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Abstract

We tested the idea that climate may affect forest fire severity independent of fire intensity.
Pervasive warming can lead to chronic stress on forest trees (McDowell et al. 2008; Raffa et al.
2008), resulting in higher sensitivity to fire-induced damage (van Mantgem et al. 2003). Thus,
there may be ongoing increases in fire severity (the number of trees killed), even when there is
no change in fire intensity (the amount of heat released during a fire). We examined this
question at a subcontinental scale by synthesizing existing information from plot-based
prescribed fire monitoring databases across the western United States of America (USA).
Prescribed fire data are particularly well suited to exploring the relationship between climate and
fire severity because prescribed burns are conducted over a relatively narrow range of fire
weather but over a potentially wide range of inter-annual climatic conditions.

Specifically, we considered two topics, (i) quantifying the contribution of climate to fire
severity (as measured by post-fire tree mortality), and (i7) detecting any secular trends in fire in
the climate/fire severity relationship. Statistical models based on data from >330 forest plots
showed that across regions and major taxa, probabilities of fire-caused tree mortality were
strongly sensitive to pre-fire changes in climatic water deficit, an index of drought. Our
downscaled climate data indicated that changes in the climatic water deficit were due to
increasing temperatures, without detectable trends in precipitation. These climatic trends were
correlated with increasing probabilities of fire-caused mortality over time. Results from this
study demonstrate that incorporating measures of pre-fire climatic stress and/or tree health into
models of post-fire mortality used by prescribed fire managers may substantially improve their
predictive capabilities. The relationships developed here will help managers predict changes in
fire severity from large-scale climatic anomalies (e.g., ENSO, PDO) and from secular trends in
climate.

Background and purpose

There is a growing realization that current warming trends may be linked to increasing forest fire
size, frequency, and severity (the number of trees killed) across the western United States
(Westerling et al. 2006; Miller et al. 2009). The mechanism whereby fire severity might
increase in response to warming is presumed to be increasing probabilities of severe fire weather
(higher air temperature and lower relative humidity resulting in lower fuel moisture) (Fried et al.
2008). While likely true, this singular view discounts the biological context of the fire event. It
has been suggested that trees subject to chronic stress are more sensitive to subsequent fire
damage (van Mantgem ef al. 2003; Nesmith et al. in review), implying that recent climatic trends
may lead to a de facto increase in fire severity (the number of trees killed), even when there is no
change in fire intensity (the amount of heat released during a fire).

Current evidence implies that regional warming may already be contributing to
increasing tree stress. From the late 1980s, mean annual temperature of the western United
States increased at a rate of 0.3 to 0.4° C decade™, even approaching 0.5° C decade™ at the
higher elevations typically occupied by forests (Diaz & Eischeid 2007). Warming may increase
tree stress by (i) increasing water deficits and thus drought stress on trees (McDowell et al.
2008), (i7) enhancing the growth and reproduction of insects and pathogens that attack trees
(Raffa et al. 2008), or (iif) both. A contribution from warming to tree stress is consistent with the
apparent role of warming in episodes of recent forest die-back in western North America
(Breshears et al. 2005; Raffa et al. 2008; Allen et al. 2010), and the positive correlation between
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background tree mortality rates and warming observed across the western United States (van
Mantgem & Stephenson 2007; van Mantgem et al. 2009) and boreal forests in Canada (Peng et
al. 2011). A consequence of these trends may be that forests in these landscapes are becoming
increasingly sensitive to fire.

Testing this climate-fire relationship is needed to better understand the nature of threats
faced by temperate forests under likely future climate scenarios. While disturbance is an integral
part of natural systems in forests of the western USA (e.g., Agee 1993), increasing tree mortality
from fires would increase long-term carbon emissions, representing a positive feedback to
climatically forced warming trends (Adams et al. 2010). The warming experienced so far in the
western US is small compared to projected future conditions (Salathé et al. 2008; Overpeck &
Udall 2010); even small contributions of the current climate to fire severity would therefore have
profound implications for forest conservation and management. Mounting climatic stress and
subsequent fire-caused mortality may lead forest managers to inadvertently increase the severity
of prescribed fires under expected future climatic conditions.

We approached this problem from two complimentary directions. First, we analyzed
patterns of fire-induced tree mortality across the western United States by synthesizing existing
fire-effects monitoring data (Topic 1. Large-scale analysis of fire effects data). Second, we
conducted an in-depth analysis of this question using tree-ring records for a species of special
concern in the Sierra Nevada, sugar pine (Pinus lambertiana Douglas). Here, we measured
individual tree mortality probabilities using traditional measures of fire-caused damage (e.g.,
crown scorch, bark char height), supplemented with measures of pre-fire tree vigor, as
determined from annual growth rings (Topic 2. Growth rate and fire damage as predictors of
mortality of sugar pine).

Study description and location
Topic 1. Large-scale analysis of fire effects data

1.1. Data sources

We synthesized existing plot-based prescribed fire monitoring data from the National Park
Service’s (NPS) fire ecology program stored using the interagency FFI (FEAT/FIREMON
Integrated) database management system (http://frames.nbii.gov/ffi). We created a relational
database from these records which have been carefully error checked through database queries,
custom-made error checking computer programs and repeated interviews with individual data
stewards. Our current database represents a valuable resource for addressing the general effects
of prescription burning in coniferous forests in the western US.

Beginning in the early 1990s, the NPS developed standardized fire monitoring protocols,
which allows direct comparisons of fire effects to be made between and within burn units,
regions and years (Lutes ef al. 2009). Each plot has been prescribed burned, with
measurements of surface fuels and individual tree status (fire-caused damage and mortality)
made at pre- and multiple post-fire intervals. While these data have been used to describe
prescribed fire effects over relatively small management units (e.g., individual parks, Keifer et al.
2006), our efforts represent the first effort to compile these data across a large region to address
broader questions.

The FFI data were supplemented with an additional three sites that were part of the Fire
Fire-Surrogate (FFS) study. This study was a national research project aimed at examining
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ecosystem response to silvicultural treatments designed to reduce fire hazard (Schwilk ez al.
2006; Schwilk et al. 2009; Stephens et al. 2009). Similar measures of pre- and post-fire tree
health were recorded, though post-fire plot remeasurements were only available three years post-
fire.

To estimate climate associated with individual sites (most of which lie in complex
mountainous terrain without adjacent weather stations), we used outputs from the Parameter-
elevation Regression on Independent Slopes Model (PRISM, www.prism.oregonstate.edu) (Daly
et al. 2002), downscaled to a 1 km grid resolution to better match actual stand conditions
(Lorraine Flint, personal communication). PRISM uses instrumental observations and a digital
elevation model, making adjustments for features such as elevation, aspect, slope, and rain
shadows. We used PRISM-derived monthly average temperature and precipitation to calculate
annual climatic water deficit (Willmott et al. 1985) — a biologically meaningful index of unmet
evaporative demand (drought) that integrates changes in both temperature and precipitation
(Stephenson 1990). Climatic water deficit has been shown to be an important determinant of tree
growth (Littell et al. 2008) and is strongly correlated with variation in stand-level tree mortality
rates (van Mantgem & Stephenson 2007; van Mantgem et al. 2009).

Average post-fire climate data were based on water year averages for the year following
fire until the most recent re-measure of tree health status. Multiple measures of pre-fire climate
were assessed based on burn year water year averages, three year pre-fire averages, and five year
pre-fire averages. In addition to absolute climate data, climate data relative to the long-term pre-
fire climate average for the site were tested by dividing the specified immediate pre-fire time
range (5 years) by the 15 years prior to that period. The relative climate data provide an estimate
of how stressful the climate was immediately prior to the fire compared to a long-term (15 year)
average.

1.2. Data collection protocols

The standard NPS protocols establish at least one 50 x 20 m plot (0.1 ha) at a random location
within a prescribed fire burn unit prior to burning (NPS 2003). Within the plot, all live trees > 15
cm DBH (diameter at breast height, 1.37 m) were tagged, measured for diameter and identified
to species. Immediately following the burn (typically within a few months), crown scorch
percent and bole char height were measured for each tagged tree. Trees were assessed for
mortality (no green needles) immediately post-fire and 1-, 2-, 5-, 10- and 15-years post-fire. In
addition to individual tree data, plot-level fuels data were collected including information for
duff, litter, 10, 100, and 1000 hr fuel loads using standard planar transect methods (Brown 1974).

1.3. Database creation

We collected individual park FFI datasets and merged them into a single relational database
using Microsoft Access. The merged database includes information on plot location, fuels
information, and individual tree records. The PRISM climate data were then associated with
these data and related through unique plot-level identifiers. Several filters were employed to
select only the relevant information. Trees that were included in the final dataset were restricted
to plots with measured fire damage where both pre-fire and five year (or three year for the FFS
data) post-fire data were available. This excluded plots that were re-burned prior to the final
post-fire re-measure in addition to plots that had burned after 2004 or where no re-measure was
done. In addition, the data were restricted to only include individual trees that were from the
Cupressaceae, Pinaceae, or Taxaceae families and were alive prior to the fire. For the FFI data,
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only trees with DBH > 15 cm were included as the measures recorded for these smaller trees
were inconsistent across parks and time. Both the FFI and FFS data contain unburned ‘control’
plots, which were excluded from our analyses (i.e., plots had to have at least one tree with a non-
zero measure of fire damage).

1.4. Database error assessments and data quality
assurance

The range of each numeric field was checked to make
sure all values fell within an appropriate range (e.g., char

Plot count
ht <75 m, DBH < 500 except for redwoods [Sequoia o <=5 -
sempervirens] or giant sequoias [Sequoiadendron @ >5t010
giganteum]) and were measured on the same scale (e.g., @ 0o

cm vs. m). Other errors that were identified using queries
within Microsoft Access included trees with multiple
species listed on separate records, multiple observations
of the same tree recorded on the same day, illogical
changes in DBH over time, and inconsistent measures of
tree health status through time (trees listed as live after
being listed as dead). Burn dates were checked against
dates when fire damage was recorded for any
inconsistencies. Plot locations were mapped to assure
they fell within the known management areas. Once
these errors were identified, we contacted site managers
to correct as many problems as possible. Trees that
included errors which could not be fixed were excluded
from the final dataset. These errors required us to
remove 412 trees from our dataset (approximately 4%

of the original data). The final dataset included 8977
trees within 333 plots across 18 sites (Table 1),
spanning 14° latitude and 18° longitude (Figure 1).

. >25to 50

Figure 1. Locations of the 333 forest plots
used for analysis. Symbol size corresponds
to number of plots per management unit.
Forest cover is shown in green.

1.5. Data analysis

Data quality constraints (see above) prevented us from considering plot-level trends (i.e., trends
in mortality rate, stand density and basal area) as not all trees within a plot were necessarily
included in the dataset. Instead, we focused on creating models of post-fire individual tree
mortality. For our analyses, we considered only trees that had died within 5 years post-fire to
capture delayed mortality, but avoid occurrences of mortality past this time frame which may not
be related to fire (i.e. research as suggested that mortality rate returns to background levels from
three to five years post-fire; Youngblood et al. 2009; van Mantgem ef al. 2011).

The number of trees per plot ranged between 1 and 485. Sites were divided into three
regions including California, Southwest, and Rockies (Table 1). Trees were sampled from
prescribed burns with the earliest fire occurring in 1982 and most recent in 2004.

Species composition included 24 different conifer species and was dominated by
ponderosa pine (Pinus ponderosa) and white fir (4bies concolor), which accounted for 35 % and
31 % of all trees, respectively. Other common species included Calocedrus decurrens (6 %), P.
edulis (6 %), P. contorta (4 %), P. lambertiana (3 %), P. attenuata (3 %), Juniperus
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osteosperma, (3 %), S. sempervirens (3 %), and Pseudotsuga menziesii (2 %). Species with low
abundance (<2 %) included, in order of abundance, J. occidentalis, A. magnifica, P. engelmannii,
S. giganteum, P. jeffreyi, J. scopulorum, A. lasiocarpa, P. flexilis, Larix occidentalis, Torreya
californica, J. monosperma, A. grandis, P. sabiniana, and J. deppeana.

Table 1. Summary statistics for all trees by geographic region.

Avg. % of Avg.
# of # of DBH Trees Avg. Bole Crown Average
Region Sites # of Plots  Trees (cm) Burned  Char Ht. (m) Scorch (%) Mortality (%)
California 10 148 4123 39.1 83.7 2.57 28.2 35.1
Rockies 3 31 1822 25.2 90.6 1.79 19.6 14.6
Southwest 5 154 3032 31.6 78.7 2.25 26.3 26.9
Total 18 333 8977 33.8 83.4 2.30 25.7 28.2

We used statistical models that were simple, appropriate to the data, and capable of
describing indirect influences on post-fire tree mortality. Specifically, we modeled patterns in
post-fire mortality probabilities using generalized linear mixed models (GLMM) (Gelman & Hill
2007). This modeling approach allows us to analyze non-normal demographic data (based on
tree status, live or dead), account for variable plot census intervals (time-series data based on
year since burn; three or five year post-fire), incorporate hierarchical data structures in space
(plots nested within burns and management unit), while modeling fixed effects (burning) and
random effects (plot-specific variance). Because GLMMs directly model the effects of among-
plot variance, they allow for an interpretation of general trends.

We built a series of GLMM models that included the known determinants of individual
tree mortality, including the effects of region, burn age, tree condition (i.e., species, diameter, )
and indices of fire-caused tree damage (crown scorch and bole char). We determined any
improvements to these models by the addition of terms for pre- and post-fire annual temperature
regimes and estimates of climatic water deficit. Both frequentist (maximum likelihood) and
Bayesian methods were used to provide multiple interpretations of the results. Both approaches
yielded very similar results, but Bayesian methods allowed us to fit more complicated model
structures, such as the inclusion of multiple interactions among variables. Model selection was
based on Akaike information criterion (4/C) for the models fit using the likelihood approach,
while selection was done using the deviance information criterion (D/C) for Bayesian models. A
difference >2 in AIC or DIC was used as the cut point to indicate substantial improvement in
model performance. All statistical analyses were done using the Ime4 package (Bates &
Maechler 2009) for the frequentist models and MCMCglmm package (Hadfield 2010) for the
Bayesian models within the R statistical program (R Development Core Team 2011).

Topic 2. Growth rate and fire damage as predictors of mortality of sugar pine

We conducted intensive studies on a species of special concern, sugar pine (Pinus lambertiana
Douglas). Sugar pine is an important species in Sierran mixed-conifer forests and provides both
ecological and societal value (Kinloch & Scheuner 1990). However, sugar pine has been affected
by invasive pathogens (white pine blister rust, Cronartium ribicola J.C. Fisch. ex Raben),
climate, and altered disturbance regimes, and is subsequently experiencing elevated mortality
and population declines (van Mantgem et al. 2004). As fire has been reintroduced in the Sierra
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Nevada, managers have been concerned that these multiple stressors, coupled with fire-caused
damage, might adversely affect sugar pine populations (Muerle 2004; van Mantgem et al. 2004).

2.1 Study site
This study was conducted within an old-growth mixed-conifer forest in the Marble Fork drainage

of Sequoia National Park, California, USA. Elevation ranges from 1900 to 2150 m within the
study site. Soils consist primarily of coarse loams derived from decomposed granite. Average
precipitation for this area is 1200 mm yr with most of this falling as snow. The most abundant
overstory tree species are white fir, sugar pine, and incense cedar. Red fir, Jeffrey pine, and
ponderosa pine also occur, but at lower abundance. The site has never been logged and had not
experienced a stand-replacing fire in >100 years (Knapp et al. 2005).

2.2. Data collection

Sugar pine was sampled from within five adjacent 15 ha to 20 ha prescribed burn units that were
originally established as part of the national fire fire-surrogate (FFS) study. Within the burn
units, 50 20 m x 50 m modified Whitaker plots (ten per burn unit) were established at permanent
points along a 50 m grid system (for detailed methods of plot establishment see Schwilk et al.
2006). Prior to the prescribed fires, trees >1.37 m tall within these plots were tagged and mapped
and diameter at breast height (DBH), tree height, height to live crown, blister rust infection
status, and crown condition were recorded.

Following the burns, fire effects were assessed by measuring percent crown volume
scorched (crown scorch), maximum stem char height (char height), and percent circumference of
the base of the stem that was charred (basal char) for each tagged tree. Trees were then recorded
as live or dead immediately (< 1 year) following fire during the summer of 2002, and then two,
three, and five years following fire. Health status (live or dead) was also recorded for sugar pine
(n=109) in one of the FFS control plots during these same remeasures to assess how mortality
rates in burned plots compared to background mortality rates in unburned plots. During the
summer of 2007, tree cores from 165 sugar pine > 10 cm DBH were collected (96 dead and 69
live) within the burned plots. Only trees > 10 cm DBH at the time of the burn were used in this
study to ensure that long term growth records (at least 30 years) were available and because most
trees smaller than 10 cm were consumed by the fire. One or two cores were collected per tree at
breast height. Cores were then mounted and sanded to allow for an accurate measure of ring
width. Rings were measured using a dissecting microscope and sliding-stage micrometer to 0.01
mm accuracy. Many of the dead trees had significant rot, as they had been dead for several years,
resulting in only 105 trees (55 dead and 50 live) producing readable cores of at least 30 years in
length. Nineteen of the live tree cores were excluded because of breaks in the cores or
insufficient number of rings. A master chronology was developed from the 21 oldest trees and
was used to check the cores for errors including missing or false rings using COFECHA1
(Grissino-Mayer 2001). Any errors that were identified were then verified by visual inspection of
the core. Only a small portion of the cores did not cross-date well to the master chronology (nine
cores has a correlation <0.1 with the master chronology) and all cores were retained in the
analysis.

The measures of tree health that were tested included live crown ratio, crown health
rating, blister rust status, and multiple indices of growth measured from tree ring records. There
were 30 different measures of growth in all, including annual growth immediately preceding fire
(n=3), average growth over 5, 10, and 30 years (n=9), growth trend, defined as the linear rate of
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increase or decrease in growth over 5, 10, and 30 years (n=9), and count of sharp declines in
growth over 5, 10, and 30 years (n=9). Sharp declines were defined as any annual decline in
growth > 50% relative to the previous year. Time periods of 5, 10, and 30 years were selected
because past research has found five year (van Mantgem et al. 2003) and ten year growth
measurements to be predictive of mortality (Das et al. 2007), and 30 years was the longest time
period measured from the tree cores that could be assessed without having to further reduce the
sample size. Each index of growth was calculated using radial increment, basal area increment,
and relative basal area increment.

2.3. Statistical tests

The goal of the analysis was to compare how well different models predicted immediate and
delayed (five year) post-fire mortality based on measures of fire effects and tree health. Logistic
regression models were used to model post-fire tree health status (live or dead). Given the
nested structure of the data, with trees nested within plots, within burn units, we began by testing
whether a generalized mixed effects model approach (GLMM), which accounts for the potential
spatial correlation among trees substantially improved model fit over a logistic regression model
that treated each tree as independent (Gelman & Hill 2007). The best supported models were
identified by differences in the bias-corrected Akaike information criterion (4/Cc) and the
standardized A/Cc weights (Burnham & Anderson 2002). The fit of models based on tree size,
fire effects variables, tree health variables, and all variables combined were compared using
AlCec to assess whether the inclusion of measures of pre-fire tree health would substantially
improve the predictive power of sugar pine mortality immediately following fire and five years
post-fire.

Key findings

Key finding 1. Climatic water deficit strongly influences post-fire mortality probability.
Across large spatial scales and major species our models suggest a positive relationship between
relative climatic water deficit and probability of post-fire survival (Table 2). The inclusion of
relative water deficit was supported by AIC and DIC as the inclusion of this term in the model
reduced the AIC and DIC by 6 and 15, respectively (Table 3). Pre-fire climatic stress (as
measured by relative water deficit) was consistently associated closely with post-fire mortality
probabilities across all regions. As crown scorch and stem char height increased, the effect of
relative water deficit and relative average temperature on post-fire mortality became more
pronounced (Figure 2). Trees that received lower levels of crown scorch and stem char were
much more likely to die when relative average temperature and water deficit was high (i.e.,
deficit was larger immediately prior to the fire than in the past) compared to when it was low.
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Table 2. Fixed effects of GLMM model of post-fire survival across regions and species. CI-L
and CI-U are the Bayesian lower and upper 95% credible intervals, respectively.

Frequentist analysis using

Maximum likelihood

Bayesian analysis using MCMC

Estimate  Std. Error p-value Estimate CI-L CI-U  p-value
Time since fire 2.66 0.23 <0.001 3.14 260 3.75 <0.001
Bark thickness 0.47 0.04 <0.001 0.51 043 0.59 <0.001
Volume scorch -0.03 <0.01 <0.001 -0.04 -0.04 -0.03 <0.001
Char height -0.09 0.02 <0.001 -0.10 -0.13  -0.06 <0.001
Relative water
deficit -1.59 0.57 0.005 -1.89 -3.20  -0.43 0.004

Table 3. Measures of model fit for several models that contain different combinations of fire

damage and climate parameters as explanatory variables. The fixed effects that were evaluated
were Geographic region (Region), Time between the fire and post-fire re-measure (TSF),
Estimated bark thickness (BT), pre-fire DBH (DBH), Crown volume scorch (VolScorch), Stem
char height (CharHt), Relative water deficit (RelDeficit), Relative average temperature
(RelTemp), and Relative annual average precipitation (RelPrcp). All models were general linear
mixed models (GLMM) with Site and Plot treated as nested random effects

Fixed effects K AIC AAIC LL DIC ADIC
Region+TSF+BT*CharHt+BT*VolScorch+CharHt*RelDeficit+ 18 5484 8 -2722 5111 3
PerScorch*RelDeficit+CharHt*RelTave+PerScorch*RelTave+

CharHt*RelPrcp+PerScorch*RelPrep

TSF+BT*CharHt+BT*VolScorch+CharHt*RelDeficit+ 11 5474 0 -2724 5108 0
PerScorch*RelTave

TSF+BT+CharHt+VolScorch+

BT*CharHt+BT*VolScorch+RelDeficit+RelTave+ RelPrcp 10 5487 13 -2732 5122 14
TSF+BT*CharHt+BT*PerScorch 7 5492 18 -2737 5119 11
TSF+BT+CharHt+PerScorch+RelDeficit+RelTave+RelPrcp 8 5528 54 -2754 5176 68
TSF+BT+CharHt+PerScorch+RelDeficit 6 5527 53 -2755 5163 55
TSF+BT+CharHt+PerScorch 5 5533 59 -2759 5178 70
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Probability of mortality (%)

Figure 2. Effect of percentage volume crown scorch and relative water deficit on probability of
mortality. For graphing DBH was held constant at 30 cm, char height was set to 0, time since fire
was fixed at 5 years, and the region was fixed to California. A relative deficit value of 1 indicates
that the average 5 year pre-fire deficit was the same as the proceeding 15 year average deficit. A
number > 1 indicates a higher relative deficit and a number <1 indicates a lower relative deficit.

Key finding 2. Temperature driven increases to the climatic water deficit have increased post-fire
mortality probabilities over time.

Trends in climatic data estimated using linear mixed models indicated that over the study period
average temperatures were increasing (fye=0.026, S.E.= 0.002, P<0.0001), while there were no
trends in precipitation (fyea=0.289, S.E.=0.577, P=0.616), together resulting in significant
increases in climatic water deficits (fyca—=1.101, S.E.= 0.114, P<0.0001). Both average
temperature and climatic water deficit were correlated with post-fire tree survivorship
probabilities (e.g., Table 2), so we can infer that fire-caused mortality probabilities should
increase over time (when holding other variables constant). Among two major species, both
Abies concolor and Pinus ponderosa exhibited increasing mortality rates over time, though this
trend was only statistically significant for ponderosa pine (fyear = -0.035, S.E. =0.017, P =
0.0378, Figure 3), though these results may be subject to site-switching bias (Hall ez al. 1998).
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Figure 3. Probability of mortality for Abies concolor (ABCO) and Pinus ponderosa (PIPO)
following prescribed fire through time after accounting for tree size and fire damage. 30 cm was
used as the average DBH in the model, time since fire was set to 5 years, and crown volume

scorch was set to 50 %. The trend in mortality over time was positive for both species, though

only statistically significant for ponderosa pine.

Key finding 3. The inclusion of long-term measures of growth markedly improved fit for models

of post-fire mortality for sugar pine.

Regardless of which measure of growth was used, almost all models that contained some

measure of growth and fire effects performed significantly better at predicting delayed mortality
than models with only fire effects data. In addition, including visual crown health rating
substantially improved model fit compared to the model based on fire effects only, though not as

much as the models based on tree growth (Table 4). The inclusion of blister rust status or live

crown ratio did not improve model fit compared to the fire only model (Table 4).

Table 4. Corrected Akaike information criterion (AICc), receiver operating characteristic

(ROC), sum of squares p-value (SSp), and Evidence Ratio of models for predicting sugar pine

mortality in Sequoia National Park five years post-fire.

Modgl Evidence
Type Model AICc  AAICec ROC SSp Ratio
Growth ~ DBH+PerCrwnVolSc+slope30ba+decline30ba™ 88.511 0 0913  0.810 1
Growth DBH+PerCrwnVolSc+slope30ba+decline30 89.952 1.441 0908 0.682 2
Health DBH+PerCrwnVolSc+CrwnHIthR 111.574 23.063 0.859 0.332 101,875
Fire DBH+PerCrwnVolSc 114.886  26.375 0.840 <0.001 533,652
Health DBH+PerCrwnVolSc+LCrwnR 115423 26912 0.839 <0.001 698,018
Health DBH-+PerCrwnVolSc+BRStatus 116.153 27.642 0.845 <0.001 1,005,505
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* Model Type refers to models that used only fire variables (Fire) or that included measures of
pre-fire tree health in addition to fire damage variables.

** Explanatory variables included diameter at breast height (DBH), percent crown volume
scorched (PerCrwnVolSc), average 30 year growth trend measured as basal area increment
(slope30ba), the number of sharp declines in growth over a 30 year period measured in radial
increment (decline30) or basal area (decline30ba), live crown ratio (LCrwnR), and blister rust
status (BRStatus).

Management implications

Our results demonstrate that post-fire tree mortality is at least partially dependent on climatic
conditions and that if warming trends continue, forests across the western USA may become
increasingly sensitive to fire. Increasing post-fire mortality rates could have cascading effects,
such as changing patterns of post-fire forest regeneration, increasing fuel loads and decreasing
habitat suitability for wildlife species. Additionally, increasing frequencies of post-fire tree
mortality may mean that as dead trees decompose long-term carbon dioxide emissions from
prescribed fire could increase.If fire-caused mortalities continue to increase in the future, forest
managers may wish to place extra emphasis on reducing other stresses that lead to tree mortality,
such as reducing competition due to overcrowding or controlling non-native insects and
pathogens.

An important goal for managers is predicting mortality following fire, which is typically
accomplished via models based on tree size and various measures of fire effects. Results from
this study demonstrate that incorporating measures of pre-fire climatic stress or tree health into
models can substantially improve mortality predictions.

Relationship to other recent findings and ongoing work on this topic

There is a growing body of literature demonstrating that warming climates are influencing fire
regimes in many vegetation types across the western United States (e.g., McKenzie et al. 2004;
Westerling et al. 2006; Littell et al. 2009). For coniferous forests, warming temperatures may
increase probabilities of severe fire weather (higher air temperature and lower relative humidity
resulting in lower fuel moisture) (Fried et al. 2008), increases in background tree mortality rates
(van Mantgem & Stephenson 2007; van Mantgem et al. 2009; Peng ef al. 2011), and higher
incidence of large-scale diebacks from drought and pathogen outbreaks (Breshears et al. 2005;
Kurz 2008; Raffa et al. 2008; Allen et al. 2010). Recently, Miller et al. (2009) noted an increase
in fire severity (number of trees killed) in the Sierra Nevada of California, which was linked to
climatically driven changes in fire weather.

Climatic stress is occurring in conjunction with fire exclusion in many forests across the
western United States. Fire exclusion is widely recognized to have led to changes in forest
structure, such as high surface fuel loads, high densities of small stems that act as ladder fuels to
promote crown fires, and increasing dominance of shade-tolerant species. These changes are
particularly acute in forests that historically had low severity/high frequency fire regimes (Allen
et al. 2002; Brown et al. 2004; Agee & Skinner 2005; Noss ef al. 2006). In response to high fuel
accumulations, managers have used prescribed fire to reduce surface fuels and small tree density,
particularly for shade-tolerant species, while preserving large trees (i.e., individuals presumed to
have established prior to Euro-American settlement, ca. 1850). Our work suggests that managers
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may need to carefully monitor these treatments to insure that desired fuel reduction treatments do
not result in unexpectedly high levels of tree mortality, especially in light of the influences of a
warming climate.

This project compliments ongoing efforts to understand changes in fire severity at
landscape scales from satellite-based observations (Key 2006). Plot-based methods have the
advantage of directly measuring important components of fire severity, including individual tree
mortality. Our results also provide insight into the climatic contributions of massive disturbance
events besides fire, such as those mediated by bark beetle outbreaks in western North America
(Breshears et al. 2005; Raffa et al. 2008). The warming experienced so far in the western USA is
small compared to projected future conditions (Seager ef al. 2007; Overpeck & Udall 2010);
even small contributions of the current climate to fire severity therefore have profound
implications for forest conservation and management. The climatic signal on fire severity, as
established here, has the potential to launch several new avenues of research, motivating a
synthesis among climatology, stress physiology, tree pathology and fire science to better
understand the nature of threats faced by temperate forests under likely future climate scenarios.

Future work needed

We have established that there is a correlative relationship between climate and fire effects for
major species and across large spatial scales in the western USA. However, we need to better
explore potential mechanisms of this relationship. Our work on sugar pine suggests that pre-fire
tree vigor does influence post-fire mortality probabilities and supports earlier findings for white
fir (4bies concolor) in the Sierra Nevada. However, a larger study should be conducted to
determine if this pattern is general across species, regions and fire patterns (high vs. low intensity
fires).

The interaction between climate-driven changes to tree health and fire damage
underscores the need to better understand the physiological mechanisms of tree mortality. Such
work is beginning to be explored for drought-induced mortality in experimental and field settings
(McDowell et al. 2008; Adams et al. 2009; McDowell et al. 2009; McDowell 2011), although no
clear consensus has yet emerged (Ryan 2011). The linkages between climate, tree health
(particularly as measured by wood growth), fire damage and pathogen activity will be inherently
complex.

We are currently conducting work exploring the network of effects through structural
equation modeling (Grace 2006; Grace & Keeley 2006; Youngblood et al. 2009). This approach
allows us to understand the direct and indirect effects of tree health and fire effects on post-fire
tree mortality. Early results suggest that there is high variability among these relationships across
sites and fires even within a single species.

Perhaps of equal importance, our study demonstrates the untapped potential of the
interagency FFI dataset to answer large-scale, outstanding management questions associated
with prescribed fire. While this study primarily used FFI data managed by the NPS, FFI data
from other agencies can help broaden the geographic range and vegetation communities where
these types of studies can be applied. For example, this dataset can readily address important
issues surrounding fuels treatment effectiveness and longevity. The general effectiveness of
prescribed fire as a fuels reduction technique is obscured by a wide spectrum of potential sources
of variability, including fuel structure and condition, climate, forest type, and fire intensity (Agee
& Skinner 2005). Consequently, large data sets are needed to describe general patterns of
prescribed fire effectiveness. These data requirements have limited the number of studies that
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have been able to demonstrate general outcomes of prescription fire on surface fuels (but see
Stephens et al. 2009; Vaillant et al. 2009). The interagency FFI dataset can readily address this
research need.
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