This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk

Author:

Heal, G. J
Title:
Contributions to the study of sirenian evolution

General rights

The copyright of this thesis rests with the author, unless otherwise identified in the body of the thesis, and no quotation from it or information derived from it may be published without proper acknowledgement. It is permitted to use and duplicate this work only for personal and noncommercial research, study or criticism/review. You must obtain prior written consent from the author for any other use. It is not permitted to supply the whole or part of this thesis to any other person or to post the same on any website or other online location without the prior written consent of the author.

Take down policy

Some pages of this thesis may have been removed for copyright restrictions prior to it having been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you believe is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact: open-access@bristol.ac.uk and include the following information in your message:

- Your contact details
- Bibliographic details for the item, including a URL
- An outline of the nature of the complaint

On receipt of your message the Open Access team will immediately investigate your claim, make an initial judgement of the validity of the claim, and withdraw the item in question from public view.
by

GROFFREY JOHI HRAL, BoSc.

1 thesis subritted for the degree of Dootor of Philosophy in the Univeraity of Briatol.

BEST COPY

AVAILABLE

Variable print quality

CONTAINS A PULLOUT

2 $2=0$ MNDMI

This dissertation, which I subait for the degree of Doctor of Philosophy, is based upon three years' research carried out in the Dopartment of Geology, University of Bristol, under the auperviaion of Dr. R.J.G. Savage.

I hereby declare that the work contained in this dissertation is the result of ny own independent research and that ans problished or unpublished work of othars is fully acknowledged in the text.

PART ONE: FOSSTH STPRETA

ITHRODUCTIOR 3
GTOSSART 7
ARRRETMAYTONS 8
CHEAPMAR 1: FOSSTI STBEATA FROY THTBYA •••••• 10
HISTORIGAF BLCKGROUND AND GWOLOGY 10

SYSTHEMTIC DESCRIPTIOXS .. 19
Ifibysiren gickenbergit gen. et sp. nov. 20
Anatomical description 22
Comparison and discussion 80
Rytiodun seltanensif sp. not. 90
Anatomical desoription 90
Comparison and discussion 135
Mitaqitherivm sp. indet. .. 141
Anatomical description 141
Comparison and digcusaion 148
Sironian \& .. 149
Anatomical deadription 150
Sironian B ... 150
Anatomical description 151
CHIPNTR 2: NTI MOSSTH STPMIT FROM FRUNG. ... 152
HISTORICN BACKCROUID ADD GROLOGI 152
SISTHEIATIC DESCRTPYIOI ... 153

Amatonical deseription 154

Pathoroidne and Protorirym Proe the Lquitaino Banin .. 162

Eathorim (Fotherotider) ming 2danisy 164

HISTORICAL BACKKROUSD .. 165

Ribodon limbatin Ameghino ... 166
.iv.
Anatomical description 166
Comparison and discussion 172
GHAPTER 4: A REVLEY OF THES SIRENTA 174
THE ROSTRUM AND TUSKS OF THE DOGONGIDAE 174
THE GENOS HALTTHERTUY RAOP 180
THE GHNOS MFTATYTHRRTUN (DRSMAREST) 186
THIS OBIGIN OF DUCONG 190
THE IIIPORTANCE OF TETEYS IN THE ORIGIN OF THE SIRTMIA 193
A NEW SIRENIAN CLASSIFICATION 196
STH PCTVED BIBTIOGRAPRY 201
 212
APPRNDIX BE KEYS 221
APPATDTX C: DTSYRTBUFTOMMPS 224

IEPRODUCATOLI 2
ABRRTATMTTORS 3
 4
Rostral surface 4
Palate 8
Symphyaial surface 8
Tongue 12
Distribution of hair on the face of Droper 12
 14
M. mascetor 14
M. temporalis 15
M. pterygoideus internas 16
M. pterygoideus externus 18
M. digastricua 19
The funotional analysis of airenian jair maculatures 24
CRIPNTR 38 COMCHDSTOTS 33
Dopens 33
Thrichachus 55
Eoceno sirenians 36
 38
APYFIDTE MOSNREDMT 39

ITST OF TABLTS

PART ONE

1. Cenozoic time scale 4
2. Comparison of nuabal regions of Ithpyatren gen. nov. 37
3. Interpretations of two sphenoid foramina 48
4. Comparison of auditory apparatuses of Ithyrairen gen. nov. and Pygeng 60
5. Comparison of Iibysimen gen. nov., Protogiren, and Rotheroider-Protothorivm 88
6. Comparison of Rytiodus capprandi and R- reltenensis
sp. nov. 136
7. Comparison of Rytiodus, Helitherrim, Garibosiren, and Hetactherpive 138
8. Comparison of Prtiodue reltenengis ap. nov. and Metartherpime ap. indet. 148
9. Pour stages of tooth wear in Botheroiden of. R. ascrotiacur 159
10. Correlation of the Kiocene formations of Malta 181
11. Range of Helitherpive and reteratheriva 185
12. Fumorical analyses of sirentian genera and apecies 195
PART TM: 2
13. Kuscle mass and power calculations 25

PART ONE

1. Africa: sirenian localities 11
2. Libya and Bgypt: sirenian localities 13
3. Dor el Talha: sirenian sites 15
4. Gebel Zelten: sirenian sites 17
5. Ifibrairen gen. nov.; left lateral view of akull 25
6. Libysiren gen. nov.; rostrum 28
7. Libyairen gen. nov.; ventral view of maxillae 30
8. Libysityen gen. not.; nasal region 33
9. Ifibrsiren gen. nov.; dorsal view of skull 36
10. Mibyairen gen. noves occipital region 40
11. Mihraiten gen. nov.; ear region 44
12. Ihbrgimen gen. nov.; aphenoid foramina 47
13. Ifibrairen gen. nov.; view through foramen magnum 48
14. Ifibyriren gen. nov.; ethmoidalia 52
15. Ifibrairen gen. nove; ventral view of akull roof 55
16. Ifbysiran gen. not.; petrotympanic 59
17. Librairen gen. nov.; left lateral view of mandible 65
18. Mibysiren gen. not.; dorsal view of mandible 68
19. Mibrairen son. nov.; edentulous mandibles 71
20. Ifimytiven gen. nov.; H_{2} and H_{3} 73
21. Inimisen gen. nov.; atlas vertebra 76
22. Iflorrimen gen. not.; thoracic vertebra 78
23. Dormal Fews of four Boceno mixenian trula 83
24. Protomirenid and cothoroidid akull roofs 84
25. Patiodun meltenenmi ap. nov.; left lateral view of aloull 93
26. Pytiodus reltenengif sp. nov. 3 left latemal Fiow of ckul1 96
27. Irthiodun re1tonengit ap. nov. ventral view of ecull. 100
28. Bytiodus zeltenensis sp. nov.; nasal region 102
29. Rytiodus zeltenensis sp. nov.; dorsal view of skull 106
30. Bytiodus zeltenensis sp. nov.; ventral view of skull 111
31. Bytiodus yeltenensis sp. nov.; endocranial cast 115
32. Rytiodua zeltenensis sp. nov.; lateral view of left mandibular ramus 117
33. Rytiodus geltenensis sp. nov.; incisor tuaks 121
34. Rvtiodue geltenengie ap. nov.; maxillary dentition 123
35. Rytiodue reltenengis sp. nov.; K_{3} 125
36. Rytiodus geltenonsin sp. nov.; axis vertebra 130
37. Rytiodug geltenanaia sp. nov.; thoracic vertebrae 133
38. Metactherpin sp. indet.; nasal region 145
39. Ketacytherive ap. indet.; ethmoidalia 147
40. Ribodon limbatua; loft mandibular ramus 169
41. Bibodon 1imbatun; chook teeth 171
PART THO
42. Premaxillary pad and palate of Durong 7
43. Mandibular pad and tongue of Drrang 11
44. Jav-cloaing muscles of Protosiren, Prinhechung, and Dreones 17
45. Jav musculature of Duronc 21-23
46. Analyses of jav mechanice of Drepnc 29-31

.viii.

LIST OF PLATES

PART ONT

1. Hibysiren gen. nov.; left lateral view of skull 24
2. Ifibysiren gen. nov.; dorsal view of rostrum 27
3. Ifibysiren gen. nov.; ventral view of rostrum 27
4. Libysiren gen. nov.; ventral view of maxillae 30
5. Libysiren gen. nove; nasal region 33
6. Libysiren gen. nov.; dorsal view of skull 35
7. Ifibysiren gen. nov.; occipital region 40
8. Libymitmon gon. nove; ear region 44
9. İbrairen gen. nov.; sphenoid foramina 47
10. Mibyairen gen. nov.; ethmoidalia 52
11. Ifibyaicen gen. nov.; ventral view of skull roof 54
12. Ifhypiren gen. nov. 5 left lateral view of mandible 64
13. Ifibrmiren gen. nov.; dorsal view of mandible 67
14. Brtiodus geltenengis sp. nov.; loft lateral view of skull 92
15. Fithodus geltenensis sp. nov.; left lateral view of skull 95
16. Bxtiodug geltenonatis ap. nov.; ventral view of akull - 99
17. Batioduc reitennnat mp. nove; nasal region 102
 105
18. Pathodus Entenonain ap. not.; Tontral viow of skull - 110
19. Bqtiodus mitrenencin ep. nov. m lateral view of left mandibular ramus 117
20. Pithodng meltenentin 日p. nov. $;$ incisor tuaks 121
21. Pytiodun selterongit sp. nov.; maxillaxy dentition 123
22. Brtiodug geltonengit ap. nor.; M_{3} 125
23. Pxationn geltanonain ep. nov. 3 antemior view of acis vertebra. 129
24. Ratiodun gitenonain sp. nov.; 1eft lateral viow of axis vertebra 129

26. Metarytherium sp. indet.; nasal region
 27. Metarytherium sp. indet.; ethmoidalia
 28. Ribodon limbatug; lateral view of left mandibular ramus
 29. Ribodon Limbatus; medial view of left mandibular ramus
 30. Bibodon limbatus; cheek teeth

PRTT TMO

1. Premaxillary pad and palate of Durone
2. Mandibular pad and tongue of purenge

Three sirenian genera are described from the Cenozoic of Libya Libygipen gickenberpi gen. et sp. nov. from the Middle Focene of Bu el Haderait, and Rytiodus zeltenenais sp. nov. and Metaxthorium sp. indet. from the Lover Kiocene of Gebel Zelten. These sirenians respectively represent the first identifiable Palaeogene member of the order recorded in Africa outside of Egypt, and the first substantial ovidence of the order from the Neogene of Africa. Libyairen gen. nov. is most closely allied to Protosiren (Protosirenidse), but also shows some similarities to Fotharoides and Prototherium (Eotheroididae fam. nov.) ; Bytiodus and Motartherfum both belong to the Dugongidae, but to soparate subfamilies - the Rytiodinae and the Metaxytheriinae respectively.

A sirenian close to Fiotherofides aegrotiacum is recorded from the Eocene of southern Prance, representing the first definite occurrence of this genus in Burope. This now, relatively abundant, material permits a revision of certain Pocene sirenian apecimens from France and Egypt.

A new specimen of the poorly known MiomPliocenc trichechid sirenian Ribodon Ifmbatus is recorded from Argentina.

A review of the Sirenia utilizes the most recent information to discuss the rostrum and tuaks of the Dugongidae, the genora Ealitherfurn and Moteratherrum, the origin of Drerone, and the importance of Tethys in the origin of the Sirenia. A new classification of the SHronia includes three now superfanilies, one now family, and one new subfamily.

A study of the gross morphologs and jav musculature of the head of a dugong, Dugong dugon, serves as the basis for a funotional analysis of its feeding mechenism, which is then conpared with the mechanisms suggested for the manatee, Thichechng, and Eocene aimonians.

Appendioes contain keys to the families, subfamilies, and genera of sirenians, and distribution maps of living and fossil airenians.
.2.

INTHODUCTION

Research on fossil members of the Sirenia (manatees, dugongs, and their extinct relatives) has been undertakon sporadically since the beginning of the nineteenth century, notably by German-speaking palaeontologists (Lepsius, 1882; Abel, 1904, 1913; and Siakenberg, 1934), but also by French (Deperet \& Roman, 1920) and American (Simpson, 1932; Reinhart, 1959) workers. Interest in the fossil representatives of the order was initially focused on the nineteenth-century finds from the Oligocene and Miocene strata of Burope, then at the turn of the century it switched to the exciting Eocene specimens from Egypt, and more recently it has crossed the Atlantic with the discovery of fossil sirenians on both the east and west coasts of the Americas. The research in these different areas has tended to be carried out independently, with the resulting description of a plethora of species that could very probably have been avoided if intercontinental comparisons had been carried out.

This part of the thesis was originally onvisaged solely as an account of the airenians recovered from the Cenozoic of Libya by field parties from the University of Bristol, but as work progressed it became obvious that there vere other airenian topics that needed attention. The sirenians from Libya are interesting and important because they include a new genue, a now apecies of a gonue that has not proviously been recorded from Africa, and another genus that is new to Ifrica. The description and discussion of these tara takes up the firat half of this part of the thesis.

I was fortunate to be given permission to dascribe some Eocene eirenians that have recently been found in southern France by members of the Oniveraitoit van Ameterdam; although thoy closely reacmble a previously described species from Egypt, they represent aur onin definite comnoction between the Palacogene airenian fawnas of Burope and Africa. The desaription of these airenians is reatricted to features that have not been adequately covered by previous authors or that conflict with the view of these authors.

A short chapter is dovoted to an inoomplete mandibular rams, recontis

discovered in the collections of the British Museum (Natural History), that has been reidentified as belonging to the early trichechid Bibodon.

The last chapter is an attempt to up-date Reinhart's (1959) review of the Sirenia. It contains information that has appeared since 1959 and discusses aspects of sirenian evolution that Roinhart did not consider. It ends with a new classification of the Sirenia down to generic level.

Three appendices are added to cover measurements (enlarged in the case of the Eocene sirenians to include previously unrecorded dimensions of specimens examined by the author), keye to the families, subfamilies, and genera of sirenians, and distribution maps of the fossil and living taca (with the palacogeography indicated in most cases).

The Cenozoic time scale used throughout this part of the thesis is based upon Borggren (1972) and is armmarized in Table 1.

Acmoriledrements

This thesis would not have been possible without the encouragement, help, and supervision of Dr. R. J. G. Savage. I would like to take this opportunity to thank him for providing the initial stimulus for this work, namely the sirenian material that he was instrumental in collecting in Iibya. I am also gratoful to him for reading and criticising a large part of the manuscript.

Hy work at various muserms has been made posaible and onjoyable by the following persons: Drs A. J. Satcliffe and W. R. Harilton, Department of Palacontology, British Yusoum (Hatural History), London; Mise B. J. Pyrah, Yorkshire Iuseum, Iork; Dre D. E. Blasell and L. Gingburg, Institut de Paleontologie, Masevm Mational d'Histoire Haturelle, Paris; Dr. P. I. Sondaar, Geologisch Institunt, Rijkeuniversiteit te Utrecht, Utrecht; J. Sinit and H. K. H. Holet, Geologisch Instituut, Univoraiteit van Ameterden, Anoterdan; Dr. M. Freadenthal, Kuaern van Geologie on Mineralogie, Loidens Prof. Dr. R. Dohm and Dr. F. Obergfell, Bayemiache Staatamamiung ftr Pallontologie u. hiatorische Geologie, Munioh; and Dre J. Franson and S.

Rietschel, Forschungsinstitut Senckenberg, Frankfurt am Main.
I am grateful to Drs C. K. R. and G. C. L. Bertram of the University of Cambridge for information on living sirenians, and to Dr. D. P. Domning of the Department of Paleontology, University of California, Berkeley, for helpful discussion on various aspects of sirenian evolution. Invaluable help, in various forms, has also been provided by my colleagues, Drs A. W. Wight, A. F. Wilkinson, and A. N. Insole, and M. J. Bishop.

Facilities were kindly provided by Professor D. L. Dineley in the Department of Geology, University of Bristol, and I would especially like to thank R. J. Godwin for his care over the photographic work in this part of the thesis and Miss M. E. Rampton for her help with Figures II and III in Appendix C.

This study was made possible by a three-year NERC Research Studentship that was held between September, 1970, and August, 1973.

The following is a short list of anatomical definitions that are not in common usage or have special reference to the Sirenia.

Facies petrosi fonticuli mastoidei

The posterior surface of the pars mastoidea, which is produced in some sirenians to fill the fonticulus mastoideus.

Foramen lacerum

In the Sirenia the foramen lacerum anterius (the foramen lacerum medium of those who call the sphenorbital canal the foramen lacerum anterius), the foramen lacerum posterius, the foramen ovale, and the stylomastoid foramen unite to form a single, large foramen lacerum (s.1.).

Metaloph(id)

The posterior loph of a bilophodont upper (lower) cheek tooth; formed in the Sirenia by metacone, metaconule, and hypocone (entoconid and hypoconid).

Pachyostosis

The phylogenetic increase in density and thickness of individual parts of the skeleton of fossil and recent vertebrates. This phenomenon is very marked in the Sirenia, with even the marrow cavities obliterated.

Pars mastoidea

As used in this work, the posterior part of the periotic.

Pars petrosa

As used in thits work, that part of the periotic containing the middle ear.

Petrotympanic

The bone formed by the fusion of the periotic and the tympanic. In all sirenians (except Prorastomus) it is not attached to the squamosal.

Processus retroversus

The process on the posterior end of the zygomatic arch that is prominent in some sirenian genera.

Protoloph(id)

The anterior loph of a bilophodont upper (lower) cheek tooth; formed in the Sirenia by paracone, protoconule, and protocone (metaconid and protoconid).

Rostrum

The anterior region of the skull, formed of the enlarged premaxillae, which is especially prominent in sirenians.

Superficies meatus

The groove on the ventral surface of the squamosal that covers the tiasue of the external auditory meatus.

Tegmen tympani

In the Sirenia the tegmen tympani is a bulbous, kidneymahaped featuxe that forms a roof over the middle ear. It is also known as the tholus or done.

AAF	anterior alisphenoid foramina	J	jugal
ACAF	anterior capitular facet	L	lacrimal
AF	anterior articular facet	LCT	longus colli tubercle
AS	alisphenoid(s)		
ASC	alisphenoid canal	M	maxilla(e)
		MAF	mandibular foramen
BO	basioccipital	MAS	mandibular symphysis
BS	basisphenoid	ME	mesethmoid
C	centrum	MF	mental foramen (foramina)
CAF	capitular facet	MRF	mesorostral fossa
CBR	cerebellar region	N	nasal (s)
CF	cotylar facet	NA	neural arch
CP	cribriform plate	NC	neural canal
CR	cerebral region	NF	nutrient foramen (foramina)
DA	dorsal arch	NPF	nasopharyngeal fossa
DP	diapophysis	NS	neural spine
EAM	external auditory meatus	NT	nasoturbinal(s)
ECT	ectoturbinal(s)	NOC	nuchal crest
ENT	endoturbinal(s)	0	occipital
EO	exoccipital	OC	occipital condyle
F	frontal (s)	ODP	odontoid process
FAI	foramen acusticum inferius	OF	optic foramen
FCO	fenestra cochleae	P	parietal(s)
FE	foramen endolymphaticum	Paf	posterior alisphenoid foramen
FF	facial foramen	PAP	parapophysis
FL	foramen lacerum	PCAF	posterior capitular facet
FM	foramen magnum	PE	periotic
FMA	fonticulus mastoideus	PF	posterior articular facet
FPFM	facies petrosi fonticuli mastoidei	PL	palatine(s)
FV	fenestra vestibuli	PM	premaxilla (a)
GF	glenoid fossa		pars mastoidea
			premaxillary symphysis
HF	hypoglossal foramen	POP	parocoipital process
ICF	infraorbital canal foramen	POZ	postzygapophysis
IVF	intervertebral foramen	PP	pterygoid process

> -9•

PPT	pars petrosa	SS	Sylvian sulcus
PR	promontorium	TC	temporal crest(s)
PRE	processus retroversus	TCB	tentorium cerebelli
PRZ	prezygapophysis	TP	transverse process
PS	presphenoid	TT	tegmen tympani
PTP	post-tympanic process	TUF	tubercular facet
SC spinal cord	V	vomer	
SCF sinus canal foramen	VA	ventral arch	
SFC suprafacial commissure	VF	vertebrarterial foramen	
SM superficies meatus	ZJ	zygomatic process of jugal	
SO supraoccipital	ZSQ	zygomatic process of squamosal	
SOF sphenorbital foramen			
SOP supraorbital process of frontal			
SQ squamosal			

Dental

a alveolus
end entoconid
hed hypoconid
hcld hypoconulid
mcd metaconid
ml metaloph
pred protoconid
prl protoloph

Musoums

BM (NH) British Museum (Natural History), London, England
BSM Bayerische Staatssammiung fttr Pallontologie u. historische Geologie, Munich, Germany
GIA Geologisch Instituut der Universiteit van Amsterdam, Amsterdam, Holland

MNHN Musēum National d'Eistoire Naturelle, Paris, France
RGM Rijksmuseum van Geologie on Mineralogie, Leiden, Holland
SIIF Forschungsinstitut Senckenberg, Frankfurt am Main, Germany
UB Department of Geology, University of Bristol, Bristol, Figland

On many of the figures in this theais stippling and hatohing represent matrix and broken (or out) surfaces respectively.

HISTORICAL BLGKGROUND AND GROLOGI

Conozoic mamal material was first found in Libya by Desio in 1931, and it vas subsequently described by D'Erasmo (1934). This initial find (an indeterminate ungulate) at Gasr es Sahabi led to further investigation of the surrounding area and a good mammalian fauna is now know. The age of the Sahabi deposit is believed to lie between 5 and 6 my B.P. on the basis of the presence of Stegotetrabelodion ayrticus (Maglio, 1970).

The occurrence of mamals at the Miocene locality of Gebel Zelten was first reported by Aranbourg \& Magnier (1961), and Arambourg described the varied elements of the fauna (1961a, 1961b, 1963b). In a ahort geological description of the manal-bearing strata at Gebel Zelten, Magnier (1962) made the first reference to the presence of fossil sirenians in Iibyas
'-les niveaux 7 et 8 se caracterisent paléontologiquement par de nombreux restes de Siréniens impliquant un milieu de vie en eau peu salés.'

The gebel was later visited by an expedition from the University of Bristol, led by Dr. R.J.G. Savage, which had the aim of collecting more mamalian material. This expedition (in 1964) was so successful that it stimulated several nore during the late 1960 's, and thus a very large collection of Libyan fossil mamals was establiahed at Bristol. Although special attention was paid to the collection of terreatrial mamala, Dr. Savage and his comorkers also brought back sirenian remains in 1966 and 1967. Several of the terroatrial mamal groupa from Gebel zelten have already provided theses' topics for posteraduate workers at Bristol; Harris (1969) described the proboscidean matorial, Harilton (1972) desoribed the ruminanta, and Wilkinson (1972) dealt with the suids.

An Oligocene horison noar Zella was Fiaited by the Fremah in 1959 and 1960 (Aranbourg \& Yagnier, 1961; Arnould-Saget \& Vagnier, 1961), and has yielded two carly probosoideans, Prinegnatiodon and Phionia. This horison liea

FIG. 1

AFRICA: SIRENIAN LOCALITIES

1. Dar bel Hamri, Morocco
2. Djebel ech Cherichira, Tunisia
(Pliocene)
3. Bled Douarah, Tunisia
(Oligocene)
4. Daban, Somali Republic
5. Callis, Somali Republic
6. Bedei, Somali Republic
7. Mogedishu. Somali Republic
8. Malembe, Congo
9. Ile Makamby, Malagasy Republic
(Miocene) (Eocene)
(Eocene)
(Oligocene)
(Eocene).
(Miocene)
(Miocene)
above the Graret el Gifa Member (Iutetian-Priabonian) of the Wadi Tamet Formation.

Bocene mamals from Dor el Talha ("Gebel Coquin" of some earlier workers) were first recorded by Arambourg \& Magnier (1961) and Arambourg (1963a). This locality was visited by University of Bristol field-parties in 1968 and 1969 (Savage, 1969), and Wight (1971) has described its geology and proboscidean fauna. The latter author concluded that the Dor el Talha mammals include both Focene and Oligocene species. Sirenian rib fragments were found at Dor el Talha in 1968. The new Eocene locality of Bu el Haderait has yielded no terrestrial mammals, but sirenians are relatively abundant there (Savage \& White, 1965).

More detailed information on these Libyan fossil mamal localities can be obtained from Savage (1971) and Savage \& Hamilton (1973), and from the previous theses in this series (Harris, 1969; Hanilton, 1970; Wight, 1971; Wilkinson, 1972).

The Sirte Basin of northern and central Libya was formed by intensive block faulting during the Mesozoic (Late Cretaceous) and Conozoic (Klitzsoh, 1968). It lies between the Tethyan foredeep and the Saharan platform, and is bordered on the west, south, and east by the Haroudj, tibesti-sirte, and Calanscio-Auenat uplifts respectively. Daring the Cenosoic, marine transgressions and regressions filled the basin with a thick sequonce of clastios, carbonates, and minor evaporites, which have a total thicknoss of at last 5,000m in the contre of the basin. The Cenosoic strata range in age from Palaeocene (Danian) to Late Hiocene (Measinian). The Sirte Basin reached ita largest extent during the Palaeocene and Eocene, when its ahoreline was located approziaately 850ki from the present Libyan coast; hovever, by the beginning of the Heogene the sea had retreated northrards to within 450 cm of the present coast (Deaio, 1971) (see Mg. 2). The three aironian localities dealt with in this chapter are situated close to theme anoient ahorelines, and two of thom have also gieldod land mamals.

FIG. 2

Bu ol Haderait ($28^{\circ} 15^{\prime} \mathrm{N}_{\mathrm{o}}, 18^{\circ} 30^{\prime} \mathrm{E}$.) is probably the earliest Cenozoic mammal locality on the African continent, and here sirenian skeletons are associated with foraminiferans, bryozoans, molluscs, 2 White
arthropods, and echinoderms (Savage ${ }^{2}$ 1965). These organisms are preserved in a whitish calcilutite that is interbedded with mollusc-rich limestones and capped by a sandstone. The whole succession is c.30m thick, and the strata are horizontal. The most characteristic invertebrate fossil of the calcilutite is the large foraminiferan Mummulitea legigatus (Brug.), which is generally accepted as one of the guide fossils of at least the lower part of the Lutetian of the Paris Basin (Berggren, 1967). This distinctive species has also been recorded from a 'white-jellowish chalk' in Cyrenaica that is overlain by a sequence of massive limestones containing humpliteas diacorbinus Schloth., K. gizehensia Fhr., etc. (Desio, 1968). The latter species is found throughout the upper part of the Lutetian of Horth Africa Mokattan Pormation of Egypt (Said \& Martin, 1964, fig. 4); Wadi Rayan Formation of the Fayum Depression, Egypt (Beadnell, 1905); Apollonia, Derma, and Slonta Pormations of Libya (Kleinsmiede a van den Berg, 1968; Pieterse, 1968). H. laevicatus therefore appears to occupy a similar position in the stratigraphic sequences of both the Paris Basin and the Sirte Basin, and the beds that yield airenians at Bu el Haderait oan be placed in the lowor part of the Kiddle Eocone (Iutetian). These strata are therefore a southern equivalent of the lover part of the Wadi Tamet Formation of the northern Sirte Basin.

The stratigraphy of Dor ol Talh ($25^{\circ} 45^{\prime} \mathrm{N} ., 18^{\circ}-19^{\circ} \mathrm{F}$.) has boen investigated by wight (1971), who has recognized four units therein. Principaily by correlating the land mamal faunas of the Dor ol Talhe sequence with those from the Palacogene deposita of the Fapro Depression, Eeypt, he has placed the Garirat and Raqaba Onits of the former in the Opper Eocone, and the Idan and Serir Unita in the Oligocene. The arceeasion conaists of gypaiforous ailts, rhythmic alternations of sande and ailte, oyster banks, and a andstome anp at the top. Sirenian ribe occur in the

FIG. 3

gypsiferous mudstones of the Raqaba Unit, and this places them at an equivalent level to the sirenians from the Casr el-Sagha Formation of the Fayum Depression (wight, ibid.) (see Fig. 3).

Gebel Zelten ($28^{\circ}-29^{\circ} \mathrm{N} ., 19^{\circ} .30^{\prime}-20^{\circ} 30^{\prime} \mathrm{E}$.) has received the most attention of the three localities. Its mammal fauna has been studied by both Arambourg and workers at the University of Bristol, and its sedimentology and palaeoecology have been investigated by Selley (1966, 1967, 1969, 1971) and Doust (1968) reapectively. The Miocene Marada Formation at Gebel Zelten consists of alternating limestones, sandstones, and shales (Selley, 1966). In genoral, marine limestones become more abundant northwards and continental sandstones and unconsolidated sands increase in importance southwards. This sequence is interrupted by aandstone channels that were interpreted by Selley (1966) as river courses, and the diatribution of sirenian remains at Gebel Zelten approximately coincides with these channels and the odges of the lagoonal facies (Savage, in Selley, 1960). Selley (1966) compared the environment at Zolten during the Miocene to that of the present-day coast of Texas - a region from which airenians have been recorded within historic times. The age of the Zelten deposits has been the subject of some controversy, but most authors have faroured a Burdigalian, or equivalent, age. Savage \& Hanilton (1973) concluded that the Gebel Zolton mamal fauna wae early Burdigalian in age, although Hampie (1969) thought that a late Burdigalian age was more applicable. Hanilton (1970) has compared the Gebel zelton mamal taxa with those from othor African Miocene localities, and he oonoluded that the Zelten fauna indicates an early Burdigalian age. Wilkinson (1972) identified a suid species, Xenoohoorne africanus (Strom.), that is common to both Gebel Zelten and several Bast Ifrican localities (luainga Isiand, Mfranganu Island, Songhor, Karungu, and Bukwa). Badiomoticic ages have been obtained for these latter localitios (Bishop at alo, 1969; Van Couvoring a Miller, 1969) and they all fall within the range of 17.5 to 23.0 mg B.P., i.e. latest Oligocenomarly Miocene (Burdigalian). All of this oridence indicates that we are dealing with an horison that is close to the Aquitanian-Burdicalian

FIG. 4

GEBEL ZELTEN: SIRENIAN SITES.

major estuarine channel of Miocene river

(adapted from Selley, 1966, fig.14)
boundary. (see Fig. 4).

The importance of the sirenian elements in the Libyan Cenozoic faunas cannot be overemphasized. Besides the brief note of Magnier (1962), other references to airenian remains are contained in Savage's reports (1965, 1969, 1971); however, these are merely notes on the presence of remains at the different looalities. The value of fossil sirenians is related to their occurrence in marine, estaarine, and fluviatile deposits, and therefore to their use as correlatives between discontinuous land areas. Modern sirenians, unlike most cetaceans, are predominantly inhabitants of coastal and fluvial waters, and there is no reason to suppose that this has not been the case throughout the Cenozoic. Because of this specialized habitat it is not unusual to find sirenian remains in deposits that also contain terrestrial mamals (e.g. at Gebel Zelten), and then the sirenian component oan be used to conpare different land mamal faunas - especially if the latter are prevented from mingling by atretahes of water.

The land namal faunas of the Eurasian and African Palaeogen could not mix because the two continenta were then separated by Tethys, and endemic taxa developed in both regions. Thus it is very difficult to correlate Burasian and African deposits on the basis of mamala until the kiocene, when the formation of a land connection between Aria Minor and Africa allowed the migration of various mamalian groups between the two land maseas (Van Couroring, 1972). The presence of aironians at three Libyan localitien (Bu el Haderait, Dor ol Talha, and Gebel Zolton) that are aituated along the southern shore of Tethys means that it should now be possible to attempt a comparison of then with the well known sirenian localitios of Parope (northorn Tothys). By this means it is hoped that atronger trang-Pothyan relatiomehipa can be eatabliahed for the mamalian faunat of the Palaeogone and early Heogene. The recont discovery of Eocene airenians in southorm Franoe (soe Chapter 2) further helpe to atrengthon thia correlation.

The Eocene, Oligocene, and Miocene sites in Libya that have been visited by parties from the University of Bristol have all been given numbers. These numbers consist of the last two figures of the jear of discovery of the site followed by the site's individual number, e.g. 64.08, 69.54. In this system 64.24 includes apecimens that have lost their original numbers or were presented by oil company personnel.

SHSTEHNTIC DESCRIPTIONS

Order SIRENIA Illiger 1811

Diamosig: Aquatic mamals. Premaxillae form a rostrum that is deflected in later forms; external nares dorsal; nasals prominent in primitive forms, but decrease in size as the mesorostral fossa enlarges; periotic isolated from rest of braincase in all genera except Prorastomus; tympanic semiciroular. Number of incisors becomes progressively reduced; cheek teeth primitively bilophodont, but show great morphological variation in the different aubfamilies. Hind linbs become reduced and functionless; fore limbs become paddle-like. Tail with horizontal fluke.

Remarks: In this work the Sirenia is subdivided into three suporfamilies, the Prorastomoidea, the Trichechoidea, and the Dugongoidea. This ner classification is defended later in the thesis.

Superfamily PRORASTOYOIDRA apperfan. nov.

Disgnogis: Bostrum slightiy deflected; large nasals form anterior part of skull roof. Complete outhorian dental Iormula; incisor tuaks begin to onlarge In some genera. Hind limbs function as paddles.

Eenergs: This superfanily contain three Socene farilien, the Prerastomidae, the Protosirenidae, and the Botheroididae.

Diagnosig: Lacrimal foramen and duct absent (at least in Libysiren); alisphenoid canal present; elongated superficies meatus; processus fonticulus present; periotic isolated from rest of braincase. Incisor tuaks beginning to enlarge.

Remarks: Contains the genera Protosiren and Libysiren.

Genus LABYSTREN gen. nov.
Diagnosis: Very large protosirenid. Large nasals; prominent lacrimal bone, but no trace of lacrimal foramen or duct; sagittal length of parietala much greater than that of frontals; no temporal crests; squamosal with prominent post-tympanic process. Tentative dental formula $\frac{3}{3}, \frac{1}{1}, \frac{4}{4 / 5}, \frac{3}{3}$.

Etronologr of cenemic name: Liby- from Libya: -gimen from Siren (Latin) - a sea-nymph who lured mariners to deatruction. Tripe species: \underline{L}. sickenbergit gen. et sp. nov. Distribution: Kiddle Eocene (Lutetian) of Bu el Haderait, Libya.

Idbysiren gickenbergi sp. nov.
Diagnopia: As for genus.
Ptymology of apecific name: In honour of Dr. O. Siakenberg, who has contributed greatly to our knowledge of Tertiaxy sirenianse

Eolotrpa: BM(IIH) M19100acg. Slcull, mandible, and associated rertebrae and ribs.

Paratypes: UB 20607
UB 20608
UB 20609
UB 20610
UB 20611
UB 20612
UB 20613
UB 20614
UB 20615
skull 1001
rostrum (promaxillae, marillae, vomer)
nandible
right mandibular ramus
Ieft mandibular ramos
left mandibular ranus
right mandibular ramus
tooth Iragments
right H_{2} and H_{3}

Mand Iocality: Middl Focono (Iutetian) of Bu ol Haderait (28 $15^{\circ} \mathrm{M} \cdot \mathrm{O}$
$\left.18^{\circ} 30^{\prime} \mathrm{E}.\right)$, Libya.
Remarks: All material assigned to this species came from the same horizon and was associated with an invertebrate fauna that included:

Protorig

Humulites leqevigatus (Bruguière)
Nonion sp.
G1phidium sp.

Byyozog

Several epizoic apecies.

Mollusce

Peleorpoda

Ostreacea

Gactropoda

Volutacea
Gephalopoda
Nautilida

Arthropoda

Crustacea

Palancarpilius ap.

a ranthid

Bchinoderya

Fohinoidea
Bchinolampas cramert de Loriol
E. siobulug Laube
E. fragit de Loriol

Schiraster cf. S. gauderit de Loriol
Thapatacus lefeburei (de Loriol)
Rehinocyaman ap.
The Protozoa were identified by W. Bergeren (Yoods Hole) and J. Marras (Bristol), the Lrthropoda by J. Collins (Iondon), and the Fohinoderma by E. Bose (London).

This fauna suggests a shallow-water marine onviroment for the sirenian horizon.

Skul1 (Plates 1 and 6):
This description of the skull is based on material belonging to three adult individuals. The most complete specimen (M19100a) is very well preserved and is not crushed; however, all of the teeth, the right jugal, part of the right supraorbital process, and the thin walls of the orbits are missing. The second specimen (20607) consists of most of the skull roof of a larger individual with the nasals, frontals, parietals, supraoccipital, exoccipitals, and left squamosal preserved. It is possible to study the nasal chamber and the internal structure of the braincase in this specimen because the basicraniusa is completely missing. The third specimen (20608) consists of the premarillae, parts of the maxillae, and the vomer; the promaxillae are better preserved than those of M19100a.

Promatil1ae (P1atea1.2. 3. and 6):
The premarillae of M19100a are complete dorsally, but the whole of their ventral aurface is misaing due to extensive erosion; however, the positions of the alveoli can be seen on 20608 .

The premarillae form a prominent rostrum that tapers to a point anteriorly. The premaxillary aymphysis constitutes onomthird of the total length of the premaxillae, and the premaxillary rami extend poaterodorsad from the symphysis so that they reat on anterior extensions of the marillae. Each ramus nariows posteriorly and its posterior extremity abuts againat the lacrinal and the nasal. The promacillae thus onclose a large mosorostral fossa that is widest posteriorly.

Yaxillas (P1ate 4):

The maxillae extend fron just bohind the promacillayy myphyais to at least the posterior surface of K^{3}. The anterior part of each maxilla is produced into a support for the corresponding premaxilla, and the dorsal surface of this extension is grooved to receive the lattor bone. 1 lateral extension of the maxilla forms the modial part of the floor of the orbit and is penetrated anteroposteriorly by the infraorbital canal (0.15 mm in dianoter).

BThT: 1

Albyairen giokenthersi gen. et ap. nov. M19100a: left lateral Fiow of akull

HICUR 5

Draving of Plate 1
-24.

PIMTE 2

Libyairen gickenberri gen. ot sp. nov. UB20608: dorsal view of rostrum

PTATP 3

Ahbygiren atakenbered gen. ot ap. nov. UB20608: ventral vier of rostrum

FGORF 6

A: Draring of Plate 2
B: Drawing of Plate 3

PTuTy 4
 Iibyairen stakenberes gon. ot ap. nov. M19100a: ventral Fiew of maxillae

Yguri 7

Draving of Plate 4

PLATE 4

FIG. 7

Laterally, the maxilla is fused to the jugal and the maxillo-jugal suture can be traced on the right side of M19100a because the jugal is absent. Medial to each of the tooth rows there is a flat-topped ridge that reaches as far forwards as the anterior edge of the canine alveolus (20608) and as far backwards as the broken edge of the maxilla (M19100a). These two ridges may be the reault of the weathering of the bone around the alveoli.

Hasal! (Plates 5, 6, and 11):
The nasals are complete in M19100a, but in 20607 their anterior portions are absent. Dorsally, the nasals have an irregular outline that is exaggerated by a thin median continuation of the frontals overlying the nasals posteriorly (see Plate 5). In 20607 this frontal process is missing, but a corresponding depression in the nasals indicates that it was originally present. The anterior margin of each nasal is irregular and gives the bone a cremulate appearance. The nasals lie in the same longitudinal plane as the frontals and parietals, but they are curved downards laterally so that they contact the lacrimals and the supraorbital processes of the frontals.

Lacrimal (Plator 5 and 6):

Both lacrimals are present on M19100a. Bach lacrimal is a very irregular bone, wedged between the nasal, frontal, maxilla, and premaxilla, consisting of two expanded regions joined by a narrower portion. The dorsal part of the bone (that between the nasal, marilla, and premaxilla) is aubtriangular with very uneven sides (see Plate 5). \& narrow proceas extends from the anterolateral corner of this triangle and passes rentrad between the frontal and the maxilla. On the anteroventral surface of the sapraorbital process the lacrimal is again onlarged, but it is not as pronounced as on the dorsal surface. This rentral expansion is brocen away from the left side of M19100a. Ho laorimal duct is prement.

Frontal: (Blaten 1, 5, 6. and 11):

The frontals are greatly increased in aise by the presonce of large supraorbital processes that are remarkably thick. Sagittally, the frontala are about the same longth as the nasals, but thoir mupraorbital procensea

Prus 5

Idibyaigen siokenhered gen. et ep. nov. M19100a: nasel region

FIGUR 8

Drawing of Plate 5

PLATE 5

FIG. 8

PTMTV: 6

Lipyaimen atokenbersed gen. ot ap. not.

 M19100a: doral view of akull
YCOPR 9

Drauring of Plate 6

PLATE 6

extend anterolaterad to reach in front of the nasals and lacrimals. The medial edge of each process is adjacent to the nasal and lacrimal. On M19100a the medial wall of both orbits is composed of matrix because the thin lateral walls of the frontals are broken away; however, there is some indication of a very thin wall on 20607. The bone in this region must have been very fragile and would appear to have been broken during fossilization. Posteriorly, the lateral wall thickens and is present on both specimens where it touches the alisphenoid ventrally and the parietal posteriorly and dorsally. On M19100a each frontal has a small median extension that slightly overlaps the nasal; this extension is absent on 20607, but there are indications of its previous occurrence.

Parietals (Plates 1, 6e and 11):
The parietals are fused in the mid-line. Their anterior sutures with the frontals are well marked, but posteriorly the parieto-occipital suture is not visible in the region of the nuchal crest. There is a sagittal groove in the posterior part of the skull roof, but there are no signs of any sagittal or temporal crests. The parietals meet the frontals anteriorly, the alisphenoids ventrally, and the squamosals posteriorly.

Occipital (Plates 1. 7e and 8):
The four elements of the occipital (supraoccipital, exoccipitals, and basioccipital) are fused together with no sign of the mutures remaning. The supraoccipital is fused with the parietals dorsally to form a prominent, posteriorly-directed nuchal crest; the area of the orest indicates that the nuchal musculature was quite pronounced. The nuohal regions of the two specimens show distinct dissimilarities:

PABLS 2

M19100a

1. posterior border of nuchal crest is alightly concave.
2. post-squanosal part of nuchal region is not expanded.

20607

1. posterior border of nuchal orest is very concave.
2. post-squamosal part of nuahal region is expended.

M19100a
3. a narrow median ridge extends halfway down supraoccipital from crest.
4. a depression for the nuchal \quad 4. depressions indistinct.
musculature on either side of
the median ridge

20607
3. no median ridge, but a slight tuberosity below crest in mid-line.

The supraoccipital is excluded from the dorsal margin of the foramen magnum by the exoccipitals, and only a narrow arm of the supraocoipital meets the squamosal.

The sutures between the supraoccipital and the exoccipitals are not Visible, but their approximate positions are indicated by a difference in bone structure (a change from the dense bone of the supraoccipital to the slightly cancellous bone of the eroccipitals) (see Plate 7). Each exoccipital extends laterad to make contact with the post-tympanic process of the squamosal; however, the dorsolateral part of the exoccipital is separated from the squamosal by an irregular fonticulus that is ocoupied by the mastoid. Ventrally, the exoccipitals bear the occipital condyles and the paroccipital processes. The condyles have a broad articulating surface dorsally, but this narrows rentrally until the onds of the condyles are c.3.30m apart, separated by the basioccipital. The condyles are more markediy curved vertically than transversely. The hypoglossal foramen passes ventrolaterad between the condyle and the parecoipital process, and on both aides of M19100a there is a amaller natrient foranen juat anterior to the hypoglossal (see Plate 8). The paroccipital processes are direoted ventrad and their apices are extended beyond the occipital condylea; they are triangular in shape and are Ilattened anteroposteriorly.

The foramon magnum is large and is completely aurrounded by the exocoipitals except for the area between the rentral onde of the condylea whore the basioceipital intrudes.

The basiocoipital is an indiatinct bone, whose autures are obacored,

PhTTV: 7

Inimaimen aickenbered gen. et sp. nov. M19100a: ocoipital region

FICUR: 10
 Drawing of Plate 7

that forms a bridge between the exoccipitals and the sphenoid. The external surface of the basioccipital bears two raised areas for the attachment of the rectus capitis muscles; the internal surface of the bone is slightly concave. The basioccipital, allsphenoid, squamosal, and exoccipital surround a large ventral opening, the foramen lacerum (formed by the fusion of the foramen lacervm anterius, the foramen lacervm posterius, the foramen ovale, and the stylomastoid foramen). This opening is partially filled by the periotic (see Plate 8).

Jugal (Plates 1e 4e and 6):
The jugal is only present on the left side of M19100a. It forms part of the floor of the orbit and the anterior part of the zygomatic arch. The maxillo-jugal suture cannot be traced with certainty, but the absence of the jugal on the right side has produced a vertical surface showing that the jugal probably did not overlap the maxilla. The eygomatic process of the jugal is laterally compressed and is distinct from the marillary part. It forms about half of the complete zygomatic arch, and the surface that articulates with the zygomatic process of the squanosal faces posterodorsad. There is some indication of a dorsal postorbital process on the jugal, but only its base is present.

Palatinen (Plate 4):

The relationships of the palatines with the surrounding bones are very difficult to follow. The anterior sutures between the palatines and the marillae are obliterated; so the forward extonsion of the palatines cannot be traced. The wide palate is broken transversely at the level of the anterior end of \mathbf{M}^{1}, but a median projection mas represent the last vestiges of the broken palatines. The palatines were probably rectangular, an in Protosiren, with continuations as far back as the pterygoid laninae of the alisphenoids.

Vomer (Plate_2):

The vomer ia hiddon by matrix on M19100a and ia absent on 20607 ;
however, it is present in a broken stateon 20608. It is an elongate bone resting on the internal surface of the maxillae. The area of the voner in contact with the maxillae decreases posteriorly because the bone narrows. The lateral edges of the vomer are vertical, thus forming a deep trough that would normally be occupied by the mesethmoid.

Sphenoid (Plater 1, 8, and 9):
The various parts of the sphenoid cannot be clearly separated on M19100a. The anterior region of this bone complex (the presphenoid and the orbitosphenoids) is intact, but the sutures between the various bones are not visible in most areas. The presphenoid forms a prominent median keel within the nasopharyngeal fossa, but its connections with the orbitosphenoids and the basisphenoid are not apparent. The orbitosphenoids are present, but their areal extent is not discernible due to the absence of definite sutures. There is no indication of sutures between the orbitosphenoid and the adjacent fronto-palatine region, but the suture between the former and the alisphenoid is very prominent and is marked in M19100a by the presence of two foramina.

The posterior region of the complex comprises the basisphenoid and the alisphenoids. The basisphenoid is a thick bone that forms a rigid atrut between the presphenoid and the basioccipital as well as connecting the two pterygoid processes. On its internal surface, the basisphenoid exhibits a prominent sella turcica for the pituitary gland. The autures separating the alisphenoid from the squamosal, parietal, frontal, and orbitosphenoid are Tisible and can be traced for much of thoir length. Ventrally, the alisphenoid-squamosal auture can be followed from just anterior to the petrotympanic, where it passes anteriorly and then turne through over 90° to delineate the anterior border of the squamosal. The suture then trarns anteriorly again to meet a narrow extenaion of the parietal; a alight anteroventral inclination brings the alisphenoid into oontact with the frontal and orbitosphenoid. The alisphenoid forms the latoral wall of the doraal of the

PTMT: 8

Libyaiven ainkemberd gen. ot ap. not.
M19100nz ear region

FIOTR 11

Drawing of Plate 8

PLATE 8

FIG. 11

two previously-mentioned foramina, and then the suture turns sharply posteriorly to pass through the large sphenorbital foramen at the base of the pterygoid process. The last part of the suture, within the sphenorbital canal, cannot be traced. (See Plate 8).

A very prominent pterygoid process is present on each side of the basisphenoid, but it is impossible to sey exactiy which bones contribute towards to its construction since no sutures are visible. The lateral wall appears to consist largely of an alisphenoid lamina, whereas the medial wall is essentially basisphenoid. A large part of each process is missing and only their stout bases are preserved. The broken ventral surface is anteroposteriorly elongated and narrows caudally. The anterior face of each pterygoid process is occupied by three openings - a large dorsal aphenorbital foramen and the two anterior foramina of the alisphenoid canal.

Foramipa of the orbito-sphenoid region (Plate 9; Figure 13):

The othmoidal foramen is very small and is situated in the lateral wall of the frontal above M^{3}. Although the foramen itself is small it is made more apparent by a distinct groove running forwards towards the orbit.

The two foramina between the orbitosphenoid and the alisphenoid have never been ancoessfully explained by previous inveatigators. These foramina are arranged one above the other in the broad groove leading from the aphenorbital foramen to the orbit. Two recent papers (Russell, 1964; Hussell \& Sigogneau, 1965) have included a lot of information on the structure of the orbital region in condylarths. This region in wome of the oondylarths (e.g. Pleuraspidotherivu) bears a close resemblance to that of primitive sirenians, and it is possible to reoognise aimilarities in the arrangament of the foramina in the two groups. Although the two foranina are arranged vertically on the external aurface of the condylarthran and aireaien akull (see Plate 9), the internal openinge are almoat aide by aide and are further apart (the dorsal foramon opening most latorally) (ace Figure 13).

gTMTI 9

Itibyairen aiokenberifi gen. ot ep. nov. H19100a : aphenoid foranina
x1. 5

FTMPR 12

Drawing of Plate 9

The internal positioning of the dorsal foramen shows that it could not be the opening of a nerve passage as has been advocated for the Eocene sirenians by both Abel (1913) and Sickenberg (1934), because it is situated too far up the lateral wall of the braincase. However, it corresponds in position to an exit for cranial blood vessels on the skull of Pleuraspidotherium -

$\mathrm{BM}(\mathrm{NH}) \mathrm{M} 19100 \mathrm{a}$ View through foramen magnum
the sinus canal foramen.

TABLE 3

	Abel (1913)	Sickenberg (1934)	Present Author
dorsal foramen	foramen rotundum	ethmoidal foramen	sinus canal foramen
ventral foramen	optic foramen	optic foramen	optic foramen

The large sphenorbital foramen lies at the base of the pterygoid process and is the anterior opening of the sphenorbital canal. As in Pleuraspidotherium, the foramen rotundum is not a separate opening and its branch of the trigeminal nerve leaves the braincase via the sphenorbital canal.

Two smaller foramina below the sphenorbital foramen join within the pterygoid process and emerge on its ventral surface as a large single foramen (the relationship between these three foramina is indicated by the arrow on

Figure 12). This situation is comparable to that seen in Protosiren, where the alisphenoid canal penetrates the posterior surface of the pterygoid process in a dorsal direction and then divides into two smaller canals before emerging at the anterior surface of the process. The ventral position of the single foramen on M19100a is the result of the pterygoid process being broken; if the process had been intact the canal would have opened posteriorly. The alisphenoid canal undoubtedly served as a passage for the internal maxillary artery, but the two branches into which the artery divides cannot be identified with certainty. The two anterior openings are not identical in size, and it is most probable that the larger (medial) one contained the direct continuation of the internal naxillary attery whilat the amaller (lateral) one contained a minor branch. This lateral branch may have been the mandibular artery, which would have turned ventrad and entered the mandibular foramen.

The cranial nerves and blood vessels passing through the foranina and canals of the orbito-sphenoid region can be sumarised thuss

Sexyes

optic foramon II
sphenorbital canal
(incl. foramen rotundur)
ethmoidal foramen

Blood Fessels
ainus canal foramen
aliaphenoid canal

III, IV, ∇_{1} pars, $\nabla_{2}, \nabla I$ ∇_{1} pars

> superior ophthalmic voin, meningeal reins, middre meningeal artery internal madillary artery

Squamonal (Platea 1e6e_7e and 11):
The aquamosal is a large bone forming the posterogatren wall of the braincase and the postorior half of the zygomatic arch. Doraally, this bone makes contact with the parietal as far back as the nuchal oreat; anteriorly and ventrally it moets the sphenoid; posterioriy, there is an open auture
with the eroccipital. The main part of the squamosal (that forming the posterolateral wall of the braincase) gives rise to two processes - a lateral zygomatic process and a ventral post-tympanic process.

The zygomatic process emerges from the side of the cranium at right angles to its lateral wall, and this lateral extension bears the glenoid fossa on its ventral surface. The glenoid area is broad anteroposteriorly and the fossa is a shallow, concave area with its deepest part aituated medially. In front of the fossa there is a short, transverse ridge that is most prominent on the anterolateral corner of the articulation. A low postglenoid process forms the posterior margin of the fossa. Lateral to the glenoid region, the zygomatic process of the squamosal turns forwards and forms the posterior part of the zygomatic arch. This part of the arch is laterally compressed and high.

The postglenoid process is separated from the post-tympanic process by a deep superficies meatus. This passage is well exposed on both sides of M19100a, and in 20607 a short length (0.3 .4 cm) of the soft tissue of the external auditory meatus is preserved. The external auditory meatus passes laterad along the passage and then extends dorsad for a short distance on the outside of the skull. The superficies meatus is fully open ventrally.

The post-tympanic process extends posterorentrad from the equanosal proper to meet the exoccipital. The dorsal edge of this procens forms the rentral boundary of the fonticulus mastoideus and there is a prominont ridge running diagonally across the process from the anterior rin of the fonticulus to the tip of the process.

Ethmoidalia (Plater 10 and 11):

The ethmoid region of M19100a cannot be seen becange the nasal cavity is full of matrix, but in 20607 the posterior part of this region is present and clearly visible. Modial to the lacrimal, the intemnl aurface of each nasal is expanded impards as a bulbous onlargenent, and these two expansions constrict the nasal pasmage. The thmoid is altuated bolor the anterior and

PTMT: 10

Libyrairen siokenherped gon. ot ap. not. UB20607: \bullet thmoidalia

Fgur: 14

Drawing of Plate 10

PLATE 10

FIG. 14

PTMTE_11
Abibstren atokenbered gen. ot ap. not. UB20607: ventral Fiew of wkull roof

PLATE 11

of the parietals in 20607, but most of the bone anterior to the parietals is missing. The cribriform plate is attached to the internal surface of the frontals because the latter underlie the parietals internally, and it has a sinuous dorsal contact with the skull roof. The plate is penetrated by a number of large foramina that decrease in diameter as they pass anteroposteriorly through the bone. The edges of the cribriform plate turn downwards to form the two lateral ethmoids, but these are very thin and soon merge with the lateral walls of the nasal cavity. The mesethmoid is a strong, wellossified bone similar to that of Protosiren, which extends ventrad from the cribriform plate and would meet the vomer if complete. The mesethmoid thiakens considerably away from the cribriform plate and it is connected to the lateral walls of the nasal cavity by a narrow bridge of bone at ita base.

The turbinal bones are missing, but their basal attachments to the ethmoid can be seen. The ethmoturbinals (nasoturbinals, endoturbinals, and ectoturbinals) are predominant because the maxilloturbinals, although they have been described in Fotheroides aecrotiacur (Owon) by Abel (1913), cannot be traced in this specimen. The nasoturbinal attachments are closest to the mesethmoid and arise from the ventral surface of the cribriform plate; they can be followed anteriorly as far as the naso-frontal autures. The ondoturbinals originate from the area where the cribriform plate meets the lateral ethmoids (see Plate 10). The lines of attachment of the ectoturbinale are not conspicuous, but the lateral walls of the nasal cavity bear shallow fidges that night represent their remains.

Auditosx Resion (P1ates 8 and 11: Figure 16):

The bones of the auditory apparatus are well preserved on both aldea of $\mathbf{M 1 9 1 0 0 a}$, and those of the left alde have been removed for closer atudy. Whe cofiguration of the auditory apparatus is on of the most unnsual features of the sirenian akcull, and Robineau (1969) has recentiy conpared and contranted the apparatuses of the three recent genera - Dreang, Fydrodnrnild, and Exicheohus. This roxk is the mont up-to-date and extoanive atudy of the ear region in modern airenians and thus provides a firm besis for comparison.

Abel (1913) described the ear region of Rotheroides segrotiacum and then Sickenberg (1934) did the same for Protoairen fraasi Abel and Prototherium reronense de zigno, but both of these accounts are confusing because at that time there was no stendardized nomenclature and neither author gave sufficiently clear illustrations.

Robineau (1969) divided the sirenian periotic into the pars petrosa, the tegmen tympani, and the pars mastoidea. The tegmen tympani and para mastoidea of the purong periotic fit into corresponding depressions on the internal surface of the squamosal, but in M19100a only the tegmen tympani has such a close contact with the squamosal. The pars mastoidea of M19100 anly touches the squamosal on its extreme posterolateral edge.

The pars petroda is a very robust structure with rounded odges, and its external surface is almost identical to that of Dagong - the promontorium, fenestra cochleae, fenestra vestibuli, and foramen ondolymphaticum occupy very similar positions in the two genera. However, the internal surface of the pars petrosa shows a number of features that diffor between the two genora. In M19100a the path of the auditory nerve (VIII) is horizontal from the anterior edge of the pars petrosa to the foramen acusticum inferius, and the groove that contained the nerve is not vory deep. The facial foramen is mall and has a narrov suprafacial commisaure above. The right pars petrosa of M19100a has been broken to expose the cochlea, which has just over 1.5 turna.

The tegmen tympani is separated from the pars mastoidea by a very faint groove. The tegmen is formed of very dense bone and has a pronounced anterior process that bears an attachnent surface for the anterior am of the tympanic ring. A narrow nutrient foramen penetratea the anterior third of the tegmen.

The pars mastoidea projects beyond the posterior edge of the tegnon tympani as a large facies petrosi fonticuli mastoidoi, but the latter doen not protrude beyond the fonticulus mastoideus. Antorolaterally, the para mantoidea bears a large flattoned process for the attachment of the penterior arm of the tympanic ring.

MTGUPE 16

Libyairen aickepberri gen. ot ap. nov. M19100
4: lateral view of petrotympanic B : medial vier of petrotympanic 22

FIG. 16
.59.

PMA
FE FF FAI PPT

The tympanic ring is missing from both sides of M19100a, but its contacts with the tegmen tympani and the pars mastoidea do not appear to be fracture surfaces. These contact surfaces (see Pigure 16) are symmetrical on both sides of the skull, which suggests that the tympanic ring was either unossified or ossified and not fused to the periotic. Robineau (1969) noticed that the suture between the anterior arm of the tympanic ring and the pariotic was still Visible in some specimens of Dnoong. Thus the tympanic is not necessarily fused to the periotic in living sirenians.

The left malleus and incus are preserved, but the stapes is missing. The two intact bones are very similar to those of Protosiren and only differ from them in slight respects. They are larger than those of Protosiren and the crista manubrium of the malleus is more curved than that of Protosiren. The dorsal surface of the malleus of M19100a has a small fossa, but this is not visible in Protosiren.

The minor differences between the auditory apparatus of M19100a and that of Dugong can be summarized:

TABLT 4

M19100a

Pary petrose

1. Pdges robust and rounded.
2. Groove taking auditory nerve to cochlea is shallow and nearly horisontal.
3. Small facial foramen with narrow suprafacial commissure above.

Terenen traponi

4. Soparated fron pars mastoidea by a very indistinct groove.
5. Penetrated anteromedially by a nutrient foramen.
6. Large projecting process for the attachnont of anterior arm of tympanic ring.

Pare mantoidea

7. Has large, quadrangular faciea petrosi fonticuli mastoidei that projects beyond tegmon tympani.
8. Rdges narrow and sharp.
9. Groote taking auditory nerve to cochlea is deep and rextical.
10. Iarge facial foranen with broad suprafacial commisaure above.
11. Separated from pars mastoidea by a deep groove.
12. Ho mutrient foramen.
13. Anterior process much miniler.
14. Facies petrosi fonticuli matelded does not project beyond tegmen tyepani.

M19100a
Tympanic

0asicles

9. Crista manubrium not produced into a manubrium mallei.
10. Malleus fused to inous, but not fused to tympanic; incus fused to periotic by processus brevis.*

Dugong
8. Jaually fused to periotic.
9. Crista manubrium forms a prominent manubrium mallei.
10. Malleus not fused to incus, but fused to tympanic; incus fused to periotic by processus brevis.*

* Because the ossicular chain of libysiren is only fused to the petrotympanic at one point it has more freedom of movement than the ossicular chain of Durgong, which is fused to the petrotympanic at two points. The oscillation of the chain in Dacong has been measured up to 17 kHz , but the damping produced by the two attachments limits the resonance to between $2 \mathbf{k H z}$ and 4 kHz (Meischer, 1971). The hearing range of Libysiren could be expected to be greater than that of Dagong because the damping of the ossicles is not so marked.

Cranial cayity and endocranial cast (Plate 11):
The basicranium is missing from 20607 and this makes it possible to see the internal structure of the roof of the cranium. 1 latex endocranial cast gives sone idea of the size and shape of the brain, but previous authors (Oren, 1875; Bdinger, 1939; Hill, 1945) have noted that there is no close relationship between the brain of sirenians and the aurrounding oranial cavity due to the presence of a thick, vascular dura mater. since the ondocranial cast is not a true representation of the brain I have decided to replace the precise anatomical terme "corebrum" and "cerebellum" by the leas precise topographical terms "cerebral region" and "corebellar region".

The latex cast shows that the corebral and corebellar regions are separated by a transverse groove that is produced by a proainent ridge on the intornal surface of the parietals - the oasified tentorive cerebelli. The cerebral hemisphores are likowice separated by a prominont longitudinal ridge on the cast that fits inte the depreseion formed at the junotion of the parietals - thus an oscified falx cerebri is absont. Two maller pides
diverge anterolaterad from the longitudinal ridge at the level of the anterior edge of the zygomatic process of the squamosal; these are produced by the internal arrangement of the fronto-parietal sutures. The longitudinal ridge decreases in height posteriorly and disappears before it reaches the tentorium groove. Each cerebral hemisphere is divided into a frontal part and a parietal part by an indistinct Sylvian sulcus that passes anteroventrad from just in front of the tentorium groove.

The ossified tentorium is broad and has a small median process on its posterior surface. The small cerebellar region is bisected by a short ridge of bone that is most prominent in the angle between the parietals and the occipital and is at right angles to the tentorium. Tro other ninor processes of the skull wall make impressions on the lateral odges of the cerebellar region. The posterior surface of the cerebellar region is sharply inclined to the dorsal surface and the corresponding surface of the skull is markedly pitted.

Mandible (Plates 12 and 13; Figure 19):
Six mandibular fragments are known and that of the holotype (n19100b) is the best preserved. The latter consists of the myphysis, the majority of both horizontal rami, and parts of the vertical rami: some features that are absent from this specimen can be seen on one or more of the other fragents (20609, 20610, 20611, 20612, and 20613).

The symphysis is very robust as in all other fossil and living sirenians, and it has a nearly circular sagittal outline. The tooth-bearing surface of the symphysis is inclined at an angle of 0.33° to the corresponding surface of the horisontal rami, but on most specimens this region has been so extonsively damaged that only the bottons of the alveoli are preaent. The internal surface of the symphysis is seen best in 20609 and it is modified to receive the lingual musculature; this modification takes the form of two lateral, oval depressions that are separated by a modian groove. The horizontal ravi diverge at an angle of c.33 and thoy are broadeat dormally.

PLATI 12

Ithratiren sickenbered gen. ot ap. nov. M19100bs left lateral view of mandible

FIGUR: 17

Draving of Plate 12

PHITP: 13

Uihraiven aticentored gen. ot ap. nov. M19100b: dorsel view of mandible

FAMP: 18

Draving of Plate 13

PLATE 13

In all of the specimens, the lingual and labial sides of the alveoli (and the partitions between them) have been broken avay so that the rami appear shallower than normal. The ventral surfaces of the rami are broad anteriorly, but they narrow markedly towards the mandibular angle. Viewed laterally (see Plate 12), the horizontal rami have a ventral deflection at the symphysis that is more pronounced than in trichechus but not so marked as in the dugongids. The mental foramen is very variable in its appearance in the different specimens - it may open externally as a single large aperture or as a divided one. Whatever its appearance it is always situated below the middle of the dorsal symphysial surface. The mandibular foramen is visible on M19100b and 20610 - in the former it is a simple oval aperture, but in the latter it is vertically elongated and is crossed by a thin bridge of bone. The mandibular foramen is connected to the mental foramen by a large mandibular canal that is c. 15 mm in diameter. Above the mental foramen and lateral to the incisor alveoli there are up to three smaller foramina that decrease in size posteriorly.

Ascending rami are preserved on M19100b and 20610, but hery badly damaged in both cases. The ascending ramus of 20610 shows parts of the anterior margin and the mandibular notch, but the rest of the ramus is either broken or badly fractured. The body of the vertical ramua is thick and massive where it meets the horicontal ranus, but behind the mandibular foramen the bone is very thin. The ventral margin is narrow, but is thioker than the body proper. The coronoid process ia inclined anteriorly, but the mandibular condyle is missing.

Both sides of 20609 exhibit a prominont trough behind X_{3} that connecta with the dental capaule; in other specimens (20610 and 20611) this trough is filled with cancellous bone.

Dentition

The dentition is only represented by two broken lower molars (20615), but $\mathrm{M} 19100 \mathrm{a} / \mathrm{b}$ and the several mandible fragments do contain some alveoli from which it is possible to estimate the dental formula. The alveoli are very shallow and are difficult to differentiate because the walls of many of them are absent, but the presence of roots in some helps to simplify this problem.

Dental Formula (Plate 13: Ficure 19):

The upper dentition is only known from the alveoli - the premadillary alveoli on 20608 and the marillary alveoli on M19100a. The rostrum (20608) exhibits an asymmetrical arrangement of alveoli (see Plates 2 and 3), but on the left side at least there appears to have been a full complement of three incisors. The alveolus for the canine is present on both sides, although its sige indicates a small tooth. The maxillary alveoli are very badly presorved and it is only by comparing both maxillae that it is possible to caloulate the number of cheek teeth present. The remains of alveoli for six cheek teeth $\left(P^{1}-x^{2}\right)$ are visible, but the posterior part of both marillae is broken and all traces of K^{3} have vanished.

The mandible is ropresented by fragments from six individuals and a composite picture of the complete lower dental sequence can be produced by carofully comparing the different pieces. Each half of the mandible contains a total of fifteen alreoli that are arranged in two dietinct rows because the alvooli for the incisors and the canine are diaplacod madiad in rolation to the alreoli for the cheak teeth (see Figure 19). Five out of the eleven chook tooth alreoli can be attributed to the premolars, but it is difficalt to estimate the actual number of premolars represeated becange it is not known if any of thom were double-rooted. However, siokenberg (1934) ame to the concluaion that protoniren had five aincle-rooted pramolars in the mandible. The six alveoli reforable to the molarn represont the remaing of three double-rooted teeth.

F16. 19 Comparison of edentulous mandibles of Libysiren sickenbergi gen. et sp. nov.

Teeth (Plates 12 and 13: Pisure 20):

Incisors:

On the left side of 20608 there appear to be three incisor alreoli; the first one pointing forwards and containing the remains of a large root, and the second and third becoming confluent due to the absence of the intervening partition. However, on the right side of the same specimen the first alveolus also contains a root, but only the alveolus for the second incisor is present behind it. The presence of three pairs of upper incisors in other Focene sirenians auggests that the arrangement on the right side of 20608 is an abnormal one.

The alveolus for I_{1} opens anteroventrally and is the largest of the mandibular incisor alveoli. The smaller alvooli for I_{2} and I_{3} open anteriorly and anterodorsally respectively.

Canineg:

The upper canines, which were presumably small teeth, were separated from the incisors by a short diastema. The lover canine alveoli are in the same row as those of the incisors, but lie medial to the oheak tooth alveoli.

Premolarg:

Four pairs of pramolar alvooli are present in the marillae of the holotype, and their spacing indicates that the teeth they contained were all single-rooted. Careful measurement of the position of the alreolus for P^{1} on 20608 shows that the most anterior of the four pairs of alveoli on M19100a is also for P^{1}; tharefore the four pairs of alveoli, whioh increase in alse posteriorly, can be attributed to P^{1}, P^{2}, P^{3}, and P^{4}.

The alveoll for the lower prenolars are much closer together than those for the upper teeth, and it is therefore more difficult to deteraine whother the lower premolars were singlo- or double-rootod. Bidence from other Foocne sirenians (e.g. Protosiren) supports the oase for aingle-rootod teeth, but until more complete material is available it is impomaible te as if the five premolar alveoli represent four or five actual teoth.

Behind the upper premolar alveoli there are six larger alveoli that are distinctly arranged in two groups of three. These are the vestiges of M^{1} and M^{2}, which, as in Eotheroides, each had two external roots and one internal one. Even the alveoli of M^{3} are absent from M19100a because the maxillae are broken in this region, but there is enough space between the broken surfaces and the pterygoid processes to accommodate a third molar on each side.

Three lower molars are the only teeth known from remains other than the roots and/or alveoli, and they comprise two isolated and broken crowns (20615) and a tooth fragment attached to M19100b. The alveoli for the lower molars are much larger than those for the lower premolars and they are also anteroposteriorly compressed. Each molar had two roots.

The two isolated tooth crowns represent a right M_{2} and M_{3} from the same individual - the posterior surface of the M_{2} has a facet produced by contact with the M_{3}, but the latter tooth has no such facet.

The M_{2} is very worn and its occlusal surface is almost flat (see Figure 20). The heavy wear has obliterated the individual cusps, but the bilophid structure of the tooth is still visible. The protolophid (metaconid and protoconid) appears to have been larger than the metalophid (entoconid
and hypoconid), and the latter is followed by an extremely worn area that corresponds to the hypoconulid. The lingual side of the metalophid is higher than the labial side.

The wear on the M_{3} has not been as extensive as on the M_{2} and thus more of the tooth's structure is visible. It is longer than the preceding tooth because its hypoconulid is more prominent and gives the tooth a trilophid appearance. The protolophid and metalophid are joined by a narrow bridge of enamel and are most worn on thoir labial sides.

The tooth fragment attached to M19100b is undoubtedly a molar because of its position at the rear of the tooth row (see Plate 13). The little of it that remains, a single unvorn cusp surrounded by a prominent cingulum, gives the erroneous impression that it was an almost circular tooth when complete. Neither of the teeth described above bears a cingulum, but this may be due to their stage of wear.

The difference in the amount of wear between K_{2} and M_{3} could be used as evidence for a horizontal replacement theory, but more complete material needs to be studied before this can be demonstrated.

Vertebrae:

Only two vertebrae are known - the atlas (M19100c) and an anterior thoracic vertebra (M19100d).

Cerrical Tertebrae (Fireree 21):

The atlas vertebra is large and is very well preserved on the holotype. It posseases two large cotylar facets that are widest dorsally and become narrower ventrally, although they do not meet on the anterior arrface of the ventral aroh. The posterior surface of the atlas bears tro sub-cordate facets that articulate with the axis; these also do not extend onto the ventral arch. The dorsal arch is wide and has a large maperior tuberele for attach ment of the rectus posticus muscle. The ventral arch is about half as wide as

FICUR: 21

IAbyairen siokenherred gen. ot ap. nov. M19100c
A: anterior Fiow of atlas vertebre
Bi doral fier of atlam vortobra
C8 posterior viow of atlas vortebre
$=2$

FIG. 21

Libyairen aickenberge gen. ot sp. nov. M19100d
4: anterior view of thoracic vertebra
B: posterior fiew of thoracic vertebra
$=0 . \frac{3}{5}$

B.
the dorsal one and on its anterior edge there is a median depressed area c. 22 mm in width. The inferior tubercle for the attachment of the longus colli muscle projecta 13ma from the posterior surface of the ventral arch. The short transverse processes are situated posterolaterally and are anteroposteriorly compressed. On each side of the vertebra, between the dorsal edge of the cotylar facet and the top of the transverse process, there is an intervertebral foramen leading into the arterial canal. On the anterior surface of each transverse process there is an occluded vertebrarterial foramen and a amaller nutrient foramen.

Thorscic vertebree (Figure 22):

The one anterior thoracic vertebra is very badly eroded and very little of the original bone surface remains. Only the ventral surface of the centrum is still intact, the rest having been broken away to expose the structure of the bone. The neural arch is damaged anteriorly and the prezygapophyses are missing. The postzygapophyses are present and intact, and they arise from the base of the neural spine. The bases of the transtorse processes are present, but their lateral onds are broken. The vertical neural spine is robust and its dorsal tip is laterally expanded. The neural canal is oval, being slightly taller than wide.

Ribs:
A large rib belonging to the holotype ($\mathbf{M} 191000$) is available for atudy. Its head is broken, but the reet of it is intact. Hoar its head the rib is angular in cross-section, although it soon widens and the anglea give way to smooth curves. The medial surface of the rib is only slightly curred, but the latoral aurface has a mere marked curvature - thia reaults in a D shaped section. The ribs of this primitive airenian already axhibit the pachyostosis that is so characteriatic of later mambers of this order.

The most atriking feature about the skull of Ifibrsiren gickenbergi is that it is much larger than that of any other Eocene sirenian. The overall lengths of the skulls of seven Bocene species are as follows:

Prorastomus sirenoides Owen	$267 \mathrm{~mm}+1$
Protosiren frosgi Abel	300-365mm 2, 3
Libygiren sickenbergi gen. et ap. nov.	$452 \mathrm{~mm}+1$
Eotheroides aeswptiacum (Owen)	258mm 3
E. 11 brcum (Andrews)	280-320mm 3
E. gtromerit (Abel)	300 mm 3
Prototherium Yeronense de Zigno	342 mm
Sources	
1 author's notes	
2 Andrews (1906)	
3 Sickenberg (1934)	

The only apecies that approaches the size of Ifibrsiren is Prototheriun Feronense, but even that species is atill only three-quarters of the size of the Libyan genus.

Sickenberg (1934) has produced a list of anatomical features that can be used to differentiate between Fotheroidag-Protothorium and Protogiren. I have used a modified veraion of this list in oxder to compare Ifibrairen with these other Focene genera, and it can be seen from this table (see Table 5) that the now genus is closest to Proteriren.

The premaxillae of Libarsinen are very aimilar in shape to those of both Pothoroides and Protoriren, but Siciconberg (ibid.) separated the latter tro genera on the position of the pronaxilla-maxilla suture. In Ifibrainen the relationship of these two bones 1s the same as in Protorimem - i.e. With the suture much further back than the promaxillary symphysis. The memorostral fossa is bounded by a single arch and not a double arch as is the cane in Protosiran (Sickenberg, ibide, fis. 6) and Pothorotiden ap. (Beinhart, 1959, 118. 8)

The relationship between the maxilla and the jugal cannot be clearis
discerned because of the poor preservation of the bone in this region. Reinhart (ibid.) illustrated a very well preserved jugal of Eotheroides sp. that distinctly reaches the lacrimal, but the situation in Libysiren is not so well marked.

The arrangement of the nasals and frontals of airenians has been used by Kretzoi (1941) and Kaltenmark (1943) to distinguish the different mpecies, and Reinhart (1959) has amalgamated the views of these two authors to produce a theory of divergence during the Bocene amongst the species of Eotheroides. The nasals of Librgiren are like those of Protosiren in general outline, but but they are longer in relation to the dimensions of the frontals (see Figure 23). The nasals are not forcibly separated by the frontals as in Sotheroides sesvotinoum and E. Iibycum, but a mall median extension of the frontals does overlap them posteriorly.

The lacrimal bone is unknown in Protosiren, although it has been desoribed in detail for E. ascrptiacum (Abel, 1913) and F. sp. (Reinhart, 1959). Bren though those two authors were dealing with the same genus, there are some noticeable differences between the lacrimal bones that they describe. The most noticeable difference is that abel described the lacrimal as being completely surrounded by the maxilla, whereas Reinhart found that the jugal meets the ventral edge of the lacrinal. This variation is probably due to the better preservation of the antorbital region in Reinhart's apecimen. Andrews' (1906) and Sickenberg's (1934) reconstructions of the skull of Protosiren froasi show the premarilla extending back between the lateral edge of the nasal and the medial edge of the mupraorbital procens of the frontal; neither of thom show the lacrimal and Sickonberg stated that this bone was not present on any of the specimens that he examined. the lacrimal of Lihysimen occupies a position that is very different from that of any of the specimens of Fotheroiden. Ite relationships with the surrounding bones are described above, but its most distinctive feature is that it fills the space between the nasal and the supraorbital process so that the promarilla is oxoluded from this area. The absonce of a lacrimal foramand duct in an

MIGURR 23

Dorsal views of the akulls of four genera of Eocenc sirenians ahowing the variation in size and shape.

111 skulls xt

FTCUP: 24

Skull roofe of two protosirenids (1) and two cotheroidids (B) showing the ahorter nasals, longer frontals, and ahorter parietala of the more advanced momber of each fanily. 111 skulle reduced to the same nasal-frontalparietal length.

FIG. 23

FIG. 24
. 84.

adranced feature associated with an aquatic mode of life, and the previous earliest record of its absence was in the Oligocene genus Cambosiren (Reinhart, 1959).

The medial wall of the orbit is broken away in both skulls of Libysiren; so it is impossible to say whether it was formed by the frontal (as in Protosiren) or by the thmoid (as in Botheroides and Prototherium). The parietal region of libysiren is marked by the complete absence of temporal and sagittal crests. Botheroiden possesses definite temporal crests that give its cranium an angular transverse section; Protogiren also has temporal crests, but in a much reduced state. All other sirenians have temporal crests, and thus Librsiren is very priditive in this keventy Siakenberg (1934) gave photographs of the occiputs of Protositren frasat and Eotheroides atromeri so that it is possible to compare then both. The supraoccipital of Protosiren is not as high as that of ㅌotheroideg; so the occipat appears broader in the former. The occiput of Librsiren more closely resembles that of Botheroides in general outline. In Libryiren, the supraoccipital does not reach the dorsal margin of the foramon magnum, but according to Sickenberg this is a variable feature in Protosiren and depends on the shape of the foramen. The ocoipital condyles of Libysiren are broader dorsally than those of Protosiren and they are not so divergent.

Both Eotheroides and Protesiren have a prominent ventral process on the zygomatic process of the jugal, but in Librairen this region is amooth and level with the palate.

The palatines and the vomer are indistinguishable fren those of the other Eocene genera.

Fothoroiden and Protogiren have large ptorygoid processes, but those of Rothorotides are laterally compressed whoreat those of Proteatren are broader. Rach ptorygoid process of Protogiren is penetrated by a bifurcate allaphenoid canal : Eothoroiden and Brotothoriwe do not poasoss auch ounals through thoir pterygoid processes. Although the pterygoid processes of hibreiren are broken, thoy also contain a bifid cenal that ia aimilarly oriontated to that of

Protosiren. The presence of an aliaphenoid canal is thus a diagnostic character for the Protosirenidae (cf. presence of an alisphenoid canal in otariid and odobenid pinnipeds, but its absence in phocid pinnipads). The other foramina of the orbito-sphenoid region (the optic foramen, the ethmoidal foramen, and the sinus canal foramen) occupy similar positions in Eotheroides, Protosiren, and Libysiren.

The squamosals of Libysiren exhibit a combination of Eotheroides and Protosiren features. In Rotheroides, the equamosal and the ocoipital meet and the squamosal forms part of the back of the skull; in Protosiren and Libysiren the parietal sends a narrow projection between these two bonea and limits the squamosal to the side of the skull. The eygomatic process of the squamosal is deeper in Librairen than in either of the other two genera, and it most closely resembles the zygomatic process of trichochug. The superficies meatus is elongated as in Protogiren, but bohind it there is a prominent post-tympanic process that is also found in Gotheroides but not in Protosiren.

The mesethmoid is similar to that of Protosiren.
The petrotympanic of Libysiren has a large processus fonticulus that fill: the fonticulus mastoideus, and this is also the ase in Protosiren. In other respects the ear region is aimilar to that of the other tro genera.

Eotheroides and Protosiren have been diatinguishod by the difforences in structure of thoir ondocranial caste (Edinger, 1939), and the genus Eothoriple ($=$ Fotheroiden) was in fact orected on the basis of auch a cast (Owon, 1875). The differences amount to the presence ox absence of an oasilied falx cerebri and/or tentorium cerebelli - gotherotiden has both, but Protoairen has only an ossified tentorium cerebelli. Libysiren agrees with the condition found in Protosiren, but the aignificance that can be attached to auch features is very dubious. In a group that shows marked pachyestonis, the presence or absence of such variable character ahould not be relied upon for genoric allocations as han been the case in the past.

Botheroides or Protosiren, but the shape of the ascending ramus is unlike that of Eotheroides or the later dugongids. Whereas the ascending ramus of Gotheroides rises vertically from the horizontal ramus, that of Libysiren is inclined forwards as on the mandible of Trichechug. The ascending ramus of Protosiren is unknom.

The difficulty of calculating the dental formula was mentioned above and this feature is therefore unusable as a diagnostic character. If the complete dental formula of Librsiren was known with certainty it would be possible to compare it with the known formulas of Eotheroiden and Protosiren.

The badly worn M_{2} of Libyairen resombles that of Brotosiren, but the M_{3} differs from the corresponding tooth in both Protosiren (Siakenberg, 1934) and Eotheroides (Abel, 1913). The difference occurs in the aize and shape of the hypoconulid, which is longest in the mid-line in Botheroides but longest labially in Libysiren. The hypoconulid on the M_{3} of Protosiren is very amall, but Abel (ibjd.) illustrated two X_{3}^{\prime} 's from g. gegrotiacum that show that there is a great variation in the size of this part of the tooth.

The atlas vertebra of Libvsiren more closely resembles that of Eotheroidea than it does that of Protogiren. The auperior tubercle on the dorsal arch is low and broad as in Potheroides, and the cotylar faceta extend onto the vontral arch unlike in Protosiren where they are restricted to the sides of the vert--bra.

The anterior thoracic vertebra does not differ marikedly from those of Eotheroides or Protosiren.

The following table of comparisons has been adapted from S_{i} akonberg (1934, pp. 192-193):

Eotheroides-Prototherium	Libygiren	Protosiren
1. Premaxilla-maxilla suture below symphysis.	As in Protosiren.	Premarilla-marilla suture much further back than symphysis.
2. Lacrimal surrounded by maxilla, frontal, and jugal.	Lacrimal surrounded by premarilla, maxilla, nasal, and frontal.	$?$
3. Lacrimal duct present.	Lacrimal duct absent	?
4. Pronounced temporal crests.	No temporal crests.	Slight temporal crests.
5. Sagittal lengths of frontals and parietals in ratio of $1: 1.3$ (E. aegyptiacum)	Sagittal lengths of frontals and parietals in ratio of $1: 2.4$	Sagittal lengths of frontals and parietals in ratio of 1:1.3
6. Squamosal forms part of occiput.	As in Protosiren.	Squamosal does not form part of occiput.
7. Squamosal and supraoccipital meet.	As in Protosiren.	Squamosal and supraoccipital completely separated by a projection of the parietal.
8. Post-tympanic process of squamosal is present.	As in FotheroiderPrototherium.	Post-tymantry an min: squamosal is absent.
9. Superficies meatus is short.	As in Protosiren.	Superficies meatus is elongated.
10. Pterygoid processes are thin and lamellar.	As in Protosiren.	Pterygoid processes are thiok and robust.
11. Alisphenoid canal absent.	As in Protosiren.	Alisphenoid canal present.
12. Periotic without processus fonticulus.	As in Protoniren.	Periotic with processus fonticulus.
13. Pacial canal present.	As in EotheroiderPrototherime.	Facial canal absent.
14. Asoending rames of mandible is vortioal.	Ascending ramus of mandible is inclined forwarde.	$?$

The combination of both Potheroidar-Protothoripn and Protogiren oharactors in Libyaimen suggesta that the Libyan gomes may be anceatral to one or both of the former two groups. The fact that Libyairen oceure in the lower part of the Middle Focone, whortas Fotheroidong Protothorivn, and Protoniren are found

Eotheroides-Prototherium

1. Premaxilla-maxilla suture below symphysis.

Libysiren
As in Protosiren.
2. Lacrimal surrounded by maxilla, frontal, and jugal.
3. Lacrimal duct present.
4. Pronounced temporal crests.
5. Sagittal lengths of frontals and parietals in ratio of $1: 1.3$ (E. aegyptiacum)
6. Squamosal forms part of occiput.
7. Squamosal and supraoccipital meet.
8. Post-tympanic process of squamosal is present.
9. Superficies meatus is short.
10. Pterygoid processes are thin and lamellar.
11. Alisphenoid canal absent.
12. Periotic without processus fonticulus.
13. Facial canal present.
14. Ascending ramus of mandible is vertical.

Lacrimal surrounded by premaxilla, maxilla, nasal, and frontal.

Lacrimal duct absent
No temporal crests.

Sagittal lengths of Sagittal lengths of frontals frontals and parietals and parietals in ratio of in ratio of $1: 2.4 \quad 1: 1.3$

As in Protosiren.

As in Protosiren.

As in EotheroidesPrototherium.

As in Protosiren.

As in Protosiren. Pterygoid processes are

As in Protosiren. Alisphenoid canal present.

As in Protosiren. Periotic with processus

As in Eotheroides-
Ascending ramus of mandible is inclined forwards.

Superficies meatus is elongated. thick and robust. fonticulus.
Squamosal does not form part of occiput.

Squamosal and supraoceipital completely separated by a projection of the parietal.

Post-tympanic process of squamosal is absent.

Facial canal absent.

Protosiren
Premaxilla-maxilla suture much further back than symphysis.

The combination of both Eotheroides-Prototherium and Protosiren characters in Libysiren suggests that the Libyan genus may be ancestral to one or both of the former two groups. The fact that Libysiren occurs in the lower part of the Middle Eocene, wherdas Eotheroides, Prototherium, and Protosiren are found
in the upper part of the Middle Eocene and in the Opper Eocene, supports this suggestion. The predominance of protosirenid characters (especially 9, 10, and 11) favours a closer alliance to Protosiren than to Eotheroides or Prototherium. The Eotheroidea-Protothorium characters and the few purely Libysiren characters (omitting 2, 3, and 14) can be taken to be very primitive features; in fact the absence of temporal crests and the fronto-parietal ratio are also characteristic of the most anatomically primitive, though not precisely dated, sirenian, Prorastomus sirenoides. In all post-Middle Bocene sirenians, temporal crests are present and the frontals and parietals are similar in sagittal length.

Superfamily DUGONGOIDEA superfam. nov.
Diasmosis: Rostrum onlarged and deflected. Fumerically reduced dentition; incisor tuaks usually present; premolars disappear in adranced genera. Broad bicipital groove on humerus; carpals tend to become fused; hind limbs reducod and functionless; ilium becomes rod-like. Seven cervical vertebrae; usually nineteen to twenty thoracic vertebrac.

Remarks: This superfamily contains only one family, the Dugongidae.

Family DUGONGIDAE Gray 1821
Diagnosis: As for superfamily.
Rerrack: Six subfamilies can be recognized in the Dugongidae, the Halitheriinae, the Miosireninae, the Rytiodinae, the Iotarytheriinae, the Hydrodamalinae, and the Dugonginae.

Subfanily RITIODITIR Abel 1928
Diagnosis: Rostrum atrongly defleoted; large laorimal bone, but no laorimal duct; narrow parietale. Large, flattened inoisor tuaks choek teeth emamolods
m^{3} unreduced and complex.

Genus RYMIODUS Lartet 1866

Diagnosis: As for subfamily.
Type specieg: Rytiodus capgrandi Lartet 1866; Lower Miocene (Aquitanian) of Lot-et-Garonne and Gironde, France.

Digtryibution: Lower Kiocene of Prance (Aquitanian) and Libya (Burdigalian).

Bytiodus geltenengis sp. nov.
Diagnosia: Premaxillary rami abut against nasala; triangular lacrimal. Etymology of specific name: Derived from the type locality - Gebel Zelten, Libya.

Holotype: BM(NH) M19101a-c. SKull, endocranial cast, and associated vertebrae and mibs. Site 64.19.

Paratypes:

Site

UB 20853a-e	64.19	skull, andocranial cast, and associated vertebrae and ribs
UB 20854	$?$	maxillary fragnent
UB 20855a-b	$?$	two Ifght tympanics
UB 20856	64.18	left mandibular ramus with K 3
UB 20857	64.20	three posterior thoracic vertebrae

Age and loqality: Lover Miocene (Burdigalian) of Gebel Zelten ($28^{\circ}-29^{\circ} \mathrm{H}$. , $19^{\circ} 30^{\prime}-20^{\circ} 30^{\prime}$ E.), Libya.

Remarig: A provisional list of the vertebrate fauna from the Kiocene of Gebel Zelten has been given by Savage \& Hamilton (1973).

Anatomical desomption:

Sku17 (Plates 14, 15, 16, 18e and 19):
Most of the anatomical details of the akull were obtained from two individuals, both of which (M19101a and 20853a) have unfortunately suffered conspicuous damage. Howerer, the features absent fros one of the skulls tond to be intact on the othor. 20853a is the moat complete anterioriy and has

PLATPT 14
 Butiodua geltenenais ap. nov. M19101a : loft lateral view of akull

FGURE 25

Draving of Plate 14

PTMT: 15

Bytfodug reltenenaie sp. nov. UB20853a: left lateral view of akull

FIGORT 26
Draving of Plate 15
$\frac{5}{4}$

been used for the description of the facial bones; M19101a is not so well preserved in the facial region, but is more complete around the braincase and can be used for the description of the cranial bones. Very little can be said about the vomer, ethmoidalia, and petrotympanios because they are badiy preserved on both skulls.

Premarillae (Plates 14, 15, 16, 18, and 21):
The promarillae are badly damaged on both skulls, but their main features are discernible on the loft side of 20853a. The two bones form a very prominent rostrum that is much more massive than its counterpart on the skull of an adult Dugong, but is less ventrally deflected than on the latter. The rostrum's anterior surface is not preserved, but it was evidently broad because the distal ends of the premarillae are flared. This onlargement of the rostrum accommodates a pair of large, laterally-compressed incisor tuaks. The posterior ramus of each premaxilla extends back over the maxilla to terminate between the nasal and the lacrimal as a dorsally swollen shaft; the frontal is therefore excluded from contact with the premaxilla (see Plate 17). The two rami form the boundaries of a large, doublo-arched mesorostral fossa. The palatal surfaces of the pramaxillae are not preserved.

Mardilae (Plates 14. 15, 16, 19, and 22):
The marillae are prominent in the palatal and orbital regions. The palatal contacts of the maxillae with the premadilae cannot be seen, but the maxillo-palatine sutures can be traced on M9101a. \& shallow palatal gutter begins to riden at the level of the anterior opening of the ineraorbital canal until it gives rise to a large oval depression on the deflected part of the maxillae. A palatal fragment from another individual (20854) whow the aise and shape of the incisive foramen, which is the mame shape as in pongne, but noticeably larger. The maxillae are separated posteriorly in the mid-line by a narrow forward extension of the palatines.

1 strong lateral process of each maxilla forms the floor of the orbital cavity, then expands anteroposteriorly to produce an extenaive aurface for the attachment of the medial wall of the jugal. A mall extongion of the

PTMTE 16

Butiodua zeltomensia ap. nov. UB20853a : ventral view of acull

FIGUR:27

FIG. 27

Prate 17

Bytiodus gettenmate sp. nov. UB20853a: nasal region

FIGURT 28

Draving of Plate 17

PLATE 17

FIG. 28

madilla appears to overlap the dorsal surface of the jugal component of the infraorbital foramen, but the relationships of the bones in this area are open to doubt. The orbital part of the maxilla is penetrated anteroposteriorly by a very wide infraorbital foramen, medial to which there is a prominent palatine foramen. An ill-defined ridge extends from the internal border of the palatine foramen to as far back as the external edge of the internal nares. The maxillae possess strong anterior processes that support the enlarged premaxillae.

Nasels (Plates 17 and 18):
The nasals are large triangular bones with their apices directed posteriorly. They are separated in the mid-line by the frontals, and the internal edge of each bone is directed ventromediad towards the mesorostral fossa. The nasals are bounded by the premarillae anteriorly and by the frontals laterally and posteriorly.

Lacrimal (plates 15, 17. and 18):
The lacrimal is well preserved on the left side of 20853a. It has its createst exposure on the dorsal surface of the skull as a triangular bone. Its posterolateral corner extends ventrad between the maxilla and frontal, and the bone is re-exposed on the anterodorsal surface of the orbital ring. There is no lacrimal foramen or duct.

Frontale (plates 14e 15e_17e and 18):
The frontals are noteworthy because of the prominonce of their supraorbital processes and temporal crests. These bones contribute vory little to the formation of the skull roof, but are more evident on the lateral wall of the akull. They are unusual in boing rery divergent, beginning to eeparate at the level of the posterior margin of the namals. The ramus of each frontal runs close to the nasal and is laterally compressed in this region. At the front end of the nasals the rani diverge oven further to produce the lateral supraorbital processes. Each process is liaitod medially by the nasal and anteriorly by the lacrimal. The pronounced compresaion of the frontale lateral to the nasals results in them boing onlarged rertically so that their medial
. 104.

PLMTR 18
 Bytiodng seltenencia sp. not. M19101a: doreal Fiew of akull

FICOPT 29
Draving of Plate 18

PLATE 18

FIG. 29

edges are raised above the surface of the nasals. Each raised edge, beginning at the anterolateral corner of the nasal, is the start of a very marked temporal crest that continues across to the parietals and the back of the skull. The two crests thus formed converge posteriorly and almost meet at the fronto-parietal suture, but they separate again on the parietals (see Plate 18). The frontals extend into the parietals as a V-shaped wedge.

In 20853a the lateral walls of the skull are not preserved, and in M19101a they are obscured by matrix. However, on the latter apecimen the fronto-parietal suture can be seen curving downwards.

Parietals (Plates 14 and 18):
The parietals are relatively short, are fused in the mid-line, and form the major portion of the skull roof. In the region of the fronto-parietal suture the skull is very narrow, but it widens towards the nuchal crest. The temporal cre : are divergent on the parietals and are very pronounced. Occipitat (Plates 14e18. and 19):

Part of the occipital is present on M19101a, but nuch of it is misaing. The supraoccipital is indietinguishably fused with the parietals and there is no evidence of an interparietal. The nuchal crest formed at the junction of the occipital and the parietals is very large and is posteriorly directed. The crest has two lateral wings and a prominent median boms; on each side of the boss there is an ovel depression for the nuchal musculature. The supraoccipital appears to have reached the dorsal margin of the foramon magnum.

A small part of the right exoccipital ia present,but its ventral portion and the occipital condyle are absent. The rest of the ocoipital is missing.

Jugel (Plates 15, 16, 18e and 19):
The jugal is a very massive bone forning the lateral part of the orbital ring and the anterior componont of the myomatic arch. The orbital ring is circular and therefore the posterior tip of this bone is direoted dorsad towards the supraorbital prosens. The jugal is closely assooiated with the maxilla, and the area of its attachmont occupies the whol extemal surface of the maxilla's lateral process. The jugal is barred from contaot
with the bones of the skull roof by a process of the maxilla that overrides its Corsal surface.

Palatines (Plates 19 and 22):
The relationships of the palatines with the surrounding bones are much the same as in Dugong. On the palate they form a narrow extension between the maxillae, but behind this they surround (and form the vertical walls of) a long, narrow, nasopharyngeal fossa that reaches as far forwards as M^{1}. The palatines continue back towards the vertical pterygoid laminae and ond as thin, vertical laminae on the anteromedial surfaces of the latter.

Vomer:
The vomer is not visible on either skull.
Sphenoid (Plates 14e 16, 19e and 22):
The sphenoid complex is very fragmentary and its main features are obscured by extensive fracturings therefore it is impossible to elucidate its structure as thoroughly as in Libysiren.

The rod-like presphenoid has discontinuous contacts with the orbitosphenoids and basisphenoid, and the orbitosphonoids are amall and broken. The basisphenoid is a very robust bone that narrows towards its junction with the presphenoid; its exterior surface is convex, but internally it is flatter. The alisphenoids are more prominont than the rest of the complex, and the lateral arm of each forms part of the glenoid area although the suturas are not visible. The sphenorbital canal has been onlarged by the disintegration of its thin walls, but its position above the pterygoid prooess is well indicated. Ho other foramina are viaible in the sphmoid ragion due to the rery reaistant matrix still adhering to the akull. The most preminont feature of each sphonoid is its stout, anteroventrally-directed pterygoid lamina, whioh combines with the palatine laming to form the pterygoid pricens. In horisontal cross-section the ptergoid process is almost rectengular, but its posterior surface is grooved from base to tip (though not so maricediy an in pamenc). The diatal end of the process is flat and lies below the level of the cocinsal surface of the last molar. It is not possible to trace the relationahipe of the different bones forming the pterygoid procens aince all mutures are

PTMT: 19

Bytiodug reltenanaia ap. not.
M19101a : ventral view of akull
(see Plate 22 for dentition)

ETADR 30

-Drawing of Plate 19
(see Figure 34 for dentition)

. 111.

obliterated.
Squamosal (Plates 14, 18, and 19):
The squamosal is a relatively amall bone in this genus, being approximately the same aize as one Prom an adult Trichochus. The cranial wing of the squamosal only occupies a small area on the lateral wall of the braincase, and it is limited by the supraoccipital posteriorly and by the parietal dorsally. The posterior root of the massive zygomatic arch is very stout and its upper surface is inclined anteroventrally; the root does not project far from the cranium before it gives rise to the forward component of the zygomatic arch. The latter overlaps the jugal component anteriorly to complete the arch, which encloses a remarkably small zygomatic fossa.

The glenoid surface is broad laterally, but narrows near the cranium where it is bordered posteriorly by a conspicuous postglenoid process. There is only a very slight processus retroversus.

Ethmoidalis:

The mesorostral fossa of both skulls is full of tough matrix and the ethmoidalia are largely hidden from riew.

Auditomy region:

Associated with M19101a there is a left malleus, a left inous, and the anterior and of a left tegmen tympani. Two right tympanic rings are also preserved (20855a-b).

The tegmen tympani fragment is slightly larger than that of purong, with a larger point of attachnent for the tyepanic and a nore comspicuous Fidge on its external surface. The tympanic ring is about the mame size as that of Dugong, although it is not so angular and has a nore prominant tympanic sulcus on the posterior arm.

The malleus is larger than that of Doceps and mows certain structural differences. Extermally, the longitudinal groove between the body of the malleus and the manubrium is much narrower than in pagong and the manurive itself is also much more slonder. The internal suxfaoe of the mallous beare only two facets for the incus (as in HTdrodanily) instead of the three facete
found on the malleus of Prichechus, Holitherium, Dugong etc.. The incus is more robust than the corresponding bone in Dugong, and has two subequal faceta for articulation with the malleus.

Cranial cavity and endocranial cast (Plate 19; Figure 31):

What remains of the cranial cavity is reminiscent of the corresponding vacuity in Dugong. The lateral walls, posterior wall, and floor of the braincase are extensively broken, but the roof is fairly intact. The falr cerebri and tentorium cerebelli are both present on the internal surface of the parietal, but neither of them is very prominent. The falx is only manifest on the posterior part of the roof (in Dugong it extends for the whole length) and the tentorium is only slightly developed and just reaches the lateral walls of the brain-case (it is absent in Dugeng). A large boss is produced at the junction of the tentorium and the falx.

Hatural endocranial casts were removed from both skulls, that from M19101a being the more complete one. The casts show that the olfactory lobes were quite large and were ovoid in shape. The cerebral region is vexy large and accounts for the majority of the endocranial cast in terms of volume. The two corebral hemispheres are separated posteriorly by the falx and there is some indication of a very indistinct Sylvian sulcus. The cerebellar region is compressed anteroposteriorly and is not markedly separated from the cerebral region. From the shape of the cast of the spinal cord it appears that the foramen magnum was triangular in section with an acute aper.

Two pairs of nerve exits are preserved on the cast from M19101a. The roots of the optic nerves (II) are prominent, but the optic ahiama is not distinguishable. The complex of cranial nerves III, IV, V, and VI, leading to the sphenorbital canal, is also evident on either aide of a broad, shallow depression that was made by the basiaphenoid.

Yondible (Plate 20):

The lower jaw of this sirenian is represented by a aingle apeoimen (20856) consisting of the posterior region of a left mandibular ramus containing an

FIGTR 31

Axtiodua geltonensis sp. nov.

M19101a

A: loft lateral view of endocranial oast
B : dorsal view of ondocranial cast
C : ventral view of ondocranial cant
$=\frac{2}{3}$

FIG. 31

PWTE 20
 Batiodus geltenonsie sp. nov.
 UB20856: lateral view of left mandibular ramus

FIGUR 32

intact M_{3}.
Although the anterior part of the horizontal ramus is missing, enough of it remains to indicate that the mandible was strongly deflected - the deflection beginning at the level of the posterior end of M_{3}. The horizontal ramus has a minimum depth of 86.5 mm and its internal alveolar border is markedly thickened. The mandibular canal is prominent, the mandibular foramen having an oval outline whilst the mental foramen is more circular. Very little of the vertical ramus is preserved, but it was probably quite large when intact. The bone is expanded laterad immediately behind the last molar so as to accommodate the large buccinator muscle. A faint ridge runs posteroventrad from the junction of the horizontal and vertical rami, forming the anteroventral limit of the temporal fossa.

Dentition:

Apart from the spectacular upper incisors the dentition is poorly represented, since only three cheek teeth are intact and much of the alveolar region is broken away. The maxillae of 20853 a only exhibit the anterior alveoli and even these are obliterated; the maxillae of M19101a are better preserved and contain the remains of two teeth still in their sockets. The mandible, 20856, contains a complete M_{3}, but the rest of the tooth row is very fragmentary.

Dental formula (Plates 22 and 23):
The alveoli for the upper cheek teeth are present on M19101a, but are difficult to elucidate because of their broken walls. The tooth row of this specimen does not yet contain its full complement of cheek teeth because the third molar has not fully erupted and is still partially within the dental capsule. It appears that a maximum of four teeth could have been present on each side at any one time (on M19101a we are witnessing the loss of the most anterior cheek tooth and its replacement by a new tooth at the posterior end of the tooth row) (see Plate 22).

The left mandibular ramus attributed to this species is broken and
thus the precise dental formula cannot be determined. However, the mandible contains the only complete tooth - a large M_{3}. Anterior to this tooth there are the remains of the K_{2}; a third, much amaller, molar was probably present in front of the M_{2}, but the shape of the alveolar border precludes the eristence of any other mandibular cheek teeth.

From the above information it is possible to present an incomplete dental formula of:

$$
\mathrm{I} \frac{1}{?,} \subset \frac{0}{?}, \mathrm{P} \frac{2}{0,} \mathrm{M} \frac{3}{2 \text { or } 3}
$$

Teeth:

The upper teeth are represented by a pair of tusk-like incisors, a very worn P^{4}, and a broken M^{3}. The lower teeth are completely absent except for an intact M_{3}.

Incisors (Plates 16 and 21):
One of the most noticeable features of 20853a is the presence of a pair of massive incisor tusks in the upper jaw. These tusks are unusual because they are laterally compressed and not cylindrical like the tuaks of the majority of other sirenians. The alveolus of each tusk is large and opens anteroventrally. The size of the two alveoli cannot be accurately deternined because thoir walls are badly damaged. The tusks are large, and have suffored a conspiouous lateral compression that has produced two very narrow teeth. A cross-section of a tuak shows that it is thicker on the labial edge than it is on the lingual, because of a slight shoulder that runs the length of its external surface (see Plate 21). The pulp oavity is narrow and is surrounded by a thick lajer of dentine; the onanel occurs as a very thin extornal layer and very little of it remains on the material available. An unusual feature concerning the enamel is that it is raised into a series of parallel ridges that appear to have extended fron the root to the tip of the tuak (see Lartet, 1866). Few measurements are possible on the incisors, but the loft tusk of 20853 a was at least 77.4 mm deep and 25 mm wide.

Premolara (Plate 22):
st the anterior end of the upper tooth row of M19101a thore is a

PT4TY 21

Pytriody celtonamite ap. not.

OB20853a: incisor tuskes

FIGOP 33

Drawing of Plate 21

PLATE 21
. 121.

FIG. 33

PTMTTE_22

Bxtiodug esitenenais sp. nov. M19101a: madillary dentition

FICUPE 34

Draving of Plate 22

PTMP: 23

Pytiodug seltomenals ap. nov. UB20856: H_{3}

FIGUR? 35

PLATE 23

FIG. 35

triangular area of cancellous bone, which indicates that a very worn tooth $\left(P^{3}\right)$ has been discarded to make way for the last molar. Traces of the roots show that P^{3} was tri-rooted. The worn vestiges of both P^{4} 's are present and each has two slender, external roots and one, possibly two, similar internal roots. The occlusal surface of P^{4} has been flattened by prolonged wear, and no trace of lophodonty remains. Eowever, the external margin of the orom is indented about midway along its length, showing that the tooth was probably bilophodont when unworn.

Molars (Plates 14, 20, 22, and 23):
The firgt and second upper molers are missing, but both had a
large internal root and two amaller, external ones.
The third upper molar is not completely visible on the left aide of M19101a and it is impossible to sec how many roots it has. It is an elongated tooth that is widest $(23.8 \mathrm{~mm}+)$ across the protoloph. Most of the protoloph is broken away, but it was formed from a number of distinct cusps. 1 deep transverse valles separates the protoloph fron the motaloph, but it is partiy obstructed by the metaconule. The metaloph is complete and umorn, and is formed from three large cuaps (metacone, metacomale, and hypocone). A series of cuspules bohind the metaloph asave the appearance of a curred third loph (tritoloph ?), but this part of the tooth is hidden by the walls of the dental capsule.

The left H_{3} is worn, but is atill viaibly bilophodont. Whe protolophid (23.9 me is larger than the metalophid (21.3 3n), and they are both joined by a narrow enamel bridge acrosa the transverse valley. The cuaps foraing the lophs are obliterated by the adranced atage of wear. The hypocomulid and several amaller cuspales are soparated from the metalophid by a narrow cleft.

Tertebrae:

Vertebrae are reprosented by examplea from three difforent individuale, and include mpeoimens of both the cervical and thoracic merien.

Ceryical vertebrae:

Cervical vertebrae from two individuals give an almost complete view of this serles, although the atlas vertobra (1st. cervical) is missing In both cases. Three vertebrae (aris, 3rd. cervical, and 7th. cervical) are associated with 20853a, whilat four more (4th., 5th., 6th., and 7th. cervicals) belong to M19101a. 4xis (2nd, corrical rertebra) (plates 24 and 25):

The axis is well preserved and is fused with the 3rd. cervical to form a compact unit (20853b). The odontoid process is a stout, cylindrical structure with a flanged, circular depression on its anteroventral surface that would articulate with the ventral arch of the atlas. Small, rounded depreasions for the ligamentw dentis ocour on either aide of the process, and lateral to each of these is a large anterior articular facet. The contrum is reotangular and has a concave postorior surface. Only the left diapophysis is intact and it is short, compressed, and directed posteriorly. The posteygapophyses are situated about halfway up the pedicles of the noural arch, and in this apecimen they are not united with the prezygapophyses of the 3rd. cervical. The neural arah is massive, mainiy beonse its doraal moiety is intimately fused with the arch of the 3xd. corvical. The noural canal is triangular in shape and is higher than broad.

Petit (1928) noted four different degrees of fusion between the adis and the 3rd. cervical in Inriohmonnc; the atage of fusion in 208536 corresponds to Petit' second degree because the sygapophysen of the two vertebrae have not jet united.

3yd. -7 the onvicel rertelbrel

The rest of the cervical vertebrae are very compressed anteroposteriorly and they are all basioally very similar. The 3xd. corvical is the beat preserved example and will be used as aodel for the dascription of the othors. The anterior suxface of the thin, aponeione contrum is conter, forming an intimate articulation with the contrun of the axif. The diapophyses and parapophyses are short and thin, and thes do not meet laterally to eurround the vertebrarterial foranon. The pro- and pootmygapophyaes

PLMTR 24
 Rytiodug geltenenaie sp. nov. UB20853b : anterior view of acis vertebra
 - PTMTE 25
 Pytiodue altenenaie ap. not.
 UB20853b : left lateral viow of aria vertebra

FTADP 36

A : Drawing of Plate 24
B : Draving of Plate 25

are situated on the pedicles of the neural arch; the prezygapophyseal and postzygapophyseal surfaces are directed dorsomedially and ventrolaterally respectively - both being in the same plane. The dorsal part of the neural arch is fused to the arch of the axis.

The 4th., 5th., and 6th. cervical vertebrae are atill enclosed in a block of matrix and they have lost the bulk of their centra. They differ from the 3rd. vertebra mainly because the zygapophyses are situated at the base of the naural arch instead of higher up. The noural canal is also wider in these vertebrae than in the 3rd. cervical.

The 7th. cervical vertebra is similar to, although larger than, the previous ones in the series, and it is distinctive because it bears two deep demi-facets on the ventrolateral cornors of its centrum for the capitulum of the first thoracic rib.

Thoracic vertebrae (Figure 37):

The thoracic vertebrae are better preserved than the cervicals, but they are not numerous enough to give an overall picture of the series. The total number of thoracic vertebree is unknow, but it was probably nineteen as in Motextherpin (Cottreau, 1928) and Folainothorium (Dopéret \& Roman, 1920). The first five thoracics are known from M19101; another aix come from further back in the same series (c. 11 th. -16 th.); and three robust vertebree (20857) may be the 17th., 18th., and 19th.. Altogether, a total of fourteen thoracic vertebrae is knom.

The five most anterior thoracics (M19101b) conaist of three vertebrac in a block of matrix (associated with the 4th. -7 th. cervicals described above) and two isolated, fragmentary vertebrae. The middle mamber of the bloak of three is the best preserved and it is complete except for the absence of ita neural spine. The contrum is oral and is not as doep as that on a vertebra from the posterior part of the series. The capitulum of each rib is accommodated in two adjacent, oval demi-facets - one situated on the anterolateral aurface of the centrum of one vertebra, and the other on the ponterolateral surface of the contrum of the previous vertebra (nee Ficure 37A). The
FTGURE 37
Botiodus reltemenain sp. nov.
M19101b
A': anterior view of anterior thoracic vertebra
$\Delta^{\prime \prime}$: loft lateral view of anterior thoracic vertebraH9101c
B': anterior view of posterior thoracic vertebra
$B^{\prime \prime}:$ left lateral view of posterior thoraic vortebra
$-\frac{2}{3}$

diapophyses are long and slender, terminating in an oval depression for the tuberculum of the rib; these tubercular faceta are orientated ventrolaterally.

The prezygapophyses bear dorsal articular surfaces that are flat and horizontal, and the neural arch is slightly excavated behind each of these facets. The postzygapophyses are wide and their ventral surfaces are slightly concave. The neural arch is deep anteroposteriorly and encloses a neural canal that is sub-triangular in the 1st. thoracic, but becomes circular when it reaches the 5th..

The six more posterior thoracics of the same individual are all free of matrix and are relatively intact. The third rertebra in this group (c. 13th. thoracic) is almost complete and, since the only difference between the six vertebrae is a slight increase in aize posteriorly, it will be taken as representative of the group. The centra of all the specimens are broken, but the third vertebra has retained more of its apongiose body. A small, anterodorsal facet erists on each side of the centrum for the capitulum of the rib, but there is no posterior capitular facet (see Figure 37B). The diapophyses are short and thick, each bearing an anteroventrally elongated tubercular facet. The poateroventral aurface of each diapophysis is deeply concave for the attachment of the levatores costarua muscle. The presygapophyses are stout and bear medially-facing facete; the lateral border of each presygapophysis is much better developed than the medial side and this produces the dorsomedial orientation of the facet. The postrycapophyses axe made prominont by the deeply excavated exits for the apinal nerves, and their slightly oonvex articular surfaces face ventrolaterally. The noural arch encloses a shellow neural canal, but the surface of the bone in the canal is very poorly preserved. The neural spine is not very high and it widens at its tip. Three robust, but broken, vertebrae (20857) probably belong to the most posterior part of the thoracio series. They diffor from the preceding group in having almost nen-azdatont diapophysea and a very mall noural camal. The diapophyses bear tubercular facets, but the contra are so badiy brokem that capitular facets cannot be identified.

Ribs:

The ribs can be divided into two groups; a group associated with the anterior thoracic vertebrae, and another group associated with the posterior thoracic vertebrae.

The anterior ribs are characterized by having the capitulum joined to the shaft by a prominent neck. On the capitulum the anterior articular surface is smaller than the posterior, but both are convex. The neck is oval in section. The tuberculum is at the base of the neck and bears a flat, oval articular surface. The proximal end of the shaft has a D-shaped cross-section.

The posterior ribs differ from the anterior ones in having no neck and confluent capitular and tubercular surfaces. The tuberoular surface is elongated and is widest dorsally. The shaft of the rib is oval in section and has a wide groove on its posterior margin. All of the rib fragments oxhibit pachyostosis.

Comparison and discugaion:

The unusual sirenian genus Aytiodus was originally desoribed by Lartet (1866) on the basis of some extraordinary teeth from a quarry at Bournic in the Aquitaine Basin, France. Apart from some akull and rib fragments associated with these teeth, the anatomg of the type species, Rytiodue capgrandi, was unknown until Delfortrie (1880) publishod a deabription of a broken skull and an atlas vertebra from Saint-Morillon, also in the dquitaine Basin. The strata from which the two specimens came have been shown to be synchronous with the "falun de Basae" (Tournouär, 1866; Delfortrie, 1880), which placea them within the Aquitanian (Lowor Kiocene). This now find of the genus in the Burdigalian deposite of contral Libya increases both ita stratigraphical and geographical range.

Delfortrie's account of the skull of Rytiodul eaperandi is very mhort, but, apart from one serious error, it is reasonably accurate. A look at Dolfortrie's
life-size reconstruction of the skull (1880 , plate V) reveals that he mounted the broken anterior part of the rostrum in a horizontal position, so that it gives the impression of a long, undeflected premaxillary region. This restoration has led all subsequent authors to believe that Rytiodus differs from all other dugongids in having a straight rostrum - a feature that up until now has been used as a generic character. The Libyan material reveals that the rostrum was in fact very strongly deflected and that Delfortrie was misled as to its shape because part of it was missing from his specimen. Rytiodus is therefore closer to the typical dugongids than was previously believed.

It is necessary to compare Rytiodus zeltenensis with \underline{R}. capgrandi, and with the genera Halitherium, Anomotherium, Metaxytherium, and Caribosiren, so that its position in the sirenian evolutionary sequence can be determined.

The abbreviated anatomical description of R. capgrandi places emphasis on parts of the skull that are missing from both specimens of R. zeltenensis, and this means that a detailed comparison of the two species is almost impossible. However, both species show evidence of a close relationship especially in the presence of a pair of distinctive incisor tusks. The differences between ㅌR. capgrandi and ㄹ. zeltenensis can best be listed:

TABLE 6

R. capgrandi

1. Premaxillary rami do not reach the nasals.
2. Rounded lacrimal.
3. No median crest on occipital.
4. Circular foramen magnum.

R. zeltenensis

Premaxillary rami abut against anterior margins of nasals.

Triangular lacrimal.
Prominent median crest on upper part of occipital.

Triangular foramen magnum.

These few differences between the two species contrast with the great similarity between the teeth of R. capgrandi illustrated by Delfortrie (1880, plate VIII) and the few known teeth of ㄹ. zeltenensis. The differences may be due to intraspecific variation and subsequent material may prove that the French and Libyan forms are conspecific; however, the degree of anatomical
variation, the geographical separation, and the different geological ages have been taken as important enough to warrant the erection of a new taxon.

The genera Halitherium, Anomotherium, and Metaxytherium are believed by Siegfried (1965) to form a continuous series through the Oligocene and the Miocene, although Anomotherium has some unusual features (such as the structure of M_{3}) that do not conveniently fit into the sequence. Halitherium is a well-known Oligocene genus that is characterized by H. schingi Kaup; Anomotherium langerieschei Siegfried is based on a single, almost complete, skeleton from the uppermost Chattian (Upper Oligocene); and Metexytherium is a Miocene genus that is best represented by M. medium (Desmarest). Helitherium and Ketanytherium are both found in the Old and New Worlds, but Anomothorium is restricted to the Old World.

The two features most commonly used to classify sirenians are the reduction in the number of teeth and the gradual decrease in size of the nasals. The dental formula and nasal configuration of Rytiodus show that it is at a similar evolutionary stage to Meterytherium in these respects. These two Miocene genera have very reduced dentitions (Bytiodue retains two of its upper premolars whereas Metatherium has only one) and their nasals show cortain similarities also (being separated by the frontals in the mid-line and being situated behind the premaxillary rami). Although the two genera are similar in these respects it is obvious that they are mambers of two distinct lineages, and that the parallels in their anatomy are due to convergence. Pidence for the two lineages includes the structure of the tuaks, the shape of the mesorostral fossa and surrounding bones, and the narrowness of the akull of Bytiodus.

The akull of Rytiodug also shows similarities to that of the tuakless sirenian Caribogiren turgeri Reinhart from the San Sebastian Pormation of Puerto Rico (Reinhart, 1959). The evidence available to Reinhart auggested that the San Sebastian Pormation vas Middle Oligocene in age, and more recont evidence (van den Bold, 1965) aupports this date with a Late Oligocene age for the upper part of the same formation. Reinhart belioved that Capiboairen

showed similarities to Halitherium, Felsinotherium, and Dugong (i.e. the typical dugongids), but,apart from comparing the degree of tooth reduction, he did not look closely at Rytiodus. The greatest resemblance between Rytiodua and Garibosiren occurs in the shape of the premaxillae, nasals, and laorimals - these two genera are the earliest dugongids to have lost the use of the lacrimal duct. The auditory region of Rytiodug, although very poorly preserved, is noticeably amall in relation to the size of the rest of the skull; this feature was also commented upon by Reinhart when referring to Caribosiren. The post-canine dental formula of the upper jaw is identical in both genera, but the absence of incisor tusks in the unique specimen of Caribosiren (probably a serual dimorphic charactor: see Chapter 4) is an important factor in distinguishing the two genera at present. The frontals of Caribosiren account for a much greater area of the akull roof than do those of Rytiodug, and the temporal creats of the former are limited to the parietals. Garibosiren is undoubtedly close to the branch of the sirenian evolutionary tree occupied by Rytiodua although its exact position needs to be carofully studied.

The unusual features of Rytiodus oapgrandi justified it being placed in a now subfamily of the Dugongidae, the Rytiodinae, by 1 bol (1928), and the discovery of ㄹ. geltenensia does not affect this assignment. The rytiodines broke away from the typical dugongid line before the appearance of the gonus Motactherium, because R. capgrandi is already very advanced by the Aquitanian. They most likely originated from one of the Oligocene apecies of Halitheriun and then unsuccessfully paralleled the main dugongid stock for a short time. Holitherium shows definite advances over the primitive Bocene airenians, but still has potontial for the radiation and divergence that it oxhibits during the Early Miocene. It retains a full complement of relatively simple choek teeth and has a mariced deflection of the promaxillae that is absont in the Bocene genera. Holithemipn possesses all of the typical airenian features found in Avtiodug, but is still unapecialized onough to give rise to the Rytiodinae. Anomotherium and Metantheriun are too apecialized to have had anything to do with the ancostry of this subfemily.

Cope (1869) described a compressed inoisor tusk from the Bocene of New Jersey as belonging to a new airenian, Eemicaylodon effodiens, and he noted similarities between this tuak and those of Rytiodus eapgrandi-viz. groove on external surface, ridges on dentine. Kellogg (1966) believed that this tusk actually came from Mocene deposits overlying the Bocene ones, and he also commented on its resemblance to the tusks of Rytiodur. The specimen has since been lost.

Subfamily MriANTMHRIIMAR gubfam. not.
Disgogin: Rostrum strongly deflected; nasals separated in mid-line by frontals. Inoisor tuaks present (in adult males only ?); cheek teeth enamelled; H^{3} unreduced and complex.

Remarica: This subfamily oontains the genera Cariboaimen, Yateratheryum (= Haliansgaa), and Felsinothorive. It represents a mortoned version of the Halianassinae (Rotnhart, 1959), which included Goribomiren, Ealinmane, Heaperpaimen, and Felainothorium.

Gemas NrypurantrTiPI de Christol 1840
SxponyEy: The complicated aynonyales of Xetertheryim and Halimnana have been ably dealt with by Kellogg (1966). Sinoe no reliable characters have been found that oan differentiate these two genere, they are hore united under the senior eynony, yntartherpirno.

Diamonig: Smaller, leas progreasive, Liocenc genus (see Romarics below).
 Burdigalian-Ianghian) of Iain-et-Ioire, France.

Ton Hoyer 1887, M. Krmuntei Deperet 1895)

M. maniqnu1ti (Cope 1883)
M. Jopintof Capellini 1886
K. merny Abel 1904
M. Jordani Kellogg 1925
M. crataegensis (Simpson) 1932
M. allisoni Kilmer 1965
M. calvertense Kellogg 1966
M. ortegense Kellogg 1966

Distribution: Lower-Middle(?) Miocene (Burdigalian-Langhian?) of Europe;
Lower(?)-Upper Kiocene of the Americas;
Lower Miocene (Burdigalian) of Africa.
Remarks: According to Simpson (1932), no single character can be relied on to separate all the species of Metaxtherium from all the species of

Felsinotherium. Both genera share the same anatomical features, although the latter genus is thought to be more progressive in certain of these features. The accepted practice has been to place Mocene metaxytheriines in the genus Metaxtherium, and to place the larger Pliocene forms in Felainotherium. The validity of these two genera is best left undeoided until better transitional (i.e. Upper Miocene) forms are know.

Metaxtherium sp. indet.

Referred material:
Site

UB 20858	64.18	nasal region
UB 20859	64.20	premaxillary symphysis

Age and locality: Lower Miocone (Burdigalian) of Gobel Zelten ($28^{\circ}-29^{\circ} \mathrm{N}$. . $19^{\circ} 30^{\prime}-20^{\circ} 30^{\prime}$ E.), Libya.

Remarks: These are the remains of a sirenian that is anatomically distinct from, and amaller than, Rytiodua geltonensie.

Anatomical description:

Skull (Plate_26):
The larger of the two skull fragments, 20858, consists of the anterior half of a skull and shows parts of the promadillae, macillae, nasale, lacrimal, frontals, palatines, and ethmoidalia. The amaller fragment (20859) is from another individual and represents part of the symphysial region of a laft premaxilla.

A large part of the premaxillary region is still attached to 20858. Each premaxillary ramus has an ovoid cross-section anteriorly, but becomes progressively flatter towards the naso-frontal region. The major part of each ramus is supported by the marilla, although posteriorly it lies between the nasal and the supraorbital process of the frontal. The symphysial region is poorly preserved and the only indication of the presence of incisor tusks is the occurrence of two adjacent concavities on the broken anterior surfaces of the premaxillae (see Figure 38). These depressions represent the posterior walls of the incisor tusk alveoli. The dorsal part of the premaxillary symphysis (as represented by 20859) shows the rostrum to have been strongly deflected, and the surface of the interpremaxillary suture has an onlarged contact area that would strengthen the symphysis. The mesorostral fossa is narrow and oval, and therefore differs from the wide, double-arched fossa of Rytiodus zeltenensis.

Maxillae:

The maxillae are poorly preserved because, apart from a small piece attached to the right promaxilla, they are only intaot on the palatal surface of 20858. On the right side the maxilla is curved dorsad to form the medial surface of the infraorbital canal and then expands laterad to support the premarilla and make contact with the anterior edge of the supraorbital process of the frontal. The lateral wall of the infraorbital canal is broken, but its dorsal point of attachment is visible. 1 amall palatine foramen can be seen.

Nasale:

These are small, thin bones that are separated in the mid-line by a forward extension of the frontals. Each nasal is tilted ventrolaterad - the pair forming an incomplete, pitched roof for the posterior part of the mesorostral fossa. The nasals are separated from the supraorbital processes of the frontals by the interposition of the premaxillary rami, but they contact the frontals when the rami terminate. The naso-frontal sutures domarcate a narrow extension of the frontala that reaches the posterior margin of the mesorostral fossa between the nasals.

PWTVT_26

Meterathorym sp. indet. UB20858 : nasal region

FGUR 38

Draving of Plate 26

ETGURS 39

Draving of Plate 27

FIG. 39

Lacrimal:

A small fragment of the right lacrimal is wedged between the premaxillary ramus and the supraorbital process of the frontal on 20858.

Frontals:

The supraorbital processes of the frontals are intact, but very little remains of the cranial parts of these bones. The narrow supraorbital processes contact the maxillae anteriorly and the premaxillae and nasals medially; they then continue back beyond the tips of the premaxillary rami to enlarge and form part of the roof of the braincase. A forward extension of the frontals produces a truncated W-shaped suture with the nasals.

Palatines:

The palatines are indistinguishable from the maxillae, but they should be present because the anterior rim of the nasopharyngeal fossa is complete. Ethmoidalia (Plate 27):

The structure of the ethnoid region can be seen in transverse section on the posterior surface of 20858. The nasal cavity is full of matrix, but the swollen tips of some of the turbinal bones can be detected protruding from it. Since only the extreaities of the bones are visible it is impossible to identify them with any accuracy; however, the two pairs that can be seen are most probably ectoturbinals. The scrolls are not visible.

Comparison and discussion:

The differences between the skulls of the two sirenians from the Miocen of Gebel Zelten are:

TABLT 8

Bytiodus zeltenenais

1. Posterior tips of premaxillary are swollen.
2. Maxilla separated from upraorbital process of frontal by lacrimal.

Meterytherium sp. indet. Posterior tips of promaxillayy rami are flat.

Marilla contacts supraorbital procese of frontal.

Rytiodus zeltenensis

3. Nasals widest anteriorly.
4. Lateral edge of nasal in contact with supraorbital process of frontal for its entire length.
5. Frontals contribute little to the formation of skull roof.

Metaxytherium sp. indet.
Nasals widest posteriorly.
Lateral edge of nasal separated from supraorbital process of frontal for part of its length by the premaxillary ramus.

Frontals contribute significantly to the formation of skull roof.

Although very little of the skull of the second sirenian is known it is noticeable that it bears very little resemblance to the skull of Rytiodus. The dugongid affinities of this specimen are indicated by the evidence for a sharply deflected rostrum and incisor tusks. The only sirenian genus definitely known from the Aquitanian-Burdigalian, apart from the two apecies of 解tiodus, is Metantherium. The relatively large nasals that are separated in the mid-line by the frontals on 20858 suggest that this specimen is very close to the members of the latter genus. 20858 possesses no features that detract from this generic identification, but it is impossible to attempt an identification at species level.

This is the first record of Metaxtherium on the African continent, although it is widespread in the Miocene deposits of Rurope.

Referred matomial:

UB 20860a	68.01	fragmente of at least 1 rib
UB 20860b	68.06	1 rib
UB 20860	68.14	iragments of at least 6 ribs
UB 20860d	68.15	2 ribs
UB 20860	68.16	1 Fib

Age and locality: Upper Eocene (Priabonian) of Dor el Talha ($25^{\circ} 45^{\prime} \mathrm{N} .$, 180$-19^{\circ} \mathrm{E}$) , Libya.

Remarks: Wight (1971) also recorded sirenian ribs from site 69.51 , although he did not mention the single rib from site 68.06 .

Anstomical description:

Sirenian ribs can be recognized by their short, atocky appearance and pronounced pachyostosis.

One or two of these ribs are almost complete, but none of them bear any trace of the capitulum or tuberculum. The two specimens from site 68.15 are the best for descriptive purposes; one being an almost intact bone, and the other showing much of the proximal region.

The proximal part of the mear complete rib has an almost circular crosssection, but gradually the medial surface of the bone becomes flatter and it attains a D-shaped section near its middle. The flatness of the internal face is even more accentuated near the distal tip of the rib, and it ends as a well-rounded point. The width of the rib increases distally until it reaches a maximua about two-thirds of the way down the rib. The rest of the ribs are similar to the above, but differ in their degree of curvature.

The best preserved proximal region exhibits a sharp bend at its extromity that contrasts with the gentle curvature of the shaft. This bent portion probably bore the articular facets, but now no trace of them ramains. The shaft of this rib has a more oval oross-section than the otherg.

Sirenian B

Referred material:

SHte

UB 20861	64.18	left scapula
UB 20862	64.20	right scapala
UB 20863a-c	64.19	skull fragments
UB 20864	$?$	vertebra fragment
UB 20865a	64.13	rib fragments
UB 20865b	64.17	rib fragments
UB 20865c	64.18	rib fragment (in matrix)
UB 20865a	64.19	rib fragments

.151.

UB 20865e	64.20	rib fragment
UB 20865f	64.21	rib fragment
UB 20865g	$?$	rib fragment (in matrix)
UB 20865h	$?$	rib fragment (in matrix)
UB 20865i	$?$	rib fragment

Age and locality: Lower Mipcene (Burdigalian) of Gebel Zelten ($28^{\circ}-29^{\circ} \mathrm{N}$. , $\left.19^{\circ} 30^{\prime}-20^{\circ} 30^{\prime} \mathrm{E}.\right)$, Libya.

Remarks: None of this material was associated with remains of either Rytiodus zeltenensis or Metarytherium sp. indet., and it is too incomplete to be reliably referred to either of these forms. Only the soapulae are worthy of description.

Anatomical description:

Scapulae

Much of the left scapula (20861), including the cranial border, vertebral border, supraspinous fossa, and acromion process, is missing. Most of the thick, rounded caudal border is intact. The spine is broken at both onds, but it was probably a very stout structure when complete; the free edge of the spine is curved over the infraspinous fossa. The glenoid cavity is oval in outline.

The blade of the right scapula (20862) is more complete than that of the left, but the glenoid cavity is missing. The caudal border of the blade is slightly concave, but the shape of the vertebral and cranial borders cannot be determined because they are badly damaged. The apine is blunt and disappears towards the vertebral border. There is no trace of an acromion process, but the shaft is broken at this point.

The various Cenozoic sedimentary basins of France have yielded numerous sirenian remains (including complete skeletons) from Oligocene, Miocene, and Pliocene strata, but Eocene material has been very scanty and incomplete. Up until now the only Eocene sirenians from France have been represented by isolated teeth from several localities in the Aquitaine Basin, which have been referred to Protosiren and Eotheroides (Sickenberg, 1934; Richard, 1946). The eristence of new, undescribed Eocene sirenian material from southern France was brought to my attention in October, 1971 - until then its importance had apparently not been recognized. The initial find of vertebrate material was made in August, 1969 at Taulanne, near Castellane, by members of a geological field party from the Universiteit van Amsterdam. Nobody in this party was acquainted with vertebrate remains so they sent for Dr. M. Freudenthal of the Rijksmuseum van Geologie on Mineralogie, Leiden, and he promptly identified the bones as belonging to sirenians and he wrote an informal description of the find (Freudenthal, 1970). Material was distributed between Amsterdam, Leiden, and the Universite de Lyon, but only that in the first two institutions has been studied by the author.

The bones were found in a very hard sandstone that was covered by a reef deposit containing foraminiferans (M. Freudenthal, perm. comm.) - the mandstone lay unconformably on Upper Jurassic limestone. The foraminiforans from above the airenians have been identified as Mumpuliter yariolariue (Lamarak), a wide-ranging Eocene apecios (Werner, 1970). Since I. Yariolariue is invariably associated with I. laerigatug in the lower part of the Lutetian (Middle Focene), it is most likely that the sirenian-bearing sandstone at Taulanne is upper Latetian-Priabonian (Middle-Late Focene) in age. The detailed geology of the Taulanne region is presently being worked on by mombers of the Geologisch Instituut, Amsterdam.

Order SIRENIA Illiger 1811
 (see Chapter 1)

Superfamily PRORASTOMOIDEA superfam. nov. (see Chaptor 1)

Family FOTHBROIDIDAE fam. nov.
Diagnosis: Lacrimal duct and foramen present; alisphenoid canal absent; short superficies meatus; processus fonticulus absent; periotic isolated from rest of braincase. Incisor tusks beginning to onlarge. Romarks: Contains the genera Eotheroides and Prototherium.

Genus EOTHEROIDES Palmer 1899
Synonymy: Eotherium Owen 1875
Eomiren Andrews 1902
Archaposiren Abel 1913
Sickenberg (1934) considered Eosiren and Archnosiren to be synonymous with Eotherium, but Simpson (1932) had already shown that Fotherium Owen 1875 was preoccupied by Eotherium Leidy 1853 and must be replaced by Eothoroider Palmer 1899.

Diagnogia: Skull not dolicocophalic. M^{2} larger than M^{3}. Humerus short and fat. Trop gpecine: Fothoreides secyptincer (Owon) 1875; Middle Focene (Lutetian) of Gobel Mokattam, Egypt.

Included species:
R. Ifibycum (Andrews) 1902
E. Etromeri (Abel) 1913
S. abeli (Sickenberg) 1934

Diatribution: Middiempper Focene of France and Rgypt.
Remarks: This is the only Eocene sirenian genus that occurs in deposits on two different continents.

Eotheroideg of. E. gegyptiacum (Owen) 1875
Referred material:

GIA Hs 69-3	left mandibular ramus
GIA Hs 69-4	right mandibular ramus
GIA Hs 69-5	braincase
GIA Hs 71-19	skull
GIA Sim 71-101	skull and mandible
GIA Sm 71-102	isolated right M ${ }^{3}$
RGM St. 177774	skull
RGM St. 177775	skull

Ace and locality: Middle-Opper Eocene (Lutetian-Priabonian) of Taulanne, France Remarks: These new sirenian remains from the north shore of Tethys constitute the first unequivocal trans-Tethyan correlation with the well-known Focene sirenian faunas of nothern Africa. If, as seems likely, more material is retrieved from this site, it will provide the basis for the type of population study that has previously been impossible with sirenians.

Angtomical deacription:

The genus Eotheroides has been well documented in the literature (Andrews, 1906; Abel, 1913; Sickenberg, 1934), so it would be tedious to give a detailed description of the new material now available. The following account will be restricted to a comparison of the Taulanne material with other species of Eotheroides, and to features that have received little attention from the earlier authors. Only one of the Taulanne specimens (the mandible belonging to $\operatorname{Sin} 71-101$) is complete, but by utilizing features from different specimens it is possible to construct an overall picture of the morphology of the rest of the skull.

Skull:

The most complete skull (Hs 71-19) has an overall shape that is oloser to that of Eotheroides arexptiacum and E. libycum than it is to that of R. stromeni. The Taulanne sirenian, E. aegrotiacun, and E. libroun have relativoly slender akulls whereas E. Atromeri has a much more robust akull; the differences are moat distinct in the fronto-parietal region (Siekenberg, 1934, p. 195).

The premaxillae are very complete on Hs 71-19 and are comparable with those illustrated by Andrews (1906, pl. XX) and Siakenberg (1934, pl. II) for E. libycum. Unfortunately the premaxillary region of E. aegyptiacum has not been illustrated by these authors, but there is no reason to think that it was dissimilar to that of \underline{E}. librcum. The promaxillary rami of Hs 71-19 are inserted posteriorly between the nasals and the frontals, and are contained in depressions along the anterolateral edge of the nasals. The marillae are remarkable for their considerable palatal width, which was a feature used by Sickenberg (ibid., p.196) to differentiate E. asorptiacum from E. librcum.

The nasals of the Taulanne specimens meet in the mid-line anteriorly, but are separated for a short distance posteriorly by a forward extension of the frontals (St. 177775). This arrangement produces a W-shaped suture between the nasals and the frontals as is also shown by the example of ge aegyptiacum illustrated by Abel (1913, pl. I). The nasals are also very convex.

The left lacrimal of St. 177775 is the best preserved and it takes part in the formation of the orbital border as does the corresponding bone in F . gegyptiacup (Abel, 1913). Reinhart (1959) described a broken skull of Eotheroides sp. indet., in which the lacrimal did not form part of the orbital border and contacted the dorsal edge of the jugal. In E. aegrotiacum the lacrimal is separated from the jugal by the maxilla, but the situation in St. 177775 cannot be resolved because the jugal is missing. There is a characteristic large duct present in the left lacrimal of St. 177775.

The frontals of the French specimens are characteristic of Eotheroides because they form the medial walls of the orbits (St. 177774), whereas in Protosiren this function is performed by the ethmoid. The parietale bear pronounced temporal crests and have a V-shaped suture with the frontals. The agittal length of the parietals is somewhat les than that of the frontals a feature that is found in E. aegyptiacum rather than E. atroneri. The occipital region is very badly preserved on all the Taulanne speoimens and does not show any distinctive characters. The basioccipital of St. 177774 has not fused to the basisphenoid. The jugal is a slender bone that has a ventral
extension in Hs 71-19.
The palatines are well preserved on Hs 71-19 and they separate the maxillae in the mid-line as far as the anterior edge of the last deciduous premolar. The sphenoid complex is only adequately preserved on Hs 69-5, where the optic foramen and the sphenorbital canal are intact on each side. The optic foramen is situated dorsal to the sphenorbital canal, and the dorsal wall of the latter bears a slight longitudinal ridge that probably represents the last remnants of the lamina that separated two of its component canals. The pterygoid processes are typical of Eotheroides, being slender and with no indication of an alisphenoid canal. The zygomatic proeess of the squamosal is slender (St. 177774) as in E. aegyptiacum and bears prominent postglenoid and post-tympanic processes.

The petrotympanic is not well enough prepared on any specimen to show diagnostic features, but there is a short auperficies meatus as in all other species of Eotheroides. The cranial cavity of Ha 71-19 bears a sagittal ossified falx cerebri and a transverse ossified tentorium cerebell on its dorsal surface, but these are not prominent.

Mandible:

The mandible belonging to Sm 71-101 is probably the most perfect of any Rocene sirenian because it is complete except for the absence of the right condyle. Although the two halves of the mandible are crushed together, there is no significant deformation of the rami themselves. Vory few mandibles of Rotheroides have been illustrated in the past - Abel (1913, fig. 5) showed a reconstruction of the mandible of (5. agerptiacur, and Andrews (1906, pl. KX, fig. 2) and Sickenberg (1934, fig. 19) have both illugtrated mandibles of R. 11bycum. Unfortunately the mandible shown by A bel is formed Irom the anterior part of an g. aegroptigoum mandible and the posterior part of an ge abels mandible (Sickonberg, 1934). Thus the Taulanne mandible must of necesmity be compared with that of F . libycum since not enough is known about the mandible of E. asgyotiacure.

The differences between the two mandibles are slight and are not useful for identifying species. The anterior edge of the vertical ramus of ge 71-101
. 157.
is inclined anteriorly as far as the back of M_{3}, but in E. libycum it is vertical (Sickenberg, 1934, fig. 19). There is a distinct projection about half-way up the posterior edge of the vertical ramus of $\operatorname{Sm} 71-101$ that is also present in E. libycum, E. abeli, and Prototherium veronense - the dorsal margin of this projection is on a level with the alveolar margin. The ventral curvature of the horizontal ramus is the same as in E. libycum. The internal surface of the mandibular angle bears a distinct shelf that is especially prominent on the two broken pieces of mandible (Hs 69-3, Hs 69-4) - this shelf is also present, but to a lesser degree, in Dugong. The shelf forms the ventral of the fossa for the internal pterygoid muscle. Another depression occurs on the internal surface of the mandible below the mandibular condyle, marking the area of attachment of the external pterygoid muscle.

Dentition:

The most important feature of the Taulanne material is the excellent preservation of the dentitions of some of the specimens. Unfortunately only one specimen (Hs 71-19) has an intact rostrum, so very little of the premaxillary dentition is conserved. However, the post-canine dentition of the upper jaw is well represented by intact molars and the alveoli of the premolars. The mandibular dentition is best preserved on Sim 71-101.

Dentition of the premaxillae and marillag:

The only premaxillary teeth of which we have any evidence are the two enlarged first incisors of Hs 71-19. These teeth are represented only by the remains of their alveoli, which indicate that the first pair of incisors was becoming tusk-like. The two other pairs of upper incisors cannot be traced because the alveolar margins of the premaxillae are badly broken, but there is evidence for them on other species of Eotheroides. The canines are most probably denoted by a pair of isolated alveoli on Hs 71-19 and St. 177775.

The maxillary dentition is present on four speoimens (St. 177774, St. 177775, Sim 71-101, and Hs 71-19), which can be arranged according to age (see Table 9). Apart from an erupting tooth on St. 177774 the premolare are only represented by their eapty alveoli. There were apparently four permaneat pronolars - the last of which is late in erpupting because dPfia retained until
after M^{3} has come into use. A total of three premolar alveoli are visible in front of the molariform $d P^{4}$ of $\mathrm{Hs} 71-19$, but there is no certainty as to the number of premolars that they represent. Four premolar alveoli are found in most other spacies of the genus and it has been assumed previously that all the premolars of Eotheroides were single-rooted. In three of the Taulanne specimens (St. 177775, Hs 71-19, and Sm 71-101) the two alveoli immediately in front of $d P^{4}$ are very close together, but the third alveolus is separated from them by a prominent diastema - the premolar alveoli of E. Iibycum are equally spaced at c. 13 mm intervals (Andrews, 1906). If the previous authors were correct in their assumptions that all of the premolars had a single root then these three alveoli should be assigned to P^{1}, P^{2}, and $P^{3}-P^{4}$ having not yet exupted. Nevertheless, more complete premolar sequences must be found before a conclusion can be reached as to the number of permanent premolars and their roots.

The last deciduous premolar is present in three individuals, but it is worn flat in even the youngest one (St. 177774). It is retained in the maxilla at least until M^{3} is beginning to show wear, but it is lost with increasing age (see Table 9). Where dP^{4} is missing it is seen to have had three roots - one internal and two external.

The full complement of upper molars is found on three Taulanne individuals (St. 177774, St. 177775, and Sm 71-101), and due to differences in age of the three specimens the teeth show great variation in the degree and pattern of crown wear. M^{1} and M^{2} are consintent with the same teoth of Eotheroides species (Abel, 1913; Siakenberg, 1934), but \mathbf{M}^{3} shows conspicuous differences in morphology that illustrate the wide range of variation within the species. The characteristic form of the M^{3} of Eotheroides is exhibited by St. 177775 and Hs 71-19, but an aberrant type of tooth is present on both sides of \sin 71-101. Bach of these latter teeth is unusual because of the complete absence of the hypoconule and its associated cuspules, which are found behind the metaloph in a normal gotheroides M^{3}. The absence of this group of cuspules results in a marked concavity on the posterolabial surface

TABLE 9

Four stages of tooth wear in Eotheroides of E aegyptiacum

increasing age

of each molar. This part of the tooth was also missing from a tooth examined by Sickenberg (1934, p. 142) (see below). Other, less important, differences are apparent, but they are not so significant.

Dentition of the mandible:

The mandibular dentition is even more difficult to interpret than that of the premaxillae and maxillae. The anteroventrally inclined symphysial surface of the mandible belonging to $\operatorname{sm} 71-101$ bears four pairs of very shallow alveoli, which are the only evidence for the existence of incisors and canines in the lower jaw. The shallowness of the alveoli is due to them being infilled with cancellous bone, and this shows that even at this early stage of sirenian evolution the anterior teeth were markedly reduced.

The number of permanent premolars in the mandible of g. aegrotiacum is thought to have been four (Abel, 1913), but the number of deciduous teeth is unknown. Two permanent premolars are in situ in the right ramus of Sm 71101, and another tooth is present in the left ramus. The positions of these teeth in the complete premolar sequence cannot be accurately determined because the alveoli associated with them could belong to either deciduous or permanent teeth. The arrangement of the post-canine teeth is similar to that in the upper jaw. The three intact premolars have a simple structure consisting of a single main cusp surrounded by a prominent oingulum. This cingulum is subdivided into a number of distinct tubercles on the posterior promolar of the right aide.

Between the permanent premolars and the molars there is a deciduous premolar that has been retained. M_{1} is very badiy preserved on Sm 71-101 and very little of its atructure can be seen, but M_{2} and M_{3} are intact though worn on three specimens (Hs 69-3, Ha 69-4, and Sm 71-101). These teoth have a similar structure to those of E. gecrptiacum (Abel, 1913, p. 69) and other nombers of the genus.

Tooth araption:

The method and sequence of tooth eruption in Eocen sirenians is of interest because of the unsual modifications this procese exhibits in later
genera. It has been impossible to study eruption on Eocene species before due to the scarcity of good material, but this small sample from Taulanne increases our knowledge in this field. When more material becomes available there should be an almost complete record of the sequence of tooth replacement in Gotheroides.

As mentioned above, the four specimens with good maxillary dentitions can be grouped according to relative age (see Table 9). This is possible by comparing the amount of wear on the corresponding teeth of the different specimens. The youngest individual (St. 177774) is characterized by having only a partly erupted $M^{3}-M^{2}$ and M^{1} of this specimen show progressively advanced wear stages and $d P^{4}$ is worn flat. Although this last tooth has lost all traces of its lophodont structure it is atill retained in the maxilla, thus effectively increasing the length of the upper cheek tooth row. The occurrence of four molariform cheek teeth for a short period in the animal's life is common to Eotheroides spp. and Prototherium Veronense (Abel, 1913; Sickenberg, 1934). The molariform dP^{4} of Hs 71-19 is not lost until the M^{3} is in full use.

Anterior to dP^{4} on St. 177774 there is an erupting tooth that should be p^{4}, but the little of it that is visible does not correspond very closely with the previous descriptions of this tooth. The erupting tooth on St. 177774 is elongated and bears four pointed cusps, three of which are aligned longitudinally and increase in aize posteriorly with the fourth situated lingual to the largest of these. This tooth most closely resembles the P^{4} of $\underline{\underline{G}}$ gegyptiacum ($=\underline{\mathbb{E}}$. abeli of Sickenberg) described by Abel (1913). Hovever, the latter tooth is said to be basically tricuspid and A bel does not provide an illustration to show its atructure. The P^{4} of E. Libycum was illustrated by Andrews (1906, fig. 2), who described it as boing a aingle cone (Andrews, 1902). If Andrews and Abel were correct in their identifications of P^{4} it suggests that the last prenolar of Botheroides was reduced from three cusps to one cusp between the Middle and Late Eocenc. Although the tooth on the Taulanne apecimen has four cusps it may represent an oven earlier stage in the evolution of the P^{4} of Fotheroides, but because the most posterior cusp
is the largest there is a chance that it is a deciduous tooth ($d P^{3}$?) rather than a permanent one. The lack of information on the upper premolars of Eotheroides may hopefully be remedied by more material from Taulanne, but until this material is available we cannot reach any definite conclusions as to the morphology and the arrangement of these teeth.

Since only one mandible is know from Taulanne it is impossible to deduce the mode of tooth replacement. However, in $\operatorname{Sm} 71-101$ the individual cusps of M^{3} have begun to coalesce and a deciduous premolar is still in place in the right ramus. The mandibular dentition is therefore similar to the maxillary one in this respect. The reduction (or loss ?) of the mandibular incisors and canines is an early example of a feature that is to be prominent in all later sirenians.

REVISION OF CERTAIN ROCENE SIRENIAN SPECIMENS

The existence of Botheroides cf. E. aegrotiacum in the northern parts of Tethys during the Eocene demands a re-examination of some of the previoualy described Eocene airenian material from thia area.

Eothoroides and Protosiren from the Aquitaine Basin

Richard (1946), in her comprehensive survey of the fossil mammals of the Aquitaine Basin, listed three sites near the mouth of the Gironde that have yielded remains of Eotherium (=Eotheroides). She recorded rib fragments from Blaye (Lutetian), a molar from Villeneuve (Bartonian), and a specimen that has since been lost from Moulin de Calon (Ludian = upper Bartonian). Only the molar can be said to be reliably identifiable.

Sickenberg (1934) described three molars from the Calcaire de Blaye of the Aquitaine Basin that he referred to a new apecies of Protogiren, P. (?) dubia. Prototherium Teronense was known from the Late Bocene of Monte Zuello, Italy, at this time, but Siakenberg thought that the French teeth were too
small for this genus. He listed the teeth as a right M^{3}, a right M_{2}, and a left M^{2}; because the M^{2} and M^{3} differed in aize only alightly he referred all three teeth to Protosiren. The absence of any assooiated skull material makes this identification very dubious, and the two upper molars (Sickenberg, 1934, fig. 36) do not appear to possess any characters that can be used to separate M^{2} and M^{3} - in fact the M^{3} illustrated by Sickenberg is an almost exact mirror image of the M^{2}. If each of these teeth is considered as an M^{2} it would eliminate the aize feature that Sickenberg used as a Protosinen characteristic, and, seen thus, these teeth are indiatinguishable from those of Eotheroides of. E. aegrotiacum.

Sickenberg (1934) also described a akull fragment as belonging to Protogiren sp., but there is no evidence that it could not equally well have belonged to a species of Fotheroidien.

There is therefore no evidence for more than one genus of sirenian occurring in the Eocene strata of southern Prance.

In his study of the genus Eothapium (\quad Rotharoidas), Siokenberg (1934) was left with two specimens that could not be satisfactorily referred to any of the recognized species. Both specimens came from the Upper Mokattam Series (Upper Socene) and were labelled by Sickenberg as Pothoriym spec. I and Eotharivin apec. II. Pothorivm spec. I is a left madillary fragaent containing M^{2} and M^{3} that only diffors from the typical E . 11 bycyum because of its smaller aize and the primitive structure of the M^{3}. The so-called primitive features of this tooth inolude the large size of the protocone, the weakly developed metaloph, the insignificant metacone, and the absence of the hypocomale and associated cuspules. The two $\mathrm{X}^{3} \mathrm{I}_{\mathrm{s}}$ belonging to one of the Taulanne akulls (Sin 71-101) have easentially the aame structure as the above tooth, although the rest of the apecinen is identioal with the other material from that aite. Since all of the Taulanne material can be reforred to a aingle
species, the absence of the posterior group of cuspules from M^{3} is taken to represent the wide range of intraspecific variation (in this case in Eotheroides of. E. gegrptiacum).

Reviewing Fotherium spec. I in the light of this now evidence indicates that it is most probably a morphological variant of Gotheroides libycum.

Eotherium ($=$ Fotheroides) majus Zdansky
This species was erected by Zdansky (1938) to accommodate an isolated M^{2} from the Lower Mokattam Series (mokattam Formation) of Egypt. According to Zdansky, the only differences between this tooth and the M^{2} of Eotheroides illustrated by Abel (1913, pl. II) are a slight variation in shape and a greater size for the former. These features are notoriously variable in sirenian teeth (cf. Taulanne specimens) and should not be used as specific characters on their own. It is not possible to compare the measurements of the H^{2} of E. majus with those of the M^{2} of E. aegrotiacum because the tooth dimensions of the latter species have not been given in the literature and the best specimens are now inaccessible. The tooth of E - maius, however, is larger than any of the $\mathbb{M}^{2} / \mathrm{s}$ from Taulanne. It is very worn and the cusps of the two lophs have coalesced, obscuring any diagnostic features that the crown may have had. The specimen is best reforred to Eotheroides sp. indet. rather than being used as the basis for a new species.

GHAPTER 3: NEY FOSSII SIRENIA FROM ARGENTINA

HISTORICAL BACKGROUND

Fossil sirenians have been described from the Neogene of Argentina by Ameghino (1883), and Pascual (1953; 1966). These two authors were principally concerned with fossil trichechids, and they described the first pre-Pleistocene members of this family.

In February, 1898, the British Museum (Natural History) purchased an incomplete sirenian mandible from the Rev. Dr. Spilsbury. This specimen is listed in the museum's records as coming from Parana, Argentina, and being ?Pliocene in age; although having never been described it has up until now been referred to the genus Manatus ($=$ Mricheohug). Hew material that has been found since this specimen was originally identified necessitates a reappraisal of its position within the Trichechidae and of its importance to sirenian evolution.

SYSLTEYATIC DESCRIPTION

Superfamily TRICHECHOIDEA superfam. nov.
Diannogia: Rostrum amall and little deflected. Nunerically increased dentition; incisor tuaks absent; cheek teeth continuously replaced from rear. Ho bicipital groove on humerus; carpals little fused; hind limbs reduced and functionless; ilium greatly reduced or absent; iachium relatively large and triangular. Six cervical vertebrae; usually seventeen thoracic vertebrae. Romarks: This superfamily contains only one family, the Trichechidae.

Fanily TRICHECHIDAS Gill 1872

Diagnosias As for auperfamily.
Remarks: This eirenian family is very poorly represented in the fossil record, but its history goes back at least as far an that of the Dugongidae.

Diagnosis: Maximum of four cheek teeth present in mandible at any one time; cheek teeth are bilophodont with prominent hypoconulid.

Type species: Ribodon limbatus Ameghino 1883; Mio-Pliocene (Mesopotamian) of Parana, Argentina.

Distribution: Mio-Pliocene of Argentina and Colombia.
Remarks: So far this genus is only known from cheek teeth and fragmentary mandibles.

Ribodon limbatus Ameghino 1883
Diagnosis: As for genus.
Referred material: $\operatorname{BM}(N H)$ M7073 left mandibular ramus with two cheek teeth

Age and locality: ?Pliocene of Parana, Argentina.

Anatomical description (Plates 28 and 29):
The specimen is an incomplete left mandibular ramus lacking the symphysial region and part of the ascending ramus, but containing two complete cheok teeth and the remains of two others.

The horizontal ramus is larger than that of Tricheohng, and it is broken anteriorly just behind the mandibular symphysis. The external surface of the ramus is pierced by six small foranina, at least two of which commancate with the mandibular canal. This canal opens internally below the posterior end of the functional tooth row, and the mandibular foramen is travorsed by a narrow bridge of bone. The internal surface of the ramus is expanded mediad at the symphysial end to accommodate the lingual musculature, but this region is very incomplete. The thin bone of the dental capsule is unfortunately missing, but the cavity that housed the capsule is present and is muoh larger than that of trichechue.

The ascending ramus is only partially present and lacks most of the coronold process, the mandibular condyle, and the mandibular angle. The anterior border of the ascending ramus is almost vertical, unlike the antorodormally

BTMTI: 28
 Ribodon limbatua
 187073: lateral Fiew of left mandibular ramue
 PMATE 29
 Bibodon 1 inpatur 2
 k7073 : medial View of left mandibular ramus

FIGPR 40

4: Drawing of Plate 28
B : Drawing of Plate 29

PLATE 28

PLATE 29

FIG. ${ }^{160} 0$

PLMTY 30

Bibodon limbatur
M7073: cheok teeth

FIGURT 41

Drawing of Plate 30

PLATE 30

FIG. 41

inclined anterior border of the ramus of trichechug.
The dorsal surface of the horizontal ramus is relatively complete, so that it is possible to study the dentition. The most anterior pair of alveoli is empty, but certainly contained a single tooth that had two transverse roots. The next two pairs of alveoli contain two intact cheek teeth that diffor from those of Irichechue (see Plate 30); two more teeth are represented by just their roots. The intact teeth are basically bilophodont with a large hypoconulid. Each loph is composed of two cusps (the lingual cusp being the higher and more anterior in both cases), and the lophs are separated by a transverse valley. Behind the metalophid there is a large hypoconulid that is lower and flatter than either of the two lophs, and which is separated from the matalophid by a very shallow groove. There appears to have beon a maximum of four cheek teeth in occlusion at any one time.

Comparison and discussion:

The genus Ribodon was erected by Ameghino (1883) with R. limbetua as the type species. Ameghino recognized the sirenian affinities of the isolated cheek teeth which he found in the "Piso mesopotámico de la formación patagónica" of Argentina, and he placed the new genus in the Halitheridac. Simpson (1932), however, did not include Ribodon in his revised olasaification of the Sirenia. More complete material, including a broken left mandibular ramus with four teeth, from the vicinity of Parana, Argentina, was described by Pascual (1953), who used it to establish the validity of Ameghino's genus. The mandible and dentition described by Pascual vory closely resembles that of M7073. Both mandibles have a row of suall mental foranina that ende below the first pair of alveoli - the most anterior cheak tooth is missing in both oases. The lower cheek teeth of the two specimens are similar in both morphology and size, and a horizontal mode of tooth replacement is very likely because in both cases the most anterior intact cheak tooth shows the most wear and in M7073 it appears to be enoroaching upon the empty alveolus in front of it. Pascual (1953) claimed that Ribodon was distinct from Trichochus because of its shorter functional tooth row (four teeth instead of the five to seven of

Trichechus) and because the structure of its teeth is more primitive.
Pascual (1953) suggested that Potamosiren magdalenengia Reinhart, a Late Miocene trichechid from Colombia that was described by Reinhart (1951), was the same as Ribodon. The only known cheek tooth of Potamosiren is larger than, but structurally very similar to, the teeth of both Pascual's specimen and M7073. The only significant difference that Pascual noticed between Ribodon and Potamosiren was in the structure of the mandible, but he attributed this to the broken nature and advanced age of that of the latter. Reinhart (1951) assumed that both of the specimens (isolated tooth and broken mandible) he referred to Potamosiren came from the same individual because of their close proximity when found. However, the mandible resembles that of a trichechid only because of its slender form and its anteriorly-directed coronoid process. The most plausible explanation of this mandible is that it belongs to a member of the genus Metantherium; the presence of alveoli for only three choek teeth and the shape of the coronoid process are two features shared by the mandibles of Metarytherium and Potamosiren. Kellogg (1966) has described part of a left maxilla from the Uppor Miocene of Colombia that he assigned to a new species of dugongid, Metarytherium ortegense; this specimen was found to the north of the Potamosiren locality and is probably from the same stratigraphic unit. The presence of only three (and maybe even only two) functional cheek teeth in the mandible of Potamosiren is a dugongid rathor than a trichechid character, and the fact that the dental capsule of Potamogiren is infilled with cancellous bone auggests that it had a finite number of teeth rather than the continuous sequence found in trycheohus and apparently also in Bibodon. The reputed trichechid sirenian Potamogiran magdalenoneis Reinhart is thorefore a chimera - the isolated tooth does belong to a trichechid, but to the previously desoribed genus Hibodon, whereas the mandible is referable to a dugongid, most probably Meteqtherium.

THE ROSTRUM AND TUSKS OF THE DUGONGIDAE
The prominent, deflected premaxillary region present in most genera of the family Dugongidae has not been satisfactorily explained in the previous literature on the group. This feature, which is found in no other manmal group, is well developed in the oarliest mombers of the family, and its presence is heralded in the Protosirenidae and Botheroididae. This extreme modification of the premaxillae is accompanied by a reduction of both the premaxillary and maxillary dentitions, a character well illustrated by Dugong itself. The drastic change in the shape of the anterior part of the skull has also had a marked offect on the structure of the mandible, which becomes truncated anteriorly with the aymphysial region facing anterodorsally. The restriction of these modifications to the front of both jaws suggests that they are asseciated with either defensive or nutritional requirements. Since sirenians are primarily inhabitants of rivers and shallow coastal areas, they are unlikely to be preyed upon by terrestrial or aquatic predators - so the latter function would be more likely.

Very little research has been carried out on the food preferences or feeding habits of Dugong, but various authors have listed the plants that it is said to eat (Prater, 1929; Sculthorpe, 1967; Bertram \& Bertram, 1968; Kingdon, 1971). The food plants of the dugong belong to various families of aquatic monocotyledons, and the distribution of the dugong is controlled by the availability of large areas of these plants. Although these "dugong grasses" have extensive leaf systems, it is believed that the dugong has a preference for the roots. The "grasses" possess lily-like rhizomes that are anchored into the soft sediment of sandbanks by an adventitious root systen. It is believed by the natives of Anatralia, who hunt the dugong, that the animal only consumes the rhizomes, and the hunters can then locate their prey by the resultant floating mass of "grass" (Iroughton, 1941). Kingdon (1971) has also noted that the dugong Pinds the rhisomes edible, and that it
is possible to follow the trails of disturbed substrate left by the feeding animals. He remarked that the dugong is only capable of feeding off of the substrate and cannot eat floating vegetation. This method of feeding is relatively easy for a terrestrial herbivore, but the adaptations associated with an aquatic way of life present problems.

Sirenians and cetaceans are remarkable because of their very compressed cervical vertebrae, and consequently very short neaks. Although this feature is necessary for streamlining the body, it also imparts a great deal of inmobility to the head. In order to dig for roots etc. it is imperative to be able to lower the head to ground level or to develop a structure that reaches the ground without the head being appreciably lowered. Terrestrial mammals have adopted the former method (the elephant being a notable exception), but the dugongids have had to modify the skull in order to feed whilst keeping the body as close to the horizontal as possible. They have achieved this by developing the deflected premaxillac as a ventral extension to the anterior part of the skull.

The rostrum consiats basically of a pair of enlarged upper incisors that are surrounded by the adjacent parts of the premarillae. Some Focene airenian genera have already begun to show signs of onlarged incisors, but, although there is a slight deflection of the premarillae in these forms, the rostrum does not become prominent until the Oligocene. The ventral elongation of the premaxillae was presumably neoessary to protect and strengthen the longated incisors as they vere dragged through the substrate. The walrus, odobenus rosmarus (Linnaeus), has onlarged canines that are strongthened by being firmily rooted in the maxillae and having a robust shape. The walls of the canine alveoli in Odobenus extend rentrally to secure the teeth. The upper incisors of Dueng grow from persiatent pulps and have unusual anterolateral wear facets that are probably caused by the continual movement of the large upper lip (Fernand, 1953) rather than by the abrasive action of unconsolidated sediment (Troughton, 1941). The incisors of the adult male dugong exupt on either aide of the "upper jaw pad", but they remain buried in the imature
males and adult females - there is no difference between the unerupted teeth of males and females. This case of sexual dimorphism in living dugongids brings us to the issue of tusklessness in certain of their fossil relatives.

Qualitative sexual dimorphic characters are usually limited to ungulates in the Mammalia, and are best represented by horns and antlers (Kurtón, in Westermann, 1969). Qualitative dimorphism of the dental series is relatively rare, but it has been noted in Souus and some proboscideans. No work has been done on sexual dimorphism in fossil sirenians even though both tusked and tuskless species have been described.

Five species of tuskless dugongids, excluding Hydrodamalis gigas, have been reported in the literature:

$$
\begin{array}{ll}
\text { Thalattosiren petersi (Abel) } 1904 & \text { Middle Miocene } \\
\text { Hesperosiren crataegensia Simpson } 1932 & \text { Middle Miocene } \\
\text { Caribosiren turneri Reinhart } 1959 & \text { Middle Oligocene } \\
\text { Halianassa Vanderhoofi Reinhart } 1959 & \text { Upper Miocene } \\
\text { Metartherium calvertense Kellogg } 1966 & \text { Middle Miocene }
\end{array}
$$

These apecies retain their cheek teeth and, apart from the absence of the enlarged incisors, they all closely resemble previously described tusked species. The absence of incisor tusks has been taken to be a taxonomic character in the past because both sexes of Dugong possess them. The tusks of the female dugong are noticeably amaller than those of the male and do not penetrate the gums because they are resorbed at their bases. The great similarity between the cranial anatomy of the five tuskleas apecies and that of certain species with tusks is indicative of a sexual variation rather than a taxonomic one.

Thalattosiren peterei is a tuskless sirenian that combines some of the characters of both Helitherfum and Metaxytherium - its nasals join in the mid-line like those of Halitherpum, but it has the same cheek tooth formula as Matorythorium. T. peterriz is younger than any apecies of Holitherpium and is presumably a late remnant of the Halitheriinae that paralleled the Metarytherinae in tooth reduction. It is best retained in a distinot genue
because of its transitional characters.

Simpson (1932) described Hesperosiren crataegensis on the basis of a crushed skull and various post-cranial remains from the Midde Miocene of Florida. Since the skull was badly deformed, Simpson had a model prepared to represent its presumed original appearance. He at once noted the absence of incisors and realized that his material was distinct from that of the other known tuskless genera, Hydrodamalis and Thalattosiren. Simpson also remarked on the close resemblances between Hesperosiren and the MetaxytheriumFelsinotherium complex, although he thought that the absence of incisors and the shape of the rostrum necessitated the erection of a new genus. However, he placed the new taxon in the subfamily Halitheriinae together with Helitherium, Metarytherium, and Felsinothorium.

In his review of the Sirenia, Reinhart (1959) described two new tuakless forms from the New World; the Oligocene Caribogiren tumeri, which has been discussed above in relation to Evtiodug geltenensis (see Chapter 1), and the Miocene Halianassa (=Matacytherium) randerhoofi. Domning (1970a) considered ㅍ. Fanderhoofi to be a junior synonym of Metarytherrum fordani Kellogg 1925, a tusked sirenian from the Opper Miocenc. This occurrence of a true Metaxytherium without tusks was the first piece of evidence for sexual dimorphism in the Neogene Dagongidae, and it was substantiated by the finding of another tuskless dugongid, Metartherium calvertense, in the Midde Miocene rocks of Maryland (Kellogg, 1966). Since M. iordani (=ㅍ. Fanderphofi) is from California, tuskless sirenians are now known from beth aides of the United States.

The theory of sexual dimorphism in sirenians could not be supported when Thalattosiren and Hesperosiren were described, but this new material can be used in a remexamination of the theory. Although Thnlattonimen paterali has certain characters that warrant placing it in a genus of its own (see above), the absence of incisor tusks on the type (and only) speoimen is nost probably a secual feature. Similarly, a comparison of the illustrations of Hompengimen cratancengig (Simpaon, 1932, figs $2 \& 3$) and Halianasas Tanderphoofi (=

Metaxytherium jordani) (Reinhart, 1959, figs $4 \& 5$) shows that the two forms were very similar in overall skull morphology, and a close scrutiny of Simpson's description reveals that his genus is almost indistinguishable from H. Vanderhoofi. The characters that Simpson believed to be diagnostic for Hesperogiren are reviewed in the next paragraph and are compared with those of ㅌ. ㅁanderhoofi.

Hesperosixen has two small pits at the anterior end of the premaxillae, but there are no incisor tusks; ㅍ. Fanderhoofi also lacks incisors. Both species have only a slightly deflected rostrum, although Simpson's reconstruction apparently exaggerates the straightness of the rostrum of Hesporosiren. The rostrum is swollen anterior to the mesorostral fossa in both forms, and the posterior rami of the premaxillae are clasped by the frontals. Simpson compared Hesporosiren with Metarytherium curiexi (-M. medium) and noted that the mesorostral fossa of the former was relatively longer; in contrast, H. Yanderhoofi has a longer fossa than Hesperosiren. The nasals agree in shape and size in both Hesperosiren and H. vanderhoofi, and the temporal crests of both have a similar configuration. Hespergairen and Metaxytherium (including ㅂ. vanderhoofi) both appear to have had nine thoracic vertebrae with demi-facets. The remainder of the characters of Hesperosiren can be safely taken as being characteristic of Metacatherium, and it was precisely these features that enabled Simpson to place Hesperogiren in the same subfamily as Motaxtherium. No tusked dugongids are know from the Miocene of Plorida, but Pliocene forms have been discovered there and specimens probably referable to Metaxytherium occur in South Carolina.

If the presence or absence of tusks is taken to be a serual oharacter, then Hesperosiren is indistinguishable from members of the genus yetertherfun, eapecially M. iordani (including Enlianagas vanderhoofi). Without examining the actual specimens it is impossible to say whether Hesperosiren crataegengia represents a new apecies of Metatherius or is merely a female of a previously described species. For the present it is better to allocate it to the genus Metagtherium as a now species, M. crataesensig (simpson).

The presumed absence of enlarged incisor tusks in certain female sirenians is most probably due to reduction rather than non-development. All tuskless dugongids have a deflected rostrum (not bent to the same degree in all species) that is intimately associated with the presence of enlarged tusks. It is extremely unlikely that a deflected rostrum could have developed without being stimulated by the growth of enlarged incisors. Metangtherium crataegensia may have had small, rudimentary incisors in the two small pits on its premaxillae that appear to be the remains of alveoli. These small incisors could have been lost during fossilization. Since many sirenian species are represented by inadequate material, it is possible that sexual dimorphism was much more common than has been previously supposed.

If this suggested sexual dimorphism is to be satisfactorily explained it is necessary to put forward a reason for the retention of tusks in the males and also for the presence of tusks in both sexes of Dugong. The former will be dealt with here, but the latter will be considered in a later section of this chapter on the origin of Dugong.

It would be very easy to suggest that the tusks are retained in the male because they might be useful in intraspecific combat, but no definite cases of such use have been observed in Dregong. Annandale (1905) concluded, from the presence of scars, that the males fight with their tusks during the breeding season, but Fernand (1953) dismissed these scars as being caused by sharp pieces of coral and shell. Kingdon (1971) stated that males have been known to defend their mates and young against hunters, but he did not say if they used their tusks in such aituations. Since the tusks of the male dugong cannot have any important function in relation to nutrition (Owen, 1845) and since there have been no authenticated cases of their use as weapons, it is an open matter as to how they are utilized. However, because iittle work has been carried out on the dugong in the wild it may only be because of inadequate observation that the true purpose of the tusks has been missed.

The most abundant and best preserved remains of the dugongid genus
Halitherium have been found in the Palaeogene sedimentary basins of northern Europe, especially the Aquitaine, Mainz, and Linz Basins. The type species, Helitherium schinai Kaup 1838, was described from Stampian (Lower Oligocene) sediments of the Maing Basin, and since its discovery numerous other sirenian remains have been referred to this genus. H. gchingi has now been recorded from Lower Oligocene strata in France, Switzerland, Belgium, and Italy as well as the classic area around Mainz. A second apecies, H. chouqueti, was later described from the Stampian of the Paris Basin (Gaudry, 1884), but it is only known from ribs and is most probably synonymous with H. gehingi.

The genus extends into the Chattian (Upper 0ligocene), and four species are recognized with certainty from this level - three from the Linz Basin of Austria and one from northern Italy. The Linz sirenians have been ably atudied by Spillmann (1959), who arranged them in a phylogenetic sequence (ㅍ. pergense \rightarrow He christoli \rightarrow He abeli) that can be linked to the Lower Oligocene Halitherium species by H. pergense and to the Lower Mocene (Burdigalian) Metaxytherium krahuletri by H. abeli (see Table 11). H. bellungnse has been described from northern Italy (de Zigno, 1875) in deposits that have been placed in the Chattian by dal Piaz (1937).

The presence of Halitherium in pre-Oligocene rocks cannot be ruled out because Halitherium-like skull roofs have been found in the Eocene of Hungary and Romania (Kretzoi, 1941; Fuchs, 1970). The only verified post-01igocene occurrence of the genus is some material from Horida that Dr. R. H. Reinhart (pers. comm.) believes is at the same stage of evolution as the Buropean Oligocene forms, but which comes from a Middlemate kiocene stratum.

Therefore, in Burope at least, Helitherium is restrioted to the 01igocene, but problems arise when inadequate sirenian remains are described from areas away from the classic Buropean sites and are referred to this genus. Fire good examples of this practice are H. schingi ? from the Maltese islands (Adams, 1866, 1870, and 1879), H. canhami from Suffolk, Fngland (Flower,
1874), 트.? antillense from Puerto Rico (Matthew, 1916), H. sp. from the Malagasy Republic (Collignon \& Cottreau, 1927), and ㅍ. (?) sp. from Congo (Dartevelle, 1935).

Halitherium gohinzi? from the Maltese islands
A number of assorted sirenian remains from Malta and Gozo have been reported by Adams (1866,1870 , and 1879) under the name H. schingi ?. The remains, including teeth, have come from various geological formations on the two islands, and up until now no doubt has been cast on their generic identification. In the last of his three papers (1879), Adams lists the sirenian remains from Malta and Gozo, and he allocates all of thom to the Miocene. A shortened version of Adams' list is given below together with a revised atratigraphical nomenclature that is taken from House, Dunham, \& Wigglesworth (1961):
'1. A molar from a nodule bed of Calcareous Sandstone (=Globigerina Limestone of House et alo), and an "ear-bone".......with several caudal vertebrae, from the Sand bed ($=$ Greensand of House et al.).
2. ...a similar tooth (possibly a penultimate true molar)...., from the Lower Limestone (=Lower Coralline Limestone of House et al.).
3. ...a fragment of a jaw with two teeth in situ.......found in Gozo.
4. ...broken crown.......from the Sand bed (=Greensand of House et al.) in Gozo.
5. Several vertebrae.......vith fragments of ribs.......from the marl and nodule seams of the Calcareous Sandstone ($=$ Globigering Limestone of House et al.).' (Adams, 1879)
House et al. (1961) correlate the Maltese formations thus:

TABLE 10

FORMATION	STAGY
Upper Coralline Limestone	Tortonian
Greensand *	Holvetian
Blue Clay	Burdigalian
Globigering Limestone *	
Lover Coralline Limestone *	Aquitanian

Therefore the Maltese sirenians have a wide range from the Aquitanian to the Helvetian (= Burdigalian-Langhian). One of the five teeth is unfortunately too worn to be of use as a generic indicator, and the remaining four are barely adequate for comparison purposes. Spillmann (1959) gave a table listing the main anatomical differences between Halitherium and the Miocene genus Metaxtherium - one of the main characters being that the anterior cingulum of a Halitherium molar is composed of a number of small tubercles, whereas in Metarytherium it takes the shape of a large accessory cusp that is inserted between the protocone and the protoconule. The maxillary fragment from an unidentified horizon on Gozo (Adams, 1879) contains an almost complete M^{1} and M^{2} that, because of their size and the absence of a tuberculate anterior cingulum, should be referred to Metarytherium rather than to Halitherium. The broken enamel crown that Adams (ibide) suggested was an M_{2} is more probably an M_{3} and its size, together with its Miocene age, point to Metaxytherium and not Halitherium.

There is therefore no legitimate reason for including any of the Maltese sirenians in the species Halitherium gchinai, and it would be more sensible to attribute the remains to Metarytherium spp. indet. . This reorganization does not create a problem in Miocene sirenian distribution because the latter genus is already recorded from the Helvetian of Sardinia (Caria, 1957).

Helitherium canhemi from Suffolk, Fngland
Sirenian remains were first reported from the bonebed at the base of the Pliocene Red Crag at Poxhall, Suffolk, by Flower (1874), who used a very badly worn akull fragment from the collection of the Rov. H. Canhar as the basis of a new species, Halithorium canhami. Flower believed that the Crag sirenian was very similar to, but larger than, He nohingifrom the Mocene (sic.) of the Rhine Valley. Siokenberg (1934) removed this specimen from the genus Halitherium and synonymized it with Kiosiren kocid Dollo, of which good material was recorded from the Opper Miocene rocks of Belgivm. Sickenberg (ibld. . p. 333) atated:
'Es geht schon aus der Beschreibung und aus den Abbildungen klar hervor, dass "Halitherium" canhami zu Miosiren gehరren muss, ja es besteht die grØsste Wahrscheinlichkeit, dass diese Form sogar artgleich mit M. kocki ist.'

Sickenberg only had a cast of the Suffolk skull fragment to compare with the skull of M. kocki, but he could find no appreciable differences between the two individuals. He indicated that Flower was misled as to the number of alveoli in the broken maxillae because extra depressions and pits had appeared in this region during fossilization - a feature that is common to many fossils from this particular bonebed.

Recent evidence (Hooyberghs \& de Meuter, 1972) shows that the Edegem Sands, Belgium, from which \underline{M}. kocki is recorded, contain a foraminiferan fauna that is characteristic of Zone P20/N1 i.e. Barly-Late Oligocene in age (Berggren, 1972). This new date agrees much better with the atage of evolution of \underline{M}. kocki than does the Late Miocene age proposed by Sickenberg (1934).

Newton (1891) referred a right M^{3} from the Red Crag Hodule-bed of Felixstowe, Suffolk, to Flower's species (E. canhami), but having seen this specimen in York Museum I believe that it cannot belong either to a apecies of Halitherium or to Miosiren kocki. M. kocki can be eliminated because one of its characteristic features is a very reduced and flattened M^{3} that is very unlike the bilophodont tooth in question. Although the M^{3} from Felixstowe is worn there is no indication of the tuberculate anterior cingulum that is characteristic of Halitherium, and the absence of this feature, together with the large size of the tooth, indicate a relationship with the MetaxatheriumFelsinotherium complex.

The presence of two stratigraphically distinct sirenian genera in the Nodule-bed need not cause too much concern because it is well known that many of the fossils from this bed are derived from older deposits (Newton, 1891). However, precise identification of the genera present must depend upon the discovery of less worn and more complete material.

Matthew (1916) described a broken mandible and two vertebrae from Puerto Rico as a new species of sirenian, Halitherium? antiliense. These specimens were found in calcareous shales that have since been placed in the Juana Diaz Formation, the precise age of which has been the subject of some controversy. Cooke, Gardner, \& Woodring (1943) placed the Juana Diaz Formation in the Middle Oligocene, although Gordon (1961) indicated that it was the southern equivalent of the lower part of the San Sebastian Formation (Aquitanian). However, van den Bold (1965) has dated the upper part of the San Sebastian Formation as Late Oligocene, and Moussa \&e Seiglie (1970) have given the Juana Diaz Formation a similar age.

Reinhart (1959) referred to the fact that Matthew's specimens did not show any characters of generic distinction. Until better material is available it is advisable to consider H.? antillense as an indeterminate Oligocene dugongid rather than to assign it to a definite genus or species.

Halitherium sp. from the Malagasy Republic
The only Neogene sirenian recorded from the east coast of Africa is a small species represented by a broken cranium and other skull fragmente from the Miocene (Burdigalian-Helvetian) of Ile Makamby, Malagasy Republic (Collignon \& Cottreau, 1927). Because of its small size the principal specimen was thought to belong to a young individual, and the dispomition of its temporal crests was believed to indicate a apecies of Halitherium. The only other material recovered with the akull fragments consisted of broken ribs and these confirmed the small size of the individual. The aize and shape of the temporal orests cannot be used as a reliable feature to distinguish Halitherium from other dugongid genera because the crests exhibit pronounced intrageneric differences. The absence of the characteristic nasal region makes it impossible to allocate the Ile Makamby sirenian to a definite genus, and it is best considered incertae sedis within the Dugongidae.

TABLE $\|$ Range of Halitherium and Metaxytherium

Halitherium (?) sp. from Congo
Sirenian ribs from Malembe, Congo, have been referred to Halitherium (?) sp. (Dartevelle, 1935), but there is no other material to substantiate this claim. Since the associated fauna suggests a Burdigalian age for this western Congo site, these sirenian remains are older than those of any European Halitherium, but are within the stratigraphic range of Metaxytherium. Although the ribs of sirenians are diagnostic for the order, they cannot be successfully used for the identification of lower tara and so the Congo sirenian should be regarded as indeterminate.

THE GENUS METAXYTHERIOM (DESMAREST)
There has been much discussion about whether the genera Metanytherium and Halianassa are morphologically distinct. The type apecies of the latter genus, H. studeri Studer, may be identical with Metanytherium beaumonti de Christol or M. krahuletzi Depéret (Depéret \& Roman, 1920), and Domning (1970a) has synonymized Halianassa Yanderhoofi Reinhart with Ketarytherium iordani Kellogg. Simpson (1932) realized that the two forms were very similar, although he believed that Halianassa was the prior and valid name; hovever, Kellogg (1966) has ably shown that Metaxytherium is in fact the correct name and I intend to include all of the species reforred to Halianagen in that genus.

Metextherium is knom with certainty from the Miocene deposits of Europe and the Americas. Apart from a premature occurrence in Baja California (Kilmer, 1965), the genus is first recorded in the Burdigalian of central Europe. M. krahulatai and M. meyeri Abel are known from the Burdigalian of Austria and Germany respectively; the firat species may be identical with M. beaumonti from southern France and M. (z툑ianasas) studerin from Svitzerland. The specimens referred to these four species must be oritically re-examined to determine whether there are any diagnostic oharacters to
support this rapid diversification in such a short period of time. Incomplete sirenian remains from Burdigalian strata that may belong to Metaxytherium include teeth from Malta and Gozo (see above) and post-cranial remains from Hungary (Koch, 1903).

Only two species of Metarytherium occur in the Helvetian (=BurdigalianLanghian) of Europe, and they have a more restricted range than their ancestors. The type species, \underline{M}. medium (Desmarest) (\bar{M}. cuvieri de Christol), is a very common fossil in the Loire Basin, France, and it also occurs, with M. lovisatoi Capellini, on Sardinia. Some ribs found in the Kiddle Fars Limestone (Upper Miocene) of Iran may represent an eastward extension of the range of this genus.

No recognizable remains of Metaxytherium are known from the Late Miocene of Europe, although other genera are present. Some bones, including a worn right M^{3}, from an Opper Miocene level in a quarry near Eibergen, Holland, have been ascribed to Halianassa ($=$ Metaxtherium), but more material needs to be found before this identification can be verified (author's notes). A sirenian rib cage has been found in the Upper Kiocene Gerani Formation of Crete by Dr. P. Y. Sondaar (pers. comm.), but unfortunately the skull was not present and identification was impossible.

The American representatives of the genus are known from both east and west coasts. The earliest appearance of Metaxytherium on the American continent is surprisingly on the west coast, Halisnassa(?) (\#yotarytherium) sllisoni from Baja California, Merico (Kilmer, 1965). This apecies is based on a broken mandible collected from the Ysidro Formation (Lower-middle Miocene), but Domning (pers. comm.) has found new material that can be assigned to this species. The Yaidro Formation has also fielded remains belonging to an immature individual of a larger airenian apecies that Reinhart (1959) identified as Halianassa (metaxytherium) ap. indet.. The presence of Metaxytherium in Mexico at such an early period in time raises some problems, but it is hoped that the newly obtained material will holp to dispel these.
.188.
The Middle Miocene forms of Metaxytherium are so far restricted to the east coast, extending from Florida in the south to as far north as Maryland. The best known species is M. calvertense Kellogg from the Middle Miocene Calvert Formation of Maryland (Kellogg, 1966), the type specimen of which is the almost complete skeleton of an immature sirenian. Metaxytherium (=Hesperosiren) crataegensis (Simpson) has been allocated to this genus because of the reasons outlined in the first section of this chapter. It is only known from the Hawthorn Formation of Quincy, Florida (Simpson, 1932). Metaxytherium ($=$ Dioplotherium) manigaulti (Cope) is a large sirenian that is represented by broken remains dredged from the Wando River, South Carolina (Kellogg, 1966); unfortunately it is not possible to date these deposits accurately because they contain a large number of remanié fossils.

The two Upper Miocene American species are found on the west coast one in California and the other in Colombia. M. jordani (including Halianassa vanderhoofi) is recognized from Santa Barbara County (Kellogg, 1925) and Santa Cruz County (Reinhart, 1959), California, and Domning (1971) believes that it is directly ancestral to the Plio-Plaistocene genus Hydrodamalis. The only record in the literature of a dugongid from South America is that reported by Kellogg (1966) from the Honda Formation of Colombia. This species, M. ortegense Kellogg, is known with certainty only from a left maxilla containing three teeth. However, the mandible previously referred to Potamosiren magdalenensis Reinhart in all probability belongs to a dugongid, but a more accurate identification is not possible (see Chapter 3). Reinhart (pers. comm.) has an isolated sirenian tooth from the MiddleUpper Miocene of Argentina that is awaiting description, but which he says belongs to Metaxytherium.

Three Miocene genera have been erected on the basis of insufficient evidence and it is possible that at least one of these can be placed in Metaxytherium. The species in question are Miodugong brevicranius from Ceylon (Deraniyagala, 1969), Prohalicore dubaleni from France (Flot,
and Haplosiren leganyii from Hungary (Kretzoi, 1951).

Abstract

Miodugong brevicranius Deraniyagala A skull fragment from the Miocene Malu member of Ceylon forms the basis of this genus (Deraniyagala, 1969). The only reason for erecting a new genus on such scanty material was the fact that it was the first record of a Miocene sirenian from the Indian subcontinent. Since Miocene sirenian remains are now known from Madagascar (Collignon \& Cottreau, 1927), Iran (author's notes), Java (von Koenigswald, 1952), and northwestern India (R. J. G. Savage, pers. comm.), it is evident that the order had a wide, though poorly recorded, distribution in the Indian Ocean area. Deraniyagala recognized the similarity of his material to that of Halianassa (=Metaxytherium), and I recommend the transference of the specimens in question to Metaxytherium sp. indet. until more adequate material is available.

Prohalicore dubaleni Flot

The broken mandible of P. dubaleni, from the Helvetian (=BurdigalianLanghian) of Audon, France, is characterized according to Flot (1887) by its elongation and the cylindrical shape of its horizontal ramus. These features may be accentuated in this specimen because the alveolar border is very broken and the vertical ramus is missing. No information can be obtained from the dentition because all that remains are the roots of the anterior teeth. The dentition is not as reduced as in contemporaneous species because It appears that three premolars were retained. Because of these characters Deperet and Roman (1920) thought that Prohalicore could be a Miocene descendant of Eotheroides Iibycum, but this is unlikely because no intermediate forms are known. When better material has been found it may be possible to derive Prohalicore from one of the French apecies of Metaxytherium, but until then it is best left as an indeterminate dugongid.

Haplosiren leganyi Kretzoi

Hungary has yielded some tantalizing though fragmentary airenian ramains, mainly due to the assiduousness of Kretzoi: Eaplosimen leganyil is no exception. Kretzoi (1951) described a mandibular fragment containing M_{2} and M_{3} from the Tortonian (Upper Miocene) of Mátraszillós, Hungary, as representative of a new genus, Haplosiren. He noted that it was a large sirenian with the talonid of the lower molars reduced to a single cusp. Kretzoi believed that Haplosiren was intermediate between Hetarythorium and Felatnothorium, but aince the last two genera may be synonymous it is best to regard the sirenian from Mátraszbilős as an indeterminate metaxytherine until better material is available.

THR ORIGIN OF DURONG

The most comprehensive survey of the literature concerning the oxigin of the Dugonginae was that produced by Simpenon (1932). Be reviewed the relevant publications and came to the conclusion that purgong arose from "late Tertiany Halitheriinae structurally similar to the known forms allied to Metocithorivm or Folninothorivin" - it must be rameabered that whon Simpson wrote this the subfamily Halitherinae contained Keterathorive and Felginotheripun as well as the type gemes. Some of the early authors (Abel, 1904, 1919; Doperet \& Roman, 1920) had doubta about putting Dropng as a direct descendant of the large Pliocene sireniang (Felainothorpivm), but Simpson assessed the ovidence and believed that Durong could satiafactorily be derired from one of these late apecies. I will now present now evidence for the origin of prepong, taldig into acoount the umanul features of ita dentition and the lateat palaoontological information from the Indian Ocean area.
and those of other Cenozoic sirenians. It was outlined above why there are reasons for considering the majority of tuskless dugongids to be females, and it was stated that one of the barriers to this suggestion was the presence of tusks in female dugongs. This barrier is only effective if Dugong is considered as a direct continuation of the Metarytherium-Felsinotherium lineage; since tusklessness is assumed in this group from the Middle Miocene onwards, it would be extremely unlikely for enlarged incisors to reappear in later forms. However, if the origin of Dugong is taken as premiddle Miocene then this obstacle to tusklessness is removed. Can this early origin for the Dugonginae be supported by the new information that has accumulated since Simpson's paper?

The earliest sirenian genus that bears a close morphological resemblance to Dugong is Metaxytherium, which makes its first appearance in the Lover Miocene of France, Germany, and Austria, and is a common fossil in some of the marine deposits along the northern shore of Tethys. This genus is almost identical to the later Felsinotherium and is just as advanced in skeletal characters as the latter. Thus there is no anatomical reason why the Miocene Metarytherium could not be the ancestor of Dugong. Dugong is markedly different from both Motracthorivm and Felainotherium in the structure of its cheek teeth. The teeth of the Motarytherium-Felsinotherium group are lophodont and enamelled, but those of Dugong are very quickly worm to produce a flat occlusal surface because they only have a thin onamel layer that is lost as soon as each tooth comes into use (Fermand, 1953). This major adaptation of the dentition is unlikely to have taken place during auch a short period as that represented by late Pliocene-Recent. Although the adult dugong only retains two molar teeth in each half of the jaw, it has been shown that a total of five or six teeth do appear during the life of the animal (Fermand, ibid.). This obserration indicates that Dugong arose from an early ancestor because the late metaxytheriines only have four check teeth in each half of the jaw.

The palaeogeography of the Miocene can be used as evidence for the origin of Dugong. It is believed that during the Palaeogene the Tethyan and IndoPacific regions were connected by a seaway, but that this connection was blocked by Middle Miocene times. This hypothesis is supported by foraminiferal and ostracod information (Adams, 1967; McKenzie, 1967), and also by the fact that intercontinental migration of mammals was very significant from the Middle Miocene onwards (Van Couvering, 1972). If the ancestor of Dugong entered the Indo-Pacific region from Tethys before the Middle Miocene it would be effectively isolated from the rest of the metaxytheriine stock from then on. The barrier between the two areas would stop the intermingling of sirenian populations as effectively as it stopped the mixing of distinct groups of foraminiferans and ostracods. Once a group of sirenians was thus isolated it could evolve independently of the other population centres in the Mediterranean and Atlantic areas.

The palaeontological evidence for the early presence of sirenians in the Indian Ocean region is sparse and inconclusive, consiating of fragments from five widely separated localities: Ile Makamby, Malagasy Republic (see section on the genus Helitherium) : Iran (see section on the genus Metarytherium); Kutch; Ceylon (see section on the genus Metarytherium); and Java. The Ipper Miocene rocks of Java have yielded an isolated molar that von Koenigswald (1952) identified as sirenian in origin. He created a new genus, Indosiren, for this specimen, which I would prefor to leave incertas gedis because it is probably a deciduous tooth. When von Koenigswald compared this tooth with those from other Cenozoic sirenians, he came to the conclusion that it most closely resembled the last upper deciduous molar of Prototherium from the Upper Focene. The most complete material from Asia is avaiting description and consists of teeth and parts of a skull of a large metaxytheriine from western Kutch (R. J. G. Savage, pers. comm.). Since the geological age of this material is in doubt, it is not possible to make a precise identification yet.

All of these occurrences are in rocks of Miocene (or Pliocene?) age and show that the metaxytheriines, at least, penetrated as far east as northern India. It is not possible to identify an ancestor of Dugong in this poor assemblage because so far the specimens have been too fragmentary. It is necessary to have much more complete material from Miocene and Pliocene localities in Asia before any more definite relationships can be formulated.

Shikama \& Domning (1970) reported the finding of a rib of Hydrodamalis in upper Pliocene strata in central Japan, and they believed that this genus could be derived from Metaxytherium jordeni of the Californian Late Miocene. The possibility of Dugong having entered the Indo-Pacific area via the Pacific coast of North America is very unlikely because the Californian metaxytheriines were already very specialized.

THE IMPORTANCE OF TETHYS IN THE ORIGIN AND EVOLUTION OF THE SIRENIA

On the basis of the distribution of fossil and living sirenians it is possible to divide the globe into four large marine provinces: a European Province (including the North Sea Basin, the Atlantic and Mediterranean basins, and the eastern European basins); a West Atlantic Province (including the Caribbean, and the east coasts of southern North America and northern South America); a Morth Pacific Province (including the west coasts of North America and northern South America, and the east coast of northorn Asia); and an Indo-Pacific Province (extending from the east coast of Africa across the Indian Ocean, and through Indonesia to the southwestern Pacific). Only one of the 40 -odd species recognized in this thesis has a range that is wholly outside of these provinces - Pricheohus aenegalenaial (Link) has, in the recent past, crossed the Atlantic Ocean from the Weat Atlantic Province to the rivers of the west coast of Africa.

The earliest known sirenian remains have been found in Ypresian-lower Lutetian strata in Romania (Grigorescu, 1967), although by the Late Eocene
primitive sirenians are also to be found in other parts of the European Province and in the West Atlantic and Indo-Pacific Provinces. The priority in time of the Romanian specimen suggests that the Sirenia may have originated in the area of what is now southeastern Europe. Unfortunately the material is very scanty and, although it is certainly sirenian (pachyostosed rib fragments), no more accurate identification is possible.

The European Province contains by far the largest number of fossil sirenian localities, but it must be stressed that these result from the intensive geological and palaeontological investigations that have been carried out in this region. These investigations have also been responsible for the profusion of taxa recorded from the European Province. Parts of the West Atlantic and North Pacific Provinces have rewarded recent work by yielding new localities and taxa, but the Indo-Pacific Province still awaits detailed exploration by the vertebrate palaeontologist.

Each province contains a number of endemic genera and species, and only four out of the nineteen recognized sirenian genera are known to occur in more than one province - Halitherium, Metarytherium, Felainotherium, and Dugong. Even more striking is the fact that only one species is recorded from more than one province - Dugong dugon (Errleben). It is significant that the percentage of endemic taxa to total number of taxa is highest in the Ruropean Province (see Table 12c). Present evidence indicates that the three fossil genera that are common to more than one province first appear in the European Province and then spread out into the other provinces. Of course, this will only be verifiable when more accurate trans-Atlantic correlations are available. The three pandemic genera seem to have orossed the Atlantic independently, but their European and American apeciew require closer comparison before a definite decision can be made. The movement of sirenians into the Indo-Pacific Province was dealt with in the previous section. The sirenians, like the other subungulate groups, most probably have their origins within the Condylarthra. However, Van Valen (1971) made the equivocal statement that the subungulates could possibly be derived from "...an animal that would be called a perissodactyl (although it would

19 genera of sirenians are recognized in this work - 15 are endemic
44 species of sirenians (excluding Irichechus aenegalensia) are recognized in this work - 43 are ondemic.
a. Number of tara_in each_profince

	Genera	Speciea
European Province	12	26
West Atlantic Province	8	13
North Pacific Province	3	5
Indo-Pacific Province	2	1

b. Kumber of endemic taxa in each propince (also_erpressed as percentage of total number of endemic taral

	Genan	Spapien
European Province	$9(60 \%)$	$26(60 \%)$
Weat Atlantic Province	$5(33 \%)$	$13(30 \%)$
Morth Pacific Province	$1(7 \%)$	$4(10 \%)$
Indo-Pacific Province	0	0

	Gnmyn	Spanine
European Provinoe	75%	100%
Heat Atlentic Province	6%	100%
Horth Pacific Province	$3 \% \%$	80%
IndomPaoific Province	0%	0%

probably not be called Hyracotherium)...". Possible sirenian ancestors existed on mainland Europe during the Palaeogene in the form of phenacodontid and meniscotheriid condylarths (e.g. Pleuraspidotherium). Pleuraspidotherium shows certain similarities to the earliest sirenians in basic skull morphology, especially in the temporal region (e.g. no ossified tympanic, longitudinal crest on petrosal, stout post-tympanic process). No condylarths have yet been discovered in Africa, where the subungulate orders are very prominent in the Eocene and Oligocene faunas.

A NEW SIRENIAN CLASSIFICATION

Sirenian classification since Simpson (1945)
The classification of the Sirenia used by Simpson (1945) in his classification of mammals was a modified version of an earlier system (Simpson, 1932). The modifications were principally restricted to the Eocene sirenians and were necessitated by Sickenberg's (1934) review of that part of the order. Simpson (1945) divided the Sirenia into two suborders, the Trichechiformes and the Desmostyliformes - the former contained all of the true sirenians, whereas the latter was restricted to the extraordinary desmostylids. The true sirenians were subdivided into four families:

Prorastomus and Protosiren were both placed in monotypic families; Dugong and its ancestors (including Fotheroides, Prototherium, and several divergent stocks) comprised a third family, the Dugongidae, which had five subfamilies; and the manatee, Trichechus, was put into another monotypic family. The desmostylids, although placed in the Sirenia, were recognized by Simpson to be most probably highly aberrant offshoots of that order.

Heinhart (1953) diagnosed the new mammalian order Desmostylia, which removed Desmostrlus and Compralifus from the list of sirenian genera. The next classification of the Sirenia (Dechaseaux, 1958) was therefore the aame
as Simpson's except for the exclusion of the Desmostyliformes (and therefore the absence of suborders).

The most recent reviewer of the sirenians (Reinhart, 1959) has drastically revised their classification and has recognized only two families; the Dugongidae containing all of the Eocene forms plus Dugong and its allies, and the Trichechidae containing just Potamosiren and Trichechus. Reinhart relegated two of Simpson's and Dechaseaux' families to the status of subfamilies within the Dugongidae, and enlarged one of these to include Eotheroides and Sirenavus as well as the type genus, Prorastomus. He also removed some genera from the dugongid subfamily Halitheriinae to form the new subfamily Halianassinae.

New sirenian classification

The new classification proposed below (re)introduces the following features:

1. promotion of the Prorastominae to family rank and its restriction to Prorastomus
2. promotion of the Protosireninae to family rank and the inclusion of Libysiren as well as Protosiren
3. erection of a new family, the Eotheroididae, to include Eotheroides and Prototherium
4. inclusion of these three families in a new superfamily, the Prorastomoidea
5. inclusion of the Trichechidae and the Dugongidae in new separate superfamilies, the Trichechoidea and the Dugongoidea respectively, to emphasize the differences butween them and the Prorastomoidea

Order SIRENIA IIliger 1811

Diagnosis: Aquatic mamals. Premaxillae form a rostrum that is deflected in later forms; external nares dorsal; nasals prominent in primitive forms, but decrease in size as the mesorostral fossa enlarges; periotic isolated from
rest of braincase in all genera except Prorastomus; tympanic semicircular. Number of incisors becomes progressively reduced; cheek teeth primitively bilophodont, but show great morphological variation in the different subfamilies. Hind limbs become reduced and functionless; fore limbs become paddle-like. Tail with horizontal fluke. M. Eocene-Recent

Superfamily PRORASTOMOIDEA superfam. nov. Diagnosis: Rostrum slightly deflected; large nasals form anterior part of skull roof. Complete eutherian dental formula; incisor tusks begin to enlarge in some genera. Hind limbs function as paddles. M.-U. Eocene

Family PRORASTOMIDAE Cope 1889

Diagnosis: Periotic still attached to braincase. No enlarged incisor tusks. M.(?) Eocene

Prorastomus Owen 1855

Family PROTOSIRENIDAE Sickenberg 1934
Diagnosis: Lacrimal foramen and duct absent (at least in Libysiren); alisphenoid canal present; elongated auperficies meatus; processus fontioulus present; periotic isolated from rest of braincase. Incisor tusks beginning to enlarge. M. Eocene

Protogiren Abel 1904
Iibyairen gen. nov.

Family EOTHEROIDIDAF fam. nov.
Diagnosis: Lacrimal foramen and duct present; alisphenoid canal absent; short superficies meatus; processus fonticulus absent; periotic isolated from rest of braincase. Incisor tusks beginning to enlarge. Mom. . .

Gotheroides Palmer 1899
Prototherium de Zigno 1887

Superfamily TRICHECHOIDBA superfam. nov.
Diagnosis: Rostrum amall and little deflected. Numerically inoreased dentition; incisor tusks absent; cheek teeth continuously replaced fron rear.

No bicipital groove on humerus; carpals little fused; hind limbs reduced and functionless; ilium greatly reduced or absent; ischium relatively large and triangular. Six cervical vertebrae; usually seventeen thoracic vertebrae. L. Kiocene-Recent

Family TRICHECHIDAE Gill 1872
Diagnosis: As for superfamily.
Mrichechus Linnaeus 1758
Gibodon Ameghino 1883
Sirenotherium Paula Couto 1967

Superfamily DUGONGOIDEA superfam. nov.
Diagnosis: Rostrum enlarged and deflected. Numerically reduced dentition; incisor tusks usually present (at least in the male); premolars disappear in advanced genera. Broad bicipital groove on humerus; carpals tend to become fused; hind limbs reduced and functionless; ilium becomes rod-like. Seven cervical vertebrae; usually nineteen to twenty thoracic vertebrae. L. Oligocene-Recent

Family DUGONGIDAE Gray 1821
Diagnosig: As for superfamily.

Subfamily HALITHERIINAE Abel 1913
Diagnosis: Rostrum strongly deflected; nasals join in mid-line. Incisor tusks usually present; cheek teeth enamelled; M^{3} unreduced and complex. L. Oligocene-M. Miocene

Halitherium Kaup 1838
Anomotherium Siegfiried 1965
Thalattosiren (Abel 1904)

Subfamily MIOSIRENINAE Abel 1919
Diagnosis: Rostrum deflected; occiput broad and cranium rounded; supraoccipital reaching foramen magnum. Large incisor tusks present; cheek teeth enamelled; M^{3} much reduced with a simple pattern. Lo-U, Oligocene

Miosiren Dollo 1889

Diagnosis: Rostrum strongly deflected; large lacrimal bone, but no lacrimal duct; narrow parietals. Large, flattened incisor tusks; cheek teeth enamelled; M^{3} unreduced and complex. L. Miocene

Rytiodus Lartet 1866

Subfamily METAXITHERIINAE subfam. nov.
Diagnosis: Rostrum strongly deflected; nasals separated in mid-line by frontals. Incisor tusks present (in adult males only?); cheek teeth enamelled; M^{3} unreduced and complex. U. Olisocene(?)-Pliocene

Metaxytherium de Christol 1840
Felsinotherium Capellini 1871
Caribosiren Reinhart 1959 (?)

Subfamily HYDRODAMALINAE Simpson 1932
Diagnosis: Rostrum large, narrow, and moderately deflected; nasals small and separated in mid-line by frontals. No functional teeth. Pliocene-Recent

Evdrodamalis Zimmermann 1780

Subfamily DUGONGINAE Simpson 1932
Diagnosis: Rostrum strongly deflected; vestigial nasals separated by frontals; supraoccipital reaches foramen magnum. Large upper incisor tusks in male; cheek teeth without enamel and with open roota; only two cheek teeth in each half of jaw of adult. Recent

Dugong (Miller 1776)

INCERTAE SEDIS

Sirenavus Kretzoi 1941

ABEI, 0. 1904. Die Sirenen der mediterranen Tertiarbildungen Österreichs. Abhe geole Boichasnsterwien, 19, 2. $7 i+223$ pp.

ABEL, O. 1913. Die eocânen Sirenen der Kittelmeerregion. Frster Teil: Der Schädel von Eotherium asorptiacum. Palaeontocrephice, 59: 289-363.

ABEL, O. 1919. Die Stäme der Mirpeltiere. xilii + 914pp. Berlin.
ABEL, O. 1928. Vorgeschichte der Sirenia. In Wober, M. Die Säncetionere 22nd eds 496-504.

ADAMS, A.L. 1866. On the discovery of ramains of Helitherrium in the Miocene deposits of Malta. De_T_reole Soce_londo, 23: 595-596.

ADAMS, A.L. 1870. Koter of a naturalint in the Kile Vallev and Manta. 295pp. Edinburgh.

SDAKS, A.L. 1879. On remains of Knitodon and other Vertebrata of the Kiocene beds of the Maltese islands. Ae_J1 anole Soce Iondo, 35: 517-531.

ADAMS, C.G. 1967. Tertiary foraminifora in the Tethyan, American, and Indom Pacific provinces. In Adans, C.G. \& Ager, D.F. (Eds). Aspects of Tethyan Blogeography. Puble Syate AMo, 7: 195-217.

AMRGHINO, F. 1883. Sobre una colección de mamiferos fósiles del piso mesopotémico de la formación patagónica. Boln icade nace cience Cóxiobs 5: 101-116.

ANDREUS, C.W. 1902. Preliminary note on some recently discovered extinct vertebrates from Reypt. (Part 3). Geole Ying., (4) 2: 291-295.

ANDRIFWS, C.W. 1906. Adegoxiptirecataloan of the Partiaxy Fextobrate of the Farume Frapt. mardi +324 pp. London.

AMMADALF, I. 1905. Hotes on the apecies and external characters of the dugong (Hilicore duronc). Je Asinte_Soce Bang., 1: 238-243.

ABAMBOURG, C. 1961 b. Hote prélininaire aur quelques Fortobrés noureaux du

ARALBOURG, C. 1963a. Continental vertebrate fannas of the Tertiary of Morth Africa. In Howell, F.C. \& Bourliare, F. (Ida). Afrycon_eolecy and hrman apolutions 55-64. Chicago.

ARAMBOURG, C. 1963b. It genre Bpnolintitiodon Arambourg 1933. Bulle Soce

ARAMBOURG, C. \& MAGNIRR, P. 1961. Gisements de Vertébrés dans le bassin tertiaire de Syrte (Libye). C. re hobde Sóance_Acad_ Scie. Papile, 252: 1181-1183.

ARNOULD-SAGET, S. \& KMGMIRR, P. 1961. Découverte de dents de Palaeomastodontes dans la région de Zolla (Iripolitaine). Bulle_Soce_́éole_Fs., (7) 3: 283-286.

BEADNELL, H.J.L. 1905. The toporcranh and geoloct of the Pavia Propince of Regot. 101 pp. Cairo.

BERGGREN, W.A. 1967. Blostratigraphy and planktonic foraminiforal zonation of the Tertiary aystem of the Sirte basin of Libya, north Afrioa. Inte_Confe Planictonio ricorofogaile 1at, Proce, 1: 104-120.

BERGGRBF, W.A. 1971. Tertiary boundaries and correlation. In Punnell, BoM. \& Biedel, W.R. The micropalanontolog of opanm: 693-809. Cambridge.

BERGGREN, W.A. 1972. A Cenosoic timo-scale - some implications for regional geology and paleobiogeography. Lathnin, 5: 195-215.

BARTRAM, C.I.R. \& BIARTRNY, G.C.I. 1968. The Sirenia as aquatic meatproducing herbivores. Sypipesoole Soce_Lend., 21: 385-391.

BISHOP, W.W., MILKBR, J.L. \& FITGE, F.J. 1969. INT potasaiwargon age determinations relevant to the Kiocene fosmil mamal sequence in East Africa. Ame_Je Sote, 267: 669-699.

BOLD, W.A. van don. 1965. Middle Tertiary Ontracoda from northwestern Puarto Rico. Kicropaleontolocat 11: 381-414.

CABIA, I.C. 1957. Huovi resti di sirenil nol Hiocene della Sardegna. Bolle Soce reple_itel., 76: 288-301.

CICHA, I. 1970. Stratigraphical probleme of the Mocone of Erurope. Borpre ústrade Üte anolo, 35. 134pp.

COLLIGHOH, M. \& COTFRßAO, J. 1927. Paléontologie de Madagasoar. 178 Tomailea du Miocone marin. Annla Pironte, 16: 135-171.

COOKS, C.W., GARDMER, J. \& MOODRIMC, M.P. 1943. Correlation of the Canosoio formations of the Atiantic and Gulf Coastal Plain and the Caribbean recion. Bille anole Soge. Mo. 54: 1713-1723.

COPI, E.D. 1869. Synopais of the extinct Mamalia of the oave formation in the Onited States, with obeervations on some Mrilapoda found in and near the same, and on some extinot mamals of the caves of

Anguila etc.. Proce_Am_phile_Soc., 11: 171-192.
COPE, E.D. 1883. On a new extinct genus of Sirenia from South Carolina. Proce Acade nate Scie Philad., 35: 52-54.

COTTRFAU, J. 1928. Le Yatartherium curierit du golfe de la Loire. Annla Palóont., 17: 3-20.

DARIEVELLE, E. 1935. Les premiers restes de mamiferes du tertiaire du Congo; la faune miocène de Malembe (pramière note sur les mamifìres fossiles du Congo). Cere Conore nathe Sater_Brures 2nd, 1: 715-720.

DECHASEAUX, C. 1958. Sirenia. In Piveteau, J. Mmitíde Pelóontolocie._6 (2): 333-363.

DEHFORTRIE, E. 1880. Découverte d'un squelette entier de Phytiodun dans les faluns aquitanions. Actesoce_ Iinne_Bopdeanx, (4) 4: 131-144.

DEPGRET, C. \& ROMAH, F. 1920. Io Felainothorim anymeri dea sables pliocines de Montpellier et les rameaux phyletiques dea sireniens fossiles de I'anoion monde. Axohn firge Fiate mate_Iyon 12: 1-56.

DERUNIYAGALA, P.E.P. 1969. A Miocene vertebrate faunule from the Malu member of Coylon. Spolinerylan., 31: 551-570.

D'ERISNO, G. 1934. Su alcuni avansi di vertebrati tersiari della Sirtica.

DESIO, A. 1968. History of geologic exploration in Cyrenaioa. Petrote Frolore Soce IA myac Anmp. Field Confen 10the 79-113.

DESIO, A. 1971. Outlines and probleas in the geomorphological ovolution of Libya, from the Tortiary to the present day. In Gray, C. (Fd.). Sypposive on the axolog of hibra: 11-36. Tripoli.

DOMRING, D.P. 1970.. Sirenian ovolution in the north Padific and the origin
 7the Proce: 217-220.

DOMSIEG, D.P. 1971. Sironians as guide foanile in Woat Coast late Tortiary correlation - a prospectus. Anole Sone_Anpee_thatro, 3: 110-111.

DOBRING, D.P. 1972. Sirenians and demostyliang in Veat Coast Mocone
 Sirmatime Proq.. Soc. Econ. Paleontol. Kinorel., Paoiflc Seotions 146-149.
 Theais, Oniveralty of London.

EDINGER, T. 1939. Two notes on the central nervous system of fossil Sirenia. Bulike Face Soie Foypt. UniY. 19: 43-57.

ENNOUCHI, E. 1954. Un sirénien, Felainotharium cf. gerreat, à Dar bel Hamri. Moter Kome Serye Mines Carte féol, Yapac, 2: 77-82.

FIERNAND, V.S.V. 1953. The teeth of the dugong. Cevilon J. Soi., 25: 139-147. FHEISCEERR, G. 1971. Über Schoingungamessungen am Skelett des Mittelohres Fon Ealicore (Sirenia) . Z. Sturetierk., 36: 350-360.

FLOT, L. 1887. Note aur le Prohalioore dubalenie Bulte Soce gíole_Fre, (3) 15: 11.

FLOWIRR, W.H. 1874. Description of the akull of a species of Halithempm (H. canhari) from the Red Crag of Suffolk. De_Jlapole Soce_Lond., 30: 1-7.

FREUDENTHAL, M. 1970. Possiele zeekoeien in hot Eoceen van Taulanne. Froerimentel Geologisch Onderncting 1969/1970: 64-65.

FREOND, L. 1950. Bibliography of the mamalian order Sirenia. Y̌̌te čele soo1, Spo1., 14: 161-181.

FOCES, H. 1959. Sziren - lelet Erdelybol (Fin Sirenonfund aus Siebenblargen). Fhate Fisio, 89: 326-328.

FUCHS, H. 1970. Sohldelfragment einar Sirene aus dom Eozlln von Cluj, SR Rumlaien. Geolorie, 10: 1185-1191.

GARD, L.K., LMIS, G.E. \& VIITHORE, F.C. 1972. Stellor's Sea Cow in Pleistocone Interglacial beach deposits on Amohitica, Aloutian Islands. Polle reole Soce Ame: 83: 867-870.

GAODAY, 1. 1884. Sur wn sirénien d'espèce nouvelle trouvé dans le bessin de Paris. Bulle Soqnénole_Br, (3) 12: 372-576.

 161-195.

GORDOR, Y.A. 1961. Planktonic foraniaifera and the comrelation of the riddle

GRIGORESCU, D. 1967. Ampra presentel unor fracmonte acholetioe de mirenide
 73-78.

Oniversity of Bristol.
HAMILTON, W.R. 1972. The Lover Miocene ruminants of Gebel Zelten, Libya. Bul1e Bre Muse nate Histe (Geole), 21: 73-150.

HARRIS, J.M. 1969. Prodeinotherrum from Gebel Zolten, Libya. Ph.D. Theais, University of Bristol.

HAY, O.P. 1922. Desoription of a now fossil sea cow from Florida,

HeVNEMANS, B. 1941a. Hotes sur la dentition des siréniens. 1 : La formule dentaire du lamantin (Thichechus). Bulle Kinere Hiate mate Belf., 17. 21: 1-15.

HESVELMANS, B. 1941 b . Notes sur La dentition des airéniens. 2: Morphologie de la dentition du lamantin (Horchochun). Bulle Yofere Hiate_nate Belfo. 17, 26: 1-11.

HEUVLMAHS, B. 1941c. Hotes sur la dontition dos sirénions. 3: Le dentition du dugong. Bolle lingere Biate mate Bolse, 17, 53: 1-14.

Hegukuhurs, B. 1942. Hotes sur la dentition des airéniens. 4: Le cas de

HRUVELMANS, B. 1943. Hotes sur la dentition des siréniens. 5: Conclusions

HOOTBBRGES, H.J.F. \& DS MEUIER, F.J.C. 1972. Bontratigraphy and interregional correlation of the "Fiocone" deposits of northern Belsium based on planktonic Porarinifera; the 011gocene-Miocene boundary on the southorn edge of the Horth Sea Basin. Modede_Ke ylamen scad., 34: 1~47.

HOUSE, M.R., DUBIEM, K.C. \& KIGGLASWORTH, J.C. 1961. Geology and atructure of the Kaltese islande. In Bowen-Jones, Ho, Dowdney, J.C. \& Fishor, W.B. Miltei backeround for deyloprante 356pp. Howcastle upon Tyno.

KALIESNARK, J. 1943. Contribution a 1^{1} ótude den siróniens aotuole et fossiles. 3: Sasai de phylogenie. Armanting 14-25.

CHHNGG, R. 1925. A new fossil airenian from Santa Barbara County, California. In Idditions to the Iortiary hietory of the pelagic manals on the Pacific coast of 耳orth Amorica. Puhn Gropnede Intin, 348: 57-70.

KELLOGG, R. 1966. Foasil mavine mamale from the Klocen Calvert formation of Karyland and Virginia. 38 Ifow speciea of extinot Miocone

Sirenia. Bulle Ue Se matne Mua., 247: 65-98.
KIIMER, F.H. 1965. \& Miocene dugongid from Baja California, Morico. Buile Sthe Calife Acade_Sci., 63: 57-74.

KINGDON, J. 1971. Past_African_mammala: An_atlas of evolution in Africas. x +446 pp . London.

KIEINSMIEDE, W.F.J. \& BERG, N.J. van den. 1968. Surface geology of the Jabal al Akhdar, northern Cyronaica, Libya. Petrole Mrolore_Soce. Libya, Anme. Field Confec 10th: 115-123.

KUITZSCH, E. 1968. Outline of the geology of Libya. Petrole Frplore Soce Libye Annu. Field Confere 10th: 71-78.

KOCH, A. 1903. Tarnoce in Koaitat Hográd, als nouor, reichor Pundort

KOBNIGSNALD, G. von. 1952. Posail aironians from Jave. Proce Seate Scie_Ke nede Nrade Yote. (B). 55: 610-612.

KRETZOI, M. 1941. SHipanarus hungapicus, oin nouer Prorastomide aus dem Mitteleozln (Lutetium) von Felsogaila in Ungarn. Ann1s_hiatenate Mus. natonehung., 34: 146-156.

KRETZOI, M. 1951. Hauer Sirenen-Typas aus den ungarischon Miozln. Fildite K":1., 81: 438-441.

KRUTZSCH, W. \& LOTSCH, D. 1958. Überaicht thber die pallogeographisohe Entwicklung dea zentraleuropllischen Alttertillrs (ohno Tothys-Raum). Baremeole Gete De_De_B., 3: 99-110.

LARTET, E. 1866. Hote aur deux nouveaux siranions foasiles des terrains tertiaires du basain de la Garonne. Pnlla_Soce_róple. Pre, (2) 23: 673-686.

LEPSIUS, G.R. 1882. Halithomire achingi, die foasile Sirene des Mainzer Backens. Abhe kittelpheinemange_Inro, 1: 1-200.

LIDEKKER, R. 1887. Gataloge of the forcil Mamalia_in the Boitiah Yingerme Part 5: Gontaining the ropup millodontine the ordora_sireniae
 345pp. London.

MLGLIO, V.J. 1970. Early Mophantidae of dirica and a tentative correlation of African Plio-Pleiatocene deposits. Hatrupe_Iondo, 225: 328-332.
MAGNIER, P. 1962. Ftude géologique du eisement de Vertobrés du cebel zelton (Libyo). Ce re_stanc. Soce néphe_Ire, 2: 55-57.
KATHERY, W.D. 1916. Hew airenian from the Tertiany of Porto Rico, Went Indies.

Anne_Ne Ye_Acade_Sci., 27: 23-29.
McDOWELL, S.B. 1958. The Greater Antillean insectivores. Bulle Ame Yase pate
Hiat., 115: 113-214.
McFADYEN, W.A. 1952. In Haas, O. \& Miller, A.K. Bocene nautiloids of British Somaliland. Bull. Ame. Mnse nate Hist., 29: 313-354.

MaKENZIE, K.G. 1967. The distribution of Caenozoic marine Ostracoda from the Gulf of Morico to Australamia. In Adams, C.G. \& Ager, D.V. (Eds). Aspects of Tethyan Biogeography. Publa Syrate_Aase, 7: 219238.

MOUSSA, M. \& SGIGLIE, G.A. 1970. Reviaion of mid-Tertiary stratigraphy of southwestern Puorto Bico. Bulle Ame Asmoce Petrole_Geol., 54: 1887-1898.
MÜLLERRIED, F.K.G. 1932. Primer hallazgo de un sirenido fosil on la Ropublica Koxicana. Ane Inst, hiole_Mex., 3: 71-73.

NETHON, E.T. 1891. The vertebratea of the Pliocene doposits of Britain. Homemoln SMuy. H_{L} K., 12. $\mathrm{xi}+138 \mathrm{pp}$.

OWEA, R. 1845. Ddontocraphyion a treatice on the comparative anatomy of the taetheete.. lodir +655 pp . London.

Owhy, R. 1855. On the skull of a mamal (Promatompe gimpodide Owen) from the island of Jamaica. De_תreol. Soce_Iond. 11: 541-543.

ONEN, R. 1875a. On fossil ovidences of a sirenian mammal (Eothomium ancrotiamin Owen) from the Fumulitic Bocene of the Mokattam Cliffe, near Cairo. Qe_J_qeote Sope_Iond., 31: 100-105.
 559-567.

PASOUAL, R. 1953. Sobre mevos reatos de airenidos del Mesopotomiense. Reyth Aroce_reple arranto, 8: 163-181.

PISCUAL, R. 1966. Datos preliminares sobre el primer resto de un sirenio (Dugongidae) del Mioceno superior ("Paranaense") de la Argentina (abstract). Manghiniann, 4: 242
 Soce_forle_Te. (7) 4: 536-537.

PLOUA COUIO, C. de. 1967. Contribuição à paleontologia do Patado do Pará.
 Atan, 1: 345-357.

PEIIT, G. 1928. Les vertèbres cervicales des siréniens actuels. Archs Muse natne Histe nate. Paria. (6) 3: 243-299.

PEIIT, G. 1955. Ordre des Siróniens. In Grassé, P.-P. Traité de_7eologiee 17(1): 918-1001. Paris.

PIAZ, G. dal. 1937. Halitherium sp.. Kemopie Iate geole minore Unite Padova, 11: 1-5.

PIETERSZ, C.R. 1968. Proposed nomenclature for rock units in northern Cyrenaica. Petrole Prolore Soce Librac Anmp. Field Confe. 10th: 125-130.

PRATER, S.H. 1928. Dugong or sea cow (Hilicore durone). J. Bombay nate H1gte Soc. . 33: 84-99.

RBIHHAT, R.H. 1951. Hew gemes of sea cow from the Miocenc of Colombia. Unife Galife_Publa_reole Soite, 28: 203-214.

REINHART, R.H. 1953. Diagnosis of the nev mamalian order Desmostylia. Je Goํ.. 61: 187.

BEIMHART, R.H. 1959. A review of the Sirenia and Deamostylia. Dnite Galife Publa geole Sod. 368 1-146.

BICBABD, M. 1946. Les gisoments de mamaifores tertiaires d'dquitaine. yime Soce_aticle Fre, 52: 380pp.

ROBIREAD, D. 1969. Korphologie externe du complere onseux temporal ches les

 Hiate matae Porple(c), 13: 1-324.

RUSSKLL, D.E. \& SIGOGNRAO, D. 1965. fitude de moulages endocranions de
 1-34.

SAID, R. \& MARTIT, L. 1964. Caivo area geologioal axeuxaion notes. Patrole

SLVAGE, R.J.G. 1967. Rarly Mocone mamal faunas of the Tothyan region. In Ldans, C.G. \& Aser, D.T. (Bdo). Aspects of Tothran Mogeography. Puble Sixate 1ato: 7: 247-282.

SAVAGI, R.J.G. 1968. In Selley, RoC. Hear-whore marine and continental sodimonts of the Sirte bain, Libye. Proce mopla Sopenforde, 1648s 85-88.

SAFAGE, R.J.G. 1969. Early Fortiary mamal locality in southorn Libya. Proon seothesoce_Iond., 1657: 167-171.

SAVAGE, R.J.G. 1971. Review of the fossil manmals of Libya. In Gray, C. (Ed.). Sympogium on the geology of Lipya: 215-225. Tripoli.

SAVAGE, R.J.G. \& HAMILION, W.R. 1973. Introduction to the Miocene mammal faunas of Gebel Zolton, Libya. Bulle Br, Mus, nate Hist. (Geol.e), 22: 513-527.

SAVAGE, R.J.G. \& WHITE, M.E. 1965. Two mamal faunas from the early Tortiary of contral Libya. Proce ceple Soce Londe, 1623: 89-91.

SCHOCHBRT, C. 1955. At1as of maleopeorraphic mapg of Vorth_Americab ix + 177pp. Hew York.

SCULTHORPR, C.D. 1967. The biology of aquatio tascular plante xviil +610 pp . London.

SBHLEEY, R.C. 1966. The Miocene roaks of the Marada and Jebel Zelten area, central Libya: 1 study of ahoreline sedimentation. Petrole_Prolore Soce Libre, Guidebook. ili + 30pp. Tripoli.

SKHLEY, R.C. 1967. Palaeocurrents and sediment transport in nearshore sediments of the Sirte basin, Libya. I. Geole, 75: 215-223.

SELLEI, R.C. 1968. Fear-shore marine and continontal sodiments of the Sirte basin, Iibya. Proceraole Soce_Lond., 1648: 81-90.

SEHUEI, R.C. 1969. Near-shore marine and continental sediments of the Sirte basin, Libya. De Jl mele_Soce_Iond., 124: 419-460.

SEHLFI, R.C. 1971. Structural control of Kiocone sedimentation in the Sirte Basin. In Gray, C. (Ed.). Sypposime on the canology of Ifibyaz 99106. Tripoli.

SHIKAM, T. \& DOHLILG, D.P. 1970. P1iocene Sirenia in Japan. Tranye Froce palapnte_Soce_Jonan 80: 390-396.

SIGESABTRRG, O. 1928. Rine Sireme aus dem Leithakalk des Burgenlandes.

SICKIATBERG, O. 1934. Beitrige Eur Konntnis tertiller Sirenen. 12 Die cosllnen Sirenon des Mittelmeergebietes. $2:$ Die Sirenen des belgischon

 Obox-011goslln des Dobergs bei Bendo/Meatfalon. Primontormaphicen. (N) 124: 116-150.

SILMR, W.L. 1964. 1 Hiddle Eooene sironian in Mlabama. Je Priennto, 38: 11001109.

SIIPSOM, G.G. 1932. Fossil Sirenia of Florida and the ovolution of the

Sirenia. Bulle Ame Kuge_nate Hist., 59: 419-503.
SIMPSON, G.G. 1945. The princtples of olassification and a classification of mammals. Bulle Ame Nus, nate_Hist. , 85. xvi + 350pp.

SPILLMANN, F. 1959. Die Sirenen aus dem Oligozlln des Linzer Beckens (OberBsterreich) mit Ausfthrungen ther MOsteosklerose" und "Pachyostose". Denkschre_date_Akad. Wias. , 110: 1-68.

THENIUS, E. 1959. Handbuch der stratigraphisohen Geologie. Tertiar, 2. $\boldsymbol{z i}$ + 328pp. Stuttgart.
THRNIUS, E. 1960. Wirbeltierfunde aus der pallogenen Molasse Östorreichs und inre stratigraphische Bedeutung. Ferhe geole. Bundesanate. Wien, 1960: 82-88.

TOURNOUK゙R, [J.-] R. 1866. Sur les terrains tertiaires du bassin de la Garonne où ont óté trouvós les siréniens fossiles décrite par M. Ed. Lartet.

TROUGHTON, F. 1941. The furred animale of Australia. coxvii +374 pp . Sydney. TULOGDY, J. 1944. Szirénafog a Bacsi-torok coón felső durvamészkövéböl. Revta Yinge geoleminare Unite Clui, 2:

VAN COUVERING, J.A. 1972. Rediometric calibration of the Ruropean Heogene. In Blehop, W.W. s Miller, J.I. (Fds) . Galibration of hominoid grolution: 247-271. Edinburgh.

VAN COUVERING, J.A. \& KIULKR, J.A. 1969. Kiocene stratigraphy and age determinations, Ruainga Island, Kenya. Hatrone Iond., 221: 628-632.

VAN VALRN, L. 1971. Adaptive zonea and the orders of mammals. Fyolutione Innomater. Pa, 25: 420-428.

WIERNER, J. 1970. Benchrijving Fummulieten van de seakooi envindplaats Taulanne. Experimanteal Geolpainch Onderpitiv, 1969/1970: 65-66.
 teronomicinpligatione. iv +251 pp. Stuttgart.

WIGHP, 1. 1971. Pelseopone rertebrates fren Libye. 18 The goology of the
 apacinl reference to the rextobrate fapme 2 I The Bropogetiden
 study of the gemas Yonvithnoivi. Ph.D. Theals, Univeraity of Bristol.

WILHELI, W. 1962. Bine verateinorte Seakuh aus dea Alseyer Koeressand. Hetrur

Yusec Francfo, 22: 51-53.
WILKINSON, A. 1972. The Lover Miocene Suidae of Africh. Ph.D. Thesis, Univeraity of Bristol.

WILLS, L.J. 1951. A_palaeggeographical atlas of the British Isles and adiacent parts of Purepe. 64pp. London.

WOODWARD, H. 1885. On the fossil Sirenia in the British Museum. Geole Mag., 2: 412-425.

ZBYSZEWSKI, G. 1944. Note sur la découverte d'un humórus de Metaxtherium peterai Abel dans l'Helvétian de Lisbonno. Boln Soce_reole Port., 4: 69-72.

ZBYSZFWSKI, G. 1949. Les Vertébrés du Burdigalien supérieur de Lisbonne. Sery, Reole Port., 1949: 77pp.

ZDANSKI, 0. 1938. Rothorivm maiut sp.n., oin neue Sirene aus dem Mitteleozan von Agypton. Palaopbiolocica, 6: 429-434.

ZIGNO, A. de. 1875. Sirenil fosaili trovato del Venoto. Mome_Re_Tate roneto Sci., 18: 427-456.

TABLEI

Skull and mandible measurements of Prorastompa girenoides (\mathcal{A}), Ifibrairen aickenbergi (B^{\prime}), Protoairen franai ($\mathrm{B}^{\prime \prime}$), Fothoroiden ancpotiacura (C^{\prime}), Pothoroidea of. E. accrotiacym (CN), and Botharoides Mibycym (CNI).

The inclusion of the measurements of four apecies in addition to Libysiren atckenberef is necessary because none of the previous workers on Bocene sirenians has publishod tables of comparative measurements.

Fex to the manumemente

Premedilat

1. Sagittal longth of promaxillae
2. Iarimue width of premarillac
3. Sagittal longth of symphyeis
4. Iadmun ridth scrons asmphysis
5. Marimum hoight of myphysis
6. Sagittal longth of meacrostral fonsa
7. Maximum ridth of mesorostral fossa

Madilne

8. Sagittal length of maxillae
9. Mavdrum length of maxillas 10. Madmum width of madillae

Enc19

11 .Sagtttal length of nasals
12.lacimun langth of namals
13.Hacimun width of nasals

Pront-19

14. Sagittal loneth of frontals
15.Marimum longth of frontals
16.Srupraorbital width of frontals

Foners

31. Sagittal length of vomer

Patrotnimante
32.Iength of tegren tympani 33. Diatance from anterior and of pars petrosa to posterior and of pare mastoidea
34.Distance between attachment points of tympanic ring

Mndible

35.Iength of mandible
36.Inadme width of mandible
37.Eagittal length of myphysis
38. Xarimus width acores symphysia
39.flarimu hoight of eypphyele
40.Distance between ventral edge of angular process and dorsal suxface of condyle

Pruintoln

17. Sacittal length of parietals
18. Itaximum longth of parietale
19.Incirue anterior width of parietals
20.Inciman posterior width of parietels

21 eliniman width of parietals
Prontrant Parintin
22.Sagttal Iongth of Irontals + parietals

Doainital
23. Holeht of ocoipltal
24.larimu width of ocoipital
25. Indimu width across occipital condrien
26. Dintance between tipe of perecoipital prooeneen
27. Midh of formmon mamum
28. Iolght of formmon magmu

Sarmern
29. Macimum width acrose gyscmatic processen

Sohnond
30.Distance between tipe of ptorygoid processen

TABLEI

MAXILLAE

FRONTALS

PARIETALS

Cer		
돋응	$\begin{aligned} & z N \\ & \underset{y}{c} N \\ & \sum_{\Sigma} \frac{1}{2} \end{aligned}$	
$160+$	176	
77	77	
97+	94	104+
53	49	54
104	60	
91	c. 76	
41	41	
143		
8	9	
34	39	
59	59	58
94	80	c. 82
115	93	
104	108	117+
70	96	c. 81
119	123	c108
56	53	
72		c. 54
48	49	
c, 664	176	c163

TABLEI (cont.) occopral

SQUAMOSAL
29.

SPHENOID

VOMER

	31
PETROTYMPANC	
	32
	33
	34

32.
33.
34.
35.
36.
37.
38.
39.
40.

PETROTYMPANC
30.
31.
\square

MANDIBLE

$$
35 .
$$

TABLE II
Tooth measurements of Eotheroides cf. E gegyptiacum

	$\sum_{\substack{\text { x }}} \begin{gathered} \stackrel{N}{N} \\ \underset{N}{太} \\ \dot{n} \end{gathered}$				$\frac{\frac{\pi}{0}}{\frac{0}{1}}$		$\frac{\bar{T}}{\frac{T}{O}} \frac{\stackrel{1}{N}}{\underset{\sim}{E}}$		$\frac{\stackrel{O}{O}}{\frac{O}{1}} \frac{\underset{N}{N}}{\underset{N}{E}}$	$\begin{aligned} & \infty \\ & \vdots \\ & \hline \end{aligned}$			
	1.	¢.	1.	r.	1.	r.	1.	r.	r.	1.	r.	l.	r.
$M^{1} \stackrel{L}{W}$	$\begin{aligned} & \text { c. } 15.0 \\ & \text { c. } 16.6 \end{aligned}$												
	c. 15.9			$\begin{aligned} & \text { c. } 17.1 \\ & \text { c. } 18.6 \end{aligned}$	$\begin{aligned} & \text { c. } 17.1 \\ & \text { c. } 19.5 \end{aligned}$	$\begin{aligned} & \text { c. } 17.5 \\ & \text { c. } 19.0 \end{aligned}$	$\begin{aligned} & \text { c. } 17.3 \\ & \text { c. } 19.7 \end{aligned}$						
$M^{3} \underset{W}{L}$				$\begin{aligned} & \text { c. } 22.2 \\ & \text { c. } 16.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { c. } 20.7 \\ & \text { c. } 18.9 \end{aligned}$	$\begin{aligned} & \mathrm{c} .20 .5 \\ & \mathrm{c} .18 .8 \end{aligned}$	c. 22.6 c. 19.3	c. 19.6	$\begin{aligned} & \text { c. } 24.2 \\ & \text { c. } 19.4 \end{aligned}$				
$M_{2} \begin{gathered} \mathrm{L} \\ \mathrm{~W} \end{gathered}$							c. 21.6 c. 15.6			c. 20.1			c. 17.5
$M_{3} \begin{gathered} L \\ W \end{gathered}$							$\begin{aligned} & \mathrm{c} .25 .7 \\ & \text { c. } 16.2 \end{aligned}$	$\begin{aligned} & \text { c. } 27.2 \\ & \text { c. } 15.8 \end{aligned}$					$\begin{aligned} & \text { c. } 26.0 \\ & \text { c. } 19.3 \end{aligned}$

MBTRTIT

Skull and mandible measurements of Bytiodye capgrandi (Λ^{\prime}) (from Dolfortrie, 1880) and Extiodus geltenanaig (Λ^{n}).

Some of Delfortrie's measurements for R. capprandi are not given because they are exaggerated by his use of a distorted apecimen.

Gey to the masurements

Premarillan

1. Mardmum width of promarillae
2. Mardmum width acroses aymphais
3. Sagittal length of mesorostral fossa
4. Madimin width of mosorostral fosse

Madila

5. Mardmus width of macillae

Panle

6. Marimum longth of masals
7. Hadirum width of masals
8. Anterior width of each namal

Frontela

9. Maxinum longth of frontals 10.Sapraorbital width of frontal:

Parietela

11.Sagittal longth of parietala 12. Mestimu length of parietale

Sommonal

13.Madmun width acroses sygomatic processes

Sphenoid

14.Distance between tips of pterygoid processes

Ineol

15. Taximu width acrous eyconatic proceanes

TABLE III

 . 220.| PREMAXILLAE | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 1. | | c. 172 | 182 |
| | 2. | | | c. 139 |
| | 3. | | c. 195 | |
| | 4. | 60 | 89 | 92 |
| MAXILLAE | | | | |
| | 5. | | c. 235 | c. 244 |
| NASALS | | | | |
| | 6. | | | 91 |
| | 7. | | c. 109 | 135 |
| | 8. | | | 42 |
| FRONTALS | | | | |
| | 9. | | c. 133 | |
| | 10. | 240 | | c. 246 |
| PARIETALS | | | | |
| | 11. | | c. 94 | |
| | 12. | | c. 154 | |
| SQUAMOSAL | | | | |
| | 13. | | c. 234 | |
| SPHENOID | | | | |
| | 14. | | c. 85 | |
| JUGAL | | | | |
| | 15. | 300 | | c.327 |

APP:ATDTX B

1. Poriotic attached to skull wall. .Prorastomidae
Periotic not attached to skull wall 2
2. Complete eutherian dentition 3
Modified eutherian dentition 4
3. Lacrimal duct absent; alisphonoid canal present .Protoairenidae Lacrimal duct present; alisphonoid canal absent...........Eotheroididae
4. Kumerically increased dentition aix cervicals..............TrichechidaeNumerically reduced dentition; seven cervicala.............Dugongidae 5
5. H^{3} unreduced. 6
n^{3} reduced or absent. 9
6. Incisor tuaks markedly flattened. Rytiodinae
Incisor tuaks oylindrical 7
7. Hacals join in mid-line Halithorifinae
Hasals soparated by frontals in mid-line or absent. 8
8. Cheok teeth retain onamel after orupting .Metaxytherifinae Choek teeth lose enamel aftor orupting. Dugonginae
9. n^{3} reduced to a flattened button Miosireninae

The arrangemont of the sirenian familios and aubfanilios in this kos doos not reflect the actual phylogens that is laid out in Chapter 4.

1. Periotic attached to skull wall Prorastomue
Periotic not attached to skull wall 2
2. Complete eutherian dentition. 3
Modified eutherian dentition. 6
3. Lacrimal duct absent; aliaphenoid canal present. 4
Lacrimal duct present; alisphenoid canal absent. 5
4. Large genus; post-tympanic process present. . Ithyyiren
Small genus; post-tympanic process absent. Protosiren
5. Skull not dolicocephalio; $\mathrm{H}^{3}<\mathrm{K}^{2}$; hamerus ahort and fat... Pothemotiden skull dolicocophalic; $M^{3}>M^{2}$; humerus long and thin.......Prototherium
6. Fimerically increased dontition; eix cervicals. 7
Humerically reduced dentition; seven cervicale. 8
7. Hypocone forming right-angled orest with cingulum Sirenotheripm
Hypocone not attached to cingulum8. r^{3} unreduced.9
μ^{3} reduced or absent. 15
8. Hasals join in mid-line. 10
Hasals soparated by frontals in mid-line. 12
9. Pour premolars in upper jaw -Halithervium
Two premolars in upper jaw. 11
10. Long nasals. Anomothnyprine
Short namal. Thalattorinen
11. Incisor tusks absent. Cayibonixan
Incisor tusks present (at least in male) 13
12. Incisor tuske maricediy Ilattenod - AxtionduInaisor tusks cylindrical... 14
13. Mocene genus - Phtarytherym
Pliocone gemse FIginotherpiun
14. M^{3}, and all other teeth, abeent:
\mathbf{M}^{3} reduced. 16
15. K^{3} enamolled, but reduced to a flattened button. Hionimen
n^{3} without anamel and with open roots. Dapong

The arrangement of the alrenian genora in this koy does not reflect the aotuel phylogeny that is laid out in Chapter 4.
. 224.

APPTHIDIX C

MIPS

Haque I Yoxids
Recent airenian distribution

IIa Bocene airenian distribution
IIb Oligocene airenian distribution
IIc Lower Kiocene sirenian diatribution
IId Middle-Opper Miocen sirenian distribution (includes Langhian and Holvetian sites)
IIe Pliocone sirenian distribution

Hequras ITIT-b Hoxth Amarion:

III Palaoogene airenian distribution
IIIb Feogene airenian diatribution

Hovre II South Amorion:
 Cenosoic airenian dietribution

Haver IndomPacifios
 Cenosoic airenian distribution

NOTT The sources insted in the keys to Pigures II-V are not necessarily the original descriptions, but also include references that are either more easily accessible or later reviews of certain taxa.

XET TO BTGURR I

Tretiohnchidan

a' Irtichechus manating latiroatria
a" $5 . \quad$ me manatur
b I. inuncoise
c T. generelenatig

Purgonediden

d Ducong dumon

- Hydrodamalia app.

Iocality

Atingtic Bacina (hopitaing Basin_etes)

1,Blaye, Prance

2.St. Estèphe, France

2ethre

3. Taulanne, France
4.Honte Zuallo, Italy

5, Bu el Haderait, Libya
6.Dor el Talha, Libya
7.Fayu Dopression, Reypt
8.Gebol Mokattem, IEspt

Paratathrie

9. Polmogalla, Huagary
10. Hungary; Llomania (neveral siten)

Spectes

$\begin{array}{lll}\text { Eotheroidea cf. E. aesyotiacum (see Chap.2) } & \text { (Siakenberg, 1934; Richard, 1946) } \\ \text { E. } & \text { cf. E. aecrotiacum (see Chap.2) } & \text { (Sickenberg, 1934; Richard, 1946) }\end{array}$
E. of. I. aegyptiacum (Chapter 2 of this work)

Brotothertivn yexonense

Libuciren aidicenbergi gen. et sp. nov. (Chapter 1 of this work)
sirenian indet. (Chapter 1 of this work)
Potheroiden 3ibrcum, E. atromexi: (Andrews, 1906; Sickonberg, 1934)
Brotogiren frasil Ehotheroides serrotiacm, (Abel, 1913; Siakenberg, 1934) E. aboll

Stremares huncapticus
strentens indot.
(Xretzoi, 1941)
(Siakenberg, 1934; TuJogdy, 1944; Puchs, 1959; Grigorescu, 1967; Fuchs, 1970)

FlG.IIa

1. Hmppean Basing (Forth_Sea Bagin. Kaing Beain. Parts Bosin.eetce)


```
(Siegfried, 1965)
(Lepsius, 1882; Wilholm, 1962)
(Sickenberg, 1934)
(Sickenberg, 1934)
(Gaudry, 1884; Depéret & Roman, 1920)
(Hoim, 1919)
```

(Patte, 1962)
(Richard, 1946)
(Depóret \& Roman, 1920)
(Dopéret \& Roman, 1920)
(P. Robinson, pers. comm.)
(Abel, 1904)
(Spillmann, 1959)
(Kretzoi, 1941)
Tethyse

Athatic Baning

1. Leognan, Prence
2.3t. Horillon, Prance 3.S0s, Prance
4.Lasbon, Portugal

Tothry

5.Beaucaire, Irance
6. Halta
7.Gobel Zolten, ILbya

Paratethys

8.Surtserland (several sites) 9.Baltringon, Germany
10.Molase de Baviere, Germany
11.Obritzberg, Austria
12. Fggenburg, Austria
13.1árafalva, Hungary
14.Felsbeastergály, Hungary

Metacrtherius sp. indet.	(Depéret \& Roman, 1920)
Rytiodus capgrandi	(Delfortrie, 1880)
R. \quad oapreandi	(Jartet, 1866)
dugongid indet.	(Zbyszerald, 1949)

Ketactherium beaumonti (Deperet \& Roman, 1920)
Yetarxtherfin sp. indet. (see Chap.4) (Adams, 1879)
Eatiodug reltenangia sp. nov., Metargtherium (Chapter 1 of this work)
sp. indet.
Metaratheriun atuderi, sirenian indet. (Hoim, 1919)
sirenian indet.
Meterytheriup enereri
sirenian indet.
Metarytharium krahuletri
Thalattosiren petersi
Halitherium cf. H. echinai
(Depéret \& Roman, 1920)
(Delfortrie, 1880)
(Lartet, 1866)
(Zbyszewsld, 1949)
(Depóret \& Roman, 1920)
(Adams, 1879)
(Chapter 1 of this work)
(Ho1m, 1919)
(Lepsius, 1882)
(Abel, 1904)
(Thenius, 1960)
(Depéret \& Roman, 1920)
(Thenius, 1959)
(Koch, 1903)

Locality

Spectien

Source(s)

1. Tr ropean Baging

1. Hibergen, Holland
sirenian indet.
yetacytherium modium
Thalattogiren aff. T. peteryai dugongid indet. (see Chap.4)
T. petergi
M. madime

Matactherin Loyiatot

airenian indet.
Yetagytheripm sp. indet. (see Chap.4)
adrenian indet.
sironian indet.
sirenians indet.
T. petersi

Haplosiren leganyi
(author's notes)
(Cottreau, 1928; Ginsburg \& Janvier, 1971) (Depóret \& Roman, 1920)
(Flot, 1886)
(Zbyszewski, 1944)
(Thenius, 1959)
(Caria, 1957)
(Caria, 1957)
(P. Robinson, pers. comm.)
(Adams, 1879)
(P. Sondaar, pers. comm.)
(author's notes)
(Heim, 1919)
(Abel, 1904)
(Mretzoi, 1951)

GGY TO FIGURS IIE

Specien

Source (s)

Locelity

Le mropan Baetine

1.Woodbridge, Bngland

Kiosiren kockd, metaxytheriine indet. (both remanié; see Chap.4)

Felainotherius of. F. seryesi

(Depóret \& Roman, 1920)
(Depéret \& Roman, 1920)
(Doperet \& Roman, 1920)
(Depéret \& Roman, 1920)
(Depéret \& Roman, 1920)

KEY RO FIGURE IILA

Fat Coast and Garibbean

1.Nonroe Co., Mlabama	sirenian indet.	(Siler, 1964)
2.Clarke Co., Alabama	dugongid indet.	(Kellogg, 1966)
3.Mayne Co., Misaisaippi	dugongid indet.	(Kellogg, 1966)
4.Chispas, Hexico	sirenian indet.	(mallerried, 1932)
5.Proeman'a Hall Rstate, Jamaica	Prorastonus airenotides	(Owen, 1875)
6.San Sobestian, Puerto Rico	Caplibesiten turnari	(Roinhart, 1959)
7.Juana Diax, Puerto Pico	dugongid indet. (soe Chap.4)	(Matthew, 1916)

FIG.IIII

 NORTH AMERICA: PALAEOGENE

Lopality

Species

Int Gonet and Garibbean

1,Galvert Co., Maryland
2.Ashley Biver, South Carolina
3. White Springs, Florida
4. Quincy, Florida
5.lulberry, Morida
6.Sombrero Is., Lesser Antilles Hent Gosest
7. La Purisima, Baja California 8.San Dlego CO., Galifornia
9.Orange Co., Callfornia

10,Santa Barbara Co., California
11.San Luis Obispo Co., California
12.Santa Crus Co., California

Ketarytherium calyertense
Metacrtherium manigaulti (Miocene), Pelainotherium alleni (Pliocene)

Helithorium sp. nov.
Hotacotherium crataegengie (see Chap.4)
Felsinothariux floridenum, F. gasivallense sirenian indet.

Metaxtherius allisoni

Hydrodanalia sp. nov.
Exdrodnalife sp. nov.
Metecytherrive ioxdeni
Evdrodamalia sp. nov.
Y. iordani
(Kellogg, 1966)
(cope, 1883) (Simpson, 1932)
(R. Reinhart, pers. comm.)
(Simpson, 1932)
(Hay, 1922; Simpson, 1932)
(Lydekker, 1887)
(kilmer, 1965)
(Domning, 1970a)
(Domning, 1970a)
(Kollogg, 1925)
(Domning, 1970a)
(Kellogg, 1925)

FIG.IIII

 NORTH AMERICA: NEOGENE
$\square 1$ land

- Miocene
* Pliocene
$\binom{$ adapted from }{ Schuchert, 1955}

Leoality	Speotes	Source(s)
1.Ortega, Colombia	Hataritherimm ortasenas	(Kellogg, 1966)
2.Villavieja, Colombia	Bibodon sp. indet., Yetaxtherium sp. indet. (see Chap.3)	(Reinhart, 1951)
3.Para, Brasil	Sirenotherium pirabence	(Paula Couto, 1967)
4.3ntre Rios, Argentina	Bibodon limbatus, dugongid indet.	(Pascual, 1953; Pascual, 1966)

FIG.IV AMERICA: CENOZOIC
SOUTH AME

5. Neogene

TEI TO RIGURE V

Localitiz	Species	Source(s)
1.Duban, Somali Republic	sirenian indet.	(McFadyon, 1952)
2.Callis, Somall Hopublic	sirenian indet.	(R. J. G. Savage, pers. comm.)
3.Bedel, Somali Republic	sirenian indet.	(R. J. G. Savage, pers. comm.)
4.Mogediahu, Somali Rapublic	sirenian indet.	(R. J. G. Savage, pers. comm.)
5.Ile Makarby, Halagasy Ropublic	dugongid indet. (see Chap.4)	(Collignon \& Cottreau, 1927)
6.Agha Jart, Itan	siranian indet.	(R. J. G. Savage, pers. comm.)
7.Eutah, India	motarytheriine indet.	(R. J. G. Savage, pers. comm.)
8.Matanomadh, India	sirenian indet.	(author's notes)
9.Dutch Day, Caylon	Metextherfy sp. indet. (see Chap.4)	(Doraniyagala, 1969)
10.Hjalindung, Java	Indogiren iavenenge (seo Chap.4)	(von Koonigawald, 1952)
11.Hencgulan, Java	airenian indet.	(ron Koonigawald, 1952)

ITHPRODOCTTON

The two surviving sirenian genera, Trpohechus and Dpgong, are vory specialized as aquatic herbivores, and represent two linaages that have undoubtedly been separate since at least the Eecone (SImpson, 1932). This divergense has resulted in two different, albeit offioiont, methode for dealing with the plants upon which those animals foed. Whoreas the dugong feeds principally on subserged vegotetion (the so-called "dugong grassean), it is lenow that the manatee prefers floating regetation such as the water hyacinth (Bichhopain omaraipen Solmas). The numeroun onteological differences between Thpichophug and Durong have been tabulated by Simpson (1932), and they are eapecially prominent in the head region. By far the most inportant differential features are the defleoted rostrus of Dirpore, and the presence in that genus of a reduced dentition rather than the inoreased number of oheak teeth charaoteristic of Thyohnohil. In Chapter 4 of Part 1 it was demongtrated that the deflected rostrum of the dugong was most probably developed as a reaponse to the animal's need to procure its partioular food; therefore these genemic differences of the skull and mandible are intimately connected with the feeding mechanime of the manatee and dugong.

The arailability to me of a preserved dugons head meant that I could Investigate the jaw musculature of this genus. Although the umanal atruoture of the dugong's acull and mandible has been frequantif mentionod in the Iiterature, nobody has attempted to relate it to the soft tisaues visible on a preacrved apecimen. The mariced dowmard flexure of the promaxillae and the mandible suggests an umsual method of mastication that must be unique to the Dugongidae amonget the mamale. In order to understand how these remaricable modification of the skull axe integrated with the procens of mastication it Is necesmaxy to study the internal strueture of the brecal carity and the arrangomont of the Jav musolos. Unfortunately, no hoad of anatee was available for dimection, but it is possible to trace most of the mance oricin and ingertion areas by ocmparing ite akull and mandible with those of the dugong. Sinoe both living genera are belleved to have oxpginatod froz

Eocene (or maybe even pre-Eocenc) ancestors, the skull of an Eocene sirenian has been studied to get some idea of the disposition of its jaw musculature. The extrapolation of information from living animals to their extinct relatives is alvays a very hasardous pursuit, but the Eocene sirenians of the families Protosirenidae and Botheroididae are sufficiently well known to enable a cautious comparison to be made with the two living genera.

The specimen available to me for dissection, the head of an adult male dugong, was obtained from the Department of Zoology, James Cook University of North Queensland, Townaville, Queensland, Australia, through Drs. G. C. L. and C. K. R. Bertram of Cambridge. This dugong had been collected in September, 1965, near Magnetic Island, Horseahoe Bay, Queensland. The skulla used to map the origin and insertion areas of the different muscles and to measure the lever arms and correction factors were BM(BH) 1946.8.6.4 (an

CT	cheek tooth
MP	mandibular pad
MPP	main premaxillary pad
P	palate
T	tongue
OJP	upper jaw pad

Because the dugong head had been preserved in a drum of salt for more than five years it was very dessicated and had to be immersed in water for two days to aid reconstitution. The head was then put into a preservative fluid made up as follows:

propylene glycol (propane-1, 2-diol)	10.0 parts
formaldehyde (40\%)	2.5 parts
tap water	100.0 parts

The jaw muscles had to be dissected before the internal structure of the mouth could be investigated, but this sequence will be reversed in the following account.

The downard deflection of the upper and lower jaws of Doreng produces two distinct surfaces on both the skull and the mandible:

akull

a) rostral surface (promatillary pad)
b) palate

mandible

c) aymphysial surface (mandibular pad)
d) tongue

a) Rostral surface (P1ate 1):

On a prepared skull the ventral surface of the rostrom consists in the main of the premarillae, but also includes an anterior extension of the madillae. This rostral surface extends from the diatal ond of the promadille to the posterior border of the incisive foramon, and it is inclined at an angle of 70° to the palate. The suxface is transversely concave and forma a trough running from between the incisor tuaks onto the palate. In the living animal this depression is filled with tisaue so as to form a flat surface the premaxillary pad.

The premaxillary pad can be dividod into two unequal parta that are soparated by a traneverse V-ehaped groove, a anall distal oomponent (the "upper jaw pad" of Amandale (1905)) and the main part of the pad. The diatal

PLATR 1
Promaxillary pad and palate of Dugong
x1.1

EICURE 1
Drawing of Plate 1

PLATE 1

FIG. 1

component is not supported by the premaxillae and there is therefore a certain degree of flexibility between it and the main part of the pad. The movement of the smaller part is restricted dorsally by the tuaks of the male, but it is able to move in towards the buccal cavity. The main part of the premadillary pad is very solidly backed by the rostral surface of the premaxillae, and it is covered with numerous papillae. These papillae also extend onto the proximal surface of the smaller pad. The spaces between the papillae are densely clothed with short hairs, and the compactness of these two elements gives the promaxillary pad a rasp-like texture.

b) Palate (Plate 1):

The palate extends from the posterior border of the incisive foramen as far as the posterior surface of the last choek tooth. It is narrower than the rostral surface and its covering tissue is not so firm. Papillae are restricted to the region adjacent to the promarillary pad, and there are no interstitial hairs. The area between the choek teeth is ridged, but the pattern of these ridges is faint. The occlusal surfaces of the peg-like cheak teeth are almost level with the palate, and, beoause they are devoid of enamel, they are very worn.

c) Symphyital surpeace (Plate 2):

The mandibular symphysis is robust and ventrally deflected, with the two halves of the mandible being firmiy fused. The flat symphysial aurface makes an angle of 70° with the dorsal margins of the horizontal rami, and in most specimens there is no trace of the incisor-canine dentition on it apart from the partly filled alveoli. The area of the symphysial surface is increased by lateral flanges that are most prominent proximally. The surface is basically oval, but its prosimal edge is notched to receive the tip of the tongue and its diatal odge is alightly elongated. The pad that covers the symphysial surface is very firm - it will be reforred to as the mandibular pad. The surface of the pad bears an arrangemant of grooves and ridges that is imposed upon it by the contoure of the underlying bone. The

PTMT: 2

Mandibular pad and tongue of Dugone x1. 6

HCOPR 2

Drawing of Plate 2

PLATE 2

pad is covered with papillae that are much denser than those on the promadillary pad, and their compactness gives a flatter surface than on the latter.
d) Tonere (Plate 2):

The gap between the horisontal rail is completely filled by the long, slender tongue. The tongue is thick and has a well-developed masculatore that reaches to within 13 min of its tip. Because of this rigid anchoring of the tongue in the symphysial region it could not have been protruaible. The surface of the tongue has a velvety texture, and in life it would lie above the level of the occlusal sarfacea of the aheak teeth.

Diatribution of hair on the face of Drepenc

Gohar (1957) found three diatinct types of hair on the heade of dugonge from the Rod Sea, and he gave a dotailed deacription of each type. Tho head that I examined showed all three types, each of whioh was restrioted to a specilio areas
(a) The largent haire are very robunt atructures that are as much an 2min dianetor. On the upper jaw they are mont mumerous on the lower part of the facial disc, and they are arranged in alternating rowa. On the lower faw they are linited to the area of the lip that is anterior to the mandibular pad; the aise of the hairs decreases proximally and they also appear to alternate from row to row.
(b) Smaller haire, c.im in diamoter, are abundant on the internal aurface of the oheek between the promacillary and rontral pade. They are directed anteriorly and are much donser than the larger haire.
(o) Rolatively normal-aized hairn, c.0.3ne in dianoter, are very aparsely distributed over the head, but thoy are mont munorous on the ohin. This ia the type of hair that is also found on the body and limbe.

The haire of croupe (a) and (b) aan satiafactorily be tormed vibyiasae because of thair aise and position on the face. The vibriacae of trplohnohny
have been shown to be typical sinus hairs, 1.0. taotile hairs (Woodard, 1969); it is therefore reasonable to assume that the Fibrissae of purpong also serve some tactile sensory function.

Before being put into the drum of salt, the dugong head had been propared so that the salt could penetrate the flesh. This had ontailed separating most of the akin from the hoad and making incisions in the muscles, damaging the latter in the process. The left side of the head was used for the dissection of the jaw muscles because it had suffered the least damage during the proparation.

The dissection was hindered at firet by a thiok layer of decomposed blubber that covered the muscles, but mont of this fatty layer was remored by using a commeroial detergent to mulsify it.

Huculve ($\mathrm{K}_{\text {N }}$) masseter (Fixures 41 and 4B):

Dumens

The massetor is exposed upon remoral of the M. eygomations. Its two diviaions, the pars muperfiaialis and the pare profunda, have soparate origing on the eygomatic arah, but thoir ilbrea morge vontrally and thoy have a common insertion on the mandible. The origin of the auporicial masseter extende for the whole length of the vontral aurface of the jugal component of the eygomatic arah. The ares of attachnont is nerrow for mont of its oxtent, but it ridens antoriorly where the surface of the bone is more rugose. This external diviaion of the maseter is short and thiok, and it exists as a distinct muncle block for only about two-thirds of the diatance dow the asconding ramus until it mergen with the underiying deep massoter. The euperficial massetor covers the deep masseter for most of its mpread except for a mall area adjacent to the nock of the mandibular condyle.

The deop masseter oxiginates on the vontral surface of the jugal, but medial to the origin of the muperficial manseter. Unlike the Iatter it has a very ahort attabment area that only ocouplee the anterior balf of the jugal. This area is rider than that of the auparifoial masceter, although
posteriorly it is situated on the medial surface of the bone rather than the ventral surface. Therefore the effective origin of both divisions of the masseter is restricted to the thickened part of the jugal beneath the orbit. The deop masseter fans out from its origin until it covers the entire posterior part of the mandible. Both divisions have their insertions on a broad area enclosed ventrally by the angular process of the mandible. The mandibular angle bears prominent muscle scars that would assist in firmly attaching the masseter.

The pars auperficialis and pars profunda have the same weighte, the shortness of the former being compensated for by 1ts thicknoss.

Therchaohut

The area of attachment of the masseter to the jugal in this genus is not expanded antoriorly as it is in Dugong. The orbit is aituated more anteriorly than in Durong, and the origin of the masseter is located bebind the orbit rathor than directly beneath it. The massetor has an insertion on the mandible that is similar in shape to that of propnc, although it is amaller in area.

Rocen mirentane

The sygomatic archos of Pothongiden, Protoatimen, and Ifibrisimen are rery robuat and are intermodiate in chape between those of pprone and Tricheahys. The attacment area of the massetor to the jugal is narrow and is aituated behind the orbit. the area of insertion onto the mandible is onlarged beoause there is a posterior oxtension to the vertionl rames of the mandible that is limited dormally by a projection at the lovel of the alveolar margin. This projection has been retainod, in a rudimentary fachion, by the two living genora, although it has almost vanishod in purong.

Durone

The temporal masole is smaller than olther of the diriaions of the
masseter. Its origin is on both the parietal and the squamosal, the area of attachment being the lateral surface of the parietal and the doraal aurface of the lateral wing of the squamosal. The musole inserts onto both aides of the coronoid process of the mandible, with the most extensive attachment being on the lateral side.

Trichachul

The temporal exeste are most prominent on the frontals, and overall they are closer together than in pureng. The sycomatic process of the equamosal is more massive than in propong, and may therefore have had a oloser relationship with the temporal muscle. The ooronoid process of this genus is very difforent from that of purong - in the lattor genus each process is almost rortical, tapered diatally, and ita highost point lies above the levol of the mandibular condyles whereas in Trofohenhne the procese is directed anterodoreally, not tapered diatally, and its highent point lies below the condyle. The lateral and medial insertion areas on the coronoid procese are amooth in the apeoimen of pryone exanined, but in the apecimon of Prichochng they are ridged to provide a more intimate union between the bone and muscle.

Poomerimption

The slight temporal exests of Pothopiden and Protoniren give the brainoage an angular ampeot (of. Dreong), but the brainoase of Ithryimen does not bear creste and is rounded tranavernely. The coronoid procenses of Pothnroiden, and apparently those of protoadrenids also, are very ainilar to those of Dromigs The tenporal masclea muat therefore have closely reacmbled those of Dorenge.

Dumene

Both ptexycoid macien originate on the well-developed pterygoid procese. This process is divided into two dietinot parta by broad

F1G3 Orientation of main jaw-closing muscles of Protosiren. Trichechus, and Dugong (solid lines indicate muscle lengths)

B. Trichechus

posterior groove, and the pterygoid muscles are attached to the more lateral part.

The origin of the internal pterygoid muscle is on the ventral and posterior surfaces of the pterygoid process's lateral division, and the area of attachment is much more rugose than the surrounding bone. The muscle is pinnate and inserts onto the medial surface of the vertical ramus of the mandible. The insertion area does not extend anterior to the mandibular angle, and the muscle is most firmly attached in a amall concavity behind the angle. The insertion narrows postoriorly and almost reaches the level of the tooth row posterodoraally.

Trichechus
The pterygoid processes of this genus are fundanontally the same as those of Dugong in shape, and, as far as can be estimated, the areas of origin of the pterygoid musclea are aimilar alao.

The ingertion area of the internal pterygoid muscle is emaller, but more precisely delineated, than in pureng.

Poceneairenten

The pterygoid processes of Fotherotide are thin and Lamellar, unlike those of Protoativen and Ilibriciran which are atout. However, both groups have prominent internal pterygoid foasse on the mandible that are bordered ventrally by a diatinot ghelf.

Dapenc

This muscle, the mailest to be considered, oricinatea from the lateral surface of the ptorygoid process'a lateral division. It panace postorodorealiy to insert onto the medial marface of the nock of the mandibular condyle. The area of ingertion is maller than the area of oriedn, and, because of the positioning of these two areas, the external pterygoid muscie is almost horisontal.

Trichechus

The origin and insertion areas of this muscle cannot be accurately traced on the skull and mandible of Triohechus, but it is assumed that the muscle was not drastically different from that of pugeng.

Eocene sireniant

Ls for tricheohue.

M. dicastricu: (Ficures 4 $4-\mathrm{D}$):

Dugong

In moat mamals the digastric muscle consists of two musoular "bellies" separated by a dividing tendon - the anterior "belly" being innorvated by the fifth nerve, whilst the poaterior "belly" is innervated by the seventh. In the living airenians and some othor mamals (eoge maxaupials, carnirores, bats etc.) this musole is classed as a H. digastricus appurius, in which the two "belliea" form a aingle macle mase divided by a tondinous intorseotion (Grassó, 1968). In mamals with a M. digastrious apuriue the musole is attached to the mandible by the equivalent of the original anterior "belly".

The digantric muscle of purong originates as a thiak tendon on the vontral aurface of each parocoipital process. The tondon is 0.25 ma in length, and it gives rise to a vory fleaky pinnate mucole. The amall area of insertion on the mandible is in the region of the mandibular angle, but anterior to the insertion of the internal pterygoid muscle. An attachment also ocours along the posteroventral edge of the mandible. For most of its extent the fleaky portion of the digastric overiles the internal pterysoid.

Trichachug

In this genus the parocoipital processea are maller and farthor apart than in Durong, and the origin of the macole is on the ventrolateral aurface of each procens. The insertion cannot be traced with any degree of cortaints on the bone of the mandible.

ETAURS 4

JAM MUSGULATURE OF DUGONG

A. Lateral Fiew of skull and mandible showing superficial dissection
B. The same, with M. massetor pars superficialis ramoved
C. The same, with the ontire M. masseter removed
D. Sagittal section of akull and mandible showing superficial dissection
T. The same, with M. digastilous remored

FIG. 4

FIG. 4 (cont.)

FIG. 4 (cont.)

KEY

M.b. - Musculus buccinator
M.d. \quad M.
digastricus
M.m.p.p. - M.
masseter pars profunda
M.m.p.s. - M.
m.
pars superficialis
M.p.e. $-M$.
pterygoideus externus
M.p.i. \quad M.
p.
internus
M.t. \quad M.
temporalis

The pointed paroccipital processes of the protosirenids are anteroposteriorly flattened, and they extend below the level of the ocoipital condyles. This differs from the aituation in the living genera, where these processes are blunt and short. Ho area appears to be specially modified to function as the origin of the digastric nuscle. The insertion cannot be traced.

Dureone

The following analysis of the jav-alosing macolature of porong is largely based on the mothods of Turnbull (1970). This author made detailed dissections of the jaw musculature of nine representative mamalian genora and used his observations and measuremonts to construct a simple porer formula. This formula makes use of muche mage (woight or volume), macie position and aromemeotional thiakness, leverages, and direction of musole puil. Taking all of these factore into conaideration, the useful power (s) of the jaimeloming meahanios for each masale can be expressed thua (Turnbull, 1970, p. 282):

$$
E=M \times F_{I} \times F_{X} \times I
$$

$M=$ mane (veight or volme) of masole eroup expreased an of total jav-aloaing muculature
$I_{I}, F_{X}=00 m p e t i o n ~ f a c t o r s$ (alne functions of the angles that the macle axis maken with the longitudinal and tranaverwe planos of the akwall reapeotively)
r = matio of the mochanical advantage of the offort lover arn in relation to the reaistance lever an

The power thus calculated oan be ropresented diagrematioally on dravinge of the akull and mandibie, tocethor with the mucole attachant areas, lever aras, and remultante at the comale (nce Figure 5).

Turnbull noted that, when oonparing the meanured masole mam with the

TABLE 1

i) Weights and percentages af masticatory muscles

	$\begin{aligned} & \text { Weight } \\ & \text { (in gms) } \end{aligned}$	\%	$\begin{gathered} \% \\ \text { without } \\ \text { digastric } \end{gathered}$
M.m	266.2	53.4	60.0
M.t.	96.4	19.4	22.0
Mpe	18.1	3.6	4.1
M.p.i.	60.5	12.2	13.9
M.d.	56.7	11.4	
TOTALS	497.9	100.0	100.0

ii) Useful Power of masticatory muscles

iii) Comparison of Measured Muscle Mass with Calculated Usefut Power values $(\%)$

Muscle Mass $(\%)$	Useful Power $(\%)$	Change in i points	Prop Change (\%)	
M.m.	60.0	87.1	+27.1	45% gain
M.t.	22.0	8.7	-13.3	60% loss
M.p.	18.0	4.2	-13.8	77% loss
TOTALS	100.0	100.0	00.0	

calculated useful power values, care must be taken when interpreting the magnitude of the proportionate change. After looking at the results obtained from a large selection of mamals he concluded that only proportionate changes over 20% have any functional significance. Referring to Table 1 (ili) It can be seen that in Duronc the masseter, temporal, and pterygoid muscles all have aignificant proportionate changes (in this table the two pterygoid muscles have been incorporated into one group because it makes it easier to compare the reaults with those of Turnbull (ibide, tables B-F): when the two muscles are considered separately the M. pterygoideus externus has a 95% loss in the fourth colum and the k. pterysoideus interms has a 71% 108s).

The efficiency of the masseter muscle can be attributed in the main to the length of its effort lever ari and to the fact that both correction factors are close to 1.0 . The doninance that this muscle exhibits over the othors in the weight table is onhanced oven further when the useful power Is considered (see meble $i(111)$). The masseter is without doubt the mont important jawnclosing muscle of Dpone producing nearly four tines the usoful power at the jaw pads than do the combinod afforts of the temporal and pterygoid muscles at the cheak teeth.

The temporal muscle is inefficient beanae of its relatively ahort effort lever axim, and because the anglon that it mices with the offort lover are are in the recion of 45°. The high proportionate change for the temporal
 the very man example given by Turnball (ibideg table D).

The pterygoid maculature is even mox inefileient than the temporal. The intermal pterygoid mascle is rey inefficient becaure ita line of action is almost coinoident with its offort lever arm. the innigmificance of the external ptenyeoid male in due to ite extrenaly short effort lever and and to the Iact that this mocle is almoet perpendioular to the modial surface of the nock of the mandibular condyle. whe eberrant byonid Pentelen ham proportionate loss in officuency of afs for the pterycoid mmonlature (Turnbull, ibide, table D). The difference between the proportionate change
values when the pterygoid muscles are considered separately and when they are considered together illustrates the care that must be taken when analyzing jaw musculatures.

Triohechus

When the difference in aize is considered it is apparent that the arrangement of the jaw muscles in relation to the skull and mandible is based on the same pattern in both Dugong and Frichochug. However, a distinction of functional importance is present in the disposition of the tomporal muscles. The anterodorsal inclination of the coronoid process in Morichachug causes an anterior movement of the insertion of the teaporal muscle, and therefore an elongation of the offort lever arm. This increase in the muscle's officiency is also indicated by the additional development of its ortgin and insortion areas. Although the massoter mascle does not appear to have suffored reduction, it is ovident that it and the temporal muacle are not so unequal in terms of officioncy an they are in Duronc.

The other jav-closing musclea of troinhechny must be very aimilar to those of Drasons, although they would all be shorter.

Foonm atroniany

The nonordstonce of complete, undistorted, assooiated skulls and mandibles of the Eocone sirenians makes acourate analyses impomaible, but a brief reviow oan be attempted.

The massetor mascle mant have been prominent in all of the Eocene genora because ita origin and insortion areas axe alray large. In fact the insortion area was relatively larger in these alroniang than it is in the extant genera.

Beonuet of the ainilamitios betroen the origin and insortion areas of temporal musalea of the Locope alrentans and papars it is not unreaponable to conclude that the macles were aleo aimilar in groas morphologs and funotion.

The internal ptorygoid macle may have beon nore important funotionally in the Eocene forme beoause of ite prominent insertion area on the

FICURS 5

AbuLISES OF JAM MECHARICS OF DDGOTC

A'. Analysis for M. masseter at ohoek teeth A". Analysia for M. masseter at jaw pads
 B'. Analysis for M. temporalis at aheek teeth
 $B^{\prime \prime}$. Analysis for M_{A} temporalis at jaw pads
 (insets: reactions at jaw joint $\mathbf{x 1 0}$)
 C'. Analysis for M. pterygoideus at aboek teeth
 CN. Analyais for M. pterygoideus at jaw pada
 (insets: reaotions at jaw joint 220)

5om

Ablonerintion
 3 proportioned offort rector
 I proportioned reaistence vector

FIG. 5

mandible, but the attachment areas of the external pterygoid muscle are difficult to trace.

The shape of the protosirenid paroccipital processes suggests that these rocene sirenians possessed digastric muscles that inserted farther forward on the horizontal rami of the mandible than they do in the living genera.

Dugong
The analysis in Chapter 2 shows that the masseter muscle is the major jav-closing muscle of propog. A powerful jav-cloaing musoulature is needed to raise the remarkably heavy mandible as well as to produce a forceful closure of the jaws. The mandible of Durong is especially massive at the symphysis, the region farthest from the articulation, and this minimizes the need for an officient jaw-opening musculature - the mandible would be lowered when the jaw-alosing musclen relared. This auggestion is aupported by the presence of a M. digastrious spurius that is weakly attached to the mandible. The insertion of the digastric muscle has moved posteriorly from its usual position at the front of the mandible, and in Drogng it is now inefficiently disposed.

Eridence suggests that the closure of the javs is by a simple hinge movenent, without appreciable fore-and-aft or side-to-aide components. Once the jaws are shut there can be little lateral movement between them because the premaxillary and mandibular pada are flush with each other. Thoir flat surfaces come into contact and prevent any aidoway motion; a littio lateral movement oan occur, however, whon the jaws are opened alightly. The cheok teeth do not ahow ans orientated atriations that oould be attributed to latoral movement beoause of the absence of onamol on thoir occlusal aurfaces. The glenoid facet is wide and narrow, but bears a cup-ahaped articular disc that fits comfortably around the mandibular condyle and thus helps to restriot lateral movement.

If the movement of the mandible is to be restricted to one plane it is necessary to atabilise the lower jaw so that the maticatory pads can always meet squarely. This atabilisation oan be achieved by using the temporal, ptorygoid, and digantric musoles - all of which are inofficiont as jarclosing or fav-oponing masoles. The contraction of any, or all, of these paired mascles would poaition the mandible with great preaiaion in relation
to the skull. The temporal and external pterygoid muscles position the coronoid process and condyle respectively, and the internal pterygoid and digastric muscles do the same for the mandibular angle. When the mandible is correctly aligned with the skull, the masseter muscles can be used to close the jaws.

The force exerted on the premaxillary pad by the mandibular pad may be partly absorbed by a rinotic connection that exists betweon the premarillae and the rest of the skull. Although most of the cranial sutures of the adult dugong are oither fused or flrmiy interdigitated (Freund, 1908), it is noticeable that the autures between the premaxillae and aurrounding bones (maxillae, jugals, and frontals) are open. Thus the rostrum is not rigidly fired, but can jield when forces are applied to it in an upwards direction.

The way in which the two masticatory pada are used can only be conjectured at for the present, and studies noed to be carried out on living animals. The food plants are probably puahed into the mouth by the flexible tip of the premaxillary pad, and then aruahod between the latter and the mandibular pad. The rough, papillated aurface of the promaxillary pad and the ridges on the mandibular pad would break up the plant material, making it easier to digest. The tongue, in conjunction with the palate, would then be able to chage the crushed regetation into bolumen that could be easily ewallowed. The ohcek teeth appear to play no part in the proceses of mastication because thoy are without onamel (excopt when exryting), and thorefore have noft ocolval auxfaces.

Turnbull (1970) unod a jar-apparatus olamaification that inoluded five major group - Genoral Group; Speoialised Group I. "oarnivore-mear" types Specialized Group II, "ungulate-grinding" type; Speoialised Group III, "rodent-gnaring" type; and Miacollaneous Group. The apparatus of Drapos cannot be placed aatiafactorily in any of the firat four croupa, elthough there are cortain ainilarities between it and the apparatua of 8pecialised Group III (e.ge Onrotolagin Gayia). The Macellaneous Group containg three
ill-defined categories (only two of which may be required when more comparative work has been done), the third of which contains dentally degenerate forms that have developed aberrant masticatory specializations. The unique dentition of the dugong and the singular structure of its masticatory apparatus warrants it being placed in this category.

Trat chechua

The differences between the jav musculatures of Trichechua and Durong can be related to the different feeding habits of the two genera. The dentition of the adult dugong is reduced to two peg-like teeth on each side, but in the manatee the teeth are bilophodont and supermmerary, erupting in a.contimous series throughout the animal's life. Whereas the teeth of the dugong seem to be virtually functionless, those of the manatee are closely connectad with mastication. The latter animal does not possess the large premardilary and mandibular pads that charaoterize the former, but it does have much maller pads in those regions.

When the teeth of geroheohng exupt, each one bears two transverse lophs that are gradually womn flat as the tooth mores forwards along the mandible. In well-used (1.e. the most anterior) teeth it is noticeable that the lingual side of the worn ocoluaal aurface is higher than the labial side in the lowor jaw, and vice veral in the upper jaw. This is aimilar to the wear desoribed for the toeth of Dandpohyrex (Maynard Smith \& Savage, 1959, 11g. 4c). In Triohachnil, as in Dendiphrperc, the lower dental aroade is narrower than the upper; therefore the cheak teeth are in occluaion on one side only during mastication. The masticatory atroke is probably similar in the two genera, i.e. more nearly rartieal than lateral, but not as vertical as that augested for preone.

The introduction of a lateral componont into the masticatory oyole nocessitatea a slichtly different musole arrangement to that present in Durong. A lateral movement of the mandible can be produced by a contraction elther of the masseter and pterygoid muscles of one aide or of the temporal
musole of the opposite side (Savage, 1959). The almost vertical position of the internal pterygoid muscles of miohechus makes them inefficient as generators of lateral motion, but the masseter and temporal muscles can produce this lateral movement because of their lengthened offort lever aras.

The mandible of trichechus is not onlarged anteriorly as is that of Durong, and the digastric musculature may therefore have a more prominent role as a jaw-opening mechanim. The widely soparatod paroccipital processes of Mrichechus may be related to this function.

When the oheek teeth of brichochun are in occluaion it is ovident that the small pads at the front of the jaws will also be in contact. Iransverse motion between these two pads would help to comainute the food plants, but the greator part of this process would be carried out by the oheak teeth. Food is guided towards, and into, the mouth by the forelimbs and by the prehensile lips (Mishiwald, 1972).

Roonnentronions

The teeth of the Booene airenians that I have examined are worn in a aimilar way to those of Iheichnohvig. Together with the basic resemblance in skull and mandible moxphology between these two groups, this indioates that the mothod of mastication ras much the mam also. The maseter and internal pterygoid muscles are prominontly indicated on the akulls of all the Bocane genera, and were auitably placed to produce the required lateral movement of the mandible. The digastric musole was probably more important as a javopening muscle than it is in the recont airenian (eapeoially poponc) because it had a more anterior ingertion.

Looking at the ordor as a whole it can be soen that the mironian fooding mochanism has undergone some inportant franotional changes during the ovolution of the group. Leaving aside the extreme dentel apecialisations that can be obeorred in later members of the order, it is poasible to recognise
two major pathways leading to the two superfamilies of modern sirenians. The members of the Dugongoidea have diverged the most from the structure of the primitive Eocene sirenians. Although they have retained the structure of the posterior parts of the Eocene sirenian skull and mandible in an almost unchanged condition, the dugongoids are noted for the highly modified nature of the anterior region of the jaws. This situation, already incipient in the Eocene genera, is accompanied by the progressive reduction of the dentition. This evolutionary pathway can be followed to the present-day Dugong and its recently extinct relative Steller's Sea Cow, Hydrodamalis gigas.

The second pathway is very meagrely represented in the fossil record. Unlike in the previous superfamily, the modifications occur on the posterior part of the mandible - the horizontal rami and mandibular symphysis being very similar to those of the Eocene forms. This pathway leads to the modern manatees, Trichechus spp., showing that the two modern superfamilies, the Dugongoidea and the Trichechoidea, have been separate since the Eocene.

-38.
 STLPCITED BIBLIOGRAPHY

BOAS, J.E.V. \& PAULLI, S. 1908. The elephant's head. Flyst Pant. 80pp. Copenhagen.

BOAS, J.E.V. \& PAULLI, S. 1925. The elephant's heade_Second Part. 51 pp. Copenhagen.

FALES, H.B. 1926. Anatomy of the head of a foetal African elephant, Mhephat africanus (Loxodonta africamus). Transe_Re_Soce_rdink. 54: 491-551. FENART, R. 1963. Note sur l'étude du crâne de Holicore dusong par la méthode vestibulaire. yammalia. 27: 92-98.

FRISND, L. 1908. Beiträge $\varepsilon u r$ Fintrickelungageschichte des Schaldels von Halioore ducong Frril. Denkechremadenaturye Gage_Jeng, 7: 557625.

GOHAR, H.A.F. 1957. The Red Sea dugong. Publa mare biole Stn Ghariaas, 2: 3-49.

GRASst, P.-P. 1968. Traité de Zoologie. 16 (2). 870pp. Paris. HILL, W.C.O. 1945. Notes on the dissection of two dugongs. J. Mammen. 26: 153-175.

KAYNARD SIIITH, J. \& SAVAGI, R.J.G. 1959. The mechanics of mammalian jaws. Sch. Scik_RaI- 141: 289-301.

NISHIWAKI, M. 1972. General Biology. In Ridgway, S.H. (Ed.). Knmmala of the gen: biolocy and madicings 3-204. Springfield.

SIMPSON, G.G. 1932. Fosail Sirenia of Florida and the evolution of the Sirenia. Bulle Ame Ying ninte Hiato, 59: 419-503.

TORNBULL, W.D. 1970. Hamalian maatioatory apparatus. Moldiang, feolo, 18: 149-356.

MOODARD, J.C. 1969. Permonal communication. In Caldvell, D.K. \& Caldwell, M.C. 1972. Senses and communication. In Bidsway, S.H. (Bd.). Yamala of the seat biolorg and andicine: 466-502. Springicld.

	$M(g)$	$M(\%)$	L	X	H	a	i
M.m.	266.2	60.0	53°	76°	45°	16.4	12.8
M.t.	96.4	22.0	48°	45°	70°	6.7	$" 1$
M.p.e.	18.1	4.1	37°	10°	35°	3.1	$" 1$
M.pi.	60.5	13.9	9°	75°	10°	15.7	$" 1$

$M(g)$	$=$ weight of muscle in grams
$M(\%)$	$=$ weight expressed as percentage
L	$=$ angle that muscle axis makes with long. plane
X	$=" \quad " \quad "$

Useful Power, $E=M(\%) \times F_{L} \times F_{X} \times r$

$$
\left.\begin{array}{llrl}
F_{L} & =\text { sine function of } L \\
F_{X} & =" & " & "
\end{array}\right) \text { correction factors }
$$

