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a b s t r a c t

The persistence of landscape-scale disturbance legacies in forested ecosystems depends in part on the
nature and strength of feedback among disturbances, their effects, and subsequent recovery processes
such as tree regeneration and canopy closure. We investigated factors affecting forest recovery rates over
a 25-year time period in a large (6 million ha) landscape where geopolitical boundaries have resulted in
important land management legacies (managed forests of Minnesota, USA; managed forests of Ontario,
Canada; and a large unmanaged wilderness). Stand-replacing disturbance regimes were quantified across
management zones, both inside and outside a central ecoregion, using a time series of classified land
cover data constructed at 5-year intervals between 1975 and 2000. The temporally variable disturbance
regime of the wilderness was characterized by fine-scaled canopy disturbances punctuated by less fre-
quent large disturbance events (i.e., fire and blow down). The comparably consistent disturbance regimes
of the managed forests of Minnesota and Ontario differed primarily in the size distribution of distur-
bances – principally clearcut harvesting. Using logistic regression we found that a combination of time
since disturbance, mapped disturbance attributes, climate, and differences among management zones
affected pixel-scale probabilities of forest recovery that reflect recovery rates. We conclude that the mag-
nitude of divergence in landscape disturbance legacies of this region will be additionally reinforced by
regional variations in the human and natural disturbance regimes and their interactions with forest
recovery processes. Our analyses compliment traditional plot-scale studies that investigate post-distur-
bance recovery by (a) examining vegetation trends across a wide range of variability and (b) quantifying
the cumulative effects of disturbances as they affect recovery rates over a broad spatial extent. Our find-
ings therefore have implications for sustainable forestry, ecosystem-based management, and landscape
disturbance and succession modeling.

Published by Elsevier B.V.

1. Introduction

Spatial legacies of forest disturbances can persist from decades
to millennia (Foster et al., 2002). Such legacies may include persis-
tent spatial structure (Schoennagel et al., 2008), forest age distribu-
tions (James et al., 2007; Fenton et al., 2009), compositional
patterns (Bouchard et al., 2006; Rhemtulla et al., 2009), and ecosys-
tem characteristics such as nitrogen retention and carbon balance
(Houlton et al., 2003; Pan et al., 2011). Legacies can result from a

single broad-scale event that abruptly changes the character of
the system (Foster et al., 1998; Schoennagel et al., 2008), or from
the cumulative effects of many smaller-scale disturbances that en-
train system dynamics – such as patch structure – over time (Spies
et al., 1994). Understanding the processes that affect the persis-
tence of such legacies over time is critical for ecosystem-based
management (Grumbine, 1994) and the development of strategies
to help mitigate or adapt to novel disturbance regimes (Buma and
Wessman, 2011).

The persistence of spatial structure in forested landscapes af-
fected by stand-replacing disturbance (i.e., a landscape-scale dis-
turbance legacy) is determined by the processes of forest
recovery and succession. Here we define forest recovery to mean
the canopy closure of the young replacement trees following a dis-
turbance event that removed the overstory trees (Swanson et al.,
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2011). Under this definition, forest recovery rates define the win-
dow of time over which disturbance-caused fragmentation persists
and has the capacity to influence future disturbances and ecosys-
tem services, such as wildlife habitat (Turner et al., 2001). In many
systems forest recovery can be delayed due to either poor tree
recruitment (Foster, 1983; Simard, 2009), competition with estab-
lished understory vegetation (Royo and Carson, 2006; Gilliam,
2007), or both (Lavoie and Sirois, 1998). Such delays have long-
term consequences for landscape age structure, with implications
for sustainable forestry (Doyon et al., 2011), carbon storage (Pan
et al., 2011), insect outbreaks (Robert et al., 2012), and wildlife
habitat (Manolis et al., 2002; King et al., 2009; Landriault et al.,
2012).

While processes affecting forest recovery, such as site produc-
tivity, seedbed conditions, proximity to seed source, and ability
to reproduce vegetatively have been well-studied at fine spatial
scales (Greene et al., 1999), it is not clear how these processes
scale-up to affect forest recovery rates at broader landscape scales.
Plot-scale studies are, by necessity, limited to a subset of condi-
tions affecting variation in recovery patterns that may be con-
text-dependent (e.g., Foster and King, 1986). Spatially continuous
data sets derived from remote sensing provide opportunities to
evaluate post-disturbance vegetation trends across a much wider
range of variability than could be achieved through plot-scale anal-
ysis alone. Several studies have used such data to study both forest
disturbance and recovery rates within tropical forest systems
(Chazdon, 2003; Crk et al., 2009). In contrast, land cover change
studies from temperate and boreal biomes focus primarily on dis-
turbance patterns (Turner et al., 1996; Cushman and Wallin, 2000;
Cohen et al., 2002). The few landscape-scale studies that investi-
gated forest recovery confirm that recovery patterns vary depend-
ing on the type of disturbance and the spatial context under which
the disturbance occurred (Schroeder and Perera, 2002; Schroeder
et al., 2007). We are not aware of any empirical temperate or bor-
eal studies that explicitly examine the interactions among distur-
bances and recovery patterns.

We examined forest recovery within a 25-year time series of
land cover maps at five year intervals within a large (�6 million
ha) landscape at the international boundary between Minnesota
(USA) and Ontario (Canada) (Fig. 1). The landscape is centered on
the Border Lakes Ecoregion (BLE; 2 million ha), where political
boundaries separate divergent forest disturbance histories: a cen-
tral conservation zone (natural disturbance only), a fine-grained
forest management zone characterized by small cut blocks in

Minnesota, and a coarse-grained forest management zone charac-
terized by large cut blocks in Ontario (Shinneman et al., 2010;
James et al., 2011). Comparison of recovery rates across such diver-
gent land management histories within the same ecoregion mini-
mizes confounding effects of variation in biophysical covariates
to focus on interactions between disturbance regimes and forest
recovery patterns. For context, managed lands within a 50 km buf-
fer surrounding the BLE were separately analyzed to determine rel-
ative consistency in disturbance regimes, composition, and
recovery patterns inside and outside the focal ecoregion.

Stand-replacing disturbance regimes were quantified across the
differently managed zones, both inside the BLE and within a 50 km
buffer surrounding the BLE (Fig. 1), in terms of disturbance rates,
patch size distributions, and vegetation pre- and post-disturbance
using a time series of classified land cover data constructed at 5-
year intervals between 1975 and 2000. We compared multiple lo-
gistic regression models that predicted pixel-scale annual forest
recovery probabilities (i.e., probability of a disturbed pixel recover-
ing to forest each year). A priori models were evaluated in two
steps to address two related questions. First, what combination
of time-dependence and measurable disturbance attributes best
predicts the rate of forest recovery? Second, to what extent, if
any, do climate variables or unmeasured differences among man-
agement and ecoregion zones improve predictions from step 1?
The most plausible models emerging from step 2 provide insights
into how disturbance in the different forest zones affects forest
recovery rates, the extent to which the study design controlled
for biophysical drivers, and the degree to which spatial covariates
can help predict future forest recovery patterns.

2. Methods

2.1. Study area

The Border Lakes Ecoregion (BLE) crosses the international bor-
der between Ontario (Canada) and Minnesota (USA) and lies within
the transition zone between the Great Lakes-St. Lawrence mixed-
wood and boreal forest regions (Fig. 1). Geology of the BLE is dom-
inated by Precambrian bedrock that was scoured by past glacial
activity, leaving a thin layer of silty to sandy glacial till and areas
of bare bedrock, and is typified by a high density of lakes and wet-
lands (Superior Mixed Forest Ecoregional Planning Team, 2002).
Forest types are best described as ‘‘near boreal’’ (Heinselman,

Fig. 1. Study area. The focus area is the Border Lakes Ecoregion that contains three zones: Minnesota managed forests, Ontario managed forests, and wilderness. A 50-km
buffer surrounding that ecoregion contains additional managed lands in Ontario and Minnesota, for a total of five zones analyzed. The area within Voyageurs National Park is
dominated by water, and therefore not included within our analysis.
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1973) with a high proportion of boreal tree species (i.e., Pinus bank-
siana, Picea mariana, Picea glauca, Abies balsamea, Populus tremulo-
ides, Betula papyrifera, Larix larcinia), as well as tree species near the
northern limit of their range (e.g., Pinus strobus, Pinus resinosa, Acer
rubrum). Included in the BLE are mixed-ownership timber-man-
aged (referred to hereafter as ‘‘managed’’) forests in Minnesota that
include the Superior National Forest and Kabetogama State Forest,
as well as managed forest in Ontario (Shinneman et al., 2010). For-
est harvest patterns diverged sharply between Minnesota and On-
tario approximately 50 years ago, coinciding with mechanized
clear-cutting operations (primarily for pulpwood) on both sides
of the border. In particular, clearcuts within managed Canadian
forests were comparatively larger in size than managed American
forests to the south (James et al., 2011). Between these managed
regions lies an approximately 1 million-ha wilderness and recrea-
tion area that includes Quetico Provincial Park in Ontario and the
Boundary Waters Canoe Area Wilderness in Minnesota where no
timber harvest has occurred since the early 1970s. Other distur-
bances occurring within the study area include wildfires and blow
down – including the very large ‘‘Independence Day’’ blow down
event that occurred within the wilderness area on July 4, 1999
(Frelich, 2002).

We divided the BLE into three management zones – Wilderness,
Minnesota managed, and Ontario managed (Fig. 1). The use of the
BLE controls for biophysical factors affecting forest recovery be-
cause it is internally similar in terms of climate, soils, land forms,
and forest composition. Given the scale of the BLE, climatic gradi-
ents across its land area are nonetheless expected. Step 2 in our
analysis (see Section 2.4) was included to account for such gradi-
ents. In addition, we included a 50-km buffer area surrounding
the BLE to create two additional managed zones, one each for On-
tario and Minnesota, for a total of five analysis zones encompassing
6 million ha. Zones outside the BLE represent a more diverse range
of edaphic, topographic, and climatic conditions ranging from the
steep and climatically moderated north shore of Lake Superior to
the flat Southern Agassiz Peatlands dominated by lowland conifer
forests to the west (Superior Mixed Forest Ecoregional Planning
Team, 2002). Hence the comparison of management zones within
the BLE focuses on the effects of forest management on spatial leg-
acies (i.e., disturbance patch structure and forest recovery rates)
while controlling for biophysical covariates. The comparison of
similarly managed zones inside and outside the BLE focuses on
the effects of biophysical differences while controlling for land
management practices. Because the wilderness falls almost exclu-
sively within the BLE, we did not divide wilderness into separate
spatial zones. The Voyageurs National Park also falls within the ex-
tent of our study area, but was excluded from our analysis because
its area is dominated by islands and water (Fig. 1).

2.2. Mapped land cover and forest disturbances

Land cover and forest disturbances were mapped at five-year
intervals from 1975 to 2000 using a combination of Landsat MSS,
TM and ETM+ datasets (Wolter et al., 2012a). Landsat MSS data
were resampled to 28.5 m resolution using a nearest neighbor
transformation to duplicate the spatial resolution of the Landsat
TM and ETM+ sensor data. Landsat MSS, TM, and ETM+ data were
all transformed to top of atmosphere reflectance using their
respective sets of calibration coefficients according to Price
(1987), Thome et al. (2004). The original 1990 ‘‘base classification,’’
from which change classes prior to 1990 and after 1990 were
determined, was a near-species level forest cover classification
(Wolter and White, 2002) derived using a layered multi-temporal
classification process (Lozano-Garcia and Hoffer, 1985). Spatially-
explicit Phase II forest inventory data (Minnesota Department of
Natural Resources) and 1:40,000 color infrared aerial photographs

(May and September 1991) served as ground truth and validation
data, with an overall accuracy of 75% (Kappa = 74%) (Wolter and
White, 2002). This near-species level classification was then re-
coded to Anderson level II classes (Anderson et al., 1976): water,
emergent vegetation, sphagnum bog, ‘‘grass’’ (a combination of
grasses & forbs), brush, conifer regeneration, hardwood regenera-
tion, and conifer, mixed, and hardwood forest types. Upland and
lowland vegetation classes (e.g., upland conifer vs. lowland conifer)
were further differentiated using available wetland inventories
(Wilen, 1990; Wulder et al., 2003). Final overall accuracy and forest
class accuracy in the simplified 1990 base classification increased
to 89% and 79% (Kappa = 87% and 77%), respectively (Wolter
et al., 2012a, Appendix A).

Vegetation change between time periods (e.g., 1985 and 1990)
was quantified using the normalized difference moisture stress in-
dex (NDMSI; see Hunt and Rock, 1989; Wilson and Sader, 2002;
Wolter and White, 2002) applied to leaf-on imagery from the
respective time periods. Pixels that showed differences in this in-
dex >1.5 standard deviations (+/�) between time periods were des-
ignated as changed pixels; all others were considered unchanged.
Change analysis between dates involving MSS (1975–1980) or
MSS and TM (1980–1985) imagery used differences in visible red
reflectance between image dates because the MSS sensor did not
have a shortwave infrared band required to calculate NDMSI (Desc-
lée et al., 2007). Pixels identified as changed were classified using
an iterative, self-organizing, maximum likelihood classifier into
one of the 17 cover classes. Leaf-off winter Landsat images were
used to identify conifers below hardwood overstory to more accu-
rately discern the hardwood, conifer, and mixed-wood forest clas-
ses (Wolter et al., 2008). Pixels mapped as a forest type at one time
step, but classified as a transitional cover type (i.e., grass, brush or
regenerating forest) in the next time step, were assumed to be dis-
turbed during the time interval between classification dates. Final-
ly, large natural disturbances (i.e., fire and blow down P 100 ha)
were identified using their unique spectral signatures observed
within the entire Landsat archive (1972–2000), where selected pix-
els were reclassified to distinguish these large disturbance types
from all other disturbances (Wolter et al., 2012b).

2.3. Forest disturbance regimes

Patches of disturbed forest were defined using an eight-neigh-
bor rule to enhance connectivity of forest openings in a landscape
dominated by forest, applied to forest disturbance maps for each of
the five-year time periods using Fragstats (v3.3, McGarigal et al.,
2002). Patches were assigned to one of the five zones within the
differently managed areas of the BLE (Fig. 1) and patches that over-
lapped zone boundaries were assigned to the zone containing the
majority of the patch area, where ties between zones were decided
randomly. In spite of our efforts to convert imagery to common
spatial and radiometric resolutions, examination of the 1985 forest
disturbance map indicated that some of the mapped disturbances
between 1980 and 1985 were an artifact of the change in Landsat
sensors (i.e., MSS to TM/ETM+). This is the result of uncorrectable
differences in resolving power between these sensors (MSS and
TM/ETM) – resulting in fine-grained ‘‘changes’’ in forest cover be-
tween 1980 and 1985 (Moore and Bauer, 1990). We reduced the
influence of this artifact by defining the minimum forest distur-
bance patch size as 4 ha for all dates (Appendix A).

The proportion of forest land area disturbed and disturbance
patch size distributions were estimated for each zone and time
period combination. Patch size distributions were area-weighted,
where the frequency of a given size observation was multiplied
by the number of disturbed cells within the patch (Turner et al.,
2001). We evaluated differences among area-weighted disturbance
patch size distributions using zone and time period as fixed effects
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within a generalized linear mixed model (PROC GLIMMIX; SAS ver-
sion 9.2). We used a lognormal distribution and identity link func-
tion, with post hoc comparisons contrasted using Tukey’s
comparisons and significance assessed at a = 0.05. We further
examined ecosystem (i.e., upland or lowland) and compositional
(i.e., hardwood, conifer, or mixed) bias of forest disturbances by
comparing disturbance rates in each of the six ecosystem and com-
position combinations against their landscape proportional abun-
dance by time period and zone.

2.4. Forest recovery

We tabulated the transitional cover type following forest distur-
bance over time to estimate type-specific recovery rates at the
scale of the study landscape. We then estimated forest recovery
probabilities using logistic regression within the program MARK
(White and Burnham, 1999) and its companion package for R
(v2.12.1, R Development Core Team, 2010), RMark (v1.9.9, Laake
and Rexstad, 2012). We considered each disturbed pixel to be a
marked individual and tracked its condition (transitional or forest)
through ‘‘recaptures’’ at each 5-year interval available from the
imagery. Because we could track each pixel throughout the time
series, we set the recapture probability to 1. The program estimates
the ‘‘survival’’ probability of disturbed cells, which was converted
to recovery probability (i.e., Precovery = 1 � Pdisturbed survival). Due to
the large number of pixels in the landscape, we performed the
analysis on a one-percent subset (n = 91,144 disturbed pixels) ran-
domly selected from the full dataset of nearly 10 million disturbed
pixels across the time series.

We developed four sets of a priori candidate models for evalua-
tion based on hypothesized relationships between the predictor
variables and forest recovery probability (Table 1, Appendix B).
Within a model set, plausible models were selected using Akaike’s
Information Criterion adjusted for sample size and overdispersion

(QAICC, Burnham and Anderson, 2002). Candidate models were
ranked according to QAICC values, and model weights (wi) were
calculated to provide the weight of evidence for each model. We
evaluated the sensitivity of candidate model weight of evidence
to variability in ĉ (overdispersion) using integer values of ĉ ranging
from 1 to 4 (Bartzen et al., 2010). A ĉ value of 1 is equivalent to
assuming no overdispersion, and overdispersion factors are typi-
cally not larger than 4 if the model structure is correct (Burnham
and Anderson, 2002). Alternative models with wi P 0.05 (across
any of the 4 levels of ĉ) were considered plausible and retained
as candidates for model set combinations. Step 1 of our analyses
addressed our first question by selecting the most plausible models
based on disturbance attributes and time dependence variables
(Table 1, Appendix B). Step 2 of our analyses addressed our second
question by combining plausible Step 1 models with Climate and
Management/Ecoregion Zones variables (Table 1, Appendix B). Cli-
mate variables for Step 2 were defined by three orthogonal axes
from a principal component analysis of spatially interpolated
monthly climate normals averaged across the time period corre-
sponding with the study (1976–2000; McKenney et al., 2006)
(Appendix B). The first component (PC1) was negatively correlated
with summer temperature and positively correlated with precipi-
tation during leaf-off periods, generally increasing from west to
east. The second component (PC2) was negatively correlated with
winter temperature and corresponded with increasing latitude.
The third component (PC3) was negatively correlated with late
summer precipitation and positively correlated with summer and
fall minimum temperatures, and corresponded primarily with the
moderated climate along the Lake Superior shoreline.

We evaluated the goodness-of-fit for the final models resulting
from Step 2 using the deviance chi-square test and the Hosmer–
Lemeshow test (Lemeshow and Hosmer, 1982). We used the re-
scaled R2 (Nagelkerke, 1991) to compare fitted model deviance to
null model (intercept-only) deviance as an additional relative mea-

Table 1
Candidate model summary and independent variable predictions for probability of forest recovery (Appendix B).

Independent Variables Description Predictionsa

Disturbance attributes
Transitional type (TT)b Fire, Grass, Brush, Regeneration F < G < B < R
Ecosystem Type (ET) Lowland, Upland L < U
Prior Forest Type (PFT)c Hardwood, Mixed, Conifer H > M > C
Distance to Nearest Edge

(LOGDIST)
Log10 distance (m) (continuous) –

Alternative Candidate Models Null + individual (4) + additive (10) + multiplicative (8) = 23

Time dependence
Year of Transition (YEART) Year transition was detected ?
Year of Disturbance (YEARD) Year disturbance was detected ?
Time Since Disturbance (AGE) Age classes defining time since disturbance +
Sensor Artifact (ARTIFACT) Time periodsd potentially affected by the change in Landsat sensor ?
Alternative Candidate Models Null + individual (3) � ARTIFACT combinations (7) = 22
Climatee Principle components (continuous) defining climatic variation
PC1 West to east, increasing summer temp, decreasing leaf-off precip ?
PC2 South to north, decreasing winter temp –
PC3 Increasing proximity to Lake Superior, decreasing late summer precip, increasing summery & fall min temp +
Alternative Candidate Models Null + complete additive (1) = 2

Management zones
Management type Managed, Wilderness ?
Regional Management Minnesota Managed (MN), Ontario Managed (ON), Wilderness (Wild) ?
Regional

Management � Ecoregionf
MN inside BLE (MN_BLE), MN outside BLE, (MN_Buff), ON inside BLE (ON_BLE), ON outside BLE (ON_Buff),
Wilderness (Wild)

?

Alternative Candidate Models Null + individual (3) = 4

a Direction of association (+, �) with a continuous variable, or rank order of ordinal variable (e.g., x < y). Question mark (?) means no a priori prediction (i.e., exploratory).
b Transitional cover type immediately following disturbance.
c Forest type immediately before disturbance.
d 1980–1985 transition = t1; 1980–1990 transition = t2; 1985–1990 transition = t3 (Appendix A).
e Climate component descriptions describe underlying correlations.
f Border Lakes Ecoregion (BLE).
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sure of model improvement. To evaluate the relative influence of
the different covariates, we calculated predicted recovery probabil-
ities using the mean values (continuous) or proportional distribu-
tion (categorical) for each covariate to generate effect displays
(Fox, 2003), which graphically depict the response values across
a range of values for a single covariate while all others are held
constant.

3. Results

3.1. Forest disturbance regimes

Rates of disturbance were generally higher within managed for-
ests relative to wilderness, but similar between the managed zones
of Minnesota and Ontario (Fig. 2a). We attribute the apparent in-
crease in area disturbed during the 1985 time step to change in
resolution between Landsat MSS and Landsat TM sensors. Restrict-
ing forest disturbances to those patches greater than 4 ha reduced
this artifact but did not eliminate it (Appendix A). Also, disturbance
rates in Minnesota managed areas were reduced more by the min-
imum patch size restriction than the other zones, likely because
some harvest blocks were smaller than this threshold within this
zone. Nonetheless, all subsequent results are reported using a min-
imum patch size of 4 ha. With the exception of the 1990 time step,
the area of disturbed forest increased through time within wilder-
ness (Fig. 2b). Disturbance rates within managed areas of Ontario
also increased over time, though the increase was most apparent
outside the BLE. Disturbance rates in Minnesota managed areas re-
mained comparatively stable until a notable decrease in distur-
bances in the last time step (Fig. 2b).

The majority of canopy-replacing forest disturbances converted
forests to grass (i.e., graminoid and herbaceous), followed by brush
and then regenerating tree cover (Fig. 3). The area affected by large
natural disturbances (fire and blow down) varied between less
than one percent and 18% of the total disturbed area in time steps
1990 and 2000 respectively (Fig. 3a), but accounted for 75% of the
disturbed forests in the wilderness over the 25-year period
(Fig. 3b). Tree regeneration was more common immediately fol-
lowing disturbances in Minnesota than in other management
zones (Fig. 3b).

Forest disturbances in managed areas of Minnesota indicated
positive transition bias toward both upland conifer and upland
hardwood cover types and a negative bias against lowland conifer
(Fig. 4). Forest disturbances in managed areas of Ontario were
biased toward upland conifer but against upland hardwood, with
no apparent bias observed for lowland conifer. Wilderness distur-
bances varied strongly with respect to type bias through time. Dis-
turbances for the 1985 time step suggest bias toward disturbance
of upland hardwood was common across all zones, suggesting the
artifact due to change in sensor may have itself had a composi-
tional bias. Compositional biases for all zones indicated a trend to-
wards neutral by the final time step (Fig. 4).

Zone had the strongest effect on area-weighted patch sizes
(F4,31605 = 1537, p < 0.0001) followed by disturbance year
(F4,31605 = 240, p < 0.0001) and a significant interaction term
(F16,31605 = 145, p < 0.0001). Area-weighted disturbance patch dis-
tributions were the most consistent through time in Minnesota
managed zones, and least consistent through time within wilder-
ness, where the wilderness zone included both the smallest and
largest mean area-weighted patch sizes in different time steps
(Fig. 5). Mean area-weighted patch size distributions in managed
zones of Minnesota were an order of magnitude smaller than those
observed in managed zones of Ontario early in the time series, but
Ontario patch sizes declined through time to approach the size dis-
tributions for managed areas of Minnesota. Area-weighted patch
size distributions were very similar across the ecoregion bound-
aries after accounting for the differently managed zones (Fig. 5).

3.2. Forest recovery

The transitional type following forest disturbance generally fol-
lowed a logical pattern from grass to brush to regeneration to for-
est through time, while large burns had the longest recovery time
(Table 2). Land cover transitions indicated that a substantial
amount of disturbed forests remained as transitional cover 16–
20 years post-disturbance, particularly when the forest was dis-
turbed by large burns or reduced to a grass (i.e., herbaceous) state.
Six candidate Step 1 models received weights > 0.05 across all val-
ues of ĉ, each with similar goodness-of-fit statistics (i.e., rescaled
R2). All of these plausible models included each of the individual
disturbance attribute variables, AGE, and ARTIFACT variables rep-
resenting change-detection artifacts introduced by the change in
sensor from MSS to TM that affected 1980–1985 and 1985–1990
transitions (Table 3). The only differences among plausible Step 1
models were the number of interactions with the LOGDIST variable
(ranging from zero to 2 interactions) and whether the 1980–1990
transition was retained as an ARTIFACT variable (Table 3).

Plausible final models (i.e., model weights > 0.05) resulting
from Step 2 were three different Step 1 candidates combined with
both Climate and the five-category Zone variable (i.e., all manage-
ment and ecoregion combinations) (Table 4). As with Step 1, differ-
ences between these models were limited to the number of
ARTIFACT transitions retained and the number of interactions with
the LOGDIST variable (Table 4). Regarding model goodness-of-fit,
all plausible models from both steps had p-values < 0.001 for the
deviance chi-square and the Hosmer–Lemeshow tests. Choice of

Fig. 2. Annual percent of total forest area disturbed by zone and time step. (a) No
minimum disturbance patch size, and (b) Minimum disturbance patch size of 4 ha.
The year label represents the 5-year period ending with the year indicated. Zones
are identified by the following abbreviations: managed areas of Minnesota (MN),
managed areas of Ontario (ON), Wilderness, managed areas inside the Border Lakes
Ecoregion (BLE), and managed areas in the surrounding 50-km buffer (Buf).
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Fig. 3. The transitional type resulting from forest disturbances by (a) time step (total area) and (b) zone (percent area). The year label represents the 5-year period ending
with the year indicated. Zones are identified by the following abbreviations: managed areas of Minnesota (MN), managed areas of Ontario (ON), Wilderness, managed areas
inside the Border Lakes Ecoregion (BLE), and managed areas in the surrounding 50-km buffer (Buf). Note that an extreme wind event (Independence Day Blowdown)
contributed the vast majority of wind-disturbed area within Wilderness.

Fig. 4. Disturbance of a given forest type proportional to its relative abundance within the total study area and the different zones of analysis (i.e., bias). Positive values
indicate forest types that were disturbed more frequently than their proportional representation on the landscape (‘‘biased towards’’), and negative values indicate forest
types disturbed less frequently than their proportional representation on the landscape (‘‘biased against’’). Zones are identified by the following abbreviations: managed areas
of Minnesota (MN), managed areas of Ontario (ON), Wilderness, managed areas inside the Border Lakes Ecoregion (BLE), and managed areas in the surrounding 50-km buffer
(Buf). TOTAL represents the entire study area.
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the most plausible model based on weight was somewhat sensitive
to the value of ĉ, where models with fewer parameters were given
higher weight at higher values of ĉ. The rescaled R2 values im-
proved moderately in Step 2 from Step 1, but among the final most
plausible models there was little difference in rescaled R2 values.

The relative influences of different covariates were demon-
strated by plotting the mean annual recovery probability for each
level of each covariate using the means from all other covariates

(i.e., effect displays; Fig. 6). Forest recovery probability was sub-
stantially higher during the 1980–1985 transition (t1) relative to
all other 1–5 year old transitions, supporting our assertion that
the change in resolution between Landsat MSS and Landsat TM
sensors resulted in false transitions at forest/nonforest boundaries
(i.e., rapid ‘‘recovery’’ where no change had actually occurred). By
contrast the 1985–1990 forest recovery probability (t3) was much
closer to the recovery probability for all other 1–5 year-old distur-
bances, and the 1980–1990 transition was not retained as a sepa-
rate factor in the model. These results suggest the model
appropriately accounted for the primary artifact introduced by
the change in Landsat sensor, and that this artifact did not carry
over substantially to subsequent time steps.

The forest recovery analysis estimated the annual probability of
a disturbed pixel changing to forest. These annual probabilities,
when applied across space and time, determine the rate of forest
recovery. Hereafter, when referring to recovery rates, we have in-
ferred relative rates based on the relative annual recovery proba-
bilities. Forest recovery rate increased with time since
disturbance (AGE), and the transitional type (TT) following the dis-
turbance strongly affected forest recovery rate, with burned cells
the slowest to recover to forest, and tree regeneration the fastest
to recover to forest within any given 5-year time step. These re-
sults are logically consistent with the process of forest recovery,
and simply quantify time-dependence and the role of rapid recol-
onization (including regeneration enhancement methods such as
planting and coppice management), respectively, on recovery
rates. Also consistent with our predictions, disturbed lowland for-
ests had a lower rate of recovery than disturbed upland forests, and
the recovery rate decreased with distance to edge. While distur-
bances affecting hardwood types had a somewhat higher rate of

Fig. 5. Box and whisker plots of area-weighted forest disturbance patch sizes, stratified by analysis zone and time period. The year label represents the 5-year period ending
with the year indicated. Heavy lines represent median values, the box is defined by upper and lower quartiles, and the ends of the whiskers contain the range of values with
extreme values identified as circles. Letter symbols reflect statistically different (a = 0.05) groupings based on Tukey’s post hoc comparisons.

Table 2
Land cover transitions (%) following forest disturbance, separated by initial disturbed
land cover type, at 5-year intervals.

Initial type Years since Changed to type (%)

Disturbance Grass Brush Regeneration Forest

Fire 1–5 72 26 1 0
6–10 58 26 14 1
11–15 48 26 22 3
16–20 61 16 16 6

Grass 1–5 79 9 7 3
6–10 57 21 17 4
11–15 47 20 25 7
16–20 29 20 28 20

Brush 1–5 4 86 6 4
6–10 5 77 10 8
11–15 5 74 9 11
16–20 8 26 13 52

Tree regeneration 1–5 0 0 90 10
6–10 1 0 87 11
11–15 2 0 78 19
16–20 4 3 3 89
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Table 3
Most plausible models selected from Step1 and associated statistics.

Alternative modela Num
param

AICc Weight
ðĉ ¼ 1Þ

Weight
ðĉ ¼ 2Þ

Weight
ðĉ ¼ 3Þ

Weight
ðĉ ¼ 4Þ

Rescaled
R2

TT + ET + PFT + LOGDIST + TT:LOGDIST + PFT:LOGDIST + AGE + t1 + t3 18 30183.06 0.62 0.34 0.21 0.14 0.257
TT + ET + PFT + LOGDIST + TT:LOGDIST + PFT:LOGDIST + AGE + t1 + t2 + t3 19 30185.04 0.23 0.13 0.08 0.05 0.257
TT + ET + PFT + LOGDIST + TT:LOGDIST + AGE + t1 + t3 16 30186.62 0.11 0.38 0.45 0.39 0.256
PTT + ET + PFT + LOGDIST + TT:LOGDIST + AGE + t1 + t2 + t3 17 30188.61 0.04 0.14 0.17 0.14 0.256
TT + ET + PFT + LOGDIST + AGE + t1 + t3 13 30210.96 0.00 0.00 0.06 0.18 0.256
TT + ET + PFT + LOGDIST + AGE + t1 + t2 + t3 14 30212.85 0.00 0.00 0.02 0.07 0.256

a TT = transitional type; ET = ecosystem type, PFT = previous forest type; LOGDIST = log distance from edge; AGE = time since disturbance; ARTIFACT: t1 = 1980–1985
transition; t2 = 1980–1990 transition; t3 = 1985–1990 transition (Appendix A). See Table 1 for variable definitions.

Table 4
Most plausible models selected from Step 2 (final) and associated statistics.

Alternative modela Parameters AICc Weight
ðĉ ¼ 1Þ

Weight
ðĉ ¼ 2Þ

Weight
ðĉ ¼ 3Þ

Weight
ðĉ ¼ 4Þ

Rescaled
R2

TT + ET + PFT + LOGDIST + TT:LOGDIST + PFT:LOGDIST + AGE + t1 + t3 + PC1 + PC2 + PC3 + ZONE_5 25 29120.18 0.72 0.59 0.44 0.34 0.288
TT + ET + PFT + LOGDIST + TT:LOGDIST + PFT:LOGDIST + AGE + t1 + t2 + t3 + PC1 + PC2 + PC3 + ZONE_5 26 29122.18 0.27 0.22 0.16 0.13 0.288
TT + ET + PFT + LOGDIST + TT:LOGDIST + AGE + t1 + t3 + PC1 + PC2 + PC3 + ZONE_5 23 29128.62 0.01 0.19 0.40 0.53 0.287

a TT = transitional type; ET = ecosystem type, PFT = previous forest type; LOGDIST = log distance from edge; AGE = time since disturbance; t1, t2, and t3 = potential sensor
artifacts; PC1, PC2, and PC3 = principle components of climate; ZONE_5 = management � ecoregion zones. See Table 1 for definitions.

Fig. 6. Effects displays produced by the most plausible model predicting the annual recovery probability for forest disturbances (Table 4). Plot (a) depicts the effects of the
temporal model components, including the 2 unique transitions impacted by the Landsat sensor artifact, and the 4 AGE classes, on the annual probability of recovery using
the mean value for all other model components. Plotted values indicate the mean with 95% confidence intervals. Plots (b), (c), and (d) depict the influence of each non-
temporal model component on the annual probability of recovery for the 6–10 year AGE class. All other AGE classes showed similar patterns among the non-temporal
components. Horizontal dashed lines in plots (b), (c) and (d) represent the same mean recovery probability as the 6-10 AGE class in plot (a) for reference. The Min and Max
range values for plots (c) and (d) represent the minimum and maximum values for the corresponding variable in the analysis data set.
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recovery than those affecting conifer types, disturbances affecting
mixed forests had the lowest rate of recovery. Effect displays indi-
cated that climate component 1 (longitude) had virtually no influ-
ence on recovery rate, climate component 2 (latitude) had a mild
negative influence on recovery rate, and climate component 3 (lake
moderation) had a strong positive effect on recovery rate. Exami-
nation of Zone effects suggested that forest recovery was slowest
in Ontario managed zones, and fastest within the portion of the
Minnesota managed area within the BLE.

4. Discussion

Understanding sources of variability contributing to patterns of
vegetation recovery is essential to inform not only ecosystem-
based management, but also sustainable forest planning efforts
within systems commonly impacted by natural disturbances. Past
studies examined characteristics of forest management patterns in
northern Minnesota (Wolter and White, 2002; Pastor et al., 2005)
and the implications of divergent land management histories on
compositional legacies in the BLE (Shinneman et al., 2010; James
et al., 2011). Our study builds on this research by formally charac-
terizing the disturbance regimes across management zones and
examining the consequences of those disturbance regimes on for-
est recovery rates that ultimately define future spatial legacies.

4.1. Disturbance regimes

Disturbance patterns documented within the large contiguous
wilderness in this study are consistent with past studies that sug-
gest frequent but fine-scaled disturbances, punctuated by large but
infrequent fire and wind events (Heinselman, 1973; Frelich, 2002).
Fine-scaled disturbances that created canopy openings meeting
the minimum size criteria (i.e., 4 ha) include small fire and wind
events, mortality caused by spruce budworm (Choristoneura fumif-
erana) defoliation (Frelich, 2002), and aspen decline associated
with drought, fungal diseases, and defoliation stress (Frey et al.,
2004). The widespread blow down disturbance during the 1995–
2000 period was caused by a single event in 1999 (i.e., Indepen-
dence Day Blowdown). Such extreme events, while rare, have oc-
curred elsewhere in the Great Lakes region in the last few
decades (Frelich, 2002). Fires are actively suppressed by land man-
agement agencies across the entire study region, though some
lightning-caused fires have been permitted to burn under observa-
tion within wilderness areas, and suppression activities within
such areas are limited by road access (Shinneman et al., 2010).
More recently (i.e., since 2000) three wildfire events in excess of
10,000 ha have burned within the wilderness area. Given such
wide temporal variability of these disturbances, 25 years is insuffi-
cient to fully characterize the natural disturbance regime. None-
theless observed disturbance patterns in the wilderness serve as
a useful control for comparison with disturbance patterns within
the managed regions of the BLE.

While natural disturbances still occur within managed forests,
the regularity in both disturbance rates and patch size distribu-
tions relative to those observed in the wilderness is indicative of
a human-dominated disturbance regime (Schroeder et al., 2011).
Clearcutting is by far the dominant harvest method within man-
aged forests of the study area (OMNR, 2001; D’Amato et al.,
2009; Shinneman et al., 2010). Estimates of average clearcut sizes
from other studies in northern Minnesota vary between 15 ha
(White and Host, 2008) and 29 ha (D’Amato et al., 2009) depending
on the source of the data and the minimum patch size defining
clearcuts (2.5 and 5 ha, respectively). Mean area-weighted patch
sizes estimated in this study for Minnesota ranged between 19
and 35 ha, and Minnesota patch size distributions were the most

consistent of any zone examined (Fig. 5). White and Host (2008)
show that this consistency in clearcut size distribution reaches
back to the 1900–1940 era when pulpwood logging operations be-
gan (Heinselman, 1996). By contrast, mean area-weighted patch
sizes for managed forests of Ontario ranged between a high of over
250 ha in the 1980 period to a low of approximately 45–75 ha
(depending on ecoregion zone) by 2000, with a clear linear decline
evident on a log scale over time (Fig. 5). This decline in patch size
corresponds with a change in harvest pattern from contiguous har-
vest blocks to aggregated but smaller clearcuts separated by resid-
ual forest buffers. More recent harvest guidelines for Ontario
recommend harvest patterns that emulate natural fire regimes of
the boreal forest, with 80–90% of cut sizes ranging between 10
and 260 ha, and the remainder larger than 260 ha (OMNR, 2001).
Trends over the last decade in Minnesota indicate an increasing
emphasis on patch cuts and partial harvest (D’Amato et al.,
2009). Such trends indicate that landscape disturbance legacies
in the region will diverge further in the future.

Assuming the Boundary Waters Canoe Area Wilderness is rep-
resentative of the larger BLE, presettlement fire disturbance rates
have been estimated at approximately 0.8% per year based on
reconstruction studies (Heinselman, 1973). Available evidence
suggests severe wind disturbance was historically less common
than fire in this region (Frelich, 2002). Disturbance rates around
this presettlement fire disturbance rate, with an average of about
0.5% of the land area disturbed per year. Disturbance rates within
the Minnesota and Ontario managed lands of the BLE averaged
0.7% and 0.9% per year (not including the 1980–1985 period af-
fected by the Landsat sensor artifact) – close to the presettlement
burn rate. Minnesota patch sizes were most similar to (but still lar-
ger than) the background disturbances within wilderness, while
Ontario patch sizes were most similar to (but still smaller than)
the large natural disturbance events (Fig. 5).

Bias in forest types disturbed within wilderness varied widely
through time (Fig. 4) and should be related to the type of distur-
bance that dominated a given period. For example, forest type bias
was not evident in 2000 when wilderness disturbance was domi-
nated by a relatively indiscriminant blow down disturbance event
(Frelich, 2002). By contrast, disturbances were biased toward coni-
fer types in 1990 and 1995, corresponding with a peak in budworm
defoliation (Robert et al., 2012) and large wildfires (Fig. 3), respec-
tively. Bias in forest types observed in Minnesota and Ontario indi-
cate active selection of conifer stands for harvest, while hardwood
stands were also selected for in Minnesota and were selected
against in Ontario early in the time series. By the end of the time
series, disturbances were neutral regarding hardwood types within
both managed areas (Fig. 4). Given that the type of forest disturbed
affects its recovery rate (see Section 4.2), these biases in distur-
bance rates have implications for differential recovery patterns
across the differently managed zones.

4.2. Forest recovery

Spatial variation in recovery rates determines the persistence of
temporary forest openings across the differently managed zones of
the BLE study landscape, and by extension the pattern of forest
structure across the landscape. Forest recovery probabilities mod-
eled through our forest cover change analyses represent the cumu-
lative action of both human activities and ecological processes,
many of which are not directly measureable at landscape scales.
Ecological factors and processes include juvenile tree survival,
capacity to reproduce vegetatively, seed source (i.e., aerial seed
banks, proximity to reproducing trees), seedbed substrate, bio-
physical conditions (i.e., soil, drainage, climate), and competition
with other life forms. Humans further modify recovery patterns
through planting, seed bed preparation, silvicultural techniques
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(e.g., coppicing, seed tree retention), and vegetation control. The
influence of these processes and management techniques are gen-
erally well understood at local scales, but their net cumulative ef-
fect on landscape to regional-scale forest recovery are rarely
measured.

Those disturbed sites classified as tree regeneration and brush
in the first five years post-disturbance are unlikely to represent
natural regeneration from seed, as seedling establishment takes
place over an approximate five-year period (Greene et al., 1999)
and require additional time to produce sufficient leaf area to affect
spectral reflectance (Coppin and Bauer, 1994). Instead sites with
more advanced vegetative states shortly following disturbance
likely indicate vigorous vegetative reproduction, plantations, or
possibly areas with high post-disturbance survival of advance tree
regeneration. Study area-wide conversion of disturbed forests clas-
sified initially as tree regeneration and brush back to forest was
estimated at 89% and 52%, respectively, as compared with only
20% conversion rate from a grass/herbaceous state and 6% conver-
sion rate from large fires 16–20 years post-disturbance (Table 2).
These advanced vegetation states were more common within the
managed forest zones – particularly Minnesota – relative to the
wilderness (Fig. 3). In fact, one of the critical legal conditions of
the 1978 Boundary Canoe Area Wilderness Act was the dedication
of funds for silvicultural treatments – including planting – outside
the wilderness area to offset the loss of timber resources within the
newly designated wilderness (Proescholdt, 1995).

Studies of aspen recovery by suckering suggest approximately
2-m growth in height in the first five years following disturbance,
with crown closure within the first ten years (Palik and Pregitzer,
1993; Bergeron, 2000). Similar crown-closure rates have been ob-
served within disturbed stands dominated by birch (Bergeron,
2000). We expect most areas classified as conifer tree regeneration
in the first five years following disturbance was attributed to plan-
tations, with white spruce, red pine, and jack pine as the most
common plantation species, and where crown closure is antici-
pated between 10 and 15 years post-disturbance depending on
planting density (B. Palik, US Forest Service, personal communica-
tion). Tree regeneration and to some extent brush transitional
types were more prevalent immediately following forest distur-
bances in managed forests of Minnesota relative to other zones
(Fig. 3). Regeneration methods reported for Minnesota in the
1990s indicate that while methods differ somewhat across land
ownerships, conifer seedlings were planted on approximately
20% of the harvested areas while regeneration of the remainder
is primarily by vegetative reproduction (D’Amato et al., 2009).
Shinneman et al. (2010) estimated that approximately 48% of
clearcut area is planted with conifer seedlings within the BLE in
Ontario. Compositionally, hardwood forests are more prevalent
further south and conifers are more prevalent further north, with
differences greatest between Minnesota and Ontario outside the
central ecoregion. Hence differences in regeneration methods
may be attributed in part to compositional differences between
zones, while relative differences in the prevalence of advanced
transitional types following disturbance across zones may be
attributed in part to more rapid initial vegetative growth of copp-
iced hardwoods relative to planted coniferous seedlings.

Disturbances with low impact to the forest floor, such as winter
harvesting during snow cover and natural openings created by in-
sects and wind damage can release the understory to allow more
rapid canopy closure by shade tolerant conifers such as spruce,
fir, and cedar (Greene et al., 2002; Brassard and Chen, 2006;
Belle-Isle and Kneeshaw, 2007; D’Amato et al., 2011). Our finding
that the recovery rate within wilderness – after accounting for
the slow recovery following large fire – was similar to managed
forests of Minnesota and high relative to managed forests of Ontar-
io may be attributed in part to natural understory release there

(Frelich, 2002; D’Amato et al., 2011). It is unknown the extent to
which advance regeneration was protected within managed zones
of the BLE, but the protection of advance regeneration has in-
creased in practice more generally in Canada starting in the
1990s (Greene et al., 2002). We found no support for time depen-
dence models that would indicate a change in recovery rate due to
changes in silvicultural methods over time. In principle our ap-
proach should be capable of detecting such an effect, but additional
dates may have been necessary to capture the trend if in fact it ex-
isted within the study area. Combining the observations of slow
comparative recovery following fire, the prevalence of conifer
planting and coppice management in the region, and disturbance
regimes more dominated by wind and insect disturbance, it is
likely that contemporary forests in the border lakes region are
recovering faster than would be expected under a presettlement,
fire-dominated disturbance regime.

As expected, lowland forests recovered more slowly than up-
land forest. Lowland conifer forests were most abundant within
the Minnesota managed forests, comprising 10% and 20% of the
forested land area inside and outside the BLE, respectively, com-
pared with less than 5% of the forested land area in the other three
zones. Selection against lowland conifer was also most evident for
disturbances within Minnesota managed forests (Fig. 4). Schroeder
and Perera (2002) found that large-scale disturbance in boreal for-
ests with high interspersion of lowland and upland forests intro-
duced spatial diversity in recovery rates for a given disturbance
event. This process is expected to be less important within man-
aged forests of Minnesota where disturbance patches are charac-
teristically small.

The negative relationship between the log-distance to the near-
est forest edge and forest recovery probability is consistent with a
seed source influence of forest recovery rates. Studies across a
broad range of forest systems document similar neighborhood ef-
fects on forest recovery (Chazdon, 2003; Belle-Isle and Kneeshaw,
2007; Schoennagel et al., 2008). Greene et al. (1999, p. 831) con-
clude there is a ‘‘narrow window of opportunity for invasion of
clearcuts and burns’’ within the boreal forest, because seedbed
quality degrades rapidly 5–7 years post-disturbance. Indeed the
grass/herbaceous state was persistent in this system, particularly
following large fire (Table 2). Given the striking differences in
patch size distributions among differently managed zones of the
BLE, this process has clear implications for the relative persistence
of disturbance legacies among zones. The most plausible models
also indicated important interactions between nearest forest edge
and the transition type following disturbance as well as the com-
position of the forest disturbed. Both vegetative reproduction (re-
stricted to hardwood types), and planting (restricted to conifer
types) should override the need for local seed source, as will the
protection of the understory during canopy removal (Foster and
King, 1986).

While climatic effects on recovery were not a focus of this
study, we recognized climate was nonetheless likely to affect
recovery at the scale of investigation, and this prediction was sup-
ported by our analyses. Effects plots indicated that climate had a
strong influence on forest recovery rate, with the most influential
climate component (PC3) correlated with the modified climate
near Lake Superior (Fig. 6). This area of modified climate is where
northern hardwood systems reach their most northern distribution
(Wolter et al., 1995). However we caution that one climate compo-
nent (PC2) was strongly related to latitude, and therefore con-
founded with management zone. Forest composition also
changed from more hardwood dominated in the south to more
conifer dominated in the north. Separate examination of effects
plots without the zone variable suggested that PC2 had a stronger
influence on forest recovery than did PC3, where forest recovery
was negatively correlated with PC2 (i.e., negatively correlated with
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latitude). None of the models indicated that PC1 (i.e., climatic fac-
tors correlated with longitude) had strong influence. While our
exploratory analyses suggested that forest recovery was faster
within more moderated climates relative to the climate more typ-
ical of true boreal forest, correlations among independent variables
(climate, management zone, and prior forest type) did not allow us
to fully tease apart the relative contributions of these factors as
they affected recovery probabilities.

4.3. Management implications

Past research has demonstrated that different disturbance re-
gimes applied cumulatively to different land areas will lead to
divergent landscape legacies that can persist over long periods of
time (Franklin and Forman, 1987; Spies et al., 1994). The Border
Lakes region is a prime example of divergent forest disturbance re-
gimes separated by geopolitical boundaries. Forest recovery rate in
this area is comparable to that observed elsewhere in the boreal
forest (Schroeder and Perera, 2002; Schroeder et al., 2011) and in
temperate forests where growth is environmentally restricted
(Schroeder et al., 2007), suggesting divergent legacies will persist
in the form of differential landscape structure over time. Our re-
search goes further to suggest the magnitude of the divergence
in these landscape disturbance legacies will be underestimated if
the disturbance patterns are considered in isolation of the recovery
process, because certain attributes that characterize the different
disturbance regimes also influence forest recovery rates.

An influential paradigm in sustainable forest management is
the emulation of natural disturbances as a model for harvesting
practices (Perera et al., 2004). In the case of the Border Lakes re-
gion, natural disturbance and recovery patterns within the wilder-
ness area were characterized as fine-scaled disturbances expected
to recover quickly, offset by less frequent, coarse-scaled and severe
disturbances expected to persist for long periods of time. Managed
forests of Minnesota lacked these large-scale and persistent distur-
bances, whereas managed forests of Ontario were dominated by
them. Current harvest trends reported for Minnesota (D’Amato
et al., 2009) suggest forestry practices of the future may become
increasingly analogous to the background disturbances of the larg-
est reference area for the region. By contrast, current guidelines for
Ontario emphasize emulation of catastrophic disturbance– specif-
ically large wildfire (OMNR, 2001). These trends demonstrate the
challenge of implementing the emulation paradigm, as each case
is a simplification of the more complete disturbance regime
embodied by the wilderness reference zone.

While our focus on spatial legacies ignores other important
dimensions of the emulation natural disturbance paradigm, includ-
ing species composition (Moore et al., 1999), age structure (Berger-
on, 2000), and biological legacies (i.e., snags, downed woody
debris, etc.; Swanson et al., 2011), spatial legacies do have critical
implications for sustainable forestry, forest fragmentation, habitat
quality, and other ecosystem services. For example, shortening the
early successional stage in favor of closed-canopy forests clearly
enhances wood supply, and should help mitigate habitat loss and
forest fragmentation thought to impact an important subset of bor-
eal songbirds (Schmiegelow and Monkkonen, 2002; Manolis et al.,
2002) and other late-successional forest wildlife species (e.g.,
American marten, Martes americana; Landriault et al., 2012). Yet
there is also increasing recognition that more persistent early suc-
cessional stages and greater range of variability in recovery time
observed following many natural disturbances can play an impor-
tant role in the regional biodiversity of predominantly forested
areas (Swanson et al., 2011). In addition, Robert et al. (2012) found
the legacy of land management in this region influences spatio-
temporal dynamics of insect outbreaks, suggesting repercussions
for sustainable forestry and regional forest health. Our approach

can therefore help inform land managers who must balance a
diversity of objectives and values over time and space.

Finally, landscape simulation studies are now routinely applied
to evaluate the consequences of disturbance regimes, alternative
landscape management strategies, and their interactions on future
landscape structure and function (Scheller and Mladenoff, 2007).
Forest recovery processes within the underlying models are gener-
ally simplified and rarely validated. There is an abundant literature
of studies investigating forest recovery processes at traditional plot
scales, and the synthesis of these studies can clearly inform param-
eterization of landscape-scale forest disturbance and succession
models (Greene et al., 1999). Yet fine-scaled studies are by neces-
sity a subset of conditions affecting variation in recovery patterns
within real landscapes. Spatially continuous data sets derived from
remote sensing and other inventory methods therefore provide
opportunities to estimate post-disturbance vegetation processes,
such as canopy closure, across a much wider range of variability
than could be achieved through plot-scale analysis alone. Analyses
such as those presented here can therefore serve as important val-
idation of simulated spatial legacies within forested systems exam-
ined at broad spatial scales.
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APPENDIX 1: Land Cover Change Detection Methods 

Wolter et al. (2012a,b) describe the methods for Landsat image selection, processing, 

land cover classification and change detection at five year intervals over the greater Border 

Lakes Region.  Methods described therein extended previously published work (Wolter and 

White 2002, Pastor et al. 2005) by simplifying their original classification from 1990 to 

Anderson-level II, adding earlier dates (i.e., 1975 and 1980 based on Landsat Multi-Spectral 

Scanner (MSS) imagery and 1985 based on Landsat Thematic Mapper (TM) imagery), and 

defining methods for accurate change detection between dates with different Landsat sensors.  

Lowland forest types within the Anderson Level-II classification were further differentiated via 

intersections with available national-scale wetland inventories (Wilen 1990, Wulder et al. 2003) 

(Table A1). The 1990 land cover classification served as the “base” year for the time series 

across the whole region (See Wolter and White 2002).  Vegetation change between time periods 

with Landsat TM or ETM+ imagery (e.g., 1985 and 1990) was defined by differences greater 

than 1.5 standard deviations in the normalized difference moisture stress index (NDMSI, see 

Hunt and Rock 1989, Wolter and White 2002, Wilson and Sader 2002) applied to leaf-on 

imagery from the respective time periods. Pixels identified as changed were classified using an 

iterative, self-organizing, maximum likelihood classifier into one of 17 cover classes (Table A1).  

Pixels that did not change from the base year to adjacent time steps adopted pixels values from 

the base image.  Change detection then proceeded stepwise both forward and backward in time 

from the base image to subsequent adjacent time steps. For change detection between dates 

involving MSS (1975-1980) or MSS and TM (1980-1985) imagery, 60-m MSS pixels were first 

rescaled (nearest neighbor) to match the 28.5-m resolution of the 1990 base imagery.  

Differences in visible red reflectance between image dates were substituted for NDMSI to 

identify change pixels (Desclée et al. 2007).  In the final stage, large-scale (>100 ha) natural 

disturbances (i.e., fire and blowdown) were identified from the entire Landsat archive (1972-

2000) using their unique spectral signatures to distinguish these large disturbance types from all 

other disturbances. Resulting landcover datasets can be accessed online (Wolter et al. 2012a). 



Table A1.  Satellite land cover classification used to document forest disturbances across time 

(Wolter et al. in 2012).    

CLASSIFICATION DESCRIPTION 

Water Surface water including lakes, ponds, rivers, streams, and some wetland 

areas. 

Emergent 

Vegetation 

Wetland areas dominated by wetland emergent species growing above the 

surface of wet soil or water. 

Lowland Grass Graminoid-dominated low-lying areas with saturated soils. 

Lowland Brush Areas dominated by short woody vegetation over wet or saturated soil.   

Sphagnum Bog Wetlands dominated by Sphagnum spp. commonly associated with sparse, 

small diameter, and stagnant woody vegetation. 

Upland Grass Areas dominated by graminoid vegetation and forbs that do not intersect 

with any of the wetland inventory moisture modifier data. 

Domestic Grass Areas covered by cultivated or noncultivated herbaceous vegetation 

dominated by short manicured graminoids and/or forbs.   

Upland Brush Areas dominated by short woody vegetation over relatively dry soil that 

do not intersect with wetland inventory moisture modifiers.   

Conifer 

Regeneration 

Early successional coniferous forest that is spectrally distinct from mature 

forest classes, brush classes, and early successional hardwood 

regeneration. 

Hardwood 

Regeneration 

Early successional hardwood forest that is spectrally distinct from both 

forest and nonforest classes. 

Lowland Conifer Forested areas composed primarily of wetland conifer species (e.g., Picea 

mariana, Larix laricina, Thuja occidentalis) that intersected with wetland 

inventory moisture modifier data. 

Lowland Hardwood Areas dominated by hardwood tree species commonly associated with 

wetlands that intersected with wetland inventory moisture modifier data. 

Lowland 

Mixedwood 

Forest areas consisting of lowland mixtures of hardwood and conifer 

species, as specified above, that intersect with wetland inventory moisture 

modifier data. 

Upland Conifer Forest dominated by upland conifer species that do not overlap with NWI 

moisture modifier classes. 

Upland Hardwood Forests dominated by upland hardwood species (e.g., Populus spp., Betula 

papyrifera, Acer saccharum, and Fraxinus americana) that are not 

coincident with wetland inventory moisture modifier 

Upland Mixedwood Forest areas consisting of upland mixtures of hardwood and conifer 

species, as specified above, that do not intersect with wetland inventory 

moisture modifier data. 

Forest Blow Down Large (≥100ha) stand-replacing forest disturbance due to extreme wind 

events. 

Forest Fire Burns Large (≥100ha) stand-replacing forest disturbance due exclusively to 

wildfire events. 

Developed Lands dominated by residential housing structures, commercial industrial 

development, and/or copious areas of pavement. 

 



 

Examination of the 1985 forest disturbance map indicated that some of the mapped 

disturbances were an artifact of the change in Landsat sensor (i.e., MSS to TM/ETM+) – in 

particular a difference in image resolution between sensors – resulting in fine-grained “changes” 

in forest cover between 1980 and 1985.   Plotting disturbance area at different minimum patch 

size thresholds (Figure A1-1) suggested the presence of the artifact was greatly reduced at a 

minimum patch size of 4 ha, as the 1985 disturbance-minimum patch size relationship began to 

parallel that of the other dates at this size threshold. Nonetheless, 4 ha represents a balance 

between minimizing 

the effect of the 

artifact while still 

retaining the vast 

majority of stand-

replacing forest 

disturbances.  We 

addressed the residual 

effect of this artifact 

within the statistical 

model estimating the 

probability of forest 

recovery described in 

Appendix 2. 
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APPENDIX 2: Forest Recovery Model Development 

We estimated forest recovery probabilities using logistic regression within the program 

MARK (White and Burnham 1999) and its companion package for R (v2.12.1, R Development 

Core Team 2010), RMark (v1.9.9, Laake and Rexstad 2012).  We considered each disturbed 

pixel to be a marked individual and tracked its condition (transitional or forest) through 

“recaptures” at each 5-year interval available from the imagery.  The program estimates the 

“survival” probability of disturbed cells, which was converted to recovery probability (i.e., 

Precovery = 1- Pdisturbed survival).  Hence if the disturbed condition in a particular cell didn’t “survive” 

during a subsequent “recapture”, this increases the recovery probability as a function of its 

associated cell attributes defining the 

logistic regression model. Due to the 

large number of pixels in the landscape, 

we performed the analysis on a one-

percent subset (n=91144 disturbed 

pixels).   

We developed four sets of a 

priori candidate models for evaluation 

based on hypothesized relationships 

between the predictor variables and 

forest recovery probability, where the 

combination of model sets were 

evaluated in two steps to address two 

related questions (Figure A2-1).  First, 

what combination of time-dependence 

and measurable disturbance attributes 

best predicts the probability of forest 

recovery?  Second, to what extent, if any, do climate variables or unmeasured differences among 

management and ecoregion zones improve predictions from Step 1?   

The Time Dependence model set included four a-priori models: 1) no time dependence 

(null model); 2) unique transition probabilities for each year of disturbance (YEARD); 3) unique 

transition probabilities for each year of transition (YEART); and 4) unique transition probabilities 



by the time since disturbance (AGE) (Figure A2-2).  Previous research suggested the likelihood 

of transition back to 

forest after disturbance 

increases with AGE 

(Pastor et al. 2005).  

YEARD represents the 

possibility that internal 

disturbance properties 

affecting recovery, such 

as silvicultural practices 

or disturbance severity, 

may have changed over 

time.  YEART represents 

the possibility that 

external factors affecting 

recovery, such as drought or some other climate-related factor, may have changed over time.    

ARTIFACT models consisted of different time parameter combinations that isolated transitions 

from 1980 and 1985 disturbances to evaluate whether the change in Landsat sensor (see Mapping 

Forest Disturbances) might have introduced a bias in transition parameter estimates. All 

combinations of ARTIFACT models and the four a priori models were evaluated to derive the 

candidate list of Time Dependence models.  

Disturbance Attribute models were derived from four variables using the following 

expected relationships.  We expected the distance to nearest forest edge would affect the 

likelihood of establishment by seeding from residual forests, where the influence of seeding 

would decline rapidly with increasing distance from a seed source (Greene et al. 1999).  We 

therefore used the log (base 10) distance from nearest forest edge (LogDist) to approximate seed 

source effects.  We predicted that lowland forest ecosystem types (ET) would have slower 

recovery rates than upland forest ecosystems, due to slow tree growth rates on lowlands relative 

to uplands.  We also predicted that the forest type that was disturbed (i.e., previous forest type: 

PFT) would affect recovery rates.   Specifically, disturbed deciduous forests, with their ability to 

coppice following tree mortality, should have faster recovery rates relative to disturbed conifer 
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Figure A2-2.  Graphic representation of the four factors included within 
alternative Time Dependence models:  disturbance year (YEARD), transition year 
(YEART), time since disturbance (AGE), and three specific transitions that may 
have been affected by the change in Landsat sensor (ARTIFACT; t1, t2, and t3).



forests that must regenerate via seeding.  Transitional type (TT) represented the successional 

state (grass, brush, tree regeneration, burned) indicated by the classification immediately 

following disturbance.  Note that no major blowdown occurred at a time when we could examine 

its recovery.  We expected that changes in TT would be directional.  For example, grass should 

convert to brush or regenerating forest, but not the reverse.  TT may also represent differences in 

disturbance severity (e.g., overstory removal vs. overstory and understory removal) or 

management practices (e.g., planting).  For these reasons, we predicted burned cells would 

require longer recovery than the vegetated transitional types, and the probability of recovery 

would be consistent with the above expected directional pattern of vegetation change. 

Disturbance Attribute candidate models were defined as all additive combinations of the 

above four variables, for a total of 14 combinations (Table 2).  In addition we included two 

candidates with multiplicative terms based on hypothesized interactions among covariates.  

LOGDIST was expected to have the strongest influence on coniferous forest types dependent on 

regeneration by seeding.  Assuming the transition type was related to disturbance severity, TT 

may also reflect the availability of local seed source that would likewise affect the relevance of 

distance to forest edge.  We assumed that these interaction terms would only be plausible within 

candidate models that included each of the main covariates from the corresponding interaction 

term (Table 2).  All combinations of candidate models from the Disturbance Attribute and Time 

Dependence model sets were evaluated for Stage 1, and candidates with model weights ≥ 0.05 

across all 4 levels of ĉ were retained as plausible candidate models for the next step.   

In Stage 2 we evaluated whether climatic variables (Climate), forest management or 

ecoregion boundaries (Zones) could improve the models estimated in Stage 1 (Figure A2).  

Using monthly climate data (minimum temperature, maximum temperature, and precipitation) 

interpolated at 1-km resolution between 1976 and 2000 (McKenney et al. 2006), we calculated 

average monthly climate statistics for the 25-year time period.  Principal components analysis 

(PCA) was used to reduce these climate data to a small number of orthogonal climate variables.  

PCA was performed on the correlation matrix using the ‘‘princomp” function in R (R 

Development Core Team 2010).  The broken stick criterion was used to assess significance of 

ordination axes and significance of loadings within significant axes (Jackson 1993, Peres-Neto et 

al. 2003), where all significant axes were included in a single climate model.  We evaluated three 

alternatives for the Zone variable. In the first alternative we separated wilderness areas from 



managed areas (Zones = 2), in the second we separated wilderness, managed areas of Minnesota, 

and managed areas of Ontario (Zones = 3), and in the third we separate managed areas outside 

the Border Lakes Ecoregion (BLE) from the managed areas inside the BLE (Zones = 5; note that 

wilderness was almost completely within the BLE; Fig. 1). Model selection criteria defining 

plausible models from each model set and step of model development, along with goodness of fit 

statistics for the final models, are presented in the main text. 
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