University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Papers in Veterinary and Biomedical Science

Veterinary and Biomedical Sciences, Department of

2014

Novel Gammaherpesvirus Functions 1 Encoded by Bovine herpesvirus (Bovine Lymphotropic virus)

J. Jia College of Animal Veterinary Medicine, Sichuan Agricultural University, niversity of Illinois

G. Delhon University of Nebraska-Lincoln, gdelhon3@Unl.edu

E. R. Tulman University of Connecticut

D. G. Diel University of Illinois at Urbana-Champaign

Fernando A. Osorio *University of Nebraska-Lincoln*, fosorio1@unl.edu

Followathis and additional works at: https://digitalcommons.unl.edu/vetscipapers

Part of the <u>Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental</u> <u>Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons,</u> <u>Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and</u> <u>Pathobiology Commons</u>

Jia, J.; Delhon, G.; Tulman, E. R.; Diel, D. G.; Osorio, Fernando A.; Wen, X.; Kutish, G. F.; and Rock, D. L., "Novel Gammaherpesvirus Functions 1 Encoded by Bovine herpesvirus (Bovine Lymphotropic virus)" (2014). *Papers in Veterinary and Biomedical Science*. 145. https://digitalcommons.unl.edu/vetscipapers/145

This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

J. Jia, G. Delhon, E. R. Tulman, D. G. Diel, Fernando A. Osorio, X. Wen, G. F. Kutish, and D. L. Rock

1	
-	

1 2	Title: Novel Gammaherpesvirus Functions Encoded by Bovine herpesvirus 6 (Bovine Lymphotropic virus)
3	
4	Running title: Bovine herpesvirus 6
5	
6	Short Communication
7	
8	Authors: J. Jia, ^{1,2} G. Delhon, ³ E. R. Tulman, ⁴ D. G. Diel, ² F. A. Osorio, ³ X. Wen, ¹ G. F.
9	Kutish, ⁴ and D. L. Rock ²
10 11 12 13	¹ Laboratory of Animal Infectious Disease and Microarray/Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Animal Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
14	² Department of Pathobiology, College of Veterinary Medicine, University of
15	Illinois, Urbana, Illinois, USA.
16 17	School of Veterinary Medicine & Biomedical Sciences and Nebraska Center for Virology University of Nebraska Lincoln, Nebraska USA
18	⁴ Department of Pathobiology and Veterinary Science and Center of Excellence
19	for Vaccine Research. University of Connecticut, Storrs, Connecticut, USA.
20	,,,,,,,,,,
21	
22	Corresponding author: D. L. Rock. Department of Pathobiology, College of Veterinary
23	Medicine, University of Illinois at Urbana-Champaign, 2830 Vet.
24	Med. Basic Sciences Building, MC-002, 2001 S. Lincoln Avenue,
25	Urbana, IL 61802, USA. Phone (217) 244-0533. Fax: (217) 244-
26 27	/421. E-mail: <u>dirock@illinois.edu</u>
28	Words Summary: 139
29	Words Main Text: 2447
30	Number of Figures and Tables: 2 Figures, 1 Table
31	GenBank accession number: KJ705001.
32	Note: Jia, Delhon, and Tulman have made equal contributions to this manuscript.
33	
34	Abbreviations: GHV, gammaherpesvirus; ODC, ornithine decarboxylase.

35 Abstract

The genus Macavirus of the subfamily Gammaherpesvirinae includes viruses that infect lymphoid cells of domestic and wild ruminants and swine, causing asymptomatic latent infections in reservoir hosts. Here, we describe the genome of bovine herpesvirus 6 (BoHV-6), a macavirus ubiquitous in healthy cattle populations. The BoHV-6 genome exhibited architecture conserved in macaviruses, including a repetitive H-DNA region and unique, 141 kilobase pair L-DNA region predicted to encode 77 genes. BoHV-6 encoded in variable genomic regions a novel complement of genes relative to other characterized macaviruses, likely contributing to distinctive aspects of BoHV-6 infection biology and host range. Most notably, BoHV-6 encoded the first herpesviral protein (Bov2.b2) similar to cellular ornithine decarboxylase, an enzyme that catalyzes the first and rate-limiting step in the biosynthesis of polyamines. Bov2.b2 conceivably mediates a novel mechanism by which BoHV-6 promotes cell cycle-dependent viral replication.

60 The subfamily Gammaherpesvirinae includes human and animal herpesviruses that preferentially infect lymphoid cells, where they establish latent infections and, for select viruses, 61 62 cause malignant cell transformation. The gammaherpesvirus (GHV) genus Macavirus currently includes nine species, the type species alcelaphine herpesvirus 1 (AlHV-1), AlHV-2, ovine 63 64 herpesvirus 2 (OvHV-2), caprine herpesvirus 2 (CprHV-2), bovine herpesvirus 6 (BoHV-6), hippotragine herpesvirus 1, and suid herpesviruses (SuHV; previously known as porcine 65 lymphotropic viruses) 3, 4 and 5. Related yet uncharacterized viruses have been detected in 66 blood from a wide range of healthy wild ruminants (Li et al., 2005). 67

Macaviruses infect domestic and wild ruminants and swine, causing asymptomatic 68 infections in reservoir hosts (Ackermann, 2006). When infecting other species, however, 69 70 macaviruses can cause disease. For example, AlHV-1 and OvHV-2 cause subclinical infections 71 in reservoir wildebeest and sheep, respectively, but in cattle and other ruminants cause malignant 72 catarrhal fever, an often-fatal lymphoproliferative disease characterized by accumulation of 73 lymphocytes in a variety of organs (Russell et al., 2009; O'Toole & Li, 2014). Other 74 macaviruses, including BoHV-6 and SuHV-3, 4 and 5, have not been associated with natural 75 disease in either reservoir or heterologous species despite being prevalent in cattle and swine 76 (Van der Maaten et al., 1972; Rovnak et al., 1998; Ehlers et al., 1999; Chmielewicz et al., 2003).

77 BoHV-6, previously known as bovine lymphotropic virus, was first isolated from leukocytes of lymphosarcomatous cattle in the United States, and subsequently reported in 78 Europe and Canada (Van der Maaten et al., 1972; Cobb et al., 2006; Gagnon et al., 2010; 79 80 Garigliany et al., 2013; Kubiś et al., 2013). The US isolate, strain Pennsylvania 47, is strongly cell-associated, syncytiogenic, slow to grow in tissue culture, and serologically related to bovine 81 82 GHVs (Van der Maaten et al., 1972; Osorio et al., 1985). Phylogenetic analysis showed that BoHV-6, together with current macaviruses, represented a group distinct from other GHVs 83 (Rovnak et al., 1998; Chmielewicz et al., 2001). Notably, BoHV-6-specific DNA sequences 84 were detected in peripheral blood mononuclear cells from 52-87% and 30% of healthy adult 85 86 cattle and calves sampled, respectively (Rovnak et al., 1998; Collins et al., 2000; Kubiś et al., 2013). Together, these results indicate that BoHV-6 is ubiquitous in healthy cattle and suggest 87 88 that infection occurs at a young age. Although BoHV-6 DNA has been detected in cows with reproductive conditions, experimental data supporting a causative association between BoHV-6 89

and disease is lacking (Cobb *et al.*, 2006; Garigliany *et al.*, 2013; Banks *et al.*, 2008; Gagnon *et al.*, 2010). The transmission mode of BoHV-6 is unknown.

Macaviruses genomes (AlHV-1 and OvHV-2) indicate overall structure similar to 92 genomes of viruses from the genus Rhadinovirus and the reference sequence from herpesvirus 93 saimiri (HVS) (Albrecht et al., 1992). This includes a single, unique coding region of low G+C 94 content (L-DNA) and a repetitive region of high G+C (H-DNA). Comparative analyses 95 demonstrated organizational conservation, but sequence divergence within coding regions and 96 97 variable gene content located between larger conserved regions in the L-DNA fragment (Ensser et al., 1997; Hart et al., 2007; Goltz et al., 2002). These data provide a basis for understanding 98 99 differences in macavirus infection biology. Here we present genomic sequence and analysis of 100 the genome of the macavirus BoHV-6, strain Pennsylvania 47.

101 High throughput sequencing of BoHV-6 was conducted to assemble complete BoHV-6 L-DNA genomic sequences. Total DNA was extracted from the supernatant of Madin Darby 102 Bovine Kidney cells (MDBK; ATCC® CCL22TM) infected with BoHV-6 strain Pennsylvania 47 103 using the QIAamp DNA Blood Mini Kit (Qiagen, Carlsbad, CA). DNA was used for library 104 105 preparation using the Nextera XT sample preparation kit (Illumina, San Diego, CA). Sequencing was performed using the Illumina MiSeqV3 platform at the University of Illinois Biotechnology 106 107 Center, and data were assembled with Ray (Boisvert et al., 2010). The BoHV-6 sequence was deposited in GenBank under accession no. KJ705001. 108

Overall the BoHV-6 genome was similar in structure to other macavirus genomes (Essner 109 110 et al., 1997; Hart et al., 2007), including unique L-DNA coding sequences and a repetitive H-DNA region with repeats of 1022 base pairs (bp). Data resolved the genome except across the H-111 112 DNA repeat, of which two copies assembled at each contig termini, yielding a final linear contig 113 of 144898bp. Mapping data (1,128,744 paired-end 250bp reads mapped) to the assembled contig (Gordon & Green, 2013) allowed estimation of at least ten copies of the H-DNA repeat in the 114 BoHV-6 genome. Additional high-scoring repeat sequences within the L-DNA segment at 115 positions 15.5-17.7 kbp, 46.3-47.2 kbp, and 130.3-134 kbp were identified (Rice et al., 2000; 116 117 Betley et al., 2002).

Coding potential of BoHV-6 was similar to sequenced macaviruses. ORFs were 118 identified using EMBOSS and GeneMarkS and analyzed using BLAST and FASTA packages 119 120 (Altschul et al., 1990; Besemer et al., 2001; Pearson & Lipman, 1988). BoHV-6 was predicted to contain 77 genes, with the majority representing homologues of conserved rhadinovirus genes 121 122 (Albrecht et al., 1992, Ensser et al., 1997, Hart et al., 2007) (Table 1). BoHV-6 contained ORFs (Bov2, ORF29, ORF40/ORF41, ORF50, Bov6, Bov8, ORF57) predicted to be spliced based on 123 124 conservation with OvHV-2 and other GHV (Wang and Marín, 2006) (Table 1). BoHV-6 homologues of macavirus genes were similarly arranged in syntenic blocks of conserved GHV 125 126 core genes, with rhadinovirus-specific genes and noncoding regions interspersed between and adjacent to syntentic blocks (Table 1). The sizes of these variable regions differed between 127 macaviruses, with the block I/II and block IV/right terminal junction sequences differing in size 128 by up to approximately 5.5kbp. Notably, the variable left-end L-DNA sequence was twice as 129 large in BoHV-6 as in OvHV-2 and AlHV-1 (approximately 26kbp vs 12kbp). Several ORFs 130 unique to BoHV-6 were identified in this region; however, the variable left-end sequence lacking 131 obvious coding potential remained large (approximately 16 kbp) relative to OvHV-2 and AlHV-132 133 1.

134 BoHV-6 herpesvirus gene orthologues were generally most similar to those from AlHV-1 135 and OvHV-2, sharing an average of 50% amino acid identity. This was consistent with previous 136 analysis of nearly identical sequence from the virus initially characterized as BoHV-6 (99% identity to GenBank accession no. AF031808 within the DNA polymerase gene) (Rovnak et al., 137 138 1998), which demonstrated BoHV-6 to cluster within the macavirus tree, closer to but distinct 139 from a AlHV1/OvHV2/CprHV2 subgroup relative to SuHV-3, 4 and 5 (Chmielewicz et al., 140 2003; Ehlers & Lowden, 2004). This relationship was confirmed by analysis of multigene data available using genomic sequence presented here, suggesting that BoHV-6 is a macavirus 141 distinct from porcine and AlHV-1/OvHV-2 sublineages (Fig. 1). ORF019 through ORF046 were 142 concatenated, aligned (Katoh & Kuma, 2002), screened for conserved sequence (Castresana, 143 144 2000), and 7710 aligned amino acids used for maximum likelihood analysis (Guindon & Gascuel, 2003). Novel viruses that group closely with BoHV-6 relative to OvHV-2 and AlHV1, 145 defining sublineages of ruminant herpesviruses, have been described (Ehlers & Lowden, 2004). 146 147 Thus, the BoHV-6 sequence presented here likely represents a prototype for one of these 148 sublineages.

149 BoHV-6 contains a novel complement of genes relative to characterized macaviruses and GHVs. These included Bov2, Bov4.5, Bov5, Bov6, Bov7, Bov8, and Bov9 (Table 1). Like 150 AlHV-1 and OvHV-2, BoHV-6 contained two genes, Bov4.5 and Bov9, encoding Bcl-2 151 152 homologues, with Bov4.5 a homologue of EBV BALF1, known to affect apoptosis in vitro and 153 in vivo (Bellows et al., 2002). Bov5 encoded a G protein-coupled receptor (GPCR) homolog of 154 GHV proteins, including those affecting viral oncogenesis and pathobiology as constitutively 155 active GPCRs and/or mediators of immune evasion (Paulsen et al., 2005; Zuo et al., 2009). Bov8 was a homologue of putative macavirus glycoproteins and positionally similar to rhadinovirus 156 157 cell-binding glycoproteins, including BoHV-4 Bo10 which is alternatively spliced to affect cell tropism (Machiels et al., 2011; Machiels et al., 2013). Bov2 and Bov6 shared limited similarity 158 159 to spliced GHV genes which encode known or predicted transcription factors. Notably, BoHV-6 contained sequences (position 10594-10822) similar to the C-terminal two (of five) exons of 160 161 cellular and OvHV-2 (Ov2.5) Interleukin-10 (IL-10). While C-terminal peptides of cellular IL-10 may exhibit a range of immunological properties (Gesser, 1997), presence of these sequences in 162 BoHV-6 in the absence of obvious N-terminal exons suggests that novel spliced viral IL-10 163 164 variants may occur in BoHV-6. BoHV-6 lacked obvious homologues of genes present in AlHV-1 and OvHV-2, including the semaphorin present in other GHVs and speculated to involve 165 modulation of host immune responses. Absent in BoHV-6 were macavirus ORFs of unknown 166 167 function, including A1 from AlHV-1, ORF3.5 putative secreted protein from OvHV-2, ORF8.5 168 repeat protein from OvHV-2, and A10/Ov10 putative nuclear protein from AlHV-1 and OvHV2. Contributing to the novel BoHV-6 gene complement were BoHV-6 ORFs absent in other 169 170 macaviruses (Table 1). Four of these were small, novel ORFs dispersed across the large left terminal genomic region. Other BoHV-6-specific genes were located between conserved blocks 171 172 II/III (Bov11.b2) and in the right terminal region. These novel ORFs conceivably confer novel function to BoHV-6 relative to macavirus relatives. 173

Most notably, BoHV-6 encoded a protein (Bov2.b2) similar to cellular ornithine decarboxylase (ODC). ODC-like proteins include ODC, which catalyzes the first and ratelimiting step in the biosynthesis of polyamines, and antizyme inhibitor (AZI) of ODC, an ODClike protein involved in ODC regulation but lacking decarboxylase activity. Polyamines are small cationic organic molecules affecting many cellular processes, including cell proliferation (Cohen, 1998). Active ODC is a homodimer bound to essential cofactor pyridoxal phosphate (PLP). ODC is regulated at the transcriptional, translational, and posttranslational levels, the latter operating through protein degradation (Pegg, 2006). ODC is highly labile and has a very short half-life, with its abundance regulated by a family of polyamine-induced proteins called

antizymes, which bind to and inactivate ODC by preventing dimerization and targeting enzyme monomers for ubiquitin-independent, 26S proteasome-dependent proteolysis (For reviews, see Coffino, 2001; Pegg, 2006). In ODC, an N-terminal domain is required for high affinity antizyme binding, while C-terminal PEST element and adjacent sequences control antizymemediated proteolysis (Ghoda *et al.*, 1989, Li & Coffino, 1992). Indirect control of ODC activity is mediated by AZI, which binds antizyme to release, and effectively prevent degradation of, ODC. AZI thus is a positive regulator of the polyamine pathway.

Bov2.b2 was 53-56% and 42-44% amino acid identical to vertebrate ODC and AZI, 191 respectively, and encoded 238-residue N-terminal PLP-binding (PFAM PF02784.8) and 114-192 193 residue C-terminal (PFAM PF00278.14) domains. Bov2.b2 contained the 18 amino acids 194 required for decarboxylase activity (Fig. 2), including residues homologous to human Lys69, critical for PLP binding, and Cys360, believed to perform the nucleophilic attack of ornithine, 195 196 and several residues involved in PLP stabilization, substrate interaction, protein dimerization, and domain structure (Peg, 2006; Ivanov et al., 2010). Among the latter are four residues 197 198 (Asp88, Arg154, Arg277, and Tyr389) that are not conserved in AZI. Likewise, the putative 199 antizyme binding site in Bov2.b2 was more similar to the homologous site in ODC than in AZI 200 (68% vs 54% amino acid identity, respectively). The only residue directly contacting substrate 201 and differing between Bov2.b2 and mammalian ODC was at position 332 (Figure 2), one of 202 several residues affecting substrate preference (Shah et al., 2004). Similar to AZI, Bov2.b2 203 lacked 23 C-terminal residues that comprise most of the mammalian ODC PEST element. Also 204 lacking in Bov2.b2 and AZI were the last five amino acids of mammalian ODC (ASINV), which have been shown to affect ODC stability (Ghoda et al., 1989; Ghoda et al., 1992; Macrae & 205 206 Coffino, 1987). Together, data suggest that Bov2.b2 encodes a bona fide decarboxylase that 207 might exhibit enhanced stability in virus-infected cells relative to host ODC. However, a possible 208 role for Bov2.b2 as a novel AZI can not be excluded.

209

180

181

182

183

Bov2.b2 is the first reported ODC-like protein encoded in a fully nuclear-replicating

210 virus. Viral ODC-like genes have been previously reported only in three nucleocytoplasmic large DNA viruses (NCLDVs). These include chlorella viruses, which infect chlorella-like green 211 212 algae, Yoka poxvirus, a virus isolated from mosquitos, and mimivirus Cafeteria roenbergensis virus, which infects zooplankton (Lu et al., 1996; Zhao et al., 2011; Fisher et al., 2010). 213 214 Catalytic activity has only been demonstrated for decarboxylase of Paramecium bursaria chlorella virus 1 (PBCV-1) (Morehead et al, 2002). Bov2.b2 was less similar to NCLDV ODCs 215 216 (29% and 40% amino acid identity) than to mammalian ODC, however, likely reflecting independent acquisitions of host genes and potentially a novel role during infection. 217

The role(s) of viral ODC/AZI (or even polyamines) during infection remains unknown. 218 In terms of polyamine dynamics, viral expression of either an ODC or an AZI should in principle 219 220 lead to increased polyamine synthesis. Polyamines are essential molecules implicated in various cellular functions, including cell cycle and proliferation. The pro-proliferative role of polyamines 221 has received particular attention, as ODC and polyamines are required for G₁ progression and 222 223 cell transformation, and ODC is a critical target for the oncogene Myc, known for its ability to 224 drive quiescent cells into the cell cycle (Auvinen et al., 1992; Gerner & Meyskens, 2004; Nilsson 225 et al., 2004). Responsiveness of mammalian ODC to Myc relies on two conserved Myc-binding 226 sites (E boxes, CAYGTG) mapping to ODC regulatory sequences (Bello-Fernandez et al., 1993). 227 Notably, three E-boxes are found in sequences upstream *Bov2.b2* at positions -1770 and -2352 228 (CACGTG), and at position -471 (CATGTC) relative to the translational start, suggesting that 229 Bov2.b2 expression is controlled by Myc. Herpesviruses are known for inducing cellular changes 230 associated with cell cycle entry, thus creating an environment suitable for viral DNA replication. 231 Such reprogramming seems particularly important for viruses infecting quiescent cells. 232 Conceivably, either as an ODC or as an AZI, Bov2.b2 might mediate a novel, perhaps complementary strategy by which BoHV-6 promotes cell cycle-dependent viral replication. 233

234

235 Acknowledgements

We thank Jim Van Etten and David Dunigan (Nebraska Center for Virology) for helpfuldiscussion of the manuscript.

239

240 **References**

- Ackermann, M. (2006). Pathogenesis of gammaherpesvirus infections. *Vet Microbiol* 113, 211-222.
- Albrecht, J.-C., Nicholas, J., Biller, D., Cameron, K. R., Biesinger, B., Newman, C., Wittmann, S.,
- Craxton, M. A., Coleman, H., Fleckenstein, B. & and Honess, R. W. (1992). Primary structure of the
 herpesvirus saimiri genome. *J Virol* 66, 5047–5058.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
 search tool. *J Mol Biol* 215, 403–410.
- Auvinen, M., Paasinen, A., Andersson, L. C. & Hölttä, E. (1992). Ornithine decarboxylase activity is
 critical for cell transformation. *Nature* 360, 355-358.
- Banks, M., Ibata, G., Murphy, A. M., Frossard, J. P., Crawshaw, T. R. & Twomey, D. F. (2008).
 Bovine lymphotropic herpesvirus and non-responsive post-partum metritis in dairy herds in the UK. *Vet J*176, 248-250.
- Bello-Fernandez, C., Packham, G. & Cleveland, J. L. (1993). The ornithine decarboxylase gene is a
 transcriptional target of c-Myc. *PNAS* 90, 7804-7808.
- Bellows, D. S., Howell, M., Pearson, C., Hazlewood, S. A. & Hardwick, J. M. (2002). Epstein-Barr
 virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. *J Virol* 76, 2469-2479.

Besemer, J., Lomsadze, A., & Borodovsky, M. (2001). GeneMarkS: a self-training method for
 prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory
 regions. *Nucleic Acids Res* 29, 2607-2618.

- Betley, J. N., Frith, M. C., Graber, J. H., Choo, S. & Deshler, J. O. (2002). A ubiquitous and
 conserved signal for RNA localization in chordates. *Current Biology* 12, 1756-1761.
- Boisvert, S., Laviolette, F. & Corbeil, J. (2010). Ray: simultaneous assembly of reads from a mix of
 high-throughput sequencing technologies. *J Comp Biol* 17, 1519-1533.
- Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in
 phylogenetic analysis. *Mol Biol Evol* 17, 540-552.
- Chmielewicz, B., Goltz, M. & Ehlers, B. (2001). Detection and multigenic characterization of a novel
 gammaherpesvirus in goats. *Virus Res* 75, 87-94.

Chmielewicz, B., Goltz, M., Franz, T., Bauer, C., Brema, S., Ellerbrok, H., Beckmann, S., Rziha, HJ., Lahrmann, K-H., Romero, C. & others. (2003). A novel porcine gammaherpesvirus. *Virology* 308, 317-329.

Cobb, S.P., Banks, M., Russell, C. & Thorne, M. (2006). Bovine lymphotropic herpesvirus in a UK
 dairy herd. *Vet Rec* 158, 807-808.

- 273 Coffino, P. (2001). Antizyme, a mediator of ubiquitin-independent proteasomal degradation. *Biochimie*274 83, 319-323.
- 275 **Cohen, S.S. (1998).** A guide to the polyamines, 1st edn. Oxford University Press, USA.
- 276 Collins, J. K., Bruns, C., Vermedahl, T. L., Schiebel, A. L., Jessen, M. T., Schultheiss, P. C.,
- 277 Anderson, G. M., Page Dinsmore, R., Callan, R. J. & DeMartini, J. C. (2000). Malignant catarrhal
- 278 fever: polymerase chain reaction survey for ovine herpesvirus 2 and other persisyent herpesvirus and
- 279 retrovirus infections of dairy cattle and bison. *J Vet Diagn Invest* **12**, 406-411.
- Ehlers, B., Ulrich, S. & Goltz, M. (1999). Detection of two novel herpesviruses with high similarity to
 gammaherpesviruses. *J Gen Virol* 80, 971-978.
- Ehlers B. & Lowden, S. (2004). Novel herpesviruses of Suidae: indicators for a second genogroup of
 artiodactyl gammaherpesviruses. *J Gen Virol* 85, 857-62.
- Ensser, A., Pflanz, R. & Fleckenstein, B. (1997). Primary structure of the acelaphine herpesvirus 1
 genome. *J Virol* 71, 6517-6525.
- Fisher, M. G., Allen, M. J., Wilson, W. H. & Suttle, C. A. (2010). Giant virus with a remarkable
 complement of genes infects marine zooplankton. *PNAS* 107, 19508-19513.
- Gagnon, C. A., Allam, O., Drolet, R. & Tremblay, D. (2010). Detection of bovine lymphotropic
 herpesvirus DNA in tissues of a bovine aborted fetus. *Can Vet J* 51, 1021-1022.
- Garigliany, M-M., Bayrou, C., Cassart, D., Jolly, S. & Desmecht, D. (2013). Bovine lymphotropic
 herpesvirus detected in Belgium. *Vet Rec* 172, 535-536.
- Gerner, E.W. & Meyskens, F. L. Jr. (2004). Polyamines and cancer: old molecules, new understanding.
 Nat Rev Cancer 4, 781-792.
- Gesser, B., Leffers, H., Jinquan, T., Vestergaard, C., Kirstein, N., Sindet-Pedersen, S., Jensen, S.
 L., Thestrup-Pedersen, K., & Larsen, C. G. (1997). Identification of functional domains on human interleukin 10. *PNAS* 94, 14620-14625.
- 297
 298 Ghoda, L., van Daalen Wetters, T., Macrae, M., Ascherman, D. & Coffino, P. (1989). Prevention of
 299 rapid intracellular degradation of ODC by a carboxyl-terminal truncation. *Science* 243,1493–1495.
- 300 Ghoda, L., Sidney, D., Macrae, M. & Coffino, P. (1992). Structural elements of ornithine
- decarboxylase required for intracellular degradation and polyamine-dependent regulation. *Mol Cell Biol* 12, 2178–2185.
- 303 Goltz, M., Ericsson, T., Patience, C., Huang, C. A., Noack, S., Sachs, D. H. & Ehlers, B. (2002).
- Sequence analysis of the genome of porcine lymphoproliferative herpesvirus 1 and gene expression
 during posttransplant lymproproliferative disease in pigs. *Virology* 294, 383-393.
- Gordon, D. & Green, P. (2013). Consed: A graphical editor for next-generation sequencing.
 Bioinformatics 29, 2936-2937.

- Guindon, S. & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies
 by maximum likelihood. *Syst Biol* 52, 696-704.
- Hart, J., Ackermann, M., Jayawardane, G., Russell, G., Haig, D. M., Reid, H. & Stewart, J. P.
- 311 (2007). Complete sequence and analysis of the ovine gerpesvirus 2 genome. *J Gen Virol* 88, 28-39.
- Katoh, M. & Kuma, M. (2002). MAFFT: a novel method for rapid multiple sequence alignment based
 on fast Fourier transform. *Nucleic Acids Res* 30, 3059-3066.
- Ivanov, I. P., Firth, A. E. & Atkins, J. F. (2010). Recurrent emergence of catalytically inactive ornithine
 decarboxylase homologous forms that likely have regulatory function. *J Mol Evol* 70, 289-302.
- Kubiś, P., Materniak, M. & Kuźmak, J. (2013). Comparisin of nested PCR and qPCR for the detection
 and quantitation of BoHV6 DNA. *J Virol Meth* 194, 94-101.
- Li, H., Gailbreath, K., Flach, E. J., Taus, N. S., Cooley, J., Keller, J., Russell, G. C., Knowles, D. P.,
- Haig, D. M., Oaks, G. C. & others. (2005). A novel group of rhadinoviruses in ruminants. *J Gen Virol*86, 3021-3026.
- Li, X. & Coffino, P. (1992). Regulated degradation of ornithine decarboxylase requires interaction with
- the polyamine-inducible protein antizyme. *Mol Cell Biol* **12**, 3556–3562.
- Lu, Z., Li, Y., Que, Q., Kutish, G. F., Rock, D. L. & Van Etten, J. L. (1996). Analysis of 94 kb of the chlorella virus PBCV-1 330-kb genome: map positions 88 to 182. *Virology* **216**, 102-123.
- Machiels, B., Lété, C., de Fays, K., Mast, J., Dewals, B., Stevenson, P.G., Vanderplasschen, A.,
- Gillet, L. (2011). The bovine herpesvirus 4 Bo10 gene encodes a nonessential viral envelope protein that regulates viral tropism through both positive and negative effects. J. Virol. 85:1011-24.
- 328
- 329 Machiels, B., Stevenson, P. G., Vanderplasschen, A., Gillet, L. (2013). A Gammaherpesvirus Uses
- Alternative Splicing to Regulate Its Tropism and Its Sensitivity to Neutralization. *PLoS Pathog.* 9:
 e1003753.
- 332
- 333 **Macrae, M. & Coffino, P. (1987).** Complementation of a poly-amine-deficient *Escherichia coli* mutant 334 by expression of mouse ornithine decarboxylase. *Mol Cell Biol* **7**, 564-567.
- 335 Morehead, T. A., Gurnon, J. R., Adams, B., Nickerson, K. W., Fitzgerald, L. A. & Van Etten, J. L.
- 336 (2002). Ornithine decarboxylase encoded by chlorella virus PBCV-1. *Virology* **301**, 165-175.
- 337 Nilsson, J. A., Maclean, K. H., Keller, U. B., Pendeville, H., Baudino, T. A. & Cleveland, J. L.
- 338 (2004). *Mnt* loss triggers myc transcription targets, proliferation, apoptosis, and transformation. *Mol Cel*
- *Biol* **24**, 1560-1569.
- 340 Osorio, F.A., Reed, D.E., Van Der Maaten, M. J. & Metz, C. A. (1985). Comparison of the
- herpesviruses of cattle by DNA restriction endonuclease analysis and serologic analysis. *Am J Vet Res*46, 2104-2109.
- 343 **O'Toole, D. & Li, H. (2014).** The pathology of malignant catarrhal fever, with emphasis on ovine
- herpesvirus 2. *Vet Path* **51**, 437-452.

- Paulsen, S. J., Rosenkilde, M. M., Eugen-Olsen, J. & Kledal, T. N. (2005). Epstein-Barr virus-encoded
 BILF1 is a constitutively active G protein-coupled receptor. *J Virol* 79,536-546.
- Pearson, W. R. & Lipman, D. J. (1988). Improved tools for biological sequence comparison. *PNAS* 85, 2444–2448.
- 349 Pegg, A. E. (2006). Regulation of ornithine decarboxylase. *J Biol Chem* 281, 14529-14532.
- Rice, P., Longden, I. & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software
 Suite. *Trends in Genetics* 16, 276-277.
- Rovnak, J., Quackenbush, S. L., Reyes, R. A., Baines, J. D., Parrish, C. R. & Casey, J. W. (1998).
 Detection of a novel bovine lymphotropic herpesvirus. *J Virol* 72, 4237-4242.
- Russell, G. C., Stewart, J. P. & Haig, D. M. (2009). Malignant catarrhal fever: A review. *Vet J* 179:
 324-335.
- Shah, R., Coleman, C. S., Mir, K., Baldwin, J., Van Etten, J. L., Grishin, N. V., Pegg, A. E., Stanley,
- **B. A. & Phillips, M. A. (2004).** *Paramecium bursaria* chlorella virus-1 encodes an unusual arginine
- decarboxylase that is a close homolog of eukaryotic ornithine decarboxylases. *J Biol Chem* 279, 3576035767.
- 360 Van Der Maaten, M. J. & Boothe, A. D. (1972). Isolation of a herpes-like virus from
- 361 lymphosarcomatous cattle. Archi Gesamte Virusforsch **37**, 85-96.
- Wang, M. and Marín A. (2006). Characterization and Prediction of Alternative Splice Sites. *Gene* 366:
 219-227
- 364 Zhao, G., Droit, L., Tesh, R. B., Popov, V. L., Little, N. S., Upton, C., Virgin, H. W. & Wang, D.
- 365 (2011). The genome of Yoka poxvirus. *J Virol* **85**, 10230-10238.
- 366 Zuo, J., Currin, A., Griffin, B. D., Shannon-Lowe, C., Thomas, W. A., Ressing, M. E., Wiertz, E. J.
- 367 H. J. & Rowe, R. (2009). The Epstein-Barr virus G-protein-coupled receptor contributes to immune
- evasion by targeting MHC Class I molecules for degradation. *PLoS Pathog* **5**, e1000255.
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376

377 Figure Legends

Figure 1. Phylogenetic analysis of BoHV-6. Maximum likelihood tree from concatenated
protein datasets (ORF19 through ORF46). GenBank accession nos. are noted with appropriate
taxa. Bootstrap analysis (100 replicates) indicated 100% support at all nodes.

381

Figure 2. Clustalw alignment of BoHV-6 and select mammalian ODC amino acid sequences. 382 383 Numbers on the right indicate amino acid positions for human ODC. Full- and dash-lined boxes indicate PLB-binding and C-terminal domains, respectively. Columns highlighted in grey 384 385 indicate key residues associated with decarboxylase activity as determined by crystalographic and mutagenesis analysis of ODC (Ivanov et al., 2010). The underlined sequence corresponds to 386 387 the antizyme binding site as determined for mouse ODC; indicated with an arrow (\downarrow) is position 332 associated with substrate preference. Asterisks [*], colons [:], and periods [.] below the 388 389 alignment indicate fully, strongly, and weakly conserved, residues, respectively.

390

391

TABLE 1: BoHV6 ORFs

Gene BoHV-6					Description/Putative function	OvH	V-2 ¢		AlHV		SuHV-4				
	Nucleotide				%	Hit		%	Hit		%	Hit			
Block	ORF *	Exon	Str ¶	Position	len		len	ld #	len	len	Id	len	len	ld	len
Left	Bov1.b1	+ 2840-333		2840-3331	164										
	Bov1.b2		+ 4522-5184		221										
	Bov2	2	-	9763-8687											
	Bov2	1	-	10092-9874	432	Basic leucine-zipper motif protein	186	26	97	199	30	86			
	Bov2.5		+	10763-10822	20	Interleukin-10 fragment	182	50	14						
	Bov2.b1		-	17950-17441	170		390	35	97						
	Bov2.b2		+	20087-21379	431	ornithine decarboxylase									
	Bov2.b3		-	22017-21499	173										
	ORF3		+	24552-28688	1379	tegument protein/v-FGAM-synthetase	1361	37	1324	1369	35	1391	1378	36	1406
	Bov4.5		+	28868-29413	182	vBcl-2; EBV BALF1 homolog	212	34	165	231	35	165	178	38	174
Ι	ORF6		+	29569-32967	1133	single-stranded DNA binding protein	1129	66	1133	1127	63	1133	1126	59	1133
	ORF7		+	33024-35072	683	terminase subunit	682	54	677	680	55	684	675	55	688
	ORF8		+	35068-37638	857	glycoprotein B	863	65	751	854	62	803	876	59	790
	ORF9		+	37914-40904	997	DNA polymerase	998	67	994	1026	66	996	1004	65	1001

	Bov5	+	41188-42117	310	G protein-coupled receptor	417	42	291	302	41	279	325	32	282
	ORF10	+	42184-43392	403		406	31	391	404	33	402	401	34	405
	ORF11	+	43436-44677	414		410	46	389	406	46	404	409	49	400
	Bov11.b1	+	47040-47585	182										
II	ORF17	-	49784-48159	542	protease; capsid protein	552	43	570	524	44	553	500	42	552
	ORF17.5	-	49010-48159	284	capsid scaffold protein	275	33	292	524	34	283	500	34	281
	ORF18	+	49795-50580	262		276	57	259	275	58	259	261	49	260
	ORF19	-	52209-50569	547	tegument protein	559	58	559	556	59	553	549	55	547
	ORF20	-	52750-52043	236		250	53	226	250	52	224	275	54	213
	ORF21	+	52752-54437	562	thymidine kinase	569	41	562	561	37	561	580	47	563
	ORF22	+	54476-56683	736	glycoprotein H	750	45	687	733	44	736	778	46	691
	ORF23	-	57888-56686	401		400	43	400	401	42	401	398	58	401
	ORF24	-	60115-57869	749		729	59	722	745	57	728	736	53	734
	ORF25	+	60117-64205	1363	major capsid protein	1367	69	1365	1370	69	1371	1372	71	1371
	ORF26	+	64264-65175	304	capsid triplex subunit 2	304	63	304	306	63	303	304	59	304
	ORF27	+	65188-66099	304		293	47	290	292	47	291	294	44	292
III	ORF29 2	-	67645-66500											
	ORF30	+	67661-67906	82		83	56	66	85	45	75	79	51	69
	ORF31	+	67834-68502	223		224	52	223	225	56	205	206	53	201
	ORF32	+	68454-69881	476		476	38	475	474	36	492	453	37	395

ORF33		+	69874-70890	339	tegument protein	339	47	339	335	43	339	339	70	339
ORF34		+	71796-72773	326		337	50	337	343	48	331	326	49	317
ORF29	1	-	71797-70883	687	DNA packaging terminase subunit	687	70	688	686	69	688	683	67	681
ORF35		+	72754-73212	153		153	38	152	152	34	149	151	41	148
ORF36		+	73106-74494	463	putative tyrosine kinase	440	48	429	454	49	452	453	48	452
ORF37		+	74430-75884	485	alkaline exonuclease	485	67	485	485	67	485	485	69	485
ORF38		+	75842-76030	63		61	42	57	59	48	58	63	59	59
ORF39		-	77233-76103	377	glycoprotein M	408	68	377	374	71	378	378	61	379
ORF40	1	+	77373-78671	616	helicase-primase complex	634	37	615	478	37	452	455	32	460
ORF40/41	2	+	78752-79300			634	34	44	175	37	61	162	23	99
ORF42		-	80119-79289	277		257	56	241	257	56	231	266	54	245
ORF43		-	81764-80091	558	minor capsid protein	562	71	548	557	73	547	567	65	555
ORF44		+	81754-84114	787	helicase-primase subunit BBLF4	830	71	787	783	70	787	782	66	787
ORF45		-	85006-84188	273		261	30	272	235	26	208	223	36	230
ORF46		-	85798-85043	252	uracil DNA glycosylase	251	66	251	252	68	252	251	66	250
ORF47		-	86210-85782	143		151	41	128	168	36	147	142	35	132
ORF48		-	87606-86221	462		446	30	442	419	30	420	498	36	309
ORF50	1	+	87771-87824	545	R-transactivator	573	40	353	619	42	330	510	42	466
ORF49		-	88865-87879	329	transcriptional control protein Na	324	42	311				309	27	292
ORF50	2	+	88898-90478											

Bov6	1	+	90829-91395	272		256	48	118	210	16	102	172	33	110
Bov6	2	+	91493-91597											
Bov6	3	+	91703-91846											
Bov7		+	93323-94099	259	putative glycoprotein	121	36	69	243	35	140	234	45	242
Bov8	1	+	94108-96067	750	putative major envelope glycoprotein	473	27	412	683	25	771	725	24	662
Bov8	2	+	96163-96452											
ORF52		-	96896-96483	138		136	30	136	125	33	124	136	55	134
ORF53		-	97296-96976	107		102	71	53	103	47	107			
ORF54		+	97382-98251	290	dUTPase	293	53	288	298	48	295			
ORF55		-	98957-98301	219		218	67	210	220	68	210			
ORF56		+	98956-101448	831	helicase-primase primase subunit BSLF1	837	55	834	837	55	836			
ORF57	1	+	101595-101646	459	transcriptional control protein Mta	433	44	457	436	43	458			
ORF57	2	+	101753-103077											
ORF58		-	104914-103862	351		351	54	351	351	50	350			
ORF59		-	106043-104919	375	processivity factor	389	58	379	411	55	347			
ORF60		-	107058-106144	305	ribonucleotide-reductase, small subunit	305	76	305	305	77	305			
ORF61		-	109491-107140	784	ribonucleotide-reductase, large subunit	785	61	776	780	60	783			
ORF62		-	110530-109514	339	capsid triplex subunit 1	335	52	329	334	53	328			
ORF63		+	110532-113318	929	tegument protein	947	49	936	952	46	944			
ORF64		+	113380-121221	2614	large tegument protein	2624	36	2284	2606	37	741			

IV

	ORF65	-	121874-121266	203	capsid protein	211	35	150	252	29	128
	ORF66	-	123233-121923	437		435	46	433	437	45	434
	ORF67	-	123949-123143	269	tegument protein	258	63	268	263	59	262
	ORF67a	-	124279-123962	106		84	55	84	84	48	84
	ORF68	+	124395-125789	465	putative major envelope glycoprotein	472	51	463	468	52	468
	ORF69	+	125792-126652	287		284	67	283	280	68	261
Right	ORF73	-	134364-133036	443	putative immediate early protein	495	38	393	1300	34	252
	ORF75	-	139068-135124	1315	FGAM-synthase	1316	52	1316	1315	50	1326
	Bov9	+	139907-140425	173	Bcl-2	206	29	135	168	27	107
	Bov9.b1	-	141411-140839	191							
	Bov9.b2	_	141765-141421	115							

* "ORF" names correspond to numbering of Herpesvirus saimiri homologues present in other macaviruses. "Bov" names correspond to numbering of
 homologues present in OvHV2 and AlHV1, "BovX.5" names correspond to numbering of homologues in OvHV2, and "BovX.bX numbering corresponds to
 ORFs unique to BovVH6. ORFs associated with genomic repeats have positions in Bold text

397 ¶ Str, strand

398 § len, length in amino acids

399 # %Id, percent amino acid identity

400 ¢ OvHV-2, AlHV-1, SuHV-3, GenBank Accession nos. AY839756, AF005370, AF478169, respectively

Sus_scrofa Bos_taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BoHV-6

Sus_scrofa Bos taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BoHV-6

Sus_scrofa Bos_taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BoHV-6

Sus_scrofa Bos taurus Equus_caballus Canis_lupus_familiaris Homo sapiens Mus musculus BOHV-6

Sus_scrofa Bos_taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BoHV-6

Sus_scrofa Bos taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BoHV-6

Sus_scrofa Bos_taurus Equus_caballus Canis_lupus_familiaris Homo sapiens Mus musculus BoHV-6

Sus_scrofa Bos_taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BOHV-6

Sus_scrofa Bos taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BoHV-6

Sus_scrofa Bos_taurus Equus_caballus Canis_lupus_familiaris Homo_sapiens Mus_musculus BoHV-6

---MNSFSNEELDCHFLDEGFTAKDILDOKINEVSATDDKDAFYVADLGD - - - MNSFSNEEFDCHFLDEGFTAKDILDQKINEVSYSDDKDAFYVADLGE - - MNNFSNGEFDCHFLDEGFTAKDILDQKINEVSSSDDKDAFYVADLGE ---MNNFNNAEFDCHFLDEGFTAKDTLDOKTNEVSSSDDKDAFYVADLGD - MNNFGNEEFDCHFLDEGFTAKDILDQKINEVSSSDDKDAFYVADLGD
 - MSSFTKDEFDCHILDEGFTAKDILDQKINEVSSSDDKDAFYVADLGD MTTSPFFTRGELDFHFFVLSFADKNLVKQKIREQAELSN-NAFCVIDLGE *:* *:: .*: *:::.***.* :** ILKKHLRWLKALPRVTPFYAVKCNDSRTIVQTLAAIGTGFDCASKTEIQL ILKKHLRWLKALPRVTPFYAVKCNDSRTIVKTLAAIGTGFDCASKTEIQL ILKKHLRWLKALPRVTPFYAVKCNDSRTIVKTLAAIGTGFDCASKTEIQL ILKKHLRWLKALPRVTPFYAVKCNDSRTIVKTLAAIGTGFDCASKTEIQL ILKKHLRWLKALPRVTPFYAVKCNDSKTIVKTLAAIGTGFDCASKTEIQL 97 VOSLGVPPERIIYANPCKOVSQIKYAANNGVOMMTFDSEVELMKVARAHP VQSLGVPPERIIYANPCKQVSQIKYAANNGVQMMTFDSEVELMKVARAHP VQSLGVPPERIIYANPCKQVSQIKYAANNGVQMMTFDSEVELMKVARAHP VQSLGVPPERIITANPCKQVSQITYAANNGVQMMTPDSEVELMKVARAHP VQSLGVPPERIITANPCKQVSQITYAANNGVQMMTPDSEVELMKVARAHP VQSLGVPPERIITANPCKQVSQITYAANNGVQMMTPDSEVELMKVARAHP LQNLGVHADRILPANPCKQVSQITYAASNGVQMMTPDSEELTKIVARAHP :*.*** .:*:::****** *:*.**:.**: KAKLVLRIATDDSKAVCRLSVKFGATLKTSRLLLERARDLDIDVIGVSFH KAKLVLRIATDDSKAVCRLSVKFGATLKTSRLLLERAKELDIDVIGVSFH KAKLVLRIATDDSKAVCRLSVKFGATLKTSRLLLERAKELNIDVIGVSFH KAKLVLRIATDDSKAVCRLSVKFGATLKTSRLLLERAKELNIDVIGVSFH KAKLVLRIATDDSKAVCRLSVKFGATLKTSRLLLERAKELNIDVIGVSFH KAKLVLRIATDDSKAVCRLSVKFGATLKTSRLLLERAKELNIDVIGVSFH 197 DAKLVLRIKVDDSNSDSILSVKFGAPIEASORLLKOAKKLGLEVIGVSFH .******* .***:: . *******.:::: **::*:.*::*: שטט. ***:: . VGSGCTDPETFAQAISDARCVFDMGAEVGFSMYLLDIGGGFPGSEDVKLK VGSGCTDPETFQQISDARCVFDMGAEVGFSMILLDIGGGFGGEDVALK VGSGCTDPETFQQISDARCVFDMGAEVGFNMYLLDIGGGFPGSEDVALK VGSGCTDPETFVQAISDARCVFDMGAEVGFNMYLLDIGGGFPGSEDVALK VGSGCTDPETFVQAISDARCVFDMGAEVGFSMYLLDIGGGFPGSEDVLLK VGSGCTDPETFVQAVSDARCVFDMATEVGFSMHLLDIGGGFPGSEDVLLK VGSGCKDAQAYRKAIABARRAFDFGTLMGFDMYLLDIGGGFPGINEIEPT FEEITGVINPALDKYFPPDSGVRIIAEPGRYYVASAFTLÄVÑITÄKKLVL FEEITGVINPALDKYFPSDSGVRIIAEPGRYYVASAFTLAVNIIAKKLVL FEEITGVINPALDKYFPSDSGVRVIAEPGRYYVASAFTLAVNIIAKKLVL FEEITGVINPALDKYFPSDSGVRVIAEPGRYYVASAFTLAVNIIAKKLVL FEEITGVINPALDKYFPSDSGVRIIAEPGRYYVASAFTLAVNIIAKKTVW FEEITSVINPALDKYFPSDSGVRIIAEPGRYYVASAFTLAVNIIAKKTVW FEDIAEVINAALERHFPDDANLTIIGEPGRYYATSALTIAVTVIAKKCV **::: ***.**::** *:.: :*.*****::**:** KEQTGSDDEEEASEQTFMYYVNDGVYGSFNCILYDHAHVQPLLQKRPKPD KEQTGSDDEEESTDRTFMYYVNDGVYGSFNCILYDHAHVKPLLQKRPKPD KEQTGSDDEDESSEQTFMYYVNDGVYGSFNCILYDHAHVKPLLQKRPKPD KEQTGSDDEDESSEQTFMYYVNDGVYGSFNCILYDHAHVKPLLQKRPKPD KEQTGSDDEDESSEQTFMYYVNDGVYGSFNCILYDHAHVKPLLQKRPKPD 347 KEQPGSDDEDESNEQTFMYYVNDGVYGSFNCILYDHAHVKALLQKRPKPD EKYYSSSIWGPTCDGLDRIVERCRLPEMHVGDWMLFENMGAYTVAAASTF EKYYSSSIWGPTCDGLDRIVERCNLPEMHVGDWMLFENMGAYTVAAAST EKYYSSSIWGPTCDGLDRIVERCNLPEMQVGDWMLFENMGAYTVAAAST EXYISTSIWGFICGLDRIVERCDLPENVGDWDFENMGATIVAAASIF EXYYSSSIWGFICGLDRIVERCDLPENVGDWDFENMGATVAAASIF EXYYSSSIWGFICDGLDRIVERCDLPENVGDWDFENMGATVAAASIF EXYYSSSIWGFICDGLDRIVERCDLPEMVGDWDFENMGATVAAASIF DKDYVSSIWGFICDGLDRIVERCLPEMVGDWLFENMGATVAAASIF 397 NGFQRPAIYYMSGPTWQLMQQIRNHDFPPEVGEQDVGPLPVSCAWESGN NGFQRPTIYYMSGPTWQLMQQIRTQDFPPGVEEPDVGPLPVSCAWESGM NGFQRPTIYYMSGPTWQLMQQIQNHDFPPEVEEQDVSTLPVSCAWESGM NGFQRPTIYYVMSGPTWQLMQQIQNHDFPPEVEEQDVSTLPVSCAWESGM NGFQRPTIYYVMSGPAWQLMQQFQNPDFPPEVEEQDASTLPVSCAWESGM 447 NGFQRPNIYYMSRPMWQLMKQIQSHGFPPEVEDDDDTLFVSCAQESGM NGFQRPNIYYMSRPMWQLMKQIQSHGFPPEVEDDDTLFVSCAQESGM NGFPRPEKHYVISEFSKQMVTQVAN-----YTSEY *** :* :**:* ERHPAACASAR'INV KRHSAACASTRINV KRHPAACASASINV KRPPAACASASINV KRHRAACASASINV 461 DRHPAACASARINV NDHGSVCMTSF---

47

147