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Aims: The objectives of this study were to determine the cytokine induction by delta tocotrienol (DT3, a promis-
ing radiation countermeasure) and to investigate the role of granulocyte colony-stimulating factor (G-CSF) in its
radioprotective efficacy against ionizing radiation in mice.
Main methods: Multiplex Luminex was used to analyze cytokines induced by DT3 and other tocols (gamma-
tocotrienol and tocopherol succinate) in CD2F1 mice. Mice were injected with an optimal dose of DT3 and a
G-CSF antibody, and their 30-day survival against cobalt-60 gamma-irradiation was monitored. The neutralization
of G-CSF by the administration of a G-CSF-specific antibody in DT3-injected mice was investigated by multiplex
Luminex.
Key findings: Our data demonstrate that DT3 induced high levels of various cytokines comparable to other tocols
being developed as radiation countermeasures. DT3 significantly protected mice against ionizing radiation, and
the administration of a G-CSF neutralizing antibody to DT3-treated animals resulted in the complete abrogation
of DT3's radioprotective efficacy and neutralization of G-CSF in peripheral blood.
Significance:Our studyfindings suggest that G-CSF induced byDT3mediates its radioprotective efficacy against ion-
izing radiation in mice.

Published by Elsevier Inc.

Introduction

Although the search for suitable radiation countermeasures has
been going on for the last 60 years, no safe and effective radiation
countermeasure has been approved by theU.S. Food and Drug Adminis-
tration (US FDA) for the acute radiation syndrome (Singh et al., 2012a;
Dumont et al., 2010). It is nowwell recognized that free radicals formed
by the radiolysis of cellular aqueous milieu, and their interaction with
one another andwith oxygen, are primarymediators of radiation injury
(Hall and Giaccia, 2006). Most forms of ionizing radiation cause the
production of reactive oxygen species through hydrolysis of water.
These include superoxide, hydrogen peroxide, and hydroxyl radicals.
Such reactive oxygen species induced by ionizing radiation can initiate
oxidative cellular injury as well as activate intracellular signaling path-
ways and stimulate cytochrome c release from mitochondria that
leads to apoptosis. This understanding has placed emphasis on the
search for antioxidant agents that are suitable as radiation

countermeasures (Singh et al., 2012a; Dumont et al., 2010; Weiss and
Landauer, 2009). Exogenously supplemented antioxidants or agents
that stimulate endogenous antioxidant systems within cells have shown
promise in terms of suppressing the harmful effects of irradiation. If pres-
ent in the cells at the time of radiation exposure, such antioxidants may
protect cells from radiation damage by scavenging reactive oxygen spe-
cies before they act on cellular components. A variety of reducing agents,
such as vitamin E analogs, polyphenols, thiols, and superoxide dismutase
mimetics have been described as potential radiation countermeasures in
the recent past (Singh et al., 2012a; Dumont et al., 2010).

Vitamin E is well known for its established health benefits,
including antioxidant, neuroprotective, and anti-inflammatory
properties (Nesaretnam, 2008). It represents a family of compounds
that is divided into two subgroups called tocopherols and tocotrienols,
which act as important antioxidants that regulate peroxidation reactions
and control free-radical production within the body (Palozza et al., 2006,
2008). This family of compounds has eight different isoforms that belong
to two categories: four saturated analogues (α, β, γ, and δ) called tocoph-
erols and four unsaturated analogues referred to as tocotrienols. These
eight components are collectively knownas tocols. Tocols and their deriv-
atives have been evaluated for their radioprotective properties (Singh
et al., 2013). The majority of these studies have been conducted
with alpha tocopherol, the most commonly used vitamin E
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supplement and the most abundant vitamin E isoform in human and
animal tissues (Weiss and Landauer, 2000, 2003, 2009). During the
last decade, tocotrienol research has gained substantial momentum.
For radioprotective efficacy, tocopherol succinate (TS), delta
tocotrienol (DT3), and gamma-tocotrienol (GT3) are comparable
and appear better than other tocols (Satyamitra et al., 2011; Singh
et al., 2009, 2012b; Li et al., 2010). DT3 has been shown to have
both radioprotective (administered before radiation exposure) and
radiomitigative (administered after radiation exposure) efficacy
(Satyamitra et al., 2011). Recently, delta-tocotrienol (DT3) was demon-
strated to reduce activation of caspase-8, caspase-3, and caspase-7
while increasing autophagy-related beclin-1 expression in irradiated
bonemarrow cells (Satyamitra et al., 2012). DT3 also has been reported
to increase cell survival and regeneration of hematopoietic
microfoci and lineage–/Sca-1+/c-Kit+ stem and progenitor cells in
irradiated mouse bone marrow cells (Li et al., 2010). These changes
were associated with activation of the mRNA translation regulator
eIF4E and ribosomal protein S6. These findings suggest that DT3
protects mouse bone marrow and human CD34+ cells from
radiation-induced injury through Erk (extracellular signal-
regulated kinase) activation associated with the mTOR (mammali-
an target of rapamycin) survival pathway.

Here we demonstrate that DT3 induces high levels of various cyto-
kines comparable to cytokines inducedbyGT3 andTS. The administration
of a G-CSF antibody completely neutralized DT3-induced G-CSF in
peripheral blood, and leads to the abrogation of DT3's radioprotective
efficacy.

Materials and methods

Mice

Six- to eight-week-old male, CD2F1-specific pathogen-free mice
were purchased from Harlan Laboratories (Indianapolis, IN, USA) and
housed in an air-conditioned facility accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care International
(Singh et al., 2012c). All mice were kept in rooms with a 12-h light/
dark cycle. The mice holding roomwas maintained at 21 ± 2 °C having
10–15 hourly cycles of fresh air and a relative humidity of 50% ± 10%.
Upon arrival, themice were held in quarantine for 10 days. Amicrobio-
logical examination of representative samples ensured the absence of
Pseudomonas aeruginosa. Mice were provided certified rodent rations
(Harlan Teklad Rodent Diet, Harlan Teklad, WI, USA) and acidified
water (HCl, pH 2.5–2.8) ad libitum. Mice were 8–9 weeks old when
experiments began. All animal procedures were performed according
to a protocol approved by the Armed Forces Radiobiology Research
Institute (AFRRI) Institutional Animal Care and Use Committee. Re-
search was conducted according to the Guide for the Care and Use of
Laboratory Animals, prepared by the Institute of Laboratory Animal Re-
sources, National Research Council, U.S. National Academy of Sciences
(National Research Council of the National Academy of Sciences, 2011).

Drug preparation and administration

The optimal drug dose for this study, 200 mg/kg for all three agents,
was selected based on published reports (Satyamitra et al., 2011; Li
et al., 2010; Ghosh et al., 2009; Singh et al., 2010). DT3 and GT3 formu-
lations in 5% Tween-80 in salinewere purchased fromYasooHealth, Inc.
(Johnson City, TN, USA). TS (Sigma-Aldrich, St. Louis, MO, USA) was
administered as a suspension. For a 200-mg/kg dose (5 mg for a 25-g
mouse), 100 mg of TS was dispersed in 1.9 ml of PEG-400 and 0.1 ml
of Tween-80 for a total volume of 2.0 ml. Olive oil was used as vehicle
control (equivalent to the quantity of tocols) in 5% Tween-80. The
final tocol concentration (200 mg/kg) was adjusted to administer 0.1
ml, with control mice receiving 0.1 ml of vehicle. The subcutaneous

(sc) injections of the drug and vehicle were done at the nape of the
neck with a 23-G needle 24 h before irradiation.

Irradiation

Mice were placed in ventilated Plexiglas boxes compartmentalized
to accommodate eight mice per box and exposed to bilateral irradiation
in the AFRRI cobalt-60 facility at a dose rate of 0.6 Gy/min (Singh et al.,
2011). Animalswere exposed to a dose of 9.2 Gy (LD90/30 dose for CD2F1
mice). After irradiation, mice were returned to their cages and moni-
tored. Sham-irradiatedmicewere treated in the samemanner as irradi-
ated animals except that the facility's cobalt-60 rods were not raised
from their pool of shielding water. Radiation dosimetry was based
primarily on the alanine/EPR (electron paramagnetic resonance) sys-
tem (Nagy, 2000; ISO-ASTM, 2004), currently accepted as one of the
most accuratemethods and used for intercomparison between national
metrology institutions. The calibration curves (spectrometer e-Scan,
Burker Biospin, Inc., Madison, WI, USA) used in dose measurements at
the AFRRI are based on standard alanine calibration sets purchased
from the United States National Institute of Standards and Technology
(NIST), Gaithersburg, MD, USA. The alanine dosimeters obtained from
NIST had been calibrated in terms of absorbed dose to water using the
US national standard radiation sources. At AFRRI, identical alanine
dosimeters were irradiated in mice phantoms (Plexiglas 1″ diameter,
3″ length) for a predefined period of time. Measurement of their EPR
signals using the calibration curve constructed with alanine dosimeters
from NIST provided dose rates to water in the cores of mice. A small
correction was subsequently applied for the difference in mass energy
absorption coefficients between water and soft tissue.

G-CSF neutralization

Mice were administered DT3 (200 mg/kg) sc 24 h before blood
harvest or irradiation. The DT3-treated mice then received either
the G-CSF antibody (0.2 ml, 1000 μg/mouse) or the isotype control
(0.2 ml, 1000 μg/mouse) intraperitoneally (ip), 8 h after DT3 admin-
istration as described earlier (Singh et al., 2010; Kulkarni et al.,
2013). Before injection, G-CSF antibody and isotype were tested for
12 viral agents by BioReliance (Rockville, MD, USA) by MAP-IT (molec-
ular antigen PCR-identification test formice) assay (cat no. 104253) and
found negative for all agents tested. Blood samples were collected 16
h after G-CSF antibody injection (24 h after DT3 administration) to
analyze cytokine induction.

Blood collection and Luminex analysis of cytokines

Bloodwas collected from anesthetized (isoflurane, Abbott Laborato-
ries, Chicago, IL, USA) mice via the inferior vena cava using a 23-G
needle. After collection, bloodwas transferred to Capiject serum separa-
tor tubes (3T-MG; Terumo Medical Corp., Elkton, MD, USA), allowed to
clot for 30 min, and centrifuged at 400g for 10 min. The serum was
collected and stored at −70 °C until used.

Luminex 200 (Luminex Corp., Austin, TX, USA)was used to detect 40
cytokines, chemokines, and growth factors. Mouse serum samples were
analyzed for interleukin-1α (IL-1α), IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9,
IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17α, IL-17 F, IL-18, IL-21, IL-22,
IL-23p19, IL-31, IL-33, eotaxin, granulocyte colony-stimulating factor
(G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF),
macrophage colony-stimulating factor (M-CSF), interferon-γ (IFN-γ),
keratinocyte chemoattractant (KC), monocyte chemotactic protein-
1(MCP-1), macrophage inflammatory protein-1α (MIP-1α), MIP-1β,
MIP-2, MIP-3α, RANTES (regulated on activation, normal T cell expressed
and secreted), tumor necrosis factor-α (TNF-α), basic fibroblast growth
factor (FGF-basic), leukemia inhibitory factor (LIF), monokine induced
by γ-IFN (MIG), platelet-derived growth factor subunit B (PDGF-bb),
vascular endothelial growth factor (VEGF), and cluster of differentiation
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40 ligand (CD40L) as described earlier (Singh et al., 2010) usingmultiplex
kits (Bio-Rad Inc., Hercules, CA, USA). Cytokine quantification was
performed using Bio-Plex Manager software, version 6.1 (Bio-Rad Inc.).

Statistical analysis

For survival data, a log-rank test was used to compare survival
curves. Fisher's exact test was used to compare survival rates at the
end of 30 days, with a Bonferroni correction used to control for type I
error if multiple comparisons were used. For cytokine and G-CSF data
analyses, mean values with standard errors (SE, when applicable)
were reported. Analysis of variance (ANOVA)was used to detectwheth-
er there were significant differences between experimental groups.
When significancewas indicated, a Tukey's post hoc testwasused to de-
termine significant differences between particular groups. All statistical
tests were two-sided, with a 5% significance level. Statistical software
SPSS version 19 was used for analyses.

Results

Induction of various cytokines by DT3, GT3, and TS in mice

Our ongoing studies with different radiation countermeasures have
shown a relationship between survival efficacy against ionizing radia-
tion and an increase in cytokines circulating in the bloodstream. We,
therefore, wanted to compare the levels of various cytokines following
the administration of DT3, GT3, and TS. These levels were compared
with levels of such cytokines in mice injected with vehicle (Fig. 1).
Blood was collected 24 h after the administration of drug or vehicle,
and serum samples were analyzed for 40 cytokines listed above. Mice
injected with a 200-mg/kg dose of DT3 had significantly higher levels
of 4 out of 40 cytokines compared to vehicle. These cytokines were
G-CSF, KC, MCP-1 and IL-17 F. Mice injected with GT3 had significantly
higher levels of 7 out of 40 cytokines evaluated as compared to the
vehicle treated group. These cytokines were IL-9, G-CSF, KC, PDGF-bb,
IL-17 F, CD40L, and MIP3-α. Mice injected with 200 mg/kg dose of TS
had higher levels of 2 out of 40 cytokines tested: KC, and MCP-1. It is
important to note that cytokines were evaluated at only one time
point (24 h after drug injection). This may not be the optimal time
point for cytokine induction for all drugs. We decided to measure
cytokines 24 h after drug injection since these drugs are most
effective when administered 24 h prior to radiation exposure
(Satyamitra et al., 2011; Singh et al., 2009, 2010; Li et al., 2010; Ghosh
et al., 2009). We were interested to know the levels of various
cytokines in mice treated with these tocols at the time of radiation
exposure. Our results suggest that the administration of DT3, GT3, or
TS induces significantly higher levels of several cytokines compared to
vehicle. These cytokines may play a critical role in radioprotective
efficacy of these tocols.

Induction of various cytokines by DT3, GT3, and TS in irradiated mice

To determine the effect of DT3, GT3, and TS in irradiated mice,
drug or vehicle was injected 24 h before irradiation with 9.2 Gy
(dose rate 0.6 Gy/min). This time point was selected since these
drugs are most effective when administered 24 h before irradiation
as stated above. Blood was collected as described above at 6 h post-
irradiation. Cytokine analysis data are presented in Fig. 2. Mice
treated with DT3 had significantly higher levels of eleven cytokines
compared to vehicle: IL-1β, IL-2, IL-5, IL-13, eotaxin, G-CSF, KC, MCP-
1, M-CSF, MIG, and IL-22. The mice receiving GT3 showed higher levels
of the following nine cytokines: IL-1β, IL-2, IL-5, IL-13 IL-17α, eotaxin,
G-CSF, MCP-1, and MIG. Mice injected with TS had significantly higher
levels of six cytokines compared to the vehicle-treated mice: IL-1β, IL-
5, IL-13, eotaxin, GM-CSF, and TNF-α. Our results also suggest that radi-
ation exposure induces various cytokines (cytokine levels observed in

irradiated mice compared to unirradiated mice). Data presented in
Fig. 3 suggest that radiation exposure induced the following cytokines
6 h after irradiation: G-CSF, KC, PDGF-bb, and MIP-3α. G-CSF is one of
those cytokines and it has been studied extensively with various radia-
tion countermeasures.

Role of G-CSF stimulated by DT3 in its radioprotective efficacy against
ionizing radiation

We conducted an experiment to neutralize G-CSF in mice to
determine whether G-CSF induction by DT3 is a key factor in the
protection against radiation injury. Three groups of CD2F1 mice (n =
16) were administered DT3 (200 mg/kg) 24 h before exposure to
cobalt-60γ-radiation. One groupof DT3-treatedmicewas administered
G-CSF neutralizing antibody 16 h before irradiation. The second group
received the isotype control 16 h prior to irradiation, and the third
group did not receive the antibody or the isotype. A fourth group
received only vehicle. All four groups were irradiated (9.2 Gy at
0.6 Gy/min) and monitored for survival for 30 days after irradiation.
Data presented in Fig. 4 demonstrate that mice receiving only DT3 or
DT3 plus the isotype control were protected significantly (p b 0.01)
from ionizing radiation compared to vehicle control and DT3 plus the
G-CSF neutralizing antibody. There was no significant difference
between DT3-treated and DT3 plus isotype-treated mice.

Induction of cytokines by DT3 and its neutralization by G-CSF antibody
in mice

Serum G-CSF levels in mice treated with DT3 were analyzed after
administering the G-CSF neutralizing antibody to determine wheth-
er the increase in 30-day post-irradiation survival in the DT3-mice
resulted from increased G-CSF levels. Three groups of mice (n = 8)
were injected sc with DT3 (200 mg/kg). One group received the
G-CSF antibody and another received its isotype ip 8 h after injection.
The third group did not receive a second injection (G-CSF antibody or
isotype), and a fourth group received only vehicle. Bloodwas harvested
from mice 24 h after DT3 injection (or 16 h after G-CSF neutralizing
antibody or isotype administration) based on previously published
work (Singh et al., 2011; Kulkarni et al., 2013). To analyze whether
the G-CSF antibody specifically neutralized circulating G-CSF in
peripheral blood, serum samples were analyzed for IL-1β, IL-6, IL-10,
IL-12(p70), G-CSF, GM-CSF, KC, and TNF-α by multiplex Luminex.
Significant levels of all tested cytokines were observed in DT3-treated
mice (p b 0.01, Fig. 5). Our data show that administering the G-CSF
antibody specifically neutralized circulating G-CSF in peripheral blood
and that neutralization was complete (p b 0.01). The administration
of the isotype had no effect either on serum G-CSF levels or any other
cytokine stimulated by DT3.

Neutralization of DT3-induced G-CSF by the administration of its specific
antibody in irradiated mice

Various cytokines were analyzed in serum samples of four groups of
mice ((a) vehicle, (b) DT3, (c) DT3 + isotype, and (d) DT3 + G-CSF
antibody) receiving radiation exposure (9.2 Gy, 24 h after DT3 injec-
tion). Blood samples were collected at 6 h after irradiation (30 h after
DT3 administration) for analysis of neutralization of G-CSF by use
of the G-CSF antibody. Data presented in Fig. 6 further suggest that
DT3 significantly stimulated production of all eight cytokine/growth
factors evaluated in irradiated mice compared to the vehicle-treated
irradiated group (p b 0.001). This study also confirmed that the G-CSF
antibody completely neutralized G-CSF induced in response to DT3
administration (p b 0.001). Administering the isotype control antibody
did not affect levels of any cytokine tested in DT3-treated and irradiated
mice.
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Fig. 1. Induction of cytokines by various tocols after sc administration to mice. Four groups of mice were injected either with 200 mg/kg of DT3, GT3, TS or vehicle. Blood samples were
collected 24 h after drug or vehicle injection. Serum samples were analyzed by multiplex Luminex assay for cytokines. *Significantly higher levels compared to the vehicle control
group (p b 0.05).
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Fig. 2. Induction of cytokines by various tocols in 60Co γ-irradiated mice. Four groups of mice were administered sc either 200 mg/kg of DT3, GT3, TS, or vehicle. Mice were irradiated at
9.2 Gy (0.6 Gy/min) 24 h after drug or vehicle injection. Blood sampleswere collected 6 h after irradiation and serumwas analyzed for cytokines bymultiplex Luminex assay. *Significantly
higher levels compared to the vehicle control group (p b 0.05).
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Discussion

We have tested several promising radiation countermeasures (5-
androstenediol, CBLB502, CBLB612, and CBLB613, tocopherol succinate,
and gamma-tocotrienol) and reported stimulation of G-CSF and other cy-
tokines by these drugs inmice and also in nonhuman primates (CBLB502
(Singh et al., 2012a) and gamma-tocotrienol (unpublished observation)).
DT3 induces high levels of cytokines comparable to other tocols, which
are being developed as radiation countermeasures (GT3 and TS) (Singh
et al., 2010, 2011; Kulkarni et al., 2012). DT3 stimulated significantly
high levels of G-CSF in unirradiated as well as irradiated mice compared
to respective vehicle controls. Using rodent, canine, and nonhuman
primate experimental models, G-CSF and IL-6 have been suggested as
candidate biomarkers of CBLB502's radioprotective/mitigative effi-
cacy. G-CSF has been demonstrated to enhance the survival of irradi-
ated mice and to minimize the effect of radiation on gastrointestinal
injury in a dose-dependent manner when administered after radia-
tion exposure (radiomitigator) (Kim et al., 2012; Patchen et al.,
1990; Tanikawa et al., 1989, 1990; Fushiki et al., 1990; Hosoi et al.,
1992). G-CSF has also been shown to mitigate radiation injury in
nonhuman primates (Farese et al., 2012, 2013). There is general
agreement in literature that G-CSF is an acceptable treatment for
human subjects exposed to ≥3 Gy of total body irradiation or ≥2
Gy of total-body irradiation in combined injury (radiation plus
wound/trauma/burn) (Waselenko et al., 2004; Dainiak et al., 2011a,
2011b; Dainiak, 2010). G-CSF has been assigned a pre-emergency-
use authorization (EUA) package held by the Centers for Disease

Fig. 3. Induction of cytokines inmice exposed to 60Co γ-irradiatedmice. One group of mice treated with vehicle was irradiated (9.2 Gy, dose rate 0.6 Gy/min), and other groupwas sham
irradiated. Blood sampleswere collected 6 h after irradiation and serumwas analyzed for cytokines bymultiplex Luminex assay. *Significant difference compared to sham radiation control
group (p b 0.05).

Fig. 4. Abrogation of the protective effect of DT3 by the administration of a G-CSF-
specific antibody in irradiated mice. Three groups of mice were given sc injections
of DT3 (200 mg/kg) 24 h before irradiation. Then 8 h after DT3 injection (16 h
before irradiation), two of the DT3-treated groups were administered (ip) either
the G-CSF antibody or an isotype control. A fourth group was the vehicle control.
Mice were irradiated with 9.2 Gy (0.6 Gy/min) γ-radiation and observed for
30 days. DT3 and DT3 plus isotype control lines are superimposed in the figure.
Mice treated with either DT3 or DT3 plus isotype control were (n = 16) protected
significantly with respect to vehicle control. A significant difference in survival was
observed between the DT3 plus G-CSF antibody-treated mice compared to either
DT3- or DT3 plus isotype control-treated mice (p b 0.05). *Significant differences
among indicated groups (p b 0.05).
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Control and Prevention, which allows the FDA to authorize emergency
use of an experimental drug outside the traditional investigational new
drug (IND) and study protocol requirements. EUA allows the FDA to
authorize use of an experimental drug in an emergency situation that
does not allow time for submission of an IND in accordance with 21CFR,
Sec. 312.23 or Sec. 312.34. G-CSF is available as a treatment agent in
current radiation countermeasure strategic national stockpiles that have

been developed in the United States and by the World Health Organiza-
tion (Dainiak, 2010).

All tested agents (DT3, GT3, and TS) are radioprotectors, and their
radioprotective efficacy are comparable (Satyamitra et al., 2011; Singh
et al., 2009, 2010; Li et al., 2010; Ghosh et al., 2009). These agents are
optimally effective when administered in a single dose at 24 h prior to
radiation exposure. All three agents protect almost 100% of mice against

Fig. 5.Neutralization of DT3-induced G-CSF by the administration of exogenous G-CSF antibody inmice. Four groups ofmice (n=6)were given sc injections of DT3 (200 mg/kg). Then 8 h
after DT3 administration, two of the groupswere administered eitherG-CSF antibodyor its isotype. Blood sampleswere collected24h afterDT3 injection. Serum sampleswere analyzedby
multiplex Luminex for eight cytokines. Error bars indicate the standard error of the mean (SEM). *Significant differences among indicated groups (p b 0.01).
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LD90/30 dose of radiation. The highest dose of radiation against which sig-
nificant protection is achieved by these agents is 11.5 Gy total body irra-
diation. All three agents induce high, comparable levels of G-CSF as
presented in Fig. 1. Recently, we have demonstrated that levels of G-CSF
induced by TS are directly related to the degree of mouse protection
against total body irradiation (Singh et al., 2013). With increasing doses
of TS, higher levels of G-CSF are induced. These higher levels of G-CSF
are associated with increased radioprotective efficacy of TS. Exogenous

G-CSF is effective only as a radiomitigator and needs to be administered
in multiple doses for a few days post radiation exposure. Although G-
CSF's optimal dose is less compared to tocols, tocols have the advantage
of being cheap and stable at room temperature, making them more
practical.

Although the exact mechanism of radioprotection or G-CSF in-
duction by DT3 (or other tocols) is not completely understood,
there are recent publications demonstrating its potential mode of

Fig. 6.Neutralization of DT3-inducedG-CSF by the administration of G-CSF-specific antibody in irradiatedmice. Animalswere treated as described in Fig. 1 and irradiatedwith a dose of 9.2
Gy γ-radiation 24 h after DT3 injection. Blood samples were collected 6 h after radiation exposure. Serum samples were analyzed by multiplex Luminex for eight cytokines. Error bars
indicate the standard error of the mean (SEM). *Significant differences among indicated groups (p b 0.01).
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action. Apart from its antioxidant activity, DT3 elicits survival by
modulating signaling pathways. The mechanism of DT3-mediated
effects may be attributed to stimulation of the Erk activation-
associated mTOR survival pathway (Li et al., 2010). DT3 activates
Erk 1/2 phosphorylation and inhibits formation of DNA-damage
marker γ-H2AX foci in mouse bone marrow (in vivo) and human
CD34+ cells (in vitro). DT3 also up-regulates mTOR and phosphory-
lation of its downstream effector, 4EBP-1. These changes are associated
with activation of mRNA translation regulator eIF4E and ribosomal
protein S6, which are responsible for cell survival and growth. DT3
has also been shown to suppress apoptotic death pathways and
modulate autophagic markers (Satyamitra et al., 2012). Further
study is needed to understand exact mechanism of G-CSF induction
by DT3.

We also have reported that radiation exposure induces elevation
of circulating G-CSF and that administering a neutralizing antibody
to G-CSF exacerbates the deleterious effects of radiation exposure,
suggesting that G-CSF induced in response to irradiation plays an im-
portant protective role in recovery (Singh et al., 2012d). Recently, we
have demonstrated that the use of the G-CSF antibody abrogates the
radioprotective efficacy of few radiation countermeasures (Singh
et al., 2010; Kulkarni et al., 2013; Krivokrysenko et al., 2012; Grace
et al., 2012). Our current study demonstrates that DT3 is a potent
stimulator of several cytokines including G-CSF, and that the radio-
protective efficacy of DT3 is mediated through G-CSF. To the best of
our knowledge, this is the first report demonstrating induction of
various cytokines by this promising radiation countermeasure and
abrogation of its radioprotective efficacy by G-CSF antibody. The ad-
ministration of a neutralizing G-CSF antibody completely neutralized
G-CSF in peripheral circulation of DT3-treated irradiated or unirradi-
ated mice. The neutralization of DT3-induced G-CSF by G-CSF anti-
body was specific and associated with the complete abrogation of
the radioprotective efficacy of DT3 against gamma-radiation expo-
sure. Because another isomer of DT3 (GT3, unpublished observation)
and CBLB502 (Krivokrysenko et al., 2012) are being evaluated in a
preclinical nonhuman primate model for radioprotection and/or
radiomitigation with an objective to develop them for future
human use, it will be interesting to investigate the effects of the G-
CSF antibody in other species to better understand the mechanism
of radioprotection afforded by these radiation countermeasures.
This is particularly important as the above radiation countermea-
sures are being developed under the US FDA Animal Efficacy Rule
which requires demonstration of efficacy in two animal models and
thorough understanding of the countermeasures' mechanisms of
action.

Conclusions

DT3 induces high levels of several cytokines comparable to
other tocols in the mouse model. The administration of an antibody
to G-CSF completely neutralizes DT3-induced G-CSF and abrogates
its radioprotective efficacy against ionizing radiation in mice sug-
gesting that radioprotective efficacy of DT3 is mediated through
G-CSF.
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