDGS inclusion increased intakes and digestibilities.  

Exp. 3 

 An interaction (P < 0.01) between crop residue and alkaline treatment (Table 8) 

was observed for ending BW and ADG. The magnitude of response of ADG and ending 

BW due to alkaline treatment was greater in wheat straw diets compared to corn residue 

diets. Steers fed treated corn residue had 10.1% greater ADG and 1.3% greater ending 

BW when compared to untreated corn residue. However, steers fed treated wheat straw 

diets had increases of 24.3% for ADG and 3.4% for ending BW compared to untreated 

wheat straw. The observed ADG and ending BW differences of steers fed treated and 

untreated crop residues are also supported by IVDMD (Table 3) of treated and untreated 

corn residue (39.6 vs. 38.6% for treated and untreated, respectively) and wheat straw 

(43.1 vs. 36.1% for treated and untreated, respectively). Steers fed treated wheat straw 

diets also had greater DMI (P < 0.01) and a tendency (P = 0.07) for improved G:F when 

compared to corn residue diets. Overall, alkaline treatment tended (P = 0.06) to improve 

G:F by 6.1% and DMI (P < 0.01) by 10.3%. The difference in efficacy of treatment 

between residue type is likely due to the fact that straw tends to be of lower quality (all 

stem) when compared to corn residue (leaf and husk). Previous data suggest that lower 
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quality feed sources often show a greater response to chemical treatment (Klopfenstein 

and Owen, 1981). Coombe et al. (1979a) and Lesoing (1980) observed that chemically 

treating wheat straw also produced improved cattle performance. However, the 

performance improvements observed with treated wheat straw were greater when 

compared to that of corn residue.  

 

IMPLICATIONS 

 Chemical treatment was shown to increase DMI, ADG, and to slightly improve 

G:F of cattle consuming low quality residue in high forage growing diets. However the 

magnitude of improvement depends on residue type. Because observed G:F was only 

improved slightly with alkaline treatment, it is unclear if the costs associated with 

chemical treatment would be offset by improved animal performance when fed to 

growing calves. When relating the current data to similar studies with treated residue in 

finishing diets, it appears that less of a response is observed in high forage growing diets. 

Performance improvements were noted with the pelleting process making it a potential 

option for producers. However, because G:F was not improved, pellets would have to be 

favorably priced in order to offset increased intakes.   

  

 

 

LITERATURE CITED 

AOAC. 1999. Official Methods of Analysis. 16th Ed. AOAC, Arlington, VA. 
 
Beardsley, D.W.1964. Symposium on forage utilization: nutritive value of forage as  



89 
 

 

 

affected by physical form. Part II. Beef cattle and sheep studies. J. Anim. Sci. 
23:239. 

 
Bowman, J.G.P., and J.L. Firkins. 1993. Effects of forage species and particle size on  
 bacterial cellulolytic activity and colonization in situ. J. Anim. Sci. 71:1623. 
 
Buckner, C.D., T.J. Klopfenstein, G.E. Erickson, K.J. Vander Pol, K.K. Karges, and M.L.  

Gibson. 2007. Comparing a modified dry by-product to dry distillers grains with 
solubles in growing calf diets. Nebraska Beef Report. Paper 60. 

 
Campling, R.C. and M. Freer. 1966. Factors affecting the voluntary intake of food by 

cows. British J. of Nutr. 20:229-244. 
 
Coombe, J.B., D.A. Dinius, and W.E. Wheeler. 1979. Effect of alkali treatment on intake  
 and digestion of barley straw by beef steers. J. Anim. Sci. 49:169. 
 
Garrett, W.N., H.G. Walker, G.O. Kohler and M.R. Hart. 1976. Feedlot response of beef  

steers to diets containing NaOH or NH3 treated rice straw. 15th California Feeders 
Day Proc., University of California at Davis. p. 39. 

 
Greenhalgh, J.F.D., and G.W. Reid. 1973. The effects of pelleting various diets on intake  
 and digestibility in sheep and cattle. Anim. Prod. 16:223-233. 
 
Goering, H.K. and P.J. Van Soest. 1970. Forage Fiber Analyses. Apparatus, Reagents,  

Procedures, and some applications. Agric. Handbook No. 379. ARS-USDA. p 12-
15. 

 
Hooper, A.P., and J.G. Welch. 1985. Effects of particle size and forage composition on 

functional specific gravity. J. Dairy Sci. 68:1181-1188. 
 
Johnson, J.M., D.B. Burken, W.A. Griffin, B.L. Nuttelman, G.E. Erickson, T.J.  

Klopfenstein, M.J. Cecava, M.J. Rincker. 2013. Effect of feeding greater amounts 
of calcium oxide treated corn residue and Micro-Aid on performance and nutrient 
mass balance. Nebraska Beef Cattle Report MP98.  

 
Kim, S., and M.T. Holtzapple. 2005. Lime pretreatment and enzymatic hydrolysis of corn  
 residue. Bioresourc. Technol. 96:1994-2006. 
 
Klopfenstein, T. 1978. Chemical treatment of crop residues. J. Anim. Sci. 46:841-848. 
 
Klopfenstein, T., and F.G. Owen. 1980. Value and potential use of crop residues and by- 
 products in dairy rations. J. Dairy Sci. 64:1250-1268. 
 
Lesoing, G.W., I. Rush, T. Klopfenstein, and J. Ward. 1980. Wheat straw in growing  
 cattle diets. J. Anim. Sci. 51:257. 
 



90 
 

 

 

Leupp, J.L., G.P. Lardy, K.K. Karges, M.L. Gibson, and J.S. Carlton. 2009. Effects of  
increasing levels of corn distillers dried grains with solubles to steers offered 
moderate quality forage. J. Anim. Sci. 87:4064-4072. 

 
Littell, R.C., P.R. Henry, and C.B. Ammerman. 1998. Statistical analysis of repeated  
 measures data using SAS procedures. J. Anim. Sci. 76:1216-1231.  
 
Loy, T.W., T.J. Klopfenstein, G.E. Erickson, C.N. Macken, and J.C. MacDonald. 2003.  

Effect of supplemental energy source and frequency on growing calf 
performance. J. Anim. Sci. 86:3504-3510. 

 
McDougall, E.I. 1948. Studies on ruminant saliva – The composition and output of  
 sheep’s saliva. Biochem. J. 43:99. 
 
Minson, D.J. and R. Milford. 1968. The nutritional value of four tropical grasses when  
 fed as chaff and pellets to sheep. Austrailian J. Exp. Agr. Anim. Husb. 8:270. 
 
Meyer, J.H., R.L. Gaskill, G.S. Stoecusand and W.C. Weir. 1959a. Influence of pelleting  
 on the utilization of alfalfa. J. Anim. Sci. 18:336. 
 
Meyer, J.H., W.C. Weir, J.B. Dobie and J.L. Hull. 1959b. Influence of the method of  
 preparation on the feeding value of alfalfa hay. J. Anim. Sci. 18:976. 
 
Myers, W.D., Ludden P.A., Nayigihugu, V., and Hess, B.W. 2004. Technical Note: A  

procedure for the preparation and quantitative analysis of samples for titanium 
dioxide. J. Anim. Sci., 82:179-183. 

 
NASS. 2014. National Statistics for Corn. USDA, National Agriculture Statistics Service.  

Available: http://www.nass.usda.gov/Statistics_by_Subject/result.php? 
E5319474-4132-3897-84FE 748AD6336E9D &sector=CROPS& 
group=FIELD%20CROPS&comm=CORN. Accessed May 20, 2014.  

 
Owens, F.N. and C.F. Hanson. 1992. External and internal markers for appraising site  
 and extent of digestion in ruminants. J. Dairy Sci. 75:2605-2617. 
 
Pearce, G.R. and R.J. Moir. 1964. Rumination in sheep. I. The influence of rumination  

and grinding upon the passage and digestion of food. Available at: 
http://livestocklibrary.com.au/handle/1234/27096. Accessed January 28, 2014. 

 
Rounds, W., Klopfenstein, T., Waller, J., and T. Messersmith. 1976 Influence of alkali  
 Treatments of corn cobs on in vitro dry matter disappearance and lamb  
 performance. J. Anim. Sci. 43:478-482. 
 
Sewell, J.R., L.L. Berger, T.G. Nash, M.J. Cecava, P.H. Doane, J.L. Dunn, M.K. Dyer,  
 and N.A. Pyatt. 2009. Nutrient digestion and performance by lambs and steers fed  
 thermochemically treated crop residues. J. Anim. Sci. 87:1024-1033. 



91 
 

 

 

 
Shreck, A.L., C.D. Buckner, G.E. Erickson, and T.J. Klopfenstein. 2011. Digestibility of  

crop residues after chemical treatment and anaerobic storage. Nebraska Beef 
Cattle Report. MP94: 35-36. 

 
Shreck, A.L., B.L. Nuttelman, W.A. Griffin, G.E. Erickson, T.J. Klopfenstein, M.J.  

Cecava. 2012a. Chemical treatment of low-quality forages to replace corn in 
finishing diets. Nebraska Beef Cattle Report MP95. 

 
Shreck, A.L., B.L. Nuttelman, W.A. Griffin, G.E. Erickson, T.J. Klopfenstein, M.J.  

Cecava. 2012b. Reducing particle size enhances chemical treatment in finishing 
diets. Nebraska Beef Cattle Report MP95. 

 
Shreck, A.L., J.L. Harding, G.E. Erickson, T.J. Klopfenstein, and M.J. Cecava. 2013.  

Evaluation of rumen metabolism and digestibility when treated crop residues are 
fed in cattle finishing diets. Nebraska Beef Cattle Report. MP98. 

 
Stock, R., T. Klopfenstein, D. Brink, S. Lowry, D. Rock, and S. Abrams. 1983. Impact of  
 weighing procedures and variation in protein degradation rate on measured  
 performance of growing lambs and cattle. J. Anim. Sci. 57:1276-1285. 
 
Tarkow, H. and W.C. Feist. 1968. The superswollen state of wood. Tappi. 51(2):80. 
 
Tilley, J.M.A., and R.A. Terry. 1963. A two-stage technique for the in vitro digestion of  
 forage. Crops. Grass and Forage Sci. 18:104-111. 
 
Van der Honing, Y. 1975. Intake and utilization of energy of rations with pelleted forages  
 by dairy cattle. Ph.D. thesis. Agric. Univ., Wageningen, Netherlands. 
 
Van Soest, P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for dietary fiber, neutral  
 detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. 
 Dairy Sci. 74:3583. 
 
Van Soest, P.J. 1994. Nutritional Ecology of the Ruminant. Cornell University Press,  
 Ithaca, New York. 
 
Waller, J.C. 1976. Evaluation of sodium, calcium and ammonium hydroxides for treating  
 crop residues. M.S. Thesis, Univ. of Nebraska, Lincoln. 
 
Watson, A.K., B.N. Nuttelman, T.J. Klopfenstein, L.W. Lomas, G.E. Erickson. 2013.  

Impacts of a limit-feeding procedure on variation and accuracy of cattle weights. 
J. Anim. Sci. 90:5507-5517. 

 

 
 
 



92 
 

 

 

Table 1. Ingredient composition of diets fed to growing calves in Exp.1 
 Pelleted Unpelleted 
 Untreated Ca(OH)2

1 Untreated CaO1 

MDGS/DDGS2 36 36 36 36 
Treated Residue3,4 - 60 - 60 
Untreated Residue3,4 60 - 60 - 
Supplement 4 4 4 4 
   Fine ground corn 2.4064 3.5234 2.4064 3.5234 
   Limestone 1.1170 - 1.1170 - 
   Salt 0.3000 0.3000 0.3000 0.3000 
   Tallow 0.1000 0.1000 0.1000 0.1000 
   Trace mineral 0.0500 0.0500 0.0500 0.0500 
   Vitamin A-D-E 0.0150 0.0150 0.0150 0.0150 
   Rumensin5 0.0116 0.0116 0.0116 0.0116 
     
Nutrient Composition, %     
   CP 15.79 16.23 14.76 14.79 
   NDF 55.44 49.15 60.16 55.06 
   Ca 0.88 1.60 0.31 2.00 
   P 0.42 0.40 0.39 0.40 
1 Unpelleted residue treated with 5% CaO (DM basis) after hydration with 
water to 50% DM at least 7 d prior to feeding. Pelleted residue treated with 
6.6% Ca(OH)2 in place of CaO which provided the same hydroxide units as 
5% CaO. Approximately 50% of this residue was treated with a moisture 
content of 35% before being blended with the remainder of the residue and 
pelleted.  
2Unpelleted diets contained modified distillers grains plus solubles (MDGS), 
whereas pelleted diets contained dried distillers grains plus solubles (DDGS). 
3Pelleted residue was treated with 6.6% Ca(OH)2 in place of 5% CaO. 
4All baled corn residue originated from the same source. 
5Formulated to provide 200 mg/steer daily Rumensin 
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Table 2. Ingredient composition of diets fed to calves and yearlings for Exp. 2 
 20 MDGS 40 MDGS 
 Untreated Treated Untreated Treated 
MDGS 20 20 40 40 
Treated Residue1,2 - 76 - 56 
Untreated Residue2 76 - 56 - 
Supplement 4 4 4 4 
   Fine ground corn 1.68 1.87 3.41 1.87 
   Limestone 1.19 - 1.11 - 
   Salt 0.30 0.30 0.30 0.30 
   Tallow 0.10 0.10 0.10 0.10 
   Urea 1.65 1.65 - 1.65 
   Rumensin3 0.0116 0.0116 0.0116 0.0116 
   Trace mineral 0.0500 0.0500 0.0500 0.0500 
   Vitamin A-D-E 0.0150 0.0150 0.01500 0.0150 
     
Nutrient Composition, %     
   CP 10.49 10.53 16.29 16.31 
   NDF 67.77 61.40 59.59 54.92 
   Ca 0.38 2.49 0.30 1.85 
   P 0.27 0.28 0.45 0.46 
1 Treated = Residue treated with 5% CaO (DM basis) after hydration with 
water to 50% DM at least 7 d prior to feeding, Untreated = no CaO treatment. 
2All residue ground through a 2.54 cm screen. 
3Formulated to provide 200 mg/steer daily monensin and 90 mg/steer daily tylosin. 
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Table 3. Dry matter and nutrient composition of diets fed to growing steers for Exp. 3 
 

1 Treated = Residue treated with 5% CaO (DM basis) after hydration 
with water to 50% DM at least 7 d prior to feeding, Untreated = no CaO 
treatment. 
2WDGS = wet distillers grains plus solubles 
3Formulated to provide 200 mg per steer/daily. 
4
in vitro disappearance of crop residue, 48 hour incubation time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Corn Residue Wheat Straw 
Ingredient, % of DM Treated Untreated Treated Untreated 
Treated residue/straw1 69 - 69 - 
Untreated residue/straw - 67 - 67 
WDGS2 30 30 30 30 
Supplement 1.0 3.0 1.0 3.0 
   Fine ground corn 0.8228 1.2388 0.8228 1.2388 
   Limestone - 1.5840 - 1.5840 
   Tallow 0.1000 0.1000 0.1000 0.1000 
   Trace mineral 0.0500 0.0500 0.0500 0.0500 
   Vitamin A-D-E 0.1500 0.1500 0.1500 0.1500 
   Rumensin-903 0.0122 0.0122 0.0122 0.0122 
Nutrient Composition, %     
   CP 12.62 12.59 13.75 13.56 
   NDF 64.27 66.60 60.43 64.15 
   Ca 1.92 0.32 1.45 0.27 
   P 0.34 0.33 0.44 0.40 
     
Crop Residue     
   DM, % 57.6 86.8 49.6 86.7 
   IVDMD, %4 39.6 38.6 43.1 36.1 
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Table 4. Effects of pelleting and chemical treatment on cattle performance in Exp. 1 
 Pelleted Not Pelleted  P-values 
Item Untreated Ca(OH)2

1 Untreated CaO2 SEM Pellet3 T4 PxT5 

Initial BW, kg 313 313 313 313 1 0.49 0.49 0.82 
Ending BW, kg 421 434 412 421 5 <0.01 <0.01 0.47 
DMI, kg/day 11.9 12.5 9.4 10.1 0.2 <0.01 <0.01 0.58 
ADG, kg 1.35 1.50 1.25 1.36 0.06 <0.01 <0.01 0.44 
G:F 0.114 0.121 0.132 0.134 0.002 <0.01 0.05 0.18 

1Treated 50% of the total residue with 6.6% Ca(OH)2, after hydration with water to 65% DM. 
2Treated with 5% CaO (DM basis) after hydration with water to 50% DM at least 7 d prior to feeding. 
3Fixed effect of pelleting 
4Fixed effect of CaO or CaOH treatment 
5Pellet x CaO or CaOH treatment interaction 
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Table 5. Effects of MDGS inclusion and alkaline treatment on diet digestibility for Exp. 21 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

1 Trt = Residue treated with 5% CaO (DM basis) after hydration with water to 50% DM at least 7 d prior to feeding,  
Unt = no CaO treatment. 
2Main effect of 20 vs. 40% modified distillers grains plus solubles (MDGS) inclusion. 
3Main effect of CaO + water vs none. 
4Interaction of MDGS level and CaO/Ca(OH)2 treatment. 
5Main effect of calves vs. yearlings. 
6NDF intakes adjusted so that the NDF value for untreated stalks was also used for treated stalks when intakes were  
calculated. 
7Digestibility assuming NDF solubilized is consumed as NDF. 
 
 
 
 
 
 
 

 20 MDGS 40 MDGS  P-values 
 Unt Trt Unt Trt SEM MDGS2 Trt3 Int.4 

DM         
   Intake, g 5754 5771 7853 8127 650 <0.01 0.79 0.82 
   Digestibility, % 49.8 45.6 60.6 58.7 0.1 0.02 0.46 0.79 
OM         
   Intake, g 5230 5059 7160 7237 602 <0.01 0.92 0.81 
    Digestibility, % 55.6 52.7 64.0 61.6 0.1 0.05 0.49 0.96 
NDF         
   Intake, g 3966 3306 4651 4193 398 0.05 0.11 0.77 
   Digestibility, % 54.9 48.1 56.6 54.3 0.1 0.48 0.37 0.67 
Adjusted NDF         
   Intake, g6 3966 4299 4651 5288 332.8 0.05 0.17 0.60 
   Digestibility, %7 54.5 59.4 56.9 63.2 0.1 0.49 0.19 0.87 
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Table 6. Effect of steer age on intakes and diet digestibility for Exp. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

1Main effect of calves vs. yearlings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 Calves Yearlings SEM Age1 

DM     

   Intake, g 5952 7800 417 <0.01 

   Digestibility, % 50.5 56.9 0.1 0.14 

OM     

   Intake, g 5326 7017 386 <0.01 

    Digestibility, % 55.0 62.0 0.1 0.08 

NDF     

   Intake, g 3468 4590 255 <0.01 

    Digestibility, % 50.8 56.2 0.1 0.31 
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Table 7. Ruminal pH of steers fed alkaline treated crop residue with modified distillers grains 
plus solubles. 

 
1 Trt = Residue treated with 5% CaO (DM basis) after hydration with water to 50% DM at least 7  
d prior to feeding, Unt = no CaO treatment. 
2Fixed effect of chemical treatment. 
3Fixed effect of MDGS level. 
4Interaction of chemical treatment x MDGS level. 
abNumbers in the same row lacking a similar superscript differ, P < 0.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 20 MDGS 40 MDGS  P-values 
Item Trt Unt Trt Unt SEM Trt2 Level3 TxL4 

Maximum pH 6.94b 7.47a 7.04ab 6.97ab 0.30 0.10 0.56 <0.01 
Average pH 6.65b 7.13a 6.80ab 6.70b 0.20 0.01 0.56 <0.01 
Minimum pH 6.45b 6.80a 6.54ab 6.38b 0.13 0.33 0.26 <0.01 
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Table 8. Effect of crop residue and alkaline treatment on growing steer performance for Exp. 3 
 Corn residue Wheat straw  P-values 

Item Treated1 Untreated Treated1 Untreated SEM CaO1 Residue2 CaO x Residue 
Initial BW, kg 331 331 331 330 0.64 0.59 0.43 0.19 
Ending BW, kg 384b 379c 395a 382b 2.60 <0.01 <0.01 <0.01 
DMI, kg/day 7.6 7.1 8.5 7.5 0.4 <0.01 <0.01 0.15 
ADG, kg 0.76b 0.69c 0.92a 0.74bc 0.04 <0.01 <0.01 <0.01 
G:F 0.100 0.097 0.108 0.099 - 0.06 0.07 0.18 
1 Treated = Residue treated with 5% CaO (DM basis) after hydration with water to 50% DM at least 7 d prior to feeding, 
Untreated = no CaO treatment. 
2Main effect of CaO + water or none. 
3Main effect of residue type (corn residue or wheat straw). 
abcWithin a row, means lacking common superscripts differ, when interaction P < 0.05. 
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ABSTRACT 

A 180-d finishing study was conducted to identify how varying concentrations of 

modified distillers grains plus solubles (MDGS) and alkaline treated corn residue (TR) 

affect performance and carcass characteristics. Crossbred steer calves (n = 378; initial 

BW = 320 ± 7 kg) were utilized in a 2 x 3 + 1 factorial treatment arrangement. Factors 

included inclusion rate of MDGS (20% or 40%; DM basis) and TR (10, 20, or 30%; DM 

basis). In addition, a DRC, 20% MDGS, and 5% untreated stalks control (CON) was fed. 

There was a distillers inclusion by treated stalks interaction for both carcass adjusted G:F 

(P < 0.10) and G:F based on final live BW (P < 0.05). However, no interactions were 

observed between TR and MDGS inclusion for DMI (P = 0.47), ADG (P = 0.21), or 

carcass characteristics (P > 0.21). Intakes were not impacted by treatment (P > 0.18). 

Gain decreased linearly (P < 0.01) as TR increased within 20% MDGS. However ADG 

quadratically decreased (P < 0.01) when TR was added to the 40% MDGS diets with 

ADG equivalent between 10 and 20% and decreasing at 30% inclusion. Similar to ADG, 

G:F decreased linearly (P < 0.01) when TR was increased from 10 to 30% in diets with 

20% MDGS. However, G:F decreased quadratically (P < 0.01) when TR increased in 

diets with 40% MDGS with equal G:F being observed for the 10 and 20% TR diets then 

decreasing when TR increased to 30%. Dressing percentage decreased linearly (P < 0.01) 

when TR was included in the 40% MDGS diets and decreased quadratically (P = 0.05) 

when fed with 20% MDGS. A linear decrease in fat depth was observed as TR increased 

in both 20 and 40% MDGS based diets. Within 20% MDGS, steers fed CON had the 

greatest (P < 0.01) final BW, ADG, and G:F when all TR inclusions were evaluated. 

These data suggest that 10 or 20% TR can be fed with 40% MDGS included in the diet 
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without negatively impacting ADG and G:F. However, in if only 20% MDGS is fed, then 

10 or less TR should be fed. 

Keywords: calcium oxide, corn residue, distillers, finishing 

INTRODUCTION 

 Corn markets are variable and in times of high prices, cattle producers need 

alternative low cost feed options. An increase in commodity price is often paired with an 

increase in production (NASS, 2014). For every kilogram of grain produced, there is 

approximately one kilogram of corn residue produced (Klopfenstein, 1978). Therefore, 

when corn production is increased, a low cost roughage option becomes more abundant. 

However, maturity of the corn plant at the time of grain harvest leads to residue 

digestibility of approximately 50% or less (Klopfenstein, 1978). While corn replacement 

with corn residue for finishing cattle would be a cheap alternative, dietary NEg would be 

dramatically reduced (NRC, 1996) therefore decreasing ADG and G:F (Owens, 2011).  

 However, feeding value of low quality corn residue can be improved by alkaline 

treatment with calcium oxide. Klopfenstein (1978) stated that chemical treatment 

increases the extent of cellulose and hemicellose digestion, while also increasing the rate 

of cellulose and hemicellulose digestion. Improved digestion can be attributed to the 

swelling of the forage, therefore allowing microbial attachment (Tarkow and Feist, 1968). 

Shreck et al. (2013b), observed similar ADG and G:F when 15 percentage units of corn 

and 5% stalks were replaced with 20% CaO treated corn stover in a diet containing 40% 

modified distillers grains. In a similar study, Johnson et al. (2013) found that when 20% 

CaO treated stover replaced 15 percentage units of corn and untreated stover, ADG and 

G:F were not different. However, in a commercial study completed by Cooper et al. 



103 
 

 

 

(2014), cattle fed 35% WDGS and 20% CaO treated corn stover tended to decrease gains 

and were less efficient than the control cattle. However, in these studies at least 35% 

modified or wet distillers plus solubles along with treated residue were included in diets.  

Due to variable distillers inclusions possible under different economic scenarios, 

producers need to know whether inclusion of distillers grains plus solubles impacts how 

alkaline treated stalks perform in finishing diets. Therefore, the objective of this study 

was to identify the maximum amount of treated forage that can be fed in combination 

with two inclusions of MDGS without negatively impacting cattle performance and 

carcass characteristics.  

MATERIALS AND METHODS 

A 180-d finishing trial was completed using three hundred seventy eight 

crossbred steers (BW = 320 ± 7 kg). Steers were received as calves at the University of 

Nebraska beef research facility located at the Agricultural Research and Development 

Center (Mead, NE) in October, 2012. Upon arrival, steers were individually weighed and 

identified with three tags, vaccinated with a modified live virus vaccine for protection 

against IBR, BVD, PI3, respiratory syncytial virus, mannheimia haemolytica, and 

pasteurella multocida bacteria (Vista Once, Merck Animal Health, Desoto, KS), an 

injectable for protection against external parasites (Cydectin Injectable, Boehringer 

Ingelheim, St. Joseph, MO), and orally drenched for protection against internal parasites 

(Safe-Guard, Merck Animal Health). Until trial initiation, calves were assigned to pens 

and received one of two receiving rations for approximately 25 days (Peterson et al., 

2014) after initial processing. Following the receiving trial, steers were limit fed a diet 

containing 50% sweet bran, and 50% alfalfa hay (ALF; DM basis) at 2.0% of BW for 5 d 
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prior to initiation of the finishing study to minimize gut fill variation (Watson et al., 

2013). On d 0 and 1, steers were individually weighed with BW averaged in order to get 

an accurate initial BW (Stock et al., 1983). On d 1, steers were vaccinated for prevention 

of Clostridium chauvoei, semticum, novyi, and sordellii and perfringens Types C&D 

(Vision 7, Merck Animal Health), and a booster of modified live IBR, BVD Types I & II, 

PI3, and BRSV (Vista 5, Merck Animal Health), and were implanted with Revalor-XS 

(Merck Animal Health, containing 4 mg estradiol and 20 mg trenbolone acetate). 

Based on first day weights, steers were separated into two weight blocks, 

stratified by BW within block, and assigned randomly to pens. Pens were assigned 

randomly to one of seven treatments, with six pens per treatment and nine steers per pen. 

There were three replications per block. A generalized randomized block design was used 

with treatments setup in a 2 x 3 + 1 factorial. Factors were level of modified distillers 

grains plus solubles (MDGS; 20 or 40%) and inclusion of alkaline treated corn stalks 

(10, 20 or 30%; Table 1) as a replacement for dry-rolled corn (DRC) . A control (CON) 

diet was also fed that contained 71% DRC, 20% MDGS, and 5% untreated stalks. 

Previous in vitro work by Shreck (2013b) treating corn residue with 5% CaO (DM basis) 

at 50% DM resulted in improved residue digestibility; therefore the same process was 

utilized for this study. All corn stalk round bales used for this study were harvested from 

the same field. All stalks were tub ground (Mighty Giant, Jones Manufacturing, Beemer 

NE) through a 2.54 cm screen, and stored under a roof in a commodity bay. Chemical 

treatment involved adding CaO (0 to 0.098 cm granular standard quicklime, Mississippi 

Lime Co., St. Louis, MO), and ground residue hydrated to 50% DM with water addition. 

Calcium oxide was added at 5% of stalks on a DM basis. Feed trucks dispensed treated 
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residue into a bunker and were then covered with plastic. This treatment process was 

completed every two weeks continuously throughout the trial, allowing for residue to be 

exposed for at least one week prior to feeding. Untreated residues were ground and stored 

under roof with no added moisture or chemical. Modified distillers grains plus solubles 

were purchased from a commercial ethanol plant (Green Plains, Central City, NE) and 

delivered as needed (approximately 1 semi-load/wk). All diets contained 4% dry 

supplement, which was formulated for 33 mg/kg daily of monensin (Rumensin, Elanco 

Animal Health, Greenfield, IN) and to provide 90 mg/steer daily of tylosin (Tylan, 

Elanco Animal Health) with estimate intakes of 10 kg. Calcium oxide (formulated to 

contain 71% Ca based on molecular weights) replaced limestone in diets containing 20 

and 30% alkaline treated stalks. Feedbunks were assessed daily at approximately 0630 

am and managed so calves were at ad libitum intake. When refusals were present; orts 

were removed and dried in a 60°C forced air oven (Model LBB2-21-1, Despatch, 

Minneapolis, MN) for 48 h to establish DM (AOAC Method 935.29). Feed ingredients 

were sampled weekly and DM was determined using the same procedure used for orts.  

Two to four adaptation diets (treatment dependent) were used to adapt cattle to 

final diets. Cattle assigned to diets containing 10% TR (with 20% MDGS) and CON were 

adapted using four adaptation diets where alfalfa was decreased from 37.5% to 27.5% to 

17.5% to 7.5% to 0 (DM basis), and were fed their finishing diet on d 28. Pens assigned 

to the 40% MDGS and 10% TR treatment were adapted after 4 steps (32.5%, 22.5%, 

12.5%, and 5% alfalfa; DM basis) and reached their target ration on d 21. Within both 

20% and 40% MDGS diets, cattle assigned to 20% TR diets were adapted after 3 steps 

(27.5%, 17.5%, and 7.5% alfalfa; DM basis), and reached their final diet on d 14. Cattle 
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assigned to diets containing 30% TR finished adaptation after 2 steps (17.5%, 7.5% 

alfalfa), and began their final ration on d 14. In each step, alfalfa was replaced with dry 

rolled corn. Inclusion of crop residue and MDGS was the same in the adaptation diets as 

in the final experimental diets for each treatment. Steers were fed once daily and allowed 

ad libitum access to feed and water. All cattle were supplemented with Zilmax (8.36 mg 

zilpaterol/kg of feed, Merck Animal Health) for 20 d and Zilmax was removed from the 

feed during the final 3 d for required withdrawal time. Cattle were fed for 180 d 

(November 15, 2012 to May 13, 2013). Prior to shipment, steers were pen weighed at 

1600 h (Norac M2000, Norac Inc. Bloomington, MN), loaded, then transported. All cattle 

were shipped to a commercial packing plant (Greater Omaha Pack, Omaha, Nebraska), 

held overnight, and slaughtered the following morning. A 4% shrink was applied to BW 

to calculate live BW and dressing percentage. Hot carcass weight was collected on the 

day of harvest and 12th rib fat thickness, LM area, and USDA marbling scores were 

collected following a 48-h chill. Final BW, ADG, and G:F were calculated using HCW 

adjusted to a common (63%) dressing percentage. A constant KPH of 2.5% was assumed 

and used in the USDA yield grade calculation of Boggs et al. (1998). Throughout the 

trial, two steers were treated for foot rot, four were treated for respiratory disease, one for 

bloat, and one for a toe abscess. Five steers died while on trial. Cause of death included 

PEM (20 TR with 20 MDGS), a perforated abomasal ulcer (20 TR with 20 MDGS), bloat 

and pericarditis (20 TR with 40 MDGS), and one death was undeterminable due to 

autolysis (10 TR with 20 MDGS). 

Performance and carcass data were analyzed as a 2 x 3 + 1 factorial using the 

MIXED procedure of SAS (SAS Institute, Inc., Cary, N.C.) as a generalized randomized 
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block design with two blocks and 3 reps/block. Pen served as the experimental unit and 

BW block was included as a fixed effect. Initially, the 2 x 3 factorial was tested for an 

interaction. If no significant interaction was observed, main effects of TR inclusion were 

evaluated. Also, orthogonal linear and quadratic contrasts were used to determine the 

response curve for alkaline treated forage within MDGS inclusion. If there was an 

interaction, then orthogonal and linear contrasts of TR within each distillers inclusion 

were evaluated. The F-test was used to compare all treatments to the control diet. For all 

analysis, a P ≤ 0.10 was deemed significant. 

RESULTS 

Performance 

For the 2 x 3 performance portion of the experiment, a quadratic interaction 

between TR and MDGS inclusion was observed for carcass adjusted G:F (P < 0.03; 

Table 2) and G:F based on final live BW (P < 0.01). For carcass adjusted G:F, a linear 

decrease (P < 0.01) was noted within the 20 MDGS treatment diets as TR increased from 

10 to 30%. Conversely, within the 40 MDGS inclusion, a quadratic effect was observed 

(P < 0.01) with an evident 14% decrease as TR inclusion increased from 10 and 20% to 

30%. Similar results were noted for live G:F with a linear decrease within 20 MDGS 

diets and a quadratic decrease for 40 MDGS diets (P < 0.01). No linear or quadratic 

interactions were observed for DMI, carcass adjusted final BW (P > 0.12), or carcass 

adjusted ADG (P > 0.16). Quadratic decreases were observed as main effects for carcass 

adjusted final BW (P < 0.01) and carcass adjusted ADG (P < 0.01) as TR increased 

within treatments. Dry matter intake was not impacted by increasing TR inclusion (P > 

0.25). Greater DMI, carcass adjusted final BW, carcass adjusted ADG (P < 0.01), and 



108 
 

 

 

improved carcass adjusted G:F (P ≤ 0.08) were observed with 40 MDGS when compared 

to diets containing 20 MDGS.  

Compared to the control, intakes were not impacted by treatment (P > 0.18; Table 

3) and no differences were observed across different treated stalk inclusion. Carcass 

adjusted final BW, carcass adjusted ADG, and live G:F at 10 TR with 20 MDGS and 10 

or 20 TR with 40 MDGS were comparable to the control diet (P < 0.01). However for 

carcass adjusted G:F, only cattle on the 10 or 20 TR with 40 MDGS showed similarities 

to the control (P < 0.01), which has 5% untreated stalks with 20% MDGS. 

Carcass Characteristics 

 A linear interaction (P < 0.09; Table 2) was observed for dressing percentage. For 

dressing percentage within the 20 MDGS level, a quadratic decrease was observed (P = 

0.05) while a linear decrease (P < 0.01) was noted within 40 MDGS. No linear or 

quadratic interactions were observed for the remaining carcass characteristics (P > 0.42).  

 When main effects are considered, increasing TR from 10 to 30% resulted in a 

quadratic decrease (P < 0.01) of HCW. Fat thickness generally reflected changes in ADG 

with cattle that gained less being leaner at slaughter with a linear decrease (P < 0.01) as 

TR increased. For LM area and marbling, quadratic decreases (P = 0.03) were observed 

as TR increased in diets from 10 to 30%. With 40% MDGS inclusion, HCW was 

increased by 4% (P < 0.01), cattle tended to be fatter at slaughter by 11% (P < 0.01), and 

marbling scores were decreased by 3% (P < 0.01) when compared to cattle consuming 

20% MDGS diets.  

When compared to the control, LM area and marbling were not impacted by 

treatment (P > 0.18; Table 3). However, similar characteristics were noted for dressing 
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percentage between 10 or 20 TR with 40 MDGS and the control ration (P < 0.01). Both 

HCW and 12th rib fat were similar (P < 0.01) to the control at 10 TR with 20 MDGS and 

10 or 20 TR with 40 MDGS. 

DISCUSSION 

Overall, improved ADG, G:F, and carcass characteristics were observed in cattle 

receiving 40 MDGS when compared to 20 MDGS. Improved G:F when MDGS is 

increased from 20 to 40% is consistent with previous research (Klopfenstein et al., 2008; 

Bremer et al., 2011; Nuttelman et al., 2010). In a meta-analysis by Bremer et al. (2011), 

the authors observed a 2% G:F improvement when MDGS was increased from 20 to 

40%, in the current study a 5% improvement was observed. However, Bremer et al. 

(2011) observed similar ADG between 20 and 40% MDGS (1.77 and 1.74 kg/d 

respectively) while in the current study an 8% increase occurred with increasing MDGS 

inclusion. Nuttelman et al. (2010) also compared performance of cattle fed 20 and 40% 

wet, modified, and dried distillers grains and observed an ADG increase of 3% when 

distillers grains inclusion increased from 20 to 40%. Similar to the current study, 

Nuttelman et al. (2010) also observed increased HCW and 12th rib fat thickness when 

distillers grains were increased from 20 to 40%. It is important to note that despite high 

TR inclusion of the current study, distillers grains results were consistent with previous 

finishing work. Characteristics of wet and modified distillers grains allow for acceptable 

performance when low quality roughages are included in finishing rations. The crude 

protein concentration found in distillers grains makes up for the lack of protein in low 

quality forages. Specifically, distillers grains contain a high percentage of undegradable 

intake protein (UIP) allowing for increased intestinal protein absorption (Larson et al., 
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1993). Additionally, moisture from wet and modified distillers grains increases diet 

palatability, helps with mixing, and decreases sorting (Erickson et al., 2010). Also, 

distillers grains contain fat that is partially protected from rumen degradation, therefore 

allowing greater total tract fat digestibility (Vander Pol et al., 2009). Benton et al. (2007) 

evaluated high or low inclusions (2.46 or 4.93% NDF) of varying roughage sources 

(alfalfa hay, corn silage, or corn stalks) in diets containing 30% WDGS. With each 

roughage source, DMI and ADG were improved with roughage addition when compared 

to the 0% roughage control. Significant differences in G:F were not apparent between 

roughage level and source, illustrating the impact that distillers grains have when 

included in diets containing low quality roughages. 

Similar to the current study Shreck et al. (2012) evaluated corn replacement with 

20% TR and 40% WDGS to an 20% untreated corn residue diet, and a control containing 

10% untreated roughage and 40% WDGS. The authors observed that the 20% treated 

residue diet outperformed the 20% untreated residue diet. However similar to the current 

study, the 20% TR diet maintained similar final BW, ADG, G:F, HCW, and 12th rib fat as 

the control diet. Comparably, Johnson et al. (2013) tested diets with 20% treated or 

untreated corn residue with 40% MDGS to a control containing 5% untreated corn 

residue and 40% MDGS. Similar to the current study and data from Shreck et al. (2012), 

the authors found that the 20% treated residue diet produced final BW, ADG, and G:F 

comparable to the control diet. In a separate study by Shreck et al. (2013a), two 

distillers:treated stalk ratios (3:1 and 2:1) were compared to a 5% untreated stalk and 

35% MDGS control diet. Within the 3:1 ratio, increasing forage did not effect G:F (P ≥ 

0.15). In a commercial study, Cooper et al. (2014) compared a 6% untreated residue and 
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35% WDGS control diet to a diet containing 20% treated stalks and 35% WDGS. The 

authors observed decreased final BW, ADG and a 5% decrease in G:F with the CaO 

treated diet. The current study and previous research indicate that corn replacement with 

up to 20% CaO treated corn residue in distillers grains based diets improve or maintain 

G:F when compared to a corn based control diet. 

Intakes increase with addition of roughage (Arelovich et al., 2008), especially 

considering that dietary NDF from roughage can account for up to 92 to 93% of the 

variation in DMI for finishing cattle on high concentrate rations (Galyean and Defoor, 

2003). For the present study, the assumption can be made that control cattle intakes were 

being regulated chemostatically. However, no differences in intake were noted as 

roughage content was increased. Bartle et al. (1994) evaluated similar roughage 

inclusions (10, 20, or 30%; DM basis) supplied by either alfalfa or cottonseed hulls. Dry 

matter intake was increased by 24% as roughage increased from 10 to 30% (P < 0.01). 

This is most likely due to energy dilution, and the animals attempt to maintain energy 

intake. In the present study, similar intakes were noted across treatments (P > 0.18), 

however there was a numerical tendency for cattle on the 40 MDGS diets to have greater 

DMI when compared to cattle on the 20 MDGS diets (including the control). This slight 

difference is likely attributed to increasing overall palatability and moisture content of the 

diet (Klopfenstein et al., 2008). In the Bartle et al. (1994) study, despite increased DMI, 

both ADG and G:F decreased as roughage increased in finishing rations, representing the 

negative effects of increasing roughage on gains and efficiency (Stock et al., 1990). 

It can be concluded that the maintenance of G:F between the control and diets 

with 10 or 20 stalks and 40 MDGS is most likely due to 1) improved digestibility of the 
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low quality corn residue, and 2) increased MDGS inclusion. Klopfenstein (1978) stated 

that the chemical treatment modes of action include: 1) solublization of hemicellulose, 2) 

increasing the extent of cellulose and hemicellulose digestion, and 3) increasing the rate 

of cellulose and hemicellulose digestion, leading to an increase in overall digestibility 

and forage utilization. Another important factor is that treated corn residues are not only 

replacing corn, but also roughage in the control diet (Shreck, 2013a). Additionally, there 

is extensive research showing G:F improvement when distillers grains are increased to 

40% in diets compared to 20% (Bremer et al., 2010). 

From the current study, increasing forage content increased variability of live BW 

when compared to final weights based on carcass weight adjusted to a common 63% 

dressing percent. In the current study, as forage increased, dressing percentages 

decreased. This illustrates the negative impact of increasing forage on dressing 

percentage, which is caused by gutfill when compared to diets containing large amounts 

of grain and by-products. Similar results have been observed by Prior et al. (1977) and 

Bowling et al. (1978) where forage fed cattle exhibited decreased dressing percentage 

after being harvested at similar live weights when compared to cattle on high concentrate 

rations. 

Feeding steers up to 20% corn stover treated with 5% calcium oxide at 50% DM 

with 40% MDGS was able to produce similar final BW, ADG, and G:F as well as HCW, 

dressing percentage, and 12th rib fat when compared to a control diet consisting of 35 

fewer DM percentage units of DRC. These differences are most likely due to increased 

fiber digestibility produced by calcium oxide treatment and distillers grains inclusion. 
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Table 1. Diet composition for diets containing 20% or 40% MDGS and 10%, 20% or 30% treated stover. 1,2 

  20 WDGS  40 WDGS 

Item CON 10 20 30  10 20 30 

Ingredient         

    Dry rolled corn 71 66 56 46  46 36 26 
    MDGS 20 20 20 20  40 40 40 
    Treated Stover - 10 20 30  10 20 30 
    Stover 5 - - -  - - - 
    Supplement 4 4 4 4  4 4 4 
        Fine ground corn 1.86 2.68 3.51 3.51  2.68 3.51 3.51 
        Limestone 1.65 0.83 - -  0.83 - - 
        Salt 0.30 0.30 0.30 0.30  0.30 0.30 0.30 
        Tallow 0.10 0.10 0.10 0.10  0.10 0.10 0.10 
        Trace mineral 0.05 0.05 0.05 0.05  0.05 0.05 0.05 
        Vitamin A-D-E 0.0150 0.0150 0.0150 0.0150  0.0150 0.0150 0.0150 
        Rumensin 0.0165 0.0165 0.0165 0.0165  0.0165 0.0165 0.0165 
        Tylan 0.0102 0.0102 0.0102 0.0102  0.0102 0.0102 0.0102 
         
Nutrient Analysis3         
    CP 13.58 13.35 12.90 12.44  17.99 17.54 17.08 
    NDF 19.79 22.30 28.18 34.05  26.54 32.41 38.29 
    Ca 0.06 0.36 0.69 1.02  0.37 0.69 1.02 
    P 0.40 0.39 0.37 0.36  0.52 0.50 0.48 

1Values presented on a DM basis. 
2MDGS = modified distillers grain with solubles. 
3Dietary nutrient analysis based only on feed ingredients included in the diet. 
4Premix contained 10% Mg, 6% Zn, 4.5% Fe, 2% Mn, 0.5% Cu, 0.3% I, and 0.05% Co. 
5Premix contained 1,500 IU of vitamin A, 3,000 IU of vitamin D, and 3.7 IU of Vitamin    E. 
6Premix contained 330 mg/hd/d of monensin kg-1 (Elanco Animal Health, Greenfield, IN). 
7Premix contained 90 mg/hd/d of tylosin kg-1 (Elanco Animal Health). 
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Table 2. Performance of finishing cattle comparing the main effects of 10, 20, or 30% alkaline treated stalks within either 20 or 40% MDGS.1 

abcdeFrom the F-test, means lacking common superscripts, differ P < 0.05. 

abcde From the F-test, means lacking common superscripts, differ P < 0.05. 
1MDGS = modified distillers grains plus solubles. 
2Main effects of linear response to concentration of treated stalks. 
3Main effects of quadratic response to concentration of treated stalks. 
4Linear interaction of distillers grains concentration by alkaline treated stalk concentration. 
5Quadratic interaction of distillers grains concentration by alkaline treated stalk concentration. 
6Main effects of 20 vs. 40 MDGS. 
7Calculated as HCW/common dress (63%). 
8Calculated from carcass-adjusted final BW. 
9Pen weight before slaughter shrunk 4%. 
10Calculated as HCW/Live BW. 
11400=Small. 

 
 20 MDGS 

  
40 MDGS 

   
Linear Quad. 

 

Item 10 20 30 L2 Q3 10 20 30 L2 Q3 SEM DxT4 DxT5 Dist.6 

Carcass Performance               
     Initial BW, kg 320 321 321 0.12 0.84 320 320 320 1.00 0.92 1 0.19 0.93   0.56 
     Final BW, kg7 641bc 626cd 595e <0.01 0.24 653ab 660a 619d <0.01 <0.01 14 0.43 0.17 <0.01 
     DMI, kg/d 10.7 10.8 10.5 0.51 0.25 10.8 11.0 11.0 0.34 0.70 0.32 0.26 0.60 <0.01 
     ADG, kg8 1.77bc 1.69cd 1.51e <0.01 0.23 1.84ab 1.88a 1.65d <0.01 <0.01 0.07 0.35 0.16 <0.01 
     G:F 0.166b 0.156c 0.143d <0.01 0.54 0.170ab 0.170ab 0.149d <0.01 <0.01 0.002 0.65 0.03 0.08 

 Live Performance               

     Live BW, kg9 634bcd 625cde 612e 0.01 0.69 642ab 651a 624de 0.02 0.01 12.64 0.84 0.12 <0.01 

     Live ADG, kg 1.73bc 
1.69cd 1.61d <0.01 0.70 1.78ab 1.83a 1.67cd 0.01 0.01 0.06 0.78 0.11 <0.01 

     Live G:F 0.163a 0.156b 0.153b <0.01 0.48 0.164a 0.166a 0.152b <0.01 <0.01 0.002 0.54 <0.01 0.04 

Carcass Characteristics               

     HCW 404bc 395cd 375e <0.01 0.24 411ab 416a 390d <0.01 <0.01 9 0.42 0.48 <0.01 

     Dressing, %10 63.7bc 63.1cd 61.2e <0.01 0.05 64.1ab 63.8ab 62.5d <0.01 0.11 0.3 0.09 0.79 0.82 

     LM area, cm2 90.3 91.6 89.0 0.54 0.23 91.0 93.5 90.5 0.67 0.10 0.18 0.89 0.73   0.12 

     12th Rib fat, cm 1.35a 1.17b 0.99c <0.01 0.98 1.50a 1.35a 1.09bc <0.01 0.45 0.02 0.59 0.57 <0.01 

     Marbling11 488 488 470 0.30 0.53 476 462 463 0.44 0.62 13 0.59 0.57 <0.01 
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Table 3. Performance of finishing cattle comparing the simple effects of 10, 20, or 30% alkaline treated stalks with either 20 or 40%  
MDGS with the control diet that included 5% untreated stalks and 20% MDGS.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

abcdeFrom the F-test, means lacking common superscripts, differ P < 0.05. 
1MDGS = modified distillers grains plus solubles. 
2Calculated as HCW/common dress (63%). 
3Calculated from carcass-adjusted final BW. 
4Pen weight before slaughter shrunk 4%. 
5Calculated as HCW/Live BW. 
6400=Small. 

 
 

 
20 MDGS 40 MDGS 

  

Item CON 10 20 30 10 20 30 SEM F-Test 
Carcass Performance          
     Initial BW, kg 320 320 321 321 320 320 320 1 0.74 
     Final BW, kg2 655ab 641bc 626cd 595e 653ab 660a 619d 14 <0.01 
     DMI, kg/d 10.7 10.7 10.8 10.5 10.8 11.0 11.0 0.32 0.18 
     ADG, kg3 1.85ab 1.77bc 1.69cd 1.51e 1.84ab 1.88a 1.65d 0.07 <0.01 
     G:F 0.173a 0.166b 0.156c 0.143d 0.170ab 0.170ab 0.149d 0.002 <0.01 
 Live Performance          
     Live BW, kg4 640abc 634bcd 625cde 612e 642ab 651a 624de 12.64 <0.01 
     Live ADG, kg 1.77ab 1.73bc 1.69cd 1.61d 1.78ab 1.83a 1.67cd 0.06 <0.01 
     Live G:F 0.166a 0.163a 0.156b 0.153b 0.164a 0.166a 0.152b 0.002 <0.01 

Carcass Characteristics          
     HCW 412ab 404bc 395cd 375e 411ab 416a 390d 9 <0.01 
     Dressing, %5 64.4a 63.7bc 63.1cd 61.2e 64.1ab 63.8ab 62.5d 0.3 <0.01 
     LM area, cm2 92.9 90.3 91.6 89.0 91.0 93.5 90.5 0.18 0.02 
     12th Rib fat, cm 1.47a 1.35a 1.17b 0.99c 1.50a 1.35a 1.09bc 0.02 <0.01 
     Marbling6 459 488 488 470 476 462 463 13 0.81 
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