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Estimation and Correction of Visibility Bias in Aerial 

Surveys of Wintering Ducks 
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PATRICK D. GERARD,3 Experimental Statistics Unit, Box 9653, Mississippi State University, Mississippi State, MS 39762, USA 
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KENNETH J. REINECKE, United States Geological Survey, Patuxent Wildlife Research Center, 2524 S Frontage Road, Suite C, 

Vicksburg, MS 39180, USA 

ABSTRACT Incomplete detection of all individuals leading to negative bias in abundance estimates is a pervasive source of error in aerial 

surveys of wildlife, and correcting that bias is a critical step in improving surveys. We conducted experiments using duck decoys as surrogates for 
live ducks to estimate bias associated with surveys of wintering ducks in Mississippi, USA. We found detection of decoy groups was related to 

wedand cover type (open vs. forested), group size (1-100 decoys), and interaction of these variables. Observers who detected decoy groups 
reported counts that averaged 78% of the decoys actually present, and this counting bias was not influenced by either covariate cited above. We 

integrated this sightability model into estimation procedures for our sample surveys with weight adjustments derived from probabilities of group 
detection (estimated by logistic regression) and count bias. To estimate variances of abundance estimates, we used bootstrap resampling of 
transects included in aerial surveys and data from the bias-correction experiment. When we implemented bias correction procedures on data 
from a field survey conducted in January 2004, we found bias-corrected estimates of abundance increased 36-42%, and associated standard 
errors increased 38-55%, depending on species or group estimated. We deemed our method successful for integrating correction of visibility 
bias in an existing sample survey design for wintering ducks in Mississippi, and we believe this procedure could be implemented in a variety of 

sampling problems for other locations and species. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):808-813; 2008) 

DOI: 10.2193/2007-274 

KEY WORDS abundance estimation, aerial survey, bootstrapping, Mississippi, sightability model, variance estimation, visibility 
bias, waterfowl, winter. 

Estimating animal abundance by aerial survey has a long 
history and prominent role in wildlife science and manage 
ment, yet a fundamental concern when surveying is that 

some animals are not seen by observers (Caughley 1974, 
1977; Norton-Griffins 1975). Failure to detect all animals 

within a sampled area is termed visibility bias, a primary 
source of error in aerial surveys (Pollock and Kendall 1987). 

Ignoring visibility bias leads to underestimates of abun 

dance; therefore, survey practitioners should acknowledge 
the existence and influence of visibility bias when designing 
aerial surveys and attempt to adjust estimates accordingly. 
Numerous methods exist to correct visibility bias, although 

no method is best for all situations (Pollock and Kendall 

1987). A simultaneous air and ground survey is a well 
established method to correct for visibility bias in breeding 
ground surveys of North American waterfowl, but this 
method is expensive and assumes ground surveys detect all 
individuals without error (Martinson and Kaczynski 1967, 

Martin et al. 1979, Smith 1995). A multiple-observer or 

removal method uses 
mark-recapture models to estimate the 

proportion of individuals missed by observers (Cook and 
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Jacobson 1979). The multiple-observer method has under 

gone logistical and analytical refinements (Pollock et al. 

2006), but its implementation is difficult when large 
numbers of animals are present (Pollock and Kendall 

1987). Distance sampling uses the distance from an 
individual or group and the observer as the primary means 

of correcting bias via estimation of a detection function 

(Buckland et al. 1993). Use of distance sampling has been 
tested for fixed-wing aerial surveys of large mammals and 

helicopter surveys of waterfowl (Johnson et al. 1989, 
Trenkel et al. 1997). Finally, sightability models apply 
correction factors to observed groups of individuals based on 
estimated relationships between probabilities of detection 
and group-specific covariates. Researchers have developed 
these models for ungulate and waterfowl surveys (e.g., 
Samuel et al. 1987, Giudice 2001). Sightability models can 

be less expensive to apply than other methods, but their use 

requires several assumptions (e.g., closed population, 

independence of group detections, groups are counted 

without error; Steinhorst and Samuel 1989, Giudice 2001). 
We developed a sightability model to correct for visibility 
bias associated with aerial surveys of wintering ducks. Local, 

regional, and continental estimates of waterfowl abundance 

are critical for population and habitat conservation, yet 

rigorous surveys to estimate abundance of wintering water 

fowl generally have not become operational (Conroy et al. 

1988, Reinecke et al. 1992). Previous researchers have 

suggested heterogeneous visibility bias existed in aerial 

surveys of wintering ducks (Johnson et al. 1989, Smith et al. 
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1995), and researchers attempting to derive bias-corrected 

estimates have encountered logistical and analytical con 

straints, specifically incorporation of undercounting indi 
viduals within detected groups (Smith 1993, Cogan and 
Diefenbach 1998). Therefore, our objectives were to 

estimate visibility bias of ducks during aerial surveys 
conducted in Mississippi, USA, winters 2002-2004, and 
to develop 

a method that incorporates detection rates and 

count bias of groups into analytical procedures that estimate 
abundance of wintering duck corrected for visibility bias. 

STUDY AREA 
Our study sites were located within the Mississippi Alluvial 

Valley (MAV) physiographic region, a continentally im 

portant region for migrating and wintering waterfowl in 

North America covering 10 million ha and portions of 7 
states (Reinecke et al. 1989). Historically, the MAV was an 

extensive bottomland-hardwood ecosystem composed of 

various hard- and soft-mast-producing trees that provided 

important forage and other habitat resources for waterfowl 

and other wildlife (Fredrickson et al. 2005). Extensive 

landscape changes occurred during the 20th Century, and 

large portions of the MAV were cleared of trees and 
cultivated for agricultural production. We conducted our 

experiment on 3 privately owned sites in northwestern 

Mississippi: 1) Wild Wings near Holcomb, Mississippi in 
Grenada County; 2) Gumbo Flats near Lambert, Mis 

sissippi in Quitman County; and 3) York Woods near 

Charleston, Mississippi in Tallahatchie County. All 3 areas 

included habitats typically used by ducks during winter in 
the MAV (i.e., forested wetlands, emergent herbaceous 

wetlands, and flooded croplands; Reinecke et al. 1989). 

METHODS 
Visibility-Bias Experiment 
Smith et al. (1995) investigated covariates influencing 
visibility bias of wintering ducks using decoys as surrogates 
for live ducks, and we used the same approach because it 
allowed control over experimental variables of interest. We 

investigated the 2 primary covariates we believed had a 

considerable influence on visibility bias (i.e., group size and 
wetland type) and randomly assigned treatments to decoy 
groups. We defined group size as a continuous variable 

ranging from 1 to 100 and did not include group sizes >100 
because they occurred rarely in field surveys (e.g., repre 

sented 6% of approx. 2,000 groups observed in winter 2003; 
Pearse 2007) and were difficult logistically to replicate. To 
construct a realistic distribution of group sizes, we 

partitioned group size into quartiles for all groups of 1 
100 individuals observed during surveys in winters 2002 and 
2003 (i.e., 1-8, 9-20, 21-40, and 41-100; Pearse 2007) and 
selected the size of experimental decoy groups from a 
uniform distribution between the minimum and maximum 
values of the 4 categories. We included 2 wetland types 
based on 

degree of openness of vegetation structure. We 

defined open wetlands as those without woody vegetation 
above the water surface and included flooded crop fields, 

seasonal emergent wetlands, and permanent wetlands (e.g., 

rivers, oxbow lakes, aquaculture ponds). We defined forested 
wetlands as those with woody cover above the surface of the 
water (e.g., scrub shrub, bottomland hardwoods). 

To simulate field surveys, we placed decoy groups within 

experimental transects and ensured the observer had no 
prior 

knowledge ofthe location or configuration of decoy groups. 
Transects were 250 m wide, arranged in an east-west 

direction similar to field surveys (Pearse 2007), and they 
varied in length from 2.3 km to 10.7 km, but they were not 

located randomly because they had to contain the exper 
imental wetland types. We placed 1-5 decoy groups within 
each transect at predetermined perpendicular distances from 
the edge of transects but within the 250-m strip. We 
determined the number of decoy groups within a transect 

based on transect length and availability of wetland types for 

decoy placement. We calculated perpendicular distance of 

decoy groups from the flight path using a uniform 
distribution because the true distribution of ducks within 
transects was unknown. 

We conducted experimental surveys on 12, 19, and 26 

February 2005 in a Cessna 172 aircraft, flying at 

approximately 150 km per hour and at a distance of 150 
m above ground. Weather conditions varied among surveys 

but were within parameters acceptable for field surveys. 

During flights, one of the project staff who participated in 

decoy placement assisted the pilot in navigating transects. 
The observer recorded all decoy groups detected, numbers of 

decoys in each group, and wetland type. During flights, the 
observer did not receive any communications from the pilot 
or navigator other than signals indicating the beginning and 
end of transects. 

To reduce potential bias in estimates of detection 

probabilities, we ensured each decoy group was available 
for observation (i.e., decoy group was located within the 

strip transect during the experimental survey). We used a 

Global Positioning System (GPS) receiver to record the 

flight path during all surveys and entered these data into a 

Geographic Information System that included the flight 
path and GPS location of decoy groups. From these data, we 
verified that decoy groups were within transects during 
surveys. Additionally, the navigator reported detection of 

decoy groups during experimental flights. 
During surveillance preceding data collection, we observed 

live ducks on 
study sites near 

decoy groups. Presence of 

these ducks near or in decoy groups during experimental 
surveys would have inflated group size and potentially 
introduced bias by increasing visibility of the group. Thus, 

we positioned project personnel in locations near decoy 
groups to disperse any ducks before surveys commenced. 

Source of Aerial Survey Data 
We used data from an aerial waterfowl survey conducted 

26-30 January 2004 to demonstrate application of our bias 
correction procedure, although the same 

procedure could be 

applied to any survey data set with the same observer. The 
basic survey method was a stratified random sample design 
(Pearse 2007). We designated strip transects as sample units, 
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randomly selected them with replacement and probability 
proportional to length, and allocated sample effort among 
strata using the Neyman method (Caughley 1977, Cochran 

1977). We conducted aerial surveys using methods similar 
to Reinecke et al. (1992). We recorded number of mallards 

{Anas platyrhynchos), other dabbling ducks (Anatini), and 

diving ducks (Aythyini, Mergini, and Oxyurini) observed 
within each transect and used the SAS procedure SUR 
VEYMEANS (SAS Institute, Inc., Cary, NC) to estimate 

population indices (/) of these groups and total ducks from 
sums of individuals counted within transects and transect 

specific sample weights (Lohr 1999). 

Data Analysis and Estimation 
We decomposed visibility bias into 2 response variables for 

analysis. Group-detection rate was the probability that the 

observer detected a group of decoys. We modeled group 
detection rate using logistic regression, wherein the depend 
ent variable was a binomial response (i.e., detected or 

missed) and independent variables were group size (con 
tinuous) and wetland type (categorical). We performed 
analyses using the GENMOD procedure in SAS with the 
binomial probability distribution and logit link function. 
The observer could incorrectly estimate the size of decoy 

groups that were detected and introduce counting error. We 

assumed counting error included systematic bias and 

random error; thus, we referred to this systematic bias as 

count bias and estimated it by comparing observer counts of 

groups with known group sizes (Krebs 1999). To model 
count bias, we 

performed 
an analysis of covariance 

(ANCOVA) on the subset of observations where groups 
were detected (PROC MIXED). In this ANCOVA, the 

proportion of ducks counted was the dependent variable and 

group size and wetland type were independent variables. We 
used backwards elimination with a criterion of P > 0.10 for 
variable exclusion to select final models in analyses of 
detection and counting bias. 

We developed a method to estimate abundance of ducks 

{N) by correcting population indices (/) for visibility bias. 
We corrected for group-detection and count biases simulta 

neously via a series of weight adjustments. We based this 

procedure 
on the concept of sampling weights, where a 

sample unit's weight is the inverse of its probability of 
selection (Lohr 1999). In the same manner that a sample 

weight corresponds to the number of units in the population 
represented by the selected unit, group-detection and count 

weights represented number of groups and ducks in the 

sample unit missed by the observer. For example, if 

probability of detection of a group with a certain set of 
characteristics was 0.50 (wt = 1/0.5 = 2), a second group 

with the same characteristics must be accounted for because 

it was not detected, which we accomplished by multiplying 
the group's size by the weighting factor (e.g., 5 ducks obs X 

wt of 2 = 10 ducks). We accounted for count bias in the 
same manner. If we estimated count bias at 0.80 given 

a 

group was detected, then the reciprocal of that estimate 
could be used as a correction factor or weight to adjust 
counts (1/0.8 = 1.25). To complete the example, this 

1.0 - 
^ 

I0-6- /~ ? / sr 0.4- / 

0.2 

0.0-I-1-1- - -, 

0 20 40 60 80 100 

Group size 

Figure 1. Predicted relationship between probability of detecting decoy 
groups {n = 81) and group size (1-100) for groups placed in open (solid 
line) and forested (dashed line) wetlands on 28 experimental strip 
transects in western Mississippi, USA, winter 2005. We estimated 

probability of observing a decoy group in forested wetlands (P[obs_for 
est]) by P(obs_forest) = e0A76 

+ 0016(si-> / 1 + e0A7e 
+ ?-016(si-> and 

probability of observation in open wetlands (P[obs_open]) by P(obs_open) _ 
^-0.837 

+ 0.129(size) / -j. 
-0.837 + 0.129(size) 

hypothetical observation of a group of 5 ducks actually 
would represent 12.5 ducks (i.e., 5 X 2 X 1.25 = 12.5). 

Results of the visibility bias experiment caused us to 
consider how group detection rates were estimated using 

logistic regression. We found group size influenced 
detection rate, but its effect was only apparent in open 

wetlands (see Results; Fig. 1). Therefore, we estimated 

group detection rates for open wetlands using the logistic 
regression equation and, for forested wetlands, we used the 

proportion of groups detected after pooling observations 
over group size (i.e., detection rate independent of group 
size). Additionally, we corrected observed group size for 
count bias before estimating group detection rates in open 

wetlands. Adjusting observed group size before estimating 

group detection is necessary because group sizes in the 

visibility bias experiment were known, whereas group sizes 

recorded during field surveys were subject to count bias. 

Although point estimation was relatively straightforward, 

determining 
a variance estimation method was challenging. 

Steinhorst and Samuel (1989) presented a procedure that 

integrated sampling and group detection errors but assumed 
no count bias. Cogan and Diefenbach (1998) acknowledged 
the importance of count bias but did not provide an explicit 
variance estimator. Lacking 

an analytic solution, we used 

bootstrap resampling, 
an 

accepted procedure for computing 
variances from complex surveys (Lohr 1999), to account for 
errors from sampling, group detection, and count bias in 

estimating the variance of duck abundance. The bootstrap 
uses multiple independent resamples from an original 
sample to reproduce properties of a population (Efron and 

Tibshirani 1993). To calculate bias-corrected estimates, we 

bootstrapped the sample of transects from the aerial survey 
and the group detection and count bias data sets 1,000 
times. For each 1,000 data sets, we calculated point 
estimates of abundance as previously explained using weight 
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Table 1. Population indices (/; not corrected for visibility bias) and abundances (_V~; corrected for visibility bias), standard errors, and coefficients of variation 
for mallards, other dabbling ducks, diving ducks, and total ducks estimated from an aerial survey conducted in western Mississippi, USA, 26-30 January 2004. 

Population index Abundance 

Species or group / SE CV N SE CV 

Mallards 129,652 11,681 0.09 183,998 18,163 0.10 
Other dabbling ducks 91,797 11,784 0.13 124,752 16,575 0.13 

Diving ducks 43,174 10,021 0.23 59,573 13,853 0.23 
Total ducks 264,623 22,656 0.09 368,323 36,269 0.10 

adjustments. We used the mean and standard deviation of 
abundance estimates from all 1,000 resamples 

as estimates of 

(JV) and SE(iV), respectively. 
We imposed certain constraints on the logistic regression 
analyses when bootstrapping because the maximum like 
lihood estimator used in the procedure did not always 
converge to a finite value for >1 parameters during all 

resamples. We selected bootstrap samples following the 

design of the visibility experiment by constraining resam 

pling so that each resample had the same number of sample 
units within each combination of wetland-type and group 
size quartile 

as the experimental data (e.g., 
n = 10 for groups 

of 1-8 decoys in open wetlands). If a resampled data set still 
failed to converge, we used the proportion of group 
detections pooled over group sizes within habitats to 
estimate habitat-specific group detection rates. Finally, 

whether or not the logistic regression converged, 
we 

constrained the probability of group detection to be >1/ 

nh, the inverse of the sample size within wetland types {nj), 
because logistic regression may not reliably estimate 

probabilities <l/nh. 

RESULTS 
We sampled 125 transects during the aerial survey 
conducted 26-30 January 2004 and estimated population 
indices of 129,652 mallards (SE = 11,681; CV = 0.09), 
91,797 other dabbling ducks (SE = 11,784; CV = 0.13), 
43,174 diving ducks (SE = 10,021; CV = 0.23), and 264,623 
total ducks (SE - 22,656; CV - 0.09). We observed the 

following percentages of ducks in forested wetlands: 

mallards, 7.0%; other dabbling ducks, 2.9%; diving ducks, 
2.3%; and total ducks, 5.8%. Mean group sizes during the 

survey were 25.4 birds for mallards, 31.7 for other dabbling 
ducks, 26.0 for diving ducks, and 32.9 for total ducks. 

During the visibility-bias experiment, we collected data 

from 28 experimental transects containing 81 decoy groups. 
We replicated each wetland type and group-size quartile 

combination 10 times except the smallest group-size quartile 
in forested wetlands {n = 11). The observer detected 60 

decoy groups (74%) and 1,427 of 2,269 decoys (63%) 

placed 
on transects. 

We included wetland type {%21 
= 1.97, P= 0.161), group 

size (x2i 
= 4.89, P = 0.027), and their interaction {%21 

= 

3.44, P = 0.064) in the final group-detection model {R2 = 

0.24). In a 2-intercept parameterization of the logit model, 
the intercept for forested wetlands was (3 = 0.476 (SE = 

0.534) and the coefficient for group size was P = 0.016 (SE 

= 0.017). The intercept for open wetlands was less (P 
= 

?0.837; SE = 0.770) and the coefficient for group size 

greater (|3 
= 0.129; SE = 0.058) than forested wetlands. 

Generally, probability of group detection for small groups in 
forests was greater than for small groups in open wetlands, 

whereas probability of detection of groups with >15 decoys 
was greater in open than in forested wetlands (Fig. 1). We 
did not include any ofthe experimental variables (P > 0.10) 
in the final model of count bias for groups that we detected. 

Overall, the observer counted 78% (SE = 3%, n = 60) of 

decoys within detected groups. 
Abundance estimates exceeded population indices by 42% 

for mallards, 36% for other dabbling ducks, 38% for diving 
ducks, and 39% for total ducks (Table 1). Bias correction 
increased standard errors of abundance relative to those of 

population indices by 55% for mallards, 41% for other 

dabbling ducks, 38% for diving ducks, and 60% for total 
ducks. However, coefficients of variation increased only 

slightly after correcting for visibility bias (Table 1). 

DISCUSSION 
Visibility bias in aerial surveys often results from factors that 
obstruct the view of animal groups or individuals within 

groups (e.g., Samuel et al. 1987, Anderson et al. 1998). We 
found the effects of group size and wetland type interacted 
to affect detection of decoy groups. Specifically, small 

groups of decoys in open wetlands had the lowest 

probabilities of detection, groups of >15 decoys in open 
wetlands had the greatest probabilities of detection, and 

detection of groups in forested wetlands was relatively 
independent of group size. Smith et al. (1995) reported the 
same pattern in a similar experiment; group size influenced 

detection of decoy groups in open wetlands but detection 
rates in forested wetlands were 

independent of group size or 

decoy density. We suspect small groups were detected with 
low probabilities in open wetlands because the observer had 

difficulty scanning large expanses of open water (e.g., 
flooded croplands) efficiently enough to detect a small 
number of individuals. In contrast, flooded forests repre 
sented a smaller proportion of available habitat during 
surveys (Pearse 2007) and generally consisted of smaller 

wetlands, potentially allowing the observer to scan each 

more 
completely and detect decoy groups at a more constant 

rate relative to group size. 

We did not detect effects of wetland type or group size on 
count bias. This result differs from previous work, where 
both variables explained variation in count bias (Smith et al. 
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1995). At group sizes >100, we suspect the magnitude of 
count bias may increase relative to the value we estimated 

because others have reported counting accuracy tends to be 

independent of or decrease slightly with increasing group 
size (Erwin 1982, Frederick et al. 2003). Failing to account 
for increased count bias for groups >100 may negatively bias 
estimates of abundance but, because we observed relatively 
few large groups of ducks during field surveys, the 

magnitude of this bias would be small. 
The variables manipulated in our visibility experiment 

explained little of the variation in group-detection rates and 
none of the variation in count bias. Although Steinhorst and 
Samuel (1989) concluded that using a perfect visibility bias 

model was unnecessary, unexplained variation in visibility 
rates increases variance associated with population estimates, 

and identifying additional covariates explaining variation in 

visibility may improve precision of estimates. One option 
would be to expand the number of wetland categories to 

explain additional variation in group detection. Smith et al. 

(1995) used 3 categories of forested wetlands (i.e., cypress 

[Cupressus sp.]-tupelo [Nyssa sp.] swamp, shrub swamp, and 

bottomland hardwoods) and found differences in visibility 
rates among the types. Furthermore, open wetlands included 

a variety of emergent wetlands with different attributes (e.g., 
vegetation structure, water turbidity) and could have been 

grouped into >2 classes with separate estimates of visibility. 
Additionally, we believe other variables that affect observers' 
abilities to detect animals may significantly influence 
waterfowl visibility. Short and Bayliss (1985) reported light 
conditions influenced visibility of red and grey kangaroos 
{Macropus rufus, M. fuliginosus, respectively) in Australia. In 
aerial surveys of wintering ducks, sun 

glare from surface 

water can create heterogeneous visibility conditions. We 

believe some of the factors determining light conditions 

(e.g., cloud cover, time of day, and direction of flight path) 
could be recorded as discrete or continuous variables and 

provide opportunities to develop 
more precise models of 

visibility bias. Other covariates potentially influencing 
observers' performance include turbulence and fatigue 

(Krebs 1999). 
Correction of population indices for visibility bias 

increased point estimates and associated standard errors. 

We anticipated decreased precision because we used model 

based correction factors rather than constants. However, 

correcting for visibility bias using our method of weighting 
observations for detection and counting rates had little 
influence on 

precision of abundance estimates of wintering 
ducks as measured by coefficients of variation. Additional 
evaluations are needed to ensure that, after correcting for 

bias, estimates of abundance have increased accuracy (or 

decreased mean-squared error), which is not always the case 

with bias-corrected estimates (Little 1986). 
An inherent assumption of our 

study 
was that parameters 

estimated in the decoy experiment represented visibility bias 
associated with live ducks. We acknowledge decoys were not 

perfect surrogates for live ducks but the direction and 

magnitude of any bias is not apparent. The larger size of 

decoys relative to ducks may have increased visibility, 
whereas lack of motion among decoys potentially decreased 

visibility. Sightability models for large mammals have been 

developed using radiotagged individuals (e.g., Samuel et al. 

1987) and a similar study could be conducted with ducks to 
validate visibility rates estimated with decoys. Additionally, 
we used mainly mallard decoys to estimate visibility of all 
ducks. We do not believe this biased our results to a great 
extent, but experimentation with decoys representing other 

species would assess the validity this assumption. A more 
fundamental assumption related to the sightability method 
is that visibility parameters and their variances are constant 

among observers and through time. Because the same 

observer conducted experimental and field surveys in our 

study, we did not need to consider multiple observers. We 
recommend aerial surveys of wildlife use a minimum 

number of observers and estimate separate sightability 
models for each. Regarding temporal variation, we acknowl 

edge 
an observer's ability to detect animals may change 

through time (Johnson et al. 1989). Annual experiments to 
assess visibility bias would be ideal but likely cost prohibitive 
and impractical for long-term monitoring of wintering 

waterfowl in relation to population goals of joint ventures of 
the North American Waterfowl Management Plan or other 
avian conservation initiatives (U.S. Department of the 
Interior and Environment Canada 1986). 

MANAGEMENT IMPLICATIONS 
Wildlife survey practitioners and managers should recognize 

that nonconstant bias can exist in aerial surveys. Habitat 

type, group size, and other variables including observer 

effects influence detection of animals. Accordingly, esti 
mates for bias correction we developed may have most 

application for this observer and region. Nonetheless, our 

method of correcting population indices from aerial surveys 
of wintering ducks for multiple sources of visibility bias has 

general applicability and illustrates how natural resource 

managers can use model-based approaches to correct for 

visibility bias in wildlife surveys. Previous sightability 
models for other species and habitats included the 

assumption that counts of individuals within observed 

groups were unbiased (Smith et al. 1995, Cogan and 
Diefenbach 1998, Giudice 2001). Our method of correcting 
for visibility bias is sufficiently general to allow for counting 
errors and, therefore, is an 

improvement 
over earlier work. 
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