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a b s t r a c t

In higher vertebrates, in response to stress, the hypothalamus produces corticotropin-releasing hormone
(CRH), which stimulates cells in the anterior pituitary to produce adrenocorticotropic hormone (ACTH),
which in turn stimulates production of either cortisol (F) or corticosterone (B) by the adrenal tissues.
In lampreys, however, neither of these steroids is present. Instead, it has been proposed that the stress
steroid is actually 17,21-dihydroxypregn-4-ene-3,20-dione (11-deoxycortisol; S). However, there have
been no studies yet to determine its mechanism of regulation or site of production. Here we demonstrate
that (1) intraperitoneal injections of lamprey-CRH increase plasma S in a dose dependent manner, (2)
intraperitoneal injections of four lamprey-specific ACTH peptides at 100 lg/kg, did not induce changes
in plasma S concentrations in either males or females; (3) two lamprey-specific gonadotropin-releasing
hormones (GnRH I and III) and arginine-vasotocin (AVT), all at single doses, stimulated S production as
well as, or to an even greater extent than CRH; (4) sea lamprey mesonephric kidneys, in vitro, converted
tritiated 17a-hydroxyprogesterone (17a-P) into a steroid that had the same chromatographic properties
(on HPLC and TLC) as S; (5) kidney tissues released significantly more immunoassayable S into the incu-
bation medium than gill, liver or gonad tissues. One interpretation of these results is that the corticoste-
roid production of the sea lamprey, one of the oldest extant vertebrates, is regulated through multiple
pathways rather than the classical HPI-axis. However, the responsiveness of this steroid to the GnRH pep-
tides means that a reproductive rather than a stress role for this steroid cannot yet be ruled out.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The hypothalamus–pituitary–adrenal (HPA) axis plays a critical
role in mediating stress responses in mammals, including the
secretion of corticosteroid hormones that regulate metabolism,
growth, reproduction, immunity, and ion homeostasis (Charman-
dari et al., 2005). In teleost fishes, the hypothalamus–pituitary–
interrenal (HPI) axis is stimulated after exposure to a physical,
chemical, or perceived stressor, which causes CRH and AVT neuro-
nes to stimulate the corticotrophe cells in the pituitary (Barton,
2002; Batten et al., 1990) to release ACTH. Baker et al. (1996) were
able to show that CRH and AVT could act individually or synergis-
tically to increase ACTH secretion in rainbow trout pituitary incu-
bations. In agnathans, the HP axis is not well defined and is

suggested to be more of a diffusional process through connective
tissue (Nozaki et al., 1994; Nozaki, 2008). In teleosts, ACTH is then
released into circulation and stimulates the interrenal cells of the
head kidney to produce cortisol, which exert various effects on
target cells. Such HPI axis response to stress, similar to the HPA
system of mammals, seems to have been conserved in most
vertebrates.

CRH is a 41 amino acid peptide produced in the hypothalamus
and belongs to a family of neuropeptides that have been highly
conserved in fish, amphibians, and mammals as summarized else-
where (Lovejoy and Balment, 1999; Ottaviani and Franceschi,
1996; King and Nicholson, 2007). However, no CRH peptide has
been identified and characterized from the basal vertebrates, lam-
preys and hagfish. Although the sequence information of lamprey
CRH was not known at the time, Close et al. (2010) demonstrated
that the human form of CRH can induce changes in concentrations
of S, which was proposed to be the corticosteroid hormone in the
sea lamprey. To fully understand the physiological functions of
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CRH-related peptides in lamprey, in vivo experiments with endog-
enous lamprey CRH are needed.

The physiological functions of ACTH in lamprey have remained
elusive due to a lack of experimental data supporting its definitive
functions. One of difficulties associated with understanding the
physiological functions of lamprey ACTH results from its unique
molecular structure. While gnathostome ACTH is composed of
39–40 amino acids, lamprey ACTH is composed of 59–60, with
posttranslational phosphorylation occurring at position 35 in two
of the four peptides (Takahashi et al., 2006). Such modification re-
sults in four unique forms that are significantly different from the
single peptide found in most vertebrates. Since the discovery of
these four peptides, no published data exist on their effect on lam-
prey physiology. Additionally, no form of ACTH has been shown to
stimulate production of S, nor is there currently any evidence for
ACTH in circulation after exposure to acute stress in lamprey.
The study by Close et al. (2010), however, demonstrated that intra-
peritoneal injection of lamprey pituitary extract stimulated dose-
dependent production of S, indicating that a biological substance
in the pituitary may be involved in the stress response.

In gnathostomes, the primary glucocorticoids are cortisol and
corticosterone with an exception where 1a hydroxy corticosterone
is thought to be a functional corticosteroid in elasmobranchs
(Anderson, 2012). However, in sea lamprey, Petromyzon marinus,
a precursor to cortisol, S, was shown to be a putative corticosteroid
hormone mediating stress responses, which prompted a debate on
the evolutionary mechanisms of corticosteroid signaling in verte-
brates (Close et al., 2010, 2011; Thornton and Carroll, 2011). The
identification and characterization of the putative corticosteroid
hormone S in lamprey may lead to a better understanding of corti-
costeroid hormone signaling mechanisms in early vertebrates.
However, whether a classical HPI axis is regulating the stress re-
sponses in lamprey still remains unclear.

Due to lamprey’s unique life history, including metamorphosis
during the larval stage where the anterior part of head kidney is
lost, there has been debate over which tissues are responsible for
the production of corticosteroid hormone (Youson, 1970). Accord-
ingly, to fully understand the HPI axis-mediated stress responses in
lamprey, it is necessary to determine the site of corticosteroid pro-
duction. Given the steroidogenetic pathway, the synthesis of S
from various radioactive precursor steroids such as progesterone,
pregnenolone, and 17a hydroxy progesterone needs to be exam-
ined in an in vitro experiment using the tissues that are known
to function as kidneys in lamprey, mesonephric tissues. Further-
more, the in vivo characterization of S production in the putative
interrenal tissues will confirm involvement of the interrenal tis-
sues in the HPI axis.

The objective of this study was to examine whether stress re-
sponses in sea lamprey are mediated by the HPI axis, by testing
the effects of lamprey CRH and ACTH on plasma S concentrations,
and by identifying the site of corticosteroid hormone production.
In addition, this study investigated the adrenocorticotropic activi-
ties of various hypothalamic hormones such as AVT and GnRH as
potential alternative pathways that regulate corticosteroid produc-
tion in sea lamprey. The significance of the evolution of the HPI
axis and potential alternative pathways in the basal vertebrates
is discussed in terms of steroid signaling system evolution.

2. Materials and methods

2.1. Materials

Radiolabeled steroids were purchased from American Radiola-
beled Chemicals (St. Louis, MO, USA). Synthetic steroids, the anti-
body to S, and all other chemicals and reagents were purchased

from Sigma (Sigma Aldrich Chemical Co., St. Louis, MO, USA) unless
otherwise noted.

2.2. Collection and maintenance of animals

Adult sea lampreys (P. marinus) were obtained from the Sea
Lamprey Control Program at the Department of Fisheries and
Oceans in Sault Ste. Marie, Ontario in July 2010 and July 2011. Ani-
mals were transported to the University of British Columbia, Van-
couver, BC, where they were held at 4–6 �C in covered, insulated
tanks filled with dechlorinated tap water from the City of Vancou-
ver. For the ACTH and AVT injection experiments, sea lamprey pro-
vided by the USFWS were transported to the Hammond Bay
Biological Station and held in 1000 L flow-through tanks. The sub-
ject animals were acclimated for 7 d before the injection experi-
ments were performed. Sea lamprey were approved for use in
these experiments, which were performed according to the Univer-
sity of British Columbia Animal Care protocol A11-0055.

2.3. Experimental subjects

For all experiments, adult lampreys were acclimated in covered,
insulated, flow-through tanks (254 L) filled with dechlorinated tap
water from the City of Vancouver at 10–12 �C for at least one week
before experiments.

2.4. Sampling methods

2.4.1. Blood collection
Once fish were anesthetized, fish were placed upside down in a

plastic trough and blood was collected by cardiac puncture using
Vacutainers coated with EDTA to prevent clotting (Becton Dickin-
son-Canada, Mississauga, ON, Canada). Samples were immediately
placed on ice. Fish were placed in a freshwater recovery bucket and
then returned to holding tanks for recovery. Total sampling time
for each tank did not exceed three minutes. Blood samples were
centrifuged for 12 min at 2500 rpm and 4 �C (Beckman Coulter).
Plasma was frozen at �80 �C until RIA was conducted.

2.4.2. Tissue sampling
Following acclimation, fish to be euthanized were netted out

and immediately immersed in an overdose of anesthetic solution
(0.2–0.3 g/L of MS-222; Argent Chemical Laboratories, Inc.). At this
dose, most movement stopped within one minute and death oc-
curred within 2–3 min. Euthanized animals were placed on a sur-
gery table, and then tissues including kidneys, gills, gonads, and
livers were collected and immediately placed in L-15 incubation
medium (Sigma–Aldrich) on ice. Animal remains were bagged, la-
beled, and disposed of according to UBC policy.

2.5. Analytical techniques

2.5.1. Radioimmunoassay
Radioimmunoassays (RIAs) were performed as in Scott et al.

(1980). Briefly, RIAs were conducted in duplicate in 10 mm �
75 mm glass culture tubes (Fisher Scientific). Nine standards, also
in duplicate, were made up over the range 500–1.95 pg/100 lL tube.
Unknown sample tubes contained a total volume of 100 lL, made
up of 20 lL plasma and 80 lL assay buffer (50 mM sodium phos-
phate, pH 7.4, 0.2% BSA, 137 mM NaCl, 0.40 mM EDTA, and
0.77 mM sodium azide). Binding reagent was made by adding radio-
label and antibody such that when 100 lL was dispensed to all
tubes, each tube would contain 5000 disintegrations per minute
(DPM), and in the absence of any standard steroid, 50% of the radio-
label would be bound to the antibody. Blank tubes with no antibody,
and tubes necessary to determine the total and maximum DPM
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counts were also included. All tubes were incubated at 4 �C over-
night, separated with 500 mL of charcoal solution at 0 �C (50 mM
sodium phosphate, pH 7.4, 0.1% gelatin, 1.0% dextran-coated char-
coal), centrifuged at 2500 rpm, 4 �C for 12 min, decanted into 7 mL
scintillation vials, and mixed with 5 mL scintillation cocktail. DPM
were counted with an LS-6500 (Beckman Coulter) scintillation
counter.

2.5.2. Steroid extraction
Steroid extraction was performed as in Newman et al. (2008).

100 mg of each tissue was sampled and snap frozen under liquid
nitrogen. The frozen samples were ground under liquid nitrogen
using a pestle and mortar. One mL of 70% ethanol was added to
the ground tissue samples, followed by centrifugation. The super-
natant was removed and combined before subject to solid phase
extraction. For solid phase extraction, Sep-Paks (Waters, Milford,
MA, USA) were activated with 5 mL methanol (MEOH) and rinsed
with distilled water (ddiH2O). The pooled supernatant was diluted
and loaded onto Sep-Paks, which were rinsed with 5 mL ddiH2O
and then eluted with 5 mL MEOH. Samples were then loaded onto
a CentriVap Concentrator (Labconco, Kansas City, MO, USA) to
evaporate MEOH elute overnight. To each dried tube, 1 mL ETOH
was added, mixed, and pipetted into microfuge tubes, which were
labeled and frozen at �80 �C until needed for analysis.

2.6. Identification of CRH peptide sequence

Candidate CRH gene sequences were identified in the WGS
P. marinus Draft Assembly (Draft v.2, 2007-02) and the NCBI Trace
database. TBLASTN searches were used to identify candidate genes
in sea lamprey using known vertebrate CRH amino acid sequences
as queries. Sequences producing alignment hits (E-values
<1 � 10�10) were added to a non-redundant list of queries and
searching continued in this manner until no new contig hits were
found in the assembly. Genes were predicted using GENSCAN and
FGENESH and predicted amino acid sequences were tentatively
identified by batch BLASTP searches against the non-redundant
(nr) NCBI Protein database. Partial CRH protein sequences were
found using NCBI searches for different species. Alignments of all
CRH sequences shown were completed on MEGA 5 alignment.

2.7. Corticotropin-releasing hormone injections

Adult sea lampreys were injected with either corticotropin-
releasing hormone or saline solution (0.90% NaCl) (control). Sea
lampreys were injected intraperitoneally with corticotropin-
releasing hormone (CRH1–41), based on the sequence identified
from the sea lamprey genome database, and custom synthesized
by New England Peptide (Gardner, MA, USA). Following acclima-
tion, fish were netted out of tanks, immediately immersed in anes-
thetic solution, and once anesthetized, placed upside down in a
plastic trough. CRH dissolved in saline solution was injected intra-
peritoneally at doses of 0.01 lg/kg, 0.1 lg/kg, 1.0 lg/kg, 10 lg/kg,
and 100 lg/kg. Once treated, fish were placed in a freshwater
recovery bucket and then returned to holding tanks. Time spent
for each set of injections did not exceed three minutes per tank.

2.8. Adrenocorticotropic hormone injections

Adult sea lampreys were injected with either adrenocorticotro-
pic hormone or saline solution (control). Sea lampreys were injected
intraperitoneally with one of four lamprey adrenocorticotropic hor-
mone peptides (ACTH1–59, ACTH1–59; 35P, ACTH1–60, and ACTH1–60;

35P), based on the sequences published by Takahashi et al. (2006),
and custom synthesized by Bachem (Torrance, CA, USA). Following
acclimation, fish were netted out of tanks, immediately immersed in

anesthetic solution, and once anesthetized, placed upside down in a
plastic trough. The four ACTH peptides were dissolved in saline
solution and injected at a dose of 100 lg/kg. Saline solution was
used as a control. CRH injection 100 lg/kg was used as a positive
control. Once treated, fish were placed in a freshwater recovery
bucket and then returned to holding tanks. Time spent for each
set of injections did not exceed three minutes per tank.

2.9. Adrenocorticotrophic functions of lamprey GnRHs and arginine
vasotocin (AVT)

To examine whether other hypothalamic hormones exert any
effects on corticosteroid production, 10 lampreys were treated
with either doses of peptide hormones, including lamprey GnRH
I, and GnRH III, or saline solution (control). Adult sea lampreys
were injected with lamprey GnRH I and GnRH III following accli-
mation, and injected again with a second dose 24 h later. All of
the fish treated were sampled for blood one hour after the second
injection. The lamprey GnRH I and GnRH III were dissolved in sal-
ine solution and injected at doses of 100 lg/kg. In another experi-
ment, male and female adult lampreys were treated with either
100 lg/kg dose of AVT or saline (control). The control treatment
was performed on groups of four males and six females, respec-
tively while treatment with AVT was performed on three males
and three females. Blood samples were taken 1 h after the second
injection.

2.10. In vitro corticosteroidogenesis (corticotropic effects of ACTH)

The objective of the first incubation experiment was to deter-
mine which, if any, of the kidney, gonads, gill, or liver were able
to produce S with or without the influence of ACTH. Tissue samples
were weighed, diced with a razor blade, and placed in 15 mL con-
ical tubes containing 5 mL of L-15 incubation media on ice. The
conical tubes were sealed, placed horizontally, and incubated at
10 �C for 4 h at a slow but constant shaker speed. The ACTH treat-
ment groups were incubated with a mixture of four ACTH peptides
mentioned above at a concentration of 100 ng/mL, while control
groups with saline. After incubation, tubes were centrifuged at
2500 rpm, 4 �C for 12 min. The supernatant were collected and ex-
tracted using a Sep-Pak primed with methanol and deionized
water. The trapped steroid was eluted with 4 mL of 100% methanol
and the eluents were dried under vacuum. The dried eluents was
reconstituted in RIA buffer and subject to an RIA analysis to quan-
tify S concentrations.

After results from the first incubation experiment were ob-
tained, the objective for the second incubation experiment was
to determine which precursor steroid(s) the kidneys were able to
convert to S. The procedure was the same as above, but 1–2 lCi
of 3H-progesterone, 3H-pregnenolone, or 3H-17a-hydroxyproges-
terone (American Radiolabeled Chemicals) were added to each
incubation tube.

2.11. Thin layer chromatography

To determine whether any of the radiolabeled precursor ste-
roids were converted to S during the second, radioactive incuba-
tions, an initial analysis of the products was performed by thin
layer chromatography (TLC). Volumes corresponding to 10,000–
40,000 DPM of extract were placed in 10 mm � 75 mm glass cul-
ture tubes (Fisher Scientific) containing 10 lL of standard steroids.
These were dried down under nitrogen at 40 �C, resuspended in
100 lL ethyl acetate, and loaded onto separate lanes of pre-coated
silica-gel TLC plates (Whatman Inc. Piscataway, NJ, USA). The
plates were developed for 30 min with chloroform/ethanol/acetic
acid (50/50/0.002, v/v/v) after equilibrating for 30 min. The
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positions of standard steroids were noted by placing the plates un-
der a UV source. The lanes were divided into 4 mm sections,
scraped off into scintillation vials, mixed with 5 mL SafetySolve
scintillation cocktail (Research Products International Corp., Mount
Prospect, IL, USA) and had DPM counted in an LS-6500 (Beckman
Coulter) scintillation counter.

2.12. High performance liquid chromatography

Once the initial analysis indicated which precursors were con-
verted to S, products of the appropriate incubation media were
purified by HPLC. Volumes corresponding to 15,000 DPM of extract
were mixed with 20 lg of standard steroids, dried down under
nitrogen at 40 �C, resuspended in 1 mL acetonitrile/water/formic
acid (30/70/0.01, v/v/v), centrifuged at 14,000 rpm for 10 min,
and then loaded onto a C18 reverse-phase HPLC column (Alltima,
4.6 mm � 250 mm, Alltech, Dearfield, IL, USA) fitted with a guard
module. The solvents used to create the column gradient were
0.01% formic acid (solvent A) and 70% acetonitrile (solvent B) and
were developed as follows: 0–10 min: 28% B; 10–60 min: 28–
100% B; 60–90 min 100% B. Total development time was 90 min.
Fractions were collected every 1 min between 20 min and 75 min
in 16 mm � 100 mm culture tubes (Fisher Scientific). UV absorp-
tions of eluate were monitored and recorded with a photodiode ar-
ray detector (Shimadzu) to determine positions of standard
steroids. Once collected, samples from each fraction were mixed
with 5 mL scintillation cocktail (RPI Corp.) and DPM were counted
with an LS-6500 (Beckman Coulter) scintillation counter.

2.13. Steroid acetylation and analysis by TLC

Steroid acetylation and analysis by thin-layer chromatography
was performed as in Bryan et al. (2004). Briefly, volumes contain-
ing 100,000 DPM of 3H–S were fractionated on HPLC as described
above. Part of the fractions (250 lL containing 50,000 DPM) corre-
sponding to the elution position of S were placed in a
16 mm � 100 mm culture tube (Fisher Scientific) containing
10 lg of standard S. The solvents were removed, replaced by
100 lL pyridine and 100 lL acetic anhydride, covered, and left
overnight at room temperature. The remaining 250 lL of the same
fractions were mixed with 10 lg of standard S in a separate glass
tube. The following day, the solvents in both tubes were evapo-
rated and replaced with 100 lL of ethyl acetate. These were loaded
onto separate lanes of a TLC plate, which was developed for 30 min
with chloroform/ethanol/acetic acid (50/50/0.002, v/v/v) after

equilibrating for 30 min. The positions of standard steroids were
noted by placing the plates under a UV source. The lanes were di-
vided into 4 mm sections, scraped off into scintillation vials, and
mixed with 5 mL scintillation cocktail (RPI Corp.). DPM were
counted as above.

2.14. Statistical analysis

Data were expressed as mean ± SE, and analyzed by two-way
analysis of variance (ANOVA), followed by Dunnett’s test for multi-
ple group comparisons using Prism 5.00 (GraphPad Software Inc,
California, USA).

3. Results

3.1. Characterization of lamprey corticotropin-reasing hormone

The use of data mining identified a potential sea lamprey CRH
peptide sequence with 41 amino acid residues and a C-terminal
amidation. The deduced peptide sequence is SDEPPISLDLTFHLL
REVLEMADAEQLAQQAHTNRQIMENI-NH2. The sea lamprey CRH
peptide hormone shows high sequence similarity to other known
CRH peptide sequences in other species (Table 1).

3.2. Corticotropic function of corticotropin-releasing hormone

Sea lamprey injected with increasing doses of lamprey CRH be-
tween 0.01 and 100 lg/kg body weight showed increased plasma
concentrations of S in a dose dependent manner after 1 h injection
(Fig. 1). At a dose of 100 lg/kg body weight, the circulating S con-
centrations was approximately three times higher than those trea-
ted with saline.

3.3. Functional studies of adrenocorticotropic hormone

Four ACTH peptides previously identified from sea lamprey
were injected along with saline as control and lamprey CRH as po-
sitive control. A two-way ANOVA was conducted that examined
the effect of gender and CRH and ACTH treatments on S concentra-
tions. There was no significant interaction between the effects of
gender and treatment, F = 1.118, p = 0.3556. S concentrations sig-
nificantly increased upon treatment with CRH in both males
(p < 0.001) and females (p < 0.01), while S concentrations were
not significantly elevated by any treatments with ACTHs (Fig. 2A
and B).

Table 1
Comparison of sea lamprey CRH peptide sequence with other known CRH sequences from mammals, reptiles, and fishes.

CRH sequence Identity (%) Source (accession number)

SDEPPISLDL TFHLLREVLE MAKAEQLAQQ AHTNRQIMEN IGK 100.0 SEA LAMPREY

SEEPPISLDL TFHLLREVLE MARAEQLAQQ AHSNRKLMEI IGK 86.0 RAT (AAA40965.1)
SEEPPISLDL TFHLLREVLE MARAEQLAQQ AHSNRKLMEI IGK 86.0 MOUSE (AAI19037.1)
SEEPPISLDL TFHLLREVLE MARAEQLAQQ AHSNRKLMEI IGK 86.0 HUMAN (EAW86897.1)
SEEPPISLDL TFHLLREVLE MARAEQMAQQ AHSNRKMMEI FGK 81.4 ZEBRAFISH (AAI64878.1)
SEDPPISLDL TFHLLREMME MSRKEQMAQQ AQNNRRMMEL FGK 67.4 FLOUNDER (CAD88277.1)
AEEPPISLDL TFHLLREVLE MARDEQLVQQ AYSNRKMMDI FGK 72.1 RAINBOW TROUT (CAD97421.1)
SEEPPISLDL TFHLLREVLE MARAEQMAQQ AHSNRKMMEI FGK 81.4 GOLDFISH (AAN41653.1)
SEDPAISLDL TFHLLRGMME MSRAEQLAEQ AKNNEILMER YGK 62.8 SOLE (FR745427.1)
SEEAPISLDL TFHLLREVLE MARAEQMAQQ AHSNRKMMEI FGK 79.1 COMMON CARP (CAC84859.1)
SEDPPISLDL TFHLLREMME MSRAEQLAQQ AQNNRRMMEL FGK 72.1 TILAPIA (CAB77056.1)
SEDPPISLDL TFHLLREMME MSKAEQMAQQ AQNNRRMMEL FGK 72.1 MEDAKA (NM_001128518)
SEEPPISLDL TFHLLREVLE MARAEQIAQQ AHSNRKLMDI IGK 81.4 RANA FROG (ADJ56343.1)
AEEPPISLDL TFHLLREVLE MARAEQIAQQ AHSNRKLMDI IGK 79.1 XENOPUS FROG(NP_001165681.1)

The last amino acid residues of – GK represent an amidation site, indicating CRH peptides with a C-terminal amidation. The percentage identity of CRH sequences against
lamprey CRH has been calculated to indicate similarity between the peptides. The amino acid residues that do not match with those of human CRH are underlined. Genbank
accession numbers were presented in the parenthesis.
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3.4. Adrenocorticotrophic functions of GnRHs and AVT

Sea lamprey injected with 100 lg/kg body weight of lamprey
GnRH I, GnRH III, and S concentrations were measured. Injection
of GnRH I and III resulted in plasma S concentrations increasing

to 5–6 ng/mL with a slight variation between males and females
(Fig. 3). A two-way ANOVA was conducted that examined the ef-
fect of gender and GnRH treatments on S concentrations. There
was no significant interaction between the effects of gender and
GnRH treatments, F = 2.72, p = 0.07. S concentrations significantly
increased upon treatment with GnRH I (males, p < 0.001; females,
p < 0.001) and GnRH III (males, p < 0.001; females, p < 0.001)
(Fig. 3).

Although the stimulatory effects of the same dose of AVT were
lower than those of GnRHs, plasma S concentrations increased up
to nearly 4 ng/mL in both males and females. A two-way ANOVA
was conducted that examined the effect of gender and AVT treat-
ments on S concentrations. There was significant interaction be-
tween the effects of gender and AVT treatments, F = 5.30,
p = 0.04. S concentrations significantly increased upon treatment
with AVT both in males, p < 0.01 and females, p < 0.001 (Fig. 4).

3.5. In vitro corticosteroidogenesis

In vitro incubations of male and female sea lamprey tissues
indicate that the mesonephric kidney produced higher levels of S
(Fig. 5A and B). Further, incubations of the tissues with ACTH did
not show any significant effects in S production. For males, mean
concentration of S per mg of mesonephric tissue incubated was
1.1 ± 0.52 pg/mg. For females, mean concentration of S per mg of
mesonephric tissue incubated was 4.5 ± 1.7 pg/mg. For both sexes,
production by the gonads, gill, and liver was negligible.

Incubations with tritiated precursor steroids indicated that only
17aP was biotransformed into S (Fig. 6A–F). Preliminary identifica-
tion of S was obtained by running incubation media on TLC; co-
migration with standard S occurred only in samples incubated
with tritiated 17aP (Fig. 6A and B). Confirmation of the identifica-
tion of the putative S was obtained by fractionating incubation
media of samples containing 17aP by HPLC (Fig. 6C and D), which
yielded up to four peaks. In all cases, peaks corresponding to the
elution point of standard S were observed, with a mean rate of con-
version from 17aP to S of 17 ± 3.8% in males and females.

Further identification was obtained by running the HPLC-puri-
fied fractions that co-eluted with standard S on TLC both before
and after acetylation. In both males (Fig. 6E) females (Fig. 6F)
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Fig. 1. Plasma 17,21-dihydroxypregn-4-ene-3,20-dione (S) concentrations of adult
male (n = 6) and female (n = 6) sea lamprey after intraperitoneal injection of varying
doses of lamprey corticotropin-releasing hormone (0.01–100 lg/kg body weight) or
saline solution (0.90% NaCl). Data are mean ± SE.
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Fig. 3. Corticotropic effects of lamprey GnRHs. Male and female lampreys (n = 10)
were separately treated with 100 lg/kg body weight dose of lamprey GnRH I and
GnRH III and the plasma levels of S were measured 1 h post injection. No
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a surge of the plasma S levels were evident in the lampreys with both GnRH I and
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⁄⁄⁄p < 0.001) difference relative to control.
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results of radioactive co-migrations show peaks corresponding
exclusively to standard S and acetylated-standard S.

4. Discussion

Our experiments show that, in the sea lamprey, S (one of the
few steroids that has been definitively identified in this species)
seems to be responsive to peptides that, in higher vertebrates
are involved in several different pathways: stress (CRH, AVT),
reproduction (GnRH) and osmoregulation (AVT). Surprisingly,
though, none of the sea lamprey ACTH peptides showed any stim-
ulatory effects on circulatory S concentrations. The mesonephric
kidneys displayed the ability to release S into the medium and
to biotransform tritiated 17a-hydroxyprogesterone into a com-
pound that behaved like S on HPLC and TLC (acetylated and
unacetylated). Taken together, the data from the present study
indicate that, if (as our previous studies suggested) S is a cortico-
steroid in the sea lamprey, its regulation is very different from
that in higher vertebrates.

We have characterized a putative CRH peptide sequence by
searching the lamprey genome database. In general, the amino acid
sequence of lamprey CRH displayed a very high homology with
other CRHs from teleost fishes, amphibians, and mammals, which
is in line with the notion of high CRH conservation throughout ver-
tebrate evolution (Lovejoy, 1996). Interestingly, the lamprey CRH
showed higher homology with those of human and rats than those
of other fishes, with only six amino acid residues differing from hu-
man CRH. The high homology between lamprey CRH and human
CRH may explain the previous experimental data showing that
injection of the human form of CRH could induce changes in S lev-
els in the sea lamprey (Close et al., 2010). Following the injections
of increasing doses of lamprey-CRH, a dose-dependent response
was observed in both male and female lamprey. Concentrations
of S in control groups were consistent with those previously re-
ported in sea lamprey (Close et al., 2010), and showed very little
variation. The stimulation of S production by sea lamprey CRH sug-
gests that this peptide is exerting its corticoid steroidogenesis ef-
fects through the uncharacterized system in sea lamprey.

In fish, AVT is an important hormone that regulates many phys-
iological and behavioural functions, including response to stress,
osmoregulation, and reproduction (Balment et al., 2006). The re-
sults of our AVT injections revealed increased secretion of S into
sea lamprey plasma. The involvement of neurohypophysial hor-
mones and other neuroendocrine hormones in the regulation of
corticotropic functions in fishes has been known, including the
AVT and CRH/isotocin actions on ACTH secretion from pituitary
of goldfish and rainbow trout (Baker et al., 1996; Fryer et al.,
1985; Pierson et al., 1996), AVT and thyrotropin releasing hormone
(TRH) actions on ACTH release in goldfish (Fryer et al., 1985; Lede-
ris et al., 1994) and gilthead sea bream (Rotllant et al., 2000). The
participation of the neurohypophysial hormones in direct stimula-
tion of corticosteroid has been reported in amphibians (Larcher
et al., 1992a) and mammals (Aguilera et al., 2008), indicating that
the interplay between different hormonal axes or endocrine factors
is widely present in vertebrates, including fishes, as summarized
by Bernier and Klaren (2009). In a study using frogs, the stimula-
tory effect of AVT on corticosteroid secretion was found to be med-
iated through activation of receptors related to the mammalian V2
and/or OXT receptors in the interrenal tissues, which are positively
coupled to phophoinositide-specific phospholipase C (Larcher
et al., 1992b). In a recent study, Lema (2010) identified multiple
vasotocin receptors which include V1a-type, V1b-type, and V2 in
fish. Expression of the receptors was wide spread in tissues includ-
ing the kidney and gonads. In sea lamprey, AVT was isolated and
identified from pituitary extracts which was identical to the mole-
cule in teleosts (Lane et al., 1988). Over several decades, studies
have clearly shown that AVT is involved in the HPA axis. Further
studies are required to elucidate the mechanisms that AVT exerts
its corticotropic function in lamprey.
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significant, compared to control groups with the saline injection. Data are
mean ± SE. Asterisks indicate a significant (⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001)
difference relative to control.

S 
(p

g/
m

g)

0.0

2.0

4.0

6.0

8.0

Female control
Female ACTH

Kidney Gonad Gill Liver

0.0

1.0

2.0

Male control
Male ACTH

Fig. 5. Concentration of 17,21-dihydroxypregn-4-ene-3,20-dione (S) in tissues of
(A) adult male (n = 3) and (B) female sea lamprey after incubation with or without
ACTH treatment. The treatment groups were incubated with 100 ng/mL ACTH, after
which S concentrations were measured and compared. There was no statistically
significant difference found between the treatments. Data are mean ± SE.

22 B.W. Roberts et al. / General and Comparative Endocrinology 196 (2014) 17–25



In most vertebrates, ACTH is a critical component of the HPA/I
axis, acting on adrenal or interrenal tissues to stimulate the pro-
duction of corticosteroids. In an earlier study, Takahashi et al.
(1995) using a partial lamprey ACTH(1–43) sequence provided evi-
dence of functionality by conversion of S in incubations to DOC and
unknown products with pronephric and mesonephric tissues.
However, at that time it was unknown that S was the putative cor-
ticosteroid and not a precursor steroid. Later, four lamprey ACTH
peptides were identified and characterized, revealing that lamprey

ACTHs are 20–21 amino acids longer than those of more derived
vertebrates, to which they show very little similarity (Takahashi
and Kawauchi, 2006; Kawauchi and Sower, 2006; Takahashi
et al., 2006). Due to post-translational modifications, lamprey pro-
duce four unique ACTH peptides, whereas all other vertebrates
have one (Kawauchi and Sower, 2006). Unfortunately, in lamprey,
it remains unknown which sequences of the ACTH peptides are
necessary to stimulate biological activity, although it is known only
the first 24 amino acids including the NH2 terminal are required for

TLC Section No.
0 5 10 15 20

3 H
 R

ad
io

ac
tiv

ity
 (d

pm
)

0

1000

2000

3000

4000

5000
S 17αP

TLC Section No.
0 5 10 15 20

S 17αP

Retention time (min)
20 30 40 50 60 70

0

20000

40000

60000

80000

Retention time (min)
20 30 40 50 60 70

TLC Section No.
0 5 10 15 20

0

5000

10000

15000

20000
S
S-Acet

S-Acet

TLC Section No.
0 5 10 15 20

S
S-Acet

S

S 17αP

17αP

S

S S-Acet

A B

C D

E F

Fig. 6. Confirmation of 17,21-dihydroxypregn-4-ene-3,20-dione (S) production by mesonephric tissue. After incubation of tritiated 17aOH-progesterone with sea lamprey
mesonephric kidneys, the incubation media were extracted and analyzed by a series of analytical methods, including thin layer chromatography (TLC), HPLC, and TLC with
acetylated steroids. The analytical results for identification of produced S are presented in A, C, E for males and B, D, F for females in the order of TLC, HPLC, and TLC with
acetylated steroids. Note that arrows represent the elution points of standard S and 17aP.

B.W. Roberts et al. / General and Comparative Endocrinology 196 (2014) 17–25 23



stimulation of biological activity in mammals. (Li, 1963; Evans
et al., 1966; Hadley, 1992). In the present in vivo study the syn-
thetic copies of the four ACTH peptides, including free (ACTH59,
and ACTH60) and phosphorylated (ACTH59P and ACTH60P) forms
at a dose of 100 lg/kg failed to induce any changes in circulating
concentrations of S. These findings can be attributed to five possi-
ble reasons: (1) the ACTH forms used may not be the functional
pituitary adrenocorticotropic hormone (i.e., there might be other
ACTH forms or different peptides that exert adrenocorticotropic ef-
fects on interrenal tissues) (2) the full HPI axis involving the path-
way CRH – ACTH – corticosteroid may have evolved in vertebrates
after they split from the cyclostomes (i.e., the proposed lamprey
ACTHs may represent peptides that have not yet gained adrenal-
stimulating properties. (3) The ACTH molecules (which were made
synthetically) may not have formed an appropriate structural con-
formation for receptor binding. (4) The injected ACTH peptides
may have been rapidly degraded when injected; (5) despite our
previous results and its ability to respond to CRH, S may not be
the right steroid to be measuring (i.e., there may be another as
yet unknown steroid that functions as a corticosteroid and is
responsive to ACTH). Only further research will reveal the correct
answer.

Our study showed that lamprey GnRHI and GnRH III can stimu-
late the plasma concentrations of S in sea lamprey. It is well estab-
lished that pituitary gonadotropins (GTHs) under the control of
hypothalamic GnRH(s), play an important role in gametogenisis.
GTHs act by stimulating gonadal synthesis of steroid hormones.
In teleosts, spermatogenesis and oocyte growth are controlled by
11-ketotestosterone and estradiol-17b respectively (Nagahama,
1994). During final maturation, there is a steroidogenic shift in
the gonads to produce maturation-inducing hormone (MIH) (Naga-
hama, 1994). The MIHs control sperm maturation and oocyte
maturation in fish. The three known MIHs in fish are 17a,20b-
dihydroxy-4-pregnane-3-one (17a,20b-DP), 17a,20b,21 trihy-
droxy-4-pregnen-3-one (20b-S) (Senthilkumaran et al., 2004),
and 17,21-dihydroxypregn-4-ene-3,20-dione (S) (Webb et al.,
2002). These findings may suggest that S can be an MIH in lamprey,
since GnRHs can stimulate S production. However, we have ob-
served that in addition to S, 17a OH-P, 17a,20b-DP, and 20b-S
are stimulated after lamprey GnRH I and III injections (unpublished
data). It will be interesting to examine whether those three ste-
roids act as an MIH in lampreys, given that no MIH has been iden-
tified and characterized in the lamprey.

Previous studies suggest that stress responses can be mani-
fested not only by conventional HPI axis but also other pathways.
For example, acute stress has been shown to sharply elevate plas-
ma GTH and ACTH concentrations that can remain elevated up to
four hours in brown trout (Salmo trutta L.) (Pickering et al., 1987;
Sumpter et al., 1987). Furthermore, GTHs have been shown to
stimulate adrenal/interrenal steroidogenesis. Guinea pig adrenal
cells exposed to human chorionic gonadotropin were shown to
stimulate cortisol and androstenedione secretion in vitro (O’Con-
nell et al., 1994). ACTH, luteinizing hormone (LH) and partially
purified salmon gonadotropin (SG-G100) injected into gonadecto-
mised catfish (Heteropneustes fossilis) increased plasma cortisol
and androgen concentrations (Truscott et al., 1978). Goswami
et al. (1985) injected ovine LH and SG-G100 in hyposectomized
and intact gravid catfish which also increased plasma cortisol con-
centration in both treatments. In coho salmon (Oncorhynchus kis-
utch), interrenal incubations with SG-100 and a highly purified
chum salmon GTH (DE-46) demonstrated that both preparations
were extremely effective in stimulating the secretion of cortisol
and androstenedione equivalent to ACTH (Schreck et al., 1989).
We caution making inferences from the partially purified salmon
gonadotropin (SG-100) due to the possibility of cross contamina-
tion with ACTH. However, it is clear from these studies that GTHs,

specifically LH, can stimulate production of corticosteorids in ver-
tebrates. The presence of a single gonadotropin (GTHb) identified
in sea lamprey (Sower et al., 2006) and the stimulation of S produc-
tion by GnRH in the present study warrant further studies to exam-
ine the regulation of stress responses by non-conventional
pathways.

The in vitro corticosteroidogenesis experiments performed in
the present study demonstrated that the anterior mesonephric kid-
neys of the sea lamprey are possibly an endocrine organ. The mea-
surement of S concentrations in various tissues, followed by
in vitro incubation of the mesonephric kidney with 3H precursor,
17aP which was able to convert to S. The probable identity of S
in the mesonephric tissue was based on TLC, HPLC and acetylation
of radioactive product and RIA of non-radioactive product. In agna-
than fishes, lampreys and hagfish, the identity of interrenal tissue
still remains elusive, even though there have been many studies
describing sterodogenic tissues called presumptive adrenalcortical
tissue (PAT). As summarized in a recent review paper by Youson
(2007), the pronephric and opisthonephric tissues of lampreys
seem to display some anatomical, biochemical, and histochemical
evidence to suggest they might be involved in pituitary-PAT axis
(Seiler et al., 1981; Youson, 1972; Weisbart and Youson, 1975).
However, the consensus on the identity of the PAT still awaits fur-
ther scientific assertion. Therefore, further work is needed to
examine the controlling factors and production of S in presumed
adrenal tissues and gonads.

In conclusion, the present study demonstrates that not just
CRH, but also AVT and GnRH, are able to stimulate S production,
and that lamprey mesonephric tissues appear to be the main site
of production of S. The lack of activity of ACTH indicates either a
methodological problem (e.g., instability of the peptides) or that,
if S is a corticosteroid, then its regulation in the lamprey is very dif-
ferent from that in higher vertebrates. To comprehensively under-
stand mechanisms underlying stress physiology in lamprey,
further research is required, including: (1) identification and char-
acterization of a functional ACTH-like molecule; (2) regulatory
mechanisms of lamprey CRH on lamprey ACTH; (3) elucidation of
corticotropic mechanisms of endocrine factors such as AVT and
GnRHs; (4) establishment of a network of endocrine systems that
regulate stress responses; (5) feedback regulation of nereurohypo-
physial and pituitary hormones by S. The results from such pro-
posed research may provide clues to answer questions regarding
the evolution of corticosteroid signaling pathways in the early ver-
tebrate linage.
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