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APPLICATION OF HIGH-INTENSITY FOCUSED ULTRASOUND TO THE STUDY
OF MILD TRAUMATIC BRAIN INJURY
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Abstract—Though intrinsically of much higher frequency than open-field blast overpressures, high-intensity
focused ultrasound (HIFU) pulse trains can be frequency modulated to produce a radiation pressure having a
similar form. In this study, 1.5-MHz HIFU pulse trains of 1-ms duration were applied to intact skulls of mice
in vivo and resulted in blood-brain barrier disruption and immune responses (astrocyte reactivity and microglial
activation). Analyses of variance indicated that 24 h after HIFU exposure, staining density for glial fibrillary acidic
protein was elevated in the parietal and temporal regions of the cerebral cortex, corpus callosum and hippocam-
pus, and staining density for the microglial marker, ionized calcium binding adaptor molecule, was elevated 2 and
24 h after exposure in the corpus callosum and hippocampus (all statistical test results, p < 0.05). HIFU shows
promise for the study of some bio-effect aspects of blast-related, non-impact mild traumatic brain injuries in
animals. (E-mail: Joseph.McCabe@usuhs.edu) Published by Elsevier Inc. on behalf of World Federation for
Ultrasound in Medicine & Biology.

Key Words: Animal models, Blast injury, Blood-brain barrier, Mouse, High-intensity focused ultrasound,

Traumatic brain injury.

INTRODUCTION

Civilian and military personnel exposure to violent explo-
sions, often from improvised explosive devices (IEDs),
has burgeoned with recent world events (Aschkenasy-
Steuer et al. 2005; Cernak et al. 1999; DuBose et al.
2011). In military populations, a RAND report (Tanielian
and Jaycox 2008) estimated that as many as 20%
(~320,000) of military personnel experienced some
form of traumatic brain injury (TBI). In terms of severe
TBI, a recent survey found that the majority are related
to explosives (Wojcik et al. 2010), and severe blast-
related traumatic brain injuries are a component of mul-
tiple injuries; a significant challenge to polytrauma care
specialists (Aschkenasy-Steuer et al. 2005; DuBose
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et al. 2011) and a hardship to the patient and family
during rehabilitation and lifestyle adjustments (Bazarian
et al. 2009; Sayer et al. 2008).

Milder forms of TBI are also a significant medical,
social and economic challenge. Mild TBIs (mTBIs), in
fact, constitute the majority of cases of blast-related ex-
posures. Although nearly all individuals who sustain
mTBIs eventually improve (Brown et al. 2011), residual
cases persist and are likewise an ordeal for patient and
caretakers and a challenge for neuropathological and
imaging diagnosis, therapies, surgical reconstruction
and home life adjustments (Silver et al. 2009; Tanielian
and Jaycox 2008). In a sense, milder TBI has been
enigmatic. The individual may have no other significant
injuries, complaints may have a slower onset that is not
evident as an acute manifestation and symptoms
overlap and are concomitant with post-traumatic stress
disorder (PTSD) diagnoses. Because of the lack of easily
identifiable criteria for the critical factors related to path-
ophysiology, mild blast-related TBI is a significant chal-
lenge for pre-clinical researchers as well. Basic research
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is essential for the development of a better understanding
of the mechanisms of milder TBI and how best to
discover therapies.

Of particular interest in blast TBI is the high over-
pressure generated by the detonation process. This
intense, entirely compressive phase of the wave is a few
milliseconds in duration. Blast overpressure has been
implicated in “primary” blast injury (Chen and Huang
2011; Elder and Cristian 2009; Taber et al. 20006),
though the mechanisms are not well understood. There
is a need for models to generate blast-like overpressures
in animals, so that injury mechanisms can be studied
and neurotherapeutics investigated.

One method for generating overpressures represen-
tative of actual explosions is the use of gas-driven over-
pressure shock tubes (Bauman et al. 2009; Chavko
et al. 2008; Desmoulin and Dionne 2009; Gorbunov
et al. 2008; Long et al. 2009; Risling and Davidsson
2012; Sundaramurthy et al. 2012; Svetlov et al. 2010).
Although blast shock tube models are state-of-the-art
for investigation of the mechanisms related to blast-
induced TBI, there are some limitations to their use. First,
with the exception of placing the animal inside a flak
jacket or other protective enclosure, the entire body is
exposed to the overpressure wave. Second, with the
exception of peak pressure, the waveform is relatively
impervious to modulation and dependent on tube dimen-
sions and animal placement. Third, there are important
considerations with respect to the scale difference be-
tween human exposures and animal models (Bass et al.
2011). A free-field blast wave may operate at ~30-cm
wavelength and have significant variation within the hu-
man body, including within the head region. In contrast,
the smaller overall size of rodents produces an animal
model with an essentially uniform stress field incident
on the subject.

An alternative approach for studying the biological
effects of exposure to high pressures involves the use of
high-intensity focused ultrasound (HIFU). HIFU has
been applied to the brain in such applications as tumor
ablation, clot dissolution and drug delivery across the
blood-brain barrier. These brain applications, and other
HIFU procedures, are reviewed by ter Haar (2007). Tumor
ablation is accomplished through intense heating arising
from absorption of the HIFU beam. In clot dissolution
and ultrasound-enhanced drug delivery, cavitation is typi-
cally induced through the introduction of ultrasound
contrast agents (Park et al. 2012; Samiotaki et al. 2012).

In the present application of HIFU, neither the ther-
mal nor the cavitational mechanism is operational. A
similar and related application is acoustic neuromodula-
tion, where, as part of treatment for a variety of neurologic
disorders, ultrasound waves are used to control neuronal
activity without producing heat or cavitation (Gavrilov
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et al. 1996; Min et al. 2011; Tufail et al. 2010; Tyler
et al. 2008). In contrast to the therapeutic objective of
acoustic neuromodulation, the intention of the present
work was to induce mild injury in the brain. However,
as with neuromodulation, heating is not desirable when
trying to reproduce the bio-effects of blasts because,
with the exception of extremely powerful explosions,
the duration is too short for significant heating to occur
in actual blasts. Cavitation is likewise absent during the
overpressure (compression) phase of a blast wave. The
goal in our HIFU application was to generate force on
brain tissue that changes in magnitude but not direction
during the duration of the wave, as in a blast exposure.
Our hypothesis was that the blast-like temporal variations
in this force, along with the spatial variations naturally
occurring in a HIFU beam, would produce some of the
biological effects occurring during blast exposure. The
HIFU model was constructed in the following manner.

The HIFU overpressure simulator produces a
megahertz-frequency carrier wave whose amplitude is
modulated so that the amplitude envelope possesses a
shape similar to that of the overpressure of a blast
wave. Although some difference will always exist be-
tween the blast overpressure and the HIFU envelope
because of the negative swings of the HIFU pulses, the
negative portions are significantly lower in amplitude
than the positive segments. In terms of root mean square
(RMS) pressure or radiation force, which does not change
sign during the duration of the wave, the shape correspon-
dence between the actual blast and HIFU-simulated over-
pressures is more exact. With respect to absolute pressure
levels, the pressure amplitude or RMS pressure of the
HIFU-simulated wave is typically higher than that of
the blast overpressure, while the radiation pressure is
considerably lower. It is unclear which bio-effects are
related to which characteristics of the blast (or simulated
blast) field; this issue is explored in the final section. To
the extent that brain tissues respond to radiation force,
or shear stresses arising from spatial variations in this
force, the HIFU blast simulator is promising for studying
mild traumatic brain injury. The utility of the HIFU
model is evaluated by assessing the response of the mouse
brain to the HIFU-simulated overpressures, as described
below, after some of the features motivating the HIFU
approach are presented.

The HIFU model possesses several practical attri-
butes that are desirable for studying brain injury. For
one, the focusing feature of HIFU limits the complexity
of system response to the stress field. By sonicating
only a portion of the brain with the narrow (a few milli-
meters in water) beam, we do not have as complex an
endocrine/immune response and trauma as is seen in a
whole-body blast. This allows for a more controlled study
of bio-effects, as well as a more systematic investigation
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of the efficacy of potential neurotherapeutics. With some
animal models (probably rat-sized or larger), the unsoni-
cated side of the brain can also serve as control for the
exposed half. The intensity and shape (as a function of
time) of a HIFU-simulated overpressure can be varied
in a highly controlled and reproducible manner by adjust-
ing the function generator driving the HIFU transducer.
For research throughput, because there is a requirement
for a short state of anesthesia followed by immediate blast
exposure, HIFU is an advantageous model for blast-
induced brain injury. Finally, HIFU uses no explosives
or pressurized gases that may cause physical or auditory
damage that could arise from the use of a shock tube.

To evaluate the HIFU overpressure simulator in a
mouse model, laboratory mice were exposed to the
amplitude-modulated HIFU pulse trains, and multiple as-
sessments of mild traumatic brain injury were made.
First, examinations were made for any infiltration of
dye into the brain parenchyma after blast exposure. Alter-
ations in endothelial cells were also evaluated by exam-
ining antibody adherence within cerebral vascular
walls. Immune response was identified by staining for
signs of astrocyte and microglial activation. Additionally,
as the HIFU model was designed to study mild traumatic
brain injury, tests of moderate to severe brain injury were
performed. These include staining for neuronal death and
histologic examination for morphologic changes. The
various measures of mTBI in the mouse model are
described in greater detail in the next section.

METHODS

HIFU apparatus

Figure 1 is a schematic representation of the HIFU
apparatus. A spherical transducer (Model MX-111,
UTX, Holmes, NY, USA) of 1.5-MHz frequency having
a diameter of 10 cm and a focal length of 15 cm was
driven by two tandemly arranged waveform generators
(Models 33220 A [20 MHz] and 33250 A [80 MHz]
Function/Arbitrary waveform generators, Agilent, Santa
Clara, CA, USA) and a 150-W broadband amplifier
(Model 150 A100 B [10 kHz, 100 MHz]. Amplifier
Research, Souderton, PA, USA). The first waveform
generator produced a driving voltage in the form of a train
of sinusoidal waves at the 1.5-MHz resonant frequency of
the transducer. The second waveform generator modu-
lated the amplitudes of the sinusoids so that the envelope
connecting the maximum pressures of the sine waves had
the desired shape of a blast overpressure. We emphasize
that the envelope (and, as will be seen subsequently, the
RMS pressure and radiation pressure) possesses the
form of a blast overpressure, whereas the individual,
high-frequency waves within the envelope do not. The
magnitude of the driving voltage was between 100 and
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RF Amplifier
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Fig. 1. Schematic of the components of the high-intensity
focused ultrasound apparatus. The two in-tandem waveform
generators provide input signal to a radiofrequency (RF) ampli-
fier to emit a 1.5-MHz wave. The impedance matching unit de-
livers the signal to the high-intensity focused ultrasound
transducer, which emits the wave with a focal point ~15 cm
from the transducer. A hollow tray holds the anesthetized animal
in a supine position. A hole in the tray is covered with cello-
phane, allowing the wave to pass through to the mouse’s head.

400 mV, and the duration of the sinusoidal wave train
was roughly 1 ms, the approximate duration of a blast
overpressure. Although the pulses were sinusoidal at
the transducer, they developed into more of a sawtooth
(shock wave) form at the target because of non-linear
propagation in the water. The pressure field generated
by the transducer is presented in the Results.

Measurement of pressure field generated by HIFU
system

A ceramic needle hydrophone (HNA400, Onda,
Sunnyvale, CA, USA) was used to measure the temporal
and spatial pressure characteristics generated by the
HIFU transducer. The transducer was placed in a water
tank horizontally, and the hydrophone was controlled
by an acoustic measurement system (Sonora Medical
System, Longmont, CO, USA) that systematically moved
the hydrophone through the ultrasound field emitted by
the transducer. Pressure values were obtained in milli-
volts and converted to megapascals by dividing by the hy-
drophone sensitivity (provided by Onda). To assess the
impact of the skull interface on HIFU transmission,
both mouse and rat parietal (skull) bones were placed a
distance of 5 mm in front of the hydrophone, in a water
tank filled with degassed water. Pressure measurements
were repeated with and without the bone interface, as a
means of estimating acoustic loss and beam spreading.

Animals
C57/Bl16 male mice (7-8 wk of age) were obtained
from Jackson Labs (Bar Harbor, ME, USA), and housed
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in groups of five mice per cage in the USUHS Department
of Laboratory Animal Medicine. All studies were
approved by the USUHS Institutional Animal Care and
Use Committee. Animals were maintained on a 12:12-h
light:dark cycle and had ad libitum access to food and wa-
ter. Animals were housed at least 1 wk in the USUHS an-
imal facility before use.

HIFU exposure procedure

At the time of HIFU exposure, mice were anesthe-
tized with 5% isoflurane for 2-3 min and then maintained
on 2% isoflurane for the remainder of the procedure. Af-
ter loss of consciousness, fur was removed from the dor-
sal scalp region with a depilatory agent (Nair; Church &
Dwight, Princeton, NJ, USA) and the area wiped clean
with water. The scalp was then coated with hydrogel
(Aquasonic 100 US Transmission Gel, REF01-02, Parks
Labs, Fairfield, NJ, USA) and the mouse was placed in
a supine position on top of a small plastic tray. The floor
of the tray had a 2-cm opening in the base that was
covered with a thin layer of plastic. The coated scalp
was placed on the plastic film and the device lowered to
the water surface to direct the wave to the right cerebral
hemisphere. Animals that were assigned to the HIFU
exposure condition were placed on the platform and
were exposed to a 1-ms pulse, and the signal generator
was adjusted to control wave amplitude. As described
below, a 400-mV setting was used for in vivo experi-
ments. Sham animals were placed on the platform but
were not exposed to HIFU.

After exposure to HIFU (see below), animals re-
gained consciousness and were returned to their home ca-
ges and observed for 2 h. After the observation period, the
animals were either sacrificed to obtain samples for the
2-h time point or returned to the animal facility where
they were later terminated to obtain the 24-h time point.
The animals received anesthesia by the administration
of ketamine and xylazine (80 and 10 mg/kg body weight,
respectively) before they were sacrificed. In some cases,
the brain was removed from the calvarium and used to
evaluate blood-brain barrier status, while other mice
received perfusion fixation for histopathology.

Brain tissue processing

To evaluate the effects of HIFU exposure on the ce-
rebral vasculature, individual rodents were anesthetized
with ketamine and xylazine (80 and 10 mg/kg body
weight, respectively) and placed in a Plexiglas animal re-
straint apparatus to permit infusion of 100 uL of a 1%
Evans blue dye solution (Catalog No. 151108, ICN Bio-
chemicals, Aurora, OH, USA) into the tail vein 30 min
before HIFU or sham (no HIFU exposure) treatment.
Evans blue binds to albumin, allowing visualization of
plasma protein extravasation with disruption of the
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blood-brain barrier. To evaluate Evans blue staining,
2 after HIFU exposure (see below), the animals were
anesthetized and the brain was removed from the
calvarium for photographic recording of Evans blue on
the cerebral surface. Brains were examined by placing
them on an inverted Zeiss microscope and the exposing
the surface to 550-nm excitation (573-nm emission
range). Because of the presence of the dye, fluorescence
permitted visualization of cerebral vessels.

To evaluate neuropathological changes, animals
were anesthetized 2 or 24 h after HIFU exposure for his-
tochemical processing. When unresponsive, the thoracic
cavity was exposed and animals were transcardially
perfused with normal saline until the perfusate was
cleared of blood, and then with 4% paraformaldehyde in
phosphate-buffered saline (PBS). The brains were then
removed from the calvarium and post-fixed in paraformal-
dehyde for 24 h, submerged in 20% sucrose in PBS for
24 h and placed in 30% sucrose-PBS. Frozen (30-um-
thick) coronal sections were obtained for hematoxylin
and eosin (H&E) histology and for anti-IgG immunohis-
tochemistry. For IgG staining, AffiniPure F(ab’)2 frag-
ment goat anti-mouse IgG (1:300 dilution, Catalog No.
115-006-072, Jackson ImmunoResearch Laboratories,
West Grove, PA, USA) was incubated on sections. After
incubation with rabbit anti-goat horseradish peroxidase
IgG (KPL 14-13-06, KPL, Gaithersburg, MD, USA), sec-
tions were developed with the Vector SK4100 DAB kit
(Vector Laboratories, Burlingame, CA, USA) to visualize
IgG staining.

Additional sections were used for other purposes: to
assess neuronal cell death using Fluoro-Jade B (AG310,
EMD Millipore, Billerica, MA, USA) histochemistry;
to assess astrocyte activation by immunohistochemical
staining for glial fibrillary acidic protein (GFAP); and
to evaluate microglial activation by staining for ionized
calcium-binding adaptor molecule (Ibal). Fluoro-JadeB
staining followed conventional protocols (Schmued and
Hopkins 2000). Fixed, dried tissue sections were incu-
bated in 1% NaOH/80% ethanol for 5 min, rinsed in
ethanol and water, and placed in 0.66% potassium per-
manganate for 10 min. Sections were rinsed in water,
and then placed in 0.0001% Fluoro-Jade B/0.1% acetic
acid for 10 min, and then rinsed again in water, dried,
cleared with xylenes, and coverslipped. For GFAP im-
mmunohistochemistry, the Vector M.O.M. Immunode-
tection Kit was used to reduce endogenous IgG binding.
After blocking, the brain sections were incubated (over-
night at 4°C) with the GFAP Ab-1 monoclonal antibody
(No. MS-280-P0, 1:500, Thermo Scientific, Pittsburgh,
PA, USA) in PBS plus 0.2% Triton. A biotin-
conjugated goat anti-mouse IgG1 was used to detect the
primary antibody (1:500, Jackson ImmunoResearch Lab-
oratories). For Ibal (also called allograft inflammatory
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factor or microglia response factor 1) immunohistochem-
istry, sections were incubated in a 1:4000 dilution of Ibal
(No. 019-19741, Wako, Richmond, VA, USA) for 24 h.
The primary antibody was detected after a 1-h incubation
in a biotin-conjugated goat anti-rabbit IgG (1:250. Jack-
son ImmunoResearch Laboratories). For both GFAP
and Ibal immunohistochemistry, sections were further
processed for diaminobenzidine histochemistry per
vendor instructions (Vector Laboratories). Specifically,
the sections were incubated with strepavidin horseradish
peroxidase (Vector SA-5004, 1:2500) for 1 h and then
developed with the Vector SK4100 kit. Sections were
then coverslipped and examined using bright-field
microscopy.

A digital image (129,600 pixels) was taken of each
sub-region of interest in each section to measure staining
intensity using the ImageJ software (National Institutes
of Health) (Collins 2007). Specifically, optical density
measures of staining intensity were assessed in the parie-
tal cortex, corpus callosum, hippocampus and temporal
lobe (including the temporal cortex and amygdala). In
each brain region, five or six stained sections were
selected (that were at comparable anatomic locations
and identical magnification for each brain region) to eval-
uate staining across treatment groups. A set of matched
sections were stained with an isotype control antibody
to evaluate non-specific binding. Density analysis of anti-
body staining was used to assess the relative change in
protein expression across samples. Staining intensity
measures were obtained by setting the background
threshold using the matched isotype control stained sec-
tion. The image was then converted to a 16-bit image,
and the analysis function was used to measure the density.
Once the threshold was set, the imaging software (Image
J) computed the density value. Staining intensity mea-
sures between experimental treatment groups were then
evaluated with an analysis of variance (SigmaStat,
Version 3.11, Systat Software, San Jose, CA, USA) and
when differences were found (statistical significance of
p < 0.05), the Bonferroni ¢-test was used to evaluate dif-
ferences between groups. Preliminary evaluation indi-
cated all data sets passed tests for normality and equal
variance, with the exception of the data obtained from
measures from the parietal cortex region for GFAP and
the vessel density measures for Ibal. A natural logarithm
transformation was performed on these data sets, which
then met preliminary test criteria.

RESULTS

Characteristics of HIFU-simulated overpressure
Pressure measurements were obtained at the focus of

the HIFU transducer, as well as other locations in the

focal plane. Figure 2 illustrates the waveform at the focus

when the waveform generator was set to 40, 100 and
400 mV and measured in water (left traces) or behind a
mouse parietal bone (right traces). In the top two and
middle two traces it can be seen that when the voltage
was 40 or 100 mV, respectively, the positive portion of
the high-frequency wave train was approximately equal
to the negative portion. However, when the waveform
generator was set to 400 mV (bottom two traces), the pos-
itive portion of the wave train was considerably stronger
(~10 MPa max) than the negative portion (—2 MPa min).
In Figure 3a, the pressure trace for an individual pulse of
the pulse train is plotted, at a location near the focus and a
time where the modulated amplitude is approximately
7 MPa. Steepening of the pulse, which is sinusoidal at
the transducer surface, can be observed. A measure of
the acoustic energy incident on the brain tissue as a func-
tion of time throughout the duration of the simulated
overpressure can be obtained by computing the RMS
pressure of the amplitude-modulated (AM) wave. The
RMS pressure is given by

1

pons() = |7 [ 0| n

where T'is the period of the high-frequency pulse, roughly
0.6 us. The RMS pressure for the AM pulse train,
measured in water, is illustrated in Figure 3b. As noted
in the previous section, the pulse of Figure 3a does not
have a shocked, blast-like profile. Rather, a train of thou-
sands of such pulses of properly modulated amplitude is
concatenated to produce the blast-like profile of Figure 2
(bottom trace) and Figure 3b.

To estimate the modification of the simulated over-
pressure wave caused by the presence of the skull, pres-
sure levels were made distal to mouse and rat skull
samples. Plots of RMS pressure inside the mouse and
rat skull samples, as well as in water, are provided in
Figure 4a (water), 4b (mouse) and 4c (rat). Scales for
the three figures are different, although all units are kilo-
pascals (kPa). The maximum pressure inside the mouse
skull is approximately 35% of the peak pressure in water
alone, and the maximum pressure inside the rat skull is
about 18% of the peak water value. In terms of beam
width, the width corresponding to a 50% reduction in
pressure is approximately 2 mm in water. The beam width
in the presence of the mouse was approximately 2.5 mm.
Spreading by the rat skull was more severe, and the rat
skull distorted the HIFU beam into more of an ellipsoidal
shape. The beam width, again determined from the
dimension of the 50% pressure contour, was about
2.5 mm in one direction and 3.5 mm in the other.

In the Introduction, we noted that the bio-effects of
blast overpressures are not due to heating or cavitation,
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Fig. 2. Temporal profile of pressure waves in water (in MPa) at amplitude-modulated voltage settings of 40 (top traces),

100 (middle traces) and 400 mV (bottom traces). The duration of the amplitude-modulated wave trains shown was 1000

us. Traces in the left column were obtained in water, and those in the right column were recorded inside the parietal bone

from a mouse. With the 400-mV wave, the upper envelope of the wave mimics the almost instantaneous rise in pressure

seen in a free-field blast, followed by an exponentially decaying tail. The lower envelope has a similar but inverted shape

and is about one-third of the upper envelope in amplitude. Also evident is the attenuation in pressure as a result of the
intervening bone, while the waveform is slightly altered.

and hence, it is desirable to eliminate these effects from
the HIFU-simulated overpressure as well. Thermal ef-
fects can be estimated as follows. The temperature rise
in the brain can be estimated by solving the heat equation
(Nyborg 1988)

(2a)

where T is the temperature rise in the brain, « is the
thermal diffusivity of brain tissue and c, is the spe-
cific heat. For linear acoustic propagation, the heat
source is given by ¢ = 2al, where « is the acoustic
attenuation and / the time-averaged intensity. In the
present case, harmonic generation occurs as a result
of non-linear propagation effects, and the heat source
is a sum of the heat sources due to absorption of the

individual propagation modes (Myers and Soneson
2009):

q=> 2a,l,

Here, «,, is the value of the acoustic attenuation at the fre-
quency of the nth harmonic, and I, is the intensity of the
nth harmonic. The intensities I, can be related to the am-
plitudes a,, of the pressure harmonics using the standard
plane wave approximation:

(2b)

[12

In = ”‘
PoCo

(€)

An upper bound for the temperature rise can be ob-
tained by ignoring cooling caused by diffusion and inte-
grating the source term in (2) to obtain
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=" 4, (4)

PoCp

where Ar is the duration of the overpressure (roughly
1 ms). The modal amplitudes a,, required for g were ob-
tained by decomposing the measured pressure trace in
Figure 3a into a Fourier series. The frequency depen-
dence of the attenuation was assumed to have the form
a = af’ (Duck 1990), where the values a = 0.067
cm~ ! MHz™® and b = 1.3, typical for the human brain
(Duck 1990), were assumed. The frequency of the nth
mode is given by nf,, where f is the transducer resonant
frequency, 1.5 MHz. Using typical values of 1000 kg/m>
for tissue density, 1500 m/s for the speed of sound and a
heat capacity of ¢, = 4000 J/(kg K) for brain
(International Commission on Radiation Units and
Measurements [ICRU] 1998), it is estimated there is a
temperature rise of approximately 0.07°C for a 0.001-s
overpressure. This amount of temperature rise is well
below the threshold for any thermal bio-effects.

The absence of cavitation must also be verified,
because even for blast overpressures, cavitation can occur
during the rebound phase, especially if any gas bubbles
are present. Gateau et al. (2011) found that for 660-kHz
pulses, formation of gas bubbles in the sheep brain did
not occur when the peak negative pressure was weaker
than —12.7 MPa. Fry et al. (1995) found the cavitation
threshold in dog brain tissue to be around —3.5 MPa for
a 1-MHz pulse. The 1.5-MHz pulses used in our studies
would likely have thresholds that were more negative
than these values. Given that the worst-case negative
pressure in Figure 2 was approximately —1.7 MPa, and
the average peak negative pressure for the wave train
was less than —1 MPa, it is unlikely that the negative pres-
sures occurring during the HIFU exposures produced
cavitation. This conclusion was confirmed by examina-
tion of harvested mice brains, in which the pitting charac-
teristic of cavitation damage was not observed.

Blood—-brain barrier function

Compared with the pink appearance of the fresh
brain samples from mice that received no injection (data
not shown), animals that had received a tail vein injection
of 2% Evans blue had a blue coloration observable over
the entire neuraxis. The dye distribution in sham-treated
animals (Fig. 5a) was considerably lighter than what
was observed on the brain surfaces of mice that had
been exposed to HIFU (Fig. 5b). Ex vivo imaging of the
brain of HIFU-exposed and sham-treated animals was
visualized by low-power fluorescence microscopy. The
Evans blue dye was observed within the lumen of superfi-
cial cerebral vessels of sham-treated (Fig. 5¢) and HIFU-
exposed samples (Fig. 5d). However, the appearance of
the dye differed after HIFU exposure. There was evidence
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Fig. 3. Measurement of high-intensity focused ultrasound-
generated pressure in water. (a) The rise time to maximal pres-
sure for a single wave is approximately 3.5 us. The pulse has
steepened considerably from the sinusoidal form it possessed
when radiated by the transducer. (b) To evaluate the average
pressure change as a function of time, the root mean square
average for each high-frequency pulse in the train for the
amplitude-modulated wave was integrated over time (see eqn
[1] in text), providing an estimate of intensity of a 400-mV
wave.

of Evans blue dye accumulation within cerebral vessels
from HIFU-exposed animals (Fig. 5c) that was not
observed in sham-treated rodents (Fig. 5d). Additionally,
perhaps consistent with the diffuse dye distribution
observed on the brain surface (Fig. 5b), there was evidence
of dye seepage into the brain parenchyma (Fig. 5d).

Immunoglobulin G staining was performed to deter-
mine if HIFU exposure resulted in the appearance of
immunoglobulin in the brain parenchyma. In Figure 6,
sections of cerebral cortex tissue from an animal that
received sham treatment (left) or HIFU exposure (right)
indicate there was an increase in IgG accumulation in ce-
rebral vessels 2 h after HIFU exposure. However, there
was no evidence of infiltration of IgG or IgM into brain
parenchyma (data not shown).
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Fig. 4. Three-dimensional plots of pressure measurements of the high-intensity focused ultrasound waveform generated

at the focal point. The colorized cone surfaces of the graphs illustrate changes in pressure as a function of distance from

the beam axis. Relative to pressure measurements in water (a), there was approximately 65% and 82% attenuation of pres-
sure in mouse and rat skulls (b, ¢).

Alteration in immunostaining for GFAP and Ibal (Fig. 7). Analysis of variance of staining density mea-
was used to assess histopathological response to HIFU sures for GFAP indicated that by 2 h after HIFU exposure,
exposure. GFAP immunostaining indicated changes in there was no change in GFAP staining density in the ce-
the density of astrocyte GFAP after a single exposure rebral cortex, corpus callosum or hippocampus, but a

Fig. 5. Ex vivo photographs from animals that received a tail vein injection of a 2% Evans blue solution 30 min before

sham treatment (a) or were subjected to a single 1-ms high-intensity focused ultrasound (HIFU) exposure (b). For sham

treatment, animals were anesthetized and placed on the HIFU unit, but not exposed to HIFU. HIFU exposure resulted in

greater diffuse coloring of dye on the surface of the entire neuraxis 2 h after HIFU exposure (b). At 540 nm excitation,

Evans blue dye fluoresced cerebral vessels. Evans blue accumulated within the lumen of vessels after the sham treatment

(c) or HIFU exposure (d), but there was evidence of adherence of dye within the lumen of vessels and dye seepage into the
brain parenchyma (d) 2 h after HIFU treatment.
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Fig. 6. Immunoglobulin G staining in cerebral vessels after exposure to high-intensity focused ultrasound (HIFU). An-

imals were exposed to a single 1-ms HIFU wave. Two hours after exposure, IgG staining was not prevalent in the brain

sections obtained from sham-treated mice (a). However, IgG staining was observed in brain sections from HIFU-treated
animals in close association with cerebral vessel inner walls (b).

significant increase was seen in the temporal lobe
compared with staining of sham controls (F3,;7 = 8.06,
p = 0.003, Bonferroni #-test, p = 0.011 compared with
sham treatment). However, by 24 h after exposure,
GFAP staining density was increased in all of these brain
regions (cerebral cortex: F, ;3 = 5.55, p = 0.013, Bonfer-
roni t-test, p = 0.012 compared with sham treatment;
corpus callosum: F; 15 = 21.32, p < 0.001, Bonferroni
t-test, p < 0.001 compared with sham group and
p < 0.001 compared with 24-h group; hippocampus:
F, 15 = 13.82, p < 0.001, Bonferroni #-tests, p < 0.001
compared with sham group and p = 0.008 compared
with 2-h group; temporal lobe: F; ;7 = 8.06, p = 0.003,
Bonferroni t-test, p = 0.008).

Immunostaining for Ibal (Fig. 8a) suggested stain-
ing density was elevated as soon as 2 h after exposure,
and continued to be elevated 24 h after exposure. Related
to observed changes in the blood-brain barrier, perivascu-
lar microglia were also examined around vessels in the
hippocampus. Density of Ibal immunostaining appeared
to be elevated in these cells (Fig. 8a, indicated by arrows).
This was also the case in the corpus callosum, parietal ce-
rebral cortex and temporal region (data not shown). Stain-
ing density measures confirmed visual observations. At 2
or 24 h after HIFU exposure (Fig. 8b), Ibal staining inten-
sity was significantly greater in the corpus callosum
(F13 = 14.69, p < 0.001, Bonferroni #-tests, 2 h vs.
sham p = 0.007, 24 h vs. sham p < 0.001), the hippocam-
pus (F2,12 = 8.25, p = 0.006, Bonferroni #-tests, 2 h vs.
sham p = 0.006, 24 h vs. sham not significantly different
p = 0.103), the vessels within the hippocampus
(Fr11 = 6.08, p = 0.017, Bonferroni t-tests, 2 h vs.
sham p = 0.016, 24 h vs. sham not significantly different
p = 0.573) and in the parietal region of the cerebral cortex
(F2.12 = 5.063, p = 0.025, Bonferroni t-tests, 2 h vs. sham
p = 0.040, 24 h vs. sham p < 0.048) and temporal lobe
(F2.12 = 10.74, p < 0.001, Bonferroni t-tests, 2 h vs.
sham p = 0.003, 24 h vs. sham p < 0.035).

Gross injury indications after HIFU exposure
Twenty-four hours after HIFU exposure, there was
no evidence of injury or hemorrhage on the surface of
the cerebrum. In addition, H&E staining indicated no
evidence of neuropathological changes, microhemor-
rhage or cavitation, and there were no Fluoro-JadeC-
positive neuron profiles, indicative of neuron cell death.

Behavioral effects of HIFU exposure

At a 1-ms, 400-mV setting (Fig. 2, bottom trace),
behavioral and physical examination of mice 24 h after
HIFU exposure suggested there were no significant neuro-
logic impairments. During a 2-h post-exposure observa-
tion period and observation 24 h after exposure, there
was no evidence of lethargy, impaired nesting behavior,
anomalous response to cage movement or handling by
the investigator, abnormal gait, head tilting, differences
in weight change overnight, grooming impairment
(ruffled coat) or malaise (sunken eyes, squinting).

DISCUSSION

Several measures suggested that a single 1-ms HIFU
exposure had a significant impact on some features of the
neurovascular unit (Abbott et al. 2006; Hawkins and
Davis 2005), and that HIFU exposure may serve as a
mTBI model for understanding central nervous system
hazards from low energetic blasts. Evans blue staining
within the brain parenchyma suggested that HIFU
exposure caused impairment of the blood-brain barrier.
Furthermore, accumulation of Evans blue dye on the
luminal surface of the vascular endothelium suggested
exposure augmented the adherence of serum albumin
(and, perhaps, other less abundant serum proteins).
Finally, immunostaining for IgG accumulation in cere-
bral vessels suggested an alteration of cell surface phos-
pholipid composition or cell surface protein expression
by the endothelium. Changes in the endothelium luminal
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Fig. 7. Immunocytochemical staining for GFAP in sham animals, 2 and 24 h after exposure to HIFU. GFAP immunore-
activity was elevated slightly by 2 h after HIFU exposure (middle micrograph) and further enhanced by 24 h after HIFU
exposure (rightmost micrograph). The plots to the right summarize the density of GFAP staining intensity for each treat-
ment group. Box-and-whisker plots depict group medians (bars inside boxes) and 75th and 25th percentiles (upper and
lower extents of the boxes), and the whiskers depict the 95th and 5th percentile estimations. Analysis of variance indicated
there were significant changes in optical density for staining for GFAP after HIFU exposure (indicated by asterisks). By
2 h after exposure, compared with levels measured in sham-treated mice, the level of GFAP staining was significantly
greater in the temporal lobe (post hoc Bonferroni t-test: p = 0.011). By 24 h after HIFU exposure, staining intensity
for GFAP was significantly higher than levels in sham-treated mice in the cerebral (parietal) cortex (p = 0.012) and tem-
poral lobe (p = 0.008) and significantly greater in the corpus callosum (p < 0.001 vs. sham group, p < 0.001 vs. 2-h
group) and hippocampus (p < 0.001 vs. sham group, p = 0.008 vs. 2-h group) than both levels in sham-treated mice
and levels measured 2 h after HIFU exposure. GFAP = glial fibrillary acidic protein, HIFU = high-intensity focused ul-
trasound, CTX = dorsolateral parietal region of the cerebral cortex, CC = corpus callosum, HC = hippocampus,
TPL = temporal lobe of the cerebral cortex.

surface are a well-characterized phenomenon of vascular
cell activation and injury (Kulik et al. 2009; Rao and
Pendurthi 2012; Rosenberg 2012). The fact that no
change in infiltration was seen with IgG or IgM,
however, suggests that although there was perturbation
of the endothelium, there was no evidence that under
these conditions, HIFU exposure resulted in a shearing
injury or a significant breach of the blood-brain barrier
that permitted the infiltration of macromolecules in the
range of ~150 kDa.

In addition to blood-brain barrier disruption, mTBI
is characterized by astrocyte activation. In their study of

traumatic brain injury induced by controlled cortical
impact, Myer et al. (2006) concluded that reactive astro-
cytes play essential protective roles, by preserving neural
tissue and restricting inflammation after moderate brain
injury. In the present study, a single HIFU exposure was
sufficient to elicit an elevation in GFAP immunostaining
in astrocytes, a characteristic neuro-immune response to
blood-brain barrier cellular injury or infection (Abbott
et al. 2010; Chodobski et al. 2011; Wolburg et al.
2009). In this study, the animals were followed for only
24 h; a longer survival time is needed to establish the
profile of astroglial activation.
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Fig. 8. Staining for Ibal after exposure to HIFU. The images (a) illustrate Ibal staining of microglia and perivascular
cells (a, arrows) in the hippocampus after sham treatment (no exposure to a HIFU wave) and 2 and 24 h after HIFU expo-
sure. There was a very modest increase in the number of labeled cell profiles, but a more evident increase in the staining
intensity. The graphs (b) illustrate the changes in staining density 2 and 24 h after HIFU exposure. Analysis of variance
revealed significant changes in staining density for Ibal (indicated by asterisks) after HIFU exposure in the CC (2-h
p < 0.007 and 24-h p = 0.001 vs. sham group) and HP (2-h p = 0.005 vs. sham group). A measure of immunostaining
for Ibal near blood vessels in the HP indicated staining density for Ibal was elevated 2 h after HIFU exposure (p = 0.016
vs. sham group). Ibal = ionized calcium-binding adaptor molecule 1, HIFU = high-intensity focused ultrasound,
CC = corpus callosum, HP = hippocampus.

Microglial activation is considered to have a signif-
icant role in neuro-inflammatory-related secondary dam-
age from brain injury (Loane and Byrnes 2010), as well as
a potential beneficial function (Aguzzi et al. 2013), and
that activation may be a hallmark of the long-lasting ef-
fects from TBI and neural degeneration (Block et al.
2007; Smith 2013; Taber et al. 2006). Ibal (also called
allograft inflammatory factor 1) has been used as a cell
marker for resident microglia and perivascular cells (Ito
et al. 1998). Elevation of Ibal staining in microglia in
the present study suggests mild stimulation results in at
least transient alteration. Together, the IgG, GFAP and
Ibal results indicate a perturbation of the blood-brain bar-
rier with a neuro-immune response. Because of the short
time span of the study, it is not possible to establish if the
neuro-immune response is a transient response, which
could resolve quickly because of a lack of sustained
cell damage, or if the low-level neuro-immune response
persists.

Although these effects are indicative of brain injury,
they are less severe than those that have been observed in
shock tubes. Reneer et al. (2011), for example, observed
hematomas in the brains of rats exposed to shock tube
overpressures of about 100 kPa. Moochhala et al.

(2004) detonated explosives in the vicinity of rats and de-
tected degenerating cortical neurons, when the blast over-
pressure was about 20 kPa. By comparison, the RMS
pressures associated with the bio-effects documented in
this study were on the order of 1000 kPa (Fig. 4, middle).
The difference in biological effects is likely related to the
presence of both positive (compressive) and negative
(tensile) pressures in the HIFU-simulated overpressure,
whereas the blast overpressure is completely positive.

A more relevant predictor of the effects generated by
the HIFU wave than the RMS pressure or amplitude of the
oscillating pressure may be the radiation pressure, in the
following sense. The radiation force is the time-averaged
force exerted by the ultrasound beam on a liquid or soft
tissue medium, arising from absorption of the ultrasound
energy by the medium. The radiation force acts in the di-
rection of beam propagation. Because it continually
pushes on the absorbing medium, that is, there is no oscil-
lation in the force, it may more closely simulate the blast
overpressure. Mathematically, the radiation pressure is
given by Wahab et al. (2012) as

206
Prad = —> pfms 5
PoCo
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The quantities, «, po, co and p,,s were defined in the
previous section, and 0 represents the ultrasound beam
width. Using soft tissue values given above, a value of
2.5 mm for the ultrasound beam width in the mouse
and 3 MPa as the maximum RMS pressure in the mouse
skull (Fig. 3b), the radiation pressure would vary over the
simulated overpressure between 0 and 200 Pa (0.2 kPa).
This is considerably smaller than the overpressure
measured in shock tubes (Reneer et al. 2011) and actual
detonations (Moochhala et al. 2004).

To the extent that the brain tissue responds to the ra-
diation pressure and not the oscillatory pressure for a
HIFU pulse train, the lower level of damage observed
in the present study is consistent with that observed
with shock tubes and detonations.

For further comparison of the HIFU blast-
overpressure model with other methods, waveforms for
different blast simulators are plotted in Figure 9. The du-
rations of the overpressures are between 2.0 and 4.0 ms.
Because of the large variation in pressure levels, a decibel
scale (relative to 1.0 MPa) is used. Both the RMS pressure
and radiation pressure are illustrated for the HIFU model.
Also illustrated are waveforms for explosive detonations
measured by Moochhala et al. (maximum pressure = 100
psi = 690 kPa, from Moochhala et al. [2004:Fig. 2]) and
for shock-tube measurements made by Chavko et al.
(maximum pressure = 40 kPa, from Chavko et al.
[2007:Fig. 5]). All curves begin with a rapid rise, though
the exact rise time is difficult to discern from data digi-
tized from published detonation and shock-tube studies,
and no quantitative conclusions regarding precise rise
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Fig. 9. Time profiles of high-intensity focused ultrasound
(HIFU), detonation blast and shock tube overpressure waves.
For comparison, pressure is expressed in decibels and suggests
similar overpressure waveforms are observed in each model.
The root-mean-square (RMS) pressure of the HIFU profile is
greater than after detonation or shock tube emission. However,
radiation pressure from HIFU is considerably less, consistent
with levels of brain injury observed.
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time should be drawn. The approximately linear behavior
between times of about 0.3 to 1.5 ms that all the curves
exhibit on the decibel scale is reflective of an exponen-
tially decaying overpressure. After approximately
1.5 ms, the HIFU curves and the detonation pressures
of Moochhala et al. start to exhibit a sharper decrease.
(The shock-tube measurements of Chavko et al. exhibit
this behavior slightly later, around 3.0 ms.) The wave-
forms in Figure 9 are similar in shape, though they are
different in magnitude and produce different levels of
brain injury. To preserve the correct rank of the curves,
that is, higher pressures produce larger effects, we work
with the radiation pressure rather than the RMS pressure.
As discussed above, this is sensible on a physical basis, as
the force due to the radiation pressure is unidirectional for
the duration of the overpressure, similar to a blast wave.
But unlike a blast wave, the partially counteracting posi-
tive and negative pressure oscillations in a HIFU-
simulated overpressure contribute collaboratively to the
RMS pressure (as only the pressure magnitude is rele-
vant), resulting in relatively high RMS pressures being
associated with relatively minor injury. Another way of
saying this is that the RMS pressure is really a measure
of total acoustic energy, which is not the best indicator
of level or type of mTBI.

Calibration of the HIFU blast model, that is, identi-
fying which bio-effects occur at what pressure levels
relative to detonation and shock-tube models, requires
bio-effect data for shock-tube and detonation studies
performed at overpressures lower in magnitude than
those in Figure 9 and for HIFU studies performed at ra-
diation pressures higher than those in Figure 9. Saljo
et al. (2009) found evidence of mTBI produced by
shock-tube pressures as low as 10 kPa (—40 dB re:
1 MPa [Saljo et al. 2009]). This evidence was obtained
primarily from behavioral studies. Similar studies are
planned for HIFU-based mTBIs. To generate more
intense radiation pressures with HIFU, a higher-gain
(more focused) transducer will be used. Care must be
taken that the peak negative pressure (discussed above)
does not exceed the cavitation threshold. Fortunately,
because of non-linear propagation effects occurring in
the 1.5-MHz carrier wave of the amplitude-modulated
HIFU pulse, significant changes in positive pressure
are accompanied by only minor changes in negative
pressure (see Fig. 2, bottom traces).

In addition to pressure level, exposure duration
likely plays a role in blood-brain barrier disruption and
other manifestations of TBI. In their study of blood-
brain barrier disruption in rats caused by exposure to
2-MHz, continuous-wave HIFU of intensity 485 W/cmz,
Mesiwala et al. (2002) observed blood-brain barrier open-
ing 64% of the time. Sixty percent of these openings
occurred without parenchymal damage; the remainder
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manifested injury such as hemorrhage. The radiation pres-
sure associated with the HIFU beam of Mesiwala et al. is
approximately 130 Pa, slightly less than the maximum ra-
diation pressure during our simulated overpressure. Mesi-
wala et al., however, used a much longer exposure, 0.2 s.
For a future comparison with the research of Mesiwala
et al, the duration of the HIFU-simulated blast overpres-
sure can be easily lengthened by adjusting the settings
of the second function generator shown in Figure 2. Com-
parison with the work of Saljo et al. cited above would
also require increasing the pulse train length to 6 ms.
For the present, it can be said that the observations of
Mesiwala et al. and the present study are consistent with
the following statements: (i) Blood-brain barrier disrup-
tion can be induced with HIFU wave trains having radia-
tion pressure values on the order of 100 Pa, for exposures
as short as 1 ms. (ii) Longer exposure times can begin to
produce parenchymal damage.

Although the HIFU model has been able to produce
manifestations of mTBI known to occur during blasts,
such as blood-brain barrier disruption and intensified
immune response, it must also be recognized that differ-
ences between the HIFU model and actual blasts will
likely exist. Bio-effects caused by shearing of tissue
within the brain, for example, could be different for
HIFU pulse trains and actual blasts. Because blast waves
are essentially uniform over the entire external surface of
the skull, shearing occurs as a result of tissue property dif-
ferences within the skull. Shearing caused by tissue prop-
erty differences will also occur with HIFU pulse trains,
particularly if the scale over which the variations occur
is smaller than the beam width. (The HIFU beam width
is characterized in Fig. 4.) However, shearing caused by
HIFU can also occur in homogeneous tissue, in the
manner in which shear waves are created in elastography
(Parker et al. 2011), as a result of the variation in the pres-
sure field across the beam. This effect is very localized
within the brain. If duplicating shearing effects is critical,
differences between HIFU and actual blasts can be mini-
mized by using wider HIFU beams. Some of the differ-
ences between HIFU-simulated overpressures and blast
overpressures will emerge only after both models are
used extensively under similar conditions. This includes
evaluating both methods based on comprehensive behav-
ioral tests on cohorts of animals exposed to both blast
types. In cases where similar bio-effects are produced
by the HIFU model and actual blasts, the convenience,
controllability and tolerability of HIFU make it an attrac-
tive alternative.

CONCLUSIONS

High-intensity focused ultrasound allows for the gen-
eration of simulated blast overpressures in a controllable,

tolerable and inexpensive manner. Exposure of mice to
HIFU-simulated overpressures produced manifestations
of mild traumatic brain injury, such as blood brain-
barrier disruption, antibody accumulation in vascular
walls and activation of astrocytes and microglia. Evidence
of moderate to severe brain injury, such as hemorrhage
and neuron cell death, was not observed. Further work is
needed to validate the methodology and related changes
using animals that have sustained mild injuries in blast
tubes and using actual injuries seen in victims who sustain
blast-induced traumatic brain injury. Although HIFU is
not intended to completely replace actual detonations or
shock tubes, it may serve as a valuable surrogate for the
simulation of some of the phenomenology associated
with human blast-induced mild traumatic brain injury.
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