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Short running title: RT-QuIC detection of CWD in free-ranging deer 21 

 22 

Abstract 23 

 Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of deer, elk 24 

and moose, is the only prion disease affecting free-ranging animals.  First identified in northern 25 

Colorado and southern Wyoming in 1967, new epidemic foci of the disease have since been 26 
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identified in 20 additional states, as well as two Canadian provinces and the Republic of South 27 

Korea.  Identification of CWD-affected animals currently requires post-mortem analysis of brain 28 

or lymphoid tissues using immunohistochemistry (IHC) or an enzyme linked immunosorbent 29 

assay (ELISA), with no practical way to evaluate potential strain types or investigate the 30 

epidemiology of existing or novel foci of disease.  Using a standardized real time quaking-31 

induced conversion (RT-QuIC) assay, a seeded amplification assay employing recombinant 32 

prion protein as a conversion substrate and Thioflavin T (ThT) as an amyloid-binding 33 

fluorophore, we blindly analyzed 1243 retropharyngeal lymph node samples from white-tailed 34 

deer, mule deer and moose, collected in the field from current or historic CWD-endemic areas.  35 

RT-QuIC results were then compared with those obtained by conventional IHC and ELISA, and 36 

amplification metrics using ThT and Thioflavin S examined in relation to clinical history of the 37 

sampled deer.  The results indicate that RT-QuIC is useful in both for identifying CWD-infected 38 

animals and facilitating epidemiologic studies in CWD endemic and non-endemic areas.  39 

  40 

Introduction 41 

Chronic wasting disease (CWD) is an efficiently transmitted transmissible spongiform 42 

encephalopathy of cervids (e.g. deer, elk, and moose), and is the only known prion disease 43 

affecting free-ranging, non-domestic animals.  As such, it is the only prion disease of animals 44 

whose control and eradication, through genotypic breeding schemes or herd 45 

reduction/depopulation efforts for example, is problematic. (1, 2)   While the origins of CWD are 46 

uncertain, the disease has been present in wild cervid populations of northern Colorado and 47 

southern Wyoming for over 40 years (3, 4) and has now been identified in both captive and free-48 

ranging cervids in 22 states, 2 Canadian provinces, and the Republic of Korea. (5)  With 49 

intensified national and international surveillance efforts, CWD continues to be identified in 50 

areas previously thought to be free of infection, including recent discoveries in Iowa, Texas, and 51 
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Pennsylvania. (6-8) The prevalence of CWD varies across North America, but can be as high as 52 

30% in some areas of Colorado and approaching 80% in captive populations (9).   53 

Determination of prevalence rates in a population is dependent on a sensitive and 54 

specific “gold standard” diagnostic assay.  Immunohistochemistry (IHC) was, until recently, 55 

considered the gold standard diagnostic test for chronic wasting disease and other prion 56 

diseases of animals and man.  In cervids, an ELISA assay was recently approved by the United 57 

States Department of Agriculture for primary diagnostic screening of field samples across the 58 

United States (10), though to date, an amplification-based assay, similar to PCR, for the 59 

detection of CWD (or other TSEs) has been elusive.  The true sensitivity and specificity of IHC 60 

or ELISA in the detection of infected individuals is unknown, though it is generally 61 

acknowledged that the assay underestimates the level of prions in a given sample due to the 62 

necessity of a proteolytic pre-treatment step to abolish cellular PrPC cross-reactivity (11-13).  63 

This limitation has led to increased interest in the development of assays that involve either 64 

amplification and detection of the protease-resistant prion protein (e.g. serial protein misfolding 65 

cyclic amplification, sPMCA) (14), fluorometric quantitation of seeded amplification activity (e.g. 66 

RT-QuIC) (15), or that otherwise avoid harsh proteolytic treatments (e.g. the conformation-67 

dependent immunoassay, or CDI) (16).   68 

One component of chronic wasting disease field surveillance that has required additional 69 

research is the ability to distinguish prion strains in vitro.  Because prion infections are devoid of 70 

agent nucleic acids and a host immune response, conventional infectious disease strain-typing 71 

methods, e.g. nucleic acid sequencing or antibody neutralization studies, are not possible.  72 

Despite this hurdle, at least two strains of CWD have been reported in natural isolates – each 73 

yielding distinct pathological distribution in mouse bioassay and biochemical traits in vitro.(17-74 

19)  These strains may occasionally be found in the same individual, which, combined with the 75 

necessity of mouse bioassay, make epidemiologic studies difficult at best.  Investigations into 76 
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the unprecedented appearance of new epidemic foci across the US (e.g. southeastern 77 

Wisconsin in 2002, central New York State in 2005, and north-central Missouri in 2010) have 78 

relied on anecdotal information for the origin of CWD infection in these areas, with no additional 79 

insight into strain identities or source.  The ability to distinguish strains in vitro has so far been 80 

limited to protease treatment or guanidine denaturation profiles, though fluorometric assays may 81 

hold promise in this arena and could be useful in epidemiological investigations. (20)       82 

In the present study, we have applied a standardized RT-QuIC seeded amplification 83 

assay with two different fluorophores (thioflavin T and S – ThT, ThS) to blindly examine 84 

retropharyngeal lymph node (RLN) samples collected at necropsy from white-tailed and mule 85 

deer (Odocoileus virginianus and O. hemionus, n=1201), and moose (Alces alces, n=42) during 86 

routine CWD surveillance in Colorado, Illinois, Nebraska, New York, and Texas.  We analyzed 87 

various aspects of amplification in positive animals: 1) time to threshold, 2) slope, and 3) peak 88 

fluorescence, and correlated our amplification results with several a priori variables – including 89 

age, sex, species, genotype, and harvest location.  We hypothesized that RT-QuIC results 90 

would correlate to ELISA and IHC results reported by contributing state agencies, and that there 91 

would be amplification characteristics unique to either genotype or geographical regions of 92 

endemnicity.  Our results demonstrate that RT-QuIC is comparable to conventional CWD 93 

detection assays in terms of sensitivity, and predict that seeded-amplification using various 94 

fluorophores may eventually prove to be a useful, rapid, and inexpensive tool for advanced 95 

epidemiological studies in ongoing and newly identified foci of chronic wasting disease.  96 

 97 

Materials and Methods 98 

Study population 99 

The study areas included distinct geographic regions of Colorado, Illinois, Nebraska, 100 

New York, and Texas.  Animals were harvested either during routine surveillance through the 101 
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course of the 2010-2011 (NY, n=100, NE, n=280), or 2012 (TX, n=126) big game hunting 102 

seasons, as part of targeted CWD surveillance outside of big game seasons (2013, IL, n=695), 103 

or as road kill (2004-2010, CO, n=42).  Lymph node samples were initially tested by either 104 

ELISA (New York State Department of Environmental Conservation/New York State Veterinary 105 

Diagnostic Laboratory, Nebraska Game and Parks Commission, University of Nebraska 106 

Veterinary Services Lab) or IHC (Texas Department of Wildlife and Parks/Texas State 107 

Veterinary Laboratory, Illinois Department of Natural Resources/Illinois Department of 108 

Agriculture, Colorado Division of Parks and Wildlife/Colorado State University Veterinary 109 

Diagnostic Laboratory), with results withheld until prion seeding assays were complete. 110 

   111 

Tissue collection and processing: 112 

 Retropharyngeal lymph node samples (i.e. those specific tissues above)  were collected 113 

during post-mortem examinations and submitted, frozen, to the Prion Research Center (PRC) at 114 

Colorado State University.  Each sample was assigned a unique numerical designation and 115 

recorded to allow for blinded evaluation.  Samples were initially prepared as a 2% (w/v) 116 

homogenate in RT-QuIC dilution buffer (phosphate-buffered saline, PBS, with 0.05% sodium 117 

dodecyl sulfate, SDS) using a BulletBlender ® (NextAdvance) with 0.5mm zirconium oxide 118 

beads and 1.5ml conical screw cap tubes.  Samples were homogenized using three, 5-minute 119 

cycles of homogenization at a speed setting of 10, and were then kept at -80⁰C until RT-QuIC 120 

analysis.  121 

 122 

RT-QuIC procedure: 123 

RT-QuIC assays were performed using a truncated form of the recombinant Syrian 124 

hamster PrP (SHrPrP residues 90-231) in pET41b and expressed and purified as previously 125 

described (21, 22).  In brief, 1 liter cultures of lysogeny broth (LB) containing Auto Induction™ 126 

supplements (EMD Biosciences) were inoculated with SHrPrP expressing Rosetta strain E. coli, 127 
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grown overnight, and harvested when optical density (OD, 600 nm) of ~3 was reached.  Cells 128 

were lysed with Bug Buster™ reagent with supplemented Lysonase™ (EMD Biosciences) and 129 

inclusion bodies (IB) were harvested by centrifugation of the lysate at 15,000xg.  IB pellets were 130 

washed twice and stored at -80°C until purification (typically 24 hours or less). IB pellets were 131 

solubilized in 8M guanidine hydrochloride (GuHCl) in 100mM NaPO4 and 10mM Tris pH 8.0, 132 

clarified by centrifugation at 15,000xg for 15 minutes and added to Super Flow nickel-133 

nitrilotriacetic acid (Ni-NTA) resin (Qiagen) pre-equilibrated with denature buffer (6.0M GuHCl, 134 

100mM NaPO4, 10mM Tris pH 8.0).  Denatured SHrPrP and Ni-NTA resin was incubated by 135 

rotating at room temperature for 45 minutes and then added to an XK fast protein liquid 136 

chromatography column (GE Healthcare).  Refolding was achieved on column using a linear 137 

refolding gradient of denature buffer to refold buffer (100mM NaPO4, 10mM Tris pH 8.0) over 138 

340ml at 0.75ml/min.  SHrPrP was eluted with a linear gradient of refold buffer to elution buffer 139 

(100mM NaPO4, 10mM Tris pH 8.0, 500mM imidazole pH 5.5) over 100ml at 2.0ml/min.  140 

Fractions were pooled and dialyzed against two changes of 4.0 liters of dialysis buffer (20mM 141 

NaPO4 pH 5.5).  Recovered SHrPrP was adjusted to a final concentration of ~0.5mg/ml. 142 

Two percent RLN homogenates were diluted 1:100 in RT- QuIC dilution buffer, with 5µl 143 

of this resultant 0.02% homogenate added to 95µl of RT-QuIC reaction buffer (350mM NaCl, 144 

10µM EDTA, 10µM thioflavin T – ThT - and 0.1mg/mL Syrian hamster rPrPC), yielding a final 145 

lymph node homogenate concentration of 1x10-3 in RT-QuIC reaction buffer.  These 100μl 146 

preparations were evaluated in parallel with both positive and negative control tissues in 147 

adjacent wells of a 96-well plate, along with unspiked controls spiked with 5µl RT-QuIC buffer 148 

alone.  Control homogenates consisted of a pooled preparation of 6 CWD-positive white-tailed 149 

deer (CBP6) or tissue-matched negative controls collected in a CWD-negative area of New York 150 

State.  Plates were then subjected to 96 cycles of shaking and incubation at 42⁰C 151 

(approximately 24hrs), with cycles of 1 min shake (700rpm double orbital) and 1 min rest.  ThT 152 

fluorescence readings (450nm excitation and 480nm emission, bottom read, 20 flashes per well) 153 
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were taken following each 15 minute cycle using a gain setting of 1200.  Positive samples were 154 

defined as those that crossed a threshold of fluorescence; a threshold determined by the 155 

average fluorescence of the three tissue-matched negative controls over the course of the 156 

experiment plus five standard deviations.  Time to positivity was defined as the time at which a 157 

sample fluorescence emission crossed the threshold (Ct).  Time to positive fluorescence of test 158 

samples was then compared to that of positive control tissue, arriving at a value typically 159 

between 0-1; samples with earlier times to threshold fluorescence thus had values closer to or 160 

greater than 1.  The slope of the amplification curve was determined as the increase in relative 161 

fluorescence over time.  These analyses were performed using MARS analytical software.     162 

Positive samples were separately evaluated, in triplicate in three separate experiments, 163 

using two different protocols: the first using ThT, as described above, the second with thioflavin 164 

S (ThS, 10µm) in place of ThT.  Thioflavin S fluorescence readings (480nm excitation and 165 

510nm emission, bottom read, 20 flashes per well) were taken following each 15 minute cycle 166 

using a gain setting of 1400.  Criteria for identification of seeding activity in both protocols were 167 

again performed as described above for ThT.  Values for time to positive threshold, slope, and 168 

fluorescence plateaus were averaged across the 9 replicates for each sample and each 169 

fluorophore.     170 

 171 

Cervid PRNP PCR amplification and sequence analysis: 172 

DNA was extracted from frozen, CWD-positive RLNs using a commercial kit (Qiagen) 173 

following the manufacturer's instructions. Consensus primer pairs specific for amplification of 174 

PRNP in mule deer and white-tailed deer have been previously described by O’Rourke and 175 

colleagues (23).  PRNP sequences were amplified using HotStart DNA polymerase (Qiagen) 176 

with forward primer 223 5′-acaccctctttattttgcag-3′ and reverse primer 224 5′-177 

agaagataatgaaaacaggaag-3′, which yielded an approximately 830bp product.  PCR reaction 178 

conditions were as follows: 95�°C for 5 min, followed by 35 cycles of denaturation (95�°C, 60 179 
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s), annealing (54�°C, 60 s) and extension (72�°C, 60 s) followed by an extension cycle 180 

(72�°C, 7 min) under standard buffer conditions with 2.5 mM MgCl2 (Qiagen). PCR products 181 

were analyzed on 1.5�% agarose EZ-vision-stained gels.  182 

PCR products were then purified using a commercial kit (Qiagen) to remove 183 

unincorporated dNTPs and primers, then bidirectionally sequenced using forward primer 223 184 

and reverse primer 224 (GeneWiz Inc., South Plainfield, NJ).  Chromatogram data were aligned 185 

using the CLC Main Workbench 6.8.4 software.  All sequences were individually analyzed for 186 

conflicts and secondary peaks in order to create all necessary contigs and associated 187 

consensus sequences.  DNA and amino acid sequences were aligned using ClustalW (Codons) 188 

in Mega 5.2 to determine amino acid polymorphisms, focusing on amino acid residues 95 and 189 

96 (white-tailed deer) and 225 (mule deer).  190 

 191 

Analysis of RT-QuIC metrics: 192 

 Our analyses had two major foci: (1) to determine if there was a relationship between 193 

ELISA scores and RT-QuIC metrics (ThT and ThS score, amplitude and slope) for CWD 194 

positive deer, and (2) to evaluate what were the best predictors (location/state, species, sex, 195 

age, and PrP genotype at amino acid position 96) of RT-QuIC metrics for CWD positive mule 196 

deer and whitetail deer.  All analyses were conducted using the program R (www.r-project.org), 197 

using the stats package. 198 

 To determine if there was a relationship between ELISA scores and RT-QuIC metrics, 199 

we performed Spearman correlations. ELISA scores were only available for deer from 200 

Nebraska, and we evaluated the relationships for all deer and for mule deer and whitetail deer 201 

independently.  202 

 To evaluate how well the RT-QuIC metrics were predicted by the harvest location, deer 203 

species, sex, age and PrP genotype at position 96, we employed an Information Theoretic 204 

approach (24), whereby all single predictor variables were evaluated using linear regression, 205 
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based on a Gaussian distribution, and ranked based on Akaike Information Criterion corrected 206 

for small sample size (AICc, Supplementary Table 1) (24). This approach is of value because it 207 

enables determination of the most parsimonious model or set of models to explain RT-QuIC 208 

metric scores, and also calculation of Variable Importance weights to determine the relative 209 

importance of one predictor variable over others (24). Because Information Theory departs from 210 

frequentist based statistical approaches, which are dependent on P-values, we also calculated 211 

the coefficient of variation (r2) so that the relative fit of models to the data could be assessed. 212 

 213 

Results 214 

Conventional detection of PrPres in RLN tissue:    215 

 Retropharyngeal lymph nodes were analyzed by referring state agencies using either 216 

conventional ELISA (NY, NE), or IHC (CO, IL, TX).  The Colorado State University Veterinary 217 

Diagnostic Laboratory did not detect CWD infection in 42 moose from Colorado, while the 218 

University of Nebraska Veterinary Diagnostic Center identified 5 mule deer and 5 white-tailed 219 

deer as positive for CWD by ELISA.  Ages ranged from 1-3 years, with both sexes and only 220 

homozygous 95Q/Q and 96G/G (white-tailed deer), and 225S/S (mule deer) animals 221 

represented.  ELISA scores ranged from 2.961-3.292.  The Illinois Department of Agriculture 222 

identified twelve of 695 white-tailed deer samples as CWD-positive by IHC.  Ages ranged from 223 

<1yr-3yrs of age, with both sexes and both 96G/G and 96G/S genotypes represented; all 224 

animals were homozygous for glycine at amino acid position 95.  The Texas Veterinary Services 225 

Laboratory identified one of 126 mule deer samples as CWD-positive by IHC (225S/S), while 226 

the New York State Veterinary Diagnostic Laboratory did not identify any CWD-positive animals 227 

among the 100 white-tailed deer samples submitted to the PRC for analysis. (Table 1)   228 

 229 

RT-QuIC analysis of RLN tissues: 230 
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 RT-QuIC analysis of RLN samples from Illinois revealed seeded amplification in 12/695 231 

samples, corresponding to IHC-positive samples.  Analysis of samples from Nebraska showed 232 

seeded amplification in 10/280 samples corresponding to ELISA positive lymph nodes, while 233 

1/126 samples submitted by the Texas Department of Parks and Wildlife demonstrated seeded 234 

amplification in RT-QuIC; RLN from this deer was also positive by IHC.  Forty-two RLN samples 235 

from moose in Colorado and 100 white-tailed deer in NY remained negative by RT-QuIC. 236 

(Figures 1 & 2)  RT-QuIC positivity correlated 100% with positivity by IHC and ELISA (i.e. 100% 237 

sensitivity and specificity), with amplification scores ranging from 0.479-1.06 using ThT, and 238 

0.521-1.16 using ThS.  RT-QuIC results for CWD-positive animals are summarized in Table 1.   239 

 240 

Correlation between RT-QuIC amplification analyses and clinical variables: 241 

 Comparing ELISA to RT-QuIC, the direction of relationships between ELISA scores and 242 

RT-QuIC metrics were generally similar among deer species (Table 2). The notable exception 243 

to this was ThT slope – positive and negative slopes for mule deer and whitetail deer 244 

respectively.  However, correlation values indicate that the positive relationship observed for 245 

mule deer was only weakly supported, whereas the negative slope between ELISA score and 246 

ThT slope was a moderately strong trend. Overall, and for white tail deer, there was a significant 247 

positive correlation between ELISA score and ThS slope. 248 

 When evaluating RT-QuIC metrics as predictors of a priori variables, there was generally 249 

one predictor variable that was distinctly a better/more important (variable importance weight > 250 

0.4) predictor than the rest (Figure 3, Table 3). This was particularly distinct for ThT slope, ThS 251 

score, ThS amplitude and ThS slope (Figure 4c,d,e,f).   However, there was model uncertainty 252 

for the best predictor of ThT score and ThT amplitude (Figure 3a,b).  For RT-QuIC metrics with 253 

one predictor variable better than the rest (variable importance weight > 0.4), we plotted that 254 

association with the RT-QuIC metric (Figure 4).  ThT slope and ThS amplitude exhibited positive 255 
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and negative relationships with deer age, while female deer tended to have higher and less 256 

variable ThS scores. Interestingly, ThS slope was higher in the limited number of individual deer 257 

with 96G/S genotype present. 258 

 259 

Discussion 260 

 Amplification-based assays, long used in a clinical setting for the detection of viral and 261 

bacterial agents in clinical samples, have to date not been available for use in post-mortem 262 

screening for transmissible spongiform encephalopathies.  The slow evolution of prion 263 

amplification assays, which take advantage of the propensity for the abnormal PrPres isoform to 264 

convert mammalian – and more recently recombinant PrPC – in vitro, has made it increasingly 265 

practical to employ these approaches in a clinical setting.  The real time quaking-induced 266 

conversion (RT-QuIC) seeded amplification assay offers the additional advantage of avoiding 267 

the proteolytic or acidic pretreatments commonly required for both conventional TSE detection 268 

assays (e.g. immunohistochemistry and ELISA) and serial protein misfolding cyclic amplification 269 

(sPMCA).  RT-QuIC has been reported to amplify PrPres seed present in brain dilutions in the 270 

femtogram range, comparable to bioassay (22, 25); however in the present manuscript our goal 271 

was to compare seeded amplification directly to conventional IHC and ELISA on samples 272 

collected post-mortem.   273 

 Our findings, through blinded analysis of over 1200 field samples collected from various 274 

cervid species across the United States, demonstrate that RT-QuIC is capable of accurately 275 

identifying IHC- and ELISA-positive retropharyngeal lymph nodes.  With continued development 276 

of the RT-QuIC assay, it may be possible to identify subclinically positive, TSE affected 277 

individuals not positive by conventional detection systems, which may represent a significant 278 

number of animals in CWD endemic areas.  It remains to be shown whether RT-QuIC could be 279 

used for antemortem detection of CWD infection, using rectal biopsies or other clinical samples 280 

available antemortem (e.g. blood or CSF). (21, 26, 27)    281 

proyster2
Text Box



12 
 

 Apart from enhanced sensitivity, conventional amplification assays for viral and bacterial 282 

pathogens offer a second distinct advantage – the ability to identify pathogen-derived nucleic 283 

acid sequences or specific antibody responses, facilitating epidemiologic investigations.  It is 284 

commonly accepted that infectious prions lack both a nucleic acid component and a specific 285 

host immune response, yet still exhibit distinct strain properties; therefore alternative 286 

methodologies for identifying TSE strains in vitro are necessary.  A number of fluorophores have 287 

been shown to bind prion aggregates; indeed, this finding has been incorporated into the RT-288 

QuIC assay, providing visual evidence of seeded amplification through cumulated binding of 289 

one of these fluorophores – Thioflavin T.  Little is known about how or where in the prion protein 290 

structure this binding may occur, though strain discrimination has been reported using 291 

luminescent conjugated polymers (LCPs), fluorophores that emit conformation-dependent 292 

fluorescence spectra. (20)  Our analysis of CWD-positive lymph nodes using two conventional 293 

fluorophores revealed that some components of the RT-QuIC analysis scheme, including 294 

Thioflavin S score, amplitude, and slope, may be predictors of a CWD-positive cervid’s 295 

background or possibly CWD strain traits.  No definitive evidence of geographic grouping was 296 

observed across ThT or ThS metrics, though it is possible that incorporation of LCPs into the 297 

RT-QuIC assay may allow for a more precise discrimination of clinical TSE isolates and 298 

eventual strain correlation.        299 

 In summary, we report the first deployment of an amplification-based assay for the 300 

detection of CWD in cervid field cases.  Blinded RT-QuIC analysis yielded results correlating 301 

directly to those of conventional IHC and ELISA.  Further work is needed to assess whether RT-302 

QuIC analysis may or may not contribute to CWD strain distinction, antemortem detection, and 303 

advanced epidemiological studies.   304 

 305 
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Table 1. Characteristics of CWD positive deer samples, as determined by RT-QuIC.  States are Nebraska (NE), Illinois (IL) and 400 
Texas (TX).  Species are mule deer (MD) and whitetail deer (WTD).  Deer age is in years, with individuals <1 year old assigned 0.5 401 
for analyses.  Heterozygosities indicated in bold.  NA: data was not available for that particular sample.   402 

Animal 
ID 

Amino Acid ThT ThS

State  County  Species Sex Age ELISA 95 96 225 score amp slope score amp slope 
1059 NE Box Butte MD F 3 3.143 QQ GG SS 0.885 10818 1.514 1.080 6584 0.429 
1088 NE Sioux MD M 3 3.079 QQ GG SS 0.445 6243 1.878 0.619 6730 0.376 
1127 NE Phelps WTD F 2 3.292 QQ GG SS 0.768 10329 1.722 0.964 6778 0.407 
1128 NE Buffalo WTD M 1 3.292 QQ GG SS 0.702 10047 1.017 0.865 6973 0.335 
1154 NE Furnas WTD M 2 2.961 QQ GG SS 0.506 8594 1.797 0.589 6895 0.274 
1187 NE Sioux MD M 2 3.151 QQ GG SS 0.844 11146 1.716 1.025 7162 0.434 
1218 NE Webster WTD M 2 3.104 QQ GG SS 1.060 11409 1.704 1.037 5879 0.322 
1254 NE Custer WTD M 3 2.966 QQ GG SS 1.025 12314 1.753 0.996 5800 0.285 
1267 NE Scottsbluff MD M 1 3.11 QQ GG SS 0.811 10293 2.250 0.718 5831 0.283 
1268 NE Sioux MD F NA 2.983 QQ GG SS 0.818 11170 1.228 0.826 5890 0.289 
1344 TX El Paso MD M 4.5 NA QQ GG SS 0.666 10233 2.691 0.966 5126 0.375 
1468 IL Kane WTD M 2 NA QQ GG SS 0.691 8561 2.247 0.684 5376 0.452 
1475 IL McHenry WTD M 3 NA QQ GG SS 0.676 8805 3.167 0.659 5013 0.610 
1543 IL Stephenson WTD F 2 NA QQ GG SS 0.751 11172 0.861 0.761 6928 0.363 
1563 IL Boone WTD F <1 NA QQ GG SS 0.479 7725 0.810 0.984 5886 0.378 
1606 IL Dekalb WTD F 2 NA QQ GS SS 0.846 11165 0.901 0.929 6277 0.357 
1617 IL Dekalb WTD F 1 NA QQ GG SS 0.818 11187 0.768 0.955 6191 0.340 
1761 IL McHenry WTD M 1 NA QQ GG SS 0.979 11999 0.846 1.164 5765 0.400 
1771 IL Grundy WTD F 2 NA QQ GG SS 0.784 11086 1.179 1.005 6288 0.340 
1801 IL Kane WTD M 1 NA QQ GG SS 0.879 6784 0.773 0.766 7243 0.365 
1912 IL Ogle WTD F <1 NA QQ GG SS 1.022 10855 2.771 0.912 7636 0.371 
1918 IL Dekalb WTD M 1 NA QQ GG SS 0.824 9278 1.386 0.725 7139 0.373 
1923 IL Ogle WTD M 3 NA QQ GS SS 0.848 10352 1.516 0.521 5684 0.875 
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Table 2. Spearman correlations between ELISA scores and QuIC metrics for 403 

CWD positive deer. Significant results in bold. Notably, for individual deer species, 404 

ρ values indicate the strength of relationships, but the statistical power to detect 405 

significant relationships is lowered owing to the reduced sample size in these cases. 406 

  All deer (n=10)  Mule deer (n=5)  Whitetail deer (n=5) 
  ρ p  ρ p  ρ p 
ThT score -0.024 0.947 0.600 0.350 0.154 0.805 
ThT amplitude -0.116 0.751 0.000 1.000 0.051 0.935 
ThT slope -0.377 0.283 0.200 0.783 -0.821 0.089 
ThS score 0.413 0.235 0.600 0.350 0.154 0.805 
ThS amplitude 0.456 0.185 0.500 0.450 0.308 0.614 
ThS slope 0.699 0.024  0.700 0.233  0.975 0.005 

 407 
 408 
 409 

Figure 1.  Summary of retropharyngeal lymph node samples evaluated and positive 410 

sample locations.  Samples included 100 white-tailed deer lymph nodes from New York State, 411 

695 white-tailed deer lymph nodes from Illinois, 280 white-tailed and mule deer lymph nodes 412 

from Nebraska, 126 mule deer lymph nodes from Texas, and 42 moose lymph nodes from 413 

Colorado.  Of 1243 samples evaluated, 11 RT-QuIC positive deer were identified in Illinois, 10 414 

positive in Nebraska, and a single positive deer in Texas.     415 

 416 

Figure 2.  RT-QuIC results from CWD-positive deer.  Samples positive during initial 417 

screening were reanalyzed in triplicate in three separate experiments using either Thioflavin T 418 

or Thioflavin S (ThT or ThS, respectively).  Positive controls (CBP6) as well as multiple negative 419 

controls (CWD-negative lymph nodes and untreated recombinant PrP) were included on each 420 

experimental plate.  The threshold for amplification (orange dotted line) was determined by 421 

averaging the relative fluorescent units (RFUs) of negative control samples over the course of 422 

the experiment and adding five standard deviations.  Seeded amplification is demonstrated by 423 



18 
 

increases in ThT and ThS fluorescence over time in the positive control sample as well as each 424 

of three positive lymph nodes from study deer; negative controls do not show seeded 425 

amplification.         426 

 427 

Figure 3. Variable importance weights of location, species, sex, age and amino acid 428 

predictors of with QuIC metrics. (a) ThT score, (b) ThT amplitude, (c) ThT slope, (d) ThS 429 

score, (e) ThS amplitude, and (f) ThS slope. Where there was clearly a ‘best’ predictor variable, 430 

variable importance weights were > 0.4, denoted by vertical line. Of the correlates analyzed, 431 

likely predictors of “Age” included ThT slope and ThS amplitude, while ThS score correlated 432 

with “Sex” and ThS slope seemed to be a good predictor of amino acid 96 identity.  Full model 433 

comparison tables in Supplementary Table 1.   434 

 435 

Figure 4. Distribution of QuIC metric data associated with the best predictor variable in 436 

each case (see Figure 3). Coefficient of variation given on each figure.  These results show a 437 

positive correlation between ThS slope and cervid PrP amino acid position 96 identity.  See 438 

Supplementary Table 1 for full model comparison table. 439 
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