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EffEcts of VEgEtation and Background noisE on thE dEtEction 

ProcEss in auditory aVian Point-count surVEys

Krishna Pacifici,1,4 Theodore r. simons,2 and KenneTh h. PollocK3

1North Carolina Cooperative Fish and Wildlife Research Unit, Department of Zoology, Campus Box 7617, North Carolina State University, 
Raleigh, North Carolina 27695, USA; 2U.S. Geological Survey, North Carolina Cooperative Fish and Wildlife Research Unit, 

Department of Zoology, Campus Box 7617, North Carolina State University, Raleigh, North Carolina 27695, USA; and  
3Zoology, Biomathematics, and Statistics, Campus Box 7617, North Carolina State University, Raleigh, North Carolina 27695, USA

Abstract.—We used a bird-song simulation system to experimentally assess the effects of habitat, vegetation structure, and 
background noise on detection probability in aural avian point counts. We simulated bird songs of seven species in two habitats 
(mixed pine–hardwood forest and deciduous forest) and two leaf conditions (leaves on and leaves off) with two levels of background 
noise (~40 dB and ~50 dB). Estimated detection probabilities varied greatly among species, and complex interactions among all the 
factors existed. Background noise and the presence of leaves on trees decreased detection probabilities, and estimated detection 
probabilities were higher in mixed pine–hardwood forest than in deciduous forest. At 100 m, average estimated detection prob-
abilities ranged from 0 to 1 and were lowest for the Black-and-white Warbler (Mniotilta varia) and highest for the Brown Thrasher 
(Toxostoma rufum). Simulations of expected counts, based on the best logistic model, indicated that observers detect between 3% 
(for the worst observer, least detectable species, with leaves on the trees and added background noise in the deciduous forest) and 
99% (for the best observer, most detectable species, with no leaves on the trees and no added background noise in the mixed forest) 
of the total count. The large variation in expected counts illustrates the importance of estimating detection probabilities directly. 
The large differences in detection probabilities among species suggest that tailoring monitoring protocols to specific species of in-
terest may produce better estimates than a single protocol applied to a wide range of species. Received 15 May 2007, accepted 17 
November 2007.

Key words: aural detections, background noise, detection probability, habitat effects, point counts, population indices.

Efectos de la Vegetación y del Ruido de Fondo en el Proceso de Detección de  
Aves Mediante Registros Auditivos en Puntos de Conteo 

Resumen.—Empleamos un sistema de simulación de cantos de aves para evaluar experimentalmente los efectos del hábitat, de 
la estructura de la vegetación y del sonido de fondo en la probabilidad de detección por audición de aves en puntos de conteo. Simula-
mos los cantos de siete especies de aves en dos ambientes (bosque mixto de pino y especies de madera dura, y bosque caducifolio) y dos 
condiciones de follaje (con y sin hojas) con dos niveles de sonido de fondo (~40 dB y ~50 dB). Las probabilidades de detección estima-
das variaron marcadamente entre las especies, y existieron interacciones complejas entre todos los factores. El sonido de fondo y la pre-
sencia de hojas en los árboles disminuyó la probabilidad de detección, y las probabilidades de detección estimadas fueron más altas en 
los bosques mixtos que en los caducifolios. A 100 m, las probabilidades de detección estimadas promedio variaron entre 0 y 1, y fueron 
mínimas para Mniotilta varia y máximas para Toxostoma rufum. Las simulaciones de conteos esperados, basadas en el mejor modelo 
logístico, indicaron que los observadores detectaron entre el 3% (para el peor observador, las especies más difíciles de detectar, con 
hojas en los árboles y sonido de fondo agregado en el bosque caducifolio) y el 99% (para el mejor observador, las especies más fáciles de 
detectar, sin hojas en los árboles y sin sonido de fondo agregado en el bosque mixto) del conteo total. La gran variación en los conteos 
esperados ilustra la importancia de estimar las probabilidades de detección directamente. Las grandes diferencias en las probabilidades 
de detección entre las especies sugieren que los protocolos de monitoreo dirigidos a especies focales de interés pueden producir mejores 
estimados que un único protocolo aplicado a una amplio grupo de especies. 
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Point counts are used to explore avian habitat relationships, to 
map species diversity and abundance, and to evaluate the effects of 
management and environmental change on bird populations over 
space and time (Ralph et al. 1995). Surveys in heavily vegetated 
habitats rely almost exclusively on auditory detections (Faanes 
and Bystrak 1981, Scott et al. 1981, �eJong and Emlen 1985). Tradi-
tionally, point-count data are used to calculate indices of popula-
tion abundance, which assumes that the proportion of individuals 
detected is constant over space, time, or both (Rosenstock et al. 
2002, �iefenbach et al. 2003). This assumption is highly dubious, 
and most biometricians recommend using sampling methods that 
incorporate direct estimates of detection probability (for example, 
distance sampling [Buckland et al. 2001] or other methods as de-
scribed by Simons et al. [2007]). Many field ornithologists, how-
ever, still use abundance indices (Rosenstock et al. 2002, Simons 
et al. 2007), arguing that standardized design protocols modeling 
measured covariates to control for variation in detection proba-
bility are sufficient.

There is widespread evidence that many factors influence de-
tection probabilities on avian point counts. These include habitat 
(�iehl 1981, Oelke 1981, McShea and Rappole 1997, Schieck 1997), 
time of day (Robbins 1981b, Skirvin 1981), weather conditions 
(Robbins 1981a), and observer ability (Faanes and Bystrak 1981, 
Sauer et al. 1994, �iefenbach et al. 2003). Schieck (1997) noted sig-
nificant differences among habitat types and leaf conditions and 
suggested that variations in vegetation complexity among sites in-
fluences detection probabilities. 

Unfortunately, it is very difficult to estimate detection prob-
abilities accurately in the field, because true species diversity or 
abundance is usually unknown. Our research group has devel-
oped a system for simulating conditions on avian point counts 
when birds are detected by ear (Simons et al. 2007). This unique 
system can realistically simulate bird songs under a range of vary-
ing factors that affect detection probability, and it enables us to get 
accurate empirical estimates of detection probability under a wide 
range of conditions. Previous experiments have evaluated the ef-
fects of singing rate, number of species, and observer variability 
(Alldredge et al. 2007b) and assessed current sampling methods, 
including distance estimation (Alldredge et al. 2007a), multiple-
observer methods (Alldredge et al. 2008), and time-of-detection 
methods (Alldredge et al. 2007c). 

Here, we report on the application of our experimental sys-
tem to study the effects of habitat, vegetation, and background 
noise on aural detection probabilities. We report empirical detec-
tion probability estimates under different combinations of these 
factors and discuss the implications of our results to the design of 
future point-count studies.

Methods

Study sites.—Field studies were conducted in Howell Woods, a nat-
ural area comprising 1,133 ha, in Johnston County, North Carolina. 
Two sites were established within Howell Woods: a mixed pine–
hardwood forest and a deciduous forest located ~5 km apart. The 
mixed pine–hardwood forest is a 30- to 50-year-old successional 
forest. �ominant species include oaks (Quercus spp.), pines (Pinus 
spp.), Sycamore (Platanus occidentalis), Blackgum (Nyssa sylvatica), 
and Red Maple (Acer rubrum), which create a two-layered forest 

with an overstory roughly 20–25 m high and an understory domi-
nated by Vaccinium spp., Ilex spp., and Smilax spp. The deciduous 
forest is dominated by hickory (Carya spp.), Sweetgum (Liquid-
ambar styraciflua), and Red Maple and is predominantly a single-
layered forest, 5–7 m high, with a dense understory dominated by 
Smilax spp. The deciduous forest contains early-successional com-
munities that have emerged following a hurricane in 1996. 

Vegetation indices.—Three vegetation indices—basal area, 
leaf area index, and coverboard density—were used to compare dif-
ferences in vegetation structure and composition. Basal area was 
calculated using a wedge prism (metric units, basal area factor 2) 
at randomly selected points within each site (Avery and Burkhart 
1983), and a paired t-test (Rao 1998) was used for comparisons be-
tween habitats and leaf conditions. Leaf area index (LAI) is the to-
tal one-sided foliage area per unit soil surface area. It provides a 
measure of the amount of light penetrating through the canopy 
(Gower and Norman 1991). In forest systems, direct and indirect 
measures of LAI are available. Indirect measures provide simple, 
easy ways to collect large amounts of data with minimal effort and 
have been found to provide rapid means of comparison for spa-
tial and seasonal changes in leaf area (Brantley and Young 2007). 
Indirect measures of LAI can be made with a portable integrat-
ing radiometer, which uses canopy gap fraction to estimate LAI 
(Gower and Norman 1991). We used an LAI-2000 Plant Canopy 
Analyzer (LICOR Biosciences, Lincoln, Nebraska) at a height of 
1 m to calculate an indirect index of total leaf area within the two 
study sites and compared estimates between habitats and leaf con-
ditions using a paired t-test (Rao 1998). The LAI readings were col-
lected at randomly selected points within both sites during both 
leaf conditions (leaves off and leaves on). We also used a 1.2-m cov-
erboard (1.2 m height × 0.5 m width) constructed of foam board 
and marked in a black-and-white checkerboard pattern (sixty 10 × 
10 cm squares) to assess horizontal vegetation cover within both 
sites and under both leaf conditions (Higgins et al. 1996). At each 
of five distances from the coverboard (2, 5, 10, 12, and 15 m), we cal-
culated an index of horizontal vegetation cover. We counted the 
number of squares that were >50% obscured by vegetation at each 
distance to create this index. Instead of using a single optimal dis-
tance, we report vegetation indices from all five distances to more 
completely portray the total horizontal vegetation cover. The cov-
erboard was placed at randomly located points within each site and 
always faced the center of the site, where observers were located. 

Bird detection experiments.—We used a birdsong simulation 
system (Simons et al. 2007) to simulate the songs of seven spe-
cies—Acadian Flycatcher (Empidonax virescens), Wood Thrush 
(Hylocichla mustelina), Brown Thrasher (Toxostoma rufum), 
Black-throated Blue Warbler (Dendroica caerulescens), Black-
and-white Warbler (Mniotilta varia), Hooded Warbler (Wilsonia 
citrina), and Scarlet Tanager (Piranga olivacea)—at 16 distances 
in two habitats under leaf-on and leaf-off conditions. In each habi-
tat, two replicate lines were created, with 16 players, mounted 1 m  
above ground, placed at 10-m intervals between 50 and 200 m. 
Songs were played directly toward the observers, who stood ~50 m~50 m50 m 
from the closest player. �uring each experiment, seven species 
were played randomly at each of the 16 distances (7 species × 16 
distances = 112 songs per line; Table 1). The experiment was then 
repeated on the same line, with ~10 dB background noise (�brown��~10 dB background noise (�brown��10 dB background noise (�brown�� 
noise, frequency = 1/f2; Table 1) played from three speakers placed 
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5 m from the observers. We used brown noise because it contains 
more low-end frequencies and resembles thunder or rushing wa-
ter; we felt that this was a fair simulation of realistic environmen-
tal ambient noise as compared with higher-frequency white or 
pink noise. The experiment was then repeated on a second line 
in the same habitat. Experiments were conducted in both habitat 
types under leaf-on and leaf-off conditions (Table 1). 

A song was played once during each 10-s interval, and ob-
servers were then given an auditory cue (�next��) alerting them to 
identify the next song. Sound intensity levels for all species were 
standardized to 90 dB at 1 m. We used 12 observers during the ex-
periments, but only 3 observers were present for all combinations 
of experimental conditions. We treated observations as binary re-
sponses, whereby observers identified the song either correctly or 
incorrectly at a given distance.

The seven species simulated are not found at our study site, 
and experiments were conducted during months of the year when 
there was minimal interference from the calling of local birds. 
Observers knew the identities of the seven species before the ex-
periment. The analyses presented here are focused on three spe-
cies, the Black-and-white Warbler, Black-throated Blue Warbler, 
and Brown Thrasher, which represent three levels of detectability: 
low, medium, and high, respectively. 

Analysis.—We analyzed each species separately to reduce 
the number of interacting factors in each analysis and to simplify 
the interpretation of results. We consider our field trials quasi- 
experiments, because we were able to control several important 
factors—observers, species, background noise, distance, habi-
tat, and leaf condition (Table 2)—but not all relevant factors. 
Other factors inherent to each site, such as minor differences in 
habitat and vegetation structure or trivial differences in weather 
conditions (e.g., air temperature, humidity) among trials, could 
potentially influence sound transmission, creating uncontrolled 

variation in detection probability. The two lines are considered as 
nonrandomized replicates nested within each habitat type. 

Our approach to modeling an empirical detection probability 
as a function of the main factors (habitat, leaves, noise, observer, 
and distance) is similar to that of Alldredge et al. (2007b) but mod-
ified for nonrandomized and nested factors. A logistic regression 
model explicitly assumes a binomially distributed error structure 
(Agresti 1990) that cannot incorporate correlated observations. 
Therefore, we used PROC GENMO� in SAS, version 9.1 (SAS In-
stitute 2007), to fit a model with a binomially distributed error 
structure that incorporated the correlation of observations within 
habitats and observers. With this approach, correlated data are 
modeled using the same link function (logit), linear predictor vari-
ables, and variance functions used with independent data, but the 
covariance structure of the correlated data is also incorporated 
into the model. PROC GENMO� uses generalized estimating 
equations (GEE; Liang and Zeger 1986) to model the covariance 
structure using several different approaches (autoregressive [1], 
exchangeable, independent, m-dependent, and unstructured). 
We specified an exchangeable correlation type, which has com-
monly been used for repeated-measures and split-plot designs (C. 
Brownie pers. comm.) to more accurately represent the true error 
structure. We used an independent correlation type for the Brown 
Thrasher out of necessity, because neither the exchangeable nor 
the autoregressive (1) type provided estimable parameters.

Main effects, habitat (H), leaves (L), and background noise (N) 
were treated as categorical variables, and distance (x) was treated 
as a continuous variable. We included observer (O) as a main ef-
fect, using all 12 observers, but we did not consider observer inter-
actions because we wanted to isolate the main effects of habitat, 
leaves, background noise, and distance. We present the range of ob-
server estimates to give a rough idea of the magnitude of observer 
variation. Additional models were considered, including two-way 
interactions of all four main effects (excluding observer). The most 
parsimonious model was selected using Akaike’s information cri-
terion (AIC; Burnham and Anderson 2002). We calculated variable 
importance weights for each variable by summing the AIC weights 
for each model in which the predictor variable appeared (main ef-
fects and two-way interactions). Variable importance weights allow 
a direct comparison of variables by ranking each variable on a scale 
from 0 to 1, with 1 indicating the greatest importance (Burnham 
and Anderson 2002). The general form of the linear model includ-
ing only main effects was logit[π(y)] = β0 + β1x + β2H + β3L + β4N + 
β5O, where π(y) is the probability that y was 1 (song detected by an 
observer), given fixed values of the independent variables, and β0, 
β1, β2, β3, β4, and β5 were estimated model parameters.

We used the selected logistic model to demonstrate the vari-
ability in raw count data generated by environmental conditions, 
species, and observer differences. We calculated expected counts 
for a hypothetical point-count survey for our �best�� and �worst�� 
observer under all eight environmental conditions (Table 2)  
and for three species (Black-and-white Warbler, Black-throated 
Blue Warbler, and Brown Thrasher). We did this by distributing 
(uniformly with respect to area) a simulated population of 1,000 
birds at distances of 50, 100, 150, and 200 m and using the esti-
mated detection probabilities from the logistic model for specific 
observers, distances, species, and environmental conditions to es-
timate expected counts.

Table 1. Sample sizes (± SE) for each day, with and without simulated 
background noise. Experiments were run on two lines in each habitat 
(mixed forest and deciduous forest) one line at a time, with no noise, and 
then run again with simulated background noise added on the same line. 
Total songs simulated = 1,792 (448 per day). Player malfunctions resulted 
in 420–446 total observations each day.

Day 1 Day 2 Day 3 Day 4

Mixed  
forest

Deciduous 
forest

Mixed  
forest

Deciduous 
forest

No noise 36.65 ± 1.08 38.38 ± 2.86 36.49 ± 1.68 41.50 ± 2.48
With noise 46.50 ± 0.98 47.35 ± 1.85 46.68 ± 1.03 48.76 ± 2.01
Total  
 observations

 420 425  446 446

Table 2. Factors and factor levels in bird-detection experiments. 

Main effects Level

Habitat (H) Mixed pine–hardwood forest Deciduous forest
Leaves (L) Off On
Background noise (N) No Yes
Observer (O) 12 total 
Distance (x) Continuous variable

Pacifici_07-078.indd   602 7/22/08   12:38:12 PM



July 2008 —  habiTaT effecTs on deTecTion Process  — 603

Results

The mixed pine–hardwood forest had higher estimated leaf area 
index and estimated basal area (Table 3), whereas the deciduous 
forest had a denser understory and more horizontal cover (Fig. 1). 
Both habitats exhibited similar trends between leaf-off and leaf-
on conditions, with leaf-on conditions containing more estimated 
leaf area and more horizontal cover (Table 3 and Fig. 1). The LAI 
values were significantly different between habitats under both 
leaf conditions (leaf-on: t = 26.016, df = 58; P < 0.0001; leaf-off:  
t = 24.19, df = 58, P < 0.0001) and between leaf conditions within 
a single habitat (mixed pine–hardwood forest: t = 171.73, df = 58, 
P < 0.0001; deciduous forest: t = 107.88, df = 58, P < 0.0001). Basal 
area was significantly different between habitats (t = 26.23, df = 48,  
P < 0.0001).

The selected logistic model for detection probability for the 
Black-and-white Warbler included all main effects and all two-way 
interactions and contained most of the support from the data (AIC 
weight = 0.64; Table 4). Five models were within ΔAIC < 10, all of 

which included habitat*leaves and habitat*distance interactions 
(Pacifici 2007). The AIC weights indicate that the top two mod-
els contained almost all the support from the data (sum of AIC 
weights = 0.97); the second-best model differed from the top model 
by the exclusion of a leaves*distance interaction. The variable im-
portance weights were all >0.97, except for the leaves*distance 
interaction, which suggests that this interaction was the least sup-
ported by the data (Table 5).

The selected logistic model for the Black-throated Blue War-
bler contained only three interactions, noise*leaves, noise*distance, 
and leaves*distance (Table 4). Twenty-six models were within ΔAIC 
< 10 (Pacifici 2007), the top model containing only 18% of the sup-
port. The noise*distance and leaves*distance interactions had the 
most support from the data (variable importance weights >0.82), 
and the noise*leaves, habitat*distance, and habitat*noise interac-
tions all had importance weights >0.5 (Table 5). 

The selected logistic model for the Brown Thrasher contained 
four interactions: habitat*noise, habitat*leaves, noise*leaves, and 
noise*distance (Table 4). Two models contained more than half 
the support from the data (sum of AIC weights = 0.57) and dif-
fered only by three interactions: habitat*noise, habitat*distance, 
and leaves*distance (Pacifici 2007). The noise*leaves interaction 
was the only interaction with an importance weight of 1, but the 
noise*distance interaction had an importance weight of 0.95,  
indicating that it had strong support from the data as well  
(Table 5). Average estimated detection probabilities varied 
greatly by factor combinations and across species (Table 6). 

Table 3. Total basal area (m2 ha–1 ± SE) for mixed pine–hardwood forest 
(n = 26) and deciduous forest (n = 24) and indirect leaf area index (LAI ± 
SE) for mixed pine–hardwood forest (n = 30) and deciduous forest (n = 
30) under leaf-off and leaf-on conditions. Note that the higher the index 
value, the greater the estimated leaf area.

Mixed forest Deciduous forest

Total basal area  26.46 ± 1.831.83  9.509.50 ± 1.411.41
LAI Leaf-on  6.746.74 ± 0.090.09  5.415.41 ± 0.190.19
LAI Leaf-off  1.411.41 ± 0.080.08  0.880.88 ± 0.040.04

fig. 1. Horizontal cover (includes SE bars) estimated using a 1.2-m (height) 
coverboard at five distances (2, 5, 10, 12, and 15 m) from the board in both 
the mixed pine–hardwood forest and the deciduous forest under leaf-
off and leaf-on conditions. Cover is estimated as the number of squares  
(out of 60) with ≥50% obstruction by vegetation. White bar represents 
mixed pine–hardwood forest under leaf-off conditions. Dark gray bar rep-
resents mixed pine–hardwood forest under leaf-on conditions. Light gray 
bar represents deciduous forest under leaf-off conditions. Black bar repre-
sents deciduous forest under leaf-on conditions.

Table 4. AIC weights (wi) and number of parameters (k) for top logistic  
regression models of detection probability for each of three species.

Species Model wi k

Black-and- 
 white Warbler

H + N + L + O + x + HN + HL + Hx ++  
 NL + Nx + Lx

0.64 22

Black-throated  
 Blue Warbler

H + N + L + O + x + NL + Nx + Lx 0.18 19

Brown Thrasher H + N + L + O + x + HN + HL + NL + Nx 0.30 20

Table 5. Variable importance weights (Σwi) obtained by summing AIC 
weights for each model in which the predictor variable (main effects and 
two-way interactions) was found.

Predictor  
variable

Black-and-white 
Warbler

Black-throated 
Blue Warbler

Brown 
Thrasher

H 1.00 1.00 1.00
N 1.00 1.00 1.00
L 1.00 1.00 1.00
O 1.00 1.00 1.00
x 1.00 1.00 1.00
HN 0.97 0.55 0.65
HL 1.00 0.43 0.77
Hx 1.00 0.61 0.64
NL 0.99 0.73 1.00
Nx 0.97 0.82 0.95
Lx 0.67 0.86 0.57
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Average detection probabilities were generally highest for the 
Brown Thrasher and lowest for the Black-and-white Warbler. 
Adding background noise, adding leaves on trees, and moving 
from mixed pine–hardwood forest to deciduous forest gener-
ally resulted in decreased detection probabilities (Fig. 2). Look-
ing specifically at 50 m and 100 m, average estimates ranged 
between 0 and 1 for both the Black-and-white Warbler and the 
Black-throated Blue Warbler, whereas Brown Thrasher esti-
mates ranged from 0.65 to 1.00 (Table 6). Both the Black-and-
white Warbler and the Black-throated Blue Warbler exhibited 
differences in average estimated detection probabilities of >0.60 
across the range of factors at 50 m and 100 m, whereas the larg-
est difference for the Brown Thrasher was 0.32 (Table 6). The 
Black-and-white Warbler showed the largest amount of varia-
tion in average detection probabilities at both 50 m and 100 m 
(difference among conditions = 0.44 and 0.76, respectively;  
Table 6). 

Observer variation generally increased with distance, with 
the addition of background noise, and from leaf-off conditions to 
leaf-on conditions for all three species (Table 6). Neither habitat 
exhibited more observer variation than the other, though detec-
tion probability estimates were generally lower in the deciduous 
forest. The largest amount of observer variation within a single 
combination of factors occurred in the mixed pine–hardwood 
forest with background noise under leaf-off conditions for the 

Black-and-white Warbler (Table 6). A single observer was respon-
sible for all the observed minimum detection probabilities for a 
species, but it was a different observer for each species (observer 9:  
Black-and-white Warbler; observer 12: Black-throated Blue War-
bler; observer 8: Brown Thrasher). 

�etection probabilities from the selected logistic model 
were determined for the best and worst observers for all three 
species and under all eight environmental conditions at distances 
of 50, 100, 150, and 200 m (Table 7). Applying these detection 
probabilities, expected counts for a simulated population of 1,000 
birds ranged from 63 birds (Black-and-white Warbler; leaf-on 
with background noise and worst observer) to 996 birds (Brown 
Thrasher; leaf-off with no background noise and best observer) 
in the mixed forest and from 3 birds (Black-and-white Warbler; 
leaf-on with background noise and worst observer) to 921 birds 
(Brown Thrasher; leaf-off with no background noise and best ob-
server) in the deciduous forest. �ifferences in counts with leaves 
off and no background noise ranged from 38 birds (Black-and-
white Warbler; worst observer and deciduous forest habitat) to 
996 birds (Brown Thrasher; best observer and mixed forest habi-
tat) across both habitats. �ifferences in counts with leaves on and 
with background noise ranged from 3 birds (Black-and-white 
Warbler; worst observer and deciduous forest habitat) to 335 
birds (Brown Thrasher; best observer and mixed forest habitat) 
across both habitats.

Table 6. Average (± SE) and minimum and maximum estimated detection probabilities for 12 observers at 50 m and 100 m for three species (estimates 
from the top AIC logistic regression model).

 Mixed forest Deciduous forest

Distance (m) 50 100 50 100

Black-and-white Warbler Leaf-off, no noise 0.96 ± 0.02 0.78 ± 0.07 0.93 ± 0.04 0.19 ± 0.03
Minimum–maximum 0.74–0.99 0.17–0.93 0.57–0.99 0.01–0.31
Leaf-off, with noise 1.00 ± 0.00 0.68 ± 0.07 0.97 ± 0.02 0.02 ± 0.00
Minimum–maximum 0.98–1.00 0.09–0.87 0.81–1.00 0.00–0.03
Leaf-on, no noise 1.00 ± 0.00 0.53 ± 0.07 0.89 ± 0.05 0.00 ± 0.00
Minimum–maximum 1.00–1.00 0.04–0.74 0.41–0.98 0.00–0.00
Leaf-on, with noise 1.00 ± 0.00 0.02 ± 0.00 0.56 ± 0.07 0.00 ± 0.00
Minimum–maximum 1.00–1.00 0.00–0.03 0.05–0.77 0.00–0.00

Black-throated Blue Warbler Leaf-off, no noise 1.00 ± 0.00 0.99 ± 0.00 0.96 ± 0.01 0.60 ± 0.05
Minimum–maximum 1.00–1.00 0.97–1.00 0.83–0.99 0.16–0.80
Leaf-off, with noise 1.00 ± 0.00 0.94 ± 0.02 0.91 ± 0.03 0.16 ± 0.02
Minimum–maximum 1.00–1.00 0.75–0.98 0.63–0.97 0.02–0.31
Leaf-on, no noise 1.00 ± 0.00 0.89 ± 0.03 0.93 ± 0.02 0.09 ± 0.01
Minimum–maximum 1.00–1.00 0.59–0.97 0.70–0.97 0.01–0.17
Leaf-on, with noise 1.00 ± 0.00 0.34 ± 0.04 0.69 ± 0.05 0.00 ± 0.00
Minimum–maximum 0.98–1.00 0.06–0.56 0.23–0.87 0.00–0.01

Brown Thrasher Leaf-off, no noise 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.97 ± 0.01
Minimum–maximum 1.00–1.00 0.99–1.00 0.96–1.00 0.88–0.99
Leaf-off, with noise 1.00 ± 0.00 0.95 ± 0.01 0.99 ± 0.00 0.74 ± 0.04
Minimum–maximum 0.99–1.00 0.80–0.97 0.94–0.99 0.35–0.84
Leaf-on, no noise 0.99 ± 0.00 0.96 ± 0.01 0.92 ± 0.02 0.78 ± 0.04
Minimum–maximum 0.95–0.99 0.85–0.98 0.69–0.96 0.40–0.87
Leaf-on, with noise 0.99 ± 0.00 0.87 ± 0.03 0.98 ± 0.01 0.65 ± 0.04
Minimum–maximum 0.98–1.00 0.57–0.93 0.91–0.99 0.24–0.76
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discussion

These results provide direct empirical estimates of detection prob-
ability for known populations of birds under different environ-
mental conditions. Although we could not control for all sources 
of variation, our results indicate that background noise, habitat, 
leaf condition, species, and observers have significant effects on 
detection probability. Background noise and the presence of leaves 
on trees decreased detection probabilities. �etection probabili-
ties were higher in mixed pine–hardwood forest than in decidu-
ous forest. Although basal area and LAI were higher for the mixed 
pine–hardwood forest, the deciduous forest had more horizontal 
vegetation cover, which suggests that horizontal vegetation cover 
had the largest influence on detection probability in our habitats. 
We would expect horizontal vegetation cover to have a large ef-
fect in these experiments, because our players were located ~1 m 
off the ground. The structure of the forest canopy probably has a 
greater influence on the detection probability of songs transmit-
ted from greater heights, but we did not evaluate this relationship 
in these experiments.

We found large differences in detection probability between 
the two habitats we sampled. Unfortunately, because of the lim-
ited number of habitats and species in our study, we cannot gen-
eralize our results to all studies in all environmental conditions. 
Ideally, this study would be replicated over multiple habitats to 
allow us to make inference about detection probability under a 
broad range of habitat conditions encountered in avian surveys. 
Our results suggest that practitioners should not assume that 
fixed-radius plots (Ralph et al. 1995) ensure that detection prob-
abilities are comparable among sampling sites. For example, in 
the mixed forest with leaves on and no background noise, the 
Black-and-white Warbler was detectable at 100 m (average esti-
mated p = 0.53 ± 0.07), but in the deciduous forest, under similar 
environmental conditions, it was not detectable at 100 m (aver-
age estimated p = 0.00 ± 0.00). Using a single fixed-radius plot at 
both locations will produce biased estimates, because the effec-
tive area sampled differs between locations. 

We found large differences in detection probabilities under 
leaf-off and leaf-on conditions. Most bird surveys are conducted 
under leaf-on conditions when birds are breeding, but they are 
also used to evaluate bird–habitat relationships following distur-
bances such as fire (Smucker et al. 2005), Gypsy Moth (Lymant-
ria dispar) infestation (Bell and Whitmore 1997), and silvicultural 
practices such as thinning (Hayes et al. 2003). Each of these forms 
of disturbance produces conditions similar to our leaf-off habi-
tats. In these situations, failure to estimate detection probabilities 
directly could bias inferences. For example, without direct esti-
mates of detection probabilities it is impossible to know whether 
differences between pre- and post-treatment bird abundances are 
caused by the treatment (e.g., fire, gypsy moths, or thinning) or if 
they are simply attributable to differences in the ability of observ-
ers to see or hear birds. 

Our results reinforce those of Simons et al. (2007), who found 
that background noise can have a substantial effect on detection 
probabilities. Background noise is likely increasing in our envi-
ronment (Wolkomir and Wolkomir 2001), but the degree to which 
it varies both spatially and temporally is not well understood. 

fig. 2. Logistic regression models for each of the three focal species, 
Black-and-white Warbler, Black-throated Blue Warbler, and Brown 
Thrasher, averaged across 12 observers, demonstrating differences among 
species and each of the eight factor combinations. Legend corresponds 
to the combinations of habitat (mixed pine–hardwood forest, deciduous 
forest), leaf condition (off, on), and added background noise (no, yes).
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Given the observed interaction of factors affecting detection prob-
ability and that no group of factor interactions was consistently 
more important for all three species, it is unlikely that the use of 
standardized correction factors could provide a plausible alterna-
tive to estimating detection probabilities directly.

Observers detected between 3% and 99% of the total count 
of a simulated population. The large variation in expected counts 
among observers and environmental conditions illustrates the 
importance of estimating detection probabilities directly, espe-
cially when monitoring programs use many observers to collect 
data on many species over large spatial areas. Sampling methods 
and assumptions appropriate for species with very high detection 
probabilities (e.g., Brown Thrasher) may not be appropriate for 
less detectable species. These differences suggest that tailoring 
monitoring protocols to specific species of interest or to several 

important “focal” species would produce better estimates than a 
single protocol applied to a wide range of species.
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Table 7. Range of estimated detection probabilities for worst and best observer by species, environmental condition, and habitat at distances from 
50 m to 200 m. Expected counts were calculated for a simulated population of 1,000 birds uniformly distributed. Number of birds represents the true 
number of simulated birds in each distance band.

Species
Distance  

(m)
Number  
of birds

Leaf-off,  
no noise

Leaf-off,  
with noise

Leaf-on,  
no noise

Leaf-on,  
with noise

Mixed forest

Black-and-white Warbler  0–50   63 0.74–0.99 0.98–1.00 1.00–1.00 1.00–1.00
 51–100  187 0.17–0.93 0.09–0.87 0.04–0.74 0.00–0.03
101–150  312 0.02–0.51 0.00–0.01 0.00–0.00 0.00–0.00
151–200  438 0.00–0.07 0.00–0.00 0.00–0.00 0.00–0.00

Expected count 1,000 85–426 79–229 70–201 63–69

Black-throated Blue Warbler  50   63 1.00–1.00 1.00–1.00 1.00–1.00 0.98–1.00
100  187 0.97–1.00 0.75–0.98 0.59–0.97 0.06–0.56
150  312 0.53–0.96 0.04–0.44 0.01–0.12 0.00–0.00
200  438 0.04–0.49 0.00–0.01 0.00–0.00 0.00–0.00

Expected count 1,000 427–764 216–388 176–282 73–168

Brown Thrasher  50   63 1.00–1.00 0.99–1.00 0.95–0.99 0.98–1.00
100  187 0.99–1.00 0.80–0.97 0.85–0.98 0.57–0.93
150  312 0.97–1.00 0.12–0.57 0.62–0.94 0.04–0.30
200  438 0.91–0.99 0.00–0.04 0.33–0.83 0.00–0.01

Expected count 1,000 949–996 249–440 557–902 181–335

Deciduous forest

Black-and-white Warbler  50   63 0.57–0.99 0.81–1.00 0.41–0.98 0.05–0.77
100  187 0.01–0.31 0.00–0.03 0.00–0.00 0.00–0.00
150  312 0.00–0.00 0.00–0.00 0.00–0.00 0.00–0.00
200  438 0.00–0.00 0.00–0.00 0.00–0.00 0.00–0.00

Expected count 1,000 38–120 51–69 26–62 3–49

Black-throated Blue Warbler  50   63 0.83–0.99 0.63–0.97 0.70–0.97 0.23–0.87
100  187 0.16–0.80 0.02–0.31 0.01–0.17 0.00–0.00
150  312 0.01–0.14 0.00–0.00 0.00–0.00 0.00–0.00
200  438 0.00–0.01 0.00–0.00 0.00–0.00 0.00–0.00

Expected count 1,000 85–260 43–119 46–93 14–57

Brown Thrasher  50   63 0.96–1.00 0.94–0.99 0.69–0.96 0.91–0.99
100  187 0.88–0.99 0.35–0.84 0.40–0.87 0.24–0.76
150  312 0.69–0.95 0.02–0.15 0.16–0.66 0.01–0.09
200  438 0.39–0.86 0.00–0.01 0.06–0.36 0.00–0.00

Expected count 1,000 611–921 131–271 194–587 105–233
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