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Filaria zoogeography in Africa: ecology,
competitive exclusion, and public
health relevance
David H. Molyneux1, Edward Mitre2, Moses J. Bockarie1, and Louise A. Kelly-Hope1

1 Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
2 Department of Microbiology and Immunology, The Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA

Six species of filariae infect humans in sub-Saharan
Africa. We hypothesise that these nematodes are able
to polyparasitise human hosts by having successfully,
through competitive exclusion, adapted to distinct
niches. Despite inhabiting the same host, adult stages
reside in different tissue sites. Microfilariae of some
species exhibit temporal separation by reaching peak
levels in the blood at specific times of day. Spatial and
temporal distributions in microfilaria location are
exploited by the vector feeding-behaviour whereas adult
survival is enhanced by occupying exclusive ‘ecological’
niches of the body. We present specific examples to
demonstrate this concept, which is not only important
from the biological aspect but important in the context
of elimination programmes.

Competitive exclusion in parasite biology
Competitive exclusion or Gause’s Law [1,2] states that two
species competing for the same resources cannot stably
coexist if other ecological factors are constant. When one
species has even the slightest advantage over another, then
one will dominate in the long term, or one of the competitors
will adapt via a behavioural shift towards a different eco-
logical niche. Gause’s Law is considered valid only if eco-
logical factors are constant. There have been several studies
on competitive exclusion in parasite–host systems. Exam-
ples include cestodes in the gut of sticklebacks [2]; the gills of
eels and carp infected with Monogenean parasites [3,4];
human schistosome–host interactions in Central Africa
[5]; the tick-borne blood parasites Babesia, Theileria, and
Anaplasma in livestock in Morocco [6]; and Taenia parasites
in Southeast Asia [6]. Moll and Brown [7] discuss competi-
tion and coexistence in species with multiple life-history
stages using amphibian models. However, they do not dis-
cuss examples of parasites in their theoretical models. They
define complex life cycles as life histories that experience an
‘abrupt shift in habitat and diet that may be accompanied by

a change in morphology’, precisely that experienced by
parasites transmitted by vectors. Much of the earlier work
on between-species competition focused on Drosophila, Tri-
bolium, or amphibians as the basis of the development of
theoretical models of interspecies competition [7].

There has been longstanding recognition of the poten-
tial for competition between parasites within their hosts.
Several reviews on multi- or polyparasitism have been
published in both the geographic context [8] and in the
context of the relationship with the immune system [9,10]
as well as with parasite adaptation to within-host compe-
tition using malaria and bacteria as models. More theoret-
ical approaches to the topic have been discussed [11], which
present the phenomenon in the context of community
ecology, focusing on patterns of parasite abundance across
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Glossary

Concomitant immunity: the phenomenon in which active infection with an

organism prevents additional infections by the same species of organism. In

filariasis, active infection with adult filarial worms confers partial protection

against further infections by invading L3 larvae.

Dahomey Gap: refers to the portion of the Guinean forest–savanna mosaic that

extends all the way to the coast in Benin, Togo, and Ghana, thus separating the

forest zone that covers much of the south of the region into two separate parts.

The forest region west of the gap is called the Upper Guinean forests or

Guinean forest zone, and the portion east of the gap is called the Lower

Guinean forests, Lower Guinean–Congolian forests, or Congolian forest zone.

Loiasis: the disease caused by infection with the parasite Loa loa. The disease

is also known as Calabar swelling or tropical eyeworm because adult worms

migrate across the eye. Tabanid flies of the genus Chrysops transmit the

infection.

Microstratification overlap mapping (MOM): the concept of defining the

overlapping distribution of infections or co-endemicity in a particular

geographic area at a finer level of spatial resolution than mapping of infections

has previously achieved or been considered necessary.

Onchocerciasis: the disease, also known as river blindness, caused by the

parasite Onchocerca volvulus and transmitted to humans by blackflies of the

genus Simulium, which bite in the proximity of fast-flowing water sources

where larval forms are found.

Periodicity: the phenomenon seen in filarial parasites when the parasites are

found in the blood in peak numbers at particular times of the 24 h cycle.

Prevalence: in epidemiology, is the proportion of a population found to have a

condition (typically a disease or a risk factor such as smoking or seat-belt use).

It is arrived at by comparing the number of people found to have the condition

with the total number of people studied, and is usually expressed as a fraction,

as a percentage, or as the number of cases per 10 000 or 100 000 people.

Stage L3 larvae: the larvae that develop in an insect vector of filaria parasites,

are deposited on the skin of the host at the time of the bite, and give rise to

infection in the human host.

Sympatric distribution: when two species or populations are considered to

exist in the same geographic area and thus regularly encounter one another.

Zoogeography: the discipline that is concerned with the geographic distribu-

tion (present and past) of animal species.
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host populations rather than on mechanisms which under-
pin the interactions in hosts. This approach was based on
laboratory models of parasite–environment interactions
and the genetic basis of parasite and host interactions
[12]. The application of these concepts to parasites of
health, social, and economic importance, and the conse-
quences of such interspecific competition on epidemiology,
geographic distribution, and hence control or elimination,
have received limited attention.

Competitive exclusion in filarial parasites: the biological
context
In this review the example of filarial parasites in Africa is
discussed. Six filarial parasites can infect people in sub-
Saharan Africa, including Wuchereria bancrofti, Oncho-
cerca volvulus, Loa loa, Mansonella perstans, Mansonella
streptocerca, and Dracunculus medinensis. W. bancrofti
and O. volvulus are responsible for significant morbidity,
causing elephantiasis and river blindness, respectively
[13,14]. L. loa is not such a major pathogen, and presents
as tropical eyeworm or Calabar swelling, whereas M. per-
stans and M. streptocerca, found in the blood and skin of
humans, respectively, can cause mild symptoms, but typi-
cally are not thought to cause severe disease [15,16]. D.
medinensis (Guinea worm) is close to eradication, but is
still endemic in South Sudan where over 99% of 542 total
cases were reported in 2012, as well as in Chad, Ethiopia,
and Mali [17].

Notably, Guinea worm, although traditionally consid-
ered to be a filarial worm, is not classified in the same order
as the other filariae. Although all are in the phylum
Nematoda and class Secernentea, Dracunculus is in the
order Camallanida and family Dracunculidae. Other filar-
iae are in the order Spirurida: family Onchocercidae. In
addition, Dracunculus have copepods (water fleas) as in-
termediate hosts. The dipteran vectors of the five filarial
parasites are from diverse taxonomic family groups: W.
bancrofti is transmitted by species of the mosquito genera
Anopheles and Culex (family Culicidae); O. volvulus by
Simulium species (blackflies; family Simuliidae); and L.
loa by Chrysops species (deer or tabanid flies; family
Tabanidae), whereas M. perstans and M. streptocerca are
transmitted by midges of the genus Culicoides (family
Ceratopogonidae) [18].

We discuss here the ecology and zoogeography (see
Glossary) of filarial infections in Africa and hypothesise
that competitive exclusion enables sympatric distribution
of these parasites in both human and insect hosts, and
influences their geographical distribution and biology of
transmission. Knowledge of their zoogeography is of oper-
ational importance to target mass drug administration to
endemic communities during elimination programmes.
Lymphatic filariasis and onchocerciasis programmes need
to be implemented in areas co-endemic for loiasis where
there are attendant risks of serious adverse events associ-
ated with the use of ivermectin in individuals with high L.
loa parasitaemias [19–21].

The human host as the ecosystem and niche separation
We propose that the five sympatric, insect-transmitted
filarial parasites in human and insect hosts inhabit an

ecosystem, the human host, where it is important that each
stage of the parasite has developed a strategy to ensure its
survival in humans while at the same time maximising the
opportunity for transmission. The different species of filar-
ial worms occupy habitats within the human host ecosys-
tem, being located in various tissues as adults, and in the
blood or the skin as niche environments for microfilaria
larvae, and hence accessible to insect vectors. Distribution
within these habitats reduces potential competition, as
does the temporal positioning achieved by microfilarial
periodicity or the location of microfilariae in either the
skin or blood.

This, in part, reduces competition but also enables a
species to exploit the unique resources available in that
niche. Parasites are not unlike other species although they
are rarely considered through an ecological lens of envi-
ronment, habitat, and niche within a host. Humans pro-
vide the ecosystem services for parasite survival,
nutritional resources, and opportunities for transmission.
This is particularly relevant for human filarial infections
because there are no animal reservoirs to perpetuate
transmission in the absence of humans; hence the need
for such specific in-host partitioning. The ability to adapt to
the immune responses of the human host, and for microfi-
larial larvae to locate to the blood or skin, is consonant with
the biting habits and feeding behaviour of susceptible
vectors vital for transmission. Reducing the risk of compe-
tition for transmission has been dependent on the strategy
of this partitioning allied to the exploitation of periodicity.
Filarial parasites, human hosts, and insect vectors, par-
ticularly feeding habits and the time of peak biting and
how they obtain blood, represent a complex mix of organ-
ism interactions. The only filaria species where there is a
potential animal reservoir is the simian form of Loa, but it
appears not to infect humans and is transmitted by canopy-
dwelling Chrysops vectors, which occupy separate parts of
the forest with a different periodicity to human Loa, and
humans are rarely exposed to this parasite [22,23].

The vectors that transmit filaria parasites, however, also
differ in feeding methods for instance, pool feeders (black-
flies) that create a lesion under the skin before a blood meal
and capillary feeding by mosquitoes [18,24,25]. The distri-
bution of potential competitor species within any ecosystem
is important in terms of survival, competition for nutritional
resources, and avoidance of predators, and in parasites the
combating the immune response of the host and ensuring
transmission. We highlight here the operation of ecological
phenomena such as interspecific–intergeneric competition
and the partitioning of filarial distributions of both adult
worms and microfilarial larvae in the human body. The
location of adult filaria worms is either the skin, lymphatics,
or sub-cutaneous tissues, whereas the microfilariae are in
blood or skin, with the temporal partitioning (periodicity) of
blood-dwelling microfilariae being attuned to the biting
habits of the vector (Table 1).

Periodicity and competitive exclusion
The phenomenon of periodicity of microfilariae is well
documented [22,26,27]. Periodicity in the peripheral blood
historically has been attributed to maximising transmis-
sion efficiency, the peak of biting being attuned and

Opinion Trends in Parasitology April 2014, Vol. 30, No. 4

164



synchronised with the timing of the appearance of the
microfilariae in the blood at the highest densities to facili-
tate transmission. In the case of lymphatic filariasis, the
host–parasite relationships between the filariae and vec-
tors have been well studied. There are five genera of
mosquitoes that act as vectors (Anopheles, Aedes, Culex,
Mansonia, and Ochlerotatus) in different regions across the
distribution of W. bancrofti and Brugia malayi, and B.
timori (in Asia), but there are locally specific vector–para-
site associations with varied transmission capacities [28];
for example, Culex mosquitoes in West Africa seem to be
refractory to W. bancrofti [29–31]. Earlier laboratory stud-
ies demonstrate the genetics of susceptibility of different
mosquito species to filarial infection, as well as pathology
caused when filarial parasites enter the gut of some vectors
[32]. The capacity of humans to act as hosts of all human
filarial parasites is clear, but the likelihood that all para-
sites infect any one individual seems to be driven by other
factors including vector abundance, the local ecology, and
human behaviour. Hence, the determination of filaria
parasite distribution in humans and vectors will be depen-
dent on several factors.

Table 1 demonstrates partitioning of filariae in the
human body of adult worms, and there is also partitioning
of microfilarial niches: O. volvulus in the skin, L. loa in the
blood during the day, and W. bancrofti in the blood at night.
Although periodicity is usually attributed to the biting
patterns of the respective vectors, an alternative hypothe-
sis might be that, in the case of W. bancrofti and L. loa,
there is a need for niche separation to enhance the effi-
ciency of transmission and reduce competition. This sepa-
ration would avoid the potential interactions of two
microfilarial species entering an inappropriate vector in
the same blood meal causing potentially lethal damage as
non-compatible microfilariae enter the vector mid-gut. In
Central Africa and parts of West Africa the five filarial
species are regarded as co-endemic [16,25,33–39], although
more refined mapping may show that there is less overlap
than previously thought, with environmental factors
playing a key role in determining vector distributions
and transmission potential [21].

Geographical distribution and ecological distinction
It is probably rare that any one individual is infected
simultaneously with all filariae, although in parts of the
Democratic Republic of Congo (DRC) this might be possi-
ble, as described in the Region of Bandundu [40]. An
extensive literature review [25] provides details of historic
surveys undertaken in the DRC; these studies have been
re-examined in relation to existing control and elimination
programmes [21], highlighting significant differences be-
tween W. bancrofti, L. loa, and O. volvulus at a micro-level
through micro-stratification overlap mapping (MOM), a
prerequisite to determining the finer levels of parasite
distribution. Recent surveys and detailed maps confirm
the contrasting epidemiology of L. loa and O. volvulus [41]
and, as far as the DRC is concerned, a distinct absence of W.
bancrofti has been noted in areas where L. loa is highly
endemic [42–45]. Likewise, this inverse relationship can be
extended to tropical forest regions of Gabon and Cameroon
where the prevalence of W. bancrofti and O. volvulus is
relatively low [46–49]. Interestingly, however, high L. loa
and M. perstans prevalences are found to coexist geograph-
ically [48–50], suggesting that particular filariae are sym-
patric. Their success and ability to coexist in the same area
may be attributed to vector periodicity and host partition-
ing: for instance, the diurnal Chrysops spp. of L. loa,
primarily a subcutaneous disease compared to the crepus-
cular Culicoides of M. perstans, which predominantly
affects the peritoneal cavity (Table 1).

An epidemiological study in Cameroon investigated the
prevalence and intensity of infections of three filariae, L.
loa, O. volvulus, and M. perstans, in a sample of 1458
individuals [51]. The three species displayed varying
degrees of coinfection with a low prevalence of co-occur-
rence between L. loa and O. volvulus and the L. loa–M.
perstans pair, in contrast to a high prevalence of co-occur-
rence of O. volvulus and M. perstans. Studies on polypar-
asitism included observations of L. loa, M. perstans, and M.
streptocerca in rainforest villages in the DRC and conclud-
ed that there was a statistically significant association
between the three species, especially the numbers of micro-
filariae of M. perstans and M. streptocerca [52,53]. The

Table 1. Species of human filarial parasites of Africa and their periodicity in humans and main vector speciesa,b

Human and vector

species characteristics

Onchocerca

volvulus

Loa loa Mansonella

perstans

Mansonella

streptocerca

Wuchereria

bancrofti

Adult worm in human Subcutaneous

tissues and skin

nodules

Subcutaneous

migration through

skin and eye

(Calabar swelling)

Peritoneal

cavity

Subcutaneous

tissues of upper

chest and shoulders

Lymphatics

Microfilaria in human Skin Blood Blood Skin Blood

Microfilaria periodicity None Diurnal None None Nocturnal

Vector species

and periodicity

Simulium spp

Day

Chrysops spp

Day

Culicoides spp

Crepuscular

Culicoides spp

Crepuscular

Anopheles/

Culex spp

Night

aExcluding Dracunculus medinensis and Guinea worm.

bImage sources: http://www.cdc.gov; http://www.vectorbase.org; http://www.stanford.eud/group/parasites/.
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reason for these geographic distributions as opposed to the
individual differences is difficult to explain. Examination
of the distribution of M. streptocerca in the DRC showed a
wide distribution in the northeastern, central, and western
regions of the Congo River basin area, but not in the
mountainous southeast and extreme east where altitudes
were high and ecologically distinct [39].

Although no continental African map for M. streptocerca
is available, the recent distribution maps of the other four
filarial species indicate that throughout West Africa, west
of Benin, W. bancrofti, O. volvulus, and M. perstans are
broadly co-endemic, whereas east of Benin to the borders of
Uganda and the DRC all species are co-endemic and
sympatric to varying degrees [34–38]. These differing dis-
tributions could be related to the well-defined Dahomey
Gap in West Africa, which is a savanna corridor that
extends to the Atlantic coast in Benin, Togo, and Ghana,
and separates the West African rainforest into two regions.
The forest regions to the west and east of the Dahomey Gap
are the Guinea and Congo forest zones, respectively [54].
The rainforest habitats of western Ghana, Cote d’Ivoire,
and Liberia seem capable of providing habitats for Chry-
sops vectors. However, although there is some historical
evidence of loiasis in these countries [55,56], recent reports
are lacking, which may be related to land-use changes,
deforestation, migration, urbanisation, and/or expansion
of agriculture. The geographical limits of L. loa and its
main vectors appear to be bound by significant ecological
and topographical features, including the Dahomey Gap
and the Niger Delta (west), Sahelian and Sudanian savan-
na (north) [54], the Congo River Basin (central) [57], and
high elevations >1000 m (east and south) including the
Albertine Rift of the Great Rift Valley in the east [58],
which is adjacent to some of the highest mountains in
Africa (Figure 1). Although Chrysops spp. have been found
in East Africa in the Eastern Arc Mountains, there is no
evidence of loiasis, and this may be related to the different
species found in this region [59].

These broad scale geographical differences provide clues
to the ecological drivers associated with overlapping and
distinct filarial distributions, and need to be understood in
detail. Here we present Uganda as an example, where L.
loa prevalence is low or absent despite high endemicity in
the neighbouring DRC [38,60] (Figure 2). This could be
related to the mountain range dividing the two countries,
the relatively high elevations, and lack of dense tropical
rainforest suitable for Chrysops in Uganda [54,56]. The
distribution of O. volvulus is also limited and most promi-
nent in the northern Nile River region [61], which contrasts
to recent distribution maps showing W. bancrofti in the
northeast region [62] and M. perstans in the southern
region of the country [15]. Interestingly, M. perstans has
also been associated with a condition known as Kampala,
or Ugandan eyeworm, which occurs when worms invade
the eye and which can be confused with other filarial
diseases such L. loa [60]. Although limited data exist for
M. streptocerca, the first study carried out in the 1990s in
Bundibugyo district found high M. streptocerca prevalence
in an area not endemic for onchocerciasis [16,63]. The
authors emphasise the importance of differential diagnosis
because each disease appeared to affect separate parts of
the body, with M. streptocerca affecting the shoulders,
chest, and arms with no ocular involvement, compared
to onchocerciasis, which involved the eyes, pelvic region,
and skin on the leg.

Immunity
One of the interesting biological phenomena of filarial
infections is that high numbers of adult worms do not
typically infect an individual. For example, studies in
Liberia showed that individuals harboured a mean of 16
adult O. volvulus worms even though vector biting-fre-
quencies and rates of vector infection revealed that indi-
viduals were exposed to over 700 infective larvae per year
[64]. Because O. volvulus worms usually live more than 10
years, the level of infection observed was markedly below

Sahelian and Sudanian savanna

Loiasis 20–40%

Key:

Loiasis 40–60%

Loiasis >60%

The Dahomey Gap

Great ri� valley

Eleva�on <1000 m

Eleva�on 1000–1500 mAtlan�c Ocean

Eleva�on >1500 m
Congo river basin
Nigeria river delta

0 800 Km

TRENDS in Parasitology 

Figure 1. Loiasis distribution in relation to large ecological characteristics in Africa. This map shows the large geographical expanse of high-risk loiasis across Central Africa

(in red), which is surrounded by distinct ecological and topographical features including the Dahomey Gap (brown), Niger Delta (blue), Sahelian and Sudanian savannah

(yellow), Congo River Basin (blue), and high elevations (grey).
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that expected based on parasite exposure. Concomitant
immunity, the concept that active infection with adult
worms protects against infectious stages of worms, may
provide an explanation as to why individuals do not have a
high parasite burden in areas of high endemicity. Numer-
ous animal studies have shown that secondary filarial
infections given during a time of active infection with adult
worms are less successful than primary infections [65–68].
The presence of adult filarial worms is shown to inhibit
invasion with infectious L3 stage larvae by greater than
50%, and that this effect occurs even after surgical implan-
tation of a single adult female worm [69]. By preventing the
development of lethal worm burdens, concomitant immu-
nity is beneficial to both the parasite and the host [64]. To
date, the mechanism by which concomitant immunity
occurs in filariasis remains a mystery.

Although prevailing views argue that adult worms in-
duce an immune response that selectively targets infec-
tious stage L3 larvae [69–71], the data for this are scant.
An alternative possibility is that adult worms may release
a factor that inhibits the development of L3 worms. Simi-
larly, the absence of zoonotic sources of infection in human
filariasis adds additional pressure in terms of the need for
survival and niche partitioning in the human host species
[22]. The relationship between simian Loa parasites has
not been investigated recently, and given the importance of
Loa as an impediment to the expansion of onchocerciasis
and lymphatic filariasis elimination programmes in Cen-
tral Africa this needs further study. For example, does
transmission of simian Loa to humans provide any degree
of protection from L. loa infection and reduce the likelihood
of such individuals developing high L. loa parasitaemias?

Concluding remarks and significance for elimination
and control
We hypothesise here that the epidemiology and distribu-
tion of filaria parasites in Africa is driven by complex

interactions in the human host. These interactions enable
co-infection with different genera and species through the
phenomenon of competitive exclusion, which reduces the
likelihood of competition for resources by the distribution
of adult and microfilaria larvae into separate niches in the
human host through spatial and temporal segregation.
Periodicity of microfilariae has been postulated to enhance
transmission by the synchronisation of peak abundance of
microfilariae in the blood. An additional explanation is
that vector survival is enhanced by avoiding ingestion of
microfilariae and thereby preventing vector mortality.
Programmes to eliminate onchocerciasis and lymphatic
filariasis based on preventive chemotherapy with either
ivermectin for onchocerciasis, or a combination of ivermec-
tin and albendazole for lymphatic filariasis, are ongoing in
Africa. These programmes are based on mapping of pre-
valences of infection using rapid assessment methodolo-
gies [38,41], although the problem of severe adverse events
when people with high parasitaemias of L. loa are treated
with ivermectin has been an impediment to the expansion
of these programmes in some countries of Central Africa
[19,20]. This paper highlights that, although there is some
degree of co-endemicity, there are also areas where com-
petitive exclusion reduces this co-endemicity, and geo-
graphic distribution of the parasites is also determined
by geographic and ecological barriers.
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40 Fain, A. (1947) Répartition et étude anatomo-clinique des filarioses
humaines dans le territoire de Banningville (Congo Belge). Ann. Soc.
Belg. Med. Trop. 27, 25–66

41 Tekle, A.H. et al. (2011) Integrated rapid mapping of Onchocerciasis
and Loiasis in the Democratic Republic of Congo: impact on control
strategies. Acta Trop. 120 (Suppl. 1), S81–S90

42 Van den Berghe, L. (1941) Recherches sur l’onchocercose au Congo
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hydrographique linéaire de la RDC, 2009] and [Carte de végétation

Opinion Trends in Parasitology April 2014, Vol. 30, No. 4

168

http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0015
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0015
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0015
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0020
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0020
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0020
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0025
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0025
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0030
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0030
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0030
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0035
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0035
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0040
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0040
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0045
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0045
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0050
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0050
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0055
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0055
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0055
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0060
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0060
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0065
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0065
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0070
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0070
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0075
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0075
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0080
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0080
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0085
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0085
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0090
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0090
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0095
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0095
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0095
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0100
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0105
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0105
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0105
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0110
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0110
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0110
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0115
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0115
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0115
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0120
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0120
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0120
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0120
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0120
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0125
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0125
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0125
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0130
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0130
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0130
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0135
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0135
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0135
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0140
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0140
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0145
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0145
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0145
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0150
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0150
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0150
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0155
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0155
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0155
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0155
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0160
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0160
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0170
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0170
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0170
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0170
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0175
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0175
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0175
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0180
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0180
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0185
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0185
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0185
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0190
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0190
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0190
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0195
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0195
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0195
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0200
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0200
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0200
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0205
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0205
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0205
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0210
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0210
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0210
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0215
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0215
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0220
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0220
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0225
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0225
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0225
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0230
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0230
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0235
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0235
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0235
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0240
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0240
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0240
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0245
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0245
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0245
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0250
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0250
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0255
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0255
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0255
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0260
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0260
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0260
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0265
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0265
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0265
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0270
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0270
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0275
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0275
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0275
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0275
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0280
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0280
http://refhub.elsevier.com/S1471-4922(14)00022-1/sbref0280
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