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Abstract 

This thesis concerns aeroelastic tailoring, i. e. the discipline that studies the induced 

deformation of an aeronautical structure, such as wings, tails, or vertical fins, in 

order to improve a particular aeroelastic performance. Aeroelastic tailoring is 

achieved here via passive actuation, obtained by exploiting the anisotropy of 

composite materials. 

This research has shown the potential benefits of anisotropic composite laminates 

for the static and dynamic aeroelastic performances of an aircraft wing, modelled as 

a thin-walled composite box. A specific kind of anisotropy has been considered: 

bend-twist coupling effect, obtained using unbalanced and symmetric composite 

plates. 

Two simple models have been developed to study static and dynamic aeroelasticity. 

Results obtained with the static aeroelastic model have shown that unbalanced 

composite laminates can be potentially used to improve the flight range of an 

aircraft. A potential increase of the structural weight of the wing, however, was 

observed. The static aeroelastic model introduces novel features. Potential 

improvements of flight range have been identified by exploiting the anisotropy of 

composite materials. Furthermore, the "optimum" fibre orientation was found by 

using procedures based on the physical understanding of the problem, rather than 

optimisation routines. 

Results obtained with the dynamic model show that bend-twist coupling has 

potential to increase the critical flutter speed of a wing. Also, the flutter model 

presents some points of novelty. A study of the variation of critical flutter speed 

with the fibre orientations of the laminates of a composite box is given. 

Besides the aeroelastic models, two underlying models have been enhanced. The 

first was the development of a simplified analytical formulation to evaluate the 

relevant stiffnesses of a composite box, used in both aeroelastic tools, to model the 

wing. Previously, it has been shown that three stiffnesses mainly control aeroelastic 
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tailoring: bending, torsional and bend-twist coupling stiffnesses. Models previously 

presented in the literature for these stiffnesses show a lack of precision when 

evaluating wing-boxes with different geometries and lay-ups. Consequently, a new 

model has been formulated and tested by using a commercial finite element code. 

The second enhanced model is a new algorithm of combinatorial optimisation to 

determine the optimum stacking sequence of a composite laminate. It can be used to 

study plates with fixed thickness and fixed number of ply orientations (i. e. plates 

whose membrane properties are predetermined). This algorithm gives excellent 

results when the performance (objective function) to be optimised is strictly related 

to the flexural stiffness matrix of the laminate. 
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Chapter 1 
Introduction 

1.1 Motivation 

It is well established that, in recent years, composite materials have become 

extremely important in the construction of aeronautical structures. This is shown by 

development programs such as the Airbus A350 and the Boeing 787. The reason is 

simple: strength/weight ratio of composite materials is particularly high, especially 

when compared with conventional isotropic materials such as aluminium, widely 

used in the aerospace industry. By using composite materials, it is possible to 

reduce weight while maintaining structural integrity. 

For many years engineers have used such materials without exploiting their full 

potential. Composite materials have been designed as if they were metals. However, 

they can be stiffness tailored, which offers the opportunity to explore more designs. 

Structural deformations can be driven in order to improve some performance 

measures of the aircraft. Aeronautical structures, such as wings, vertical fins or 

tails, can be "tailored" by considering their aeroelastic interaction, for example, to 

reduce the drag, to increase the payload or to increase the range or the endurance. 

The main goal of this PhD thesis is to show possible improvements on the 

static/dynamic aeroelastic performances of a wing, by using anisotropic composite 

laminates. 

1.2 Aeroelastic Tailoring 

The discipline which studies materials and geometrical properties of a structure to 

improve the aeroelastic performances of an aircraft is known as "aeroelastic 

tailoring". A rigorous definition of aeroelastic tailoring was given for the first time 

in 1986 by Shirk, Hertz and Weisshaar 1: 
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"Aeroelastic tailoring is the embodiment of directional stiffness into an aircraft 

structural design to control aeroelastic deformation, static or dynamic, in such a 

fashion as to affect the aerodynamic and structural performance of that aircraft in a 

beneficial way". 

In order to have a better understanding, it can be affirmed that similarities exist 

between aeroelastic tailoring and active control methodology. Aeroelastic tailoring 

is a passive form of control, in the sense that no external energy source is used 

directly. It uses a form of pre-programmed control law to modify the behaviour of a 

structural system. In this analogy, the aeroelastically tailored structure is both 

sensor and actuator; the control law is embedded within the structure in the form of 

materials constitutive relations. 

1.2.1 Bend-twist coupling 

One of the main instruments of aeroelastic tailoring of a wing is the structural 

anisotropy, in particular the "bend-twist coupling" effect. When an isotropic 

structure is loaded with a bending moment, only a flexural deformation is shown. 
When the same structure is loaded with a twisting moment, only a torsional 
deformation is observed. Consider the structure shown in Figure 1.1: a planar 

surface representing the top skin of a forward swept wing. Stiffening elements, 
indicated by straight dark lines, represent either directional plies or/and metallic 

stringers for the reinforcement. The main load acting on the wing is a bending 

moment arising from the lift distribution along the span. Consequently, the top 

surface, shown in Figure 1.1, is subjected to compression. These compressive loads 

will prefer to be transferred along a path that follows the stiffener directions. On the 

other hand, a "left over" component remains to be balanced. This component will 

force the surface to twist. The effect is accentuated when an identical surface is 

placed beneath (bottom surface of the wing, Figure 1.2) and it is subjected to 

tension. The wing therefore shows twisting deformation besides flexure when 

loaded in bending and vice versa. 
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Top surface of a wing 

q- 
4Q i Poýa. 

s\ 

Ply'Slifterter 
Load 
Component Shear 

Twist 

Figure 1.1: The physical meaning of bend-twist coupling' explained by using 
the top surface of a wing subjected to compression loads coming from bending. 

Top surre 

'ý,. ý, 

Bottom surface 

Figure 1.2: Top and bottom surfaces of a wing. 

The use the of anisotropy to tailor a structure, however, was not originally thought 

of for aeronautical applications, as remarked by Weisshaar 2. In the 1920's a Paris 

dressmaker, Madame Madeleine Vionnet, perfected the "bias cut". She was reputed 
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to be a scholar with strong mathematical ability. This may have enabled her to 

recognize that the fit of a dress is governed by vertical gravitational loads and the 

movement of a human body. If cloth is pulled longitudinally at an angle of 45° to 

the warp and weft threads, it will exhibit a large lateral contraction. This Poisson's 

ratio effect, results in a clinging form-fitting effect, desirable for many garments. 

Another example of tailoring can be found in its first technological application. 

Munk applied tailoring principles to a propeller using strategically placed wooden 

fibres in a diagonal pattern to obtain bend-twist coupling. This coupling was used to 

increase the angle of attack (proportional to the angle of torsion) of a propeller's 

blade when the speed of the boat increased. A greater angle of attack, in fact, 

avoided thrust alleviation at the high speeds. 

Bend-twist coupling is therefore a relatively simply but powerful concept and many 

applications are possible in aeronautics. When a wing, or more generally a 

structure, is subjected to positive bending load (Figure 1.3) due to the lift 

distribution, two kinds of rotations of the cross section are possible. 

Fuselage 

Undefoimed \Vmg 

0 Positive Bending 

Negative Bending 

Semi i4ing 

Figure 1.3: Bending deformation of an aircraft wing arising from the lift force 
distribution. 

1. A rotation "nose up", which tends to increase the angle of attack. 

2. A rotation "nose down", which tends to decrease the angle of attack. 
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An example of "nose up" deformation is shown in Figure 1.4. 

fr Z: ýý 
-*, 

with load 

trod düection 
without load 

Figure 1.4: An example of "nose up" deformation. 

Both "nose up" and "nose down" deformations can be induced along the length of a 

structure in order to improve performance. The structure, in other words, can be 

tailored: its deformation can be driven to improve the performance of the whole 

aircraft at a range of flight condition. Several examples of aeroelastic tailoring, by 

using bend-twist coupling, can be thought of for the aerospace industry: 

1. A global nose down effect can be used to increase the critical divergence 

speed in a forward-swept wing. A negative angle of sweep implies several 

advantages such as a reduced transonic drag, improved low speed 
handling qualities and higher manoeuvrability. However, besides these 

beneficial effects, also a reduction of the divergence critical speed is 

observed 3. It can be mitigated by inducing a nose down deformation 

along the span of the wing, as remarked by Norris Krone in his studies a, s 

He has shown that the use of composite materials does not necessitate a 

consistent weight penalty on the wing. The research of Krone led to the 

development and construction of the Grumman X-29 demonstrator (Figure 

1.5). 
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2. 

3 

A global nose up effect can be used to increase the critical flutter speed. 

Both "nose up" and "nose down" effects along the span can reduce root 

bending moment while the global value of lift remains unchanged. An 

example is shown in Figure 1.6. 
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Figure 1.6: Reduction of the bending moment at the root of the wing 2. 
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1.3 Research goals and overview 

As mentioned in section 1.1, the main goal of this thesis is to show how composite 

materials can be used to improve the aeroelastic performance of an aircraft. Two 

performance metrics have been chosen for this work. 

The first one is the range, i. e. the maximum distance that an aircraft can cover with 

a fixed amount of fuel. This choice has been suggested by Airbus UK, one of the 

sponsors of this project. The reason is quite simple: an improvement, even small, in 

the range can imply strong financial savings. A "low fidelity" static aeroelastic 

model (i. e. a model that does not contain all the structural and aerodynamic details, 

but that is able to describe the main physical phenomena and parameters involved) 

has been prepared and implemented to show the potential benefits induced by the 

use of bend-twist coupling. Such coupling has been obtained by using symmetric, 

yet unbalanced composite laminates. The model is described in detail in Chapter 4. 

The second performance metric chosen is critical flutter speed. A low fidelity flutter 

model has been prepared to show the benefit induced by unbalanced composite 
laminates on the dynamic aeroelastic behaviour. Details can be found in Chapter 6. 

To facilitate these aeroelastic models, two sub-problems have been discussed and 

solved in this thesis. They are the points of novelty of this work from the academic 

point of view. The first concerns the development of an analytical model to evaluate 

the relevant stiffnesses (for aeroelasticity) of a thin walled beam. The wing structure 
has been modelled, in both of the low fidelity models proposed, as a composite box. 

This solution has been previously suggested in the literature 6. In order to evaluate 

the deformations of long and slender beams, three main stiffnesses must be 

calculated: bending stiffness EI, torsional stiffness GJ and bend twist coupling 

stiffness K. Many analytical models are already presented in the literature 7"19, but a 

lack of precision in the prediction of numerical results for structures with different 

geometries and lay-ups has been observed. Consequently, a new analytical model is 

discussed in detail in Chapter 3. 
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The second sub-problem concerns the development of a new algorithm for 

composite lay-up optimisation. When composite boxes are designed for aeroelastic 

purposes, the effects of the stacking sequence of each laminate wall can be 

neglected 20: the aeroelastic design is affected mainly by the membrane properties. 

However, once the volume fractions of the fibres are determined, the stacking 

sequence of each panel can be studied in order to maximize some performances 

strictly related to the D matrix, without affecting the A matrix (the definition of 

these matrices can be found in reference [21]). Compressive bucking loads, or 

natural vibration frequencies, are useful examples. Once volume fractions and 

possible orientations have been pre-determined, the evaluation of the optimum 

stacking sequence is a combinatorial problem. As such, a new optimisation 

algorithm has been developed and discussed in Chapter 7. 

Conclusions and ideas for future work are described in section 8. 

1.3.1 Main contributions of the work 

The new analytical model developed for the evaluation of EI, GJ and K is simple 

and easy to implement. It provides better results than the other models previously 

presented in the literature. 

The new optimisation algorithm proposed in this thesis provides better 

performances in terms of stacking sequences and CPU running time when 

compared to the existing permutative optimisation techniques, such like 

permutative GA and Branch and Bound. 

Potential benefits of structural couplings, such as bend-twist coupling, obtained 

with anisotropic composite laminates, have been shown by studying some 

aeroelastic performances of aeroplane wings, such as range and flutter. 
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structural design, Liverpool, (2008). 

Canale G., Weaver P. M. "Simplified and accurate stiffnesses of a prismatic and 

anisotropic thin walled box", Thin Walled Structures (under revision). 

1.3.3 Chapters outline 

The research work contained in this thesis is organized as follows: 

Chapter 2 contains a literature review on aeroelastic tailoring, composite beam 

models and combinatorial stacking sequence optimisation. 

Chapter 3 contains the formulation of a new analytical model to evaluate relevant 

stiffnesses of composite boxes for aeroelastic tailoring. 

Chapter 4 describes the static aeroelastic tool. It contains results and comments on 

the aeroelastic tailoring to improve the range. 

Chapter 5 describes the advantages and limitations of the low fidelity static 

aeroelastic model. Stiffnesses of a composite box are compared with those of a real 

wing like structure. 

Chapter 6 contains some consideration on the critical flutter speed of composite 

wings. 
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Chapter 7 describes a new combinatorial algorithm of lay up stacking sequence 

optimisation. It can be applied to panels with a fixed number of plies and fixed 

thickness. 

Chapter 8 summarises the contributions made by this research and presents 

suggestions for future work. 
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Chapter 2 
Background 

2.1 Introduction 

In this Chapter, contributions to aeroelastic tailoring research application presented 

in the literature are described and critiqued. In the low fidelity aeroelastic models 

presented in this thesis, the wing has been represented as a thin walled beam. Since 

one of the goals of this research is the development of an analytical model to 

evaluate the relevant stiffnesses of a composite box, an "excursus" of the most 

important existing models of composite beams is included. Analogously, the 

literature detailing combinatorial stacking sequence optimisation of composite 

plates, with a fixed number of layers, has been reviewed. 

2.2 A survey on aeroelastic tailoring 

Aeroelastic tailoring belongs to a wider discipline known as aircraft morphing. An 

aircraft follows specific mission profiles which generally consist of: take-off, climb, 

cruise, descent and landing. To specify the performances requirements of the 

vehicle, design points are chosen within each part of the mission and then the best 

compromise performance among the possible configurations is selected. It is, 

therefore, evident that the result is an aircraft which is not optimal for any of the 

given design points 22. Off-design flight conditions have significant aerodynamic 

and structural drawbacks such as increased drag penalty and excessive 
deformation23. These conditions are not only true both for long distance transport 

aircraft, where the large quantities of fuel burnt in-flight lead to a considerable 

change in the aircraft mass and aerodynamic requirements, but also for fighter 

aircraft, where the manoeuvrability requirements constrain most of the performance 

characteristics. It is evident that the ability of adapting the wing shape to different 

flight conditions would limit these problems and also it would give a single aircraft 

the capability to achieve multi-objective mission roles thus reducing the operational 

costs of having several aircraft, each suited to a different type of mission. 
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However, from current trends 24 in this research area, it is clearly evident that the 

practical realisation of a morphing structure is a particularly demanding goal with 

substantial effort still required. This is primarily due to the need of any proposed 

morphing airframe to simultaneously fulfil the contradictory requirements of 

flexibility and stiffness. If, on one hand, for low speed aircraft, it is always possible 

to rely on the elasticity of the material to achieve small deformations by means of 

simple actuators, on the other hand this solution is not applicable to high speed 

aircraft because of the imposed stiffness and strength requirements. Actuation 

would require a relatively large power consumption and lead to an unacceptable 

weight penalty. The most efficient solutions adopted so far, consist of complex 

assemblies of rigid bodies hinged to the main structure and actuated. This 

technique, though reliable, introduces discontinuities in the aerodynamic surface as 

well as in the structure and places limitations on manoeuvrability and efficiency. 

This produces non-optimal design for many flight conditions. These reasons explain 

why in recent years many projects have focused on realising morphing 

technologies. 

Aeroelastic tailoring can be considered as a part of more generic morphing 

technologies. It was originally focused on aeroelastic instabilities such as 
divergence or flutter. It is now referred to the technologies adopted to drive the 

deformation of a structure in such a way as to improve the general performance of 

the aircraft. Two ways to perform aeroelastic tailoring exist: active and passive 

actuation. 

In this thesis, according to the definition of Weisshaar, reported in Chapter 1, with 

the term "aeroelastic tailoring" only passive actuation will be sought. 

2.2.1 Active actuation 

Aeroelastic tailoring via active activation is a multidisciplinary technology that 

integrates air vehicle aerodynamics, active controls, and structural aeroelastic 

behaviour to maximize air vehicle performance. It employs wing aeroelastic 
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flexibility for a net benefit through use several kind of actuators. Literature provides 

several examples of aeroelastic tailoring via active actuation by using leading and 

trailing edge control surfaces activated by a digital flight control system or by 

varying the position/stiffness/angle of the spars. Moreover, shape memory alloys 

and piezoelectric actuators have been investigated. 

Flick u at al proposes to control both leading and trailing edges to aeroelastically 

shape a high aspect ratio wing in order to design a lighter structure by satisfying 

flutter and strength constraints. A more flexible wing with active leading edges has 

been optimised by Voracek et al 26 in order to improve roll efficiency. Other authors 
have shown the potential benefits of adaptive internal structures 27,28 

. Aeroelastic 

tailoring has been obtained, in other words, by rotating the spars and by changing 

their position in the wing box. 

Actuation has been obtained also by using shape memory alloys (SMA) 29. They are 

metallic alloys that undergo solid-to-solid phase transformations induced by 

appropriate temperature/stress change during which they can recover their original, 

un-deformed shape. Their fundamental property for engineering applications is 

therefore the shape memory effect, obtained when inelastic strains existing in the 

material are recovered by applying a thermal load. In other words, the original 

shape is regained upon heating. Shape memory effect is useful for actuation and it 

has already been applied in the propulsion systems engineering 29. Wires or beams 

made of shape memory alloys, moreover, when recovering their original 

configuration, can be used to actuate the trailing edge to deform the wing in order to 

improve aeroelastic performances 30. Strelec et al 31 have used shape memory alloys 

wires to effectively change the shape of an airfoil while Sofla et al 32 developed a 

series of SMA flexural structures which could be used to deform wing boxes for 

shape morphing. Balta et at 33 used SMA wires to develop an adaptive aircraft 

winglet. A different and interesting structural implementation of SMA actuation is 

found in a patent 34 pertaining to actuation of the wing main spar. Here the active 

elements are placed inside tubular spars would be used to extend or retract a 

telescopic portion of the wing in the spanwise direction. SMA have the advantage 
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to provide actuation force during shape recovery, however, the difficulty to quickly 

cooling components limits the use in frequency applications. Furthermore, the 

amount of thermal energy required for actuation is much larger than the mechanical 

output and plastic accumulation during several cycles may degrade the material 29. 

The piezoelectric effect, on the other hand, was discovered in 1880 by the Curie 

brothers 35. The importance of this effect is due to the conversion of mechanical into 

electrical energy and vice versa. When an electric field is applied to a free layer 

made of piezoelectric material, the material of the layer will exhibit a displacement 

from its original location, similar to a thermal expansion of a freely heated elastic 

strip. On the other hand, an electric field emerges within the piezoelectric layer 

when it is deformed by an actuator. When the surface of the bonded layer is 

mounted with metallic electrodes, this latter piezoelectric effect can be used for the 

sensing of the deformation. When a piezoelectric layer is used for both, sensing and 

actuating, it is called a self-sensing layer 36. Because the bonded piezoelectric layers 

are integral to the structure, which may be connected with an automatic control 

agency, it becomes possible to design structures able to react upon external 
disturbances. Both static and dynamic performances of a structure can be improved 

with such actuation. Four parameters can be used to obtain the optimal design: the 

position of the actuators, their size, orientation and the applied voltage 36. Chee et 

a137, for example, developed an algorithm to find the optimal orientation of the 

actuators in order to obtain the desired deformation of a composite plate. They 

performed a quasi-static study, since they were only interested in the final shape of 

the structure. Shape control is not only possible for plates, but also for slender 

beams 38. An useful analytical model to describe the deformation of beams with 

embedded piezoelectric actuators, moreover, is described by Cesnik and Palacios 39. 

Piezoelectric materials have been used to reduce vibrations and to increase the 

critical flutter speed 40-44 
. The effect of sensors and actuators is analogous to an 

increase in the structural stiffness, but, and this is a key advantage, without a 

significant increase of the structural weight. Piezoelectric actuation, however, does 
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show two non-negligible disadvantages: the cost and their susceptibility to damage 

and malfunction induced by external electric fields. 

2.2.2 Passive actuation 

Aeroelastic tailoring can be described, as mentioned before, as passive actuation: 

the aircraft wing will adapt itself to improve its performance during the designed 

flight conditions. The mechanism of passive actuation is the structural coupling, 

caused by the anisotropy of the material. There are three main types of structural 

couplings used for aeroelastic tailoring and examples of their use have been shown 

in the literature. They are: 

" Bend-twist coupling 45 

" Extension-twist coupling 45 

" Extension-bending coupling 45 

Bend-twist coupling has already been introduced and explained in Chapter 1. When 

a structure is subjected to a bending load, beside the bending deformation, also an 

angle of torsion is observed and vice versa. An important parameter to describe the 

bending behaviour of a structure is the bending stiffness EI. It can be interpreted, as 
it will be discussed more in detail in Chapter 3, as the bending moment arising in a 

cross section when a unitary bending deformation is applied. In the same way, 

torsion is described by the stiffness GJ. It can be interpreted as the twisting moment 

arising in the cross section when a unitary twisting deformation is applied. Bend- 

twist coupling is fully described by the stiffness K. In analogy with EI and GJ, it 

can be interpreted as the twisting moment arising in a cross section when a unitary 

bending deformation is applied. 

Bend-twist coupling can be easily obtained in a wing when top and bottom skins 

(Figure 1.2) are built with laminates having their fibres oriented with an angle 

with respect to the main frame of the structure X, Y, Z, as shown in Figure 2.1. 
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Figure 2.1: Fibre direction in the top and bottom skins of a wing in order to 
obtain bend-twist coupling (nose up). 

Extension-twist coupling is a similar concept. When an isotropic structure is loaded 

with an axial load, only axial and transverse deformation is obtained. In a composite 

structure, if the anisotropy is exploited, when an axial load is applied, besides the 

axial and transverse deformation, a twisting deformation also exists (and vice 

versa). In a composite wing, this effect can be obtained when the top skin is 

constructed with fibres oriented with an angle ý with respect to the structural axes 

and the bottom skin with an angle -4 When an axial load is applied, the top and 

bottom skins tend to shear in opposite directions, and therefore, an angle of twist is 

observed. 

An analogous explanation can be given for the extension-bending effect: when an 

axial load is applied, besides the axial deformation of the structure, bending is 

measured. This effect could be observed, for example, in a composite box of 

rectangular cross section, with top and bottom laminates orthotropic and vertical 

walls made with fibres oriented with angles ý with respect to the local reference 

system of the walls. 
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All three of these different kinds of anisotropy can be used in a beneficial way in 

aeroelasticity. However, the most effective, for aircraft wing design is the bend- 

twist coupling effect. Consequently, it has been chosen as the means for aeroelastic 

tailoring when developing the static and dynamic low fidelity models, presented in 

Chapter 4 and 6 respectively. 

Several authors have already demonstrated the potential benefits of all structural 

couplings described in this section with many examples, not only regarding 

aircrafts. Soykasap and Hodges 45 showed how aeroelastic tailoring can improve the 

performance of a tilt-rotor (Figure 2.2). 

Figure 2.2: Tilt-rotor. 

A tilt-rotor is a complex machine as it is able to perform vertical take-off and 
landing as a helicopter and, on the other hand, it is able to fly with uniform 
horizontal cruise as an aeroplane. In their paper, the authors implemented a multi- 

objective optimisation to design a rotor blade able to improve the performance of 

the machine both in hovering and uniform horizontal flight. They found that the 

benefit of extension-twist coupling is greater than the beneficial effects from bend- 

twist coupling. They have also shown the existence of a marginally small beneficial 

effect from the extension-bending coupling. Their result is reasonable because the 

centrifugal force is the prevalent load in a tilt rotor blade. 
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Similar findings apply to a helicopter blade. Consequently, extension-twist coupling 

is the most relevant anisotropic effect to improve aeroelastic performance in this 

case also 46. However, Ganguli and Chopra 47 showed the importance of bend-twist 

coupling in the design: they used a global "nose down" effect to reduce the 

vibratory hub loads and bending moments. 

Bend-twist coupling is particularly useful also for HAWT (Horizontal Axis Wind 

Turbine) blades, shown in Figure 2.3. Lobitz and Laino 48 used a global "nose 

down" effect to reduce the stresses at the hub of the blade and to increase the 

fatigue life of the structure. They also show how this effect can be used to increase 

the average power produced by the wind turbine in a day. This is possible because a 

global "nose down" effect avoids the stall of a slender and flexible blade and 

increases the aerodynamic efficiency. Lobitz and Veers 49, when studying the effect 

of a global "nose up" or a global "nose down" on the wind turbine blade, also noted 

some negative aspects. They found that bend-twist coupling affects the frequencies 

of the first natural modes, making their values converge. Such studies have been 

also confirmed by Weissahaar and Foist S0. On the other hand, they showed the 

following potential benefits of aeroelastic tailoring of a wind turbine blade: 

"A global "nose down" effect is beneficial to avoid divergence. In other words, 

critical divergence speed is increased because the rotation of the generic cross 

section tends to decrease the angle of attack. 

"A global "nose up" has beneficial effects on the critical flutter speed. The coupled 

modes induce the same behaviour obtained when the centre of mass is shifted in 

the direction of the leading edge of the blade, and then in the direction of the 

aerodynamic centre 51. It is well-known that this effect is beneficial for flutter 52. 

"Nose up" fibres induce, in other words, the same effect of moving the flexural 

axis to the aerodynamic centre, reducing aeroelastic coupling. The effect is also 

similar to a fictive increase of the torsional stiffness. 
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Figure 2.3: Horizontal Axis Wind Turbine (HAWT). 

Previous results on the global nose up effect have also been confirmed for aeroplane 

wings by the work of Sarigul-Klijn and Oguz 53 and by Green 54 

One fundamental design parameter of a civil aircraft is the angle of sweep, denoted 

in this thesis by the symbol A (Figure 2.4). A wing with positive angle of sweep 

(aft-swept), when loaded in bending, shows a nose down deformation, i. e. an 

overall reduction of the angle of attack. The opposite effect is obtained with a 
ss forward-swept wing -sý 

Figure 2.4: A positive angle of sweep. 
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An aft swept wing can also show a reduced critical flutter speed when compared 

with an unswept wing with the same properties 51, while a forward-swept wing 

shows a lower value of the critical divergence speeds 1 

The bend-twist coupling effect, given by the anisotropy of composite materials, can 

be used to tailor effects related to the presence of the angle of sweep. In other 

words, a nose up effect induced by the elastic properties can be used to increase the 

critical flutter speed of aft-swept wings 54. A nose down effect can be used to 

increase the critical divergence speed of a forward swept wing ss, as already 

implemented for the X-29, mentioned in Chapter 1. 

Weisshaar and Duke 58 suggest that, in order to improve a particular performance of 

the aircraft, for example to reduce the drag, a combination of passive aeroelastic 

tailoring and actively controlled actuators can be used. They first design a stiffness 

tailored wing able to deform, in such a way, as to produce a nearly (but not exact) 

elliptical lift distribution. This implies a low value of drag, but not the minimum 

value possible, obtainable only with an exact elliptical distribution of lift. In the 

second step of their work, they introduce and design active controls on the wing 

surface. Such active devices, coupled with laminate stiffness tailoring, can further 

reduce induced drag by using small actuator deformations. These actuator arrays 

include ailerons, leading edges surfaces, active chord wise chambering or advanced 

controlling devices. This approach seems to be promising as it tends to overcome 

the limitations of both passive and active actuations. For complex geometries, in 

fact, they conclude that the elastic coupling alone is not sufficient to reach the 

desired goals. 

Although aeroelastic tailoring has been widely discussed as a potential mechanism 

to improve aircraft's performances, some authors have expressed their concerns, 

especially when numerous parameters and constraints are introduced in to the 
59 

structural design and/or optimisation. Eastep et al. , for example, suggest that the 

optimal weight of composite wings is relatively insensitive to the orientation of the 
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laminate lay-up when the wing is subjected to multiple structural constraints, such 

as strength, roll reversal velocity and minimum critical flutter speed. 

Other authors, however, disagree with the results proposed by Eastep et al. and 

show that structural weight can be optimised even when numerous constraints are 

included. Herencia, Weaver and Friswell 60, for example, impose buckling 

constraints, whose importance is emphasised as well as strength and manufacturing 

constraints. They also show that a potential reduction of induced drag can be 

obtained by using unbalanced composite laminates. A small weight penalty, 

however, is observed. 

2.3 A review of thin walled beams models 

It is both complexity in composite design and market competition that makes 

aircraft manufacturers continuously demand rapid but efficient methods and tools: 

low fidelity models, to reduce computational time, in the preliminary design phase. 

Furthermore, low fidelity models provide a clear understanding of the physical 

phenomena involved in the analysis. 

In both static and dynamic aeroelastic tools, which will be discussed in Chapter 4 

and 6, a structural model and an aerodynamic model of a wing are developed. Since 

the main task of this work is to investigate the influence of anisotropic composite 

materials on the aeroelastic behaviour, more attention is paid in this chapter to the 

structural models previously presented in literature. In particular, this section is 

dedicated to thin walled beam theories, more suitable (in the opinion of the author) 

to wing models. 

An example of thin walled beam is shown in Figure 2.5. 
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Figure 2.5: A prismatic thin walled composite beam. 

Several models have been presented in literature. They can be divided in to two 

main categories: numerical models and analytical models. The difference between 

these approaches is explained as follows. The essential common element of the 

numerical models (typically finite element analysis) is structural discretization. 

Displacements of the whole structure are written as a function of displacements of 

certain points, called nodes. Displacements of all the points of a structure, located 

between the nodes are interpolated with shape functions, usually polynomial (linear, 

quadratic and so on). In other words, the following relation can be written: 

u=NB 

where 

u is the vector of displacements 

8 is the vector containing nodal displacements 

N is a matrix containing the shape functions. 

(2.1) 

In the analytical models, on the other hand, the displacement field is written as a 

function of continuous variables representing the coordinates and the degree of 

freedom of the system. 

Many numerical models of beams can be found in the literature. Some of them 

show a relatively simple formulation 49,61 and they can be easily translated into a 
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computer code. However, they are no more precise or more efficient than analytical 

models. Therefore, when a simple system with few beams has to be studied, 

analytical models are more suitable and more practical. On the other hand, 

numerical models become of crucial importance to study complex beam systems, 

with an increased number of uni-dimensional elements with different orientations 

and boundary conditions. An example of this type of problem is the design of pipe 

lines of a chemical or nuclear plant 62. The literature also offers examples of 

complex and detailed numerical beam theories, including those of Giavotto 63 and 

Yu 64. These kinds of numerical models are generally precise, but they are 

computationally expensive and their implementation is often complex. 

The use of analytical models seems more appropriate for the low fidelity aeroelastic 

models presented in this thesis, since the wing is represented as a cantilevered 

beam. Numerous analytical formulations of thin-walled beams have been proposed 

previously. In the following sections, an outline of the most important and most 

cited is provided. Particular attention has been paid to the following aspects: 

1. The stiffness formulation of each model has been carefully considered. 
Three stiffnesses, in fact, are fundamental for aeroelastic tailoring and 
have been considered in this thesis: 

EI bending stiffness 
GJ torsional stiffness 

K bend-twist coupling stiffness 

Axial deformation and lag-bending, are negligible in a wing-type 

structure2,58. Also pure shear deformation can be neglected because the 

wings studied are generally long and slender. 

2. The models reviewed are suitable for engineering applications and results 

presented in the relevant papers have been reproduced in this thesis. 
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Considering these two points, some models have not been included in this review. 

The model of Wu and Sun 7, for example, has been discarded because of its 

complexity and because the final stiffness formulation is not explicitly reported in 

their work. The work of Massa and Barbero 8 has also been discarded because, 

although the bending and twisting stiffnesses are expressly calculated, no coupling 

term is considered. The model of Rand 9, on the other hand, provides a clear 

physical explanation of the composite beam behaviour and an educating insight into 

the coupling mechanisms. However, constitutive equations are written only for 

some simple cases. Loads are restricted only to a tip axial force and a tip torque. 

Beams walls are constructed only with a single composite layer. Fundamentals of 

the general formulation are explicitly explained, but the development is left to the 

reader. 

For all of the models considered, the main reference frame used is shown in Figure 

2.6. It is placed at the geometric centre of each cross section. Axes are denoted by 

X, Y, Z The circumferential coordinate, located in the middle line of the contour of 

the cross section, is denoted with s. 

1 

Figure 2.6: Global frame used in the description of all the analytical models. 
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2.3.1 The model of Hwu and Tsai 10 

It is probably the simplest among the models reviewed and probably the least 

accurate. However, it is important for one reason: it is the only model where the 

effects of structural components such as stringers, webs and ribs are explicitly 

considered. 

Unfortunately, webs and the top and bottom skins are not modelled together as a 

part of a unique structure. The hypothesis proposed by Bruhn 65 in his book is in 

fact adopted: different structural components react separately to different kinds of 

loads. Stringers and top and bottom skins are supposed to react to the bending, 

torsion and axial loads, while webs are supposed to react only the shear stresses 

coming from the vertical force FZ. Bending, torsional and bend-twist coupling 

stiffnesses are calculated by means of the classical lamination theory 21. They are 

expressed as terms of the D matrix only. The reference plane Z=0 for the 

evaluation of such a matrix is not located at the middle surface of each laminate but 

in the middle surface of the whole cross section (Figure 2.7), to guarantee the 

evaluation of global properties. 
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Figure 2.7: The axis Z=0 for the global D matrix evaluation, in the model of 
Hwu and Tsai. 
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These assumptions made by the authors lead to inaccurate evaluations of stiffnesses 

and deformations, even when analyzing a simple wing box. There are two main 

reasons for the inaccuracies. The first one concerns the vertical walls of a beam, 

that, even when short, they give a non-negligible contribution to the bending and 

torsional stiffnesses. The second one involves the most effective way to evaluate the 

stiffnesses of a thin-walled beam. In all other models considered in this section, 

membrane properties are used for each wall. However, in this formulation, the 

authors consider a thin walled beam as a plate and calculate its stiffnesses by using 

a global D matrix. 

This paper, however, is mentioned in this review because a clear and simple method 

to model the stringers is presented. Stringers are normally placed in the internal part 

of the top and bottom skin (Figure 2.8). 

stringers 

Figure 2.8: The position of the stringers in a wing cross section. 

The two layers containing the stringers can be considered as two additional laminae 

of composite. The elastic properties of a lamina are: 

El elastic modulus in the axial direction 

E2 elastic modulus in the transverse direction 

G12 shear modulus 

V12 major Poisson's ratio 
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Elastic properties of a smeared "pseudo-lamina" containing the stringers can be 

evaluated by using the rule of mixture as follows: 

E, p, = At 

v, Z p, = 
vAA3 (2.2) 

.2 

G12 
p, =0 

E2 ,=0 

where 

Elp1 is the axial elastic modulus of the pseudo-lamina made by stringers and 

empty spaces between them 

E2p1 is the transverse elastic modulus of the pseudo-lamina made by stringers 

and empty spaces between them 

G12pi is the shear modulus of the pseudo-lamina 

V12pl is the Poisson's ratio of the pseudo-lamina 

As is the total area occupied by the stringers of a pseudo lamina 

At is the total area of the pseudo-lamina 

Es, is the Young's modulus of a stringer 

vs is the Poisson's ratio of the stringers 

Once properties of Eqn. 2.2 are know, the stiffness matrix of a pseudo-lamina can 

be readily evaluated. The pseudo-lamina is only one layer that can be finally added 

to the complete laminate in order to evaluate the overall stiffness matrix D. 
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2.3.2 The model of Kim and White 11 

The formulation of Kim and White is precise and suitable to evaluate complex 
deformations of beams with a high degree of anisotropy. Furthermore, thin and 

thick walled composite beams can be analysed because both primary and secondary 

warping effects are included. 

Generally, when a twisting moment is applied to the beam tip, besides the twisting 
deformation, a non-uniform axial displacement field is observed. In other words, 

points of the cross section tend to deform out of their original plane (Figure 2.9). 

This phenomenon is particularly evident in beams with open sections. 

r--' -2 

H 
M 

x 
M 

Figure 2.9: The phenomenon of warping. 

This effect is usually modelled by means of an equivalent action, known as 
"bimoment" denoted in this thesis with the symbol B. It is the product of a moment 

M with the cross's section height H. Two opposite moments Mare acting on the top 

and bottom parts of the cross section. They tend to induce out-of-plane 
displacements on the cross section (Figure 2.9). 

Out-of-plane displacements of a cross section, induced by a torsional load, can 

affect, in certain cases, the final deformation of a beam, especially if a high level of 

anisotropy exists. Furthermore, if such phenomenon is prevented, additional 

longitudinal stresses are induced. Also aeronautical structures can be affected by 

restrained warping, due, for example, to the presence of ribs. 
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Two kinds of warping have been modelled by Kim and White. The primary 

warping refers to the out of plane displacements of the mid lines of each wall. If the 

walls are particularly thick, out of plane displacements are observed with the 

respect to the mid line of each wall. This effect is the secondary warping. 

Consider the model's formulation, in terms of constitutive equations and stiffnesses. 

A displacement field is written as a function of the rigid body translations uo, vo, wo, 

representing the rigid displacements of the cross section along the axes X, Y and Z, 

and as a function of the rotations (0, (, X) about such axes. In other words, a 

displacement field is written as a function of six kinematic variables: 

u= u(X, Y, Z, O, cp, x) 
v= v(X, Z, 9, cp, x) (2.3) 

w= w(X, Y, O, co, x) 

The following hypotheses are applied: 

. The contour of the original cross section does not deform in its own plane. 

Any general beam wall segment behaves as a thick shell. This implies that the 

transverse shear effects on the wall segments are also modelled. 

Once the displacement field in the global coordinate system is known, the strain 

field can be evaluated using the definition (Eqn. 2.4): 

äu 

re =+ (2.4) 
- ay o x 

öu äw 
yxz =-+ äx 

The following condition (Eqn. 2.5) must be satisfied to ensure the non- 

deformability of the cross section: 

e_ = 6y = yyz =0 (2.5) 
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A local frame of reference is considered in every wall segment of the cross section. 

The axes are respectively: 

n Normal to the wall, directed from the internal to the external part of the 

cross section. 

s Tangential to the wall. 

x Coincident with the x axis of the main frame. 

The centre of each local frame (Figure 2.10) is located at the centre line of each 

wall segment. For each lamina, in the local frame, the following relation between 

the local stresses and strains can be written: 

1ýx Qxz Qxxa Qxnx ex 

zx = Qxxs Qxs Qxsýx Yxs (2.6) 

Lr]- LQxra Qºucxs Qrix Ynx 

where 
OIx is the axial stress 

ex is the axial strain 

ry is the tangential stress in the direction i -j 
Yu is the tangential strain in the direction i -j 
Q is the local stiffness matrix 
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Figure 2.10: The local frame of each wall. 



ax 

A coordinate transformation can be used to express the global stress vector rte, 
z. 

as a function of the local stresses of each wall segment. Constitutive equations in 

the global coordinates can be finally written. They must be six, the same number as 

kinematic variables. They are represented by: 

F= Jjodydz 

Fy = 
ffr, dydz 

F. = ffz=cv& 
Tf y- aZ zx" z+aý rxy 

}iYdz+ 
ffyicc1ydz 

av O'x 

M=-ffuzdydz 
N=-ffcxydydz 

where 

Fx, F» FZ are the internal forces along the axes X, Y and Z, related to the 

external loads applied. 

T, M, N are the internal moments about the axes X, Y and Z 

is the warping function modelling both primary and secondary 

effect. 

Substituting the global stresses into Eqn. 2.7 and integrating, the system of equation 

is obtained in terms of uO, vo, wo, 0, cp, v, . Such a system can be solved accounting 

for the boundary conditions. 

This model is readily translated into a computer code and becomes highly effective, 

in comparison with other models, when beams with thick walls are studied. 

Stiffness expressions are explicitly provided. 
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2.3.3 The model of Rehfield et al 12 

An assumed displacement field is also used by Rehfield et al. as a starting point to 

develop their model. Displacements u, v and w are written as functions of three 

rigid body translations, three rotations and one warping function, considered 

explicitly as a kinematic variable. From this displacement field, strains are 

evaluated and referred to the local frame of each wall of the cross section. Such 

local strains can be substituted in the local constitutive equations of each section of 

the contour, which can be written as: 

Nx All 
Az 

2 
A16 

AAIz 
Ex 

_ zz A22 (2.8) 
Nu 

A16 
A26A12 

A66 _ 
A26Z Yxs 

A22 A22 

From Eqn 2.8, three assumptions are clear: 

" The cross section maintains its shape after the deformation, consequently the 

circumferential deformation is: cS = 0. 

" Local curvatures of the shells are neglected. Only the membrane properties are 
therefore considered. 

" Any general beam wall segment behaves as a thin shell. 

Global constitutive equations can be written as follows: 

(Fx, M, N, B) = IN., (1, z, -y, Vi)ds 

(F, Fz, fl= JN�, ä 
,ý , 

29 ds 
p 

where 

P 
ds 

B 

is the area enclosed by the cross section 

is the perimeter of the cross section 

is the infinitesimal element of the contour 

is the "bimoment" 
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Substituting Eqn. 2.8 into Eqn. 2.9 and integrating, a general equation is obtained 

relating the vector of the internal forces with the vector of the kinematic unknown. 

In other words, an expression: 

is obtained, where 

u=1 

and K is a stiffness matrix. 

F=Ku 

au 
ax 
Y, y 
Y. 
a9 
ax a(o 
ax 
ax 
ax 

a2, ß 
axz 

and F= 

Fx 
Fy 

Fz 

T 
M 
N 
B 

(2.10) 

Rehfield and the co-authors remark on the existence of two non classical effects of 

anisotropic composite beams. The first one is the shear-bending coupling, shown in 

beams with a circular cross section. The configuration analysed is a CUS 

(Circumferentially Uniform Stiffness), where the contour is built with only one kind 

of laminate, wrapped all around the cross section. Rehfield proves that when a CUS 

configuration is loaded with a bending moment, a displacement along the Y axis is 

observed. 

The second non-classical effect investigated is warping. It has been observed that, 

when warping is restrained and the beam is loaded in torsion, the tip shows a 

smaller angle of twist. In other words, torsional stiffness GJ is greater when 

restrained warping exists. However, this effect is increasingly negligible as the 
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beam becomes longer and more slender. Analytical expressions, functions of 

geometric and elastic characteristics of the cross-section, are provided to establish 

when such effects can be neglected. Analytical formulae to evaluate stiffnesses are 

explicitly provided. 

2.3.4 The model of Librescu and Song 13 

The model developed by Librescu and Song is analogous to the model of Rehfield 

et al. and to the model of Kim and White. A displacement field is written with 

respect to the global coordinates system. The following assumptions are made: 

1. The original shape of each cross section is assumed to remain unchanged 

after the deformation. 

2. Transverse shear effects are incorporated. Shear strains y, ý and yam, are 

assumed to be uniform in each cross section. 
3. Both the primary and secondary warping are considered, as in the theory 

developed by Kim and White. 

Once the displacement field has been written, the strain field in each local frame is 

evaluated and used in a 3-D constitutive expression as 

6/oc = QCloc 

where 

ax 

QJ 

Zx' is the vector of local stresses 
0'n 

rxn 

(2.11) 
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ýx 

ýJ 

Elm = 
71. is the vector of local strains 
-0n 

Yxn 
[YR., ] 

The constitutive equations exhibit a 3-D dependence, and this is a point of novelty 

with respect to the theory of Rehfield. They are reduced to equivalent 1-D 

dependence in two steps. The first step, yields the 2-D constitutive equations, 

similar to those used by Rehfield (Eqn. 2.8), done by integration of their original 

form through the laminate thickness. The second step, resulting in the final 1-D 

form, consists of a further integration along the mid-line contour of the cross 

section of the beam. Explicitly derived stiffness terms include EI and GJ and 

coupling terms. 

This paper 13 also considers a CUS configuration. Results obtained are in agreement 

with those presented by Rehfield et al. An important fact is remarked upon: a theory 

that does not consider restrained warping risks overestimation of twisting 

deformation. It is shown quite clearly in the paper, for example, that the divergence 

speed of a beam with free warping is lower than the divergence speed of the same 

wing with restrained warping. 

A point of novelty is emphasised by Librescu and Song: shear deformation cannot 

be neglected without precise investigation of the structure. Even in a slender beam, 

such an effect can influence the final deformation if a high level of anisotropy 

exists. However, according to their analysis, the difference in results between a 

structure including shear deformation and the same structure studied without shear 

deformation is only 2% (wings with moderate angle of sweep). Furthermore, the 

performance used for the comparison is the critical divergence speed of a swept 

wing (modelled as a beam), which is extremely sensitive to small bending and 

torsional deformations. 
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2.3.5 The model of Chandra and Chopra 14 

The model of Chandra and Chopra is also built on an "ad hoc" displacement field. 

The basic assumptions of this theory are: 

" The contour (mid-line of the plate segments) of a cross section does not deform in 

its plane. 

"A general plate segment of the beam is governed by classical lamination theory. 

This implies that the transverse shear deformation of the plate segment is not 

accounted for. 

The last point is significant and merits further explanation. In order to simplify the 

implementation of the model, i. e. its translation into a computer code, it is desirable 

to have the opportunity to use classical lamination theory as it is, as a ready tool. 

Computer codes of classical lamination theory, in fact, are already available and the 

implementation of new programs is therefore not needed. This intuition has been 

already used in the model of Rehfield, but only the membrane properties have been 

considered. 

In the model of Chandra and Chopra, classical lamination theory also includes the 

effects of local curvatures. The authors demonstrate that neglecting the local 

bending curvature, for example, may lead to large errors in the prediction of the 

structural response. Two identical beams, built with non-symmetrical laminates and 

showing bend-twist coupling, are compared. In the first one, membrane properties 

only (Rehfield approach) are considered while in the second both membrane 

properties and local curvatures (Chandra and Chopra approach) are retained. A 

bending load is applied to the tip of both the beams and bending and twisting 

deflections are measured. Concerning the induced twist (bend-twist coupling effect) 

no difference is shown. However, the beam of Chandra and Chopra, which includes 

the effects ofB andD matrices, shows a greater bending deformation. This effect is 

accentuated for open cross section beams and for beams with non-symmetrical 

laminates but it becomes negligible for closed cross section beams. 
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Also in this work, as in the previous described, the authors consider the effects of 

transverse shear and the effects of restrained warping. Concerning the restrained 

warping, they define a parameter depending on the geometrical characteristics of 

the beam and on the elastic couplings. If this parameter is greater than some 

reference values, the effect of warping cannot be neglected. This usually happens in 

beams with open cross section. 

The influence of transverse shear deformation on the structural response occurs in 

two ways: the direct transverse shear and the effect via transverse shear related 

coupling. The latter can be obtained in a composite box, for example, when 

unbalanced symmetric laminates are used to build the vertical walls. The direct 

transverse shear effect is controlled mainly by the slenderness ratio of the beam and 
its cross sectional details. It can be neglected only in short beams. 

2.3.6 The theory of Berdichevsky et al. 15 

Many of the theories presented in literature are developed from an assumed 
displacement field. Berdichevsky et al. disagree with this approach and propose to 

use a variational method in order to find the equilibrium equations. 

The starting point is therefore the strain energy of a thin walled beam. It is written 
from the 2-D energy of a shell component of each wall. Energy density is: 

U=I clý Ei -'v (2.12) 

where e is a vector containing the local strains, measured with respect of the local 

reference of each wall. They are first evaluated by applying the strains definition to 

the displacements u, v and w (unknown) and then substituted in the energy density 

(Eqn. 2.12). The global energy functional can then be written as follows: 

I=f IUdxds 
-W (2.13) 
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where 

Wit is the work made by the external forces 

A correct displacement field is obtained after minimizing this functional. In the first 

step, strains with a lower order of magnitude are neglected. Such hypothesis is 

called "zero order" approximation. The minimization of the energy functional leads 

to equations containing the displacement field. After this first iteration, the 

following result is obtained: 

u=uo 

v= vo - Z9(X) (2.14) 

w=wo+Y9(X) 

where 0 is the angle of torsion. The zero order approximation is not accurate: the 

bending angle is not even considered. Three correction functions fi, f2, f3, as yet 

unknown, are added to the displacement field as follows: 

u= uo + fi(x, s) 

V= vo - Z'9(x) + f2 (x, s) (2.15) 

w= wo +Y9+ f3(x, s) 

Strains are again evaluated and substituted into the energy functional of Eqn. 2.13. 

A new minimization is performed. The iterative process is stopped when the new 

corrective terms become negligible with respect to the previous ones. An 

asymptotical correct displacement field is finally obtained. Starting from it, global 

constitutive equations can be readily obtained. 

2.3.7 The model of Kollar and Pluzsik 16 ' 17 

The model of Kollar and Pluzsik is based mainly on matrix analysis and classical 

lamination theory. It can be applied only when the cross-section is made of straight 

segments. Four global kinematic variables are considered, the axial displacement of 
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the beam, curvatures about Y and Z axis and the angle of torsion. A global system of 

four equations in four unknown is obtained at the end. The resulting stiffness matrix 

is consequently square and of order four. 

The fundamental idea of the model is quite simple: in the global coordinate system 

(X, Y, Z), forces and moments acting on the whole cross section are the sum of 

forces and moments acting on all the wall segments. A local coordinate system is 

used in each k-th wall, together with the global frame. They are shown in Figure 

2.11. 

7 

z 

x 

k-th wall 
scgmcnt 
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Xk 

ý/ fl 

Global frame Local frame 

Figure 2.11: Coordinate systems used in the model of Kollar and Pluzsik. 

The model is originally developed for open cross sections. Four steps are required: 

1. Strains in each wall are expressed in terms of global kinematic variables. 
2. Forces and moments in each wall segment are determined from the strains 

of each segment by using classical lamination theory. 

3. Resultant axial force, moments and torque acting on the axis of the beam 

are determined from the forces and moments acting in each wall. 

4. The stiffness matrix is established by relating global internal forces to the 

global displacements. The final expression of the model is F= Ku . 

The first part of the theory, as already mentioned, is suitable for open sections, but 

it can be easily adapted to a closed cross section. If a closed section were cut 

lengthwise, the two cut edges would move relative to each other, as shown in 
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Figure 2.12. In the uncut beam this deformation is prevented by the force XI, the 

bending moment X2, and two transverse forces X3 and X4 along the cut. 

tx31 

X, XZ 

Figure 2.12: Forces and moments that arise to maintain the shape of a closed 
section. 

As the deformation caused by transverse shear is neglected and the circumferential 
stress is supposed to be zero, X3 and X4 shown in Figure 2.12 can be neglected. 
Unknown X1 and X2 can be determined from compatibility equations. 

Finally, the system of constitutive equations is obtained in the matrix form F= Ku 

for a closed cross section. Displacements and forces are considered with respect to 

the centroid, i. e. that point located in such a way that the beam's axis remains 

straight if a simple axial load is applied. Analytical formulae to locate it are 

explicitly provided. 

This model presents some significant advantages: 

" Classical lamination theory can be used as a "black box" in order to determine the 

forces inside each wall segment. 

" Structural differences between an open and a closed section are clearly explained. 

"A possibility of a centroid which differs from the geometric centre of the section 

is considered and explicit formulation to evaluate it is provided. 
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Two effects are neglected by Kollar and Pluzsik: shear deformation and warping. 

The effects of the shear deformations on the fmal deformation are negligible in 

slender beams. Concerning warping, it cannot be neglected when dealing with open 

beams. However, and it is an important result, the warping can be neglected for a 

long closed section cantilevered beam. This result, according to the authors, is 

independent of the slenderness of the beam. 

2.3.8 The model of Lemanski and Weaver 18 

This model does not provide a complete theory to evaluate the deformation of a 

beam. The work is focused, instead, on the evaluation of the bend-twist coupling 

stiffness K, which is the most critical stiffness to be evaluated for aeroelastic 

purposes. The formulation is valid only for rectangular cross sections (Figure 2.13). 

The stiffness K is calculated analytically by considering moments and forces that 

arise in each part of the cross-section when a deformation is induced. K can be 

thought, according to its mathematical definition, in two different ways. It is the 

twisting moment that arises in a box when a unitary bending curvature is applied. 
On the other hand, it is also the bending moment that arises when a unitary twisting 

curvature is applied to the cross-section. 

H 

C 
Figure 2.13: The wing-box in the model of Lemanski and Weaver. 

The first step in the analysis is to apply a unitary bending deflection to the structure 

and to assume a deformed shape of the cross-section. Forces and moments 

consequently arising in each horizontal and vertical wall are calculated with 
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classical lamination theory. Starting from these forces and moments, a twisting 

moment can be determined. This induced twisting moment is the stiffness K 

This formulation is found to be precise and based on physical understanding. 
Further comments and analyses are provided in Chapter 3. 

2.3.9 The model of Johnson, Vasiliev and Vasiliev 19 

The analysis of thin-walled beams can be generally performed following two main 

methods: the displacement formulation, where the starting point is an assumed 
displacement field, or of the strain formulation, where the starting point is an 

assumed strain field. 

In contrast, these authors propose the use of a stress formulation: the shear flow, 

used in the local constitutive equation of each wall, is determined from a 
differential equation of equilibrium. Its integration does not impose any restrictions 

on the manner in which the wall stiffness varies along the cross sectional contour. 
Furthermore, the stress formulation does not require assumptions concerning the 

warping function. 

The key points of the theory can be summarised as follows: 

" An expression of the strain ex of the axial direction is assumed. 

" Displacements v and w are assumed. 

" Equilibrium equations are written for an infinitesimal element (Fig 2.14) of the 

beam: local shear flow r, is expressed as a function of the axial stress a.,,. 

" The stress component in the Y direction (Q., ) is neglected. 

62 



IM' 
1 

do 
dx `ý - Qr 

x 
V 

S 

Figure 2.14: The stress formulation is founded on the equilibrium of an 
infinitesimal element. 

Equilibrium is studied and global constitutive equations are written in matrix form 

at the end. Stiffness expressions are explicitly reported and explained in the paper. 

This model presents a relatively high level of complexity; therefore its potential use 
in this research was deemed to be limited. 

2.3.10 A comparison of the models in terms of EI, GJ and K 

The models described in this Chapter have been compared in terms of stiffnesses 
EI, GJ and K, with the only exception being the formulation of Hwu and Tsai. It has 

not been included in this comparison because its level of accuracy is not sufficient, 

as already remarked upon in section 2.3.1. The comparison has been completed by 

adding the results of a FE model, which will be fully described in Chapter 3. 

A rectangular cross-section (Figure 2.13) has been chosen to test the models. It is 

representative of a composite wing box. Its height is 0.3 m, whilst its chord is 0.6 

m. The thicknesses of both horizontal and vertical walls are 0.006 m. 

Elastic properties of one composite lamina are presented in Table 2.1. 
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Table 2.1: Elastic properties of the composite material. 
Ei 181 GPa 
E2 10.3 GPa 
G12 4.55 GPa 

V12 0.28 

Vertical walls are kept orthotropic. They are built with one single layer with 00 

fibres. Horizontal laminates are identical and built with one layer whose fibres 

orientation can vary from 00 to 900 with respect to the global frame of reference. 

Such geometry and properties have been chosen because it is possible to obtain 

bend-twist coupling. As previously remarked, this effect has been chosen in this 

thesis as a mechanism to show the potential benefits of aeroelastic tailoring. 

A convergence analysis has been performed to find the optimal discretization of the 

FE model. A complete discussion can be found in Chapter 3. The mesh used for the 

analyses has been compared with a "high density" mesh, having 100% more 

elements. It has been observed that the results do not change. Results of the 

torsional stiffness GJ are as shown in Figure 2.15. Analogous results have obtained 

when studying also EI and K. 

Convergence Analysis 

GJ s 

[Nnn21 10^6 Mesh used for the analyses 
"- "Figh density' Mesh 
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Figure 2.15: Convergence analysis. 
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A comparison of the bending stiffness EI, from various theories, is shown in Figure 

2.16. 
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Figure 2.16: Comparison of the bending stiffness EI. 

It is interesting to observe that the models of Librescu and Song and Rehfield et al. 

produce similar results. It happens because the walls of the box analysed are quite 

thin. Consequently, the 3D dependence of the model of Librescu and Song does not 

have significant impact on the results. Also the results obtained with the models of 

Berdicevsky et al. and Kollar and Pluzsik do not differ significantly, even if the two 

theories are quite different. Such formulations, although complex, provide results 

very close to those obtained with the FE model. 

Comparison of the torsional stiffness GJ is shown in Figure 2.17. Also in this case, 

the models of Librescu and Rehfield produce similar results, so the models of 

Berdichevsky and Kollar. Most of the models show that the maximum value of the 

torsional stiffness, for the geometry investigated, is obtained when the fibres are 

placed with an angle ý between 200 and 25°. The only exception to this is the model 

of Chandra and Chopra, which predicts the maximum value when the fibres are 
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orientated at 45 deg. Results of the FEM, for this geometry, are very close to those 

predicted by the models of Rehfield and Librescu. 
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Figure 2.17: Comparison of the torsional stiffness GJ. 

A comparison of the bend-twist coupling stiffness K is shown in Figure 2.18. The 

models of Librescu and Rehfield are identical. The models of Lemanski and 

Weaver, Berdichevsky and Kollar and Pluzsik give approximately the same results 

and they are in accordance to those obtained by using the FE approach. 
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K Bend-Twist Coupling Stiffness 
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Figure 2.18: Comparison of the bend-twist coupling stiffness K. 

The comparison proposed in this section shows an important result: many models 

have been proposed in the literature, but their collective predictions are ambiguous. 

While, for this geometry, the models of Kollar and Berdichevsky are able to 

produce good results for EI and K and incorrect results for GJ, the opposite can be 

affirmed for the models of Rehfield and Librescu. Moreover, a point of 

disadvantage for the models of Kollar and Berdichevsky is their complexity. 

A simplified but precise model to evaluate the important stiffnesses of a composite 

box has been developed as part of this research. It will be presented in Chapter 3. 

Results for several geometries and lay-up configurations will be discussed and 

compared with the finite element model. 

2.4 Combinatorial stacking sequence optimisation of composite 
laminates 

In many practical applications, the design of composite laminates for aeroelastic 

purposes is performed in two steps. In the first one, volume fractions of different 

composite fibres are determined to optimise a particular aeroelastic performance. In 
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other words, membrane properties of each laminate (A matrix) are determined 

without regards to the stacking sequence. This approximation is possible because of 

the "thin walled" effect: a different stacking sequence does not affect the final 

aeroelastic design of a wing. 

Once the elements of the A matrix of each laminate have been designed, the 

stacking sequence can be studied and optimised. Such an optimisation does not 

affect the membrane properties and consequently the aeroelastic design, but can be 

important to improve some other performances strictly related to the D matrix, e. g. 

compression buckling loads. 

In this section a review is given on the techniques to solve the following problem: 

" To find the "optimum" stacking sequence of a laminate with fixed number of total 

layers and fixed number of layers with a specific orientation. As an example 

consider a laminate whose maximum number of layers is 80 where 20 layers must 
be oriented at 45°, 20 at 90° and 40 at 0°. 

Some attempts to solve such problems with conventional gradient based methods 
have been performed 66,67 in the past. The optimal ply angles obtained by these 

continuous optimisation methods were rounded to appropriate integer values that 

finally resulted in a non-optimal design. These results, together with the 

permutative and discrete nature of the problem, suggest that heuristic techniques 

may be more appropriate. 

One of the most popular heuristic optimisation methods is the Genetic Algorithm: a 

guided random search technique working on a design population. This technique 

was inspired by Darwinian Evolution Theory. Among the papers presented in the 

literature 68-72, the work of Liu et al is particularly useful because the authors 

developed some "ad hoc" operators to make the algorithm suitable for a 

permutative problem. Their work is described as follows. It will be particularly 
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useful as a basis for comparison of results presented in Chapter 7, where a new 

optimisation technique developed as part of this thesis is presented. 

2.4.1 Genetic Algorithms for permutative problems 72 

Each individual of the population represents a possible design, i. e. a stacking 

sequence. An example of an individual with 10 plies is shown in Figure 2.19. Fixed 

percentages of fibres must be respected; therefore the laminate is formed, in this 

example, by four 0° layers, two 90° layers and four 45° layers. 

[45 /45 /0 /0 /90 / 45 /0 /0 /45 /901 
Figure 2.19: An example of stacking sequence. 

The algorithm, as a standard GA, is based on four basic operations: 

" Determination of an initial population of stacking sequences. 

" Selection of parents among the best individuals of the population. 

" Crossover: two parents generate children that will form the next generation. 

" Mutation: after a fixed number of generations, a random element is modified. 

The algorithm starts with an initial population of n randomly selected elements. The 

number of stacking sequences forming the initial population is an important 

parameter to tune. If its value is too high the CPU running time increases without an 

appreciable improvement of results. On the other hand, if the number of elements of 
the initial population is too low, the algorithm is not able to converge, i. e. there will 
be not any improvement in the population. 

Once the initial population is selected, each element is evaluated by using a fitness 

function. The best individuals, in terms of fitness function, have more chance to 

survive and to transmit their genes to their children. 

The procedure used to select the parents of the next generation is a simulated 

roulette wheel, with each element being assigned to a sector of the wheel with an 
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area proportional to its fitness. That is, with n elements having fitness values of F, , 
with i=1,2, ..... n, the i-th element gets a fraction r;, of the wheel, where 

nF' 
(2.16) 

1: Ff 
l=1 

Within a computer code, the roulette wheel can be implemented by generating a 
random number a between 0 and 1, and then selecting the i-th design when 

R, 
_1 

Sa<R, (2.17) 

where Ro =0 and 

Ri=ýri 
1=l 

(2.18) 

The following example clarifies the entire procedure. Imagine having an initial 

population formed by six elements, i. e. six different stacking sequences, whose 
fitness values are respectively: 

[F1, F2, F3, F4, FS, F6] = [0.35 0.60 0.38 0.55 0.45 0.15] 

It implies (Eqn. 2.16) that the values of r; are 

r; = [0.14 0.24 0.15 0.22 0.18 0.07] 

Values of coefficients R;, boundaries of each part of the selection wheel, are 
calculated according to Eqn. 2.18. The following results are obtained: 

[Ro R j, R2, R3, R4 Rs, R6] _ [0 0.14 0.38 0.53 0.75 0.93 1] 

Six random numbers are generated to select the best individual of the initial 

population. These six random numbers are gathered in the same vector denoted with 

the symbol a as follows: 

a= [0.2825 0.7123 0.1560 0.9217 0.6120 0.3471] 
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The first number a(1) is 0.2825 and it is such that Rl<a(1)<R2. Therefore, the 

second stacking sequence, corresponding to the fitness function F2 is selected as a 

parent. Parents selected are therefore stacking sequences [2 4254 2]. Design 

stacking sequence 2 is more successful because it shows the best value of fitness 

function. 

Once pairs of parents are selected, the mating of the pairs involves a random 

process called crossover. The simplest crossover used in the standard genetic 

algorithms 21 (single point crossover) begins by generating a random integer b 
between 1 and 1-1, where I is the string length. This number defines a cut-off point 
in each of the two strings and separates each into two substrings. To be more 

precise parent 1 will be cut at point b. Parent 2 will be cut at the point 1-b. The right 

segment of parent 1 becomes the left segment of child 2 and the left segment of 
parent 2 becomes the right segment of child 1. An example is given in Figure 2.20. 
The cut-off point is b=3. 

Parent 1 
[0\90\45\0\0\90\45\0\45\45]s 

Parent 2 
[0101019014514514510145\90], 

Random cut off number selected isb-3 

Parent 1 is broken as follows 
[0\90\45\0\0\90\45] and [0\45\45] 

Parent 2 is broken as follows 
[01010] and [9014514514510145190] 

Children are consequently 

Child 1 
[90\45\4514510145\9010145145], 

Child 2 
[0\0\0\O\90\45\0\0\9O\45]s 

Figure 2.20: An example of single point crossover. 

Child 1 and Child 2 are not able to respect the established fixed percentage of fibre 

angles, consequently, they are not suitable for combinatorial optimisation. Child 2, 
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for example, has got six layers oriented at 0 degrees instead of four. This kind of 

crossover, widely used for standard algorithms, cannot be used for stacking 

sequence optimisation of panels with fixed thickness and fixed percentage of 

orientations. 

A different crossover must be considered for these kinds of problems, as suggested 
by Liu et al 72. It is called gene-rank crossover. It is based on the imitation of the 

process used to average the rankings that two judges give to a group of contestants. 
Each laminate can be viewed as a ranking of the set of plies forming the laminate 

itself, and gene-rank crossover averages two rankings (parents) to generate a new 

vector (child). 

Consider the simple case with three elements [45 0 90]. The first judge denotes 

them as 45-first, 0-second, 90-thrird, in short-hand [45 0 90]. The second judge 

ranks them as 45-second, 0-third, 90-first, or [90 45 0]. Two weights W, and W2 can 
be associated to each ranking, representing the respective influence of the judges 
W1+W2 =1. In a computer program, they are implemented as two uniformly 
distributed random numbers in the interval [0,1]. The final ranking is then obtained 
by summing the weighted rank of each individual: 

45 WI* 1+W1*2 
0 Wj*2+W2*3 
90 Wj*3+W2* 1 

If, for example Wi = 0.4 and W2=0.6, the following values are obtained for the 

vector above [1.6,2.6,1.8], corresponding to the final ranking of [45 90 0]. 

There is a fundamental difference between the single-point crossover and a gene- 

rank one. In the first algorithm, two parents generate two children. In the second 

one, two parents generate only one child. It means that each parent must mate twice 

to keep constant the dimension of the population. All the strings selected to 

reproduce must mate with other two elements of the population that are randomly 

selected. 
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Once a new generation is born, the selection process is repeated as well as the gene- 

rank crossover. The algorithm stops when both the following conditions are 

reached: 

"A fixed number of generation must be examined 

" The average fitness of the generation i is lower than the average fitness of the 

generation i-1. It means that the population is not improving further. 

After a given number of iterations, a standard permutation can be also introduced in 

the procedure. This permutation has the same role as a mutation in a standard GA. 

Genetic Algorithms often give good results, but their primary limitation is the 

increased number of iterations that are performed. 

2.4.2 PSO and ACO 

Good results can be obtained with two other heuristic techniques: Particle Swarm 

Optimisation (PSO) and Ant Colony Optimisation (ACO). 

Particle swarm optimization 73 is a stochastic, population-based computer 

algorithm. It is a type of swarm intelligence based on social principles and social 
learning that enables a person to maintain cognitive consistency. People solve 

problems by talking with other people about them, and as they interact their beliefs, 

attitudes, and behaviours change. The changes could, typically, be depicted as the 
individuals move towards one another in a socio-cognitive space. PSO simulates 

this kind of social optimisation. For a given problem a fitness function is defined. In 

our case, it is either the natural frequency of a plate74, or the compressive buckling 

load. A communication structure or social network is also defined, assigning 

neighbours for each individual to interact with. Then a population of individuals 

defined as random guesses for the problem solutions is initialized. These 

individuals are candidate solutions. They are also known as the particles, hence the 

name particle swarm. An iterative process, to improve these candidate solutions, is 
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set in motion. The particles iteratively evaluate the fitness of the candidate solutions 

and remember the location where they had their best success. The individual's best 

solution is called the particle best or the local best. Each particle makes this 

information available to their neighbours. They are also able to see where their 

neighbours have had success. Movements through the search space are guided by 

these successes, with the population usually converging, by the end of a trial, on a 

problem solution better than that of non-swarm approach using the same methods. 

The swarm is typically modelled by particles in multidimensional space that have a 

position and a velocity. These particles fly through hyperspace and have two 

essential reasoning capabilities: their memory of their own best position and 
knowledge of the global or their neighbourhood's best. In an optimization problem, 

problems are formulated so that "best" simply means the position with the greatest 

objective value. Members of a swarm communicate good positions to each other 

and adjust their own position and velocity based on these good positions. 

As the swarm iterates, the fitness of the global best solution improves (decreases for 

minimization problem). It is possible that all particles, being influenced by the 

global best, eventually approach the global best, and a converged solution is found. 

Suresh et al 75 
, use particle swarm intelligence in multi-objective constrained 

optimisation: their goal is the maximization of bend-twist coupling stiffness of a 

composite box beam, while maintaining almost the same values of bending stiffness 

and torsional stiffness required by the design. The design variable vector used has 

the following form: 

DV = [H C ý, ý2 ý3 .. ýn ] 

where 

H is the height of the wing box 

C is the chord of the wing box 
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is the i-th ply orientation on n plies. The number of plies is fixed a priori. 

The number of layers with a specific discrete orientation is not fixed. 

However, this constraint can be easily added. 

Suresh et al claim better performances and CPU running time compared to standard 

genetic algorithms. 

ACO 76 appears to be even more suitable for problems of combinatorial 

optimisation. In the real world, ants (initially) wander randomly, and upon finding 

food return to their colony while laying down pheromone trails. If other ants find 

such a path, they are likely not to keep travelling at random, but to instead follow 

the trail, returning and reinforcing it if they eventually find food. With increased 

time, however, the pheromone trail starts to evaporate, thus reducing its attractive 

strength. The more time it takes for an ant to travel down the path and back again, 

the more time the pheromones have to evaporate. A short path, by comparison, gets 

marched over faster, and thus the pheromone density remains high as it is laid on 

the path as fast as it can evaporate. Pheromone evaporation has also the advantage 

of avoiding convergence to a locally optimal solution. If there were no evaporation 

at all, the paths chosen by the first ants would tend to be excessively attractive to 

the following ones. In that case, the exploration of the solution space would be 

constrained. Thus, when one ant finds a good (i. e., short) path from the colony to a 
food source, other ants are more likely to follow that path, and positive feedback 

eventually leads all the ants following a single path. 

The idea of the ant colony algorithm is to mimic this behaviour with "simulated 

ants" walking around the graph representing the problem to solve. 

Aymeric and Serra 77 applied ACO to find the optimum stacking sequence to 

maximize the compression buckling load of a simply supported composite plate 

with fixed thickness. A strength constraint was also included. If the number of 

possible ply orientations (for example 0, +45, -45 and 90 degrees) that can be used 

in the laminate is denoted with m and the number of layers is denoted with n, a 
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matrix RT (routing table) n times m is prepared. The element i -j of this matrix 

contains the probability that the i-th layer is occupied by the j-th ply angle 

orientation. 

At the beginning of analysis, this matrix is initialized with the same value in each 

position. An initial random laminate is selected and its fitness function evaluated. 

During each iteration the generic element of the routing table is updated as follows: 

RTC = 
ph'ij (2.19) 

E ph>> 
m 

where phy is the pheromone trail associated to the j-th orientation in the i-th layer. 

Its value is related to the fitness function. A new candidate solution is then 

constructed by randomly choosing thej-th orientation for the i-th position according 

to the probabilities of the routing table. At the end of the assembly phase, 

pheromone evaporation is simulated by means of a linear relation step dependent. 

In the work of Aymeric and Serra, the amount of pheromone deposited phy is 

directly proportional to the fitness function: the compression buckling critical load. 

The authors chose to follow an elitist strategy: pheromone values are updated only 

when the solution generated in the current iteration is better or equal to the best 

solutions found since the start of the search. The pheromone evaporation, however, 

is always carried out, at any step. It is worth noting that such a pheromone 

reinforcement mechanism induces a strong exploitation of the past search 

experience. The inspection process thus becomes heavily guided towards regions of 

the solution space characterized by components contained in high quality solutions 

found during the previous explorations. This effect, while usually improving 

algorithm performance, may however limit the exploration of the less promising 

regions of the domain. 

Aymeric and Serra claim that ACO obtains the same performances as a GA in terms 

of stacking sequences, but it requires less CPU running time to converge. Also other 

authors claim excellent results obtained by using Ant Colony for stacking sequence 
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optimisation. Manan et al 78, for example, have used this technique to optimise 

flutter and divergence speed of a composite laminate. Stacking sequences obtained 

with ACO give better average results than GA and PSO. 

2.4.3 Some considerations on the heuristic techniques 

Heuristic techniques are often used in industry because they are able to produce 

good results and because of their relative simplicity. From the optimisation point of 

view one of the main advantages of evolutionary techniques is that they do not have 

much mathematical requirements. They are 0-order methods: all they need is the 

evaluation of an objective function. Beside the advantages, heuristic techniques 

such as GA and ACO already shown have three basic limitations 79: 

1. They often provide "practical solutions", but it is difficult to obtain the 

global optimum. This is exactly the same limitation often attributed to 

gradient based techniques. 

2. They are computational expensive. In other words, they may require 

several iterations to obtain the result. 

3. It is difficult to use them with constraints. 

Considering all the reasons reported above, a new deterministic technique will be 

proposed in Chapter 7. 

2.5 Conclusions 

Contributions to aeroelastic tailoring previously presented in the literature have 

been discussed and commented upon in this Chapter. Particular attention has been 

given to passive actuation mechanisms, obtained by means of structural couplings. 

A literature survey has also been performed for composite beams analytical models 

and stacking sequence combinatorial optimisation of plates. 
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Concerning analytical models, several theories have been reviewed and compared. 

Particular attention has been dedicated to the global constitutive equations and to 

the formulation of the relevant stiffnesses for aeroelastic tailoring: EI, GJ and K 

Concerning the combinatorial problems, the literature on the optimisation 

techniques of plates with fixed thickness and fixed number of plies with a specific 

orientation has been reviewed. 

In the following chapters, the novel work developed in this thesis will be discussed. 
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Chapter 3 
The analytical model to evaluate the fundamental stiffnesses for 

aeroelastic analyses 

3.1 Introduction 

The aeroelastic tools described in the following chapters include a structural model 

in order to evaluate the deformations. A beam model has been used. This approach 

has proven itself to be effective in a variety of engineering applications. In 

aeroelastic studies, beam models have been used to reveal important trends and 
56,80 rectangular cross sections have been used to model wing boxes , 80 

Accurate values of stiffnesses are required as input to the structural model for 

aeroelastic analysis. In order to obtain appropriate deformations, the evaluation of 

EI, GJ and K must be as accurate as possible. However, a correct evaluation of the 

stiffnesses of a composite beam is not a trivial problem: a fact confirmed by the 

number of different formulations presented in the literature. Such models often 

show a lack of precision when cross sections with different geometries and 

unbalanced lay-ups are analysed. The effect of anisotropy can render current 

methods inaccurate for specific geometries. 

In this chapter, a simplified and precise model is proposed to evaluate bending and 

torsional stiffnesses of a prismatic, anisotropic, thin-walled symmetrical box, whose 

vertical walls are orthotropic. Bending and torsional stiffnesses are derived by using 

physical reasoning and validated with respect to finite element analysis. Stiffnesses 

EI and GJ are, in other words, calculated by exploiting their mathematical 

definition. They represent, in fact, bending and twisting moment obtained in a cross 

section when unitary bending and torsional deformation are respectively applied. 

Numerical results are commented upon and compared with other models presented 

in the literature. Good accuracy has been obtained for structures with different 

geometries and lay-ups. No other model, to the knowledge of the author, is able to 

provide the same level accuracy for the structure analysed being, at the same time, 

simple and easy to translate into a computer code. 
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3.2 Evaluation of bend-twist coupling stiffness K 

A prismatic thin-walled box is shown in Figure 3.1. Its global coordinate system is 

the same used for all other model presented in this thesis and it is shown in Fig. 3.2. 

It is denoted by X, Y, Z, and it is located in the geometrical centre of the cross 

section, denoted by 0. 

AA 

Figure 3.1: An example of prismatic thin-walled composite box. 

A 

Figure 3.2: The global frame X, Y, Z of the box. 

Concerning bend-twist coupling stiffness, K, the analytical predictions of Lemanski 

and Weaver are relatively accurate, simple and based on physical reasoning. Their 

results have been investigated and reproduced as part of this work. An example is 
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shown in section 3.5. No further discussion on the stiffness K is therefore needed. 

The same cannot be said for bending and torsional stiffnesses, as formulae 

presented in the literature are not able to provide sufficient accuracy when cross 

sections of different geometries and lay-ups are analysed. Therefore, a model able 

to predict accurate results is required. The approach used by Lemanski and 

Weaver18 to calculate K is extended to evaluate the bending stiffness EI of a 

symmetric composite thin-walled box. A new analytical formula is also proposed to 

evaluate GJ. 

3.3 Evaluation of EI 

The strategy used by Lemanski and Weaver to evaluate bend-twist coupling 

stiffness K is extended to the evaluation of the bending stiffness EI. 

The most important feature of Lemanski-Weaver's model is the definition of the 

stiffness K, which can be deduced form the following equation (Eqn. 3.1). 

M(X) 
_ 

EI(X) 
T(X) -K(X) 

d<p(X) 

- K(X) dX 
GJ(X) dO(X) 

dX 

(3.1) 

It relates the internal loads, bending M(X) and twisting T(X) moments along the 

spanwise coordinate X, to the structural deformation, i. e. bending angle cp and 

twisting angle 0. Bend twist coupling stiffness is the twisting moment arising in a 

cross section when a unitary bending curvature 
d(p 

is applied. When =1, 

(without twisting, i. e. =0), a torsional moment is obtained from Eqn. 3.1 as: 

T=-KV 
cfz 

(3.2) 

The numerical value of the stiffness therefore coincides with the twisting moment 

arising in the walls of the cross section. Similar reasoning can be used to evaluate 
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EI: as the bending moment arising in the cross section when the same unitary 

bending deformation is applied. 

Consider a hollow box shown in Fig. 3.3. The box is symmetrical, such that the top 

and bottom laminates are identical. It is noted that the vertical walls are made from 

balanced laminates, as unbalanced laminates here do not induce bend-twist coupling 

of the box. it's the geometrical characteristics are denoted by: 

C is the length of the horizontal wall 
H is the length of the vertical wall 

t,, is the thickness of the vertical wall 

th is the thickness of the horizontal wall 

Node 1 

ty 

Node 2 

Node 4 

X 

Node 3 

Figure 3.3: Geometric characteristics of a box cross section. 
d(o 

Firstly, a unitary bending deformation =1 is applied. On the top wall of the box, 

if the material is orthotropic and the stiffness of vertical walls negligible, strains are 

given by 

dip HH 
dz 22 

6y = -vxyex (3.3) 
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where 

Ex axial strain 

E,, transversal strain 

yX, shear strain 

vom, major Poisson's ratio of composite laminate 

The strains of Eqn. 3.3 are written with respect to the local coordinates x, y of the 
laminate, shown in Fig. 3.4. 

Y 

x 

Figure 3.4: Local coordinates x, y in a laminate wall. 

Forces per unit of length corresponding to these strains are: 

NX axial force per unit length of horizontal laminate 

Ny lateral forces per unit length of horizontal laminate 

N. e, shear force per unit length of horizontal laminate 

and are evaluated by using Classical Lamination Theory 8 1. As the box is made of 

laminated composite materials and the presence of vertical walls constrains the 

deformation of horizontal laminate, the strain field (Eqn. 3.3) requires modification. 

Two corrective terms Di and A2 are added for the following reasons: 
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1 Lateral deformation c,, of the horizontal laminate is constrained by the 

vertical walls and depends not only on the characteristics of the laminate 

itself but also on the elastic properties of the vertical walls. 

2 Shear deformation y- of the laminate exists; otherwise no bend/twist 

coupling effect could be measured. 

The strain field of the horizontal laminate is re-written as 

H 
Ex = 

2 

ey = -vxyex + Al _ _212 ex + Al (3.4) 
A22 

Yxy =A2 

where Aý is the membrane stiffnesses of the top laminate. The terms A, and AZ are 

unknown. Two algebraic equations are needed to determine them. The first equation 

can be written evaluating displacement 6 of Node 1, shown in Figure 3.5. 

Figure 3.5: Displacement S of Node 1. It is a local horizontal 
displacement of the top laminate and a local vertical displacement of the 
vertical wall, whose idealisation is shown on the right part of the figure. 

Node 1 can be thought as a part of the horizontal laminate. Therefore, as the box is 

symmetric, the following equation can be written 
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23 = yC =biz 
2 

-Al C (3.5) 
zz 

On the other hand, Node 1 is also part of the vertical wall. Its deflection can be 

calculated by modelling half of the vertical wall as a cantilevered beam, as shown in 

Fig. 3.5. Rotations and displacements of the middle point of vertical walls (point P 

of Figure 3.5) are assumed to be zero 18. Displacement, 6, is therefore that of a 

cantilever beam: 

8__NNH 
3C 

(3.6) 
24E, I,, 

where N. is found directly from Classical Lamination Theory, 

NY = A12ex + A22sy + A26yxy (3.7) 

and EJ, is the bending stiffness of the vertical walls. 
If Eqn. 3.7 is substituted in to Eqn. 3.6 and combined with Eqn. 3.5, then: 

A12 
H+A22 

(-A12 H+A, 
)+A26A2 

12EIv 
(_A'2 

H+0) 
(3.8) 

2 A22 2 H3 A22 2 

The second algebraic equation to evaluate AI and d2 can be deduced from the 

equilibrium of tangential forces, as suggested by Lemanski and Weaver 18: 

GHCA2 
=Ne =A16 

2 
+A26(-ý'z 

I-I 
+A1)+A66ä 2 (3.9) 

A22 2 

where Gv is the shear modulus of the vertical wall and t,, is the thickness. 

An algebraic system comprising two equations (Eqns. 3.8-3.9) in two unknowns d, 

and d2 is obtained and is readily solved. Once dl and d2 are calculated, they are 

substituted in to Eqn. 3.4. and the strain field of the top laminate is completely 

defined. 
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Concerning vertical walls, their local coordinates system x,, yv is shown in Fig. 3.6. 

Yll 

xw 

Figure 3.6: Local coordinates of vertical walls. 

Consequently, x,, and x, are coincident and they have the same direction as the 

global axis X. Forces per unit of length of vertical walls are 

N, , is the axial force per unit length. 

Ny, is the lateral force per unit length 

N is the shear force per unit length 

while corresponding strains are 

EX� is the axial strain 

cyy is the lateral strain 

7xyv is the shear deformation 

As EI is the bending moment arising in the cross section when a unitary bending 

curvature is applied, it can be calculated as the bending moment with respect to the 

global Yaxis, 

E1= fNXZdC 

where 

(3.10) 
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dC is the infmitesimal element of the contour 

Ns is the axial force per unit length in the global reference. It includes 

contributions from both N. and Nom. 

Eqn. 3.10 can be divided into two components, those from the horizontal and those 

from vertical walls. The contribution from the top and bottom laminates is: 

EIhoztontal = NxCH (3.11) 

where 

Nx = A�ex + A12e + A16Yx, (3.12) 

and the strains of Eqn. 3.12 are found from Eqn. 3.4. Now consider half of the 

vertical wall to evaluate the second component. The strain c, for simple bending, 
is a linear function of the global coordinate Z. 

Exy =Z with 0: 5 ZSH 
2 

(3.13) 

Consequently, the contribution of the vertical walls to the bending stiffness can be 

assumed to be: 

EI,,, ica, =4 
pEvttZ2dZ 

=1 EtH3 (3.14) 6 

where tv is the thickness of vertical walls. The final expression of bending stiffness 

EI is: 

EI = NXCH +1 Evt, H3 (3.15) 

3.4 Evaluation of torsional stiffness GJ 

In this section, a model to predict the torsional stiffness GJ is presented. This model 

gives good results for several wall length ratios and different lay-ups. 
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The starting point is the formula developed by Librescu and Song 13. It has been 

chosen among several formulations because it shows two good characteristics: 

" It is quite accurate, especially if compared to the other models investigated. 

" Its formulation is relatively straightforward. Other models, such as that due to 

Kollar and Pluzsik 16,17 or Berdichevsky 15 et al, for example, contain more 
information and are more involved to implement. 

The initial formula proposed by Librescu and Song can be re-arranged as follows: 

2 

GJ =f (H, C)S2 HA66 +C A66 - 
A26 (3.16) 
A22 

where 
Ay' are the terms of the membrane matrix of the orthotropic vertical wall 

Sl is the area enclosed by the contour of the cross section 

C)2 

There are two contributions to the torsional stiffness: 

" the contribution given by the vertical walls: 

GJw, 
t ca, =f (H, (H, C)SZHA66 

9 the contribution given by the top and bottom laminates: 
2 

z6 GJ 
.; ß�1Q, _. f (H, C)! n A66 -AA 

Using Lemanski and Weaver's approach, the stiffness GJ can be thought as the 

twisting moment arising in a cross section when a unitary twisting curvature is 

applied. The forces per unit of length arising on the vertical and horizontal walls are 

derived from Eqn. 3.16, as 
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Nom, = f(H, C)HAf 

Az (3.17) 
Nx, =f (H, C)C A66 - 26 

A66 

These forces per unit length are usually not equal and they are constant along the 

walls. This fact implies a discontinuity of the tangential forces per unit of length at 

the corners of the cross sections, as shown in the example of Figure 3.7. 

i 

Ni, 
� 

"N sq 

Figure 3.7. Discontinuity of tangential forces in the model of Librescu 
and Song. 

The shear continuity at the corners is imposed by assuming a parabolic distribution, 

in the horizontal or in the vertical laminates, of force per unit length. For example, 

when N is greater than N, the shear flow of the top/bottom laminate will be 

assumed to vary parabolically: its value at the corner will be equal to N', ", and its 

maximum value, at the middle of the wall, will be equal to NXV (Figure 3.8). In other 

words, the shear flow of the horizontal laminates is now a parabolic function N, n, (y), 

where y is the local axis of the laminate, shown in Figure 3.4. An analogous 

distribution occurs when NX,,,, is greater than No,. In this case, the shear flow of the 

vertical laminates is assumed to vary parabolically. 
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Maximum value of the parabolic distribution lllxy 

NKyy 

i 
f! 

Figure 3.8. Parabolic correction of Ni,, (in red) on the Librescu 
formulation (in black). 

When a parabolic distribution is assumed in the top/bottom laminates, the average 

shear flow of the horizontal walls is: 

fN, (y)dy 

xy c 
N*="' (3.18) 

The stiffness GJ can be therefore evaluated with Bredt's formula 82: 

GJ=2S N, 

where 

(3.19) 

NN is an average expression of the shear flow along all the contour found 

from 

N C+HN 
N, _ 'ry" (3.20) 

H+C 
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An analogous formula can be deduced when the parabolic distribution is assumed in 

the vertical walls. 

This formulation provides excellent results for several geometries, as shown in the 

following section. 

3.5 Numerical results 

Three different cross-sections, representing three different wing boxes, have been 

analyzed. The top and bottom laminates are made with one single layer whose 

fibres orientation c can vary from 00 to 90° with respect to the local frame 

represented in Figure 3.4. Vertical walls are made with one single layer with fibres 

oriented at 0°. Appropriate elastic properties are: 

EI=181GPa 

E2= 10.3GPa 

G12 = 4.55 GPa 

V12 = 0.28 

These three cross sections have different wall lengths, but the same shape 

(rectangular) and the same area enclosed by the contour. Geometrical properties are 

reported in Table 3.1. 

Table 3.1: Geometric properties of three different boxes. 
Wing Box Length Length of Thickness Thickness 

Type of horizontal walls of vertical of horizontal 
vertical [m] walls walls 
walls [ml [in] 

m 
Representative 0.3 0.6 0.006 0.006 

Wing Box 
Square 0.424 0.424 0.006 0.006 

win Box 
Tall 0.6 0.3 0.006 0.006 

win Boa 

Finite element analysis (FE) using Patran/Nastran 83 was performed to validate the 

results. Shell elements of composite materials have been used. The longer laminate 

has been divided in 8 elements while 6 elements have been used for the shorter 
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wall. The span, 4 meters long, has been divided in 20 elements. A convergence 

analysis has been performed in order to verify that a larger number of elements does 

not induce any change in the results. Results are shown in Figure 3.9: the stiffness 

EI of a representative composite box has been studied by using three different 

meshes: a "low density" mesh, a "high density" mesh and the mesh used in this 

work. The number of elements used for these three kind of meshes are shown in 

Table 3.2. 

Table 3.2: Meshes used in the convergence analysis. 

Mesh Type Number of Number of Number of 
elements along the elements along the elements along 

span long laminate the short 
laminate 

"Low density" 10 4 3 

"High density" 40 16 12 

Mesh chosen 20 8 6 
for the analyses 

When a "low density" mesh is used, the stiffness is overestimated as suggested by 

Bathe 84. A "high density" mesh, on the other hand, is not necessary. It produces, in 

fact, the same results of the reference mesh used for the analyses. 

Convergence analysis 
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Figure 3.9: Convergence analysis. 
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The following steps are needed to obtain bending and torsional stiffnesses. 

"A unitary bending moment is applied to the tip of the beam. 

" Bending and twisting deformations are measured in a cross section located at the 

middle span of the beam: sufficiently far from the tip and root, in order to avoid the 

effects of local deformations. The ensuing rates of bending and twisting 

deformations, due to a unitary bending moment, represent bending and bend/twist 

coupling compliances. In symbols they can be denoted with e; and kQ respectively. 

"A unitary twisting moment is applied to the tip of the wing with no bending 

moment. 

" Twisting deformation is measured and consequently twisting compliance, 

denoted with gk. 

" Once all the compliances are known, they can be put in the matrix form: 

Fe, kQ 

ka 8k 

" The inverse of the compliance matrix is the stiffness matrix of Egn. 3.1. 

Results for EI of unbalanced boxes are shown in Figure 3.10-3.12. The analytical 

model presented here has been compared with three other different models (Kollar 

and Pluzsik theory, Librescu and Song's theory and the simple parallel axis 

theorem 82) and also with FE. It is important to remark that the model of Librescu 

and Song shows approximately the same accuracy of the model of Rehfield et al. 
The same can be said for the models of Kollar and Pluzsik and the theory of 
Berdichevsky. The model of Kollar, however, has been chosen for the comparison 

because results provided in their work are easily reproducible. 

The new analytical model proposed in section 3.3 is shown to be accurate and it 

gives approximately the same results as Kollar and Pluzsik theory, but its 

formulation is simpler. 
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Figure 3.10: EI for the "tall" unbalanced composite wing box. Fibre 
angles vary from 0 to 90 degrees. 
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Figure 3.11: EI for the "square" unbalanced composite wing box. Fibre 

angles vary from 0 to 90 degrees. 
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Figure 3.12: EI for the representative unbalanced composite wing box. 
Fibre angles vary from 0 to 90 degrees. 

The model has also been tested with structures whose top and bottom walls are 

made of balanced composite materials. Results obtained for the square wing box are 

shown in Figure 3.13. In this case, all the models give approximately the same 

results. 
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Figure 3.13. EI for the "square" balanced composite wing box. Fibre 

angles vary from 0 to 90 degrees. 
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In most of the previous examples, structures with a high level of anisotropy have 

been studied. However, in practical cases, it is difficult to find laminates made with 

only one unique fibre orientation. Therefore, the analytical model has also been 

tested with a more realistic structure. A representative aircraft wing box (see Table 

3.1) has been considered with top and bottom laminates made by 40% 0 degree 

fibres, 20% 90 degree fibres and 40% of fibres with an angle ý varying from 0 to 90 

degrees. Vertical walls are made by symmetric and balanced laminates whose 

composition is 80% 0 degree fibres and 20% 90 degree fibres. Results are shown in 

Figure 3.14. The current model has the same level of accuracy as that of Librescu 

and Song and it is able to reproduce the results of FE. 

Representative wing box 

EI 
pImA21'10'7 3,5 
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-Anaytical model 
1 

0,5 

0 
0 10 20 30 40 50 60 70 80 90 

Fibre angle [deg] 

Figure 3.14: Representative wing box with "realistic" laminates. 
Validation of EI. 

Results for the evaluation of GJ have also been produced. The new formulation has 

been compared with the models of Librescu and Song and Kollar and Pluzsik, 

respectively (Figure 3.15-3.17). It is evident that the model proposed in this paper is 

the only one (to the knowledge of the author) which works sufficiently well for all 

three different geometries. 

Also for the validation of GJ, a representative aircraft wing box with lay-up 

outlined previously has been analysed. Results are shown in Figure 3.18. In this 
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case, the model of Kollar and Pluzsik underestimates the stiffness. The current 

formulation is in accordance with the FE and is slightly more accurate than the 

model of Librescu and Song. 
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Figure 3.15: GJ for the representative unbalanced composite wing box. 
Fibre angles vary from 0 to 90 degrees. 
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Figure 3.16: GJ for the "square" unbalanced composite wing box. Fibre 

angles vary from 0 to 90 degrees. 
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Figure 3.17: GJ for the "tall" unbalanced composite wing box. Fibre 
angles vary from 0 to 90 degrees. 
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Figure 3.18: Representative wing box with "realistic" laminates. 
Validation of GJ. 
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Concerning bend/twist coupling stiffness K, good results have been obtained by 

using Lemanski-Weaver's model. The development of a new theory is therefore not 

needed. In Figures 3.19-3.21, a case study on aircraft's wing boxes is shown. The 

top and bottom laminates are made with one single layer whose fibre orientation 

vary from 0 to 90 degrees. Vertical walls are made by 0° fibres. The models of 
Lemanski-Weaver and Kollar-Pluzsik have the same level of accuracy, but the 

implementation of the former model, also in this case, is simpler. 
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Figure 3.19: Bend/twist coupling stiffness K for a representative wing 
box. 
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Figure 3.20: Bend/twist coupling stiffness K for a square wing box. 
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Figure 3.21: Bend/twist coupling stiffness K for the "tall" wing box. 
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3.5.1 Discussion. 

With regards to the bending stiffness, EI, the current analytical formulation gives 

the same level of accuracy as the model of Kollar and Pluzsik but its formulation is 

simpler. The current model does not evaluate the contribution of vertical and 

horizontal walls separately. The contribution of the top and bottom walls to EI is 

considered as a function of the stiffnesses of the vertical walls and vice versa. 

With regards to the torsional stiffness GJ, the current analytical model is able to 

give accurate results for several geometries and lay-ups while the model of Kollar 

and Pluzsik underestimates the stiffness and the model of Librescu and Song 

overestimates it. The model of Librescu and Song has been enhanced by using a 

parabolic distribution of the shear flow, evaluated by using Lemanski and Weaver 

approach. 

3.6 Conclusions 

An analytical model to evaluate bending and torsional stiffnesses of a symmetric 

and rectangular composite box with orthotropic vertical walls has been presented. It 

is relatively accurate, simple and based on the mathematical definition of the 

stiffiiesses. 

Analyses performed on EI and GJ show that the proposed formulation is able to 

give highly accurate results for rectangular cross sections of different dimensions, 

different length ratios of horizontal and vertical walls and different lay-ups. No 

other model previously proposed in the literature shows the same level of accuracy. 

Moreover, the formulation is simplified when compared to existing models such 

like Kollar's and Berdichevsky's. Consequently, its implementation is easier. 

This analytical model has been used to evaluate relevant stiffnesses for aeroelastic 

tailoring. It has been integrated as part of the structural model of the static and 

dynamic aeroelastic tools described in Chapters 4 and 6. 
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Chapter 4 
A static aeroelastic model to evaluate the benefits of unbalanced 

laminates on aircraft's range 

4.1 Introduction to aeroelasticity 

Aeroelasticity studies the interactions between three different kinds of forces: 

aerodynamic action, elastic response and forces of inertia. This discipline does not 

concern only aeronautics, where aeroelastic phenomena are observed in wings, tails, 

engine blades, but also civil and mechanical structures. There is the infamous 

collapse of the Tacoma bridge, due to flutter instability caused by a wind of only 18 

m/s. The images of this disaster clearly show torsional deformation coupled with 

flexural motion; the same flutter instability that can be observed in a wing. 

Furthermore, aeroelastic phenomena and instabilities can also be observed in the 

piping systems of chemical/electrical plants. The fluid-structure interaction is 

driven by the internal flow, which can cause instability as divergence and flutter 85. 

Aeroelasticity was born as an area of analysis in the early 1920s to solve problems 

strictly related to the aeroplane 86. Aeroelastic instabilities, even if not known and 

recognized, have been faced by engineers since the origin of the flight. The cause of 

the failure of the early attempts of the Wright brothers, for example, was due to 

divergence. The use of the bi-wing plane was a technical solution used to increase 

the torsional stiffness and thus avoid divergence, but it was not enough to avoid 

flutter in the tail wing, when a greater flight speed was reached. The research of 

Lanchester 87 proves the usefulness of engineers in finding solutions for such 

problems. 

The introduction of the mono-wing with the use of low damping metallic structures 

(instead of wood) coupled with reduced thicknesses, high aspect ratio wings and the 

increase of the flight speed have induced further aeroelastic instabilities, including 

buffeting and transonic buffeting. The latter effect is observed when the 

aerodynamic stream leaving the wing surrounds the tail. The presence of the vortex 

generates periodic motions in the tail itself. If the torsional natural frequency is 
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similar to the frequency of the aerodynamic forces, resonance is observed. 

Transonic buffeting is strictly related to the transonic flight regime. The flow on the 

top surface of the wing is partially supersonic and partially subsonic. At a point 

close to the trailing edge of the airfoil, the stream returns to being subsonic, passing 

through a shock wave. This shock wave is not able to remain stable at a particular 

location and it starts to oscillate. This oscillation is transmitted to the structure, 

which can be significantly damaged. 

As the technology progressed, especially with the advent of high speed flight, the 

effects of high temperatures on structures became important. It was the birth of 

aero-thermo-elasticity. Such a discipline is important in spacecraft engineering, 

especially in the return mission. In modem design, engineers have often used 

control system to reduce or avoid the negative effects of the structural 

deformations, as already mentioned in Chapter 2. Sometimes the action of the 

feedback control system, together with other forces, can induce anomalous 

responses or even instabilities. The discipline studying such phenomena is called 
88, , 89 

Aeroelastic phenomena regarding an aircraft's structure in the subsonic regime can 

be divided into two main categories: static and dynamic aeroelasticity. Dynamic 

aeroelasticity is mainly related to the flutter instability and limit cycle oscillation. It 

is described in more detail in Chapter 6. Static aeroelasticity, on the other hand, 

studies the interaction of only two forces: aerodynamic action and elastic response. 

In other words, forces are applied sufficiently slowly that consequent accelerations 

and forces of inertia can be neglected. 

4.1.1 Static aeroelasticity 

There are three phenomena generally studied in the static aeroelasticity of a wing 90: 

" Aeroelastic divergence. 

" Reversal of aileron control. 

" Lift alleviation. 
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Divergence is caused by the existence of a distance between the point of application 

of the lift (centre of pressure) and the shear centre of each airfoil (Figure 4.1). 

Figure 4.1: Distance between the centre of pressure and the shear centre in a 
generic airfoil. 

This distance causes a torque about the shear centre. This torque must be 

equilibrated by the elastic reaction. However, the torque induces a rotation of the 

cross section that tends to increase the angle of attack. When this happens, the lift 

increases as well, as does the torque. When the elastic reaction is not able to 

withstand the torque, an instability occurs. 

Reversal of aileron control is caused by an analogous mechanism. A simplified 

description is provided as follows. When an aileron is actuated downwards (Figure 

4.2), an additional lift AL is induced, thus producing a rolling moment. This force is 

applied on the aileron and creates an additional torque AT about the shear centre of 

the airfoil, that tends to twist the wing "nose down". 

dL 

Force due to 
the aileron 
movement 

X 
Shear centre 

Wird directiox 

Figure 4.2: Aileron actuation (downwards). 
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The angle of attack therefore decreases, so the lift over the semi-wing, reducing the 

rolling moment. An asymptotic air speed may exist at which the aileron becomes 

completely ineffective. This speed is known as aileron reversal speed. When the 

airspeed is higher than the critical reversal speed, the aileron control is reversed. 

While divergence and lift inversion are two instabilities, lift alleviation is a common 

phenomenon that affects wing structures due to elastic deformation. When a load is 

applied to the wing, a deformation occurs that induces changes in the aerodynamic 

forces. A static equilibrium is reached, where the final value of lift L is different 

from its original value, obtained with the rigid wing (infinite stiffness) and denoted 

with Lo. When a positive angle of sweep exists, as is quite common in the design of 

a civil aircraft, L< Lo: the lift is therefore attenuated, as already discussed in 

Chapter 2. Despite the nature of the phenomenon, the new value of the lift 

coefficient can be lower or greater than Lo, depending on the values of design 

parameters. 

4.2 The static "low fidelity" aeroelastic model 

A low fidelity static aeroelastic model has been developed. It will be described in 

detail in this section. It can be used for two purposes: 

1. To evaluate the lift of the deformed wing, by calculating the final 

aeroelastic equilibrium. 

2. To show the potential benefits of anisotropic composite materials on 

aircraft's range. A simple distribution of "nose up" and/or "nose down" 

effects can be induced to the structure by means of unbalanced composite 

laminates. 

In order to build the aeroelastic tool, both the wing structure and the aerodynamic 

loads must be modelled. The aeroelastic equilibrium is evaluated by using an 

iterative procedure, explained as follows. The lift distribution of the rigid wing is 

first calculated. This aerodynamic action induces deformations on the wing. Such 

deformation induces changes on the span wise distribution of the angles of attack 
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and, consequently, on the aerodynamic loads. New deformations must therefore be 

calculated and this procedure continues until convergence. 

The iterative procedure has been preferred to the solution of the coupled system, 

where the aerodynamic-elastic equations are solved simultaneously, because less 

CPU running time is required. 

4.2.1 The structural model 

Wing structures are complex assemblages of interconnected structural elements. 
The challenge is to develop a model able to satisfy the special demands of a 

conceptual\preliminary design, where understanding is of prime importance. The 

structural model must be simple enough to provide quick solutions and, at the same 

time, sufficiently complex to display features such as span-wise lift distribution and 

the essential effects of laminated wing design. The wing is therefore modelled as a 

one-dimensional beam. It is assumed to be sufficiently slender that the pure shear 
deformation and the effects of restrained warping can be neglected, as suggested by 

Kollar and Pluzsik 16,17. Only three stiffnesses need therefore to be considered: 

EI bending stiffness 

GJ torsional stiffness 
K bend-twist coupling stiffness 

The stiffnesses will be considered coincident with those of a rectangular box 

(Figure 2.13), as previously suggested by Weisshaar 56 and Patil 6. This introduces 

simplifications into the model without affecting the physical meaning of the results. 

In Chapter 5, these assumptions will be discussed comparing the stiffnesses of a 

composite box with those of a real wing like structure. 

The structure is loaded with a distribution of lift per unit of length q(x), which is 

calculated with an aerodynamic model. Once this quantity is known from the 

aerodynamic tool, internal loads can be calculated. They are: 

106 



M(x) is the bending moment distribution 

T(x) is the twisting moment distribution 

They can be simply evaluated from 82: 

d2M(X) 
= 2 -q(X) (4.1) 

dT(X) 
= m(X) dX 

where 

m(x) is the distribution of twist per unit of length 

(4.2) 

At each cross section X of the wing, the following relationship exists between m and 

4: 

m(X) = q(X)d(X) (4.3) 

where 

d(Aq is the distance between the centre of pressure and the shear 

centre of each airfoil. 

Internal loads can be used to evaluate the deformations by means of a linear 

analytical model, as already suggested by Weisshaar 2,56 
. The model chosen for this 

13 work is that proposed by Librescu and Song . Its general formulation of seven 

equations is reduced to a system of only two equations: bending and torsional 

equilibria. As already mentioned, in fact, axial forces, shear deformations, lag 

moment and warping can be neglected. Only three stiffnesses are therefore 

considered: EI, GJ and K. The model, as already shown in Chapter 3, can be 

written in matrix form as follows: 
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dip(X) 
M(X) 

= 
EI(X) - K(X)dX 

[T(X) 
-K(X) GJ(X) dO(X) 

(4.4) 

dX 

The wing can be divided into segments along the span direction to facilitate the 

analysis. Equation 4.4 can be solved numerically by using the finite difference 

approach 91. The two semi-wings are considered such as cantilevered: rotations and 

displacements are blocked at the root. 

Stiffnesses EI, GJ and K, are properties of the whole cross section. They must be 

calculated from the geometric and elastic properties of each wall. The analytical 

model described in Chapter 3 has been used for such purpose. It therefore plays a 

key role in the structural model. 

The wing box used in the aeroelastic model is prismatic and symmetric. The cross 

section is rectangular. The top and bottom laminates are constructed with 44% of 

fibres orientated at zero degrees with respect to the local axis. The reason is simple: 

the main load in a wing is the bending moment and zero degrees fibres maximize 

bending strength. 12% of the laminate fibres are oriented with an angle of 90 

degrees. These are present because, generally, a moment caused by the drag force 

(lag moment) exists. Its direction is orthogonal to the main bending moment. In 

order to obtain bend-twist coupling, 44% of fibres are orientated with an angle ý 

(Figure 2.1), positive or negative, depending on whether "nose up" or "nose down" 

effects are desirable. Vertical walls are orthotropic: 88% of fibres are at 0 degrees 

and 12% at 90 degrees. 

The structural effects induced by the presence of an angle of sweep can also be 

represented. Rotation of the structural axis of swept wings can be evaluated by 

means of the method proposed by Weisshaar 56 

108 



4.2.2 The aerodynamic model 

An aerodynamic model is required to evaluate the loads acting on the wing in each 

step of the aeroelastic iterative procedure. Since the aim of this work is the 

development of a low fidelity model, for the sake of simplicity, the vortex lattice 

method (VLM) proposed by Bertin 92 has been implemented. The vortex-lattice 

method is built on the theory of ideal flow, also known as theory of potential flow. 

Ideal flow is a simplification of the real flow experienced in nature, however, for 

many engineering applications, such simplified representation has all the properties 

that are important for from the engineering point of view. The following 

assumptions 93 are made regarding the problems solved with vortex lattice methods: 

" The flow field is incompressible, inviscid and irrotational. 

" The lifting surfaces are thin 94 

9 The angle of attack is small. 

In this thesis, the Prandtl-Glauert correction 92 factor has been introduced to 

represent the effect of limited compressibility. In this section a detailed description 

of the model is provided. 

The method represents the wing as a surface where a grid of horseshoe vortices is 

superimposed. The surface is divided into small elements called lattices. In each of 

them one vortex is imposed and one point is chosen as representative: this point is 

called the "control point". 

Vortices bounding each element, whose magnitude is unknown, induce velocities 

on all of the control points. Such velocities are calculated by using the Biot-Savart 

law. A vortex situated on the wing span coincides with the quarter-chord line of the 

panel and is, therefore, aligned with the local angle of sweep. In a theoretical 

formulation, the panels where the vortices are applied are located on the main 

camber surface of the wing and, when the trailing vortices leave the wing, they 

follow a curved path. However, in many engineering applications, suitable accuracy 
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can be obtained using linear theory in which straight-line trailing vortices extend 

downstream to infinity. 

In this work, the trailing vortices are assumed to be parallel to the axis of the 

aircraft. This orientation is chosen because the computation of the influences of the 

various vortices (influence coefficient that will be formally introduced later) 

becomes simpler. Furthermore, these geometric coefficients do not change as the 

angle of attack is changed. Application of the boundary condition, that the flow is 

tangential to the wing surface at the control point of each of the 2N panels (i. e. there 

is no flow through the surface), provides a set of simultaneous equations in the 

unknown vortex circulation strength and induced speeds. 

The control point C of each panel is centred span wise on the three-quarter-chord 

line (Figure 4.3) midway between the trailing-vortex legs. It can be easily 

demonstrated for a flat plate 92 and the results can be extended to thin airfoils 92. 

control point 
r 

ý/ 

C 
c aerodynamic chord of the airfoil 

Figure 4.3: Control Point of an airfoil. 

Let us calculate the velocity induced on the control point C by a generic vortex 

filament of strength r,, and length dl (Figure 4.4). The velocity can be expressed as: 

äv = 
r"4m1 ' r) (4.5) 
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Figure 4.4: Biot-Savart law to determine the velocity induced by a vortex. 

The total velocity induced at C by the vortex from A to B could be found by 

integrating over dl between A and B. Referring to the sketch of Fig. 4.4, the 

magnitude of the induced velocity on the point C can be expressed in the form: 

V_ 
IF,, sin(ß)dl (4.6) 

A 
4; zr 2 

The horseshoe vortex is formed by three different components (Figure 4.5): 

B 

1ý cc 

A-B is the vortex contained in each element of the wing surface. 

A- oo is a vortex going from the right edge of the element to infinity. 

B- oo is a vortex going from the left edge of the element to infinity. 
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00 

Figure 4.5: "Representative" horseshoe vortex. 



Equation 4.5 is used to calculate the effects induced by each vortex separately. Let 

us start from the segment AB, with the vorticity vector directed from A to B. It can 

be demonstrated, with some mathematical manipulations, that the magnitude of the 

induced velocity is: 
B 

v= r^ fsinßdß= r^ (cosh, -cosQ2) (4.7) 4nrp A 
4; rrp 

Let ro rj and r2 designate the vectors AB, AC and BC, respectively, as shown in 

Figure 4.4. Then, the following relations can be written: 

r 

Ir, 
xrZl 

p= ro 

cosA = 
rNoll "-ri (4.8 

_ 
r0 * r2 

cosß2 = Irollr21 

Substituting Eqn. 4.8 into Eqn. 4.7 yields, after some mathematical manipulations: 

n- 
V= 

r" rl r2 
4, r 2 

ro * rý 
-rZ (4.9) 

Irl n r21 
Iri 1 

r21 

As already mentioned, points A and B are representative of the edges of the 

horseshoe vortex in each element of the wing. Point C is used as the control point. 

Such control points are used as reference points to calculate the velocity induced by 

the vortices, the strength of the vortices and, consequently, the local lift and drag. In 

other words, each element of the wing is associated with its control point that is also 

used to assign the boundary conditions of the flow. Denote the coordinates of 

points A, B, C respectively with: 

A A(xjn, yl. ZIn) 
B=B(x2ru Y2nr Z2n) 

C C(x»,, y»u Zm) 

where 
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n is an index to denote the n-th panel 

m is an index to denote the m-th control point. 

The aerodynamic reference frame has the same orientation that the structural frame 

of reference. It is shown below (Figure 4.6). With the symbols 'T, J, k are denoted 

the directions (unitary vectors) along the axes X, Yand Z respectively. 

Rmd direction 

--s 

A 

Figure 4.6: Frame of reference of the aerodynamic model. 

The velocity induced by the vortex AB, after some mathematical manipulations, can 

be expressed as a function of the coordinates of the points A, B and C as follows: 

= 4ý 
[Factorial, IFactorial2 ] (4.10) AB 

where 
Factorial, = {-[(xm - x1 

)(Zm 
- Z2n) - 

(Xm - x2n)(Zm - zln )JJ + 
[( 

m 
Yl 

n)(Zm - Z2n) - 
(Ym Y2n)(Zm - Z1n )]l + 

+[(Ym -y2n)(Xm -Xin) -(J'm Yln)(Xm -X2n)1fi 
/{[(Xm 

-Xln)(Zm -Z2n)+ 

-(Xm -X2n)(Zm -zln)]2 +[(y 
m 

Yln)(Zm -Z2n) -(Ym Y2n)(Zm -Zln)]2 + 

+[(Ym Y2n)(Xm - Xin) - 
(Ym Yln)(Xm -X2n)]21 

(4.11) 
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and 
FRC107IRI2 = {[(Y2n - Yin )(Ym - Yln) + (x2n - x1n )(Xm - x1n) + 

+ (Z2n - Z1n)(Zm - Zln )] / 
(Xm - xln) 

2+ 
(Ym Yln) 

2+ 
(Zm Zl 

n 
)2 + 

- 
[(Y2n Yin )(Ym Y2n) + (x2n 

- Xln)(Xm - x2n) + 

+ (Z2n - Zin )(Zm 
- Z2n )] (X 

m- 
x2n) 

2+ (Ym Y2n) 
2+ (Zm Z2n) 

2 

(4.12) 

The vortex starting from the point A to the infinity induces the following velocity: 

V_ 
rn (Zm 

- Z1n)i + (yl 
n 

ym )k 
1 

(xm 
-x�, 

) 

Aao 41i (Zm -Z1n)2 +(yln ym)Z (Xm -x1n)2 +(Ym YIn)2 +(Zm -ZIn)2 

(4.13) 

The vortex starting from the point B to the infinity induces the following velocity: 

V= 
F. (Zm 

- Z2n). l + (y2n ym)k 
1+ (xm - x2n 

Bco 49Z (Zm - Z2n) 2+ (y2n ym)2 (xm - x2n)2 + (Ym Y2n) 
2+ (Zm 

- Z2n)2 

(4.14) 

At the m-th control point the total velocity, V, �, �, 
induced by the horseshoe vortex 

representing the n-th surface element is the sum of the components given by Eqn. 

(4.10,4.13,4.14). Examining these equations it can be seen that, 

VMýII 
= 

C0'IýII FR (4.15) 

where the influence coefficients depend on the geometry of the n-th horseshoe 

vortex and on its distance from the control point of the m-th panel. As the governing 

equation is linear, the velocities induced by the 2N vortices (N are the vortices of 

the semi-wing and the wing is symmetric) are added together to obtain the total 

induced velocity at the m-th control point 
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2N 
Vm 

-. m, nrn (4.16) 

It is noted that 2N equations are obtained, one for each control point. In order to 

determine the resultant induced velocity of any control point and the strengths F of 

the 2N horseshoes vortices, the boundary conditions must be applied. The surface is 

considered as a streamline. In other words, the resultant flow must be tangential to 

the wing's surface (Figure 4.7). 

Control 
Vector normal to the wing surface 

Vector tangent 
to the winz surface 

Figure 4.7: Boundary condition applied at the control point. The velocity must 
be tangent to the wing surface. 

By denoting the dihedral angle of the wing with 0 and the slope of the main 

camber line at the control point by A, the boundary condition can be expressed, for 

each control point as follows: 

Wm +üm tan (D +V. 
[a-A] 

=0 (4.17) 

where w, 
� and üm are the components of the induced velocity along Z and X axis 

respectively. 

By using Equations 4.16 and 4.17, it is possible to calculate each vortex strength [' 

Once these values are known, lift and drag of each element can be easily obtained. 
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Grid used in this work is shown in Figure 4.8. The wing is symmetric, not only in 

terms of geometrical properties, but also in terms of vortex magnitude and 

distribution. Only one panel has been used chordwise. For the vortex lattice 

method, in fact, it appears important to use a relatively large number of spanwise 
94 rows and a relatively small number of chordwise panels . Vortex line is situated at 

25 % of the chord. Control points (CP) are situated at 75% of the chord 

Quarter chord line 

CP1 CP2 CP3 CP4 CPS CP6 Synnnehic 

Figure 4.8: Aerodynamic grid. Vortex line is at 25% of the chord. Control 
points (CP) are located at 75% of the chord. Symmetry condition is applied. 

4.2.3 The interaction between the aerodynamic field and the elastic response 

A key parameter to study the interactions between the aerodynamic field and the 

static deformations is the relative position of the wing box inside the airfoil. Of 

particular relevance, is the distance between the aerodynamic centre and the shear 

centre of each cross section. It determines the amount of torsion that can be 

generated by the aerodynamic lift. This distance is requested as input in the 

aeroelastic tool. 

The lift resultant is applied at 25% of the chord 95 of each element of the grid for 

two reasons: 

1. Only subsonic regime has been considered. 

2. Only symmetric or quasi-symmetrical airfoils have been used. This 

assumption does not affect the physical meaning of the results. 
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The shear centre of the whole airfoil has been assumed to be coincident with that of 
the wing box. The relative position of a wing box inside the airfoils is shown in 

Figure 4.9. 

Lift 

Airfoil 

\Ving box 

. Aeiodvnunic centre 

. Shear centre 

Figure 4.9: Position of the wing box inside each airfoil. 

The interaction between the aerodynamic and elastic models can be summarised in 

the following steps: 

" The span wise lift distribution q(X) is calculated when the geometric 

characteristics of the wing and the distribution of angles of attack are known. For 

each element of the aerodynamic grid (shown in Figure 4.8) a resultant lift is 

evaluated and applied at 25 % of the chord (Figure 4.10). 

Figure 4.10: Lift distribution q(X) along the span. The force is evaluated in 
each element of the aerodynamic grid and applied at 25% of the chord. 
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" Once the lift distribution q(X) is known, it is possible evaluate the bending 

moment M(x) and the twisting moment T(x) by using Eqn. 4.1 and 4.2. Such 

equations describe the relation between the external loads (lift distribution) and 

the internal loads. 

" The deformations (twisting and bending rotations) can be determined by using 
Eqn. 4.4. Such equation describes the relation between the internal loads an the 

structural deformations of a beam. 

" Geometric characteristics of the wing can be updated by using the deformations. 

Bending and twist angles induce changes in the coordinates of the points used by 

the vortex-lattice theory. 

" Lift of the deformed wing is evaluated. 

" This procedure is repeated until the deformations obtained are less than 1% of 

those obtained from the previous calculation. 

4.3 The effect of bend-twist coupling on aircraft range 

The static aeroelastic tool, developed in Section 4.2, can be used to determine 

aeroelastic equilibrium and the final deformed shape of several wing topologies, 

having different elastic distributions of EI, GJ and K along the span. The model can 
be particularly useful for investigating potential beneficial effects of anisotropic 

composite materials, obtained with unbalanced laminates. Performances, range in 

this case, of several composite wings can be compared with those of a reference 

structure: an orthotropic wing, i. e. having K=O. In such a wing, no bend-twist 

coupling effect exists. 

Generally, there are potentially an infinite number of different distributions of fibre 

angles fi(x) along the span of the wing. This would result in different distributions of 

"nose up" and "nose down" rotations along the span, that could be investigated in 

order to obtain the optimum range. In other words, a constrained optimisation 

problem could be rigorously formulated. 
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Since the wing box is idealised as rectangular and symmetric, optimisation design 

variables are thicknesses of vertical walls tv(x), thicknesses of horizontal walls th(x) 

and fibres angle distribution fi(x) along the span. 

The optimisation can be formulated as follows: 

" To find the distribution of vertical thicknesses t,, (x) , horizontal thicknesses th(x) 

and fibres angles distribution fi(x) along the span of the box in such a way as to 

maximize the range of the aircraft. 

The following constraints must be satisfied: 

1. Strength constraint: the structure must be able to carry the design load. 

2. At the design load, the wing tip's vertical displacement must not exceed 

10% of the wing length. 

3. In uniform horizontal flight, the lift of the optimised wing must differ by 

less than 5% with respect to the lift of the reference wing. 

The meaning of the first constraint is quite clear: the structure must not fail when 

subjected to the design load. Tsai-Wu criterion has been used in the ply by ply 

analysis. The second constraint has been imposed to avoid large deformation of the 

structure. Numerical value of 10% has been arbitrary chosen together with Airbus 

UK. The third one has been imposed to avoid large changes in the lift when 

exploring new stiffness distribution along the span. Numerical value of 5% has 

been, also in this case, arbitrary chosen. 

The problem could be solved by using a commercial optimisation tool. 

Optimisation algorithms, however, are often used as a "black box" technique, while 

the first aim of a low fidelity model should be having a good comprehension of the 

phenomena described. In this case, the formulation of the problem is quite simple. 

The solution in terms of t,, (x) th(x) and fi(x) can be based on physical understanding. 

Furthermore, an optimization technique may undergo several iterations until it 
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reaches an optimum while having a physical understanding of the problem allows a 

reduction of the number of solution investigated. 

For this optimisation, there is no physical reason to have part of the wing with a 

"nose up" rotation and other parts with a "nose down". Therefore, to obtain a range 

improvement, a global "nose up" or "nose down" rotation along the entire span is 

required. Only two kinds of solution are therefore investigated. 

4.3.1 Potential solution strategies 

Two kinds of solution are investigated to find the optimum range. The first one 

consists of a constant fibre angle distribution along the span. All of the fibres (44% 

inside each laminate, as mentioned in section 4.2.1) along the span are oriented with 

the same angle. Fibre angles within the interval [-45,45] degrees are investigated, 

with a step of 5 deg. This type of solution has been suggested by the results 

obtained with a standard genetic algorithm 21 (GA). An example of such a 

distribution is shown in Figure 4.11. 

1000 -15 -15 -15 -15 -15 -15 
T571 

Root---, --º--) 1 Span wise direction -+-+-º--º-º-º-º-+-ý-+Tip 

Figure 4.11: Example of constant angle distribution on the top and bottom 
laminates of the wing box. 

The root of the wing, remains orthotropic to guarantee a high level of bending 

stiffness in that part subjected to the maximum bending load. Consequently, 

anisotropy is investigated for lengths greater than 30% of the span. This starting 

point has been arbitrary chosen: it is not far from the root in such a way that the 

anisotropy can be investigated in the most part of the wing and, on the other hand, 

the weight increase obtained in the anisotropic wings is moderate. Preliminary 

analyses have shown that anisotropy in the root of the wing makes a significantly 

heavier structure yet an excessive weight penalty cannot be accepted. An example 

will be discussed in section 4.4. In addition, the vertical walls of the wing box are 

assumed to be orthotropic for two reasons. Orthotropy increases the bending 

stiffness of the structure. Furthermore, in a realistic wing box, vertical walls are 
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usually short. If they were considered as anisotropic, their contribution to bend- 

twist coupling would be in any case negligible. 

The second type of solution is a progressive distribution of "nose up" or "nose 

down" effect along the span of the structure. In order to evaluate this kind of 

solution, it is necessary to calculate the fibre angle 4o giving the maximum bend- 

twist compliance, i. e. the angle which gives the maximum "nose up" or "nose 

down" rotation when a bending load is applied. Such an angle depends on the 

geometry of the cross section of the wing box, and also on its aspect ratio (H/C). 

The wing, initially orthotropic, is divided into several sections along its span to 

simplify the analysis. Starting from the section placed at 30% of the span (also in 

this type of solution the root of the wing remains orthotropic) an amount of bend- 

twist coupling is given. For the "nose-up" case, fibre angles varying in 5 degrees 

increments are investigated (or -5 degrees for "nose down" case). An example of 

this first step of the solution is given in Figure 4.12. 

10 005000000 
Root - Span wise direction --º-- -º-+-º-+-'--'-+-º Tip 

Figure 4.12: Fibre angle distribution at the top and bottom laminates of the 
wing box: Step 1 of "progressive nose up distribution". 

Lift and range are evaluated after the first step. Then, the fibre angle of the same 

wing segment is increased (or decreased) by 5 degrees and the range is re- 

evaluated. This process is stopped when the value of fibre angle becomes equal to 

ýo and consequently the maximum bend-twist compliance is obtained in that 

particular segment of the wing box. Then, the process is repeated in the 

neighbouring section and so on. The process terminates when the value 4o is 

reached in each segment of the wing box. All the steps are shown in Figure 4.13. 
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000000000 
Root Span wise direction -º-+- -+- - -º-º-+-' Tip 

0000500000 
Root -+- ý-+ ' Span wise direction -º-+-º--º-+ý-+-ºý-º Tip 

10000 10 00000 
Root Span wise direction ..... --º-º-+-º-º-ý-. º Tip 

Root ---- ibo& Span wise direction - -+-+-+-a-+-+-+ 1e Tip 

Figure 4.13: Fibre angle distribution at the top and bottom laminates of the 
wing box: description of progressive fibres angle distribution. 

These two kinds of fibre distribution along the span cannot be used without a check 

on the thickness of the wing box. Each wing investigated, in fact, must be able to 

carry the design load and to satisfy all of the constraints. 

4.3.2 Steps required to complete one analysis 

The steps of the whole procedure can be summarised as follows: 

" The length of the beam, the aerodynamic chord, the dimensions of the wing box, 

the distance between the aerodynamic centre and the shear centre, the load factor 

n1 and the cruise speed of the aircraft are given as input data. 

" The orthotropic wing is designed. In other words, minimum thicknesses of the 

horizontal and vertical walls of the wing box are calculated in such a way that the 

structure is able to carry a design load LDE GN = n, L, where L is the lift of 

uniform horizontal flight obtained after the aeroelastic iteration described in 

section 4.2. 

" All of the evolving anisotropic wing designs, obtained by using one of the 

potential solution strategies described in section 4.3.1, are sized in such a way that 

the structure is able to carry the design load LDESJGN" It is the same load previously 
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used to design the orthotropic wing, and to satisfy the constraints. Thicknesses are 
increased when the Tsai-Wu 21 failure criterion is not satisfied. 

" The range of all wing designs is evaluated and compared with the reference wing. 

4.3.3 Range evaluation 

Among all the possible performance measures to improve, range has been chosen 
because it implies heavy financial savings for the airlines. This choice has also been 

recommended by the sponsor of this PhD project: Airbus UK. 

Range is defined as the maximum distance that an aircraft can cover with a fixed 

amount of fuel. Breguet's formulation 96 has been used for its evaluation. According 

to this theory, the range of an aircraft moving at constant altitude, angle of attack 

and specific fuel consumption, can be evaluated by 

R=??,, 
ý+ 

CGZ- , (Waýoff Wý�d; 
n8ý (4.18) 

c. H' 
Cd 

where 
R is the aircraft's range 

S is the wing surface 

CT is the specific fuel consumption 

Cd is the drag coefficient 

C, is the lift coefficient 
Wtaeoff is the weight of the aircraft before the take-off. 

Wiandng is the weight of the aircraft when the flight terminates. All the fuel has 

been consumed. 

Instead of a direct measure of the aircraft's range, for the sake of simplicity, an 
index I with the same meaning can be used to compare different solutions with the 

same wing surface, take off and landing weight and specific fuel consumption. It 

can be written as follows: 
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I= 
C` 

= 
Cý 

_ -VfL (4.19) 
Cd 

CdO + 
C, 2 D 

A 

where 

CdO is the zero lift drag coefficient 

2, eq is the wing's aerodynamic aspect ratio. 

A portion of the lift is evaluated in each element of the aerodynamic grid shown in 

Figure 4.10 by using the vortex-lattice model. All these forces can be summed and 

the total lift L therefore obtained. 

The drag D can be easily evaluated by using the following formula 97: 

D= pV. 0 
2SCd 

(4.20) 

where the drag coefficient Cd can be expressed as follows: 

Cd = CdO +, (4.21) 

S 

The lift coefficient is 

_L 0.5pV�2S 

and 

e is the Oswald efficiency factor. It depends on the lift distribution and it has 

been evaluated by using formula presented in the literature 97,56 

Trim of the aeroplane has not been kept into account. 

The total weight of the aircraft (Wt of), used in Eqn. 4.18, has been considered as 

a constant in every wing. It can be written as: 
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Woo ff = Wst +W pay +W jel (4.22) 

where 

Wst is the structural weight of the aircraft 

Wem, is the payload 

Wj, ei is the weight of the fuel 

When a heavier wing is obtained from the optimisation, the structural weight 

increases. Therefore, the payload is diminished and consequently, a financial 

penalty is obtained. However, a moderate weight increase of the wing is often 

negligible in terms of overall aircraft weight. Examples of three aeroplanes, DC8- 

55, DC10-10, A300B2 98,99 can be provided. A 20% increase of the structural 

weight of the wing, for example, implies 2% increase of the maximum take-off 

weight. This value is still acceptable. The impact of the wing, in reality, is even less 

accentuated, since the weight increase is caused only by the wing box. Numerical 

values are summarised in table 4.1. 

Table 4.1: Impact of a 20% heavier wing on the global aircraft weight 92' 93. 

Aircraft Wing weight 

[kg] 

Maximum take 

off weight [kg) 

Impact of a 20% wing weight 
increase on the aircraft's 

maximum take off weight 

DC8-55 15205 140600 2% 

DC10-10 22307 195045 2% 

A300B2 20271 165000 2% 

Range evaluation would be consequently not affected even if the payload was 

considered as a constant. 
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4.4 Numerical examples 

An unswept wing box having the technical characteristics reported in Tables 4.2 

and 4.3 has been studied. 

Table 4.2: Geometric characteristics of airfoil and wine box. 
Aerodynamic chord 1.5 m 
Wing length lom 
Angle of attack of cruise 50 
Cruise speed 220 m/s 
Design load factor 4 
Distance between aerodynamic 
centre of pressure and shear centre at 
each cross section 

0.1 m 

Height of the prismatic wing box 0.3 m 
Chord of the prismatic wing box 0.9 m 
Cdo of the airfoil 0.028 
Airfoil curvature at the control point 00 
Air density 0.43 Km 

Table 4.3: Elastic properties of the composite material. 
El 181 GPa 
Ez 10.3 GPa 
G12 4.55 GPa 
V12 0.28 

Each semi-wing has been divided in to 10 segments for the analysis. The 

orthotropic wing, i. e. the reference structure, shows the thicknesses distribution of 
Figure 4.14. Results are shown for the semi-wing because of the symmetry. 

Thickness distribution [mm] of the horizontal walls of the orthotro 

Root ºº Span wise direction ------ -º-º-º-+-º-º-º-º Tip 

Thickness distribution [rin] of the vertical walls of the orthotropic 

Root--+ -#--+ Span wise direction --º--º-º-º-+-+--º--º-*-+ Tip 

Figure 4.14: Thickness distribution of horizontal and vertical walls for the 
orthotropic wing. Uniform horizontal flight with an angle of attack of 5°. 
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The solution (thicknesses and fibre angle distribution) to improve the aircraft's 

range is shown in Figure 4.15. 

Thickness distribution [mm] of the horizontal walls of the "optimised" 

Root Span wise direction ..... +-+--º-º-º-1 1i Tip 
Thickness distribution [mm] of the vertical walls of the "optimised" wing 

Root Span wise direction --º-º-+-. -º--º--ºýý-º Tip 
Fibres angles distribution [deg] in the top and bottom laminates of the "optimised" 

Root 1 Span wise direction -º--º-+-+- -+-+-º-'-. Tip 

Figure 4.15: Results of the anisotropic wing giving the best range performance. 
Uniform horizontal flight with an angle of attack of 50. 

The range improvement is found to be 0.8%, but the weight of the "unbalanced 

composite" structure is 8% greater than the orthotropic one. In this example, a 

"nose down" rotation is required to obtain an improvement of the index I and 

consequently of the range. 

As already explained in section 4.3.1, the potential benefits of anisotropy are 

investigated starting from a point placed at 30% of the wing. In other words, the 

root is kept orthotropic. This assumption has been made to avoid unacceptable 

weight penalties. The analysis is then repeated, allowing the anisotropy at the root 

of the wing. Results are shown in Figure 4.16. 

Thickness distribution (mmj of the horizontal walls of the "optimised" 

Root -º Span wise direction -*-º--ºººº--ºý-º-+Tip 
Thickness disthibution [mm] of the vertical walls of the "optimised" sins 

Root -+ Span wise direction - +--º--+---º-++ººP Tip 
Fibres angles distribution [deg] in tie top and bottom laminates of the "optimised" 

Root ! Span wise direction -º-º-º-º--º--º-º-1 ol Tip 

Figure 4.16: Results of the anisotropic wing giving the best range performance. 
Uniform horizontal flight with an angle of attack of 5°. Anisotropy allowed at 

the root of the wing. 
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The range improvement is 2.3%. However, the anisotropic wing is 38.5% heavier 

than the reference wing. Such weight cannot be accepted. 

If the angle of attack of uniform horizontal flight of the same wing is 31 instead of 
5, different results are obtained. The orthotropic wing shows the following 

distribution of thicknesses (Figure 4.17): 

Thickness distribution [mm] of the horizontal walls of the ortho 

Root Span wise direction --º '-'-º--º-+-+-+-+-+Tip 
Thickness distribution [min] of the vertical walls of the ortliotrouic mini! 

Root - Span wise direction--+--# 0l..... -+-º--'-ºTip 
Figure 4.17: Thickness distribution of horizontal and vertical walls for the 
orthotropic wing. Uniform horizontal flight with an angle of attack of 30. 

Since the angle of attack of uniform horizontal flight is only 30, the thickness 

distribution is different and also the kind of bend-twist coupling required to 

improve the range. A "nose up" rotation is in fact needed. Properties of the 

"optimised" wing are shown in Figure 4.16. 

Thickness distribution [mm] of the horizontal walls of the "optimised" wi 

Root --º-+ Span wise direction -º---+-º-ºº++-. Tip 

Thickness distribution Imml of the vertical walls of the "optimised" 

Root Span wise direction -ºº+º-º-º-*-ºººTip 
Fibres angles distribution [deal in the top and bottom laminates of the "optimised" 

Root Span wise direction --º-+--º-º-+-+_- -º-ºTip 

Figure 4.18: Results of the anisotropic wing giving the best range performance. 
Uniform horizontal flight with an angle of attack of 30. 

Range improvement is 0.5% but a huge increment in the weight (19%) is measured. 

128 



4.4.1 Comments on numerical results 

After the analyses performed, the following conclusions can be made: 

1. Unbalanced laminates can be used to improve the range of the aircraft. The 

order of magnitude of this improvement, for the cases analyzed, is less than 

1%. Even if it appears a relatively poor result, it can imply huge financial 
Ioo savings due to the reduction of fuel consumption 

2. In order to carry the same design load of the reference orthotropic wing, the 

anisotropic structure could be heavier. This fact implies financial losses: part 

of the lift, in fact, must be used to carry a heavier structure instead of 

passengers or goods. Of course further investigations should be performed to 

establish if the savings induced by range improvements are greater then the 

losses due to a heavier structure. 

3. It is important to remark that the percentage of range improvement, although 

poor, regards the whole aircraft. The percentage of weight increase, although 

more consistent, concerns the wing only and it is often negligible in terms of 
aircraft overall weight. 

4. A global "nose up" or "nose down" effect is needed to improve aircraft's 

range, depending on the angle of attack of the rigid wing in uniform horizontal 

flight (Figure 4.19). The optimum range, is in fact, obtained by maximizing 

I=I(C1) (Eqn. 4.19). The corresponding value of C, is denoted by Ci, � . If the 
design Cr (corresponding to the angle of attack of the rigid wing) lies on the 

right side of Cj., a reduction of the angle of attack is required in the 

deformed wing, in order to maximize the range. Consequently, a "nose down" 

deformation is needed. On the contrary, a "nose up" deformation is necessary 

if the initial value of Cl lies on the left of Cl.,.,,. 
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Figure 4.19: Qualitative shape of the function Range Index I=I (C, ). Areas of 
"nose up" and "nose down" rotation are shown. 

4.5 Conclusions 

A low fidelity tool has been developed to study the static aeroelastic equilibrium of 

a wing. The structural part has been modelled by means of a linear analytical beam 

model. Relevant stiffnesses have been calculated with a novel procedure described 

in Chapter 3. 

The aerodynamic loads have been evaluated by using a vortex-lattice model. The 

aeroelastic tool has been used to investigate potential improvements on the range 

induced by unbalanced laminates. Moderate improvements with respect to an 

orthotropic wing have been measured. However, a weight penalty has also been 

observed. 
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Chapter 5 
Stiffnesses comparison of a composite box model with a wing like 

structure 

5.1 Introduction 

The use of unbalanced composite materials can improve the range of an aircraft but 
it also induces a negative effect: a heavier wing. It is important, at this point, to 

understand how the static aeroelastic tool, proposed in Chapter 4, compares with 
reality. In other words, it is important to understand its limitations, arising from 
both the aerodynamic and structural models. 

From the aerodynamic point of view, the vortex lattice method is widely used by 
industry to describe not only compressible regimes, but also transonic ones. In this 

case, correction coefficients, calculated by means of experimental data, are used 101 

This approach has proved itself to be relatively reliable, especially when the height 

of the wing is negligible with respect to the length. 

From the structural point of view it is useful to investigate two aspects. Firstly, it is 

useful to compare the structural stiffnesses of a composite box with a real wing box, 
including other components such as stringers, webs and ribs. Secondly, it is 
important to understand the potential effects of leading and trailing edges on the 

global stiffnesses of the wing. 

5.2 An "equivalent" box to reproduce EI, GJ and K of a real wing 
like structure. 

In order to properly use the static aeroelastic tool, stiffnesses of a real wing 

structure should be reproduced with sufficient accuracy. It is therefore important to 

model an "equivalent" box, i. e. a composite box with the same stiffnesses as a real 

wing. 

A comparison between a complete and detailed wing box model and its equivalent 
box is performed within this section. Airbus UK, the main sponsor of this project, 
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has provided a wing like structure for such purpose (generic wing box). It is shown 
in Figure 5.1. This structure is not a complete wing: leading and trailing edges have 

not been modelled, for example. However, a lot of structural detail such as stringers 

and ribs are included (Figure 5.1). The structure is not prismatic, like the boxes used 

in Chapter 4, but this fact does not affect the stiffness evaluation in each cross 

section. 

Questions explored in this thesis include: is it possible to represent such structures 

simply by using a composite box? Is it possible to match the span wise distribution 

of all the stiffnesses, El, GJ and K of a complex structure by using a simplified 

model? 

Fix points 

Deformed --mg box 

%V mg box with infinite idffness 

z- 

- -- -- Y Ex mple of nb 
X 

Figure 5.1: An example of a typical, generic wing box used in the aerospace 
industry. 

Analyses with FE models have been performed to answer these questions. 

Two different kinds of wing like structure have been analysed. In the first one, the 

top and bottom skins are made by "unbalanced composite" laminates. These 
laminates are symmetric and composed of 44% 0 degree fibres, 44% 45 degree 
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fibres and 12% 90 degree fibres. All fibre angles are with respect to the local frame 

of each laminate. Vertical walls are built with 0° fibres laminates. Elastic properties 

of a composite layer are resumed in Table 2.1. The remaining part of the wing box 

is made of aluminium. As the Young's modulus of aluminium has a lower value 

than that of the composite laminate, the effects of the remaining structural parts on 

the global stiffnesses are minimised. If the impact of stringers and ribs on the global 

stiffnesses are not negligible, it would be even less negligible in a wing built 

entirely with composites materials. 

The second structure is identical to the first one, with the exception that the 

laminates used for the top and bottom skins have changed. Here, the unbalanced 

laminates are replaced by the equivalent balanced laminates, i. e. the same number 

of +45° and -45° layers. 

Stiffnesses of the real wing like structure are calculated with respect to its flexural 

axis, i. e. the line such that, when a pure flexural load is applied, no torsional 

deformation is observed. The same flexural line found for the "balanced" wing box 

has been used to measure EI, GJ and K of the "unbalanced" wing box. Stiffnesses 

distributions along the span of the unbalanced wing box are shown in Figure 5.2. 

EI, GJ, K übalaiiced Wixj 

3 
Being Stiffness 

25 
- Tcrsa- Stiffness 

- Bend&istccgling 
sffhess 

1.5- 

0.5- 

0 
5,85 7, OG 8,03 9,01 10 11 12 13,3 

SExn wse Iei ijh [nj 

Figure 5.2: Stiffnesses distribution in the "unbalanced" wing like structure. 
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When the results obtained are compared with those of the balanced wing structure, 

three observations can be made: 

1. Less than 5% difference in the EI(X) distribution along the span of the 

structures exists (Figure 5.3). Such a small difference can be explained as 

follows. A fibre angle of 45 deg has been used (together with 0 and 90) to 

build the structure. In the presence of such fibre angles, differences in 

terms of bending stiffness between balanced and unbalanced structures are 

not large (refer to Chapter 3, Figures 3.11 and 3.13). 

2. Values of GJ(X) of the unbalanced composite wing are lower than those 

measured in the balanced composite wing (Figure 5.4). The unbalanced 

wing is therefore more defonmable when a torsional load is applied. 

3. Bend-twist coupling is obtained only when using unbalanced laminates. 

Comparison of the bending stiffness 0 
0 

[wn^2]*10^8; 

2 

1' 

o, ý 

C 

oed Wirig 

arced Wii 

Figure 5.3: Bending stiffness of the "balanced" and "unbalanced" wing like 
structures. 
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Figure 5.4: Torsional stiffness of the "balanced" and "unbalanced" wing like 
structures. 

Let be now focused on the "equivalent" box, i. e. a composite model able to match 

the characteristics of a wing like structure. It can be built with the same thicknesses 

and dimensions of the generic wing-like cross sections, as reported in Table 5.1. 

Tahle '; -I! 
Geometrical nronerties of the generic wing box 

Span 
wise 

coordin 
ate 

[mm] 

Chord 
[mm] 

Height 
[mm] 

Thickness 
[mm] 

5,85 2328,535 696,87 3,8 
7,06 2073,346 624,512 3,6 
8,03 1868,773 566,506 3,4 
9,01 1662,091 507,902 3,2 
10 1453,3 448,7 3 
11 1242,4 388,9 2,8 
12 1031,5 329,1 2,6 
13,3 757,33 251,36 2,4 

Stiffnesses of equivalent boxes have been calculated by using the model of Canale 

and Weaver 102, presented in Chapter 3. Two "equivalent" wing boxes have been 

used for the comparison of balanced and unbalanced cases. 
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The balanced equivalent wing box has been built by using the same geometrical 

characteristics of the generic wing box. Furthermore, the top and bottom laminates 

are made with balanced composite laminates identical to those of the generic wing 

box. The vertical walls are built with 0 deg laminates. Results obtained with this 

model are compared with the properties of the balanced wing box in Figure 5.5 and 

5.6. 

8 
LI*nA2rlO 

zt 

U. ° 

Balanced W%Ang 

=wrna 

EquWert 

Figure 5.5: Comparison of the equivalent wing box with a wing like structure 
in terms of EI (balanced case). 

Figure 5.6: Comparison of the equivalent wing box with a wing like structure 
in terms of GJ (balanced case). 
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Results are quite acceptable with a margin of error less than 20%, but the presence 

of stringers clearly increases the bending stiffness EI of the real wing box, while the 

presence of ribs increases its torsional stiffness GJ. In other words, when a "real" 

wing like structure is compared with a prismatic box having the same walls 

thicknesses and the same dimensions, the latter will show lower values of stiffness. 

In order to create an equivalent wing box it is therefore recommended to: 

" Model of the stringers. It can be simply achieved by adding their contribution to 

the bending stiffness with the following formula 82: 

Elsr.; nge, ý = E,,,, 
(H)2 T A, (5. l) 

where 

Eaii is Young's modulus of aluminium 
A; is the cross area of the i-th stringer 

H is the height of the cross section of the equivalent box. 

" Model the effect of the ribs: their presence affects the torsional stiffness GJ. Two 

steps are requested: 

1. Torsional stiffness GJ b of one rib is calculated by modelling it as a 
rectangular plate having the same dimensions as the wing box's cross 

section. 

2. The wing is divided is segments containing only one rib (Figure 5.7). 

Torsional stiffness of such a segment is calculated by averaging the 

torsional stiffness of an empty box with the torsional stiffness of the rib. 
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If the following symbols are used: 

1a segment of the wing containing a rib (Figure 5.7) 

GJrib the torsional stiffness of a rib 
GJhoiýow the torsional stiffness of the hollow cross section of the 

wing 

trib the thickness of the rib 

(S) 

Figure 5.7: Wing segment containing only one rib. Its length is denoted by 
the symbol 1. 

Using a simple linear relation, for the sum of parts, the global stiffness GJ of such 

a section of the wing is given by: 

GJ = 
(1 - trib )GJholfow + tribGJrib 

(5.2) 
1 

When these structural elements are included, the margin of error is clearly reduced 

as shown in Figure 5.8-5.9. 
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Figure 5.8: EI of the balanced wing like structure compared with the 
equivalent box including stringers. 
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Figure 5.9: GJ of the balanced wing like structure compared with the 
equivalent box including ribs. 
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The unbalanced wing box structure can be now discussed. Its "equivalent" box can 
be built with the same dimensions and thicknesses of the real structure. The top and 
bottom laminates are made with unbalanced laminates whilst the vertical walls are 

made with 0 deg layers only. The same considerations, for the balanced case, in 

terms of GJ and EI, can be repeated. 

The bend-twist coupling stiffness K deserves particular attention. In the "real" 

structure, in fact, its value is strongly reduced because of the presence of the ribs. 

This reduction cannot be calculated with a simple linear approach, used for example 

for the evaluation of GJ (Eqn. 5.2). The implementation of an analytical method to 

evaluate the stiffness K of a structure containing ribs is not a trivial task, and it is a 

very interesting topic for possible future work. 

The reduced values of K can be modelled by simply reducing the percentage of 

unbalanced laminates of the top and bottom walls of the "equivalent" box. In the 

example of this section, top and bottom laminates of the "equivalent" box can be 

built with 25% of unbalanced laminates and 75% of balanced laminates. Results of 

the comparison are shown in Figures 5.10-5.12. 

6 
[Nn"2rloA 3 

Unbalanced Wing 

Z5 

2 

1,5 

1 

0,5 

0 

Figure 5.10: Comparison of the equivalent wing box with a wing like structure 
in terms of EI (unbalanced case). 
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Figure 5.11: Comparison of the equivalent wing box with a wing like structure 
in terms of GJ (unbalanced case). 
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Figure 5.12: Comparison of the equivalent wing box with a wing like structure 
in terms of K (unbalanced case). 
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The percentage of balanced and unbalanced laminates is determined in order to 

obtain a minimised root mean square match for K. 

As for the balanced case, the bending stiffness EI and torsional stiffness GJ are 

underestimated by approximately 20%. Also, in this case, the effects of stringers 

and ribs should be modelled to obtain more precise results, as shown in Figures 

5.13-5.14. 
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Figure 5.13: EI of the unbalanced wing like structure compared with an 
equivalent box including stringers. 
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Figure 5.14: GJ of the unbalanced wing like structure compared with an 
equivalent box including ribs. 

It is important to remark that none of the structures of the previous examples 
includes leading and trailing edges. These structural parts, however, do not show 

elastic anisotropies. Their bending and torsional stiffnesses can be separately 

calculated and added to those of the "equivalent" box. 

Concerning bend-twist coupling stiffness K, the presence of trailing and leading 

edges will further reduce its value. Investigations with a high fidelity model of a 

complete wing structure should be performed to have a better understanding of the 

amount of such reduction. This is a suggestion for future research. 

5.3 Consequences of a lower value of K on the static aeroelastic 

analysis 

Important results have been obtained with the analyses performed in the previous 

section: 
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" Values of bend-twist coupling K of a real aeronautical wing like structure are 
lower than those of an equivalent box whose top and bottom walls are built 

entirely with unbalanced laminates. 

" Bending and torsional stiffnesses of a real wing box are slightly higher than those 

of an idealised box because of the presence of stringers and ribs. 

A static aeroelastic prediction closer to reality can be made when reducing the value 

of bend-twist coupling stiffness. An example of static aeroelastic analysis can be 

performed according to the results of the previous section, i. e. considering 25% 

percent of the value of K of the equivalent wing box having the same properties of a 

wing like structure. 

The reduced value of K implies that the range improvement is still possible, but its 

value is diminished. 

5.3.1 Numerical examples 

The numerical examples of section 3.5 have been repeated here using the new 

values of bend-twist coupling stiffness K, i. e. 25% of their initial value. Concerning 

the first example, the new results can be summarised in Figure 5.15. 

Thickness distribution f mml of the horizontal walls of the "optimised" wing 
19 I7I7I9I7I5I4I4I3I3 

Root - --1 Span wise direction --"-+-ºý-+--º--º-+-º Tip 
Thickness distribution mm of the vertical walls of the "optimised" uin 

5547543332 
Root -º -º Span wise direction -------- Tip 

Fibres angles distribution [deg] in the top and bottom laminates of the "optimised" 

Root --º-º-º Span wise direction -b- º--º-º-º- -+-+-+-º Tip 

Figure 5.15: Composite wing box designed with the new values of K. 
Example 1. 

" The range improvement is only 0.30%. The wing, in fact, shows less "nose down" 

rotation, necessary to reach the point of maximum range. 
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" The wing is still 8% heavier than the orthotropic one. 

Results of the second experiment are reported in Figure 5.16. 

Thickness distribution [mm] of the horizontal walls of the "optimised'' win 
6 

_-F-5 
14141414I3I3I3I2 

Root --º-º-+-º-º-+- --ý-t-' Span wise direction ---- -º-'-+-º-º- Tip 
Thickness distribution lmin of the vertical w alls of the "optimised" wing 

4443333322 
Root - -->-ý= -i-i--ý-ý-' Span wise direction --+ o l---+ Tip 

Fibres uses distribution [deg] in the top and bottom laminates of the "optimised" 

Root _ . -º+-+--'-º-. -ý-' Span wise direction -º-º-+ºº-+- -+-º-º Tip 

Figure 5.16: Composite wing box designed with the new values of K. 
Example 2. 

" The range improvement is only 0.1%. 

" There is no weight penalty because the optimum fibres angle distribution is 

constant along the span and the angle is only 5°, therefore, bending strength is not 

significantly affected. 

The effect of a reduced K is clearly shown in the first example, but is less easy to 

understand in the second one. A reduced value of K (5° in this case instead of 20° 

found in Chapter 4) implies a reduced value of bend-twist coupling compliance. 

However, if fibre angles of 20° had also been used in this case, the structure would 

have been thicker and its modulus GJ would have been larger. This fact implies that 

the "nose up" rotation induced by the distance between the centre of pressure and 

the shear centre of each cross section would have been diminished. The result of the 

optimisation is a wing having only 5° fibre angle distribution. Wall thicknesses 

remain relatively thin. The modulus GJ, consequently, does not increase if 

compared with the orthotropic wing. The "nose up" rotation is mainly caused by the 

distance between the centre of pressure and the shear centre of each airfoil, rather 

than by the bend twist coupling effect. This rotation optimises the range, satisfying 

all of the constraints. 
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5.4 Conclusions 

Analyses performed in this chapter have shown some limitations of the aeroelastic 

tool presented in Chapter 4. The values of bend-twist coupling K, for a real wing 

like structure, are significantly lower than those predicted by prismatic wing boxes 

models. 

In order to obtain more accurate values of EI and GJ to simulate a wing like 

structure, models have also been proposed to include the effects of stringers and 

ribs. 

The current chapter is the last dedicated to static aeroelasticity. In the following 

chapter, the potential benefits of bend-twist coupling on critical flutter speed are 
discussed. 
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6. Fundamentals of flutter analysis of boxes built with unbalanced 
laminates 

6.1 Introduction 

In this chapter, the potential beneficial effects of unbalanced composite laminates 

on dynamic instabilities are presented. 

6.2 A brief discussion of flexural-torsional flutter 

Forces of inertia are often non-negligible when analysing a structural response. 
When a structure is subjected to three kinds of action, aerodynamic, elastic and 

inertial forces, its response is dynamic. In other words, displacements of each point 

of the structure are a function of time, together with the forces and accelerations '03 

If the structural response does not attenuate, but is maintained or is even 

accentuated, it becomes unstable. The most dangerous and common dynamic 

instability of aeronautical structures is flexural-torsional flutter (Figure 6.1). 

Asymptotic air speed, measured when the instability occurs, is called the "critical 

flutter speed". 

Figure 6.1: An example of flexural-torsional flutter. 

Flutter cannot be obtained when a structure has only one degree of freedom 90Ana 

wing. for example, the instability can only be obtained if it is able to twist and to 

bend. Imagine the existence of a wing only able to bend. Let Z be the vertical 
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speed of a cross section placed at span wise coordinate X. The reference system is 

shown in Figure 6.2. 

111 
i 

Figure 6.2: Reference frame. 

The work done by the aerodynamic forces is negative. In fact, the dynamic 

incidence can be written as: 

a(t) 
y=- dZ 

y 
(6.1) 

It implies that the aerodynamic lift can be written as: 

L=1 PV�SCLaa =1 PV�SCýa 
dZ 
t (6.2) 

22 dt 

A positive dZ implies a negative force and vice versa. The infinitesimal work done, 

dW, can be written as: 

dW =-2PV�SCLa 
dt dZ (6.3) 

This work done is in a sense negative, i. e. the aerodynamic force rises against the 

motion of the structure. Therefore, instability cannot exist. In order to create an 
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instability, energy from the fluid must be transferred to the structure 104. This is 

possible only when flexural and torsional degrees of freedom exist. 

The main goal of this chapter is to show the potential benefits of unbalanced 

composite laminates on critical flutter speed. To maintain consistency for the thesis 

and to provide physical insight, a low-fidelity model is employed. 

Both aeroelastic and structural models are required. From the structural point of 

view, the wing has been modelled using a FE beam approach tos. Rotations and 

displacements have been eliminated at the root and bend-twist coupling effects have 

been included. For the sake of simplicity, the wing is considered as prismatic and 

the values of stiffness do not change along the span. The aerodynamic model used 
106 is based on Theodorsen's strip theory 

6.2.1 Determination of the natural modes 

A fundamental step to study the flutter instability of a structure, is the evaluation of 

structural natural modes. Flutter, in fact, is generated from the "coalescence" of 

such modes 107 

Natural modes show different shapes (displacements) and frequencies whether the 

wing is orthotropic (K = 0) or not. Flexural and torsional modes are uncoupled only 

in orthotropic structures: when flexural deformation exists, torsional rotations are 

zero and vice-versa. This phenomenon plays an important role in flutter instability. 

Natural modes have been evaluated with a finite element beam model 105. The 

global mass matrix M and global elastic matrix K have been written for each 

system analyzed, taking into account the bend-twist coupling effect. 

The general equation of motion, for a discrete system, can be written as follows: 

00 M u+ Ku=F (6.4) 

149 



where 

F is the vector of nodal forces 

u is the vector of nodal displacements 

Equation 6.4 can be readily re-arranged into a linear system of differential 

equations. Once this step has been completed, the eigenvalues and eigenvectors of 

the dynamic matrix 108 represent frequencies and shapes of the natural modes, 

respectively. The form of this matrix is: 

01 
Adyn =; 0 

(6.5) 
M- K 

where 

1 is the Identity matrix, with dimensions equal to that of M and K. 

6.3 Flutter of structures with uncoupled modes 

Once frequencies and shapes (displacements) of natural modes have been 

determined, the critical flutter speed can be calculated by using well established 

models. For the structure with uncoupled modes, the model proposed by Fung 52 has 

been used. 

Let uf (X) denote the shape of the first flexural mode with co as its frequency. The 

symbols g, (X) and col are used to represent the first torsional mode and its 

frequency. The reference system is shown in Figure 6.2. Displacements in the 

vertical direction Z can be written as: 

w(X, Y, t) = 9f(t)fuf(X, Y)+Ygr(t)p1(X, Y) (6.6) 

where 
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qj(t) describes the time progression of the flexural mode: it is the Lagrangian 

flexural coordinate 

q, (1) describes the time progression of the torsional mode: it is the Lagrangian 

torsional coordinate 

The motion is described by Lagrange's equations 109: 

d öP a (P-U)_Qf 
dt q: - aq1 
döP ö 
dt c14, aqr 

(P-U)=Qr (6.7) 

where 

P is the kinetic energy 

U is the elastic energy 

Qj, Qt are the Lagrangian components of the force and of the torque respectively 

They are 

aw Qr= aqF 

Qt_ (6.8) 
T 

6.3.1 Kinetic energy 

The kinetic energy P can be written as a function of the Lagrangian variables gFand 

gTas 

P= fffp. w'dXdYdZ (6.9) 
Volume 

where 

PM is the material density 
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Equation 6.6 can be substituted into Eqn. 6.9. After some manipulations, the 

expression for kinetic energy is written as 

P=2g1Zmeq+1-Zgt2Jeq (6.10) 

where meq and Jeq are the equivalent mass and torsional inertia. In other words, the 

mass and the inertia of the whole system are represented with these two 

coefficients, which average the properties along the span of the beam, by using the 

modal displacements. They can be written as: 

meq = $fjpmpi2'1'tZ 
Volume 

Jeq = fffp. Y'p, 'dXdYdZ (6.11) 
Volume 

6.3.2 Potential elastic energy 

The potential energy of the system is calculated once the natural frequencies are 
known. In fact, U is written as: 

U= 
jgfK1+2q, 

Kr (6.12) 

where Kf and K, are the elastic constants of the flexural and torsional mode 

respectively. According to the definition of natural frequencies, they are: 
2 Kf =COlmeq 

Kr = or Jeq 

6.3.3 Aerodynamics 

(6.13) 

The model used is Theodorsen's strip theory 106. Two components of aerodynamic 
dL(X) 

action are modelled: the lift per unit span and the torque per unit span 

m(X). They are functions of the Lagrangian coordinates qt and of The aerodynamic 

forces are written in the frequency domain. The analytical expression, when the 

shear centre is located in the middle of the aerodynamic chord, is: 
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d 
=zpb2[ W2q fpf(X)+ jooV�4rpr(X)]+ 

+ 21rpV. bC h (k)Jax1fflf (X) + bIcWrpr (X) +V�9rir (X)L 21 

(6.14) 

m(X) = 
dL 

(X) 
b 

-7cpb3 -w2 
1q 

fpf(X)+ 
1 bao2grpr(X)+ Jwv. giPr dX 228 

where 

w is the frequency of the oscillation of an airfoil 

b is half of the aerodynamic chord, i. e. b=C 

(6.15) 

The quantity Ch(k) is Theodorsen's function and it is important to evaluate 

intensities and phases of the aerodynamic actions as functions of the reduced 
frequency: 

k_ wb 
V. 

(6.16) 

By using Eqn. 6.14 and 6.15, the Lagrangian components of the aerodynamic forces 

are 
L 

Qf a(X), ufdX 

L 
(6.17) 

Qr =j m(X)1u, dX 0 

The Lagrangian components of Eqn. 6.17 are basically representative of lift and 

torque. They can be also written in matrix form as a function of the Lagrangian 

coordinates qt and gfby 
(Qf 

_ 
[&. QFa ](qf 

(6.18) 
Qt Qru: Qra qt 
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This mathematical manipulation is useful when writing flutter equations. 

It can be noted from Eqn. 6.18, that lift and torque depend on both the Lagrangian 

parameters gfand q1: this dependency is the origin of instability in the system. 

6.3.4 Flutter Equations 

The flutter equations in the time domain can be readily derived from Eqn. 6.7. They 

are 
meq c1 + KI q1 =Qf 

Jegq, + K1 q, = Q, (6.19) 

The system of equations in (6.19) can be expressed in the frequency domain as 
follows: 

- w2 
meq 0 q1\ 

+ 
Kf 

0 Jeq qr 0 

O )(qf 
= 

[FUz QFa 1(i 
Kr q, Qruz Qra qr 

(6.20) 

It is important to note the role of the aerodynamic forces in Eqn. 6.20. Without 

them, the system would oscillate indefinitely, transforming elastic energy into 

kinetic energy and vice-versa. Aerodynamic forces, however, are able to create a 

coupling that can induce the instabilities. 

By means of Eqn. 6.20, it is possible to calculate the critical flutter speed, i. e. the 

speed that induces permanent oscillations of the system. The goal is, therefore, to 

find the value of reduced frequency k, and of the asymptotic speed V., which 

satisfies these equations. It happens when: 

where 

HqF J =0 
4r 
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H=_ .I- 

QFUz 
- 

QFn 
(6.22) 

[-'W'm' +K 

-Qzuz -W2`>eq Kt -QTa 

Such a system has a non-trivial solution when 

det(H) =0 (6.23) 

This eigenvalue problem can be solved by using several numerical methods 90. The 

lowest value of the asymptotic speed, that satisfies Eqn. 6.23, is the critical flutter 

speed. 

6.4 Flutter of structures with coupled modes 

When flexural and torsional modes are not decoupled, the solution procedure 

suggested by Chiocchia 90 can be used. Each modal shape can be written as: 

, u, = /I + Y/u s=1... n (6.24) 

where pjs and p are the flexural and torsional components of the s-th mode. 
The frequency of each coupled mode is denoted with co,. Vertical displacements of 

the wing, w, can be written as a sum of the n natural modes: 

w(X, Y, t) = Zq, (t)p, (X, Y) (6.25) 
J=1 

where qs(t) are the modal coordinates. It can be demonstrated that, for the s-th 

mode: 

(-wem, + K, )q, = Q, (6.26) 

where 

ms = 
fflPm/us2'XdYdZ (6.27) 

Volume 

is the generalized mass, 
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K, =a ms (6.28) 

is the generalized stiffness and QS is the Lagrangian component of the aerodynamic 
force. A system of s equations analogous to Eqn. 6.26 is, therefore, be written and 

solved. 

6.5 The beneficial effects of "nose up" fibres angles on flutter speed 

The flutter model described in the previous sub-sections has been used to show the 

potential beneficial effects of unbalanced laminates. Also in this case, as for the 

static aeroelasticity, three structural stiffnesses of the wing EI, GJ and K have been 

considered. They have been assumed to represent those of the wing box. The top 

and bottom walls of the box are identical so as to obtain bend-twist coupling. They 

are made with one single layer whose fibre angle ý varies from -30 to 30 degrees 

(Figure 2.1). As already mentioned, a negative angle corresponds to a "nose down" 

deformation, while a positive fibres angle corresponds to a "nose up" deformation. 

Vertical walls are made with orthotropic laminates. 

For the sake of simplicity, the wing is considered to be prismatic with elastic 

properties constant along the span wise direction. Note, this assumption does not 

affect the generality of the formulation. The elastic centre is assumed to be in the 

same position as the geometric centre of the wing box and in the same position as 

the centre of mass. 

Geometrical characteristics of the wing box used for the analyses are reported in 

Table 6.1. Elastic properties used are reported in Table 6.2. 

Table 6.1: Geometric properties of the cross section. 
Chord 0.8 m 
Height(H) 0.2 m 
Wing span lo m 
Wall thicknesses 0.01 m 
Aerodynamic Chord 1.5 m 
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Table 6.2: Elastic properties of the composite material. 
Ell 181 GPa 
E22 10.3 GPa 
G12 4.55 GPa 
V12 0.28 

The wing has been divided into 10 sections for the analysis. The mass of each 

section is 30 kg. The air density considered is 1.1 kg/m3. 

Three steps are required for each analysis: 

" The stiffnesses EI, GJ and K are evaluated from geometric and elastic properties 

of the box. 

" Natural modes and frequencies are evaluated. 

" Finally, the critical flutter speed is calculated. 

Concerning the orthotropic structure, modes are decoupled. The first four natural 

modes (three flexural and one torsional) are shown in Figure 6.3-6.6. 
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Figure 6.3: First natural mode (first flexural) of a structure with K=0. 
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It is noted that as the order of magnitude of the torsional displacements is 10"13 then 

no torsion is observed. 
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Figure 6.4: Second natural mode (second flexural) of a structure having K= 0. 

Also in this case the torsional rotations are negligible. 
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Figure 6.5: Third natural mode (first torsional) of a structure with K=0. 
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Figure 6.6: Fourth natural mode (third flexural) of a structure with K=0. 

On the other hand, when a composite structure exhibits bend-twist coupling, 

flexural and torsional natural modes are coupled. In Figures 6.7-6.8, the first two 

modes of a wing box with fibre angles of 30 degrees ("nose up") are shown. 
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Figure 6.7: First natural mode (coupled) of a structure with K> 0. 

159 

23456789 10 
x [m] 

The frequency of this mode is 609.2752 (rad/sJ 

123456789 10 
x [mj 

The frequency of this mode is 18.2452 [rad/s) 



0.5 

C 
d 
E 
a) U 
ca O 

N 

cc 

-n r 

The frequency of this mode is 114.3306 (rad/s] 

2345678 
x [m] 

The frequency of this mode is 114.3306 (rad/s] 
0.2 

0.1 
G 

0 

rn 
-0.1 

~ 
-0.2Ö 

9 10 

Figure 6.8: Second natural mode (coupled) of a structure with K> 0. 

The critical flutter speed has been calculated for all of the possible wings having 

different ply orientations from -30 to 30 degrees, with a step of P. In these 

analyses, structural damping has not been included in order to obtain conservative 

results 90. Some authors, however, have shown that increased values of structural 

damping may reduce flutter critical speed S2. Such cases, on the other hand, do not 

concern classical flexural-torsional flutter investigations 110. It has been observed 110 

in fact that: 

" The drop in flutter speed (when present) caused by an increased value of 

damping is very small, for practical values of damping coefficients. 

" If damping is added in the same proportion in each mode (torsional and 

flexural), and this is the most common case, flutter speed always increases. 

Results of flutter analyses are summarised in Figure 6.9. It is observed that: 

"A wing with positive fibre angle ("nose up" effect) shows higher critical flutter 

speed than the orthotropic wing. This result has been already remarked in the 

literature, as mentioned in Chapter 2. A wing with negative angle of fibres ("nose 

160 

1234567B9 10 
x [m] 



down" effect), on the other hand, shows lower critical flutter speed than the 

orthotropic wing. 

9 The minimum critical flutter speed is observed when ý= -10 deg. 
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Figure 6.9: Critical flutter speed as function of fibre angles. 

Such a minimum can be explained as follows. A negative fibre angle has a negative 

effect on critical flutter speed. However, as the absolute value of fibre angles 

increases, the stiffness GJ also increases, at least in the domain [0, -30] degrees. 

When GJ increases, an improvement of the critical flutter speed is always observed, 

especially in high aspect ratio wings 90. Therefore, the worst values of critical flutter 

speed are observed for small values of negative angles but when the torsional 

stiffness increases, such effects tend to be re-balance. 

The analyses undertaken suggest an interesting idea: to use positive fibre angles, 

even when located locally within the structure, to improve critical flutter speed. 

Investigations with high fidelity model are suggested (as future work) to confirm 

this trend. 
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An interesting comparison can be performed when analysing the divergence critical 

speeds obtained for the same structures. It has been calculated by using the 

analytical formulation proposed by Weisshaar 57. 
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Figure 6.10: Critical divergence speed as function of fibre angles. 

It can be observed that a "nose down" effect implies an increased value of critical 

divergence speed with respect to the orthotropic structure. A wing with a positive 

fibre angle ("nose up" effect), on the other hand, shows lower critical divergence 

speed than the orthotropic wing. As the value of the fibre angle increases, however, 

the torsional stiffness GJ increases as well and this effect tends to be re-balance. 

6.6 Conclusions 

Unbalanced composite laminates, when inducing "nose up" rotations, can increase 

critical flutter speed. However, as already discussed for the static aeroelasticity case 

in Chapter 5, bend-twist coupling is diminished in real wing boxes (primarily due to 

the presence of ribs), and to an even greater extent in a complete wing structure, 

because of the presence of leading and trailing edges. Thus, the magnitude of the 

improvement will also be diminished. 
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This Chapter is the last dedicated to aeroelastic tailoring. Potential benefits of bend- 

twist coupling effect have been shown both in the static aeroelasticity (Chapter 4) 

and in the flexural-torsional flutter (Chapter 6). 

In the following Chapter, a new technique of combinatorial optimisation of 

composite plates will be described. 
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Chapter 7 
A modified branch and bound for stacking sequence optimisation 

of a composite laminate 

7.1 Introduction 

The range and critical flutter speed improvements, discussed in Chapters 4 and 6 

respectively, are strictly related to the bend-twist coupling effect and consequently 

to the anisotropy of the panels used in a wing box. To obtain such anisotropy, and 

more generally for the aeroelastic design of wings, only volume fractions of fibres 

are relevant. The stacking sequence of the laminae does not significantly affect the 

stiffnesses of the box and consequently the final aeroelastic design. In other words, 
bend-twist coupling stiffness K, bending stiffness EI and torsional stiffness GJ of a 

thin walled box, are only significantly affected by the A matrix of each panel, but 

not by the D matrix, which is a function of stacking sequence. Aeroelastic tailoring 

of a thin-walled wing box is, therefore, a function of membrane properties of the 

panels. 

Once volume fractions of the layers have been fixed for aeroelastic tailoring 

purposes, then, stacking sequences of each panel can be optimised to improve a 

particular structural behaviour, related to the D matrix. Stacking sequence 
IN= 

optimisation can be performed without affecting the designed volume fractions. 

In this chapter, a new method of stacking sequence optimisation is presented. It has 

been tested and compared with a heuristic technique in order to solve two different 

problems: the maximization of compression buckling load and the maximization of 
the first natural frequency of a composite laminate. 
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7.2 Modified Branch and Bound (MBB) 

Stacking sequence optimisation of composite laminates is often formulated as a 

continuous optimisation problem with ply thicknesses and orientations used as 
design variables. In many practical applications, however, as already mentioned in 

the introduction, thicknesses of laminates are fixed and possible ply orientations are 

restricted to a small finite set. In this sense, the nature of the optimisation is 

inherently discrete and permutative. 

A new technique for this type of stacking sequence optimisation is proposed. The 

starting point is a branch and bound method (BB), proposed in the literature by Kim 

and Hwang 111. This algorithm is based on combinatorial calculus and it has already 
been successfully used in the optimisation of laminated composite structures 1 12 

. 

The fundamental idea of this BB is the "ideal layer". Such an ideal lamina behaves 

as an optimum layer in any position of the stacking sequence. It does not exist in 

reality; its properties are purely abstract. The ideal lamina can be defined by using 
its properties: 

1. A laminate consisting of n ideal layers must maximise the objective 
function. It can be represented as follows: 

[idUd id\ l6l 
...... 

I idl 

where 

id is the ideal layer 

The fitness function of such laminate is the highest theoretically 

obtainable. In other words, this value of fitness function cannot be reached 
by using a real composite laminate. 
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2. When a single composite layer, whose fibres angle is ý, is substituted for 

an "ideal lamina", a lower value of the fitness function F is always 

obtained. Symbolically, it can be written 

F ([ 1I ial ial id\...... I id]) <F ([il idl idl idl...... I id]) (7.1) 

This process continues until the last layer is replaced. A worst value of the 
fitness function is obtained every time a new composite layer replaces an 
"ideal" one. Therefore, the following property can be written: 

F ([ýl1 421 ý3I 4I...... I)< RNA ý2I ý3I 
...... 

I ýN-1I ICI) (7.2) 

The importance of ideal laminae will soon become clear. Next, the BB algorithm 111 

is briefly described. The first step consists of selecting an initial stacking sequence 
S whose objective function is evaluated. The value of this function is denoted by FS. 

Next, the idealized stacking sequence, denoted by ID, is also evaluated. It is 

important to remark that the fitness function FS is not the fitness function of the 
ideal laminate. All the layers in the laminate ID are replaced with real layers, 

through the searching of branches, until the optimal stacking sequence is 
determined. Starting from the outermost ply, the Je" ideal layer is replaced with the 

real layer of ply angle 4k. In the example illustrated in Figure 7.1, the ply angles are 

restricted to 0,90 or 45 degrees. For each stacking sequence obtained during the 

branching process, the objective function is evaluated. If a stacking sequence has a 

corresponding fitness lower than Fs, then this branch need not be branched further. 

According to the properties of Eqns. 7.1 and 7.2 further introduction of new 

composite layers, replacing "ideal" ones, would imply even lower values of the 

fitness function. 
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Figure 7.1: Branch and Bound model of Kim and Hwang. 

The complete algorithm is effective and able to find excellent results. On the other 
hand, the CPU running time may be excessively long in finding a solution. 
Motivated by this shortfall, the following modification is proposed: 

" For each ply that substitutes an ideal lamina, only the branch showing the best 

fitness function is investigated further. Therefore, the initial BB has been 

corrected by using a Greedy algorithm 113, i. e. by using the locally optimum 

choice at each stage of the search. The MBB is illustrated in Figure 7.2. 
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Figure 7.2: Modified branch and bound model with 3 possible plies [90/45/01. 

With this modification, good solution accuracy is preserved and CPU running time 

is drastically reduced. The algorithm is effective when performances strictly related 

to the D matrix are optimised. Ideal layers, in fact, are replaced with real layers 

starting from the outer to the middle of the laminate and the outermost layers are, in 

these problems, more relevant in the determination of the final sequence. In other 

words, the correct choice of the outermost layers has a larger impact on the final 

performance of the laminate, simply due to the larger local contribution of second 

moment of area from outer plies. For this reason the MBB algorithm still produces 

good stacking sequences. 
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7.3 Numerical examples 

Two different problems, and consequently two different Fitness Functions, have 

been chosen to test the MBB algorithm. Furthermore, a comparison with a 

permutative GA 72, described is Chapter 2 has been performed. The first problem is 

the maximization of the first natural frequency of a simply supported composite 

plate; the second is the maximization of its compression buckling load. 

For both problems, two different kinds of panels have been analysed. The first is an 

unbalanced laminate and, consequently, it exhibit extension-shear coupling. It is of 

the same type of panel used to build the wing box showing bend-twist coupling 

properties, described in Chapters 4 and 6. The second, is a balanced laminate, 

widely used in the aerospace industry. It will exhibit better performance than the 

analogous unbalanced laminates, both in terms of buckling and frequency. Both 

laminates are simply supported. They are 120 mm long and 40 mm wide. They are 

composed of 80 layers, but since they are both symmetrical, stacking sequence of 

only 40 layers are considered. 

In the first panel, three different ply orientations are examined: 0,90 and 45 

degrees. The thickness of each layer is 0.2 mm. The number of layers with 90,45 

and 0 degrees is fixed as follows: 

n9O =8 is the number of 90 deg layers 

n45 = 16 is the numbers of 45 deg layers 

no= 16 is the number of 0 deg layers 

In the second panel 8 of 16 layers oriented at 45 deg are replaced with layers 

oriented at -45 deg. By fixing the number of each ply orientation, membrane 

properties are also fixed since the A matrix is not a function of the laminate 

stacking sequence. The elastic properties of the material used are summarised in 

Table 7.1, 
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Table 7.1: Elastic properties of the composite layer. 

El 181 GPa 
E2 10.3 GPa 
G12 4.55 GPa 
v! 2 0.28 

densi 1600 Kg/m' 
ply thickness 0.002 m 

The MBB requires the definition of an ideal lamina. For the maximization of the 

first natural frequency and of the compression buckling load, such ideal lamina can 
be modelled as an isotropic one, having elastic modulus E equal to El of the 

composite lamina and Poisson's ratio v equal to v12. Furthermore, it is assumed that 

the density of the ideal layer is the same as a composite layer. An isotropic panel 

with such properties exhibits better performances than any composite plate, without 

regard to the stacking sequence. The explanation is quite simple. In a composite 
laminate, fibres are unidirectional with respect to the structural axis; consequently, 

the elastic strength is concentrated only in this direction. On the other hand, an 
isotropic material can be thought of as being made by fibres placed in all of the 

possible directions. When its elastic modulus is high, frequency and compression 

buckling load results are maximized. 

However, and it is an important point to be remarked, the ideal layer may not be an 
isotropic one for all problems. 

7.3.1 Examples with an unbalanced laminate 

The maximization of the first natural frequency is first described. This problem is 

of general importance for two reasons: 

" To avoid panel flutter, a phenomenon that can occur at supersonic speed. 

" To avoid resonance and consequent amplified vibrations 114 

Due to the lack of closed form solutions for unbalanced laminates, the fitness 

function is evaluated by interfacing MATLAB 1 15 0 and MSC Nastran 83 ° 
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It is observed that the fitness function of the "ideal" laminate is F.. = 2.75 105 

rad/s. It was calculated as the natural frequency of a plate of isotropic material 

having elastic modulus E equal to Ej of the composite lamina and Poisson's ratio v 

equal to v12. With respect to the aforementioned permutative GA (refer to Chapter 

2), three tuning parameters are refined to ensure timely convergence. The following 

parameter values were used: 

" Minimum number of generation before terminations: 20 

" Size of initial population: 30 

" Number of mutations (permutation of two layers randomly selected): one for each 

generation. 

The improved MBB method requires no parameter tuning. It was observed that 

whilst the GA obtained good results, it was only able to find local minima. The 

fitness function obtained by the GA prior to termination was FGA = 216260 rad/s. 

The average value of the fitness function of each generation is shown in Figure 7.3. 

A particular characteristic of GA algorithms is observed: the population is 

continuously improving, even if some oscillation is present. 
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Figure 7.3: Evolution of the population. The average frequency increases with 
the progression of cycles (generations). 
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Using a GA, the stacking sequence obtained was found to be 

[904\0\452\O\90\45\0\45\90\452\0\45\0\452\03\45\0U0\45'0\0\45104\452\0\45\0\45], 

Better results are obtained by using the modified MBB algorithm. Its stacking 

sequence was found to be 

[908\4516\016], 

Table 7.2 details the obtained fitness values for each algorithm as well as respective 

CPU times. 

Table 7.2: Comparison of the results of GA and MBB for the first natural 
frenuenev of an unbalanced laminate. 

GA I'1BB 
Value of Fitness (Frequency ra4\s) 2.16105 2.51 10 

CPU Running Time [s] 835 98 

Compressive buckling loads maximization is now described. It is a common 

problem in the aerospace industry. When a wing is loaded in bending, for example, 

panels of the top skin are compressed under uplift. Even if the value of such 

compression load is below its critical strength it can force the panels to buckle. Due 

to the lack of analytical formulations for plates of general geometry with 

unbalanced laminates, the fitness function is evaluated by interfacing MATLAB® 

and MSC Nastran®. In other words, the fitness function of each laminate is 

evaluated by using MSC Nastran. The Nastran input file (. bdf), however, is written 

by using a Matlab M-file. At each iteration, a sub-routine substitutes an ideal layers 

of isotropic material with a real composite lamina. Results of the analyses are 

reported below. Using the modified branch and bound, the optimal stacking 

sequence was found to be 

[4513\908\016\453], 

By using the permutative genetic algorithm, the optimal stacking sequence is 
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[90\45\902\452\02\452\0\45\90\45\90\0\90\45\0\45\0\453\90\452\02\45\0\45\0s\90\ 

0219 

Results obtained with MBB do not differ significantly from those obtained with the 
GA. However, the MBB is quicker. Results are summarised in Table 7.3 

Table 7.3: Comparison of the results of GA and MBB for compressive buckling 
load maximization of an unbalanced laminate. 

GA MBB 
Buckling compression load Nlmm 2.25 * 1O"4 2.26*10/14 

CPURunning Time [s] 680 101 

7.3.2 Examples with a balanced laminate 

Let us now focus on the balanced laminated panel. To evaluate its first natural 

frequency and compressive buckling load, formulae are available in the literature 21, 

and have been used. Analytical formulae, in fact, avoid the interactive model using 

Nastran-Matlab, allowing significant CPU time savings. 

Using the modified branch and bound, the optimal stacking sequence to maximize 

the first natural frequency is 

[908\± 45g\016 Is 

whilst the permutative genetic algorithm gives 

[902\± 45\902\± 45\904\02\± 456\0141 

Results are summarised in Table 7.4 

Table 7.4: Comparison of the results of GA and MBB for the first natural 
freauencv of a balanced laminate. 

GA M 
Value of Fitness (Frequency radls) 2.45 10 2.54 10 

CPU Running Time [s] 41 0.5 
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Concerning compressive buckling loads, the results show once again how fast and 

reliable the modified branch and bound method appears to be. The optimal stacking 

sequence obtained with MBB is: 

I± 458\908\0161, 

whilst the optimal stacking sequence obtained with the permutative GA is: 

[± 454\02\902\ ± 454\904\02\902\0121 

Results are summarised in Table 7.5 

Table 7.5: Comparison of the results of GA and MBB for compressive buckling 
load maximization of a balanced laminate. 

GA MBB 
Buckling compression load [Nlmm] 2.82 * 10''4 2.90*10114 

CPU Running Time [ s] 15 0.5 

The stacking sequences proposed are quite simple, but these examples are only 

useful to understand the potential of the method proposed. 

733 An example with the four plies rule 

In order to obtain more realistic stacking sequences, empirical knowledge for 

avoiding large scale matrix cracking and delamination can be easily implemented. 

This rule is known as four plies rule 116: stacking sequence do not have more that 

four consecutive layers with the same orientation. If this rule is applied to the 

example of the compression bucking load of a balanced laminate, the following 

results are obtained. The stacking sequence obtained with the GA is 

[± 454 \02\902\± 454\902\02\902\04\90\04 \90\041 

whilst the stacking sequence obtained with the MBB is: 

± 45s\903\0\90\0\90\04\90\04\90\04\90\02 Is 
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The results are summarised in Table 7.6. 

Table 7.6: Comparison of the results of GA and MBB for compressive buckling 
load maximization of a balanced laminate. Four plies rule is applied. 

GA 11 BB 
Buckling compression load Nlmm 2.79 * 101'4 2.88*1 ON 

CPU Running Time [s] 15 0.5 

7.4 Discussion and Conclusions 

A new algorithm to optimise the stacking sequence of a composite plate having a 

fixed number of layers and possible ply orientations has been proposed and tested. 

Good results have been obtained, especially if the algorithm is compared with a 

standard GA technique. CPU running time has been drastically reduced. 

Despite the success of MBB, it is important to highlight potential issues. The 

algorithm works well due to the inherently discrete nature of the set of ply 

orientations used in the optimisation. As the set of ply orientations grows, it must be 

questioned whether this approach remains efficient and suitable for determining 

laminate stacking sequences. Additionally, due to the rapid and premature pruning 

of branches, the obtained stacking sequence may not satisfy certain criteria. 

Premature pruning of branches limits an abundance of possible combinations of 

angles which may give improved designs. On the other hand, if the BB approach 

presented in the literature is used, the algorithm becomes increasing inefficient with 

increasing thickness and number of ply orientations. 

Despite these potential shortfalls, tests have shown that the MBB obtains 

respectable results. Note, the optimal laminates found (if considered not 

satisfactory) could form part of an initial population for a heuristic optimisation 

method. Lastly, for different objective functions, different idealizations may be 

required. It is noted that the search for an idealization which satisfies the conditions 

outlined in Section 7.2 may be a non-trivial and time consuming task. 
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Chapter 8 
Conclusions and Future Work 

8.1 Introduction 

The major results and contributions of this research are summarised in this chapter. 

Suggestions for future work and possible research are also included. 

8.2 Main objectives and results of the research 

Possible benefits of bend-twist coupling on aeroelastic performances of composite 

wings have been investigated. In particular, two different aspects of aeroelasticity 

have been studied: 

1. Static aeroelasticity. A "low fidelity" aeroelastic model has been developed. 

Aerodynamic loads have been calculated by using a vortex-lattice method. The 

wing structure has been modelled as a box, i. e. a thin-walled composite beam 

with rectangular cross section. Static aeroelastic equilibrium has been obtained 

by using an iterative procedure. 

2. Flexural-torsional flutter. A "low fidelity" aeroelastic model has been developed 

to calculate critical flutter speed. The wing has been modelled as a prismatic 

beam, while Theodorsen's aerodynamic model (in the frequency domain) has 

been used to model the aerodynamic behaviour. 

Results obtained can be summarised with the following points: 

" Unbalanced plates, when used in a composite wing, can improve the range of the 

aircraft. The improvement, measured with respect to an orthotropic wing, taken as 

a reference structure, was found to be less than 1%. Besides this small 

improvement, a negative effect is also observed, i. e. structural weight increases. 

The wing made with unbalanced composite materials can be up to 15% heavier 

than the orthotropic wing, for the representative wing that was analysed. 
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If a more realistic structure was considered (including structural details as 

stringers, ribs, webs, leading and trailing edges), the bend-twist coupling effect 

would be further diminished, so the improvements on range performance are 

significantly less. 

This result could appear quite poor. However, the small improvement of range 

regards the whole aircraft. Furthermore, even a small improvement can imply 

important financial savings. On the other hand, even if the structural weight 

increases, the overall weight penalty on the aircraft is often small. More precise 

results could be obtained by using a high fidelity model. 

" The use of unbalanced composite materials can improve the critical flutter speed 

of a composite box. A "nose up" distribution of the elastic properties is required, 

even if it negatively affects critical divergence speed and structural weight. 

Besides the aeroelastic analyses, two sub-problems have been studied and solved. 

They are the point of novelty of this thesis, i. e. the main contribution of the 

research. 

" An analytical model to evaluate the basic stiffnesses EI and GJ of a composite 

thin-walled box has been developed and tested, and included as part of the static 

and dynamic aeroelastic tools. The analytical model provides excellent results for 

several geometries and lay-ups. Furthermore, its form is relatively simple and 

provides a good understanding of the physical meaning of the stiffness. No other 

model, presented in the literature (to the knowledge of the author), provides such 

precision in the evaluation of EI and GJ for different geometries and, at the same 

time, can be easily implemented. 

"A new algorithm (MBB) for stacking sequence optimisation has been developed. 

It is useful to optimise laminates whose A matrix is predetermined: i. e. when 

plate thickness and number of different ply orientations are fixed "a priori". The 

fitness function must be strictly dependent on the D matrix of the plate: examples 
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can be fundamental frequency or compression buckling load maximization. The 

algorithm has been developed by adapting a Branch and Bound (BB) method 

presented in the literature, with the integration of a Greedy algorithm. MBB gives 

excellent results when compared with standard heuristic techniques, such as 

permutative GAs. Additionally, CPU running time is drastically reduced when 

comparing the new algorithm with the original BB. 

8.3 Future Work 

Range improvement induced by anisotropic laminates offers potential financial 

savings while a heavier aircraft suggests financial losses (less passengers can be 

transported by exploiting the same lift, because the structural weight increases). 

Which of these two effect dominates? To know with more precision the answer to 

this question, high fidelity models must be used. A detailed structural model of an 

existing aircraft wing coupled with a transonic aerodynamic code could be 

investigated to find precise values of lift and drag, and consequently of range. 

Furthermore, weight penalties due to a heavier wing should be evaluated by using 

the real weight of this existing aircraft. In other words, the static aeroelastic 

investigation presented in this thesis could be repeated using more precise 

structural and aerodynamic tools in order to obtain more precise results. The basic 

concept developed in this thesis, however, remains unchanged. 

In the same way, high fidelity models could be also investigated to understand 

whether "nose up" fibres could be used, even just locally, i. e. not in the whole 

wing span, to improve critical flutter speed without excessive weight penalties. 

An analytical model could be developed to predict the bend-twist coupling 

stiffness K of a box including ribs. The approach proposed by Lemanski and 

Weaver could be used also in this case: a unitary bending deformation can be 

applied and the resultant twisting moment measured. 
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