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CHAPTER TWELVE

Cognitive Effects of Nicotine
Mehmet Sofuoglu1, Aryeh I. Herman1, Cendrine Robinson2 and  
Andrew J. Waters2
1Department of Psychiatry and VA Connecticut Healthcare System, School of Medicine, Yale University, West Haven, CT, USA
2Department of Medical and Clinical Psychology, Uniformed Services University of the Health Science, Bethesda, MD, USA

1. INTRODUCTION

 Cigarette smoking is the primary cause of preventable death in developed  
countries. An estimated 435,000 premature deaths in the U.S. and 5.5 million deaths 
worldwide are caused by smoking each year (CDC, 2008). Approximately half of all 
cigarette smokers will die as a result of smoking-related diseases, including lung cancer, 
coronary heart disease, stroke, and chronic obstructive pulmonary disease In the United 
States, it is estimated that 30% of the deaths caused by cancer each year result from ciga-
rette smoking. Lung cancer results in approximately 1.2 million deaths worldwide, and 
over 90% of those cases are caused by cigarette smoking (Jemal et al., 2008). To put these 
figures in perspective, it is estimated that more individuals in the United States die from 
smoking-related causes than from alcohol-related causes, car accidents, suicide, AIDS, 
homicide, and illegal drug use combined. The estimated total economic and healthcare 
cost of cigarette smoking in the United States is $193 billion per year (CDC, 2008).

Over the past 50 years, the rate of smoking in the United States has decreased from 
40% to 20%, but there has been less of a decline in the smoking rate among people 
with low incomes, low educational levels, psychiatric disorders and/or other addictions 
(CDC, 2011). Quitting smoking is associated with immediate health benefits regardless 
of age or the presence of smoking-related diseases (Menzin et al., 2009; Godtfredsen and 
Prescott, 2011), but even when smokers utilize evidence-based cessation treatments, only 
15–25% of those who quit succeed in avoiding tobacco use for at least one year (Fiore 
et al., 2008; Herman and Sofuoglu, 2010). Thus, it is necessary to develop more effective 
treatments for nicotine addiction. The development of new treatments requires a better 
understanding of the individual factors that contribute to the initiation and maintenance 
of nicotine addiction.

A large body of evidence from animal and human studies supports the notion that 
nicotine has cognitive-enhancing effects. Smokers report that smoking has beneficial 
effects on concentration and memory (Piper et al., 2004; Russell et al., 1974; Wesnes and 
Warburton, 1983), and abstinence from smoking is associated with decreases in cogni-
tive function such as difficulty concentrating, impaired attention, and reductions in the 
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efficiency of working memory (Harrison et al., 2009; Hatsukami et al., 1984; Hughes 
and Hatsukami, 1986; Jacobsen et al., 2005; McClernon et al., 2008; Xu et al., 2005). 
However, nicotine use enhances performance in several domains of cognitive function-
ing, including attention, working memory, and complex task performance in satiated 
smokers and nonsmokers (Baschnagel and Hawk, 2008; Ernst et al., 2001; Foulds et al., 
1996; Heishman, 1998; Lawrence et al., 2002; Meinke et al., 2006; Mumenthaler et al., 
1998; Trimmel and Wittberger, 2004).

Over the past decade, there have been great advances in the understanding of the 
neurobiology of the nicotinic acetylcholine receptor (nAChR) as it relates to cognitive 
function and the reward (Changeux, 2010; Dos Santos Coura and Granon, 2012). Further 
more, functional neuroimaging studies provide essential information regarding the brain 
regions that mediate the rewarding and cognitive effects of nicotine (Newhouse et al., 
2011; Sharma and Brody, 2009). As a result of these advances, the cognitive-enhancing 
effects of nicotine are increasingly recognized as important factors that contribute to the 
initiation and maintenance of smoking (Levin et al., 2006). Nicotine may positively rein-
force smoking behaviors by enhancing cognitive function, especially among individuals 
in whom normal cognitive functioning is impaired. A high prevalence of smoking is 
observed among individuals with schizophrenia (de Leon and Diaz, 2005) and attention 
deficit hyperactivity disorder (ADHD) (Milberger et al., 1997). These psychiatric disor-
ders are associated with cognitive impairments (Chamberlain et al., 2011). Medications 
that target the α7 and α4β2 nAChRs have also emerged as cognitive-enhancers for the 
treatment of neuropsychiatric disorders (Wallace and Porter, 2011).

The goal of this chapter is to provide a brief overview of the cognitive effects of 
nicotine. The first section of this review focuses on the cognitive effects of nicotine in 
humans. We then review the neurobiological mechanisms of the cognitive effects of 
nicotine with a focus on the nicotinic acetylcholine (ACh) and dopamine (DA) recep-
tors. Finally, we address the potential treatment implications of this area of research. 
The chapter will primarily focus on the acute effects that nicotine has on cogni-
tive performance; the long-term (chronic) cognitive effects of smoking will not be 
covered (Swan and Lessov-Schlaggar, 2007). For more details, several recent reviews 
provide excellent overviews of behavioral pharmacology (Heishman et al., 2010), 
 neuroimaging (Newhouse et al., 2011; Sharma and Brody, 2009), and preclinical studies  
(Dos Santos Coura and Granon, 2012; Mansvelder et al., 2006; Poorthuis et al., 2009) 
of this broad topic.

2.1. COGNITIVE EFFECTS OF NICOTINE IN HUMANS

 In their meta-analysis, Heishman et al. (2010) found that there was little con-
sistency in the dose–response functions of nicotine both within and across domains. 
They concluded that nicotine improves performance on tasks requiring motor abilities, 



Cognitive Effects of Nicotine 369

attention, and memory functions even in the absence of the confounding effects of 
withdrawal relief (Heishman et al., 2010).

Given the availability of several excellent reviews of the cognitive effects of nicotine 
in humans, we have chosen to focus on a few studies that illustrate the methodology 
used in and the typical results obtained from human studies that examine the effects that 
nicotine administration has on cognitive performance.

Myers et al. (2008) conducted a placebo-controlled double-blind study that exam-
ined the dose-dependent effects of nicotine that was administered via a nasal spray  
(placebo, 1 or 2 mg) in 28 smokers. The participants in this study were tested twice: once 
after overnight abstinence and once under ad libitum smoking conditions. At each ses-
sion, the smokers received nasal sprays that contained a placebo, 1 or 2 mg of nicotine 
in a random order at 90-min intervals. After each dose was administered, various tests 
of cognitive function, including the continuous performance test (CPT), an arithmetic 
test, and the N-back test, were administered. In the CPT, the participants were shown a 
series of letters in rapid succession, and they were asked to press a button when the tar-
get letter (X) appeared. In the arithmetic test, the participants were asked to determine 
whether the solutions to single-digit addition or subtraction problems were correct. In 
the N-back test, the participants were asked to remember a series of letters that were 
presented individually on a computer screen, and they were asked to identify whether 
a letter was repeated with one intervening letter. In the ad libitum smoking condition, 
nicotine enhanced performance on both the CPT and the arithmetic test in a dose-
related manner, but it did not affect working memory performance, which had been 
assessed using the N-back test. Smokers showed more prominent cognitive impairment 
in the smoking abstinent condition, and nicotine administration improved cognitive 
function. This study was well designed, and it demonstrates that nicotine has cognitive-
enhancing effects on attentional and computational task performance while controlling 
for both the nicotine dose and the abstinence interval (Myers et al., 2008).

Another study by Poltavski and Petros (2006) addressed the question of whether the 
cognitive-enhancing effects of nicotine were moderated by the baseline attention level 
of an individual. A total of 62 nonsmokers with low- and high-attention levels were 
recruited for their study. The participants were treated with either a placebo or 7 mg 
nicotine patch, and each of them completed the Wisconsin Card Sorting Test (WCST), 
the classic Stroop task, and the CPT. In the Stroop task, the participants were asked to 
press a button on the basis of the color of the word that appeared on a computer screen 
while ignoring its meaning. In the WCST, the participants were instructed to place cards 
sequentially below four key cards, but they were not informed of the rule by which the 
cards were to be sorted. Instead, the participants received positive verbal reinforcement 
if they arrived at the correct sorting strategy. After every 10 consecutive cards, the rule 
was changed, and the participant was tasked with finding the next correct strategy. Par-
ticipants in the low attention group who were treated with nicotine performed better 
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on the CPT test compared with participants who were treated with the placebo. How-
ever, nicotine significantly impaired the performance of participants in the high atten-
tion group on the WCST. These results suggest that nicotine optimizes performance on 
cognitive tasks instead of improving it, and baseline cognitive function is important in 
modulating the effects of nicotine (Poltavski and Petros, 2006).

It is worth noting that the acute cognitive-enhancing effects of nicotine noted above 
may mediate some of the acute mood-enhancing or mood-stabilizing effects of nicotine 
(Waters and Sutton, 2000). For example, by improving attentional focus on a benign 
distracter stimulus, nicotine may alleviate the negative consequences of a stressor (Kassel 
and Shiffman, 1997).

Recently, implicit cognition researchers (Wiers and Stacy, 2006) have assessed the 
impact of smoking cues (vs. control cues) on cognition (Waters and Sayette, 2006). For 
example, the smoking Stroop task assesses attentional bias to smoking cues, and the 
Implicit Association Test assesses automatic (implicit) memory associations. Few studies 
have examined the acute effect of nicotine on task performance; however one study 
reported that memory associations to smoking cues became less positive after smok-
ing (vs. not smoking) a cigarette (Waters et al., 2007). In addition, attentional bias was 
reduced by smoking (vs. not smoking) a cigarette (Waters et al., 2009). Acute smoking 
may reduce the distracting influence of cigarette cues on cognitive performance.

The brain regions that are activated by nicotine administration have been studied by 
functional neuroimaging studies in humans. In one of the earliest pharmacological func-
tional magnetic resonance imaging (fMRI) studies, Stein et al. (1998) administered saline 
followed by three doses of nicotine (0.75, 1.50, and 2.25 mg/70 kg) intravenously. Their 
study found that nicotine activated several brain regions, including the nucleus accumbens, 
amygdala, cingulate, and frontal cortex, in a dose-dependent manner. These brain regions 
are known to be involved in the reward and cognitive functions. Another study (Rose et al., 
2003) used positron emission tomography imaging to examine the changes in regional 
cerebral blood flow (rCBF). That study found that in cigarette smokers, nicotine increased 
or normalized the amount of rCBF in the left frontal region and decreased the amount of 
rCBF in the left amygdala, which concurs with the results of the Stein et al. study. In several 
other fMRI studies, the administration of nicotine via nicotine gum enhanced neuronal 
activity in prefrontal and parietal brain regions (Giessing et al., 2006; Thiel and Fink, 2008; 
Vossel et al., 2008). Together, these results support the notion that nicotine-induced acti-
vation of the prefrontal cortex plays a role in the cognitive-enhancing effects of nicotine. 
The results of the neuroimaging studies are consistent with the well-established observa-
tions that the prefrontal cortex plays a role in a number of cognitive functions including 
attention, working memory, response inhibition, affective processing, decision making, and 
goal-directed behavior (Miller and Cohen, 2001). As will be summarized below, nAChRs 
in the prefrontal cortex modulate the functions of many other neurotransmitters, including 
glutamate, DA, GABA, serotonin, norepinephrine, and ACh.
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2.2. NEUROBIOLOGY OF THE COGNITIVE EFFECTS OF  
NICOTINE

 Nicotine, which is the main addictive chemical in tobacco smoke, is essential in 
continued and compulsive tobacco use (Benowitz, 2009). Nicotine enters cerebral cir-
culation within 10–60 s after a cigarette puff, and it binds to the nAChRs that are nor-
mally activated by ACh (Rose et al., 1999). nAChRs are ligand-gated ion channels that 
are permeable to sodium, potassium, and calcium ions. These receptors are excitatory 
and show relatively fast responses; their response times are of the order of milliseconds 
(Clader and Wang, 2005; Dani and Bertrand, 2007). It is important to note that ACh is 
hydrolyzed by the enzyme acetylcholinesterase within milliseconds of its release into 
the synaptic cleft; in contrast, no such rapid breakdown mechanism exists to remove 
nicotine from the synaptic cleft, so it activates the nAChR longer than ACh (Penton 
and Lester, 2009). This prolonged activation of the nAChR by nicotine results in the 
desensitization of the receptor and in its temporary inability to be activated by subse-
quent agonist activity. The desensitization and tolerance of the nAChR are thought to 
be crucial in the development of nicotine addiction (Picciotto et al., 2008; Quick and 
Lester, 2002).

Most nAChRs in the CNS are located presynaptically, and they modulate the 
release of several neurotransmitters, such as ACh, DA, serotonin, glutamate, GABA, 
and norepinephrine (Dani and Bertrand, 2007). Some nAChRs, such as those on the 
dopaminergic neurons in the ventral tegmental area, are also located postsynaptically. 
nAChRs can either be heteromeric channels that are formed by a combination of α 
and β subunits (e.g. α4β2, α3β4) or homomeric channels that are formed by a group 
of α subunits (e.g. α6 or α7). The two most commonly expressed nAChRs in the brain 
are α4β2 and α7 nAChRs (Dani and Bertrand, 2007). Activation of nAChRs increases 
extracellular levels of DA in the nucleus accumbens and the prefrontal cortex; these 
brain areas are thought to be critical in mediating the rewarding and cognitive effects 
of nicotine, respectively (Balfour, 2009; Corrigall et al., 1992; Dos Santos Coura and 
Granon, 2012; Rahman et al., 2008).

The cellular mechanisms of nicotine-induced cognitive enhancement are not well 
characterized, but both the prefrontal cortex and hippocampal brain regions have been 
implicated in this effect (Leiser et al., 2009; Sarter et al., 2009). Electrophysiological data 
suggest that nicotine results in cognitive enhancement by improving the  signal-to-noise 
ratio in the prefrontal cortex, and other evidence suggests that nicotine facilitates 
 synaptic plasticity in the prefrontal cortex (Couey et al., 2007). The nAChR subunits 
that mediate the cognitive effects of nicotine may include α2, α3, α4, α5, α7, β2, and 
β4 (Changeux, 2010). As will be summarized below, most of the studies that have been 
conducted to date have focused on the α7 and β2 subunits (Kenney and Gould, 2008).
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2.2.1. Nicotinic Acetylcholine Receptors
2.2.1.1. a7nAChR
α7 nAChRs are abundant in many brain regions that are associated with cognitive func-
tions, including the hippocampus and prefrontal cortex (Gotti et al., 2007; Leiser et al., 
2009). Like the NMDA type of glutamate receptor, α7 nAChRs are highly permeable to 
calcium, which allows them to enhance the release of neurotransmitters (e.g. glutamate) 
and to modulate synaptic plasticity (Gray et al., 1996; Quik et al., 1997; Seguela et al., 
1993). Relative to α4β2 nAChRs, a7nAChRs have a low affinity for nicotine and do not 
become desensitized at low nicotine concentrations (Quick and Lester, 2002; Wooltor-
ton et al., 2003). This delayed desensitization of the a7nAChRs may be a mechanism that 
allows the release of several neurotransmitters, including DA, to be maintained after the 
α4β2 nAChRs have been desensitized (Giniatullin et al., 2005).

a7nAChR knock-out mice show impairment in attention and working memory 
tasks (Fernandes et al., 2006; Hoyle et al., 2006). In a study by Young et al. (2004), 
a7nAChR knock-out mice showed more errors of commission in a sustained attention 
task than the wild-type. It is also possible that both the distribution and density of vari-
ous nAChR subtypes differ significantly between wild-type and a7nAChR knock-out 
mice due to compensatory changes during development (Young et al., 2004).

In humans, a7nAChRs may play a key role in the relationship between smoking and 
sensory gating sensitivity in individuals with schizophrenia (Adler et al., 1993; Nomikos 
et al., 2000; Taiminen et al., 1998). Between 75% and 85% of individuals with schizo-
phrenia smoke cigarettes (de Leon and Diaz, 2005), and as many as 90% of them have 
cognitive deficits in at least one domain (e.g. attention, memory, or executive function-
ing) (Palmer et al., 1997; Leonard et al., 2001; Medalia et al., 2008; Poirier et al., 2002; 
Reichenberg et al., 2006). Postmortem examinations of the brains of schizophrenic 
patients revealed reductions in the density of a7nAChRs in the hippocampus (Breese 
et al., 2000; Freedman et al., 1995; Guan et al., 1999; Martin-Ruiz et al., 2003), which 
has been linked to the sensory gating dysfunction that occurs in schizophrenia (Potter 
et al., 2006). Sensory gating is a process by which irrelevant stimuli are separated from 
meaningful ones, and it may underlie both sensory overload and the cognitive deficits 
that are observed in schizophrenic patients. Sensory gating dysfunction is measured as a 
reduced response to the middle latency (50 ms) component of an auditory event-related 
potential (Croft et al., 2001). Both nicotine and GTS-21 (DMXB-A), which is a partial 
a7nAChR agonist, have been shown to reverse auditory gating deficits in a number of 
animal models and in schizophrenic patients (Martin and Freedman, 2007), and several 
a7nAChR agonists are under investigation to reduce the cognitive deficits in individuals 
with schizophrenia, ADHD, and/or Alzheimer’s disease (Wallace and Porter, 2011).

2.2.1.2. α4β2 nAChR
Compared with a7nAChRs, α4β2 nAChRs have a high affinity for nicotine and become 
desensitized at low concentrations of nicotine that are within the range of nicotine 
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concentrations that is generally found in the blood of smokers (Gotti et al., 1997). The 
α4β2 receptor subtype has a high affinity for a number of agonists including nico-
tine, ACh, varenicline, and cytisine. The activation of α4β2 nAChRs that are located in 
DAergic cell bodies and presynaptic terminals increases DA release in both the nucleus 
accumbens and the prefrontal cortex (Chen et al., 2003), which, in turn, may contribute 
to the rewarding and cognitive-enhancing effects of nicotine, respectively.

The β2 subunit, which is found in over 90% of nAChR pentamers, is highly expressed 
in the basal ganglia, the thalamus, and the hippocampus (Perry et al., 1992, 1995; Spurden 
et al., 1997). Mice that lack the β2 subunit of the nAChR demonstrate deficits in atten-
tion, working memory, and behavioral flexibility (Granon and Changeux, 2006; Granon 
et al., 2003; Guillem et al., 2011). It was reported that nicotine did not enhance associative 
memory performance in β2 knock-out mice, whereas associative memory performance 
was the expected response to nicotine administration in wild-type mice. In a more recent 
study, β2 knock-out mice displayed deficits in exploratory behavior that could be partially 
alleviated by nicotine treatment (Besson et al., 2008).

Pharmacological studies that used partial agonists of the α4β2 nAChR to study its 
role in cognitive functioning support their role in cognitive functions in a manner that 
is consistent with the aforementioned findings. One of these partial agonists, AZD3480 
enhanced both attention and episodic memory function in healthy volunteers (Dunbar 
et al., 2007). Similarly, varenicline, which is another partial agonist for the α4β2 nAChR 
and which is marketed as a treatment for smoking cessation (Rollema et al., 2007), alle-
viated learning deficits in mice that had been induced by either alcohol administration 
(Gulick and Gould, 2008) or nicotine withdrawal (Raybuck et al., 2008). In a recent 
study of cigarette smokers, 10 days of varenicline treatment improved working mem-
ory and attention deficits that were induced by nicotine withdrawal (Patterson et al., 
2009b). The partial agonists of the α4β2 nAChR may potentially be used as cognitive-
enhancing agents for the treatment neuropsychiatric disorders with cognitive deficits as 
cognitive-enhancing agents.

2.2.1.3. Other nAChR
In addition to α4β2 and α7 subtypes, α2, α5, α3, and β4 subunits may also participate 
in cognitive-enhancing effect of nicotine (Changeux, 2010). For example, the a5 sub-
unit is widely expressed both in the central and peripheral nervous systems as part of 
α4β2, α3β2, and α3β4 nAChRs. Although this subunit lacks key residues that could be 
involved in the binding of either nicotine or ACh, its inclusion changes the function of 
the nAChR in which it is included. Mice that lack the α5 subunit demonstrate increased 
nicotine reward responses and reduced aversion to high doses of nicotine (Jackson et al., 
2010). Further, these mice have reduced cognitive performance in attention tasks relative 
to the performance of wild-type mice (Bailey et al., 2010).

In a recent study, Winterer et al. (2010) found a significant association between a 
functional variant, rs16969968, of the gene that encodes the a5 subunit of nAChRs 
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(CHRNA5) and performance on the N-back working memory task that is consistent 
with the results of the aforementioned preclinical studies. The rs16969968 SNP has been 
associated with the age at which an individual initiates cigarette smoking, the severity of 
the nicotine dependence as measured by the Fagerström Test for Nicotine Dependence 
score, and the number of cigarettes that an individual smokes each day (Berrettini et al., 
2008; Bierut et al., 2007; Saccone et al., 2007; Winterer et al., 2010). These findings sug-
gest that the vulnerability to nicotine dependence that is associated with this particular 
SNP may be mediated by a reduction in the cognitive performance of the individual. 
Thus, individuals with baseline cognitive impairments may be more vulnerable to nico-
tine dependence for the cognitive-enhancing effects of nicotine (Winterer et al., 2010).

2.2.2. Dopamine
DA is implicated in a number of cognitive functions, including working memory, atten-
tion, and response inhibition (Colzato et al., 2009; Nieoullon, 2002; Tanila et al., 1998). 
DA dysfunction has also been implicated in psychiatric disorders that are associated 
with poor attention and working memory function such as ADHD and schizophrenia 
(Cheon et al., 2003; Seeman and Kapur, 2000). As will be summarized below, studies are 
beginning to shed light on the role of DA in nicotine-induced cognitive enhancement.

DA acts via five receptor subtypes (D1-D5) (D1-D5) (Sealfon and Olanow, 2000; 
Sokoloff and Schwartz, 1995; Zhu et al., 2008). The DA receptors are also classified into 
two main receptor families: the D1-like family (which includes the D1 and D5 recep-
tors) and the D2-like family (which includes the D2, D3 and D4 receptors). The D2 
receptor family also functions as an autoreceptor that acts to reduce the release of DA 
(Missale et al., 1998). Among the DA receptors, D2 and D4 are the primary receptors 
that have been examined in relation to the cognitive effects of nicotine. The D2 receptor 
family is of particular interest, and it has been implicated in set shifting and cognitive 
flexibility (van Holstein et al., 2011). Blocking the D2 receptors in the prefrontal cortices 
of rats has been shown to impair their set shifting abilities without changing their abili-
ties to perform working memory tasks (Floresco et al., 2006).

2.2.2.1. D2 Receptor
Several studies have shown that genetic variation in the human D2 receptor gene modu-
lates abstinence-induced changes in cognitive measures (Evans et al., 2009; Gilbert et al., 
2004) and nicotine’s effects on cognitive performance.

Jacobsen et al. (2006) reported that following the administration of a nicotine patch, 
smokers who carried the 957T allele of the gene for the D2 receptor experienced some 
impairment in their working memory abilities during a task that involved a high ver-
bal working memory load. This particular 957T allele increases the binding availability 
of the D2 receptor (Hirvonen et al., 2004), which suggests that the reduced working 
memory function may be due to excess baseline levels of DA in carriers of the 957T 
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allele. Alternatively, the working memory performance of individuals who were homo-
zygous for the 957C allele was not appreciably different between placebo and nicotine 
patch conditions. Thus, the authors suggested that individuals who carry two copies of 
the 957C allele may not be able to further increase DA activity during the performance 
of tasks that involve a high working memory load (Jacobsen et al., 2006). This study illus-
trates the way in which genetic variation that controls D2 receptor levels may influence 
the cognitive responses to nicotine.

2.2.2.2. D4 Receptor
Both the structure and pharmacology of the D4 receptor are similar to those of the D2 
receptor (Van Tol et al., 1991). One study found evidence that the D4 receptor gene 
may modulate the attentional bias for smoking-related words that was observed in 
ex-smokers using a modified Stroop task (Munafo and Johnstone, 2008). Ex-smokers 
who carried at least one allele with 7 (long) or more repeats had significantly increased 
levels of color naming interference (Stroop effect) when tested using smoking-related 
words compared with ex-smokers who carried six or fewer repeats on both alleles, but 
this difference was not observed among current smokers. The DRD4 7-repeat (long) 
allele is associated with reduced DA activity in comparison with the 2- or 4-repeat 
variants (short) (Asghari et al., 1995). These findings suggest that the long allele of the 
DRD4 gene predicts that abstinent smokers will experience greater attentional bias 
for smoking cues in abstinent smokers possibly through reduced DA activity (Asghari 
et al., 1995).

2.2.2.3. Catechol-O-methyltransferase
Catechol-O-methyltransferase (COMT) is an enzyme that inactivates DA, and it is 
associated with DA regulation, cognitive processes, and the cognitive effects of nico-
tine. COMT contains a well-studied single nucleotide polymorphism that results in 
the presence of either a methionine (Met) or valine (Val) (val158met) in the enzyme 
(Sengupta et al., 2008). The COMT enzyme that contains Met is one-fourth as active 
as the COMT enzyme that contains Val. Therefore, because the Val allele results in a 
form of COMT that has increased enzymatic efficiency compared with the Met allele, 
lower levels of DA occur in the prefrontal cortex (Guo et al., 2007). In a pioneer-
ing study, Loughead et al. (2008) studied the influence of variations in COMT on 
cognitive deficits and brain function during abstinence from smoking. Smokers were 
tested under two conditions: normal smoking and overnight abstinence (the total 
duration of which was 14 h). In each condition, the working memory performance of 
the smokers was tested using the visual N-back task. During abstinence, the smokers 
who carried two copies of the Val allele exhibited decreased fMRI BOLD signals in 
both the bilateral dorsal lateral prefrontal cortex and the dorsal cingulate/medial PFC. 
They also exhibited slower reaction times in the N-back task compared with their 
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performances under normal smoking conditions (Loughead et al., 2008). These differ-
ences were not observed in smokers who carried at least one copy of the Met allele 
(Loughead et al., 2008).

In a recent study, we investigated the role of the COMT (val158met) polymor-
phism in acute responses to nicotine that was administered intravenously in a sample 
of African-American (n = 56) and European-American smokers (Herman et al., 2013). 
The study included a single laboratory session in which smokers were challenged with 
saline that was followed by the administration of 0.5 and 1.0 mg/70 kg doses of nico-
tine that were given at 30-min intervals following overnight abstinence from smoking.  
The cognitive measures that we investigated included the Mathematical Processing, 
CPT, and the Stroop Test, all of which were administered twice: once at the beginning 
of the session and once after the last nicotine administration. In African-Americans, the 
Val/Val genotype was associated with poorer performance on the CPT and the Stroop 
Test, but this was not the case for European-American smokers. The reduced transmis-
sion of DA during abstinence from smoking might have enhanced the way in which 
the COMT polymorphism affected cognitive performance such that a tighter control of 

Figure 1 This illustrates the hypothesized effects of nicotinic acetylcholine receptors (nAChRs) on 
the regulation of dopamine (DA), glutamate, norepinephrine (NE), serotonin (5-HT), GABA, and 
 acetylcholine (ACh) release in the prefrontal cortex. Activation of nAChRs enhances the release of 
 neurotransmitters, but the exact types and locations of these nAChRs must still be determined. See 
Dos Santos Coura and Granon (2012) for details.
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synaptic DA levels in smokers with the Val/Val genotype resulted in poorer performance 
on the Stroop Test and the CPT (Zhang et al., 2012).

2.3.3. Other Neurotransmitters
In addition to ACh and DA, other neurotransmitters participate in mediating the cog-
nitive-enhancing effects of nicotine in both the hippocampus and the prefrontal cortex 
(Dos Santos Coura and Granon, 2012; Parikh et al., 2008; Sarter et al., 2009). The con-
nections between the prefrontal cortex and many other cortical and subcortical areas, 
including the limbic system and the hippocampus, create a functional circuit that serves 
many cognitive functions, including attention, working memory, response inhibition, 
and decision making.

In the prefrontal cortex, the key neurotransmitters that are involved in cognitive 
functions include glutamate, DA, norepinephrine, serotonin, GABA, and ACh. The 
precise mechanisms for the cognitive-enhancing effects of nicotine have not yet been 
determined, but a working hypothesis for the interaction between nAChRs and neu-
rotransmitter release in the prefrontal cortex is shown in Figure 1.

3. CONCLUSIONS

 To summarize, human studies have demonstrated that nicotine has cognitive-
enhancing effects in both nonsmokers and minimally deprived smokers. Cognitive func-
tions in humans that are particularly improved by nicotine administration include fine 
motor functions, attentional functions, working memory, and episodic memory. These 
findings are consistent with human neuroimaging studies that have demonstrated activa-
tion in the prefrontal and parietal cortices following nicotine administration. Preclinical 
studies have implicated both α4β2 and α7 nAChRs in the cognitive-enhancing effects of 
nicotine. The α7 subunit appears to modulate a sensory filtering function, and it may play 
an important role in the cognitive deficits that are associated with schizophrenia. Further, 
the β2 subunit appears to be essential in mediating the cognitive functions that are asso-
ciated with attention, working memory, and behavioral flexibility. The mechanisms of 
the cognitive-enhancing effects of nicotine may be mediated via the modulation of the 
release of various neurotransmitters by α7β2 and α7 nAChRs in the prefrontal cortex. 
These neurotransmitters include DA, glutamate, serotonin, norepinephrine, GABA, and 
ACh, all of which contribute to the cognitive functions that take place in the prefrontal 
cortex (See Figure 12.1).

3.1. Treatment Implications
3.1.1. Targeting Cognitive Function as a Treatment for Smoking Cessation
Mounting evidence suggests that individuals with cognitive deficits may be more vulner-
able to nicotine addiction (Yakir et al., 2007). In population-based studies, smokers were 
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found to have deficits in the cognitive functions that are related to attention, working 
memory, and impulse control (Wagner et al., 2012). These deficits were not correlated 
with lifetime nicotine use, and even smokers with low amounts of nicotine exposure 
display these deficits. These findings suggest that these deficits existed in some individu-
als before they began smoking. Further, Winterer et al. (2010) found that a genetic varia-
tion in the α5 nAChR may increase the degree to which an individual is vulnerable to 
nicotine dependence and may be associated with reduced performance on a working 
memory task. Presumably, individuals with genetic vulnerability may derive particular 
benefit from the cognitive-enhancing effects of nicotine (Winterer et al., 2010). Cogni-
tive deficits are also common among patients with psychiatric disorders; for example, 
75–90% of schizophrenia patients show evidence of cognitive deficits. Similarly, individ-
uals with ADHD have impairment in their attention function, and ADHD is associated 
with elevated rates of smoking. Among smokers who were trying to quit smoking, it was 
found that poorer performance on the N-back test (a working memory task) predicted 
relapses (Patterson et al., 2009a).

We have also found that abstinence-induced deterioration in the performance of 
an individual on the Rapid Visual Information Processing Task, which assesses sus-
tained attention and working memory, predicted whether smokers would relapse to 
smoking at the end of the study (Kang et al., 2012). Still more studies have reported 
that attentional biases to smoking cues predict relapses in smokers who are attempt-
ing to stop smoking (Janes et al., 2010; Powell et al., 2010; Waters et al., 2003). These 
findings suggest that cognitive-enhancement or cognitive-retraining may be an effec-
tive strategy for enabling people with nicotine addictions to quit smoking, especially 
smokers with cognitive deficits. Several behavioral and pharmacological cognitive-
enhancement approaches have been under investigation, including approaches that use 
nAChR agonists (see below).

3.1.2. Subtype-Selective nAChR Agonists as Cognitive-Enhancers
Agonists that are selective for nAChRs may provide more effective cognitive enhance-
ment than nicotine. Although nicotine produces cognitive enhancement, its therapeu-
tic effects are limited due to rapid desensitization that temporarily renders the receptor 
inactive. As a result, nicotine also acts as an nAChR antagonist. It is important to note 
that desensitization of the nAChR is specific to both the agonist and the nicotinic 
receptor subtype. Conceivably, agonists that are selective for the various nAChR sub-
types may be more effective cognitive-enhancers than nicotine. One such subtype-
specific group of agonists that is under development as a cognitive enhancer is a group 
of α7 nAChR agonists. A promising group of medications are those that are selective 
for the α7 receptors (Wallace and Porter, 2011). These medications are undergoing 
clinical trials as cognitive-enhancers for patients with schizophrenia, Alzheimer’s dis-
ease, and ADHD.
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