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Different Levels of Ovine Interferon-t Gene
Expressions Are Regulated Through the Short
Promoter Region Including Ets-2 Binding Site
FUKO MATSUDA-MINEHATA,1 MOMOKO KATSUMURA,1 SHO KIJIMA,1 RONALD K. CHRISTENSON,2

AND KAZUHIKO IMAKAWA1*
1Laboratory of Animal Breeding, Implantation Research Group, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
2USDA-ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska

ABSTRACT Regulation of interferon-t (IFNt)
production, a conceptus secretory protein implicated in
the process of maternal recognition of pregnancy, has
not been fully elucidated. Among more than 10 ovine
IFNt (oIFNt) gene sequences characterized, approxi-
mately 75% of oIFNt transcripts expressed in utero is
derived from oIFNt-o10 gene and amounts of tran-
scripts from other oIFNt genes such as oIFNt-o8 or
oIFNt-o2 are minimal. It was hypothesized that the
variation in expression levels exhibited by oIFNt-o10
and oIFNt-o8/-o2 genes was due to differences in the
proximal promoter regions of these oIFNt genes. To
test this hypothesis, transient transfection experiments
with human choriocarcinoma JEG3 cells were exe-
cuted with deleted and/or mutated 50-upstream regions
of these oIFNt genes attached to the chloramphenicol
acetyltransferase (CAT) reporter gene. Because only
the Ets-2 binding site located in the oIFNt-o10 gene
appeared to differentiate the expression levels of these
constructs, the 6 base pair (bp) Ets-2 sequence from
the oIFNt-o10 gene inserted into the oIFNt-o8/-o2
gene-reporter construct was examined. The insertion of
this Ets-2 binding site into the oIFNt-o8/o2-reporter
construct failed to increase the degree of transac-
tivation. Rather than this 6 bp sequence, a 22 bp
sequence of the proximal promoter region, including
the Ets-2 binding site, of the oIFNt-o10 gene was
required for oIFNt-o8/-o2-reporter transactivation. By
electrophoretic mobility shift assay (EMSA), nuclear
protein(s) bound to this 22 bp from the oIFNt-o10 and
oIFNt-o8/o2 genes differed. These results suggest that
the short promoter region including the Ets-2 binding
site, not the Ets-2 binding region itself, may determine
different levels of oIFNt gene expressions seen in utero.
Mol. Reprod. Dev. 72: 7–15, 2005.
� 2005 Wiley-Liss, Inc.
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INTRODUCTION

Interferon-t (IFNt), produced by peri-implantation
blastocysts, is a major protein implicated in the process

of maternal recognition of pregnancy in ruminant un-
gulates (Godkin et al., 1982; Imakawa et al., 1987;
Roberts et al., 1992). IFNtacts on theuterine epithelium
and attenuates secretion of a luteolysin, prostaglandin
F2a (PGF2a), resulting in the maintenance of corpus
luteum (CL) function (Vallet et al., 1988). Based on
cDNA and amino acid sequences, this protein is clas-
sified into type I IFNs (Imakawa et al., 1987, 1989;
Roberts et al., 1992). In addition to structural simila-
rities, IFNt polypeptides exhibit antiviral, antiproli-
ferative, and immunomodulately activities like other
IFNs (Pontzer et al., 1988, 1991; Roberts et al., 1989).
The expression of IFNt is quite different from that of
other type I IFNs such as IFNa and IFNb that are
induced by viruses or double stranded RNA and main-
tained for only a few hours (Pestka, 1983; Farin et al.,
1991). IFNt exhibits temporal and spatial expression
since its production is restricted to trophoblast cells
during peri-implantation periods (Hansen et al., 1988;
Farin et al., 1989;Guillomot et al., 1990;Demmers et al.,
2001). In fact, ovine IFNt (oIFNt) production begins
on day 8 of pregnancy (day 0¼first day of estrus). Its
production increases as the conceptus elongates and
reaches the highest production (up to 100 mg/conceptus/
24 hr) on day 16, just before the attachment of the
conceptus to the uterine epithelium (Godkin et al., 1982;
Ashworth and Bazer, 1989; Imakawa et al., 1995). By
day 22, when the placenta formation is initiated, oIFNt
is no longer detected (Godkin et al., 1982).
So far more than 10 IFNt genes or cDNAs have been

isolated and characterized for the ovine and bovine

� 2005 WILEY-LISS, INC.
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species, which exhibit a high degree of similarity within
and among ruminants (Leaman and Roberts, 1992;
Nephew et al., 1993; Ryan andWomack, 1993; Imakawa
et al., 1994; Ealy et al., 1998; Alexenko et al., 2000; Ealy
et al., 2001). Themajority of oIFNt expressed in utero is
derived from one gene, oIFNt-o10, whose transcripts
constitute more than 75% of oIFNt mRNAs (Nephew
et al., 1993). By transient transfection of reporter
constructs with deleted or mutated 50-upstream regions
of the oIFNt-o10 gene in human choriocarcinoma
JEG3 cells, the AP-1 binding site in the distal enhancer
region was shown to be effective in oIFNt-reporter
transactivation (Yamaguchi et al., 1999, 2000). At the
proximal promoter region, there exists another trans-
activation domain to which the transcription factor Ets-
2 binds (Ezashi et al., 1998; Yamaguchi et al., 1999).
Ezashi et al. (2001) have found that theaction ofEts-2 on
bovine IFNt (bIFNt) is inhibited while Oct-4 binds to
Ets-2 protein. Once Oct-4 expression subsides, Ets-2
becomes effective in the activation of bIFNt gene
transcription. Recently, a transcription co-activator,
cAMP-response element binding protein-binding pro-
tein (CBP), was shown to activate oIFNt-o10 gene
transcription (Xu et al., 2003). Both AP-1 and Ets-2
binding domains are located on the CBP polypeptide
sequences, to which these transcription factors bound,
possibly resulting in further activation of oIFNt-o10
gene transcription.
In contrast to oIFNt-o10, other oIFNt genes like

oIFNt-o8 and -o2, whose coding regions are >95% iden-
tical to that of oIFNt-o10, are expressed at very low
levels in vivo (Nephew et al., 1993). The homologies of
their 50-upstream regions (between �654 and �1 base
pair, bp) are approximately 90%. The remaining 10%
sequences and/or specific nucleotides may be responsi-
ble for the different degrees of expression observed for
oIFNt-o10 and oIFNt-o8 or -o2. However, molecular
mechanismsof these oIFNtgeneswhose expressions are
limited have not been characterized.
To understand the molecular mechanisms responsi-

ble for different degrees of oIFNt gene transcriptions,
three oIFNt genes, oIFNt-o10, -o8, and -o2, were ex-
amined using transient transfection analyses and
electrophoretic mobility shift assays (EMSA).

MATERIALS AND METHODS

Plasmid Constructions

The upstream regions of oIFNt-o10, -o8, and -o2
(Nephew et al., 1993; GenBank accession numbers
M88773, M88772, and M88770, respectively) between
�654 and þ51 bp were amplified through polymerase
chain reaction (PCR) with specific primers (Yamaguchi
et al., 1999). Each of these products was inserted into
thePstI site of chloramphenicol acetyltransferase (CAT)
basic vector (Promega, Madison, WI). For the prepara-
tion of chimeric enhancer (E)/promoter (P) sequences,
the upstream regions from�654 to�452 bp of oIFNt-o8
and -o2 genes were replaced with the same region of
oIFNt-o10, termed o10Eþ o8P and o10Eþ o2P, respec-

tively. The regions from�452 toþ51 bp of oIFNt-o8 and
-o2 were replaced with the same region of oIFNt-o10,
termed o8Eþ o10P and o2Eþ o10P, respectively. AP-1
binding site, TGTGTCA, located at �594 to �588 bp
of the oIFNt-o10 gene’s upstream region was point
mutated to TGTGCAA by inverse PCR procedure using
the primers consisting of desired nucleotide changes
(Yamaguchi et al., 1999). Using the same method, Ets-2
binding site located at�77 to�72 bp of oIFNt-o10 gene’s
upstream region was also mutated as CAGGAA to
CATTAA. Ets-2 binding site of oIFNt-o10 (CAGGAA)
and the sequence found at the equivalent region of
oIFNt-o8 (ATGAAA) were interchanged, resulting in
oIFNt-o10 with ATGAAA (o10-M6) and oIFNt-o8 with
CAGGAA (o8-M6) constructs, respectively. The 23 bp
of oIFNt-o8 (GAAAACGCAAATGAAAGTGAGAG) was
replaced with the 22 bp sequences of oIFNt-o10
(GAAAACAAACAGGAAGTGAGGG; Ets-2 binding site
is underlined), resulting in the construct oIFNt-o8-M22
(o8-M22). Expression vectors of murine c-Jun and c-Fos
were driven byRousSarcomaVirus (RSV)E/P of pRVSV
vector (Miyazawa et al., 1993). The Ets-2 expression
vector was a pSG5-based construct and driven by the
SV40 P/E (Wakiya et al., 1996).

Cell Culture and Transient Transfection

Human choriocarcinoma JEG3 cells (HTB36, Amer-
ican type culture collection) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Sigma-Aldrich,
St. Lois, MO) supplemented with 10% (v/v) fetal bovine
serum (FBS; Sigma-Aldrich), 40 U/ml penicillin, and
40 mg/ml streptomysin under 5% CO2 at 378C. One day
before transient transfectionwas performed, JEG3 cells
were re-plated onto 6-well plastic culture plates and at
50%–60% confluency, theywere transiently transfected
with reporter constructs usingTransFast (cationic lipid;
Promega) according to the manufacturer’s protocol
(Yamaguchi et al., 1999). In each well of 6-well plates,
3 mg of oIFNt-CAT reporter plasmids, 0.2 mg of b-gal
plasmids, and 9 mg of TransFast mixed in 1 ml DMEM
was overlaid on the cells. After 1 hr incubation at 378C,
3 ml of DMEM was added to each well and transfected
cells were cultured for 48 hr. The effects of nuclear
factors on oIFNt gene-reporter transactivation were de-
termined by co-transfection analyses. One micrograms
of expression vectors or pRVSV empty vector was co-
transfected along with 3 mg of oIFNt-CAT plasmids.

Chloramphenicol Acetyltransferase
(CAT) Assay

CAT activity was measured using CAT ELISA kit
(Roche Diagnostics, Mannheim, Germany) according to
the manufacturer’s protocol. After 48 hr incubation,
JEG3 cells werewashedwith phosphate-buffered saline
(PBS) and lysed by the addition of 600 ml Lysis buffer
(Promega), and cell debris was then removed by centri-
fugation. Extracts (200 ml) were added to each well of
anti-CAT-coated microtiter plate, which was then
incubated at 378C for 1 hr. The well was washed with
the washing buffer (10 mM sodium phosphate, 150 mM
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sodium chloride, and 0.1% Tween 20). To each well,
400 ng of anti-CAT-Digoxigenin were added and the
plate was incubated at 378C for 1 hr. After the washing
step, 150 mU of anti-digoxigenin-peroxidase was added
to each well and incubation continued at 378C for 1 hr.
The wells were washed again, 200 ml of peroxidase
substrate was added and incubated at room tempera-
ture (22–258C) for 30 min. CAT activities were mea-
sured by determining the absorbance of each sample at
405 nm. b-gal activities of each sample were also deter-
mined by using b-gal ELISA kit (Roche Diagnostics).
CATactivity resulting fromvarious oIFNt-reporter con-
structs was normalized through the determination of
transcriptional efficiency with b-gal activity. In the
figures, CAT activities were expressed as fold activa-
tion relative to an appropriate control within the
experiment.

Preparation of Nuclear Extracts and EMSA

Nuclear proteins were extracted from JEG3 cells
following the protocol described by Angel et al. (1987).
Cells were grown to 70%–80% confluency, then washed
with PBS and lifted off the plate. The remaining
procedures were described by Matsuda et al. (2004).
Bindings of nuclear proteins extracted from JEG3

cells to the 50-upstream region of oIFNt-o10 or -o8 were
examined by EMSA. The three oligonucleotide probes
examined were the 22 bp of oIFNt-o10 gene’s upstream
region including Ets-2 binding site, 23 bp of oIFNt-o8
(equivalent to the 22 bp of oIFNt-o10), and 23 bp of
oIFNt-o8 sequences, to which Ets-2 binding site from
the oIFNt-o10 gene was inserted (o8-M6 probe, 50-
GAAAACGCAACAGGAAGT-GAGAG-30; inserted se-
quence is underlined). These probes were end-labeled
with [g-32P]ATP (6,000Ci/mmol,NEN,Boston,MA) and
T4 polynucleotide kinase (Takara, Shiga, Japan). End-
labeled oligonucleotide probes were cleaned by ethanol
precipitation, and annealed with non-labeled antisense

oligonucleotides by placing them into a 958Cwater bath
and slowly cooling to room temperature. The sequences
of consensus Ets-2 and Sp-1 oligonucleotides were 50-
CTAGGACCAGGAAGTGGGAGT-30 and 50-ATTCGA-
TCGGGGCGGGGCGAGC-30, respectively (binding site
of each is underlined), and competitors of oIFNt-o10,
oIFNt-o8, Ets-2 consensus, and Sp-1 consensus were
constructed by annealing non-labeled sense and anti-
sense oligonucleotides. JEG3 nuclear proteins (10 mg)
were incubated on ice for 15 min in the binding buffer
(7 mMHEPES (pH 7.9), 0.5 mMMgCl2, 35 mMKCl, 7%
(v/v) glycerol, 70 nM EDTA, 0.3 mM DTT, 100 mg/ml
poly(dI-dC), and 50 mg/ml BSA) with or without a 100-
fold molar excess of unlabeled competitor. End-labeled
probe (2–3 ng/probe, 3,000 cpm) was added and
incubated at room temperature for 15 min. Reaction
mixtures were loaded onto a 5% polyacrylamide gel and
upon the completion of electrophoresis, the gelwasdried
and autoradiographed.

Statistical Analysis

The results of CAT assays were expressed asmeans�
SEM. Differences in fold activation were examined by
one-way ANOVA followed by Tukey’s multiple compar-
ison tests.

RESULTS

Contribution of Proximal and Distal 50-Upstream
Regions on oIFNt Gene Transcription

Reporter plasmids constructed with the wild-type 50-
upstream sequences of oIFNt-o10, -o8 or -o2 genes were
examined for the degrees of transactivation using a
transient transfection method (Fig. 1). Similarly to its
expression in vivo, the reporter plasmid with the up-
stream region of the oIFNt-o10 gene exhibited highCAT
activity whereas the one with oIFNt-o8 or -o2 gene had
very low activity, less than 20% of that expressed by

CATo10

CATo8E+o10P

CATCATo10E+o8P

CATCATo10E+o2P

CATo2E+o10P

o8 CAT

Hind III
-654 +51

Relative CAT Activity (%)

-452

0                      50                     100                   150

o2 CAT

a

a

b

b

a

b

b

Fig. 1. Wild typeand chimeric enhancer/promoter analyses of the50-
upstream regions of oIFNt-o10 and oIFNt-o8 or -o2 reporter plasmid
transfected into JEG3 cells. Distal and proximal upstream regions
between�452 andþ51 bp of oIFNt-o10, -o8, and -o2were interchanged
at the Hind III restriction site (o10Eþ o8P, o10Eþ o2P, o8Eþ o10P,

o2Eþ o10P) and transcriptional activities were compared to those of
wild-type oIFNt-o10, -o8, and -o2. Results are expressed as relative
CAT activity to that of the oIFNt-o10-reporter plasmid and values re-
present means�SEM. Results with different letters differ at P< 0.01
(n¼ 4 each).
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oIFNt-o10. To determine the upstream region critical for
highor low levels of oIFNt gene transcriptions, distal and
proximal regionsofoIFNt-o10, -o8or -o2were fusedat the
Hind III restriction site (�452 bp) and the importance of
distal (E) andproximal (P) regionswas evaluated (Fig. 1).
Proximal region of oIFNt-o8 or -o2 fused to the distal
region of oIFNt-o10 (o10Eþ o8P and o10Eþ o2P, respec-
tively) exhibited the same level of transactivation as that
of thewild-typeoIFNt-o8-reporterplasmid.However, the
proximal region of oIFNt-o10 fused to the distal region of
oIFNt-o8 or -o2 (o8Eþ o10P or o2Eþ o10P) exhibited a
high degree of transactivation similar to that of the wild-
type oIFNt-o10.

Examination of Distal AP-1 and Proximal Ets-2
Binding Sites on oIFNt Gene Transcription

BecauseAP-1andEts-2binding sequencesare located
in the oIFNt-o10’s distal enhancer and proximal pro-
moter regions, respectively, the effects of these sites on
the transactivation of oIFNt-reporter constructs were
examined through point mutations to these binding
sites (Fig. 2). Two-basemutation to theAP-1binding site
resulted in the reduction of CAT activity, approximately
50% of that of the wild-type oIFNt-o10. Two-base
mutation to the Ets-2 binding site also reduced the
activity of oIFNt-o10 to less than 40%. When both AP-1
and Ets-2 binding sites were point mutated, its CAT
activity became approximately 25% of that of the wild-
type oIFNt-o10. In addition, co-transfection with AP-1
or Ets-2 expression plasmid failed to activate mutated
constructs (Fig. 3A,B). These experiments show that it is
a lack of binding of these factors to the mutated tem-
plates rather than the lack of these factors themselves.

Examination of Proximal Ets-2 Binding Site
on oIFNt Gene Transcription

The importance of the Ets-2 binding site of the oIFNt-
o10 promoter region was further examined by exchan-
ging theEts-2 binding site of oIFNt-o10 (CAGGAA)with
the sequences of oIFNt-o8 (ATGAAA) located at the

sameregion (Fig. 4A).Ets-2 sitewas originally described
as a 10 bp sequence (Wasylyk et al., 1993). The 6 bp
change made in this study was due to the fact that
several nucleotides at both side of the 6 bp sequence
were the same between oIFNt-o10 and -o8 genes. When
the 6 base sequence from oIFNt-o8 was inserted into the
equivalent site of oIFNt-o10 (o10-M6), the CAT activity
was reduced to 5% of the wild-type oIFNt-o10 (Fig. 4B).
The insertion of Ets-2 binding sequence to the equiva-
lent region of the oIFNt-o8-reporter construct (o8-M6),
however, did not increase the degree of transactivation,
which was at the same level as the wild-type oIFNt-o8
and less than that of oIFNt-o10 (Fig. 4B).

Examination of a Short Promoter
Region of the oIFNs Genes

The 22 bp sequence including the Ets-2 binding site of
oIFNt-o10 (GAAAAC-AAACAGGAAGTGAGGG, Ets-2
binding site underlined) was inserted into the equi-
valent site of oIFNt-o8’s proximal promoter region
(o8-M22; Fig. 5A). Its degree of transactivation was
then compared with that of the wild-type oIFNt-o10,
wild-type oIFNt-o8, and o8-M6 constructs. Differing
from o8-M6, which had a low degree of transactivation
similar to thewild-type oIFNt-o8, o8-M22 construct had
strong transactivation similar to that of the wild-type
oIFNt-o10 (Fig. 5B).

Examination of a Nuclear Protein Binding to
the Short Promoter Region of oIFNs Gene

The bindings of JEG3 nuclear protein to 22/23 bp
of oIFNt-o10/o8 promoter regions were examined by
EMSA (Fig. 6). Protein bindings to oIFNt-o10 and -o8
probes appeared specific since they disappeared when
nonlabeled respective probes, competitors, were added
whereas an unrelated competitor, Sp-1, did not inhibit
the binding (Fig. 6). A second band appeared below
the Ets-2 binding disappeared with the use of unrelated
Sp-1 competitor, but the further characterization of this

o10-AP-1M

CAT
-654                                          +51AP-1

o10

o10-Ets-2M

Ets-
2

o10-AP-1M/Ets-2M

CAT

CAT

CAT

Relative CAT Activity (%)

0                               50                              100

a

c

b

b, c

Fig. 2. Effects of point mutation to AP-1 or Ets-2 binding site of oIFNt-o10. The wild-type oIFNt-o10
reporter plasmidwithmutatedAP-1 and/orEts-2 binding siteswas transfected into JEG3 cells. Results are
expressed as relative CAT activity to that of the oIFNt-o10 reporter plasmid and values represent
means�SEM. Results with different letters differ at P< 0.05 (n¼4 each).
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protein was not made. Bands detected with oIFNt-o10
and -o8probes exhibiteddifferent sizes. Theprotein that
bound to oIFNt-o10 probe appearedEts-2 since the band
disappeared by the use of Ets-2 consensus sequence,
which had been shown previously in the laboratory
(Yamaguchi et al., 2000). However, a protein bound to
oIFNt-o8 probe, larger than the one with oIFNt-o10,
may not be Ets-2 as it was not competed off with the Ets-
2 consensus competitor (Fig. 6).
Because the o8-M6 construct did not exhibit a high

degree of transactivation (Fig. 4), protein binding to this
probe was also examined. The 23 bp of o8-M6 probe
showed specific binding, the same pattern as oIFNt-o10
probe, though the binding appeared a little weaker than
that of the oIFNt-o10 probe (Fig. 7). This result in-
dicated that Ets-2 protein could bind to the o8-M6
region, oIFNt-o8 with the Ets-2 sequence.

DISCUSSION

This is the first report that investigates themolecular
basis for differential transcription of oIFNt genes in
the ovine uterus. The results demonstrated that high
and low expression levels from oIFNt-o10 and oIFNt-o8/
o2 genes, respectively, are probably due to a short,
contiguous region of the promoter that is unique to the
oIFNt-o10 gene. Because a ruminant trophoblast cell
line proper for IFNt analyses has not been established,
human choriocarcinoma JEG3 or JAR cells have been

Fig. 3. Co-transfection of wild type ormutated oIFNt-o10withAP-1
or Ets-2 expression plasmids. A: The wild-type oIFNt-o10 reporter
plasmid with mutated AP-1 site was transfected into JEG3 cells with
empty vector (mock), c-Jun, c-Fos or c-Jun plus c-Fos expression vector.
B: The wild-type oIFNt-o10 reporter plasmid with mutated Ets-2

binding site was transfected into JEG3 cells with empty vector (mock)
or Ets-2 expression vector. Results are expressed as relative CAT
activity to that of the oIFNt-o10-reporter plasmid and values represent
means�SEM. Results with different letters differ at P< 0.05 (n¼
4 each).

Fig. 4. Transcriptional activities of oIFNt-o10 or -o8 after the 6 bp
replacement at Ets-2 binding site. A: The core 6 bp Ets-2 binding
sequence (�77 to �72 bp) in the oIFNt-o10’s promoter region and the
equivalent 6 bp sequence of oIFNt-o8 are shown. B: Transcriptional
activities of wild-type oIFNt-o10 and -o8, and those of o10-M6 and
o8-M6. Results are expressed as relative CAT activity to that of
the oIFNt-o10-reporter plasmid and values represent means�SEM.
Results with different letters differ at P< 0.01 (n¼ 4 each).

SHORT PROMOTER REGION DETERMINES IFNt GENE EXPRESSION 11



-654                                       +51
o10
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o8-M6

o8-M22

Relative CAT Activity (%)
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o10

o8 5' GAAAACGCAAATGAAAGTGAGAG 3'

23 bp

5' GAAAAC-AAACAGGAAGTGAGGG 3'

A
-86                                                              -65 bp

B

**    ** *   *

CAT

CAT

CAT

CAT

6 bp

a
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b

Fig. 5. Transcriptional activity of oIFNt-o8-reporter construct after
the short promoter region replacement. A: Comparison of the 22 bp
sequences around Ets-2 binding site of oIFNt-o10 (�86 to �65 bp) and
the equivalent region of oIFNt-o8. The different bases for oIFNt-o10
and -o8 are indicated by asterisk. The core 6 bp shown in Figure 4A
is indicated in boxes and a 10 bp Ets-2 sequence is underlined.

B: Transcriptional activities of wild-type oIFNt-o10 and -o8, and those
of o10-M6 and o8-M22 inwhich the 23 bpwas exchangedwith the 22 bp
of oIFNt-o10. Results are expressed as relative CAT activity to that of
the oIFNt-o10-reporter plasmid and values represent means�SEM.
Results with different letters differ at P<0.01 (n¼ 4 each).

Fig. 6. Electrophoretic mobility shift assay (EMSA) analyses on 22
and 23 bp of oIFNt-o10 and -o8 promoter regions. The sequences of
oIFNt-o10 and -o8 probes are shown in Figure 5A. Bindings of nuclear
protein extracts from JEG3 cells to g-32P labeled oIFNt-o10 or -o8
were examined. Specificities of the shifted bands were examined
following addition of non-labeled oligonucleotide of the same se-
quences, Ets-2 consensus sequences (Ets C) and unrelated Sp-1
consensus sequence. A representative EMSA gel from three indepen-
dent analyses is shown.

Fig. 7. EMSA analyses on o8-M6 probe. The oIFNt-o8’s 23 bp region
inserted with the core 6 bp Ets-2 binding site from oIFNt-o10 (50-
GAAAACGCAACAGGAAGTGAGAG-30, Ets-2 site inserted is under-
lined) was examined using nuclear extracts from JEG3 cells. Ovine
IFNt-o10 (22 bp) and -o8 (23 bp) probes were used as controls.
Specificity of protein binding to IFNt-o10 and -o8 probes was examined
using non-labeled oligonucleotide of the same sequences (oIFNt-o10,
-o8, or o8-M6). A representative EMSA gel from three independent
analyses is shown.
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used to study regulatory mechanisms for IFNt gene
transcription. In fact, human trophoblast derived JEG3
and JAR cells have been shown to support the transcrip-
tional activity of IFNt-reporter constructs (Leaman
et al., 1994; Yamaguchi et al., 1999). In this study, the
CAT activity resulted from the upstream region of wild-
type oIFNt-o10, -o8 and -o2 genes transfected to JEG3
cells reflected the expression levels of these genes in
utero (Nephew et al., 1993). These results indicate that
the expressions of oIFNt genes are regulated at trans-
criptional level and transient transfection analyses
using JEG3 cells is one system for examining the reg-
ulatory mechanisms of oIFNt gene expressions.
The upstream regions at �452 bp of oIFNt-o10, -o8,

and -o2 genes were digested with Hind III, resulting in
the separation of distal enhancer (�654 to �452 bp)
and proximal promoter (�451 toþ51 bp) regions. When
the enhancer and promoter regions were interchanged
heterologously and examined for their transactivation,
the promoter of oIFNt-o10 gene’s proximal region was
shown to possess strong activation (Fig. 1). As shown
in Figure 4A, only the oIFNt-o10 gene contains the Ets-
2 binding sequence at �77 to �72 bp of the promoter
region and this difference between oIFNt-o10 and
oIFNt-o8/o2 genes was thought to determine the trans-
criptional expression levels of these genes. This hypoth-
esis was confirmed by point mutation analyses of Ets-2
binding site, and by the 6 bp insertion of the oIFNt-o8
sequence into the core 6 bp Ets-2 binding sequence of
oIFNt-o10 (Figs. 2–4). Similar to our previous observa-
tion (Yamaguchi et al., 2000), the binding of Ets-2 to the
oIFNt-o10’s short promoter regionwas demonstrated by
the EMSA analyses (Fig. 6). This result, the require-
ment of Ets-2 for oIFNt-reporter transactivation, agrees
with previous observation made by Ezashi et al. (1998).
It appeared that a protein binding to the Ets-2 site

dictated the oIFNt gene transcription, however, in-
sertion of the core 6 bp sequence of Ets-2 binding
site (CAGGAA) failed to increase the transactivation
of oIFNt-o8-reporter construct (Fig. 4). As shown in
Figure 5A, it should be noted that because nucleotide
sequences at both sides of this 6 bp were the same
between oIFNt-o10 and -o8, theEts-2 site examinedwas
the same as the 10 bp consensus Ets-2 site (Wasylyk
et al., 1993). Thus, a lack of transactivationwith the6-bp
insertion was not due to insufficient Ets-2 binding site.
When the 22 bp sequence from the oIFNt-o10 gene
promoter, including the Ets-2 binding site (GAAAAC-
AAACAGGAAGTGAGGG; 10 bp Ets-2 site under-
lined), was inserted into the equivalent region of
oIFNt-o8-reporter plasmid, this mutation construct,
o8-M22, increased the CAT activity to the level exhibit-
ed by the oIFNt-o10 construct (Fig. 5B). From these
results, it was suspected that Ets-2 protein did not bind
to the core 6 bp Ets-2 binding sequence that had been
inserted into the oIFNt-o8’s promoter region, o8-M6.
Therefore, a different binding pattern was expected in
EMSA with the o8-M6 probe, but the binding pattern
was the same as the oIFNt-o10 probe except that the
binding signal of o8-M6appeared to beweaker (Fig. 7). It

is possible that the flanking sequence around Ets-2 site
mayposition theEts-2 site such that it canactwith other
proteins, and that the sequence per se may not be
relevant but the position of the Ets binding site is
critical. It is likely that in addition to the 10 bp Ets-2
binding site, the 22 bp sequence may possess another
transcription binding site(s),which increases oIFNt-o10
gene transcription.
By searching for a possible transcription factor that

binds to this oIFNt-o10 short promoter region, but does
not bind to the equivalent region of oIFNt-o8/o2 gene,
a candidate protein, hepatocyte nuclear factor-3 beta
(HNF-3b), was found. Co-transfection analyses with
expression vector ofHNF-3b (Dr. R.H.Costa,University
of Illinois) and point mutation analyses to the HNF-3b
binding site of theoIFNt-o10 short promoter regionwere
performed, however, our hypothesis was not verified
with these experiments (unpublished observations).
Within the 23 bp region of the oIFNt-o8/o2 gene, a
nuclear factor Oct-4 binding site resides at the same
location as theEts-2 site exists in the oIFNt-o10 gene. In
the porcine and bovine species, however, the expression
of Oct-4 is not restricted to ICM (Kirchhof et al., 2000),
and has been demonstrated to inhibit bIFNt gene
transcription by binding to Ets-2 protein (Ezashi et al.,
2001). For these reasons, co-transfection of the oIFNt-
o10-reporter plasmid with Oct-4 expression plasmid
(Dr. C. Meno, Osaka University, Japan) was also per-
formed, resulting in the reduction of oIFNt-o10-reporter
transactivation (datanot shown). Furthermore, identity
of ahighermolecularweightprotein,whichwas found in
the EMSA experiment with the oIFNt-o8/o2 probe, was
not determined in this study. It is possible, however,
that instead of Ets-2 site, the binding of Oct-4 itself or
together with other transcription factor(s) to this 23 bp
region may repress the expression of oIFNt-o8/o2 gene
in vivo.
In summary, using the 50-upstream region of oIFNt-

o10, -o8, and -o2, the 22 bp with Ets-2 binding sequence
of oIFNt-o10 was found to be the short promoter region
required for the full activation. From this and the
previous observations on IFNt genes’ transcriptional
regulation, Ets-2 should be considered an essential
factor for the expression of oIFNt-o10 gene (Yamaguchi
et al., 2000; Ezashi et al., 2001). While Ets-2 was the
factor critical for the oIFNt-reporter transactivation,
point mutation to the AP-1 binding site decreased the
degree of oIFNt-reporter transactivation (Fig. 2 and 3).
Considering this observation with the results from
Yamaguchi et al. (1999, 2000), AP-1 might also be the
transactivation molecule of oIFNt genes acting in con-
cert with Ets-2 for higher degree of transcription
(Gutman and Wasylyk, 1990; McCarthy et al., 1997).
Since AP-1 and Ets-2 are relatively common transcrip-
tion factors detected in many cell types, another factor,
which by itself determines spatial and/or temporal ex-
pression of oIFNt genes, is required. A factor that
dictates AP-1 and Ets-2 to be spatial and/or temporal
expressionmay also exist in the regulation of IFNt gene
expression.
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