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SYNOPSIS 

Thi~ dissertation discusses some aspects of the two principal 

types of singularity which can arise in wavefields: wavefront 

dislocations and caustics. After a general introduction in the prologue, 

chapter 1 develops the concept of wavefront dislocations in continuous 

and pulsed waves, building on the original work of Nye & Berry. Local 

models of scalar dislocations, and one example of a dislocation in an 

electromagnetic wave, are analysed. Chapter 2 examines the dislocations 

produced by a realistic model of an acoustic radiator by deriving an 

exact formula for the pulsed wavefield, and evaluating it numerically. 

An attempt is made in chapter 3 to derive the behaviour of the 

dislocations in a pulsed wavefield from the continuous wavefield. 

Chapter 4 introduces the concept of caustics and the diffraction 

patterns which surround them. Catastrophe theory is presented in the 

context of caustics to show how it classifies the caustic diffraction 

patterns. A general method for evaluating the canonical diffraction 

integrals is presented, and applied in subsequent chapters. Chapter 5 

summarizes the cusp diffraction pattern and draws attention to its 

dislocations. An ultrasonic cusp diffraction pattern is analysed, and 

the effect of pulsing the wave field is considered. An appendix 

discusses the focussing of pulses. Chapters 6 and 7 present the three

dimensional diffraction patterns associated with the swallowtail and 

elliptic umbilic catastrophes, with particular emphasis on their 

dislocation structure. Finally chapter 8 shows that wavefront 

dislocations themselves are catastrophes. 
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GLOSSARY 

Most notation and nomenclature is standard, but some which may 

not be familiar is:-

Re(z) or 

1m(z) or 

13-
int(x) 

O(x) 

'V 

6 (x) 

<5 (x) 

sgn(x) 

zR 

zl 

real part of complex variable z 

imaginary part of complex variable z 

complex z plane 

integral part of x (only used for x ~ 0) 

of order x; y = O(x) if y/x is bounded in some limit 

asymptotic equality; y 'V x if y/x = 1 in some limit 

Heaviside unit step function; 8 (x) = 0 if x < 0 

Dirac <5-function 

sign function; sgn(x) = +1 if x > 0 
-1 if x < 0 

lifx>O 

f' (x) derivative with respect to its argument; df/dx 

Ai(z), Ai' (z) : Airy integral function and its derivative 

ret retarded 

cw continuous wave (monochromatic) 

spp stationary phase point 

RHS/LHS right/left hand side (of an equation) 

cylinder translation symmetric surface 

localized interference fringe : line on which wave amplitude is zero 

non-localized interference fringe : surface on which wave amplitude is 

zero (degenerate case) 

head and tail of a pulse : beginning and end of the pulse with respect 

to time, at some fixed point in space 

codimension 

real n-dimensional Euclidean space 

class of continuous functions having infinitely many 

continuous derivatives 

difference between dimensions of a subspace and the space 

in which it is embedded. Dimension of control space of 

a catastrophe. 

diffeomorphism: differentiable 1::1 onto map whose inverse is also 

differentiabie, e.g. an ellipse is diffeomorphic to a 

circle, but not to a square 



dense 

generic 

a set E in a space M is dense if every neighbourhood in 

M contains a point of E, e.g. the set of rational numbers 

is dense in itself, and dense in the set of real numbers, 

as is also the set of irrational numbers. 

a generic property is -"not special". Then if one chooses 

objects at random, the chance of choosing one with a non-

generic property is vanishingly small. (Rigorously, if X 

is a topological space which has the Baire property, that 

every intersection of a countable family of open dense 

sets is dense, then a property of elements of X is generic 

if the set of points of X that satisfy the property 

contains a set which is a countable intersection of open 

dense sets.) 

Some important notation used mainly in chapter 1:-

Be & Ss 

s 

m,n 

1;; 

Some 

W 

1/0 

X, X' 

X 

Q (n) (W) 

f (n) (t) 

complex coefficients in local model of dislocation, 

responsible for edge and screw character, respectively. 

dislocation strength (an integer) 

integers 

z - ct 

important notation used mainly in chapter 3:

frequency deviation of pulse (w - wo ) 

standard deviation in time of Gaussian model pulse 

envelope ='n'carrier cycles 

complex factors of the wave function 

real factor of the wavefunction 

amplitude of the wave function . 

phase and frequency derivative of phase 

phase at t = 0; a function of space and frequency only 

nth frequency derivative 

nth time derivative 

derivative with respect to x (essentially) 



PROLOGUE 

Mathematical singularities usually herald interesting physical 

behaviour~ \'lavefields exhibit two complementary types of singularity: 

those where the amplitude is zero, and those where the amplitude tends 

1 

to infinity in the limit as the wavelength tends to zero. Their physical 

significance is discussed in subsequent chapters. We shall usually 

describe our wavefields by a complex wavefunction, so that the wave 

amplitude and phase are uniquely defined as the modulus and argument, 

respectively, of this complex wave function at any point in space and 

time. The first type of singularity is called a wavefront dislocation, 

for reasons discussed in chapter 1, and the singularity exhibits itself 

as an indeterminacy in the phase which permits the equiphase lines to 

coalesce into a "spider-like" pattern. The second type of singularity 

is called a caustic, and is only a true singularity in the "geometrical 

limit". It is the envelope along which the geometrical rays coalesce. 

In a real wave field the amplitude is nowhere infinite, but near to the 

"geometrical caustic" the amplitude will attain its highest values, 

which is what one perceives experimentally as the caustic. 

The caustics are the only readily observable feature of a wavefield: 

everyone has seen the cusped "teacup caustic", and the bright rippling 

lines on the bottom of the bath (see Berry & Nye (1977». The recent 

development by Rene Thom and others of a branch of pure mathematics 

called catastrophe theory has made possible a much deeper understanding 

of caustics. Catastrophe theory not only classifies the possible forms 

of the geometrical caustics, but with the aid of a little wave theory it 

also classifies the diffraction patterns which "disguise" the caustics 

in real wavefields. This permits a general systematic study of these 

important regions of maximum intensity of a wave, the beginnings of which 

is presented here. An important feature of these caustic diffraction 

patterns is the wavefront dislocations which they contain, but little 

attention has been paid to these amplitude zeros until recently. The 

two types of wavefield singularity together form the backbone of any 

diffraction pattern, and a knowledge of their configuration provides a 

summary of the structure of the pattern. 

However, the true significance of wavefront dislocations only 

becomes apparent when the wavefield is pulsed rather than continuous, 

because then they can, and generally do, become ti~e dependent and move 



through the wavefield. ,Complicated interactions among sets of moving 

dislocations are then possible. Their behaviour may be studied by 

setting up simple local models which are analytically soluble, or by 

setting up more realistic global models and resorting to numerical 

solution by computer graphics. An interesting problem is to relate the 

behaviour of the wavefront dislocations produced by a pulsed carrier 

wave to the static wavefield produced by the continuous carrier alone. 

We attempt to develop some general theory for this problem, and then 

apply it to two model systems, one of which has a caustic and one of 

which does not. In the latter case we can compare our predictions with 

exact computations of the behaviour of the dislocations, and in the 

former with the results of an experiment using ultrasound. 

However, the straighforward way of detecting dislocations 

experimentally uses not their zero of amplitude, but the coalescence of 

2 

a crest and trough. The latter property is probably slightly more 

fundamental, but less amenable to theory. Nevertheless, its consideration 

leads us to the fruitful conclusion that dislocations in pulses are 

actually catastrophes. Then we have come full circle: the pulsed 

diffraction patterns around caustics, which are catastrophes, contain 

wavefront dislocations, which are also catastrophes! 

For simplicity, we consider mainly scalar wavefunctions, although 

all the ideas would apply to more complicated wavefunctions, such as 

vector and tensor waves, and quantum mechanical wavefunctions. 

Dislocations in continuous wave (stationary state) quantum wavefunctions 

have been considered by Dirac (1931), Riess (1969a,b,1975) and 

Hirschfelder et al. (1974,1976a,b). 



CHAPTER 1 

WAVEFRONT DISLOCATIONS 

1.1 Introduction 

The simplest possible wave is a monochromatic plane scalar wave 

~(£,t) = ACOS(~.£-wt) progressing in the direction k with wave velocity 

w/I~I. At some time t,~ has maxima and minima lying alternately in 

equally spaced planes perpendicular to k. We call A the amplitude of 

the wave and k.r-wt = X(£,t) the phase of the wave. We call a set 

of planes perpendicular to k and 2TI/I~1 apart the wavefronts. These 

may be the planes of maxima or minima, or some intermediate set. 

They satisfy X(£,t) = constant(modulo 2TI), and travel along k at the 

wave velocity. 

If we also travel with the wave we see a fixed set of plane 

wave fronts analogous to a set of lattice planes in a perfect crystal. 

But in real crystals the lattice planes suffer from faults, among 

which are a set of faults localized to the neighbourhood of lines 

called dislocation lines. The type of a crystal dislocation line is 

defined by reference to the undistorted lattice planes away from the 

dislocation line. If the dislocation line is parallel to these planes 
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it is called an edge dislocation and is the line along which a lattice 

half plane ends, as in fig 1.1. If the dislocation line is perpendicular 

to these planes it is called a screw dislocation and is the line 

along which successive planes join up in a helicoidal fashion like a 

screw or spiral staircase, as in fig 1.2 (see also Hilbert & Cohn

Vossen(1952), hereafter called HCV52, p209). Intermediate cases are 

called mixed screw-edge and are characterised by the angle of the 

dislocation line to the undistorted lattice planes. They also link 

successive lattice planes; only the pure edge dislocation does not. 

Similarly, the wave fronts of a more realistic wavefield may suffer 

from analogous faults, called "wavefront dislocations" by Nye & Berry 

in their pioneering paper of 1974 (hereafter called NB74). Therein 

they present the basic theory of wavefront dislocations, which is 

fundamental to ~he present work. In this chapter we review these basic 

concepts and endeavour to generalize them slightly. 

The fundamental property of a dislocation is that if one traverses 

any closed circuit enclosing the dislocation line, then there exist 



Figure 1.1 Single Edge Dislocation 

Figure 1.2 Single Screw Dislocation 

(a semi-helicoid) 
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wave fronts through which one passes an odd number of times. The number 

of such wave fronts is the strength n of the dislocation. The 

dislocatipns illustrated in figs. 1.1 & 1.2 are both of strength 1, and 

an undislocated region can be considered as a dislocation of strength O. 

The closed circuit is the analogue of the Burger's circuit for a crystal 

dislocation. 

To show that wavefront dislocations may occur, let us consider 

the most general monochromatic scalar wavefunction ~(~,t) in the form 

~ (~, t) = Re { A (~) e HB (~) -wt} } 

where B(~} is real. We can write the complex function A(r} in modulus

argument form as 

( ) i~(r} 
p~e -

giving ~(£,t) = P(£}cos{~(£)+B(£)-wt}, where everything is real and 

p(~}~O. Again p(~) is the (variable) amplitude and X(£,t) = ~(£}+B(£)-wt 
is the phase. Now the maxima and minima in time correspond to certain 

values of phase exactly as in the plane wave case, but the maxima and 

minima in space correspond to different values of phase. Therefore 

we define the wave fronts to be the equiphase surfaces, satisfying 

X(£,t) = constant(modulo 2~), so that the phase increases continuously 

through 2nbetween wavefronts. Since the wave function is continuous, 

the phase must vary continuously along a loop enclosing a dislocation 

line. Let us start at point A in fig. 1.1 with phase a and suppose 

the phase increases upwards. Then the phases at points B,C,D,E,F 

are respectively a+2~, a+2~, a, a, a+2rr. But A and F are the same 

point, so we see that the phase has increased by 2~ in traversing the 

loop. This is allowed because phase is only defined up to a multiple 

of 2~ and ~(£,t) is still single valued. The loop around the screw 

dislocation behaves identically, and obviously for a dislocation of 

strength n the phase change round the loop would be 2~n. 

Now let us progressively shrink the loop whilst retaining the 

the continuous change of phase of 2~n round the loop. When the loop 

has shrunk to a point, the phase at that point must have all values in 

a range of 2~n. But ~(£,t) must be single valued. This is only 

possible if the amplitude p(£) = O. Then ~(~,t) is well defined to 

be zero and the phase X(£,t) is undefined. 
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p (E.) = 0 

=> A(r) = 0 (complex) 

=> Re A(r) = 1m A(r) = 0 
} (1.1 ) 

and these two equations define a line in three dimensions. This is the 

equation of the dislocation line, and this definition of the dislocation 

line is a direct consequence of our definition of wave fronts as equiphase 

surfaces. (An alternative definition is mentioned in NB74 and discussed 

in the last chapter.) These dislocation lines are fixed in space and are 

just localized interference fringes - lines of zero intensity. 

There is also a degenerate case where Re A(r) « 1m A(r), and (1.1) 

reduces to a single equation which only defines a surface in three 

dimensions. We can write the wave function as ~(E.,t) = A(E.)COS{B(E.)-wt} 

where A (E.) is real. Generically A (E.) passes linearly through zero 

thereby changing sign on opposite sides of the null surface. On the 

positive side ~(E.,t) = IA(E.) Icos{B(E)-wt}, but on the negative side 

~(E.,t) = IA(r) Icos{B(E.)-wt±TI}. The amplitude, which is non-negative 

by definition, is IA(E.) I and the phase jumps by TI on crossing the null 

surface. The wave fronts have the "staggered comb" structure of fig. 1. 3 

(or fig. 5 of NB74). This structure is a non-localized interference 

fringe, not really a dislocation, and normally only occurs in the far 

field limit of diffraction problems, such as the elementary analysis 

of Young's slits or the far field of the acoustic radiator (see the 

next chapter). In the general case where A(E) is essentially complex 

we still expect it to pass through 0 linearly. Therefore if we travel 

along a smooth curve intersecting the dislocation line we still expect 

the phase to jump by exactly TI as we cross the dislocation line. 

This fact is useful when plotting phase lines around a dislocation 

and allows us to deduce that generically the phase in a two-dimensional 

section through a single strength dislocation has locally the "spider" 

pattern of fig. 1.4 and globally the pattern of fig. 1.5 (cf. fig. 10 

of NB74) showing a wavefront ending. Note the essential saddle point 

(here at phase TI), and tilat two-dimensional sections through dislocations 

always appear to be of pure edge type. 

The most interesting case is when we make the dislocations time 

dependent by making the amplitude a function of time P(E.,t} and the 

phase a more general function of time. We do this by modulating the 

wave source. To be able still to apply the previous theory we require 

that the modulation envelope varies much more slowly in time than the 
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carrier. We call this a quasimonochromatic wave, and strictly the 

condition for this is that the width of the frequency spectrum be 
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much less than its centre frequency. We wish to consider a wave function 

of the form ~(r,t) = P(E,t)cos{~(E,t)-wt}. But now the amplitude and 

phase are not uniquely defined by ~(£,t) alone, since we can change p 

arbritrarily and compensate by a change of~. We need an additional 

piece of information such as the "complementary wave function " 

~c(£,t) = p(£,t)sin{~(E,t)-wt} i.e. we need both the real and imaginary 

parts of the complex wavefunction 

,/.( t) - ( t) i{cjl(r,t)-wt} 
'I' £, - P,E., e -

from which uniquely: 

amplitude p (£,t) 

phase 

I~(r,t) I 

In the monochromatic (or continuous wave) case the real wave function 

~(£,t) = p(£)cos{~(r)-wt} contains all the necessary information, 

because we can derive the complementary wave function from it, for 

example by taking a later time t' = t+~/(2w) or taking the rate of 

change in time, viz 

~(£,~) = p(r)cos{~(E)-wt-~/2} = p(£)sin{cjl(E.)-wt} 

or a~(r,t) = wp(E.)sin{~(£)-wt} 
at 

so that ~ (r,t) = ~(_r,t') c- = 1. ~(£,t) 
w at 

(In fact, if the modulation is varying sufficiently slowly in 

time, i.e. the wave is sufficiently quasimonochromatic, it is possible 

to derive the amplitude 'p (£,t) and phase X(,E.,t) approximately from the 

real wave function alone. If the original carrier wave is available, 

of course, it can be done exactly for a quasimonochromatic wave, and 

this is the basis of an amplitude-phase (Argand) display produced by 

Walford et ale (1977).) 

Note that now neither the maxima or minima in space nor in time 

correspond to specific values of phase, i.e. to wave fronts as defined 

earlier. Section 2 of NB74 discusses how using this complex wave function 

corresponds experimentally to measuring a real wavefunction, then 

phase shifting the carrier by ~/2 and observing another real wavefunction 

and combining the results. The significance of p(£,t) is that it is 

the envelope of the wave function as the phase of the source carrier is 



, 
I 

varied. However, in practice this procedure is rarely followed and 

only a single real wave function is observed. The striking property 

of a dislocation is the appearance or disappearance of a crest and 

trough (maximum and minimum) at some point near the dislocation line 

as defined earlier. This approach is taken up again in the final 

chapter. Even if a complex wave function is not obs«ved in practice, 

it is eminently suited to theoretical investigations, and henceforth 

we shall always work with the complex wavefunction 

iX (r t) 
IjI (E.' t) = P (,E., t) e -' 

such that a dislocation line has the very simple equation 

p(!"t) = O. 
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1.2 Strength of Wavefront Dislocations 

Given a complex wavefunction 

1/1 (r', t) = P (E.' t) e iX (,£, t) 

we wish to know 

(a) where the dislocation lines are at some time t 

(b) what strength they have. 

If we adroit the trivial case of a zero of amplitude around which there 

is no net phase change as a dislocation qf strength 0, then a necessary 

and sufficient condition for a dislocation is 
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Having found the dislocation lines, if we traverse a circuit C in space

time, then the net number of wavefronts crossed, i.e. the number of units 

of 2rr by which the phase changes, is the total strength s of the 

dislocations encircled by the loop: 

s = 1. f. dX 
21T C. 

The sign of s depends on which way we go round C. By a circuit in 

space-time is meant the following: a dislocation line moving with time 

constitutes a one-parameter family of lines in 3-space, parametrised by 

time. Such a family of lines constitutes (generally) a 2-surface. In 

3-space this surface is that traced out as the dislocation line moves 

we call it the dislocation trajectory. But we can also embed this 

trajectory surface in four dimensional space-time such that the real 

dislocation line at time to is the intersection of the hyperplane 

t = to with this "4-trajectory" surface, and the normal trajectory 

surface is the projection of the 4-trajectory onto real 3-space. But 

the generic intersection of any hypersurface with the 4-trajectory is 

a line, although not the physical dislocation line. We may take as our 

space-time circuit any circuit lying in the hyper surface and encircling 

this line. In view of this we will sometimes drop the distinction 

between space and time, and represent (£,t) by the 4-vector x (having 

components x~ : ~=1,2,3,4). 

The complex wave function 1/1 (x) is a mapping from space-time into 

the complex (Argand) plane, which will map a closed circuit C in space

time into a closed contour C' in the complex plane (closed because 1/1 (x) 

is single valued). The strength of the dislocations encircled by C is 
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the number of times C' encircles the origin of the complex plane. This 

is a very useful way of finding the strength of a model dislocation, by 

choosing ~he simplest possible space-time contour C. It also shows that 

the strength is a topological invariant of a dislocation. If we 

continuously distort C, then C' will also be continuously distorted 

because ~(x) is continuous. The number of times which C' encircles 

the origin can only change if C' crosses the origin, which means that C 

has crossed the dislocation line. Therefore all topologically equivalent 

circuits which encircle the dislocation line once lead to the same 

strength. Also a dislocation line cannot end, because if it did the 

circuit C could be shrunk to a point not on the dislocation line without 

passing through it. This implies that C' could be shrunk to a point 

other than the origin without passing through the origin, which is 

clearly impossible. Thus dislocation lines can only pass out of the 

region where a wavefield is defined (i.e. end on boundaries such as 

reflecting or radiating surfaces) or form closed loops. They may, 

however, interact with each other such that the total strength is 

conserved. 

It should be noted that the sign of the strength of a dislocation 

is not absolute, but is relative to a family of topologically equivalent 

directed circuits. For a set of interacting dislocations one must 

take a circuit C which encloses the whole set, and then find the signed 

strength of each member of the set on its own relative to a circuit 

topologically equivalent to C. The total strength of the set is then 

the algebraic sum of these component strengths, and this must be 

conserved in any interactions. 

An alternative approach, which we shall use later, is to always 

choose our circuit round a single dislocation line such that s is 

positive (say), and indicate the sense of this circuit by attaching a 

direction to the dislocation line itself, via the right hand (corkscrew) 

rule (say). Then for a set of interacting dislocations the total 

strength of the dislocations within a given circuit is the Sum of the 

strengths passing through the circuit in one sense minus the sum of 

the strengths in the other sense. 



It is possible to find a general expression for the strength of 

a dislocation without explicit reference to phase, by a method based 

on the complex residue calculus: 

=> dljl = dp + idX 
ljI P 

=> strength s = Re [_1 f. dljl(x) J 
21Ti t. ljI (x) 

= Re f_1 . .c dljl } 
21T~ Te' ljI 

But by residue calculus 

_1_1. dljl = n 
21Ti c.' ljI 

if C' encircles the pole (of l/ljI) at the origin n times, and is real. 

Therefore, 

strength s = _1_1 dljl (x) 

21Ti J~ ljI (x) 
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This is, of course, just a restatement of the previous contour condition, 

and is not used further. 
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1.3 Local Models for Static Dislocations 

This section is based on sections 4 & 5 of NB74, and following 

that work, we shall consider wavefunctions which are simply modulated 

plane waves travelling along the z axis. The simplest such wave functions 

travel "rigidly" along the z axis, Le. z and t appear only in the 

combination ~ = z-ct, where c is the wave velocity; we shall call the 

dislocations associated with such wave functions static because they do 

not move relative to the wavefronts. This is to be contrasted with the 

dislocations of monochromatic waves which do not move in space, but the 

wave fronts sweep through them. 

ik~ We consider the plane wave e to be modulated by a "complex 

envelope function" '¥(,E.,t) of space and time. Our local models will 

consist of the lowest order polynomial approximations to '¥ in the 

neighbourhood of the dislocation line which produce the required behaviour. 

They must, of course, satisfy the scalar wave equation 

but they will not be acceptable as global wave functions because the 

amplitude will diverge (polynomially) away from the dislocation line, 

and they could not therefore satisfy any realistic boundary conditions. 

This would require the addition of higher order terms, which would not, 

however, affect the behaviour near the dislocation. 

Our general model dislocated wavefunction has the form 

and for static dislocations this simplifies to 

ikl'; '¥(x,y,l';)e . 

Then the fact that ~(,E.,t) satisfies the wave equation implies that 

'¥(x,y,l';) satisfies the two-dimensional Laplace equation 

the general solution of which may be written as 

'¥(x,y,l';) = f(x+iy,~) + g(x-iy,~) 

where f and g are arbitrary complex functions. 

(1. 2) 



The equation of the dislocation lines of ~(£,t) is ~(x,y,~) = o. 
Let us attempt to model a single straight dislocation line passing 

through tre origin. Then ~(x,y,~)must take the form 

(linear expression)s 

Le. ~(x,y,~) = [a (x+iy) + b(x-iy) + c~Js 

where a,b,c are complex coefficients. But to satisfy the wave equation 

~(x,y,~) must have the form (1.2). 

If s = 1 then (1.3) does have the required form, and factoring 

out a complex constant we can write it as 

.~ (x,y,~) = x + S y + S ~ 
s e 

where the coefficients B and B are not both real (otherwise the phase 
s e 

would be constant). This is a slightly generalized version of eqn. (24) 

of NB74. The equation of the dislocation line D is 

1 
If 8 = e 

0, then x=y=O, D lies along the ~ axis perpendicular to the 

(unmodulated) wave fronts and we have a pure screw dislocation. If a 
"'s 

is real then ~= x+8 y = 0, D lies in the xy plane parallel to the 
s 

wave fronts and we have a pure edge dislocation (cf. eqn. (13) of NB74) . 

Otherwise D lies at some angle to the xy plane and we have a mixed 

screw-edge dislocation. 

We shall illustrate the contour method for finding the strength 

of a dislocation in this simplest case. Since 

kfd~ ,;. 0 
'k~ 

the plane wave factor e~ does not affect the strength and only the 

envelope function ~ need be considered. Suppose D is not pure edge, 

then we may take our circuit C in the xy plane around the origin 

(fig. 1.6). As long as B is not pure real, i.e. D does not lie in 
s 

the plane of C, then the circuit C' encircles the origin once, and we 

have a single strength dislocation. So (1.4) is the envelope function 

of the general straight single strength dislocation. 

If s # 1 in (1.3), then when we multiply out the repeated factors 

we shall produce cross terms of the form (x+iy)n(x_iy)m, which do not 

exist in the form (1.2), unless either a = 0 or b = O. Then factoring 

12 

(1. 3) 

(1.4) 
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Figure 1.6 Circuits for Single Strength Dislocation (1.4) 

Figure 1.7 Double Screw Dislocation 

(a right helicoid) 
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out a complex constant,. we have 

'i'(x,y,l,;) = [(x:tiy)+Sl,;]S (1.5) 

where ~ is an arbitrary complex coefficient. The equation of the 

dislocation line D is 

x + S r; = 0 
R 

J 
If S = 0, D is pure screw, otherwise it is mixed screw-edge. It cannot 

be pure edge, even in the limit lsi + w, because (Sr;)s would have 

constant phase. The projection of D onto the xy plane makes an angle 

±arg(e) with the x axis, and if 0 is the inclination of D to the 

wave fronts (xy plane) then tan 0 = l/lel (cf. NB74 p180). If we make 

our circuit C around D then the factor [~J obviously makes one circuit 

around the origin, as before. The phase of 'i' is s times that of this 

single factor, and therefore makes s circuits. So (1.5) represents a 

mixed screw-edge dislocation of strength s (which exists also in the 

pure screw limit e = 0), contrary to the conjecture on p182 of NB74. 

A multiple pure screw dislocation may be written 

.,.( ~ r} _ s i{kl,;+scp} 
'I' r,'I"'" - r e 

where x = r cos cp, y = r sin cp (cf. NB74 eqn. (30». The equation of 

the wave fronts is kl,; + sct> = c + 2n~ where c is some constant. Thus 

cp = (kl,; - c - 2n~)/s 

At fixed r; this is s radial straight lines given by n = 0,1,2, .•• (s-l), 

and the wave fronts are generated by "screwing" this configuration up the 

l,; axis. For s = 2 the surface is a right helicoid, which is a ruled 

surface of constant pitch (e.g. see fig. 219, p209 of HCV52) as in 

fig, 1.7. The single strength screw of fig. 1.2 is just half of this 

right helicoid. 

To summarize, we can write the basic static straight dislocation 

of strength s as 

where e and e are not both real, and e = ±i unless s = 1. 
s e s 
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1.4 Static Pure Edge Dislocations 

We have constructed a straight single edge dislocation, but the 

edge limit of the multiple mixed dislocation does not exist. Is it then 

possible to have multiple pure edge dislocations? NB74 conjectures that 

it is not, and we shall attempt to prove this. 

Suppose we look at a section through a multiple mixed dislocation 

e.g. assume e is not pure real and consider the section y = 0 of (1.5): 

Now if we impose y translation symmetry on this function and construct 

l{I(x,y,r;) = [x+er;] s 

we appear to have the edge dislocation line x = r; = 0 of strength s. 

But unfortunately it does not satisfy the wave equation, in either 

two or three dimensions! We now formalize this argument. 

The condition that a dislocation be pure edge is highly restrictive 

in that the dislocation line D must lie entirely in the plane of the 

wavefronts, so that a static edge dislocation line must satisfy 

r; = 0 

and its equation in the xy plane will be 

f(x,y) = 0 

where f is an arbitrary real function. Then we require 

with e not pure real (otherwise the phase is constant). Consider 

traversing a circuit C around the dislocation. Then C' will encircle 

the origin s times if m is odd, and f(x,y) is locally anti symmetric 

about its zeros, otherwise C' will double back on itself, as in fig. 1.8. 

But l{I(x,y,r;) must also satisfy the two-dimensional Laplace 

equation: 

• 0 



~ 
I 

C , 
C 

D 
A 

-I ... 
r 

Figure 1.8 Circuit for f(x,y) Locally Symmetric (s = 1) 



m s-2 . 
Now s(f+~5) ~ 0 (except on a dislocation line if s>2), so we equate 

real and imaginary parts of [-.-Jto o. 

real: (S-i){(~J+(~rJ + (f 4 f\~"")f~~ + it· J 
'I: 0 

imag: s~ f~ + ~ J pz d::.c.. ~ ')j" 
:: 0 

~ 
~-a.f + ) .. "] ~ 0 
~'a. ~'a. 

i.e. f(x,y) satisfies the two-dimensional Laplace equation and 

If s ~ 1, then af/ax = af/ay = 0 since f is real. This implies 

f = constant, which satisfies (1.6) but does not produce a dislocation, 

so s = 1 is the only solution. Therefore, the only possible static 

pure edge dislocation has single strength, with 

8
y2n+1 

~(x/y/l;) = f(x,y) + ~ 

where 8 is not pure real, n is a non-negative integer and f(x,y) is any 

real solution of the two-dimensional Laplace equation (1.6) which is 

locally antisymmetric about its zeros. 

The only linear dislocation of this form is 

~(x/y,z;) 
. 2n+1 

= x + Ay + 81; 

where A is real, which corresponds to the pure edge limit of (1.4) if 

we take n = O. If we try to generalize it to a mixed single strength 

dislocation by making A complex, we produce a curved dislocation line 

unless n = O. 

The next simplest example is when f(x,y) is quadratic, and the 

most general real quadratic solution of (1.6) is 

2 2 f(x,y) = ax + 2hxy - ay + 2fx + 2gy + c 

with all coefficients real. f(x,y) = 0 is always the equation of a 

rectangular hyperbola, so by a change of coordinates we can write 

f(x,y) = xy - c (a hyperbolic paraboloid) 

and the dislocation line is shown in fig. 1.9. 
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(1. 6) 

(1. 7) 
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Figure 1.9 Hyperbolic Pair of Pure Edge Dislocations 
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Figure 1.10 Circuits in Planes x =+x and x =~x o 0 



Along the line x = x , if f(x ,y ) = 0 then f(x ,y) = xo(y-Yo) o 0 0 0 

which is obviously antisymmetric, and 

Dr2n+l 'i'(x, ,y,l';) = x (y-y ) + 1>.,. 
,0 0 0 

Let us take a circuit around the two branches of the hyperbola, at 

x = +xo and x = -xo' as in fig. 1.10. At +xo' C' encircles the origin 

once positively, and at -x once negatively. We attach arrows to the 
o 

dislocation line indicating the sense of the circuit C necessary to 

make C' positive. This model gives us two single dislocations of 

opposite sign, and by taking the limit c ~ 0 we can make them coalesce 

at the origin, where we expect them to annihilate. It is interesting 

that the two dislocations cannot have the same sign, so that there is 

no chance of producing a double edge dislocation even at only a point. 

Let us take a circuit in the plane x = y about the origin for c = O. 
2 Then f(x,y) = x which is clearly not antisymmetric, so that C' does 

not encircle the origin and the total dislocation strength enclosed 

is zero, as expected. 

Let us examine the "local antisymmetry" condition further, by 

finding what behaviour of f(x,y) about its zeros is allowed by the 

Laplace equation. For example, if f(x,y) could locally have the form 

of a curved cylinder touching the xy plane, it would not be "locally 

antisymmetric" about its zero line. f(x,y) must be the real part of an 

analytic function of (x+iy) to satisfy the Laplace equation. Let us 

expand this about a point where f(x,y) = 0, taken as origin. 

f(x,y) = Re { a (x+iy) + b(x+iy)
2 

+ c(x+iy)
3 

+ ... } 

If a ~ 0, the local form is (aRx - aIy) which is linear. f(x,y) 

is locally antisymmetric and we have a simple isolated dislocation 

line. 

If a = 0, b # 0, the local form is b
R

(X
2

_y2 ) - b
I

2xy which is a 

hyperbolic paraboloid (see HCVS2, p1S) with the saddle point at height 
2 2 zero. bR(x -y ) - b I 2xy = 0 is the equation of two straight lines 

intersecting at the origin at right angles. We have already illustrated 

this case. At.the origin f(x,y) is locally symmetric, so that the 
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total dislocation strength is zero, because two dislocations of opposite 

sign are touching at a point and cancelling. 

If a = b = 0, c # 0, 

which is a rotated form of 

3 2 2 3 
the local form is cR(x -3xy ) - c

I
(3x y-y ) 

3 2 CR(x -3xy). This is a monkey, (or double) 



saddle (see HCV52, p191) at height zero, and appears to produce three 

straight dislocation lines intersecting at the origin at 60°. But it 
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is really, three dislocations lines. with 60° corners which meet at a 

point, as we see by adding a constant to f(x,y) to split them up. At 

the origin f(x,y) is locally antisymmetric so that the total dislocation 

strength is 1, because two of the dislocations cancel. Higher terms of 

f(x,y) similarly lead to more degenerate saddles. 

We have established that a given number of pure edge dislocations 

can only touch each other in one configuration, as illustrated in 

fig. 1.11. Also critical points of f(x,y) can only be isolated 

(possibly degenerate) saddles, therefore the fact that f(x,y) satisfies 

the Laplace equation ensures that it is locally antisymmetric about its 

zeros, except where an even number of dislocations touch, when they 

must completely cancel. 



Touching of 2 Static Pure Edge Dislocations 

Touching of 3 Static Pure Edge Dislocations 

Figure 1.11 



1.5 Lorentz Transformation of Static Dislocations 

One might imagine that if one viewed a dislocation from a frame 

of reference moving with respect to the frame in which the dislocation 

was generated, then it might appear to have a different character; for 

example, it might be possible to make a static dislocation move. If we 

try to do this by applying a Galilean transformation to a wave function 

satisfying the scalar wave equation in the rest frame, then it will 

not do so in the moving frame, since the scalar wave equation is not 

invariant under Galilean transformation. However, the scalar wave 

equation is invariant under Lorentz transformations. If we consider 

scalar waves whose wave velocity c is that of light, then a Lorentz 

transformation physically represents observing from a moving frame of 

reference. If the wave velocity is not that of light, then a Lorentz 

transformation is just a formal transformation which will generate a 

different solution of the original wave equation, which may show new 

behaviour. 

First we show that a dislocation is a Lorentz invariant concept. 

Suppose L is a general Lorentz transformation from a frame S to a 

frame SI such that Xl = Lx for 4-vectors x in S and x' in SI. Since 
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the (complex) wave function W is a Lorentz scalar, Wi (x') = w(x). The 

equation of a dislocation line in S is W(x) = 0 which implies Wi (Xl) = O. 

Therefore, if x lies on a dislocation line D in S then x' = Lx lies on 

that dislocation line D' in S'. Take a circuit C around D in S, then 

the strength 0 of the dislocation in S is given by 

But ~ x (x..) 
d:IC:. 

L.. 

because phase X is Lorentz scalar and dx l = Ldx. Changing the 

integration variable to x' we have 

• [ ot~' 
J <:.' 

Therefore dislocation strength is Lorentz invariant. 



We shall use the notation x~ = (x,y,z,ct) where ~ = 1,2,3,4 with 

metric tensor g~V = diag. (1,1,1,-1) (e.g. see Rindler(196a),' but note 
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that his metric tensor is minus ours). S'will move with velocity v 

relative to Sand y = (1 - v2/c2)-~. We shall always choose a 

coordinate system such that our basic unmodulated plane wave travels 

along the z axis. Suppose S' is moving in standard configuration (see 

Rindler, op.cit.) along the z axis of S, then the Lorentz transformation 

matrix is 

A~ 
v 

(v) = 1 a a a 

a 1 a a 

0 0 y -yv/c 

0 a -yv/c y 

The wave 4-vector k~ = k(O,a,l,l) becomes k'~ = y(l-v/c)k(a,a,l,l) 

and is still along the z' axis, but the frequency has been Doppler 

shifted. 

= k'~x' (Lorentz scalar product) 
~ 

=> kz-wt = k'z'-w't' 

or kr,; = k'r,;' 

Consequently a static dislocation will always remain static under any 

Lorentz transformation. Also 

x = x' 

y = y' 

z = y (z ' +vt' ) 

ct = y(z'v/c+ct') 

from the inverse transformation. Then any wave function having the form 

• (x,y,r,;) = f(x,y,kr,;) (1.8) 

in S has exactly the same form in S', viz • 

• ' (x',y',r,;') = • (x,y,r,;) = f(x',y',k'r,;') 

It seems reasonable to use k as a scale factor in the direction 

of travel of the plane waves, but not perpendicular to that direction, 

and therefore to choose the scale factors in the envelope functions 

such that we always write our canonical dislocations in the form (1.8). 

Then this transformation produces no effect other than a frequency shift. 



If S' is moving in standard configuration along ~e x axis (say) 

of S, then 

AfJ. '(v) 
\I 

= Y ° ° -yv/c 

° 1 0 ° 
° ° 1 ° 

-yv/c ° ° y 

and k~ = k(O,O,l,l) transforms into k'~ = k(-yv/c,O,l,y) . The plane 
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wave is now travelling in the x'z' plane at some angle 6 to the z' axis, 

so we may write k'~ = k' (-sin e,o,cos 6,1) where cos e l/y, 

sin 6 = vic and k' = yk. The wave has suffered a frequency shift plus 

aberration. But we always use a coordinate system with z along k, 

therefore we must rotate S' through an angle e into S", such that 

(
x" ) 
z" (

COS e 
-sin 6 : ) ( :: ) = sin 

cos 

as in fig. 1.12. Substituting the values of cos e and sin 6, the 

full transformation matrix from S' to S" is the spatial rotation 

RfJ. = l/y 0 vic 0 
\I 

° 1 ° ° 
-vic ° l/y 0 

° ° ° 1 

The full Lorentz transformation L from S to S" is LfJ. (v) = RfJ. AO (v) • 
\I 0 \) 

Then the inverse transformation is 

(L -1) l.l = 1 ° -yv/c yv/c 
\) 

° 1 0 0 

vic 0 l/y 0 

vic ° _yv2/c2 y 

giving 

x = x" - YV/C(Z"-ct") 

y = y" 

z = x"v/c + z"/y 

ct = x"v/c - z"yv2/c2 + yct" 

and once again 

k(z-ct) = k"(z"-ct") 

or kr; = k"r;" where k" = yk. 



Figure 1.12 Transformation from 5' to 5" 

• x.. 

I 
;:)C.. 



So if 

W(x,y,~) = f(x,y,k~) 
then W"(x",y",r;") = f(x"-~"yv/c,y",k"~"). 

The single strength mixed dislocation (1.4) may be written 

w(x,y,~) = (x + 8 y + 8 kr;)eik~ 
s e 

which becomes 

"k"r" W"(x",y",r;") = (x" + 8 y" + (8 k"-yv/c)r;")e1 ~ 
s e 

The equation of the dislocation line D becomes 

x" + 8 y" + (8 k"-yv/c)~" = 0 sR eR 

B y" + 8 k"~" sl eI = 0 

Le. the angle of the projection of D onto the x"~" plane has been 

changed by a Lorentz transformation along the x axis. The effect of 

this is to change the angle 0 of D to the wavefronts (xy plane) and 

rotate it about k, so generally the screw-edge character has been 

changed. If S = 0, we start with a pure screw and produce a mixed 
e 

screw-edge in the x"r;" plane, with tan 0 = c/yv. Conversely, if we 

choose our axes such that a mixed dislocation lies in the x~ plane 

(Le. Bel = 0), and transform along the x axis, then if yv/c = 8
eR

k" 

we produce a pure screw. We require vic = B k < 1, => 1T/4 < 0 ~ 1T/2, eR 
which means that if 8 k, and hence the degree of edge character of 

eR 
the original dislocation, is not too large, we can transform it into 

a pure screw. If S is real we start with a pure edge, and the 
s 

dislocation line does not change at all. As v + c, y + ~ and any 

dislocation becomes more edge-like, but in the limit it would cease 

to be a dislocation. 

The mixed multiple dislocation (1.5) may be written 

W(x'Y/~) = [(x±iy) + 8k~JSeikr; 

which becomes 

S ik"~" 
WIt (x" ,y" ,r;") = [(x"±iy") + (8k"-yv/c) ~"J e 

and all the above comments apply, except that now the pure edge form 

never exists. 

21 



The general pure edge dislocation (1.7) may be written 

. { 2n+1} ikt 
W(x,y,~) = f(x,y) + S(k~) e 

where f(x,y) is a real solution of the Laplace equation, a is not pure 

real and n is a non-negative integer, which becomes 

w"(x",y",t") = {f(x"-~"yv/c,y") + S(k"~")2n+1}eik"~" 

The equation of the dislocation line is 

f(x"-t"yv/c,y") = 0 

(k"t")2n+l = 0 

i.e. f(x",y") = 0 

1;" = 0 

hence it is generally true that pure edge dislocation lines do not 

change under this transformation. 

A general homogeneous Lorentz transformation L may be decomposed 

into transformations A along the three axes of the original frame and 

a rotation R. If L is required to keep k along z, we can ensure this 

by arranging each A and R to keep k along z, i.e. R represents only a 

rotation in the xy plane at some stage. The two-dimensional Laplace 

equation is invariant under rotation, therefore all the canonical 

static dislocations are form invariant under R, and also as we have 

seen above, under each A. Hence the canonical static dislocations are 

form invariant under a general homogeneous Lorentz transformation, and 

remain static. Pure edges remain pure edges, but pure screws may 

become mixed, and some mixed dislocations may become pure screws. 
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1.6 Local Models for Moving Dislocations 

The next three sections are based on section 7 of NB74. By 

moving we'mean moving relative to the (unmodulated) wavefronts, and by 

analogy with crystal dislocations we call motion in the plane defined 

locally by the dislocation line and the wave normal (the glide plane) 

glide, and motion perpendicular to this plane climb (see NB74 section 6). 

We again write our wavefunction as 

ikl; 
'¥(x,y,z,t)e , 

but to obtain motion we require that z and t do not occur only in the 

combination 1; = z-ct. We shall see that this necessitates quadratic 

terms in '1', so we shall take as our basic model the most general 

quadratic in x,y,z,t which satisfies the wave equation. Now 

-... 
where 

(Q~- t-~~) C£ (~'d' ~,b) f (~ -c:..~) 

KII- el:)(9 ~-~~:) <P('<':I'3'~) + l.ft~ -r.~)(~ + t~) ~( ... ~.~.c) 
fl (z) = df/dz, so taking f(1;) = eikl; gives 

(V 4 _ ~ ~~) <£ (~t~'~1 ~ ) e~lt~ 

;1e.S [CV'"- ~ ~'a) .. 2 ~It (~ 1- i it:) ] ~ (:It,H'') 
We apply the above operator [---J to the general quadratic and 

equate coefficients to zero. Since this operator is invariant under 

rotations in the xy plane, we can always rotate the coordinates to 

remove the term xy, giving the general quadratic for '1' as 

'¥(x,y,z,t) = ax + By + (yx+oy) (z-ct) + £(z-ikx2) + n(ct-ikx2 ) 

where all coefficients may be complex. We can still add any function 

of 1; = z-ct to this: in particular we shall consider the term 

~(z-ct)2 replaced by ~(z-ct)3. 

This form for '¥ can obviously exhibit a wealth of behaviour, of 

which we can only hope to study some special cases. Wavefields are 

often "essentially two-dimensional" due to symmetry, and this is the 

case for the two cases we study in later chapters: one has cylindrical 

symmetry about the z axis, and the other has translation symmetry along 

the y axis. In such cases only pure edge dislocations may occur, so we 

shall consider models of these first. 

(1.9) 
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1.7 Moving Pure Edge Dislocations 

Pure edge dislocations must lie in planes perpendicular to the z 

axis, whose equations are g(z,t) = 0 where g(z,t) is real, and this 

must be implied by ~(x,y,z,t) = O. This can be arranged by making 

a,B,y,Q,Apure real and I1R = -eR giving 

real: ax + By + (yx+QY)~ + (e +11 )kx2 + A (x2 _y2) + £ ~ + ~ ~2 + v = 0 (1.10) 
I I R R R 

= 0 (1.11) 

First, we consider the motion of the planes containing the 

dislocation lines, by solving (1.11) for z(t), and also for ~(t) = z(t)-ct 

which we need to substitute into (1.10). We can remove VI by shifting 

the zt origin. 

~I = 0 gives 

z = - (n/eI) ct => 

Equation (1.11) is responsible for the glide component of the motion, 

and equation (1.10) for any climb component. We shall define the glide 

velocity to be d~/at (not dZ/dt as used in NB74) , and in the simple 

case above the glide velocity is constant and equal to 

which can take any value. If it is zero, then ~ = 0 in equation (1.10), 

which becomes time independent. The~efore it is not possible within this 

model for pure edge dislocations to climb without gliding. 

If ~I ~ 0 we may write (1.11) as 

eI~ + (£I+nI)ct + ~I~2 = 0 

Then t as a function of ~ is just a parabola, which is easily plotted 

to show ~ as a function of t (fig.1.13). We can then add ct to , 

and plot z as a function of t (fig. 1.14). With the coefficients as 

shown we start out with two planes of edge dislocations moving with 

the wave. As time increases, they approach each other with increasing 

speed. The front one stops and then moves backwards, until the 

two planes meet. At this pOint the dislocations in the two planes 

lie along the same curves, and since they have opposite sign they 

annihilate. ~I negative would produce a similar creation event. 



Figure 1.13 Quadratic Glide relative to Wave fronts 

Cot: 

-------------7'---~~--+_------------~c 

Figure 1.14 Quadratic Glide relative to Source 



"Quadratic glide" produces birth/death events. Next we shall 

consider "cubic glide", where we replace the imaginary part of IJ(z-ct)2 

by IJr(z-~t)3 and rewrite equation (1.11) as 

Again this is most easily plotted by regarding t as a function of ~, 

and then adding ct to ~ to plot z (figs. 1.lS & 1.16). These figures 

assume that 

and 

In the distant past and distant future we have one dislocation, whose 

main behaviour is to glide backwards if J.l
r 

> 0 or forwards if IJ I < O. 

If £rIJ
r 

> 0 there is only one dislocation, and this is the whole story. 

But if £IIJ
I 

< 0 there is a transition regime with three dislocations. 

A pair of dislocations is born behind our original dislocation if 
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(l.12) 

IJ
I 

> 0, or in front if IJ
r 

< O. The member of this pair with opposite 

sign approaches the original dislocation and annihilates it, leaving the 

other member of the pair to carryon instead of the original dislocation, 

as though the original dislocation had "skipped" over the intermediate 

dislocation. We shall call this process "dislocation skip": it 

provides a mechanism for very rapid gliding, and we shall see it in 

action in a later chapter. EI = 0 is the skip threshold: for EIJ.l I 
just greater than 0 there is only rapid glide, for EIU I just less than 

o there is rapid glide plus skip. Figure 1.16 just represents zt 

sections through kinked 4-trajectories, and whether or not skip occurs 

may be changed by a small local rotation in space-time of this surface; 

it is due to one trajectory being interpreted in different ways because 

the time coordinate is singled out to have a different significance 

from the space coordinates. We could attach a direction to the graphs 

in figure 1.16, as shown by the arrows, and a tangent vector ~ 

pointing in the direction of the graph. If ~ is a vector along the 

positive t axis, then where s.t > 0 we have a positive dislocation, 

where s.t < 0 we have a negative dislocation, and where s.t = 0 we 

have no dislocation (i.e. a birth/death event). This classification 

is obviously not invariant under general space-time rotations (i.e. 

Lorentz transformations). 

This description of the behaviour of dislocations is reminiscent 

of the Feynman diagram description of the interaction of elementary 



------------~~----------~t ------------~------------~~ 

E.z<O 

tAl: >0 

Figure 1.15 Cubic Glide relative to Wavefronts 

------------~~------------~c 

fl.">O ~ < 0 

.Figure 1.16 Cubic Glide relative to Source 
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particles. In particular, skip is analogous to the mechanism underlying 

Zitterbewegung (e.g. see Bjorken and Drell (1964». Particle-antiparticle 

pairs are continually being created out of the vacuum, and then 

annihilating back into it. A particle travelling through the vacuum may 

annihilate one of these antiparticles, leaving the particle created 

from the vacuum to carryon instead of the original particle. This 

particle may then do the same again. The net effect is that a particle 

appears to "jiggle about" with instantaneous velocity c, although its 

average velocity is the correct "classical" velocity. This behaviour 

is predicted by the Dirac equation, and what we have described above 

is the field theoretical explanation of it. 

If equation (1.11) was an nth order polynomial the trajectory 

could have up to (n-l) kinks and the dislocation could skip up to 

rnt{(n-l)/2} times. In fact, there is no limit to the number of times 

a dislocation may skip, and it really can exhibit behaviour similar to 

Zitterbewegung if the wavefunction is sufficiently complicated. As a 

simple example replace ~2 in (1.11) by sin ~ giving 

which is plotted in figure 1.17 for positive coefficients. 

We have studied the behaviour of the planes containing the pure 

edge dislocations, and now we turn to the behaviour of the dislocations 

within one of these planes. We study the solutions of equation (1.10) 

as a function of ~, and then to construct a complete set of dislocations 

we substitute values of ~(t) as derived previously. The simplest case 

is pure glide when equation (1.10) is 

If (£r+nI) = 0 this is a hyperbola, and equation (1.11) (and its 

variations) gives ~ = constant(s), so we are back to static dislocations. 

Otherwise it can be any conic section. A = 0 gives a parabola, and if 

also 6 = 0 this degenerates into two parallel straight lines as in 

equations (42) and (44) of NB74. rf A{(£r+nI}k + A} < 0 we have an 

ellipse, and in the special case A = -(£r+nr}k/2 this is the circular 

edge dislocation loop of equation (47) of NB74. 



Figure 1.17 "Zitterbewegung" of Dislocations 

Times t1 < t2 < t3 

Figure 1.18 Hyperbolic Collision of Edge Dislocations 



The more general form of equation (1.10) allows climb, and we may 

write-it as 

{(£,+n )k + A}{X - X(~)}2 - A{y - y(~)}2 + p(~) ~ a 
I I 
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where X(~) and Y(~) are linear, although X(~) ,Y(~) and p(~) may be 

arbitrary functions in general and the wave equation is still satisfied. 

The effect of X(~) and Y(~) is to translate the conic with time. 

More interesting is the effect of p(~) which causes the "radius" of 

the conic to vary. An ellipse may grow from a point or shrink to a 

point, representing a puncture in a wavefront appearing and opening, 

or closing and disappearing. We shall see an example of a circular 

puncture appearing and opening in a later chapter. Or the two branches 

of a hyperbola may coalesce and pull apart at right angles, as in 

fig. 1.18. One would expect this behaviour from the discussion in 

section 4. It should also be compared with equation (49) of NB74 which 

shows a different type of collision of two edge dislocations. 

We have not said much about the actual trajectories of these 

dislocations, but before leaving this section we shall construct a 

dislocation with a particular stepped trajectory, because we shall come 

across it in our analysis of an experiment in a later chapter. We 

arrange equation (1.10) to have the form 

giving straight pure edge dislocations parallel to the y axis, satisfying 

Instead of equation (1.11) we take the cubic glide form (1.12) with 

lJ > a 
I 

and n = a 
I 

t = -1 (lJ 1;3 _.:....1. 
c £r 

giving 

~(t) and z(t) are plotted in fig. 1.19. From these two graphs and 

equation (1.13) we can plot the projection on the xz plane, fig. 1.20, 

which is a symmetrical pair of stepped dislocation trajectories. 

(1.13) 



------~~--~~~~------~c 

Figure 1.19 Cubic Glide with dz/dt = 0 at Origin 

Figure 1.20 Pair of Stepped Dislocation Trajectories 



28 

1.8 Moving Screw and Mixed Dislocations 

A pure screw dislocation must be parallel to the z axis, therefore 

~ must have the form 

The equation of the dislocation line is given by 

a x + 8RY + nRct + (n k+A )x2 - A y2 + vR = 0 R I R R 
(1.14) 

a x + f3 y + n ct + (-n k+A ) x 2 - A y2. + v = 0 
I I I R I I I 

(1.15) 

Each of these equations may be a straight line or a (possibly degenerate) 

conic varying with time. They can only both be straight lines if they 

are both independent of t, and we are back to the single static 

dislocation. Let us make (1.14) a straight line by setting nI = AR = O. 

Then (1.14) and (1.15) become 

= 0 (1.16) 

a x + 8 y + (A -nk)x2 - A y2 + v = 0 
I I I R I I 

(1.17) 

These equations give a straight line which sweeps across an 

arbitrary fixed conic as time varies, and the dislocation lines lie at 

the intersection of the two curves. This gives us generally 0 or 2 

dislocations. If (1.17) is a parabola we have equation (55) of NB74, 

and if the parabola degenerates into two straight lines we have equation 

(54) of NB74. If (1.16) is parallel to the axis of the paraboia, we 

only have one dislocation gliding along the parabola as in equation (53) 

of NB74. This is the only case which gives a single moving screw 

dislocation in this model, and is a very special case. The behaviour 

of the pair of dislocations produced by the straight line sweeping 

over an ellipse or hyperbola is obvious. 

If we eliminate t between (1.14) and (1.15) we always get the 

equation of a coniC, hence the dislocations always move round a conic. 

But in the. most general case they lie on the intersections of two time 

dependent conics, so there may be 0,2 or 4 dislocations, and the 

possible behaviour is fairly obvious. As a simple example we will 

consider two parabolae at right angles to each other. We take AR = 0 

in (1.14) and AI = nRk in (1.15) giving 
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(LIB) 

(1.19) 

These are plotted in fig. 1.21 for a suitable choice of coefficients, 

and the direction of motion in time shown by the arrows. As plotted 

these graphs give 4 dislocations. These will separate along y slowly, 

but the top pair will coalesce along x followed by the bottom pair. 

Between them the 4 dislocations will trace out the elliptical trajectory 

shown dashed. 

Pure screw dislocations are probably the simplest because they 

must be straight lines, whereas pure edge dislocations are plane curves, 

and mixed dislocations may be twisted space curves. For completeness, 

we conclude this section with a very simple example of a moving mixed 

dislocation. We take 

~(x,y,z,t) = iax + By + i€(z-ikx2) + in (ct-ikx2) 

with a,B,€,n real. The equation of the dislocation line is 

real: By + (€+n)kx2 = 0 

imag: ax + €z + nct o 

Equation (1.20) is a parabolic cylinder parallel to the z axis, and 

(1.21) is a plane parallel to the y axis. It intersects the parabolic 

cylinder in a parabola which moves along the z axis as time varies. 

This parabola is the dislocation line which is of mixed screw-edge type 

along the whole of its length. A general mixed dislocation line could 

have pure edge or screw points along it, and could change its shape as 

it moves with time. 

(1.20) 

(1.21) 
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Figure 1.21 Possible Motion of Pure Screw Dislocations 

around an Ellipse (dislocations are at 

intersections of parabolae) 
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1.9 Dislocations in Electromagnetic Waves 

Although we consider mainly scalar waves in this .... 'ork, as an 

indication of the generality of the concept of wavefront dislocations, 

we shall construct a simple dislocated electromagnetic wave to prove 

that they can exist. Consequently we pave to work with a pair of 

complex 3-vector wave functions E and ~ (or we could work with the field 

4-tensor). We could construct a vector potential and deduce E and B 

from it, but this is indirect if one is specifically trying to construct 

observable electromagnetic fields with certain properties. 

We shall work in free space, where E and B must satisfy the 

Maxwell equations: 

V.E = 0 

V.B = 0 

which imply that E and B satisfy the wave equation (e.g. see Bleaney & 

Bleaney (1965». We shall choose a field E which satisfies the wave 

equation and constrain it to satisfy V.E = O. From it we shall deduce 

Busing B = - f dt VAE, so that B automatically satisfies V.B = 0 

and the wave equation. We shall then further constrain the fields so 

that B has the required form for the dislocation also. 

When discussing dislocations we are concerned with the phase of 

a wavefunction, and for an arbitrary complex scalar wavefunction, this 

is well defined. But if a vector wavefunction has arbitrary complex 

components, the phase of the wave function is not well defined. It can 

be made meaningful if the variable part of the phase of each component, 

at least, is the same, as in the complex representation of an elliptically 

polarised plane wave. This implies that every component of the wave function 

has the same dislocation. For a dislocated electromagnetic wave we 

shall require that every non-zero component of E and B has the same 

dislocation. It is possible for different coaponents to have different 

dislocations, or for some components to have no dislocations, but we 

shall ignore such possibilities as being not true vector-wave dislocations. 

We require that the electromagnetic field be zero along a dislocation 

line. 



We shall only consider straight static dislocations, and we shall 

take. as our basic local model 

!(x,y,z,t) 
'kl; 

= ~'¥(x,y,l;)e~ 

ikl; 
B(x,y,z,t) = ~'¥(x,y,1;)e 

where E and B are complex constant vectors, and I; = z-ct. Based on 
-1) -1) 

our previous work on scalar dislocations we take 

where 8 and 8 are not both real, and 8 = ±i unless s = 1, from 
s e s 

section 3. If we can satisfy Maxwell's equations, we will have a 
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straight static dislocation of strength s. E and B have been constructed 

to satisfy the wave equation, but 

if 

E + x 

and 

Then 

~.E = {E a/ax + E a/ay + E a/az}'¥eik1; 
x y z 

{E s + E s8 + E (s8 + ik[x + 8 y + 8 1;J)}[-...JS-l e ik1; 
x ys z e s e 

E 
-1) 

E S y s 

E 
-1) 

~"E 

= 

(E ,E ,E ). 
x y z 

O. Therefore 

= (1,-1/13 ,0) s 

: (~ls aaz ' aaz ' 

B : ~ f d~ v.~ 

~.E = 0 for all x,y,1; requires 

(taking E x 
= 1) 

--P-~+~l) '¥eik1; 

13 ax ay s 

E = 0 
z 

: ~ (!s ~eik~ , ~eik~ , -- fe &~ + ~sJ f d~ ;~ eikt ) 

and 

where we have set the constants of integration equal to zero, because 

we want to factor out '¥eik
1;. But we can only do this if we make B = 0 z 

because otherwise it has the wrong form. We therefore require 

=> S = ±i s 
for all s. 



We have constructed the electromagnetic wave 

+ [ ± ;y + or] seikl; E = (l,-i,O) X _ ~~ 

- + r ± ;y + B r] seikl; B = +~(l,-i,O) LX _ ~ = 
c 

+i E 
c 

This is a circularly polarised plane wave along the z axis, modulated 

to produce a mixed screw-edge dislocation of strength s, as discussed 

earlier for scalar waves. 

Let us investigate the physical consequences of this dislocation, 

by finding its effect on the energy of the wave. The energy density U 

is given by 

and the energy flux is given by the Poynting vector 

remembering that we must use real fields. Let us write 

,,, ( ) [ . B J s ikl; ~± x,y,l; = X ± ~y + l; e 

Then the real fields are 

~ = (ReljJ± +ImljJ± 0) 

so that U(x,y,z,t) = E 11jJ+12 and P(x,y,z,t) = (O,O,cU(x,y,z,t». o _ 

The energy flux is just the energy density transported in the 

direction of propagation of the wave, just as for an unmodulated plane 

wave and contrary, perhaps, to ones hopes there is no circulation of 

energy (and hence momentum) around the dislocation line. The energy 

density increases from zero as one moves away from the dislocation 

line, and the contour surfaces of U are elliptic cylinders centred on 

the dislocation line, such that their xy sections are circular. At 
2s fixed time, in a plane z = constant, U = E r where r is the distance 

o 
from where the dislocation line passes through the plane. 
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These calculations suggest that the physical effects of wavefront 

dislocations in terms of energy, momentum etc. are not very significant. 

Indeed, t~ere are situations in other models, such as sound waves, where 

the energy density does not even go to zero on the dislocation line. 

On the other hand the consequences of dislocations in quantum mechanical 

wave functions could be very significant (see the comments at the end of 

the prologue), being related to quantised magnetic flux lines, for 

example. Considerably more research into the physics of dislocations, 

as opposed to the mathematics, is needed. 



CHAPTER 2 " 

THE ACOUSTIC RADIATOR 

2.1 Introduction 

The aim of this chapter is to study (theoretically) dislocations 

arising in a fairly realistic physical wavefield. Our wavefield will 

be the soundfield generated by a rigid plane circular piston vibrating 
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in an infinite planar baffle, which we shall drive with quasimonochromatic 

pulses having a Gaussian envelope. This model is the one usually taken 

to represent circular acoustic transducers, despite the fact that in 

practice they are rarely mounted in infinite planar baffles. Nevertheless 

it is considered to be among the simplest models for which an exact 

formula for the soundfield can be found, and which is physically 

realizable to a good approximation. The formula takes the form of a 

one-dimensional integral for which the analytical solution is not known, 

and consequently the wave function has to be evaluated numerically in 

general. We begin by deriving an exact expression for the wavefunction 

when the radiator is driven with an arbitrary time dependence. The 

method and result are believed to be slightly different from any 

published. 

We consider sound waves in a semi-infinite perfect acoustic fluid 

such that the fluid velocity ~ is irrotational. Then we may take as 

our wave function the scalar velocity potential ~ such that u = -V~. 

Standard hydrodynamics shows that ~ satisfies the wave equation. 

where c (the sound velocity) is a constant for the fluid, and the 

acoustic pressure fluctuation ~p and density fluctuation ~d due to the 

sound wave are given by 

~p = d a~/at· and c5d = ~p/c2 

where d is the mean dens'ity,. if the wave amplitude ,is· small. (e.g.see 

Coulson(1965),'Rutherford(1965), Morse(1948), Rschevkin(1963), Rayleigh 

(1878». Hence a knowledge of ~ completely specifies the sound wave. 

The fluid in the region z > 0 is bounded by the plane z = 0 

apart from a disc of radius a centred on the origin, which is'at a 

height F(t) (fig. 2.1). Thus if R is a (two-dimensional) vector 
-i) 



t 1(!)~) 
.f!! 8-~ 
+ 1<r~;~) 

r(t:.) 

Figure 2.1 Coordinates for the Circular Piston Radiator 
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in the baffle plane, then the equation of the boundary surface is 

z = G(~)F(t) (2.1) 

where G(R') = e(a - IR I) (e(x) is the Heaviside unit step function). 
--0 --0 

The boundary condition on the fluid is that the normal velocity of the 

fluid equals the normal velocity of the boundary surface. Then assuming 

the displacement of the boundary surface to be small, 

u I 0 = -a~/azl 0 = G(R )F' (t) -z z= z=--o 

which is known over the whole surface. It uniquely specifies the 

wavefunction in the whole half-space via Rayleigh's formula (for a 

plane boundary only. See Rayleigh (1878), p95, eqn.(3) for the CW case 

and p96, eqn. (8) for the general pulse case, but note that he defines 

the velocity potential with opposite sign. For the problem of the 

general boundary surface, see p95. eqn. (1), and also Farn & Huang (1968»: 

~ (t: -flc:.) 

~ 

11: I f oI"~ (10(5,.\ F' (b -h'~) 
5 ~~ r 

rlAc. 

where p = (IR - ~12 + z2)~ is the distance from the source point at 

~ to the field point at ~ = (!,z). Another derivation of this formula 

is given in appendix A2.1. 

This is a Green function solution of the inhomogeneous wave 

equation in the absence of boundaries (the driving term now representing 

the baffle plane), with the integrand representing the "Huygens wavelet" 

from an element of the radiator (see Jackson (1962), pp183-188). 

However,' it is worth noting that this problem is essentially different 

from that of diffraction by a circular aperture '(contrary to the 

suggestion of some authors, e.g. Huntington et ale (1948) and Marini & 

Rivenez (1974», where the wavefunction is not known over the whole 

boundary surface, and it is usually necessary to make the Kirchhoff 

approximation (see Jackson (1962), pp280-283). Use of Kirchhoff's 

surface-integral representation then leads to an approximate solution 

similar to that above, which is actually not self-consistent (see 

Levine & Schwinger (1948) and Spence (1949», although Rayleigh's 

formula may be derived exactly using Kirchhoff's representation plus 

some additional physics (see Rschevkin (1963),' chap. XI) • 
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In order to evaluate the integral we change the variable of 

integration to P, the distance of the field point from the emitting point, 

by using ~he Dirac a-function: 

+(!:,~l· ..L ( ct~5e ~(5·\ F' Cb -f(~·' r:)/c. ) 
"%If J, f(~' r\ 

:. .LiC» ofp/f..t-'S,e GoCS-) F'(e" r'/e.) t (r' .. f(~-.r)\ 
~11" J f(~. r) 
~ & 

" (.]( F'CI; -t'/c.) H (t.!') 

where H (r:)()::L r .c~~o a-C~) ~(r'-rCtt,r)) 
:tV J IS r(~ t\ 

is the "geometry function" for the radiator, so called because it is 

independent of the movement of the radiator in time, if this can be 

decoupled from the spatial variation as in eqn. (2.1). The wave function 

is the convolution of the velocity pulse function F' (t) with the 

(2.2) 

(2.3) 

geometry function H(r,p). Note that if F' (t) = oCt) then ~(~,t) = H(~,ct), 

hence H(r,p) is the impulse response function as used by previous 

authors (e.g. Farn & Huang(1968), Oberhettinger(1961), Stepanishen(1971 

a,b,c), Lockwood & Willette(1973». Equation (2.3) shows that H(~,p') 

only contributes to ~(r/t) when p' takes a value which is a physical 

distance from r to the radiating surface (otherwise the a-function is 

zero). If we can find an analytical expression for H(r,p) we only need 

do the one-dimensional integral (2.2) for the pulse functions of interest. 

Otherwise H(~/P) could be tabulated once for a given radiator 

configuration, and used to compute the wave function for different pulse 

functions. 

We shall simplify the geometry function as much as possible for 

a general circularly symmetric radiator excitation, and then specialise 

to the rigid plane circular piston vibrating in a fixed infinite 

planar baffle. 
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2.2 Evaluation of the Geometry Function for a General Circularly 

Symmetric Radiator Excitation 

If G(R ) = G(R ) we should be able to do the angular integration. 
-0 0 

We can now replace ~ by the two cylindrical polar coordinates (R,z). 

If R.R 
- -0 

RR cos a then 
o 0 

peR ,r) = pee ) = «R-R )2 + z2)~ 
-0- 0'--0 

= (R2 - 2RR cos e + R 2 + z2)~ 
o 0 0 

(dropping explicitly the other dependences of p). This is symmetric 

in e , and pee ) ~ z ~ 0 for all Rand R. Then 
o 0 - -0 

H(tl.,l' f'} :...!..L;:dtt.~) [~[~e. S; (r' - f(·.))l 
21l 0 0 r(e.) J 

Suppose R # 0 (otherwise the e integral becomes trivial) and use 
o 

i(r'-r(e.)} 11 ~ b(e.- 9j.) 
Co I ~f /~e. I 

where e. are solutions of pi - pee,) = O. Then the integral I in 
~ ~ 

square brackets becomes 

Now pi - pea,) 
~ 

=> pl2 = (p(a
i
»2 = R2 - 2RR cos e, + R 2 + z2 

o ~ 0 

=> z2 = R2 - 2RR cos e, + R 2 = I~ - ~12. 
o ~ 0 ... 

Define p = (p12 - z2)~ = projection of pi onto the baffle plane. 
o 

Then p 2 = (R2 + R 2) - 2RR cos e
i o 0 0 

and the condition pi = p(ei ) becomes Po2 = IR - ~12 with pi ~ z. 

This condition states that for a given pi and ~ = (~,z), i.e. for given 

Po and R, the vector R must lie on the semicircle of radius p defined 
- -0 0 

by 0' e, 'was in fig. 2.2. 
~ 

(2.4) 



Figure 2.2 Configurations Contributing to I in equation (2.4) 
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If the triangle inequality IR - p 1 ~ R ~ R + P is satisfied, o 0 0 

one real solution for e. can be found, otherwise no solution exists, so: 
~ 

4 
_ (~~+R.~ _,.a)'a 

o 

, 
" f ~ ~ (It\ol 

I R. - fo I $ R. , R. + ,. 

othCf"wisc, 

We note that z only enters this expression through p , and that when 
o 

either of the equalities IR - P 1= R (corresponding to e. = 0) or 
001 

R = R + p (corresponding to e. = n) holds, then I diverges, as seen o 0 ~ 

from (2.4), but the singularity is integrable. 

Put F'(b-r'lc.)- -c.~ ¥. (b-1'~+~1a/c.) 
eo 

+(~'1>.t:) : -co ( "f' #-., dF ~CRJr·) 
1, )f ~f. 

then 

i.e. f(~' ~tt:) 1;:. -co {oooef. ll: (t: -1.:1+ ~ a /c.) ~ (~If.) 
• ')f· 

The integrand is the contribution to $ of a circle on the baffle plane 

of radius p , centred on the foot of the perpendicular from the field 
o 

point at E.. 

We shall evaluate eqn. (2.5) for ~(R,P) further in section 2.4, 
o 

(2.6) 

but now we shall pause to consider our current formula for the wavefunction, 

equation (2.6). 
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2.3 Discussion of the General Formulation 

The physical significance of (2.6) becomes more apparent if it is 

integrated by parts, but first we need more information about~(R,P ). 
o 

We wish to evaluate ~(R,p ) as R + 0, p + 0, R + =, and p + =. In 
000 

each case the range of integration tends to zero relative to the position 

of the centre of the range, but the integrand tends to infinity. The 

effect is to factor out a particular value of G (assuming G is 

continuous at these points) leaving the integral 

:t f. R. + [0 R. -'R. 
:; ./(2.~~.)" - (Ra + R.a - {ooa ra 

1f~-f·1 

1 

(evaluated by putting x = R 2 - R2 - p 2). We find that 
o 0 

~ (O,p ) = G (p ) 
0 0 

~ (R,O) = G(R) 

~ (R,=) = G(=) 

~(oo,p ) 
0 

= G(oo). 

(2.7) 

These limits can also be deduced directly from the definition of I=i(R,p ). 
o 

Now integrating (2.6) by parts and assuming G(=) = a for any real 

radiator, ot F(-=) = a for any real pulse 

To understand this expression, suppose the whole baffle plane vibrates 

rigidly so that G(R) = 1 everywhere. Then we can take this outside 
o 

the integral for ~(R,p ), which becomes (2.7), giving~(R,p ) = 1 and 
o 0 

a~/ap = O. Then the second term in (2.8) is zero, and ~(R,z,t) = 
o 

cF(t-z/c). The fluid velocity in the wave is then 

,. 
-V~ = -c aF(t-z/c) z 

az 

= F' (t-z/c) z 
,. 

as expected, because the velocity of the baffle plane is F' (t) z. 

(2.8) 

Hence the first term in (2.8) represents a plane wave pulse emitted by 

the point on the radiator directly below the field point, and the 

second term represents the contribution by the rest of the radiator. 

(Compare (2.8) with a similar result for the CW case due to Schoch(1941) 

as discussed in Carter & Williams(1951) and Williams(1951». 
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If G(R ), and therefore ~, is slowly varying across the radiator 
-0 

the second integral will be small, and the largest contributions will 

come from, discontinuities of ~ such as arise from the edges of a piston 

radiator (see later). These discontinuities produce a sequence of 

"replica pulses" which are distorted and delayed versions of the initial 

pulse represented by the first term. These were first discussed by 

Freedman (1970) , who also used a "geometry function" similar to ours. 

Stepanishen (1971c) has shown that they produce interesting transient 

phenomena at the CW nulls of a circular piston radiator. Beaver (1974) 

displays some computed wave functions showing the two replica pulses 

produced by a rigid circular piston radiator, and he states that 

" ... the discontinuity effects of the rims eventually overlap the main 

pulse, producing interference. The pulse amplitude is then more similar 

to the CW case. However, distinct nulls cannot form because complete 

interference is not possible". We shall see later that this is not true: 

although nulls fixed in space are highly unlikely with pulses, moving 

nulls, i.~. dislocations, certainly occur! Note that if R is outside 

the radiating area then G(R) is zero, and the initial pulse is missing 

leaving only the replicas. 

We can demonstrate the replica pulses by the simple case of an 

axial field point (R = 0) for a rigid circular piston radiator of radius 

a, such that G(R ) = e(a -·R). Then 
o 0 

I:!f (O,po) = G(p ) = 
0 

e(a - p ) 
0 

so a~ (O,p ) = -<S(a - Po ) -- 0 ap 
0 

and Jl!(O,z,t) = c{F(t-z/c) - F(t-/z2+a 2/c )} (2.9) 

This is a well known result, usually quoted only for the CW case (e.g. 

see Rschevkin (1963), p434, eqn.11-21). In this high symmetry position 

there is just one replica pulse, which is an inverted (but not distorted) 

and delayed version of the initial pulse: it is the "edge wave" from the 

rim of the piston. Notice that the velocity potential wavefunction is 

simply related to the radiator displacement, and hence the pressure 

wavefunction is simply related to the radiator velocity, in the near 

field. 



2.4 The Rigid Circular Piston Radiator 

In this section we specialize the formula for ~ (R,P o ) to the 

case of ~ rigid plane circular piston vibrating in an infinite plane 

baffle, as shown in fig.2.1, such that G(R ) = S(a - R ). From (2.5) o 0 

we have 

where a = IR - pol if 

a if IR -

R + Po if R + 

a < 

pol '" 
a , 

Po < a 

IR - P I 
0 

R + P 
0 

(I) 

(II) 

(III) 

We evaluate the integral by putting x = R 2 - R2 _ P 2 
o 0 

!
t('Il-rt..a_r .... , "'~ 

;r _ ':a.flC.r- ""'(:l.~f.) ~ - ':4-a 

= '!'(arcsin 
a2-RLp 2 

1) 0 + arcsin 
'IT 2Rpo 

In regions 

(I) ~ = .!.( -arcsin 1 + arcsin 1) = 0 
'IT 

(II) ~ 
1 a 2-RLpo2 1 = - arcsin +-
'IT 2Rpo 2 

(III) ~ 1 ( . = - arcs~n 
'IT 

1 + arcsin 1) 1 

giving 

Rewriting the conditions in terms of P we have the following 
o 

three situations, illustrated in fig.2.3: 

(I) o '" P < R - a o 
(if R > a) and P > R + a 

o 

#4 (R,p
o

) = 0 because the source line S is outside the piston P. 

(II) IR - al '" Po ~ R + a 

~ (R,P
O

) =! + ! arcsin a
2

-R2-po2 because S is partly inside P. 
2 'IT 2RPo 

(III) 0 'P < a - R o 
(if R < a) 

M (R,P
o

) = 1 (as for an infinite plane radiator) because S is 

completely inside P. 
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We distinguish three different field point regions, which give the 

different forms for t4 (R,p ) sketched in fig.2.4: 
o 

1) ,R < a - the field point' is "inside" the piston. As P o 
increases from 0 the source line S is entirely within the piston P, and 

~ has the plane wave value of 1, until at Po = a - R S touches the 

edge of P and a~/ap jumps discontinuously from 0 to -~. ~ then 
o 

decreases monotonically as progressively less of S remains in P, until 

at p = a + R S touches the other edge of P and a~/ap again jumps 
o 0 

discontinuously from -~ to O. After this ~ = 0 because S is outside P. 

2) R > a - the field point is "outside" the piston. As P o 
increases from 0, ~ = 0 because S has not yet reached the piston. At 

p = R - a S touches the edge of the piston and a~/ap jumps from o 0 

o to +~. ~ then increases to a maximum, which is always less than 

half the plane wave value, at which the length of S inside P is a 

maximum. It then decreases to 0 at Po = R + a, where aM/apo jumps 

from -~ to 0 again as S touches the other edge of P. After this ~ = 0 

because S is "outside" the piston. 

3) R = a - the field point is "on the edge" of the piston. 

This is the limit of both the above cases as R ~ a. As p increases o 
~ decreases monotonically from half the plane wave value. 

(c.f. graphs of the impulse response functions shown by Lochwood & 

Willette (1973» 

If we define 

then I=f (R,p ) = e(a-R-p ) + e(p -IR-al)6«R+a)-p ) ~(R,p ) 
o 0 0 oiJ 0 

(in the sense of generalised functions). Note that 

~ (R,R+a) = 0 

~ (R, IR-al) = 6 (a-R) R #- a 

S (a,O) = ~ 

as shown on the graphs in fig.2.4. 
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If we define 0(x) = 0, if x < 0 

~ if x = 0 

1 if x > 0 

then 9 (R, I R-a I) = 0 (a-R) for all R. 

To avoid having to differentiate generalised functions (which 

becomes tricky at R = a) we use eqn. (2.6) rather than (2.8), and 

substitute the above expression for It (R,p ) to give 
o 

IjJ(R,z,t) = -Cf~dP dF(t - /p 2+z2/c)~ (R,p ) 
o 0 a 0 0 

Po 

= -ce(a-R)fa~~ of 
o 0 op 

o 
f

R+a 
-c dp aF {" (R,p ) 

I I 0 - a 0 R-a ap 
o 

i.e. IjJ(R,z,t) = e(a-R)c{F(t z/c) - F(t - Izz+(a-R)z/c)} (1) 

_c~R+a dp aF i (R,p ) (2) 
IR-al 0 ap 0 

o 

Reference to eqn. (2.9) shows that the term (1) in braces is the axial 

field of a circular piston of radius (a-R). If the field point is 

"inside" the piston (Le. R < a), this term gives the contribution of 

the largest circular region of the piston centred on the projection 

of the field point, and the integral (2) gives the contribution of the 

rest (see fig.2.5). If the field point is "outside" the piston the 

first term does not contribute. At R = a the term in braces is zero 

so there is no discontinuity. 

Now we can conveniently integrate (2.10) by parts, when the 

integral (2) becomes 

fR+a 
+ c dp F ~(R,P ) 

IR-a! 0 op 0 
o 

giving 

. ~R+a 
IjJ(R,z,t) = 0(a-R)cF(t-z/c) + c dp F ~(R,P ) 

!R-al 0 op 0 
o 

which is eqn. (2.8) specialized to the rigid circular piston. 
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(2.10) 

(2.11 ) 
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The integral term is· 

where the integrand diverges at both ends of the range. To avoid this, 

we define a new variable of integration ~ by P 2 = a2 + R2 - 2aR cos ~ o 
giving 

This integrand is regular everywhere, and has proved convenient for 

computation. 

Physically, the integrand is the contribution of a curved source 

line S whose position on the piston is parametrised by ~, and as ~ 

varies from 0 to ~ this source line moves over the whole area of the 

piston, excluding the region (if any) where it would be a complete 

circle (see fig.2.6). Our main result, then, is that for any piston 

displacement pulse F(t) the wave function at any point is exactly: 

~(R,z,t) = o (a-R)cF(t - z/c) 

+ acrd~ '( R cos P 
~ a2+R2-2aR o 

- a 
cos 

) F(t - Izz+az+Rz-2aR cos ~/c) (2.12) 
~ 

(This can easily be deduced geometrically for the case R = a, and it 

can probably be done generally). 

Note that the acoustic pressure op = d a~/at and that a~/at is 

obtained from eqn. (2.12) by replacing F by aF/at. Then interpreting 

F(t) as the piston velocity, instead of displacement, gives op =d~(R,z,t). 

This allows us to compare our CW results with those of other authors. 
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2.5 The Far Field (Fraunhofer) Limit 

Let us change to spherical polar coordinates (r,e) such that 

R = r sin'e and z = r cos e. Then the far field limit is the limiting 

form as r +~. Suppose e # 0 (=> R # 0), then (2.12) becomes 

Taking the limit r + ~ this is 

acf1T dCP (COS, cP ) F (t - (r-a sin e cos 41+0 (1/r) )/c) + 0 (1/r2) 
1T 0 r s~n e 

Working to lowest order, we define the far field limit as 

1V
F

(r,e,t) = f
1T 

ac dCP 
1Tr sin e 0 

cosljl F(t - .!:. + ~sin e cos 41) 
c c 

Physically this simplification occurs because the curved source line 

responsible for eqn. (2.12) has become straight, as in the conventional 

far field calculation. 

On the axis R = 0, this formula is indeterminate, so we take the 

limit e + 0 using L'Hospital's rule to give 

(2.13) 

~ (r,O,t) = a2 F' (t - ric) (2.14) 
F 2r 

But eqn. (2.12) takes a different form from that above for R = 0, viz: 

~(O,z,t) = c{F(t - z/c) - F(t - IzZ+aZ/c) 

as deduced before (eqn. (2.9». We require the limiting form as z + m: 

~(O,z,t) ~ c{F(t - z/c) - F(t - (z+a2/2z)/c)} 

~ a 2 F' (t - z/ c) 
2z 

which agrees with (2.14). 

Physically, the replica pulse from the edge of the piston is 

combining with the initial pulse, with identical amplitude and opposite 

sign, so as to differentiate the initial pulse in the far field. So 

whilst in the nearfield the velocity potential wave function is simply 

related to the piston displacement, in the farfield it is simply 
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related to the piston velocity. At this point it must be remembered 

that we have assumed F(t) to be differentiable at least once, otherwise 

the resul~s would not strictly apply. We illustrate this differentiation 

effect in fig.2.7, for a trapezoidal pulse, where the variables used 

are Z = z/a, T = ct/a and the function f(T) is defined by cF(t) = f(ct/a). 

Then the axial wave function is 

f (T - Z) - f (T - 1ZT.iT) . 

+ _1_ f I (T - Z) as Z + 00 

2Z 

We plot the driving pulse f(T), ~he axial wave function at z'= 0,1,2,3,4,5 

and the farfield form for Z = 5. We cannot expect the farfield form to 

be very accurate so close to the piston, but in fact the only significant 

error is in the pulse shape. This is because our driving pulse is not 

strictly differentiable (or very realistic), and a smoother pulse such 

as a Gaussian would give much better agreement. Then the positive and 

negative pulses would join smoothly, with a single zero in the middle, 

everywhere along the axis, despite the fact that the driving pulse may 

have no zeros at finite times. We seem to have produced something akin 

to a dislocation running along the axis. It would be interesting to 

study this type of non-quasimonochromatic pulse more generally, but 

this has not yet been done. 
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2.6 Continuous Waves and their Nulls 

Let us drive the piston with the monochromatic signal 

F (t) 
iwt = e (strictly taking the real or imaginary part) 

and define the dimensionless variables 

~ = Ria, Z = zla, T = wt, K = ka = wale and 'l' (~, Z,T) 
1 

= - 1.IJ(R,z,t). 
c 

Then the monochromatic wavefunction is 

III Ie Z T) = 0 (1-0\ e i (T-KZ) 
T ~, , AI m 

+ l(Tr dCP 

Tr10 

remembering that for ~ = 1 we have 

( 
1f( coscp - 1) = -1 

1 +1tL 2:t(cos <p "2 

to avoid the indeterminacy at + = o. 

On the axis we use the simpler form 

i (T - KZ) i (T - KIZ'2'+1) 
'l' (O,Z,T) = e - e 
m 

In the far field we have from (2.13) 

1/IFm(r,6,t) 
i(wt-kr) fTrd~ ~ i(Ksin6)coscp = e ac '" cos", e 

Trr sin 6 0 

. i(wt-kr) 
= ~e ac Jl (Ksin6) 

r sin 6 

where Jl(x) is a Bessel function (see e.g. Bell (1968), p102). 
iwt 

This is a standard result (usually calculated for F' (t) = e e.g. 

see Rschevkin (1963) I eqn.11-28) showing that the maximum far field 

amplitude occurs on the axis, where (2.14) or (2.17) gives 

~ ( 0 t)·_· 1 (wt-kr) 2 
't'Fm r" - ~we ~. 

2r 

Therefore, let us normalize the far field wavefunc~ionby dividing by 

the maximum amplitude wa2/2r, and define a dimensionless retarded time 

T = wt-kr and a reduced farfield wavefunction 

= ieiT 
2J1 (Ksine) 

Ksine 

(2.15) 

(2.16) 

(2.17) 

(2.18) 



From eqn. (2.18) we see that farfield (angular) nulls occur where 

J 1 (Ksin8) = 0 -> Ksin8 = j1n where j1n is the nth zero of J 1 , and 

asymptotically has the value (n +, 1/4)~ (e.g. see Bell (1968), p127). 

The first few values are (from Abromowitz & Stegun (1965»: 

n j 1n (n+l/4)~ 

1 3 08317 30927 

2 700156 7-069 

3 10°1735 10-210 

4 i303237 13-352 

5 16 04706 16-493 
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If j1n < K ~ jl,n+l there are n farfield nulls, i.e. there are 

approximately Int(K/~ - 1/4) farfield nulls (Int(x) = maximum integer' x). 

From eqn. (2.16) the axial CW wave function is 

~ (0 Z T) - eiT(e-iKZ - e-iKZ1 ) where Zl = /ZZ+l m " -

2 ' i(T - KZ) , K Z 
= ~e s~n (l;Z) 

where 2 = z+1ZT.+l = mean distance from centre and edge of piston. 
2 

Axial nulls occur when 

where n is a natural number, i.e. at Z = K2-(2n~)2 which must be ~ 0, 
n 4n~K 

therefore there are exactly Int(K/2~) axial nulls. In fact, since 

(2.19) 

(2.20) 

K/2~ = a/A, the number of axial nulls is the number of whole wavelengths 

which fit into the piston radius! 

There seems to be no correlation between the number of far field 

nulls and the number of axial nulls, other than that for large K there 

are approximately twice as many farfield nulls as axial nulls. The 

relation between CW nulls will be seen to be important later for pulses, 

and is clearly not simple. 

For computation we use K = 10.0 (=> A/a = 0.63), partly to model 

some experimental work being done in the laboratory using ultrasonic 

pulses in air (in which c = 331.5Xl03 cm/s. For a = 0.5 em, a frequency 

of 100 KHz gives A = 0.33 em). This value gives one axial null at 

Z = 0.4816, and two farfield nulls at 



10 sin a = 3.8317 

7.0156 

=> a = 22.53° 

44.55° 

Note tha~ for a slightly larger K a new farfield null would appear at 

e = 90° (without immediately introducing a new axial null), and hence 
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we can expect to see vestiges of this incipient null in the diffraction 

patterns. 

Fig.2.8a shows the reduced farfield amplitude, and fig.2.8b the 

phase (for T = 0) as a function of a, from eqn. (2.18). The phase jump 

of n at a null produces the comb-like pattern of equiphase lines (fig. 

2.8c) discussed in section 1.1 and illustrated in fig.l.3 of chapter 1. 

We can progress no further analytically, and must evaluate our wave

functions numerically from now on. The integrals can all be done 

easily using standard routines (those using Chebyschev series were 

found to be very satisfactory) despite the oscillatory integrands. 

The contour plots were produced using a standard routine, but the three

dimensional plots were produced by a specially written routine. The 

ticks (solidi) indicate where the graphs cross zero. 

The nearfield continuous wave function is computed from eqn. (2.15) 

and eqn. (2.16). Figs.2.9 and 2.10a show the nearfield amplitude. 

There is only ,one null, which is on the axis at Z = 0.48. The phase 

Singularity shows up clearly on fig.2.10b. The amplitude has valleys, 

whose bottoms are generally not at zero height, running off into the 

far field. One valley begins at the axial null, runs up to a saddle 

point at about Z = 0.9, $t = 0.3, and then runs down into the far field 

with monotonically decreasing height, which becomes zero at infinity. 

The other main valley begins at a minimum just in front of the piston, 

near Z = 0.1, ~ = 0.4, runs up to a saddle point near Z = 0.25,$t= 0.6, 

and then down into the far field. The two minima are linked by a short 

valley passing over the saddle near Z = 0.25, ~ = 0.25. The curvature 

of the contours close to the piston near It = 1 in fig.2.10a suggests 

another slight valley, and fig.2.9 clearly shows a slight dip here: 

this is the vestige of the next farfield null (and associated valley) to 

appear as K is increased. Figs.2.10a & b show the farfield null angles 

as dashed lines. Note that fig.2.10b shows the equiphase lines 

bunching together in the minima near the piston, tending towards the 

coalescence whicp occurs at an actual null. 
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Figs.2.11a & b show the actual wavefunction, one with a phase 

shift of TI/2 relative to the other. These, and fig.2.9, show what looks 

like approximately standing waves across the piston face. Every point 

over the piston face is nearly in phase (see fig.2.10b), but the wave

length seems to be somewhat longer than the real wavelength. Fig.2.11b 

shows particularly clearly the effect of the axial null, where a wave

crest comes to an abrupt end. Bearing in mind that the graphs should 

be rotated about the axis to generate the full wavefield, the effect is 

that the wave fronts develop a puncture as they pass through the null, 

which immediately closes again on the other side. The point puncture 

is fixed in space as the wave fronts sweep through it. 

The complicated diffraction effects seem to be contained within 

a sphere of radius about 1.Sa around the centre of the piston. Outside 

this radius the amplitude is decreasing monotonically, and the wavefronts 

(or equiphase lines) look like distorted spherical waves. This 

distortion takes the form of kinks near the farfield null angles, which 

are tending towards the farfield discontinuities. The standard 

definition of the nearfield/farfield "boundary" is the axial maximum of 

amplitude furthest from the radiator, which occurs at 

Z = K2 - TI2 = 1.4345 for K = 10. 
2TIK 

This is also the point where the paths from' ·the centre and the edge of 

the piston differ by exactly "A./2 i. e. when the first Fre.snel zone just 

fills the piston face. The graphs show that outside this boundary the 

wave function is farfield-like, except that the amplitude minima are 

not zeros, thereby supporting this definition of the boundary. 

Our plots of CW amplitude agree quite well with Stenzel's plot 

shown on p443 of Rschevkin (1963), except that Stenzel shows no evidence 

of the incipient null. They also agree qualitatively with plots for 

larger values of a/A displayed by Zemanek(1971) and Lockwood & Willette 

(1973). No-one has previously displayed the equiphase lines, or 

detailed plots of the actual wavefunctions. 
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2.7 Gaussian Envelope Pulse and its Dislocations 

We wish now to drive the piston with a pulse which is a small 

departure l from a monochromatic signal, i.e. a quasi-monochromatic 

pulse. A suitable model is a Gaussian envelope containing n cycles 

of the carrier within its standard deviation i.e. we take 

compute _,-r~)'a ,-(T- K~) 
fC*;r,-?" e(i-It) e. a e , 

i
'f" .. (1=-1(4 .... , .,,'-aB04t)'a &. (T-t(Ji~+'+R"-~OIC+) 

+.J. ~+G few," -l~ e 26,,1' e. 
'If :I .. 't' .. 2~ 

o 

and 

On the axis this simplifies to 

- (Too I<Z)'a ~("-KZ.) 

) 
~(lrf\)'a 

cJ! (O'%J T ~ e e. 

for e ~ 0, and using 

we have 

Computations were made with the same centre frequency as was 
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(2.21) 

(2.22) 

(2.23) 

(2.24 ) 

used in the CW case i.e. K = 10.0, and n = 3 (again to model the 

experimental work). We consider first the far field form. The amplitude 

at e = 0, as shown in fig.2.12, is virtually identical to the driving 

envelope 

apart from a slight broadening (which is just oiscernable by eye), as 

expected from eqn.(2.24). The amplitude is generally as one would 

expect, showing variation in (wt - kr) due to the envelope, and variation 
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in e similar to that for CW as shown in fig,2~8a, except that now the 

zeros of amplitude only occur for (wt - kr) = 0, instead of for all 

time as in the CW case. The zeros still occur at the CW null angles 

as near as one can tell. The localization of the zeros has important 

consequences for the equiphase lines, changing the degenerate comb 

singularities in fig.2.8c into the two point singularities in fig.2.13b 

having exactly the canonical pattern shown in fig.l0 of NB74 and 

fig.l.5 of chapter 1. 

The effect of the phase singularities on the actual wavefunction 

is shown in figs.2.14a & b. Consider the imaginary part of the complex 

wavefunction, as shown in fig. 2 • 14b', near e = 60°. Between (wt - kr) 
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= ±10 we have 3 crests and 2 troughs. Near e = 45° the central crest 

comes to an end and the troughs on either side coalesce into one central 

trough. Thus we have lost one crest and one trough in a symmetrical 

fashion, and the remaining crests and troughs have moved in to take up 

the vacated space. Near a = 23° the process repeats itself with crests 

replaced by troughs: the central trough comes to an end and the two 

crests on either side coalesce into one central crest, so that we lose 

another crest and trough symmetrically. 

The real part of the wavefunction, fig.2.14a, shows exactly the 

same behaviour, but here the crest and trough pairs disappear anti

symmetrically. One can associate one wavefront with one crest/trough 

pair (e.g. one could call the peaks of the crests the wavefronts) and 

we see that near the phase singularities wavefronts come to an end, 

which is why they are called wavefront dislocations. This occurs 

along circular loops about the axis such that there is one more 

wavefront passing outside the loop than there is passing inside it. 

Dislocations produced by this particular system must be circles 

centred on the Z axis and in a plane perpendicular to it. The symmetry 

constrains the dislocation lines to lie in the wavefront surfaces, 

hence only pure edge dislocations can occur. This is equivalent to 

the fact that the symmetry makes the problem-essentially two

dimensional (Z and 't), and only pure edge dislocations can occur in 

two dimensions. 

We have seen that in the farfield the dislocations are static 

and, occur exactly at the centre of the pulse. Now we consider how 
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they got there from the,nearfield. Where are they "born" and are they 

always static and at the centre of the pulse? 

We compute the nearfield wave function for times T from 0 to 45. 
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In figs.2.15 to 2.18 we display the amplitude, phase, real and imaginary 

parts of the complex wavefunction. It is useful to compare the pulsed 

wavefield with the continuous wavefield as shown in figs.2.9 to 2.11. 

At T = 0 (figs (a» the wavefield is very similar to the CW case 

but with the features less pronounced i.e. the valleys are only just 

visible and the axial null is only a minimum above zero height, but in 

about the same place. The equiphase lines are a smoothed out version 

of the CW case, without the singularity. At T = 0 the pulse is centred 

on the piston face (geometrically) and any distance away from the piston 

the amplitude is only just beginning to build up. The smoothness of the 

wavefield suggests that the interesting diffraction phenomena in the CW 

wavefield actually take time to build up. We shall see that as time 

progresses the wave fronts become twisted and tangled up as more and 

more "rays" have time to interact. The arrow indicates where T - KZ 0 

i.e. where one would geometrically expect the centre of the pulse to 

occur along the axis. Inside the near/far boundary (situated at Z := 1-.4) 

the diffraction is so complicated that it is impossible to say where 

the centre of the pulse really is, but outside this boundary the concept 

becomes meaningful. 

At T = 5 (figs (b» the wavefield is developing more of the CW 

structure and the equiphase lines are moving in toward the axial CW null. 

At T = 10 (figs (c» the axial minimum has fallen to zero, and 

the equiphase lines coalesced, to produce a dislocation, which has then 

moved off the axis. A dislocation loop has been born by expanding 

from a point on the axis: the wavefront has punctured and the puncture 

opened into a circular hole (see section 1.7). Fig.2.17c shows the 

first crest coming to an end near the axis, compared with fig.2.18b 

(which is otherwise very similar). 

At T = 15 (figs (d» the zero of amplitude just off the axis is 

more clearly visible in fig.2.15d, along with a new dip just in front 

of the piston. We see from the phase map, fig.2.16d, that the dislocation 

near the axis has moved slightly further away from the axis (and the 

equiphase lines have rotated around it), and a new pair of dislocations, 
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of opposite sign, have been born just in front of the piston face, almost 

exactly at a C~'l minimum. Fig. 2.18d shows the crest just in front of the 

piston en? on one dislocation and then reappear on the second. A pair 

of dislocation loops have been born which then climb apart, producing 

an annular tear in the wavefront (see section 1.7). If we consider 

a plane in space containing the Z axis, then very near all the minima 

of the CW amplitud~pairs of dislocations of equal and opposite strength 

are born and separate by climbing (i.e. moving parallel to the wavefronts). 

Notice that the second birth occurs well into the tail of the pulse, 

and the first dislocation has dropped well back into the tail also. 

The centre of the pulse is slightly behind its geometrical pOSition, 

and seems to remain so until the farfield, when it does occur at 

wt - kr = O. 

At T = 20 (figs (e» we see a total of 4 dislocation loops, all 

dropping further into the tail of the pulse. Remember that in the 

farfield there are only 2 dislocations, which occur at the centre of 

the pulse. The upper dislocation of the pair has moved back onto the 

piston face, where it will disappear (dislocations can only appear or 

disappear in pairs, or on a boundary, since their strength is conserved 

(see section 1.2», and a new dislocation has appeared in the incipient 

CW valley discussed earlier. Notice how the equiphase lines are 

beginning to kink along the valleys of the amplitude. 

By T = 25 (figs (f» the two dislocations on the piston face 

have disappeared, but the remaining two have not moved very much. The 

centre of the pulse is well beyond the near/far boundary, but the 

dislocations are still dropping back further into the tail. However, 

the equiphase lines are kinking very sharply along the second valley, 

which must portend something interesting. Fig.2.17f shows the two 

dislocations and the kinking of the wavefronts quite well. 

At T = 30 (figs (g» one immediately notices (see fig.2.16g) 

that the second dislocation has jumped a long way, leaving the 

equiphase lines kinked the other way. The wavefronts have been torn 

and rejoined to the next one along, hence the name "glide" by analogy 

with the motion of dislocation lines in sheared crystals (see section 

1.6). The equiphase lines around the dislocation now take on the 

canonical pattern as in the far field, but it is still in the tail of 

the pulse. 



At T = 35 (figs (h» the second dislocation has moved off with 

the pulse, but even by T = 40 (figs (i» the first dislocation has not 

moved muc~. Figs.2.15(i) & 2.16(i) show just how far into the tail it 

has got. Finally, at T = 45 (fig 2.16(j) only), with a feeling of 

desperation since the amplitude is so low that numerical errors are 

beginning to show up in the phase lines, we find that the first 

dislocation to be born has finally made an effort to catch up with the 

pulse! 

In fig.2.19 we summarize the behaviour of the dislocations by 

plotting the trajectories along which they move, and their times, 

superimposed on the CW amplitude contours. We see that roughly 

speaking dislocations are born in CW amplitude minima, travel up the 

valleys to saddles, and then down the valleys on the other side. But 

only the two valleys leading into the far field carry dislocations, 

not the valleys and saddle joining the two minima. 

We have seen that the phase maps are the most informative about 

the behaviour of dislocations, therefore we will study in greater 

detail the phase maps associated with some of the interesting events. 

Fig.2.20 shows the birth of the dislocation pair near the piston face, 

and also the incipient dislocation which is seen to move upwards and 

towards the piston face from somewhere. We shall investigate this 

incipient dislocation further in the next chapter. Fig.2.21a shows 

the second dislocation just before its rapid glide. The phase lines 

kink so that they practically coalesce along a line, until at time 

T = 26.0 another dislocation seems to have appeared associated with 

the glide process. Fig.2.21b shows the same dislocation after its 

rapid glide. The phase 'lines become progressively less sharply 

kinked, and the dislocation slowly and smoothly catches up with the 

pulse, whose "geometrical position" is marked. There is no evidence 

of any further jumps. 

Fig.2.22 shows the rapid glide process in greater detail. 

Fig.2.22a shows the dislocation which is about to glide, plus two more 

dislocations spaced along the line of glide. A pair must have been 

born between T = 25.5 and 26.0, and glided apart. The original 

dislocation does not move a great deal, but the newly born pair 
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separate rapidly, and one of the pair approaches the original dislocation. 
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This new dislocation has opposite sign to the original, and between 

T = 26.2 (fig.2.22b) and 26.5 they meet and annihilate, leaving just 

the second member of the newly bor~ pair (fig.2.22c). The original 
I 

dislocation has "skipped" over the backward-moving member of the 

newly-born pair and ended up as what is really the other member of the 

pair. We have a continuous trajectory made up of positive (say) 

dislocations moving forwards and negative dislocations moving backwards 

(see section 1.7). 

Thus we have discovered the detailed mechanism of the rapid glide 

of the second dislocation, and we could similarly check the mechanism 

used by the first dislocation. But it is a very hit and miss affair, 

trying to choose appropriate times and places at which to compute the 

wavefunction. What we need is some theory to calculate the dislocation 

trajectories and the times at which they occur directly. In general, 

this involves finding the zeros of a complex function defined by an 

integral, which is difficult. We shall mount an attack on this 

problem in the next chapter. 
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APPENDIX 

A2.1 Derivation of Rayleigh's Formula 

A general solution of the wave equation may be written in terms 

of an angular spectrum of plane waves with wave vectors k = (K,k ) and - z 
frequencies W as 

3 ~ (k. r - wt) L
oo 

{ . 1/1 (,£, t) = _!W d ~ e - - A (k, w) 

subject to k2 = K2 + k 2 = (w/c)2 and 0, arg(k ) < ~ (for non-
z z 

divergent propagation in the half-plane z > 0, see fig.2.1 of section 

2.1). Therefore 

and we may integrate over k giving 
z 

l -d fd2 i (K.R + 1/1 (E." t) = w K e --
.. -

But on the baffle plane (z = 0) we have the boundary condition 

-o1/l/ozi z=0 = G(R)F ' (t) 

=> G (R) F' (t) = -E f d 2!£ [a (K,W) i I (w/c) z - !£z] e i (!£. R - wt) 

Inverting the Fourier transform and substituting for a(K,w) in (A2.1.1) 

gives 

=Jdt [d2R X (R-R ,z,t-t ) G(R ) F' (t ) o -0 --0 0 -0 0 

where 

X (R,z,t) . £- fd2K i (K.R + I(w/c) 2 - K2 z - wt) = ~ w e--
(2~)3 -~-------/~(w~/~c~)~2-_--K~2~------ -

is the Green function for the problem. 
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(A2 .1.1) 

(A2.1. 2) 

(A2.1. 3) 

Let us consider the w integration. The integrand has branch 

points at w/c = ±K (K = iKI), around which we must distort the contour 

of integration. We will consider closing the contour by an infinite 

semicircle on which the integrand is zero, as shown in fig.A2.1.1. 

X(R,z,t) itself is the wave function produced by the point pulse 

excitation G(R )F ' (t ) = OCR )O(t ) and causality requires that this 
-0 0 -0 0 

be zero everywhere for t < O. To ensure this (for z = 0 in particular) 

we raise the contour along the real axis infinitessimally above the 

branch points (joined by a branch cut) so that for t < 0 the contour 



encloses no singularities. Therefore we replace w in the integrand of 

A2.1.3 by w+ = w + ie and eventually take the limit as e + O. 

Now,that the integrals are well defined, we may put K.R = KRcos6, 

d2K = KdKd9 and do the angular integral to give 

[
- -iw t [." . iV' (w+/c) t - Kt z X(R,z,t) = --L dw e + KdK ~e JO(KR) 

(21T)2 I(w+/c)i - Ki 
-- 0 

where JO(KR) is a Bessel function (see e.g. Bell (1968». We can write 

i/(w+/c)t - K2 = ±/K2 - (w+/c)2 

The contour and branch cut in the plane of K2 - (w+/c)2 are already 

imposed on us by our choice in fig.A2.1.1, and are shown in fig.A2.1.2, 

along with the contour in the plane of IK2 - (w+/c)T. We see that as 

the argument + ~, the square root + _w i.e. we have been forced to 

take the negative square root relative to the conventional choice of 

branch cut along the negative real axis. Then 
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where e = -iw+/c = (e-iw)/c so that Re e > 0, Rand z both real and> O. 

We may now apply eqn(24),p9, vol II of Tables of Integral Transforms 

to give 

f .. e-iwt (R2 + z2) -I, e i (w/c) (R2 + z2) I, X(R,z,t) = 1 dw 
(21T) 2 --

in the limit e + 0 

= 1 oCt - p/c) 
21TP 

where p = (R2 + z2)J,. This is the standard result (e.g. see Jackson 

(1962), p18S). Substituting in (A2.1.2) gives our version of Rayleigh's 

Formula: 

where now p 
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CHAPTER 3 

DISLOCATIONS BY PERTURBATION 

3.1 Introduction 

In the previous chapter we examined the behaviour of the 

dislocations occuring in a particular model wavefield, by an 

"experimental" method. Our apparatus for this experiment was a computer 

linked to a graph plotter, and using this apparatus we merely examined 

the spatial wavefield at a sequence of times in the hope that we would 

find some dislocations. We were guided in our search by intuitive 

considerations of the continuous wavefield. Our intuition was 

vindicated by the fact that we did find two dislocations born in the 

nearfield, one at the only CW null, and running down the "valleys" 

of the CW amplitude into the far field. But we also found many 

unexpected phenomena, such as the skip, the pair birth with one of the 

dislocations moving back onto the piston, and the "incipient" 

dislocation, about which we still know very little. How many other 

interesting phenomena did we miss by not choosing the correct times? 

Looking for dislocations in a wavefield by this method is somewhat akin 

to looking for a needle moving through a cornfield: it is a hit-or-miss 

process. 

Ideally, we would like to be able to perform one computation to 

give us the 4-trajectories of all the dislocations in the wavefield. 

This would tell us the full history of all the dislocations, including 

the relative signs of all interacting dislocations, as explained in 

chapter 1. All that it would not tell us is the actual strength of 

(the dislocations on) each trajectory, and the relative signs of non

interacting dislocations. To find these two facts we would have to 

compute phases, but we would know exactly where and when to compute 

them. A half-way step towards this ideal would be to be able to 

compute only the spatial trajectories (or perhaps only the times). 

To solve this problem in general would require finding the zeros 

of a complex function of 4 variables defined by an arbitrary (diffraction) 

integral, and I am not aware of any general method for doing this. 

(We are here allowing dislocations of strength zero, so that a necessary 

and sufficient condition for a dislocation is that the wave amplitude 

be zero)'. However, we are only considering quasimonochromatic pulsed 



wavefunctions, so that in some sense our wavefield is only a small 

deviation from the continuous wavefield at the centre frequency of our 

pulse. We have already seen how the dislocation trajectory is related 

to the CW amplitude, so we might hope to be able to derive approximate 

dislocation 4-trajectories by perturbation of the continuous wave

function. The question is, can we feasibly make the approximation 

good enough to be useful? 

60 



3.2 General Perturbation Series 

By definition, the frequency spectrum of a quasimonochromatic 

pulse is sharply peaked about its centre frequency, so that the "width" 

a of the spectrum is small, and tends to zero in the monochromatic 

limit of a O-function. We shall try to develop a perturbation series 
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in a for the pulsed wave function. But by perturbing the width of a 

o-function from zero to some finite value, we also "perturb" the height 

from infinity to some finite value; a "perturbation" which is infinitely 

large. So we must proceed with care because we are probably building 

our theory on shifting sand; which may account for some of the peculiar 

behaviour it exhibits. But then we are hoping to produce nothing out 

of something; we are not just trying to move the CW nulls a small 

distance by the perturbation, we are trying to turn a finite amplitude 

into a zero. The perturbation is only small in terms of the spectral 

width, not in terms of the amplitude changes it produces~ 

Suppose we drive the system with the pulse f(t)e iwot whose 
~ 

Fourier transform is f(w-wo)' where 

few) = 1 L~t)e-iwt dt . 
fu 

-00 

If the continuous wave function with frequency w at any point in space 

and time is ~(£,t,w), then the pulsed wavefunction is 

= 1 f~W-wo) ~ (!.,t,w) dw 72iT __ 

1 J~W) ~(r,t,wo+W) 
72TI 

-GO 

dW = 

by putting W = w - woo If ~ has phase X we may write 

where Xo' = ~(wo) must have the form t + Xo' (!.). We have factored 
aw 

out of ~ the term with phase varying most rapidly with w about wo' 

such that the phase of P is stationary at W = O. If few) is sufficiently 

sharply peaked any phase variation of P will not have a large effect. 

We now expand P{£,t,W} about W = 0, giving 

~ (r, t) = 1 r~ .. ) e iWXo
' f W~ P (n) (!.' t,O) dW 

I2rr" 100 ,,-0 n. 
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where 

_l_I~W) 
I2iT -00 

- anp{,E.,t,W) 
aWn 

and f (n) (t) :: anf (t) . 
atn 

Eqn. (3. 1) is 

an exact series expansion of the pulse wavefunction ~(,E.,t) at some 

point ,E. and time t, in terms of frequency derivatives evaluated at the 

pulse centre frequency Wo of the continuous wave function W(,E.,t,w) at 

that same point and time, ~nd derivatives of the envelope function f(t) 

modulating the source carrier. The l/n! factor should ensure that the 

series converges unless either P or f are particularly badly behaved. 

Let us display the pulse length explicitly by replacing f(t) by 

f(ot). Then for a given function f the actual pulse length is « 1/0, 

and the spectrum is 

having width 0 (and height« 1/0). We are interested in pulses with 

small 0 (long pulse length), and our general perturbation series (3.1) 

becomes 

I am grateful to Dr.M.V.Berry for several suggestions which are 

incorporated into this formulation. 

We expect to be able to make this series converge as rapidly as 

we like by choosing 0 small enough. But note that we must expect this 

value of 0 to vary with the parameters r, t and wo' and we must choose 

cr small enough to make the series converge sufficiently rapidly every

where. It is only really feasible to compute frequency derivatives up 

to second order, therefore we shall truncate the series after the n = 2 

term and require 0 small enough that the error so incurred is not 

significant anywhere. If we now factor out of P the constant phase, 

which must include its time variation, we may write 

where Xo must have the form wot + Xo(~)' and Q(~,O) is real. Then 

(3. 1) 



our main formula is 

To lo~est order 

when the carrier phase is Xo(£,t) = wot + Xo (£)' and at the point 

r in space, the envelope of the pulse as a function of time is 
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(3.2) 

~ f(oXo' (£,t». So we see that roughly speaking Xo(£,t) describes the 

propagation of the carrier, and Xo' (£,t) describes the propagation of 

the envelope (ignoring any dislocations) through the diffraction pattern. 

We have written ~(£,t,w) in the form 

,I, iXo (r ,t) i (w-wo ) Xo' (r ,t) 'I'(£,t,w) = e - e - Q(£,w-wo ) (3.3) 

where Xo and Xo ' have the significance described above. Generally 

Q is not pure real (except at w = wo ' by definition), but in certain 

special cases it is. This makes the above decomposition of ~ particularly 

reasonable, and we might expect the theory to work particularly well in 

these regions. The condition for a dislocation is that ~(£,t) = 0, i.e. 

(1) 2 (2), 
Q(£,O)f(oXo') - iOQ(1) (£,O)f (OXo') - 0 Q(2) (£,O)f (OXo) = 0 (3.4) 

2 

and the problem is to solve this generally. We shall always use a real 

envelope function f(ot), in particular the Gaussian 

f (ot) = e 
_(ot)2/2 

f(1) (ot) = -ot e-(ot)2/2 

f(2) (ot) = «~t)2-1) e-(ot)2/2 

When Q is also real (3.4) is particularly easy to solve. We shall now 

apply this theory to the piston radiator discussed in the previous 

chapter. 

(3.5) 
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3.3 Farfield and Axial Dislocations 

If Q is pure real, we can either take it and the phase as analytic 

functions~ so that Q may take negative as well as positive values, or 

we may take Q as the modulus I~I, when neither it nor the phase are 

analytic at Q = O. We shall take the former interpretation to avoid 

any non-analyticity, which is probably the main simplification arising 

from Q being real. Then X is actually only phase modulo IT. Equating 

real and imaginary parts of (3.4) to zero gives 

2 (2), 
Q(£,O)f(axo') - ~ Q(2) (£,O)f (axo) = 0 

2 

aQ(1) (£,O)f(l) (axo ') = 0 

For a -:f 0, (3.6b) has two solutions 

f(l) (axo') :;:: 0 

or Q (1) (£.0) = ° 
Case A: (3.7a) implies the pulse envelope is flat with respect 

to time, to lowest order i.e. the pulse at that point in space and time 

is locally "as monochromatic as possible". For the Gaussian envelope 

(3.5). eqn. (3.6a) is 

° 
and (3.7a) requires Xo' = O. Then (3.8) becomes 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

(3.8) 

Q(£,O) + ~2Q(2) (£,0) = 0 (3.9) 
2 

which gives us the spatial position of the dislocation, and Xo' = ° 
tells us the time at which it occurs there (Le. at the "centre" of 

the pulse). 

Now (3.9) appears to be the equation of a surface, but the 

condition that Q be real (i.e. Im Q(£,O) = 0) has already restricted 

us to be on a surface, so that (3.9) actually gives a line (generally). 

For a = 0 this line is the CW null line, so for small a it must be 

a line close to the CW null line. The dislocation can only occur at 

the CW null if Q(2) (£,0) = 0 when Q(.E.,O) = 0. 



Case B: (3.7b) gives the equation of the dislocation line in 

space, and substituting this into (3.8) gives the time as 

Xo" = ± 1 
(J 

2~ Cr., 0) + 1 
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if this exists. But Q(l) = 0 means Q is a maximum or minimum (generally) 

and we expect Q positive at a maximum and Q negative at a minimum, so 

that Q and Q(2) have opposite signs. Then for small (J the square root 

will be imaginary, giving no real solution for Xo' and no dislocation. 

As our first example we consider the far field of the piston 

radiator. The monochromatic wave function is, from eqn. (2.17), 

t/JFm (r, a, t) = ieiwo (t - ric) e i (w-wo ) (t - ric) ac J 1 (~a sin a) 
rsina c 

Comparison with (3.3) shows that 

. 
Xo = TI/2 + wo(t - ric) 

Xo' = t - ric 

Q(r,a,w-wo ) = J1(~a sina) x (term independent of w) 
c 

Case A gives dislocations at t - ric = 0 and 

J (x) + x 2 J" (x) = 0 
1 2(TIn)2 1 

where x = ~a si~ a = K sin a and (J = w 
c TIn 

Using the properties of Bessel functions (e.g. see Bell (1968), p104) 

this becomes 

(3.10) 

Assuming the dislocations are near to CW nulls, expand x about xo' where 

J
1 

(xo ) = 0, by putting x = Xo + ox. Then to lowest order 

2(TIn)z + 1 

and 

- x 2 o 

K = 10, n = 3 gives the following values 
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CH null dislocation 

xo 68 60 6=6 0 +06 

3- 8317 0-15 22-53 22-68 , 

7-0156 0-44 44-55 44-99 

(These results were also checked by a direct graphical solution of (3.10), 

which agreed to the accuracy shown). 

Case B gives dislocations at J
1

' (x) = 0 and 

t - ric = ± TIn 2 (TIn)2J1 (x) + 1 
w xZJ 1" (x) 

But for J 1 ' (x) = 0, using the properties of Bessel functions, the term 

inside the square root is 

Now J1' (x) = 0 => x > 1 (e.g. see graph of J 1 (x) on p134 of Bell). 

But x = K sin 6 => x (K. Therefore (3.11) is 

If the right hand side is < 0, i.e. if 

.!l. > 
K 

1 = -;n 0.225 

then there is no solution for the dislocation. For a long enough 

pulse this inequality is satisfied, as in our case where n/K = 0.3, 

therefore case B has no solution. 

Our perturbation theory predicts two far field dislocations at 

t = ric i.e. at the centre of the pulse, and at angles very close to 

the CW null angles. This agrees with our previous computations, 

discussed in section 2.7, to the accuracy available from the graphs. 

To check the accuracy properly, the wave function of eqn. (2.23) was 
6 computed to an accuracy of 1 in 10 for T = 0, at a sequence of angles 

closely spaced around the expected zeros. From a graph, the angles of 

the dislocations were found to be 22.67° and 44.88° (to 2 DP) (the 

cw null angles were also checked, and agreed with those quoted). The 

values of 06 predicted by the perturbation theory are in error by 

0.01 in 0.15 (7%) and 0.1 in 0.4 (25%) respectively. But our pulse 

is only just above the threshold (3.12) for spurious solutions, and 

(3.11) 

(3.12) 



presumably for longer pulses the accuracy would improve. We have, 

however, predicted the time exactly! 

Our'second example is the axial field of the piston radiator. 

The monochromatic wavefunction is, from equation (2.19) 

2 ' iwo(t - ia/c) i(w-wo) (t - ia/c) , 
IJIm(O,Z,wt) = ~e e s~n Wca(Zl;Z) 

where Z = z/a, Zl = /ZT.+l and Z = (Zl+Z)/2. 

Comparison with (3.3) shows that 

Xo = TI/2 + wo(t - Za/c) 

Xo' = t - za/c 

Q(Z,w-wo ) = sin W;(Z12-Z) x constant 

Case A gives dislocations at t - Za/c 

where T = wot, K = woa/c and 

0, or T - KZ = a 

sin K (z 1 -z) {1 - 1 K2 (Z l-Z) 2] = 0 
2 2(TIn)z 2 

Now (Zl-Z)/2 decreases monotonically from ~ to a as Z increases from 

a to w, so if 

< 4 
2 (TIn) 2 

Le. n > 
K 

. 
1 = 0.113 

21T12 

the only solution is sin K(Zl-Z)/2 = a which is precisely the CW nUll. 

Condition (3.13) is satisfied by a long enough pulse, which ours is. 

Case B gives dislocations at 

~(Zl-Z) cos K(Zl-Z) = a 
c 2 2 
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(3.13) 

We must take COS$(Zl-Z)/2 = 0 because (Zl-Z)/2 ~ a (except at infinity). 

Then sin K(Zl-Z)/2 ~ 0, so the time is given by 

t - za/c = ± TIn -2(1Tn)2 + 1 
w (K(Zl-Z) /2) 

Now «Zl-Z)/2)2 ( 1/4 

=> 1 - 2(nn)2 ( 
(K(Zl-Z)/2)2 

Then if condition (3.13) is satisfied, the above right hand side < a and 

there are no solutions for the dislocations. 



Our perturbation theory predicts one dislocation exactly at the 

CW null, at time T = KZ = 7.958 for K = 10. This again agrees with our 

previous computations, discussed in section 2.7, to the accuracy 

available from the graphs. But we can check this result analytically. 

Suppose we drive the piston with the pulse 

iwt 
F(t) = f(wt) e , 

then the axial wave function is 

i(T - KZ) i(T - KZ1) 
~(O,Z,T) = f(T - KZ) e - f(T - KZ1) e 
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(3.14) 

We require ~ = O. If f(T) is real and> 0 for all T, then the amplitudes 

and phases of the two terms in (3.14) must be equal. The phase condition 

gives 

T - KZ = T - KZl + 2nn 

=> K(Zl-Z)/2 = nTI 

which is the condition for a CW null (see eqn. (2.20» (because the 

amplitudes are equal if f(T) = 1 for all T). The amplitude condition is 

f(T - KZ) = f(T - KZ1) (3.15) 

Suppose f(T) is symmetric and monotonically decreasing away from T = 0, 

then (3.15) implies 

T - KZ T - KZl 

or T - KZ = -(T - KZ1)' 

Since Zl # Z (except at infinity) we must take the second equation, 

giving 

T = K(Z+Zl)/2 = KZ 

We see that for any pulse whose envelope function is real, positive 

definite, symmetric and monotonic decreasing away from its centre, axial 

dislocations occur exactly at the CW axial nulls at time T = KZ, which 

is the mean travel time of the wave from the centre and edge of the 

piston, and nowhere else. This is independent of the detailed pulse 

shape or pulse length, and our Gaussian model is just one of many 

possible envelopes satisfying the above conditions. 

For a long enough Gaussian pulse, the perturbation theory gives 

the axial dislocations exactly. Note that 

TIn = An = length of pulse in space 
K 2a diameter of piston 



and if this is much less than 1, then the main pulse (if there is one) 

and the replica pulses from opposite edges of the piston will be well 

separated, rather than merging into a single pulse as the theory 

tacitly assumes, which may well create dislocations between them. 

The condition that TIn/K > 1/12 avoids this complication in the far 

field and on the axis. 
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3.4 General Solution of the Perturbation Equation 

To solve equation (3.4) we must resolve it into its real and 

imaginary'parts. Just taking the real and imaginary parts of Q is not 

very useful, so we write 

where the E. dependence is not shown explicitly, and R and X II are real. 
o 

Then (3.4) becomes 

(R(O)f(ax~) - iO'R(1) (O)f(1) (O'X~) - ~2{R(2) (0)+iR(0)X~}f(2) (ax~)} 
2 

and separating real and imaginary parts gives 

2 (2). 
R(O)f(O'Xo') - 0' R(2)(0)f (axo) 

2 

-a{R(1) (O)f(1) (a,Xo') + ~R(O)Xo"f(2) (axo')} 

2 

= 0 } o 

When Xo" = 0 these equations reduce to (3.6), of course. 

In general, the only way we can make the decomposition (3.16) is 

by insisting that 

R(W) ~ 0 i.e. R = I~I 

Then the phase, and hence our equations (3.17), are well defined 

everywhere except where R = 0, i.e. at CW nulls. We consider this 

exceptional case first. Equations (3.17) give the 4-trajectory of the 

dislocations arising in the wavefield: 2 equations in 4 variables 
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(3.16) 

= 0 

(3.17a) 

(3. 1 7b) 

define a 2-surface. If we eliminate t between them we have the equation 

of the real trajectory surface in 3-space. Let us consider a curve 

lying in the traj~ctory surface, such that the CW amplitude is zero at 

isolated points on the curve. We consider the restriction of all our 

functions to this curve. Then we may take R to be a real and analytic 

function of distance along the curve, which may be negative, so that 

the phase is also analytic (see appendix A3.1). This is analogous to 

what we have already done along the axis of the piston radiator. Now 

equations (3.17) are well-defined everywhere along our curve, and we 

can find the conditions necessary for such a curve to pass through a 

CW null. R(O) = 0 in eqns. (3.17) implies 

2 (2), 
-~ R (2)(0) f (axo) = 0 

2 

-a R(l) (O)f(1) (aXo') = 0 
] (3.1Sa) 

(3.1Sb) 



Generically R(1) (0) ~ 0 at R(O) = 0, therefore (3.18b) requires 
(1) . (2) 

f (OX ') = O. Then gener~cally f (oX ') ~ 0, so (3.18a) requires o 0 

R(2) (0) =,0. Therefore for a pulse with no stationary inflexions, 

(such as our Gaussian) the dislocation trajectory only passes through 

CW nulls, R(O) = 0, where also R(2) (0) = 0. This is likely to occur 

only in very special situations, such as the very high symmetry 

position of the axis of the circular piston radiator, where R ~ sin. 

It does not occur in the far field where R ~ J1. We suggest that the 

dislocation trajectory does not pass through a CW null in a general 

position, although for small a it may pass very close to it. 

We have ascertained the condition for a dislocation to pass 

through a CW null, and that if it does so the time will be given by 

f(1) (OX ') = 0 i e the dislocation will pass through the CW null at o ,. • 

its "most monochromatic" time. We can now exclude the CW nulls, and 

regard R as the amplitude or modulus M of the continuous wavefunction, 

and only consider points in space where M > O. To make this change of 

view explicit we rewrite (3.17) as 

Mf(OX ') 
o 

02M f (2) (OX ') 
"2 2 0 

o 

O{M
1

f (1) (OX
o

') + OMX "f (2) (oX ')} = 0 
"2 0 0 

where Mr = R(r) (0). We shall make some general comments about these 

equations first. M is independent of a, and everywhere greater than 0, 
II 

and we expect Mfto be smaller in magnitude than M. We only consider 
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(3.19a) 

(3.19b) 

positive definite pulses, 

requires M f(2) (OX ') > 0 
2 (2) 0 

therefore for very small a a solution of (3.19a) 

and f(2) If fai~ly large. For our Gaussian 

model pulse f /f = (OX ') o -1 from (3.5), and this can only have a 

magnitude greater than 1 if it is positive. Therefore, in a typical 

region of space, we expect dislocations only for M2 > 0 and f(2) > 0, 

i.e. near frequency minima of the CW amplitude, and for times outside 

the inflexions of the pulse envelope. 

Before we can proceed to solve equations (3.19) we must derive 

the modulus and phase terms from the continuous wavefunction, which is 

what we actually know (usually as a diffraction integral). We write 

Then using the notation X = aX/aw we have 
w 

ix(r,w) 
e -



M M 
W 

M M 
ww 

= 

= 

= 

= 

R2 + 12 

R R + 1 1 
W W 

R R + I I 
ww ww 

R I - I R 
W W 

R 1 - I R 
ww ww 

+ (R ) 2 + 
W 

(I ) 2 _ (M ) 2 
W W 

If we can compute 1jJ, 1jJ and 1jJ then we can compute all the terms 
W ww 
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(3.40) 

required in (3.19). In principle each of these terms is an analytical 

function of its arguments, but in practice this analytical form is so 

complicated as to be useless. The terms in (3.19) are, in terms of those 

above: 

M = M(r,w ) 
- 0 

M1 M (r,w ) 
W - 0 

M2 = M (r ,W 
ww - 0 

) 

Xo 
, t + X (r,w ) w - 0 

x"=x (r,w) o ww - 0 

and we regard these as being numerically defined function of space ~. 

We could compute them at any required point, but what we actually do is 

compute arrays of all the required functions once for all at lattice 

points throughout the region of space in which we are interested. We 

then interpolate between these lattice points. 

The pulse function f(t) is an analytical function of its argument, 

so equations (3.19) have the status of a pair of functions, which are 

numerical in space and analytical in time, equated to zero. The way 

to solve these equations depends on the form in which we would like the 

results. In a truly three-dimensional problem, displaying the results 

would be difficult. But we are only currently interested in problems 

which are "effectively two-dimensional", when the shape of the dislocation 

line is known (to be a straight line for translation symmetry, a circle 

for rotation symmetry), and the whole dislocation line is represented 

by a point in our two-dimensional space. Then the 4-trajectory reduces 

to a line in 3-space (instead of a 2-surface in 4-space), which can be 

visualized. 

We shall plot the projection into real space, which is the real 



trajectory curve in two-dimensions, and the time as a function of 

distance along this curve from some arbitrary origin, for each branch 

of the trajectory. (We could then stick each time plot along its 

trajectory, normal to the real plane, and thereby construct the full 

trajectory curve in our three-dimensional space-time.) Since time 

appears analytically in (3.19), we should be able to solve for it 

analytically in terms of numerical functions of position along the 

trajectory, which can be easily plotted. We should also be able to 

eliminate time giving the trajectory as the solution of 

"numerical function" = 0, 

which can be easily plotted using a contouring routine. 
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3.5 A First Approximation 

Before we attempt to solve equations (3.19) in their full form, 

let us consider a much simpler first approximation solution. To get 

anything other than the CW nulls we must keep both terms of (3.19a). 

But the lowest order solution of (3.19b) may be a good approximation 

for small a, viz. 

o 

Let us return to our model of the piston radiator, and rewrite (3.19) 

in terms of our dimensionless variables K and n where 

K = ka and a = w. 
TIn 

to give 

Mf 1 M f(2) 

2 (TIn) 2 KK 
= 0 

M f (1) + { 1 MX
KK

f(2l} = 0 
K 2 (TIn) 

where the argument of f is (T + XK) 11m, and 

MK = K aM/aK 

MKK = K2 a2M/aK2 

XK = K ax/aK 

XKK 
= K2 a2x/aK2 

We display in figs.3.1a to e contours of M, MK, M MKK , X
K

, M2 XKK 
respectively (the second derivatives being in the form of eqn. (3.20), 

as originally derived from the wave function) , plotted for K = 10. 

(This means that as displayed the first derivatives are multiplied by 

10 and the second derivatives by 100.) 

Our first approximation equation (3.21) becomes (3.22b) without 

the term in braces, and its solution is either MK = 0 or f(l) = o. 
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(3.2.1) 

(3.22a) 

(3.22b) 

For our Gaussian pulse, the latter implies T + ~ = 0 gives the times, 

and then equation (3.22a) gives the trajectory as 

M + 1 
2 (TIn) 2 

M = 0 
KK 

(since f (2) (0) = -f (0) :f:. 0 from (3.5)). This requires M < 0, but we 
KK 

have already deduced that we generally expect MKK > 0 along the 
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trajectory. Specifically, for n 

2 M MKK = -177.7 M 

3, we require 

Reference to figs.3.1a and c shows that M is everywhere too large to 

satisfy this equation, which is born out by the full solution of 

equations (3.22). 
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This leaves the only solution as MK 

and then eqn. (3.22a) gives the times as 

~ which gives the trajectory, 

M - MKK f (T + x~l- 1] = 0 
2 (7fn)i (7fn) 

=> T = 

This appears to give dislocations symmetrically in the head and tail of 

the pulse, and this will occur for any symmetrical pulse in this lowest 

order approximabion. We shall choose the + sign because we know that 

the dislocations actually occur in the tail, and hope that the full 

solution of (3.22) will lend some theoretical justification for this. 

The lines satisfying MK o are visible on the contour plot (fig.3.1b) 

(3.23) 

but we plot them on their own for clarity in fig.3.2. There are 6 lines. 

Reference to fig.3.1c shows that lines 1,3,5 are frequency maxima, 

whil& lines 2,4,6 are frequency minima. We might expect the square 

root in (3.23) to be imaginary along the "trajectories" where MKK is 

negative, and this &urns out to be the case when the values are 

computed for n = 3. 

The computational technique was to plot the contour MK = 0, 

shown in fig.3.2a, and store the coordinates along each numbered branch 

starting from the asterisk. For each branch taken in turn, -X
K 

was 

plotted (dashed) as a function of distance from the asterisk, and at 

every point for which the square root existed, the value of Twas 

plotted from (3.23) with the + sign taken. If consecutive points 

existed they were joined up. Trajectory branches 1,3,5 produced no 

points for T at all. Branches 2,4,6 produced the curves shown in 

figs.3.3a,b,c. They are all continuous curves except for trajectory 2 

near the CW null. The jaggedness is almost certainly due to the crude 

linear interpolation used, and could no doubt be improved if the theory 

was thought to merit it. 
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Only the frequency minima of M, curves 2,4 & 6 in fig.3.2a, are 

dislocation trajectories. These compare very well with the "experimental" 

trajectories found in the previous, chapter, and reproduced for comparison 

in fig.3.2b. Agreement is within "experimental error", this being the 

error incurred in plotting the individual dislocations and then tracing 

the trajectories to produce fig.3.2b. The "experimental" times are 

also plotted on figures 3.3, the crosses showing the points actually 

known. Here the agreement is not so good, and such subtleties as the 

skip along trajectory 4 are completely wrong (just how subtle it is, is 

shown by the flatness of the "experimental" curve in the 'skip region) • 

This is probably because the actual wave amplitude has the form of a 

valley along the trajectory, whose bottom is at very low height, 

becoming zero actually at the dislocation. A small error .in the height 

could then make a large error in the actual position of this zero along 

the valley floor. Hence it is fairly easy to find the trajectories, 

but not the actual times. 

We might hope that a small error in the trajectory could make 

a large error in the time. Equation (3.23) actually gives time T as 

a function of space, and it must give the time accurately whether or 

not we solve (3.22b) accurately. To judge the effect on the times of 

a small shift in the trajectories, we plot in fig. (3.4) contours of 

(T + XK)/~n = crXo ' (where it exists) with our approximate trajectories 

superimposed upon them. We see that the trajectories lie near to the 

bottoms of valleys of crx~, and the contours of XK in fig.3.1d are 

nearly perpendicular to the trajectories, so T will be fairly 

insensitive to small shifts in the trajectories. 
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3.6 The Dislocation Trajectories 

We have seen that the dislocation trajectories are given to a 

good approximation by aM/aw = 0, which appears to pass through the 

axial CW null where M = O. We shall show that every CW null line 

M(r,w ) = a (which actually represents 2 equations in general) has a 
- 0 

surface aM(r,w ) = a passing through it. Consider a plane in space, 
aw - 0 

the xy plane say. Then the contour surfaces of M(x,y,w) are two

dimensional surfaces in this three-dimensional space. Generically 

M(x,y,w) = a defines a line at some angle to the w axis. This line 

will be enclosed by conical tubes defined by M(x,y,w) = constant, 

whose semi-angles will increase from a as they become further from 

the null line, by continuity, as shown in fig.3.5. aM/aw = a implies 

that the contour surface is parallel to the w axis at that point. 

The projection of the null line onto the plane w = w gives the line 
o 

along which the null moves in space as w is varied. The two sides of 

the contour cylinder of infinitessimal radius about the null line, 

perpendicular to this projection, will be parallel to the w axis. 

Therefore, in the plane w = w , aM/aw = a defines a line in the 
o 

neighbourhood of the null point M = 0, which passes through the null 

in a direction perpendicular to that in which it moves as frequency is 

varied. 

Globally, if the angle of the contour cones remains small, the 

line will continue away from the null on either side (fig.3.5a). But 

if the angle of the cones increases, there will be an M contour whose 

semi-angle equals the inclination of the null line to the w axis, and 

outside which the contours cannot be parallel to the w axis. Therefore 

the two ends of the line aM/aw = a must join up, where a generator of 

the M-contour cone is parallel to the w axis, into a closed loop (fig. 

3.5b). If the null did not move with 00, this loop would degenerate 

into a point at the null, giving a dislocation rigidly fixed in space, 

but this is highly unlikely. 

By considering a family of parallel planes like that taken as 

our xy plane, we see that aM/aw = a represents a natural extension of 

the CW null lines M = a into surfaces. These surfaces will be very 

close to the trajectory surfaces of the dislocations produced by an 

arbitrary quasimonochromatic pulse, whose centre frequency is the CW 

frequency. 
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In the limit of an infinitely long pulse, we expect the trajectory 

surface to somehow shrink back to the CW null lines. The way that this 

happens can be seen from eqn. (3. 23) • As n -+ 00, T-+oo and the 

dislocations recede into the tail of the pulse, never to appear at any 

finite time, except where M = 0 when the equations break down. Then 

eqns. (3. 1 7 ) tell us that in the limit a = 0 (n = 00), R = 0 (M = 0) is a 

solution for all time. For a very long pulse, the dislocations must 

"hover" at the CW nulls for a very long time before eventually 

traversing the rest of the trajectory, which in the CW limit they never 

get around to doing! So it is not so much that the trajectory is not 

there, just that it is not used. 

In fact, we learnt in section 3.4 that the dislocation does not 

pass through the CW nulls, except in exceptional cases like the axial 

null of the piston radiator, where X " = O. Generally the effect of 
o 

the term in braces in eqn.(3.22b), which we have so far ignored, will 

be to pull the trajectory away from the CW nulls by a small amount, 

which will decrease as a -+ 0 (n -+ 00). So in the monochromatic limit 

the trajectory surface merges with the CW null lines, and the comments 

in the previous paragraph still apply. 

It is interesting and unexpected to discover that for the piston 

radiator wave function and another unrelated wave function considered in 

a later chapter, the lines where oM/ow = 0 lie very close to the 

bottoms of valleys and the tops of ridges of M in space, and that the 

bottoms of valleys correspond to frequency minima and the tops of 

ridges to frequency maxima. This implies that the main effect of a 

small change in frequency is to locally shift the amplitude function 

rigidly in space in a direction perpendicular to its valleys, without 

a significant change in the actual value of the function otherwise. 

There appears to be no general reason why this should be so, therefore 

it must be a property of some restricted class of continuous wave functions 

of which the two wavefunctions we consider are members. It is not known 

just what this class is; for example it may be those wave functions 

containing a narrow angular spectrum of plane waves. 

Another way of looking at the dislocation trajectories is to say 

that away from the CW nulls the zeros of the complex continuous wave

function have moved out of real space into complex space. It can be 

shown (e.g. see Dennery & Krzywicki (1967), p98) that a complex 
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function of two (o~ presumabl~more) complex variables cannot have 

isolated singularities. Taking the function as 1/~ implies that the 

simplest set of zeros of ~ as a function of two complex space variables 

is a complex surface which must extend to infinity. The valleys in the· 

CW amplitude in real space are the "shadows" of these complex null 

surfaces (which may be closedloops). When the system is driven by 

a quasimonochromatic pulse there are times when the perturbation is 

sufficient to pull the complex null surface down into real space to 

produce a dislocation at some point in one of these "shadows". 
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3.7 Solution of the Full Perturbation Equations 

If one compares fig.3.1e with fig.3.1b (or more easily with fig.3.2) 

one finds' that ~ is very small along the lines MK = O. In fact, the 

zero contours of the two functions nearly coincide in places, with the 

notable exception of trajectory 1 for which ~ has no corresponding 

zero. There seems to be no general reason for this behaviour, but it 

means that as the frequency is varied through w , the point representing 
o 

~ in the Argand plane moves approximately with constant speed round an 

arc of a circle centred on the origin. This suggests that our 

approximation of neglecting the ,term containing X
KK 

should be better 

than we might expect. 

Let us return to equations (3.22) and eliminate f(2) to give 

f (1) = - 'ITIl M 2 XKK 

f MKMKK 

which for our Gaussian pulse becomes 

T + ~ = (m)2 I-12XKK 

MKMKK 
(3.24) 

We must solve this equation simultaneously with one of equations (3.22), 

of which we will use (3.22a) in the form (3.23). Then the equation of 

the trajectory is 

M 2 XKK = ± I 2M + 1 
(1m) z MKMKK ,MKK 

and the times are still given by (3.23) (or by (3.24». Note that we 

cannot go back to our first approximation solution by letting n ~ ~, 

which gives 

M = + M2X K - KK not MK = O. 

I2MMKK 

However, the right hand side is actually quite small, which is probably 

why our first approximation solution worked so well. 

We see that now the dislocations in the head and tail of the 

pulse actually travel along separate trajectories, which we expect to 

be fairly close together. Let us examine the typical (we hope) 

behaviour of eqn. (3.25) by considering a section in the plane Z = 0.5 

through trajectory 3 (indicated by the short vertical line on figs. 

3.1b & e). Extracting values from figs.3.l, we plot in fig.3.G the 

(3.25) 



Figure 3.6a Typical Behaviour of Left Hand Side of Equation (3.25) 
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Figure 3.6b Typical Behaviour of Right Hand Side of Equation (3.25) 



behaviour of the left and right hand sides of eqn. (3.25) in the 

neighbourhood of MK = 0 (where o~ = 0) for n = 3. The LHS is the 

quotient ?f two nearly linear terms with zeros a small distance apart, 

giving a curve like a rectangular hyperbola. On the same scale the 

RHS is a pair of very flat curves like parabolae. The trajectories 

are the intersections of the two graphs, which occur a small distance 

either side of where ~ = 0, the positive-time solution being nearer 
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to MK = O. As n is increased to w, the two branches of the RHS approach 

each other until they are slightly closer together than shown. As n is 

decreased to 0, the two branches separate (asymptotically as lin). 

The positive-time trajectory approaches where MK = 0, moving very slowly 

The negative-time trajectory moves very rapidly away from where MK=O (to 

infinity in this local model), jumps to the other side of where MK = 0 and 

finally approaches MK = O. Thus the positive trajectory is stable to 

variations of pulse length, but the negative trajectory is highly 

unstable. Therefore we discard this unstable negative-time trajectory 

as being spurious, as we did previously without justification. 

We can now proceed as before to compute the trajectories from 

the positive version of eqn. (3.25), and the times along the trajectories 

from eqn. (3.23). To represent eqn. (3.25) properly by its values at 

discrete points we must remove the infinite hyperbolic spike discontinuity 

by multiplying through by the denominator. We plot the zero contour 

defined by 

1 = o 
(1Tn ) 2 

which varies smoothly and continuously through the required zeros. 

Now there will be regions of space for which the square root in (3.26) 

does not exist, viz. the regions containing the spurious trajectories 

1, 3 & 5. Therefore, the trajectory equation now automatically 

eliminates these spurious trajectories. Computationally we set (3.26) 

identically equal to zero where the square root does not exist, and 

then only plot the contours where the function crosses zero between 

consecutive lattice points. 

(3.26) 

The results of computations with the full perturbation equations 

are three trajectories (only) which are so close to trajectories 2, 4 & 6 

of fig.3.2 that they are not worth showing. There are slight 

differences which can be seen if the two plots are superimposed, but 

they are within our "experimental error", and the full equations give 



no obvious improvement.- The most obvious difference is that trajectory 

2 now stops short of the CW null (for purely technical reasons) 

although ~t should still pass through it exactly, because XKK = 0 

there. Similarly the times are virtually identical. 

The increased computational difficulty of solving the full 

equations does not seem justified by the results: the main things we 

have achieved are to vindicate the first approximation solution (in 

practice, if not in theory: see the comments following eqn. (3.25)), 

and to give some theoretical justification for discarding the negative 

time solutions. 
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3.8 Continuous Wave Nulls 

Since the CW nulls cause problems throughout this theory, we 

shall pause to consider them in a little more detail. In section 3.4 

we avoided the singularities at CW nulls by an analytical trick, and 

deduced that if a dislocation passes through a CW null it does so at 

f(l) (aXOI) = 0 i.e. at the centre (in time) of a Gaussian-type pulse, 

as we saw for the axial null. Although the dislocations will only 
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pass through the CW nulls in exceptional circumstances, they will 

normally pass near enough to experience the singularities. But we also 

deduced that M2 and f(2) can only change sign at a CW null, and far 

from a null they must be both positive. Therefore the dislocation must 

be outside the inflexion of a Gauss~an-type pulse right up to the null. 

So it appears that the dislocation jumps from outside the inflexion to 

the centre of the pulse at the null, and then back outside the inflexion 

again. This must be due to the singularities at the CW null, so what 

exactly are these Singularities? We need to know what to expect, in 

order to have some hope of handling them computationally, because we 

cannot then perform our analytical trick to avoid the problem. 

We shall deduce the likely form of the singularities which we 

expect to encounter as follows. As we vary the CW frequency w, we 

expect the CW nulls to move around without much change in their local 

form. If the null passes through some point P at w =.wo ' then the 

behaviour of ~ at P as a function of w about wo will be ~imilar to the 

behaviour in space of ~ along the path of the null through P. We 

know that the dislocation trajectory is locally perpendicular to the 

path of the null, therefore we can also deduce the behaviour of ~ on 

the trajectory a small distance away from the null. The behaviour a 

small distance away along the null path is the same as at the null, but as 

for a slightly different w. We sketch graphs of the behaviour in fig. 

3.7. Xl is a a-function at the null, which broadens out into a 

Gaussian shape either side. But the actual a-function will be lost 

by numerical interpolation, leaving two Gaussian-type humps either side 

of the null, with a dip in the middle. This is precisely what we see 

(half of) in fig.3.1d, and similar behaviour for X" in fig.3.1e. MI 

is a step function at the riull which smooths off away from it, as 

verified by fig.3.1b, and Mil is exactly as Xl, but the graph in fig. 

3.1c is a bit more smoothed out because Mil is derived from already-once

smoothed functions. 
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The "centre" of the pulse is at aX' = a i.e t = -X' and we o • 0 ' 

see that as we approach a CW null the "centre" of the pulse appears to 

occur at infinite time. This is o~viously because the pulse amplitude 

is always very small at the CW null, so that the position of the pulse 

envelope is not really defined at all. Therefore, when we use the 

phase as normally defined, the dislocation is oCside the inflexion. 

But if we change the definition of the phase to remove the singularity, 

the dislocation need no longer be outside the inflexion. We realise 

that .the concept of the "position of the pulse" is somewhat nebulous, 

and depends on precisely how we define the phase. But although the 

position of the dislocation in the pulse is not really well defined, 

the actual time of the dislocation should be. At a CW null it is given 

by 

t = -X • o 

where X is analytic. Elsewhere it is given by o 

t = -X I + 1 J 2M + 1 
o cr aZM2 

Both terms on the right of this are singular at a CW null, and the 

singularities must cancel to give the same value as above. We should 

be able to evaluate this expression by taking the limit as we approach 

the null, or computationally by interpolating the whole right hand 

side through the nUll. 
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3.9 Appraisal of the Theory 

Our results indicate that with this perturbation theory it is 

easy to find the spatial dislocation trajectories, but very difficult 

to find the times with any reliability. This is probably because the 

spatial trajectories are given to a very good approximation by just 
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the very simple equation aM/dW = O. This is independent of the pulse 

shape and length (although for too short a pulse the approximation would 

break down), while the time depends critically on the detailed shape 

and length of the pulse envelope. Our "experimental" pulse is probably 

too short for the theory to apply with any accuracy: it only contains 

3 cycles of the carrier within its full width (of two standard deviations), 

and we saw in section 3.3 that it is not much longer than the critical 

length, below which additional solutions start appearing on the axis 

and in the far field of the piston radiator. It should be the case 

that for longer pulses the times would become more accurate, but this 

has not yet been examined. 

A useful way to use the theory at present would be to predict 

(fairly reliably) all the spatial trajectories, and produce a rough 

estimate of the times. Then compute exact phase plots of areas along 

the trajectories at times around those predicted. This is not quite 

as "hit-or-miss" as the method of chapter 2, and we should at least be 

sure of not missing any dislocations completely. Let us apply this 

philosophy to the incipient dislocation which we have not yet properly 

investigated. This will allow us to check the predicted trajectory, 

and see if the times are at all reliable. At present all we know is 

that the top of the trajectory is correct. We display the results 

without comment in figs.3.8a & b (and we have also included them on 

figs.3.2b & 3.3c). 

I can see no way to improve the present perturbation theory. 

Going to higher derivatives would be most unwieldy and probably not 

worth the trouble. The.theory seems to work best where X " = 0 
o 

identically, viz. on the axis and in the far field of the piston 

radiator. This is probably because elsewhere X ' and X " are treated 
o 0 

quite differently, with no fundamental justification for doing so. 

This suggests that a perturbation theory which treats X " properly 
o 

might give better results: such a method might be to expand the pulse 
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wavefunction in an asymptotic series by using a "steepest-descent" 

evaluation of the diffraction integral for a Gaussian-type pulse. 

This might give a different pertur~ation series in spectral-width, 

which may work better. 

The most significant result of the present theory is that the 

trajectories are given to a very good approximation by the lines 

of frequency minima of CW amplitude, and the question remains: why? 

We shall attempt to shed some li9ht on this in our concluding section. 
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3.10 Model Pulse with Very Simple Spectrum 

We have seen that the behaviour in frequency space of the continuous 

wave function for a particular radiator is the key to the behaviour of 

the dislocations. Consider the pulse whose spectrum is just 2 discrete 

frequencies, viz. 

iwt If the continuous wavefunction at frequency w is ~(~,w)e then 

the pulse wave function is 

Obviously the width of the spectrum is 2W, and we take this to be much 

less than w. Let us assume that the phase of ~ is not stationary in 
o 

(3.27) 

frequency near w , then using the notation ~+ = ~(w ± W) and ~ = ~(w ), o _ 0 0 0 

tjJ + and ~ _ are .two vectors in the complex plane either side of tjJ 0 • As 

t varies, 

~{tjJ e iwt + ~ e-iWtl 
+ -

traces out an ellipse, with semi-major axis of length ~{M + M 1 at 
+ -

angle ~{x+ + x_l, and semi-minor axis of length ~IM+ - M_I, where 

iX 
tjJ = Me , 

as in fig.3.9. The semi-major axis will not generally coincide with ~ • 
o 

This locus will only pass through the origin if M+ - M = 0, 

i.e. the ellipse degenerates into a straight line. This requires all 

odd frequency derivatives of M to be zero, with no condition on the 

even derivatives. The CW amplitude must be stationary in frequency, 

but it can be a maximum, minimum or inflexion. When this condition is 

satisfied, the time is given by 

or t = n/2W - aX/aw ~nn/W) for small W. 

The zeros of the transmitted pulse occurred at 

t = n/2W (+ nn/W), 

so the diffraction appears to have shifted the pulse centre to t ; -aX/aw, 

as we noticed before. In this model, the zeros in the original pulse 

occur where the CW amplitude is stationary in frequency, at a time -oX/aw 

later. 



Figure 3.9 Locus of Term in Braces in Equation (3.27) 
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Figure 3.10 Locus of Term in Braces in Equation (3.29) 
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We would really like to consider a pulse which originally had 

no zeros, and the easiest way to do this is to add the centre frequency 

to give the pulse , 

whose width is still 2W. The pulse wavefunction becomes 

For W «w we can expand ~ as 
o 

~(w ±W) ~ ~(w ) ± W~I (w ) 
00. 0 

giving the condition for a dislocation as 

E{~ cos Wt + iW~ 'sin Wt} = -~ 
o 0 0 

The term in braces in (3.28) and (3.29) is exactly the same ellipse 

as we had before, and in this approximation passes exactly through ~o 

at wt = mr, and through iW~ I. at Wt = (n + ~)'IT (see fig.3.10). 
o 

Therefore, we only have a solution of (3.29) in general if £ = 1, 

otherwise the locus of the left hand side will miss -~. But the 
o 

transmitted pulse has second order zeros if E = 1, so we shall avoid 

this case. 

For E ~ 1, the locus of the left hand side of (3.29) can only 

pass through -~ if it degenerates into a straight line along ~. This 
o 0 

happens if iW~ I is parallel to ~. Now o 0 

iW~ I = iW(M I + iM X ')eiXO 
o 0 0 0 

= W(iM 'eiXo - X I,,, ) 
o 0 "'0 

is parallel to ~ if M I = O. So we see that 3M/3w = 0 is a necessary 
o 0 
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(3.28) 

(3.29) 

condition on the amplitudes of the component frequencies of a pulse for 

them to be able to cancel out when the phases are right, to lowest 

order approximation, and this must remain so for continuous spectra. 

For M • = 0 the locus of {~} in (3.29) is a straight line slightly o 
longer than ~ (by Iw~ I I), and so if £ is not too small we should o 0 

have a zero at some time. Although the geometrical argument is more 

illuminating, we can solve the whole problem analytically once we 

have made the approximation in eqn. (3.29), which becomes 

M (1 + ECOS Wt) + EiW(M I + iM X ')sin wt = 0 
o 0 0 0 



=> M' = 0 as we know 
o 

and Mo (1 + e:fcos wt - WXo' sin Wd) = 0 if Mo"l- O. Then for small W 

cos' W (t + X') o 
= ± 1 

e: (1 + (WX .) 2) !OJ 
o 

We must have e: > 1 - ~(WXo·)2 for a solution, and for small W, and e: 
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near 1 we have wet + xo ') ~ n~, i.e. the dislocations are close to the 

maxima and minima of the transmitted pulse shifted in time by -Xo' (again). 

Returning to the exact expression (3.28) we know that for a 

dislocation to occur, the locus of {~} must be a straight line parallel 

to W , and if the phase of W(w) is purely linear about w , then this o 0 

requires M+ = M_ = M±. Then the locus of 

is a straight line of length e:M± which must be ~ Mo so that at some time 

the two terms of (3.28) can cancel, i.e. we require 

For e: < 1 this implies M is a frequency minimum. Therefore a pulse 
o 

with no intrinsic zeros can only produce dislocations near to a frequency 

minimum of CW amplitude. But if e: ~ 1, M may be a maximum or inflexion, o 
so that if the pulse has intrinsic zeros then dislocations may appear 

wherever the CW amplitude is stationary in frequency. 

Notice that for very small e: this model does not give any 

dislocations. In fact, Prof. J. F. Nye has shown that then the 

dislocations move in small ellipses centred on the CW nulls, rather 

than along the extended trajectories we have been considering. 
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APPENDIX 

A3.1 Decomposition of a Complex Function 

~(x) = u(x) + iv(x) = R(x)eiX(x) 

x = arctan(v/u) + nTI 

We require a convention to choose the sign of R and the value of n for x. 
This choice can only change where u(x) = v(x) = 0, and these two 

equations define a subspace of x of codimension 2. If x is 2-dimensional, 

as in the standard theory of complex functions where x is a complex 

variable, then this "null set" is a point; if x is 3-dimensional it is 

a line, etc. It is possible to pass around the zero without passing 

through it because the space of x minus the null set is doubly 

connected around each null. Therefore, our choice of sign for Rand 

value of n cannot change at all, so we choose R ~ ° and n = 0. 

Now if x is i-dimensional, the null set is still a point, but 

now the space of x minus the null set consists of disconnected line 

segments, and we can choose the sign of R and value of n independently 

on the different segments. There are now two self~consistent possibilities: 

either R ~ ° and n = 0, or R > 0, n = ° and R < 0, n = ±i on alternate 

segments, so that R and X are both continuous and smooth. 
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CHAPTER 4 " 

CAUSTICS AND CATASTROPHES 

4.1 Introduction 

In this chapter we begin our examination of the second type of 

singularity of wavefields, the caustics, which are really only 

singularities in the geometrical limit, as we mentioned in the prologue. 

The aim of this chapter is to introduce and motivate the detailed 

studies presented in subsequent chapters, and explain the general 

theory and methods to be used. Consequently there is little new 

material; rather a restatement of known results from the point of view 

required here. 

In the geometrical limit "wave" energy travels in straight lines 

called rays (in a homogeneous medium, which is all that we shall consider). 

There is no diffraction because the wavelength is zero. At any point 

in the wavefield the energy ar~iving there is the sum of that carried 

by all the rays passing through the point. At most points there will 

be a small finite number of distinct rays, so that some small finite 

quantity of energy per unit time (intensity) arrives. But it may occur 

that all the rays leaving some small region of the radiator, of finite 

size, pass through a given point, of zero size. Then an infinite 

number of rays pass through that point, producing infinite intensity. 

Such an isolated point is called a point focus. If a perfect convex 

lens is held in sunlight, it will bring all the parallel rays from the 

sun which strike it to a point focus, as in fig.4.1. If a piece of 

paper is held in sunlight nothing happens. If the point focus is 

arranged to fallon the paper it will rapidly burn a hole in it, because 

all the energy which would have fallen on the dark disc, which is now 

in shadow, has fallen on the point focus. This ability of a focus to 

cause burning is the origin of the name caustic for the whole family 

of types of focus, of which a point focus is just a very special member, 

and is a striking illustration of the importance of caustics. 

One sees that there are other types of focus than a point by 
• • examining closely the focal region of any real lens (the less perfect 

the better), particularly if one looks at sections oblique to the 

incident rays. One then notices that what appears to be a bright point 

of light is really the point of a bright cusped conical surface, the 

tip of which is brighter than the rest. Focussing can also be produced 
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Figure 4.1 The Point Focus 

(a) Ray Pattern (b) Diffraction Intensity 

Figure 4.2 Line Caustic in Two-Dimensions 



by reflection, and a good example of a caustic by reflection is the 

bright "heart-shaped" line seen on the surface of a cup of. tea. 
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Because of the cylindrical (i.e. translational) symmetry, the caustic 

must be a surface which is creased into a cuspidal line, and the surface 

of our beverage shows us a plane section through this. This cuspidal 

line of a caustic surface turns out to be generic, whereas the conical 

cusp produced by the lens·is a more highly symmetrical non-generrc case. 

For more examples of caustics produced by refraction through glass and 

water drops see Berry (1976), Nye (1978), by refraction and reflection 

by rippling water surfaces see Berry & Nye (1977), and for some 

beautiful caustics seen in the electron microscope see Liesegang (1953). 

All the real caustics displayed in the above examples are produced 

by real waves with finite wavelengths, and consequently they are blurred 

out or disguised to some extent by diffraction effects, the success of 

the disguise being proportional to the wavelength. But the geometrical 

caustic for the problem still describes the most prominent features of 

the real diffraction pattern. The concept of rays is still useful if 

they are regarded as "carrying" the wave, so that instead of just 

adding the intensities of the rays reaching a point, one must add their 

actual wave amplitudes, taking regard of the phases. The rays are 

normal to the wave fronts at any point, and are also called wavenormals. 

Generically, a bundle of rays do not all focus at the same point; 

rather, as one considers successive rays their point of focus moves, so 

that the rays converge along an envelope, rather than at a point. This 

produces a caustic surface, which is the "surface of centres" (Le. 

the locus of the two centres of principal curvature, see e.g. HCV52) of 

the family of wavefronts, and generally has two sheets, which may 

interact. On one side, the bright side, of the caustic there are two 

different rays through any point; on the other side, the dark side, there 

are none (see fig.4.2a). Actually on the caustic there are two identical 

rays through any point: the two rays on the bright side have coalesced. 

On the caustic the two rays are exactly in phase, so one might expect 

the brightest part of the real diffraction pattern to lie exactly along 

the caustic. However, in reality, although the geometrical rays provide 

the main contribution to the wavefield, the rest of the wavefront also 

plays a small part, and this shifts the brightest region of the 
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diffraction pattern a little way onto the bright side of the geometrical 

caustic. It is this bright region that one actually "sees" as the 

caustic. There may also be other independent ray systems passing through 

the caustic, without affecting it appreciably. Therefore the criterion 

for a caustic surface is actually that the number of geometrical rays 

changes by 2 on crossing it. 
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4.2 Caustic Diffraction Patterns 

The actual wave function near to a simple caustic surface was 

analysed long ago by Airy (1838), and the variation perpendicular to 

the caustic is locally the Airy integral function Ai(z) (see fig.4.2b, 

taken from Abramowitz & Stegun (1965» where the geometrical caustic is 

at z = O. This "Airy pattern" clearly shows the main maximum just 

inside this point, followed by a sequence of dark and light interference 

fringes of slowly decreasing visibility. Similarly the wavefunction 

near a cusp of a caustic was analysed by Pearcey (1946). The gross 

features of this are two superimposed Airy patterns, but we shall discuss 

this further later on. 

The basic three-dimensional caustic is the smooth caustic surface, 

and we have seen that this surface can have a singularity in the form 

of a cuspidal line. Can it have other smgularities? Can it have 

corners where two sheets meet at a finite angle, or is the angle 
• • restricted to 0 or 180? Can a cusp line itself have singularities, 

such as cusps or corners? How can caustic surfaces interact, and can 

they end? Obviously the number of globally different caustics is 

infinite, but we might hope to analyse a caustic into its elementary 

building blocks, if there are a finite number of these. If we can 

perform this local classification of caustics, we can then ask: does 

a local caustic structure carry a unique diffraction pattern, in any 

sense, and if so what is it? To answer these questions we must set 

up the mathematics of the problem. To do this we mainly follow Berry 

(1976), whose article provided the motivation for the study in the next 

few chapters, to which he alludes. 

A continuous wave function (at time 0) can be written either 

exactly or approximately as a diffraction integral in the form: 

~ IX) = Isd2!. a I!.. X) e ik~ Ix. X) 

where the integral is over some surface S, which is essentially the 

wavefront, parametrised by ~, some distance away from the field point 

x. ~(~,x) is the distance from the source point ~ to the field point 

!, and a(~,X) is slowly varying. In chapter 2 we saw an exact example 

of this, and later we shall present an approximate example. At a 

particular point !, the exponential will oscillate many times for a 

small change in x, while a(~,!) does not change appreciably, so that 

(4.1) 
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the oscillations nearly completely cancel giving a very small 

contribution to ~(!) from that neighbourhood of x. But if ~ does not 

change mu?h in the neighbourhood of some ~ = ~, this will not be the 

case, and this neighbourhood of ~ will give a large contribution to ~(X). 

Points where the phase ~ is stationary, i.e. 

v <1>(~,!) = 0 (4.2) 
x 

therefore give the main contributions to~. About~, ~ has the 

Taylor expansion 

~(~,!) = ~(x ,X) + ~{(x-x ).V }2~(x ,X) + ... 
-0- --0 X -0-

as long as the stationary phase points (SPPs) x are well separated. 
-0 

Substituting this expansion to second order into (4.1) we can do the 

integral, and write ~(!) as a sum of contributions by SPPs, by taking 

a(x,X) = a(x ,X) outside the integral. 
-- -0-

But the condition (4.2) implies that X lies on the normal to the 

wavefront surface S at ~, which is the geometrical ray from x. 

Therefore there is a one-to-one correspondence between geometrical rays 

and SPPs. A geometrical caustic or infinity of intensity occurs when 

two rays coalesce at a point. When two SPPs, i.e. two roots of (4.2), 

coalesce ~ also becomes infinite in the above approximation. This is 

because ~ contains the Hessian H ~ in its denominator, and the 
x 

vanishing of the Hessian is the condition for coincident roots of (4.2) 

(see eqns. (22) & (23) of Berry (1976». We see that when two (or more) 

SPPs coalesce, the local expansion (4.3) of ~ breaks down. We need to 

know the possible local forms of ~ (~,!) about points where 

'V <I> (~,!) = 0 } x 

H ~ (~,!) = 0 
x 

The corresponding loci of X are the local forms of the caustic, and 

from the local forms of ~ we can compute the local diffraction 

pattern around the caustic, so the caustic and its diffraction pattern 

are obviously in one-to-one correspondence. 

(4.3) 

(4.4) 
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4.3 Catastrophe Theory 

The mathematics we need to use is called "Elementary Catastrophe 

Theory", in which the local forms of 4>(~,X) about a "catastrophe point", 

where (4.4) is. satisfied, are classified by Thoro's Theorem (Thom (1975), 

proved in full rigour by Mather (1972)). In this theory! are called 

"control variables" because they are under our control: the point at 

which we choose to examine the wavefunction. x are called "state 

variables" because they tell us the state of the system and are not 

directly under our control: they label the rays passing through X. 

<!>(~,!) is called the potential function because its "minimization" gives 

the "equilibrium condition" for the rays. We shall describe Thom's 

theorem in sufficient detail to apply it to our problem, but without any 

attempt at full mathematical rigour (for which see Wassermann (1974), 

Brocker (1975)). 

Only smooth COO manifolds and maps are considered. Let! E control 

space C = Rk (k , 6), ~ E state space S = smooth n-manifold, and F be 

the space of smooth maps 4> :CXS ~R equipped with the Whitney COO 

topology. Then Thom's theorem states that there exists an open dense 

subspace F 0 SF such that if 4> e: F. : 

1 ) the solutions of 'iJ <!> (~,!) = 0 form a smooth submanifold Mk ~ CxS 
x 

2) for such a 4>, any singularity of the projection 

k 
~C X : M 

is equivalent to one of the standard list of elementary catastrophes 

3) X is then stable, in the sense that it has a neighbourhood in F of 
o 

equivalent maps. 

This notion of equivalence is very important. The functions 

f : M ~ Q and f' 

diffeomorphisms h 

M' ~ Q' are equivalent if there exist 

M ~ M' and k : Q ~ Q' such that the diagram 

f 
M .. Q 

h! lk 
M I ____ --I .. ~ Q' 

f' 

commutes. This means that for a given starting point in M we end up 

at the same point in Q' if we apply h then f', or if we apply f then k. 

Therefore we can start at any point, go right round the loop either way 



and end up back at the same point, because f-
1
k-

1
f'h = 1. Loosely we 

say that f and f' are diffeomorphic if they are equivalent as above. 

We are here only interested in caustics in real three-dimensional 

space, which have no other "internal" control parameters, and therefore 

we shall restrict ourselves to the catastrophes which can arise in 

"codimension" k ~ 3. Following Berry (1976), but using W for our 

standard control variables (because computers do not understand Greek) , 

the list of standard elementary catastrophes is: 

codim name standard potential function cp (~,!!) 

1 fold x 3 + W
1
x 

UI 3 '0 
• .-j 

2 cusp 0 x4 + W x 2 + W
2
x O! - l-UI 

;::l 4 2 
u 

W x 3 3 swallowtail x 5 + + W x 2 + Wtx - 3- 2-
5 3 2 

3 elliptic UI x 3 - 3xy2 - W (x2+y2) - W x - W Y u 
umbilic .o-l 3 1 2 

,....j 
.o-l 

3 hyperbolic ~ x 3 + y3 + W xy - W x - W Y 
umbilic 3 1 2 

Here x and yare "essential" state variables. The catastrophes which 
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may occur in a given codimension are independent of n, the dimensionality 

of the state space: any state variables which exist in addition to 

those shown above can only occur in the potential function in an 

inessential way, typically quadratically, so that they produce no 

degenerate critical points (see Poston & Stewart (1976». Catastrophes 

with one essential state variable are called cuspoids, those with two 

are called urnbilics (because Uffibilic caustics are produced by the 

neighbourhood of umbilic points on a wavefront, where the two principal 

curvatures are equa~. 

There is an important distinction between cuspoid and umbilic 

catastrophes, mentioned by Woodcock & Poston (1974). The projection ~ 

is (locally) a map Rk +mk, but the definition of catastrophes makes 

them distinct from singularities of maps Rk + m
k 

stable with respect 

to perturbations of the map, and neither class contains the other. The 

intersection of the two classes consists of the cuspoids, which are 

stable to perturbations of ~ and x. The umbilics, however, are stable 

only to perturbations of ~, and are not map stable. 
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Let us consider the meaning of Thom's theorem as applied to 

caustics. Any realistic ~ will satisfy the smoothness conditions of the 

theorem (or can be approximated arbitrarily closely by a function that 

does). For illustration let us consider k = 2, n = 1 so that CXS is a 

visualizable three-dimensional space, as for the cusp catastrophe shown 

in fig.4.3. Point (1) above tells us that generically the ray condition 

V ~(x,X) = 0 restricts us to a smooth two-dimensional surface in cxS, 
x --

called the equilibrium or catastrophe manifold. If we choose a point 

in the C plane, and draw a line parallel to the S axis, every intersection 

of this line with the catastrophe manifold gives a geometrical ray. So 

the number of sheets of the catastrophe manifold "above" a point of C 

tells us the number of rays reaching that point. Since the manifold is 

smooth the only way that two sheets can link up is along a smooth fold 

of the surface. We could draw a smooth continuous line along this fold, 

where the surface is perpendicular to C. Then it is precisely along 

this line that two rays will coalesce. Woodcock & Poston (1974) have 

computed pictures of all the catastrophe manifolds we are interested in, 

and these clearly show the fold lines. The projection of this fold 

line into the control space is called the bifurcation set, because it 

bifurcates the control space (locally) into two regions in which the 

number of equilibrium points (rays) differs by two. We see that this 

is precisely the geometrical caustic. 

The fold line is also the line along which the projection X is 

singular, because it corresponds to a distinct edge of the manifold as 

far as the projection is concerned (strictly X is singular because we 

cannot use the implicit function theorem to solve for x as a function of 

~ along the fold line i.e. X-
1 

does not exist, e.g.see Flett (1966), 

pp400-S). Point (2) tells us that in the neighbourhood of any point on 

the fold line taken as origin, ~ must be locally diffeomorphic to one 

of the standard potential functions~. This means that there exists a 

smooth invertible change of coordinates which will cast our ~ into a 

form diffeomorphic to a standard ~, plus higher order terms which we 

can ignore since we are only interested in local behaviour. We are 

justified in doing this because the determinacy of our original function 

will be the same as our standard function, about the origin (see Poston 

& Stewart (1976». 

What Thom's theorem does not tell us, is what the diffeomorphisms 

to apply are, or which standard potential function we are trying to map 



Figure 4.3 Cusp Catastrophe Manifold 



onto, although often one has some physical reason for expecting a 

particular catastrophe. One can, in principle, find the caustic, and 

then at any point find the codimension, which is one less than the 
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number of coalescing rays (see Berry (1976)). One can then expand ~ 

about the fold point in a Taylor series and compare with the standard 

forms for that codimension. We have, in effect, found a very local 

approximation to the required local diffeomorphism. We shall illustrate 

this in the next chapter. The caustic that we find will be diffeomorphic 

to the bifurcation set of the appropriate catastrophe. 

Point(3) tells us that these caustics are structurally stable, in 

the sense that a small perturbation of ~ will not change the diffeotype 

of the caustic. This is crucial to the whole theory. It means that 

similar (i.e. diffeomorphic) caustics are produced by a variety of 

similar potential functions. Therefore, one has a good chance of 

observing one of these similar caustics in nature, because its 

production does not depend on anything special' having occurred. 

Although the number of actual local caustic types is uncountably infinite, 

there are only 5 local caustic diffeotypes (in codimension 3), and it 

is precisely this fact which makes their study feasible. 

The map stability of the cuspoids is additional to their structural 

stability. It means that if one changes the angle of the projection in 

the space CXS by a small amount, instead of projecting "vertically down" 

into C, then one produces a diffeomorphic bifurcation set. This can be 

clearly seen in the rotated stereoscopic pair pictures in Woodcock & 

Poston (1974). Small tilts of the cusp produce another cusp. Small 

tilts of 3-dimensional sections through the swallowtail manifold produce 

different 2-dimensional sections of the swallowtail bifurcation set, 

which are not always diffeomorphic, but if one could tilt the whole 

manifold in 4-dimensions it would produce a diffeomorph of the whole 

3-dimensional bifurcation set. Similarly for the higher cuspoids. 

This brings us to the point that although every bifurcation set 

is structurally stable, not every section through it is. The actual 

catastrophe point is at W = O(in the standard forms), called the 

organizing centre, where the potential function reduces to its "germ", 

and the rest of the catastrophe constitutes an "unfolding" of the germ. 

Any section through the organizing centre is unstable, because a generic 

perturbation will move the organizing centre out of that section. Such 



a section is non-generic (one's chances of choosing one at random are 

nil ): any generic section is structurally stable. A generic section 

can only contain subordinate catastrophes,of lower codimension (e.g. 

see Connor (1976», e.g. generic 2-dimensional sections through any of 

the 3-dimensional bifurcation sets can only contain cusps and folds, 

which one cannot necessarily attribute to the higher catastrophe. If, 
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in 2-dimensions, one sees anything other than cusps and folds, one knows 

that one is seeing a singular section of a higher dimensional bifurcation 

set (which one can often identify, especially with the help of its 

canonical diffraction pattern). This must be due to some special 

circumstance obtaining, such as an unsuspected symmetry, a fact made 

good use of by Berry (1975). 
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4.4 The Canonical Catastrophe Diffraction Integrals 

Having discussed the necessary mathematics, we can now answer the 

questions, posed in section 4.2. The possible generic local forms of a 

caustic in three-dimensions are diffeomorphs of our 5 standard bifurcation 

sets (which are sketched in Berry (1976) and which we shall consider in 

detail one by one). Each of these local forms carries a specific type 

of diffraction pattern. If a particular catastrophe occurs at (x ,X ) 
-0 -0 

then very close to X the wavefunction, from (4.1), is approximately 
-0 

'¥ (X) '" a (x ,x ) 
-0 -0 

where ~(~,!) is diffeomorphic to the standard potential function. If 

we define a set of canonical diffraction integrals 

~ 1"-1 = (21,) m/2 f dm ~ e i~ I~."-I 
where m = 1 for cuspoids and 2 for umbilics, then the diffraction 

pattern '¥(X) is diffeomorphic to ~(W). We can compute these canonical 

diffraction patterns once and for all, and then use them much like a 

set of logarithm tables. (The reason for the factor (1/2n)m/2 in (4.5) 

is so that if inessential state variables were added to ~ in the form 

x2 /2, they would not change the amplitude of ~(~).) 

We may still wonder whether these canonical integrals have any 

quantitative use further awa¥ from a caustic. So far we have only used 

them in a "transitional approximation" very close to a caustic, by 

expanding the phase about the caustic, and setting a(~,X) equal to the 

value on the caustic. Away from the caustic this breaks down, because 

the value of a(~,!) changes, and terms of higher order than those 

retained in the phase expansion become significant. But here the simple 

stationary phase method works. Hence across a caustic we must make 

three different approximations. But these different approximations do 

not match up smoothly and hence to evaluate a wave function continuously 

through a caustic by these methods is very unsatisfactory. 

(4.5) 

However, we can make a "uniform approximation" to the wavefunction, 

valid uniformly through the caustic, by using the canonical integrals (4.5) 

as the "comparison integrals". The uniform approximation matches up 

smoothly with the stationary phase approximation sufficiently far from 

the caustic, and the changeover point is not at all critical. This is 

eminently satisfactory for computational work, and we shall use this 



method to handle the coalescence of two complex SPPs in the swallowtail 

integral. The crux of the method is to find a mapping from ~(~,~) to 

~(~' ,!) w~ich is one-to-one, which is achieved by ensuring that the 

stationary points of ~ map onto those of~. The details are discussed 

in section 5 of Berry (1976) and by Connor (1976): the result is an 

expression for ~(~) in terms of $(~) and its derivatives. Therefore a 

knowledge of the canonical integrals and their derivatives allows one 

to evaluate a wavefunction, defined by a diffraction integral, in a 

large region around a caustic, with very good accuracy. I have not 

actually computed any derivatives of the three-dimensional canonical 

integrals, but I believe that the numerical methods to be presented 

could easily be modified to do so. 

The simplest canonical integral is that for the fold, which we 

will call 

F(W
1

) = 1 f:x e i (x
3
/3 + W1x) = /2if" Ai(W

1
) 

72iT --
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(see Abramowitz & Stegun). We see that the canonical catastrophe 

integral for the fold is precisely the Airy integral function, 

introduced by Airy to describe the wave function locally across a caustic 

surface. In the three-dimensional ~ space the caustic is the plane 

W
1 

= O. The Airy function has been tabulated and plotted long ago, so 

we need not discuss it further. 

The next canonical integral is that for the cusp, which we will 

call 

This is essentially th~ integral used by Pearcey (1946) as a local 

approximation to the field near a cusped caustic. We shall discuss it 

in detail in the next chapter. 

We see that the two simplest canonical integrals have been known 

for some time. Catastrophe theory has extended the set of such integrals 

and put their derivation on a rigorous theoretical basis. Of the higher 

canonical integrals, only the sections W3 = 0 of the elliptic and 

hyperbolic umbilics have previously been computed, by Trinkaus & Drepper 

(1977),who compare them with the cusp pattern. In the following 

chapters we shall plot contours of amplitude and phase of the canonical 
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integrals for the cusp, swallowtail and elliptic umbilic (the hyperbolic 

umbilic has yet to be done). The cusp pattern is two-dimensional, so 

there is no problem, but the others are three-dimensional, and we can 

only.plot two-dimensional sections. Since W3 lies along the main axis 

of the bifurcation set for all the three-dimensional catastrophes, we 

shall plot sections W3 = constant through them. There is no reason why 

other sections should not be plotted (in fact we shall also plot W
2 

= 0 

for the elliptic umbilic), but as an initial study the W3 sections were 

expected to be the best choice. 



4.5 Integration Method 

We shall consider here the one-dimensional integral of the form 

iq, (x) 
e 

where q,(x) is a polynomial in x, whose coefficients depend on the 

control variables ~ linearly. At both ends of the range of integration 

q,(x) diverges, so the integrand oscillates infinitely rapidly with a 

constant amplitude of 1. This is the main problem in numerical 

integration of these integrals. By rotating the contour of integration 

through ±n/2n in the complex x plane, where n is the order of the poly

nomial q" one can turn the integrand into an oscillatory function 

whose amplitude asymptotically decays exponentially for n > 1. (If n 

is odd the two half integrals from ° to ±~ must be treated separately). 

This shows that the integrals converge (and also allows one to evaluate 

them in terms of r-functions when q, reduces to its monomial germ at the 

organizing centre ~ = 0, which provides a useful check on the numerical 

results). However, under this transformation, in certain regions of 

control space, the amplitude of the integrand becomes extremely large 

before the exponential decay takes over. Since the values of the 

integrals are of order unity, this method is no use numerically. 
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A standard method for handling infinite range integrals numerically 

is to map the infinite range onto a finite range of some new integration 

variable. But this would merely compress the infinitely rapid 

oscillations still further, and it is these oscillations which are 

essentially the problem, not the infinite range, so this,method is not 

applicable. Maslin (1976) has used a double convergent series expansion 

in W for the cusp diffraction integral. However, for the three

dimensional catastrophes this would involve a triple series with 

complicated coefficients, which would only converge rapidly near the 

origin. It would probably need to be supplemented by an asymptotic 

expansion further from the origin. Such a method was rejected as being 

not sufficiently general. It would probably require arbitrary matching 

of different solutions, and there is no reason to expect it to be any 

more efficient than the direct integration method used here. It might 

be possible to estimate the errors more accurately, although for just 

plotting contours high accuracy is not necessary; but a large number of 

data points, and therefore high efficiency, i~ necessary. 
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The method chosen is based on the ubiquitous stationary phase 

method, but rendered exact (in principle) and automated. The form of 

output required has a large bearing on the choice of integration method. 

To plot contours of a function defined by a complicated integral, the 

best method is to evaluate the function on a lattice of closely spaced 

points. This fact can be capitalized upon by stepping from one point 

to a neighbouring point, and using iteration starting from the value at 

the previous point. The main contribution to I will come from the 

neighbourhood of points where a~/ax = 0, and therefore these regions 

should be integrated exactly by quadrature. The contributions from the 

highly oscillatory tails will be small, and we can expand these 

contributions in asymptotic series. The integral is stable to changes 

in the cutoff, at which we change from quadrature to series solution, 

(as it must be for the method to be reliable) so that we can vary this 

parameter to optimise tne efficiency. 

The method was used in its basic non-optimising form by Berry (1975) 

to compute the intensity of the cusp diffraction pattern shown in his 

fig.4, but was found to be highly prone to "spurious convergence" when 

using Simpson's rule quadrature. This is a common problem in quadrature 

of oscillatory integrals, and arises from the ambiguity in specifying 

a continuous function by its value at discrete points. The integration 

routine can quite easily find two successive approximations which agree 

to some required accuracy, but are actually both wrong, which is very 

hard to check for automatically. Fortunately, this error normally shows 

up quite clearly on contour plots, and with the current optimising 

algorithm, and a sophisticated quadrature routine, when the various 

parameters are chosen correctly, spurious convergence is very rare, and 

the graphs displayed in subsequent chapters are "straight off the 

computer" . 

The asymptotic expansion of this type of integral is discussed 

by Dingle (1973). Consider 

I =fBdX ei~(x) =f~(B) 
A ~(A) 

(using the notation ~ (x) 
n 

dn~(x) ), where we have changed the variable 
dxn 

of integration to~. If there are no stationary points of ~ in the 

range [A,B] then the second integrand is regular everywhere. Integrating 



I by parts m times gives (Dingle, pl14) 

I = [-ie i<J> ~ (i~) r _1 ] 4> (B) + J4> (B) d4> {(iddJ m 
. ~ d4> 4>1 4> (A) 4> (A) ~ r-o 

We shall use this formula either with B = ±oo, or with A = 0 (in which 

case <J> will include inverse powers of x, as in the elliptic umbilic) and 

the contribution to the ~es of these end points will be zero. Then 

the above integration process is precisely equivalent to introducing 

in the integrand the Taylor series for 1/4>1 as a function of <P about 

the finite end point C, say (see Dingle pp111-2). If 4>{x) is an nth 

order polynomial, then 1/4>1 has (n-l) poles in the finite complex 4> 

plane, and its Taylor series only converges within the circle centred 
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on 4> (C) which touches the nearest of these. In the case B = ±~, the 

series is integrated term by term from 4> (A) to ±oo, which must extend 

outside the circle of convergence. Therefore the series for I is 

asymptotic, rather than convergent. In the case A = 0, the range of 

integration [o,aJ is finite (and very small in practice), so that 8 can 

be chosen small enough that [0,8J lies within the circle of convergence 

and the series for I is not necessarily divergent (but see appendix A7.1). 

We shall concentrate here on the asymptotic series, and we must 

consider its convergence. We expect that if <PI is made large enough 

the series can be made to converge as rapidly as required (before it 

begins to diverge). The size of the remainder integral ~ is given by 

r IRml 
m m-l 

Ii; d<p (d~) 1 = (d~) 4>11 <p (A) <PI <p (A) 

m-1 
if (~) _1 

d<j> 4>1 
is monotonic in the range [4> (A) ,±ooJ. Then the truncation 

error will be less than the magnitude of the last term included. 

Similar results can be derived in terms of the term after the last term 

included (see Erdelyi (1956», but computationally an estimate of the 

error in terms of the quantities already calculated is more useful. In 

fact, the above result is likely to be a gross overestimate of the error, 

since it completely ignores ~he oscillatory nature of the true integrand, 

and the monotonicity condition is probably overrestrictive. It is also 

difficult to test for. Sufficient conditions for monotonicity can be 

found in terms of the complex roots a j of <P1 (x) = 0 as follows: 
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m = 1 x ~ Re (a
j

) for all j 

m = 2 x ~ Re (a
j

) + 11m (aj) I for all j 

m =' 3 x ? Re (a. ) 
J 

+ 13 11m (a j ) I for all j etc. 

When all the roots are real these conditions must be met anyway to avoid 

stationary points. Otherwise, numerical tests show that they are over

restrictive, and computing the complex roots of ~1 (x) = 0 is not 

convenient in general, anyway. However, these results do prove that if 

the cutoff A is made large enough that the series is converging well, 

then the truncation error will be less than the last term included. 

Some idea of the behaviour of the series can be derived by assuming 

the cutoff is large enough that ~(x) ~ xn/n. Then 

1 ~ 

<P1 

1-n 
x 

( 
1 d 1 ~ (1-n) 
~ dx) <P1 

1-2n 
x 

1 d) 2 1 ~ (1-n) (1-2n) 
(~dX ~ 

1-3n 
x 

and the monotonicity condition is clearly satisfied. The method adopted 

in practice is to take the first three terms of the series, to test that 

they are converging and that the last term is less than the maximum 

permitted error. This seems to be quite satisfactory provided the 

convergence conditions are properly chosen: the initial trial parameters 

can be deduced form the above formulae. 

We define 

G(x) = eicj>(x) 

~ 0 as x ~ ±~. Then 

f :00 dx ei~ (x) = [-G (x) ] 
A 

= G{A) 

and I = f:oo "" ei~ (x) = (t+f:+t) 
= G{A) G(B) + f: dx ei~(x) 

We attempt to scan the control plane in such a way that the SPPs, 

and hence the cutoffs A and B, separate. We start with the cutoffs 

(4.6) 

(4.7) 



outside the outermost zeros of ¢l (x), where the magnitude of ¢l (x) is 

large enough to make the first term of G(x) sufficiently small. As the 

zeros of ~l (x) move out, the magnitude of ¢l(x) at the cutoff falls, 

and hence the cutoff must move out. Therefore, the condition that 

\¢1 (cutoff) \ is large enough ensures that the cutoffs remain outside 
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all stationary points, unless the bifurcation set is crossed in such a 

way that a new pair of zeros of ~l(x) appear outside the cutoffs. This 

situation must be detected, and the cutoffs made to jump outside the 

outermost new zero. Having found the approximate position of the cutoffs, 

we then push them out until G(x) converges adequately. Once we have 

found the correct values of A and B, we compute G(A) and G(B~, and 

evaluate the integral over the stationary phase points by quadrature. 

Since the cutoffs only move outwards as we compute successive data 

points, we can use the previous cutoffs as a first estimate at the next 

point. This is the iteration mentioned above. We only have to actually 

find the SPPs at the start of the scan. From then on the cutoffs are 

determined by successively evaluating the terms in G(x), which we will 

need anyway, and only stepping the cutoffs out when necessary for 

convergence. In this way they are found and optimised efficiently. Of 

course, if the cutoffs are further out than necessary G(x) converges 

very rapidly, but the range of the numerical integration is wider than 

it need be. This increases the time needed to perform the quadrature, 

and because of the nature of the integrand greatly increases the risk 

of spurious convergence. Hence the need to optimise the cutoffs very 

carefully! 

The precise details of the integration method depend on the 

integral, and we shall discuss them in a little more detail in appendices 

to the appropriate chapters. The techniques have also evolved as more 

experience has been gained. The method was initially tested on the 

fold integral, and the results compared well with tabulated values of 

the Airy function. The cusp integral also provides a good test of the 

method, as we shall see in the next chapter. 
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CHAPTER 5 

THE CUSP DIFFRACTION PATTERN 

5.1 The Canonical Integral and Caustic 

In this chapter we primarily study the integral 

C· ( )..L rOOd ei<l>(x,Wl,w2) W1'W2 = x 
I21T -00 

(5.1) 

where <I> (x'W l 'W2) = x4/4 + w
1
x 2/2 + w

2
x. (5.2) 

In figs.5.1 & 5.2 we show contour plots of the amplitude and phase of 

the complex function C(W
l

,W
2
). The details of the numerical integration 

and methods of plotting phase contours in the presence of dislocations 

are discussed in appendix A5.1. The bifurcation set or geometrical 

caustic is shown dashed on these plots. It is derived by solving 

<1>1 = <1>2 = 0, from which x can easily be eliminated in this simple case 

to give 

W 2 + 4W 3/27 = 0 
2 1 

(S.3) 

The method used to plot this equation as a dashed line is also described 

in appendix AS.1. "Inside" the caustic there are 3 SPPs or rays, "outside" 

there is only 1, and we see from fig.5.l that the inside is considerably 

"brighter" than the outside. The caustic is obviously symmetrical in W
2 

and so is C(W
1

,W
2

) as seen by making the transformation x ~ -x. 

Our plots agree well with those of Pearcey(1946)~ His plots are 

interesting because they were produced mainly by integrating the partial 

differential equation satisfied by C(W
1

,W
2
), using the Cambridge 

differential analyser. This was a mechanical analogue computer, and 

part of one may be seen in the Science Museum in London. This method 

of solution is ideally suited to such a computer, whose input and output 

devices are g~aphical, but is not the best method on a digital computer. 

Anyone who ~as seen a ~ifferential analyser, the prototype of which was 

built from "Mecc:ano", cannot fail to be impresseq by the accuracy of 

Pearcey.'s plots, compared with those produced by today's immensely 

powerful computers. Berry(1975) and Trinkaus & Drepper(1977) show plots 

of the intensit~ of the cusp diffractiop pattern. 

The most striking feature of the cusp diffraction pattern is the 

triangular array of pairs of nulls inside the caustic, and the row of 

single nulls just outside the caustic. We shall discuss these in more 

detail in the next section. The triangular array of bright spots inside 
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the caustic is what one would expect from two overlapping sets of Airy 

fringes. Outside the caustic the amplitude decreases away from the main 

maximum j~st inside the cusp point. Well away from the caustic this 

decrease is monotonic, but near to the caustic the decrease is 

oscillatory, as it must be to accomodate the row of single nulls. A 

"valley" of amplitude crosses the caustic, nearly perpendicularly, and 

passes through each of these nulls. These valleys could then continue 

around the main sununit and link up with their "mirror-images", but in 

fact they stop on a row of saddle points a little further out from the 

caustic. Therefore, between the caustic and its associated row of 

saddles the amplitude is oscillatory, whereas outside the row of saddles 

it is monotonic decreasing away from the cusp point. In fig.S.3 we 

show a magnification of the amplitude contours around the second and 

third nulls away from the cusp, drawn from computer output, plus a 

sketch of the actual amplitude function around one saddle. (The contours 

stop at arbitrary levels). The detailed behaviour of the valleys of CW 

amplitude is important when trying to predict the behaviour of dislocations 

in a pulsed wavefield. 

The integral can be evaluated exactly at the origin to give 

C(O,O) 1 r(1/4)e iTI / 8 ~ 2.S6e iTI / 8 

27rr" 

Elsewhere, it can be approximated by methods based on stationary phase. 

For example, if s is distance along the caustic away from the cusp 

point, then on the caustic at large s 

C(s) ~ 
r (1/3) ei~(~ts 

..{6;'(s/2t" 

+ 
1 i (1fi ... - lb( l)~ ) 

____ e 

3 (s/2)'1s 

This shows that there is a series of fringes crossing the caustic, 

whose visibility decreases to zero as s ~~. When the visibility of 

these fringes is very small, if n measure·s the perpendicular distance 

from the caustic outwards from the point a distance s along the caustic, 

then for small n and large s 

C (s,n) tV /2; Ai ( (s/2)8/'In/3 V3 ) 

i l
3 (s/2{Q 

.3 (1)'¥3 1.- a e ... 

This represents Airy fringes roughly parallel to the caustic, whose 

spacing and intensity are proportional to (l/s):V'. 



Figure 5.3 Saddle Points Outside the Caustic 
(contours stop at arbitrary levels) 



5.2 Nulls by Stationary Phase 

We already know that the method of stationary phase predicts one 

sort of wave field singularity, the caustic, but does it also predict 

the positions of the nulls with any accuracy? The one-dimensional 

stationary phase formula is 

L: -00 

i<p(x) 
e 

where <Pl(xi) = O. So we could write down an approximation to the 

integral and then look for its zeros. But the xi appearing in the 

above formula are the roots of a polynomial, and generally no simple 

formula for these exists, so the expression whose zeros we seek can be 

very complicated. We therefore introduce a further approximation, and 

proceed by "perturbing" a case for which we can find the SPPs easily. 

The method is based on the fact that the SPPs ~ are the roots 

of polynomials whose coefficients are essentially the components of ~. 

Then away from any caustics, ~ is a smooth continuous function of ~, 

which can be approximated by its tangent, i.e. o~ = O(OW). Suppose 

~ = 0 at ~ = 0, i.e. 

Then for small Wand x 

where <I> = <1>(0,0), so o --

because Vx<Po = 0 and x = O{W). <1>2 will also vary linearly in ~, but 

we neglect the linear variation of amplitude which this produces 

compared with the exponential variation produced by <I> (unless the 

amplitude variation becomes important because of symmetry, for example, 

as occurs for the swallowtail). 

Near a simple caustic (fold), however, catastrophe theory tells 

us that <I>(x) = x 3/3 + Wx (up to diffeomorphism). Now xi = ±;:,w, which 

is non-analytic at W = 0 (this is the catastrophe singularity~), and 

the orders of the terms of (5.5) are changed. Also <1>2 = ±2;:,w, and 

this variation is essential, producing the infinite amplitude on the 

caustic. 
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(5.4) 

(5.5) 

(5.6) 



Along the W
1 

axis of the cusp pattern the SPPs are given very 

simply by 

~l ~ x 3 + W x ; x(x2 + W ) ; 0 
1 1 
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to be xi = 0, ±1-w
1

. We shall initially consider only the regj_on inside 

the cusp, away from the cusp point where Wi < 0, where there are 3 real 

SPPs. Eqn. (5.6) gives 

Then xi = 0 gives ~ '" 0, ~2 '" - (-Wi) 

and xi ; ±1-w
1 

gives ~ '" _(-W
1
)2/4 ± w

2
/-w

1
, ~2 '" 2{-W

1
)· 

Putting these values in (5.4) gives 

-in/4 
'" e ---';--w-

1 

i{lT/2 
e 

for Wi < 0, W
2 

sma'll. Zeros require either 

(a) cos 

or (b) cos 

w r-:w- = -1/12 => 
2 1 

w ~ = ±IT/4 + (2N+i)n 
2 1 

w ;::w- = ±7T / 4 + 2n7T 
2 1 

(5.7) 

Obviously, (a) and (b) type solutions alternate to give a "brickwork" 

stacking of null pairs. The theory does not tell us how many null pairs 

there are for each Wi' but we know that we must not go too near the 

caustic. In the following table we calculate the coordinates of the 

first few nulls with W
2 

> 0, and compare them with the values measured 

from figs.S.l & 5.2. The stationary phase values in brackets are too 

near the caustic to actually occur. Essentially this analysis was first 

performed by Berry. It is included here for completeness, and to 

illustrate our general method, which will be used again later. 

This formulation shows clearly why we get pairs of nulls inside 

the caustic. The two "side rays" combine to produce the cos term in 

(5.7). In the neighbourhood of each null pair these two rays can 

interfere in two symmetrical ways to produce a net amplitude of 1. 



Stationary Phase Computed Graphs 

W
1 

W
2 

W
1 W2 

a -2.51 (1. 49 , 2.48) 

b -4.34 0.38 -4.40 0.35 

(2.64, 3.39) 

a -5.60 1.00, 1.66 -5.55 1.00, 1.65 

(3.65, 4.31) 

b -6.63 0.30 -6.65 0.30 

2.13, 2.74 -6.45 2.15, 2.75 

(4.57, 5.18) 

This resultant then interferes destructively with the third "central" 

ray at two nearby points. It is essential to have three interfering 

rays to produce these null pairs. We see that even this crude theory 

predicts the central nulls with very good accuracy, and even for quite 

large W2 it is still accurate to about 3%. 

There remains the row of single nulls just outside the caustic. 

Can these also be explained in terms of geometrical rays and stationary 

phase ideas? We can easily find the SPPs actually on the caustic 

because we know that one of the roots is double, so we shall proceed 

by "perturbing" this case. Consider the branch of the caustic defined 

by 
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where the subscript 0 indicates values on the caustic. Then the SPPs are 

and x = -2/-w /3 o 10 

Now let us move off the caustic in the W
1 

direction a small distance ~ 

to the point W1 = W1D + ~, W2 = W20 • For perturbation about a caustic 

we cannot use the simple formula (5.6) for the double SPP, but must 

actually find the shift in the SPPs to lowest order. 

moves to x = xo + 0, then we know that o = O(~~). We 

<1>1 about the caustic to lowest order: 

But ~10 = ~20 = 0, so requiring ~1 = 0 gives 

Suppose the SPP 

find 0 by expanding 



The SPP xo then drops out to give 

<5 = ±1-~/3 + O(~). 

Moving off the caustic has separated the two coincident SPPs. If we 

move off the caustic outwards, ~ is positive and <5 is imaginary, so 

outside the caustic the double SPP becomes a pair of complex conjugate 

SPPs. 

We can no~ expand ~ and ~2 about the caustic, remembering that 

o (~~) : 

and 

~ = cj> o 

(Cancelled terms are actually zero.) 

Putting x = I-w /3 and <5 = ±i/~/3 gives o 10 

$ ~ -~(W310r + W20rW31Of + ~(W;O) ± i2m3/2rw;o)' 
and cj>2 = ±i2(-W10~)~ 
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For the single SPP xo 

the caustic, giving 

-2/-w /3 we can use (5.6) to expand about 
10 

and ~2 = cj>20 + O(~) 

Le. ~ = -2(-W /3)2 
10 

Because we now have complex SPPs we must use the method of steepest 

descents (Dennery & Krzywicki (1967), sec.31), which is a generalization 

of the method of stationary phase to complex 

fig.5.4 we show the "topography" of leicj> (x) I 
the caustic. Note that e-Im~(x*) = e+Im.(x~ 

stationary points. In 
-Im<j> (x) = e just outside 

H indicates a hill, where 

the integrand becomes infinite asymptotically, and V indicates a valley, 

where the integrand becomes zero asymptotically. These are demarkated 

by the contour lines passing through the saddle points where <j> is 

stationary. Originally, the contour of integration passed along the 

real axis. We now distort it in the finite x plane so that it runs 

along the lines of steepest descent passing up to a saddle and then 

down the other side, but remains asymptotically along the real axis. 
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Figure 5.4 Topography of the Cusp Integrand Outside the Caustic 
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.The way this is done is forced upon us by the topography. The distorted 

contour is shown in fig.5.4, and we see that only one of the pair of 

complex s?ddles is used. (The only way to use the second complex saddle 

would involve traversing effectively the same contour twice in opposite 

directions, so that it would cancel out). 

The integrand along the contour is now maximal at the two 

contributing saddles. Therefore we expand the integrand about these two 

saddles, as we have already done, to second order and change variable 

to a coordinate along the contour. We can then do the Gaussian integrals, 

to give an approximation to C(W
1

,W2 ). The method can be made exact in 

principle by developing an asymptotic series, but we shall not do so here. 

Adding the contributions from the real saddle near x = -2/-W /3 and 
10 

the upper complex saddle at x = +/-W
10

/3 + i/~/3 respectively, gives 

+ e{ {.t(-WlO/3) 2 

1.; \1+ 
2 - (-W10F,;) 

i1T/4 
e 
1-3W lO 

+ ~(-W10/3)} - 2(i)~(-W10/3)~) 

Because the contour of integration lies along the real axis, all 

(5.7) 

real SPPs contribute to the diffraction integral, and so represent 

geometrical rays. We can generalize this notion to include "complex rays", 

which are those complex SPPs which contribute to the diffraction integral. 

Then we see that for the cusp there is only one complex ray outside the 

caustic, although there are two complex roots of ~1 (x) = 0, and one real 

ray. This is why the nulls outside the cusp are only single. Also the 

amplitude of the complex ray decays exponentially away from the caustic, 

so that only close to the caustic is it large enough to cancel the real 

ray. This is why there is only one row of nullsou~ide the caustic. 

Quantitatively, the conditions that C = 0 are, from (5.7), the 

amplitude condition 

1 = 

/- 3W lO 

which has precisely one solution for ~, and the phase condition 

(5.8) 



Raising (5.8) to the 6th power gives 

23(_W1Q)1/~t;yL = e-i(-W10t;3)~ 

33'(-W10) 3 

Putting X = t (-WlO) ~e/z we can write this as 

X 

which gives a convergent iteration scheme if X > 1. Solving this for 
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(5.10) 

a range of values of W10 between -1 and -10 shows that S is very close 

to 1 and almost independent of W10. Eqn. (5.9) is a quadratic in (-W10): 

~(-W10)2 - i(-W10) - (2n+5/4)n = 0 

which we can easily solve with ~ = 1 for a range of values of n. We can 

then use (5.10) to find more accurate values of t;. We could then iterate 

the process, but this is not necessary. A single iteration gives the 

following results, which are compared with values measured from figs. 

5.1 & 5.2. 

Stationary Computed 
Phase Graphs 

WlO t; WlO t; 

-2.65 1.11 -2.60 0.9 

-4.04 1.11 -4.05 1.0 

-5.03 1.11 -5.05 1.0 

-5.85 1.10 -5.90 1.0 

Considering the imprecision with which measurements from the graphs 

can be made, and the crudeness of the approximations, the results are 

surprisingly good. So we see that methods based on the stationary phase 

approximation plus simple perturbative solutions can give the positions 

of the nulls of the cusp diffraction pattern with very good accuracy, 

both inside and outside the caustic. The real significance of this fact 

becomes apparent when the methods are applied to three-dimensional 

diffraction patterns, as we shall do in great detail for the elliptic 

umbilic. Then the null lines are complicated twisted space curves 

which are not at all easy to deduce from a set of plane sections. The 

fact that we have achieved such quantitatively good results in this 

simple case justifies applying the methods to more interesting problems. 
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5.3 An Ultrasonic Cusp Diffraction Pattern 

An ultrasonic experiment has been set up by V.F.Humphrey to examine 

the cusp diffraction pattern produced by a pulsed source. With ultra

sound the wayelength is long enough to produce a diffraction pattern on 

a large scale, which is easily amenable to measurements. A reflecting 

surface having approximately the form of a parabolic cylinder was used, 

and a pair of transducers, as close together as possibl~ were moved in 

a plane perpendicular to the axis of the reflector and equidistant from 

its ends. We shall model this experiment by an infinite parabolic 

cylinder reflector having equation z = ax2 , and we shall represent the 

pair of transducers by a coincident uniform point source and uniform 

point receiver. The received signal is given approximately by Berry's (Iq, ... ) 

formula, which we rederive for sound waves in appendix AS.2. There we 

also indicate how the effects of the polar diagrams of the source and 

receiver might be taken into account, but we shall not do so in the 

following analysis. Then our initial formula for the wave function is 

'¥ (z,t) '" _1_ Id2~ F' (t-2r(R,z)/c) 
21TC r (~, z) (z-f (~.> ) 

(see fig.S.Sa) where F(t) is the transmitted signal. 

Before considering diffraction, obviously the main contributions 

to the reflected signal will come from points where the reflector is 

perpendicular to the "line of sight", i.e. the rays are the normals to 

the surface. The rays will focus at the centres of curvature of the 

surface, so that the geometrical caustic is the surface of centres of 

the reflecting surface, or in two-dimensions the evolute of the parabola. 

This is a cusp pointing down, with its point at the principal focus at 

z = 1/2a, whose equation is 

(z - 1/2a)3 = 27x2/16a (5.11) 

(see fig.S.Sb). This agrees with the fact, noted in the appendix, that 

this situation is equivalent to launching waves of the same shape as the 

reflecting surface. Then near the cusp point only the part of the 

reflector directly below the transducer is contributing significantly to 

the received wavefunction, so that f(R) « z and Berry's formula is valid. 

This may cease to be the case if we move too far away from the cusp point, 

as discussed in appendix AS.2. 

Let us transmit a monochromatic signal F(t) 

R - (x,y) and k = w/c we have 

-iwt 
= e then putting 



Figure 5.Sa Infinite Parabolic Cylinder Reflector 

o 

Figure S.5b Two-Dimensional Section showing Caustic and 
New Origin 
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-iwt 
~(z,t) ~ -iwe 1 

2rrc z-f (x) 
-00 

e i2kr (x,y,z») dx 

r(x,y,z) 

We have assumed kr» 1 already in the derivation of Berry's formula, 

therefore we should be able to evaluate the y integral reliably by 

stationary phase. We have 

r(x,y,z) = /y2 + {x2 + (z-f(x»Z} 

and the SPP occurs at y = 0, which is an obvious condition for normals 

to the reflector. Then working with an origin fixed relative to the 

reflector, rather than relative to the transducer, the signal received 

at some point (x,z) at time t = 0 is 

-irr/4 i2k/(x'-x)Z + (z-f(x'»Z 
\jJ(x,z) ~ 1 k e dx' e 

[

4:10 

2~ __ (z-f(X'»«x'-x)Z + (z-f(x'»r 

(see fig.5.5b). We shall refer to (5.12) as the "exact" diffraction 

integral. Its stationary phase points occur at 

(x'-x) - (z-f(x'»f' (x') = 0 

which is exactly the condition that (x,z) lies on the normal at x'. 

Our surface has the equation f(x) = ax2 , so (5.13) becomes 
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(5.12) 

(5.13) 

2a2x,3 + (1-2az)x' - x ~ 0 (5.14) 

which has 3 (possibly complex) solutions. We wish to map (5.12) onto 

a canonical diffraction integral, and to preserve the stationary phase 

points we must obviously use a quartic ~, i.e. we must map (5.12) onto 

the canonical cusp integral (which we know anyway in this simple case). 

Note that if our surface had the form f(x) n = ax near the origin, 

then (5.13) would have (2n-1) solutions and we would have to use a ~ of 

order 2n. Therefore the caustics produced in this way by an analytic 

cylindrical reflecting surface can only be cuspoid catastrophes of even 

codimension, i.e. cusp, butterfly, etc. For example, to produce a pure 

fold caustic would require a surface of the form f(x) = ax3/ 2 which 

has two sheets meeting at a cuspidal edge along x = 0, where the surface 

is non-analytic. 

As discussed in section 4.2, the condition for two SPPs to coalesce 

is the vanishing of the Hessian of the phase, which in this one-dimensional 

case is just the second derivative with respect to x'. Applied to (5.14) 

this gives 

6a2x· 2 + (1-2az) = O. 



Solving this with (5.14) gives (5.11), the exact equation of the 

geometrical caustic. This is also exactly the form of the canonical 

cusp caustic, so one is led to wonder to what extent the diffraction 

pattern is just a scaled version of the canonical pattern, i.e. is the 

mapping from (z,x) in (5.12) to (W
1

,W
2

) in (5.1) linear? 
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We shall make a transitional approximation to (5.12) in the 

neighbourhood of the cusp point, where the three SPPs coalesce at x' = O. 

We therefore expand the phase in (5.12) about x' = 0 up to fourth order 

and shift the origin to remove the cubic term, giving 

2k{z - 2axx' + a(1-2az)x,2 + a 3x'4} 

to lowest order in the coefficients. We approximate the denominator by 

its value of (1/2a)3/2 at the cusp, and define a new variable of 

integration t by 

=> 

Then (5.12) becomes 

where W
1 

= -(8ka)~ (z-1/2a) 

W2 (32ak 3l"" x 

which should be valid near x = 0, z = 1/2a. We can easily show that 

(5.15) 

the caustic (5.3) of C(W
1

,W
2

) maps exactly onto the required caustic 

(5.11). (5.15) is our canonical approximation to the "exact" wave function 

(5.12). Note the exponential factor which gives the main phase variation 

of ~, since it varies much more rapidly than the phase of C(W
1

,W
2

) (except 

near the nulls). In fact, the equiphase lines of C(W
1

,W
2

) curve the 

wrong way for wavefronts; C(W
1

,W
2

) only represents the phase shifts due 

to the diffraction. 

This is actually the experiment that our previous analysis of the 

piston radiator was designed to model. Therefore, we use the same 
-1 

figures as before giving k ~ 19 em The value of a is most accurately 

determined from fitting the shape of the caustic, and not from the 

height of the principal focus above the reflector. This is because any 

reflecting surface which is one of the family of involutes of the 

cusped caustic will produce the same caustic and presumably similar 

diffraction patterns. Only one of these surfaces is the parabolic 

cylinder which we took as our model, and the experimental surface may 

well have actually been a nearby member of the family of involutes. 



-1 The value found by Humphrey in this way was a ~ 0.1 cm giving 

(2ka 3t'" ~ 0.44, (8ka)~ ~ 3.90 and .(32ak 3t+ ~ 12.17. Then the linear 

approximation to the mapping near the cusp point is 

W1 -3.90 (z-5.0) 

W
2 

12.17x 

and the canonical pattern is squashed by a factor of about 3 in the x 

direction. 

Note that the simple Berry diffraction formula is adequate for 
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our transitional approximation, which is only valid near the cusp point 

anyway. However, the "exact" integral (5.12) is actually divergent, 

because our parabolic reflector violates the assumptions in the derivation 

of (5.12). The transitional approximation removes this divergence and 

it may be possible to compute (5.12) with care near the cusp point by 

removing the divergence "by hand"; however, we should beware that the 

results may not be reliable. 

For comparison, we attempt to compute the cusp wave function from 

the "exact" formula (5.12) and from the transitional approximation (5.15), 

and display the results in figs.5.6 & 5.7 respectively. Additional 

computational details are given in appendix AS.l. The values at the cusp 

point agree very closely. The phase plots shown in figs.5.6b & S.7b are 

remarkably similar, except that the overall scale of the canonical 

diffraction pattern is smaller than the exact pattern. Within a circle 

centred on the cusp point and passing through the closest nulls of the 

canonical pattern the phase plots match very closely. Outside this region 

the scale changes indicating that the linear mapping from (x,z) to W 

has broken down. 

The amplitude plots shown if figs. 5.6a & 5.7a are less similar. 

The main difference is a "ripple" on the "exact" amplitude whose wave-

length is exactly half the true wavelength. The fact that there is no 

sign of this ripple on the phase plot suggests that it is real, but it 

could be an artefact produced by trying to evaluate a divergent integral. 

Apart from this the "exact" amplitude is very similar to the approximate 

amplitude with the same non-linear scaling as the phase. 

Our tentative conclusion, then, is that the simple canonical cusp 

diffraction pattern obtained by a transitional approximation is 

qualitatively correct, although the scaling is wrong away from the cusp 

point, and the apparent ripple on the exact wavefunction needs further 

investigation. 
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5.4 Dislocation Trajectories near the Cusp 

So far we have only examined the CW cusp diffraction pattern, but 

as mentioned in the description of the experiment, the transducer was 

really driven by quasimonochromatic pulses. Therefore, we expect to 

find wavefront dislocations moving through a diffraction pattern which 

is otherwise similar to the CW pattern. In order to form an intuitive 

picture of the interaction of the pulsed rays, it is necessary to know 

the effect on a pulse of its ray touching a caustic and focussing, and 
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this is discussed in appendix AS.3. We expect the dislocation trajectories 

to pass through, or very close to, the CW nulls and to run along the 

valleys and over the saddles of the CW amplitude. But looking at fig. 

5.1 we see that there are many such paths which the trajectories could 

follow. 

We found in chapter 3 that the trajectories are given to a good 

approximation by the frequency minima of the CW amplitude. We shall 

work with the canonical approximation (5.15). If we define 

1T\(W1 ,W2) = IC(W1 ,W2
) I 

I I t·m then M(x,z;w) ~(x,z;w) oc w (W1 'W
2

) 

where W1 = -(8a/c)~ (z-1/2a) w~ 

W2 = (32a/c3t+ x w~/+ 

Then aM wv.~ + .~ Jt f ~ ~ + 3W2 am I + 
-'4 m !w 111 = w 

aw aw 4 2w aWl 4w aW2 4 

So aM/aw = 0 implies 

1Tl+ 2WIEl1 + 3w2am = 0 
aWl aW2 

or m + 2 (z-1/2a)~ + 3xam = 0 
az ax 

In this simple case we know explicitly the frequency dependence 

of the wavefunction, so that we can relate the frequency derivative to 

space derivatives, either in WIW2 space or in xz space. We shall work 

(5.16) 

in W1W2 space for convenience. Then by numerically differentiating the 

values ofm which we have previously computed, we can easily plot the 

solutions of (5.16). However, where 1n (Wl,W2) is very flat the numerical 

differentiation is unstable. In fig.5.8 we plot the trajectories 

predicted by (5.16) (omitting the small unstable region) superimposed 
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on contours of ~(W1,W2). The curves fall into two classes. Those 

shown dark link up all the CW nulls by running up the valleys and over 

the saddles. Those shown light link up all the CW maxima and run down 

the ridges and over the saddles not used by the other curves. The 

curves all cross the caustic and run off towards the reflector. 

Based on the discussion in chapter 3, we suggest that only the 
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dark curves linking the CW nulls, are approximate dislocation trajectories 

and that the other set of curves is spurious. Note that near the null 

pairs the real trajectories have fairly square steps. We have already 

set up a local model of such symmetric pairs of stepped trajectories in 

section 1.6, which are illustrated in fig.1.20, and result from cubic 

terms in the local expansion of the wavefunction. These trajectories 

predicted near the cusp point agree very well with experiment. 

We know that near to the caustic far from the cusp point, the 

diffraction pattern is just the fold or Airy pattern. This pattern is 

essentially one-dimensional, so the dislocation trajectories must run 

parallel with the Airy fringes and the caustic. This is the same as 

occurs in the far field of the piston radiator. We notice that as we 

move away from the cusp point, the angle at which the trajectories 

intersect the caustic increases from about 45° to about 90°. I suggest 

that this angle continues to increase until asymptotically ,the trajectories 

run parallel with the caustic. However, in the real experiment the tim~ 

delay between the pair of pulsed rays which focus on the caustic and the 

third pulsed ray from the other side of the reflector becomes so great 

that they do not interact. Therefore the Airy limit in the experiment 

is approached much more rapidly than for continuous waves, and one 

would expect a more complicated transition between "cusp trajectories" 

and "fold trajectories". 

No attempt has been made to predict the dislocation times, because 

the theory is not sufficiently accurate, at least not for a pulse as 

short as that used. Further research on this could be useful because the 

nulls of this continuous wave function are more general than the axial 

null of the piston radiator. The methods for handling CW nulls discussed 

in section 3.8 should be easier to put into practice for such general 

nulls, and it would be interesting to see if it can be done satisfactorily. 

It would also be interesting to try using a more exact diffraction integral 

to see if the ripple, if it really exists, has any effect on the trajectories. 



APPENDICES 

AS.1 Computational Details 

The basic integration method is discussed in section 4.5. The 

first step is to examine the behaviour of 

which is sketched in fig. AS. 1. 1 . We only need consider W2 
~ O. For 

some fixed W
2

, for W
1 

~ 0 there is only one SPP at x .. O. As W
l 

is 

decreased this SPP moves left. At some value of W
1 ~ 0 we cross the 

bifurcation set and a pair of SPPs appear at x ~ O. As W1 
is further 

decreased these separate such that the rightmost one moves right. 

Therefore the outermost SPPs separate as W
1 

is decreased. The stepping 

algorighm is: start at W
2 

= 0, with A = +STEP, B = -STEP and W
1 

= max. 

-Increase A in increments of STEP until <1>1 (A) ~ C1. Decrease B in 

decrements of STEP until <I> 1 (B) ~ -C1. Step A and B out for convergence 

of the asymptotic series. Set BS = B to use for the next W1 scan. 

Decrease W1• Step out A and B if necessary until <1>1 (A) > Cl and 
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<1>1 (B) ~ -C1, and then for convergence. Decrease W1 etc. until Wl = min. 

Increase W2 and set A = +STEP, B = BS and repeat until W2 = max. 

This algorithm will work for W2 < C1, otherwise A will not be 

forced to jump outside the new pair of SPPs which appear on crossing 

the bifurcation set. This can be handled by setting A = l-wl/3 if 

<1>1 (/-W1/3) < C1, and then stepping out from there as necessary. Also 

if W2 > C1 the value A = +STEP may be larger than necessary at the 

beginning of the W1 scans, and could cause spurious convergence. We 

could solve the equation <1>1 (AS) = Cl to low accuracy by Newton's method 

and start the scan with A = AS, and then for the next scan use AS to 

start the Newton's iteration for a new AS. This would work for all W2' 

and would probably be more efficient even for W2 < Cl. 

For a series error of less than 0.0005 the asymptotic forms in 

section 4.5 give the cutoffs as ±2.63, and the magnitudes of the first 

3 terms of the series as 

0.05, 0.003 & 0.0005 

It was found satisfactory in practice to use Cl = 10, and require the 

second term to be less than 0.01, and the third less than 0.0005. This 

should give a total series error of less than 0.001. 



Figure AS.l.l ~1 for the Cusp Integral 

Figure AS.l.2 Folding the Phase 
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The "exact" cusp wavefunction (5.12) is computed by a generalization 

of the basic method. Changing the variable of integration to -x' improves 

the analogy with the canonical integral and gives 

", N -in/4 T = 1 k e 
2 n [:' 

-00 

(AS. 1. 1) 

This integrand is singular at ax,2 = z. But our original derivation 

(appendix AS.2) assumes z < ax,2 always, i.e. the reflecting surface is 

always below the transducer. In practice, because of the polar diagram 

of the transducers, the surface above the transducer plays no part, and 

we would be justified in only integrating over some range smaller than 

(-/z/a,+/z/a). In fact we only integrate numerically over a much smaller 

range, leaving the rest of the integral to be handled by the asymptotic 

series. But we must check that the cutoffs remain within the above 

allowed range. 

Let us define 

2(x'+x) 4ax' (z-ax,2) 2{2a2x,3 + (1-2az)x' + x} 

Z = z-ax,2 

Z1 = -2ax' 

Then integrating by parts as in section 4.5 gives 

dx' e IB i2k$~ 
A ---Z-$"lT.Y .. :-

r ... i2k$~ { where G(x) = ~ -~ + 
Z$l k 

Now if we only use (AS.l.1) where the assumptions in its derivation are 

valid, then physically G(x) must be negligibly small at the physically 

meaningful upper and lower limits of the integral. Outside these limits, 

of course, it will diverge when Z = O. We shall take G(x) = 0 at the 

upper and lower limits, and assume that this is justified within the xz 

region in which we are interested. This assumption needs further 

checking: a test of its validity should have been included in the program 

but was not, and consequently the results presented are only preliminary. 

If the assumption turns out to be invalid we must use formula (AS.2.2) 



125 

instead of (AS.2.3) as our starting point for the "exact" integral. 

The convergence criteria used werel$ll > 1.0, and the first and second 

terms of G(x) < 0.02 and 0.0005 in magnitude. The remaining details of 

the algorithm are essentially as for the canonical integral. Note that 

G(x) is a simple asymptotic power series in k, and here k = 19 so it 

should converge rapidly. 

We plot the caustic by a series of dashes of approximately equal 

lengths, whose ends lie exactly on the caustic curve. For W2 ~ 0 the 

equation of the caustic is 

=> 

Then the arc length s is given by 

and the W1 coordinates of successive points along the curve a distance 

8s apart are given approximately by 

where W1 ,O = o. Then W 2,n+l 2 (-W1
3 )~ _ ,n+1 

3 3 

exactly, and we plot 

(W1 ,W2) and (W1 ,-W2) to give the whole caustic. This method is easily 

generalized to the higher catastrophes where the caustic can easily be 

specified parametrically, but not as explicit equations. 

There remains the problem of plotting equiphase lines in the 

neighbourhood of a dislocation. Phase is only defined modulo 2~, hence 

it is a discontinuous function. As a surface it has vertical cliffs, 

and if we try to plot contours of this, all possible contours will be 

drawn in this cliff face. If a wave function contains a dislocation in 

some region there is no way of removing all phase discontinuities in 

that region. But we know that phases differing by ~ become associated 

at a di,slocation, therefore we can preprocess the phase data so that 

phases differing by ~ become the same, and produce a continuous function 

in the range [-~/2,+~/2J. To plot the contour phase = p, we first shift 

the phase to lie in the range [p-~,P+~J so that the phase is smooth for 

an equal distance either side of p, to facilitate linear interpolation. 

We then "fold" the data about ±~/2 using the algorithm 

data:= if data > n/2 then ~-data else 

if data < -~/2 then -TI-data else data 



The effect is shown symbolically in fig.A5.1.2. 

Now by plotting the zero contour of this preprocessed data, we 

automatically plot both the equiphase lines at p and at p ± n. 

However, if the data calculated is actually W ; R + iI, the whole. 

complex wavefunction, then the phase is calculated from arctan(I/R) and 

may not be very accurate around R = O. But we can easily plot the 

equiphase lines at O,n and ±n/2 by 'plotting the contours I ; 0 and 

R = 0 respectively. To plot any other set of 4 equiphase lines we just 

rotate W in the complex plane and then. plot I = 0 and R = O. For 

example, to plot phase; +n/4, -3n/4 and -n/4, +3n/4 we plot R - I = 0 

and R + I = 0 respectively. 

Both methods have been used and both give good results. The 

method to use depends on the form of the data, but the second should 
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be more efficient and probably gives slightly better results, although 

this will depend on the form of the wave function (and the sophistication 

of the contouring routine). 



AS.2 Diffraction Integral for Point Sonic Source-Receiver 

We wish to derive an expression for the signal received by a 

point receiver coincident with a point sonic radiator after reflection 

by a perfect rigid reflecting surface. This problem has been solved by 

Berry (1972) for electromagnetic waves, where the boundary condition is 

different. We follow Berry's method closely, but use the correct 

boundary condition for sound waves at a rigid interface, and end up 

with minus Berry's formula. We also consider the effect of a polar 

diagram for the source and receiver. 
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The reflecting surface E has height f(~) above the reference plane 

in which ~ is a two-dimensional vector from the origin, as in fig.AS.2.1. 

The source-receiver S is a height h above the origin. r(R) is the 

vector from S to the point on E above ~, and fl is the inward normal at 

that point. Now the incident wave function $s(t) at the receiver is 

given by the Kirchhoff integral representation (e.g. see Jackson (1962), 

p188: note different conventions) as an integral of the incoming 

wave function over the closed surface E'. We can close E by a "hemisphere 

at infinity" on which there is no reflected wave, so that it does not 

contribute, giving 

= .:! fdE 
4rr JE ret 

We now make the Kir~&off approximation (Jackson, p280) that the 

wave function incident on E is that which would have existed in the 

absence of E. This approximation should be good if multiple reflection 

is negligible and there is no shadowing, i.e. if the slope of E is 

(AS.2. 1) 

al~ays small and h > max.f(R). If we take $ to be the velocity potential 

wavefunction, then the boundary condition at a rigid surface is 

normal velocity = fl V,I, + fl V,I, = 0 _. ~incident _. ~reflected . 

It is easy to show that this implies a reflection coefficient of +1. 

Then we can rewrite (AS.2.1) in terms 

:.:.f;dE ~.[-'i7$inc (.£, t) + 

41T E r 

of the radiated wave function as 

Suppose the radiator at S is a point source with a non-uniform 

polar diagram P(~). Then 

,I, (r t) = p(_r) F(t - ric) 
~inc -' 

r 



Figure AS.2.1 Geometry for Point Source-Receiver 
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and fl..V1Ji, (r,t) = F(t - ric) n.VP(r) + per) fl..r{-F(t-r/C) - F' (t-r/c)J - ~nc - --r rL rc 

~ (d): f-F(t-r/c) fl..VP(r) 
4n JE L rZ - -

+ 2fL !{F (t-r/c) + F' (t-r/c) Jp (!~ r r3 rZc J ret 

We shall only consider quasimonochromatic pulses F(t) with centre 

frequency w, so that 

IF'(t)1 '" wIF(t)1 

Then if w/c = k = 2n/A »l/r i.e. r» A, the second term is 

negligible compared with the third. If also kP»VP, the first term is 

negligible compared with the third(~if Pc!) is slowly varyin~ Then 

and 

1Ji s (t) '" -_1_ (dE ~.! rF I (t - ric)] tP (r) 
2nc JE ~ rZ re-

Now following Berry we write 

fi. r -,!3.. VRf (~) + h-f (,!3.) 

r(,!3.)/1+lvRf(,!3.) 12 

d2R = 11+ I VRf (,!3.) 12 d 2R 

Inzl 

and note that [F I (t)] ret = F' (t - ric), giving 

'" _1_fd2~ {,!3.. VRf (~) + h-f (~)} 
2nc 'r3 (~) 

F' (t - 2r/c) per) 

But r(.!3.)~ =,!3.2 + (h-f(,!3.»2 implies 

giving 

ljJs(t) 

rVRE. - ~ 

feR) - h 

'" _1_ fd2~ F' (t - 2r (.!3.) Ic) P (r) {1 - ,!3..! } 

2nc r (R) (h - f (.!3.) ) r (R) 

Assuming h » f, we may write the second term as approximately 

_1_fd2~ P (!) ~. VRF 

4n r 2h 

Integrating by parts and assuming F(-~) = 0 gives 

-_1 fd
2

,!3. F VR .(.!3.P (!») '" -_1 f4.'! F P 
4n r 2h 2n r 2h 

(AS.2.2) 
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because significant contributions only come from near specular reflections 

having VRr ~ O. But we have already shown that \F/r2\ « \F'/r\, so this 

term is negligible. 

If our receiver also has a response polar diagram p(!), we can 

incorporate this into P(!), and since there is a simple relation between 

f and R for given h we can write 

to give finally 

\jis (t) ~ 1 Jd2~ Q (~,h) F' (t - 2r (~) /c) 

2'ITC r (~) (h-f (R) ) 

(AS.2.3) 

For a flat surface and a uniform point source this formula gives exactly 

the right result. We see that the effect of the polar diagrams of the 

source and receiver are approximately the same as that of a varying 

attenuation coefficient over the surface, but we shall only use the 

formula with Q = 1. Note that we have ignored the frequency dependence 

of the polar diagram: for a quasimonochromatic pulse the centre frequency 

polar diagram should suffice. 

In the next appendix we present the simple Huygens formula used 

by Landau & Lifschitz to compute the effect of launching a specified 

wavefront. Then if only paraxial rays are important, so that we can 

ignore the obliquity factor and set r(R) ~ h-f(R), (AS.2.3) is approximately 

\jis(t) ~ 1 fd2~ _l_{Q(~'h)FI (t - r/(c/2»} 

2 'IT (c/2) r(R) 2r(~) 

which is approximately the wavefunction produced by launching at t = 0 

the wavefront having a height feR) and amplitude Q(~,h)F' (t)/2r(R), in 

a medium having wave velocity c/2. This analogy is due to Prof.J.F.Nye. 

If the condition h » f(~) does not hold, then (AS.2.3) diverges 

at h = f(~). In fact, the contribution from such points may be 

negligibly small so that we should still be able to apply (AS.2.3) with 

care. However, we should go back to (AS.2.2) which is well defined 

through h = f(~), although slightly more complicated. If the surface is 

such that multiple reflections are negligible and there is no shadowing, 

despite the fact that it is not everywhere below the transducer, then 

(AS.2.2) should still be accurate, although (AS.2.3) may not be. 



AS.3 Focussing of Pulses 

To form a simple picture of the behaviour of dislocations in the 

neighbourhood of caustics it is necessary to know the effect on the 

quasimonochromatic pulse wave function of the focussing which occurs on 

the caustic. The simplest possible analysis may be based on the CW 

analysis given in section 59 of Landau & Lifschitz (1975). Resolve the 

pulse into its CW components, and consider a wavefront of one of these 

having wavenumber k. Take some point 0 on this wavefront as ~rigin, 

and set up a local coordinate system with x axis along the wavenormal, 

and y and z axes tangent to the two principal directions of curvature 
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as in fig.AS.3.l. If the two radii of principal curvature are R1 and R2' 

then on the x axis the wave will focus at x = Rl and x = R2 , and the 

equation of the wavefront near the origin is 

The distance from the point (X,y,z) on the wavefront to P _ (x,O,O) on 

the wavenormal is 

where xl = 1/x - l/R l and x2 = l/x - l/R2 . 

We may compute the approximate continuous wave function up at P 

using the Huygen's formula 

up ~ ku e dfn f, ikR 

f 2niR 

where u is the wavefunction on the surface f at the point distance R 

from P, and dfn is the element of area perpendicular to the ray or 

wavenormal through f at that point (which gives the obliquity factor) . 

We take f to be our wavefront, on which u ~ constant, giving 

up ~ kU~ikX (d: eikx1y2/2 r:; eikx2Z2/2 

2nx J~oo J~ 

(AS. 3.1) 

Now because the frequency dependence of the amplitude has cancelled 

out, we can easily put in the time variation and resynthesize our 



p 

Figure AS.3.1 Converging Wavefront 

-~ P. (-R. +c.t:) 

Figure AS.3.2 Schematic Diagram of the Four Pulses 



quasimonochromatic pulse to give 

-i8(x-R 1)n/2 -i8(x-R2)n/2 
e e 

where ~o(t) is the wavefunction at the origin. There is an overall 

amplitude factor which becomes infinite at the two foci, and the phase 

is retarded by n/2 through each line focus (or by n through a point 

focus). Thus the carrier undergoes all the normal focussing effects, 

while the envelope just "sits on top" of the carrier and is itself 

completely unaffected. The main effect of passing through a focus is 

that the carrier is phase shifted relative to the envelope. 
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The above argument is intuitive and very approximate, and it would 

be nice to solve the problem more rigorously. We shall therefore 

analyse the passage of a quasimonochromatic pulse through a perfect 

line focus, by solving the wave equation with circular symmetry. We 

require our wavefunction to exist throughout the ~ plane, and in 

particular at the origin, therefore we may write it as an angular 

spectrum of plane waves 

~(R,t) = ~d2~ G(~) i (K.R - cKt) e --

For circular symmetry this reduces to 

~ (~, t) L; dK G (K) L:~ e i (KR cos 8 - Kct) 

2n I: dK G(K) J
o 

(KR) e -iKct 

where Jo(KR) is a Bessel function. The fact that the domain of ~(~,t) 

includes R a precludes the appearance of Yo(KR), the singular Bessel 

function. Now if we try to set up a pulse by imposing a boundary 

condition at some radius we shall have the complication of multiple 

reflections, although this is the only way to create initially a purely 

converging pulse. Instead we shall impose an initial condition to 

create a disturbance fixed in space, and then let it go at time t = O. 

We would expect the disturbance to spread initially as a converging 

pulse plus a diverging pulse, and we wish to study the converging pulse. 

The initial wavefunction is 

~ (R,O) = r; dK 2n G(K) J (KR). Jo 0 

This is a Hankel transform (see Watson (1944» which we can invert if 
t:IO J: (R, 0) ;R dR 



exists and is absolutely convergent. This will be the case, because 

~(R,O) will be peaked around R = Ro »0. Then 

2Tf G(K) = L;:' dR' ~(R',O) Jo(KR') 

so that 

~ (R ,t) L;' dR' ~ (R' ,0) X (R ,R' , t) 

where 

X(R,R' ,t) = L': dK Jo(KR) Jo(KR') 
-iKct 

e 

is the propagator. This integral cannot usefully be evaluated in terms 

of simple functions, but we are only interested in the wavefunction at 

large radii, and our initial wave function will be such that only large 

K are important. Therefore we can use the asymptotic forms for the 

Bessel functions, viz. 

1 

J o (x) '\, (2.) '1 cos (x - n/4) 
TfX 

so that X(R,R' ,t) '\, 1 
2n 

( 
iK (R+R' -ct) -i n /2' iK (R-R' -ct) 

e + e 

iK(-R+R'-ct) iK(-R-R'-ct)+in/2} 
+ e + e 

Let us define 
co 

D (x) = 1. (dK 
TfJo 

iKx 
e = o (x) + i 

1TX 

in the sense 

~ (R, t) 

of generalized functions (see Lighthill (1958». Then 
coo 

'\, 1 J.dR' F(R') (-iD(R+R'-ct) + D(R-R'-ct) 
~ 2R 0 

+ D(-R+R'-ct) + iD(-R-R'-ct)} 
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(AS. 3.2) 

! 
where F(R') = R' l ~(R',O), which on changing the variable of integration 

in each term becomes 

'¥(R,t) '\, ~[-i r;F(X-R+ct)D(X) + 
2R'1 J ~.cb 

= 

+ L:F (x+R+ct) D (x) + 
-It-ct 

R-cA: . 

J"~(-X+R-ct)D(X) 
-4t-¢ ] 

i L,!F (-x-R-ct) D (x) 

2R~ dx {-i6(x-R+ct)F(X-R+ct) + 6 (-x+R-ct)F(-x+R-ct) 
1 [CO 

-co 
+ 6 (x+R+ct)F(x+R+ct) + i6(-x-R-ct)F(-x-R-ct)}D(x) 

Now D(x) is sharply peaked about x = 0, so we can set x = 0 in 

the 8-functions and take them outside the integrals without incurring 

much error unless the arguments are close to O. If we also define 
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j[~ F(±x + y) D(x) 

then 

qt (R"t) 'V 1 {-i8(-R+ctlP (-R+ct) + 8 (R-ct)P (R-ctl 
2R!~ + -

+ 8(R+ct)P (R+ct) + i8(-R-ct)P (-R-ct) } 
+ -

asymptotically as R -+ 00. Terms (1) and (2) represent outgoing pulses; 

(1) for R < ct and (2) for R > ct. Similarly terms (3) and (4) represent 

ingoing pulses; (3) for R > -ct and (4) for R < -ct. Thus the form of 

the solution changes at R = ±ct. We represent this schematically in 

fig.A5.3.2 where we assume P±(R) is peaked non-symmetrically about Ro • 

In fact, because of the peaked nature of the pulses, the 8-functions do 

not have any significance. For small t the initial disturbance splits 

up into pulses (2) and (3), (2) moving out and (3) moving in, as anticipated. 

In the limit t = 0, we have 

qt(R,O) 'V {P_(R) + P (R)} = F(R) 
+ ~ 

as we originally specified. Pulses (1) and (2) move "rigidly" out, and 

pulses (3) and (4) move "rigidly" in, as t increases. Pulse (2) just 

runs off to infinity, and pulse (4) is never seen for t > O. Pulse (3) 

passes through the focus at t ~ Ro' and reappears as pulse (1). This 

is the process that we are interested in. Let us write 

where Q(R) is peaked about R = O. Then we start with the pulse 

qt(R,t) ~ ~ Q(R + ct - Rol (AS.3.3) 
2R'1 

for t « Ro/c, which focusses at t ~ Rolc and reappears as 

I!'(R,t) ~ ~ Q(-R + ct - Ro) 
2R'1 

for t »Ro/c. Put t = 2Ro/c - T in (AS.3.4) to give 

which is exactly -i times the converging pulse but "back to front" and 

diverging. Asymptotically the pulse appears to have travelled straight 

through the focus with constant velocity c. It suffers no time delay 

or distortion, and the only effect of the focus is to multiply the 

(AS.3.4) 



pulse by -i which retards the phase by TI/2, as we found by our first 

crude argument. 

The'only approximations made here are firstly to use the 

asymptotic forms of the Bessel functions, which is justified if our 

initial pulse is quasimonochromatic and peaked sufficiently sharply 

about some large radius Ro' and we do not look at the pulses too 

close to the focus. Secondly we have replaced x in the 8-functions 

by 0, which is justified well away from R = ±ct. But because of the 

peaked nature of the pulses this region is not of interest (see fig. 

AS.3.2). Therefore our deductions should be accurate, and our crude 

intuitive argument is vindicated. 
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CHAPTER 6 ' 

THE SWALLOWTAIL DIFFRACTION PATTERN 

6.1 The Canonical Integral and Caustic 

We shall study the integral 

L-1 dx 
ili .. eo 

The transformation x + -x shows that S(WIrW2'W3) = S*(WI ,W2 ,W3): S has 

no other symmetry. Hence the amplitude, and therefore the caustic, is 

symmetric in V12t and the phase is antisymmetric. 

The first step in any study of these integrals is to find the 

bifurcation set B, which is given by 

a~/ax 

1 ° 
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(6.1) 

(6.2) 

(6.3a) 

(6.3b) 

These equations are non-linear in x, although linear in ~, and sufficiently 

complicated that we cannot eliminate x to give the explicit equation of 

B as we did for the cusp. But we can solve explicitly for any two 

components of ~ in terms of x and the third component of W to give B 

parametrically. In particular, we can find the parametric equations of 

any plane section through B, parametrised by the state variable x. This 

provides a simple general method for plotting the bifurcation sets of 

all the elementary catastrophes. 

The planes we are most interested in are W3 = 

WI = x2 (3x2 + W3) 

W2 = -2x(2x2 + W3) } 
constant, in which 

For a caustic, x must be real => x2 ~ O. For W3 = 0, the explicit 

equation is 

(see fig.6.1b) which has a bend of infinite curvature at the origin 

(the swallowtail singularity). As W3 increases the curve broadens out 

and becomes everywhere regular, tending toward the very flat parabola 

as W3 + m (see fig.6.1a). 

(6.4) 



WI 

Figure 6.1 W3 = constant sections of Swallowtail Caustic 

------------~-------------bW~ 

w, ) 0 

------------~~~----------~~a ... " ~ \ " , I \ , 
I I \ , 

I I \ \ 
W, <.0 

I \ 
\ 

'W,- 0 

Figure 6.2 W1 = constant sections of Swallowtail Caustic 



Notice that 

aWl/ax = 2x(6x2 + W3) 

aw2/ax -2(6x2 + W3 ) 

showing that for W3 < 0 there are cusp singularities at x = ±1-W3/6, 

and there is also a double point at x = ±1-W3/2. The details are 

summarized in fig.6.l, and we see that B includes the whole W3 axis. 
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For W3 > ~ B is a regular surface, but for W3 < 0 there are two cuspidal 

lines and a line of self-intersection running from the principal 

singularity at W = o. 

By similar means we sketch the sections W1 = constant in fig.6.2 

(where the asymptotic forms of a parabola and a semi-cubical parabola 

are shown dashed), and W2 = constant in fig.6.3. In fig.6.4 we sketch 

the whole bifurcation set: upside down it resembles the tail of a swallow! 

We discuss the details of plotting the W3 sections in the appendix. 

We can solve the ray equation (6.3a) exactly when W2 = 0, and then 

by continuity we see that there are no real rays in "the body of the 

swallow", which we therefore call the dark region. Outside the swallow 

there are 2 real rays, and inside the tail there are 4 real rays, so 

this region should be the brightest. The folding of the catastrophe 

manifold which produces these numbers of sheets in each region is shown 

in the pictures by Woodcock & Poston (1974). In the regions where there 

are real SPPs we can apply our standard integration method, the details 

of which are described in the appendix. Just inside the dark region we 

can still integrate over the region where ~(x) is most slowly varying. 

But as we move further into the dark region away from the caustic, the 

minimum value of ~1 (x) increases, and the integrand eventually oscillates 

too rapidly for a quadrature routine to handle. We need a new numerical 

method based on the method of steepest descent, which is the generalization 

of the method of stationary phase to complex SPPs. 



W:t > 0 

(x.. -0 

Figure 6.3 W2 constant sections of Swallowtail Caustic 

Figure 6.4 The Swallowtail Caustic 
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6.2 The Dark Region 

In the dark region the SPPs are all complex. The 4 roots of (6.3a) 

occur in ,2 complex conjugate pairs, giving 2 saddles of ~(x) in the 

upper half plane plus their mirror images in the lower half plane. If 

two of these complex SPPs coalesce, (6.3b) is also satisfied. For 

complex x and real~, (6.3) represents 4 equations in 5 unknowns which 

we can solve in terms of W3 . The only complex solution for x is 

The complex SPPs coalesce into two double SPPs along a half line in 

control space running from the origin to infinity. This is the reflection 

in the plane W3 = 0 of the line of self-intersection of the caustic: it 

is called a "complex whisker" (see Poston & Stewart (1976)). It is 

interesting that real SPPs coalesce on a surface in control space, while 

complex SPPs only coalesce along a ~ in control space, because an extra 

condition has to be satisfied. We shall see later that the complex 

whisker is not in any sense a caustic. 

Initially we will consider W3 ~ 0, the "positive side" of the 

swallowtail. For W2 = 0 we can solve (6.3a) exactly for the complex 

saddles S as a function of W1 ' and we sketch their trajectories in 

fig.6.5a. The identity of the saddles where they coalesce is ambiguous, 

but for s~all W2 > 0 and small OWl = Wl - (W3/2)2 we can expand ~1 about 

the complex double saddle to give 

Note that the complex saddles satisfy 83 = 81* and 84 = 82*, and because 

(6.3a) has no cubic term E8 ' s = 0 -> Re 81 = -Re 82. Expanding ~1 

about the real double saddle gives 

8 ~ -w2 ± I w2 2 - 4W1W3 
2W3 

We have removed the complex double root (and hence the ambiguity there) 

only, as sketched in fig.6.Sb. 

It is easy to deduce the local form of ~(x) about its saddles for 

W2 = 0, and from this plus the asymptotic behaviour to deduce the overall 

I i~(x) I -1m ~(x) topography of e = e • Then by continuity we can deduce 

the topography for W2 > O. To apply the method of steepest descents we 

distort the integration contour in the finite x plane to lie along lines 

of steepest descent from saddles of lei~l, using whichever of the 4 



('rI, (0) 

(Wl:O) ~.N; 

o 1 real double saddle & 2 complex double saddles 

(w, ... "'00) 

(b) Small W2 > 0 Only real double saddle remains 

Figure 6.5 Trajectories of 'Saddles of <j>(x) 

-+ denotes motion as W1 increases 

® denotes double saddle 
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saddles prove necessary. Then the saddles used will give local maxima 

of lei¢l, so that their neighbourhoods give the dominant contribution to 

the integ~al. We must not, of course, distort a contour through any 

singularity. Then the topography, and necessary contours, for W2 > 0 

are shown in figs.6.6a & b for 0 < W1 < (W
3
/2)2 and W1 > (W3/2)2 

respectively. 

We notice that the saddles in the lower half plane do not contribute 

at alL For small W1 only 81 contributes, giving only one complex ray 

and no chance of any interference. For large Wl' 81 and 82 contribute 

giving 2 complex rays which will interfere and may produce nulls. There 

must be a surface W1 (W2,W3) on which the number of complex rays changes. 

Obviously for W2 = 0, this will occur at the double saddle, so the complex 

whisker is contained in this surface. In a plane W3 = constant we are 

dealing with an integrand which is parametrised by two variables W1 and 

W2 , and locally has two saddles which may coalesce. This is exactly 

analogous to the integrand of the Airy integral function Ai(z) for 

complex z (see Budden (1961)), so we shall borrow the terminology 

applied originally to the asymptotic approximation of the Airy function. 

We shall call the surface on which the number of contributing complex 

rays changes (by one) the "Stokes bifurcation set", SB. Since the 

contribution from 82 comes in discontinuously, it must be subdominant 

i.e. much less than that due to 13 1' so that the representation of the 

lei~(B2)/ei~(B1) I integral is approximately continuous. Then will be 

a minimum on SB, and the line of steepest descents through 13 1 (which 

satisfies Re ~ (13 1 ) = constant) runs down to 13 2 where it turns through 

90°. This it may do equally well in either direction, and it is this 

indeterminacy which allows the contour to change over, as shown in 

fig.6.7a. 

However, near to the real bifurcation set B (see fig.6.6a), 13 2 is 

dominant, not subdominant. Therefore, between Band SB there must be a 

surface on which (31 and 13 2 exchange dominance, which we call the "Anti

Stokes set", AS. Here lei~«(32) I = lei~(131) I => 1m ~(B2) = 1m ~(131) 
and the two saddles are at the same height. For W2 = 0, this equality 

holds for all ~'l1 ~ (W3/2)2, (see fig.6.6b) hence the plane W2 = 0 above 

the complex whisker is part (AS') of AS. This is becau.se the transform

ation W2 ~ -W2 is equivalent to Re(x) + -Re(x) , so the two saddles must 

swap dominance. Similarly the plane W2 = 0 below the complex whisker 

is formally part (SB') of SB (see fig.6.6a). 



.... , 

VI 

HS' ' 

(a) W2 > 0, 

(b) W2 > 0, WI > (W 3/2)2 

I e i<p (x) I and Figure 6.6 Topography of Integration Contour C 

showing level lines and lines of steepest descent through saddles. 

H denotes hills, V denotes valleys. 



Figure 6.7a Integration Contour C on Stokes Bifurcation Set SB 

" .... .... .... 
8 " ~8' 

" ~ - .-'" ..... .... ..... .- .-
------------------~~--~~~-~-=------------------b \J~ o 

Figure 6.7b The Neighbourhood of the Double Saddle 



-------------~~-- -

we can expand ~ about the complex whisker, using the local forms 

of 61 and 62 derived earlier, to give 

M ~ ~ (132) - ~ (6 1 ) :::: 2 (6W1 + i/w3/2 W2) (6W1 + i1W)72 W2) ~ 
2W3 

This shows that locally SB and AS, given respectively by Re ~~ 

1m ~~ = 0, have the joint equations 

as illustrated in fig.6.7b for W3 = 6. 

o and 

For W3 < 0 there are no complex double saddles and always 2 

complex rays above B. Therefore SB and AS must merge into B at W3 o. 
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6.3 Integration by Steepest Descent 

The lines of steepest descent have equation Re ~(x) = constant, 

therefore' if Re ~(Sl) = Re ~(S2) then the two saddles share a common 

line of steepest descent. Then if Re (~(81) - ~(S2» changes sign we 

know that we have crossed SB, which is important computationally. 
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Crossing AS is not. We evaluate the contribution to S of the contributing 

saddles by the uniform approximation methods of Chester et al. (1957) • 

About each isolat.ed saddle at S, we map x onto a new variable u defined 

by 

so that the contribution of the saddle at S is approximately 

1 
i<jl(S) L-_~u2 Ss ::< e e 72TI __ dx du 

du 

where dx/du iU/~l(x). There exists an expansion 

dx/du - m E cmu· 
.... 0 

with radius of convergence not greater than the distance to the nearest 

saddle point, where dx/du diverges. Successively differentiating and 

setting u = 0, x = S gives 

~: = }:2 {I + 4.122 (;:2~ -·4 W + O{U
4)] x = a 

+ odd terms which do not contribute. 

We assume ~2(S) is large enough that the rest of this series is 

negligible compared with the first term. Now the x contour is always 

traversed from left to right, implying 

which 

larg dx/dul < n/2 => Re li/~2(S) > 0 

fixes the ambiguity in the square 

S8 :. ei~ (13) ~ (:_~u2 du = 
72TI "~2(S) J-co 

root. Then 

if the nearest saddle is sufficiently far away. From a table of the 

error function, we find that if we only integrate in u between ±2.58, 

instead of ±~, we introduce 1% error. This is approximately equivalent 

to integrating out a distance 2.58/1~2(S) along the x contour either 

side of S. We require that our integral has converged to sufficient 

accuracy before we hit another saddle point, therefore we require 

(6.5) 
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Note that this is only an order of magnitude estimate: the accuracy can 

be increased by increasing the figure of 2.58 if the results suggest that 

this is necessary. 

When (6.5) fails to hold, the two saddles are so close together 

that they can no longer be treated independently, and ~(x) is locally 

cubic, not quadratic. Therefore in the neighbourhood of the pair of 

saddles we map x onto u by setting 

(The minus sign is chosen to preserve the topography of the integrand, 

and therefore the contour, see fig.6.8). We require (6.6) to be a 

uniformly regular (1::1) transformation => dx/du ~ 0 or 00, where 

(6.6) 

~1 (x) dx/du = -(u2 + Z) (6.7) 

Then the RHS must vanish when the LHS vanishes at x 13 1 or ~2' Let 

us choose 

u = +iZ~ at x = 13 2 
1 

u = -iZ'1 at x = 13 1 

(6.8) 

Substituting in (6.6) gives 

A(W) = ~{cj>(132) + cj>(Sl)} 

Z~(~) [{cj>(3 2) CP(Sl)}3i/4]1/3 (6.9) 

very close to the complex whisker, the local approximation of ~(132)-cj>(S1) 

in section 6.2 gives 

which is just the W plane about the whisker inverted in the origin and 

squashed. Since we have fixed the contour as in fig.6.8 we must choose 

• the cube root to give the saddles in u in the right places relative to 

the contour (see later). 

We can expand dx/du in the form 

Differentiating (6.7) and substituting (6.8) gives 

and 

(6.10) 

The mapping x + u has been chosen so that rotations in the complex plane 

are small, therefore for both these square roots we require 

larg RI < n/2 => Re R > O. 



.... 2. HI 

·Z'f.a. X ~'-

X 
-'.Zt2 

V3 VI 

Figure 6.8 The Uniform Mapping from x to u near the Double Saddle 
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1_ 

Substituting u = :tiZ-z in (6.10) giv.es 

As for isolated saddle~ we shall assume that higher terms in (6.10) 

are negligible. Then after the transformation u ~ -u 

-_ 1 iA(W) LOO

i(U 3/3 + Z(W)u) ( ) du 
S 812 e - e - Po - uq 0 

721T --
= & e iA (!!) {poAi(Z(W» + iqoAi' (Z(~»} (6.11) 

Actually at the double saddle, the formulae for Po and qo are indeterminate. 

Taking the limit, or re-evaluating them from their definition, gives 

As the saddles separate and Z increases, SS12should go smoothly 

into the previous isolated saddle result. Z large and positive should 

give us only the contribution of 61 (see figs.6.B & 6.6a). The 

asymptotic forms of the Airy functions are 

Ai (Z) 'V 1 

27IT 

Ai' (Z) 'V -1 

27IT 

J/ 
• Y+ - 3 Z :: 

Z e 3 

substituting these into (6.11) gives exactly 

as required. Z large and negative should give us contributions from 

both 81 and 82 (see figs.6.B & 6.6b), and substituting 

Ai(Z) 'V 1 
a l/:z 

·'/. - - Z 
Z {e l 

27iT 

Ai I (Z) 'V -1 
27iT 

into (6.10) gives exactly 

2 3/:z 
. +j'Z } + ~e 

:z ~~ 
. + i Z } - ~e 
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again as required. The fact that (6.11) matches smoothly onto the 

isolated saddle results is probably the best justification for neglecting 

the highe~ order terms of (6.10). We only use the Airy approximation 

when the double saddle is far from the caustic, i.e. for fairly large 

W3 > O. The result is probably an asymptotic expansion in W3 (c.f. 

values of Po and qo at the double saddle). Our approximation using only 

the first term of (6.10) seems to give good results where we use it, and 

this is probably because W3 is large. 

Very close to the double saddle we can make a transitional 

approximation by expanding the phase in a Taylor series to third order 

instead of using the mapping (6.6). We will deduce the transitional 

approximation from our uniform approximation, because it is much easier 

to handle analytically than the uniform approximation, and its derivation 

will shed some light on the behaviour of Z(!) , which will assist us to 

take the correct cube root. 

~ 

Let us expand ~(x) about 8 = (8 1 + 82)/2 up to cubic terms, so 

that it is antisymmetric about 8, giving 

Then <P 1 (x) o 

=> 

Putting (6.12) and (6.13) into (6.9) gives 

Z~(!) ~ {-i4>3(S) (82-81)3/ 16 }1/3 

at 

Now 8 will be very close to the double saddle ~ so we can take 

<P3(8) ~ <P 3 (8) = - 4W3 

A (W) = ~ {~ (13 1) + ~ ( 82)} ~ ~ (13 , ~) 

Po ~ (-2/4>3(13»1/3 = 1/( 2W3)l/3 

and if W3 is sufficiently large ~ is negligible. 

Then 

Z~ (~) ~ (iW
3
/4) 1/3 (13

2
-13 1) 

and the u saddles are at 

By choosing n -1 we can put the u saddles at exactly the same angles 

relative to the contour and the double saddle as the x saddles. Then 

(6.12) 

(6.13) 



clearly the way to choose the cube root in (6.9) is such that 

Since we shall only use the Airy approximation close to the double 

saddle, (82-81) will not go significantly outside the first quadrant 

(see fig.6.S), and therefore we just require that 
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-n/12 < arg (iZ~) < n/2 + n/12, i.e. 
1 

-n/2 - n/12 < arg Z~ < n/12. 

Our transitional approximation is 

Let us use this to discuss the behaviour of S in the plane W2 ; 0 near 

the complex whisker, to discover whether there is any analogy to a real 

caustic here. Put WI = (W3/2)2 +~. Then 

81/ 2 = i~ -/+ for ~ < 0 

(see fig.6.Sa) 

iFii.
2 

-/+ ~ for ~ > 0 
V2 V2W3 

8 ; 8 ; ~ giving 

~(i3,W) = i(-&(¥)S/2 + ~(¥)1/2 ) 

and 82-Bl = 2i/-~/2W3 or 2/~/2W3 

=> <B2- (3 1) 2 = 2~/W3 for all ~ giving 

- ~ (W3/2t/~ -t; (W3/2t~ 
S ~ ili e $ e AU-t;/(2W3/3) 

(2W 3)'f3 

For W3 = 6 this becomes 

s ~ 2.68X10-4 e-l.73~ Ai(-~/2.29). 

In fig.6.9 we plot Ai(-~/2.29) to show where we might expect the caustic, 

and e-
1

•
73 t; Ai(-s/2.29) to show that the exponential decay completely 

swamps the Airy function leaving no trace of any amplitude maximum. 
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Figure 6.9 Amplitude through the Complex Whisker 
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6.4 The Swallowtail Diffraction Pattern and its Nulls 

We have now developed all the methods necessary to evaluate 

S(WI,W2,W3), and in figures 6.10 to 6.13 we display a few typical sections. 

The computational details are discussed in the appendix. No serious 

attempt has been made to label the contours because of their complexity. 

Probably the best way to do this would be to use shading techniques as 

in the next chapter. Also a more careful study is needed to resolve 

the detail for W3 < 0, and the results presented really only constitute 

a preliminary survey. Experimental pictures of the swallowtail diffraction 

pattern are provided by Berry (1976), and it also arises in the interaction 

of the elliptic umbilic with a simple line caustic in the "triple junction" 

analysed by Berry & Nye (1977). 

The pattern for W3 = +6, shown in fig.6.10 is very simple. 

Essentially it is a series of light and dark fringes below and parallel 

to the caustic, whose amplitude is maximal on the mirror plane W2 = 0, 

with a rapid decrease of amplitude above the caustic. This is just 

what one would expect from the shape of the caustic. The phase structure 

is more interesting, showing a sequence of nulls in the plane W2 = 0 only. 

Notice that nulls only appear below the caustic and above the complex 

whisker, at WI = 9, as predicted in section 6.2. Four different 

integration algorithms are used in different regions above the caustic, 

and the smoothness. of the phase lines shows how well they match up! 

The phase lines below the caustic are tending to coalesce along the 

dark fringes, as they would do completely in the Airy limit. This 

causes a noticeable difference in the phase structure around the nulls 

in the light and dark regions, which we shall investigate in detail later. 

The pattern for W3 = 0, shown if fig.6.11, is similar to that for 

~-J3 .0: +6, but the fringes are closer together and are tending to have 

maximum amplitude away from W2 = 0, in anticipation of the appearance 

of the cusps of the swallow's taiL (The apparent break-up of the fringes 

along their length is almost certainly a computational artefact). In 

fig.6.11b we plot loge(amp) to show the amplitude in the dark region. 

Since this is very similar for all W31 we only display it in this one 

case. The complex whisker has now merged with the caustic, thereby 

allowing nulls in the dark region very close to the caustic. 

The pattern for W3 = -4, shown in fig.6.12, has become so 

complicated that the contour intervals have been doubled. Well away 

from the caustic we still have simple fringes with maximum amplitude in 
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the direction of the cusps. Around the triangular tail the pattern has 

broken up into an array of spots, with the main peak of amplitude roughly 

in the middle. We now have nulls outside W2 = O. We know that these 

must occur, because asymptotically the pattern around the cusps must 

tend to the canonical cusp pattern, which has a single row of nulls 

outside the caustic, and a triangular array of null pairs inside the 

caustic. 

By W3 = -8, shown in fig.6.13, the complexity inside the tail has 

increased immensely and there is a vast array of nulls below the caustic. 

However, the pattern around the cusps is nothing like the canonical 

patterns of the previous chapter. Therefore we expect to have to go a 

lot furtl1er on this side- of the swallowtail to "fully unfold" the 

diffraction pattern. This approach to the asymptotic form is something 

which needs to be studied. 

The main effect of decreasing W3 is that the diffraction pattern 

shrinks toward the caustic. This is simply because the curvature of 

the caustic is increasing, so that the rays tend to meet at larger 

angles. Consequently the null lines tend to move closer together as W3 

decreases. Although stationary phase methods appear to give the positions 

of the nulls quite accurately, their actual connectivity has not yet been 

investigated. However, the local structure of the nulls is easy to 

examine by the perturbative methods introduced in section 5.2. Let us 

consider only nulls close to the WI axis in the plane W3 = O. Then the 

SPPs are the roots of 

W2 = 0 gives 

1/4 in7r/2 
x = (-WI) e = Xo 

Then ~(x/Wl,W2/0) ~ ~(xO,WI'O,O) + W2~(XO,WI'O,O) 
aW2 

= 4WIxO/5 + W2X02/2 from ~6.2) 

and ~2(xO,\'lI'O,O) = 4xo 3 from (6.3b) 

For WI < 0 we have Xo = ±(_WI)1/4, ±i(-Wl)1/4. Ignoring the two 

complex saddles, we have 

- 5/4 1/2 
~ ~ +!(-\'l!> + !!2 (-WI) 

5 2 

and ~2 ~ ±4(-WI) 
3/4 

(6.14) 



and lsi appears to be independent of W2 to first order. This is one of 

the cases when the variation of the amplitude of the rays is important, 

since both rays are "in phase" with respect to W2 variation. More 

accurately 
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(j>2(xO,WI,O,O) + 6x(WZ)(j>3(xO,WI'O,O~ + Wz~(xO,Wl'O,O) 
awz 

+ 0 (WZZ) 

4x03 + OX(W2) 12xoz + Wz + O(Wz z ) 

For small WZ, let us expand x about Xo as x = Xo + W2a + O(W2Z). If we 

avoid the neighbourhood of the caustic where Xo ~ 0, then equating 

coefficients in (6.14) gives 

so that 

~2(x,Wl,W2'0) = 4x03 - 2W2 + O(W2 2) 

(j>2~ =.J 1 3 (1 +~) + O(Wz
2

) 
4xO 4xO 

and 

For Xo = ±(_Wl)1/4, 

giving 

S ~ eiW2(-\'l1)~/2{cos{rr/4-4(-wd/"/5l + _W-,-,,2;..;;i;.,..,.. sin{rr/4-4 (-w I t"/5l}(6. 15) 
(-WI )3/a 4 (-WI ).4-

irr/4 1/4 
For WI > 0 we have Xo = ±e WI , + -irr/4 1/4 

_e WI . 

section 6.2 that the contributing saddles are 

Then for W2 > 0 

and 

~ 4ei3rr/4WI5/4/5 

~ 4ei7T/ 4WI 5/ 4/5 

+ 

+ 

irr/4 1/4 
= e WI 

We know from 

Since now W2 affects the two rays differently it should be 

sufficient to use the value of (j>2 at SlO and SZO' viz. 



J¢2 (~IO) = 

i1T/8 
e and j¢2 (~20) = 

-i1T /8 
e 

where we have chosen the square roots to lie in the right hand half 

plane as prescribed in section 6.2. Then 
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S'" 1 [ei1T/8ei{(-1+i)S~W~-iW2WI~/2}+e-i1T/8ei{(1+i)5'~wi"+iW2WI~/2}} 
2WI'/, 

=> 

e-shW?'t(COS(1f/8_S'~W?) + i~WI~Sin(1f/8-~W('<t) J (6.16) 
WIlla 2 

In the bright region nulls occur at 

S"/~ 
cos(1T/4 - 4(-WI) IS) 

WI = -{S1T(n-1/4)/4}4/S 

o 

Expand WI about WI as WI = WI + y. 
n . n 

n 1/4 
Then cos(-) '" -(-1) (-Wl) y, 

n 

and to first order in y and W2, the term in braces in (6.1S) is 

n '4 = i(-l) (-WI) {W2/4(-WI ) + iy} 
n n 

This is a conical null of the form x + iy stretched by S = 4(-WI ) 
n 

along the W2 axis, whose phase increases when encircled in a positive 

sense. 

In the dark region nulls occur at 

cos(1f/8 - 4W:/-f./SI2) == 0 W2 = 0 

=> WI = {SI:21f(n-3/8)/4}4/S - t-J I n 

Expanding about tAll 
n 

to first order, the term in braces in (6.16) is 

n '( .. [ 
(-1) ~ y + 

'- J. V ... This is a conical null stretched by 8 = v2/WI n along the W2 axis, whose 

phase decreases when encircled in a positive sense. We calculate a few 

values of WIn and 8: 

Bright region Dark region 

n W n B W n B 

1 -2.37 9 .. 49 2.71 1.10 

2 -4.67 18.69 S.81 0.91 

3 -6.71 26.84 8.S3 0.83 

4 -8.60 34.40 11.04 0.78 
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Comparison with fig.6.11 shows that the positions of the nulls are 

given very well. The dark region nulls are not much distorted from 

conical nulls. However, the bright region nulls are squashed by a large 

factor in the vertical direction, so that the phase saddle point becomes 

very close to the actual nUll. This explains the structures we see in 

fig.6.11. The distortion of both sets of nulls increases away from the 

bifurcation set. The shape of the nulls depends on the way the 

amplitudes of the two interfering rays vary with W2. In the bright 

region the amplitudes vary very slowly with W2 through the factor 1/~, 

and hence the null is elongated in the W2 direction. But in the dark 

region the amplitude varies exponentially with W2 through the factor 

exp(-Im~). This is comparable with the variation with W2 through 

exp(iRe~), so that the nulls are not greatly distorted, and arises 

because the rays are complex. 
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APPENDIX 

A6.1 Computational Details 

The' behaviour of the integral for W3 ? 0 and for W3 < 0 is 

sufficiently different that it is best to treat the two cases separately. 

For 'i'J3 ? 0 there may be one or two complex rays above the caustic, and 

two real rays below, while for W3 < 0 there are always two complex rays 

above the caustic, but there may be two or four real rays below. We 

shall consider W3 ? 0 first, and examine the behaviour of 

for W2 ? 0, which is sketched in fig.A6.1.1. 

As we decrease WI a pair of real SPPs appear and separate. Starting 

in the dark region, we must use the various steepest descent formulae 

until the amplitude has increased to a reasonable value (of 0.01). We 

start with W2 = 0, WI = max. (and assume we are above the complex whisker, 

i.e. WI > (W3/2)2) and compute SI and S2 from the simple quadratic formula. 

We then successively decrease WI and compute the new SI and S2 by Newtonls 

iteration from the previous values. Once we have crossed SB we only 

compute SI' At the top of each WI scan we save the values of Sl and B2 

to use as initial values for the next WI scan. At each point we check 

the convergence condition (6.5) for both saddles, and if either fails 

we use the uniform Airy approximation, otherwise we use the isolated 

saddle formulae. We check whether we have crossed SB, and if so we use 

only SI' otherwise we use SI andSZ' On leaving the Airy region we know 

that we have crossed SB, and we also check whether we have crossed SB 

horizontally at the start of a WI scan. The integration methods used 

in different regions are summarised in fig.A6.1.2. At the double saddle 

(on the complex whisker) we must use the special Airy formula, and reset 

SI and S2'afterwards to preserve their identity correctly. Ai(Z) and 

Ail (Z) are computed from their convergent series expansions. 

When the amplitude has reached 0.01 on each WI scan we switch to 

the normal quadrature plus asymptotic series method. We compute the 

position of the minimum of $1' i.e. the single real root of 

using the standard formulae for the roots of a cubic: call it x . • 
m~n 

This is'where the pair of real SPPs will appear as we cross the caustic. 

We set our initial cutoffs A and B such that on the caustic 



Figure A6.1.1 ~l for W3 > 0 

Figure A6.1.2 The Four Integration Regions 



~I(A) ~ ~I(B) ~ C1 by making a quadratic approximation to ~I' giving 

x . mJ.n 
+ j C1 
-~3(x . } 

mJ.n 

We can compute the value of WI on the bifurcation set using (6.3a) 

151 

(or (6.4a», and then step the cutoffs out for convergence as usual (see 

appendix AS.1) in a dummy run. We then use these cutoffs in the dark 

region for continuity through the caustic, stepping out as necessary 

below the caustic. 

For W3 < 0, ~I is more complicated, as shown in fig.A6.1.3. In 

the dark region we use the two saddle formula until the amplitude ~ 0.01, 

as for W3 ~ O. We compute the positions of the minima of ~I as above. 

If there is only one we proceed as for W3 ~ O. If there are three we 

call their maximum and minimum values x and x. respectively, and max mJ.n 
find the initial cutoffs around x. as before. We define BIF as 

mJ.n 

BIF ; x~ax + W3 X!ax + W2X
max 

which is the value of WI at which we encounter the second (higher) 

minimum of ~I' i.e. cross the caustic for the second time. When 

WI - BIF ~ Cl we set A ; x and step out from there as necessary so 
max 

as to be outside the new SPPs. For very small values of W2' A will jump 

outside the second minimum immediately, and in particular when W2 ; a 
and ¢I is symmetrical, the cutoffs will be forced to be symmetrical. 

A Chebyschev integration routine was used. This was satisfactory 

for W3 <:- 0, but for \'J3 < a it was necessary to split up the range of 

integration in a fairly arbitrary manner to achieve convergence. It 

would be much better to use the quadrature routine discussed in appendix 

A7.1. For an error in each series of less than 0.005, the asymptotic 

forms in section 4.5 give the cutoffs as ±1.89, and the magnitudes of 

the first 3 terms of the series as 

0.08, 0.013 and 0;005 

In practice it was found satisfactory to use Cl ; 5, 'and require the 

second and third terms to be less than 0.05 and 0.005 respectively. 

This low series accuracy was used to keep the cutoffs as close together 

as possible to try to avoid spurious convergence of the quadrature. 

With a better quadrature routine the series error could be decreased. 
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Figure A6.1.3 ~l for W3 < 0 
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We plot the caustic as a dashed line using the parametric equations 

(6.4). The arc length s is given by 

therefore we find the coordinates of the ends of the dashes from 

sUbstituted into (6.4) . For W3 > 0 there is no problem. For W3 0 

the formula diverges at x = o. But then dW2 = ds 

=> (W2) 1 -4x 3 = OS => xl = _(Os/4)1/3 
1 

which we use to start the iteration. For W3 < 0 the formula diverges 

at the cusps at x 2 

xn+l = -1-w3/6 . At the cusp 

ds/dW2 = ±/l - W3/6 

so we take 

after the cusp. But 

OW2 = -4(3x + ox)ox2 

(exactly) at the cusp, giving 

Equating these two expressions 

ox '" -j oS 
12/(W3/6- 1)W3/6 

When x 1 becomes < -1-w3/6 we set 
n+ 

for oW2 gives 

which we use for the first step after the cusp. 

(Wl,-W2) to give the whole caustic. 
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CHAPTER 7 

THE ELLIPTIC UMBILIC DIFFRACTION PATTERN 

7.1 The Canonical Integral and Caustic 

In this chapter we study the double integral 

E(W' W W) - 1 ff-d d iq,(x,y,Wl, v1 Z,W3) 1, 2, 3 - _. x. y e 
21T 

-00 

We now have a two-dimensional state space, hence the double integral. 

It has a number of interesting analytical properties which we shall 

consider first. The transformation y ~ -y shows that 

and the transformation x ~ -x, y ~ -y shows that 

Therefore E(Wl,WZ,O) is pure real, which implies that generically zeros 

of E in the plane W3 = a will occur as lines, whereas the zeros in any 

other plane will be points. Therefore we expect the null lines of E to 

be a set of twisted space curves plus a set of plane curves lying in 

the singular plane W3 = o. 

If we rotate the Wl,WZ axes through an angle 8, then by rotating 

the xy axes through the same angle we can regain the original integral 

if 8 = ±21T/3. Therefore E has a triad rotation axis along W3' plus 

three mirror planes in the plane Wz = 0 and its symmetry relatives. So 

we only need to compute E in a 60° sector with W3 ~ O. The caustic 

must display at least as high a symmetry as the wavefunction. It is 

given by the ray equations 

Clcj>/Clx = 3xz _ 3yZ - 2W3x WI a ] Clcj>/oy -6xy 2W3Y Wz a 

plus the coalescence condition 

= 0 

(c.f. eqns. (4.4». We can conveniently satisfy (7.4) by parametrising 

(7. 1) 

(7.2) 

(7.3) 

(7.4) 



x and y as 

x == -!3 cos 8 , 
3 

Then (7.3) gives 

WI !3 2
(COS 28 

3 
+ 

W2 !32 (-sin 28 + 
3 

y = -!3 sin 8 
3 

2cos 8) 

2sin 8) 
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(7.5) 

with which we can easily plot sections W3 = constant through the caustic, 

as in fig.7.1a. Each of these sections is the well known hypocycloid 

of three cusps, which is the locus of a point on the circumference of 

a circle which rolls around the inside of a circle having three times 

its radius. e is the angle through which the centre of the moving circle 

has moved relative to the centre of the fixed circle. Fig.7.1b shows 

a sketch of the whole caustic. There are four real rays inside the 

caustic and two outside. Therefore there is no dark region, and we may 

expect nulls to occur anywhere (unlike the swallowtail). 

The elliptic umbilic integral is closely related to the hyperbolic 

umbilic integral (from chapter 4): 

{rOO i (x3 + y3 + \'13xy - WIX - W2Y) 
H(WI,W2,W3) :: 21TT JJ-.:x dy e 

since if we rotate the xy axes through -TT/4 and rescale them thus 

x ~ 21/ 6 (x - y)/1:2 

y ~ 21/ 6 (x + y)/1:2 

we find 

] 

The only essential difference between the elliptic and hyperbolic 

integrals is the sign of the y2 terms (as implied by their names!). 

Now by expanding the cross term in (7.6) as 

we may write (7.6) as 

(7.6) 

(7.7) 



w. 

Figure 7.1a W3 = constant section through the Caustic 

Figure 7.1b The Elliptic Umbilic Caustic 
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- 2nn~ (-iW3)n_1_ r::(iX)ne i(X
3

-W I X) _1_f::(iy)nei(y3-W2Y) 

n! 2n -00 2n -00 

... ·i n .(n) .(n) 
= ~F.o (-i~~ W3) Al. C~IB AJ. C~~) 

where Ai (z) _l_f.;t e i (t 3/3 + 
2n __ 

zt) 
is the Airy integral function, 

and Ai (n) _ dnAi(z). Thus we have a convergent series expansion for 
dzn 

H (see Connor (1973)), and the singular section W3 

particularly simple form 

o takes the 

(7.8) 

Berry conjectured that a similar simple form should exist for the elliptic 

umbilic. To show that it does we must cast (7.1) into "pseudo-hyperbolic" 

form by changing the sign of y2 relative to x 2 . We wish to rotate the 

x and y contours by making the transformation 

x -+ ax and 

such that x 3 -+ x 3 

a = 1, B 

or a = e 
±i2n/3 

Examination of 

y -+ By 

and xy2 -+ -xy2. Then either 

±i 

B = e±in/6 

ix 3 
Ie I shows that asymptotically the x-contour Cx 

may only lie in the three sectors labelled (1), (2) & (3) in fig.7.2. 

Thus the real axis is equivalent to C21 or C23 + C31. When x lies 

asymptotically anywhere in one of its allowed sectors, the sectors of 

the y plane shown hatched in fig.7.3 are forbidden to the y-contour Cy, 

I 
-ixy2 

because e I would diverge. We cannot make the same rotation of Cy 

(7.9a) 

(7.9b) 

in sectors (1) & (2~ i.e. along the whole of C21' and therefore we cannot 
in/6 

make the simpler transformation (7.9a). But we can use B = e 
i2n/3 -iTI/6 

everywhere along C23 = -e C21' and B = e everywhere along 

C31 = _e-
i2n

/
3
C21' which is precisely transformation (7.9b). Therefore 

" in/6 -in/6 
we dJ.stort Cx J.nto C23 + C31' and put y = e Y on C2 3 and y = e Y 

. i2n/3 -i2n/3 . 
on C31. Then uSJ.ng C23 = -e C21 and C31 = -e C21 and replacJ.ng 



Figure 7.2 Integration Contour in the x-Plane 

Figure 7.3 Sectors of the y-Plane 
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Now we can rotate the XY axes through +n/4 by applying the inverse 

of (7.7) to give 

+ 

where VI = 
2 

2-2/3 ( i2n/3 \vI e ± W2 e in/6) 

and V3 - i/3 in/3 
e W3 

'13 
If we define Z = (WI + iW2)/12 and U 

:!/3 " '"/3 
(2/3) e

b 
W3 

then using (7.8) we have 

+ e in / 6 (-iU*) n Ai (n) (-e -i2n/3Z ) 

n! 

(7.10) 

Ai (n) (_e- i2TI / 3z*) ] 

This series is useful for checking values of E for small W3' where 

asymptotic stationary phase approximations are not accurate. In particular 

2 2/3 { -in/6 A" ( i2n/3) A" ( i2n/3 *) E(WI,W2'0) = ("'3) n e ~ -e Z ~ -e Z 

i1T/6 A" ( -i2n/3) A" ( -i21T/3 *)} + e ~ -e Z ~ -e Z 

and using the formula 

Ai (e±i2n/3z ) = ~e±in/3{Ai(z) + iBi(z)} 

(see Abramowitz & Stegun, p446) this simplifies to 

which is the analogue of the result for H. This formula is also quoted 

without derivation by Trinkaus & Drepper (1977) who presumably used it 

in their computation.of E(Wl,W2'O). It is only really suitable near 

(7.11) 

(7.12) 

the origin where the series for Ai and Bi converge rapidly, and Trinkaus 

& Drepper only compute such a small region. 

It is not obvious that (7.12) has the required 3-fold symmetry. 

A rotation in the WIW2 plane is equivalent to the same rotation in the 

complex Z plane. Using (7.11) plus its analogue 

Bi(e±i21T/3z ) = ~e~in/6{3Ai(z) ± iBi(z)} 

one can show that 
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{Ai(z) Bi*(z) + Ai*(z) Bi(z) }/2 

_ {Ai(z) Bi*(z) + Ai (e
i2TI

/ 3z) Bi*(ei2TI / 3z) + Ai (e- i2TI / 3z) Bi*(e-i2TI / 3z)}/3 

The first form clearly shows the symmetry under z ~ z*, the second the 

rotation symmetry. In passing we notice that we have evaluated the 

non-trivial Fourier integral 

_1 1: Ai(a -
2TI 

-00 

2) ibx x e 

and its simpler companion 

100 2) ibx 
_1_ dx Ai(a + x e = 
2TI _op 

Putting the asymptotic forms for the Airy functions in (7.11) gives 

a simple analytical expression for E(Wl,W2,O) well away from the origin. 

This shows an overall decrease of amplitude as 1/1; where r is the 

distance from the origin, and gives an explicit equation for the null 

lines, which agrees well with the computations. On the axis the series 

(7.10) gives 

(Note that W3 2 does not contribute). In particular 

E(O,O,O) = (2/3)2/3I3n(Ai(O»2 = f(l/6) ~ 0.5234 
60frr 

and E(O,O,1) ~ O.56e-iO.12TI 

both of which agree well with ~omputations, and show that the maximum 

amplitude does not occur at the origin. 



7.2 Computational Method and Results 

We notice that the highest power of y in (7.1) is quadratic, 

therefore,we can perform t~e y integration analytically. After making 
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the transformation x ~ x - W3/3 to simplify the coefficient of y2 we have 

i (Wl-4W32 /9) W3/3 fd- {(do" -i (3xy2 +W2Y)) i{x3-2W3X2- (WI-W3 2) x} E=e x ye e 
2TT ___ 

-ixy2 
Consideration of Ie I (see fig.7.3) shows that we can rotate the y 

contour through -TT/4 when x > 0 i.e. in sector (1) of fig.7.2, and 

through +TT/4 when x < 0 i.e. in sector (2) of fig.7.2. We cannot make 

the same rotation of the y contour for all x, therefore we must split 

the x integral into two halves, and use 

to give 

E 

This can also be written as 

. 14k d i{xL2t~3xL (t~1-W32) X+W22 /12x} 
-~TT x e 

e Ix '_I ~ 
21 ""'"I::....... ..., 

~c......t:, 

E 

(see fig.7.2) where x has a branch cut from the origin, somewhere in 

the upper half plane. For computation we use (7.13), and remove the 

integrable singularity at the origin by putting x ~ x 2 , x ~ -x2 

respectively 

~-i>/4f.: ei~-(xrJ 
o (7.14) 

(7.15) 

These two integrals are computed by the methods of chapter 4, and the 

details are discussed in appendix A7 .1. We primarily compute sections 

W3 = constant in the quadrant with WI & W2 ~ O. The 600 sector bounded 

by the WI axis is sufficient to generate the whole WIW2 pattern from 

the symmetry, leaving a redundant 300 sector. Because this redundant 

sector is computed independently it provides an excellent check on the 

computation. 
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Fig.7.4 shows contours of amplitude in the singular section W3 = o. 
The phase is not interesting since E is real. Figs.7.S to 7.7 show 

contours ?f amplitude and phase for W3 = 2, 4 & 6, and fig.7.8 shows 

simulations of the appearance of the optical diffraction pattern. These 

were produced by shading the contour plots so that black represents low 

intensity and white represents high intensity. The 60° sectors were 

then photographically reproduced, stuck together and rephotographed to 

create the whole pattern. These simulations are much more informative 

than attempts to label the contours. 

The central region of fig.7.4 agrees with that displayed by 

Trinkaus & Drepper (1977). The caustic is a point at the origin, 

surrounded by a central triangular star shaped amplitude maximum. 

Around this are a sequence of fringes having maximum amplitude along 

the WI axis and its symmetry relatives, and the overall decrease of 

amplitude as 1/1r mentioned earlier is clearly visible. Along each dark 

fringe is an actual zero of amplitude. 

As W3 increases the caustic expands and the pattern inside it 

breaks up 'into bright spots and becomes rapidly more complex. The phase 

plots show that the line nulls have gone leaving only isolated point nulls, 

where the thick and thin lines cross. The dark fringes outside the 

caustic no longer contain line zeros. The detailed structure of the 

elliptic umbilic diffraction pattern was first studied by Prof.J.F.Nye 

in an optical experiment. This is described by Berry, Nye & Wright (1978) 

who compare the experimental photographs with the computer simulations 

presented here. The most striking feature of the diffraction pattern 

is the dark hexagonal rings, clearly visible on the W3 = 4,5 & 6 

simulations. Among these rings are many groups of three black dots 

which look like the vestiges of hexagonal rings. The hexagons and 

vestiges of hexagons appear to lie on a close packed lattice, especially 

near to the centre. Observing this pattern unfolding under the microscope 

led Nye to postulate that the underlying structure of the elliptic umbilic 

diffraction pattern within the caustic was a hexagonal close packed 

lattice of puckered hexagonal null loops. He suggested that the lattice 

planes were slightly curved, to explain the change of structure away 

from the centre. Now it must be remembered that what one sees as dark 

regions on the experimental photographs and on the simulations are not 

points of zero amplitude, but regions where the amplitude is less than 

some particular small value (0.05 for the simulations). Therefore 
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Figure 7.8a Simulated Diffraction Pattern at W3 0 

(singular section) 



Figure 7 . 8b Simulated Diffraction Pattern at H3 = 1 

Figure 7 . Bc Simulated Diffraction Pattern at W3 = 2 



Figure 7.8d Simulated Diffraction Pattern at W3 3 

Figure 7.8e Simulated Diffraction Pattern at W3 = 4 



Figure 7 . 8f Simulated Diffraction Pattern at W3 5 

Figure 7 . 8g Simulated Diffraction Pattern at W3 = 6 



one should imagine the null lines surrounded by a low amplitude "black 

sausage". So we have a slightly distorted lattice of hexagonally 

puckered ?lack sausages, and depending on the precise section one takes 

through these they may appear as full hexagonal rings or as three dots. 

As we go to increasing W3, the pattern in the cusps must approach 

the canonical cusp pattern, with its null pairs inside the caustic. 

Therefore Nye suggested that the distortion of the lattice becomes so 

large that neighbouring null loops link up into a "hairpin" whose arms 

are distorted helices. The amplitude of these helices would decrease 

with increasing W3. Similarly we expect a single row of null lines 

running up outside the caustic for large W3. 
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The following theoretical analysis confirms these hypotheses, and 

provides details of the null lines too fine to determine experimentally. 

The gross structure of the diffraction pattern is a superposition of 

the three sets of Airy fringes due to the three branches of the caustic, 

plus the closely spaced fringes running roughly perpendicular to the 

caustic. ~t is the effect of these closely spaced fringes which turn 

the triangular symmetry into approximate hexagonal symmetry near the 

centre. Nye's detailed analysis of this symmetry and other details 

are described by Berry, Nye & Wright (1978). 
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7.3 Null Lines inside the Caustic 

We shall evaluate (7.1) by two-dimensional stationary phase using 

the formula 

(7.16) 

where (xi'Yi) is a SPP satisfying 

and the Hessian 

H4> 4>XX 4>yy 

Ki 1 if H < 0 (saddle) 

+i if H > 0 and <Pxx > 0 and <Pyy > 0 (minimum) 

-i if H > 0 and <Pxx < 0 and <Pyy < 0 (maximum) 
, 

The formula (7.16) is derived by expanding <P about its SPPs up to second 

order and diagonalizing the resulting quadratic form. For W2 = 0 we can 

easily solve the ray equations (7.3) to give the SPPs: 

x = ~v 3 ± Iw 3 2 + 3w 1 
3 

y = 0 

(7.17) 

We only consider -W32/3 < WI < W3 2 , so the square roots are always real. 

We consider the simplest case first, which is near the W3 axis 

with WI and W2 both «W3. We use the SPPs (xo'Yo) and Hessian as on the 

W3 axis, and find the phase from 

as described in chapter 5, to give 

E (W) '" 

This approximation still has the correct symmetry. Actually on the axis 

which has maxima and minima at 
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respectively, but no nulls. 

To analyze (7.18) further let us define 

Then 
i (VI/3-V3) [-iVI ]; F(Y) = e e + 2cos~ - • 

T3 13 

We have effectively mapped our original wave fronts into equally spaced 

plane wavefronts. The function F not only has the rotation and reflection 

symmetry of E, but it also has translation symmetry with a period of, 

3x2rr in VI' /:3x2rr in V2 and 2rr in V3. We can therefore define lattice 

vectors ~I' ~, ~3 respectively. Then F is also invariant under a 

translation of (~l + ~) /2 and ± (~I + ~3)/3. Therefore the "plane wave

function" F has the translation symmetry of a cubic close packed lattice. 

The space-group symmetry may be represented by placing a triangular 

motif, with no mirror plane perpendicular to the W3 axis, at each lattice 

point (e.g. fig.7.1~ where the + and - have no significance at this 

stage other than that of being different). 

The null lines F = o satisfy 

cos VI + 2cos V2 /13 = 13 sin (V I /3 - V3) ] - sin VI 13 cos(VI/3 V3) 

The solution of these equations has the symmetry of F plus rotation 

diads along VI = 0, V3 = ±rr/2 and their symmetry relatives (these diads 

take F into -F*). Equation (7.19b) shows that a necessary condition 

on the null lines is that their projections onto the VIV3 plane lie on 

the curves 

This curve must lie within isolated bands, and is easily sketched as 

(7.19a) 

(7.19b) 

(7.20) 

in fig.7.9. Similarly we can find a necessary condition on the projection 

onto the V1V2 plane by squaring and adding (7.19a) and (7.19b) to give 

(7.21) 

This curve again lies within isolated bands, at the edges of which 

(7.22) 
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Using (7.21) and its known symmetry we can easily sketch the VIV2 

projection in fig.7.10. We expect hexagonal loops, but in fact they 

look more like circles. This is because the radius of the loop along 
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VI is 2rr/3 :::: 2.09, and along V2 is 2.07 from (7.22). These radii only 

differ by 1%, therefore the loops project into circles with a very slight 

hexagonal distortion which is hardly observable. 

The loops can only have the required symmetry if they are centred 

on portions of fig.7.9 having negative slope, as indicated by the thicker 

line. Then the heights at the ends of the VIV3 projection are the same 

as the heights of the maximum and minimum, since sin(±2rr/3) :::: 

sin(±(cosrr/3)2rr/3). This agrees with establishing the correspondence 

of the different branches of (7.20) and (7.21) by substituting back in 

(7.19). Eqn. (7.20) gives the total depth of the loops as rr/9, so that 

their depth/spacing:::: 1/18 and they do not occupy a great deal of space. 

On fig.7.10 we indicate the whole configuration by showing the fractional 

heights of the centres of the loops within the unit cell, and the 

puckering by ± signs to indicate heights of ±rr/18 relative to the centre 

of the loop. 

The shape of the loops is given approximately in circular polar 

coordinates (r,6) by the equations 

r :::: 2rr/3, V3 :::: -rr/2 - (rr/18)sin 36 

as shown in fig.7.12, where VI:::: r sin 6. Then 

-rr/2 - rrO sin a 4 sin 3 a}/18 

exactiy 

-rr/2 - 0.250 VI + 0.076 VI 3 

This is a "best" cubic approximation to (7.20), since it is exact at 3 

points, effectively. In fact, the expansion of (7.20) up to third order 

is 

V3 :::: -rr/2 - 0.244 VI + 0.064 VI 3 • 

The VIV3 projection of the null loops is a 3::1 Lissajou. figure! 

The null loops encircling the W3 axis, one of which we take as 

the origin of our lattice, occur at V3 :::: 2nrr rr/2. We saw earlier 

that axial maxima/minima of amplitude occur at V3 = 2nrr ± rr/2. Therefore 

along the centre of any column of null loops the amplitude is minimal 

at the centre of a loop and maximal half way between loops. When we map 

our approximate solution back to real ~ space we lose all the translation 



symmetry. The spacing of the lattice planes in which the null lines 

lie (the null planes) decreases as 1/W3 2 and the scale of the pattern 

within such a plane decreases as 1/W3' so the translation symmetry 

within these planes remains. However, the diffraction pattern is well 

described in terms of the distorted lattice in real space, and near the 

W3 axis for large W3 the lattice is locally not much distorted. 

The hexagonal appearance of the black sausages is due to the 

hexagonal symmetry of their stacking, and the fact that the interstices 
/' . 
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in the lattice are filled by bright blobs which push in the sides of the 

black sausages. This effect is clearly shown in figs.7.11a,b,c, where 

we plot contours of some interesting sections of F(V) in the same unit 

cell as shown in fig.7.10. Fig.7.11a is a plane through the middle of 

a null plane. The contour at amplitude 0.1 shows a set of 6 black spots, 

but the contour at 0.2 shows a hexagonal ring. The contours inside this 

ring are nearly circular, but those outside are constrained by the 

surrounding 6 bright spots to adopt a hexagonal shape, point-to-point 

with neighbouring hexagons in the lattice. Fig.7.llb is a plane touching 

the top of a null loop to give 3 isolated dark spots. The amplitude 

contours do not link up into a hexagonal ring until 0.4. Fig.7.11c is 

a plane half way between two sets of null loops, showing clear~y the 

large hexagonal "interstitial" maximum of amplitude. Vestiges of the 

null loops above and below the plane remain at the points where they 

are closest together, as the set of low amplitude spots with a rectangular 

shape. They do not contain a zero. 

Armed with this information, we can check the agreement of our 

"axial" theory of puckered null loops with the actual computed diffraction 

patterns. We calculate where in a unit V3 repeat the planes W3 = 3,4,5,6 

occur, and plot this along with the positions of the sets of null loops 

schematically in fig.7.13a. Then in fig.7.l3b we sketch what we expect 

the darkest regions of the central diffraction patterns to look like, 

mapped back into ~ space. W3 = 3,4 & 5 give us transition p~tterns 

similar to fig .. 7.1lc, and W3 = 6 gives full black rings as in fig.7.1la. 

These sketches coinpare very well with the simulations in fig.7.8 near 

the centre, but the agreement deteriorates away from the. centre due to 

the curvature of the "real" lattice pl9-nes. 

What this "axial" approximation does not tell us is how many null 

loops there are in any particular "plane". To find this we can expand 

about the fold caustic at WI = -W32/3, W2 = 0 by putting WI = .-W32/3 + O. 
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Then our standard methods give 

+ }Y!stSin(lT/4 

The first term represents the closely spaced fringes perpendicular to 

the caustic, which pass straight through the caustic. The second term 

represents the wider Airy fringes inside the caustic, and does not 

contribute outside. The first term perturbs the Airy fringes and breaks 

them up into null loops. Then we expect the rows of loops to be centred 

on 

sin (IT/4 + 2 (0/3)3/4) = 0 => 0 

The centre of the pattern occurs at 0 = W32/3, therefore the number of 

rows of null loops up to and including the centre is 

3 N = Int{1/4 + (W3/3) 2/n} 

A dark Airy fringe crosses the centre if 

W3 3{(N - 1/4)lT/2}1/3 

4W33/27 = 2Nn - n/2 

which is exactly the condition for a null loop to encircle the W3 axis, 

from our axial approximation. This gives us confidence that we can 

reliably relate the number of rows of hexagons to W3' as illustrated 

in fig.7.14. Although it is difficult to count the loops because of the 

curvature of the lattice, it is quite easy to count the rows of loops 

(i.e. Airy fringes), and by comparison with fig.7.14 estimate the W3 

value of particular diffraction patterns. This works reliably on the 

simulations in fig.7.B. 

In order to investigate the distortions of the lattice of null 

loops we neep a more accurate theory. However, this means that we are 

no longer able to solve the problem analytically. We have already, in 

eqn. (7.17), found the SPPs exactly everywhere in the plane W2 = 0, and 

'we can easily write down the exact stationary phase approximation to E 

in this case. For small non-zero W2 we can then perturb this solution 

to give 
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E '" ei(-2W33/27 

2 

- WI W3/ 3) [e -i2 (W3 2 + 3WI t2/27 

I (W3L+3WI) +2W3/\V3i+3WI 

+ WIW3/3 ) cos W2/ (W3 2 - Wl)/3 

h(w/ - WI) 
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where two rays combine to give the cosine term. When expanded about the 

centre and the fold caustic this simplifies to the two previous approximate 

forms. Berry has found the exact zeros of the above expression in the 

case W2 o. We generalize his method to W2 # 0, by defining new variables 

8 

to give 

.: .. !..IW3
2
+3W I' 

W3 
& E,; = w2fV3

2
;Wl 

Since WI = W3 2 (82-1)/3, then for W2 = 0 the fold occurs at 8 = 0, 

the centre at 8 ;::: 1 and the cusp at 8 ;::: 2. The condition for E = 0 is 

i12+8 e +i2Z;;8 3 /3 + 218 cosE,; iZ;;(-2/3 + 282 - 2) 
e ;::: 0 

or U!3 cost; iZ;;(282 - 8/3 - 28 3/3) '!2-+B e ;::: 1.. 2+/3 - v'2-B -i4z;;8 3/3 2-/3 e 

=> 218 cosE,; cosZ;;(28 3/3 - 282 + 8/3) = -12-8 cos4Z;;8 3/3 } (a) 

U!3 cosE,; 
(7.23) 

and sinz;;(28 3/3 - 282 + 8/3) -12+8 - 12-8 sin4z;;S3/3 (b) 

Squaring and adding gives 

(7.24) 

and substituting this in (7.23b) gives 

sinz;; (213 3/3 - 28 2 + 8/3) ;::: -j 8 (~ + cos 2E,;) 
2+8 cost; 

(7.25) 

But by squaring we have introduced a spurious set of solutions. We have 

satisfied (7.23b) but only one set of solutions gives the cosines in 

(7.23a) with the correct signs. They are 

3 fm,1T - (-l)marcsin(~ + cos2 E,; j 13 ~ 
2(/33_3/32+4) l cost; 2+8 d 

and 3 [n1T + (-l)narcsin{2 (Scos2~ - 1) J 
W \ 14 - Si' ~ 

c; ;::: 

(7.26a) 

(7.2Gb) 



where m and n are integers such that m + n is odd if cos~ > 0, and even 

if cos~ < 0, and we require s ~ O. Note that (7.26a) diverges at (3 = 2 

and (7.26?) diverges at S = O. The condition that the arcsines exist is 

the same for both, viz. 

Therefore null lines only exist in the hatched region under the graph 

in fig.7.15. In particular, we see that they may only intersect the 

plane W2 = 0 if S ~ 8/5 = 1.6, a result first found by Berry. Berry's 

method for finding the nulls in the plane W2 0 was to plot the set of 

curves defined by (7.26) by hand. There are two classes of curves: 
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(7.27) 

m even, n odd and m odd, n even. The intersections of all the curves 

within each class give nulls. I programmed the computer to do precisely 

the same thing accurately, and the nulls found are shown on fig.7.16. 

The caustic given by S = 0 and (3 = 2, and the critical curve (3 = 8/5 

are also plotted accurately. Note that the W3 scale is much larger than 

the WI scale in all WIW3 plots. 

The two classes represent the nulls at either end of the loops 

which intersect W2 0, and this pairing is indicated on fig.7.16. The 

nulls nearest to (3 8/5 are unpaired, because once the null line has 

crossed this critical curve it cannot intersect W2 = 0 again. We see 

that the central region near the W3 axis is as we predicted previously, 

and the change of scale with W3 is clearly visible. The distorted lattice 

is indicated by dashed lines, and we see that the "null planes" are 

indeed curved as Nye suggested. 

To check this stationary phase approximation, the exact integral 

for E(WI,0,W3) was computed. The amplitude is shown in fig.7.17a, but 

the phase plot in fig.7.17b most clearly shows the nulls. Those inside 

the caustic agree exactly, as far as one can tell by superposing the 

plots, with fig.7.16, although fig.7.17b becomes rather ambiguous near 

(3 = 8/5. 

Finally we shall solve eqns. (7.26) for the full three-dimensional 

configuration of the null lines near W2 = O. We plot the WIW3 and WIW2 

projections of a particular set of null lines in fig.7.18. This confirms 

all our expectations. The loops have much the same shape everywhere, 

but on a smaller scale as W3 increases. Along a close-packed direction 

(i.e. the righthand set on fig.7.18) the sides of the loops get closer 

together as W3 increases, until outside (3 = 8/5 the loops link up into 
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exactly the hairpin with helical arms postulated by Nye. 

The method of solving (7.26) is the following piecewise 

computatibn. Fig.7.15 shows that solutions with opposite signs of cos~ 

are quite separate. For a particular choice of sign for cos~ the arcsines 

can only have a certain maximum range of values, so that the values of 

~ given by equations (7.26) lie within bands. These intersect to give 

an array of lozenges labelled by (m,n), within which the (S,~) values 

of a particular segment of null line must lie. We can compute the correct 

solutions of the cubics in S, resulting from equating the two ~'s at 

opposite ends of each lozenge, to find the S range encompassed. For 

each of a number of equally spaced B values in the lozenge, we find the 

range of ~ allowed by (7.27), and split this into a number of equally 

spaced values. We have now set up a lattice, at every point of which we 

can evaluate eqns. (7.26). Then we compute the contour along which the 

two s's are equal, and at every coordinate on this contour we interpolate 

the actual value of~. It then only remains to map these (S,~,s) values 

back into ~ space. 

This technique could be applied to rows of nulls further away 

from W2 = 0, and for any values of WIW3 inside the caustic. Then by 

using the symmetry of E, it would be possible to build a fairly complete 

picture of the nulls inside the caustic. 



APPENDIX 

A7.1 Computational Details 

To evaluate (7.15) we must compute two integrals of the form 

f~dx e
it± (x) 

where the phase ~±(x) may diverge at both limits of integration, as x 6 

as x ~ 00 and as 1/x2 as x ~ O. However, it can easily be shown that 

the integral converges. The main contributions to the integrals come 

from the neighbourhoods of the SPPs given, from (7.15), by 

where X±(x) = 6x 5 ~ 8W3X3 - 2(WI-W3 2 )X. 

We need only consider x,WI,WZ,W3 ) O. The behaviour of x±(x) and 

169 

Wz Z/6x 3 is sketched in fig.A7.1. The SPPs are given by the intersections 

of the two curves. For Wz > 0, ~_ always has 1 SPP, and ~+ may have 1 

or 3 SPPs. As WI or W2 increase the SPPs tend to move to larger x, and 

as the caustic is crossed from inside, the pair of SPPs of ~+ at smaller 

x coalesce and disappear. For Wz = 0 the behaviour is slightly different, 

because both ~+ and ~_ have a SPP at x = 0 if WI ~ W3 z . But because the 

SPP is at the lower limit of the integral~ it only contributes half its 

normal value, and the total number of SPPs is conserved. When W3 = 0, 

~+ = ~_ and the two integrals are identical. Otherwise 

so the SPP of 4>_ is always at smaller x than any SPP of ¢+. 

We define cutoffs A±, B± to lie above and below respectively all 

SPPs of ~±, and we define G±(x) by an obvious extension of equation (4.6). 

Then G (00) 
± 

= 0 and G±(O) = 0 unless W2 = 0, when G±(O) diverges. But 

for Wz = 0 the phase does not diverge at the lower limit, 

J: t ih (x) = G± (A±) + dx 
i<j>+(x) 

if Wz e - e -
0 

J.~. 
G±(A±) - G±(B±) + dx 

i<j>+(x) 
if W2 e -

a. 
At x = 0, we only ever compute ¢±(x), and then only when Wz 

the indeterminacy of W22/12x2 by replacing it by 

lim Wzz 
£~o (£+12xZ) 

therefore 

= 0 

t- O 

o. We avoid 
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Computationally we set £ to a negligibly small value to avoid a divide

by-zero error. 
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As W3 increases, the SPPs of ¢+ move to larger x, and those of ¢_ 

move to smaller x. If we tried to use the same cutoffs for both integrals 

their separation would be unnecessarily large leading to inefficient 

quadrature and a likelihood of spurious convergence. Therefore, it is 

imperative to treat the two integrals quite independently. To plot WIW2 

sections, our stepping pattern will be to increase W2 from 0, and for 

each W2 to increase WI from 0 to its maximum. We find the initial A 

cutoffs by solving ¢l±(x) = C1 using Newton's iteration, starting from 

a large value to ensure that we are outside the SPPs at largest x. We 

then step out for convergenc~, and step A± out progressively as we 

increase WI. At the start of each WI scan we save A± to use as starting 

values for the next scan. 

vJhen W2 is very small, fig.A7.1 shows that B± must be very small. 

Then we must examine the convergence of G(x) for small x. From chapter 

4, if the general term of G(x) is an' then 

lanl == I(~\ d~r:II and 

lanl ~ (2n+1)! x (6X2)n+l 
2Il n! W2 z 

=> => (2n+3)6x 2 

wl 
G(x) is clearly an asymptotic series for small x as well as for large 

x. This is because, as explained in chapter 4, the method of producing 

the series G{B) is equivalent to expanding 1/~1(¢) in a Taylor series 

about ~(B). As x + 0, ~ ~ W2
2/12x 2 and 

3/2 
~ ~It(t) 1 

~ 1 (~) 

which clearly has a branch point at the lower limit of integration, 

where 1/~ = O. Therefore we have integrated up to the circle of 

convergence of the series in the integrand, so there is no guarantee 

that the resulting series will converge, and in fact it does not. 

In practice, as for G(A), this does not matter as long as the 

first three terms of G(B) which we use are converging. If we require 

lan+l/anl < 1 for n = 3, this implies x < 0.14 W2 . For W2 = 0 we set 

B = 0 and G(B) is not used. As Wl and W2 increase, B increases. We 

start the first W2 t 0 scan with B = 0.1 W2 and decrease B if necessary 

for convergence. If B becomes ~ 0 we reduce the step-back. If it is 



not necessary to decrease B, we attempt to increase it while retaining 

convergence. This algorithm should maintain B optimal and allow it to 

move up towards A,after the pair of SPPs of ~+ disappear on crossing 

the caustic. At the start of each WI scan we save the values of B to 

initiate the next scan. 

The asymptotic forms for large x in chapter 4 give the magnitudes 

of the first three terms of G(A) as 

0.053, 0.0078 & 0.0025 

for a series error of less than 0.0025. We use I~ll > 20, and require 

the ratio of the second to first terms of G(x) < 0.25 to ensure that G 

is actually converging, rather than just small. We use these figures 

for all four series, so that the total series error should be less than 

0.01. 

To compute the section Wz = 0, we take B = 0 and do not use G(B). 
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A± both increase with increasing WI. Therefore we scan with WI increasing 

to push the cutoffs out as usual. But to find the initial cutoffs for 

each scan we solve ~I±(A±) = C1 using Newton's iteration, starting from 

the values saved from the start of the previous scan. 

In order to provide the contour routine with enough data points 

to be able to handle the fine detail of the diffraction pattern, data 

at points half-way between those computed were calculated by a cubic 4 

point Lagrange interpolation. This must be applied to the real and 

imaginary parts of the wavefunction, since the non-analytic amplitude 

and phase cannot be interpolated everywhere. 

It was found impossible to get a standard quadrature routine to 

converge for the elliptic umbilic, and therefore a special routine, 

ideally suited to this type of integral was developed from a method 

used by Dr.R.Saktreger, to whom I am most grateful. Saktreger's method 

is to approximate the phase of the integrand by a linear function in 

each subinterval, instead of approximating the real or imaginary part 

by a polynomial, since the phase is varying much more slowly. We use 

f:dx r + TY) iO' i~ (x) h dy e i (0' h sin T e = e 
2 -1 T 

where h = b - a, 0' = ~{~ (b) + 4>(a)} and T = ~{<P(b) - <p (a) } • 

By expanding about x = ~(a + b) we can show that the magnitude of the 

error in the linear approximation is 



To estima~e the error in the subintegral we compute 

and 

and take the error to be 

_Ja+h/2 i~ 
Ih/2 - dx e 

a f
a +h . 

+ dx el.~ 
a+h/2 

But £h a: h 3 , so the subinterval hnew necessary to give an error £0 is 

given by 
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(A 7.2. 1 ) 

We start at a A with a small enough value of h, compute Ih' Ih/2' 

£h and hnew · If £h > 2£0 we repeat the process using hnew ' otherwise 

we take I h/ 2 as the value of the subintegral and compute the next 

subintegral with a = A + h, h = hnew etc. This method of estimating 

the required subintervaL as used by Saktreger, is known as Richardson 

extrapolation. The error in each subintegral is typically £0' and 

certainly less than 2£0. Empiricall~ increasing £0 by a factor of 10 

reduces the typical step length by a factor of 2, therefore the actual 

error using Ih/2 is probably only about 0.1 times the estimated error. 

A value for £0 of 0.0005 was found satisfactory, giving a maximum total 

error of about 0.01 for a typical. number of 20 subintervals. £0 must be 

chosen small enough to avoid spurious convergence. 

To plot the caustic dashed in the positive quadrant, we use the 

fact that 

ds = ±! W3 2 sin 36 
de 3 2 

from (7.5), so we find successive points from 

6 = e 
n+l n 

+ os 
! W/ sin ~ 
3 2 

This diverges at eO = 0, but putting e = de gives 

8 1 = (OS/2W32)~ 

and we proceed from there. 



CHAPTER 8 

WAVEFRONT DISLOCATIONS AS CATASTROPHES 

8.1 General Theory 

We began in chapter 1 by discussing wavefront dislocations using 

a complex wave function as a model, and analysed their behaviour in some 

special cases. In chapter 4 we showed how caustics in wavefields are 

catastrophes, and we analysed the continuous wave dislocations (null 

lines) which arise in the caustic diffraction patterns. I now present 
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a few concluding remarks to show that the dislocations themselves are 

catastrophes. The advantage of a catastrophe theory of wavefront 

dislocations is that it only requires a real wavefunction, and the theory 

is much closer to experiment than the complex wave function theory. Also 

once we can apply the machinery of catastrophe theory we should be able 

to analyse the structural stability of different types of dislocation, 

although I only present a preliminary discussion here. 

Consider a real wave function ~(~,t) and observe it at fixed r as 

a function of t. In practice we would do this by placing a receiver at 

~, and observing the signal on an oscilloscope. Then r is our control 

variable, and t our state variable. Crests and troughs will occur on 

the display when 

o 

and will be crests or troughs as d2~/dt2 < 0 or > O. At a particular 

time to' (8.1) defines a surface (of many sheets) in space, which we 

could plot out experimentally. As t varies, these surfaces will move 

(8.1) 

in space. The family of surfaces at different values of t constitutes 

the caastrophe manifold, and the crest/trough surface in space at any 

instant to is the section t = to through this manifold. The crest/trough 

surface will generally consist locally of a set of independent crest 

and trough surfaces. However, these may join up along a fold, as in 

fig.B.l. The set of surfaces will sweep upwards with time, so that on 

moving from point A to point C we lose a crest and a tr~ugh. This will 

occur at point B on the fold line, where 

a2 l}J (~,t) = 0 
W 

This is precisely what one would call the dislocation line experimentally. 

The "fold line" is actually a 2-surface in (~,t), analogous to what we 
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previously called the dislocation 4-trajectory. In catastrophe theory 

the projection of the "fold line" into control space E. is the bifurcation 

set, and for a dislocation this is the real space 3-trajectory. 

Catastrophe theory tells us what local forms of the wave function W(E.,t) 

about a dislocation line are structurally stable: in fact, we are 

restricted to the fold, cusp and swallowtail catastrophes. We shall 

attempt to interpret these catastrophes as dislocations. If we regard 

a crest/trough pair as constituting a wavefront, then clearly the fold 

line represents the end of a wavefront. However, the crest/trough 

surfaces behave somewhat differently from the equiphase surfaces which 

are normally regarded as wave fronts (see chapter 1), therefore to avoid 

confusion we shall rarely use the term wavefront in this chapter. 

For simplicity, we shall consider essentially a two-dimensional 

control space, and we shall ignore the other sheets of the catastrophe 

manifold around the fold, which give rise to undislocated "wavefronts". 

suppose the catastrophe manifold has a simple fold,not lying in a plane 

parallel to the control plane, which projects into a regular curved 

fold bifurcation set, as in fig.8.2. Let the top sheet of the manifold 

represent a crest. The plane t = to generally intersects the crest 

sheet in a curve, ending on the fold line at the dislocation. As t varies, 

the crest line and dislocation move together. By changing the global 

shape of the manifold,one can make the crest line swing round the 

dislocation, or make the dislocation appear to move along the crest 

line. Glide and climb are motions of the dislocation line relative to 

the asymptotic wavefronts, and since catastrophe theory is a local theory 

we can strictly only discuss "local" glide or climb. However, the dislocation 

is always attached to the same crest line, so it is not very meaningful 

to talk about glide in these terms, but climb is quite possible. 

The speed with which the dislocation moves along its trajectory 

depends upon the angle the fold line makes locally with the control 

plane. In the limit where the fold line lies in a plane parallel to the 

control plane, the dislocation moves along its trajectory with infinite 

velocity. We shall ignore this degenerate case. The opposite extreme 

is continuous waves, where the dislocations are fixed in space. Then 

in the CW limit the trajectories must degenerate into points, which 

means the fold lines must be straight and parallel to the t axis. Such 

singularities are not catastrophes, and are therefore not structurally 

stable. This instability is shown by the fact that if we make a small 
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Figure 8.3 Crest/Trough Lines around a Cusped Trajectory 



general perturbation to a wave (Le.donot just change its frequency) its 

dislocations will change discontinuously from being fixed in space to 

moving along some trajectory. 
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We can produce birth/death events by curving the fold line up or 

down so that the actual times of dislocations along the trajectory are 

changed, without necessarily changing the trajectory. Hence these events 

are not significant in catastrophe theory. Als~ by considering only a 

two-dimensional system,we are restricting ourselves to pure edge 

dislocations. The edge/screw distinction is a global characteristic, 

not a local one. A screw dislocation line is perpendicular to the 

asymptotic wavefronts, but locally the dislocation line must always lie 

in the wavefront surface. We begin to realize that the complex wave function 

theory of dislocation~and the catastrophe theor~ find completely 

different features of a dislocation to be significant. This could be 

important in the experimental detection and characterization of dislocations. 

A static dislocation (see chapter 1) is easy to handle within our 

catastrophe framework because 

~(x,y,z,t) = ~(x,y,t - z/c) (8.2) 

is essentially two-dimensional. We can explore the catastrophe manifold 

either by varying t as before, or by varying z at fixed t. Therefore, 

alternate surfaces of the catastrophe manifold represent the actual 

crest surfaces in 3-space at some fixed time, and the fold line is 

actually the dislocation line. This structure sweeps rigidly up the z 

axis as time increases, and the dislocation line sweeps out a trajectory 

surface which is the bifurcation set, as before. On this definition, a 

structurally stable static dislocation line can ha~e any shape allowed 

by catastrophe theory for the fold line. This is a regular curve, and 

singularities will only be apparent in the trajectory surface, as we 

shall see in the next section. 

The next catastrophe is the cusp, whose standard catastrophe 

manifold is illustrated in fig.4.3. The plane t = to intersects this 

manifold in straight lines. As to increases these straight lines "roll 

round" the cusped bifurcation set B, as shown in fig.S.3. Suppose the 

catastrophe manifold outside B represents a crest: then the "middle 

sheet" inside B between the two branches of the fold line represents a 

trough. So the crest line in fig.S.3 becomes a-trough line (shown'dashed) 

where it touches B, and the point where it touches is the dislocation. 
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At the cusp point the dislocation stops its motion and doubles back on 

itself. For a non-standard cusp the straight lines would become curved, 

but the essential behaviour must be the same. 

If we incorporate z into t as in (8.2) to give a static dislocation, 

then the whole catastrophe manifold minus the "middle sheet" represents 

a crest surface sweeping up the z axis as time increases. Asymptotically 

the manifold is parallel to the xy (control) plane, and at the cusp 

catastrophe the fold line is normal to this plane. Therefore at this 

point the dislocation line is perpendicular to the asymptotic crest 

surface, which is what we call a screw dislocation. Then for static 

dislocations it seems reasonable to say that a dislocation at a cusp 

catastrophe point has pure screw character. On this definition a 

dislocation can only have pure screw character in a structurally stable 

way at isolated points! Another significance of the cusp catastrophe, 

which is always true, is that the wavefunction is locally purely symmetric 

in time, so that the crest and trough appear or disappear symmetrically 

(see fig.2 of NB74). 

With our model having only two essential control variable~ we have 

shown that motion, birth and death of dislocations can occur in a 

structurally stable manner. Because this is a local theory, distinctions 

between glide and climb, edge and screw, can not really be made, since 

they are defined relative to the asymptotic wavefronts. Locall~ all 

dislocations are of edge type, and they can only climb (relative to a 

crest surface, rather than a wavefront, which is not strictly defined). 

The nearest we have got to a screw dislocation is the cusp catastrophe 

point in a static dislocation, which can only occur at isolated points. 

The remaining structurally stable behaviour involves the swallowtail 

catastrophe, whose manifold exists in 4 dimensions. The dislocation line 

produced by the standard form of the catastrophe will be a straight line 

in three-dimensions, and the crest surfaces will be planes rolling round 

the bifurcation set. Since the swallowtail manifold has 4 sheets inside 

the tail, we have the possibility of two dislocations interacting. If 

additional parameters are included in the wave function we have the 

possibility of higher catastrophes, but the standard forms of these will 

always give a straight dislocation line and plane crest surfaces. Rather 

than pursue these ideas further, we shall investigate the relationship 

between the two theories of dislocations by analySing in terms of 

catastrophe theory the simplest dislocation discussed in chapter 1. 



8.2 The Canonical Single Strength Dislocation 

In section 1.3 we showed that the complex wave function in the 

neighbourhood of a static straight single strength dislocation of mixed 

screw-edge type is 

~(x,y,z,t) = {x + B y + B (z-ct)} 
s e 

ik (z-ct) 
e 

where Bs and Be are not both real. To apply catastrophe theory we 

require a real wavefunction, therefore to preserve generality we shall 

include a constant phase ~ before taking the real part. We define 

T = wt-kz and factor out Be for convenience (assuming Be # 0), and take 

as our general real wave function 

i(<j>-T) 
Re(ax + By + T)e 

(X + T)cos(T - ¢) + Ysin(T ¢) 

where X - aRx + BRy, Y = alx + Bly are more convenient coordinates. 

If we shift T and X by T + T + ~, X + X - ~ we have 

~ = (X + T)cos T + Ysin T 
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(8.3) 

Thus by diffeomorphic transformations of our variables we have absorbed 

all the constants into modified space and time variables. In particular, 

which real "projection" of our complex wavefunction we take, has only the 

effect of shifting the origin in the XT plane. 

Now we regard ~(T,X,y) as a potential function and look for its 

bifurcation set. Solving 

gives 

X = TI/2 ± {arctan/-(Y+2)/(Y+l) /- (Y+2) (Y+1) } 

Solving a3~/aT3 = 0 with (8.4) shows that cusp points occur at 

X = -T = -en + ~)TI, Y = -2. 

The bifurcation set, sketched in fig.8.4, is a z = constant section 

through the trajectory surface. It looks like a projection of a helix, 

and in fact the fold line is a distorted helix. If we define 

~ = X + T, n = Y + 3/2 

then the solution of (8.4) can be written as 

~2 + n2 = ~2, a circle of radius ~, and tan T = -(~ -n)/~. 

(8.4) 

(8.5) 
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Figure 8.4 Bifurcation Set for Canonical Single Straight 
Dislocation 
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Figure 8.Sa Helical Fold Figure 8.Sb Dislocation Lines and 
Line in (~,Y,T) Coordinates Bifurcation Set 



E'lementary geometry shows that T is the distance ~round the 

circumference of the projection onto the (~,n) plane. Then the fold 

line in (~,n,T) coordinates is a regular circular helix of radius ~ 
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with a pitch of 4So, as sketched in fig.8.Sa. To map this back into 

(X,Y,T) space we must shear it along ~ by the transformation X = ~ - T, 

so that the axis of the helix now lies at 450 to the (X,Y) plane. Then 

the points at Y = -1 become parallel to the control plane, as in the 

standard fold catastrophe, and the points at Y = -2 become perpendicular 

to the control plane,and project into the cusps of the bifurcation set. 

At t = 0, the catastrophe dislocation line is essentially the fold 

line, since T = -kz +~. As t varies, this dislocation line moves rigidly 

along the z axi~ sweeping out the trajectory surface. But the original 

complex wave function in our final coordinates is 

(X + iY + T) 
-iT 

e 

whose "complex" dislocation line (zero of amplitude) is given by 

X = -T, Y = 0 

as shown on fig.8.Sb. 

In the pure edge limit of the complex dislocation aR = SR = 0, 

and the place of X in (8.3) is taken by ~, which is then not removeable. 

In the pure screw limit of the complex dislocation lal and lsi ~ 00 so 

that the scale of the mapping of xy into XY increases. In xy space 

the catastrophe dislocation line approaches the T axis and in the limit 

coalesces with it. Then the fold line is a straight line perpendicular 

to control space, as we found earlier for CW dislocations, and this is 

no longer a catastrophe. Therefore, the pure screw dislocation is not 

structurally stable. The pure edge dislocation is structurally stable 

in space-time except for values of ~ which put us on a YT section through 

a cusp. In this case the dislocation will be symmetric, so a symmetric 

pure edge dislocation is not structurally stable in space-time alone. 

Any other pure edge dislocation is structurally stable, as is the whole 

family of pure edge dislocations with different values of ¢. 

It is very difficult to perform the above analysis for any more 

complicated model dislocated wavefunction, therefore the way to proceed 

further is probably from the "catastrophe end", as in section 1, rather 

than from the "dislocation end". vIe have shown that there is a close 

link between dislocations and catastrophes, which is worthy of further 

study. 
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