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I. Abstract 
 
One of the key uncertainties in fuels treatments is their longevity under a changing 
climate. Several recent studies have assessed fuel treatment effectiveness during 
historic fires, and in many cases found the treatment less effective than desired, 
particularly during extreme or record conditions. In 2007, southern California 
experienced one of the most severe fire seasons to-date due to record low fuel 
moistures early in the fire season (a key driver of the two-month long Zaca fire) and 
historic Santa Ana winds late in the season (resulting in several large late October 
fires). Climate change projections for the region suggest that these extreme conditions 
will be observed with increasingly greater frequency over the next half century. 
Southern California has one of the largest Wildland Urban Interface (WUI) extents in the 
country, and the extent of WUI is projected to increase significantly over the next 50 
years. Fuels treatments are particularly important in mitigating wildland fire risk in WUI 
areas when extreme fire conditions occur. However, fuels treatments are traditionally 
designed to withstand historic fire weather conditions (i.e., from FireFamilyPlus), not 
future conditions, which makes their effectiveness less likely in the future.  
 
In order to address uncertainties in the effectiveness of fuel treatments under a 
changing climate, we undertook an analysis of six fuel treatments across three southern 
California national forests.  
 
Specifically, we 1) worked with USFS fire managers on the Los Padres, Angeles and 
San Bernardino National Forests to identify six critical landscape fuel treatments of 
concern, 2) developed downscaled projections of future climate and fire weather 
scenarios for 50 Remote Automated Weather Stations (RAWS) in southern California, 
3) analyzed historical fire data from the region to identify an appropriate climatological 
testing window coincident with seasonality of fires that fuel treatments are meant to 
modify the behavior of, 4) tested the effectiveness of the six fuel treatments under future 
(mid-21st century) extreme fire weather as delineated from climate projections, and 5) 
developed guidelines and tools for incorporating future climate and fire weather 
scenarios into fuels treatment development. Additionally, due to the coincidence of the 
2009 Station Fire burning into one of our six fuel treatment sites on the Angeles 
National Forest, we conducted an additional case study assessment of the Charlton-
Chilao fuel treatment to assess its effectiveness during the Station Fire. 
 
Major Findings and Outcomes: 
 
 Fuel treatments in southern California forests should be planned for summer fuel-

driven fires, not fall Santa Ana wind-driven fires, and a summer climatology 
window that excludes Santa Ana conditions (e.g., May 15 – Sept 15) should be 
used to model fire behavior and test treatment effectiveness. 

 The Charlton-Chilao fuel treatment was effective in modifying the Station Fire 
behavior and protecting the Chilao Fire Station, but under the projected mid-21st 
century climate, the treatment would not have modified fire behavior as 
effectively, resulting in 50% greater area burned. 
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 All six of the fuel treatments are projected to experience significant increases in 
flame length, rate of spread, crown fire and other important fire behavior metrics, 
and will likely not meet effectiveness objectives by the mid-21st century. 

 
II. Background and Purpose 
 
Strategically-placed fuels treatments have gained attention as a cost-effective method 
to modify fire behavior in and around resources-at-risk, including ecological, cultural, 
and historical resources, as well as human infrastructure in the Wildland Urban Interface 
(WUI). Fuels treatments must be planned years in advance to go through the 
appropriate scoping and review processes, and as such can be implemented as much 
as a decade or more after they were first planned. Depending on the potential funding 
and resources available for retreatment, the longevity of these fuels treatments is 
largely unknown, and only recently have scientific studies attempted to assess fuel 
treatment effectiveness after a wildfire intersects a fuel treatment. Syphard et al. (2011) 
found that fire breaks on the Los Padres National Forest historically stopped 
approximately 46% of wildfires, while Rogers et al. (2008) reported that the Tunnel 2 
Fuel Treatment on the San Bernardino National Forest played a critical role in aiding 
suppression effort during initial attack on the Grass Valley Fire in 2007, potentially 
saving homes and minimizing fire spread during an extreme weather event. During the 
2007 Zaca Fire on the Los Padres National Forest, numerous fuels treatments from the 
past 20 years were observed by a senior Fire Behavior Analyst to have effect in 
modifying fire behavior (C. Henson, personal communication). Additionally, areas that 
had been untreated such as riparian zones were observed to burn at high severity. 

  
While there are many uncertainties about the longevity of fuels treatments, a key 
knowledge gap is the influence of climate change on fuels treatments and their longevity 
over the next half century. Global climate models (GCMs) produce a strong warming 
signal and drying scenario in southern California (IPCC, 2007), which will not only 
impact live fuel moisture, but will subsequently alter the magnitude and intensity of 
wildfire behavior, making it increasingly difficult for firefighters to suppress wildfires with 
limited resources. Fuels treatments can be enormously beneficial to firefighters, 
particularly in the WUI areas where homes and resources will only continue to be at-risk 
on par with the situations observed in October 2003 and 2007. With projected rapid 
increases in temperature (Dettinger, 2005) and WUI expansion in non-coastal regions of 
southern California (Moritz and Stephens, 2006), it is reasoned that these regions will 
be increasingly prone to wildfire hazard in the future. Westerling and Bryant (2006) 
examined economic ramifications of climate change fire risks within the state of 
California, and found that the largest potential losses under climate change scenarios 
occur in WUI areas within the state.   
 
To maximize the benefit-to-cost ratio, fuel treatments need to be designed and 
implemented with objectives of longevity that account for climate change. More 
specifically, fuels treatments must be designed to modify future, potentially more 
extreme fire behavior, not historical fire behavior.  
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In order to design fuel treatments that account for climate change, we undertook to 
answer three primary research questions: 
 

1) How will climate change in southern California impact fire behavior and, 
particularly, extreme fire events? 

2) How well will existing fuel treatments modify future fire behavior so as 
to aid fire suppression?  

3) How can fire managers throughout southern California and nationally 
use this information to increase cost-effectiveness in their fuels 
treatment programs? 

 
III. Methods 
 
To address each of these fundamental research questions, the following methods were 
undertaken. 
 
1) How will climate change in southern California impact fire behavior and, 

particularly, extreme fire events? 
 

Southern California is a unique ecosystem that includes incredible diversity associated 
with both steep elevation gradients and proximity to the ocean. The diversity fosters two 
fire regimes that are distinct in their characteristics: one is a summer-dominant regime 
with fires driven primarily by topography and fuels, while the second is an autumn-
dominant regime with fires driven primarily by Santa Ana wind events. To understand 
how climate change might impact fire behavior in this region, particularly in the context 
of fuel treatment effectiveness, we first had to quantitatively distinguish between these 
two fire regimes and determine cut-off dates for the summer-dominant, fuel and 
topography-driven regime. We did so utilizing a dataset of historic large wildfires in 
Southern California from 1948-2009, and associated each fire with wind and pressure 
conditions to characterize it as either a Santa Ana or non-Santa Ana fire. We then 
characterized each regime by timing of fire, extent of area burned, and total ignitions.  
 
Second, we had to make climate change projections applicable at a scale that was 
relevant to fire and land managers; that of a Remote Automated Weather Station 
(RAWS). To accomplish this, we statistically downscaled GCM output from a set of 
models forced by 21st century emission scenario (IPCC, 2007) to develop regional 
projections of climate change for southern California for use in projecting future fire 
environment (i.e., weather, fuel conditions) scenarios. We compared results for 21st 
century runs to those from GCM models run under late 20th century conditions to 
examine changes in fire weather danger extremes with respect to existing fuels 
treatments. All RAWS located in and around these three forests in Southern California 
that had at least 12 years of observations over the period 1996-2010 were acquired 
from the Western Regional Climate Center, for a total of 50 RAWS (Figure 1). 
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Figure 1. Location of RAWS selected for downscaling. 

 
A critical limitation of applying RAWS data are data quality issues that often result in 
unrealistic values not suited to applied science.  Given the focus of the present work to 
resolve extreme fire danger conditions, it was necessary to adequately quality control 
the observational dataset prior to analysis and the development of future climate 
scenarios. Furthermore, statistical downscaling necessitates a complete dataset void of 
missing data. The quality control process involves three steps. First, observations are 
scanned for improbable data using integrity and consistency measures (e.g., disallowing 
temperatures above 130F, precipitation amounts exceeding 20 inches). Next, a 
screening procedure to identify temporal and spatial outliers is the performed on the 
data. This involves transforming daily observations into daily standardized anomalies by 
aggregating data using a 31-day moving window and covering all years of observation. 
Standard anomalies for precipitation and wind speed are calculated by first transforming 
the data by taking its square root of data to reduce data skew. Data fail the quality 
control when an individual station exceeds five standard deviations, or the spatial 
anomaly, defined as the difference between individual observations and the mean of the 
nearest 10 stations (e.g., Peterson et al., 1998), exceeds 1.5 standard deviations. The 
screening process is iterated until all remaining data adhere to the quality control 
scheme. Observations that contained one or more variables failing quality control are 
considered erroneous for all elements for the given day. While this procedure was 
meant to identify potential erroneous data, it is feasible that it also failed to identify some 
poor quality data and also removed legit observations. Collectively, the quality control 
procedure discarded approximately 2% of the data.  

 
Missing observations as well as observations that failed quality control are then 
estimated using a multiple linear regression procedure. This procedure uses a 
correlation matrix for each variable and month to identify the top six comparison 
stations. Prior analysis shows that an objective method based on correlation values 
often is superior to methods that chose predictor stations based on Euclidean distance 
in regions of complex terrain (e.g., Abatzoglou et al., 2009). Linear regression across 
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stations is performed using available paired observations. For missing station 
observations, a multiple linear regression model is applied by weighting individual 
regressions by the squared correlation coefficient. 
 
Downscaling Methods 
 
The increased need for place-based climate projections has resulted in a proliferation in 
downscaling methods and datasets in recent years. Downscaling includes both 
dynamical and statistical methods, with both having their strengths and weaknesses 
(e.g., Fowler et al., 2007). Statistical methods are used here as they can be both 
calibrated to historical observations for direct application and are computational 
inexpensive to develop, and thus can be examined across a suite of difference global 
climate models (GCMs). Whereas there has been much work evaluating downscaling in 
the context of water resources, Abatzoglou and Brown (2011) were the first to examine 
the influence of different downscaling methods in the context of wildfire applications. 
They found that the Multivariate Adaptive Constructed Analogs (MACA) method most 
effectively captured the characteristics of daily meteorology across temperature, 
humidity, precipitation and wind across the complex terrain of the western United 
States, and is used hereafter in this work. This method uses quantile-mapping bias 
correction and commonality of patterns (i.e., analogs) between coarse scale observed 
daily meteorological fields and coarse scale daily GCM meteorological fields. 

 
Climate change impacts and adaptation efforts need to account for a range of future 
climate scenarios. A probabilistic based approach that employs a range of different 
scenarios can provide insight into what impacts are most likely, that can then be used in 
decision support systems to guide management directives and policies. The use of 13 
different GCMs allows for a probabilistic range of projections and confidence intervals 
and is justified as initial results suggest that failing to account for a range of model 
results for NFDRS fire danger indices can lead to erroneous conclusions. As most 
scenario driven adaptations require at least 8-10 models, the use of 13 different models 
should account for regional variability in projected outcomes. 
 
Given that the inter-model spread exceeds the changes seen for different emission 
pathways at the regional level, we decided to focus on a single emission scenario 
(SRES-A1B) and thirteen different GCMs (Table 1). Using the MACA method daily GCM 
weather observations for three different time periods, (i) late 20th century (1971-2000), 
(ii) mid-21st century (2046-2065) and (iii) late 21st century (2081-2100) were downscaled 
to the 50 RAWS observations in southern California. Given the uncertainty associated 
with late-21st century projections and the limited temporal period for which fuel 
treatments are meant to be effective without significant maintenance, we conducted all 
analyses with mid-21st century projections.  
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Table 1: List of Coupled Model Intercomparison Project (CMIP3) GCMs used. 
Center Model Country 
BCCR BCM2.0 Norway 
CCCma CGCM3.1T47 Canada 
CCCma CGCM3.1T63 Canada 
CNRM CM3 France 
CSIRO Mk3.5 Australia 
GFDL CM2.0 USA 
GFDL CM2.1 USA 
IPSL CM4 France 
LASG FGOALS-g1.0 China 
MPI-M ECHAM5 Germany 
MRI CGCM2.3.2 Japan 
NIES MIROC3.2hires Japan 
NIES MIRO3.2medres Japan 
 
 
2) How well will existing and planned fuel treatments modify future fire behavior 

so as to aid fire suppression?  
 
We met with fire managers from the Los Padres, Angeles, and San Bernardino National 
Forests in 2008 and 2009 to identify six fuel treatments that are high priority treatments 
for mitigating large fire risk in the Wildland-Urban Interface (WUI). For each treatment, 
we developed both 90th and 97th-percentile weather and fuel condition scenarios for 
both historic and future (mid-21st century) climatology, using both a middle-of-the-road 
global climate model (GCM) and a worst-case scenario GCM. We used these scenarios 
to model the future fire danger and fire behavior and assess fuel treatment effectiveness 
in modifying fire behavior. The treatments chosen by the fire managers were both 
established and in-progress at the time of selection, and all were fully implemented by 
the close of the project. They included: 
 

a) Ojai Community Defense Zone, Los Padres National Forest 
b) Lenora Divide Fuel Break, Angeles National Forest 
c) Charlton-Chilao Vegetation Treatment, Angeles National Forest 
d) Tanbark Fuel Break, Angeles National Forest 
e) Arrowhead Vegetation Treatment, San Bernardino National Forest 
f) Angelus Oaks Community Defense Zone, San Bernardino National Forest 

 
For each fuel treatment, we constructed both historic and future 90th and 97th percentile 
wind and weather scenarios in FireFamilyPlus software from the RAWS that most 
closely reflected the climatology of each treatment site. For sites where no single RAWS 
was the best choice, we constructed a SIG (special interest group) from several RAWS. 
We used two models from the thirteen described above: the GFDL CM 2.0 (USA), which 
represented a moderate or ‘middle-of-the-road’ projection for future climate conditions, 
and the CGCM2.3.2 (Japan), which represented an extreme, or ‘worst-case scenario’ 
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projection for future conditions. These eight scenarios (Historic v. Future, 90th v. 97th, 
and Moderate v. Extreme) for each fuel treatment were each utilized as inputs to a fire 
behavior modeling run in ArcFuels (including FARSITE and FlamMap). Runs utilized 
two different landscapes (Treated vs. Untreated) developed from the 2008 LANDFIRE 
‘Refresh’ (Version 1.1.0) update (www.landfire.gov). Fuels layers were aggregated to 
Landscape files, including Fuel Model (40 Scott & Burgan Models), Canopy Cover, 
Canopy Bulk Density, Canopy Height, and Canopy Base Height. For Treated 
landscapes, fuel layers were modified to reflect the treatment levels described in the 
Environmental Impact Statement, Environmental Analysis, Burn Plan, or other Fuel 
Treatment Planning Document. For example, the Charlton-Chilao Vegetation Treatment 
involved three treatment intensities in different polygons: 25, 50, and 75 percent 
reduction in fuels. Fuel models were altered to represent this reduction based on fuel 
model descriptions, and canopy characteristics were similarly altered. In addition to the 
published plans, ocular estimates of fuel reduction from pictures and field data acquired 
in November 2008 and March 2009 were supplemented to help select fuel models and 
alter canopy layers. 
 
For each of the 96 total conditions (8 scenarios x 6 treatment locations x 2 treatment 
alternatives), five fire behavior outputs were modeled in FlamMap: Flame length (FL), 
Fire Line Intensity (FLI), Rate of Spread (ROS), Crown Fire (CF) and Burning 
Probability (BP). Additionally, for the 2009 Station Fire, we modeled the final fire 
perimeters in FARSITE for both each of the eight scenarios for both treated and 
untreated landscapes. 
 
Add-on objective: Assess the role of the Charlton-Chilao Vegetation Treatment in 
modifying behavior on the 2009 Station Fire 
 
In September of 2009, the Station Fire outside of Los Angeles burned directly into the 
Charlton-Chilao Vegetation Treatment, with the result being that the fire minimally 
impacted the Chilao Flats campground and fire station. This unexpected event provided 
an opportunity to assess the effectiveness of the Charlton-Chilao treatment in modifying 
fire behavior as witnessed by fire personnel on the scene and through modeling. To this 
end, we interviewed the captain and engine foreman at the Chilao Flats fire station, who 
were present immediately prior to the fire front reaching the Chilao Flats area. These 
interviewees not only assisted in implementing the fuel treatment as part of the crew’s 
project work, but then directed the operations to use the vegetation treatment as an 
anchor point for suppression efforts during the fire, and observed fire behavior on the 
site. Numerous photographs of fire behavior in the treatment area were provided by 
these individuals to assist in reconstructing the fire behavior during the Station Fire. This 
allowed us to assess the percentile conditions present during the fire, and determine 
whether the Charlton-Chilao Vegetation Treatment would have the same effectiveness 
under future, mid-21st century conditions using the methods described above. 
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3) How can fire managers throughout southern California use this information to 
maximize fuel treatment longevity efficiently and at the lowest cost? How can 
fire managers nationally use this information to increase cost-effectiveness in 
their fuels treatment programs? 

 
We developed guidelines and best practices for assessing fuels treatments in southern 
California chaparral shrublands and forests to maximize the longevity of new and 
existing fuel treatments under projected climate change. These guidelines utilized the 
southern California fuel treatments as a case study, but were generalized to apply 
nationally and include resources for fire managers across the US. We developed a Best 
Practices guide, and created an online workshop and tutorial such that fire managers in 
other regions can adopt methods to incorporate climate change projections into fuel 
treatment design and implementation. We demonstrated these Best Practices and on-
line tutorial initially in a workshop in October 2011, and will demonstrate them again and 
solicit feedback for final edits during the December 2012 AFE Fire Congress in 
Portland, Oregon. 
 
IV. Key Findings  
The findings presented here summarize modeled projected changes in fire behavior 
associated with future climate conditions. Full data products, included gridded fire 
behavior outputs and climate data, are available on the project website 
(http://nimbus.cos.uidaho.edu/jfsp).  
 
Research Question 1: How will climate change in southern California impact fire 
behavior and, particularly, extreme fire events? 
 
 Fire regimes are bimodal in southern California, with approximately 55% of 

wildfire area burned historically attributed to summer season fires, and 45% 
attributed to autumn, Santa Ana wind-driven fires (Figures 2 and 3).  
 

 The multi-model ensemble mean (an average of 13 GCMs) projects May-August 
temperatures of 5 degrees warmer than the historical (1970-2000) period, and 
February-June precipitation at 8% less. While model projections vary widely, 
there is strong agreement in warmer summers and drier spring and early summer 
periods (Figure 4).  

 
 Drier spring months are projected to contribute to a significant increase in fire 

danger, as represented by Energy Release Component (ERC) in Figure 5, during 
the early part of the fire season (April/May). In southern California, an increase in 
fire danger associated with drying in the early part of fire season promotes an 
increase in fire activity during a period when activity has historically been low. 
This was actualized during the 2009 Jesusita Fire in Santa Barbara, which 
ignited the first week of May and consumed over 8,000 acres and 80 homes. 
Early drying also facilitates reduced live fuel moisture and increases the potential 
for large, mid-summer wildfires like the 2007 Zaca Fire.  



 10

 
Figure 2. Distribution of wildfires from the study region by ignition date and 100-
hour fuel moisture at time of ignition demonstrates the bi-modal fire regime. 
Circle size corresponds to final fire size, with large (>100,000 acres) fire in bold. 
Black line corresponds to daily median 100-hr fuel moistures, with shaded area 
as 95th percentile distribution. 

 

 
Figure 3. The proportion of fires (left) and total area burned (right) by month for 
wildfires from 1948-2009. This shows the bimodality between wind-driven fires 
that occur under Santa Ana conditions (red) and non-Santa Ana fires (black). 
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Figure 4. Distribution of model projections for mid-21st century departures in May-
August temperature and February-June precipitation from historical normals for 
13 GCMs (red numbers) and the multi-model ensemble mean (black ‘X’). 
 

 
 
Figure 5. Mid-21st century ERC 
averaged across 13 models as a 
departure from late 20th century 
historical normals for four 
temporal periods. Color indicates 
that greater than 2/3 of models 
agree on the direction of change 
(positive or negative), while gray 
areas are not characterized by 
such model agreement. 
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Research Question 2: How well will existing fuel treatments modify future fire behavior 
so as to aid fire suppression?  
 
 Future fire behavior projected by the middle-of-the-road GCM was less than a 

25% increase from modeled fire behavior for the late 20th century, with a mean 
increase of 5-15%. For example, for the Arrowhead treatment on the San 
Bernardino National Forest, the mean increase in flame length (represented in 
Figure 6 as a distribution across the landscape) was 10%, and 97% of the 
treatment area saw less than a 16% increase. However, small pockets of fuels 
were modeled at a 60-70% increase in flame length. 

 The worst-case scenario GCM produced similar increases in fire behavior to the 
middle-of-the-road scenario for 90th percentile conditions. In some cases, there 
was no difference between changes in fire behavior associated with the two 
scenarios. 

 The worst-case scenario GCM produced the greatest increases in fire behavior 
associated with the 97th percentile conditions, but these increases were primarily 
seen in flame lengths and burn probability. Fire line intensity and rate of spread 
did not increase significantly under mid-21st century 97th percentile conditions as 
compared to 90th percentile conditions. 

 Results suggest that while some treatments (e.g., Charlton-Chilao) will be 
effective in modifying fire behavior even under the worst-case scenario future 
conditions, others (e.g., Ojai CDZ) will not, and will require alternative treatment 
strategies to be effective. 

 

 
 

Figure 6. Projected increase in modeled flame length for the area within a fuel 
treatment for the Arrowhead Vegetation Treatment using middle-of-the-road 
GCM-derived outputs for the mid-21st century (2046-2065) as compared to the 
historic period (1970-2000). 
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Add-on research question: Assess the role of the Charlton-Chilao Vegetation Treatment 
in modifying behavior on the 2009 Station Fire 
 
 We found that the Charlton-Chilao Vegetation Treatment burned under 

approximately the 90th percentile historic conditions. If the fuel treatment had not 
been implemented, modeled fire behavior for the untreated landscape indicated 
that the Station Fire would have been nearly 15% greater in extent, burning an 
additional 10,000 ha (Figure 7) under the observed weather conditions (acquired 
from the Chilao RAWS). 

 There was no significant difference in modeled fire behavior between historic and 
future middle-of-the-road or worst-case scenario, GCM-derived 97th percentile 
conditions within the fuel treatment (Figure 8). However, there was a 49% 
increase in area burned under future, worst-case scenario conditions, associated 
with significant increases in fire behavior outside of fuel treatments. 

 

 
 
Figure 7. Fire perimeter extents for the actual Station Fire and the untreated landscape 
at both 90th and 97th percentile historic conditions as modeled in FARSITE show the role 
the treatments had in limiting progression on the eastern flank of the fire. 
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Figure 8. (A) Modeled differences in fire extent associated with future 90th percentile 
projected conditions, and future 97th percentile/worst-case scenario projected conditions 
as compared to modeled historic conditions. (B) Increases in flame length under future 
97th percentile/worst-case scenario projected conditions as compared to historic 90th 
percentile show that while surrounding vegetation would see increases in flame length 
of up to 24m over the historic period fire behavior, the fire behavior within the fuel 
treatment would not significantly change. 
 
 
Research Question 3: How can fire managers throughout southern California and 
nationally use this information to increase cost-effectiveness in their fuels treatment 
programs? 
 
 Managers can utilize newly available global climate model data that has been 

made available by multiple research entities in a spatial resolution and data 
format that is more user-friendly and directed at management uses.  

 We outline 12 best practices for utilizing and making decision based on climate 
model projections and the resulting fire behavior model outputs in the Best 
Practices guide.  

 Alternatives that utilize climate model projections can be developed as part of the 
NEPA planning process, but should be produced with expert guidance from a fire 
behavior analyst. 
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V. Management Implications 
 
While the fire community has begun to recognize the implication of climate change and 
its effects on wildfires in recent years, there have been few efforts to link global-scale 
climate change to specific fire management efforts on the ground. This project is the 
first to specifically address the projected increase in frequency and magnitude of 
extreme fire events related to fuel treatment effectiveness, and how fuels management 
might respond to these projections through fuels treatment planning, implementation, 
and management. It provides a methodology to integrate climate change information 
into fuels management, and exemplifies these methods through case studies on 
southern California forests. Furthermore, it provides data and training to southern 
California fire and fuels managers to enable future fuels treatment planning beyond the 
case studies. Finally, it provides a framework for other regions to address incorporating 
climate change information into fire and fuels planning. 
 
There are two specific management implications we wish to elaborate upon. First, there 
has been considerable effort to retrospectively assess fuel treatment effectiveness 
recently, resulting in several publications that highlight varying degrees of success in 
modifying fire behavior. In southern California, Syphard et al. (2011) found that fuel 
breaks were effective in mitigating wildfire advancement 46% of the time, but 
acknowledged that it was difficult to attribute successful versus unsuccessful 
intersections between fire and a fuel break. Their analysis, however, did not address 
whether the primary driver of the fire was wind or fuels. This has been a common theme 
among retrospective assessments of fuel breaks. 
 
We propose that, as the name suggests, a fuel break is intended to remove fuel from a 
wildfire. Thus, a fuel break is likely to be most successful in modifying fuel-driven fire 
behavior, and less successful in modifying wind-driven fire behavior, where ember carry 
and pre-ignition ahead of the flaming front are factors. In southern California, this means 
that fuel treatments are more likely to succeed during mid-summer, fuel-driven fires, and 
less likely to succeed during autumn, Santa Ana wind-driven wildfires. This is 
particularly important for fire management to recognize when trying to convey the 
benefits and utility of fuel treatments to both the public and other land management 
units who might otherwise hold false or unrealistic expectations of fuel treatment 
effectiveness in wind-driven fires. 
 
Second, we here used two GCMs to highlight the projected differences between a 
middle-of-the-road scenario and a worst-case scenario. However, both models utilized 
the middle-of-the-road A1B emissions scenario, which itself is a moderate projection of 
climate change. Fire managers need to understand that in the five years between the 
2007 IPCC report identifying the emissions scenarios and the 2012 publication of this 
report, there is already ample evidence to suggest that global emissions significantly 
exceed the projections of the A1B scenario, and are already more aligned with the 
“worst-case” A2 emissions scenario. If that trend continues, it signifies that the worst-
case scenario depicted here will likely be exceeded by the mid-21st century. 
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VI. Relationship to other recent findings and ongoing work 
This work fuses previous and ongoing efforts in two distinct sub-disciplines of fire 
science: understanding fuel treatment effectiveness and projecting future fire activity 
under a changed climate. Syphard et al. (2011) found fuel treatment effectiveness in the 
Los Padres National Forest to be highly variable, but strongly dependent upon 
concurrent suppression activity and resource support. Rogers et al. (2008) found that 
fuel treatments were instrumental in mitigating fire impacts on the 2007 Grass Valley fire 
on the San Bernardino National Forest.  
 
Projections of future fire activity in the western US are widely variable, with some of the 
lowest levels of agreement in coastal California. Westerling and Bryant (2008) suggest 
that fire regimes where fine fuels are limited may actually see a decrease in fire activity 
in the 21st century, although this is highly dependent on choice of GCM and the 
uncertain impacts of climate change on Santa Ana events. Abatzoglou and Kolden 
(2011), however, suggest that while limitations on fine fuels will likely be a factor in 
desert systems, there is strong model agreement that the coastal mountains of southern 
California will see significantly greater fire activity and higher fire danger by the end of 
the 21st century. The current project expands on that effort by identifying the seasonality 
of changes in southern California to project an increase in early summer, fuel-driven fire 
activity.  
  
VII. Future work needed 
 
This project demonstrated the capacity to downscale coarse global climate model 
output to a spatial scale that can be used to model the mitigative effects of fuel 
treatments, but this is only a first step in truly understanding how to manage changing 
fire regimes. Future work will be required to address several key components: 
 New emissions scenarios released in 2011 by the IPCC are now being integrated 

into both existing and new global climate models and will produce a new suite of 
output projections for the remainder of the 21st century. These new, updated 
outputs should be the foundation of future fire activity modeling efforts. 

 Results from southern California forests and shrublands are applicable only 
within those ecosystems. Findings of fuel treatment effectiveness found for this 
region should not, under any circumstances, be globally applied to other regions. 
Future efforts will need to model fuel treatment effectiveness for local 
ecosystems and fire regimes individually. Best practices are universal, 
quantitative findings are not. 

 One of the primary uncertainties in modeling future fire behavior is the vegetation 
landscape. A key next step is to model future vegetation utilizing an established 
vegetation state-and-transition model such as the Vegetation Dynamics 
Development Tool (VDDT) used by the LANDFIRE program, and then translating 
modeled vegetation into fuel models and crown characteristics. 
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VIII. Deliverables 
 

Deliverable Type 
(See Format 
Overview, Section 
VIII) 

Description Delivery Dates 

Manual ‘Developing Fuel Treatments for a Future Climate: Best Practices 
and Use of Climate Projections.’ White paper published online.  
 

March 2012 
(ongoing edits 
from workshop) 
 

Non-refereed 
publication 
 

Project Report 
 

October 2012 

Refereed publications Publications resulting wholly or in part from JFSP funding: 
 
Abatzoglou, J.T. 2012, Development of gridded surface 
meteorological data for ecological applications and modeling, 
International Journal of Climatology, doi: 10.1002/joc.3413 
 
Abatzoglou, J.T., and T.J. Brown. 2011, A Comparison of 
Statistical Downscaling Methods Suited for Wildfire Applications, 
International Journal of Climatology, doi:10.1002/joc.2312 
 
Behrens, K., C.A. Kolden, and J.T. Abatzoglou. Assessing Fuel 
Treatment Effectiveness for Future Climate Conditions in 
Southern California: A Case Study of the 2009 Station Fire. In 
internal review, to be submitted to Forest Ecology and 
Management. 
 
Kolden, C.A., J.T. Abatzoglou, and T.J. Brown. Fuel treatment 
effectiveness under future climates. To be submitted to 
International Journal of Wildland Fire. 
 
Abatzoglou, J.T., and C.A. Kolden. Characterizing dichotomous 
drivers of seasonal fire regimes in southern California. To be 
submitted to Agricultural and Forest Meteorology. 
 

 
 
2012 
 
 
 
 
2011 
 
 
 
 
In review 
 
 
 
 
 
In progress 
 
 
 
In progress 

Dataset .fw9 files for Historic (1971-2000), mid-21st century (2046-2065), 
and late-21st century (2081-2100) daily weather streams in RAWS 
format (including station data, temp., precip., RH, and winds) from 
13 Global Climate Models using the A1B emissions scenario for 
50 RAWS locations across Southern California 
 

July 2011 
 

Dataset 12 FARSITE and FLAMMAP-compatible landscape files (.lcp 
format) reflecting Treated and Untreated conditions for six fuel 
treatments across three southern California national forests (Los 
Padres, Angeles, and San Bernardino) 
 
 
 

March 2012 
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Training 
sessions/meeting 

Meetings with forest fire and fuels management personnel to:  
1) Identify fuel treatments for study 
2) Collect field data post-treatment 
3) Conduct interviews and collect data from Station Fire 

 
November 2008 
March 2009 
November 2009 
 

Workshop/training 
session 

Workshop at AMS Fire and Forest Meteorology Conference, Palm 
Springs, CA, October 27, 2011 
 
Workshop at AFE 5th Fire Congress, Portland, Oregon, December 
3, 2012 
  

October 2011 
 
 
December 2012 

Site Visit/Field Tour Reconfigured to be an online workshop due to travel restriction on 
forest personnel (see below in Website) 
 

August 2012, 
Ongoing 

Conference 
presentation/poster 

Brown, T.J., and C.A. Kolden. “Assessing fuels treatments in 
southern California National Forests and WUI in the context of 
climate change.” International Conference on Fire Behaviour and 
Risk; Alghero, Italy, October 2011 
 
Abatzoglou, J.T. “Can climate scenarios inform fire management? 
From GMC to RAWS.” American Meteorological Society Fire and 
Forest Meteorology 9th symposium. Palm Spring, CA, October 
2011. 
 
Brown, T.J. “Assessing fuels treatments in southern California 
National Forests and WUI in the context of climate change.” 
Monash University, Melbourne, Australia, February 2012. 
 
Behrens, K. “Fuel treatment effectiveness in modifying fire 
behavior on the 2009 Station Fire.” University of Idaho Geography 
Department seminar, Moscow, Idaho, April 2012. 
 
Abatzoglou, J.T. “Catastrophic wildfires: a new normal?” 
Aquarium of the Pacific Speaker Series, Long Beach, CA, May 
2012. 
 
Kolden, C.A. “Fuel treatment effectiveness in a changing climate: 
a case study from Southern California.” AFE 5th Fire Congress, 
Portland, Oregon, December 2012. 
 

October 2011 
 
 
 
 
October 2011 
 
 
 
 
February 2012 
 
 
 
April 2012 
 
 
 
May 2012 
 
 
 
December 2012 
 

Website Website (http://nimbus.cos.uidaho.edu/jfsp) has been 
reconfigured to accomplish two objectives: 

1) Serve the .fw9 and .lcp files created for this project as 
described in the above sections on data sets. 

2) Present an online tutorial/workshop for using these data to 
assess the effectiveness of fuel treatments under future 
climate conditions. This online tutorial is being updated 
based on feedback received at the December 2012 Fire 
Congress live workshop; final tutorial expected online no 
later than January 2013. 

August 2012, 
Ongoing 
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