

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bentahar, Kamel

Title:
Theoretical and practical efficiency aspects in cryptography

General rights
The copyright of this thesis rests with the author, unless otherwise identified in the body of the thesis, and no quotation from it or information
derived from it may be published without proper acknowledgement. It is permitted to use and duplicate this work only for personal and non-
commercial research, study or criticism/review. You must obtain prior written consent from the author for any other use. It is not permitted to
supply the whole or part of this thesis to any other person or to post the same on any website or other online location without the prior written
consent of the author.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to it having been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you believe is unlawful e.g. breaches copyright, (either yours or that of a third
party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please contact: open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access team will immediately investigate your claim, make an initial judgement of the validity of the
claim, and withdraw the item in question from public view.

Theoretical and Practical Efficiency
Aspects in Cryptography

Kamel Bentahar

I Vle University of
w BRISTOL

A thesis submitted to the University of Bristol in accordance with the requirements for the
Degree of Doctor of Philosophy in the Faculty of Engineering, Department of Computer

Science.

April 9,2008

Abstract

The issue of efficiency is a crucial factor in the field of Cryptology. Be it a crypto-
graphic protocol, a cryptanalytic attack or a proof of security - they all have to be

efficient. This thesis is concerned with this issue in the context of Cryptography, i. e.
providing security, as opposed to Cryptanalysis. Two model cases are considered
in this thesis:

O The first of which can be referred to as efficient practical realisation of primitives,
where we study two concrete problems:

" The RSA modular arithmetic at high security parameters. We deal
with the recent recommendation by NIST of increasing key sizes from
the currently used range 1,024-4,096 bits to around 15,360 bits. The
traditional methods are too slow for these operand sizes, and hence
there is a pressing need to explore and develop newer methods. A range
of possibilities are suggested and analysed in detail, and the theoretical
results are further tested and confirmed with an implementation.

" LASH: Lattice based hash function. We investigate an old idea for a
secure hash function based on lattices. We show that this latter hash
function proposal is not secure if instantiated with concrete parameters,
despite it being asymptotically secure. We propose a practical modification
which is efficient, resists the known attacks, yet is not provably secure.

© The second case that we will study is efficiency in theoretical arguments, where
we concern ourselves with the establishment of a tight proof of equivalence
of the Discrete Logarithm Problem (DLP) and Diffie-Hellman Problem (DHP)
by employing optimised algorithms in the reduction proposed by Maurer. We
consequently conclude lower bounds for the computational complexity of the
DHP (Assuming the generic exponential complexity of the DLP for elliptic
curves).

BLANK IN ORIGINAL

111

j3

In the name of God (Allah), the most gracious, the most merciful
and may peace and blessings of God be upon the prophet who was sent unto us Muhammad, his household, his

companions and all those who follow them in righteousness till the Day of Reckoning (Judgement)

00

To my parents, may God protect and bless them

I-

41 JP 19 j
.
J1.; 1.,:

ß
I9 öS-5-: o

5xo-
,

ze-
L ; 1o- L)

To my grandfather "al-bagrr, " my grandmothers "al-yagßt" and "al-haagah" and my
uncle "gaddßr, " may God have mercy upon them [as they passed away]

To my grandfather "Muhammad" and grandmother "mascüdah, " my teachers and
relatives, may God preserve them

zu!

To Algeria the beloved

BLANK IN ORIGINAL

Acknowledgements

.0O

..

ý
1A Jý YIý

Praise be to God, who taught with the pen
[He] taught man that which he did not know

WOULD LIKE TO THANK my supervisor Prof. Nigel P. Smart for his guidance, support I and encouragement. Without his kindness, patience, humour and infallible dedication

and love of the subject I would not have been able to produce this thesis. Nigel, thanks for

everything!
S ECONDLY, I THANK all of my family, starting from my dear parents, who have given

me every support during my studies abroad, to my brothers and sisters whom I cherish
so much, to all of my friends both back at home and in the UK.

WOULD ALSO LIKE TO THANK all of my friends in the Information Security Group (in

I alphabetical order): Amoss, Bogdan, Dan, Elisabeth, Fangfang, Johnny, Paul, Philip,
Pooya and Rob; and last but not least Fre, John, Manuel, Marcel, Martijn, Peter and
Richard who left us before the end of my studies. I am especially grateful to John and
Dan as they helped me greatly during my PhD. Special thanks should go to my friends in
the Bristol Islamic Society who encouraged me during the writing of this thesis, especially

I
. a., z for proof reading my thesis and . a-,. II

-ý., r for lending me his laptop.

AM GRATEFUL to Prof. Steven Galbraith and Dr. Henk Muller for their kindness and I constructive remarks which have improved the quality of this thesis greatly.
F WALLY, I THANK the Algerian government tfor givinme this opportunity of pursuing

my studies in the UK. In particular, I thank the Algerian consulate in London who have
been understanding and helpful throughout.

V

Paginated
blank pages
are scanned
as found in

original thesis

No information
is missing

Declaration

I declare that the work in this dissertation was carried out in accordance with the Regula-
tions of the University of Bristol. The work is original except where indicated by special
reference in the text and no part of the dissertation has been submitted for any other degree.

Any views expressed in the dissertation are those of the author and in no way represent
those of the University of Bristol.

The dissertation has not been presented to any other University for examination either
in the United Kingdom or overseas.

SIGNED: DATE: 14 fotI IV0 9

0 rLstv-t

vii

BLANK IN ORIGINAL

Contents

Abstract i
Dedication
Acknowledgements v
Declaration vii
Contents xi

List of Figures
................................ xiii

List of Tables xv
List of Algorithms

.............................. xviii

1 Introduction 1
1.1 Brief history

................................. 3
1.2 Mathematical preliminaries 8

1.2.1 Abstract algebra 9
1.2.2 Elliptic curves 10

1.3 Complexity theory 12
1.3.1 Recurrence equations of the form R(n) = aR(n/b) + cn +d... 16

1.4 Computationally hard problems 17
1.4.1 The Discrete Logarithm Problem (DLP) 17
1.4.2 The Diffie-Hellman Problem (DHP) 21
1.4.3 RSA and Rabin problems (Modular square and e' roots) ... 23
1.4.4 Lattice problems 24

1.5 General cryptography 27
1.5.1 Hash functions

..................... 29
1.5.2 Some cryptographic primitives 30

1.6 Motivation (Problems addressed in this thesis) 32
1.6.1 NIST 15,360-bit recommendation 32
1.6.2 NIST cryptographic hash project 33
1.6.3 SECG/NIST standards for curves 34

1.7 Overall structure of the thesis 35

2 Fundamental algorithms 37
2.1 Modular reduction and multiplication 38

2.1.1 Special moduli 38
2.1.2 Barrett reduction 39
2.1.3 Montgomery reduction and multiplication 39

2.2 Quadratic residuosity and square roots in Zp.............. 43
2.3 Elliptic curves 44

2.3.1 Coordinate systems 45
2.3.2 Point counting and construction of elliptic curves 46

2.4 Exponentiation 47

ix

x CONTENTS

2.4.1 Binary and k-ary exponentiation algorithms
48

2.5 Pseudo-random number generation
50

2.6 The GMP and NTL libraries
52

3 Integer arithmetic 53
3.1 Asymptotically faster multiplication algorithms 55

3.1.1 The Karatsuba integer multiplication 55
3.1.2 Toom-Cook multiplication 57
3.1.3 Fast Fourier Transforms (FFT) based multiplication 59

3.2 Short products 63
3.2.1 A general method 63
3.2.2 Lower half products using the Karatsuba method 64
3.2.3 Upper half products using the Karatsuba method 65

3.3 Wooping 66

4 Efficient RSA at high security parameters 69
4.1 The Montgomery and Barrett reductions 70

4.1.1 Montgomery reduction 70
4.1.2 Montgomery multiplication 73
4.1.3 Barrett reduction 75

4.2 Exponentiation using the sliding-window method 75
4.3 Experimental results 77

5 LASH, a lattice based hash 81
5.1 The GGH lattice based hash function 84

5.1.1 The GGH compression function
................. 85

5.1.2 Collisions in the GGH construction in less than ViF operations 88
5.2 Design of LASH 93

5.2.1 Specification of the LASH hash functions family 94
5.2.2 Comments on the design of LASH 97

5.3 Security considerations 100
5.3.1 Differential cryptanalysis 100
5.3.2 Linear cryptanalysis 101
5.3.3 Generalised birthday attack 101
5.3.4 Ternary vectors in lattices 102

5.4 Implementation 107
5.4.1 Results 109
5.4.2 Test vectors 110

5.5 Attacks on LASH 111
5.5.1 Some weak matrix dimensions

.................. 111
5.5.2 LASH is not a pseudo-random function (PRF) 112
5.5.3 Exploiting zero IV 113
5.5.4 Attacks on the final compression 113

6 The equivalence between the DLP and DHP 115
6.1 Maurer's reduction method in F. 116

6.1.1 Case 1: Fixed base DH-oracle
................... 118

6.1.2 Case 2: Random base
........................ 131

6.2 Implications on the security of the DHP 132
6.3 Building the auxiliary elliptic curves 134

CONTENTS xi

6.3.1 The factoring procedure 136
6.4 Can we do better using Maurer's approach 137
6.5 Concluding remarks

138

7 Conclusion 139
7.1 Review of results

139
7.2 Open problems and future research

140
7.2.1 Shamir's RSA for paranoids

141
7.2.2 Using convolutions to speed up Montgomery reduction ... 142
7.2.3 Cache oblivious Montgomery and Barrett methods 145

A Appendices 147
A. 1 The auxiliary elliptic curve groups 147

A. 1.1 Elliptic curve domain parameters over Fp 147
A. 1.2 Elliptic curve domain parameters over]F2m

148
A. 2 Trace of a single execution of LASH-160 151

Bibliography 157

Index 165

Epilogue 167

xii

CONTENTS

List of Figures

1.1 Adding and doubling points on an elliptic curve over R........ 11

2.1 Computation of 1303455736/216 mod 2133 = 20155.
41

3.1 Plots for M(n)/`K(n) and M(n)/T(n)
59

3.2 Calculation of short products
63

3.3 Plots for M`(n)/9K'e(n) and Mt(n)/TI(n)
66

4.1 Plots for Cmr, c! /Cmr, 2 and Cmrc! /Cmr, 3
73

4.2 Plots for Cmm, ci/Cmm, 2 and Cmm, cl/Cmm, 3
74

4.3 3..................... Plots for Cb, c1/Cbr 2 and CbrcI/Cbr 76
4.4 , , Montgomery Multiplication times in milliseconds............ 78
4.5 RSA exponentiation times in milliseconds

78

5.1 Visualising t=f (r, s) = (r ® s) + fn(rI t s) (mod q)............ 95

6.1 The first 5 levels of the factoring into 3 coprimes tree.
137

7.1 Using convolution to compute (z + um)u
143

xlll

xiv
LIST OFFIGURES

List of Tables

1.1 Comparable strengths
32

1.2 Field parameters
35

5.1 Solutions to Vol(B�(R)) = #(T� (1 B�(R))
103

5.2 Comparing the performance of LASH with standardised hash functions. 109

6.1 Summary of results for curves of large prime characteristic 133
6.2 Summary of results for curves of even characteristic

134

Xv

Xvi

LIST OF TABLES

List of Algorithms

1 Reduction modulo m= bt -a
Input: Integer z.
Output: z mod m............................. 39

2 Barrett reduction
Input: n-word modulus m, p= lb2"/m J and z< m2.
Output: z mod m............................. 40

3 Montgomery reduction
Input: n-word integer m, -m'1 mod R where R= b", and z< mR.
Output: zR-1 mod m....... 41

4 Montgomery reduction (word-level)
Input: R= b", m= -m 1 mod b and Z= (zR mod m) < mR as an
n-word integer.
Output: ZR-1 mod m........................... 42

5 Interleaved Montgomery multiplication
Input: X= xR mod m and Y= yR mod m as n-word integers, R= b"
and m= -m'1 mod b.
Output: XYR-1 mod m 43

6 Square root extraction modulo an odd prime p
Input: Odd prime p and aE Z1, such that (p) = +1.
Output: x such that x2 -a (mod p)

44
7 Fixed-window exponentiation (Left-to-right k-ary method)

Input: Group element g and e= (en_i ... eo)2k where k >_ 1.
Output: go 49

8 FFT of a vector a (Recursive Algorithm)
Input: A vector a of length n, a power of 2, and w� = ezn'/n.
Output: FFT� (a) 61

9 FFT of a vector a (Iterative Algorithm)
Input: A vector a of length n, a power of 2, and W� = e2n11 . Output: FFTn(a) 62

10 Montgomery reduction with wooping
Input: n-word modulus m, m= -m'1 mod R where R= b", z< mR,
andA=b-1.
Output: zR-1 mod m........................... 72

11 Sliding-window exponentiation
Input: Group element g and integer e= (e�en_l ... eo)2k where k >_ 1.
Output: gt 76

12 The LASH-m compression function
Input: Chaining variable r and message blocks (byte arrays).
Output: Compression t=f (r, s) 95

xvii

LIST OF ALGORITHMS

13 The LASH-m hash function
Input: A padded message v (= ... IlOx89II9 ... 9) of bit-length t.
output: LASH-m(v)

97
14 Solve a DLP in a group G given access to a DH-oracle for G

Input: A cyclic group G= (g) of prime order p, an elliptic curve
E/]Pp: y2 = x3 - 3x + b, generated by P, IEI =11 r1, =, qj and h= ga cG
Output: a= DL(h) 121

15 Implicit square roots in a group G using a DH-oracle for G.
Input: A cyclic group G= (g) of odd prime order p, and gz = gY2 E G.
Output: gy 122

16 Factorisations of an integer into three equi-size coprimes.
Input: An integer n, a parameter e defining the interval [Bt, Bu] _
[ni/3-E, n1/3+E].
Output: A set Q of possible factorisations of n into three coprimes in
[Bt, Bu] 136

17 tocoprimes subroutine
Input: S= (pl', p2 , ..., pm), qE N3, depth E N, Qc N3. 137

xviii

Chapter 1

Introduction

. tai al-hayt bwadhnrh"

- "The wall has ears. " Algerian saying referring to eavesdroppers.

Mainly used to protect state secrets for the past few thousand years, cryptog-

raphy has always been regarded as the obscure and crafty twin of communication.

This view dramatically changed at the end of the last century with the advent of

digital computers and large-scale open networks. This shift in technology and

change in scope has allowed cryptography to gain extensive grounds and, in fact, it

is now part of most people's daily life - from businessmen managing their business

to the citizens using their computers, bank cards and their mobile phones or digital

media players.

Historically, cryptography has been more of a black art than a science, with

which one can grant friends access to private and confidential information while

denying it to foes. Over the many centuries of its development, cryptography

gradually became the study of mathematical techniques that may aid in achieving a

number of information security goals which stem from actual needs and experience.

These include confidentiality and authentication as the prime goals, because the former

insures that data is intelligible to the desired parties only and thus guarantees secrecy.

The latter goal, which includes data integrity, prevents anyone from pretending to

be a legitimate party, and allows for the detection of any modification, insertion or

deletion of messages while transported.

1

Introduction

There is however another type of need which is less abstract but has always been

a main concern in any design of cryptosystems or any reasoning about security, and

that is efficiency. For the early civilisations, it was very important for the scribes

to be able to encrypt and decrypt messages in reasonable time - either mentally

or using simple tools available at the time. With the advancement of technology

and science, better devices were built and more complex techniques were devised

and deployed, as the older ones got discovered and broken. The persistent search

for perfect cryptography has kept great minds from many civilisation busy trying

to invent simple yet secure techniques, and even today we are still pursuing this

dream taking speed and storage requirements as the second most important design

criteria after security.

In this thesis, we focus on the issue of providing cryptographic products in a

form that allows them to be used efficiently, especially with respect to execution

time. Products here should not only be taken to mean commercial products but

also intellectual products that have earned academic merit. We study a few sample

cases that stretch from implementation to design of cryptographic primitives to the-

oretically arguing about the complexity of computational cryptographic problems,

and hence their level of security.

This introductory chapter will review a few background topics of general interest

to cryptography. We will then spend two chapters preparing specific material

needed for the work presented in the subsequent chapters. The next three chapters

will contain the actual contribution of this thesis, summarising the results of the

work done in the course of my PhD research. This then naturally leads us to the

final conclusion and open research topics chapter. A more detailed overview of the

structure of this thesis is given at the end of this chapter on page 35.

We will start by giving a quick sketch of the historical development of cryptology.
There are certainly missing pieces from the jigsaw as knowledge about ciphers used
to be kept secret and only known in limited circles as part of making the whole

system harder to crack - hence the difficulty of tracing the exact course of progress.

2

§1.1 Brief history

1.1 Brief history

A good reference and a joyful book on the history of cryptology is David Kahn's The

Code Codebreakers [Kah67]. For modern cryptography, one may consult the Handbook

of Applied Cryptography [MOV97], Applied Cryptography [Sch96] or Mathematics for

Cryptography [Pin97].

The historical development of cryptology has been shaped by numerous factors,

but the military is undoubtedly the main one. The other factors are not much less

important however. Language morphology and writing systems, for example, have

played a prime role in pre 20th century cryptologic techniques. Furthermore, the

cryptographic techniques that can be used at any point in time depend directly

on the authoring and communication technological means available, and that is

why whenever there is a breakthrough in these aspects there is usually another in

cryptology.

Cryptography, as a tool, is very old and dates back to as long ago as human-

ity can remember. Auguste Kerckhoff comments on this in his historic paper La

Cryptographie Militaire [Ker83] by saying

La Cryptographie ou l'Art de chiffrer est une science vieille comme
le monde ; confondue ä son origine avec la telegraphie militaire, eile a
ete cultivee, des la plus haute antiquite, par les Chinois, les Perses, les
Carthaginois ; eile a ete enseignee dans les ecoles tactiques de la Grece,
et tenue en haute estime par les plus illustres generaux romains.

With regards to the earliest known methods of encryption, blinding or obscuring

information to counter eavesdroppers and keep it private, has been in common use

since, at least, the time of the ancient Egyptians. The methods used were mainly

variations of script, transposition of characters or mono-alphabetic substitution

combined with clever alterations and shorthands, sometimes with the use of special

ink (Steganography). These were the prevalent techniques from about 1900 B. C.,

and likely even before, to the eighth century; on the Nile river banks, in China, India,

Mesopotamia (Persia), Carthage, Greece and Rome. The Hebrews, for example,

had standard shift substitution ciphers which they called Vi:; rllý atbag, albam

and 1=1N atbah, the Spartans (-475 B. C.) used a device called a skytale for a

3

Introduction

transposition cipher, Artha-astra (321-300 B. C.) from India wrote Kantalya where

he speaks about what can be regarded as a substitution cipher, Herodotus mentions

some steganographic techniques in his Histories and the greek Aeneas the Tactician

wrote the first known text in history on the topic of information security titled On

the defence of fortified places.

Essentially, the early techniques achieved security through obscurity, i. e. by mak-

ing it hard for the eavesdropper to know how the message was enciphered and

hence, as was believed at the time, making it practically impossible to guess the

used method or the original message. For example, the Romans used the Caesar

Cipher which amounts to merely shifting the letters of the alphabet by three posi-

tions! One would have thought that these ancient civilisations must have had some

interest in developing better methods but, as far as we know, none of them did. The

methods known then seemed good enough because of the lack of literacy and also,

as it seems, because no-one knew how to break them or no one tried. Furthermore,

the fact that encryption and decryption methods were kept secret helped.

The eighth century saw the beginning of the Muslim era, with which came a

fresh interest in spreading literacy and developing all kinds of disciplines. Amidst

the contributions made during this era are works on the foundation of Cryptology

laid out through a systematic study and classification of the different types of ciphers

known then, and also through studying and devising generic techniques to crypt-

analyse them, [Kah67, p. 71-93]. As a manifestation of this period's influence, the

word cipher, for example, derives from the Arabic word for zero: -,!. a sift, [A1-92].

One factor that encouraged the development of Cryptanalysis in this age was the

intense activity of book translation, where they sometimes had to decipher en-

coded books from previous civilisations that tried to keep its knowledge secret by

enciphering its books (e. g. Alchemy books), [MMA97]. Prominent cryptographers

from this era include L, ;eI J-41 I al-hair! bnu ahmad al farährdr, ul.. v, l

ibnu kaysan,
Jk.

II jI ibnu wahgiyyah al-nnbtr, Jt.. .. Jt L 'I Sabi h4tim

as-siiistäni, but the one who excelled and is awarded the title "Father of Cryptol-

ogy" is 5A SJI v yý:: yaqub al-kinde (c. 801-873) for his work on cryptanalysis:

4

§1.1 Brief history

"I CI 11 : Jl. sj risälatunt 'stihrä§i '1-muamma" (Literally: A discourse on 10,

the extraction of the blinded) where he introduced, among other techniques, several

statistical analysis techniques for cryptanalysis.

This interest then faded away for a while until the Mongols' attacks and the

Crusades in the 13th and 14th century, when cryptographers were needed again.

Figures of this second period include SI ibnu dunaynTr, vyý, c I ibnu

adlan, JýJI I ibnu 'd-durayhim, [MMA97]. Development then attenuated with

the decline of the Arabs but, fortunately, their effort was not wasted and was

rediscovered in Europe at the end of the 15th and beginning of the 16th century

during the European Renaissance.

With this rise of Europe, some new and better ciphers were developed and

more cryptanalytic techniques were made popular. Cryptography then started

enjoying a more mathematical treatment and gradually became demystified. The

most influential cryptographer of this period was the Italian Leone Battista Alberti

(1404-1472), who earned the title "Father of Cryptology in the West. " He wrote De

componendis cifris and created a poly-alphabetic cipher which is now called after

him (Alberti Cipher). Other talented cryptographers of the time were: Johannes

Trithemius in Germany (Steganographia, 1499 Pub. 1606), Giovan Batista Belaso (La

cifra del. Sig., 1553), Giambattista della Porta in Italy (De Furtivis Literarum Notis,

1563), Girolamo Cardano (Cardan grille, 1550) and Blaise de Vigenere (Traict6 de

Chiffres, 1585), to whom we mis-attribute the poly-alphabetic substitution known

as the Vigenere cipher originally described by Belaso (1553).

Cryptography had to wait until the 20th century when it played an indispens-

able role in the two World Wars. It has since enjoyed considerable growth and

has become a powerful and profound theoretical and applied discipline. Its de-

velopment still continues to our day and at a very fast pace, both theoretically

and technologically to meet the practical needs and the ever increasing challenges.

One new technical advancement in the period of the wars that is worthy of notice

is the rotor machine - an electro-mechanical device which mainly consists of a set

of rotating disks, called rotors. The rotors bear some electrical contacts allowing

each of them to act like a substitution cipher. When operating, these rotors may

5

Introduction

advance positions after each encryption of a new symbol. The whole set of rotors

is configured such that the resulting poly-alphabetic substitution is of the largest

period possible. The historical German Enigma and Japanese PURPLE machines

were based on this technique; and while these machines are no longer good enough

for today's security requirements, the principle behind them still lives in the design

of block (and stream) ciphers.

On the foundational side of cryptography, Claude Shannon studied and wrote

about the mathematical theory of secrecy in the early 40s but his work was kept

secret and was not published until the end of the second world war [Sha48, Sha0l].

His paper A mathematical theory of communication [Sha48] introduced the concept of

perfect secrecy and gave a useful measure of the amount of information contained

in a message. Shannon then showed that the amount of information that can be

perfectly secured is no more than that present in the key. That is to say that the ideal

encryption method is to encrypt the message with a truly random key containing

at least as much entropy as the message to be encrypted. This method is nowadays

commonly known as the one-time pad, a method due to Gilbert Vernam (1917). The

encryption operation in this case is usually bitwise XOR of the message and the key.

Numerous ciphers were invented and deployed in the last century but very few

survived the attacks of the many skilled cryptanalysts. Among these ciphers are the

widely used successors of rotor machines: block ciphers, which are mainly a result of

Horst Feistel's work at IBM in the early 70s. Well known examples of these are the

infamous Data Encryption Standard (DES) and its successor the Advanced Encryption

Standard (AES). With these advancements in encryption techniques, other advanced

cryptanalytic techniques were developed too. In particular, the well celebrated

discovery of differential cryptanalysis had a great impact on block ciphers and still

plays a very important role in symmetric cryptography.

The major milestone and turning point in the history of Cryptology as a whole is

the invention of Public-Key Cryptography. It all started with Diffie and Hellman's

paper New Directions in Cryptography [DH76], published in 1976, which motivated

the interplay between the theories of communication and computation, and ad-
dressed "the need for new types of cryptographic systems, which minimize the

6

§1.1 Brief history

need for secure key distribution channels and supply the equivalent of a written

signature, " [DH76]. This idea was a long awaited feat that changed how we study

cryptography and a genuine fulfilment of Kerckhoff's principle, which states that

the security of an encryption scheme should only depend on the secrecy of the key,

not on the description of encryption and decryption algorithms.

1. Le systeme doit titre materiellement, sinon mathematiquement,
indechiffrable; 2.11 faut qu'il n'exige pas le secret, et qu'il puisse sans
inconvenient tomber entre les mains de 1'ennemi; 3. La clef doit pouvoir
en titre communiquee et retenue sans le secours de notes ecrites, et We
changee ou modifiee au gre des correspondants ; ... [Ker83].

In 1978, Rivest, Shamir and Adleman introduced the first practically feasible

public-key cryptosystem called RSA in their paper A method for obtaining digital

signature and public-key cryptosystems [ARS78]. The RSA algorithm was suggested

since it is based on the hardness of factoring large numbers assumption. ElGamal

introduced another practical public-key cryptosystem, in 1985, based on the belief

that computing discrete logarithms (sometimes also called indices) in finite fields

is difficult. Development in the whole field of Cryptology has since been very

rapid and many schemes were later suggested and either were broken, inefficient

or successfully stood up to the test of time and became adopted in standards.

A relatively recent theoretical development is Provable Security, where one

tries to argue that a probabilistic public-key scheme is immune to attacks from

computationally-bounded adversaries. The proofs are almost all reductionist, in

the sense that the results are of the type: If the adversary can systematically break

the scheme, then an efficient algorithm to solve a related hard problem exists and

can be constructed by using the adversary as an oracle. The hard problems are

either computational or decisional problems that have withstood researchers' at-
tacks, and have consequently come to be believed intractable (by polynomial time

algorithms). Most of these problems come from the field of Computational Number

Theory. The proof techniques themselves have undergone incredible development

and an inexhaustible amount of new concepts and results have been introduced

and thoroughly studied in the last decade and a half.

7

Introduction

There were many other theoretical discoveries and developments during the last

few decades, and the subject is still rapidly growing and maturing to become a more

established science. A compendium of progress in the foundations of cryptography

is Goldreich's two volume book Foundations of Cryptography [Go104a, Go104b], but

the fact remains that most of the recent achievements are still in the research papers

and has not been collected in book form yet.

On a warning note, one must note that there are so many issues to take account

of after seeing the "proof of security, " as it should be interpreted properly and not be

given more value than it merits. Furthermore, there are many more practical issues

that arise when a system is implemented in practice. For example, since current

computational devices leak information about their inputs and intermediate stages

then exploiting these leaks has lead to new attacks mainly based on the power

consumption of cryptographic devices or their electromagnetic emission, in cases.

This kind of attacks are referred to as Side Channel Attacks (SCA).

1.2 Mathematical preliminaries

Now we shall start reviewing some useful material to make the thesis self contained.

We start here with some mathematical background then recall some notions from

Complexity Theory in the next section and finish with some general concepts from

cryptography.

As usual, we denote by N the set of natural numbers {1,2,3,...), and by Z the

set of integers {..., -2, -1,0,1,2,3) and by]R the set of real numbers. The greatest

common divisor of two integers x and y, denoted by gcd(x, y), is the largest number

that divides both of them; and if this divisor is equal to 1 then we say that they are

coprime. A natural number n#1 is prime if all of its positive divisors are trivial,

namely 1 and n itself. (Equivalently, the number of its distinct positive divisors is

exactly 2. The first few prime numbers are 2,3,5,7,11,...). If a non-zero integer is

not a prime nor a unit (±1) then it is called composite, and it factors uniquely into a

product of prime powers up to multiplication by units and reordering of the prime

factors (The Fundamental Theorem of Arithmetic).

8

§1.2 Mathematical preliminaries

1.2.1 Abstract algebra

The structures known as group, rings and fields are of prime importance in modern

cryptography, and thus we will review them next. The second half of Chapter 2 is

dedicated to (generic) algorithms in groups that we will use in subsequent chapters.

Groups

Recall that a monoid is a non-empty set G that is closed under an associative binary

operation on the elements of G and is such that there exists a neutral element, which

when multiplied with any elements yields the same element back. If every element

of G also has an inverse, such that when multiplied together yield the neutral

element, then G is called a group. If, furthermore, the operation is commutative

then the group is said to be a commutative group or Abelian group.

In the case where the set G is finite then we denote the number of its elements

by IGI or #G and refer to it as its order; the group is then called a finite group. A group

is cyclic in the special case where all the elements of G are powers of a fixed element

gEG, called a generator of G. We then write G= (g) and say that G is generated by

g. If a subset HCG contains the neutral element of G and is closed under the same

operation and inversion then it is a group too and is called a subgroup of G.

Several familiar group structures are met in practice among which are the addi-

tive group Z/mZ of size m, for an integer mE 7L#o, tl, and the multiplicative group

(Z/mZ)X of size to(m). Also, of special interest are the elliptic-curve groups over

finite fields (described in 1.2.2).

In most cryptographic applications, finite cyclic Abelian subgroups with an

efficiently computable representation and group operation are used. For security con-

siderations, the group order is usually either prime or has a small cofactor. Such

groups are used because they usually come with a computationally hard problem,

such as the the so called Discrete Logarithm Problem (DLP), described in subsec-

tion 1.4.1, which can be used in designing practical provably secure cryptosystems.

9

Introduction

Rings and (Finite) Fields

Let R be a nonempty set with two binary operations: + and x. We say that R is a

ring if it is an Abelian group with respect to + and a monoid with respect to X. If

the x operation is commutative then we call Ra commutative ring. If every element

in R has a multiplicative inverse then we call it afield.

In cryptography, we are mainly interested infinite fields. These are denoted by

Fq (or GF(q) for Galois Field) where q is either a prime p or a prime power q= p°.

Furthermore, these are the only possibilities up to isomorphism. The prime p is

called the field characteristic. If p=2 we call Fq = Fen a binary field of extension

degree in, and if p>2 then we call Fp a prime field. We denote by 1q the algebraic

completion of a finite field Fq.

1.2.2 Elliptic curves

Elliptic curves were first proposed for use in cryptography by Neal Koblitz [Kob87]

and Victor Miller [Mi186], independently. This gave birth to Elliptic-Curve Cryp-

tography (ECC), which enjoyed rapid growth and huge popularity in the follow-

ing decades. ECC is now accepted as the efficient alternative to RSA and finite

field discrete-logarithm-problem based schemes. Good reference books on ECC

are [HMV03] and [CFA+06].

In this thesis, and in cryptography in general, we are only interested in the

case of elliptic curves over a finite field K. In the case when K= Fq is a finite

field of characteristic greater than 3, an elliptic curve E over Fq is the set of points
(x, y) E Pq x iFq satisfying the Weierstrass equation

y2 = x3 + ax + b, for some a, bE Fq satisfying 4a3 + 27b2 #0 (1.1)

together with the point at infinity which we denote by 0.

In the case of a binary field K= F2m, the curve equation takes one of the following

two forms

y2+xy=x3+axe+b for somea, bEF2m (1.2)

10

§1.2 Mathematical preliminaries

or

y2 + cy = x3 + ax +b for some a, b, cE]F2m and c#0. (1.3)

The first equation gives rise to a non-supersingular curve while the second yields a

supersingular curve.

Group Structure of elliptic curves

An elliptic curve E has a structure of an Abelian group with the point at infinity

0 as its identity element. The addition operation is given by the line and chord

rule, as illustrated in Figure 1.1. The exact formulae for addition are expressible

algebraically as rational functions in the points' coordinates.

Figure 1.1: Adding and doubling points on an elliptic curve over R.

Let K have characteristic greater than 3, and let P1 = (x1, yi), P2 = (x2, y2) E E.

Then, -P1 = (x, -yi) and if P2 # -Pr (otherwise Pi + P2 = 0) then P1 + P2 = (x3, Y3)

where
X3 = A2 - Xl - X2

(1.4)
Y3 = A(xi - x3) - YI

where A is given by

x2-xl if Pl * P2
3+a

2y1
if PI = P2.

Similar formulae can be derived for binary fields but we will not present them

here because we will not need them in this thesis. The interested reader may find

them in [BSS99].

11

Introduction

Note that the above given description of elliptic curves and the addition formu-

lae are all given using the affine coordinate system. Some other coordinate systems

and relevant algorithms will be discussed in Chapter 2.

The set of points on E having coordinates in K itself (i. e. not in rC - K) together

with the point 0 is denoted by E(K) and is known as the set of K-rational points. The

set E(Fq) with the previously defined addition has an Abelian group structure of

rank 1 or 2, and we have E(Fq) - C,,, ® C�2 where n2In1, n2! q -1 and C� is the cyclic

group of order n, [Si186].

The size of E(Fq) is given by the Hasse theorem as

#E(Fq) =q+1-t, (1.5)

where t is the value of the Fröbenius trace and is bounded by Its 52 -ý-q.
Waterhouse [Wat69] showed that if q is prime then there exists at least one elliptic

curve for each possible trace value Itl 52 -ýq-. For the case where q= 21, this only
holds for the odd values of t. Furthermore, Lenstra showed that the distribution

of the orders is almost uniform for t5 -ýq-, [LJ87], which is in accordance with the

Sato-Tate conjecture [Si192, p. 120] (or alternatively see [CFA*06, p. 605]).

1.3 Complexity theory

Complexity Theory studies the cost of computation as a function of the length of
the input. The measured cost is mainly the computation time or the storage space,
but could also be some other computational resource. The lower the cost is, the

more efficient the computation is regarded. The theory of complexity is very rich

and vast, but we will concisely summarise the relevant notions and results here. A

more in-depth introduction to subject can be found in [Sip05, Pap94].

The usual cost analyses consider either the average case complexity or the worst case

complexity, where the latter produces an absolute upper-bound on the machine's

running time while the former estimates its running time on a random instance

selected uniformly at random from the set of instances (or according to some other

12

§1.3 Complexity theory

relevant distribution). In cryptography, the average case complexity' tends to

be more important as it guarantees a certain level of difficulty for the practically

deployed instances.

The set E= {0,1) is called the set of binary alphabet. A binary string is a

sequence of bits (symbols from E). The set E" = {0,1}" is the set of binary strings

of length exactly n bits, where the length or size of a bit string is the number of

bits in it. The set of all binary strings (arbitrary but finite length) is denoted by

E" = {0,1}" = Un o(0,1)". A language over E is a subset of V.

A Turing machine (TM) is an idealised abstract model of binary computers con-

sisting of an infinite memory tape that holds binary strings, a reading-writing head and

a program that governs the head's movements on the tape and its reading and writ-

ing actions. In this setup, the cost of computation for input of size n is the maximum

number of head transitions (time complexity) or space used on the memory tape

(space complexity). This is the natural measure used in Complexity Theory and is

commonly referred to as the worst case complexity, in contrast to the average case

complexity where the cost is averaged over all instances.

We shall now explore some of the complexity classes of interest in Cryptology.

We reiterate that all definitions in Complexity Theory assume the worst case cost for

decision problems and that the cost is measured as a function of the input length,

unless otherwise specified. The classification is with respect to whether a random

decision problem can be correctly decided to be in a given language or not.

The polynomial time complexity class P is the set of decision problems for which

there exists a deterministic TM that decides whether an instance is in the language

or not in a polynomial number of steps.

The bounded-error probabilistic polynomial time complexity class BPP is the set of

decision problems for which there exists a probabilistic TM that also has access to

a string of random bits and correctly accepts or rejects with probability 1/2 +e for

any e>0. A machine with this property is usually referred to as a two-sided Monte

I Average complexity should cover almost all practical instances. The best case instances (with the
cheapest cost to break) should be rare and hard to find or of no practical interest

13

Introduction

Carlo Turing machine. Note that confidence can be increased by running the TM an

odd number of times then taking the majority vote.

If, in the definition of BPP, the TM correctly accepts with probability at least

1/2 but always correctly rejects, then the TM is called a one-sided Monte Carlo Turing

machine and the corresponding class is called random polynomial time RP. If the TM

correctly rejects with probability at least 1/2 but always correctly accepts, then we

call the corresponding class co-RP.

The zero-error probabilistic polynomial time ZPP class is defined to be RPnco-RP,

and its corresponding TM is called a Las Vegas Turing machine. Note that this class

has a TM that always answers correctly but only has an estimated polynomial

running time which does not necessarily mean a polynomial upper-bound on the

running time. We hence have PC ZPP.

For the next complexity class, we will need to introduce non-deterministic Turing

machines (NDTMs). These are the same as the traditional TMs except that the head

transition function is one-to-many, meaning that the NDTM makes all the possible

next transitions in parallel. This can be thought of as making enough copies of the

current TM then running each new TM with a different next transition, and so on.

The non-deterministic polynomial time NPclass consists of the decisional problems
that admit solution with a NDTM in polynomial time and which can be verified

with a traditional TM in polynomial time too given an auxiliary string of length

polynomial in the length of the problem (TM accepts on input of a decisional problem

and an auxiliary string). It is conjectured by Cook that P* NP but this still stands

unproven to this date, [Coo06].

A problem X is reducible to a problem Y if there exists a deterministic TM for

X that can decide membership in X given oracle access to a TM for Y. Informally

speaking, this reduction means that X is no harder than Y, and we write X: 5 Y. If,

furthermore, Y is reducible to X then they are said to be polynomial-time equivalent.

For a complexity class C, a decision problem is dubbed C-hard if every problem
in C is reducible to it. If in addition this decision problem is itself in C then it is

referred to as being C-complete. The intuition here is that C-complete problems are
the hardest problems in C. (C is usually NP).

14

§1.3 Complexity theory

In this thesis, Turing Machines will be too abstract for our work, so we will use

algorithms and study their complexity in a similar fashion to what was described

here, as is the common practice. The randomised complexity classes will mainly

appear in Chapter 6 while the other classes are general and affect all chapters.

Asymptotic notation

Due to the difficulty of estimating the exact cost of a given Turing machine, we

usually content ourselves with a good approximation or an asymptotic formula for

it. There is a well established set of tools and notation for this purpose, and stated
here are some of the notation that we will be using.

The most widely used notation is the big-Oh notation, where we write f= O(g)

and mean that f grows no faster than g, asymptotically, to within an absolute con-

stant multiple. More rigorously, it means that 3c, no E N: 0 <_ f (n)
< cg(n) Vn > no.

The lesser used notation f= o(g) is used to indicate that f is not only asymptotically
bounded by a multiple of g but that it is also asymptotically negligible compared

to g, or more formally said Vc > 0,3no > 0: 0: 5 f (n) <_ cg(n) Vn >_ no. This small-Oh

notation appears mainly as o(1) denoting a quantity which tends to zero as n --> oo.

When giving lower bounds we write f= 0(g) if 3c, no EN: f (n) >_ cg(n) >_

0 Yn >_ no. This means that f grows asymptotically at least as fast as g, to within an

absolute constant multiple. To give the exact order of a function f we write f= e(g)

when 3cl, c2, no r= N: cig(n) <f (n) < c2g(n) Vn >_ no. We summarise these below

f= O(g) b 3c, no EN: 0 <_ f (n) <_ cg(n) Nn >_ no.
f= c(g) Vc > 0,3no > 0: 0 <_ f (n) <_ cg(n) Vn >_ no.
f= Q(g) 3c, no EN: f (n) >_ cg(n) >_ 0 do >_ no.
f= 0(g) b 3ci, c2, no E N: clg(n) 5f (n) : 5c2g(n) �In >_ no.

One useful function that frequently appears in practical complexity analysis

of sub-exponential algorithms is the so-called L function: For constants c>0 and

aE [0,1], define (e = 2.71828... is the base of the natural logarithm)

e(c+o(1))"(log n)a (log 1og n)1-a

15

Introduction

Note that when a=0 we get a polynomial cost L�(0, c) = (log n)c 10(1) in the

length of n, and when a=1 this turns into an exponential cost L�(1, c) = n`+0(1). In

general, the smaller a is the better.

1.3.1 Recurrence equations of the form R(n) = aR(n/b) + cn +d

This class of recurrence equations is common in the analysis of recursive algorithms

and will be needed in Chapter 4. We now solve this equation in the general case.

We are interested in solving the recurrence equation R(n) = a'R(nlb) + cn +d

subject to the threshold condition

R(n) =f (n) for n<T: = bT,

where T is a fixed threshold value and f is a given function. We distinguish two

cases according to whether a and b are equal or not.

" Let us examine the case where a0b first. Set k =1ogb n, then by induction we

get
t_ t

R(bk) = atR(bk-t) +(a/b)
- 1- cbk +a

-1
d for any eeN.

We want ¬ to be the least number such that bk't is just below the threshold T

i. e. bk't < bT <_ bk-(t'1>, so we set

e =1k -'c1= Ilogb(n/T)1=: e6(n/T). (1.6)

We then get that (using [xl =x+ (-x), where (x) is the fractional part of x)

k-¬=k-[k-tl=z-(z-k).

So, for n >_ T and a*b, we have the following solution

tb(n/ý T (a/b)6b(n/T) -1 b6(�/T) -1 (1. !) R(n) =af bt'O&(T/n))
+

alb- 1" rn +b
-1

d.

16

§1.4 Computationally hard problems

9 If a=b then induction yields

R(bk) = btR(bk-t) + tcbk +
bb

_l
d for any E][v.

With the same choice of ¬ as before, we get for n >_ T and a=b

e6(nl7) T b6b(n! T) -1 R(n) =bf
(b11oSb(T/n)}) + cn46(n/T) +b

-1
d. (1.8)

1.4 Computationally hard problems

Next, we will describe a few problems from the field of Computational Number

Theory that are believed to be computationally hard to solve. The first two problems

are the main subject of Chapter 6 and will be described in greater detail.

Before starting, we first introduce the concept of generic algorithms as we will

present some complexity results which depend on this notion. An algorithm op-

erating on group elements is called generic if it only uses the group as a black-box,

meaning that it only multiplies elements of the group, computes inverses and can

check for equality of elements. More formally, in the generic group model, the only

operations that may be used are performed through the following three oracles:

1. Evaluation: On input (a, b) outputs their product ab.

2. Inversion (Negation): On input a outputs its inverse a-1.

3. Comparison: Tests if two elements a, b are equal (Redundant if bit represen-

tation is unique).

1.4.1 The Discrete Logarithm Problem (DLP)

Let G= (g) be a given a multiplicative cyclic (sub-)group of order n with an

efficiently computable group law.

The Discrete Logarithm Problem (DLP) is the discrete analogue of the usual

analytic logarithm problem, viz. given an element hEG different from g, find the

17

Introduction

unique integer x (modulo n) such that h= g'r. We write x =logg h. A more formal

definition of the problem can be stated as follows.

Definition 1.1 (DLP). The Discrete Logarithm Problem is to compute from an input

of a cyclic group G= (g) of order n and an element heG, the unique integer xE

(0,1,2,... ,n -1) such that h= gx (all represented (uniquely) as bit-strings).

In practice, the group order n may be unknown, but we will assume that this

value is given or easily computable from the group definition.

The list of practical candidate groups where the DLP is believed to be intractable

(in polynomial time) includes multiplicative groups of finite fields, (Z/nZ)" for a

composite n, non-supersingular elliptic and hyper-elliptic curve groups, algebraic

tori and ideal class-groups of imaginary quadratic fields.

Two practical instances of this problem are of particular interest to us: Discrete

logarithms in finite fields where the group G is the multiplicative group Fq of the

finite field Fq, which is a cyclic group of size q-1. The second source of instances

is elliptic curves over finite fields, where G is a subgroup of an elliptic curve group

E(Fq). The problem in this latter case is written additively and reads as follows:

Given two points P, Q on E(Fq) where Qc (P) =Gc E(Fq), find xe (0,1, ... , #G -11

such that Q= xP.

Computational Complexity of the DLP. First note that if G has smaller sub-

groups then we can reduce the the DLP over G to a collection of DLP's over the sub-

groups by the Pohlig-Hellman reduction, which states that we only need to solve the

problem in the prime power subgroups of G. The solution is obtained using the Chi-

nese Remainder Theorem (CRT) applied to the solutions of the restricted problem

over the prime power subgroups. More concretely, suppose that n= #G = 11', 1 pli,

where p; are distinct primes and ej E N. Then G is isomorphic to a product of cyclic

groups of prime-power orders: ®ý_ Cýý The projection map from G to some Cp.

is given by hH VIP'. Now, by solving the projected DLP modulo pý' for i =1, ..., t

we can then use the CRT to reconstruct the solution modulo n, i. e. over G. To solve

the projected DLP, we first solve it modulo p in Cy using any sensible method, of

18

§1.4 Computationally hard problems

which brute-force is an option if p is small enough, then using the Hensel lifting we

lift the solution to C. 2,. . ., Cpe .
Nechaev and Shoup [Nec94, Sho97] showed that the DLP needs Q(45) oracle

calls (group operations) with generic algorithms having success probability bounded

away from zero (BPP), where p is the largest prime divisor of n.

It is obvious that an exhaustive search to solve the DLP over a group G of

a cryptographic size n is very inefficient as it costs O(n) operations, which is an

exponential cost. There are many other algorithms which have a better asymptotic

cost, and we will now describe a few.

The generic lower bound of S2(\) for the DLP is achievable with a space/time

tradeoff modification of the brute-force method known as the Baby-Step Giant-Step

(BSGS) method. It is due to Shanks and has an asymptotic cost of 0(-/n) group

operations and storage for O(s/n) group elements. This is a very useful generic

algorithm to solve the DLP and will be used in Chapter 6 together with the Pohlig-

Hellman reduction to solve DLPs on elliptic curves of smooth order. We describe this

method here for future reference.

The BSGS method. If we let m=[I and write the solution of h= g'r as

x= im +j with i, jE 10,1, ... ,m- 1), then we see that

(g m)'h = g'.

So, if we precompute (gi, j) for jE 10,1, ... ,m- 1) and sort them by the first entry

then we can identify the correct value of i by trying all possible iE 10,1, ... ,m- 1}

and checking if (g-m)'h matches any of the precomputed values g1 for some jE

{0,1,..., m-11.

Another method which also achieves the generic lower bound is the Pollard p

method. It is a Las Vegas probabilistic algorithm exploiting the birthday-paradox

with expected running time of O(fi(n) and a negligible storage requirement which

makes it favourable in many cases.

The Pollard p method. It proceeds by defining a pseudo-random walk on a
finite graph defined by a function f over G, and when a collision happens in the

19

Introduction

walk we get a solution with a high probability. A collision is expected to occur after

about steps, as expected by the birthday paradox. Using the Floyd's cycle-

finding method for collision detection, we only need minimal storage and expect

to find a collision in an expected time roughly equal to the square root of the points

in the cycle. The actual function f that is used in practice is given by first setting

xO =1 and then using the iterative function

hx if xE Sl

x+ =f (X) := x2 if xE S2

gx if xE S3

where the notation x+ =f (x) denotes the recurrence xn+1 =f (x�) for n=0,1,2,...

and the sets Si, S2i S3 have roughly the same size and form a partition of G with

the condition that 1ý S2. The ith term of the sequence induced by f has the form

xi = gQ+h6+ for i >_ 0 with ao = bo =0 as xo = 1. The corresponding iteration function

for the exponents ai and bi is

(a, b+ 1) mod n if x¬ Sl

(a, b)+ _ (2a, 2b) mod n if xE S2

(a + 1, b) mod n if xE S3

Using the Floyd's cycle-finding method will yield a pair (xi, x21) such that xi = X21,
i. e. gai hbi = ga2ahbu which means that g'+bj logg h_ 902i+b2ilogg h and hence we have

(b; - b2i) logg h 22 (a2; - aj) (mod n).

So, if b; b2i (mod n) which is the case with high probability, then we can retrieve
logg h by a simple division modulo n.

Note that it turns out that the walk as defined above is not random enough as

supposed in the theoretical analysis. The set G should be partitioned into about 20

subsets to have a good practical performance, [Tes98, Tes01]. The corresponding

20

§1.4 Computationally hard problems

iteration function can be taken to be

x+ =f (x) = xg' h"B if xE Ss fors E {1, ... , r) and r ;: t; 20,

where {S1) 1 are of roughly the same size and form a partition of G, and ms, ns are

integers.

Another similar method is also due to Pollard and is called the Pollard A method

or Tame and Wild Kangaroos. It has an expected running time of e(\log n) and also

requires little storage.

Given the square-root best cost of these generic algorithms, the corresponding

key size for cryptographic primitives requiring a security level 2" is 2n bits, provided

that the computational group they are based on is generic. The multiplicative group

of a finite field unfortunately fails to be generic and admits a subexponential attack

on the DLP, which is referred to as index calculus - hence, the key sizes for primitives

which are based on non-generic groups need to be increased accordingly.

Index calculus gives a sub-exponential time algorithm for the DLP in any group

for which we can define a factor base, i. e. if there is measure to decide how "small"

an element is, and such that a significant portion of elements can be efficiently

expressed as a product of these elements. This algorithm is mainly used over finite

fields, but does not work for elliptic curves.

1.4.2 The Diffie-Hellman Problem (DHP)

Let G= (g) be a given a multiplicative cyclic (sub-)group of order n with an

efficiently computable group law.

Definition 1.2 (DHP). Given g", gb EG where a, b are unknown, the DH problem is to

compute gab.

A related problem is the Decisional Diffie-Hellman Problem (DDH): Given group

elements g, ga, gb, 2C, decide whether gab = g' or not. This problem also seems

intractable in general, but is known to be easy for supersingular elliptic curves

because of the existence of efficient pairings (Bilinear maps).

21

Introduction

It is easy to see that the DHP is reducible to the DLP as one can compute

a= DL(ga) then on computing (gb)a we get the desired answer. The reverse reduction

is not trivial but it is known to hold for almost all cyclic groups. This will be the

topic of Chapter 6.

There are a few types of DH oracles which are all polynomial-time equivalent,

and we will describe two of them now. The squaring DH-oracle is an oracle that

on input ga computes ga?. The reduction of the usual oracle to the squaring oracle

is straight forward using the identity ab = 4[(a + b)2 - (a - b)2], and the reverse

reduction is obvious. The e-DH-Oracle, for some e>0, is a probabilistic oracle

that solves the DHP correctly with probability at least e if the input is uniformly

distributed.

Fixed group generators vs. randomly chosen generators. It is worth signalling

at this stage that there is a distinction between the DLP or DHP with respect to a fixed

group generator and those with respect to a (randomly) chosen generator. Consider,

for example, the generation of Decisional Diffie-Hellman triples (gf, gb, gab). Using

the generic group model, Dent showed in [Den06] that if such a triple is generated

by an algorithm 91 then either a or b can be extracted from the the inputs, outputs

and random coins of 3i; which means that one needs to know one the discrete

logarithm of one of the inputs to be able to generate the DH triple. On the other

hand, if the the group generator can freely be chosen then one can easily generate

such triples without solving any DLP with respect to the chosen generator, by simply

uniformly choosing a random element hEG and yEZ then computing the triple

(hy, hr' mod p, h),

which produces uniformly distributed instances of DH triples. This trick does not

work for the fixed generator case because if h= gx eG= (g) such that x it 0, : hl

(mod p) then

! 'I{g(hy, hl/y) = y`Hg(ö y, g'/Y) =g#h,

and the remaining non-trivial possibility (gy, gtl/y, gt1) does not provide uniformly
distributed DH instances.

22

§1.4 Computationally hard problems

This subtle distinction is very important to our treatment of the reduction of DLP

to DHP in Chapter 6. We will have to treat the two types of DH oracles according

to whether the group generator is fixed or can be chosen and given as an output to

the DH oracle.

1.4.3 RSA and Rabin problems (Modular square and e' roots)

In this problem, we are given a modulus N= pq, where p and q are large primes of

roughly the same size, eE NZ2 and CE ZN such that

c= me mod N

for some m r= 7LN, and we are asked to find in. That is to extract e-th roots modulo

an RSA modulus N (See §1.5.2 for the specification of RSA).

If the factorisation of N is known then this operation is easy, as one can solve
it modulo the prime factors p and q first then reconstruct the solution modulo N

using the CRT or, for e>2, compute d=e -I mod p(N) = (p - 1)(q - 1) and then

compute m= cd mod N. However, if the factorisation of N is unknown, then for

e=2 it corresponds to breaking the Rabin encryption scheme which is known to

be equivalent to factoring N. For e >- 3, it is not known whether this problem is

equivalent to factoring N or not, but there are some arguments that suggest that the

RSA problem may be easier than factoring [BV98].

Factorisation of integers into primes

Given a large composite integer N, this problem asks for its factorisation into a

product of prime powers. It is believed to be very hard in general as the best

known general factorisation algorithm, the General Number Field Sieve (GNFS),

has a heuristic sub-exponential running time of

LN(1/3,364/9).

23

Introduction

For integers of moderate sizes (around 80 digits) however, one should use

the Multiple Polynomial Quadratic Sieve (MPQS) factoring method which costs

O(e bognloglogn) = LN(1/2,1) asymptotically but performs better for this range. If

N has a small divisor then the Elliptic Curve Method (ECM) should be the best;

otherwise, one should try Pollard's p method.

This problem is the basis for cryptosystems like RSA, but will unfortunately be

a hindrance to us in Chapter 6 as it will prevent us from finding the auxiliary data

that is needed for our analysis.

1.4.4 Lattice problems

In the process of trying to devise a practical hash function from a previous pro-

posal [GGH96], in Chapter 5, we will have to deal with a mathematical structure

called lattices and some of the computational problems associated with it. This

section will briefly review the notion of lattices and describe some related topics. A

good reference book on this topic from a cryptographic perspective is [MG02] by

Micciancio and Goldwasser.

The subset sum problem is to decide whether a subset of a given finite set of

integers (a,, a2, . -., a,,) sum to a given integers. This problem is known to be NP-

complete, while its computational version is NP-hard.

Given a matrix BE Rmxn whose columns are linearly independent vectors

vl,..., 'Un E R', the corresponding lattice LB is defined to be the set of all possible

integer linear combinations of these vectors

n
LB ={ Civic Ci E z} = Zvl f Zv2 + ... + ZVn.

i=1

In other words, the lattice LB is a discrete additive subgroup of Rm induced by the

vectors in B, i. e.

LB ={Bx: xEz"}.

The matrix B= (v1Iv21... Iv,,) is called a basis of the lattice LB. Note that this basis

is not unique and that any other matrix which is equal to BU, for some unimodular

24

§1.4 Computationally hard problems

matrix UE Znxn, is another possible basis. The determinant of LB is defined to be

det B.

Next we will define two important computational problems related to lattices,

but before that we will first review the different definitions of a vector's length. If

w= (wi, W2i..., Wm) E Rm is a vector then its length is usually defined to be its

Euclidean norm which is given by

+ ... +m llwll = (w, w) =
4U72

1+U,
4

where (.,.) is the inner product operator. This is also known as the ¬2 norm. For a

general pEN, the tp norm is given by

IIWIlp = (Wpli + U'P2 + H ZUPm)l/p.

We denote by A(L) the Euclidean length of the shortest non-zero vector in a

lattice L and by A(L, b) the distance between the vector bE]R and its closest lattice

point.

The Shortest Vector Problem (SVP)

The Shortest Vector Problem (SVP) asks for a shortest nonzero vector in a given

lattice. The answer vector is not unique, but the shortest length is unique and upper

bounded by y1, det(LB)11", where y,, - is an absolute constant that depends on

n only (Theorem of Minkowski). The SVP gained instant popularity when Shamir

showed how to heuristically reduce the knapsack problem to SVP, [SS81].

Approximating the shortest vector problem (APPR0xSVP) in any fp norm to

within any constant factor less than 21/P is NP-hard under randomised reduc-

tions [Mic0l]. In particular, approximating the shortest vector problem is not in

RP, unless NP = RP. ApproxSVP is proved to be a proper NP-hard problem

under a reasonable number theoretic conjecture on the distribution of square-free

smooth numbers.

25

Introduction

The Closest Vector Problem (CVP)

The Closest Vector Problem (CVP) asks for the closest lattice point to a given point in

R'". That is, given a vector ue Rm, we are asked to find a lattice point ve LB such

that the norm Ilu - vll is minimal.

CVP can be reduced to SVP in the following way, which is due to Babai [Bab86].

Given a vector uE Rm and a lattice Le, construct a new lattice LM defined by the

matrix
BU

M=
01

Now, suppose that the closest vector in LB to u is v. Then the vector (u - v, l)T is a

short vector in LM, and hence one can attempt to retrieve it by solving the SVP in LM

and then recover v from the short vector.

CVP is generally regarded to be harder than SVP. In fact, CVP is known to be

NP-hard to approximate to within any constant factor. Furthermore, any efficient

algorithm that efficiently approximates CVP can be used to efficiently approximate

SVP, which means that SVP is not harder than CVP [MG02, §3.31.

The LLL basis reduction algorithm

In 1982, A. K. Lenstra, H. W. Lenstra and L. Loväsz presented the first deterministic

polynomial time algorithm called LLL or L3 which, given a basis for a lattice LC R"',

can find a vector which is guaranteed to be no more than 2(m)I2A(L), where A(L) is

the length of the shortest vector in L. The factor 2(1"-1)/2 was later reduced to (1 +e)"

for arbitrarily small c>0 by C. P. Schnorr at the expense of more work to be done

by the algorithm.

The LLL algorithm is of prime importance in cryptanalysis as almost all of the

lattice based cryptographic primitives only require a good approximation to the

shortest vector to be broken. Furthermore, the LLL algorithm tends to yield a

vector which is much shorter than 2i'-1th'2A(L) in practice, but this depends on the

quality of the basis and is not yet well understood.

26

§1.5 General cryptography

1.5 General cryptography

We will now recall some general cryptographic notions. An excellent rigorous

treatment of the theory of cryptography is Oded Goldreich's two volume work:

Foundations of Cryptography, [Go104a, Go104b]. For a more elementary introduc-

tion to the topic see [Sti06, Sma02, Mao04, MOV97].

We should first meet our friends Alice, Bob and Eve who have been serving the

cryptographic community and have become the de facto characters for illustrating

the different cryptographic scenarios. Alice and Bob want to communicate between

them but they know that Eve eavesdrops on their communications and may even

have control over the channel joining them. In fact, since Eve may have full con-

trol on the communication channel she can insert, delete, modify, delay or replay

any message of her choice. The Internet is a good example of such an insecure

communication channel.

In order to keep the communication confidential, Alice and Bob use encryption

to render their messages unintelligible to Eve. They also want to detect if Eve

tampers with their communication, and for this Alice and Bob authenticate their

communications using message authentication codes (MACs) or digital signatures.

Eve
c= E(m)

(+Authentication) C Cl m' = D(c')
Alice C Bob

It is imperative to keep in mind that Eve is not predictable nor does she stick

to any rules. She may act passively but she can also act actively and may adaptively

try to break the system. She is intelligent, malicious, devious and may have or

will develop better knowledge and technology than expected. Furthermore, in the

multi-users setting, she may even be one or some of the users!

Defending against all existentially possible attacks is practically impossible, so

it is important to ask the question: What are we trying to protect or prevent? The

answer to this question decides the correct level of security needed. For example,

if we are trying to prevent forgery of money then it is enough to make the cost

27

Introduction

of forged money higher than they are worth. In general, a good measure of how

costly an attack is is to compare it to the cost of generic attacks such as brute force

or birthday-type attacks - then, the cryptosystems designers' aim should be to give

Eve no advantage over these generic attacks.

A cryptosystem is characterised by five elements P, C, E, D and 7C, where

"P is the plaintext space from which messages are drawn

"C is the ciphertext space where the encrypted messages live

"E and 1 are respectively the encryption and decryption algorithms family

parametrised by keys drawn at random from the key space 'K.

The cryptosystem should satisfy the soundness condition

dk E IC, Vm E P: Dk(Ek(m)) =m

or at least to hold for the overwhelming majority of keys and messages, as is the

case for the NTRU cryptosystem for example [HPS98]. The algorithms arc also

required to be computationally efficient, and not to leak information about the

secrets (plaintext or key) that can be extracted by another algorithm in polynomial

time.

Note that in the case of symmetric cryptography the encryption and decryption

keys are the same or easily derivable from each other - hence the symmetric prop-

erty; as opposed to asymmetric cryptography (public-key cryptography) where the

key is composed of a private key for decryption which is kept secret and a public-key

for encryption which is published, with the assumption that deriving the private

key from the public key is computationally infeasible unless given access to some

trapdoor information (e. g. the secret-key itself).

The public key and private key can be thought of as being related via a one-way

function (OWF). Set E= {0,1) and let f: E' -º E' be a bijective efficiently computable

function. Then, we say that f is an OWF iff there is no polynomial-time algorithm

that, given yE E', can find xE E' such that y=f (x) or rejects if no such x exists

(inversion). Furthermore, we insist that the image of a string under f should be at

28

§1.5 General cryptography

most polynomially longer or shorter then the input. If the OWF can be efficiently

inverted given access to an additional (secret) string then it is called a trapdoor one-

way function. Currently, there is no published proof that such functions exist, and

in fact, if they do then that will imply that P* NP which will be a breakthrough

in Complexity Theory.

The symmetric and asymmetric approaches to cryptography both have their

own advantages and disadvantages. In practice, symmetric cryptography is orders

of magnitude faster than asymmetric, but key distribution and management prove

to be difficult problems. Asymmetric cryptography on the other hand offers a neat

solution to this latter problem and also provides the useful primitive of digital

signatures. Furthermore, it enjoys the benefits of Provable Security because of its

mathematical structure.

The practical approach for harnessing the best of the two approaches is to use the

KEM/DEM paradigm: The Key Encapsulation Mechanism (KEM) uses an asymmetric

cipher to generate a symmetric-key and then encrypts it producing an encapsulation

of the key. A symmetric cipher is then used, with the generated key, to encrypt

the plaintext. This second part is called the Data Encapsulation Mechanism (DEM).

The ciphertext is then sent as the key-encapsulation together with the symmetrically

encrypted plaintext. This approach grants the benefits of both models of encryption

and is furthermore provably secure subject to some security requirements on the

KEM and DEM, see [CS03].

1.5.1 Hash functions

Encryption and decryption are the most popular cryptographic primitives but there

are many others. We often need a special type of functions known as hash func-

tions, commonly used in conjunction with digital signatures. They are also used for

commitments, integrity checking (Modification Detection Codes (MDC), unkeyed

hash functions) and authentication with integrity (Message Authentication Codes

(MAC), keyed hash functions).

A hash function takes a bit-string from {0,11* and maps it to a fixed length

string space {0,1)", for some fixed nEN called the hash length. Cryptographic

29 UNIVERSITY UNIVERSITY
OF BRISTOL OF BRISTOL

Introduction

hash functions are a special type of the general hash functions, where besides the

basic property of mapping large domains to small ranges, they have some extra

information security requirements, such as lower-bounding n with a function of the

level of security.

We say that two messages (bit-strings) collide if they have the same hash value

under the same hash function. It is clear from the definition of hash functions that

collisions are inevitable, but if the cost of finding such collisions is a(N%n), which

is achievable with a generic birthday attack, then we call such a hash function a

collision resistant hash function (CRHF).

We also impose that the cost of inversion, i. e. finding a pre-image of a given

random hash value, should be 0(n). We refer to such hash functions as one-way

hash functions (OWHF).

The are many other properties that may be required for certain protocols such

as being 2"d pre-image resistant, where we are given a message together with its hash

value and we are asked to find another message that hashes to the same value, or

to be a pseudo-random function (PRF), i. e. computationally indistinguishable from

a truly random function. These and other properties arc described in more detail

in [MOV97, Chapter 91.

Families of hash functions that are used in practice include the MD and the

closely related SHA family, both considered weak by virtue of recent attacks
[BCJ+05, WLF+05, WY05]. The recommended hash function to be used at the

time of this writing is SHA256. Recent proposals for hash functions include VSH

[CLS05], LASH [BPS*06] and FFT based hash function [LMPR06].

1.5.2 Some cryptographic primitives

In this section, we will recall the description of some standard practical realisation

of cryptographic primitives that are related to this thesis, but we will only describe

them in their textbook versions. The actual protocols used in practice are slightly

changed so to make them provably secure.

" RSA. This is an encryption-method that is widely used in electronic commerce

protocols. It was introduced in 1977 by Ron Rivest, Adi Shamir and Leonard

30

§1.5 General cryptography

Adleman from MIT [RSA77] - hence the name RSA. Modular arithmetic is at the

heart of this encryption-method as it consists of one modular exponentiation, which

is its computational bottleneck.

To use (the textbook version of) RSA Bob, who is to receive encrypted messages

from Alice and others, first computes a big number N that is a product of two

equally-sized primes p and q, and then computes two numbers e and d satisfying

ed -1 mod (p - 1)(q - 1). Bob's public-key is then the pair (N, e), while d is his

secret-key and is therefore kept secret. To encrypt a message m, Alice fetches Bob's

public-key (N, e) and computes c E-- me mod N then sends c to Bob, who deciphers

it by computing m E- cd mod N using the secret-key d.

9 Diffie-Hellman key exchange. This is a primitive for unauthenticated key

agreement which is sometimes called exponential key exchange as it utilises exponen-

tiation.

Suppose that Alice and Bob had already agreed on a large prime p and a gener-

ator g of Z p. The idea here is to agree a key of the form

K= g'y = (gX)y = ($Y)'.

If Alice and Bob want to agree on a session key over an open channel then Alice

chooses a random xE (2,.. ., p- 2} and sends gx to Bob, who similarly chooses a

random yE 12, ... ,p- 2} and sends gy to Alice. Now they can both compute the

shared key as K= (gx)y = (gy)X = gxy.

9 ElGamal public-key cryptosystem. The security of the ElGamal cryptosystem

is based on the intractability of the DLP (and the DHP).

The public key is a triple (p, g, g), where p is a randomly generated large prime,

(g) = 7Gp and a is the secret key which is a random integer from the set 12,..., p- 2).

To encrypt a message mE (1, ..., p -1), Alice selects an integer k randomly from

the set 12, ... ,p- 2} and computes the ciphertext c= (g, m) = (gl`, m" (ga)k) using

Bob's public-key (p, g, g). To decrypt c= (g, u i) = (gk, mgak), Bob simply computes

m=m"9-a.

31

Introduction

Note. It should be emphasised that the versions described here are not secure

for practical applications; they only serve as a motivating theoretical tool. A proper

implementation of RSA should use the provably secure OAEP padding construc-

tion [JK03, FOPSO4], and for the elliptic curve version of ElGamal encryption one

should use ECIES [BSSO4, Sma0l]. Authentication is also needed for the Diffie-

Hellman key exchange to avoid the man-in-the-middle attack.

1.6 Motivation (Problems addressed in this thesis)

In this section we motivate the problems that we will address in this thesis. Our

main source of problems is cryptographic standards and governmental recom-

mendations as they constitute the best source to infer issues that directly relate to

cryptographic practice. Another direct source of motivation has come from the re-

cent major academic breakthrough in attacking the the MD family of hash functions

which includes the popular MD5 hash function.

1.6.1 NIST 15,360-bit recommendation

NIST (National Institute of Standards and Technology, USA) has recently recommended

using RSA moduli of sizes as big as 15360 bits to match the security level of AES-

256 [Nat06, p. 63], see Table 1.1. No prior work has been done to study efficient

arithmetic around these operand sizes nor do we know what is the best strategy to

proceed with a practical implementation. With this in mind, it is now worthwhile

to explore the improvements that can be made by using asymptotically faster multi-

plication methods in combination with any "tricks" that may render them practical

even for moderate sizes.

Table 1.1: Comparable strengths

32

§1.6 Motivation (Problems addressed in this thesis)

Chapter 4 is based on [BS07] and aims to investigate a set of possibilities from

straight Montgomery and Barrett arithmetic through to combining them with Karat-

suba and Toom-Cook style techniques. We will see that a novel use of an error

detection technique called wooping [FS03] will allow us to overcome the difficulties

that arise when trying to go beyond the obvious simple substitution of classi-

cal multiplication methods with faster ones. These difficulties are mainly clue to

carry-propagation when computing upper-half products with recursive methods,

a problem that does not arise when using traditional combinations such as the

Karatsuba-Comba-Montgomery (KCM) method [GAST05, Sco96].

Using a formal computational cost model, we estimate the exact cost of the

Montgomery and Barrett modular reduction algorithms. We then introduce some

variants using the Karatsuba and Toom-3 multiplication methods, and analyse the

savings that can be theoretically achieved. These variants have been implemented in

C using the GMP library (GNU Multiple Precision arithmetic library) [Gra07a], and

the relevant results are reported here and compared with the theoretical estimates.

1.6.2 NIST cryptographic hash project

Due to the recent attacks that were first discovered and described by X. Wang

on the MD family of hash functions, which includes the popular MD5, RIPEMD

and SHA-1 [BCJ+05, WLF+05, WY05], KIST has initialised an international effort

to develop a few new cryptographic hashing algorithms through public academic

competition, similar to the competition that contributed to the development process

for the Advanced Encryption Standard (AES).

NIST has held two workshops to review and assess the status of the previously

NISI approved hash functions, to discuss possible future options and to discuss

hash function research in preparation for launching such a competition.

We note that all of the recently broken hash functions are essentially derived

from the same design and are constructed using somewhat ad-hoc techniques. In

contrast, other areas of cryptography have replaced ad-hoc construction with well

defined sets of design principles. Examples include the wide-trail design strategy of

33

Introduction

AES [DR02, Chapter 9], or the rigorous application of reductionist provable security

techniques as in the context of RSA-OAEP [BR94, FOPSOlj.

Given the popularity of provable security and the development of a provably

collision resistant hash function called VSH [CISO5], the time could not be any better

for trying to devise a similar method by attempting to relax previous inefficient

attempts so to make them practical. This resulted in a hash function that we

called LASH [BPS+06] which will be the topic of Chapter 5. In this chapter, we

will show that the lattice based hash function that was previously suggested by

Goldreich, Goldwasser and Halevi [GGH96] is not secure as a cryptographic hash

function when we fix any concrete set of parameters. We then adapt the GGH

construction to give our concrete proposal LASH, [BPS+06). Various recent attacks

on this construction are briefly sketched with comments on their significance, as

well as various implementation tricks.

1.6.3 SECG/NIST standards for curves

A number of cryptographic standards for elliptic-curve cryptography (ECC) have

been developed in the few past decades. These case the task of adopting the

latest cryptographically sound techniques while keeping the different engineered

components inter-operable, which is of prime importance to the already deployed

industrial applications.

Some of the standardising bodies that showed interest in ECC arc the Standards

for Efficient Cryptography Group (SECG), National Institute of Standards and Technology

(NIST), American National Standards Institute (ANSI), International Organisation for

Standardisation (ISO) and the Institute of Electrical and Electronics Engineers (IEEE).

Of special interest to us are the SECG and NIST standards as they both recom-

mend a common set of 15 elliptic curves. The respective publications can be re-

trieved from http: //www. secg. org/index. php? action=secg, docs_secg (SEC2:

Recommended Elliptic Curve Domain Parameters) and http: //www. itl. nist.

gov/fipspubs/by-num. htm (PIPS 186-2: Digital Signature Standard (DSS)- 00 Jan-

uary 27).

34

§1.7 Overall structure of the thesis

According to FIPS 186-2, the sets of recommended curves were pseudo-randomly

generated over prime fields]Fp (for p of bit-size 192,224,256,384,521) and binary

fields]F2m (for extension degrees m r= (163,233,283,409,571)). The choices of these

field parameters were made to match the standard security levels, see Table 1.2 for

the correspondence. 2

Security level Algorithm 1 1 Bit size of p for]F Degree m for F2-
80 SKIPJACK 192 163
112 Triple-DES 224 233
128 AES Small 256 283
192 AES Medium 384 409
256 AES Large 512 571

Table 1.2: Field parameters.

On the theoretical side, the equivalence between the DLP and DHP problems

was shown by Maurer in 1994 but subject to an existence condition of auxiliary

groups with a smooth order [Mau94]. His work was then reexamined by Muzereau

et al. [MSV04] for the special case of elliptic curves used in practical cryptographic

applications, namely the curves from the SECG and NIST standards. Chapter 6

improves on the latter and gets very close to the tightest possible reduction, and

we prove that our results are unlikely to be significantly improved upon using

Maurer's method [BenO5a].

1.7 Overall structure of the thesis

The two chapters 2 and 3 will review some standard generic algorithms over groups,

modular arithmetic, arithmetic of elliptic curve, exponentiation and asymptotically

faster integer multiplication methods. These chapters review the background ma-

terial that is necessary for the developments in the next chapters. We also introduce

2The elliptic curve domain parameters over a given prime field]p are given by a sextuple
(p, a, b, G, n, h), where p is the characteristic of the filed, a and b define the elliptic curve E over
lip :: y2 = x3 + ax + b, G= (Xe, Yo) is a base point on E()F.) of prime order n, and h is the group order
cofactor i. e. nh = #E(F,). In the case where the elliptic curve is defined over a binary finite field)F2m,
the domain parameters become a septuple (m, f (X), a, b, G, n, h), where the parameters a, b, G, n, h keep
their meaning from the prime field case but the elliptic curve is here defined by y2 + xy = x3 + axe + b,
m is the extension degree and f (X) is a degree m irreducible polynomial over IFZ that defines the
extension field F over F2.

35

Introduction

our wooping technique in Chapter 3 which we will use to speed up the RSA oper-

ation in Chapter 4.

Chapters 4 and 5 address the issue of efficiency when designing a practical

cryptographic primitive. Chapter 4 relies mainly on Chapter 3 and studies the

possible ways of implementing modular arithmetic at very large operand sizes,

motivated by the NIST recent key sizes recommendation. Chapter 5 takes the

(inefficient and insecure) GGH hash function proposal [GGH96] and tries to design

a practically efficient hash function, which despite being better in terms of efficiency

loses out on the provable security side as we cannot argue about its security contrary

to its predecessor [GGH96].

Chapter 6 is theoretical and is concerned with the DLP and DHP problems and

their reduction to each other. There, we show the equivalence of the two problems

and establish lower bounds on the difficulty of the elliptic curves DHP based on the

generally accepted hardness assumption of the DLP. This is achieved by optimising

the reduction method and parameters using material from Chapter 2.

We finally conclude in Chapter 7 where we summarise our results and comment

on them. We then list a number of open problems that we feel arc of interest for

future research and suggest some possible solutions that need to be developed and

investigated further.

36

Chapter 2

Fundamental algorithms

"The mathematician's pattern, like a painter's or the poet's, must be
beautiful [...] Beauty is the first test; there is no permanent place in

the world for ugly mathematics. "

- Godfrey Harold Hardy

In this chapter we recall and introduce a few generic algorithms for modular

arithmetic, modular square roots, elliptic curve arithmetic and exponentiation. The

study of fast multiplication of arbitrary precision integers is delayed to the next

chapter.

We start with the central operation of modular reduction, as it is a shared

component between all the subsequent chapters of this thesis and is very important

to many asymmetric cryptographic primitives. Recall that if we are given two

integers z and m then we can divide them using Euclidean division to get

z=qm+r, wheregENUIO)andO<_r<m.

We call q the quotient and r the remainder (both exist and are unique). In modular

reduction, we only want to calculate the remainder as we do not need the quotient.

We will now explore some practical methods for this computation.

37

Fundamental algorithms

2.1 Modular reduction and multiplication

The obvious way of reducing using Euclidean division is a good choice when the

modulus is small, but is inefficient for the moderate or large operand sizes used in

practice. We will describe three main methods that are commonly used in practice

for this purpose. Some adaptations of these methods are developed in Chapter 4

for the case of very large operands.

Let us consider a machine where we represent large integers as arrays of integers

in base b, where b= 2ß and ß is the word length. If z is a 2n words long integer then

we use subscripts ¬ and u to denote the lower and upper halves:

zt =z mod b" and z� = Lz/b" J.

2.1.1 Special moduli

Suppose that the modulus m is equal to b -1 (the largest number that can fit in a

word) and z= zo + zlb +""" +z mb'" then note that bn1 (mod b- 1) implies that

bk-1 (mod b- 1) Vkc(0,1,... 1M).

This remark allows us to bring reduction modulo b-1 to a number of simple

addition of word-sized integers, namely

zmod(b-1) =za+zl+"""+z,, mod(b-1).

Depending on the number of terms and their sizes, a second or more similar

reductions may be necessary. This technique can easily be generalised to moduli of

the form bt -a for a small integer a as shown in Algorithm 1.

For the next two reduction methods, namely the Barrett and Montgomery meth-

ods, we consider the problem of reducing 2n-word integers modulo a given fixed

n-word modulus m. The Barrett and Montgomery reduction methods are techniques

used when the modulus is fixed, as is the case in RSA where many modular operations

are carried out modulo the same fixed modulus N= pq. These special methods

38

§2.1 Modular reduction and multiplication

Algorithm 1 Reduction modulo m= bt -a
Input: Integer z.
Output: z mod m.

I: qo F-- [z/bt], ro F- z- gobt, r E- ro, i E- 0.
2: while qi >0 do
3: qº+1 +- lagj/bt j, ri+t +- aqi - qi+ibt"
4: i E- i+ 1, r 6- r+ ri.
5: end while
6: while r >- m do
7: r4-r-m
8: end while
9: return r

exploit this fact to decrease the cost of modular reduction by pre-computing some

values to avoid the expensive divisions.

2.1.2 Barrett reduction

Let z be a 2n-word integer and m be a fixed n-word modulus. As was mentioned at

the beginning of this section, we can reduce z modulo m using Euclidean division

of z by m: z= qm + (z mod m). Barrett's idea is to avoid division by computing a

good estimate for the quotient q= Lz/mi as follows

Zubn + Zt bnZu ben Zu µZu b2n
NN_

q= _-" whereµ= - mNmm bn N bn m

Note that q E-- L(µzu)/b" J= (µzu),,, and so it can be computed as an upper-

half product (with the help of our wooping technique introduced in section 3.3 on

page 66).

It can be shown that if z< m2 then q-2 <- q <- q. So a good estimate for the

remainder is z- qm which we can correct by subtracting m from it at most twice.

Algorithm 2 describes this method in detail, [MOV97, p. 604].

2.1.3 Montgomery reduction and multiplication

Notice that if we represent modular residues modulo m as xR and yR for some fixed

R satisfying gcd(R, m) = 1, then their (integer) product is xyR2, which can easily
be brought to the canonical residual form xyR by dividing it by R. If we choose

39

Fundamental algorithms

Algorithm 2 Barrett reduction
Input: n-word modulus m, µ= [b2i/m j and z< m2.
Output: z mod m.

1: z' E-
[z/bn-1], q- lz'p/bn+1 j

2: r E- (z mod bn+1) - (qm mod b"+1)
3: ifr<0then
4: rF-r+b"+1
5: end if
6: while r >: m do
7: r4-r-m
8: end while
9: Return r

R= b'1, where b is the word size, then this modular division turns out to be easy

to implement and amounts to about two modular multiplications only. This is the

principle that is behind the Montgomery reduction [Mon85], which we will now

introduce in detail.

We will first introduce a simple version of the Montgomery reduction which

operates at the bit level and is suitable for bit-serial hardware implementation.

Suppose we want to compute z/2" mod m, where m is an odd modulus and z is a

number less than m2". To divide by 2" we simply halve n times, and the trick to do

this cheaply is as follows:

" If x is even then we shift z to the right by one bit.

" If x is odd then x=x+m (mod m) which is even! So we shift x+m to the

right by one bit.

Let us for example compute 1303455736/216 mod 2133, which is equal to 20155.

Figure 2.1 illustrates the previous operations step by step by showing the bit repre-

sentations of the operands after each stage of the reduction, using the shapes n and

Q to denote bit values 1 and 0 respectively.

In general, let R= 2" and m be an n-bit modulus and suppose that we want to

compute z/R mod m, where z is less than mR. Note that if we add a multiple of m

to z then it remains the same modulo m. Furthermore, if we add a suitable multiple

of m to z such that the lower n-bits of the sum are all zero then we can exchange the

modular division by R for a very cheap bit-shift operation. That is to say, we want

40

§2.1 Modular reduction and multiplication

2133 =
1303455736 =

Figure 2.1: Computation of 1303455736/216 mod 2133 = 20155.

to find some u such that

z+ um =0 (mod R).

Solving for u, we get

u= (-m-1) "z (mod R).

This suggests that we should pre-compute -m-1 mod R; then the modular division

z/R can be exchanged for the computation of z+ um and then shifting the result n

bits to the right. Algorithm 3 describes Montgomery reduction as suggested by the

previous analysis.

Algorithm 3 Montgomery reduction
Input: n-word integer m, -m'1 mod R where R= b", and z< mR.
Output: zR-1 mod m.

1: u E-- (-m'1)z mod R
2: x E-- (z + um)/R
3: If x>: mthen
4: xE-- x-m.
5: end If
6: Return x

Note that computing u= (-m-1) -z mod R and the product um requires multi-

precision multiplication, but it turns out that we can modify the Montgomery

reduction method to work on word-size integers as follows: If R= b" then we can
divide z by R= b" through n divisions by b.

41

Fundamental algorithms

Here again, for the modular division by b, we compute u such that z+ um -0

(mod b) i. e.

u= -(m mod b)'1 " (z mod b) mod b

_ -mo1 " zo mod b

which requires word-sized operations only, see Algorithm 4. This variant is com-

monly fused with multiplication to produce what is known as Interleaved Montgomery

multiplication [KAK96], described in the next subsection.

Algorithm 4 Montgomery reduction (word-level)
Input: R= b", m= -m-1 mod b and Z= (zR mod m) < mR as an n-word Integer.
Output: ZR-1 mod m.

1: z4-Z
2: for i=0,..., n-1do
3: U 4- z1th mod I'
4: z E-- z+ umbi (Multiplication and division by b corrospond to shifts)
5: end for
6: z E- z/b"
7: If z'amthen
8: z4-z-m
9: end If

10: Return z

Montgomery multiplication

Montgomery multiplication aims to achieve fast multiplication and reduction in

one go. That is, given X= xR mod m and Y= yR mod m as n-word integers, R=0

and rn = -m'1 mod b, we want to compute the Montgomery product of X and Y

which is given by xyR =_ XYR"1 (mod m).

Algorithm 5 presents the efficient interleaved Montgomery multiplication where

multiplication and division by R= b" arc interleaved and performed at the word

level. This approach keeps the memory costs minimal and makes implementation

easier and more efficient.

We will develop better versions of the Montgomery and Barrett reductions, in

chapter 4, to be used when the operand sizes are bigger than the currently deployed

sizes (1024-4096 bits).

42

§2.2 Quadratic residuosity and square roots in Z,,

Algorithm 5 Interleaved Montgomery multiplication
Input: X= xR mod m and Y= yR mod m as n-word integers, R= b" and rn =
-m'1 mod b.
Output: XYR-1 mod m.

1: Z4-0
2: fori0,..., n-1 do
3: u <-- (zo + X; Yo)m mod b
4: z<--(z+X, Y+um)/b
5: end for
6: Ifz>-mthen
7: z+-z-m
8: end if

9: Return z

2.2 Quadratic residuosity and square roots in Z

In chapter 6 we will need algorithms to test for quadratic residuosity and to compute

square roots in Z p, so we will describe some suitable methods for these specific

computations.

Let p be an odd prime. The equation x2 -a (mod p), where a is a given integer,

can have at most two roots in Z p. The element a is called a quadratic residue if

the number of solutions to x2 -a (mod p) is non-zero, and quadratic non-residue

otherwise. This property is expressed by the Legendre symbol (p), which is defined

as follows.

-1 if a is a quadratic non-residue modulo p,

p=0 ifa=Omodp

+1 if a is quadratic residue modulo p.

The Legendre symbol (p) is a multiplicative arithmetic function in a, and some

of its properties that can help in computing it are

()
= a(P-1)12 (mod p).

`P 1
(-1)(p-1)(q-1)

(P)

q
if q#p is an odd prime.

(2.1)

(2.2)

This latter property is due to Gauss and is known as the quadratic reciprocity law.

43

Fundamental algorithms

Computing the Legendre symbol allows us to decide if a number has a modular

square root or not. To compute the actual square root granted its existence we can

use the following methods.

We first treat an easy case which applies to half the odd primes. Suppose that

p=3 (mod 4). Then the modular square roots of a modulo p are given by

x= , tn('+l)/4 (mod p).

This can easily be checked as (ta(p+1)14)2 = a(y+1)12 =a, a(P-1)/2 aa (mod p), because

"1
a(P-1)12 Mod p= (P1 = +1.

Another interesting special case occurs when p-5 (mod 8). We first compute

s= a(P'5)'8, u=a"s and t=s"u. Then it can be checked, in a similar way to the

previous case, that the answer is u if t =1 and 2(1)14 "u otherwise.

We can devise similar formulae for other more special cases, but they would give

little advantage over the general probabilistic Tonelli-Shanks algorithm [Coh93, p.

32] which is described in Algorithm 6. Its expected running time is O(log4 p).

Algorithm 6 Square root extraction modulo an odd prime p
Input: Odd prime p and aeZ such that (0) = +1.
Output: x such that x2 =a (mod p).

I: Find a random integer n such that (PI) _ -1
2: Write p-1= 2eq where q is odd
3: y, -- nq mod p, r +-- e
4: x <-- a(q-1)12 mod p, b t-- axe mod p, x .- ax mod p
5: while b 0- 1 (mod p) do
6: Find the smallest mz1 such that b2 -1 (mod p)
7: tF-y2'-'"-' modp, y4. -t2modp, rs-m
8: xF-xtmodp, bs-- bymodp
9: end while

10: Return x

2.3 Elliptic curves

We have already introduced elliptic curves in the introductory chapter (§1.2.2).

Here, we will comment on some aspects of curve representation, coordinate systems

44

§2.3 Elliptic curves

that are usually used in practical implementation and point counting. This material

will be used in chapter 6 where we improve the cost of the reduction DLP <_ DHP

by tuning the coordinate system together with some other parameters.

2.3.1 Coordinate systems

The coordinate system that was used in the introductory chapter to represent points

on elliptic curves is known as the affine coordinate system. Other commonly used

coordinate systems which are mathematically more elegant, as they allow a natural

representation of the point at infinity, are called projective coordinate systems and

are used in Projective Geometry to describe these curves more naturally. There

are many other coordinate systems each with its computational advantages and

disadvantages. In fact, there is a whole dedicated database for them called "Explicit-

Formulas Database" at http : //hyperelliptic. org/EFD/.

We will now list some of the popular equivalent representations of an affine

point (x, y) on an elliptic curve given by the Weierstrass-form y2 = x3 + ax + b, over

a prime field of characteristic p>3, together with the corresponding cost of an

elliptic curve addition and doubling respectively.

Affine coordinates. This system was introduced in §1.2.2 (p. 10), so we only

quote the cost of addition and doubling in these coordinates. These are respectively

I+2M+S, I+2M+2S,

where I, M, S respectively denote the inversion, multiplication and squaring op-

erations in the base field over which the elliptic curve is defined.

Projective coordinates. Points are represented as a triple (X :Y: Z) satisfying

the equation Y2Z = X3+aXZ2+bZ3, where the equivalence (X :Y: Z) (sX : sY : sZ)
holds for all nonzero s. A point (X :Y: Z) corresponds to the affine point (X/Z : Y/Z)

when Z*0 and to 0= (0 :1: 0) otherwise. The negative of (X :Y: Z) is given by

(X : -Y : Z). The costs of an add and double operations are respectively

12M+2S, 7M+5S.

45

Fundamental algorithms

Jacobian coordinates. This is a weighted projective coordinate system where the

point (X :Y: Z) satisfies Y2 = X3 + aXZ4 + bZ6 and (X :Y: Z) _ (s2X : s3Y : sZ)

for all nonzero s. A point (X :Y: Z) corresponds to the affine point (X/Z2 : Y/Z3)

when Z#0 and to 0= (1 :1: 0) otherwise. The negative of (X :Y: Z) is given by

(X: -Y: Z).

The costs of an add and double operations are respectively

12M + 4S, 4M + 6S.

More complicated methods of optimising the cost of elliptic curve arithmetic

involve using mixed coordinate systems, where a set of different coordinates are

used to try and decrease the total cost of an exponentiation for example. We will

not pursue their description here, but the interested reader may refer to (CFA'06,

Chapter 13].

2.3.2 Point counting and construction of elliptic curves

In this section we sketch the main methods used for these tasks. The description of

these methods is lengthy and beyond the scope of this thesis. For more details on

the mentioned algorithm see the relevant chapters in [BSS99, BSSO4, CFA*061.

Point counting. Given an elliptic curve E over a finite field Fq, the task of

computing the order of the elliptic curve group E(Fq) is commonly referred to

as point counting. Recall that, by the Hasse Theorem, the group order of E(Fq)

is given by IE(iFq)I =q+1-t where Itl S2/. For elliptic curves over large-

prime fields Fp, one should use the 0(log6 p) Schoof-Elkies-Atkin's Algorithm (SEA),

which is an improvement of the original O(log8 p) algorithm suggested by Schoof

in 1985 [Sch85]. The SEA algorithm is an e-adic method, meaning that the order is

first computed modulo different small primes ¬j such that their product is greater

than the group order. This then can be reconstructed using the Chinese Remainder

Theorem (CRT).

46

§2.4 Exponentiation

For fields with a small characteristic, there are faster methods which are p-adic

in nature, such as Satoh's algorithm and the Arithmetic-Geometric-Mean (AGM)

algorithms.

Construction of elliptic curves. Another task that is of importance in ECC is

to build an elliptic curve group over a finite field]Fq with a prescribed size n or

with some specific properties. Of the few available options, we are interested in the

following methods.

1. If we want to generate an elliptic curve with a given fixed size then we can

use the complex multiplication technique for the construction. This method

takes a fundamental discriminant -D and constructs an elliptic curve over

the given field which has complex multiplication by the maximal order of
QZ(V-D). Note however that the running time depends exponentially on the

class number hp which grows like O(N/D), so D should be as small as possible
for the method to be efficient.

2. If the group order is only required to satisfy some easily testable property that

holds with a non-negligible probability over the choices of the curve or field

parameters, then randomly generating elliptic curves over Fq and counting

their points until one is found with the desired order will yield a Las Vegas

algorithm with an expected polynomial running time.

2.4 Exponentiation

Exponentiation is a time consuming operation that will be needed in chapters 4

and 6. This section introduces the techniques that we will be using and gives the

conditions under which they may be suitable.
Naively, a general exponentiation ge can be done with a cost of e -1 multiplica-

tions by computing ge =g"g"""""g (e factors) but, given that the exponents that

are in common use in cryptography have sizes that certainly exceed 280, we need to

use faster methods to make any exponentiation efficiently computable in practice.
Primarily, we need to reduce the total number of multiplications needed for this

47 UNYERSI'IY

Fundamental algorithms

task, and we may also need to use faster multiplication algorithms such as the ones

introduced in chapter 3.

When studying the problem of raising a group element g to a power e, two

special cases arise depending on whether one of g or e is fixed or not.

1. The case where the exponent is always the same, as in the case of RSA where

any message m to be encrypted to some party is always raised to the same

power e.

2. The case where the element to be raised to a power is always the same, as is

the case with the Diffie-Hellman key agreement scheme where a fixed group

generator g (defined by some standard) is raised to many different powers.

In the exponentiation methods that we will introduce next, we can save on

the cost by making the appropriate precomputations beforehand and once-for-all

according to which case of the above we arc in.

2.4.1 Binary and k-ary exponentiation algorithms

If we write the binary expansion of the exponent e= E', 0 e, 21, with el e (0,1), in its

Homer's form:

e=(("""((e�"2)+ei_1)"2+e�_z). 2+"""+el)"2+eo

then we see that we can compute ge in the following fashion

öe = ((... ((p)2 . ge�_,)2 . g,, -2)2 ...)2 . geo.

This form amounts to evaluating the successive terms of the sequence

gig ?, +e . -I,
22en+2e

_l+(. -3 ..., g2"e,, t-+fp = SE

which costs n squarings and at most n multiplications. This gives an upper bound

of O(loge) modular multiplications on the cost of modular exponentiation, making
it a problem in P. Note that the average cost of this method is jr Ig e multiplications

48

§2.4 Exponentiation

because the average hamming weight of an integer is 1/2, so only half of the bits e;

are set to 1 giving rise to about 1 Ig e multiplications on the top of the lg e squarings.

This method is usually referred to as the left-to-right binary exponentiation.

There is a similar method called right-to-left binary exponentiation where the bits

ej are used starting from eo until e,,.

Fixed window method (k-ary method)

In this method, which is a generalisation of the previous, we first precompute a set of

small powers of g. This then allows us to divide the exponent into chunks (windows)

of size k bits, and then the exponentiation effort will be mainly k squarings and only

one multiplication per k bits.

Fix a window size k. If we write the exponent e in the base 2k as Eoe; (2k);

where el E 10,1, ..., 2k - 1) then we see that

n
ge =

11 (ö i)(2k)'

i=o

or written slightly differently and more concretely (similar to the binary exponen-

tiation)

8= \l...
((pfn)2k . gen-1)2k . gen-2)2k ...)2k . geo,

Thus we have the method shown in Algorithm 7.

Algorithm 7 Fixed-window exponentiation (Left-to-right k-ary method)
Input: Group element g and e= (en_l ... eo)2k where k >_ 1.
Output: ge.

t: $0 E-- 1
2: fori=1,..., 2k-1-1do
3: gi g" gi-1 (gi = g')
4: end for
5: A4-1
6: fori=n-1,..., 0do
7: A Alk (square k times)
8: AE--A"gei
9: end for

10: return A

49

Fundamental algorithms

The cost of this approach is 2k-1-1 multiplications for the precomputation plus n

multiplications and kn squarings, making the total number of multiplications equal

to (assuming that squarings cost the same as general multiplications)

2k-1 + (k + 1)n - 1.

Now, if the bit length of e is fixed and equal to d then n= rdlkl. Then one can

find the best value for k by minimising the the number of multiplications

2k-1 + (k + 1)
k

-1.

If g is fixed the we can do the precomputation of small powers of g beforehand

and reuse it for any subsequent exponentiation with respect to the same base g.

A generalisation of this method that halves the number of precomputed values

and speeds it up a bit is known as the sliding window exponentiation method and is

given in section 4.2 on page 75.

2.5 Pseudo-random number generation

In chapter 5, we will need a method to generate a "random lattice. " We recapitulate

on some possible techniques to generate pseudo-random sequence of elements

which maybe used as entries to the lattice basis matrix. For more in-depth treatment

of this topic see the first chapter of [Knu98].

What we want is to quickly generate pseudo-random sequences of integers

which should be cryptographically secure. The usual deterministic method of

producing a sequence of pseudo-random numbers is to take a truly random seed

value xo and then iterate some function on it so to "extract" more randomness

from it. Some of the popular pseudo-random number generators (PRNGs) in the

literature are

" Linear Congruential Generators (LCG). This is a classical PRNG that is both

lightweight and very fast. The sequence's element are computed via the

50

§2.5 Pseudo-random number generation

iteration

x+ = ax +b (mod m),

where m is a fixed modulus and a, b are carefully chosen constants to try and

avoid statistical bias.

" Pollard type generators. These look like the famous iteration used in the

Pollard p factoring method:

x+ = x2 +2 (mod p),

for some large prime p.

In particular, the Blum-Blum-Shub (BBS) generator is a cryptographically se-

cure pseudorandom bit generation generator (CSPRBG) under the assumption

that integer factorisation is intractable. It uses the iteration

x+ = x2 (mod m),

where m is a product of two large primes each congruent to 3 mod 4, and

outputs the least significant bit of x in each iteration.

" Modular inversion generators. For a large prime p, the iteration for these is

similar to

x.,. =x-1 +c (mod p).

There are many more flavours and exotic approaches to design PRNGs, which

range from simply using shift registers to using elliptic curves, but since our needs

are modest we will be satisfied with the methods that we have just described. In

particular, the Pollard type generators are known to be cryptographically strong

and were experimentally observed to yield good lattices for our hash function

construction in chapter 5.

51

Fundamental algorithms

2.6 The GMP and NTL libraries

In our implementation of the adapted modular reduction methods presented in

chapter 4, we used the GMP library [GraO7a]. The GNU Multi-Precision (GMP)

arithmetic library is a portable library written in C that implements arbitrary pre-

cision arithmetic on integer, rational, and floating-point numbers. It is generally

regarded to be the the most efficient such library. GMP is highly optimised and is

designed to give a good performance for both small and large operand sizes. This

achieved through the use of appropriate algorithms for the different operand sizes

and by carefully implementing them while keeping any overheads at a minimum.

The base operations are written in assembly for a wide range of platformst while

the rest of the library is written in portable C. The official website for the GMP

library is http: //swox. com/gmp, from where the latest version of the library can be

downloaded in source code form. There are also three related mailing lists (Release

announcements, general questions and discussions about usage of the GMP library,

and bug reports), http: //swox. eom/mailman/listinfo.

The NTL library (Number Theory Library) [Sho06] is a high-performance library

written in C++ which is developed and maintained by V. Shoup (http: //www.

shoup. net/ntl). This library is an extra layer on the top of GMP and provides a

useful range of number theoretic functions. It was used in the development process

of the hash function LASH presented in chapter 5. We used some of the functions

related to lattices and linear algebra, especially the well tuned implementation of the

LLL and BKZ (Block Korkin-Zolotarev) [SE91] lattice basis reduction algorithms, to

test the lattices associated to LASH for weaknesses.

The list of platforms include: ARM, DEC Alpha 21064,21164, and 21264, AMD 29000, AMD
K6, K6-2, Athlon, and Athlon64, Hitachi SuperH and SH-2, HPPA 1.0,1.1 and 2.0, Intel Pentium,
Pentium Pro/I1/III, Pentium 4, generic x86, Intel IA-64, i960, Motorola MC68000, MC68020, MC88100,
and MC88110, Motorola/IBM PowerPC 32 and 64, National NS32000, IBM POWER, MIPS R3000,
R4000, SPARCv7, SuperSPARC, generic SPARCv8, UItraSPARC, DEC VAX, and Zilog Z8000. Some
optimisations also for Cray vector systems, Clipper, IBM ROMP (R'f), and Pyramid AP/XP.

52

Chapter 3

Integer arithmetic

"Many people regard arithmetic as a trivial thing that children learn
and computers do, but we will see that arithmetic is a fascinating topic

with many interesting facets. "

- Donald E. Knuth,

In this chapter we study asymptotically faster integer multiplication algorithms.

We will also study the computation of truncated products (short products) where

we only compute a portion of the full product. Furthermore, we describe the

"wooping" error-detection technique, which we shall use later in Chapter 4 to

correct errors due to our faulty short product method used with the Montgomery

reduction.

We assume that we have a machine that can do arithmetic operations on word

sized operands, which we will refer to as base operations, and that it has access to

an unlimited random access memory. The first assumption is true for most modern

machines whereas, strictly speaking, the second is not true; as memory is always

limited in practice and there is some cost associated with fetching or moving data -

a cost that depends on the size and location of the data and also on the speed, size

and architecture of the RAM and cache. However, if enough care is taken then a

good implementation should be able to bring this extra cost to a minimum. Also,

in order to simplify the task of analysing algorithms, we will limit ourselves to the

study of sequential machines and do not consider any aspect of parallelism.
We represent large integers as arrays of machine words, with the basic arithmetic

operations done with the usual classical schoolbook methods, unless otherwise

53

Integer arithmetic

mentioned. A cost expression of the form xM + y3{ denotes the cost of performing

x base multiplications and y base additions. In order to make comparison feasible,

we introduce a parameter p such that 1M = µ3{. This parameter depends on the

machine's architecture and implementation details. To keep our notation light, we

will omit the unit . 91 in formulae of the form aM+b3{ = (a p +b)3{ and would simply

write ap + b.

Let us now estimate the cost of schoolbook addition and multiplication in our

model. We have 3{(n) =n for the cost of adding two n-word integers, and M(n) =

n2M + 2n(n -1), 3i for the cost of multiplying two n-word integers, i. e. we have

A(n) =n and M(n) = (N + 2)n2 - 2n. (3.1)

M�(n) and Mt(n) will denote the cost of computing the upper and lower halves of

the product of two n-word integers, respectively. The cost of computing the lower

half product is Me(n) = ln(n + 1)M + n(n -1)3i, so

AM _ (2 + 1)n2 + (Z -1)n. (3.2)

In principle, we have M,, (n) = Mg(n) but there is a small extra cost due to the fact

that we need to keep track of carries from the lower half of the product, a fact which

will be crucial in our work in Chapter 4 on RSA with very large operands. We also

set R to be the least power of the basis that is greater than n-words i. e. if a word
holds cLI bits then the basis is

b=2ý' and R=b"=24". (3.3)

Then, the subscripts ¬ and u respectively denote the lower and upper half parts of
a number in the sense that

xe =x mod R and x� = jx/RJ . (3.4)

54

§3.1 Asymptotically faster multiplication algorithms

We will assume that the word size is co = 32 bits, which is the standard word-

size in most present computers. This means that when dealing with 15,360-bit RSA

modular arithmetic in Chapter 4 we will need n= 480 words. If the word size is 64

bits then n drops to 240.

3.1 Asymptotically faster multiplication algorithms

The next two subsections will review the Karatsuba and Toom-Cook fast integer

multiplication algorithms and analyse their cost according to the model presented

at the beginning of this chapter. A more comprehensive treatment of these and

other methods can be found in [Knu98, p. 294-311]. We will also consider the

computation of upper and lower halves of products [HarO5, Har07], as these will

save us on the overall cost of the reduction algorithms considered in Chapter 4.

Recall that, according to our computational cost model, we will not take the cost

of memory operations into account and we will assume that they are for free.

3.1.1 The Karatsuba integer multiplication

This is a popular divide-and-conquer algorithm for faster multiplication introduced

by Karastuba and published by Ofman [OK63]. It achieves an asymptotic complex-

ity of O(nlg3) = 0(n1S85), as opposed to O(n2) for the schoolbook method (classical

multiplication).

Let u, vcN be represented as n-word integers in base b, where n= 2t. Write

u= ulbt + uo and v= vlbt + vo, where uo, ul, vo, vi are t-word integers. Then

uv = w2b2t + wl bt + wo,

where

w2 = ulvl
WI = (uo+ui)(vo+vl)-wo-w2

2

wi --- j
L WO

WO = UOVO 4t 3t 2t t0

55

Integer arithmetic

In practice, computing uo + ul and vo + vi may result in an overflow, so extra

care has to be taken when computing these values. Alternatively, one can compute

wi =WO +w2-(uo-ui)(vo-vi).

which uses subtraction instead of addition and hence avoids overflows, this how-

ever necessitates dealing with signed operands.

If we use the Karatsuba method recursively to multiply operands greater than or

equal to a fixed threshold value T and switch to schoolbook multiplication thereafter

then the cost function can be written as

W(n) _
31C(n/2) + 4n for nzT (3.5)
M(n) for n<T

Applying the general solution of such recurrence equations which we worked

out in the introductory chapter (§1.3.1 on page 16) to this equation we get (for nZ 7)

`K(n) = [(p + 2)
2-18 T/")) + 6]

14
3)(1g(TI"» T-(1

183
- 8n = O(n193). (3.6)

Bounded by a constant (N, Tare fixed)

The case where n is odd can be dealt with by letting t= rn/21, but it is more

efficient to set t= In/2J allowing ul, vl to be (t+1)-word integers while keeping

uO, vo as t-word integers. The extra bits need to be treated explicitly but it is worth

the hassle as it will save some running time. With this latter approach, the cost

obeys the following extra recurrence equation when n is odd

K(n) = 29(((n + 1)/2) + K((n - 1)/2) + 4n.

With this optimisation, it becomes very difficult to write down a closed form of

the solution, if feasible to start with. So, we will be satisfied with a sample plot.

The graph in Figure 3.1 shows the ratio M(n)/`K(n) for p=1.2 and T= 23, hence

illustrating the savings that can be made by using the Karatsuba multiplication

method instead of the schoolbook method.

56

§3.1 Asymptotically faster multiplication algorithms

The threshold values used in the graphs of this chapter (T = 23 and T' = 133

which will be introduced later) are those of the Pentium-4 machines (2.80GHz,

512KB cache, model 2) that were used for the timing experiments of Chapter 4

(Section 4.3), as estimated by GMP's tuning program tuneup. These can easily be

estimated for other architectures using the same tuning procedure (see Section 2.6

for the GMP library).

Note, however, that the exact value of y is hard to pin down because execution

times depend on the ordering of instructions and data, which may lead to significant

savings through pipelining. Luckily, it turns out that small variations in y have little

theoretical impact on the cost ratios considered here, as p essentially only affects

the leading coefficient which varies slowly as a function of p. The value 1.2 for p

was experimentally chosen from a set of possible values in the range (1,1.5). These

were obtained using loops to measure the average times for word operations on a

few Pentium-4 computers with the same specifications mentioned previously, and

then fitting the collected data to estimate the value of p. Values for p can also be

estimated theoretically through the tables presented in [GraO7b].

3.1.2 Toom-Cook multiplication

This method also uses a divide-and-conquer strategy and can be considered as a

generalisation of the Karatsuba method. The general framework here is to treat

integers as polynomials and then exploit some properties of polynomials to speed

up calculations.

We first write the two integers u, v that we want to multiply as two degree r

polynomials u(x), v(x) whose coefficients are the base bt digits of u and v, for some
fixed tEN. We then evaluate the polynomials at as many points as needed to

uniquely define their product w(x) = u(x)v(x) through interpolation, namely 2r +1

points. Now, multiplying the values of the two polynomials u(x), v(x) at the chosen

points, we get the values of the product w(x) at the same points. Given these 2r +1

values, we can now recover w(x) by interpolation; and to get the product of the

original integers we simply evaluate w(x) at the base bt (release the carries). This

yields a multiplication method having complexity O(nlog(2r+I)/ iog(r+1)). Note that

57

Integer arithmetic

the Karatsuba method can viewed as a special case of this framework when r=1

(linear polynomial).

We will describe a popular instance of this family of multiplication methods

known as Toom-3 multiplication in more detail. Toom-3 achieves a complexity

of 0(n'0935) = O(nl-') by taking the polynomials u(x) and v(x) to be quadratic.

Suppose we want to multiply two n-word integers u and v, where n= 3t. First, we

represent them as quadratic polynomials evaluated at x= bt

U= u(x)IX=y. = UO + ulb' + u2P,

v= v(x)I bi = vo + vlbt + v2P.

Now, to evaluate w= uv, we first evaluate w(x) = u(x)v(x) at x=0,1, -1,2, oo. Then,

knowing the values of w(x) = W4x4 + W3x3 + W2x2 + wlx + wo at five points, we

interpolate the coefficients of w. We have

W4 = u2v2,
w4 ,

W3 = u2V1 + ulv2, w3

W2 = U2VO + ulvl + uov2i w2

wl = uovl + ulvo,
ic

wl

wo
6t 5t 4t 3t 2t t 0

w(x)Ix=o = uovo = wo,
W(X)lx--+l = (u2 + ul + uo)(v2 + vl + VO) a,

w(x)Ix=-1 = (u2 - ul + uo)(v2 - V1 + VO) ß,

W(X)lx--2 (4U2 + 2ul + uo)(4v2 + 2v1 + vo) y,

W(X)lx--00 := 1imx-- u(x)v(x)/x4 = u2V2 = w4.

So we get wo and w4 right away, and what remains is to find w1, wZ, w3. Solving

the previous system of equations we get

w2 = (a+ß)/2-w4-wo

w3 = +wo/2-2w4+(Y-ß)/6-a/2

wl = -wo/2+2w4-(y+2ß)/6+a

58

§3.1 Asymptotically faster multiplication algorithms

Hence, the cost function for Toom-3 is T(n) = 5T(n /3) + [391(t) +451(t) + 351(t)] +

491(t), i. e.
T(n) = 5? (n/3) + 14n/3.

When n is not a multiple of 3, we set t= (n/31 and allow u2 and v2 to be shorter

than t words, as is done in the code of the GMP library -This makes implementation

easier.

We introduce a second threshold value T' >T such that if n<T then we use

schoolbook multiplication, if T <_ n< T' then we use Karatsuba multiplication, and

if n> T' then we use Toom-3 multiplication recursively.

Figure 3.1 shows the plots of the ratios M(n)/7C(n) and M(n)/T(n) for p=1.2,

T= 23 (as before) and T' = 133, hence showing the speedup that is made over the

schoolbook multiplication method in this case.

S1- M(°)/T(n)

M(n)/R(n)

Z

100 200 300 400 500

Figure 3.1: Plots for M(n)/7C(n) and M(n)/T(n).

3.1.3 Fast Fourier Transforms (FFT) based multiplication

Suppose we want to multiply two multi-precision integers u and v of length na

power of 2. We first represent both operands as polynomials u(x) and v(x) evaluated

atx=b

u= u(x)Ix=b = uo + ulb + ... + un-lbn-1 = (UO, ... , Un-1)b,

V= v(x)Lx=b = vo + vlb + ... + vn-ibn-1 = (vol... vn-1)b"

Now, to evaluate uv, we first compute the linear convolution of u(x) and v(x) by

FFI-transforming their coefficients vectors and point-multiplying the results. We

then evaluate the FFT inverse of the latter result at the base b to obtain the integer

59

Integer arithmetic

product uv, i. e.

uv = FFI`j(FFr2n(u) * '2, n(v))Ixz6.

where * denotes point-wise multiplication of two vectors

(ao,..., ak) *(bo,..., bk) = (aobo, albi,..., akbk).

This approach fits with the Toom-Cook paradigm of fast multiplication since

FFTz� and FFI' correspond to evaluation and interpolation at the 2nth roots of

unity, respectively. We will next investigate the possibility of using FFTs to compute

short products, then give an exact description of how to compute FFTs efficiently

using complex arithmetic.

FFT based short products

There does not seem to be there any way of computing half products using FFTs

without computing the whole product. However, it is shown in [PGO5] that a

closely related result can be computed using what is called a cyclic convolution: Let

w= uv = (w�lIwt)b, where w� and wt are the upper and lower halves of w in the

b-base representation. The cyclic polynomial convolution of u(x) and v(x) is

w(x) mod x" -1 = w�(x)x" + wt(x) mod x" -1
= w�(x)+WI(x).

This can be computed using FFT on n-point, instead of 2n points, as follows:

wu(x) + wt(x) = FFI�'(FFr (w�) * F'n(wt)).

The prior knowledge of either the upper or lower half of a product combined
with this result will help us determine the other half. In fact, for our purposes, a
good approximation to these halves will suffice. This fact will enable us to trade
full FFTs for half-sized FFTs when only a half product is needed knowing that the

60

§3.1 Asymptotically faster multiplication algorithms

result has a special shape. The details can be found in the later discussion about FFT

Montgomery and Barrett reduction (§7.2.2 on page 142) or alternatively see [PG05].

Computing FFTs using complex arithmetic

The more precise term used for Fourier Transforms for vectors is Discrete Fourier

Transform (DFT), but it is common to use the general term FFT for it when there is

no ambiguity in its usage.

Without loss of generality, assume that n is a power of 2, n= 2k. We call

Wn = e2niln the principal nth root of unity. Let A(x) = ao + alx +"""+ a�_lxn-1 be a

polynomial of order less than n. We identify the polynomial A with its coefficients

vector a= (ao, al. """. an-1)"

The Discrete Fourier Transform (DFT) of a polynomial A (represented by its

vector of coefficients (ao, al, ... , a�_1)) is defined by

n-1
DF'Tn(A) _ (Yo, yi, ..., yn-i) where yk = A(w, k,) =E ajwik.

j=o

A recursive algorithm to compute FFTs. Algorithm 8 describes how to recur-

sively compute compute the FFT of a vector a, [CLRS01, p. 788].

Algorithm 8 FFT of a vector a (Recursive Algorithm)
Input: A vector a of length n, a power of 2, and W� = e2ni/n,
Output: FFrn(a)

1: if n=1 then
2: Return a
3: end if
4: W --1
5: a101 (ao, a2, """, an-2) (Even indices)
6: all] F- (al, a3, an-i) (Odd indices)
7: y101 t- FFTn12(aE°I)
8: y[l] F- FFTn12(aUl])
g: fork= 0,..., 2n -1 do

10: t F- Wykl1 (1M)

11: Yk E- yk01 +t (13i)
12: y(n12)+k E- yk0) -t (1-91)
13: cL) 4- cOCOn (Can be precomputed...)
14: end for
15: Return y

61

Integer arithmetic

This costs T(n) = 2T(n/2) + (n/2)M + n3{. Rewriting this recurrence equation as

T(n) = 2T(n/2) + (p/2 + 1)n

and using the general solution from 1.3.1 (page 16) we get

T(n) = (N/2 + 1)n Ig n= ©(n Ig n).

An iterative algorithm to compute FFTs. This is described in Algorithm 9,

[CLRSO1, p. 794]. The cost is the same but implementation may be easier and more

efficient with this approach.

Algorithm 9 FFT of a vector a (Iterative Algorithm)
Input: A vector a of length n, a power of 2, and w"
Output: FFT�(a)

"Bit-reverse" copy a into A
I: for k=0,..., n-1 do
2: Ar

ij(k) t- ak

3: end for
Compute the FFT iteratively

4: fors=1,..., lgndo
5: m E-- 2'

(rev(k) Is the (Ig n)-bit Integer reverse of k)

6: Wm +_ e2ni/m

7: fork0,..., n-1 bym do
8: W1
9: forj=0,..., Im-1do

10: t 4-- WAk+j+m/2 (IM)

11: u +-- Ak+ j
12: Ak+j i-- U+t (I2)

13: Ak+j+m/2 4- U-t (12)

14: W F-- wwm (Can be precomputed...)
15: end for
16: end for
17: end for
18: Return A

The cost of this algorithm is (m/2M + m31)(n/m) Ig n= (n/2) Ig nM +n Ig n qt, i. e.

(p/2 + 1)n Ig n.

62

§3.2 Short products

Inverting the FFT (FFT-1). For the inversion, we note that DFTý, 1 =1 DFT(C, -1).

So the cost of the inversion is the same as the cost of a DFT plus a division by n= 2k,

which is a simple shift operation.

3.2 Short products

We will make use of methods for computing the lower and upper half products

(short products), so we will study their costs next. We start with a general method

that applies to all multiplication algorithms [Mu197, Har05] then present some

specific solutions specific to the Karatsuba method.

3.2.1 A general method

First, we will introduce a visual aid that will make explaining this method easier and

more intuitive. When multiplying two numbers using schoolbook multiplication

we stack the partial products in a shape similar to the one on the left in Figure 3.2

prior to adding them up; and to find the lower half product, for example, we only

need to compute the results in the shaded triangle.
pn

Z-

7z

Figure 3.2: Calculation of short products.

Let S(n) be the cost of computing a short product of two n-word integers. If

we take a portion pn, where 0.5 <_ p<1, of both operands and compute their full

product, corresponding to the darker shaded area on the right in Figure 3.2, and

then compute the remaining terms using short products again, corresponding to

the two light shaded triangles, then we find that this method would cost

S(n) = M(pn) + 2S((1- p)n).

63

Integer arithmetic

Since the multiplication methods we are considering, except PET based multi-

plication, all cost M(n) = O(na) for some aE (1,21 we find that1

S(n) S 1- 2(- p)a
M(n).

C,

The factor Cp in the inequality S(n) 5 Cp M(n) is minimal at p= 1- 2"h1'C1-1), and

the following table summarises the results for the methods that we are interested

in. It should be noted that these arc the best asymptotically, and as such there may
be better choices for p when n is small or moderate.

Method a p Cp

Schoolbook 2 0.5 0.5

Karatsuba 1g3 0.694 0.808

Toom-3 10935 0.775 0.888

Note that if we fix n and look for the best value of ß we may get a slightly
different value. For the case where n= 480, the value of p turns out to be about 0.80

for Karatsuba and 0.88 for Toom-3.

The next Karatsuba-specific methods are actually special cases of this general

setup with p=0.5. They are easier to implement and may be faster in practice.

Note, however, that doing the same for Toom-3 produces a slower method and

hence it has not been considered.

3.2.2 Lower half products using the Karatsuba method

Recall that we have taken u= uo + btul and v= vo + b'vi to be n= 2t words long

integers, and set w= uv = wo + webt + web' where wo = uovo, wl = uovl + ulvo and
U12 = U1V1.

'First, note that M(n) = 0(n°) implies that M(an) = a°M(n) for any acR. So we have

S(n) = M(pn) + 2S((1- p)n)
= M(pn) + 2M(p(1- p)n) + 22M(p(1- p)2n) + 23(...)

= (p° + 2pa(1- p)° + 22pa(1- p)2' + ...)M(n)

5 17°
1- 2(l - pp

M(n).

64

§3.2 Short products

For the lower product (uv)e, we now see that we need to compute

wt = (wo + webt + w2b2t) mod b 2t = (uovo + [(uovi + ulvo) mod bt]bt) mod b2t

= (uovo + [(uovi)e + (uivo)el bt)t,

which costs ? CC(n) = ? C(t) + 29(C(t) + 2.74(t), i. e.

9Ce(n) = 9C(n/2) + 2'Ce(n/2) + n.

3.2.3 Upper half products using the Karatsuba method

This time, we have to compute

=I
bet +wV+ wo

= ulvi +
1,, UOV1

_
b2t Wu __ + carry

uiv1 + (uovi)u + (uivo)u.

(3.7)

The carry results from adding wo to w1bt, in the full multiplication, and hence we

have that carry E 10,1).

If we ignore the carry and use the "faulty" recursive method suggested by

this formula. Then, the maximum error c(n) that results from using this method

recursively will satisfy the recurrence equation

e(n) = 2c(n/2) +2 and e(n) =0 for n<T.

By the result of section 1.3.1 (page 16) we deduce that

c(n) =2. (2118(f1 1
-1) < Tn - 2.

So, computing upper-half products, up-to an error of order O(n), can be done at the

cost of W ,, (n) = W(t) + 2? Cu(t) +2 71(t), i. e.

9C�(n) = 9C(n/2) + 2Ku(n/2) +n= 7<`(n). (3.8)

65

Integer arithmetic

It turns out that, when the faulty result of this method is used in the reduction

algorithms, we can correct the computation by using a nice technique, known as

wooping, which is due to Bos [FS03, p. 281-2841. This idea is explained in the

next section 3.3, whereas the correction steps as applied in our modification of the

Montgomery reduction are detailed in section 4.1.1 (page 71).

To see how much faster these methods are, we plot Mt(n)/1Cg(n) (using both

the general and the specific method) and MI(n)/TI(n) - sec Figure 3.3. The same

speed-ups apply to the upper-half product methods too as they essentially have the

same cost.

2.1
2.2!

1.7!

1.!

1.2!

0.0.775

0.0;!
91

Figure 3.3: Plots for M&)/? CI(n) and MI(n)/Tg(n).

3.3 Wooping

The wooping technique allows us to verify the outcome of a set of integer operations

via a clever probabilistic test. The idea as introduced by Bos and explained in [FS03,

p. 281-2841 relies on the fact that if p is a prime number and we are given the result of

an integer operation together with the inputs, then we can detect any modification

of the result, with probability 1- 1, by reducing the given full result modulo p and

comparing it with the recalculated answer modulo p.

For example, if the operation is z . -- x"y then we randomly choose a small

prime p and compute 9 +- x mod p and 9 . -- y mod p first. Next, we compute

2 F- z"y mod p; and for the comparison we reduce z modulo p and compare the

result with 2. If the two reduced results do not agree then there certainly is an

error in the full integer computation, assuming the "small" calculation modulo p is

correct, but if they agree then there is a low chance that an error has occurred.

66

§3.3 Wooping

That is to say, the general idea is to perform the same operations modulo a

small prime number and then compare the results. More specifically, we reduce

the operands modulo the prime number first then operate on them with the cor-

responding modular operations. If p is a randomly chosen prime number then the

probability that this check fails to reveal the error is l/p, so one can choose other

prime numbers for the wooping test to increase confidence.

We will use this technique in a different and novel manner in Chapter 4, where

we already know that there is a linearly bounded small error in our computation

which underestimates upper half products (using our earlier approach in §3.2.3) -

What we want is to correct this error. Furthermore, since we are not in an adversarial

setup, this correction scheme will be deterministic and always successful. The solution,

in our case, will be to choose a woop modulus that is bigger than the largest

possible error, and then correct the integer computation by adding or subtracting

the difference between the two reduced values (according to whether the faulty

result is an underestimate or an overestimate of the correct result).

As a toy example of how to use the wooping technique for correction, let us

consider a device that can multiply integers but sometimes overestimates it and

introduces an error of +1 in the result. Suppose that we wanted to compute 4x5

but we got 21 as the answer. First, note that we can choose the woop modulus

to be 2 as that is enough to reveal the magnitude of the error. Now, we check

that (4 mod 2) x (5 mod 2) =0X1=0 whereas 21 mod 2=1, so we correct the

computation by subtracting 1 from 21 to get the correct answer of 20. For the exact

details of how to use this technique in our work, see section 4.1.1 on page 71.

On a side note, as an alternative to wooping one may consider computing

enough extra words to the right of the truncated upper-product in order to ensure a

small probability of a carry being missed. This is in fact suggested in [Har05] and the

extra words are referred to as "guard digits. " This alternative is more complicated

to implement because of the extra storage and will most likely be more expensive,

especially if two or more guard digits are needed. Wooping on the other hand

requires negligible storage and introduces little computational overhead, especially

67

Integer arithmetic

if the wooping modulus is chosen to be special in order to speed up the modular

reduction.

68

Chapter 4

Efficient RSA at high security

parameters

"The choice is particularly difficult for paranoid organizations whose
encrypted messages should remain secret for several decades, since it

is almost impossible to predict the progress of factoring algorithms
over such a long period of time. The only reasonable course of action is

to use huge margins of safety, but this will make the RSA operations
extremely slow. "

- A. Shamir

NIST has recently recommended using RSA moduli sizes as big as 15360 bits

to match the security level of AES-256 [Nat06, p. 63]. With this in mind, it is now

worthwhile to explore the improvements that can be made over [Koc94] by using

asymptotically faster multiplication methods together with any "tricks" that may

render them practical even for moderate operand sizes (4096-8192bits for example).

We show how the wooping technique, described in §3.3, will allow us to overcome

the difficulties that arise when trying to go beyond the obvious simple substitu-

tion of multiplication methods. These difficulties are due to carry-propagation

when computing upper-half products with recursive methods, a problem that

does not arise when using traditional combinations such as the Karatsuba-Comba-

Montgomery (KCM) method [GAST05, Sco96].

Using the formal computational cost model and material presented in chapters 2

and 3, we estimate the exact cost of the Montgomery and Barrett modular reduc-

tion algorithms. We then introduce two variants using the Karatsuba and Toom-3

69

Efficient RSA at high security parameters

multiplication methods, described in section 3.1, and analyse the savings that can
be theoretically achieved. These variants have been implemented in C using the

GMP library (see §2.6), and the relevant results are reported here and compared

with the theoretical estimates.

4.1 The Montgomery and Barrett reductions

Given a fixed n-word modulus m, we want to reduce 2n-word integers modulo m

as fast as possible. We will now describe two improved fast reduction algorithms,
based on the Montgomery and Barrett methods, using multiplication methods that

are faster than the schoolbook method and their adaptations to compute short

products.

4.1.1 Montgomery reduction

Let us first recall the general Montgomery reduction algorithm as described in

Algorithm 3 on page 41.

Input: n-word integer m, rn = -m'1 mod R where R= b", and z< mR.
Output: zR"1 mod m.

1: u ý-- ? hz mod R
2: xE-(z+um)/R
3: If xzmthen
4: x4--x-m.
5: end if
6: Return x

(htc(n))
(h%1 (n) + fi(n))

(21(n))

Note that in Step 1, it is sufficient to compute a lower half product; and in Step 2

we can compute an upper half product of u and m then add the result to z� plus a

carry. Hence, the cost of this algorithm is Me(n) + M�(n) + 2n. So, its cost using

schoolbook multiplication is (using Mt = M�)

C, �,, ý(n) . (µ + 2)n2 + µn. (4.1)

Here, we have used C with subscript mr, cl to indicate cost of Montgomery re-
duction using classical multiplication (schoolbook multiplication method). Later, we

70

§4.1 The Montgomery and Barrett reductions

will use mm for Montgomery multiplication, br for Barrett reduction, 2 for Karatsuba

multiplication (Splitting operands into two halves) and 3 for Toom-3 multiplication.

The practical word-level version of Montgomery reduction (Algorithm 4) is

based on schoolbook multiplication and does not require direct calculation of lower

or upper half products, but the quoted cost remains the same.

The Karatsuba variant with wooping

Recall, from section 3.2, that we can compute upper-half products using Karatsuba

multiplication with an error of O(n). We will now explain how to use the wooping

correction idea in our case. Let AEN be a modulus greater than the magnitude

of the maximum possible error resulting from ignoring the carry in the "faulty"

upper-half Karatsuba method.

We first compute the product u *- (-m-1)z mod R= (ttiz)¬ with a low-half

Karatsuba multiplication. Now, for x E- (z + um)/R, note that a good approximation

to this value is given by x� + (um),,, which will be off by at most 1 (carry). An extra

error will come from the fact that we are using a faulty Karatsuba multiplication for

the upper-half product (um)u. To correct the approximate answer, we now compute

(z + um)/R modulo A and compare it with the reduction of the approximate value:

Given that the error magnitude is less than A then we will be able to deduce the offset

from the correct answer by comparing these reduced values, and therefore correct

our answer. This is the "trick" that allows us to be satisfied with an approximation

to (um)� and save on its computation.

If we further choose A=0 -1, for some 1EN, then reduction modulo A becomes

rather efficient (see § 2.1.1, page 38). In fact, to reduce an n-word number modulo
V -1, we only need about rn /li additions on numbers of size 1 words, costing a total

of n3I. In practice, for b= 232, we take 1=1 as this is enough to correct errors for

operand sizes n<b. Also, note that with this choice of A and R= b" we have R -1
(mod A), so the computation of (z + um)/R mod A requires no inversion.

With this choice of A=b -1 and R= b", the correction steps involve computing

z+ um mod A, costing about (2n +n+ n)3i + 1M + 291, and x mod A, costing about

n3f, where x is the result of step 2 of the algorithm. Then, computing the offset

71

Efficient RSA at high security parameters

and correction will cost 23{. So the cost of the Karatsuba variant of Montgomery

reduction is about

Cm,, z(n) = 9Cg(n) + 9C�(n) + 7n +p+4. (4.2)

Algorithm 10 gives a detailed description of our method. We use subscript A

instead of writing "model" to lighten notation, e. g. z, =z mod A. We also use the

notation (um). to indicate that we are using our faulty upper-half product method

to approximate (um),,.

Algorithm 10 Montgomery reduction with wooping
Input: n-word modulus in, m= -m-1 mod R where R= b", z< mR, and A=b-1.
Output: zR-1 mod in.

1: u E- (mz)e (1i(n)i
2: X 4- zu + (um)�u (%(%(n) + An))
3: Cf-(z, +UA"mA)),

x E- x- (C - xa)
4: If xým then
5: x+-x-m.
6: end if

(Correction (Wooping))

Mn))

7: Return x

The Toom-3 variant (with wooping)

We proceed exactly the same as in the Karatsuba variant (Algorithm 10) but using

the Toom-3 multiplication methods. Then, the cost is found to be

Cm,, 3(n) = ? j(n) + Tu(n) + 7n +p+4. (4.3)

Comparison. Figure 4.1 shows the graphs of CM,, cl/Cm,, 2 and Cm,, cdCm,, 3, and

serves to illustrate the improvements that can be made with these two variants of
Montgomery reduction.

Crossing point. From the graph we see that the crossing point is at about 40

words, so we expect the Karatsuba variant of Montgomery reduction to start being

effective from moduli sizes of about 1280 bits.

72

§4.1 The Montgomery and Barrett reductions

2.!

i. i

W. cl ln) /,; W.] ln)

W, cl (n) /=. r. 1 (n)

0.

Figure 4.1: Plots for Cm,, c! /Cmr, 2 and Cmr, cllCmr3.

4.1.2 Montgomery multiplication

Montgomery multiplication aims to achieve fast multiplication and reduction in one

go. There exists an efficient interleaved version where multiplications and division

by R are interleaved and performed word-by-word as described in Algorithm 5

(quoted below, see page 43). This approach keeps the memory costs minimal and

makes implementation easier.

There does not seem to be an easy way in which this can be done with the faster

multiplication methods because of their recursive nature. For future research, we

propose using an iterative version of Karatsuba in Section 7.2.3 (page 145). We leave

this as an open problem.

Let us now analyse Algorithm 5 and find its computational cost.

Input: n-word integers X, YE Zm, R= b", and rn = -m'1 mod b.
Output: XYR-1 mod m.

1: z4-0
2: for i=0,..., n -1 do
3: u E-- (zo + X; Yo)rft mod b (2M + 13i)
4: z F-- (z + X1Y + um)/b (2M1(n) + 231(n))
5: end for
6: if z >: m then
7: z<-- z-m
8: end If
9: Return z

Let Mi(n) denote the cost of multiplying an n-word integer by a single word

integer. Then we find that

Mi(n) = nM + (n - 1)3{ = (µ + 1)n - 1.

73

Efficient RSA at high security parameters

So, the cost of the interleaved Montgomery multiplication is n[2M + 131 + 2(nM +

(n -1)3{)] + 3{(n), i. e.
Cmm, d(n) = 2(µ + 1)n2 + 2pn. (4.4)

The Karatsuba variant (with wooping)

To compute the Montgomery multiplication of X and Y: XYR's mod m, we first

multiply X by Y using the Karatsuba method then we Montgomery-reduce the

result as described in Section 4.1.1. Montgomery multiplication using Karatsuba

will therefore cost us

Cmm, z(n) = ¶C(n) + Cm,, 2(n). (4S)

The Toom-3 variant

Here we also proceed exactly the same as in the Karatsuba variant. The cost this

time is found to be

Cmm. 3(n) ='%(n) + Cmr, 3(n). (4.6)

Comparison. Figure 4.2 shows the plots of Cmm, ýJ/Cmm, 2 and Cmm, cj/Crnm, 3, which

illustrate the gain that is theoretically achievable with these variants of Montgomery

multiplication.

i.

0.

... t (n) /C.., 1 (n)

.. "i (n) /C.. i (n)

Figure 4.2: Plots for Cmm, ci/Cmm, 2 and Cmm, ct l Cmm, 3.

Crossing point. From the previous graph we find that the crossing point is at

about 90 words, implying that 2880 bits is the point from which our variant starts

to be advantageous.

74

§4.2 Exponentiation using the sliding-window method

4.1.3 Barrett reduction

Recall Algorithm 2 (page 40) which describes the Barrett reduction method.

Input: n-word modulus m, ,u=
[b2'ß/m] and z< m2.

Output: z mod m.
1: Z' 4 zI Z/bn-1I, qI zlp/bn+l j (Mu(n))

2: r F-- (z mod bn+l) - (qm mod bn+l) (Me(n) +. 7I(n))
3: ifr<0then
4: r E- r+ bn+l (17I)

5: end If

6: while r>m do
7: r +- r-m (Repeated at most twice: 23i(n))
8: end while
s: Return r

From this description, we see that the cost of this algorithm is at most M. (n) +

Mt(n) + 3n + 1. So if schoolbook multiplication is used then this reduction method

will cost

Cy,, cl(n) = (µ + 2)n2 + (µ + 1)n + 1, (4.7)

and if Karatsuba multiplication is used it will cost

Cbr, 2(n) = ? C(n) + ¶K1(n) + 3n +1 (4.8)

and similarly for Toom-3 we get

Cbo(n) = T(n) + T(n) + 3n +1 (4.9)

Comparison. Figure 4.3 represents Cbc1/Cbr, 2 and Cbrcl/Cbr, 3, and again we can

see from it that the cutoff point is at about 90 words.

4.2 Exponentiation using the sliding-window method

The RSA operation consists of a modular exponentiation modulo a large RSA-

modulus. In our implementation of the methods developed in this chapter we used
full size exponents and therefore needed a fast exponentiation method. We used

the sliding window method which we now describe.

75

Efficient RSA at high security parameters

2. '
2.2!

1.7

1.2

.. ei Iß) FCw.) (n)

.. as (ß) /Cr.) lei

Figure 4.3: Plots for Cf,. 41Cb,, 2 and C6id/Cbo.

The sliding window exponentiation method is a generalisation of the fixed

window method (k-ary method), where the window is allowed to slide so that the

number it represents is odd. This flexibility halves the number of prccomputed val-

ues and reduces the average number of multiplications (but the number of squarings

stays the same). Algorithm 11 gives a concise description of this generalisation.

Algorithm 11 Sliding-window exponentiation
Input: Group element g and integer e= (enen-i ... e0)2k where kz1.
Output: ge.
1: gl E- g, $2 4- gz
2: for i =1, ..., 2k-1 -1 do
3: $241 E" $2i-1$2

4: end for
5: A+-1, i«-n
6: while i 2: 0 do
7: ife; =0then
8: A+-A2, i+-i-1
9: else

10: Find the longest bit-string er ... ej such that i-C+1Sk and et =1
11: A A2r-4+1 g(e,... er)2 i E-- ¬-1
12: end if
13: end while
14: return A

A careful analysis of this method for bit-size q done by H. Cohen in [CohO51

shows that there exists p>1 such that this method requires

A2 +k+2
+ 0(p-n) s9uarin s and

q_ k(k + 3)
+O -qmultiplications. 'ý 2(k + 1) g k+1 2(k+1)2 (P)

We note that GMP optimises the window size k depending on the exponent's
bit-size q by finding the least k such that 2q > 2k(k2 + 3k + 2) = 2k(k + 1)(k + 2). The

76

§4.3 Experimental results

following table shows when a window of size k is first used by GMP for n< 1000

(q = 32n).

k 3 4 5 6 7 8 9 10

n 1 3 8 22 57 145 361 881

4.3 Experimental results

We implemented Montgomery Multiplication in three flavours: The classical inter-

leaved version, the new Karatsuba and Toom-3 with wooping variants and, finally,

a naive version where we first multiply using the fastest available multiplication

method then Montgomery-reduce the resulting product using the efficient word-

level version of Algorithm 3 (GMP's reds function). These were implemented in C

using the GMP library [Gra07a] with the low-level mpn set of functions for speed (as

they are SSE2-optimised). We also implemented the RSA exponentiation by adapt-

ing GMP's mpz_powm function which uses the efficient sliding window method for

exponentiation [Gor98, Coh05].

The times needed to perform each of these two computations were averaged for

random full size operands of sizes from 64 words (2,048 bits) up to 576 words (18,432

bits), in a step size of 32 words, and then plotted to ease comparison of the different

methods. Figure 4.4 shows the timing results for Montgomery Multiplication, and
Figure 4.5 summarises the average times obtained for RSA exponentiation using

full size random messages and exponents (times are given in milliseconds).

We note that although the experimental cutoff points do not fit very accurately

with the theory, because of the parallelism present in modem processors (pipelin-

ing), these are not far from the expected theoretical values, and the general trends

are indeed as expected.

The experiments were done on Intel Pentium 4 machines (2.80GHz, 512KB cache,

model 2). The threshold values that were used are (T, T') = (23,133) as estimated by

GMP's tuning program tuneup. We bring the reader's attention to the fact that GMP

uses slightly different threshold values for squaring, for which a more optimised

code is used. (For our machines, they are 57 and 131 respectively, as estimated

77

Efficient RSA at high security parameters

3

2.5

1.!

o.!

t Interleaved
ý" Naive
fr Razatauba

-&" Toom-3

A

A

0 100 200 300 400 500

Figure 4.4: Montgomery Multiplication times in milliseconds.

60000

s000c

4000(

30001

2000,

1000

ý- Interleaved
Naive

* Karatauba

-k" Tool-3

46

0 loo 200 300 400 Soo

Figure 4.5: RSA exponentiation times in milliseconds.

by tuneup, but there is a large margin of error in them). Note also that, in our

implementation of the short products algorithms, we used halves of T and T' for

the thresholds.

In particular, we find that an execution of a 15,360-bit RSA exponentiation

with full size exponent on these Pentium 4 machines takes 16.1 seconds with the

Karatsuba variant and 15.6s with the Toom-3 variant on average, compared to about

23.3s with the naive version and 36.45s for the traditional interleaved Montgomery

multiplication.

78

§4.3 Experimental results

RSA in practice (Comment on the size of exponents). In practice, the exponents

used in the RSA encryption operation are small or of a special form, e. g. e=3 or

e= 216 + 1. We have produced graphs for the full size exponents case to reflect the

very general case, but timings for these special exponents can easily be estimated

from the timings of Montgomery multiplication (Figure 4.4), e. g. for e=3 we will

only need two multiplications' so it would cost about 2 milliseconds seconds only

using our new variants. Likewise, for e= 216 + 1, the computation will take about

17 milliseconds, which is of course much faster than the very general case of full

size exponents.

For the RSA decryption operation, the Chinese Remainder Theorem is usually

used to construct m= ca mod N from the simpler operation cd mod p and cd mod q,

so all operands will be of roughly half the size (240 words in our case).

In our treatment of this problem, we have concentrated on speeding up modular

arithmetic. There are other ways of implementing RSA with large public key which

we discuss in the conclusion chapter, see §7.2.1 (page 141).

i If the squaring operation is optimised then it costs one squaring and one multiplication.

79

Efficient RSA at high security parameters

80

Chapter 5

LASH, a lattice based hash

"Although there is no specific reason to believe that a practical attack
on any of the SHA-2 family of hash functions is imminent, a

successful collision attack on an algorithm in the SHA-2 family could
have catastrophic effects for digital signatures. "

- NIST, Federal Register Notice (November 2,2007)

Hash functions play an important role in cryptography and constitute a sensitive

component of many protocols. Traditionally, the used hash functions were picked

from the MD family of hash functions, which includes the popular MD5, RIPEMD

and SHA1 hash functions. But in light of the recent novel attacks on this family

that were discovered by X. Wang in 2005 [WY05], the cryptographic community

has been left with very limited choice of hash functions to be used. We are in great

need for new design paradigms and better hash function families than the currently

available.

These recently broken hash functions are essentially all derived from the same

design principles and are built using somewhat ad-hoc techniques, albeit being con-

structed using solid symmetric cryptography techniques and expertise. In contrast

to this practice, other areas of cryptography have replaced ad-hoc constructions

with well defined sets of design principles. Examples include the wide-trail de-

sign strategy of AES [DR02, Chapter 9], or the rigorous application of reductionist

provable security techniques as in the context of RSA-OAEP [BR94, FOPSO1].

However, considering the recent attacks on the currently deployed hash func-

tions, Provable Security has become a desirable property and a very important

81

LASH, a lattice based hash

aspect, if not essential, in the design of hash functions. A slower hash rate is not too

much of an issue for many applications. Therefore, it is very important to closely

study potential constructions, propose new ones and improve them when possible.

While the SHA2 family of hash functions is not yet known to succumb to the

recent attack techniques, its design principles are so similar to SHA1 that we have

no guarantee an attack will not appear in the near future. Furthermore, despite the

fact that a lot is known theoretically about how to construct hash functions from

one-way functions, these theoretical results do not aid one in designing efficient and

practical realisations. Hence, there is an urgent and pressing need for new radical

designs and constructions of families of practical hash functions. Also, considering

the damage of the recent attacks, provable security has now become a very desirable,

if not essential, property of any new hash function proposal. Speed may be the price

to pay for this property, but this should not be too expensive and a successful design

should keep the overhead as small as possible.

One problem with previous attempts to design an alternative family of hash

functions based on hard computational problems, such as the RSA-like MASH-1

algorithm [IS096] for instance, has been that the result is not competitive in terms

of performance. However, the recent development of a provably collision resistant

and a somewhat efficient hash function based on the hardness of factoring called

VSH [CLS05] has ignited a renewed interest in devising more hash function families

of this kind, which may be efficient enough to be used in practice as a replacement

to the old ones.

VSH is faster than MASH-1, but it is still significantly slower than any standard
hash function. The output block length is fixed to the size of an RSA-modulus,

although of course this may be truncated in an actual application, and its design

criteria mentions nothing about pre-image resistance or other desirable properties

as its only proved property is collision-resistance. Additionally, the design of VSH

raises the question as to whom actually generates the hard problem upon which the

security is based, i. e. the prime factorisation of the RSA-modulus (We may need to
put trust in some third party or parties to generate the secret in a secure multi-party
computation).

82

In this chapter' we will explore one possible path to achieve this aim through a

relaxation of a previous inefficient proposal. We modify and tune the construction

proposed by Goldreich, Goldwasser and Halevi (GGH) in [GGH96], which is based

on lattices, to obtain a fairly efficient compression function and a hash function that

we call LASH. We will introduce a result by Ajtai [Ajt96], which is the complexity

result behind the security of the GGH compression function, and then discuss

the design and claimed properties. We show that it is unfortunately insecure

for any practical instantiation, despite it being secure asymptotically. We then

present our modified hash function, LASH, which is partly based on the Miyaguchi-

Preneel construction [BRS02] as we replace block ciphers with a modular matrix

multiplication of the kind used in the GGH construction. That is to say, LASH uses

a relaxed version of the theoretical GGH construction as a core component in its

compression function. With these choices, we show that with a suitable selection of

parameters we can produce a hash function which is comparable in performance

to existing deployed hash functions such as SHA2.

Before going any further, now is probably the right time to explain what the

acronym LASH stands for. Actually, it has a number of possible meanings which

all reflect the design principles and properties of this family of hash functions:

" Linear Algebra based Secure Hash: As the main component is simply a
matrix-vector product.

" LAttice based Secure Hash: Because inverting/finding collisions in the linear
component of the hash function is closely related to the hard problem of
finding short/close vectors in lattices.

" Light-weight Arithmetical Secure Hash: Because the design is very short and
easy to remember.

In this chapter we will repeatedly refer to two special types of vectors, and for

convenience we will give them names for ease of reference. A binary vector in a

'The material presented in this chapter is joint work with D. Page, M. J. O. Saarinen, J. H. Silverman
and N. P. Smart, [BPS'06]. My main contribution was in writing code (using the NTL library) to
experiment with different ways of generating "hard random lattices" and trying to attack them using
lattice reduction techniques, under the supervision of Smart. I also noticed the special form of the
lattice basis matrix kernels which turned out to be the basis of an attack on an earlier version of LASH
which directly influenced its current design. §5.3.4 is mostly the work of Silverman, §5.4 is mainly
the work of Page and Saarinn. Adopting the Miyaguchi-Preneel construction was suggested by
Saarinen. The rest of the chapter contains contributions from coauthors to different degrees.

83

LASH, a lattice based hash

lattice L is defined to be a vector in L whose coordinates are restricted to come from

the set 10,1). The set of all binary vectors in R" will be denoted by B". Similarly, we

define a ternary vector to have coordinates from the set 1-1,0,1) and let ?" to denote

the set of ternary vectors in R".

5.1 The GGH lattice based hash function

Interest in cryptographic primitives based on lattice problems thrived after Ajtai

published his seminal paper "Generating hard instances of lattice problems" [Ajt96]

in 1996, in which he showed that some variants of the knapsack problem are at least

as hard to break on the average as the worst case instances of a corresponding lattice

approximation problem.

In slightly more detail, if we let c be an arbitrary positive constant then assuming

that there is no efficient algorithm to approximate SVP in an n-dimensional lattice

to within a multiplicative factor nC in the worst case, then Ajtai's result allows us

to build a knapsack-like cryptographic one-way function that is as hard to break

on average as to approximate SVP to within a polynomial factor in the worst case,

provided that the key is chosen randomly.

In the same year (1996), Goldreich, Goldwasser and Halevi presented in [GGH961

a hash function whose collision resistance could be related to the worst case of the

problem of approximating small vectors in lattices (SVP). It was shown, in the

tradition of reductionist provable security, that any algorithm which could sys-

tematically find collisions for such a function can be used to solve the problem of

approximating short vectors in an associated lattice to within a polynomial factor

(AFPRSVP). The reduction to the worst case of this latter problem was established

using the result of Ajtai [Ajt96].

The problem with the construction of a compression function using the ideas of

Goldreich et al. is that, with the parameters needed so as to reduce the underlying

lattice problem to the worst case scenario, the resulting hash function is not very

efficient. In addition it appears hard to directly develop a hash function which meets

a specific security guarantee required by the practical community. For example, if

84

§5.1 The GGH lattice based hash function

the output hash size is n bits in length then it should require 2"12 operations to find

a collision. One can show (see later) that collisions can be found in the construction

of Goldreich et aLusing 2"/3 operations, or 2n/4 operations if one is using the GGH

construction with the MD construction to extend the input domain.

5.1.1 The GGH compression function

Let HE zmxn be an mxn integer matrix, and let q be a fixed integer modulus (not

necessarily prime). We define a lattice LH and a map fH by

LH={xEZ : Hx=0 (modq)) (5.1)

and
fH : 10,1)" -* (Z/qZ)m

, (5.2)
bH Hb (mod q)

where bit-strings from {0,1)" are interpreted as binary vectors from B� C Z".

The map fH is taken to be the compression function in the hash function con-

struction proposed by Goldreich, Goldwasser and Halevi [GGH96], and the lattice

LH is its associated lattice. Building on the work of Ajtai [Ajt96] they show that, for

a suitably chosen mxn matrix H over]Fq, if the map fH is collision resistant then

it is hard to find small non-zero ternary vectors in the lattice LH. More precisely, they

show that if m, n, and q= O(nc), for some constant c>0, satisfy

m 1og2 q<n< 2m4
(5.3)

then the difficulty of finding collisions for fH is equivalent to the worst case complex-

ity of the approximate shortest vector problem APPRSVP in a lattice of dimension

m.

Goldreich et al. suggest that the function fH is suitable as a cryptographic hash

function. However, in practice matters are not as easy and nice. Firstly, as m and n

tend to infinity, multiplicative constants and even log factors may not be of great

theoretical importance, but when deployed in real life such a cryptographic system

85

LASH, a lattice based hash

is likely to employ lattices of dimension a few hundreds, if not thousands. In these

cases, the constants and log factors are significant and crucial to the efficiency. From

equation 5.3, we can show that we must have

n m<
S 5 Ig n

which implies, for example, that an algorithm that finds collisions in dimension

n= 500 can be turned into an algorithm to solve APPRSVP in dimension m, but only

with mS 11. Similarly, finding collisions in dimension n= 1000 gives an APPRSVP

algorithm in dimension at most m= 20; and even dimension n= 10000 only gives

an APPRSVP algorithm in dimension at most m =150.

Given the efficiency of LLL-type algorithms in low dimension, it thus appears

that the practical security of hash functions based directly on the GGH compression

function fl, must depend on the average-case difficulty of solvingAjtai's problem itself in

high dimension, rather than on the derived difficulty of solving worst case ArrRSVP

in much lower dimensions.

Furthermore, if using the output of the linear function fit as the hash value one

does not achieve the concrete security level one would want in practice: The output

hash length is m Ig q bits so the size of the hash space is q"; and thus it is required

that the best method for finding collisions will take time no less than the generic

birthday attack costing NrqT operations, as is required of all hash functions. We will

see in section 5.1.2 that one can find collisions in fit in time significantly shorter

than , and we also describe an even faster attack if the function fit is used as

the compression function in a Merkle-DamgArd construction (MD).

However, despite this negative fact of not being able to rely on the asymptotic

worst-case/average-case analysis of [GGH96] to derive concrete security guarantees

for a practical GGH hash function instantiation, it is not hard to (asymptotically)

relate the security of the function fH to the hardness of certain standard problems

in the lattice LH. The following result is reproduced from [Dwo97] and [GGH96].

86

§5.1 The GGH lattice based hash function

Proposition 5.1. (a) Inversion of fH is equivalent to finding, for a given vector aERn,

a vector that differs from a by a binary vector, that is, finding a vector x satisfying

xELH and x- aEBn.

In particular, such a vector x always satisfies jlx - all <- Vn-, and on average it will

satisfy llx - all n/2.

(b) Finding a collision for fH is equivalent to finding a nonzero ternary vector in LH, that

is, finding a vector in the intersection

xETnf1LH withx#0.

In particular, such a collision-producing vector always satisfies IIxII <_ -Fn, and on

average a collision gives a vector xE LH satisfying IIxll n/2.

Here is an elementary proof of this proposition.

Proof. For (a), suppose that we are given bE (Z/gZ)m and want to solve fH(y) =b

for yEB. We begin by finding any vector aEZ satisfying Ha a -b (mod q).

This is easy to do, since the congruence Ha =_ -b has more variables than equations.

Of course, we are assuming that there is at least one solution. Now the following

problems are equivalent:

" Solve fy(y) = b.

" Find ye B� satisfying Hy = b. (Since the domain of fH is B.)

9 Find VE B� satisfying H(y + a) = 0. (Since b= -Ha.)

9 Find XE LH satisfying x-aE B� (Letting x=y+a.)

This completes the proof of (a).

For (b), we first observe that if fH(x) = fH(y), then x-yE LH and clearly x-y is

ternary. Conversely, suppose that zE LH is a ternary vector. Then z can be written

87

LASH, a lattice based hash

as a difference z=x-y of binary vectors, so fH(x) = fH(y) and we have produced

a collision.

Binary and ternary vectors of dimension n have length at most n, and the

average length of a binary vector is n/2. The average length of a ternary vector

is 2n/3, but the average length of the difference of two binary vectors (which is

how the ternary vectors are being produced) is n12.13

We have made the conservative assumption that solving APPRSVP for the lat-

tice LH yields a collision for fN, but this is actually only true if the solution is a

ternary vector. A detailed analysis using standard assumptions, e. g., assuming that

the collection of lattices (Ltt) satisfies the Gaussian heuristic (cf. [HPS98, MSOI]),

yields a more precise statement. One finds that for the suggested parameters, given

later, solving APPRSVP in L11 to within a factor of approximately 2.5 is likely to yield

a ternary vector, and hence a collision of fit. In the opposite direction, solving AP-

iRSVP in L11 to within a factor of say 1.8 is unlikely to yield a collision, since almost

all vectors of this size in L11 are not ternary vectors, see section 5.3.4 on page 102 for

details.

5.1.2 Collisions in the GGH construction in less than VV operations

In this section we describe an attack on the plain GGH compression function con-

struction. In particular we show that for fixed parameter sizes one does not achieve

the security that is hoped from the Goldreich et al. construction.

Before giving the details of the attack, let us first examine the lattice associated

with the GGH construction closely and work out some of its properties.

Dimension and discriminant of LH. Note that qZ" C L11 C Z", so we clearly

have that

dim(LH) = n.

88

§5.1 The GGH lattice based hash function

If the map fH is surjective, then we have the following short exact sequence2

0->LH-' 7C' (7L/qZ)m-*0.

This implies that (Z/qZ) n- Zn/LH, which allows us to compute the discrimi-

pant of LH as follows

A(LH) _ [Z" : LH] = #(7L/g7L)m = qm.

Bases for LH. We first recall that a lattice has many matrix bases which are

related through multiplication by unimodular matrices. We shall now describe two

methods for obtaining a basis for LH. Since the dimension of the lattice is equal to

n, the basis matrix should also be of dimension nxn.

For this section, we adopt the row-wise basis convention (For use with the NTL

library, see § 2.6), i. e. a matrix B= (Vi,. .., Vm)T E][tmxn is a basis for the lattice LB iff

LB={xB: xEZ'1.

1. If fy is already known to be surjective then a basis for the lattice LH can be

derived by first computing the nx (n - m)-kernel matrix of H over the integers,

which we denote by KH. This kernel matrix takes the special form

1'
K=K for some mx (n - m) submatrix K`,

In-m

where 1�-, n is the (n - m) x (n - m) identity matrix.

2A short exact sequence of groups GI, G2, G3, written as 0 -º Gl -. Gz -4 G3 -4 0, is given by two
maps nj: GI -º G2, n2: G2 --º G3 where nl is injective and 712 is surjective. An important corollary of
this is that kernel of n2 is the image of n1 and hence the group Gl can be viewed as a normal subgroup
of G2 and most importantly we have

G3aG2/G1,

which we have used here.

89

LASH, a lattice based hash

A basis for our lattice LH can then be obtained from the rows of the matrix

(K')T In-m

9rm 0

where the submatrix (K*)T is the transpose of K.

2. More generally, a basis matrix for the lattice L11 can be derived by first finding

a spanning set of vectors that spans the lattice LEi, then reducing it will provide

us with a basis. This can be done as follows: First, form the Smith Normal

Form (SNF) of H as
Si, = UHV,

where Sn is diagonal and U, V are square invertible integer matrices.

If we let r denote the rank of H, then the lattice Lit is spanned by the first r

rows of VT. When the corresponding diagonal entry sip of S is not equal to

one, we multiply the corresponding row of VT by glsjj (mod q). This rxn

matrix is then augmented with the rows of the nxn matrix q1,,. A basis from

this spanning set can then be obtained in the standard manner. We define Bit

to be the row-oriented basis matrix obtained in this way.

The attack. Our first attempt to make the GGH construction practical used

the linear function fH directly as the compression function, exactly like Goldreich

et al. construction. We soon noticed that if we assume that fjl is surjective then the

basis of the associated lattice looked surprisingly special, as it can be written in the

following form (as has just been explained in the previous note on bases for L11)

ýr,)T In-m

qlm 0.

An attack related to this idea of the authors was pointed out by an anonymous

referee for an earlier version of LASH (which did not use the Miyaguchi-Preneel

scheme or the post processing step, that will be sketched later) finds a binary vector

90

§5.1 The GGH lattice based hash function

in the lattice associated to fH in time q"`/3 and thus can be used to break the collision

resistance of a hash function based solely on the GGH construction.

The attack works as follows: To find a collision, we only need to consider vectors

of the form x= (yl10) where yE B�-? n and 0E Bm. The vector x produces a lattice

vector of the form (y(K"N)T, y). If we try to solve y(K"H)T (mod q) =0 then the

resulting lattice vector will be a binary vector in the lattice.

However, solving y(K"H)T (mod q) =0 has been studied by Wagner [Wag02] in

terms of a k-sum generalisation of the birthday paradox. This problem can be

solved as follows: We divide the n-m row vectors of (KH)T into four lists and form

qm/3 combinations of the row vectors in each list such that their lower third parts xor

to zero (i. e. they are equal in their lower third parts). Then we use the technique of

Wagner to find a subset sum equal to zero modulo q. We expect such a subset sum

to exist since the entries of (K'H)T are essentially random elements modulo q. Thus

the running time is gmI3, which is the time to produce the lists and the time to run

Wagner's algorithm.

One can extend this method by constructing a list of 2d partial matrix-vector

products by using d message bits in a message block and running through all

combinations (i. e. subset sums of rows of (K)T). By choosing another d message

bits, another list of equal size can be produced. It is possible to merge these distinct

lists in essentially 0(2") time to produce a third list of equal size that has the property

of having d selected bits as zero. The process can be recursively applied in a tree-like

fashion to produce a collision in kd bits of the internal state with the selection of 2kd

message bits and 0(2k+d) effort in optimal conditions.

A Hybrid Attack on the MD construction

We will outline a hybrid attack that combines cycle-based collision finding tech-

niques with linear algebra and a time-memory trade-off against the GGH function

applied directly to multi-block messages using the MD construction, i. e. LASH with

a different compression function, i. e. the function fH as the compression function,

and no output transform.

91

LASH, a lattice based hash

The general strategy of the attack is to try to select two-block messages in a way

that forces a cycle-based collision finding algorithm such as [0W99] into a smaller

cycle, thus producing collisions faster. If the outputs belong to a subset S of possible

outputs, collision search will have O(ff) complexity, assuming that the message

selection process is 0(1).

The messages are chosen as follows. The first block of the message contains the

output of the previous iteration in the collision finding algorithm. The message bits

in the second block are chosen in a way that causes a number of bits in the internal

state of the hash function be to zero, hence forcing the final output to a smaller

subset of possible outputs. The algorithm for selecting the second message block

requires 0(1) time. The message selection algorithm is as follows:

1. Since carry propagation in addition is from least significant bits towards

higher bits, H-b (mod 2) is in fact a system of linear equations in F2, in-

dependent of the 7 higher bits in each byte of H. Using simple linear algebra

operations in F2, bit 0 in each of the m state bytes can be forced to zero by

selecting m message bits appropriately. This is an 0(1) step.

2. A precomputed lookup table is used to force further c bits to zero. The table

has 21 entries and uses m+c message bits (since the table entries must also
have least significant bits as zeros). Each lookup requires 0(1) time. The

precomputation phase requires 0(2C) time.

Thus, by selecting 2m +c message bits in the second block in a certain way, m+c
bits in the 8m-bit internal state are forced to zero. The offline complexity of the

attack is 0(2C) and the collision search algorithm is expected to find a collision in

O(21(7m-c)) steps.

First consider the hypothetical case where LASH would have the standard MD

structure. In this case the internal state would have the same size as the final

output, i. e. 8m bits. If we choose c= im
.42.33m, the overall complexity of the

algorithm will be 0(27'"), which is significantly less than 0(24m) expected by direct

application of the birthday paradox. However, since the internal state of LASH is

92

§5.2 Design of LASH

twice as wide as the final output, the security goal of LASH is O(22m). This is the

rationale behind the final transformation of LASH.

We note that it is possible to also force bit 1 of each byte to zero if the message

block is large enough so that additional m2 message bits can be selected. This is why

a relatively short message block size is being used (larger message blocks would

have resulted in greater hashing speed).

5.2 Design of LASH

We now turn to describing the criteria of how we selected the parameters m, n, q

and the matrix H that define the function fy used in our construction.

" Due to the fact that finding collisions in fH is easier than the naive gmI2, we

take m to be larger than one needs in our final hash function output. This is

also useful to defeat various other generic attacks on hash functions and is

consistent with the advice of Lucks [Luc04].

" It turns out to be convenient in our chaining algorithm to select n= 2m 1092 q.

" Whilst a value of q= 232 is more likely to place us in the range of the inequal-

ity (5.3), we have found via various experiments that since the output size

of the hash function is fixed (and so m is limited), a harder lattice problem is

produced if q is smaller. Hence, we select q= 28.

9 The matrix H was chosen so that it does not require too much storage, easy to

compute on the fly yet still "random enough".

We give more detailed comments on these criteria in section 5.2.2, after specify-

ing the exact form of our proposed compression and hash function.

To use the GGH construction as a component in our practical proposal, we

modify it slightly to avoid its linearity and use it as a compression function. We

then extend the domain to an arbitrary length using the standard construction of
Merkte and DamgArd with strengthening (MD) [Mer9O, Dam88]. This construction

provides a provably secure collision resistant hash function, under the assumption

93

LASH, a lattice based hash

that the compression function is itself collision resistant. When combined with the

technique of Goldreich et al. one obtains a collision resistant hash function which

can take arbitrary length inputs. Recent work showing that the MD construction is

weak in certain circumstances [JouO4, KSO51 can be resolved with minor alterations,

see for example [CDMP05, LucO41.

Our approach is to take the idea behind the construction of Goldreich et al. and

try and obtain an efficient hash function whose security is related to finding short

vectors in a particular fixed lattice. We will study whether this lattice behaves as a

random lattice, and whether the underlying hard problem is actually secure.

5.2.1 Specification of the LASH hash functions family

Here, we present an efficient (supposedly) collision resistant hash function whose

performance is comparable to that of SHA2. The design has been motivated by

implementation quality, including issues such as speed and memory footprint,

and the ability to fully utilise processor features available in current computer

architectures.

LASH-x computes an x-bit hash value from an input bit-string of arbitrary length

(less than 22' bits). There are four concrete proposals which are detailed in the

following table.

LASH Input bit-length Hash byte-length
Variant n m

LASH-160 640 40
LASH-256 1024 64
LASH-384 1536 96
LASH-512 2048 128

Here, n is the size of the input to compression function in bits, and m is the size of
the chaining variable in 8-bit bytes. We have for all versions that n =16m.

Compression function. We define a compression function f that takes-in two

sequences of bytes r= (ro, rl, ..., rm_1) and a= (so, sl, ..., sm_I) and produces a new
byte sequence t= (to, tl,..., tm_i). The compression function can be represented as

f (r, s) = (r (D s) + fH(rII e) (mod q), (5.4)

94

§5.2 Design of LASH

where fH is the linear function obtained from multiplying a matrix H, defined next,

by the column vector (rlls)T, interpreted as a bit vector. Figure 5.1 is a visualisation

of the LASH compression function, and Algorithm 12 gives it in more detail for ease

of implementation.

Thus the compression function is based on a combination of addition modulo

28 and xoring (bitwise exclusive or). This combination helps defeat the attacks on

the naive use of the GGH construction on its own.

Algorithm 12 The LASH-m compression function
Input: Chaining variable r and message block s (byte arrays).
Output: Compression t=f (r, s).

1: fori0,1,..., rn-l do
2: tj ý-- r1® si (Initialise with XOR)
3: end for

4: fori=0,1,..., ndo
5: ifi<8mthen
6: X t-

1r1i/8j/27-(i mod 8)
JI mod 2

7: else
8: x *-

lsli/8J-m127-0 mod I mod 2
9: end if

10: if x =1 then
11: for j=0,1,..., m-1 do
12: tj F- tj+ a((n+j-i) mod n) mod 28
13: end for
14: end if
15: end for
16: return t

(Add column)

n=16m r0

t0 r0 $0

.® -ý ... H ...
rm-1

SO
fm-1 rm-1 Sm-1

Sm-1

Figure 5.1: Visualising t=f (r, s) = (r ® s) + fH(rll s) (mod q).

Pseudorandom sequence and the matrix H. Consider the following pseudo-

random sequence. Start with yo = 54321 and iterate the following recurrence based

on the Pollard generator

Y+ = y2 +2 (mod 231-1).

(Bit i from r, for i< n/2)

(Bit (i - 8m) from s, for iz n/2)

95

LASH, a lattice based hash

We define an additional sequence that results in reducing y; to byte length integers

(truncation), which will serve as elements of the matrix H:

a; = y; (mod 28)

The first eight members of this sequence are

a0=49=0x31, a1=100=0x64, a2 =135 = 6x87, a3 =237 = 9xED,

a4=95=Ax5F, a5=26=Ox1A, a6=139=6x8B, a7=214=9xD6.

Note that the modulus 231-1 in the Pollard generator is a Mersenne prime, which

allows us to perform faster modular reduction hence speeding-up the pseudo-

random number generation. We point out also that to reduce modulo 28 one can

simply use bit masks.

We take the matrix H to be the mxn circulant matrix associated to the sequence

ao,..., a� (Circulant matrices are a special type of Tocplitz matrices)

a0 an-1 an-2 ... a2 a1

al a0 an-1 """ Q3 a2
H=

,

am-1 am-2 am-3 ... am+l am

Hashing the message. Let e be the bit-length of the original message to be

hashed. Let us call the individual message bytes vo, vj, v2,... , yogi.

We first pad the message with a single '1' bit (in case of byte-aligned data, this

corresponds to a single byte with hexadecimal value 0x80) and then we add enough

bytes v; with a zero value to make the length a multiple of 8m.

The message is cut into k= It/8m1 blocks of m bytes and fed to the compression

function, and then a final transform is performed, which involves applying the

compression function to the chaining variable and the binary encoding of 1, to

produce a message digest.

Algorithm 13 describes the overall hash function. We should note that the use

of IV =0 is not secure because of the recent attack presented in [CMP+07], which is

96

§5.2 Design of LASH

sketched in section 5.5.3. Another fixed value of IV should be studied and carefully

chosen as to circumvent similar attacks on IV = 0. At the time of writing, this has

still not been resolved and is left as an open problem.

Algorithm 13 The LASH-m hash function
Input: A padded message v (_ ... ll@x80lI0 ... 0) of bit-length C.

output: LASH-m(v).
1: fori=0,1,..., m-1do
2: r; =0
3: end for
4: for i=0,1, ...,

Ft/8m1-1 do

5: for j=0,1,..., m-1 do
6: Si = Vm"i+f

7: end for
8: r E- f (r, s)
9: end for

10: fori 0,1,..., m-1 do
11: si <-- ie/28i J mod 28
12: end for
13: r E- f (r, s)
14: for i =0,1,..., m/2-1 do
15: tj =16lr2i/16J + Ire; +1/16J
16: end for
17: return t

(¬ encoded in little-endian)

(Final compression)

(High 4 bits of output bytes)

(m/2-byte hash result.)

5.2.2 Comments on the design of LASH

In this section we go into more detail over the precise design choices we have made.

The main goals of the design have been as follows:

" To adopt the large-pipe strategy of Lucks [LucO4] to avoid problems with the

Merkle-Damgard construction. The final hash value is then produced from

the large-pipe by taking the upper half bits of each byte - these being the bits

which depend in the most non-linear manner on the input values.

" To combine two forms of mathematical operations in the compression func-

tion: Arithmetic modulo 256 and bitwise exclusive-or (xor). The compression

functions consists of two parts: A linear function, motivated by the GGH

construction, and an xoring of the chaining variable and the next message
block motivated by the construction of Miyaguchi-Preneel [M0190, Pre931.

(Initialise chaining variable (IV=O), see 5.5.3)

(Get message-block)

(Compression function, Algorithm 12)

97

LASH, a lattice based hash

. To be able to reason about the ability of the linear function to resist preimages

and collisions.

" To be as simple and efficient as much as possible, particularly aiming for

application on as wide a range of platforms as possible. Thus the hash function

is byte oriented and built from components found most modern processors

and which are easy to implement in hardware.

" To enable as much parallelism as possible, thus allowing the hash function to

exploit performance enhancing features in modem instruction sets.

" The hash function should be patent free, as such none of the designers have

taken out patents on its design.

Linear Function

We chose to use a circulant matrix whose entries are generated with a Pollard type

PRNG because the use of a circulant matrix allows more efficient implementations

of our function fH and less storage requirements for the matrix fi, and deriving

the entries via a pseudorandom number generator allows us to reduce the memory

requirements of our hash function even more.

The non-linearity of the generator is crucial in creating a matrix for which the

associated lattice problem is hard to solve. For example, we have found that using

a linear-congruential PRNG instead of the Pollard PRNG results in a compression

function that is easy to break using the LLL algorithm.

The choice of the prime modulus p= 231-1 in the Pollard generator is made to

enable a sequence with period greater than the largest value of n, and so Vp- should

be greater than the largest value of n chosen. In addition, we selected the modulus

p for which modular reduction can be performed efficiently because of its special

form: We only need a few additions and bit shifts akin to Algorithm 1 in Chapter 2.

98

§5.2 Design of LASH

Compression Function

Recall that the compression function for LASH is defined, for the m-byte chaining

variable r and the next m-byte message block s, by

f (r, s) = (r ®s) + fH(rlls) (mod q).

The compression function is highly motivated by the hash functions construction

from Block Ciphers by Miyaguchi-Preneel [M0190, Pre93], which is of the form

f (r, s) = (r ® s) ® Eg(r) (s),

for a block cipher Ek(m) and a function g which takes inputs the size of the chaining

variable and outputs keys for the block cipher. That is to say, we are treating the

function fl, as equivalent to a block cipher with key r and message s.

We are not claiming that the function fH can be used as a block cipher. So,

the "proof of security" of the Miyaguchi-Preneel construction [BRS02] does not

necessarily apply to the LASH compression function. However, the function fH

does have some interesting properties which it shares with a block cipher, as is

implied by Proposition 5.1 e. g.

1. Given an output fy it is hard to invert.

2. It is hard to find collisions in the function fH.

The difference lies in the exact complexity of these problems. Generally speaking,

these problems seem to be easier for fH because of its linearity.

Final Transformation

In the final transform, we need to compress the 8m bit chaining variable down to

its half to get the output hash value of length 4m bits. Recall that each byte of the

chaining variable has been obtained by performing a lot of additions modulo q= 28,

which have been dependent on the message bits. To compute the final hash value,

we select the upper four bits of each byte of the final value of the chaining variable

99

LASH, a lattice based hash

(as they are affected to the most unpredictable extent by the carry propagation) and

concatenate them together. This produces an output of the correct size.

The reason for taking the upper four bits is that, due to the nature of addition

modulo q, these are going to be the bits which are affected in the most non-linear

manner by the effect of carry propagation in the modular addition operations.

Hence, it is this upper half of the bytes that should enjoy more entropy than the

lower half.

5.3 Security considerations

The general structure of LASH, having only linear components, easily leads one to

suspect that it is directly vulnerable to differential and linear cryptanalysis. LASH

has gone through several evolutionary stages after the idea of a lattice-based hash

function was first considered. The current version is a result of combining the

traditions of provable complexity-theoretic security with symmetric cryptanalysis.

In determining the security of LASH against these attacks, we note that as a

fully parameterisable family of hash function (message block size, state size, and

hash result size can all be flexibly chosen), simulation of attacks against LASH is

straightforward and meaningful. If an attack can be successfully mounted and sim-

ulated on reduced variants of LASH, and the asymptotic behaviour of the security

as a function of various parameters established, then concrete evidence about the

security of the full-size variants can be obtained. This flexibility also makes it easy

to create larger versions of LASH if weaknesses are found in the current proposed

versions. This is a clear advantage of LASH over many hash function designs with

a more rigid block-cipher like structures.

5.3.1 Differential cryptanalysis

A small input difference (in either the chaining variable and/or the message block)

will result in a very large difference in the hash function state. Differential trails are
very wide. The propagation of differentials is further amplified in the final iteration

100

§5.3 Security considerations

(which does not use message bits), making all output bits differentially dependant

on all input bits.

We conjecture that the simple and understandable structure of LASH will make

it difficult to find differential anomalies such as the so-called necessary condi-

tions exploited by Wang et al. in their attacks on MD5, SHA1, and other hash func-

tions [WLF+05, WY05, WYYO5, XW051.

5.3.2 Linear cryptanalysis

All components of the LASH compression function are, in some sense, linear. Fur-

thermore, if we consider a matrix H' that contains the least significant bits of H,

then the product function H'. b is a linear equation in F2 and indeed H' is invertible

with a significant probability. This can be exploited in some attacks, as is done in

the hybrid attack presented in Section 5.1.2. We note that these attacks are difficult

to extend to the full version of LASH, however.

It is unlikely that classical linear cryptanalysis (involving the parity of subsets

of bits) can be applied on LASH.

5.3.3 Generalised birthday attack

Wagner's method for solving the generalised birthday problem [Wag02] can directly

be applied to the GGH construction, as was shown in section 5.1.2. Using the GGH

function fii on its own implies that we can find collisions in O(qm/3) operations as

opposed to the O(qm/2) operations one would want in practice from a hash function.

Although improvements to this basic version of the attack can be made, this

attack does not seem to be applicable to the internal fH function used in LASH, due

to the ratio between the message block size and the size of the internal state. This

motivates our choice of a large chaining variable and our output transformation.

Our use of the Miyaguchi-Preneel construction, as opposed to using the function

fy directly also helps defeat this attack.

101

LASH, a lattice based hash

5.3.4 Ternary vectors in lattices

We want to develop some tools needed to analyse whether solutions to an approx-

imate shortest vector problem in a lattice LC Z" are likely or unlikely to be ternary

vectors. This section aims to present an analysis on how hard it is to either invert

or find collisions in the internal function fnn via lattice basis reduction.

Before commencing we reiterate that finding collisions or inverting ffu is not

sufficient to break LASH due to the use of the Miyaguchi-Preneel construction, but

may be a first step in some attack on this construction.

Which balls contain many ternary lattice points?

Let ?� be the set of ternary vectors of dimension n as usual, and let ß�(R) be the

ball of radius R centred at 0 in R. If R is small, than most of the integral lattice

points in B�(R) will be ternary vectors, while if R is large, then few of them will be

ternary. We would like to determine a critical value R� at which the ternary vectors

cease to predominate. This should be roughly the value R such that the number

of ternary vectors of norm at most R is equal to the volume of the ball of radius R,
i. e., R� solves the equation

Vo1(B�(R)) = #(? � n B�(R)).

Using the formula for the volume of an n-dimensional ball and the counting
formula for ternary vectors, we see that R� solves

n"/2
1R2,11

r(nRn = d12ý, (Sýr)
d=0` I

The sum on the right-hand side of (5.5) is a step function, so the equation (5.5)

tends to have several solutions. For example, if n= 100, then (5.5) has 14 solutions

ranging from 4.992 to 6.087. Although this does not give an exact solution, it tells

us that a ball of radius 5 in RlOO contains mostly ternary lattice points, while a ball

of radius (say) 10 contains proportionally very few ternary lattice points. Table 5.1

gives the largest, smallest, and average solutions to (5.5) for a range of dimensions.

102

§5.3 Security considerations

Table 5.1: Solutions to Vol(B�(R)) = #(Tn fl B�(R))

It is clear from Table 5.1 that Rn can does not grow linearly with n. For our data, the

regression line of log(R ems') versus log(n) is

1og(Rn ems') 0.50634 log(n) - 0.6173 (5.6)

with correlation coefficient 0.999996. This suggests that R� c -irn-.

We next relate the sum on the right-hand side of (5.5) to a binomial distribution

and use a normal approximation to prove the validity of this guess and find an

asymptotic value for c.

Proposition 5.2. For large values of n, the equation

n/2 E (fl)2d
rý /z + 1)

OSdSR2
R= (5.7)

has a solution R satisfying R 0.4332 -ýfn-. (This may be compared with the experimental

value R 0.54 " n°506 given by (5.6).)

Proof. For any r>0,

()2d=3nt()()d
\3 05d5r d-0

is 3" times the probability that a binomial distribution (with probabilities 1/3

and 2/3) is smaller than r. If n is large, we can approximate this probability using

103

LASH, a lattice based hash

the normal distribution

(D(x) =

Titus

1s
e`2

/2 dt
2n ,

J-00

" ýXýe
ýI2 (1 + 0(1/x2) forx<0.

1E
3n dd)

(1()2d
1! OSdSr d=0

Drr-2n/3 asn-+00. l
n9

To ease notation, we let r= an and set ß= (3a - 2)//, so the above quantity

is c(ß , r)"
Using the elementary asymptotic expansion for V(x) (valid for x< 0) and Ster-

ling's formula to approximate t(x), the equation (5.7) that we are trying to solve

(with R= ýrr = an) becomes

(2ner/n)"12 3"4)(ß ifn-)

(2nea)"l2 z 3" .?
1

. eß2"I2
71 lßI V

Taking nth roots and letting n go to infinity gives the equation

2nea = 3e-ß2l2

to be solved for a, where recall that ß= (3a - 2)/ -ýFI The numerical solution is

a Ai 0.18762, so we find that the solutions R to (5.7) are given approximately by

R= an-- 0.4332, ýfn-. 0

Which general lattice problems have many ternary solutions?

Let LCZ be a lattice of dimension n and let A(L) denote the length of a shortest

nonzero vector in L. Proposition 5.2 suggests that if A(L) is significantly smaller

104

§5.3 Security considerations

than R� 0.4332 i, then most solutions to APFRSVP will be ternary vectors, but

if A(L) is significantly larger than R,,, then only a small proportion of the solutions to

APPRSVP will be ternary vectors. Combining this observation with the value of A(L)

given by the Gaussian heuristic yields the following result.

Proposition 5.3. Let f- be a class of lattices for which the Gaussian heuristic is valid and

fix e>0. Then for LEL,,, solutions vEL of APPRSVP satisfying

IIvII <(1-e)" 1.79
. A(L) Disc(L)1/n

are quite likely to be ternary vectors, while solutions vEL of APPRSVP satisfying

IIvII > (1 + s) "
1.79

. A(L) Disc(L)1/n

are unlikely to be ternary vectors.

In particular, if Disc(L) is significantly larger than 1.79", then even a shortest vector

in L (i. e., a solution to SVP) is unlikely to be a ternary vector.

Proof. The Gaussian estimate says that the shortest nonzero vector in a "typical

lattice" has length

A(L) n/2neDisc(L)i/n.

(See, e. g., [HPS98, MS01].) Solving APPRSVP in L yields a vector of length CA(L)

for some C >_ 1. Proposition 5.2 says that this vector is quite likely to be a ternary

vector if CA(L) < 0.4332(1- c) and that it is not very likely to be a ternary vector

if CA(L) > 0.4332(1 + E) -ý'n-. Thus the critical value for C is

0.4332
A(L) zts 0.4332 " 2rce " Disc(L)-11'

1.79 " Disc(L)-11n.

13

105

LASH, a lattice based hash

Which lattice problems arising from fH have many (or mostly) ternary solutions?

If we are to base a hash function upon the linear function fH, then we would want

the difficulty of finding binary (resp. ternary) vectors in Ly to be at least as hard as

inversion (resp. finding collisions) of fH via generic methods. An interesting aspect

of the lattices we shall use is that for a fixed output size of the linear function, the

value Oll" of the associated lattice tends to one as we increase the dimension of the

lattice, i. e. the input block size of the linear function.

As indicated by Proposition 5.1 (page 86), the ability of finding collisions in fH

depends on the difficulty of finding special sorts of short vectors in the circulant
lattice LH. The NTRU cryptosystem [HPS98] is also based on the difficulty of find-

ing short vectors in certain lattices (called convolution modular lattices in [MSO1])

that are built up out of circulant matrices. However, the matrices (and lattices) un-
derlying LASH are rather different from those underlying NTRU, so the associated
lattice problems are also different.

We now apply the results of the previous section to the lattices L11 used by

LASH. Recall that dim(LH) =n and Disc(L11) = q'". Notice that if we make the

assumption that q'" < 2", which is required if fit is to be a compression function,

then 1< Disc(LH)1M < 2.

Proposition 5.4. Assume that the Gaussian heuristic holds for the LASH lattices (5.1).

(a) If q'" > 1.8", then solving APPRSVP in LH is unlikely to give a ternary vector.

(b) If q'" < 1.78", then solving APPRSVP in L11 to within a factor of 1.79/qm/" is quite
likely to give a ternary vector.

Proof. This is immediate from Proposition 5.3 using the values dim(L11) =n and
Disc(LH) = qm. a

Finally, we apply Proposition 5.4 to the specific LASH parameters q= 256 and
n =16m. We find that

qm = (28)n/16 = (21/2)n -- 1.414n.

106

§5.4 Implementation

Hence, q'" is less than 1.78n, which implies that all of the LASH lattices are likely to

contain many ternary vectors. The crucial quantity is the approximation factor

1.79 1.79
F7n _- T2T8ý1/16 1.27,

which tells us how closely we need to solve APPRSVP in order to (probably) find a

ternary vector.

The conclusion is that in order to find a collision in the linear function for the

suggested parameters, it is probably necessary to find a vector in LH that is no more

than about 2.5 times as long as the shortest nonzero vector. However, we note once

more that finding collisions in the linear function fH is not sufficient to find collisions

in LASH itself.

5.4 Implementation

Now that we have presented the new hash function proposal, it will be very in-

formative to implement it in practice and get concrete performance figures out.

In this section, we will comment on some aspects of the implementation of LASH

in software and produce some benchmarks to allow us to compare it against the

currently recommended hash functions. Some thoughts and comments on the pos-

sible hardware implementation of LASH and some of its variations that should be

immune to side channel analysis (SPA and DPA) is given in [Pag07] but no actual

implementation has been reported.

Storage of the pseudorandom data. We have several options as regards storage

of the pseudorandom matrix. A compromise seems the most attractive option,

that is to store only part of the matrix. Due the circulant nature, there is no real
benefit in storing the whole matrix since each row is essentially a rotation of the

first. Therefore, we can simply store one row and be able to access all the required

elements by shifting a window from right to left; at each of n steps, the window

contains the elements for the corresponding column.

107

LASH, a lattice based hash

The circulant nature of the matrix has an additional property in that neighbour-

ing columns differ only in one element. Therefore, one can imagine storing only

a single column of the matrix and updating it by computing a new entry at each

step. This creates a computational overhead in that we need to generate a total of n

matrix entries, but offers a saving in storage overhead since there are far less rows

than columns in the matrix.

Parallelism in the compression function. The basic algorithm for executing

the compression function offers parallelism in two directions. Firstly, since the

matrix columns do not affect each other in the matrix-vector multiplication, one can

operate on them at once summing the partial vector dot-products to form the final

result. Secondly, one can add different elements of a given column into the state in

parallel. These two method combine to offer a high degree of scalability. This is

easy to exploit in hardware or where a dedicated SIMD instruction set is available.

We can manually apply a similar technique on processors which do not have

SIMD instruction sets but do have a native word size greater than 8-bits. For

example, on a 32-bit processor we can pack four 8-bit sub-words into one 32-bit

value. We cannot add packed values using native 32-bit addition since carries from

one sub-word may overflow into another. However, we can construct a suitable

method for addition by masking the top bits of the packed bytes to prevent carries
before using 32-bit addition and patching up the result. The resulting packed

addition of x and y to produce the result r can be described as

x' F- xA 6x7F7F7F7F

y' 4-- yA 9x7F7F7F7F

r' 4-- x, + y'

r (-- ((x ®y) A 6x80898980) ®t'

with a similar construction possible for other word sizes.

Specialisation of the compression function. Considering how the compression
function is used to process arbitrary length messages, the first and last invocations

can be considered special. In the first invocation the chaining variable is zero; in the

108

§5.4 Implementation

last invocation the message block is mostly zero with only a few bytes representing

the message length. In both cases, only a small portion of the compression function

input is relevant and in the first case the initial mixing stage is redundant since

ti =ri ®s; =s; foralli.

The saving afforded from capitalising on these features by using specialised

versions of the compression function is amortised over all invocations. For short

messages, the saved computation can be significant since the first and last invoca-

tions of the compression function comprise the majority of the total.

5.4.1 Results

Table 5.2: Comparing the performance of LASH with standardised hash functions.

Implementation options Name Storage Cycles/Byte
SIMD

11
Matrix storage (bytes)

SHA1-160 X [Den] 0 26.29
SHA1-160 � [Gau] 64 16.86
LASH-160 X All matrix 25600 689.64
LASH-160 X One row 640 774.42
LASH-160 � All matrix 25600 392.83
LASH-160 � One row 640 523.26
SHA2-256 X [Den] 256 55.16
SHA2-256 X [Gay] 288 31.34
SHA2-256 � [Gau] 256 45.20
LASH-256 X All matrix 65536 859.83
LASH-256 X One row 1024 1027.74
LASH-256 � All matrix 65536 344.81
LASH-256 � One row 1024 597.01
SHA2-384 X [Den] 640 124.57
SHA2-384 X [Gay] 704 117.45
LASH-384 X All matrix 147456 1078.58
LASH-384 X One row 1536 1355.09
LASH-384 � All matrix 147456 805.47
LASH-384 � One row 1536 1090.41
SHA2-512 X [Den] 640 124.98
SHA2-512 X [Gay] 704 117.52
LASH-512 X All matrix 262144 1351.39
LASH-512 X One row 2048 1730.14
LASH-512 � All matrix 262144 1036.70
LASH-512 � One row 2048 1220.54

We recompiled and tested publicly available source code for the SHA1 and

SHA2 hash functions [Den, Gau, Gay], as well as preliminary implementations of

109

LASH, a lattice based hash

LASH, on our experimental platform. This platform housed a 2.8GHz Pentium 4

processor running the 2.4.21 Linux kernel. All source code was written in C, making

use of GCC 4.0.1 and the intrinsics feature to access the SIMD functionality of the

processor. Measurement of the number of cycles elapsed during execution was

performed using the rdtsc instruction in the normal way.

Table 5.2 shows the results of the experiment and compares SHA1 and SHA2

with equivalent parameterisations of LASH. The results were averaged over a large

number of random inputs; it is vital to note that LASH performance is variable

depending on the input. Also note that the storage requirement is intended to

detail only the amount of pre-computed material rather than the total memory

footprint.

The results show an encouraging ratio between the fastest implementations of

LASH versus SHA1 and SHA2. In particular, LASH is potentially at most only

about 30 times slower than SHA1 with the ratio improving significantly for SHA2

with LASH being only 10 to 20 times slower. This is comparable, at the lower

security levels, with an implementation of VSH; although results for this latter

clearly depend on how large one takes the modulus in ones VSH implementation

(before truncation at the end of the computation, if this method is used to produce

shorter digests).

5.4.2 Test vectors

We provide test vectors for each variant of LASH (with IV = 0), for the purpose

of testing one's own implementation. The vectors are computed over two test

messages A and B. The message A is a 24 bits string which consists of three lower-case

ASCII characters "abc", whose corresponding hexadecimal bytes are 61 62 63. The

message B consists of 100000 repetitions of the ten ASCII characters "0123456789",

with corresponding hexadecimal bytes 30 31 32 33 34 35 36 37 38 39. The message
length of B is 8 million bits (100000 x 10 x8=8.106).

LASH-160(A) =
67 58 25 ec f3 ba fS c9 4f fe 38 al Sb c0 ab 40 77 9b 96 4d

LASH-169(B) =
43 68 df 33 4f ce b9 e7 99 d2 77 22 12 fc 44 f2 ce ec 04 It

110

§5.5 Attacks on LASH

LASH-256(A) =
39 ff b7 84 0b 6b 3b 71 89 fc 5e dc 9e 24 33 9e
77 8c f4 be bf 94 df 00 c3 53 d0 bf 37 30 b3 2f

LASH-256(B) =
e9 57 75 d4 53 d6 36 le 3c 9c 88 8c dc eb 3c 8a

ab 49 cd ad 43 56 b5 ba 97 98 38 6b b6 dc 95 e9

LASH-384(A) =
11 d0 9c 55 cb ba 6f 31 10 bf 87 7f ab cf b6 30
10 52 0c 30 76 el dc d2 7b of dc a8 38 5e 25 0e
4e fa 42 97 al 6c 69 23 b9 al 33 3d 8d ca ld a7

LASH-384(B) =
41 7e cb d6 dd 54 2f 82 e4 29 e4 ec 93 e6 Co 78
3d 81 7c 5e 38 4d d2 e4 97 61 6c bi Of 32 6e b6
10 Sc of 9e 32 ba 2f 97 9b Se 94 8b 31 e7 8c 75

LASH-512(A) =
c5 bb 7c f4
bb ab f8 28
48 eb of as
82 5a 85 97

LASH-512(B) =
07 02 25 if
20 12 cS e3
c8 f5 41 20
59 Co 9e d2

cl ca c6 38
e4 b3 69 99
as f4 e0 33
35 98 69 dd

85 b4 5a a7
20 46 7e 3b
c2 33 aS 08
52 c7 le 81

43 94 66 65 7c 8d ed 14
86 11 64 b9 79 2d 88 fd
19 fc bd 4d 4e 5c 2c 06
le 84 9b 12 15 96 19 c8

78 9d f4 9d 69 b2 de b9
94 a3 4f fa 75 a0 19 0d
38 26 a8 e6 47 68 2c Sb
66 f6 2e 59 of fb 24 57

To help with finding bugs in implementations of LASH, we further give a trace of

the internal variables when hashing the three-byte ASCII string "abc" with LASH-

160 in Appendix A. 2 on page 151.

5.5 Attacks on LASH

5.5.1 Some weak matrix dimensions

First, note that this attack does not apply to the parameters set that we have pro-

posed. This attack is on the LASH compression function and was given at the end of

a presentation during the KIST Second Cryptographic Hash Workshop [LMPR06].

I thank V. Lyubashevsky and C. Peikert for explaining the attack to me (by corre-

spondence through email).

The attack only applies to matrices with m= 232,368,1056,2096,. .. because the

sum of the elements of each row is zero (If the sum of the first row's elements is

zero then so is sum for all the other rows as their elements are permutations of the

first row). This immediately implies that the two bit-strings 1n and on will collide

111

LASH, a lattice based hash

with a hash value 0. Here is how to find collisions for the mentioned dimensions.

Starting from the seed 54321, the matrix H will have row entries that sum up to 0

modulo 256. So now, if we take r=s =1"/2 then fn(rI(s) = 0. Also, r®s=0. And

this is the exact same value we get if r=s=O n/2, and so we have a collision.

There are various possible generalisations of the attack sketched above that also

work (Peikert):

" For any dimension, the probability that the attack above works is about 1/256,

taken over the random choice of the seed (or a completely random choice of

H's first row).

" For r=s= (1,0,1,0,...) and any even dimension, there is a probability about

2-16 of this input colliding with the all-zeros input.

9 Various other periodic 0-1 patterns also work, with probabilities that drop off

with the length of the period.

5.5.2 LASH is not a pseudo-random function (PRF)

First, we note that the only claimed properties of LASH are collision and pre-image

resistance. Hash functions are used for a variety of purposes, and in some cases

they are assumed to be pseudo-random functions, but it is noted in [CMP*07] that

LASH is not and the following attack is given to show this fact.

First, separate the matrix H into its left and right halves 11 = (EHLIIIIR), then the

compression function can be written as

f(r, s) = (r®s) +HLr+Hits.

Now, note that for s=0 we have

f(r, 0) = r+HLr.

and for s' = (27,0,..., 0) we get

f (r, s') = (ro ®27, ri,..., r, �-i) +HLr+H&,

112

§5.5 Attacks on LASH

where HRO is the first column of HR. Notice that the difference between these two

values is constant and independent of r

f (r, s') -f (r, 0) = HRIO + (27,0, ... , 0)T.

This fact allows us to distinguish between a family of truly random functions

and the LASH compression function.

5.5.3 Exploiting zero IV

This attack is also given in [CMP+07], and it is the most serious attack so far as it

shows that LASH with IV =0 is not collision resistant and furthermore that it is not

pre-image resistant either. The presented attack uses a time/memory tradeoff and

exploits the zero IV to cleverly "absorb" the xor operation into the linear function

fH. This trickyields an attack costing 2lm < 2m/2 for finding collisions and 24m <21n

for finding pre-images.

Another heuristic collision attack based on lattice reduction using two ap-

proaches, solving either an SVP or a CVP, is also given and is supposed to cost

less than 2m12. However, this attack produces colliding messages which are very

long.

It is also shown that if one changes the value of IV to be non-zero then LASH still

suffers from being vulnerable to pre-image attacks costing about 2g'" < 2m space

and time. However, the pre-images produced by this attack are of a very special

type as they are 1 block messages only.

5.5.4 Attacks on the final compression

This attack is presented in [CMP+07] for the final LASH compression. It uses a

generalisation of Wagner's method to solve multi-birthday problems. The cost of

the attack is O(m2m/(4+4/105)) O(m2m/4).

However, we note that all of these attacks require a comparable amount of

storage to their running time, which questions the validity of these attacks. But

113

LASH, a lattice based hash

these attacks remain acceptable from the academic point of view as they show that

this construction is not as secure as previously believed.

114

Chapter 6

The equivalence between the DLP

and DHP

"If is important to understand that an asymptotic result-such as my
theoretical argument that established the inefficiency of xedni in the
limit as the size of the group increases - cannot be relied upon as any
kind of guarantee of security. Rather, one must analyze the algorithm

for elliptic curves of the size employed in cryptography. "

- Neal Koblitz

The theoretical equivalence between the Discrete Logarithm Problem (DLP) and

the Diffie-Hellman Problem (DHP) over a cyclic group of prime order p>3 was

first shown to hold by Maurer [Mau94] in 1994, subject to a mild existence condition

of a smooth order elliptic-curve group over the finite field 1Fp. His reduction was

later used by Muzereau, Smart and Vercauteren [MSV04] to study the special case

of elliptic curves used in practical cryptographic applications as recommended in

the SECG standard [SE000], which encompasses most of the other Elliptic-Curve

Cryptography (ECC) standards (see §1.6.3).

In this chapter, we will build on the Muzereau et al. work and try to establish the

tightest possible reduction from DLP to DHP using Maurer's reduction. We achieve

this aim in two ways, first by using projective coordinates instead of affine coordinates

and secondly by exploiting a special type of DH-oracles that allow arbitrary choice

of the group generator.

For the rest of this chapter, we let G be a cyclic group with prime order p>3

and a fixed generator g, unless otherwise indicated. We write G= (g) and IGA = p.

115

The equivalence between the DU' and DHP

We will use Ut and 3 to denote multiplications and inversions in G, respectively,

and Z for DH-oracle calls. Formulae of the form xZb + y3 + zV mean: Cost is x

DH-oracle calls, y inversions and z multiplications in G.

6.1 Maurer's reduction method in Fy

Note that, since solving any instance of the DHP given access to a DL-oracle is

triviale, we only concentrate on the reverse implication for the equivalence to hold:

If we suppose the DHP turns out to be easy, we wish to know if this implies that

the DLP is easy as well.

Maurer and Wolf proved, in a series of papers, that for every cyclic group G with

prime order p>3, the DLP and DHP over G are equivalent if there exists an elliptic

curve, called auxiliary elliptic curve, over Fn with a smooth order [Mau94, MW96a,

MW96b, MW001.

More concretely, the following result is shown in [Mau941 and [MWO0).

Theorem 6.1. Let G be a group. If each large prime factor p of (GI is single and if for every

such pa cyclic elliptic-curve group over Fp is known with smooth order then breaking DHP

and DLP are equivalent for G.

Here "single" means that the prime factor is not a repeated factor, or in other

words: It only appears to the first power in the prime factorisation of IGI. Note

also that we require the auxiliary elliptic curve groups for the large primes only as

we can afford to use the traditional methods for the smaller primes without really

affecting the overall cost.

Muzereau et al. [MSVO4] showed that such auxiliary elliptic-curve groups are

highly likely to exist for almost all elliptic curve groups. It is however remarked

that it gets extremely hard to construct them as the order of G increases. They

explicitly generated auxiliary groups with smooth orders for most of the curves in

the SECG standard, hence making Maurer's proof concrete and applicable to most

of the groups used in practical ECC.

'Given e, gb e G, we compute a= 9L(g') and then compute go' - (gly.

116

§6.1 Maurer's reduction method in]Fp

The idea behind the reduction method introduced by Maurer [Mau94] rests on

the concept of implicit representation: The implicit representation of an integer a (mod-

ulo p) is defined to be g" E G. The algorithm proceeds by doing computations in the

implicit representation instead of the usual explicit representation. For example, to

compute a+b in implicit form, gQ " gb is computed instead which costs one multipli-

cation. For a-b, we compute gQ - (gb)_1 costing one inversion and one multiplication.

To compute a"b in implicit form, one call to an DH-oracle, that computes g"b given

g4 and gb, is needed. For the implicit form of a-1, one uses the fact that aP-1 =_ 1

(mod p), so ga°-Z = g"', which would cost O(lg p) calls to the DH-oracle. Hence,

granted access to a DH-oracle for the group G, all algebraic algorithms in 7Lp can be

converted to work in the implicit representation in G.

In this chapter we will build on the work in [MSV04] by tightening the reduction

and trying to extend the result to the remaining curves that were missed. Our goal is

to show that, for the elliptic-curve cryptosystems described in the various standards,

the number of group operations and DH-oracle calls required to reduce the DLP

to the DHP is reasonably "small. " Say for example that the number of calls to the

DH-oracle is less than 2' then, if we believe that the much more extensively studied

DLP over the same group takes at least 2t operations to solve then an algorithm for

solving the DHP, and thus breaking the DHP protocol, would require a minimum

of 2t"' group operations. Our target is therefore to minimise the value of r, in order

to get the tightest possible security reduction.

In [MSVO41, affine coordinates were used to represent the points on the aux-

iliary elliptic curve groups. This representation requires division and hence a

DH-inversion oracle was needed, which was implemented via repeated calls to the

DH oracle using the relation g'-' = g°"-2 at the cost of O(Ig p) calls to a DH-oracle

to compute the exponentiation. This approach is clearly an expensive choice as it

leads to a large increase in the number of DH-oracle calls. To avoid this extra cost,

we use projective coordinates to avoid division, and as a further refinement we also

use a specially tailored optimised square root extraction algorithm.

The reduction method involves lots of exponentiations, so one may also consider

using addition chains to reduce the cost of exponentiation. However, it turns out that

117

The equivalence between the DLP and DBP

this saves very little and only complicates the analysis. So it was decided to only

use a more generic method of exponentiation and concentrate on the other critical

areas of the reduction algorithm. Section 6.4 expands on this point and justifies this

decision.

Appendix A. 1 provides a list of auxiliary elliptic-curve groups that give almost

the tightest possible reduction from the DLP to the DHP, using the Maurer method.

We need to address two cases that depend on the way we define the DH-oracle

that will be used in the reduction. The first one will be an oracle with respect to a
fixed generator of the cyclic group G, while the second is when the generator can
be freely chosen by the environment i. e. the generator is part of the input to the

DH-oracle, i. e the oracle is given a triple (g, g°, gb) where (g) =G as input instead

of just (ga, gb) when g is fixed.

6.1.1 Case 1: Fixed base DH-oracle

We now define the problems DLP and DHP in the case of a fixed generator g of a

cyclic group G.

Definition 6.1(DLP and DHP). Let G be a cyclic group. Fix a generator g of C and
write G= (g).

" Given hEG, the problem of computing the integer aE 10, IGA) such that gi' =h is

called the Discrete Logarithm Problem (DLP) with respect to g.

" Given two elements g°, gb E G, where a and b are unknown, we call the problem of

computing gab the Diffie-Hellman Problem (DHP) with respect to g.

In the definition of the DLP, the existence and uniqueness of the integer a arc
implied by the fact that the group G is cyclic of prime order (GI = p. Next, we
formalise the notions of Diffie-Hellman (DH) and Discrete Logarithm (DL) oracles.

Definition 6.2 (DL and DH oracles). Let G be a cyclic group. Fix a generator g of G

and write G= (g).

"A DH-oracle takes as input two elements g4, gb cG and returns gab. We write

yx(a, gb) = fib.
118

§6.1 Maurer's reduction method in Fp

is A DL-oracle takes as input an element h= g° EG and returns a mod IGI. We write

DL(h) = DL(g") = a.

Both oracles return answers in unit time (by definition of oracles).

The equivalence between the two problems for any group was theoretically

established by Maurer and Wolf in the nineties [Mau94, MW96a, MW96b, MW99,

MWOO], but it relies on the existence of some auxiliary elliptic curves whose orders

must be smooth. These auxiliary elliptic curves are not necessarily easy to build

and it seems they are exceptionally hard to find in general. Hence, a more concrete

treatment for the elliptic curve groups used in practice proved necessary and this

was done in [MSV04]. The paper discussed the computational equivalence between

the DLP and DHP, and it also presented an explicit list of auxiliary elliptic curves

needed for the reduction.

The optimised reduction algorithm

Given an element hEG and granted access to a DH-oracle for G, we want to find

the unique integer a modulo p such that h= g". We assume that we have an elliptic

curve E over]Fp, given by the Weierstrass equation y2 = x3 - 3x + b, with smooth

order that can be written as a product of coprime integers

IEt = fJ q;,
j=l

(6.1)

with qj<B of roughly the same size, where B is a fixed smoothness bound that is

polynomial in log p.

The specific choice of y2 = x3 - 3x +b for the defining equation of E saves 1T. 5

while adding points on it as we can optimise the addition formulae to save one

multiplication.

To solve a DLP in G, Maurer's approach is to use the given DH-oracle and solve
the problem in the implicit representation over the elliptic curve E, which is sup-

posed to have a smooth order (Hence we can use the Pohlig-Hellman simplification,

see below for the details).

119

The equivalence between the DU' and DIS

So, given h= ga EG and the elliptic curve E, as above, we check whether

g} = ga3'3a+b can be solved for y. If so then we have found a point Q on E in its

implicit form, otherwise we replace a by a+d for some random, small, integer d

and do the checking again until we get a point Q on E.

Note that, at this stage, we know Q in its implicit representation only. The idea

now is to solve Q= kP over E, where P is a generator of E. Upon finding the value

of k, we then compute kP in the explicit representation and hence recover the value

of a, from the explicit first coordinate of Q. Given that E has a smooth order, we

simply use the naive Pohlig-Hellman method of first solving the problem in the

subgroups of E of prime power order, and then recovering k using the Chinese

Remainder Theorem (CRT). The reader is referred to Algorithm 14 for the detailed

description of the algorithm.

The crucial point to note is that we have a wide choice of curves over F, that

have sizes distributed in the Hasse interval [p +1-2, Cp, p +1+2 N(p-j. So, with

a bit of luck, one hopes that one of these sizes is smooth enough and hence the

corresponding auxiliary elliptic curve would make solving our DLP easy, granted

access to an appropriate DH-oracle. We draw the reader's attention to the fact that

this is the same reason that makes the ECM factoring method so successful.

In the description of Algorithm 14, note that for the comparison step (12:) to

test whether a point (X :Y: Z), in projective Jacobian coordinates, is equal to a

point (x, y), in affine coordinates, we simply check whether (X/Z2, Y/Z3) = (x, y) i. e.

xZ2 =X and yZ3 = Y. In the implicit representation this becomes

(gZ2)x = gX and (gZ')y = gY.

This use of projective coordinates gives our greatest improvement over [MSVO4I.

We also make extra savings by storing precomputed values and using them through-

out the algorithm. The next two subsections will describe the other improvements.

120

§6.1 Maurer's reduction method in]Fp

Algorithm 14 Solve a DLP in a group G given access to a DH-oracle for G

Input: A cyclic group G= (g) of prime order p, an elliptic curve E/Fp : y2 = x3-3x+b,
generated by P, IEI = ns,

_1 qj and h= ga EG
Output: a= . D1(h)

Step 1. Compute a valid implicit x-coordinate related to the DL a
I: repeat
2: Choose d randomly, and set gx E- hg' (gx (-- ga+a)
3: gz gx3-3x+b
4: until e')12 =g (Test quadratic-residuosity of z (mod p))

Step 2. Compute gy from gZ = gY2:
5: Extract the square root of z in implicit representation, to obtain gY

Now, Q= (x, y) is a point on E known implicit only: (gx, gy)
Step 3. Compute k: Q= kP in E(F): (Pohlig-Hellman)

6: for j=1,..., s do
7: Compute Qf = (g"J, gVI, gWi), where (ul, vj, wj) = qjQ (Projective)

8: Set i 4- 0, (u, v) *-- O, Pj +- qP (Affine)

9: repeat (Solve Qj=k, Pi in the subgroup of E(Fp) of order qj)
10: i4-i+1

11: (u, v) +- (u, v) + Pi ((u, v) E- iP f=i ýP)

12: until (g)" = g"j and (g J)v = gvJ (Test if (gu, ga) equals (guI, gai, gwi))
13: kj 4- i

14: end for
Step 4. Construct a

15: Compute k (mod (El) such that YjE (1, ... , s) :k- kj (mod qj) (CRT)
16: Compute kP =Q in aff ine coordinates
17: Then x (mod p) is the abscissa of Q, and a=x-d

Square root extraction

We will now describe the special cases in the explicit notation. The next formulae

are used by Algorithm 15, in the implicit representation, to compute gy from gz =

9 y2 = gz3-3x+b.

Suppose a is known to be a quadratic residue modulo p, using the Legendre

symbol for example (g 2.2), and we want to compute xE Fp such that x2 =_ a

(mod p). Then, besides the general Tonelli and Shanks algorithm used in (MSV04],

we also treat two special cases:

1. If p-3 (mod 4) then x =_ a(''+1)/4 (mod p),

2. If p-5 (mod 8) then do the following: Compute s= a(P-5)/8, u=a"s, t=s"u.

If t=1 then x=u otherwise x= 2''1)14 " u.

121

The equivalence between the DLP and DHP

Algorithm 15 Implicit square roots in a group G using a DH-oracle for G.
Input: A cyclic group G= (g) of odd prime order p, and g; = gY2 e G.
Output: gy.

I: if p-3 (mod 4)then
2: gy e+1)/4.

3: else if p=5 (mod 8) then
4: g5 t- e')", gU 4. _ gZ, g' 4- gSU.
5: if gt =g then
6: gy g".
7: else
8: gy gu"2(P'')/4.
9: end if

(First case: p=3 (mod 4))

(Second case: pa5 (mod 8))

10: else
11: Write p-1= 2` " w, w odd. (Tonelli and Shanks algorithm for p is 1 (mod 8))

y t- n, -»n, f- Y2y - ý y. 12: Set gs ý- gr F- eg gb gZ g gz (Initialise)
13: while gb *1 do
14: Find the smallest mz1 such that glut = g. (Find exponent)
15: Set gt F- g(), g3 E- gt, r t- m, gy «- gyt, gb F - gbs. (Reduction)
16: end while
17: end if

Treating these special cases is worthwhile since half the primes arc congruent

to 3 modulo 4, and half of the remaining primes are congruent to 5 modulo 8. The

only remaining primes are all congruent to 1 modulo 8. We gain no advantage by

using similar methods for this case, so we simply use the Tonelli-Shanks algorithm

for the remaining primes as described in Chapter 2 (Section 2.2 on page 43).

Explicit and implicit point multiplication

As already stated, we use the projective coordinate system in Step 3 of Algorithm 14

instead of the affine coordinate system. The formulae for addition and doubling

of points2 in the implicit representation follow from their standard explicit coun-

terparts [BSS99, p. 59-60] as follows (Recall that we are assuming that a= -3 and

p>3 in the defining equation of our elliptic curve E).

2Recall that "doubling" is the operation of adding a point to itself: 2P =P+P.

122

§6.1 Maurer's reduction method in Fp

Doubling. LetP=(X: Y: Z)andQ=2P=(X': Y': Z'). Then

%X2 = D`I f (8x. gX)
$Y2 = DW(gY, $Y)

$Y` = yH(e, $y2)
z2

= Lll(gz,
gZ)

gZ4
= EW(e, gZ2)

3X2 + aZ4 gAl = (8X2)3 " (gz4)a

A2 = 4XY2 $A2 = (ß(8X, 8Y2))4

A3 = 8Y4 gA3 = (8Y4)8
X' = Ai - 2A2 gX' = ýffl(gA1, gA1) " (8A2)-2
Y' = 11ý(A2 - X') -113 gý" = . Lm(gA1, gA2. (8x)-i) . (e3)-1

Z' = 2YZ gZ, = D`H((8Y)2, gZ)

So the cost of explicit doubling is 8 TI and that of implicit doubling is 8, +4 +149N.

Addition. Let P= (Xi : Yl : Zl), Q= (X2: Y2: Z2) and R= P+Q = (X3 : Y3: Z3).
Then

$Zi = D`I((gZ1"$Zl)

$'z1 = IYH($Zl, $Zl)

9Z2 = D'1 i($Z2, $Z2)

9z
2= D`H(gZ2, gZ2)

Al = X1Z2 2 $'ti = M(ö a, gz)

A2 = X2Zi gA2 = m((gxz, g)

A3 = Al - A2 gA3 = gAi . (gAz)-1

A4 = Y1Z2 8Aa = M(9Y1,8Z2)
A5 = Y2Zi gA5 = D`H($YZ, gzi)
A6 = A4 - A5 gA6 =a. (gAs)-1

A7 = Al -F+ A2 9A 7 = gA1
. gAz

A8 = A4 + A5 9As = gAa . gAs

gA3 = m((gA3, gA3)

3 = 1J l7
(gA3, gA3)

Z3 = Z1Z2A3 gZ3 = M(IYH(gZ1, gZ2), gA3)

X3 = A6 - Ä7A $X3 = `ý`t{(gA6, gA6) " (`iý(ý7,3))-1

A9 = A7A - 2X3 gA9 = 1)J(((gk7, gä)
. (gXs)-2

Y3 = (A9A6 - Ä8A3)/2 g'3 = {1'%1(89, g"6)
. (. M(gA8, g3))-1}1/2

For the implicit square root extraction in the computation of g'3, we pre-compute

2-1 (mod p) and use exponentiation. Hence the cost of explicit addition is 161A and

that of implicit addition is 16Db + 5I + (8 +2 lgp)Tl.

The cost of each operation is summarised in the following table.

123

The equivalence between the DLP and DFD'

Point doubling Point addition

Explicit Implicit Explicit Implicit

D 8 16

4 5

9l2 8 14 16 jlgp+l

For the affine coordinates, note that we only need the explicit case (In the j-loop).

The costs are (see 2.3.1 and take M=S= fit):

1Z +40 for doubling and 13 + 3IR for addition.

Exponentiation

Since we will need to compute kP for different values of k but a fixed P, pre-

computing the values 2'P, 22P,..., 2UUgkJP will save us some computation. Then,

using the right-to-left binary method, we expect only I Ig k elliptic curve additions.
We now summarise the costs of exponentiation.

Implicit exponentiation in projective coordinates. The cost of the precomputation

is about

(8Zb + 4Z + 141M) Ig k (6.2)

and then each exponentiation would cost about

(si
+

23
+

4(31gp
+ 13)TI Igk. (6.3)

Explicit exponentiation in affine coordinates. The precomputation cost is

(1Z + 4Wt)1g k

and then each exponentiation would cost

2(13+30)1gk.

(6.4)

(6.5)

124

§6.1 Maurer's reduction method in 1Fp

Complexity of the optimised reduction algorithm (Algorithm 14)

The average case complexity analysis of Algorithm 14, presented next, yields the

following theorem.

Theorem 6.2. Let G be a cyclic finite group of prime order p. Assume an elliptic curve E

over Fp has been found, whose B-smooth order is

Eqj,

IEI =
; _l

where qj are not necessarily prime but are coprime of roughly the same size. Then, solving

a given instance of the DLP in G requires on average about

log

ýB Blog
Bp

)M.

For comparison, we quote below the asymptotic costs obtained by [MSV04]

03
log B

Z6+0
Blog

Bp w2'

While the number of multiplications has remained the same, the number of

DH-oracle calls has now become quadratic in the size of the group G instead of the

previously cubic cost.

Note that, in order to get a lower bound on the cost of solving a DHP instance, we

no longer require the auxiliary elliptic curves' orders to be smooth. This is because

as long as we assume that the DLP is an exponentially hard problem then we do

not mind if the reduction from the DHP to the DLP is exponential too. This remark

will allow us to choose s=3 later, and then the task will be to find smooth elliptic

curves whose orders are product of three coprime numbers. This is a significant

relaxation of the smoothness condition.

125

The equivalence between the DLP and DID'

Analysis of the average case complexity of Algorithm 14

To simplify this task, each step of Algorithm 14 (see page 121) will be studied

separately and then the partial results will be summed up to obtain the total average

cost of the algorithm.

Step 1:

We first precompute g2' for i=1, ..., Llgpi. This will allow us to compute any

power gk with an average cost of 11 lgM, using the double-and-add algorithm of

exponentiation. The precomputation requires LlgpJ squarings, which costs

Igp92.

Without loss of generality, we set d=0 at the start of this step. Then, evaluating

gz g-3x+b
= gx3 . ((gx)3)-1 , gb requires

2Z5 + +13 + (4 +2 Ig b)M.

Note that

$(x+d)3-3(x+d)+6 _ gx3-3x+b . (f2)3d , (gx)3J2 . _3d.

So for a second evaluation, we only need an extra

(3 +Z lg(3d) +3 lg(3d2) +2 lg(d3 - 3d)) 'M - (3 +3 1g 3+6 Ig d)' 1.

For the quadratic residuosity check we need to compute g=o". First pre-

compute gZ2' for i =1, ... , hlg 51, then the total cost is

(lg2+2Igp21)Zb~(Zlgp-2)ZfD.

Now, let v be the number of iterations for Step 1. Since Fp has (p -1)/2 quadratic
non-residues, the probability for having v=k iterations is

Pr[v-k]. P-1 lk-t. p+l.
2p l 2V

126

§6.1 Maurer's reduction method in]Fp

Hence, the expected number 9 of iterations for Step 1 is

Co Co k-1

k" Pr[v = k] =P1k
P2 1 2p

;e1 2'
2P

ýCPP
k=1 k=1

Thus the total average cost of this first step is lg p17t + [2D5 + 1Z + (4 + 11 1g b)9J2] +

[(3+3183+61gd)Wl1+2x(31gp- 3)ZSj. That is

(3 1g p -1)DS + 1Z + (19P + 21g
b+6 1g d+ 7+ 31g 3)Ut. (6.6)

Step 2: Following Algorithm 15, we treat three cases:

1. If p =_ 3 (mod 4) then, using the precomputations from the previous step, we

can compute gz(P+l)14 in an average of

2 lg p
41 Z-5 N (I IgP -1)ý .

2. If p-5 (mod 8) then the computation of gz(P-5)/S, gZs and gsu costs (2 +

Ig j)Z
N (21gp + 1) Z. 5 on average.

If t=1 then no further computation is needed and the total cost is (2118 p+
')Zb. Otherwise, t*1 and then computing

9u. 2(P-1)1+
= DH(gu g(2(P-i)/4) mod P)

will cost an extra 1D + (7 lg !+ 12 1g p)9JL

Since t behaves like a random variable, the average cost for this case is then

(1 19 p+ 2)Z-j + 2(1Db + (21gp - 3) m).

3. Otherwise, we use the general (implicit) Tonelli and Shanks algorithm. We

first write p -1 = 21 " w, where w is odd.

The initialisation step requires roughly (I Ig 21 +2)Z. 5. Finding the exponent

and reducing it requires (r + 2)Z. 5 per iteration, and at most e iterations are

127

The equivalence between the DLP and Dim

expected. Since r:: 5 e, we will need e" (r + 2): 5 e" (e + 2) calls to the DH-oracle.

Hence, the total number of the DH-oracle calls is about

(l2lgw -1
2 +2+(e+2)e) .

Since p is odd, we can easily see that the expected value of e is

00 co
Ek"Pr[e=k] =

Ek"(1/2)k
=2.

k=1 k=1

Bearing this in mind, we get w= p/2e = p/4 and the total cost is then estimated

to be
(21gp+ 2)»j.

Note. When concluding, we will use the weighted average of the costs above,

which is

(2 Igp +$)Z i+ $(21gp - 3)ßt. (6.7)

Step 3: Before entering the j-loop, we first pre-compute

2'Q for i=1,..., 11g lEIl-l/'j.

This is enough since qj are of roughly the same size, so qj ft JEJ1I' and then q/ %ti
JE11-its.

Using equation (6.2), the cost of precomputation is found to be about

(8D. 5 +43+149J)
(1- s,

lgtEI.

We also pre-compute 21P for i=1, ..., tlg IEIJ in affine coordinates3. According

to equation (6.4), this costs about

(1Z + 4'b2) Ig JEt.

3 We need i up to lg (EJ as we will use these precomputed values in Step 4 too.

128

§6.1 Maurer's reduction method in]Fp

Now, let j be fixed (We want to analyse the cost of one j-loop). The cost for

computing Qj = (g'J, gain g'') such that (u j, vj, wj) =9Q, given by equation (6.3), is

about
(8i

+5+ 4(31gp + 13) 92) yj,

where we have set yj= lg(IEI/qj). For the evaluation of Pj = qj P, in affine coordi-

nates, equation (6.5) gives

3+ 2ý)Yi.

For the i-loop, we note that g
and

g
need to be computed only once for each

j-loop, which costs 2Z6.

Now fix i. Computing iR = (i - 1)R + R, in affine coordinates, can be achieved

with one elliptic curve addition costing 121 + 3IR, since (i - 1)R has been computed

and 1R =R is trivial.

The cost of comparison is about 2x2 1g pW =3 1g p92.

On average there will be q j/2 i-loops for each j-loop, and therefore the average

cost of the i-loop is
2ý (13 + 3(lg p+ 1)M).

Hence, the cost per one j-loop is

(8y j+ 2)Z5 +(1 qj + 3yj)Z +
((1gp

+ 1)qj +4 (31g p+ 19)yj)WR.

Noting that
ss

yf=Elglgl =(S-1)lgIEI,
E
! =1 ! =1

we find that the total cost for Step 3, without the precomputation costs, is on average .

S

(8(s - 1) lg JEt + Zs)Zb +2E q1 + 3(s -1) lg lEt 3+

+2M.
i=l

129

The equivalence between the DLP and DH'

Adding the precomputation costs, we finally get the total cost of Step 3

(8(s -1 /s) lg IE) + 2s)1 +2t
(q

j+ (3s+2-
s)

Ig 1E1 ̂3+
i=1 (6.8)

((1P
+ 1) qj + ((31gp + 19)(s - 1) + 18- is)1gIEI 912.

i=1

Step 4: We use the Chinese Remainder Theorem to reconstruct k mod (EJ from k= ki

(mod qj), j =1, ..., s. We compute

s

k= Ekj- I q" 4j (mod IEI),
j=1

re
(1j)1

mod q j. This requires 0+ 2s12 operations. Note that inversions whe

are computed in Fq,,
... ,

IFq,.

For computing kP, in affine coordinates, we use the previously precomputed

values of 2'P. So this exponentiation would cost only (13 + 3`W) I lg k. Taking

k mod (EI to be I1 on average, we find the average cost of Step 4 to be

2(1g IE) -1)Z + Z(1g
JET - 1)W.

Conclusion. We conclude that the total cost of Algorithm 14 is

8(s-
s)1gIEI+ 21gp+2s+ 8)Zfj

+1t qi + (3s +5-4)1g lEI+
1

25
2

t_1
2s2

(1gp+1)1i=1qß+(1(31gp+19)(s-1)+e-1)IglEl+

+ilgp+ ilgb+61gd+31g3+ 1w.

(6.9)

Neglecting small terms and making the approximation4 jE) p and b : t: p/2, the

average cost of Algorithm 14 is then found to be

'By Hasse'sTheorem: JE1= p+1-t where Its 52 is the Fröbenius trace, so IEJ = p(1 +(1 -t)/p) N+ p,
b= p/2 is the average value of b, and d is small.

130

§6.1 Maurer's reduction method in]Fp

{(Ss-
+)1gp+2s+}+

tgj+(3s+-1=1

2(lgp+1)qj+((31gp+19)(s-1)+ 4
-1S

)1gp M.
t=1

Note that if we take qj to be of roughly the same size and fix B to be of a similar

size then

and then

log IEi log p N

N log B1 log B

E qj B=sB--
Blogp

_B1gp log B 1g B
i=1 i=1

In practice, the cost of an inversion is at most 109Jt for the range of operand-

sizes in the standards, see [BSS99, p. 371. Using this fact we have now established

Theorem 6.2, stated on page 125.

6.1.2 Case 2: Random base

In the random base case, the DH-oracle is given a triple (g, ga, gb) where g is chosen

at random and not necessarily a fixed generator of the cyclic group G. The definition

of the DH oracle in this case then becomes:

Definition 6.3 (Random base DH oracle). A random base DH-oracle takes as input

threearbitrary elements h, ha, hb EG and returns hab in unit time. We write D`t! (h, ha, hb) _
hab.

Note that if we invoke the DH-oracle with (ga, g, gb) _ (ga, (ga)ila, (ga)b/a) then

we obtain
(ö)(lla) (bla) = gb/a. (6.10)

Hence, in such a setup we can use our DH-oracle to perform divisions in a

straight forward manner, and thus there will be no need to use non-affine coordinate

systems to avoid division. This was first pointed out to me by my colleague Pooya

Farshim and then by Fre Vercautern.

131

The equivalence between the DIP and DiiP

By Section 6.4 (page 137), we do not expect major savings using this approach

either (a factor of about 23.2 at most).

6.2 Implications on the security of the DHP

The implications of this reduction on the security of the DLP was addressed

in [MSVO4]. We only comment on its implications on the security of the DHP,

as it is here where the work done in this chapter matters most.

Let CDLP, CDHP denote the costs of solving the DLP and DHP on an elliptic curve

of size p, respectively. By Maurer's reduction, we have CD p= NI)f, - CDIIP + Nom,

where Nr, 5, NMI are respectively the number of calls to the DH-oracle and number

of multiplications in G. Hence, for NU a CUP we get

CDHP =
CUP -N CDLP

NDg NZ$

Since solving the DLP on an elliptic curve E is believed to take at least]

steps [BSS99], in general, then setting

TDII =
omN,

zg

we see that TDH gives us a lower bound on the number of operations required to

break the DHP, as long as we have Nye a CDLP. Hence, it is the value of TD1ß that

gives the exact security of the DHP, given the best auxiliary elliptic curves that we

can find.

The tightness of the security reduction is controlled by two values. The first

being the number of field multiplications Nan, and second and most important

is the value of TDH for the reason put forth earlier. Tables 6.1 and 6.2 give the

logarithms of these key values, namely 1gNan and 1gNzg, for the curves in the

SECG standard [SE000]. They also give Ig NTE7, the logarithm of the (believed)

generic minimum cost for solving an instance of the DLP on an elliptic curve E.

The column headed adv gives the number of security bits gained on the previous

results from [MSV04]. The last rows of the tables are detached to indicate that the

132

§6.2 Implications on the security of the DHP

values are theoretical and that no auxiliary elliptic curves could be generated for

them, mainly due to the sheer size of the numbers that needed to be factored.

secp curve Ig JEJ 1g Nm 1g NN , 19 TDH adv
secpll2rl 55.9 46.3 11.4 44.4 6.4
secpll2r2 54.9 45.6 11.4 43.5 5.5
secpl28rl 64.0 51.9 11.6 52.4 6.4
secpl28r2 63.0 51.2 11.6 51.4 5.4
secpl60kl 80.0 62.9 12.0 68.0 8.0
secpl69rl 80.0 62.9 12.0 68.0 6.0
secpl60r2 80.0 62.9 12.0 68.0 7.0
secpl92kl 96.0 73.8 12.2 83.8 7.8
secpl92rl 96.0 73.8 12.2 83.8 6.8
secp224kl 112.0 84.7 12.4 99.6 6.6
secp224rl 112.0 84.7 12.4 99.6 7.6
secp256kl 128.0 95.5 12.6 115.4 7.4
secp256rl 128.0 95.5 12.6 115.4 7.4
secp384r 1 192.0 138.8 13.2 178.8 8.8

se cp 52lrl 260.5 184.9 13.7 246.8 -

Table 6.1: Summary of results for curves of large prime characteristic

Now, given our estimates for the number of group operations and DH-oracle

calls, we see that the smallest s for which Ng « is s=3. The reduction cost is

then (see Conclusion on page 130 for general s)

(149 55l ((1gp 1/ 3 1gP+ ++ 2)(3P)+(21gP+ 4 1g p) V. 68/

As an illustration of the advantage gained over the previous results presented

in [MSVO4], we consider the security of DHP for secp2 56r1: The DLP on this curve

requires about 2128 computational steps, employing the currently known methods.

Using our auxiliary elliptic curve, which can be found in Appendix A. 1, we deduce

that the DHP cannot be solved in less than 2115.4 computational steps, as opposed to

2108 from the previous paper. That is a gain factor of about 21.4 over the previously

reported value in IMSVO4], see Table 6.1.

Since an amount of computation of about 2115.3 5.1034 group operations is

infeasible with today's computational power, one can draw the conclusion that a

secure implementation of a protocol whose security depends on the intractability of

133

The equivalence between the DLP and DFD'

sect curve ig Ii-El 1g Nvj Ig Nt , Ig TDH adv

sectll3rl 56.0 46.4 11.4 44.6 6.6
sectll3r2 56.0 46.4 11.4 44.6 6.6

sectl3lrl 65.0 52.6 11.7 53.3 6.3
sectl3lr2 65.0 52.6 11.7 533 6.3
sectl63kl 81.0 63.5 12.0 69.0 7.0
sectl63rl 81.0 63.5 12.0 69.0 7.0
sectl63r2 81.0 63.5 12.0 69.0 7.0
sect193rl 96.0 73.8 12.2 83.8 6.8
sectl93r2 96.0 73.8 12.2 83.8 6.8
sect233kl 115.5 87.0 12.5 103.0 7.0
sect2 33rl 116.0 87.4 12.5 103.5 7.5
sect239kl 118.5 89.1 12.5 106.0 8.0
sect283kl 140.5 104.0 12.8 127.7 8.7
sect283rl 141.0 104.3 12.8 128.2 7.2
sect4A9kl 203.5 146.5 13.3 190.2 8.2
sect409r1 204.0 146.9 13.3 190.7 -
sect57lk1 284.5 201.0 13.8 270.7

sectS71rl 285.0 201.3 13.8 271.2 -

Table 6.2: Summary of results for curves of even characteristic

the DHP on the curve secp2S6rl can safely be used, provided the DLP is really of

the conjectured complexity.

Note that the SECG standard [SECOO] includes all the curves in the NIST [NISOO]

and the most used ones in the ANSI [ANS991 standards, and hence it covers the

most commonly used elliptic curves in practice.

6.3 Building the auxiliary elliptic curves

By the argument presented in the previous section, we need to construct elliptic

curves whose order is a product of three coprimc numbers of roughly the same

size. That is qj - p1'3. Muzereau et al. [MSVO4] used the Complex Multiplication

(CM) technique to build auxiliary elliptic curves with smooth orders but this does

not perform very well as p gets larger, due to the prohibitive precision then needed

for the calculations. In our case, it proved to be computationally more efficient to

generate random elliptic curves and then test if their sizes are of the required form.

Let us estimate the probability that a number in a large interval centred around p
is a product of three co-primes of roughly the same size. This probability is bounded

134

§6.3 Building the auxiliary elliptic curves

below by the probability that a number n is a product of exactly three distinct primes

of size roughly n1/3, of which there are about n113/ log n1/3 = 3n113/ logn, by the

prime number theorem. The number of products that can be made out of these is

roughly (3n113/ logn)3 = 27n/(logn)3, so their proportion is

27n/(logn)3
_

27
n log3 n.

Hence, a rough lower bound on the probability that we want is 27/ log3 n, which

is not negligible, and hence we conclude that numbers that are products of three

coprimes are not rare and can be found in expected polynomial time 5

For most cryptographic groups G from the SECG standard, auxiliary elliptic

curve E of the form y2 = x3 - 3x +b were successfully generated by finding a suitable

value of b. When trying to generate the auxiliary elliptic curves, the main difficulty

was to actually factor JEt. For large IGI, factorisation fails most of the time and

another random value of b is tried without any success. This is the main reason for

failing to produce the necessary data for the three curves secp521r1, sect571r1 and

sect571k1. However, two missing auxiliary elliptic curves from [MSVO4], namely

5We should note that the following argument that was presented in [BenO5a, Ben05b], although
mathematically correct, is not the probability needed for the analysis of our method.

Let us estimate the probability that a number in a large interval centred around p is a
product of three co-primes of roughly the same size.
Given three randomly chosen (positive) integers, we first want to compute the proba-
bility that they are pairwise coprime. Let p be prime. The probability that p divides two
of these integers but not the third is 3/p2 - (1-1/p) and the probability that p divides all
of them at once is 1/p3. So, the probability that p is not a common divisor of any two of
these integers is

31132
1- 1-p

Hence, the probability that three randomly chosen integers are pairwise coprime is

(i_A+)= j (1_)2(1+)o.
2867474.

p primep prune

The infinite product is clearly convergent but a closed form of its value could not be

obtained by the author. The numerical approximation 0.2867474 was obtained using
PARI, [BBB+98].

For a large interval (m, n), the product should be taken only for p5m-n. Now, since
1- 3/p2 + 2/p3 is positive, strictly increasing approaching 1 from below, we deduce that
the above estimate is a lower bound to the actual probability we want.

The above analysis estimates the probability that three randomly chosen numbers are relatively
coprime, whereas we want to know the probability that a random number factors into a product of
three coprime numbers.

135

The equivalence between the DLP and DilP

secp224kl and sect409r1 were successfully found. While the first seems to have

just been forgotten, the second was certainly due to the difficulty of generating the

auxiliary elliptic curves using the CM method.

6.3.1 The factoring procedure

To factor a number n into three co-prime numbers of roughly the same size, we first

factor n completely then try to write the factorisation in the desired form. If this

fails then n does not satisfy the property we want.

Let n= rj, `_1 p" be the prime factorisation of n. Write n= jI', q;, where qj =p e'

are coprime. We want to write n= 414243 such that 71 are coprime and have the

same size roughly. Clearly we need mz3 to start with, so if m<3 then we abort at

this stage.

There are (3) = m(m - 1)(m - 2)/6 Im3 ways of grouping the qi's into three

groups. The search tree comprises m+1 levels, where the root node is (1,1,1), and

the nodes at each level ¬ are obtained by multiplying one component of the parent

node by qt to get all possible groupings of jI jst of (at most 3 children per parent

node).

To save on the cost of traversing the tree, we use a depth-first search and adopt

an early abort strategy: Note that there is no need to pursue the subtree that has

a root 4; » n1"3 for some 4;, so if any component of a node is significantly greater

than n113 then we stop pursuing the current branch and backtrack. The first 5 levels

of the tree are illustrated in Figure 6.1. See Algorithm 16 for the exact details.

Algorithm 16 Factorisations of an integer into three equi-size coprimes.
Input: An integer n, a parameter e defining the interval [Bg, Bu] = [nl/3-e, n1/3+E].
Output: A set Q of possible factorisations of n into three coprimes in [Be, Bu].
1: Let n= fl `1 pi' be the prime factorisation of n
2: If m<3 or p, ' > B. for some iE (1, ..., m} then
3: return 0
4: end if
5: Set S= (Pi', P2 ,..., Pm)"
6: qF-(1,1,1), Q#--0, depth +-1
7: tocoprimes(S, q, Q, depth)
8: return Q

136

§6.4 Can we do better using Maurer's approach

ý'

t J

(91z ý 19

J

(9l9z93 ý ý3 l 1
I

[
3

[qýq
3j

l
g 2

l l 1 t q3 I
/ý

q 941 q (9192 Iq 9 94 ýl ý z 4 3 Ig I
III 4I

,

9 1 I
[

Igzq4l sl I I I9zi3l I929394ý
[9 I lg

z I

1 1
94 1 g4

q q4 L q 3 q

Figure 6.1: The first 5 levels of the factoring into 3 coprimes tree.

Algorithm 17 tocoprimes subroutine
Input: S= (pil, p2,..., p,), q e N3, depth e N, Q c N3.

1: qi- q
2: for j =1, ..., min(3, depth) do

3: qa- q
4: qj E- q jSdepth

5: ifgj 5Buand depth <mthen
6: tocoprimes(S, q, depth + 1, Q)
7: end If
8: end for
9: If depth =m and ql, 42, q3 >_ Bt then

10: Q4-Qu{q}
11: end If

6.4 Can we do better using Maurer's approach

Here, it is argued that not much improvement can be made using Maurer's reduc-

tion, as described in Algorithm 14.

Note that merely computing g3, from a random x mod p, costs at least 2x

1g(p/2)ZS5 on average. For s=3, we find that the ratio of the estimated DH-oracle

calls needed for the reduction to this lower bound is

149 Igp+ä 149N236
21gp 12

Step 2 of the reduction algorithm is not independent from the first so its cost

can be reduced further, but the third step does not seem to have any correlation

with the previous steps. If we say that Step 3 costs at least one exponentiation, to

137

The equivalence between the DLP and Dom'

compute one of the (IEI/qj)Q, where qj ý (EI1'3, then the ratio drops to

16 1g p+~ 149
z 23,2.

(2 + 2/3) lg p 16

If we further assume that (IEI/q j)Q are all independent for j=1,2,3 then the

ratio drops to (149/6)/(2 +3x 2/3) 22.6.

Hence, it turns out that about 3 bits of security is all that can be hoped for above

our result!

6.5 Concluding remarks

Assuming the DLP is an exponentially hard problem, we have shown that the

Maurer-Wolf reduction with naive search yields a concrete security assurance for

the elliptic curves recommended by the current standards, for which we could

generate the auxiliary elliptic curves. We have found two new auxiliary elliptic

curves, missing from [MSVO4], namely secp224kl and sect499rl. It remains open

to find auxiliary elliptic curves for the curves secp52lrl, sectS71rl and sect571k1.

These will have sizes larger than 500 bits, which presents the current factoring

algorithms with a big challenge.

Appendix A. 1 starting at page 147 lists the auxiliary elliptic curves that we

constructed to give almost the tightest possible (Maurer) reduction.

138

Chapter 7

Conclusion

:; ii
- "And it was said (in the end): Praise and thanks be to God the lord of the worlds",

The Quran

7.1 Review of results

In this thesis, we have addressed three instances of cryptographic problems and

improved on their current performance using both traditional and new techniques.

In Chapter 4, we allowed the parameter sizes of the RSA cryptosystem to get too

large, as suggested by NIST, and proposed new ways to implement the modular

arithmetic. We used the wooping error detection technique in a novel way to allow

us to achieve better practical performance than would have been possible otherwise.

In Chapter 5, we saw how important is it to take into consideration the exact cost

analysis of proposed cryptographic primitives, as asymptotic security results may

be misleading and lead to inefficient or insecure systems when instantiated with

practical parameter sizes. We tried to remedy the GGH hash function proposal via

relaxation of storage requirements and modification of the compression function to

break its linearity. This cost us to lose the desirable (asymptotic) provable security

property, but has allowed us to make a concrete proposal that we hope will be made

secure or at least serve as a starting point for future proposals.

139

Conclusion

In Chapter 6, we saw a different type of efficiency tightening exercise. This

time we addressed efficiency in theoretical arguments of computational reduction

between cryptographic hard problems. We used an alternative representation of

the elements to decrease both the time and space requirements by a logarithmic

factor.

7.2 Open problems and future research

The field of cryptologic research is very young with many open problems, and the

topics studied in this thesis are no exception to this rule. Here, we list some of the

issues that are directly related to this thesis that we wish to study and hopefully

solve.

It is a natural question to ask whether we can improve on the speedups we have

already gained with our proposed approaches. The answer was negative for the

equivalence between the DLP and DHP chapter where we showed, in Section 6.4,

that not much can be saved for the range of parameters we were interested in unless

we use a whole different reduction method altogether.

There is however at least one type of DH-oracles that is not covered by our

analysis in Chapter 6. Consider the special DH-oracle which, given a group element

h= g" cG as input, returns hx = g"x where x is a fixed secret clement of the group

in question. The problem associated with this type of DH oracles is referred to

as Static Dtfie-Hellman Problem (SDHP), and asks for the recovery of the secret x.

A reduction for this oracle type is not yet known despite it being a more realistic

model of, for example, a compromised smart card that holds the secret x; and hence

some research needs to be directed towards this problem. This is because we do not
(currently) know how to use such an oracle to perform arithmetic in the implicit

form (on the exponents) and hence we cannot use the Maurer's reduction. Brown

and Gallant showed in [BG04] that such an oracle can be used to recover the secret

x in less than Vp- calls, namely Vp- oracle calls using space O(max(p/d, Nrd`) where

p= #G is prime and d is a divisor of p -1. This running time applies only in the case

when p-1 has a factor d of order p1/3, which is true with significant probability,

140

§7.2 Open problems and future research

and when at least d oracle queries are made. Cheon also describes a similar attack

in [Che06] and further extends it to the case where p+1 has a small divisor by

exploiting the structure of)Fp and]Fpz. We speculate that it might be possible to

generalise these attacks to work over higher extensions of]Fp or over elliptic curves

but it seems that the restrictive nature of the static DH oracle limits us so much and

makes this infeasible [Che06].

One interesting open problem relating to the design of LASH is to find good

values for the initial vector IV to circumvent similar attacks to the one on IV = 0.

However, since any compression function based solely on lattices will be linear

and thus will suffer from sub-exponential attacks using a generalised birthday

attack, the chapter on building practical hash functions based on lattice problems

seems closed, unless a completely different design strategy is used. The source of
difficulty stems from the fact that it seems hard, if not impossible, to avoid these

attacks without losing the lattice structure.

The chapter on speeding up RSA arithmetic, however, touches on a fertile subject

and has many open questions and possible improvements to be investigated. We

will now suggest some possible ways of improving on the (software) solutions

given in Chapter 4. One can also explore the possible hardware improvements that

can be exploited but this is beyond our scope in this thesis.

7.2.1 Shamir's RSA for paranoids

Shamir suggested in [Sha95] to use "Unbalanced RSA" where the modulus N is a

product of a very large prime q and a smaller prime p, e. g. for 5000 bits he suggests

using p of size 500 bits and q of size 4500 bits.

The key idea here is that RSA is usually only used for key encapsulation, so we

can take p to only be as big as the key-size while we let q as big as it needs to be

such that the product pq =N is of the required size. Now let x= ke mod N be the

encapsulation of a key k<p, then for decapsulation we can see, using the Chinese

Remainder Theorem, that we only need to compute k= xd mod p-1 mod p since we

already know that 0<k<p<qi. e. there is no need to compute k=d mod q-1 mod q

or any other further computation. For the optimisation of encapsulation, Shamir

141

Conclusion

proposes using e= 20 as then we can compute kw as (k10)2 mod N which only costs

10 integer multiplications and 1 modular multiplication provided k<p< q1110, and

the "wraparound effect is similar to the squaring operation of full size numbers in

Rabin's scheme. "

This variant of RSA would clearly be of great interest if 15,360-bit RSA is to be

used in practice for key encapsulation. Further research needs to be done regarding

the security of this proposal and the possible padding schemes (like RSA-OAEP)

that need to be used to avoid attacks similar to those presented in [GGOQ98].

7.2.2 Using convolutions to speed up Montgomery reduction

Roughly speaking, convolutions allow us to compute the sum of the upper and

lower halves of a product. In this section, we will show how this may save us

computation time and then describe how to actually compute these convolutions.

Let us recall the description of the Montgomery reduction steps (see Algorithm 3

on page 41).

1: u f-- (-m'i)z mod R
2: x f- (z + um)/R
3: if xzm then
4: x--x-m.
5: end if
6: Return x

As we have pointed out before, (z + um)/R is simply the upper part of z+ um i. e.
(z + um)u. The left diagram of Figure 7.1 illustrates the operation z+ uni graphically.

We will now show a nice modification that will allow us to compute (z + um)/R

a bit faster. Note that if we compute (um)� + (um)s instead of the full um then the

lower half of the addition z+((um)� + (um)s) is going to be equal to (um),,. Hence, we

can read the value of (um)u straight away and add it to z� to get an approximation

to (z + um),,, which will be off by at most 1 (carry value). This then can either be

corrected by wooping or other techniques.

142

§7.2 Open problems and future research

c
a
y

IIZ +
(um)u (um)e I

(z + um)u 0

z

(um)u (um)u + (um)e

I zu + (um)u (um)u

Figure 7.1: Using convolution to compute (z + um)u.

Computation of convolutions

There is a general technique to compute convolutions using FFTs when the number

of words is a power of 2, but we will first construct special methods based on the

Karatsuba and Toom-3 multiplication algorithms then comment on the possible use

of FFT in our case.

Karatsuba-like convolution. Let f (x) = (ao + alx)(bo + bix) = w2x2 + wlx + wo.

.......................
11
11

W2 ,
1

1 wo , 1,

1---- -w- --- we .

Note that f (l) -f (-l) = 2w1 and f (l) +f (-l) = 2(wo + w2). So we can construct

(uv)¬ + (uv)� = (wo + w2) + bt(wl)e + (wl)u + carries.

This will only cost two half-size multiplications to compute P±1), and hence a

total of

2? C(n/2) + 4n 3ýC(n). (7,1)

[Justification: 2(n/2)t 3= (2/21g3)nl 3= (2/3)n' 3.]

Toom3-like convolution. Write a(x) = ao + aix + a2x2, b(x) = bo + blx + b2x2 and

a(x)b(x) = wo + wlx + W2x2 + w3x3 + W4X4.

143

Conclusion

r---------------r---------------I
W4

4417

'c

wo
...... L Wt

For wu + w¬ we are interested in computing

(w4 + wl)bt + (w3 + wo) + (w2)1P + (W2)� + carries.

Let C#1 be a root of x3 -1 (e. g. C= exp(2in/3)). First compute

a(C)b(C) = WO +wi+wz+W3+W4

a(ý1)b(ý1)= wo+W1C+W2C2+W3Z3+W4Z4 =B

a(C2)b(C2) = wo + W1Z2 + w2C + w3C6 + w4t8 =C

i. e.

A= (wo+W3)+(WI+w4)+W2

B= (wo+w3)+(wi+wq)C+w212

C= (wo+w3)+(wl+w4)C +w2C

Solving for (wo + W3), (wl + w4) and w2, we get

wo + w3 = (2 + C)(B - CC)/3

wi +w4 = (2+t)(A-B-(B-C)C)/3

roe = (1-Q(A-B)/3

The Karatsuba convolution is very easy to implement but the Toom-3 variant

seems harder to implement as it requires us to deal with complex numbers. It would

144

§7.2 Open problems and future research

be interesting to see how one can handle this issue without introducing too much

computational overhead.

FFT based multiplication. The authors of [PG05] suggest using cyclic convolu-

tions instead of half products and achieve, in [PG06], a complexity of O(2.5n log n)

for a reduction algorithm with the use of negacyclic convolutions, but it is unlikely

that these will beat our proposal around the 15K bit operands case.

It is argued in [Gar07] that the Schönhage method becomes as efficient as the

Karatsuba and Toom-3 methods at about 217 = 131,072 bits, which is close to the

value of the generic FFT multiplication threshold used in the GMP library namely

30 x Toom-3's threshold: 30 X 128 = 3840 words (122,880 bits). These sizes are too

high for our purpose. The reader may be interested in having a look at [Zur94] to a

see a report on concrete implementation of a wide range of multiplication methods

(but run on an old machine).

7.2.3 Cache oblivious Montgomery and Barrett methods

If the cache size is too small then the recursive nature of the used multiplication

methods and the large sizes of the operands may cause cache misses and hence

slow the computation considerably.

One possible way of circumventing this problem is to use an iterative version

of the multiplication algorithms. For a description of an iterative version of the

Karatsuba method see [LLH03].

145

Conclusion

146

Appendix A

Appendices

A. 1 The auxiliary elliptic curve groups

A. 1.1 Elliptic curve domain parameters over 1Fy

secpll2rl
IGI= 4451685225093714776491891542548933
b= 2281028298640880380471050241629229
tEJ = 161721374756

secpll2r2
(G(= 1112921306273428674967732714786891
b= 206183575593038548653640501094854
JEt= 105310592296

secpl28rl
IGI= 340282366762482138443322565580356624661
b= 296382216672105127948448095681044076642
JEt= 7551279841752.

secp128r2
IGI= 85070591690620534603955721926813660579
b= 73019542618206173582301377146548133543
JEJ= 4222485329260.4376586107537.4603369401979
secp160k1
IGI= 1461501637330902918203686915170869725397159163571
b= 1014269469389219214184903107646149695236127481640
(EJ = 11130827212809215
secp160rl
IGI= 1461501637330902918203687197606826779884643492439
b= 1231565154230325865757423073063591837019188457168
JEJ= 11174885494467645
secp160r2
IGA= 1461501637330902918203685083571792140653176136043
b= 19878710007803495986099641303621720692363507758
JEJ= 10573725526879272.11520572597065679.11997678180434227
secp192kl
IGI= 6277101735386680763835789423061264271957123915200845512077
b= 1094708638413029664629646177364452405008715587623144058105

147

Appendices

JEJ= 16352962116221436126.17705499411507224387"
21679764265977655387

secpl92rl
IGI = 6277101735386680763835789423176059013767194773182842284081
b= 73398673199696175201906191077775951800878826985233013574
IEI = 17294274520438999164.19491494149529285201"

18621372472744345117
secp224kl
IGI = 2695994666715063979466701508701964034651032708312007454\
8994958668279
b= 24618590432167307909930264143550961204039679464315847760\
586750945971
JET = 25996959705011679445066.33448358726421720956541"

31004280361955770972381
secp224rl
IGI= 2695994666715063979466701508701962594045780771442439172\
1682722368061
b= 861814932527596025116148711861115855634130668475173705465\
8821880904
SEI = 29343613141744570024644.31798414632322188707593"

28893487975414890420151
secp256kl
IGI= 115792089237316195423570985008687907852837564279074904\
382605163141518161494337
b= 5860372311642139591868908991386138368626851126235832204\
6880666663466737354099
IEI = 47494383239999767419320745.45175228939925617688211569"

53967993991985944506666061
secp256rl
IGI= 115792089210356248762697446949407573529996955224135760\
342422259061068512044369
b= 4765589410146331676223652613201639325305727084000142383\
9782911257030924437529
(El= 50851524730203743853228640.55497037692343386526156881"

41030339309908399787973083
secp384rl
(GI= 394020061963944792122790401001436138050797392704654466\
67946905279627659399113263569398956308152294913554433653942643
b= 8989010369169358436741847681979570105581243690574208263\
269556059650466158270056995485882025406947986682587367889624
IEI = 339869870481891547400546585225179213290"

349579759801582203099222931053813745553-
331634259739663319085318305031105092059

secp521r1
Not available due to hardness of factoring.

A. 1.2 Elliptic curve domain parameters over]F2.

sectll3rl

148

§A. 1 The auxiliary elliptic curve groups

IGI = 5192296858534827689835882578830703
b= 987637099543013757029545810016098
IEI =178524038025.170996556499.170088694619
sectll3r2
IGI= 5192296858534827702972497909952403
b= 4583769363017101608245187708458901
JE) =173146840968.166401825973.180213306239
sectl3lrl
IGI= 1361129467683753853893932755685365560653
b= 1258328605209306875070716696495675196119
IEI= 11939631029912
sectl3lr2
IGI= 1361129467683753853879535043412812867983
b= 358232342344119392058404230806453594114
(EI= 11466564749342

sectl63kl
IGA= 5846006549323611672814741753598448348329118574063
b= 177673376973323847770354736271782956689983248537
JEt= 18247804538816661

sectl63rl
IGI= 5846006549323611672814738465098798981304420411291
b= 1587404867306359898884819339154082781653585209324
JEt= 17869920899977912

sectl63r2
IGI= 5846006549323611672814742442876390689256843201587
b= 2956283323980422889291478477370320953355731576940
JEt= 18200719603559559
sectl93rl
IGI= 6277101735386680763835789423269548053691575186051040197193
b= 35338895987916163832451188982915353767627436600288649159
IEI= 16547960255111188472.19478515037898861263"

19474165359321867611
sectl93r2
IGI= 6277101735386680763835789423314955362437298222279840143829
b= 441755957568112116066633401133360511847396492629731764429
JEt= 19387762096509288342.18577800791543661067"

17427583967788534019
sect233kl
IGI= 3450873173395281893717377931138512760570940988862252126\
328087024741343
b= 25122149205491735595137688390486707351370368980297988538\
30832766551245
JEt= 155403009344278118554232.153385740717714666739125"

144772003913287824778231
sect233rl
IGI= 6901746346790563787434755862277025555839812737345013555\
379383634485463
b= 70409381647557063417408192870522518425634682631728828182\
1773151878529

149

Appendices

JET = 206799617030336682555416.195185490238925230580889"
170986465134593155152949

sect239kl
IGI = 2208558830972980411979121875928648149482165613217098488\
87480219215362213
b= 27650235244228507853355450435057293014412082341226059038\
361077531582683
IEI = 543814925489365240837668.610576362599114416948097"

665147345183743261991485

sect283kl
IGI = 3885337784451458141838923813647037813284811733793061324\
295874997529815829704422603873
b= 28183552298654367145273437136771989603707301993060462481\
46777682199067799961811453900
IEI = 16292450803352497273678817784-

15201361952350557812684097049 - 15687721231974421411325545219

sect283rl
IGI = 7770675568902916283677847627294075626569625924376904889\
109196526770044277787378692871
b= 71767445486180876851805109646321526052188997926851304655\
95965436250552932458637035413
IEI = 16932408152570400028840713015"

19857620455536755941661666843.23110686327095779427460999989

sect409kl
IGI = 3305279843951242994759576540163855199142023414821406096\
4232439502288071128924919105067325845777745801409636659061773\
1358671
b= 13877074019970923581077302466204224976964264102344770827\
4370480173588453714079223650928941369852833083698503107547969\
459853
SEI= 54923628603232455334113678631129360414184"

62030988940606152064529997029577410596573-
97015317302467505937973376689033052671801

sect409rl
IGI = 6610559687902485989519153080327710398284046829642812192\
8464879830415777482737480520814372376217911096597986728836656\
7526771
b= 13817711446362728360145301111436486530925505507402770142\
258673028256246338430064054266470642072686266547046134340903\
3831354
IEI= 87268656040437200019781889318456334448900"

81063003278915230074335552542219354685229-
93445254974986510684197220630040488205129

sect571k1
Not available due to hardness of factoring.

sect571rl
Not available due to hardness of factoring.

150

§A. 2 Trace of a single execution of LASH-160

A. 2 Trace of a single execution of LASH-160

To help with finding bugs in implementations of LASH, we give a trace of the
internal variables when hashing the three-byte ASCII string "abc".

First compression function iteration.

r: 00 Co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 60 00 00 00 00 90 00 00 00 60

61 62 63 80 00 00 00 00 00 60 60 60 00 00 00 00 00 60 00 00
00 00 00 00 00 09 00 09 00 00 00 00 00 00 60 00 00 00 00 00

mit t: 61 62 63 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 00 00 00 00 00 00 90 00 00 00 09 90 00 00 00 00 00 00

(1=321) ee 72 Se a4 bf bb f6 55 if al 48 lc of 02 55 lb 16 75 30 2d
3f eb 68 as c6 e3 la 2d eb 14 2f d0 e5 6a 2c cl ff 07 77 3c

(i=322) 51 ff 6e 9f e3 7a bl 4b 74 Co e9 64 Ob fl 57 70 31 8b as 5d
6c 2a 53 12 70 a9 fd 47 18 ff 43 ff b5 4f 96 ed Co 06 7e b3

(1=327) 36 Ob 20 47 ec dd 3e Sb 6f e4 a8 if 01 46 76 11 79 a7 94 5f
c1 45 69 87 a0 d6 3c 32 80 a9 09 e2 cf 7c 81 01 of d6 63 id

(i=329) da 32 OS 53 9e 85 47 be fc f4 a3 43 Co 01 6c 66 98 48 dc 7b
b0 47 be a2 b6 4b 6c Sf bf 94 71 Sc 95 5f 9b 2e da ea 92 ed

(1=330) 9a d6 2c 38 as 37 of c7 Si 81 b3 3e e4 Co 27 Sc ed 67 7d c3
cc 36 Co f7 dl 61 el 8f ec d3 Sc f4 3f 25 7e 48 07 d5 a6 lc

(i=334) 28 53 00 cl 6a db 16 ac 6b 33 Sb 47 47 4d 37 57 11 26 38 b9
21 55 61 3f ed 50 e3 e4 07 e9 dl 24 6c 64 69 b0 bi 9b 89 36

(i=337) f1 cc ba 4f e7 of 9f 6c Of 5a 40 53 f9 f5 40 ba 9e 36 33 dd
e0 10 57 94 0c f1 2b 00 f6 eb 26 3f 82 d9 99 dd f0 86 f1 e0

(i=338) Co 95 33 09 75 2c 73 f5 cf fe 67 38 05 a7 e8 c3 01 c3 43 d8
04 cf 12 8a 61 10 cc 48 12 da 28 94 9d of 0e Od Id c5 dc 48

(i=342) cl dS as fa 44 f5 ec of Sd 7b 3b cl CS 4b Of a8 Od 75 eb el
67 Sc 22 85 85 cf 87 3e 67 f9 c9 dc b9 de 10 62 38 db 51 78

(1=343) cd d6 ea 71 35 c4 b5 28 17 09 b8 95 4e Ob b3 cf f2 81 9d 89
70 bf of 95 80 f3 46 f9 5d 4e e8 7d 01 fa ff 64 8d f6 67 ed

(i=344) 49 e2 eb bl ac b5 84 fl 90 c3 46 12 22 94 73 73 19 66 a9 3b
18 c8 12 22 90 ee 6a b8 18 44 3d 9c a2 42 lb 53 8f 4b 82 03

Final compression function iteration.

r: 49 e2 eb bi ac bS 84 fl 90 c3 46 12 22 94 73 73 19 66 a9 3b
18 c8 12 22 90 ee 6a b8 18 44 3d 9c a2 42 lb 53 8f 4b 82 03

s: 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Co 00 00 00

Init t: 51 e2 eb bl ac b5 84 fl 90 c3 46 12 22 94 73 73 19 66 a9 3b
18 c8 12 22 90 ee 6a b8 18 44 3d 9c a2 42 lb 53 8f 4b 82 03

(i=1) a6 13 4f 38 99 14 9e 7c 66 66 08 cb 08 £6 d1 06 2b d8 b4 4a
27 62 of e5 62 db 26 d6 17 Sa 3e 32 95 d2 c6 42 67 df 3d 2c

(i=4) 74 8d 4c 8d ca 78 25 69 c5 80 93 al ab b8 8a ec 8d 36 47 Sc
99 6d le f4 fc d8 e9 a8 04 16 Sc 31 ab d3 Sc 35 f7 8a 2c 04

(i=7) 77 e3 84 5b 44 75 7a 9a 29 07 80 00 c5 43 60 8f 4f ei 2d be
f7 00 30 66 07 e7 18 42 01 d9 2e le 67 fl Sb 4b f8 20 if 94

(i=8) ec e6 da 93 12 of 77 of Sa 6b 07 ed 24 Sd eb 65 f2 bl e6 a4
59 Se c3 78 79 £2 07 51 9b d6 fl 10 54 ad 79 4a 0e 21 b5 87

(i=9) 57 Sb dd e9 4a bd fl ec of 9c 6b 74 11 be 05 £0 c8 54 a8 Sd
3f Co 21 Ob 8b 64 12 60 as 70 ee b3 26 9a 35 68 Od 37 b6 id

(i=10) be c6 52 ec a0 f5 bf 66 ac fl 9c d8 98 a9 64 0a 53 2a 4b if
f8 a6 83 69 le 76 84 6b b9 7f 88 b0 e9 6c 22 24 2b 36 cc le

(i=14) 69 52 eb b8 05 60 34 69 02 29 6a 52 95 fe 95 6e da 17 as 39
83 7c 26 2b d7 Sc e6 c9 4c 91 fa bb £8 7b be 21 ee 08 b9 da

(i=16) ec cl 98 44 9e 2c 99 d4 77 2c Co 8a 63 78 92 c3 Ob 7b 31 26
e2 96 b1 01 7a le 9f of ae of 8d cd 6a 86 cb 30 88 05 7c ac

(i=17) 01 44 07 fl 2a c5 65 39 e2 al c3 e0 9b 46 Oc Co 60 ac 95 ad
cf f5 cb Sc 50 cl 61 68 94 51 eb 66 7c f8 d6 3f 97 9f 79 6f

(i=18) 9a 59 8a 60 d7 51 fe 05 47 0c 38 e3 fl 7e da 3a 5d 01 c6 11
56 e2 2a a6 db 97 04 2a 4d 37 4d be of 0a 48 4a a6 ae 13 6c

151

Appendices

(i=20) 18 b2 23 7S Sa Co ab 91 e0 d8 9d 4e 66 81 30 72 2b 7b c3 66
87 46 bl 93 3a bi 8f 00 f0 19 66 a4 71 68 db Sc 18 b9 22 7b

(i=22) 27 of al ce £3 dS 2e 00 8d 64 36 la cb ec as 7S 81 b3 91 e9
84 9b e2 f7 cl 9e ee la 7b cf a9 66 2a 4e 3d ba ab cb 94 86

(i=23) 75 le fe 4c 4c 6e 43 83 fc 11 c2 b3 97 51 10 ea 84 09 c9 ae
fe 98 37 28 25 25 db 79 95 Sa if 69 ec 07 23 lc 09 Se a6 18

(i=24) ea 6c Od a9 ca c7 dc 98 7f 80 6f 3f 30 id 7S 55 f9 ec if e6
cc 12 34 7d 56 89 62 66 f4 74 0a df 8f c9 dc 62 6b be 39 Oa

(i=26) as 03 82 f7 d9 24 5a fl 18 95 f2 ae dd a9 0e 21 Se 77 94 e9
22 4a 02 f7 53 de 93 ca 7b 61 69 f9 1a 9f 7f c4 24 a2 9b 68

(i=27) d6 cl 19 6c 27 33 b7 6f 71 2e 67 31 4c 56 9a ba 2a dc ff Se
25 as 3a c5 cd db e8 fb df e8 56 S8 34 2a SS 67 e6 Sb 81 ca

(i=31) d7 71 7d Sc 55 fl 4e e4 bf 3d 64 of as of of 3d 99 89 8b f7
f1 05 a5 3a d0 31 20 c9 59 e5 ab 89 98 b1 42 c6 60 e6 57 6d

(i=32) 2b 72 2d f0 75 if 0c 7b 34 8b 73 0c 23 48 48 52 is f8 38 83
8a dl 0a a5 45 34 76 01 27 Sf a8 de c9 15 c9 b3 Sf 00 e2 43

(i=34) if 15 81 fl 25 83 2c a9 £2 22 e8 Sa 32 as c6 ab b5 Od bb f2
37 Sd a3 71 as 9f eb 04 7d 97 76 58 c6 6a fa 17 e6 ed 41 Sd

(i=36) 46 es 75 94 79 84 dc Gd 12 50 a6 fl a7 f3 dS 08 33 66 54 67
ba cc 50 fd 43 6b S0 6f f2 9a cc 90 94 e4 f7 6c 17 51 c8 4a

(i=37) 68 ec 25 88 lc d8 dd bd 76 70 d4 of 3e 68 23 17 90 e4 ad as
cf 4f bf as cf 04 lc d4 Sd of cf e6 cc b2 71 69 6c 82 2c d1

(i=48) 75 cc 53 as 43 88 di 60 ca 71 84 13 Se 96 el ae 05 32 be fd
4d a8 58 bf 52 73 c9 60 f6 db 34 51 41 bS c7 at 3a fc 29 26

(i=42) 9e dl 60 8a 71 as £8 10 be 14 d8 14 0e fa 01 dc c3 c9 31 4b
Sc 0S d6 18 eb 88 4c cf a3 67 cd !d a6 20 3c a4 90 34 f7 a0

(i=43) 44 fa 65 97 51 d8 la 37 6e 68 7b 68 Of as 65 fc fi 87 c8 Co
as 14 33 96 44 21 61 52 12 14 59 b6 72 85 a7 19 93 8a 2f 6e

(i=45) Se b4 0b Co 56 e5 fa 65 90 2f 2b Sc b2 fe 66 ac SS a7 f6 7e
41 89 81 a5 at 9f ba eb 27 97 c8 63 fe le 73 7e fe ff 32 c4

(i=47) 60 ea e5 7a fc 0e ff 72 70 Sd 4d 83 62 f2 69 00 56 57 Sa 9e
6f 47 18 la of ae 17 69 80 30 dd e6 6d cb ff 17 ca 64 9d 39

(i=48) 6e 2c lb 54 b6 b4 28 77 7d 3d 7b as 89 a2 fd a3 as 58 0a 02
8f 75 d6 bi 64 fc 26 c6 fe 89 76 fb f0 3a ac a3 63 30 02 a4

(i=53) 94 81 28 S1 as c2 6a ad Si f7 21 ce 8e of dd dl cc if ba f6
32 c9 d7 61 c8 lc 54 84 9S fe c4 0a 4d b8 05 3c 78 b3 71 51

(i=56) 37 92 80 77 fa cf 67 9c 65 39 57 as 48 55 06 d6 d9 Sf e8 18
59 79 cb 04 is id 64 e8 bS 2c 82 al c2 06 14 99 f6 0c 0a 66

(1=57) ff 35 91 cf 20 24 74 99 54 47 99 de 22 Of ac ff de 6c c8 46
7b a0 7b £8 bf 71 05 98 19 4c b0 Sf 59 7b 62 a8 S3 8a 63 ff

(1=58) 78 fd 34 e0 78 4a c9 a6 51 36 a7 20 58 e9 66 as 07 71 dS 26
a9 c2 a2 a8 b3 14 59 99 c9 b0 d0 8d 17 12 d7 f6 62 e7 el 58

(i=59) 7a 76 fc 83 89 a2 of fb Se 33 96 2e 9a if 40 Sf ad 9a da 33
89 £0 c4 cf 63 08 fc ed ca 60 34 ad 45 d0 6e 6b bO f6 3e d6

(i=63) fb ad 70 41 8b 1b b7 9e 6f 8b be 83 a7 lc 2f 6d of d0 b4 ed
2f 19 c9 dc 43 36 le 14 7a 54 d7 01 46 80 d2 8b de b4 d5 4b

(i=64) bl 2e a7 bS 49 id 30 66 12 9c 14 a9 fc 29 2c Sc fd 12 ea c7
e9 bf f2 el 50 16 4c 36 at 64 cb a4 9a 81 82 of fe e2 93 e2

(i=67) 2a 21 28 6b ca 54 a4 24 14 15 dc 4c 0d 81 52 bl 0a Of d9 d5
2b £5 cc 9b f6 3f 51 43 81 32 ed cb 4a 7S 25 43 ff 92 f7 02

(i=72) 10 id a5 79 74 cd 97 aS ca 96 13 Co cb 83 cb 79 ad 20 31 fb
80 02 c9 8a 64 81 87 ld 3b d8 16 d0 57 55 S3 65 26 42 eb as

(i=73) 82 e3 at f6 82 77 10 98 4b 4c 94 f7 3f 41 cd f2 75 c3 42 53
a6 57 d6 87 13 8f c9 53 15 92 be f9 Sc 62 33 93 48 69 9b 99

(i=78) 09 18 6d c3 57 09 d6 94 c8 Sa 3e 70 32 c2 83 73 ac 37 00 SS
if 11 79 98 4b b5 le 60 12 81 ca 3b 92 3c ed 39 71 6e as 79

(i=79) 4e 91 a2 8f 24 de 68 Sa c4 d7 4c la ab b5 04 29 2d 6e 74 13
21 98 41 3b Sc 0d 44 b5 if 7e b9 49 d4 72 c7 f3 17 97 ad 86

(141) 0d ed e7 16 59 as 35 2f 56 9d 48 97 b9 Sf 7d 1c ae 24 15 4a
95 S6 43 b4 24 b0 55 0d 45 d3 c6 46 c3 80 89 29 fl 51 53 of

(i=85) 44 b7 98 97 18 f8 7a b6 Sb 69 15 6c 4b 25 79 99 be ce 6e 3d
16 0c c4 eb 98 6e S7 86 ed 76 d7 9e e9 d5 16 26 e0 Sf 95 e5

(i=86) 20 ee 62 48 99 b7 c8 fb 12 9e el 39 20 b7 3f 95 39 dc 18 b6
09 8d 7a 6c cf e2 15 88 86 3e 7a of 41 fb 6b 33 dd 4e a3 27

(i=91) Se c8 ab 7a ff 93 ff c5 c3 if as 87 65 3e 74 61 06 bl as 7c
0S 0a 88 16 48 dS 96 3e 67 7S ee 6d 43 74 33 d6 ee a6 c9 7c

(i=94) of 22 df b8 d9 dc 31 2b 91 56 6a 38 e6 fd c2 a6 ad e6 76 49
da 9c 4e 12 c5 e3 40 b7 fa f6 a4 ee 7a e8 11 d8 67 6e 6c 8d

(i=98) a8 61 bb d0 2a 36 65 69 79 9f 9c 9e c2 34 Sc 57 0e as c4 8e
61 d1 la df 9a 75 66 b3 77 04 4e 67 6d 69 a7 59 9e e2 2a 8f

152

§A. 2 Race of a single execution of LASH-160

(i=102) cd 29 da c3 23 75 41 81 ca f9 d0 dc 9c 7d be bd ea dc 8e 3f

e2 90 68 24 21 as d2 80 4c 96 14 63 ea 77 51 d2 91 63 e6 10
(i=104) be 18 ff 8b 42 68 3a Co a6 11 21 36 d0 bb 98 06 is 42 6a 76

ac 41 e9 e3 6f of 59 b5 18 63 e9 15 b0 73 ce e0 3b dc d3 91
(i=107) 76 84 fc 7a 31 8d 02 df 99 Oa 60 12 e8 0c f2 3a 5a lc b3 a8

12 id 20 ad 20 70 18 63 Sd ea le cl 7d 48 60 a6 37 59 el 3b
(i=109) 0c 2c b6 e6 2e 7c fl 04 61 29 53 Ob 27 e8 0a 8b b4 50 fl 82

5b 4f 86 89 57 3a c9 84 lc 38 63 48 b2 14 2d 7b c9 if dd b8
(1=113) 60 a2 a7 3c c4 24 ab 70 Se 18 42 30 of 07 fd 84 13 2c 09 d3

b5 83 c4 63 a0 6c 2f 60 53 02 14 c9 71 62 72 02 fe eb as 8d
(1=114) 99 £6 1d 2d la ba 53 2a ca 15 31 if 14 cf lc 77 ec 6b e5 eb

06 dd f8 al 7a bS 61 c6 2f 39 de 7a f2 21 Co 47 85 20 76 5a
(1=115) 19 2f 71 a3 Ob 10 e9 d2 84 81 2e 0e 03 f4 e4 96 df 64 24 c7

le 2e 52 d5 b8 8f as 18 95 15 15 44 a3 a2 7f 95 ca a7 ab 26
(i=118) 3c 66 3c 03 44 64 5f c3 da 17 d6 c8 6f fl d3 85 04 2c 43 ba

17 6d 2e ed 09 e9 de 36 6f Se 47 as 7f d9 49 46 4b 66 f9 6b
(1=119) 77 a9 73 ce a4 9d b3 39 cb 6d 6c 70 29 5d d0 74 f3 51 Ob d9

0a 66 6d c9 21 3a 38 6a ad 38 90 dc e5 b5 80 10 fc e7 b8 b9
(1=121) b8 63 ae 11 db 68 13 72 if e3 Sd c6 bf 05 8a e6 10 40 fa fe

d2 85 60 c2 60 16 50 bb 07 6c ce b6 2e e7 e6 ec 33 bl 69 3a
(1=122) 34 a4 68 4c le 9f de d2 58 37 d3 b7 15 9b 32 9a 5c 3d e9 ed

f7 4d if b5 59 55 2c d3 58 c6 02 f4 08 30 18 52 Of e8 33 eb
(i=123) e7 20 a9 06 59 e2 15 9d b8 70 27 2d 06 fl c8 42 16 a9 e6 dc

e6 72 47 d4 4c 4e 6b of 70 17 Sc 28 46 0a 61 84 75 c4 6a b5
(1=126) 00 d3 94 b9 dS 23 cf d8 fb a7 f2 8d 3f 45 3e 33 6c 3f 8e 96

52 6f 36 c3 71 16 8a a2 69 56 38 40 97 64 95 c2 4f Od 9c lb
(1=127) 8b ec 47 a4 88 9f 10 92 36 ea 29 58 9f 7e 92 a9 Sd 95 24 3e

0c db 33 b2 60 3b 52 cl Sc 4f 77 lc of b5 of f6 8d e7 e5 4d
(1=131) c8 3b bi 52 13 b8 c3 7d e9 66 6a 12 da cl c9 74 bd ce 78 b4

fd 31 c9 Sa la a7 4f b0 4b 74 3f 3b a2 ae 2e d2 as 38 3f 81
(1=132) 91 78 00 be cl 43 dc 30 d4 19 e6 53 94 fc 0c ab 88 2e bi 08

73 22 if 10 c2 61 bb ad 3a 63 64 03 cl al 27 11 81 50 90 db
(1=135) e3 bb 60 85 fe 92 46 de 5f 32 99 3e 47 78 4d 65 c3 71 e8 d3

d3 Sb 73 66 b3 b7 Si 55 f4 cf 61 f2 b0 c6 of 30 74 49 cf b7
(1=137) 17 36 b2 c8 Se Sb 83 2d c9 e0 24 57 fa 63 00 ei 04 2b 23 16

0a 26 d3 9f 07 2d 42 ab 8a 77 lb Se ad b5 de 55 3c 68 c2 b0
(1=138) ea 6a 2d la al bb 4c 6a 18 4a d2 e2 13 16 eb 94 80 6c dd 51

4d Sd 9e ff 40 81 b8 9c e0 0d c3 18 19 b2 cd 44 61 30 el a3
(1=141) e0 d8 78 ed d5 36 9e ad 78 13 Of 31 7d c4 76 ad 33 57 90 cd

8e 17 d9 42 77 4c 18 d5 34 83 b4 6e of Sa 87 be Se if d0 c8
(1=142) 3d ce e6 38 a8 6a 19 ff bb 73 d8 6e cc 2e 24 38 4c 0a 7b 80

0a 58 93 7d ba 83 e3 35 6d d7 2a Sf 05 10 2f 6a ca lc bf b7
(1=144) e8 e6 43 2e 16 b5 ec 33 36 c5 lb ce 95 6b 73 a2 fa 95 94 33

15 Ob Of be 74 be 26 6c 38 37 63 b3 7b el 85 00 72 d6 2b b4
(1=146) be c7 ee 46 73 ab 5a 7e 09 f9 96 20 d8 cb 3c df 49 ff 42 be

0e be fa 71 f0 ff e0 a7 7b 6e 2e 13 b4 35 fb fl c8 6c d3 6e
(i=148) 95 2a c4 27 le c3 b7 74 77 44 69 54 53 ld 7f 3f 12 3c 91 28

be 49 13 24 db b2 5c e8 35 a9 71 4a 7195 34 45 3e Sd 29 04
(i=151) d4 Id Of fe 81 99 98 if 8f al 5f c2 9e f0 b3 ba 64 7f fl fl

f9 98 7d d2 66 cb Of d3 e8 25 b2 04 ba d8 6b 10 9e 96 7d 7a
(1=154) 15 65 fl 3d 74 e4 6f 82 65 82 0a da fb e6 21 05 37 b3 6c 43

3c f8 46 Of b5 35 bd 5e 01 d8 9d b7 36 19 25 4b el cd 48 da
(1=155) c5 a6 39 11 b3 d7 ba 59 c8 58 eb 85 13 43 17 73 82 86 a0 be

8e 3b a6 d8 12 84 27 0c 8c fl 50 a2 e9 95 66 05 lc 10 7f a5
(1=156) 8c 56 7a 67 95 16 ad a4 9f bb cl 66 be Sb 74 69 10 dl 73 f2

09 8d e9 38 bb cl 76 76 3a 7c 69 55 d4 48 e2 46 d6 4b c2 dc
(1=158) c4 be 41 17 d6 5e 81 e3 92 06 98 c9 94 3c if 81 4d c7 ei 3d

dc cl 64 8a fe 21 3f b3 89 e6 17 e0 ed fb cd f9 52 8c 7c 17
(1=159) 70 f4 a7 de 86 9f d7 cS dl f9 e3 as f7 12 00 2c 6S 24 d7 ab

27 94 98 05 50 64 9f 7c c6 35 81 8e 78 14 80 e4 05 (98 bd dl
(1=163) if Sf 8f 41 32 d7 3d 8c 81 3a 2b 82 36 05 4b 03 c8 fa b8 56

3f fl 8e 73 9b 37 d3 f7 18 78 el 57 bS 63 ea 92 90 21 70 be
(1=164) 79 0e fa 37 a3 83 75 f2 48 ea 6c ca 18 44 3e 4e 9f Sd 8e 37

ea 09 eb 69 09 82 a6 2b 93 ca 24 b7 7e a0 39 fc 3e ac 89 6f
(1=168) 19 f6 3c 57 fd 32 e9 da b9 96 a4 30 df f4 7f 96 81 9c 81 82

cl 6c cl 4a b4 9a 03 21 01 15 f7 eb f9 f2 7c Sc 07 e9 d8 d9
(i=169) 66 96 24 99 Id 8c 8f 45 al 07 50 68 45 bb 2f d7 c9 7e Co 75

0c 43 24 20 95 45 lb 7e 17 83 42 be 2d 6d ce 9f 67 b2 15 28
(i=172) c8 85 dc e6 bd 74 dl 65 fb b6 bb 50 b6 67 67 3d 90 2e 01 bd

ee 82 17 6b 6c a8 fl Si a2 9b 9f b4 9b b8 al d3 e2 04 58 88

153

Appendices

(i=179) 75 99 bi if bi 47 23 Cl ea 6e 68 is 9e a9 87 97 3f 99 e9 2e
9a ba 7d 32 is e9 39 41 el Be ea 8b fe Be 82 7e fa 61 4e f6

(i=182) 64 d8 66 2c be lc be bb bd cc 6a df 56 f6 27 if 81 b9 43 dd
AS a2 ee de 54 4f A0 it 22 d6 cc ca it d9 59 e1 dA 42 f9 Ge

(1=186) 11 38 51 d0 ab 64 11 68 c8 95 03 d3 29 48 89 6e 39 66 e3 cS
47 c2 48 8d bf 37 71 9d Sa 3c 93 7a 32 21 3b 29 c3 8d di 71

(1=190) 76 el 77 de 58 c4 Sc Ac b7 dd 58 89 34 Id 22 62 cc SS 4S b4
ff of e8 7S 01 S7 cb 4c CS 24 94 26 6a 87 42 d0 64 dS b2 bA

(i=192) da 04 dc 87 7e d2 99 6c 02 81 47 c8 89 ca 2d 37 as 4c 18 66
61 fe a0 c2 at 3f Ad 6c If d3 6f Se db 33 3a 36 cb 85 f3 f8

(i=195) 3f 32 c9 eb at 37 b2 92 to 2e a7 13 2d b9 7S Sc 52 S7 ed 9f
SS dl f2 24 90 f7 Sa Ac 07 IS 8f 68 Sa 9e 22 a7 77 bd S9 bf

(i=200) f8 7a f0 of bS 9c e0 7f 74 S1 cc be S3 c7 22 ec 9d fb dc e7
as 7e fd f9 29 eb 2d Se 69 04 47 b5 2a 86 64 c7 di 6c c4 a7

(1=201) fd 33 38 16 b9 b0 45 ad 61 bS 2f 21 Iced 30 99 fd 46 88d6
f2 d3 as 04 fe 84 21 31 bb 66 36 6d 77 26 4c 09 it c6 73 12

(1=202) c2 38 it Se e0 b4 59 12 8f a2 93 44 61 96 56 a7 as a6 cb 7a
el lb ff bl 09 59 ba 2S Be b8 98 Sc 2f 73 ec fl 33 e6 cd cl

(i=204) a9 a4 b6 63 99 fc 80 16 a3 07 cl 31 CS b9 bb SA dA b4 78 da
2c bf ee f9 Se 66 cS fa 27 ac 6b ae 91 62 a4 3e d3 ce of el

(i=205) df 8b 22 28 9e bS c8 3d a7 lb 26 Sf b2 Id de bS 79 da 86 87
8c 0a 92 e8 a6 Sb 72 AS fc 4S Sf 81 e3 c4 93 f6 20 6e 17 23

(1=206) 97 cl 09 94 63 ba 81 85 ce if 3a c4 e0 Aa 42 dS de 83 ac 95
39 6a dd 8c 95 a3 c7 b2 07 Ia f8 7S b6 16 is es d8 bb 97 Ab

(i=209) 25 96 e2 4c 99 at ed 4a d3 d8 82 eb e4 le a7 66 cb e7 cf fa
e2 90 eb 39 f5 ee 6b at 4f 6f as 80 Sb of e9 b8 2a Id 86 c3

(1=210) 68 le bi 2S 51 d7 d4 b6 98 dd 3b 33 Ab 22 bb 6b 19 d4 33 Id
47 39 11 47 a2 4e b6 45 3e b7 fa 2d 96 84 82 ac fd 6f e8 b2

(1=212) 79 dc 94 b3 20 bG Sc ec 7f 49 AA 38 c4 6a e2 6f 0d 39 61 Aa
ab Sc 76 f0 c8 Sc 63 as 89 Sb e9 7S eb 31 ad 81 96 63 bb 84

(1=214) 7e id as 71 03 3e Sb cS 37 7f e7 a4 89 6f 9b b7 34 3d 75 6f
d9 49 da 13 2d 05 89 b3 36 bb 34 19 da 79 e2 2e al 38 S4 18

(i=216) 6a 25 Aa b2 74 fc 3e 53 86 58 9f da 70 db 69 be ed 85 9c 73
ed ae 68 00 91 28 ee Sc Sc c9 e1 79 2S id dl 76 f6 es Sf cd

(i=218) 97 f8 f6 ba 79 3d of 11 e9 e6 6e b3 28 11 47 28 b2 $a 55 bb
14 b2 lc 65 bf IS 52 7f cl 72 07 87 d2 7d Ic la es 2d b4 7a

(1=219) 812S c9 a6 81 42 if 82 a7 c9 fc 82 Al c9 7d If le 4f Sc 74
Sc d9 20 79 24 43 3f e3 e4 d7 bG ad e0 2a 7c 6S 89 lc fc cf

(i=220) 65 Id f6 79 6d 4a is c3 18 87 df 10 d0 a2 3S 4S OS bb if 79
IS 21 47 7d 38 as 6d dO 48 fa 15S6 06 38 29 CS d4 cc eb 17

(i=227) 7a cd de da 84 cb 3c 99 1A b4 b2 fc d8 a7 76 b6 c3 9e ad 48
ee d9 7d 64 a4 6d 72 89 90 21 19 6a 6b 66 16 29 17 2S 94 3d

(i=228) is e2 Be c2 e5 e2 bd e0 e6 ac df cf c4 of 7b f7 34 Sc 99 d6
bd bZ 35 9a 8b d9 37 Be 49 69 40 6e if cb 44 16 Sb 48 f9 e6

(1=233) of 82 b9 d9 ca 58 d2 90 ce Ad f6 50 Ab as 73 24 07 48 98 db
fe 23 13 7d 19 as 10 46 7f SA ac 33 84 84 Sc 3d Sf Sc Se 14

(i=237) a3 89 47 6b 89 18 fd a7 b3 83 Ab 09 13 e6 Sa as 4e It 90 08
dl If fb 82 Sa 19 ce 29 Od if as eb ba 6b f8 02 64 IS a6 3b

(i=242) 9e 4e d8 9e 96 ec 94 3S 4S 42 ab 2b Aa cb as ba fe 66 it If
52 56 di 7a 87 ec ba 31 12 68 f6 a9 9d f9 c7 db Ic 4b ad 0

(1=243) 4b 49 9d 2f c9 f9 18 3c d3 d4 6a cb 35 e2 eS 30 13 b6 d9 86
69 d7 18 50 7f 19 ad id 1a 65 37 la Sb dc SS as f5 03 c3 Sc

(i=244) 20 f6 98 f4 Sa 2c 65 30 da 62 fc Sc dS Ad fc is 89 cb 89 68
ca ee 99 97 S5 11 ba f0 66 6d 3c Sb cc 9a 38 38 c4 dc 7b c4

(i=245) 9d cb 4S of If bd 38 3d ce 69 8a Ic 94 ad 27 2c 6e 41 9e I8
b2 4f b0 18 9c e7 b2 Id d9 59 44 60 Ad Ab f6 lb 52 ab S4 7c

(i=247) 77 11 c2 c4 cc b8 fd ce Al 76 7e 23 22 3f e6 cc 99 58 83 Be
c7 ff 98 79 b3 68 f9 13 dl 86 17 4c 15lA 37 Sc IA Be e2 4b

(i=248) 98 eb 88 41 at 6S f8 93 92 a9 Sb 17 29 cd 78 8b 39 83 9a 73
3d 14 48 61 14 7f 7a 3a a7 7e 44 if Al 18 3c cd 81 4c cS d9

(i=251) 18 c8 d6 62 7b ab 75 68 3f a4 50 as Sc da 6c 92 c7 1559 13
68 2b 2d 47 29 2f 62 9b be ff 8b is 19 45 of b9 89 51 66 4a

(1=252) 2b 48 b3 30 9c 85 bb eS 14 Si 4b 6d ed Ad 79 86 ce a3 eb d2
08 56 44 be 9f 44 12 83 if 16 Ac 3c cf 3d 3c Sc 7S S9 Ob Sb

(i=253) if Sb 33 Od 6a a6 95 2b 91 26 18 68 b2 9e ac 93 c2 as 79 64
c7 f6 6f d3 84 ba 27 33 07 77 23 bd 16 13 34 b9 48 45 13 99

(i=256) 6f 93 59 Al 7d 26 72 19 b2 as 3e eS 87 4b a7 58 53 dd 86 58
ce 84 Al 92 24 eS 3e 18 7d Sc d3 as 77 2a bS 00 le 3d 46 63

(i=258) 87 34 a9 39 a3 la 85 79 8f ce Sf bf cd ca 7c AS 4e a2 17 8b
db 79 08 20 b6 a4 de 43 94 71 49 ba 27 12 16 17 9f 84 16 Sb

154

§A. 2 Trace of a single execution of LASH-160

(i=262) 6f bb d4 ac bb bb d5 bi bS c2 72 3f as 96 9d df 94 1f ec 38
d6 3d 99 53 c3 98 es dl 26 30 e9 e5 3e f7 8c 2c 4f 6c 77 72

(i=265) 4a f0 14 94 42 e6 48 c9 56 12 as 65 9e a9 id be 62 40 c6 7e
53 12 46 4e 88 29 18 de la 37 77 77 id 97 b7 43 34 e2 8c 22

(1=270) b8 ea 54 £0 d6 cl 7d 09 3e 99 d5 d8 b6 4a 6d 14 88 34 d9 fe
30 e0 67 28 ce a6 ed 8b 15 fc 08 as 0a 8b be dl c6 al 2c 4d

(i=275) 5a df 3e 09 ce 2f 77 49 9a 2d b0 Od f6 32 f4 if fb 4c 7a 4e
68 06 Sb 3b 4e 83 bb ac of 42 85 7f b7 86 83 62 f9 ae 20 54

(i=276) d7 81 33 f3 e7 27 e5 43 da 89 44 e8 2b 72 dc a6 26 bf 92 of
b8 3e 81 2f 61 03 98 7a 10 lc cb fc 8c 33 7e 27 8a el 2d 48

(1=278) 66 f9 b0 95 dc 11 fe 3b 48 83 84 44 bf 4d 11 e6 0e 46 bd 62
d9 df dl 67 87 f7 ab fa ed ea ec d6 d2 b0 53 d4 85 a6 be 7b

(1=279) f4 28 28 12 7e 06 e8 54 40 f1 7e 84 lb el ec lb 4e 2e 44 8d
43 f7 72 b7 bf ld 9f Od 6d c7 ba f7 ac f6 d0 a9 32 al 83 0c

(1=281) ec d7 16 41 f6 83 8a 49 2a 0a 76 f2 15 21 48 of 29 63 84 75
ca 22 e5 cf 60 6d d7 33 61 da 3a d4 7a 17 as of of 76 30 07

(i=283) 63 13 0e £0 e4 b2 02 c6 cc ff 60 0b 0d 8f 42 of 85 f7 5f as
0a 0a 6c fa d3 85 78 83 99 00 2e e7 fa f4 78 10 89 be ad dc

(1=286) 24 12 15 67 20 as bl b4 fb 77 dd ad 02 79 5b e7 f3 fi 9f 06
9e e5 al 3a bb Oc a3 f6 bi al 7e if 20 e8 8b 90 66 8a ce b6

(i=287) 50 d3 14 6e 97 e6 a9 63 e9 a6 55 2a a4 6e 45 00 eb 5f 99 46
fa 79 7c 6f fb f4 2a 21 24 b9 if 6f 58 0e 7f a3 e6 67 9c d7

(1=288) ba ff d5 6d 9e Sd e5 5b 98 94 84 a2 21 10 3a ea 04 57 07 49
3a d5 10 4a 39 34 12 a8 4f 2c 37 10 a8 46 a5 97 f9 e7 79 a5

(1=292) ce 2e aS 52 08 89 a6 5a 9f Ob Co 9a d0 fe 69 62 81 f9 fc 2a
53 cd 7e 44 70 90 a6 83 84 6c if 97 d3 b9 bd 38 49 119199

(12293) b9 42 d4 22 ed f3 d2 lb 9e 12 37 d6 c8 ad 57 91 f9 76 9e if
3d e6 76 b2 6a d0 92 17 Sf al 5f 7f Sa e4 30 50 ea 6f d7 bf

(1=294) e6 2d e8 51 bd d8 3c 47 Sf 11 3e 4d 04 as 96 7f 28 ee lb cl
32 d0 8f as d8 ca 42 73 f3 7c 94 bf 42 6b Sb c3 02 10 27 f7

(1=295) 00 Sa d3 65 ec a8 21 bi 8b d2 3d 54 7b e1 fe 2e 16 id 93 3e
d4 cS 79 c3 d0 38 3c b3 4f 10 6f f4 82 53 e2 ee 75 28 c8 47

(1=297) c6 3d ed 92 d7 be 50 81 70 3c 69 15 7a e8 75 6a 0e cc 81 6d
4c 42 lb b8 ba 51 34 21 49 50 cb 88 5d 88 22 d6 fc 53 3b 5f

(1=300) bl a5 97 58 ba d6 7d 6c 84 6b 39 fa e4 14 36 69 15 43 bd 65
fb 30 4a 30 37 f3 29 Ob 62 48 39 82 9d e4 b6 bl 31 93 23 e6

(1=302) de e4 82 Co 64 9c 60 86 bi 56 4d 29 b4 £9 a0 95 d6 42 c4 dc
37 28 f9 le 66 6b a6 ad 57 32 52 7a Ob de f6 Od CS 6e 58 26

(1=303) 0e 11 cl ab cc 46 26 69 cb 83 38 3d e3 c9 85 ff 02 03 c3 e3
at 64 fl cd 54 9a le 2a f9 27 3c 93 03 4c 10 4d 21 02 33 Sb

(1=304) 83 41 ee ea b7 ae d0 2f ae 9d 65 28 f7 f8 55 e4 6c 2f 84 e2
bS db 2d cS 03 88 4d a2 76 c9 31 7d lc 44 Se 47 61 5e c7 36

(1=310) 9f 30 10 3f d2 c4 45 Sf db dc 50 90 al be 38 fe 99 la 98 11
85 Co 97 f1 c4 87 54 19 b2 cl e0 6b 4b be db e9 56 48 e0 2e

(1=318) c3 of ab 35 27 e3 e6 a7 f7 cb 52 e5 be d4 ad 2e c6 59 83 79
2f 86 7a 0b 11 72 68 48 82 a6 4a 97 0c bb e2 60 92 40 8f 1c

(12319) be 13 6a £0 Id 38 05 48 3f e7 41 e7 11 of c3 a3 16 86 c2 64
97 30 40 ee 0b 9f 53 Sc bi 76 2f 01 38 7c el 67 09 7c 87 cb

(1=323) Cl 76 f7 00 18 Sc c4 03 35 3c 60 88 59 Ob b2 as 4b al d8 d9
c7 Sd 71 d9 73 49 19 3f cb a3 la 15 67 4c c6 dl 35 3d 86 d2

(i=324) 6f if 5a 8d 28 57 e8 c2 10 32 b5 a7 fa 53 ce 94 4d f6 f3 of
3c 8d ac 18 Se bl c3 05 ae bd 47 00 7b 7b 96 b6 9f 69 47 dl

Final hash function result:

Hash: 67 S8 25 ec f3 ba f5 c9 4f fe 38 al Sb c0 ab 40 77 9b 96 4d

155

Appendices

156

Bibliography

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. In 28th ACM
Symposium on Theory of Computing, pages 99-108,1996.

[Al-92] I. A. Al-Kadi. Origins of cryptology: The arab contributions. Cryptologia,
16(2): 97-126,1992.

[ANS99] ANSI. X9.62 - public key cryptography for the financial services indus-
try: The elliptic curve digital signature algorithm (ECDSA). Technical
report, ANSI -, 1999.

[ARS78] L. Adleman, R. L. Rivest, and A. Shamir. A method for obtaining digital
signature and public-key cryptosystems. Communication of the ACM,
21(2): 120-126,1978.

[Bab86] L. Babai. On loväsz lattice reduction and the nearest lattice point prob-
lem. Combinatoria, 6: 1-13,1986.

[BBB+98] C. Batut, K. Belabas, D. Benardi, H. Cohen, and M. Olivier. User's Guide
to PARI-GP. By anonymous ftp from ftp : //megrez. math. u-bordeaux.
fr/pub/pari, 1998. See http: //pari. home. ml. org.

[BCJ*05] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby.
Collisions of SHA-0 and reduced SHA-1. In Springer-Verlag, LNCS
3494, pages 36-57,2005.

[Ben05a] K. Bentahar. The equivalence between the DHP and DLP for elliptic
curves used in practical applications, revisited. In N. P. Smart, editor,
Cryptography and Coding, LNCS 3796, pages 376-391. Springer-Verlag,
December 2005.

[Ben05b] K. Bentahar. The equivalence between the DHP and DLP for ellip-
tic curves used in practical applications, revisited. Cryptology ePrint
Archive, Report 2005/307,2005.

[BG04] D. R. L. Brown and R. P. Gallant. The static diffie-hellman problem. Cryp-
tology ePrint Archive, Report 2004/306,2004.

[BPS+06] K. Bentahar, D. Page, M. J. O. Saarinen, J. H. Silverman, and N. Smart.
LASH. In 2nd NIST Cryptographic Hash Workshop, 2006.

[BR94] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances
in Cryptology - EUROCRYPT '94, LNCS 950, pages 92-111. Springer-
Verlag, 1994.

157

BIBLIOGRAPHY

[BRS02] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In Advances
in Cryptology - CRYPTO 2002, LNCS 2442, pages 320-335. Springer-
Verlag, 2002.

[BS07] K. Bentahar and N. P. Smart. Efficient 15,360-bit RSA using woop-
optimised Montgomery arithmetic. In S. D. Galbraith, editor, Cryptogra-

phy and Coding, LNCS 4887, pages 346-363. Springer-Verlag, December
2007.

[BSS99] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography,
volume 265 of LMS Lecture Note Series. Cambridge University Press,
1999.

[BSSO4] I. F. Blake, G. Seroussi, and N. P. Smart. Advances in Elliptic Curve Cryp-
tography, volume 317 of LMS Lecture Note Series. Cambridge University
Press, 2004.

[BV98] D. Boneh and R Venkatesan. Breaking RSA may not be equivalent to
factoring. In Advances in Cryptology - EUROCRYPT 1998. Springer-
Verlag, 1998.

[CDMP05] J. -S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damgdrd
revisted: How to construct a hash function. In Advances in Cryptology

- CRYPTO 2005, LNCS 3621, pages 430-448. Springer-Verlag, 2005.

[CFA+06] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and
F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC Press, 2006.

[Che06] J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In
Advances in Cryptology - EIIROCRYPT 2006, LNCS 4004, pages 1-11.
Springer, 2006.

[CLRSO1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. McGraw-Hill, second edition, 2001.

[CLS05] S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an efficient and provable
collision resistant hash function. APR e-print 2005/193,2005.

[CMP+07] S. Contini, K. Matusiewicz, J. Pieprzyk, R. Steinfeld, J. Guo, S. Ling, and
H. Wang. Cryptanalysis of LASH. Cryptology ePrint Archive, Report
2007/430,2007.

[Coh93] H. Cohen. A Course In Computational Algebraic Number Theory. GTM
138. Springer-Verlag, 1993.

[CohO5] H. Cohen. Analysis of the sliding window powering algorithm. Journal
of Cryptology, 18(1): 63-76,2005.

[Coo06] S. Cook. The P versus NP problem. The Millennium Prize Problems, 2006.

[CS03] R. Cramer and V. Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal of Computing, 33: 167-226, August 2003.

158

BIBLIOGRAPHY

[Dam88] I. B. Damgärd. Collision free hash functions and public key signature
schemes. In Advances in Cryptology - EUROCRYPT 1987, LNCS 304,

pages 203-216. Springer-Verlag, 1988.

[Den] T. St Denis. LibTomCrypt: A portable ISO C cryptographic toolkit.
http: //libtomcrypt. org/.

[Den06] A. W. Dent. The hardness of the DHK problem in the generic group
model. Cryptology ePrint Archive, Report 2006/156,2006.

[DH761 W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 1T 22(6): 644-654,1976. citeseer.
ist. psu. edu/diffie76new. html.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.

[Dwo97] C. Dwork. Positive applications of lattices to cryptography. In 22nd
International Symposium on Mathematical Foundations of Computer Science,
LNCS 1295, pages 44-51. Springer-Verlag, 1997.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
secure under the RSA assumption. In Advances in Cryptology - CRYPTO
2001, LNCS 2139, pages 260-274. Springer-Verlag, 2001.

[FOPS04] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
secure under the RSA assumption. Journal of Cryptology, 17(2): 81-104,
2004.

[FS03] N. Ferguson and B. Schneier. Practical Cryptography. John Wiley & Sons,
Inc., New York, NY, USA, 2003.

[Gar07] Luis Carlos Coronado Garcia. Can Schönhage multiplication
speed up the RSA decryption or encryption? MoraviaCrypt,
2007. Preprint available from: http: //www. cdc. informatik.
tu-darmstadt. de/mitarbeiter/coronado. html.

[GAST05] J. Großschädl, R. M. Avanzi, E. Saval, and S. Tillich. Energy-efficient
software implementation of long integer modular arithmetic. In J. R.
Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems
= CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages
75-90. Springer-Verlag, 2005.

[Gau] D. Gaudet. SHA1 and SHA256 using SSE2. http : //www. arctic. org/
"dean/crypto/.

[Gay] 0. Gay. SHA-224, SHA-256, SHA-384andSHA-512. http: //www. ouah.
org/ogay/shat/.

[GGH96] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from
lattice problems. In Electronic Colloquium on Computational Complexity
TR96-042,1996.

[GGOQ98] H. Gilbert, D. Gupta, A. Odlyzko, and J. J. Quisquater. Attacks on
Shamir's 'RSA for paranoids'. Information Processing Letters, 68(4): 197-
199,1998.

159

BIBLIOGRAPHY

[GolO4a] 0. Goldreich. Foundations of Cryptography, Volume I, volume 1. Cam-
bridge University Press, 2004.

[GolO4b] 0. Goldreich. Foundations of Cryptography, Volume II Basic Applications,
volume 2. Cambridge University Press, 2004.

[Gor98] D. M. Gordon. A survey of fast exponentiation methods. Journal of
Algorithms, 27(1): 129-146,1998.

[GraO7a] T. Granlund. GNU multiple precision arithmetic library 4.1.2. http:
//swox. com/gmp, 2007.

[GraO7b] T. Granlund. Instruction latencies and through put for amd and intel
x86 processors. http: //swox. com/doc/x86-timing. pdf, 2007.

[HarO5] L. Hars. Fast truncated multiplication for cryptographic applications.
In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2005: 7th International Workshop, Edinburgh, UK,, LNCS
3659, pages 211-225. Springer-Verlag, August 2005.

[Har07] L. Hars. Applications of fast truncated multiplication in cryptography.
EURASIP Journal on Embedded Systems, 2007: Artiele ID 61721,9 pages,
2007. doi: 10.1155/2007/61721.

[HMV03] D. Hankerson, A. Menezes, and S. Vanstonc. Guide to elliptic curve
cryptography. Springer-Verlag, 2003.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A new high speed
public key cryptosystem. In Algorithmic Number Theory - ANTS III,
LNCS 1423, pages 267-288. Springer-Verlag, 1998.

[IS096] ISO/IEC 10118-4. Information technology - security techniques - hash-
functions - part 4: Hash-functions using modular arithmetic. Draft,
1996.

[JK03] J. jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS)
#1: RSA cryptography specification version 2.1. Technical report, RFC
3447, February 2003.

[JouO4] A. Joux. Multicollisions in iterated hash functions. application to cas-
caded constructions. In Advances in Cryptology - CRYPTO 2004, LNCS
3152, pages 306-316. Springer-Verlag, 2004.

[Kah67] D. Kahn. The code breakers: the story of secret writing. New York MacMil-
lan, 1967.

[KAK96] C. K. Koc, T. Acar, and BS. Kaliski, Jr. Analyzing and comparing
Montgomery multiplication algorithms - assessing five algorithms
that speed up modular exponentiation, the most popular method of
encrypting and signing digital data. IEEE Micro, 16(3): 26-33,1996.

[Ker83] A. Kerkhoff. La cryptographie militaire - (2 papers). Journal des sciences
militaires, IX: 5-38, January 1883.

160

BIBLIOGRAPHY

[Knu98] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley Longman, Reading, Massachusetts,

third edition, 1998.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177): 203-209,1987.

[Koc94] C. K. Koc. High-speed RSA implementation. Technical Report TR201,
RSA Laboratories, 1994.

[KS05] J. Kelsey and B. Schneier. Second preimages on n -bit hash functions
for much less than 2" work. In Advances in Cryptology - EUROCRYPT
2005, LNCS 3495, pages 474-490. Springer-Verlag, 2005.

[LJ87] H. W. Lenstra Jr. Factoring integers with elliptic curves. The Annals of
Mathematics, 126(3): 649-673,1987.

[LLHO31 CA. Lei, C: B. Liu, and C: H. Huang. Design and implementation
of long-digit karatsuba's multiplication algorithm using tensor prod-
uct formulation. The Ninth Workshop on Compiler Techniques for High-
Performance Computing, pages 23-30,2003.

[LMPRO6] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably
secure FFT hashing. NIST 2nd Cryptographic Hash Function Workshop,
2006.

[LucO4] S. Lucks. Design principles for iterated hash functions. Cryptology
ePrint Archive, 2004/253,2004.

[MaoO4] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall, 2004.

[Mau94] U. M. Maurer. Towards the equivalence of breaking the diffie-hellman
protocol and computing discrete logarithms. In Advances in Cryptology

- CRYPTO 1994, LNCS 839, pages 271-281,1994.

[Mer90] R. C. Merkte. A fast software one-way hash function. Journal of Cryptol-
ogy, 3: 43-58,1990.

[MG02] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryp-
tographic perspective, volume 671 of The Kluwer International Series in En-
gineering and Computer Science. Kluwer Academic Publishers, Boston,
Massachusetts, March 2002.

[Mic01] D. Micciancio. The shortest vector problem is NP-hard to approximate
to within some constant. SIAM journal on Computing, 30(6): 2008-2035,
March 2001. Preliminary version in FOCS 1998.

[Mi186] V. S. Miller. Use of elliptic curves in cryptography. Advances in cryptology
- CRYPTO 85, pages 417-426,1986.

IMMA971 M. Mrayati, Y. Meer Alam, and H. Al-Tayyan. Origins of Arab Cryptog-
raphy and Cryptanalysis. Arab Academy of Damascus, 1st vol. 1987,2nd
vol. 1997.

161

BIBLIOGRAPHY

[M0190] S. Miyaguchi, K. Ohta, and M. Iwata. 128-bit hash function (N-hash).
NTT Review, 2(6): 128-132,1990.

[Mon85] P. L. Montgomery. Modular multiplication without trail division. Math-
ematics of Computation, 44(170), 1985.

[MOV97] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook Of Applied
Cryptography. CRC Press, 1997.

[MS01] A. May and J. H. Silverman. Dimension reduction methods for convo-
lution modular lattices. In Cryptography and Lattices Conference - CaLC
2001, LNCS 2146, pages 110-125. Springer-Verlag, 2001.

[MSV04] A. Muzereau, N. P. Smart, and F. Vercauteren. The equivalence between
the DHP and DLP for elliptic curves used in practical applications. LMS
1. Comput. Math., 7: 50-72,2004.

[Mu197] T. Mulders. On computing short products. Technical Report 276, Dept
of CS, ETH Zurich, November 1997. ftp: //ftp. inf. ethz. ch/pub/
publications/tech-reports/2xx/276. pdf.

[MW96a] U. M. Maurer and S. Wolf. Diffie-hellman oracles. In Advances in Cryp-
tology - CRYPTO 1996, LNCS 1109,1996.

[MW96b] U. M. Maurer and S. Wolf. On the difficulty of breaking the DH protocol.
Technical report, Department of Computer Science, ETH Zurich, 1996.

[MW99] U. M. Maurer and S. Wolf. The relationship between breaking the diffie-
hellman protocol and computing discrete logarithms. SIAM Journal on
Computing, 28: 1689-1721,1999.

[MWOO] U. M. Maurer and S. Wolf. The diffie-hellman protocol. In Designs, Codes,
and Cryptography, volume 19, pages 147-171,2000.

[Nat06] National Institute of Standards and Technology (NIST). Recommen-
dation for key management - part 1: General. Technical Report NIST
Special Publication 800-57, National Institute of Standards and Tech-
nology, May 2006. http: //csrc. nist. gov/publications/nistpubs/
8@O-57/SP800-57-Part1. pdf.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55: 165-172,1994.

[NISOO] NIST. FIPS 186.2 digital signature standard (DSS). Technical report,
NIST, 2000.

[OK63] Y. Ofman and A. Karatsuba. Multiplication of multidigit numbers on
automata. Soviet Physics - Doklady, 7: 595-596,1963.

[OW99] P. C. van Oorschot and M. Wiener. Parallel collision search with crypt-
analytic applications. Journal of Cryptology, 12: 1-28,1999.

[Pag07] D. Page. Embedded implementation of LASH. Technical Report CSTR-
07-003, University of Bristol, 2007.

162

BIBLIOGRAPHY

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[PGO5] D. S. Phatak and T. Goff. Fast modular reduction for large wordlengths
via one linear and one cyclic convolution. In Computer Arithmetic, 2005.
ARITH-17 2005.17th IEEE Symposium, pages 179-186, June 2005.

[PGO6] D. S. Phatak and T. Goff. Low complexity algorithms for fast modular
reduction: New results and a unified framework. Technical report,
Computer Science and Electrical Engineering Department. University
of Maryland, Baltimore County, Baltimore, MD 21250,2006.

[Pin97] R. Pinch. Mathematics for Cryptography. Lecture notes for the University
of Cambridge. University of Cambridge, 1997.

[Pre93] B. Preneel. Analysis and design of cryptographic hash functions. PhD
Thesis, KU Leuven, 1993.

[RSA77] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtain-
ing digital signatures and public-key cryptosystems. Technical Report
MIT/LCSJTM-82, MIT, 1977.

[Sch85] R. Schoof. Elliptic curves over finite fields and the computation of
square roots modp. Math. Comp., 44: 483-494,1985.

[Sch96] B. Schneir. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, 2 edition, 1996.

[Sco96] M. P. Scott. Comparison of methods for modular exponentiation on
32-bit intel 80x86 processors. Draft available for download from ftp :
//ftp. computing. dcu. ie/pub/crypto/timings. ps, 1996.

[SE91] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practi-
cal algorithms and solving subset sum problems. Fundamentals of Com-
putation Theory: 8th International Conference, FCT'91, Gosen, Germany,
September 9-13,1991: Proceedings, 1991.

[SECOO] SECG. SEC2: Recommended elliptic curve domain parameters. Tech-
nical report, SECG, 2000. http : //www. se cg . org.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical journal, 1948.

[Sha95] A. Shamir. RSA for paranoids. CryptoBytes, 1(3): 1-4,1995.
[Sha01] C. E. Shannon. A mathematical theory of communication. SIGMOBILE

Mob. Comput. Commun. Rev., 5(1): 3-55,2001.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology - ELIROCRYPT '97, volume 1233 of Lecture
Notes in Computer Science, pages 256-266. Springer-Verlag, 1997.

[Sho06] V. Shoup. NTL: A library for doing number theory, 2006.

[Si1861 J. H. Silverman. The Arithmetic of Elliptic Curves. Springer, 1986.
[Sil92] J. H. Silverman. Rational Points on Elliptic Curves. Springer, 1992.

163

BIBLIOGRAPHY

[SipO5] M. Sipser. Introduction to the Theory of Computation. International Thomp-
son Publishing Inc., second edition, 2005.

[Sma0l] N. Smart. The exact security of ECIES in the generic group model.
Cryptography and Coding, 2001.

[Sma02] N. P. Smart. Cryptography: An Introduction. McGraw-Hill Education,
2002. Second edition is freely available online http: //www. cs. bris.
ac. uk/-nigel/Crypto-Book/.

[SS81] R. Schroeppel and A. Shamir. AT= 0(2f/2), S= O(2nI4) algorithm for
certain NP-complete problems. SIAM Journal on Computing, 10(3): 456-
464,1981.

[Sti06] D. R. Stinson. Cryptography, Theory and Practice. Discrete Mathematics
and its Applications. Chapman & Hall/CRC, 3 edition, 2006.

[Tes98] E. E. Teske. Speeding Up Pollard's Rho Method for Computing Discrete
Logarithms. Springer, 1998.

[Tes0l] E. E. Teske. On random walks for Pollard's Rho method. Mathematics of
Computation, 70(234): 809-825,2001.

[Wag02] D. Wagner. A generalized birthday problem. In Advances in Cryptology

- CRYPTO 2002, LNCS 2442, pages 288-303. Springer-Verlag, 2002.

[Wat69] W. C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. Ecole
Norm. Sup., 2: 521-560,1969.

[WLF+05] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash
functions MD4 and RIPEMD. In Advances in Cryptology - EUROCRYPT
2005, LNCS 3494, pages 1-18. Springer-Verlag, 2005.

[WY05] X. Wang and H. Yu. How to break MD5 and other hash functions. In
Advances in Cryptology - EUROCRYPT 2005, LNCS 3494, pages 19-35.
Springer-Verlag, 2005.

[WYYO5] X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0.
In Advances in Cryptology - CRYPTO 2005. Springer-Verlag, 2005.

[XW05] H. Yu X. Wang, Y. Yin. Finding collisions in the full SHA-1. In Advances
in Cryptology - CRYPTO 2005. Springer-Verlag, 2005.

[Zur94] D. Zuras. More on squaring and multiplying large integers. IEEE
Transactions on Computers, 43(8): 899-908, August 1994.

164

Index

0,15

addition chains, 117
AES, 34,81
affine coordinate system, 45

asymmetric cryptography, 28

Baby-Step Giant-Step, 19
binary vector, 83
birthday paradox, 91

generalised birthday, 91,141
generalised birthday paradox, 101

block ciphers, 6
Blum-Blum-Shub, 51
BSGS, 19

ciphertext space, 28
circulant matrix, 96,106,107
Closest Vector Problem, see CVP
complex multiplication, 47
complexity class

DPP, 13
P, 13
RP, 14
ZPP, 14
co-RP, 14
NP, 14

composite number, 8
convolution, 142

cyclic, 145
negacyclic, 145

coprime numbers, 8
cryptanalysis

differential, 100
linear, 100

cryptosystem, 28
CVP, 26,105,113
cycles, 91

decryption, 28
DH-inversion oracle, 117
DH-oracle, 118
differential cryptanalysis, 6

Diffie-Hellman Problem, 118
Discrete Logarithm Problem, 118
DL-oracle, 119

ECC, 10,34,47,115,116
Elliptic-Curve Cryptography, 10
encryption, 28
Euclidean norm, 25
exact sequence, 89
exponentiation

k-ary, 49
binary, 48
fixed window, 49
on elliptic curves, 124
sliding window, 76

field, 10
binary field, 10
characteristic, 10
prime field, 10

Fröbenius trace, 12

Gaussian heuristic, 88,105
GCC, 110
generic algorithm, 17
GMP, 33,52,57,59,70,76,77,145
group, 9

hard problems
closest vectors in lattices, 26
Diffie-Hellman problem, 21
discrete logarithm problem, 17
factoring integers, 23
Rabin problem, 23
RSA problem, 23
shortest vectors in lattices, 25
static DHP, 140
subset sum, 24

hash functions, 29
2"d pre-image resistance, 30
collision resistance, 30
CRHF, 30
length, 29

165

pt I ýi

one way function, 30
OWHF, 30
PRF, 30
pseudo-randomness, 30

Hasse theorem, 12
Homer form, 48

implicit representation, 117
index calculus, 21

KEM/DEM, 29

lattice, 24
line-and-chord rule, 11

monoid, 9

NTL, 52,83,89

one-way function, 28

plaintext space, 28
Pohlig-Hellman reduction, 18
point at infinity, 10
point counting, 46
projective coordinates, 45,115,117,

122,124
Provable Security, 7
public key cryptography, 6

rational points, 12
ring, 10
rotor machine, 5

short exact sequence, 89
Shortest Vector Problem, see SVP
SIMD, 108,110
sliding window, 76
Smith Normal Form, 90
Static Diffie-Hellman Problem, 140
string, 13

subset sum problem, 24
SVP, 25,84,105,106,113
symmetric cryptography, 28

ternary vector, 84
test vectors, 110
trapdoor one-way function, 29
Turing machine, 13

166

Epilogue

I end with the following verses from the ending of a long "scientific" poem written
by ý JI ag-94fibi on The Quran I ICI-' II v33 l,: yl '" 1173

verses). These verses include thanking God for easing the completion of an elegant
work, praying for forgiveness for any mistakes or errors, and sending prayers
upon the prophet Muhammad and his companions. I then finish with two prayers,
that the prophet Muhammad - may peace and blessings be upon him - taught
us, exalting God (Allah) and asking Him for forgiveness and mercy and bearing
witness that there is no deity (worthy of worship) but Him - May Allah accept.

1611öSy
, X, . ý. iJý ä. ä11 9

-

,.
11b. ß -". ý... ' as. `v

».
IJ

-" iJ
,

LS -5 -5
6 0,016

M. 51
,

vý. -�i L4 j v? v1 ;

0
yl. 'J1X15l., X11u s-ýt

-

' "Ji3 fJJ sL'`'' . ̀ý

WNr

u cl
&A.

L5-91-. 16i

ýs
IJ

jt° ý'
9 Ju_

,.
4.. ä11 ö9

J -.. s
-

LL ,, ý; '
167

vý° ý. ý°ý' c. ý ýý'
ý:,:;

IyI`, ý, ý1 I ýo :ý yý "`l,!! ý
ý,,,

ý,; ý,,,;). b ýý X11 ý

. _jIj !&

ýi II" 40
II/""

"" l

LMEP
OF BMSTOL 1 168

UORARY

E3 GrnE R)bip

