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Abstract 

The issue of efficiency is a crucial factor in the field of Cryptology. Be it a crypto- 
graphic protocol, a cryptanalytic attack or a proof of security - they all have to be 

efficient. This thesis is concerned with this issue in the context of Cryptography, i. e. 
providing security, as opposed to Cryptanalysis. Two model cases are considered 
in this thesis: 

O The first of which can be referred to as efficient practical realisation of primitives, 
where we study two concrete problems: 

" The RSA modular arithmetic at high security parameters. We deal 
with the recent recommendation by NIST of increasing key sizes from 
the currently used range 1,024-4,096 bits to around 15,360 bits. The 
traditional methods are too slow for these operand sizes, and hence 
there is a pressing need to explore and develop newer methods. A range 
of possibilities are suggested and analysed in detail, and the theoretical 
results are further tested and confirmed with an implementation. 

" LASH: Lattice based hash function. We investigate an old idea for a 
secure hash function based on lattices. We show that this latter hash 
function proposal is not secure if instantiated with concrete parameters, 
despite it being asymptotically secure. We propose a practical modification 
which is efficient, resists the known attacks, yet is not provably secure. 

© The second case that we will study is efficiency in theoretical arguments, where 
we concern ourselves with the establishment of a tight proof of equivalence 
of the Discrete Logarithm Problem (DLP) and Diffie-Hellman Problem (DHP) 
by employing optimised algorithms in the reduction proposed by Maurer. We 
consequently conclude lower bounds for the computational complexity of the 
DHP (Assuming the generic exponential complexity of the DLP for elliptic 
curves). 
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Chapter 1 

Introduction 

. tai al-hayt bwadhnrh" 

- "The wall has ears. " Algerian saying referring to eavesdroppers. 

Mainly used to protect state secrets for the past few thousand years, cryptog- 

raphy has always been regarded as the obscure and crafty twin of communication. 

This view dramatically changed at the end of the last century with the advent of 

digital computers and large-scale open networks. This shift in technology and 

change in scope has allowed cryptography to gain extensive grounds and, in fact, it 

is now part of most people's daily life - from businessmen managing their business 

to the citizens using their computers, bank cards and their mobile phones or digital 

media players. 

Historically, cryptography has been more of a black art than a science, with 

which one can grant friends access to private and confidential information while 

denying it to foes. Over the many centuries of its development, cryptography 

gradually became the study of mathematical techniques that may aid in achieving a 

number of information security goals which stem from actual needs and experience. 

These include confidentiality and authentication as the prime goals, because the former 

insures that data is intelligible to the desired parties only and thus guarantees secrecy. 

The latter goal, which includes data integrity, prevents anyone from pretending to 

be a legitimate party, and allows for the detection of any modification, insertion or 

deletion of messages while transported. 

1 



Introduction 

There is however another type of need which is less abstract but has always been 

a main concern in any design of cryptosystems or any reasoning about security, and 

that is efficiency. For the early civilisations, it was very important for the scribes 

to be able to encrypt and decrypt messages in reasonable time - either mentally 

or using simple tools available at the time. With the advancement of technology 

and science, better devices were built and more complex techniques were devised 

and deployed, as the older ones got discovered and broken. The persistent search 

for perfect cryptography has kept great minds from many civilisation busy trying 

to invent simple yet secure techniques, and even today we are still pursuing this 

dream taking speed and storage requirements as the second most important design 

criteria after security. 

In this thesis, we focus on the issue of providing cryptographic products in a 

form that allows them to be used efficiently, especially with respect to execution 

time. Products here should not only be taken to mean commercial products but 

also intellectual products that have earned academic merit. We study a few sample 

cases that stretch from implementation to design of cryptographic primitives to the- 

oretically arguing about the complexity of computational cryptographic problems, 

and hence their level of security. 

This introductory chapter will review a few background topics of general interest 

to cryptography. We will then spend two chapters preparing specific material 

needed for the work presented in the subsequent chapters. The next three chapters 

will contain the actual contribution of this thesis, summarising the results of the 

work done in the course of my PhD research. This then naturally leads us to the 

final conclusion and open research topics chapter. A more detailed overview of the 

structure of this thesis is given at the end of this chapter on page 35. 

We will start by giving a quick sketch of the historical development of cryptology. 
There are certainly missing pieces from the jigsaw as knowledge about ciphers used 
to be kept secret and only known in limited circles as part of making the whole 

system harder to crack - hence the difficulty of tracing the exact course of progress. 

2 



§1.1 Brief history 

1.1 Brief history 

A good reference and a joyful book on the history of cryptology is David Kahn's The 

Code Codebreakers [Kah67]. For modern cryptography, one may consult the Handbook 

of Applied Cryptography [MOV97], Applied Cryptography [Sch96] or Mathematics for 

Cryptography [Pin97]. 

The historical development of cryptology has been shaped by numerous factors, 

but the military is undoubtedly the main one. The other factors are not much less 

important however. Language morphology and writing systems, for example, have 

played a prime role in pre 20th century cryptologic techniques. Furthermore, the 

cryptographic techniques that can be used at any point in time depend directly 

on the authoring and communication technological means available, and that is 

why whenever there is a breakthrough in these aspects there is usually another in 

cryptology. 

Cryptography, as a tool, is very old and dates back to as long ago as human- 

ity can remember. Auguste Kerckhoff comments on this in his historic paper La 

Cryptographie Militaire [Ker83] by saying 

La Cryptographie ou l'Art de chiffrer est une science vieille comme 
le monde ; confondue ä son origine avec la telegraphie militaire, eile a 
ete cultivee, des la plus haute antiquite, par les Chinois, les Perses, les 
Carthaginois ; eile a ete enseignee dans les ecoles tactiques de la Grece, 
et tenue en haute estime par les plus illustres generaux romains. 

With regards to the earliest known methods of encryption, blinding or obscuring 

information to counter eavesdroppers and keep it private, has been in common use 

since, at least, the time of the ancient Egyptians. The methods used were mainly 

variations of script, transposition of characters or mono-alphabetic substitution 

combined with clever alterations and shorthands, sometimes with the use of special 

ink (Steganography). These were the prevalent techniques from about 1900 B. C., 

and likely even before, to the eighth century; on the Nile river banks, in China, India, 

Mesopotamia (Persia), Carthage, Greece and Rome. The Hebrews, for example, 

had standard shift substitution ciphers which they called Vi:; rllý atbag, albam 

and 1=1N atbah, the Spartans (-475 B. C. ) used a device called a skytale for a 

3 



Introduction 

transposition cipher, Artha-astra (321-300 B. C. ) from India wrote Kantalya where 

he speaks about what can be regarded as a substitution cipher, Herodotus mentions 

some steganographic techniques in his Histories and the greek Aeneas the Tactician 

wrote the first known text in history on the topic of information security titled On 

the defence of fortified places. 

Essentially, the early techniques achieved security through obscurity, i. e. by mak- 

ing it hard for the eavesdropper to know how the message was enciphered and 

hence, as was believed at the time, making it practically impossible to guess the 

used method or the original message. For example, the Romans used the Caesar 

Cipher which amounts to merely shifting the letters of the alphabet by three posi- 

tions! One would have thought that these ancient civilisations must have had some 

interest in developing better methods but, as far as we know, none of them did. The 

methods known then seemed good enough because of the lack of literacy and also, 

as it seems, because no-one knew how to break them or no one tried. Furthermore, 

the fact that encryption and decryption methods were kept secret helped. 

The eighth century saw the beginning of the Muslim era, with which came a 

fresh interest in spreading literacy and developing all kinds of disciplines. Amidst 

the contributions made during this era are works on the foundation of Cryptology 

laid out through a systematic study and classification of the different types of ciphers 

known then, and also through studying and devising generic techniques to crypt- 

analyse them, [Kah67, p. 71-93]. As a manifestation of this period's influence, the 

word cipher, for example, derives from the Arabic word for zero: -,!. a sift, [A1-92]. 

One factor that encouraged the development of Cryptanalysis in this age was the 

intense activity of book translation, where they sometimes had to decipher en- 

coded books from previous civilisations that tried to keep its knowledge secret by 

enciphering its books (e. g. Alchemy books), [MMA97]. Prominent cryptographers 

from this era include L, ;eI J-41 I al-hair! bnu ahmad al farährdr, ul.. v, l 

ibnu kaysan, 
Jk. 

II jI ibnu wahgiyyah al-nnbtr, Jt.. .. Jt L 'I Sabi h4tim 

as-siiistäni, but the one who excelled and is awarded the title "Father of Cryptol- 

ogy" is 5A SJI v yý:: yaqub al-kinde (c. 801-873) for his work on cryptanalysis: 

4 



§1.1 Brief history 

"I CI 11 : Jl. sj risälatunt 'stihrä§i '1-muamma" (Literally: A discourse on 10, 

the extraction of the blinded) where he introduced, among other techniques, several 

statistical analysis techniques for cryptanalysis. 

This interest then faded away for a while until the Mongols' attacks and the 

Crusades in the 13th and 14th century, when cryptographers were needed again. 

Figures of this second period include SI ibnu dunaynTr, vyý, c I ibnu 

adlan, JýJI I ibnu 'd-durayhim, [MMA97]. Development then attenuated with 

the decline of the Arabs but, fortunately, their effort was not wasted and was 

rediscovered in Europe at the end of the 15th and beginning of the 16th century 

during the European Renaissance. 

With this rise of Europe, some new and better ciphers were developed and 

more cryptanalytic techniques were made popular. Cryptography then started 

enjoying a more mathematical treatment and gradually became demystified. The 

most influential cryptographer of this period was the Italian Leone Battista Alberti 

(1404-1472), who earned the title "Father of Cryptology in the West. " He wrote De 

componendis cifris and created a poly-alphabetic cipher which is now called after 

him (Alberti Cipher). Other talented cryptographers of the time were: Johannes 

Trithemius in Germany (Steganographia, 1499 Pub. 1606), Giovan Batista Belaso (La 

cifra del. Sig., 1553), Giambattista della Porta in Italy (De Furtivis Literarum Notis, 

1563), Girolamo Cardano (Cardan grille, 1550) and Blaise de Vigenere (Traict6 de 

Chiffres, 1585), to whom we mis-attribute the poly-alphabetic substitution known 

as the Vigenere cipher originally described by Belaso (1553). 

Cryptography had to wait until the 20th century when it played an indispens- 

able role in the two World Wars. It has since enjoyed considerable growth and 

has become a powerful and profound theoretical and applied discipline. Its de- 

velopment still continues to our day and at a very fast pace, both theoretically 

and technologically to meet the practical needs and the ever increasing challenges. 

One new technical advancement in the period of the wars that is worthy of notice 

is the rotor machine - an electro-mechanical device which mainly consists of a set 

of rotating disks, called rotors. The rotors bear some electrical contacts allowing 

each of them to act like a substitution cipher. When operating, these rotors may 
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Introduction 

advance positions after each encryption of a new symbol. The whole set of rotors 

is configured such that the resulting poly-alphabetic substitution is of the largest 

period possible. The historical German Enigma and Japanese PURPLE machines 

were based on this technique; and while these machines are no longer good enough 

for today's security requirements, the principle behind them still lives in the design 

of block (and stream) ciphers. 

On the foundational side of cryptography, Claude Shannon studied and wrote 

about the mathematical theory of secrecy in the early 40s but his work was kept 

secret and was not published until the end of the second world war [Sha48, Sha0l]. 

His paper A mathematical theory of communication [Sha48] introduced the concept of 

perfect secrecy and gave a useful measure of the amount of information contained 

in a message. Shannon then showed that the amount of information that can be 

perfectly secured is no more than that present in the key. That is to say that the ideal 

encryption method is to encrypt the message with a truly random key containing 

at least as much entropy as the message to be encrypted. This method is nowadays 

commonly known as the one-time pad, a method due to Gilbert Vernam (1917). The 

encryption operation in this case is usually bitwise XOR of the message and the key. 

Numerous ciphers were invented and deployed in the last century but very few 

survived the attacks of the many skilled cryptanalysts. Among these ciphers are the 

widely used successors of rotor machines: block ciphers, which are mainly a result of 

Horst Feistel's work at IBM in the early 70s. Well known examples of these are the 

infamous Data Encryption Standard (DES) and its successor the Advanced Encryption 

Standard (AES). With these advancements in encryption techniques, other advanced 

cryptanalytic techniques were developed too. In particular, the well celebrated 

discovery of differential cryptanalysis had a great impact on block ciphers and still 

plays a very important role in symmetric cryptography. 

The major milestone and turning point in the history of Cryptology as a whole is 

the invention of Public-Key Cryptography. It all started with Diffie and Hellman's 

paper New Directions in Cryptography [DH76], published in 1976, which motivated 

the interplay between the theories of communication and computation, and ad- 
dressed "the need for new types of cryptographic systems, which minimize the 
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need for secure key distribution channels and supply the equivalent of a written 

signature, " [DH76]. This idea was a long awaited feat that changed how we study 

cryptography and a genuine fulfilment of Kerckhoff's principle, which states that 

the security of an encryption scheme should only depend on the secrecy of the key, 

not on the description of encryption and decryption algorithms. 

1. Le systeme doit titre materiellement, sinon mathematiquement, 
indechiffrable; 2.11 faut qu'il n'exige pas le secret, et qu'il puisse sans 
inconvenient tomber entre les mains de 1'ennemi; 3. La clef doit pouvoir 
en titre communiquee et retenue sans le secours de notes ecrites, et We 
changee ou modifiee au gre des correspondants ; ... [Ker83]. 

In 1978, Rivest, Shamir and Adleman introduced the first practically feasible 

public-key cryptosystem called RSA in their paper A method for obtaining digital 

signature and public-key cryptosystems [ARS78]. The RSA algorithm was suggested 

since it is based on the hardness of factoring large numbers assumption. ElGamal 

introduced another practical public-key cryptosystem, in 1985, based on the belief 

that computing discrete logarithms (sometimes also called indices) in finite fields 

is difficult. Development in the whole field of Cryptology has since been very 

rapid and many schemes were later suggested and either were broken, inefficient 

or successfully stood up to the test of time and became adopted in standards. 

A relatively recent theoretical development is Provable Security, where one 

tries to argue that a probabilistic public-key scheme is immune to attacks from 

computationally-bounded adversaries. The proofs are almost all reductionist, in 

the sense that the results are of the type: If the adversary can systematically break 

the scheme, then an efficient algorithm to solve a related hard problem exists and 

can be constructed by using the adversary as an oracle. The hard problems are 

either computational or decisional problems that have withstood researchers' at- 
tacks, and have consequently come to be believed intractable (by polynomial time 

algorithms). Most of these problems come from the field of Computational Number 

Theory. The proof techniques themselves have undergone incredible development 

and an inexhaustible amount of new concepts and results have been introduced 

and thoroughly studied in the last decade and a half. 
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There were many other theoretical discoveries and developments during the last 

few decades, and the subject is still rapidly growing and maturing to become a more 

established science. A compendium of progress in the foundations of cryptography 

is Goldreich's two volume book Foundations of Cryptography [Go104a, Go104b], but 

the fact remains that most of the recent achievements are still in the research papers 

and has not been collected in book form yet. 

On a warning note, one must note that there are so many issues to take account 

of after seeing the "proof of security, " as it should be interpreted properly and not be 

given more value than it merits. Furthermore, there are many more practical issues 

that arise when a system is implemented in practice. For example, since current 

computational devices leak information about their inputs and intermediate stages 

then exploiting these leaks has lead to new attacks mainly based on the power 

consumption of cryptographic devices or their electromagnetic emission, in cases. 

This kind of attacks are referred to as Side Channel Attacks (SCA). 

1.2 Mathematical preliminaries 

Now we shall start reviewing some useful material to make the thesis self contained. 

We start here with some mathematical background then recall some notions from 

Complexity Theory in the next section and finish with some general concepts from 

cryptography. 

As usual, we denote by N the set of natural numbers {1,2,3,... ), and by Z the 

set of integers {..., -2, -1,0,1,2,3 .... ) and by ]R the set of real numbers. The greatest 

common divisor of two integers x and y, denoted by gcd(x, y), is the largest number 

that divides both of them; and if this divisor is equal to 1 then we say that they are 

coprime. A natural number n#1 is prime if all of its positive divisors are trivial, 

namely 1 and n itself. (Equivalently, the number of its distinct positive divisors is 

exactly 2. The first few prime numbers are 2,3,5,7,11,... ). If a non-zero integer is 

not a prime nor a unit (±1) then it is called composite, and it factors uniquely into a 

product of prime powers up to multiplication by units and reordering of the prime 

factors (The Fundamental Theorem of Arithmetic). 
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1.2.1 Abstract algebra 

The structures known as group, rings and fields are of prime importance in modern 

cryptography, and thus we will review them next. The second half of Chapter 2 is 

dedicated to (generic) algorithms in groups that we will use in subsequent chapters. 

Groups 

Recall that a monoid is a non-empty set G that is closed under an associative binary 

operation on the elements of G and is such that there exists a neutral element, which 

when multiplied with any elements yields the same element back. If every element 

of G also has an inverse, such that when multiplied together yield the neutral 

element, then G is called a group. If, furthermore, the operation is commutative 

then the group is said to be a commutative group or Abelian group. 

In the case where the set G is finite then we denote the number of its elements 

by IGI or #G and refer to it as its order; the group is then called a finite group. A group 

is cyclic in the special case where all the elements of G are powers of a fixed element 

gEG, called a generator of G. We then write G= (g) and say that G is generated by 

g. If a subset HCG contains the neutral element of G and is closed under the same 

operation and inversion then it is a group too and is called a subgroup of G. 

Several familiar group structures are met in practice among which are the addi- 

tive group Z/mZ of size m, for an integer mE 7L#o, tl, and the multiplicative group 

(Z/mZ)X of size to(m). Also, of special interest are the elliptic-curve groups over 

finite fields (described in 1.2.2). 

In most cryptographic applications, finite cyclic Abelian subgroups with an 

efficiently computable representation and group operation are used. For security con- 

siderations, the group order is usually either prime or has a small cofactor. Such 

groups are used because they usually come with a computationally hard problem, 

such as the the so called Discrete Logarithm Problem (DLP), described in subsec- 

tion 1.4.1, which can be used in designing practical provably secure cryptosystems. 
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Rings and (Finite) Fields 

Let R be a nonempty set with two binary operations: + and x. We say that R is a 

ring if it is an Abelian group with respect to + and a monoid with respect to X. If 

the x operation is commutative then we call Ra commutative ring. If every element 

in R has a multiplicative inverse then we call it afield. 

In cryptography, we are mainly interested infinite fields. These are denoted by 

Fq (or GF(q) for Galois Field) where q is either a prime p or a prime power q= p°. 

Furthermore, these are the only possibilities up to isomorphism. The prime p is 

called the field characteristic. If p=2 we call Fq = Fen a binary field of extension 

degree in, and if p>2 then we call Fp a prime field. We denote by 1q the algebraic 

completion of a finite field Fq. 

1.2.2 Elliptic curves 

Elliptic curves were first proposed for use in cryptography by Neal Koblitz [Kob87] 

and Victor Miller [Mi186], independently. This gave birth to Elliptic-Curve Cryp- 

tography (ECC), which enjoyed rapid growth and huge popularity in the follow- 

ing decades. ECC is now accepted as the efficient alternative to RSA and finite 

field discrete-logarithm-problem based schemes. Good reference books on ECC 

are [HMV03] and [CFA+06]. 

In this thesis, and in cryptography in general, we are only interested in the 

case of elliptic curves over a finite field K. In the case when K= Fq is a finite 

field of characteristic greater than 3, an elliptic curve E over Fq is the set of points 
(x, y) E Pq x iFq satisfying the Weierstrass equation 

y2 = x3 + ax + b, for some a, bE Fq satisfying 4a3 + 27b2 #0 (1.1) 

together with the point at infinity which we denote by 0. 

In the case of a binary field K= F2m, the curve equation takes one of the following 

two forms 

y2+xy=x3+axe+b for somea, bEF2m (1.2) 
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or 

y2 + cy = x3 + ax +b for some a, b, cE ]F2m and c#0. (1.3) 

The first equation gives rise to a non-supersingular curve while the second yields a 

supersingular curve. 

Group Structure of elliptic curves 

An elliptic curve E has a structure of an Abelian group with the point at infinity 

0 as its identity element. The addition operation is given by the line and chord 

rule, as illustrated in Figure 1.1. The exact formulae for addition are expressible 

algebraically as rational functions in the points' coordinates. 

Figure 1.1: Adding and doubling points on an elliptic curve over R. 

Let K have characteristic greater than 3, and let P1 = (x1, yi), P2 = (x2, y2) E E. 

Then, -P1 = (x, -yi) and if P2 # -Pr (otherwise Pi + P2 = 0) then P1 + P2 = (x3, Y3) 

where 
X3 = A2 - Xl - X2 

(1.4) 
Y3 = A(xi - x3) - YI 

where A is given by 

x2-xl if Pl * P2 
3+a 

2y1 
if PI = P2. 

Similar formulae can be derived for binary fields but we will not present them 

here because we will not need them in this thesis. The interested reader may find 

them in [BSS99]. 
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Note that the above given description of elliptic curves and the addition formu- 

lae are all given using the affine coordinate system. Some other coordinate systems 

and relevant algorithms will be discussed in Chapter 2. 

The set of points on E having coordinates in K itself (i. e. not in rC - K) together 

with the point 0 is denoted by E(K) and is known as the set of K-rational points. The 

set E(Fq) with the previously defined addition has an Abelian group structure of 

rank 1 or 2, and we have E(Fq) - C,,, ® C�2 where n2In1, n2! q -1 and C� is the cyclic 

group of order n, [Si186]. 

The size of E(Fq) is given by the Hasse theorem as 

#E(Fq) =q+1-t, (1.5) 

where t is the value of the Fröbenius trace and is bounded by Its 52 -ý-q. 
Waterhouse [Wat69] showed that if q is prime then there exists at least one elliptic 

curve for each possible trace value Itl 52 -ýq-. For the case where q= 21, this only 
holds for the odd values of t. Furthermore, Lenstra showed that the distribution 

of the orders is almost uniform for t5 -ýq-, [LJ87], which is in accordance with the 

Sato-Tate conjecture [Si192, p. 120] (or alternatively see [CFA*06, p. 605]). 

1.3 Complexity theory 

Complexity Theory studies the cost of computation as a function of the length of 
the input. The measured cost is mainly the computation time or the storage space, 
but could also be some other computational resource. The lower the cost is, the 

more efficient the computation is regarded. The theory of complexity is very rich 

and vast, but we will concisely summarise the relevant notions and results here. A 

more in-depth introduction to subject can be found in [Sip05, Pap94]. 

The usual cost analyses consider either the average case complexity or the worst case 

complexity, where the latter produces an absolute upper-bound on the machine's 

running time while the former estimates its running time on a random instance 

selected uniformly at random from the set of instances (or according to some other 
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relevant distribution). In cryptography, the average case complexity' tends to 

be more important as it guarantees a certain level of difficulty for the practically 

deployed instances. 

The set E= {0,1) is called the set of binary alphabet. A binary string is a 

sequence of bits (symbols from E). The set E" = {0,1}" is the set of binary strings 

of length exactly n bits, where the length or size of a bit string is the number of 

bits in it. The set of all binary strings (arbitrary but finite length) is denoted by 

E" = {0,1}" = Un o(0,1)". A language over E is a subset of V. 

A Turing machine (TM) is an idealised abstract model of binary computers con- 

sisting of an infinite memory tape that holds binary strings, a reading-writing head and 

a program that governs the head's movements on the tape and its reading and writ- 

ing actions. In this setup, the cost of computation for input of size n is the maximum 

number of head transitions (time complexity) or space used on the memory tape 

(space complexity). This is the natural measure used in Complexity Theory and is 

commonly referred to as the worst case complexity, in contrast to the average case 

complexity where the cost is averaged over all instances. 

We shall now explore some of the complexity classes of interest in Cryptology. 

We reiterate that all definitions in Complexity Theory assume the worst case cost for 

decision problems and that the cost is measured as a function of the input length, 

unless otherwise specified. The classification is with respect to whether a random 

decision problem can be correctly decided to be in a given language or not. 

The polynomial time complexity class P is the set of decision problems for which 

there exists a deterministic TM that decides whether an instance is in the language 

or not in a polynomial number of steps. 

The bounded-error probabilistic polynomial time complexity class BPP is the set of 

decision problems for which there exists a probabilistic TM that also has access to 

a string of random bits and correctly accepts or rejects with probability 1/2 +e for 

any e>0. A machine with this property is usually referred to as a two-sided Monte 

I Average complexity should cover almost all practical instances. The best case instances (with the 
cheapest cost to break) should be rare and hard to find or of no practical interest 
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Carlo Turing machine. Note that confidence can be increased by running the TM an 

odd number of times then taking the majority vote. 

If, in the definition of BPP, the TM correctly accepts with probability at least 

1/2 but always correctly rejects, then the TM is called a one-sided Monte Carlo Turing 

machine and the corresponding class is called random polynomial time RP. If the TM 

correctly rejects with probability at least 1/2 but always correctly accepts, then we 

call the corresponding class co-RP. 

The zero-error probabilistic polynomial time ZPP class is defined to be RPnco-RP, 

and its corresponding TM is called a Las Vegas Turing machine. Note that this class 

has a TM that always answers correctly but only has an estimated polynomial 

running time which does not necessarily mean a polynomial upper-bound on the 

running time. We hence have PC ZPP. 

For the next complexity class, we will need to introduce non-deterministic Turing 

machines (NDTMs). These are the same as the traditional TMs except that the head 

transition function is one-to-many, meaning that the NDTM makes all the possible 

next transitions in parallel. This can be thought of as making enough copies of the 

current TM then running each new TM with a different next transition, and so on. 

The non-deterministic polynomial time NPclass consists of the decisional problems 
that admit solution with a NDTM in polynomial time and which can be verified 

with a traditional TM in polynomial time too given an auxiliary string of length 

polynomial in the length of the problem (TM accepts on input of a decisional problem 

and an auxiliary string). It is conjectured by Cook that P* NP but this still stands 

unproven to this date, [Coo06]. 

A problem X is reducible to a problem Y if there exists a deterministic TM for 

X that can decide membership in X given oracle access to a TM for Y. Informally 

speaking, this reduction means that X is no harder than Y, and we write X: 5 Y. If, 

furthermore, Y is reducible to X then they are said to be polynomial-time equivalent. 

For a complexity class C, a decision problem is dubbed C-hard if every problem 
in C is reducible to it. If in addition this decision problem is itself in C then it is 

referred to as being C-complete. The intuition here is that C-complete problems are 
the hardest problems in C. (C is usually NP). 
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In this thesis, Turing Machines will be too abstract for our work, so we will use 

algorithms and study their complexity in a similar fashion to what was described 

here, as is the common practice. The randomised complexity classes will mainly 

appear in Chapter 6 while the other classes are general and affect all chapters. 

Asymptotic notation 

Due to the difficulty of estimating the exact cost of a given Turing machine, we 

usually content ourselves with a good approximation or an asymptotic formula for 

it. There is a well established set of tools and notation for this purpose, and stated 
here are some of the notation that we will be using. 

The most widely used notation is the big-Oh notation, where we write f= O(g) 

and mean that f grows no faster than g, asymptotically, to within an absolute con- 

stant multiple. More rigorously, it means that 3c, no E N: 0 <_ f (n) 
_< cg(n) Vn >_ no. 

The lesser used notation f= o(g) is used to indicate that f is not only asymptotically 
bounded by a multiple of g but that it is also asymptotically negligible compared 

to g, or more formally said Vc > 0,3no > 0: 0: 5 f (n) <_ cg(n) Vn >_ no. This small-Oh 

notation appears mainly as o(1) denoting a quantity which tends to zero as n --> oo. 

When giving lower bounds we write f= 0(g) if 3c, no EN: f (n) >_ cg(n) >_ 

0 Yn >_ no. This means that f grows asymptotically at least as fast as g, to within an 

absolute constant multiple. To give the exact order of a function f we write f= e(g) 

when 3cl, c2, no r= N: cig(n) <f (n) < c2g(n) Vn >_ no. We summarise these below 

f= O(g) b 3c, no EN: 0 <_ f (n) <_ cg(n) Nn >_ no. 
f= c(g) Vc > 0,3no > 0: 0 <_ f (n) <_ cg(n) Vn >_ no. 
f= Q(g) 3c, no EN: f (n) >_ cg(n) >_ 0 do >_ no. 
f= 0(g) b 3ci, c2, no E N: clg(n) 5f (n) : 5c2g(n) �In >_ no. 

One useful function that frequently appears in practical complexity analysis 

of sub-exponential algorithms is the so-called L function: For constants c>0 and 

aE [0,1], define (e = 2.71828... is the base of the natural logarithm) 

e(c+o(1))"(log n)a (log 1og n)1-a 
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Note that when a=0 we get a polynomial cost L�(0, c) = (log n)c 10(1) in the 

length of n, and when a=1 this turns into an exponential cost L�(1, c) = n`+0(1). In 

general, the smaller a is the better. 

1.3.1 Recurrence equations of the form R(n) = aR(n/b) + cn +d 

This class of recurrence equations is common in the analysis of recursive algorithms 

and will be needed in Chapter 4. We now solve this equation in the general case. 

We are interested in solving the recurrence equation R(n) = a'R(nlb) + cn +d 

subject to the threshold condition 

R(n) =f (n) for n<T: = bT, 

where T is a fixed threshold value and f is a given function. We distinguish two 

cases according to whether a and b are equal or not. 

" Let us examine the case where a0b first. Set k =1ogb n, then by induction we 

get 
t_ t 

R(bk) = atR(bk-t) +( a/b) 
- 1- cbk +a 

-1 
d for any eeN. 

We want ¬ to be the least number such that bk't is just below the threshold T 

i. e. bk't < bT <_ bk-(t'1>, so we set 

e =1k -'c1= Ilogb(n/T)1=: e6(n/T). (1.6) 

We then get that (using [xl =x+ (-x), where (x) is the fractional part of x) 

k-¬=k-[k-tl=z-(z-k). 

So, for n >_ T and a*b, we have the following solution 

tb(n/ý T (a/b)6b(n/T) -1 b6(�/T) -1 (1. !) R(n) =af bt'O&(T/n)) 
+ 

alb- 1" rn +b 
-1 

d. 
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9 If a=b then induction yields 

R(bk) = btR(bk-t) + tcbk + 
bb 

_l 
d for any E ][v. 

With the same choice of ¬ as before, we get for n >_ T and a=b 

e6(nl7) T b6b(n! T) -1 R(n) =bf 
(b11oSb(T/n)}) + cn46(n/T) +b 

-1 
d. (1.8) 

1.4 Computationally hard problems 

Next, we will describe a few problems from the field of Computational Number 

Theory that are believed to be computationally hard to solve. The first two problems 

are the main subject of Chapter 6 and will be described in greater detail. 

Before starting, we first introduce the concept of generic algorithms as we will 

present some complexity results which depend on this notion. An algorithm op- 

erating on group elements is called generic if it only uses the group as a black-box, 

meaning that it only multiplies elements of the group, computes inverses and can 

check for equality of elements. More formally, in the generic group model, the only 

operations that may be used are performed through the following three oracles: 

1. Evaluation: On input (a, b) outputs their product ab. 

2. Inversion (Negation): On input a outputs its inverse a-1. 

3. Comparison: Tests if two elements a, b are equal (Redundant if bit represen- 

tation is unique). 

1.4.1 The Discrete Logarithm Problem (DLP) 

Let G= (g) be a given a multiplicative cyclic (sub-)group of order n with an 

efficiently computable group law. 

The Discrete Logarithm Problem (DLP) is the discrete analogue of the usual 

analytic logarithm problem, viz. given an element hEG different from g, find the 
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unique integer x (modulo n) such that h= g'r. We write x =logg h. A more formal 

definition of the problem can be stated as follows. 

Definition 1.1 (DLP). The Discrete Logarithm Problem is to compute from an input 

of a cyclic group G= (g) of order n and an element heG, the unique integer xE 

(0,1,2,... ,n -1) such that h= gx (all represented (uniquely) as bit-strings). 

In practice, the group order n may be unknown, but we will assume that this 

value is given or easily computable from the group definition. 

The list of practical candidate groups where the DLP is believed to be intractable 

(in polynomial time) includes multiplicative groups of finite fields, (Z/nZ)" for a 

composite n, non-supersingular elliptic and hyper-elliptic curve groups, algebraic 

tori and ideal class-groups of imaginary quadratic fields. 

Two practical instances of this problem are of particular interest to us: Discrete 

logarithms in finite fields where the group G is the multiplicative group Fq of the 

finite field Fq, which is a cyclic group of size q-1. The second source of instances 

is elliptic curves over finite fields, where G is a subgroup of an elliptic curve group 

E(Fq). The problem in this latter case is written additively and reads as follows: 

Given two points P, Q on E(Fq) where Qc (P) =Gc E(Fq), find xe (0,1, ... , #G -11 

such that Q= xP. 

Computational Complexity of the DLP. First note that if G has smaller sub- 

groups then we can reduce the the DLP over G to a collection of DLP's over the sub- 

groups by the Pohlig-Hellman reduction, which states that we only need to solve the 

problem in the prime power subgroups of G. The solution is obtained using the Chi- 

nese Remainder Theorem (CRT) applied to the solutions of the restricted problem 

over the prime power subgroups. More concretely, suppose that n= #G = 11', 1 pli, 

where p; are distinct primes and ej E N. Then G is isomorphic to a product of cyclic 

groups of prime-power orders: ®ý_ Cýý The projection map from G to some Cp. 

is given by hH VIP'. Now, by solving the projected DLP modulo pý' for i =1, ..., t 

we can then use the CRT to reconstruct the solution modulo n, i. e. over G. To solve 

the projected DLP, we first solve it modulo p in Cy using any sensible method, of 
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which brute-force is an option if p is small enough, then using the Hensel lifting we 

lift the solution to C. 2,. . ., Cpe . 
Nechaev and Shoup [Nec94, Sho97] showed that the DLP needs Q(45) oracle 

calls (group operations) with generic algorithms having success probability bounded 

away from zero (BPP), where p is the largest prime divisor of n. 

It is obvious that an exhaustive search to solve the DLP over a group G of 

a cryptographic size n is very inefficient as it costs O(n) operations, which is an 

exponential cost. There are many other algorithms which have a better asymptotic 

cost, and we will now describe a few. 

The generic lower bound of S2(\) for the DLP is achievable with a space/time 

tradeoff modification of the brute-force method known as the Baby-Step Giant-Step 

(BSGS) method. It is due to Shanks and has an asymptotic cost of 0(-/n) group 

operations and storage for O(s/n) group elements. This is a very useful generic 

algorithm to solve the DLP and will be used in Chapter 6 together with the Pohlig- 

Hellman reduction to solve DLPs on elliptic curves of smooth order. We describe this 

method here for future reference. 

The BSGS method. If we let m=[I and write the solution of h= g'r as 

x= im +j with i, jE 10,1, ... ,m- 1), then we see that 

(g m)'h = g'. 

So, if we precompute (gi, j) for jE 10,1, ... ,m- 1) and sort them by the first entry 

then we can identify the correct value of i by trying all possible iE 10,1, ... ,m- 1} 

and checking if (g-m)'h matches any of the precomputed values g1 for some jE 

{0,1,..., m-11.   

Another method which also achieves the generic lower bound is the Pollard p 

method. It is a Las Vegas probabilistic algorithm exploiting the birthday-paradox 

with expected running time of O( fi(n) and a negligible storage requirement which 

makes it favourable in many cases. 

The Pollard p method. It proceeds by defining a pseudo-random walk on a 
finite graph defined by a function f over G, and when a collision happens in the 
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walk we get a solution with a high probability. A collision is expected to occur after 

about steps, as expected by the birthday paradox. Using the Floyd's cycle- 

finding method for collision detection, we only need minimal storage and expect 

to find a collision in an expected time roughly equal to the square root of the points 

in the cycle. The actual function f that is used in practice is given by first setting 

xO =1 and then using the iterative function 

hx if xE Sl 

x+ =f (X) := x2 if xE S2 

gx if xE S3 

where the notation x+ =f (x) denotes the recurrence xn+1 =f (x�) for n=0,1,2,... 

and the sets Si, S2i S3 have roughly the same size and form a partition of G with 

the condition that 1ý S2. The ith term of the sequence induced by f has the form 

xi = gQ+h6+ for i >_ 0 with ao = bo =0 as xo = 1. The corresponding iteration function 

for the exponents ai and bi is 

(a, b+ 1) mod n if x¬ Sl 

(a, b)+ _ (2a, 2b) mod n if xE S2 

(a + 1, b) mod n if xE S3 

Using the Floyd's cycle-finding method will yield a pair (xi, x21) such that xi = X21, 
i. e. gai hbi = ga2ahbu which means that g'+bj logg h_ 902i+b2ilogg h and hence we have 

(b; - b2i) logg h 22 (a2; - aj) (mod n). 

So, if b; b2i (mod n) which is the case with high probability, then we can retrieve 
logg h by a simple division modulo n. 

Note that it turns out that the walk as defined above is not random enough as 

supposed in the theoretical analysis. The set G should be partitioned into about 20 

subsets to have a good practical performance, [Tes98, Tes01]. The corresponding 
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iteration function can be taken to be 

x+ =f (x) = xg' h"B if xE Ss fors E {1, ... , r) and r ;: t; 20, 

where {S1) 1 are of roughly the same size and form a partition of G, and ms, ns are 

integers.   

Another similar method is also due to Pollard and is called the Pollard A method 

or Tame and Wild Kangaroos. It has an expected running time of e( \log n) and also 

requires little storage. 

Given the square-root best cost of these generic algorithms, the corresponding 

key size for cryptographic primitives requiring a security level 2" is 2n bits, provided 

that the computational group they are based on is generic. The multiplicative group 

of a finite field unfortunately fails to be generic and admits a subexponential attack 

on the DLP, which is referred to as index calculus - hence, the key sizes for primitives 

which are based on non-generic groups need to be increased accordingly. 

Index calculus gives a sub-exponential time algorithm for the DLP in any group 

for which we can define a factor base, i. e. if there is measure to decide how "small" 

an element is, and such that a significant portion of elements can be efficiently 

expressed as a product of these elements. This algorithm is mainly used over finite 

fields, but does not work for elliptic curves. 

1.4.2 The Diffie-Hellman Problem (DHP) 

Let G= (g) be a given a multiplicative cyclic (sub-)group of order n with an 

efficiently computable group law. 

Definition 1.2 (DHP). Given g", gb EG where a, b are unknown, the DH problem is to 

compute gab. 

A related problem is the Decisional Diffie-Hellman Problem (DDH): Given group 

elements g, ga, gb, 2C, decide whether gab = g' or not. This problem also seems 

intractable in general, but is known to be easy for supersingular elliptic curves 

because of the existence of efficient pairings (Bilinear maps). 
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It is easy to see that the DHP is reducible to the DLP as one can compute 

a= DL(ga) then on computing (gb)a we get the desired answer. The reverse reduction 

is not trivial but it is known to hold for almost all cyclic groups. This will be the 

topic of Chapter 6. 

There are a few types of DH oracles which are all polynomial-time equivalent, 

and we will describe two of them now. The squaring DH-oracle is an oracle that 

on input ga computes ga?. The reduction of the usual oracle to the squaring oracle 

is straight forward using the identity ab = 4[(a + b)2 - (a - b)2], and the reverse 

reduction is obvious. The e-DH-Oracle, for some e>0, is a probabilistic oracle 

that solves the DHP correctly with probability at least e if the input is uniformly 

distributed. 

Fixed group generators vs. randomly chosen generators. It is worth signalling 

at this stage that there is a distinction between the DLP or DHP with respect to a fixed 

group generator and those with respect to a (randomly) chosen generator. Consider, 

for example, the generation of Decisional Diffie-Hellman triples (gf, gb, gab). Using 

the generic group model, Dent showed in [Den06] that if such a triple is generated 

by an algorithm 91 then either a or b can be extracted from the the inputs, outputs 

and random coins of 3i; which means that one needs to know one the discrete 

logarithm of one of the inputs to be able to generate the DH triple. On the other 

hand, if the the group generator can freely be chosen then one can easily generate 

such triples without solving any DLP with respect to the chosen generator, by simply 

uniformly choosing a random element hEG and yEZ then computing the triple 

(hy, hr' mod p, h), 

which produces uniformly distributed instances of DH triples. This trick does not 

work for the fixed generator case because if h= gx eG= (g) such that x it 0, : hl 

(mod p) then 

! 'I{g(hy, hl/y) = y`Hg(ö y, g'/Y) =g#h, 

and the remaining non-trivial possibility (gy, gtl/y, gt1) does not provide uniformly 
distributed DH instances. 
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This subtle distinction is very important to our treatment of the reduction of DLP 

to DHP in Chapter 6. We will have to treat the two types of DH oracles according 

to whether the group generator is fixed or can be chosen and given as an output to 

the DH oracle. 

1.4.3 RSA and Rabin problems (Modular square and e' roots) 

In this problem, we are given a modulus N= pq, where p and q are large primes of 

roughly the same size, eE NZ2 and CE ZN such that 

c= me mod N 

for some m r= 7LN, and we are asked to find in. That is to extract e-th roots modulo 

an RSA modulus N (See §1.5.2 for the specification of RSA). 

If the factorisation of N is known then this operation is easy, as one can solve 
it modulo the prime factors p and q first then reconstruct the solution modulo N 

using the CRT or, for e>2, compute d=e -I mod p(N) = (p - 1)(q - 1) and then 

compute m= cd mod N. However, if the factorisation of N is unknown, then for 

e=2 it corresponds to breaking the Rabin encryption scheme which is known to 

be equivalent to factoring N. For e >- 3, it is not known whether this problem is 

equivalent to factoring N or not, but there are some arguments that suggest that the 

RSA problem may be easier than factoring [BV98]. 

Factorisation of integers into primes 

Given a large composite integer N, this problem asks for its factorisation into a 

product of prime powers. It is believed to be very hard in general as the best 

known general factorisation algorithm, the General Number Field Sieve (GNFS), 

has a heuristic sub-exponential running time of 

LN(1/3,364/9). 
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For integers of moderate sizes (around 80 digits) however, one should use 

the Multiple Polynomial Quadratic Sieve (MPQS) factoring method which costs 

O(e bognloglogn) = LN(1/2,1) asymptotically but performs better for this range. If 

N has a small divisor then the Elliptic Curve Method (ECM) should be the best; 

otherwise, one should try Pollard's p method. 

This problem is the basis for cryptosystems like RSA, but will unfortunately be 

a hindrance to us in Chapter 6 as it will prevent us from finding the auxiliary data 

that is needed for our analysis. 

1.4.4 Lattice problems 

In the process of trying to devise a practical hash function from a previous pro- 

posal [GGH96], in Chapter 5, we will have to deal with a mathematical structure 

called lattices and some of the computational problems associated with it. This 

section will briefly review the notion of lattices and describe some related topics. A 

good reference book on this topic from a cryptographic perspective is [MG02] by 

Micciancio and Goldwasser. 

The subset sum problem is to decide whether a subset of a given finite set of 

integers (a,, a2, . -., a,, ) sum to a given integers. This problem is known to be NP- 

complete, while its computational version is NP-hard. 

Given a matrix BE Rmxn whose columns are linearly independent vectors 

vl,..., 'Un E R', the corresponding lattice LB is defined to be the set of all possible 

integer linear combinations of these vectors 

n 
LB ={ Civic Ci E z} = Zvl f Zv2 + ... + ZVn. 

i=1 

In other words, the lattice LB is a discrete additive subgroup of Rm induced by the 

vectors in B, i. e. 

LB ={Bx: xEz"}. 

The matrix B= (v1Iv21... Iv,, ) is called a basis of the lattice LB. Note that this basis 

is not unique and that any other matrix which is equal to BU, for some unimodular 
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matrix UE Znxn, is another possible basis. The determinant of LB is defined to be 

det B. 

Next we will define two important computational problems related to lattices, 

but before that we will first review the different definitions of a vector's length. If 

w= (wi, W2i..., Wm) E Rm is a vector then its length is usually defined to be its 

Euclidean norm which is given by 

+ ... +m llwll = (w, w) = 
4U72 

1+U, 
4 

where (.,. ) is the inner product operator. This is also known as the ¬2 norm. For a 

general pEN, the tp norm is given by 

IIWIlp = (Wpli + U'P2 + .... H ZUPm)l/p. 

We denote by A(L) the Euclidean length of the shortest non-zero vector in a 

lattice L and by A(L, b) the distance between the vector bE ]R and its closest lattice 

point. 

The Shortest Vector Problem (SVP) 

The Shortest Vector Problem (SVP) asks for a shortest nonzero vector in a given 

lattice. The answer vector is not unique, but the shortest length is unique and upper 

bounded by y1, det(LB)11", where y,, - is an absolute constant that depends on 

n only (Theorem of Minkowski). The SVP gained instant popularity when Shamir 

showed how to heuristically reduce the knapsack problem to SVP, [SS81]. 

Approximating the shortest vector problem (APPR0xSVP) in any fp norm to 

within any constant factor less than 21/P is NP-hard under randomised reduc- 

tions [Mic0l]. In particular, approximating the shortest vector problem is not in 

RP, unless NP = RP. ApproxSVP is proved to be a proper NP-hard problem 

under a reasonable number theoretic conjecture on the distribution of square-free 

smooth numbers. 
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The Closest Vector Problem (CVP) 

The Closest Vector Problem (CVP) asks for the closest lattice point to a given point in 

R'". That is, given a vector ue Rm, we are asked to find a lattice point ve LB such 

that the norm Ilu - vll is minimal. 

CVP can be reduced to SVP in the following way, which is due to Babai [Bab86]. 

Given a vector uE Rm and a lattice Le, construct a new lattice LM defined by the 

matrix 
BU 

M= 
01 

Now, suppose that the closest vector in LB to u is v. Then the vector (u - v, l)T is a 

short vector in LM, and hence one can attempt to retrieve it by solving the SVP in LM 

and then recover v from the short vector. 

CVP is generally regarded to be harder than SVP. In fact, CVP is known to be 

NP-hard to approximate to within any constant factor. Furthermore, any efficient 

algorithm that efficiently approximates CVP can be used to efficiently approximate 

SVP, which means that SVP is not harder than CVP [MG02, §3.31. 

The LLL basis reduction algorithm 

In 1982, A. K. Lenstra, H. W. Lenstra and L. Loväsz presented the first deterministic 

polynomial time algorithm called LLL or L3 which, given a basis for a lattice LC R"', 

can find a vector which is guaranteed to be no more than 2(m )I2A(L), where A(L) is 

the length of the shortest vector in L. The factor 2(1"-1)/2 was later reduced to (1 +e)" 

for arbitrarily small c>0 by C. P. Schnorr at the expense of more work to be done 

by the algorithm. 

The LLL algorithm is of prime importance in cryptanalysis as almost all of the 

lattice based cryptographic primitives only require a good approximation to the 

shortest vector to be broken. Furthermore, the LLL algorithm tends to yield a 

vector which is much shorter than 2i'-1th'2A(L) in practice, but this depends on the 

quality of the basis and is not yet well understood. 
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1.5 General cryptography 

We will now recall some general cryptographic notions. An excellent rigorous 

treatment of the theory of cryptography is Oded Goldreich's two volume work: 

Foundations of Cryptography, [Go104a, Go104b]. For a more elementary introduc- 

tion to the topic see [Sti06, Sma02, Mao04, MOV97]. 

We should first meet our friends Alice, Bob and Eve who have been serving the 

cryptographic community and have become the de facto characters for illustrating 

the different cryptographic scenarios. Alice and Bob want to communicate between 

them but they know that Eve eavesdrops on their communications and may even 

have control over the channel joining them. In fact, since Eve may have full con- 

trol on the communication channel she can insert, delete, modify, delay or replay 

any message of her choice. The Internet is a good example of such an insecure 

communication channel. 

In order to keep the communication confidential, Alice and Bob use encryption 

to render their messages unintelligible to Eve. They also want to detect if Eve 

tampers with their communication, and for this Alice and Bob authenticate their 

communications using message authentication codes (MACs) or digital signatures. 

Eve 
c= E(m) 

(+Authentication) C Cl m' = D(c') 
Alice C Bob 

It is imperative to keep in mind that Eve is not predictable nor does she stick 

to any rules. She may act passively but she can also act actively and may adaptively 

try to break the system. She is intelligent, malicious, devious and may have or 

will develop better knowledge and technology than expected. Furthermore, in the 

multi-users setting, she may even be one or some of the users! 

Defending against all existentially possible attacks is practically impossible, so 

it is important to ask the question: What are we trying to protect or prevent? The 

answer to this question decides the correct level of security needed. For example, 

if we are trying to prevent forgery of money then it is enough to make the cost 
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of forged money higher than they are worth. In general, a good measure of how 

costly an attack is is to compare it to the cost of generic attacks such as brute force 

or birthday-type attacks - then, the cryptosystems designers' aim should be to give 

Eve no advantage over these generic attacks. 

A cryptosystem is characterised by five elements P, C, E, D and 7C, where 

"P is the plaintext space from which messages are drawn 

"C is the ciphertext space where the encrypted messages live 

"E and 1 are respectively the encryption and decryption algorithms family 

parametrised by keys drawn at random from the key space 'K. 

The cryptosystem should satisfy the soundness condition 

dk E IC, Vm E P: Dk(Ek(m)) =m 

or at least to hold for the overwhelming majority of keys and messages, as is the 

case for the NTRU cryptosystem for example [HPS98]. The algorithms arc also 

required to be computationally efficient, and not to leak information about the 

secrets (plaintext or key) that can be extracted by another algorithm in polynomial 

time. 

Note that in the case of symmetric cryptography the encryption and decryption 

keys are the same or easily derivable from each other - hence the symmetric prop- 

erty; as opposed to asymmetric cryptography (public-key cryptography) where the 

key is composed of a private key for decryption which is kept secret and a public-key 

for encryption which is published, with the assumption that deriving the private 

key from the public key is computationally infeasible unless given access to some 

trapdoor information (e. g. the secret-key itself). 

The public key and private key can be thought of as being related via a one-way 

function (OWF). Set E= {0,1) and let f: E' -º E' be a bijective efficiently computable 

function. Then, we say that f is an OWF iff there is no polynomial-time algorithm 

that, given yE E', can find xE E' such that y=f (x) or rejects if no such x exists 

(inversion). Furthermore, we insist that the image of a string under f should be at 
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most polynomially longer or shorter then the input. If the OWF can be efficiently 

inverted given access to an additional (secret) string then it is called a trapdoor one- 

way function. Currently, there is no published proof that such functions exist, and 

in fact, if they do then that will imply that P* NP which will be a breakthrough 

in Complexity Theory. 

The symmetric and asymmetric approaches to cryptography both have their 

own advantages and disadvantages. In practice, symmetric cryptography is orders 

of magnitude faster than asymmetric, but key distribution and management prove 

to be difficult problems. Asymmetric cryptography on the other hand offers a neat 

solution to this latter problem and also provides the useful primitive of digital 

signatures. Furthermore, it enjoys the benefits of Provable Security because of its 

mathematical structure. 

The practical approach for harnessing the best of the two approaches is to use the 

KEM/DEM paradigm: The Key Encapsulation Mechanism (KEM) uses an asymmetric 

cipher to generate a symmetric-key and then encrypts it producing an encapsulation 

of the key. A symmetric cipher is then used, with the generated key, to encrypt 

the plaintext. This second part is called the Data Encapsulation Mechanism (DEM). 

The ciphertext is then sent as the key-encapsulation together with the symmetrically 

encrypted plaintext. This approach grants the benefits of both models of encryption 

and is furthermore provably secure subject to some security requirements on the 

KEM and DEM, see [CS03]. 

1.5.1 Hash functions 

Encryption and decryption are the most popular cryptographic primitives but there 

are many others. We often need a special type of functions known as hash func- 

tions, commonly used in conjunction with digital signatures. They are also used for 

commitments, integrity checking (Modification Detection Codes (MDC), unkeyed 

hash functions) and authentication with integrity (Message Authentication Codes 

(MAC), keyed hash functions). 

A hash function takes a bit-string from {0,11* and maps it to a fixed length 

string space {0,1)", for some fixed nEN called the hash length. Cryptographic 
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hash functions are a special type of the general hash functions, where besides the 

basic property of mapping large domains to small ranges, they have some extra 

information security requirements, such as lower-bounding n with a function of the 

level of security. 

We say that two messages (bit-strings) collide if they have the same hash value 

under the same hash function. It is clear from the definition of hash functions that 

collisions are inevitable, but if the cost of finding such collisions is a( N%n), which 

is achievable with a generic birthday attack, then we call such a hash function a 

collision resistant hash function (CRHF). 

We also impose that the cost of inversion, i. e. finding a pre-image of a given 

random hash value, should be 0(n). We refer to such hash functions as one-way 

hash functions (OWHF). 

The are many other properties that may be required for certain protocols such 

as being 2"d pre-image resistant, where we are given a message together with its hash 

value and we are asked to find another message that hashes to the same value, or 

to be a pseudo-random function (PRF), i. e. computationally indistinguishable from 

a truly random function. These and other properties arc described in more detail 

in [MOV97, Chapter 91. 

Families of hash functions that are used in practice include the MD and the 

closely related SHA family, both considered weak by virtue of recent attacks 
[BCJ+05, WLF+05, WY05]. The recommended hash function to be used at the 

time of this writing is SHA256. Recent proposals for hash functions include VSH 

[CLS05], LASH [BPS*06] and FFT based hash function [LMPR06]. 

1.5.2 Some cryptographic primitives 

In this section, we will recall the description of some standard practical realisation 

of cryptographic primitives that are related to this thesis, but we will only describe 

them in their textbook versions. The actual protocols used in practice are slightly 

changed so to make them provably secure. 

" RSA. This is an encryption-method that is widely used in electronic commerce 

protocols. It was introduced in 1977 by Ron Rivest, Adi Shamir and Leonard 
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Adleman from MIT [RSA77] - hence the name RSA. Modular arithmetic is at the 

heart of this encryption-method as it consists of one modular exponentiation, which 

is its computational bottleneck. 

To use (the textbook version of) RSA Bob, who is to receive encrypted messages 

from Alice and others, first computes a big number N that is a product of two 

equally-sized primes p and q, and then computes two numbers e and d satisfying 

ed -1 mod (p - 1)(q - 1). Bob's public-key is then the pair (N, e), while d is his 

secret-key and is therefore kept secret. To encrypt a message m, Alice fetches Bob's 

public-key (N, e) and computes c E-- me mod N then sends c to Bob, who deciphers 

it by computing m E- cd mod N using the secret-key d. 

9 Diffie-Hellman key exchange. This is a primitive for unauthenticated key 

agreement which is sometimes called exponential key exchange as it utilises exponen- 

tiation. 

Suppose that Alice and Bob had already agreed on a large prime p and a gener- 

ator g of Z p. The idea here is to agree a key of the form 

K= g'y = (gX)y = ($Y)'. 

If Alice and Bob want to agree on a session key over an open channel then Alice 

chooses a random xE (2,.. ., p- 2} and sends gx to Bob, who similarly chooses a 

random yE 12, ... ,p- 2} and sends gy to Alice. Now they can both compute the 

shared key as K= (gx)y = (gy)X = gxy. 

9 ElGamal public-key cryptosystem. The security of the ElGamal cryptosystem 

is based on the intractability of the DLP (and the DHP). 

The public key is a triple (p, g, g), where p is a randomly generated large prime, 

(g) = 7Gp and a is the secret key which is a random integer from the set 12,..., p- 2). 

To encrypt a message mE (1, ..., p -1), Alice selects an integer k randomly from 

the set 12, ... ,p- 2} and computes the ciphertext c= (g, m) = (gl`, m" (ga)k) using 

Bob's public-key (p, g, g). To decrypt c= (g, u i) = (gk, mgak), Bob simply computes 

m=m"9-a. 
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Note. It should be emphasised that the versions described here are not secure 

for practical applications; they only serve as a motivating theoretical tool. A proper 

implementation of RSA should use the provably secure OAEP padding construc- 

tion [JK03, FOPSO4], and for the elliptic curve version of ElGamal encryption one 

should use ECIES [BSSO4, Sma0l]. Authentication is also needed for the Diffie- 

Hellman key exchange to avoid the man-in-the-middle attack. 

1.6 Motivation (Problems addressed in this thesis) 

In this section we motivate the problems that we will address in this thesis. Our 

main source of problems is cryptographic standards and governmental recom- 

mendations as they constitute the best source to infer issues that directly relate to 

cryptographic practice. Another direct source of motivation has come from the re- 

cent major academic breakthrough in attacking the the MD family of hash functions 

which includes the popular MD5 hash function. 

1.6.1 NIST 15,360-bit recommendation 

NIST (National Institute of Standards and Technology, USA) has recently recommended 

using RSA moduli of sizes as big as 15360 bits to match the security level of AES- 

256 [Nat06, p. 63], see Table 1.1. No prior work has been done to study efficient 

arithmetic around these operand sizes nor do we know what is the best strategy to 

proceed with a practical implementation. With this in mind, it is now worthwhile 

to explore the improvements that can be made by using asymptotically faster multi- 

plication methods in combination with any "tricks" that may render them practical 

even for moderate sizes. 

Table 1.1: Comparable strengths 
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Chapter 4 is based on [BS07] and aims to investigate a set of possibilities from 

straight Montgomery and Barrett arithmetic through to combining them with Karat- 

suba and Toom-Cook style techniques. We will see that a novel use of an error 

detection technique called wooping [FS03] will allow us to overcome the difficulties 

that arise when trying to go beyond the obvious simple substitution of classi- 

cal multiplication methods with faster ones. These difficulties are mainly clue to 

carry-propagation when computing upper-half products with recursive methods, 

a problem that does not arise when using traditional combinations such as the 

Karatsuba-Comba-Montgomery (KCM) method [GAST05, Sco96]. 

Using a formal computational cost model, we estimate the exact cost of the 

Montgomery and Barrett modular reduction algorithms. We then introduce some 

variants using the Karatsuba and Toom-3 multiplication methods, and analyse the 

savings that can be theoretically achieved. These variants have been implemented in 

C using the GMP library (GNU Multiple Precision arithmetic library) [Gra07a], and 

the relevant results are reported here and compared with the theoretical estimates. 

1.6.2 NIST cryptographic hash project 

Due to the recent attacks that were first discovered and described by X. Wang 

on the MD family of hash functions, which includes the popular MD5, RIPEMD 

and SHA-1 [BCJ+05, WLF+05, WY05], KIST has initialised an international effort 

to develop a few new cryptographic hashing algorithms through public academic 

competition, similar to the competition that contributed to the development process 

for the Advanced Encryption Standard (AES). 

NIST has held two workshops to review and assess the status of the previously 

NISI approved hash functions, to discuss possible future options and to discuss 

hash function research in preparation for launching such a competition. 

We note that all of the recently broken hash functions are essentially derived 

from the same design and are constructed using somewhat ad-hoc techniques. In 

contrast, other areas of cryptography have replaced ad-hoc construction with well 

defined sets of design principles. Examples include the wide-trail design strategy of 
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AES [DR02, Chapter 9], or the rigorous application of reductionist provable security 

techniques as in the context of RSA-OAEP [BR94, FOPSOlj. 

Given the popularity of provable security and the development of a provably 

collision resistant hash function called VSH [CISO5], the time could not be any better 

for trying to devise a similar method by attempting to relax previous inefficient 

attempts so to make them practical. This resulted in a hash function that we 

called LASH [BPS+06] which will be the topic of Chapter 5. In this chapter, we 

will show that the lattice based hash function that was previously suggested by 

Goldreich, Goldwasser and Halevi [GGH96] is not secure as a cryptographic hash 

function when we fix any concrete set of parameters. We then adapt the GGH 

construction to give our concrete proposal LASH, [BPS+06). Various recent attacks 

on this construction are briefly sketched with comments on their significance, as 

well as various implementation tricks. 

1.6.3 SECG/NIST standards for curves 

A number of cryptographic standards for elliptic-curve cryptography (ECC) have 

been developed in the few past decades. These case the task of adopting the 

latest cryptographically sound techniques while keeping the different engineered 

components inter-operable, which is of prime importance to the already deployed 

industrial applications. 

Some of the standardising bodies that showed interest in ECC arc the Standards 

for Efficient Cryptography Group (SECG), National Institute of Standards and Technology 

(NIST), American National Standards Institute (ANSI), International Organisation for 

Standardisation (ISO) and the Institute of Electrical and Electronics Engineers (IEEE). 

Of special interest to us are the SECG and NIST standards as they both recom- 

mend a common set of 15 elliptic curves. The respective publications can be re- 

trieved from http: //www. secg. org/index. php? action=secg, docs_secg (SEC2: 

Recommended Elliptic Curve Domain Parameters) and http: //www. itl. nist. 

gov/fipspubs/by-num. htm (PIPS 186-2: Digital Signature Standard (DSS)- 00 Jan- 

uary 27). 
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According to FIPS 186-2, the sets of recommended curves were pseudo-randomly 

generated over prime fields ]Fp (for p of bit-size 192,224,256,384,521) and binary 

fields ]F2m (for extension degrees m r= (163,233,283,409,571)). The choices of these 

field parameters were made to match the standard security levels, see Table 1.2 for 

the correspondence. 2 

Security level Algorithm 1 1 Bit size of p for ]F Degree m for F2- 
80 SKIPJACK 192 163 
112 Triple-DES 224 233 
128 AES Small 256 283 
192 AES Medium 384 409 
256 AES Large 512 571 

Table 1.2: Field parameters. 

On the theoretical side, the equivalence between the DLP and DHP problems 

was shown by Maurer in 1994 but subject to an existence condition of auxiliary 

groups with a smooth order [Mau94]. His work was then reexamined by Muzereau 

et al. [MSV04] for the special case of elliptic curves used in practical cryptographic 

applications, namely the curves from the SECG and NIST standards. Chapter 6 

improves on the latter and gets very close to the tightest possible reduction, and 

we prove that our results are unlikely to be significantly improved upon using 

Maurer's method [BenO5a]. 

1.7 Overall structure of the thesis 

The two chapters 2 and 3 will review some standard generic algorithms over groups, 

modular arithmetic, arithmetic of elliptic curve, exponentiation and asymptotically 

faster integer multiplication methods. These chapters review the background ma- 

terial that is necessary for the developments in the next chapters. We also introduce 

2The elliptic curve domain parameters over a given prime field ]p are given by a sextuple 
(p, a, b, G, n, h), where p is the characteristic of the filed, a and b define the elliptic curve E over 
lip :: y2 = x3 + ax + b, G= (Xe, Yo) is a base point on E()F. ) of prime order n, and h is the group order 
cofactor i. e. nh = #E(F, ). In the case where the elliptic curve is defined over a binary finite field )F2m, 
the domain parameters become a septuple (m, f (X), a, b, G, n, h), where the parameters a, b, G, n, h keep 
their meaning from the prime field case but the elliptic curve is here defined by y2 + xy = x3 + axe + b, 
m is the extension degree and f (X) is a degree m irreducible polynomial over IFZ that defines the 
extension field F over F2. 
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our wooping technique in Chapter 3 which we will use to speed up the RSA oper- 

ation in Chapter 4. 

Chapters 4 and 5 address the issue of efficiency when designing a practical 

cryptographic primitive. Chapter 4 relies mainly on Chapter 3 and studies the 

possible ways of implementing modular arithmetic at very large operand sizes, 

motivated by the NIST recent key sizes recommendation. Chapter 5 takes the 

(inefficient and insecure) GGH hash function proposal [GGH96] and tries to design 

a practically efficient hash function, which despite being better in terms of efficiency 

loses out on the provable security side as we cannot argue about its security contrary 

to its predecessor [GGH96]. 

Chapter 6 is theoretical and is concerned with the DLP and DHP problems and 

their reduction to each other. There, we show the equivalence of the two problems 

and establish lower bounds on the difficulty of the elliptic curves DHP based on the 

generally accepted hardness assumption of the DLP. This is achieved by optimising 

the reduction method and parameters using material from Chapter 2. 

We finally conclude in Chapter 7 where we summarise our results and comment 

on them. We then list a number of open problems that we feel arc of interest for 

future research and suggest some possible solutions that need to be developed and 

investigated further. 
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Fundamental algorithms 

"The mathematician's pattern, like a painter's or the poet's, must be 
beautiful [... ] Beauty is the first test; there is no permanent place in 

the world for ugly mathematics. " 

- Godfrey Harold Hardy 

In this chapter we recall and introduce a few generic algorithms for modular 

arithmetic, modular square roots, elliptic curve arithmetic and exponentiation. The 

study of fast multiplication of arbitrary precision integers is delayed to the next 

chapter. 

We start with the central operation of modular reduction, as it is a shared 

component between all the subsequent chapters of this thesis and is very important 

to many asymmetric cryptographic primitives. Recall that if we are given two 

integers z and m then we can divide them using Euclidean division to get 

z=qm+r, wheregENUIO)andO<_r<m. 

We call q the quotient and r the remainder (both exist and are unique). In modular 

reduction, we only want to calculate the remainder as we do not need the quotient. 

We will now explore some practical methods for this computation. 
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2.1 Modular reduction and multiplication 

The obvious way of reducing using Euclidean division is a good choice when the 

modulus is small, but is inefficient for the moderate or large operand sizes used in 

practice. We will describe three main methods that are commonly used in practice 

for this purpose. Some adaptations of these methods are developed in Chapter 4 

for the case of very large operands. 

Let us consider a machine where we represent large integers as arrays of integers 

in base b, where b= 2ß and ß is the word length. If z is a 2n words long integer then 

we use subscripts ¬ and u to denote the lower and upper halves: 

zt =z mod b" and z� = Lz/b" J. 

2.1.1 Special moduli 

Suppose that the modulus m is equal to b -1 (the largest number that can fit in a 

word) and z= zo + zlb +""" +z mb'" then note that bn1 (mod b- 1) implies that 

bk-1 (mod b- 1) Vkc(0,1,... 1M). 

This remark allows us to bring reduction modulo b-1 to a number of simple 

addition of word-sized integers, namely 

zmod(b-1) =za+zl+"""+z,, mod(b-1). 

Depending on the number of terms and their sizes, a second or more similar 

reductions may be necessary. This technique can easily be generalised to moduli of 

the form bt -a for a small integer a as shown in Algorithm 1. 

For the next two reduction methods, namely the Barrett and Montgomery meth- 

ods, we consider the problem of reducing 2n-word integers modulo a given fixed 

n-word modulus m. The Barrett and Montgomery reduction methods are techniques 

used when the modulus is fixed, as is the case in RSA where many modular operations 

are carried out modulo the same fixed modulus N= pq. These special methods 
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Algorithm 1 Reduction modulo m= bt -a 
Input: Integer z. 
Output: z mod m. 

I: qo F-- [z/bt ], ro F- z- gobt, r E- ro, i E- 0. 
2: while qi >0 do 
3: qº+1 +- lagj/bt j, ri+t +- aqi - qi+ibt" 
4: i E- i+ 1, r 6- r+ ri. 
5: end while 
6: while r >- m do 
7: r4-r-m 
8: end while 
9: return r 

exploit this fact to decrease the cost of modular reduction by pre-computing some 

values to avoid the expensive divisions. 

2.1.2 Barrett reduction 

Let z be a 2n-word integer and m be a fixed n-word modulus. As was mentioned at 

the beginning of this section, we can reduce z modulo m using Euclidean division 

of z by m: z= qm + (z mod m). Barrett's idea is to avoid division by computing a 

good estimate for the quotient q= Lz/mi as follows 

Zubn + Zt bnZu ben Zu µZu b2n 
NN_ 

q= _-" whereµ= - mNmm bn N bn m 

Note that q E-- L(µzu)/b" J= (µzu),,, and so it can be computed as an upper- 

half product (with the help of our wooping technique introduced in section 3.3 on 

page 66). 

It can be shown that if z< m2 then q-2 <- q <- q. So a good estimate for the 

remainder is z- qm which we can correct by subtracting m from it at most twice. 

Algorithm 2 describes this method in detail, [MOV97, p. 604]. 

2.1.3 Montgomery reduction and multiplication 

Notice that if we represent modular residues modulo m as xR and yR for some fixed 

R satisfying gcd(R, m) = 1, then their (integer) product is xyR2, which can easily 
be brought to the canonical residual form xyR by dividing it by R. If we choose 
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Algorithm 2 Barrett reduction 
Input: n-word modulus m, µ= [b2i/m j and z< m2. 
Output: z mod m. 

1: z' E- 
[z/bn-1 ], q- lz'p/bn+1 j 

2: r E- (z mod bn+1) - (qm mod b"+1) 
3: ifr<0then 
4: rF-r+b"+1 
5: end if 
6: while r >: m do 
7: r4-r-m 
8: end while 
9: Return r 

R= b'1, where b is the word size, then this modular division turns out to be easy 

to implement and amounts to about two modular multiplications only. This is the 

principle that is behind the Montgomery reduction [Mon85], which we will now 

introduce in detail. 

We will first introduce a simple version of the Montgomery reduction which 

operates at the bit level and is suitable for bit-serial hardware implementation. 

Suppose we want to compute z/2" mod m, where m is an odd modulus and z is a 

number less than m2". To divide by 2" we simply halve n times, and the trick to do 

this cheaply is as follows: 

" If x is even then we shift z to the right by one bit. 

" If x is odd then x=x+m (mod m) which is even! So we shift x+m to the 

right by one bit. 

Let us for example compute 1303455736/216 mod 2133, which is equal to 20155. 

Figure 2.1 illustrates the previous operations step by step by showing the bit repre- 

sentations of the operands after each stage of the reduction, using the shapes n and 

Q to denote bit values 1 and 0 respectively. 

In general, let R= 2" and m be an n-bit modulus and suppose that we want to 

compute z/R mod m, where z is less than mR. Note that if we add a multiple of m 

to z then it remains the same modulo m. Furthermore, if we add a suitable multiple 

of m to z such that the lower n-bits of the sum are all zero then we can exchange the 

modular division by R for a very cheap bit-shift operation. That is to say, we want 
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2133 = 
1303455736 = 

Figure 2.1: Computation of 1303455736/216 mod 2133 = 20155. 

to find some u such that 

z+ um =0 (mod R). 

Solving for u, we get 

u= (-m-1) "z (mod R). 

This suggests that we should pre-compute -m-1 mod R; then the modular division 

z/R can be exchanged for the computation of z+ um and then shifting the result n 

bits to the right. Algorithm 3 describes Montgomery reduction as suggested by the 

previous analysis. 

Algorithm 3 Montgomery reduction 
Input: n-word integer m, -m'1 mod R where R= b", and z< mR. 
Output: zR-1 mod m. 

1: u E-- (-m'1)z mod R 
2: x E-- (z + um)/R 
3: If x>: mthen 
4: xE-- x-m. 
5: end If 
6: Return x 

Note that computing u= (-m-1) -z mod R and the product um requires multi- 

precision multiplication, but it turns out that we can modify the Montgomery 

reduction method to work on word-size integers as follows: If R= b" then we can 
divide z by R= b" through n divisions by b. 
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Here again, for the modular division by b, we compute u such that z+ um -0 

(mod b) i. e. 

u= -(m mod b)'1 " (z mod b) mod b 

_ -mo1 " zo mod b 

which requires word-sized operations only, see Algorithm 4. This variant is com- 

monly fused with multiplication to produce what is known as Interleaved Montgomery 

multiplication [KAK96], described in the next subsection. 

Algorithm 4 Montgomery reduction (word-level) 
Input: R= b", m= -m-1 mod b and Z= (zR mod m) < mR as an n-word Integer. 
Output: ZR-1 mod m. 

1: z4-Z 
2: for i=0,..., n-1do 
3: U 4- z1th mod I' 
4: z E-- z+ umbi (Multiplication and division by b corrospond to shifts) 
5: end for 
6: z E- z/b" 
7: If z'amthen 
8: z4-z-m 
9: end If 

10: Return z 

Montgomery multiplication 

Montgomery multiplication aims to achieve fast multiplication and reduction in 

one go. That is, given X= xR mod m and Y= yR mod m as n-word integers, R=0 

and rn = -m'1 mod b, we want to compute the Montgomery product of X and Y 

which is given by xyR =_ XYR"1 (mod m). 

Algorithm 5 presents the efficient interleaved Montgomery multiplication where 

multiplication and division by R= b" arc interleaved and performed at the word 

level. This approach keeps the memory costs minimal and makes implementation 

easier and more efficient. 

We will develop better versions of the Montgomery and Barrett reductions, in 

chapter 4, to be used when the operand sizes are bigger than the currently deployed 

sizes (1024-4096 bits). 
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Algorithm 5 Interleaved Montgomery multiplication 
Input: X= xR mod m and Y= yR mod m as n-word integers, R= b" and rn = 
-m'1 mod b. 
Output: XYR-1 mod m. 

1: Z4-0 
2: fori0,..., n-1 do 
3: u <-- (zo + X; Yo)m mod b 
4: z<--(z+X, Y+um)/b 
5: end for 
6: Ifz>-mthen 
7: z+-z-m 
8: end if 

9: Return z 

2.2 Quadratic residuosity and square roots in Z 

In chapter 6 we will need algorithms to test for quadratic residuosity and to compute 

square roots in Z p, so we will describe some suitable methods for these specific 

computations. 

Let p be an odd prime. The equation x2 -a (mod p), where a is a given integer, 

can have at most two roots in Z p. The element a is called a quadratic residue if 

the number of solutions to x2 -a (mod p) is non-zero, and quadratic non-residue 

otherwise. This property is expressed by the Legendre symbol (p), which is defined 

as follows. 

-1 if a is a quadratic non-residue modulo p, 

p=0 ifa=Omodp 

+1 if a is quadratic residue modulo p. 

The Legendre symbol (p) is a multiplicative arithmetic function in a, and some 

of its properties that can help in computing it are 

() 
= a(P-1)12 (mod p). 

`P 1 
(-1)(p-1)(q-1) 

(P) 

q 
if q#p is an odd prime. 

(2.1) 

(2.2) 

This latter property is due to Gauss and is known as the quadratic reciprocity law. 
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Computing the Legendre symbol allows us to decide if a number has a modular 

square root or not. To compute the actual square root granted its existence we can 

use the following methods. 

We first treat an easy case which applies to half the odd primes. Suppose that 

p=3 (mod 4). Then the modular square roots of a modulo p are given by 

x= , tn('+l)/4 (mod p). 

This can easily be checked as (ta(p+1)14)2 = a(y+1)12 =a, a(P-1)/2 aa (mod p), because 

"1 
a(P-1)12 Mod p= (P1 = +1. 

Another interesting special case occurs when p-5 (mod 8). We first compute 

s= a(P'5)'8, u=a"s and t=s"u. Then it can be checked, in a similar way to the 

previous case, that the answer is u if t =1 and 2( 1)14 "u otherwise. 

We can devise similar formulae for other more special cases, but they would give 

little advantage over the general probabilistic Tonelli-Shanks algorithm [Coh93, p. 

32] which is described in Algorithm 6. Its expected running time is O(log4 p). 

Algorithm 6 Square root extraction modulo an odd prime p 
Input: Odd prime p and aeZ such that (0) = +1. 
Output: x such that x2 =a (mod p). 

I: Find a random integer n such that (PI) _ -1 
2: Write p-1= 2eq where q is odd 
3: y, -- nq mod p, r +-- e 
4: x <-- a(q-1)12 mod p, b t-- axe mod p, x .- ax mod p 
5: while b 0- 1 (mod p) do 
6: Find the smallest mz1 such that b2 -1 (mod p) 
7: tF-y2'-'"-' modp, y4. -t2modp, rs-m 
8: xF-xtmodp, bs-- bymodp 
9: end while 

10: Return x 

2.3 Elliptic curves 

We have already introduced elliptic curves in the introductory chapter (§1.2.2). 

Here, we will comment on some aspects of curve representation, coordinate systems 
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that are usually used in practical implementation and point counting. This material 

will be used in chapter 6 where we improve the cost of the reduction DLP <_ DHP 

by tuning the coordinate system together with some other parameters. 

2.3.1 Coordinate systems 

The coordinate system that was used in the introductory chapter to represent points 

on elliptic curves is known as the affine coordinate system. Other commonly used 

coordinate systems which are mathematically more elegant, as they allow a natural 

representation of the point at infinity, are called projective coordinate systems and 

are used in Projective Geometry to describe these curves more naturally. There 

are many other coordinate systems each with its computational advantages and 

disadvantages. In fact, there is a whole dedicated database for them called "Explicit- 

Formulas Database" at http : //hyperelliptic. org/EFD/. 

We will now list some of the popular equivalent representations of an affine 

point (x, y) on an elliptic curve given by the Weierstrass-form y2 = x3 + ax + b, over 

a prime field of characteristic p>3, together with the corresponding cost of an 

elliptic curve addition and doubling respectively. 

Affine coordinates. This system was introduced in §1.2.2 (p. 10), so we only 

quote the cost of addition and doubling in these coordinates. These are respectively 

I+2M+S, I+2M+2S, 

where I, M, S respectively denote the inversion, multiplication and squaring op- 

erations in the base field over which the elliptic curve is defined. 

Projective coordinates. Points are represented as a triple (X :Y: Z) satisfying 

the equation Y2Z = X3+aXZ2+bZ3, where the equivalence (X :Y: Z) (sX : sY : sZ) 
holds for all nonzero s. A point (X :Y: Z) corresponds to the affine point (X/Z : Y/Z) 

when Z*0 and to 0= (0 :1: 0) otherwise. The negative of (X :Y: Z) is given by 

(X : -Y : Z). The costs of an add and double operations are respectively 

12M+2S, 7M+5S. 
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Jacobian coordinates. This is a weighted projective coordinate system where the 

point (X :Y: Z) satisfies Y2 = X3 + aXZ4 + bZ6 and (X :Y: Z) _ (s2X : s3Y : sZ) 

for all nonzero s. A point (X :Y: Z) corresponds to the affine point (X/Z2 : Y/Z3) 

when Z#0 and to 0= (1 :1: 0) otherwise. The negative of (X :Y: Z) is given by 

(X: -Y: Z). 

The costs of an add and double operations are respectively 

12M + 4S, 4M + 6S. 

More complicated methods of optimising the cost of elliptic curve arithmetic 

involve using mixed coordinate systems, where a set of different coordinates are 

used to try and decrease the total cost of an exponentiation for example. We will 

not pursue their description here, but the interested reader may refer to (CFA'06, 

Chapter 13]. 

2.3.2 Point counting and construction of elliptic curves 

In this section we sketch the main methods used for these tasks. The description of 

these methods is lengthy and beyond the scope of this thesis. For more details on 

the mentioned algorithm see the relevant chapters in [BSS99, BSSO4, CFA*061. 

Point counting. Given an elliptic curve E over a finite field Fq, the task of 

computing the order of the elliptic curve group E(Fq) is commonly referred to 

as point counting. Recall that, by the Hasse Theorem, the group order of E(Fq) 

is given by IE(iFq)I =q+1-t where Itl S2/. For elliptic curves over large- 

prime fields Fp, one should use the 0(log6 p) Schoof-Elkies-Atkin's Algorithm (SEA), 

which is an improvement of the original O(log8 p) algorithm suggested by Schoof 

in 1985 [Sch85]. The SEA algorithm is an e-adic method, meaning that the order is 

first computed modulo different small primes ¬j such that their product is greater 

than the group order. This then can be reconstructed using the Chinese Remainder 

Theorem (CRT). 
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For fields with a small characteristic, there are faster methods which are p-adic 

in nature, such as Satoh's algorithm and the Arithmetic-Geometric-Mean (AGM) 

algorithms. 

Construction of elliptic curves. Another task that is of importance in ECC is 

to build an elliptic curve group over a finite field ]Fq with a prescribed size n or 

with some specific properties. Of the few available options, we are interested in the 

following methods. 

1. If we want to generate an elliptic curve with a given fixed size then we can 

use the complex multiplication technique for the construction. This method 

takes a fundamental discriminant -D and constructs an elliptic curve over 

the given field which has complex multiplication by the maximal order of 
QZ(V-D). Note however that the running time depends exponentially on the 

class number hp which grows like O(N/D), so D should be as small as possible 
for the method to be efficient. 

2. If the group order is only required to satisfy some easily testable property that 

holds with a non-negligible probability over the choices of the curve or field 

parameters, then randomly generating elliptic curves over Fq and counting 

their points until one is found with the desired order will yield a Las Vegas 

algorithm with an expected polynomial running time. 

2.4 Exponentiation 

Exponentiation is a time consuming operation that will be needed in chapters 4 

and 6. This section introduces the techniques that we will be using and gives the 

conditions under which they may be suitable. 
Naively, a general exponentiation ge can be done with a cost of e -1 multiplica- 

tions by computing ge =g"g"""""g (e factors) but, given that the exponents that 

are in common use in cryptography have sizes that certainly exceed 280, we need to 

use faster methods to make any exponentiation efficiently computable in practice. 
Primarily, we need to reduce the total number of multiplications needed for this 
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task, and we may also need to use faster multiplication algorithms such as the ones 

introduced in chapter 3. 

When studying the problem of raising a group element g to a power e, two 

special cases arise depending on whether one of g or e is fixed or not. 

1. The case where the exponent is always the same, as in the case of RSA where 

any message m to be encrypted to some party is always raised to the same 

power e. 

2. The case where the element to be raised to a power is always the same, as is 

the case with the Diffie-Hellman key agreement scheme where a fixed group 

generator g (defined by some standard) is raised to many different powers. 

In the exponentiation methods that we will introduce next, we can save on 

the cost by making the appropriate precomputations beforehand and once-for-all 

according to which case of the above we arc in. 

2.4.1 Binary and k-ary exponentiation algorithms 

If we write the binary expansion of the exponent e= E', 0 e, 21, with el e (0,1), in its 

Homer's form: 

e=(("""((e�"2)+ei_1)"2+e�_z). 2+"""+el)"2+eo 

then we see that we can compute ge in the following fashion 

öe = ((... ((p)2 . ge�_, )2 . g,, -2)2 ... )2 . geo. 

This form amounts to evaluating the successive terms of the sequence 

gig ?, +e . -I, 
22en+2e 

_l+(. -3 ..., g2"e,, t-+fp = SE 

which costs n squarings and at most n multiplications. This gives an upper bound 

of O(loge) modular multiplications on the cost of modular exponentiation, making 
it a problem in P. Note that the average cost of this method is jr Ig e multiplications 
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because the average hamming weight of an integer is 1/2, so only half of the bits e; 

are set to 1 giving rise to about 1 Ig e multiplications on the top of the lg e squarings. 

This method is usually referred to as the left-to-right binary exponentiation. 

There is a similar method called right-to-left binary exponentiation where the bits 

ej are used starting from eo until e,,. 

Fixed window method (k-ary method) 

In this method, which is a generalisation of the previous, we first precompute a set of 

small powers of g. This then allows us to divide the exponent into chunks (windows) 

of size k bits, and then the exponentiation effort will be mainly k squarings and only 

one multiplication per k bits. 

Fix a window size k. If we write the exponent e in the base 2k as Eoe; (2k); 

where el E 10,1, ..., 2k - 1) then we see that 

n 
ge = 

11 (ö i)(2k)' 

i=o 

or written slightly differently and more concretely (similar to the binary exponen- 

tiation) 

8= \l... 
((pfn)2k . gen-1)2k . gen-2)2k ... )2k . geo, 

Thus we have the method shown in Algorithm 7. 

Algorithm 7 Fixed-window exponentiation (Left-to-right k-ary method) 
Input: Group element g and e= (en_l ... eo)2k where k >_ 1. 
Output: ge. 

t: $0 E-- 1 
2: fori=1,..., 2k-1-1do 
3: gi g" gi-1 (gi = g') 
4: end for 
5: A4-1 
6: fori=n-1,..., 0do 
7: A Alk (square k times) 
8: AE--A"gei 
9: end for 

10: return A 
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The cost of this approach is 2k-1-1 multiplications for the precomputation plus n 

multiplications and kn squarings, making the total number of multiplications equal 

to (assuming that squarings cost the same as general multiplications) 

2k-1 + (k + 1)n - 1. 

Now, if the bit length of e is fixed and equal to d then n= rdlkl. Then one can 

find the best value for k by minimising the the number of multiplications 

2k-1 + (k + 1) 
k 

-1. 

If g is fixed the we can do the precomputation of small powers of g beforehand 

and reuse it for any subsequent exponentiation with respect to the same base g. 

A generalisation of this method that halves the number of precomputed values 

and speeds it up a bit is known as the sliding window exponentiation method and is 

given in section 4.2 on page 75. 

2.5 Pseudo-random number generation 

In chapter 5, we will need a method to generate a "random lattice. " We recapitulate 

on some possible techniques to generate pseudo-random sequence of elements 

which maybe used as entries to the lattice basis matrix. For more in-depth treatment 

of this topic see the first chapter of [Knu98]. 

What we want is to quickly generate pseudo-random sequences of integers 

which should be cryptographically secure. The usual deterministic method of 

producing a sequence of pseudo-random numbers is to take a truly random seed 

value xo and then iterate some function on it so to "extract" more randomness 

from it. Some of the popular pseudo-random number generators (PRNGs) in the 

literature are 

" Linear Congruential Generators (LCG). This is a classical PRNG that is both 

lightweight and very fast. The sequence's element are computed via the 
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iteration 

x+ = ax +b (mod m), 

where m is a fixed modulus and a, b are carefully chosen constants to try and 

avoid statistical bias. 

" Pollard type generators. These look like the famous iteration used in the 

Pollard p factoring method: 

x+ = x2 +2 (mod p), 

for some large prime p. 

In particular, the Blum-Blum-Shub (BBS) generator is a cryptographically se- 

cure pseudorandom bit generation generator (CSPRBG) under the assumption 

that integer factorisation is intractable. It uses the iteration 

x+ = x2 (mod m), 

where m is a product of two large primes each congruent to 3 mod 4, and 

outputs the least significant bit of x in each iteration. 

" Modular inversion generators. For a large prime p, the iteration for these is 

similar to 

x.,. =x-1 +c (mod p). 

There are many more flavours and exotic approaches to design PRNGs, which 

range from simply using shift registers to using elliptic curves, but since our needs 

are modest we will be satisfied with the methods that we have just described. In 

particular, the Pollard type generators are known to be cryptographically strong 

and were experimentally observed to yield good lattices for our hash function 

construction in chapter 5. 
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2.6 The GMP and NTL libraries 

In our implementation of the adapted modular reduction methods presented in 

chapter 4, we used the GMP library [GraO7a]. The GNU Multi-Precision (GMP) 

arithmetic library is a portable library written in C that implements arbitrary pre- 

cision arithmetic on integer, rational, and floating-point numbers. It is generally 

regarded to be the the most efficient such library. GMP is highly optimised and is 

designed to give a good performance for both small and large operand sizes. This 

achieved through the use of appropriate algorithms for the different operand sizes 

and by carefully implementing them while keeping any overheads at a minimum. 

The base operations are written in assembly for a wide range of platformst while 

the rest of the library is written in portable C. The official website for the GMP 

library is http: //swox. com/gmp, from where the latest version of the library can be 

downloaded in source code form. There are also three related mailing lists (Release 

announcements, general questions and discussions about usage of the GMP library, 

and bug reports), http: //swox. eom/mailman/listinfo. 

The NTL library (Number Theory Library) [Sho06] is a high-performance library 

written in C++ which is developed and maintained by V. Shoup (http: //www. 

shoup. net/ntl). This library is an extra layer on the top of GMP and provides a 

useful range of number theoretic functions. It was used in the development process 

of the hash function LASH presented in chapter 5. We used some of the functions 

related to lattices and linear algebra, especially the well tuned implementation of the 

LLL and BKZ (Block Korkin-Zolotarev) [SE91] lattice basis reduction algorithms, to 

test the lattices associated to LASH for weaknesses. 

The list of platforms include: ARM, DEC Alpha 21064,21164, and 21264, AMD 29000, AMD 
K6, K6-2, Athlon, and Athlon64, Hitachi SuperH and SH-2, HPPA 1.0,1.1 and 2.0, Intel Pentium, 
Pentium Pro/I1/III, Pentium 4, generic x86, Intel IA-64, i960, Motorola MC68000, MC68020, MC88100, 
and MC88110, Motorola/IBM PowerPC 32 and 64, National NS32000, IBM POWER, MIPS R3000, 
R4000, SPARCv7, SuperSPARC, generic SPARCv8, UItraSPARC, DEC VAX, and Zilog Z8000. Some 
optimisations also for Cray vector systems, Clipper, IBM ROMP (R'f), and Pyramid AP/XP. 
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Integer arithmetic 

"Many people regard arithmetic as a trivial thing that children learn 
and computers do, but we will see that arithmetic is a fascinating topic 

with many interesting facets. " 

- Donald E. Knuth, 

In this chapter we study asymptotically faster integer multiplication algorithms. 

We will also study the computation of truncated products (short products) where 

we only compute a portion of the full product. Furthermore, we describe the 

"wooping" error-detection technique, which we shall use later in Chapter 4 to 

correct errors due to our faulty short product method used with the Montgomery 

reduction. 

We assume that we have a machine that can do arithmetic operations on word 

sized operands, which we will refer to as base operations, and that it has access to 

an unlimited random access memory. The first assumption is true for most modern 

machines whereas, strictly speaking, the second is not true; as memory is always 

limited in practice and there is some cost associated with fetching or moving data - 

a cost that depends on the size and location of the data and also on the speed, size 

and architecture of the RAM and cache. However, if enough care is taken then a 

good implementation should be able to bring this extra cost to a minimum. Also, 

in order to simplify the task of analysing algorithms, we will limit ourselves to the 

study of sequential machines and do not consider any aspect of parallelism. 
We represent large integers as arrays of machine words, with the basic arithmetic 

operations done with the usual classical schoolbook methods, unless otherwise 
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mentioned. A cost expression of the form xM + y3{ denotes the cost of performing 

x base multiplications and y base additions. In order to make comparison feasible, 

we introduce a parameter p such that 1M = µ3{. This parameter depends on the 

machine's architecture and implementation details. To keep our notation light, we 

will omit the unit . 91 in formulae of the form aM+b3{ = (a p +b)3{ and would simply 

write ap + b. 

Let us now estimate the cost of schoolbook addition and multiplication in our 

model. We have 3{(n) =n for the cost of adding two n-word integers, and M(n) = 

n2M + 2n(n -1), 3i for the cost of multiplying two n-word integers, i. e. we have 

A(n) =n and M(n) = (N + 2)n2 - 2n. (3.1) 

M�(n) and Mt(n) will denote the cost of computing the upper and lower halves of 

the product of two n-word integers, respectively. The cost of computing the lower 

half product is Me(n) = ln(n + 1)M + n(n -1)3i, so 

AM _ (2 + 1)n2 + (Z -1)n. (3.2) 

In principle, we have M,, (n) = Mg(n) but there is a small extra cost due to the fact 

that we need to keep track of carries from the lower half of the product, a fact which 

will be crucial in our work in Chapter 4 on RSA with very large operands. We also 

set R to be the least power of the basis that is greater than n-words i. e. if a word 
holds cLI bits then the basis is 

b=2ý' and R=b"=24". (3.3) 

Then, the subscripts ¬ and u respectively denote the lower and upper half parts of 
a number in the sense that 

xe =x mod R and x� = jx/RJ . (3.4) 
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We will assume that the word size is co = 32 bits, which is the standard word- 

size in most present computers. This means that when dealing with 15,360-bit RSA 

modular arithmetic in Chapter 4 we will need n= 480 words. If the word size is 64 

bits then n drops to 240. 

3.1 Asymptotically faster multiplication algorithms 

The next two subsections will review the Karatsuba and Toom-Cook fast integer 

multiplication algorithms and analyse their cost according to the model presented 

at the beginning of this chapter. A more comprehensive treatment of these and 

other methods can be found in [Knu98, p. 294-311]. We will also consider the 

computation of upper and lower halves of products [HarO5, Har07], as these will 

save us on the overall cost of the reduction algorithms considered in Chapter 4. 

Recall that, according to our computational cost model, we will not take the cost 

of memory operations into account and we will assume that they are for free. 

3.1.1 The Karatsuba integer multiplication 

This is a popular divide-and-conquer algorithm for faster multiplication introduced 

by Karastuba and published by Ofman [OK63]. It achieves an asymptotic complex- 

ity of O(nlg3) = 0(n1S85), as opposed to O(n2) for the schoolbook method (classical 

multiplication). 

Let u, vcN be represented as n-word integers in base b, where n= 2t. Write 

u= ulbt + uo and v= vlbt + vo, where uo, ul, vo, vi are t-word integers. Then 

uv = w2b2t + wl bt + wo, 

where 

w2 = ulvl 
WI = (uo+ui)(vo+vl)-wo-w2 

2 

wi --- j 
L WO 

WO = UOVO 4t 3t 2t t0 
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In practice, computing uo + ul and vo + vi may result in an overflow, so extra 

care has to be taken when computing these values. Alternatively, one can compute 

wi =WO +w2-(uo-ui)(vo-vi). 

which uses subtraction instead of addition and hence avoids overflows, this how- 

ever necessitates dealing with signed operands. 

If we use the Karatsuba method recursively to multiply operands greater than or 

equal to a fixed threshold value T and switch to schoolbook multiplication thereafter 

then the cost function can be written as 

W(n) _ 
31C(n/2) + 4n for nzT (3.5) 
M(n) for n<T 

Applying the general solution of such recurrence equations which we worked 

out in the introductory chapter (§1.3.1 on page 16) to this equation we get (for nZ 7) 

`K(n) = [(p + 2) 
2-18 T/")) + 6] 

14 
3 )(1g(TI"» T-(1 

183 
- 8n = O(n193). (3.6) 

Bounded by a constant (N, Tare fixed) 

The case where n is odd can be dealt with by letting t= rn/21, but it is more 

efficient to set t= In/2J allowing ul, vl to be (t+1)-word integers while keeping 

uO, vo as t-word integers. The extra bits need to be treated explicitly but it is worth 

the hassle as it will save some running time. With this latter approach, the cost 

obeys the following extra recurrence equation when n is odd 

K(n) = 29(((n + 1)/2) + K((n - 1)/2) + 4n. 

With this optimisation, it becomes very difficult to write down a closed form of 

the solution, if feasible to start with. So, we will be satisfied with a sample plot. 

The graph in Figure 3.1 shows the ratio M(n)/`K(n) for p=1.2 and T= 23, hence 

illustrating the savings that can be made by using the Karatsuba multiplication 

method instead of the schoolbook method. 
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The threshold values used in the graphs of this chapter (T = 23 and T' = 133 

which will be introduced later) are those of the Pentium-4 machines (2.80GHz, 

512KB cache, model 2) that were used for the timing experiments of Chapter 4 

(Section 4.3), as estimated by GMP's tuning program tuneup. These can easily be 

estimated for other architectures using the same tuning procedure (see Section 2.6 

for the GMP library). 

Note, however, that the exact value of y is hard to pin down because execution 

times depend on the ordering of instructions and data, which may lead to significant 

savings through pipelining. Luckily, it turns out that small variations in y have little 

theoretical impact on the cost ratios considered here, as p essentially only affects 

the leading coefficient which varies slowly as a function of p. The value 1.2 for p 

was experimentally chosen from a set of possible values in the range (1,1.5). These 

were obtained using loops to measure the average times for word operations on a 

few Pentium-4 computers with the same specifications mentioned previously, and 

then fitting the collected data to estimate the value of p. Values for p can also be 

estimated theoretically through the tables presented in [GraO7b]. 

3.1.2 Toom-Cook multiplication 

This method also uses a divide-and-conquer strategy and can be considered as a 

generalisation of the Karatsuba method. The general framework here is to treat 

integers as polynomials and then exploit some properties of polynomials to speed 

up calculations. 

We first write the two integers u, v that we want to multiply as two degree r 

polynomials u(x), v(x) whose coefficients are the base bt digits of u and v, for some 
fixed tEN. We then evaluate the polynomials at as many points as needed to 

uniquely define their product w(x) = u(x)v(x) through interpolation, namely 2r +1 

points. Now, multiplying the values of the two polynomials u(x), v(x) at the chosen 

points, we get the values of the product w(x) at the same points. Given these 2r +1 

values, we can now recover w(x) by interpolation; and to get the product of the 

original integers we simply evaluate w(x) at the base bt (release the carries). This 

yields a multiplication method having complexity O(nlog(2r+I)/ iog(r+1)). Note that 
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the Karatsuba method can viewed as a special case of this framework when r=1 

(linear polynomial). 

We will describe a popular instance of this family of multiplication methods 

known as Toom-3 multiplication in more detail. Toom-3 achieves a complexity 

of 0(n'0935) = O(nl-' ) by taking the polynomials u(x) and v(x) to be quadratic. 

Suppose we want to multiply two n-word integers u and v, where n= 3t. First, we 

represent them as quadratic polynomials evaluated at x= bt 

U= u(x)IX=y. = UO + ulb' + u2P, 

v= v(x)I bi = vo + vlbt + v2P. 

Now, to evaluate w= uv, we first evaluate w(x) = u(x)v(x) at x=0,1, -1,2, oo. Then, 

knowing the values of w(x) = W4x4 + W3x3 + W2x2 + wlx + wo at five points, we 

interpolate the coefficients of w. We have 

W4 = u2v2, .................. 
w4 , 

W3 = u2V1 + ulv2, w3 

W2 = U2VO + ulvl + uov2i w2 

wl = uovl + ulvo, 
ic 

wl 

wo 
6t 5t 4t 3t 2t t 0 

w(x)Ix=o = uovo = wo, 
W(X)lx--+l = (u2 + ul + uo)(v2 + vl + VO) a, 

w(x)Ix=-1 = (u2 - ul + uo)(v2 - V1 + VO) ß, 

W(X)lx--2 (4U2 + 2ul + uo)(4v2 + 2v1 + vo) y, 

W(X)lx--00 := 1imx-- u(x)v(x)/x4 = u2V2 = w4. 

So we get wo and w4 right away, and what remains is to find w1, wZ, w3. Solving 

the previous system of equations we get 

w2 = (a+ß)/2-w4-wo 

w3 = +wo/2-2w4+(Y-ß)/6-a/2 

wl = -wo/2+2w4-(y+2ß)/6+a 
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Hence, the cost function for Toom-3 is T(n) = 5T(n /3) + [391(t) +451(t) + 351(t)] + 

491(t), i. e. 
T(n) = 5? (n/3) + 14n/3. 

When n is not a multiple of 3, we set t= (n/31 and allow u2 and v2 to be shorter 

than t words, as is done in the code of the GMP library -This makes implementation 

easier. 

We introduce a second threshold value T' >T such that if n<T then we use 

schoolbook multiplication, if T <_ n< T' then we use Karatsuba multiplication, and 

if n> T' then we use Toom-3 multiplication recursively. 

Figure 3.1 shows the plots of the ratios M(n)/7C(n) and M(n)/T(n) for p=1.2, 

T= 23 (as before) and T' = 133, hence showing the speedup that is made over the 

schoolbook multiplication method in this case. 

S1- M(°)/T(n) 

M(n)/R(n) 

Z 

100 200 300 400 500 

Figure 3.1: Plots for M(n)/7C(n) and M(n)/T(n). 

3.1.3 Fast Fourier Transforms (FFT) based multiplication 

Suppose we want to multiply two multi-precision integers u and v of length na 

power of 2. We first represent both operands as polynomials u(x) and v(x) evaluated 

atx=b 

u= u(x)Ix=b = uo + ulb + ... + un-lbn-1 = (UO, ... , Un-1)b, 

V= v(x)Lx=b = vo + vlb + ... + vn-ibn-1 = (vol... vn-1)b" 

Now, to evaluate uv, we first compute the linear convolution of u(x) and v(x) by 

FFI-transforming their coefficients vectors and point-multiplying the results. We 

then evaluate the FFT inverse of the latter result at the base b to obtain the integer 
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product uv, i. e. 

uv = FFI`j(FFr2n(u) * '2, n(v))Ixz6. 

where * denotes point-wise multiplication of two vectors 

(ao,..., ak) *(bo,..., bk) = (aobo, albi,..., akbk). 

This approach fits with the Toom-Cook paradigm of fast multiplication since 

FFTz� and FFI' correspond to evaluation and interpolation at the 2nth roots of 

unity, respectively. We will next investigate the possibility of using FFTs to compute 

short products, then give an exact description of how to compute FFTs efficiently 

using complex arithmetic. 

FFT based short products 

There does not seem to be there any way of computing half products using FFTs 

without computing the whole product. However, it is shown in [PGO5] that a 

closely related result can be computed using what is called a cyclic convolution: Let 

w= uv = (w�lIwt)b, where w� and wt are the upper and lower halves of w in the 

b-base representation. The cyclic polynomial convolution of u(x) and v(x) is 

w(x) mod x" -1 = w�(x)x" + wt(x) mod x" -1 
= w�(x)+WI(x). 

This can be computed using FFT on n-point, instead of 2n points, as follows: 

wu(x) + wt(x) = FFI�'(FFr (w�) * F'n(wt)). 

The prior knowledge of either the upper or lower half of a product combined 
with this result will help us determine the other half. In fact, for our purposes, a 
good approximation to these halves will suffice. This fact will enable us to trade 
full FFTs for half-sized FFTs when only a half product is needed knowing that the 
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result has a special shape. The details can be found in the later discussion about FFT 

Montgomery and Barrett reduction (§7.2.2 on page 142) or alternatively see [PG05]. 

Computing FFTs using complex arithmetic 

The more precise term used for Fourier Transforms for vectors is Discrete Fourier 

Transform (DFT), but it is common to use the general term FFT for it when there is 

no ambiguity in its usage. 

Without loss of generality, assume that n is a power of 2, n= 2k. We call 

Wn = e2niln the principal nth root of unity. Let A(x) = ao + alx +"""+ a�_lxn-1 be a 

polynomial of order less than n. We identify the polynomial A with its coefficients 

vector a= (ao, al. """. an-1)" 

The Discrete Fourier Transform (DFT) of a polynomial A (represented by its 

vector of coefficients (ao, al, ... , a�_1)) is defined by 

n-1 
DF'Tn(A) _ (Yo, yi, ..., yn-i) where yk = A(w, k, ) =E ajwik. 

j=o 

A recursive algorithm to compute FFTs. Algorithm 8 describes how to recur- 

sively compute compute the FFT of a vector a, [CLRS01, p. 788]. 

Algorithm 8 FFT of a vector a (Recursive Algorithm) 
Input: A vector a of length n, a power of 2, and W� = e2ni/n, 
Output: FFrn(a) 

1: if n=1 then 
2: Return a 
3: end if 
4: W --1 
5: a101 (ao, a2, """, an-2) (Even indices) 
6: all] F- (al, a3, .... an-i) (Odd indices) 
7: y101 t- FFTn12(aE°I) 
8: y[l] F- FFTn12(aUl]) 
g: fork= 0,..., 2n -1 do 

10: t F- Wykl1 (1M) 

11: Yk E- yk01 +t (13i) 
12: y(n12)+k E- yk0) -t (1-91) 
13: cL) 4- cOCOn (Can be precomputed... ) 
14: end for 
15: Return y 
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This costs T(n) = 2T(n/2) + (n/2)M + n3{. Rewriting this recurrence equation as 

T(n) = 2T(n/2) + (p/2 + 1)n 

and using the general solution from 1.3.1 (page 16) we get 

T(n) = (N/2 + 1)n Ig n= ©(n Ig n). 

An iterative algorithm to compute FFTs. This is described in Algorithm 9, 

[CLRSO1, p. 794]. The cost is the same but implementation may be easier and more 

efficient with this approach. 

Algorithm 9 FFT of a vector a (Iterative Algorithm) 
Input: A vector a of length n, a power of 2, and w" 
Output: FFT�(a) 

"Bit-reverse" copy a into A 
I: for k=0,..., n-1 do 
2: Ar 

ij(k) t- ak 

3: end for 
Compute the FFT iteratively 

4: fors=1,..., lgndo 
5: m E-- 2' 

(rev(k) Is the (Ig n)-bit Integer reverse of k) 

6: Wm +_ e2ni/m 

7: fork0,..., n-1 bym do 
8: W1 
9: forj=0,..., Im-1do 

10: t 4-- WAk+j+m/2 (IM) 

11: u +-- Ak+ j 
12: Ak+j i-- U+t (I2 ) 

13: Ak+j+m/2 4- U-t (12 ) 

14: W F-- wwm (Can be precomputed... ) 
15: end for 
16: end for 
17: end for 
18: Return A 

The cost of this algorithm is (m/2M + m31)(n/m) Ig n= (n/2) Ig nM +n Ig n qt, i. e. 

(p/2 + 1)n Ig n. 
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Inverting the FFT (FFT-1). For the inversion, we note that DFTý, 1 =1 DFT(C, -1). 

So the cost of the inversion is the same as the cost of a DFT plus a division by n= 2k, 

which is a simple shift operation. 

3.2 Short products 

We will make use of methods for computing the lower and upper half products 

(short products), so we will study their costs next. We start with a general method 

that applies to all multiplication algorithms [Mu197, Har05] then present some 

specific solutions specific to the Karatsuba method. 

3.2.1 A general method 

First, we will introduce a visual aid that will make explaining this method easier and 

more intuitive. When multiplying two numbers using schoolbook multiplication 

we stack the partial products in a shape similar to the one on the left in Figure 3.2 

prior to adding them up; and to find the lower half product, for example, we only 

need to compute the results in the shaded triangle. 
pn 

Z- 

7z 

Figure 3.2: Calculation of short products. 

Let S(n) be the cost of computing a short product of two n-word integers. If 

we take a portion pn, where 0.5 <_ p<1, of both operands and compute their full 

product, corresponding to the darker shaded area on the right in Figure 3.2, and 

then compute the remaining terms using short products again, corresponding to 

the two light shaded triangles, then we find that this method would cost 

S(n) = M(pn) + 2S((1- p)n). 
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Since the multiplication methods we are considering, except PET based multi- 

plication, all cost M(n) = O(na) for some aE (1,21 we find that1 

S(n) S 1- 2(- p)a 
M(n). 

C, 

The factor Cp in the inequality S(n) 5 Cp M(n) is minimal at p= 1- 2"h1'C1-1), and 

the following table summarises the results for the methods that we are interested 

in. It should be noted that these arc the best asymptotically, and as such there may 
be better choices for p when n is small or moderate. 

Method a p Cp 

Schoolbook 2 0.5 0.5 

Karatsuba 1g3 0.694 0.808 

Toom-3 10935 0.775 0.888 

Note that if we fix n and look for the best value of ß we may get a slightly 
different value. For the case where n= 480, the value of p turns out to be about 0.80 

for Karatsuba and 0.88 for Toom-3. 

The next Karatsuba-specific methods are actually special cases of this general 

setup with p=0.5. They are easier to implement and may be faster in practice. 

Note, however, that doing the same for Toom-3 produces a slower method and 

hence it has not been considered. 

3.2.2 Lower half products using the Karatsuba method 

Recall that we have taken u= uo + btul and v= vo + b'vi to be n= 2t words long 

integers, and set w= uv = wo + webt + web' where wo = uovo, wl = uovl + ulvo and 
U12 = U1V1. 

'First, note that M(n) = 0(n°) implies that M(an) = a°M(n) for any acR. So we have 

S(n) = M(pn) + 2S((1- p)n) 
= M(pn) + 2M(p(1- p)n) + 22M(p(1- p)2n) + 23(... ) 

= (p° + 2pa(1- p)° + 22pa(1- p)2' + ... )M(n) 

5 17° 
1- 2(l - pp 

M(n). 
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For the lower product (uv)e, we now see that we need to compute 

wt = (wo + webt + w2b2t) mod b 2t = (uovo + [(uovi + ulvo) mod bt]bt) mod b2t 

= (uovo + [(uovi)e + (uivo)el bt)t, 

which costs ? CC(n) = ? C(t) + 29(C(t) + 2.74(t), i. e. 

9Ce(n) = 9C(n/2) + 2'Ce(n/2) + n. 

3.2.3 Upper half products using the Karatsuba method 

This time, we have to compute 

=I 
bet +wV+ wo 

= ulvi + 
1,, UOV1 
___ 

_ 
b2t Wu __ + carry 

uiv1 + (uovi)u + (uivo)u. 

(3.7) 

The carry results from adding wo to w1bt, in the full multiplication, and hence we 

have that carry E 10,1). 

If we ignore the carry and use the "faulty" recursive method suggested by 

this formula. Then, the maximum error c(n) that results from using this method 

recursively will satisfy the recurrence equation 

e(n) = 2c(n/2) +2 and e(n) =0 for n<T. 

By the result of section 1.3.1 (page 16) we deduce that 

c(n) =2. (2118(f1 1 
-1) < Tn - 2. 

So, computing upper-half products, up-to an error of order O(n), can be done at the 

cost of W ,, (n) = W(t) + 2? Cu(t) +2 71(t), i. e. 

9C�(n) = 9C(n/2) + 2Ku(n/2) +n= 7<`(n). (3.8) 
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It turns out that, when the faulty result of this method is used in the reduction 

algorithms, we can correct the computation by using a nice technique, known as 

wooping, which is due to Bos [FS03, p. 281-2841. This idea is explained in the 

next section 3.3, whereas the correction steps as applied in our modification of the 

Montgomery reduction are detailed in section 4.1.1 (page 71). 

To see how much faster these methods are, we plot Mt(n)/1Cg(n) (using both 

the general and the specific method) and MI(n)/TI(n) - sec Figure 3.3. The same 

speed-ups apply to the upper-half product methods too as they essentially have the 

same cost. 

2.1 
2.2! 

1.7! 

1.! 

1.2! 

0.0.775 

0.0;! 
91 

Figure 3.3: Plots for M&)/? CI(n) and MI(n)/Tg(n). 

3.3 Wooping 

The wooping technique allows us to verify the outcome of a set of integer operations 

via a clever probabilistic test. The idea as introduced by Bos and explained in [FS03, 

p. 281-2841 relies on the fact that if p is a prime number and we are given the result of 

an integer operation together with the inputs, then we can detect any modification 

of the result, with probability 1- 1, by reducing the given full result modulo p and 

comparing it with the recalculated answer modulo p. 

For example, if the operation is z . -- x"y then we randomly choose a small 

prime p and compute 9 +- x mod p and 9 . -- y mod p first. Next, we compute 

2 F- z"y mod p; and for the comparison we reduce z modulo p and compare the 

result with 2. If the two reduced results do not agree then there certainly is an 

error in the full integer computation, assuming the "small" calculation modulo p is 

correct, but if they agree then there is a low chance that an error has occurred. 
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That is to say, the general idea is to perform the same operations modulo a 

small prime number and then compare the results. More specifically, we reduce 

the operands modulo the prime number first then operate on them with the cor- 

responding modular operations. If p is a randomly chosen prime number then the 

probability that this check fails to reveal the error is l/p, so one can choose other 

prime numbers for the wooping test to increase confidence. 

We will use this technique in a different and novel manner in Chapter 4, where 

we already know that there is a linearly bounded small error in our computation 

which underestimates upper half products (using our earlier approach in §3.2.3) - 

What we want is to correct this error. Furthermore, since we are not in an adversarial 

setup, this correction scheme will be deterministic and always successful. The solution, 

in our case, will be to choose a woop modulus that is bigger than the largest 

possible error, and then correct the integer computation by adding or subtracting 

the difference between the two reduced values (according to whether the faulty 

result is an underestimate or an overestimate of the correct result). 

As a toy example of how to use the wooping technique for correction, let us 

consider a device that can multiply integers but sometimes overestimates it and 

introduces an error of +1 in the result. Suppose that we wanted to compute 4x5 

but we got 21 as the answer. First, note that we can choose the woop modulus 

to be 2 as that is enough to reveal the magnitude of the error. Now, we check 

that (4 mod 2) x (5 mod 2) =0X1=0 whereas 21 mod 2=1, so we correct the 

computation by subtracting 1 from 21 to get the correct answer of 20. For the exact 

details of how to use this technique in our work, see section 4.1.1 on page 71. 

On a side note, as an alternative to wooping one may consider computing 

enough extra words to the right of the truncated upper-product in order to ensure a 

small probability of a carry being missed. This is in fact suggested in [Har05] and the 

extra words are referred to as "guard digits. " This alternative is more complicated 

to implement because of the extra storage and will most likely be more expensive, 

especially if two or more guard digits are needed. Wooping on the other hand 

requires negligible storage and introduces little computational overhead, especially 
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if the wooping modulus is chosen to be special in order to speed up the modular 

reduction. 
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Chapter 4 

Efficient RSA at high security 

parameters 

"The choice is particularly difficult for paranoid organizations whose 
encrypted messages should remain secret for several decades, since it 

is almost impossible to predict the progress of factoring algorithms 
over such a long period of time. The only reasonable course of action is 

to use huge margins of safety, but this will make the RSA operations 
extremely slow. " 

- A. Shamir 

NIST has recently recommended using RSA moduli sizes as big as 15360 bits 

to match the security level of AES-256 [Nat06, p. 63]. With this in mind, it is now 

worthwhile to explore the improvements that can be made over [Koc94] by using 

asymptotically faster multiplication methods together with any "tricks" that may 

render them practical even for moderate operand sizes (4096-8192bits for example). 

We show how the wooping technique, described in §3.3, will allow us to overcome 

the difficulties that arise when trying to go beyond the obvious simple substitu- 

tion of multiplication methods. These difficulties are due to carry-propagation 

when computing upper-half products with recursive methods, a problem that 

does not arise when using traditional combinations such as the Karatsuba-Comba- 

Montgomery (KCM) method [GAST05, Sco96]. 

Using the formal computational cost model and material presented in chapters 2 

and 3, we estimate the exact cost of the Montgomery and Barrett modular reduc- 

tion algorithms. We then introduce two variants using the Karatsuba and Toom-3 
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multiplication methods, described in section 3.1, and analyse the savings that can 
be theoretically achieved. These variants have been implemented in C using the 

GMP library (see §2.6), and the relevant results are reported here and compared 

with the theoretical estimates. 

4.1 The Montgomery and Barrett reductions 

Given a fixed n-word modulus m, we want to reduce 2n-word integers modulo m 

as fast as possible. We will now describe two improved fast reduction algorithms, 
based on the Montgomery and Barrett methods, using multiplication methods that 

are faster than the schoolbook method and their adaptations to compute short 

products. 

4.1.1 Montgomery reduction 

Let us first recall the general Montgomery reduction algorithm as described in 

Algorithm 3 on page 41. 

Input: n-word integer m, rn = -m'1 mod R where R= b", and z< mR. 
Output: zR"1 mod m. 

1: u ý-- ? hz mod R 
2: xE-(z+um)/R 
3: If xzmthen 
4: x4--x-m. 
5: end if 
6: Return x 

(htc(n)) 
(h%1 (n) + fi(n)) 

(21(n)) 

Note that in Step 1, it is sufficient to compute a lower half product; and in Step 2 

we can compute an upper half product of u and m then add the result to z� plus a 

carry. Hence, the cost of this algorithm is Me(n) + M�(n) + 2n. So, its cost using 

schoolbook multiplication is (using Mt = M�) 

C, �,, ý(n) . (µ + 2)n2 + µn. (4.1) 

Here, we have used C with subscript mr, cl to indicate cost of Montgomery re- 
duction using classical multiplication (schoolbook multiplication method). Later, we 
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will use mm for Montgomery multiplication, br for Barrett reduction, 2 for Karatsuba 

multiplication (Splitting operands into two halves) and 3 for Toom-3 multiplication. 

The practical word-level version of Montgomery reduction (Algorithm 4) is 

based on schoolbook multiplication and does not require direct calculation of lower 

or upper half products, but the quoted cost remains the same. 

The Karatsuba variant with wooping 

Recall, from section 3.2, that we can compute upper-half products using Karatsuba 

multiplication with an error of O(n). We will now explain how to use the wooping 

correction idea in our case. Let AEN be a modulus greater than the magnitude 

of the maximum possible error resulting from ignoring the carry in the "faulty" 

upper-half Karatsuba method. 

We first compute the product u *- (-m-1)z mod R= (ttiz)¬ with a low-half 

Karatsuba multiplication. Now, for x E- (z + um)/R, note that a good approximation 

to this value is given by x� + (um),,, which will be off by at most 1 (carry). An extra 

error will come from the fact that we are using a faulty Karatsuba multiplication for 

the upper-half product (um)u. To correct the approximate answer, we now compute 

(z + um)/R modulo A and compare it with the reduction of the approximate value: 

Given that the error magnitude is less than A then we will be able to deduce the offset 

from the correct answer by comparing these reduced values, and therefore correct 

our answer. This is the "trick" that allows us to be satisfied with an approximation 

to (um)� and save on its computation. 

If we further choose A=0 -1, for some 1EN, then reduction modulo A becomes 

rather efficient (see § 2.1.1, page 38). In fact, to reduce an n-word number modulo 
V -1, we only need about rn /li additions on numbers of size 1 words, costing a total 

of n3I. In practice, for b= 232, we take 1=1 as this is enough to correct errors for 

operand sizes n<b. Also, note that with this choice of A and R= b" we have R -1 
(mod A), so the computation of (z + um)/R mod A requires no inversion. 

With this choice of A=b -1 and R= b", the correction steps involve computing 

z+ um mod A, costing about (2n +n+ n)3i + 1M + 291, and x mod A, costing about 

n3f, where x is the result of step 2 of the algorithm. Then, computing the offset 
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and correction will cost 23{. So the cost of the Karatsuba variant of Montgomery 

reduction is about 

Cm,, z(n) = 9Cg(n) + 9C�(n) + 7n +p+4. (4.2) 

Algorithm 10 gives a detailed description of our method. We use subscript A 

instead of writing "model" to lighten notation, e. g. z, =z mod A. We also use the 

notation (um). to indicate that we are using our faulty upper-half product method 

to approximate (um),,. 

Algorithm 10 Montgomery reduction with wooping 
Input: n-word modulus in, m= -m-1 mod R where R= b", z< mR, and A=b-1. 
Output: zR-1 mod in. 

1: u E- (mz)e (1i(n)i 
2: X 4- zu + (um)�u (%(%(n) + An)) 
3: Cf-(z, +UA"mA)), 

x E- x- (C - xa) 
4: If xým then 
5: x+-x-m. 
6: end if 

(Correction (Wooping)) 

Mn)) 

7: Return x 

The Toom-3 variant (with wooping) 

We proceed exactly the same as in the Karatsuba variant (Algorithm 10) but using 

the Toom-3 multiplication methods. Then, the cost is found to be 

Cm,, 3(n) = ? j(n) + Tu(n) + 7n +p+4. (4.3) 

Comparison. Figure 4.1 shows the graphs of CM,, cl/Cm,, 2 and Cm,, cdCm,, 3, and 

serves to illustrate the improvements that can be made with these two variants of 
Montgomery reduction. 

Crossing point. From the graph we see that the crossing point is at about 40 

words, so we expect the Karatsuba variant of Montgomery reduction to start being 

effective from moduli sizes of about 1280 bits. 
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Figure 4.1: Plots for Cm,, c! /Cmr, 2 and Cmr, cllCmr3. 

4.1.2 Montgomery multiplication 

Montgomery multiplication aims to achieve fast multiplication and reduction in one 

go. There exists an efficient interleaved version where multiplications and division 

by R are interleaved and performed word-by-word as described in Algorithm 5 

(quoted below, see page 43). This approach keeps the memory costs minimal and 

makes implementation easier. 

There does not seem to be an easy way in which this can be done with the faster 

multiplication methods because of their recursive nature. For future research, we 

propose using an iterative version of Karatsuba in Section 7.2.3 (page 145). We leave 

this as an open problem. 

Let us now analyse Algorithm 5 and find its computational cost. 

Input: n-word integers X, YE Zm, R= b", and rn = -m'1 mod b. 
Output: XYR-1 mod m. 

1: z4-0 
2: for i=0,..., n -1 do 
3: u E-- (zo + X; Yo)rft mod b (2M + 13i) 
4: z F-- (z + X1Y + um)/b (2M1(n) + 231(n)) 
5: end for 
6: if z >: m then 
7: z<-- z-m 
8: end If 
9: Return z 

Let Mi(n) denote the cost of multiplying an n-word integer by a single word 

integer. Then we find that 

Mi(n) = nM + (n - 1)3{ = (µ + 1)n - 1. 
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So, the cost of the interleaved Montgomery multiplication is n[2M + 131 + 2(nM + 

(n -1)3{)] + 3{(n), i. e. 
Cmm, d(n) = 2(µ + 1)n2 + 2pn. (4.4) 

The Karatsuba variant (with wooping) 

To compute the Montgomery multiplication of X and Y: XYR's mod m, we first 

multiply X by Y using the Karatsuba method then we Montgomery-reduce the 

result as described in Section 4.1.1. Montgomery multiplication using Karatsuba 

will therefore cost us 

Cmm, z(n) = ¶C(n) + Cm,, 2(n). (4S) 

The Toom-3 variant 

Here we also proceed exactly the same as in the Karatsuba variant. The cost this 

time is found to be 

Cmm. 3(n) ='%(n) + Cmr, 3(n). (4.6) 

Comparison. Figure 4.2 shows the plots of Cmm, ýJ/Cmm, 2 and Cmm, cj/Crnm, 3, which 

illustrate the gain that is theoretically achievable with these variants of Montgomery 

multiplication. 

i. 

0. 

... t (n) /C.., 1 (n) 

.. "i (n) /C.. i (n) 

Figure 4.2: Plots for Cmm, ci/Cmm, 2 and Cmm, ct l Cmm, 3. 

Crossing point. From the previous graph we find that the crossing point is at 

about 90 words, implying that 2880 bits is the point from which our variant starts 

to be advantageous. 
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4.1.3 Barrett reduction 

Recall Algorithm 2 (page 40) which describes the Barrett reduction method. 

Input: n-word modulus m, ,u= 
[b2'ß/m] and z< m2. 

Output: z mod m. 
1: Z' 4 zI Z/bn-1I, qI zlp/bn+l j (Mu(n)) 

2: r F-- (z mod bn+l) - (qm mod bn+l) (Me(n) +. 7I(n)) 
3: ifr<0then 
4: r E- r+ bn+l (17I) 

5: end If 

6: while r>m do 
7: r +- r-m (Repeated at most twice: 23i(n)) 
8: end while 
s: Return r 

From this description, we see that the cost of this algorithm is at most M. (n) + 

Mt(n) + 3n + 1. So if schoolbook multiplication is used then this reduction method 

will cost 

Cy,, cl(n) = (µ + 2)n2 + (µ + 1)n + 1, (4.7) 

and if Karatsuba multiplication is used it will cost 

Cbr, 2(n) = ? C(n) + ¶K1(n) + 3n +1 (4.8) 

and similarly for Toom-3 we get 

Cbo(n) = T(n) + T(n) + 3n +1 (4.9) 

Comparison. Figure 4.3 represents Cbc1/Cbr, 2 and Cbrcl/Cbr, 3, and again we can 

see from it that the cutoff point is at about 90 words. 

4.2 Exponentiation using the sliding-window method 

The RSA operation consists of a modular exponentiation modulo a large RSA- 

modulus. In our implementation of the methods developed in this chapter we used 
full size exponents and therefore needed a fast exponentiation method. We used 

the sliding window method which we now describe. 
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Figure 4.3: Plots for Cf,. 41Cb,, 2 and C6id/Cbo. 

The sliding window exponentiation method is a generalisation of the fixed 

window method (k-ary method), where the window is allowed to slide so that the 

number it represents is odd. This flexibility halves the number of prccomputed val- 

ues and reduces the average number of multiplications (but the number of squarings 

stays the same). Algorithm 11 gives a concise description of this generalisation. 

Algorithm 11 Sliding-window exponentiation 
Input: Group element g and integer e= (enen-i ... e0)2k where kz1. 
Output: ge. 
1: gl E- g, $2 4- gz 
2: for i =1, ..., 2k-1 -1 do 
3: $241 E" $2i-1$2 

4: end for 
5: A+-1, i«-n 
6: while i 2: 0 do 
7: ife; =0then 
8: A+-A2, i+-i-1 
9: else 

10: Find the longest bit-string er ... ej such that i-C+1Sk and et =1 
11: A A2r-4+1 g(e,... er)2 i E-- ¬-1 
12: end if 
13: end while 
14: return A 

A careful analysis of this method for bit-size q done by H. Cohen in [CohO51 

shows that there exists p>1 such that this method requires 

A2 +k+2 
+ 0(p-n) s9uarin s and 

q_ k(k + 3) 
+O -qmultiplications. 'ý 2(k + 1) g k+1 2(k+1)2 (P ) 

We note that GMP optimises the window size k depending on the exponent's 
bit-size q by finding the least k such that 2q > 2k(k2 + 3k + 2) = 2k(k + 1)(k + 2). The 

76 



§4.3 Experimental results 

following table shows when a window of size k is first used by GMP for n< 1000 

(q = 32n). 

k 3 4 5 6 7 8 9 10 

n 1 3 8 22 57 145 361 881 

4.3 Experimental results 

We implemented Montgomery Multiplication in three flavours: The classical inter- 

leaved version, the new Karatsuba and Toom-3 with wooping variants and, finally, 

a naive version where we first multiply using the fastest available multiplication 

method then Montgomery-reduce the resulting product using the efficient word- 

level version of Algorithm 3 (GMP's reds function). These were implemented in C 

using the GMP library [Gra07a] with the low-level mpn set of functions for speed (as 

they are SSE2-optimised). We also implemented the RSA exponentiation by adapt- 

ing GMP's mpz_powm function which uses the efficient sliding window method for 

exponentiation [Gor98, Coh05]. 

The times needed to perform each of these two computations were averaged for 

random full size operands of sizes from 64 words (2,048 bits) up to 576 words (18,432 

bits), in a step size of 32 words, and then plotted to ease comparison of the different 

methods. Figure 4.4 shows the timing results for Montgomery Multiplication, and 
Figure 4.5 summarises the average times obtained for RSA exponentiation using 

full size random messages and exponents (times are given in milliseconds). 

We note that although the experimental cutoff points do not fit very accurately 

with the theory, because of the parallelism present in modem processors (pipelin- 

ing), these are not far from the expected theoretical values, and the general trends 

are indeed as expected. 

The experiments were done on Intel Pentium 4 machines (2.80GHz, 512KB cache, 

model 2). The threshold values that were used are (T, T') = (23,133) as estimated by 

GMP's tuning program tuneup. We bring the reader's attention to the fact that GMP 

uses slightly different threshold values for squaring, for which a more optimised 

code is used. (For our machines, they are 57 and 131 respectively, as estimated 
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Figure 4.4: Montgomery Multiplication times in milliseconds. 
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Figure 4.5: RSA exponentiation times in milliseconds. 

by tuneup, but there is a large margin of error in them). Note also that, in our 

implementation of the short products algorithms, we used halves of T and T' for 

the thresholds. 

In particular, we find that an execution of a 15,360-bit RSA exponentiation 

with full size exponent on these Pentium 4 machines takes 16.1 seconds with the 

Karatsuba variant and 15.6s with the Toom-3 variant on average, compared to about 

23.3s with the naive version and 36.45s for the traditional interleaved Montgomery 

multiplication. 
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RSA in practice (Comment on the size of exponents). In practice, the exponents 

used in the RSA encryption operation are small or of a special form, e. g. e=3 or 

e= 216 + 1. We have produced graphs for the full size exponents case to reflect the 

very general case, but timings for these special exponents can easily be estimated 

from the timings of Montgomery multiplication (Figure 4.4), e. g. for e=3 we will 

only need two multiplications' so it would cost about 2 milliseconds seconds only 

using our new variants. Likewise, for e= 216 + 1, the computation will take about 

17 milliseconds, which is of course much faster than the very general case of full 

size exponents. 

For the RSA decryption operation, the Chinese Remainder Theorem is usually 

used to construct m= ca mod N from the simpler operation cd mod p and cd mod q, 

so all operands will be of roughly half the size (240 words in our case). 

In our treatment of this problem, we have concentrated on speeding up modular 

arithmetic. There are other ways of implementing RSA with large public key which 

we discuss in the conclusion chapter, see §7.2.1 (page 141). 

i If the squaring operation is optimised then it costs one squaring and one multiplication. 
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Chapter 5 

LASH, a lattice based hash 

"Although there is no specific reason to believe that a practical attack 
on any of the SHA-2 family of hash functions is imminent, a 

successful collision attack on an algorithm in the SHA-2 family could 
have catastrophic effects for digital signatures. " 

- NIST, Federal Register Notice (November 2,2007) 

Hash functions play an important role in cryptography and constitute a sensitive 

component of many protocols. Traditionally, the used hash functions were picked 

from the MD family of hash functions, which includes the popular MD5, RIPEMD 

and SHA1 hash functions. But in light of the recent novel attacks on this family 

that were discovered by X. Wang in 2005 [WY05], the cryptographic community 

has been left with very limited choice of hash functions to be used. We are in great 

need for new design paradigms and better hash function families than the currently 

available. 

These recently broken hash functions are essentially all derived from the same 

design principles and are built using somewhat ad-hoc techniques, albeit being con- 

structed using solid symmetric cryptography techniques and expertise. In contrast 

to this practice, other areas of cryptography have replaced ad-hoc constructions 

with well defined sets of design principles. Examples include the wide-trail de- 

sign strategy of AES [DR02, Chapter 9], or the rigorous application of reductionist 

provable security techniques as in the context of RSA-OAEP [BR94, FOPSO1]. 

However, considering the recent attacks on the currently deployed hash func- 

tions, Provable Security has become a desirable property and a very important 
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aspect, if not essential, in the design of hash functions. A slower hash rate is not too 

much of an issue for many applications. Therefore, it is very important to closely 

study potential constructions, propose new ones and improve them when possible. 

While the SHA2 family of hash functions is not yet known to succumb to the 

recent attack techniques, its design principles are so similar to SHA1 that we have 

no guarantee an attack will not appear in the near future. Furthermore, despite the 

fact that a lot is known theoretically about how to construct hash functions from 

one-way functions, these theoretical results do not aid one in designing efficient and 

practical realisations. Hence, there is an urgent and pressing need for new radical 

designs and constructions of families of practical hash functions. Also, considering 

the damage of the recent attacks, provable security has now become a very desirable, 

if not essential, property of any new hash function proposal. Speed may be the price 

to pay for this property, but this should not be too expensive and a successful design 

should keep the overhead as small as possible. 

One problem with previous attempts to design an alternative family of hash 

functions based on hard computational problems, such as the RSA-like MASH-1 

algorithm [IS096] for instance, has been that the result is not competitive in terms 

of performance. However, the recent development of a provably collision resistant 

and a somewhat efficient hash function based on the hardness of factoring called 

VSH [CLS05] has ignited a renewed interest in devising more hash function families 

of this kind, which may be efficient enough to be used in practice as a replacement 

to the old ones. 

VSH is faster than MASH-1, but it is still significantly slower than any standard 
hash function. The output block length is fixed to the size of an RSA-modulus, 

although of course this may be truncated in an actual application, and its design 

criteria mentions nothing about pre-image resistance or other desirable properties 

as its only proved property is collision-resistance. Additionally, the design of VSH 

raises the question as to whom actually generates the hard problem upon which the 

security is based, i. e. the prime factorisation of the RSA-modulus (We may need to 
put trust in some third party or parties to generate the secret in a secure multi-party 
computation). 
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In this chapter' we will explore one possible path to achieve this aim through a 

relaxation of a previous inefficient proposal. We modify and tune the construction 

proposed by Goldreich, Goldwasser and Halevi (GGH) in [GGH96], which is based 

on lattices, to obtain a fairly efficient compression function and a hash function that 

we call LASH. We will introduce a result by Ajtai [Ajt96], which is the complexity 

result behind the security of the GGH compression function, and then discuss 

the design and claimed properties. We show that it is unfortunately insecure 

for any practical instantiation, despite it being secure asymptotically. We then 

present our modified hash function, LASH, which is partly based on the Miyaguchi- 

Preneel construction [BRS02] as we replace block ciphers with a modular matrix 

multiplication of the kind used in the GGH construction. That is to say, LASH uses 

a relaxed version of the theoretical GGH construction as a core component in its 

compression function. With these choices, we show that with a suitable selection of 

parameters we can produce a hash function which is comparable in performance 

to existing deployed hash functions such as SHA2. 

Before going any further, now is probably the right time to explain what the 

acronym LASH stands for. Actually, it has a number of possible meanings which 

all reflect the design principles and properties of this family of hash functions: 

" Linear Algebra based Secure Hash: As the main component is simply a 
matrix-vector product. 

" LAttice based Secure Hash: Because inverting/finding collisions in the linear 
component of the hash function is closely related to the hard problem of 
finding short/close vectors in lattices. 

" Light-weight Arithmetical Secure Hash: Because the design is very short and 
easy to remember. 

In this chapter we will repeatedly refer to two special types of vectors, and for 

convenience we will give them names for ease of reference. A binary vector in a 

'The material presented in this chapter is joint work with D. Page, M. J. O. Saarinen, J. H. Silverman 
and N. P. Smart, [BPS'06]. My main contribution was in writing code (using the NTL library) to 
experiment with different ways of generating "hard random lattices" and trying to attack them using 
lattice reduction techniques, under the supervision of Smart. I also noticed the special form of the 
lattice basis matrix kernels which turned out to be the basis of an attack on an earlier version of LASH 
which directly influenced its current design. §5.3.4 is mostly the work of Silverman, §5.4 is mainly 
the work of Page and Saarinn. Adopting the Miyaguchi-Preneel construction was suggested by 
Saarinen. The rest of the chapter contains contributions from coauthors to different degrees. 
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lattice L is defined to be a vector in L whose coordinates are restricted to come from 

the set 10,1). The set of all binary vectors in R" will be denoted by B". Similarly, we 

define a ternary vector to have coordinates from the set 1-1,0,1) and let ?" to denote 

the set of ternary vectors in R". 

5.1 The GGH lattice based hash function 

Interest in cryptographic primitives based on lattice problems thrived after Ajtai 

published his seminal paper "Generating hard instances of lattice problems" [Ajt96] 

in 1996, in which he showed that some variants of the knapsack problem are at least 

as hard to break on the average as the worst case instances of a corresponding lattice 

approximation problem. 

In slightly more detail, if we let c be an arbitrary positive constant then assuming 

that there is no efficient algorithm to approximate SVP in an n-dimensional lattice 

to within a multiplicative factor nC in the worst case, then Ajtai's result allows us 

to build a knapsack-like cryptographic one-way function that is as hard to break 

on average as to approximate SVP to within a polynomial factor in the worst case, 

provided that the key is chosen randomly. 

In the same year (1996), Goldreich, Goldwasser and Halevi presented in [GGH961 

a hash function whose collision resistance could be related to the worst case of the 

problem of approximating small vectors in lattices (SVP). It was shown, in the 

tradition of reductionist provable security, that any algorithm which could sys- 

tematically find collisions for such a function can be used to solve the problem of 

approximating short vectors in an associated lattice to within a polynomial factor 

(AFPRSVP). The reduction to the worst case of this latter problem was established 

using the result of Ajtai [Ajt96]. 

The problem with the construction of a compression function using the ideas of 

Goldreich et al. is that, with the parameters needed so as to reduce the underlying 

lattice problem to the worst case scenario, the resulting hash function is not very 

efficient. In addition it appears hard to directly develop a hash function which meets 

a specific security guarantee required by the practical community. For example, if 
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the output hash size is n bits in length then it should require 2"12 operations to find 

a collision. One can show (see later) that collisions can be found in the construction 

of Goldreich et aLusing 2"/3 operations, or 2n/4 operations if one is using the GGH 

construction with the MD construction to extend the input domain. 

5.1.1 The GGH compression function 

Let HE zmxn be an mxn integer matrix, and let q be a fixed integer modulus (not 

necessarily prime). We define a lattice LH and a map fH by 

LH={xEZ : Hx=0 (modq)) (5.1) 

and 
fH : 10,1)" -* (Z/qZ)m 

, (5.2) 
bH Hb (mod q) 

where bit-strings from {0,1)" are interpreted as binary vectors from B� C Z". 

The map fH is taken to be the compression function in the hash function con- 

struction proposed by Goldreich, Goldwasser and Halevi [GGH96], and the lattice 

LH is its associated lattice. Building on the work of Ajtai [Ajt96] they show that, for 

a suitably chosen mxn matrix H over ]Fq, if the map fH is collision resistant then 

it is hard to find small non-zero ternary vectors in the lattice LH. More precisely, they 

show that if m, n, and q= O(nc), for some constant c>0, satisfy 

m 1og2 q<n< 2m4 
(5.3) 

then the difficulty of finding collisions for fH is equivalent to the worst case complex- 

ity of the approximate shortest vector problem APPRSVP in a lattice of dimension 

m. 

Goldreich et al. suggest that the function fH is suitable as a cryptographic hash 

function. However, in practice matters are not as easy and nice. Firstly, as m and n 

tend to infinity, multiplicative constants and even log factors may not be of great 

theoretical importance, but when deployed in real life such a cryptographic system 
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is likely to employ lattices of dimension a few hundreds, if not thousands. In these 

cases, the constants and log factors are significant and crucial to the efficiency. From 

equation 5.3, we can show that we must have 

n m< 
S 5 Ig n 

which implies, for example, that an algorithm that finds collisions in dimension 

n= 500 can be turned into an algorithm to solve APPRSVP in dimension m, but only 

with mS 11. Similarly, finding collisions in dimension n= 1000 gives an APPRSVP 

algorithm in dimension at most m= 20; and even dimension n= 10000 only gives 

an APPRSVP algorithm in dimension at most m =150. 

Given the efficiency of LLL-type algorithms in low dimension, it thus appears 

that the practical security of hash functions based directly on the GGH compression 

function fl, must depend on the average-case difficulty of solvingAjtai's problem itself in 

high dimension, rather than on the derived difficulty of solving worst case ArrRSVP 

in much lower dimensions. 

Furthermore, if using the output of the linear function fit as the hash value one 

does not achieve the concrete security level one would want in practice: The output 

hash length is m Ig q bits so the size of the hash space is q"; and thus it is required 

that the best method for finding collisions will take time no less than the generic 

birthday attack costing NrqT operations, as is required of all hash functions. We will 

see in section 5.1.2 that one can find collisions in fit in time significantly shorter 

than , and we also describe an even faster attack if the function fit is used as 

the compression function in a Merkle-DamgArd construction (MD). 

However, despite this negative fact of not being able to rely on the asymptotic 

worst-case/average-case analysis of [GGH96] to derive concrete security guarantees 

for a practical GGH hash function instantiation, it is not hard to (asymptotically) 

relate the security of the function fH to the hardness of certain standard problems 

in the lattice LH. The following result is reproduced from [Dwo97] and [GGH96]. 
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Proposition 5.1. (a) Inversion of fH is equivalent to finding, for a given vector aERn, 

a vector that differs from a by a binary vector, that is, finding a vector x satisfying 

xELH and x- aEBn. 

In particular, such a vector x always satisfies jlx - all <- Vn-, and on average it will 

satisfy llx - all n/2. 

(b) Finding a collision for fH is equivalent to finding a nonzero ternary vector in LH, that 

is, finding a vector in the intersection 

xETnf1LH withx#0. 

In particular, such a collision-producing vector always satisfies IIxII <_ -Fn, and on 

average a collision gives a vector xE LH satisfying IIxll n/2. 

Here is an elementary proof of this proposition. 

Proof. For (a), suppose that we are given bE (Z/gZ)m and want to solve fH(y) =b 

for yEB. We begin by finding any vector aEZ satisfying Ha a -b (mod q). 

This is easy to do, since the congruence Ha =_ -b has more variables than equations. 

Of course, we are assuming that there is at least one solution. Now the following 

problems are equivalent: 

" Solve fy(y) = b. 

" Find ye B� satisfying Hy = b. (Since the domain of fH is B. ) 

9 Find VE B� satisfying H(y + a) = 0. (Since b= -Ha. ) 

9 Find XE LH satisfying x-aE B� (Letting x=y+a. ) 

This completes the proof of (a). 

For (b), we first observe that if fH(x) = fH(y), then x-yE LH and clearly x-y is 

ternary. Conversely, suppose that zE LH is a ternary vector. Then z can be written 
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as a difference z=x-y of binary vectors, so fH(x) = fH(y) and we have produced 

a collision. 

Binary and ternary vectors of dimension n have length at most n, and the 

average length of a binary vector is n/2. The average length of a ternary vector 

is 2n/3, but the average length of the difference of two binary vectors (which is 

how the ternary vectors are being produced) is n12.13 

We have made the conservative assumption that solving APPRSVP for the lat- 

tice LH yields a collision for fN, but this is actually only true if the solution is a 

ternary vector. A detailed analysis using standard assumptions, e. g., assuming that 

the collection of lattices (Ltt) satisfies the Gaussian heuristic (cf. [HPS98, MSOI]), 

yields a more precise statement. One finds that for the suggested parameters, given 

later, solving APPRSVP in L11 to within a factor of approximately 2.5 is likely to yield 

a ternary vector, and hence a collision of fit. In the opposite direction, solving AP- 

iRSVP in L11 to within a factor of say 1.8 is unlikely to yield a collision, since almost 

all vectors of this size in L11 are not ternary vectors, see section 5.3.4 on page 102 for 

details. 

5.1.2 Collisions in the GGH construction in less than VV operations 

In this section we describe an attack on the plain GGH compression function con- 

struction. In particular we show that for fixed parameter sizes one does not achieve 

the security that is hoped from the Goldreich et al. construction. 

Before giving the details of the attack, let us first examine the lattice associated 

with the GGH construction closely and work out some of its properties. 

Dimension and discriminant of LH. Note that qZ" C L11 C Z", so we clearly 

have that 

dim(LH) = n. 
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If the map fH is surjective, then we have the following short exact sequence2 

0->LH-' 7C' (7L/qZ)m-*0. 

This implies that (Z/qZ) n- Zn/LH, which allows us to compute the discrimi- 

pant of LH as follows 

A(LH) _ [Z" : LH] = #(7L/g7L)m = qm. 

Bases for LH. We first recall that a lattice has many matrix bases which are 

related through multiplication by unimodular matrices. We shall now describe two 

methods for obtaining a basis for LH. Since the dimension of the lattice is equal to 

n, the basis matrix should also be of dimension nxn. 

For this section, we adopt the row-wise basis convention (For use with the NTL 

library, see § 2.6), i. e. a matrix B= (Vi,. .., Vm)T E ][tmxn is a basis for the lattice LB iff 

LB={xB: xEZ'1. 

1. If fy is already known to be surjective then a basis for the lattice LH can be 

derived by first computing the nx (n - m)-kernel matrix of H over the integers, 

which we denote by KH. This kernel matrix takes the special form 

1' 
K=K for some mx (n - m) submatrix K`, 

In-m 

where 1�-, n is the (n - m) x (n - m) identity matrix. 

2A short exact sequence of groups GI, G2, G3, written as 0 -º Gl -. Gz -4 G3 -4 0, is given by two 
maps nj: GI -º G2, n2: G2 --º G3 where nl is injective and 712 is surjective. An important corollary of 
this is that kernel of n2 is the image of n1 and hence the group Gl can be viewed as a normal subgroup 
of G2 and most importantly we have 

G3aG2/G1, 

which we have used here. 
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A basis for our lattice LH can then be obtained from the rows of the matrix 

(K')T In-m 

9rm 0 

where the submatrix (K*)T is the transpose of K. 

2. More generally, a basis matrix for the lattice L11 can be derived by first finding 

a spanning set of vectors that spans the lattice LEi, then reducing it will provide 

us with a basis. This can be done as follows: First, form the Smith Normal 

Form (SNF) of H as 
Si, = UHV, 

where Sn is diagonal and U, V are square invertible integer matrices. 

If we let r denote the rank of H, then the lattice Lit is spanned by the first r 

rows of VT. When the corresponding diagonal entry sip of S is not equal to 

one, we multiply the corresponding row of VT by glsjj (mod q). This rxn 

matrix is then augmented with the rows of the nxn matrix q1,,. A basis from 

this spanning set can then be obtained in the standard manner. We define Bit 

to be the row-oriented basis matrix obtained in this way. 

The attack. Our first attempt to make the GGH construction practical used 

the linear function fH directly as the compression function, exactly like Goldreich 

et al. construction. We soon noticed that if we assume that fjl is surjective then the 

basis of the associated lattice looked surprisingly special, as it can be written in the 

following form (as has just been explained in the previous note on bases for L11) 

ýr, )T In-m 

qlm 0. 

An attack related to this idea of the authors was pointed out by an anonymous 

referee for an earlier version of LASH (which did not use the Miyaguchi-Preneel 

scheme or the post processing step, that will be sketched later) finds a binary vector 
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in the lattice associated to fH in time q"`/3 and thus can be used to break the collision 

resistance of a hash function based solely on the GGH construction. 

The attack works as follows: To find a collision, we only need to consider vectors 

of the form x= (yl10) where yE B�-? n and 0E Bm. The vector x produces a lattice 

vector of the form (y(K"N)T, y). If we try to solve y(K"H)T (mod q) =0 then the 

resulting lattice vector will be a binary vector in the lattice. 

However, solving y(K"H)T (mod q) =0 has been studied by Wagner [Wag02] in 

terms of a k-sum generalisation of the birthday paradox. This problem can be 

solved as follows: We divide the n-m row vectors of (KH)T into four lists and form 

qm/3 combinations of the row vectors in each list such that their lower third parts xor 

to zero (i. e. they are equal in their lower third parts). Then we use the technique of 

Wagner to find a subset sum equal to zero modulo q. We expect such a subset sum 

to exist since the entries of (K'H)T are essentially random elements modulo q. Thus 

the running time is gmI3, which is the time to produce the lists and the time to run 

Wagner's algorithm. 

One can extend this method by constructing a list of 2d partial matrix-vector 

products by using d message bits in a message block and running through all 

combinations (i. e. subset sums of rows of (K )T). By choosing another d message 

bits, another list of equal size can be produced. It is possible to merge these distinct 

lists in essentially 0(2") time to produce a third list of equal size that has the property 

of having d selected bits as zero. The process can be recursively applied in a tree-like 

fashion to produce a collision in kd bits of the internal state with the selection of 2kd 

message bits and 0(2k+d) effort in optimal conditions. 

A Hybrid Attack on the MD construction 

We will outline a hybrid attack that combines cycle-based collision finding tech- 

niques with linear algebra and a time-memory trade-off against the GGH function 

applied directly to multi-block messages using the MD construction, i. e. LASH with 

a different compression function, i. e. the function fH as the compression function, 

and no output transform. 
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The general strategy of the attack is to try to select two-block messages in a way 

that forces a cycle-based collision finding algorithm such as [0W99] into a smaller 

cycle, thus producing collisions faster. If the outputs belong to a subset S of possible 

outputs, collision search will have O(ff) complexity, assuming that the message 

selection process is 0(1). 

The messages are chosen as follows. The first block of the message contains the 

output of the previous iteration in the collision finding algorithm. The message bits 

in the second block are chosen in a way that causes a number of bits in the internal 

state of the hash function be to zero, hence forcing the final output to a smaller 

subset of possible outputs. The algorithm for selecting the second message block 

requires 0(1) time. The message selection algorithm is as follows: 

1. Since carry propagation in addition is from least significant bits towards 

higher bits, H-b (mod 2) is in fact a system of linear equations in F2, in- 

dependent of the 7 higher bits in each byte of H. Using simple linear algebra 

operations in F2, bit 0 in each of the m state bytes can be forced to zero by 

selecting m message bits appropriately. This is an 0(1) step. 

2. A precomputed lookup table is used to force further c bits to zero. The table 

has 21 entries and uses m+c message bits (since the table entries must also 
have least significant bits as zeros). Each lookup requires 0(1) time. The 

precomputation phase requires 0(2C) time. 

Thus, by selecting 2m +c message bits in the second block in a certain way, m+c 
bits in the 8m-bit internal state are forced to zero. The offline complexity of the 

attack is 0(2C) and the collision search algorithm is expected to find a collision in 

O(21(7m-c)) steps. 

First consider the hypothetical case where LASH would have the standard MD 

structure. In this case the internal state would have the same size as the final 

output, i. e. 8m bits. If we choose c= im 
.42.33m, the overall complexity of the 

algorithm will be 0(27'"), which is significantly less than 0(24m) expected by direct 

application of the birthday paradox. However, since the internal state of LASH is 
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twice as wide as the final output, the security goal of LASH is O(22m). This is the 

rationale behind the final transformation of LASH. 

We note that it is possible to also force bit 1 of each byte to zero if the message 

block is large enough so that additional m2 message bits can be selected. This is why 

a relatively short message block size is being used (larger message blocks would 

have resulted in greater hashing speed). 

5.2 Design of LASH 

We now turn to describing the criteria of how we selected the parameters m, n, q 

and the matrix H that define the function fy used in our construction. 

" Due to the fact that finding collisions in fH is easier than the naive gmI2, we 

take m to be larger than one needs in our final hash function output. This is 

also useful to defeat various other generic attacks on hash functions and is 

consistent with the advice of Lucks [Luc04]. 

" It turns out to be convenient in our chaining algorithm to select n= 2m 1092 q. 

" Whilst a value of q= 232 is more likely to place us in the range of the inequal- 

ity (5.3), we have found via various experiments that since the output size 

of the hash function is fixed (and so m is limited), a harder lattice problem is 

produced if q is smaller. Hence, we select q= 28. 

9 The matrix H was chosen so that it does not require too much storage, easy to 

compute on the fly yet still "random enough". 

We give more detailed comments on these criteria in section 5.2.2, after specify- 

ing the exact form of our proposed compression and hash function. 

To use the GGH construction as a component in our practical proposal, we 

modify it slightly to avoid its linearity and use it as a compression function. We 

then extend the domain to an arbitrary length using the standard construction of 
Merkte and DamgArd with strengthening (MD) [Mer9O, Dam88]. This construction 

provides a provably secure collision resistant hash function, under the assumption 
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that the compression function is itself collision resistant. When combined with the 

technique of Goldreich et al. one obtains a collision resistant hash function which 

can take arbitrary length inputs. Recent work showing that the MD construction is 

weak in certain circumstances [JouO4, KSO51 can be resolved with minor alterations, 

see for example [CDMP05, LucO41. 

Our approach is to take the idea behind the construction of Goldreich et al. and 

try and obtain an efficient hash function whose security is related to finding short 

vectors in a particular fixed lattice. We will study whether this lattice behaves as a 

random lattice, and whether the underlying hard problem is actually secure. 

5.2.1 Specification of the LASH hash functions family 

Here, we present an efficient (supposedly) collision resistant hash function whose 

performance is comparable to that of SHA2. The design has been motivated by 

implementation quality, including issues such as speed and memory footprint, 

and the ability to fully utilise processor features available in current computer 

architectures. 

LASH-x computes an x-bit hash value from an input bit-string of arbitrary length 

(less than 22' bits). There are four concrete proposals which are detailed in the 

following table. 

LASH Input bit-length Hash byte-length 
Variant n m 

LASH-160 640 40 
LASH-256 1024 64 
LASH-384 1536 96 
LASH-512 2048 128 

Here, n is the size of the input to compression function in bits, and m is the size of 
the chaining variable in 8-bit bytes. We have for all versions that n =16m. 

Compression function. We define a compression function f that takes-in two 

sequences of bytes r= (ro, rl, ..., rm_1) and a= (so, sl, ..., sm_I) and produces a new 
byte sequence t= (to, tl,..., tm_i). The compression function can be represented as 

f (r, s) = (r (D s) + fH(rII e) (mod q), (5.4) 
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where fH is the linear function obtained from multiplying a matrix H, defined next, 

by the column vector (rlls)T, interpreted as a bit vector. Figure 5.1 is a visualisation 

of the LASH compression function, and Algorithm 12 gives it in more detail for ease 

of implementation. 

Thus the compression function is based on a combination of addition modulo 

28 and xoring (bitwise exclusive or). This combination helps defeat the attacks on 

the naive use of the GGH construction on its own. 

Algorithm 12 The LASH-m compression function 
Input: Chaining variable r and message block s (byte arrays). 
Output: Compression t=f (r, s). 

1: fori0,1,..., rn-l do 
2: tj ý-- r1® si (Initialise with XOR) 
3: end for 

4: fori=0,1,..., ndo 
5: ifi<8mthen 
6: X t- 

1r1i/8j/27-(i mod 8) 
JI mod 2 

7: else 
8: x *- 

lsli/8J-m127-0 mod I mod 2 
9: end if 

10: if x =1 then 
11: for j=0,1,..., m-1 do 
12: tj F- tj+ a((n+j-i) mod n) mod 28 
13: end for 
14: end if 
15: end for 
16: return t 

(Add column) 

n=16m r0 

t0 r0 $0 

.® -ý ... H ... 
rm-1 

SO 
fm-1 rm-1 Sm-1 

Sm-1 

Figure 5.1: Visualising t=f (r, s) = (r ® s) + fH(rll s) (mod q). 

Pseudorandom sequence and the matrix H. Consider the following pseudo- 

random sequence. Start with yo = 54321 and iterate the following recurrence based 

on the Pollard generator 

Y+ = y2 +2 (mod 231-1). 

(Bit i from r, for i< n/2) 

(Bit (i - 8m) from s, for iz n/2) 
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We define an additional sequence that results in reducing y; to byte length integers 

(truncation), which will serve as elements of the matrix H: 

a; = y; (mod 28) 

The first eight members of this sequence are 

a0=49=0x31, a1=100=0x64, a2 =135 = 6x87, a3 =237 = 9xED, 

a4=95=Ax5F, a5=26=Ox1A, a6=139=6x8B, a7=214=9xD6. 

Note that the modulus 231-1 in the Pollard generator is a Mersenne prime, which 

allows us to perform faster modular reduction hence speeding-up the pseudo- 

random number generation. We point out also that to reduce modulo 28 one can 

simply use bit masks. 

We take the matrix H to be the mxn circulant matrix associated to the sequence 

ao,..., a� (Circulant matrices are a special type of Tocplitz matrices) 

a0 an-1 an-2 ... a2 a1 

al a0 an-1 """ Q3 a2 
H= 

, 

am-1 am-2 am-3 ... am+l am 

Hashing the message. Let e be the bit-length of the original message to be 

hashed. Let us call the individual message bytes vo, vj, v2,... , yogi. 

We first pad the message with a single '1' bit (in case of byte-aligned data, this 

corresponds to a single byte with hexadecimal value 0x80) and then we add enough 

bytes v; with a zero value to make the length a multiple of 8m. 

The message is cut into k= It/8m1 blocks of m bytes and fed to the compression 

function, and then a final transform is performed, which involves applying the 

compression function to the chaining variable and the binary encoding of 1, to 

produce a message digest. 

Algorithm 13 describes the overall hash function. We should note that the use 

of IV =0 is not secure because of the recent attack presented in [CMP+07], which is 
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sketched in section 5.5.3. Another fixed value of IV should be studied and carefully 

chosen as to circumvent similar attacks on IV = 0. At the time of writing, this has 

still not been resolved and is left as an open problem. 

Algorithm 13 The LASH-m hash function 
Input: A padded message v (_ ... ll@x80lI0 ... 0) of bit-length C. 

output: LASH-m(v). 
1: fori=0,1,..., m-1do 
2: r; =0 
3: end for 
4: for i=0,1, ..., 

Ft/8m1-1 do 

5: for j=0,1,..., m-1 do 
6: Si = Vm"i+f 

7: end for 
8: r E- f (r, s) 
9: end for 

10: fori 0,1,..., m-1 do 
11: si <-- ie/28i J mod 28 
12: end for 
13: r E- f (r, s) 
14: for i =0,1,..., m/2-1 do 
15: tj =16lr2i/16J + Ire; +1/16J 
16: end for 
17: return t 

(¬ encoded in little-endian) 

(Final compression) 

(High 4 bits of output bytes) 

(m/2-byte hash result. ) 

5.2.2 Comments on the design of LASH 

In this section we go into more detail over the precise design choices we have made. 

The main goals of the design have been as follows: 

" To adopt the large-pipe strategy of Lucks [LucO4] to avoid problems with the 

Merkle-Damgard construction. The final hash value is then produced from 

the large-pipe by taking the upper half bits of each byte - these being the bits 

which depend in the most non-linear manner on the input values. 

" To combine two forms of mathematical operations in the compression func- 

tion: Arithmetic modulo 256 and bitwise exclusive-or (xor). The compression 

functions consists of two parts: A linear function, motivated by the GGH 

construction, and an xoring of the chaining variable and the next message 
block motivated by the construction of Miyaguchi-Preneel [M0190, Pre931. 

(Initialise chaining variable (IV=O), see 5.5.3) 

(Get message-block) 

(Compression function, Algorithm 12) 

97 



LASH, a lattice based hash 

. To be able to reason about the ability of the linear function to resist preimages 

and collisions. 

" To be as simple and efficient as much as possible, particularly aiming for 

application on as wide a range of platforms as possible. Thus the hash function 

is byte oriented and built from components found most modern processors 

and which are easy to implement in hardware. 

" To enable as much parallelism as possible, thus allowing the hash function to 

exploit performance enhancing features in modem instruction sets. 

" The hash function should be patent free, as such none of the designers have 

taken out patents on its design. 

Linear Function 

We chose to use a circulant matrix whose entries are generated with a Pollard type 

PRNG because the use of a circulant matrix allows more efficient implementations 

of our function fH and less storage requirements for the matrix fi, and deriving 

the entries via a pseudorandom number generator allows us to reduce the memory 

requirements of our hash function even more. 

The non-linearity of the generator is crucial in creating a matrix for which the 

associated lattice problem is hard to solve. For example, we have found that using 

a linear-congruential PRNG instead of the Pollard PRNG results in a compression 

function that is easy to break using the LLL algorithm. 

The choice of the prime modulus p= 231-1 in the Pollard generator is made to 

enable a sequence with period greater than the largest value of n, and so Vp- should 

be greater than the largest value of n chosen. In addition, we selected the modulus 

p for which modular reduction can be performed efficiently because of its special 

form: We only need a few additions and bit shifts akin to Algorithm 1 in Chapter 2. 
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Compression Function 

Recall that the compression function for LASH is defined, for the m-byte chaining 

variable r and the next m-byte message block s, by 

f (r, s) = (r ®s) + fH(rlls) (mod q). 

The compression function is highly motivated by the hash functions construction 

from Block Ciphers by Miyaguchi-Preneel [M0190, Pre93], which is of the form 

f (r, s) = (r ® s) ® Eg(r) (s), 

for a block cipher Ek(m) and a function g which takes inputs the size of the chaining 

variable and outputs keys for the block cipher. That is to say, we are treating the 

function fl, as equivalent to a block cipher with key r and message s. 

We are not claiming that the function fH can be used as a block cipher. So, 

the "proof of security" of the Miyaguchi-Preneel construction [BRS02] does not 

necessarily apply to the LASH compression function. However, the function fH 

does have some interesting properties which it shares with a block cipher, as is 

implied by Proposition 5.1 e. g. 

1. Given an output fy it is hard to invert. 

2. It is hard to find collisions in the function fH. 

The difference lies in the exact complexity of these problems. Generally speaking, 

these problems seem to be easier for fH because of its linearity. 

Final Transformation 

In the final transform, we need to compress the 8m bit chaining variable down to 

its half to get the output hash value of length 4m bits. Recall that each byte of the 

chaining variable has been obtained by performing a lot of additions modulo q= 28, 

which have been dependent on the message bits. To compute the final hash value, 

we select the upper four bits of each byte of the final value of the chaining variable 
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(as they are affected to the most unpredictable extent by the carry propagation) and 

concatenate them together. This produces an output of the correct size. 

The reason for taking the upper four bits is that, due to the nature of addition 

modulo q, these are going to be the bits which are affected in the most non-linear 

manner by the effect of carry propagation in the modular addition operations. 

Hence, it is this upper half of the bytes that should enjoy more entropy than the 

lower half. 

5.3 Security considerations 

The general structure of LASH, having only linear components, easily leads one to 

suspect that it is directly vulnerable to differential and linear cryptanalysis. LASH 

has gone through several evolutionary stages after the idea of a lattice-based hash 

function was first considered. The current version is a result of combining the 

traditions of provable complexity-theoretic security with symmetric cryptanalysis. 

In determining the security of LASH against these attacks, we note that as a 

fully parameterisable family of hash function (message block size, state size, and 

hash result size can all be flexibly chosen), simulation of attacks against LASH is 

straightforward and meaningful. If an attack can be successfully mounted and sim- 

ulated on reduced variants of LASH, and the asymptotic behaviour of the security 

as a function of various parameters established, then concrete evidence about the 

security of the full-size variants can be obtained. This flexibility also makes it easy 

to create larger versions of LASH if weaknesses are found in the current proposed 

versions. This is a clear advantage of LASH over many hash function designs with 

a more rigid block-cipher like structures. 

5.3.1 Differential cryptanalysis 

A small input difference (in either the chaining variable and/or the message block) 

will result in a very large difference in the hash function state. Differential trails are 
very wide. The propagation of differentials is further amplified in the final iteration 
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(which does not use message bits), making all output bits differentially dependant 

on all input bits. 

We conjecture that the simple and understandable structure of LASH will make 

it difficult to find differential anomalies such as the so-called necessary condi- 

tions exploited by Wang et al. in their attacks on MD5, SHA1, and other hash func- 

tions [WLF+05, WY05, WYYO5, XW051. 

5.3.2 Linear cryptanalysis 

All components of the LASH compression function are, in some sense, linear. Fur- 

thermore, if we consider a matrix H' that contains the least significant bits of H, 

then the product function H'. b is a linear equation in F2 and indeed H' is invertible 

with a significant probability. This can be exploited in some attacks, as is done in 

the hybrid attack presented in Section 5.1.2. We note that these attacks are difficult 

to extend to the full version of LASH, however. 

It is unlikely that classical linear cryptanalysis (involving the parity of subsets 

of bits) can be applied on LASH. 

5.3.3 Generalised birthday attack 

Wagner's method for solving the generalised birthday problem [Wag02] can directly 

be applied to the GGH construction, as was shown in section 5.1.2. Using the GGH 

function fii on its own implies that we can find collisions in O(qm/3) operations as 

opposed to the O(qm/2) operations one would want in practice from a hash function. 

Although improvements to this basic version of the attack can be made, this 

attack does not seem to be applicable to the internal fH function used in LASH, due 

to the ratio between the message block size and the size of the internal state. This 

motivates our choice of a large chaining variable and our output transformation. 

Our use of the Miyaguchi-Preneel construction, as opposed to using the function 

fy directly also helps defeat this attack. 
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5.3.4 Ternary vectors in lattices 

We want to develop some tools needed to analyse whether solutions to an approx- 

imate shortest vector problem in a lattice LC Z" are likely or unlikely to be ternary 

vectors. This section aims to present an analysis on how hard it is to either invert 

or find collisions in the internal function fnn via lattice basis reduction. 

Before commencing we reiterate that finding collisions or inverting ffu is not 

sufficient to break LASH due to the use of the Miyaguchi-Preneel construction, but 

may be a first step in some attack on this construction. 

Which balls contain many ternary lattice points? 

Let ?� be the set of ternary vectors of dimension n as usual, and let ß�(R) be the 

ball of radius R centred at 0 in R. If R is small, than most of the integral lattice 

points in B�(R) will be ternary vectors, while if R is large, then few of them will be 

ternary. We would like to determine a critical value R� at which the ternary vectors 

cease to predominate. This should be roughly the value R such that the number 

of ternary vectors of norm at most R is equal to the volume of the ball of radius R, 
i. e., R� solves the equation 

Vo1(B�(R)) = #(? � n B�(R)). 

Using the formula for the volume of an n-dimensional ball and the counting 
formula for ternary vectors, we see that R� solves 

n"/2 
1R2,11 

r(nRn = d12ý, (Sýr) 
d=0` I 

The sum on the right-hand side of (5.5) is a step function, so the equation (5.5) 

tends to have several solutions. For example, if n= 100, then (5.5) has 14 solutions 

ranging from 4.992 to 6.087. Although this does not give an exact solution, it tells 

us that a ball of radius 5 in RlOO contains mostly ternary lattice points, while a ball 

of radius (say) 10 contains proportionally very few ternary lattice points. Table 5.1 

gives the largest, smallest, and average solutions to (5.5) for a range of dimensions. 
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Table 5.1: Solutions to Vol(B�(R)) = #(Tn fl B�(R)) 

It is clear from Table 5.1 that Rn can does not grow linearly with n. For our data, the 

regression line of log(R ems') versus log(n) is 

1og(Rn ems') 0.50634 log(n) - 0.6173 (5.6) 

with correlation coefficient 0.999996. This suggests that R� c -irn-. 

We next relate the sum on the right-hand side of (5.5) to a binomial distribution 

and use a normal approximation to prove the validity of this guess and find an 

asymptotic value for c. 

Proposition 5.2. For large values of n, the equation 

n/2 E (fl)2d 
rý /z + 1) 

OSdSR2 
R= (5.7) 

has a solution R satisfying R 0.4332 -ýfn-. (This may be compared with the experimental 

value R 0.54 " n°506 given by (5.6). ) 

Proof. For any r>0, 

()2d=3nt()()d 
\3 05d5r d-0 

is 3" times the probability that a binomial distribution (with probabilities 1/3 

and 2/3) is smaller than r. If n is large, we can approximate this probability using 
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the normal distribution 

(D(x) = 

Titus 

1s 
e`2 

/2 dt 
2n , 

J-00 

" ýXýe 
ýI2 (1 + 0(1/x2) forx<0. 

1E 
3n dd) 

(1()2d 
1! OSdSr d=0 

Drr-2n/3 asn-+00. l 
n9 

To ease notation, we let r= an and set ß= (3a - 2)//, so the above quantity 

is c(ß , r)" 
Using the elementary asymptotic expansion for V(x) (valid for x< 0) and Ster- 

ling's formula to approximate t(x), the equation (5.7) that we are trying to solve 

(with R= ýrr = an) becomes 

(2ner/n)"12 3"4)(ß ifn-) 

(2nea)"l2 z 3" .? 
1 

. eß2"I2 
71 lßI V 

Taking nth roots and letting n go to infinity gives the equation 

2nea = 3e-ß2l2 

to be solved for a, where recall that ß= (3a - 2)/ -ýFI The numerical solution is 

a Ai 0.18762, so we find that the solutions R to (5.7) are given approximately by 

R= an-- 0.4332, ýfn-. 0 

Which general lattice problems have many ternary solutions? 

Let LCZ be a lattice of dimension n and let A(L) denote the length of a shortest 

nonzero vector in L. Proposition 5.2 suggests that if A(L) is significantly smaller 
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than R� 0.4332 i, then most solutions to APFRSVP will be ternary vectors, but 

if A(L) is significantly larger than R,,, then only a small proportion of the solutions to 

APPRSVP will be ternary vectors. Combining this observation with the value of A(L) 

given by the Gaussian heuristic yields the following result. 

Proposition 5.3. Let f- be a class of lattices for which the Gaussian heuristic is valid and 

fix e>0. Then for LEL,,, solutions vEL of APPRSVP satisfying 

IIvII <(1-e)" 1.79 
. A(L) Disc(L)1/n 

are quite likely to be ternary vectors, while solutions vEL of APPRSVP satisfying 

IIvII > (1 + s) " 
1.79 

. A(L) Disc(L)1/n 

are unlikely to be ternary vectors. 

In particular, if Disc(L) is significantly larger than 1.79", then even a shortest vector 

in L (i. e., a solution to SVP) is unlikely to be a ternary vector. 

Proof. The Gaussian estimate says that the shortest nonzero vector in a "typical 

lattice" has length 

A(L) n/2neDisc(L)i/n. 

(See, e. g., [HPS98, MS01]. ) Solving APPRSVP in L yields a vector of length CA(L) 

for some C >_ 1. Proposition 5.2 says that this vector is quite likely to be a ternary 

vector if CA(L) < 0.4332(1- c) and that it is not very likely to be a ternary vector 

if CA(L) > 0.4332(1 + E) -ý'n-. Thus the critical value for C is 

0.4332 
A(L) zts 0.4332 " 2rce " Disc(L)-11' 

1.79 " Disc(L)-11n. 

13 
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Which lattice problems arising from fH have many (or mostly) ternary solutions? 

If we are to base a hash function upon the linear function fH, then we would want 

the difficulty of finding binary (resp. ternary) vectors in Ly to be at least as hard as 

inversion (resp. finding collisions) of fH via generic methods. An interesting aspect 

of the lattices we shall use is that for a fixed output size of the linear function, the 

value Oll" of the associated lattice tends to one as we increase the dimension of the 

lattice, i. e. the input block size of the linear function. 

As indicated by Proposition 5.1 (page 86), the ability of finding collisions in fH 

depends on the difficulty of finding special sorts of short vectors in the circulant 
lattice LH. The NTRU cryptosystem [HPS98] is also based on the difficulty of find- 

ing short vectors in certain lattices (called convolution modular lattices in [MSO1]) 

that are built up out of circulant matrices. However, the matrices (and lattices) un- 
derlying LASH are rather different from those underlying NTRU, so the associated 
lattice problems are also different. 

We now apply the results of the previous section to the lattices L11 used by 

LASH. Recall that dim(LH) =n and Disc(L11) = q'". Notice that if we make the 

assumption that q'" < 2", which is required if fit is to be a compression function, 

then 1< Disc(LH)1M < 2. 

Proposition 5.4. Assume that the Gaussian heuristic holds for the LASH lattices (5.1). 

(a) If q'" > 1.8", then solving APPRSVP in LH is unlikely to give a ternary vector. 

(b) If q'" < 1.78", then solving APPRSVP in L11 to within a factor of 1.79/qm/" is quite 
likely to give a ternary vector. 

Proof. This is immediate from Proposition 5.3 using the values dim(L11) =n and 
Disc(LH) = qm. a 

Finally, we apply Proposition 5.4 to the specific LASH parameters q= 256 and 
n =16m. We find that 

qm = (28)n/16 = (21/2)n -- 1.414n. 
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Hence, q'" is less than 1.78n, which implies that all of the LASH lattices are likely to 

contain many ternary vectors. The crucial quantity is the approximation factor 

1.79 1.79 
F7n _- T2T8ý1/16 1.27, 

which tells us how closely we need to solve APPRSVP in order to (probably) find a 

ternary vector. 

The conclusion is that in order to find a collision in the linear function for the 

suggested parameters, it is probably necessary to find a vector in LH that is no more 

than about 2.5 times as long as the shortest nonzero vector. However, we note once 

more that finding collisions in the linear function fH is not sufficient to find collisions 

in LASH itself. 

5.4 Implementation 

Now that we have presented the new hash function proposal, it will be very in- 

formative to implement it in practice and get concrete performance figures out. 

In this section, we will comment on some aspects of the implementation of LASH 

in software and produce some benchmarks to allow us to compare it against the 

currently recommended hash functions. Some thoughts and comments on the pos- 

sible hardware implementation of LASH and some of its variations that should be 

immune to side channel analysis (SPA and DPA) is given in [Pag07] but no actual 

implementation has been reported. 

Storage of the pseudorandom data. We have several options as regards storage 

of the pseudorandom matrix. A compromise seems the most attractive option, 

that is to store only part of the matrix. Due the circulant nature, there is no real 
benefit in storing the whole matrix since each row is essentially a rotation of the 

first. Therefore, we can simply store one row and be able to access all the required 

elements by shifting a window from right to left; at each of n steps, the window 

contains the elements for the corresponding column. 
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The circulant nature of the matrix has an additional property in that neighbour- 

ing columns differ only in one element. Therefore, one can imagine storing only 

a single column of the matrix and updating it by computing a new entry at each 

step. This creates a computational overhead in that we need to generate a total of n 

matrix entries, but offers a saving in storage overhead since there are far less rows 

than columns in the matrix. 

Parallelism in the compression function. The basic algorithm for executing 

the compression function offers parallelism in two directions. Firstly, since the 

matrix columns do not affect each other in the matrix-vector multiplication, one can 

operate on them at once summing the partial vector dot-products to form the final 

result. Secondly, one can add different elements of a given column into the state in 

parallel. These two method combine to offer a high degree of scalability. This is 

easy to exploit in hardware or where a dedicated SIMD instruction set is available. 

We can manually apply a similar technique on processors which do not have 

SIMD instruction sets but do have a native word size greater than 8-bits. For 

example, on a 32-bit processor we can pack four 8-bit sub-words into one 32-bit 

value. We cannot add packed values using native 32-bit addition since carries from 

one sub-word may overflow into another. However, we can construct a suitable 

method for addition by masking the top bits of the packed bytes to prevent carries 
before using 32-bit addition and patching up the result. The resulting packed 

addition of x and y to produce the result r can be described as 

x' F- xA 6x7F7F7F7F 

y' 4-- yA 9x7F7F7F7F 

r' 4-- x, + y' 

r (-- ((x ®y) A 6x80898980) ®t' 

with a similar construction possible for other word sizes. 

Specialisation of the compression function. Considering how the compression 
function is used to process arbitrary length messages, the first and last invocations 

can be considered special. In the first invocation the chaining variable is zero; in the 
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last invocation the message block is mostly zero with only a few bytes representing 

the message length. In both cases, only a small portion of the compression function 

input is relevant and in the first case the initial mixing stage is redundant since 

ti =ri ®s; =s; foralli. 

The saving afforded from capitalising on these features by using specialised 

versions of the compression function is amortised over all invocations. For short 

messages, the saved computation can be significant since the first and last invoca- 

tions of the compression function comprise the majority of the total. 

5.4.1 Results 

Table 5.2: Comparing the performance of LASH with standardised hash functions. 

Implementation options Name Storage Cycles/Byte 
SIMD 

11 
Matrix storage (bytes) 

SHA1-160 X [Den] 0 26.29 
SHA1-160 � [Gau] 64 16.86 
LASH-160 X All matrix 25600 689.64 
LASH-160 X One row 640 774.42 
LASH-160 � All matrix 25600 392.83 
LASH-160 � One row 640 523.26 
SHA2-256 X [Den] 256 55.16 
SHA2-256 X [Gay] 288 31.34 
SHA2-256 � [Gau] 256 45.20 
LASH-256 X All matrix 65536 859.83 
LASH-256 X One row 1024 1027.74 
LASH-256 � All matrix 65536 344.81 
LASH-256 � One row 1024 597.01 
SHA2-384 X [Den] 640 124.57 
SHA2-384 X [Gay] 704 117.45 
LASH-384 X All matrix 147456 1078.58 
LASH-384 X One row 1536 1355.09 
LASH-384 � All matrix 147456 805.47 
LASH-384 � One row 1536 1090.41 
SHA2-512 X [Den] 640 124.98 
SHA2-512 X [Gay] 704 117.52 
LASH-512 X All matrix 262144 1351.39 
LASH-512 X One row 2048 1730.14 
LASH-512 � All matrix 262144 1036.70 
LASH-512 � One row 2048 1220.54 

We recompiled and tested publicly available source code for the SHA1 and 

SHA2 hash functions [Den, Gau, Gay], as well as preliminary implementations of 
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LASH, on our experimental platform. This platform housed a 2.8GHz Pentium 4 

processor running the 2.4.21 Linux kernel. All source code was written in C, making 

use of GCC 4.0.1 and the intrinsics feature to access the SIMD functionality of the 

processor. Measurement of the number of cycles elapsed during execution was 

performed using the rdtsc instruction in the normal way. 

Table 5.2 shows the results of the experiment and compares SHA1 and SHA2 

with equivalent parameterisations of LASH. The results were averaged over a large 

number of random inputs; it is vital to note that LASH performance is variable 

depending on the input. Also note that the storage requirement is intended to 

detail only the amount of pre-computed material rather than the total memory 

footprint. 

The results show an encouraging ratio between the fastest implementations of 

LASH versus SHA1 and SHA2. In particular, LASH is potentially at most only 

about 30 times slower than SHA1 with the ratio improving significantly for SHA2 

with LASH being only 10 to 20 times slower. This is comparable, at the lower 

security levels, with an implementation of VSH; although results for this latter 

clearly depend on how large one takes the modulus in ones VSH implementation 

(before truncation at the end of the computation, if this method is used to produce 

shorter digests). 

5.4.2 Test vectors 

We provide test vectors for each variant of LASH (with IV = 0), for the purpose 

of testing one's own implementation. The vectors are computed over two test 

messages A and B. The message A is a 24 bits string which consists of three lower-case 

ASCII characters "abc", whose corresponding hexadecimal bytes are 61 62 63. The 

message B consists of 100000 repetitions of the ten ASCII characters "0123456789", 

with corresponding hexadecimal bytes 30 31 32 33 34 35 36 37 38 39. The message 
length of B is 8 million bits (100000 x 10 x8=8.106). 

LASH-160(A) = 
67 58 25 ec f3 ba fS c9 4f fe 38 al Sb c0 ab 40 77 9b 96 4d 

LASH-169(B) = 
43 68 df 33 4f ce b9 e7 99 d2 77 22 12 fc 44 f2 ce ec 04 It 
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LASH-256(A) = 
39 ff b7 84 0b 6b 3b 71 89 fc 5e dc 9e 24 33 9e 
77 8c f4 be bf 94 df 00 c3 53 d0 bf 37 30 b3 2f 

LASH-256(B) = 
e9 57 75 d4 53 d6 36 le 3c 9c 88 8c dc eb 3c 8a 

ab 49 cd ad 43 56 b5 ba 97 98 38 6b b6 dc 95 e9 

LASH-384(A) = 
11 d0 9c 55 cb ba 6f 31 10 bf 87 7f ab cf b6 30 
10 52 0c 30 76 el dc d2 7b of dc a8 38 5e 25 0e 
4e fa 42 97 al 6c 69 23 b9 al 33 3d 8d ca ld a7 

LASH-384(B) = 
41 7e cb d6 dd 54 2f 82 e4 29 e4 ec 93 e6 Co 78 
3d 81 7c 5e 38 4d d2 e4 97 61 6c bi Of 32 6e b6 
10 Sc of 9e 32 ba 2f 97 9b Se 94 8b 31 e7 8c 75 

LASH-512(A) = 
c5 bb 7c f4 
bb ab f8 28 
48 eb of as 
82 5a 85 97 

LASH-512(B) = 
07 02 25 if 
20 12 cS e3 
c8 f5 41 20 
59 Co 9e d2 

cl ca c6 38 
e4 b3 69 99 
as f4 e0 33 
35 98 69 dd 

85 b4 5a a7 
20 46 7e 3b 
c2 33 aS 08 
52 c7 le 81 

43 94 66 65 7c 8d ed 14 
86 11 64 b9 79 2d 88 fd 
19 fc bd 4d 4e 5c 2c 06 
le 84 9b 12 15 96 19 c8 

78 9d f4 9d 69 b2 de b9 
94 a3 4f fa 75 a0 19 0d 
38 26 a8 e6 47 68 2c Sb 
66 f6 2e 59 of fb 24 57 

To help with finding bugs in implementations of LASH, we further give a trace of 

the internal variables when hashing the three-byte ASCII string "abc" with LASH- 

160 in Appendix A. 2 on page 151. 

5.5 Attacks on LASH 

5.5.1 Some weak matrix dimensions 

First, note that this attack does not apply to the parameters set that we have pro- 

posed. This attack is on the LASH compression function and was given at the end of 

a presentation during the KIST Second Cryptographic Hash Workshop [LMPR06]. 

I thank V. Lyubashevsky and C. Peikert for explaining the attack to me (by corre- 

spondence through email). 

The attack only applies to matrices with m= 232,368,1056,2096,. .. because the 

sum of the elements of each row is zero (If the sum of the first row's elements is 

zero then so is sum for all the other rows as their elements are permutations of the 

first row). This immediately implies that the two bit-strings 1n and on will collide 
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with a hash value 0. Here is how to find collisions for the mentioned dimensions. 

Starting from the seed 54321, the matrix H will have row entries that sum up to 0 

modulo 256. So now, if we take r=s =1"/2 then fn(rI(s) = 0. Also, r®s=0. And 

this is the exact same value we get if r=s=O n/2, and so we have a collision. 

There are various possible generalisations of the attack sketched above that also 

work (Peikert): 

" For any dimension, the probability that the attack above works is about 1/256, 

taken over the random choice of the seed (or a completely random choice of 

H's first row). 

" For r=s= (1,0,1,0,... ) and any even dimension, there is a probability about 

2-16 of this input colliding with the all-zeros input. 

9 Various other periodic 0-1 patterns also work, with probabilities that drop off 

with the length of the period. 

5.5.2 LASH is not a pseudo-random function (PRF) 

First, we note that the only claimed properties of LASH are collision and pre-image 

resistance. Hash functions are used for a variety of purposes, and in some cases 

they are assumed to be pseudo-random functions, but it is noted in [CMP*07] that 

LASH is not and the following attack is given to show this fact. 

First, separate the matrix H into its left and right halves 11 = (EHLIIIIR), then the 

compression function can be written as 

f(r, s) = (r®s) +HLr+Hits. 

Now, note that for s=0 we have 

f(r, 0) = r+HLr. 

and for s' = (27,0,..., 0) we get 

f (r, s') = (ro ®27, ri,..., r, �-i) +HLr+H&, 
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where HRO is the first column of HR. Notice that the difference between these two 

values is constant and independent of r 

f (r, s') -f (r, 0) = HRIO + (27,0, ... , 0)T. 

This fact allows us to distinguish between a family of truly random functions 

and the LASH compression function. 

5.5.3 Exploiting zero IV 

This attack is also given in [CMP+07], and it is the most serious attack so far as it 

shows that LASH with IV =0 is not collision resistant and furthermore that it is not 

pre-image resistant either. The presented attack uses a time/memory tradeoff and 

exploits the zero IV to cleverly "absorb" the xor operation into the linear function 

fH. This trickyields an attack costing 2lm < 2m/2 for finding collisions and 24m <21n 

for finding pre-images. 

Another heuristic collision attack based on lattice reduction using two ap- 

proaches, solving either an SVP or a CVP, is also given and is supposed to cost 

less than 2m12. However, this attack produces colliding messages which are very 

long. 

It is also shown that if one changes the value of IV to be non-zero then LASH still 

suffers from being vulnerable to pre-image attacks costing about 2g'" < 2m space 

and time. However, the pre-images produced by this attack are of a very special 

type as they are 1 block messages only. 

5.5.4 Attacks on the final compression 

This attack is presented in [CMP+07] for the final LASH compression. It uses a 

generalisation of Wagner's method to solve multi-birthday problems. The cost of 

the attack is O(m2m/(4+4/105)) O(m2m/4). 

However, we note that all of these attacks require a comparable amount of 

storage to their running time, which questions the validity of these attacks. But 

113 



LASH, a lattice based hash 

these attacks remain acceptable from the academic point of view as they show that 

this construction is not as secure as previously believed. 
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Chapter 6 

The equivalence between the DLP 

and DHP 

"If is important to understand that an asymptotic result-such as my 
theoretical argument that established the inefficiency of xedni in the 
limit as the size of the group increases - cannot be relied upon as any 
kind of guarantee of security. Rather, one must analyze the algorithm 

for elliptic curves of the size employed in cryptography. " 

- Neal Koblitz 

The theoretical equivalence between the Discrete Logarithm Problem (DLP) and 

the Diffie-Hellman Problem (DHP) over a cyclic group of prime order p>3 was 

first shown to hold by Maurer [Mau94] in 1994, subject to a mild existence condition 

of a smooth order elliptic-curve group over the finite field 1Fp. His reduction was 

later used by Muzereau, Smart and Vercauteren [MSV04] to study the special case 

of elliptic curves used in practical cryptographic applications as recommended in 

the SECG standard [SE000], which encompasses most of the other Elliptic-Curve 

Cryptography (ECC) standards (see §1.6.3). 

In this chapter, we will build on the Muzereau et al. work and try to establish the 

tightest possible reduction from DLP to DHP using Maurer's reduction. We achieve 

this aim in two ways, first by using projective coordinates instead of affine coordinates 

and secondly by exploiting a special type of DH-oracles that allow arbitrary choice 

of the group generator. 

For the rest of this chapter, we let G be a cyclic group with prime order p>3 

and a fixed generator g, unless otherwise indicated. We write G= (g) and IGA = p. 
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We will use Ut and 3 to denote multiplications and inversions in G, respectively, 

and Z for DH-oracle calls. Formulae of the form xZb + y3 + zV mean: Cost is x 

DH-oracle calls, y inversions and z multiplications in G. 

6.1 Maurer's reduction method in Fy 

Note that, since solving any instance of the DHP given access to a DL-oracle is 

triviale, we only concentrate on the reverse implication for the equivalence to hold: 

If we suppose the DHP turns out to be easy, we wish to know if this implies that 

the DLP is easy as well. 

Maurer and Wolf proved, in a series of papers, that for every cyclic group G with 

prime order p>3, the DLP and DHP over G are equivalent if there exists an elliptic 

curve, called auxiliary elliptic curve, over Fn with a smooth order [Mau94, MW96a, 

MW96b, MW001. 

More concretely, the following result is shown in [Mau941 and [MWO0). 

Theorem 6.1. Let G be a group. If each large prime factor p of (GI is single and if for every 

such pa cyclic elliptic-curve group over Fp is known with smooth order then breaking DHP 

and DLP are equivalent for G. 

Here "single" means that the prime factor is not a repeated factor, or in other 

words: It only appears to the first power in the prime factorisation of IGI. Note 

also that we require the auxiliary elliptic curve groups for the large primes only as 

we can afford to use the traditional methods for the smaller primes without really 

affecting the overall cost. 

Muzereau et al. [MSVO4] showed that such auxiliary elliptic-curve groups are 

highly likely to exist for almost all elliptic curve groups. It is however remarked 

that it gets extremely hard to construct them as the order of G increases. They 

explicitly generated auxiliary groups with smooth orders for most of the curves in 

the SECG standard, hence making Maurer's proof concrete and applicable to most 

of the groups used in practical ECC. 

'Given e, gb e G, we compute a= 9L(g') and then compute go' - (gly. 
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The idea behind the reduction method introduced by Maurer [Mau94] rests on 

the concept of implicit representation: The implicit representation of an integer a (mod- 

ulo p) is defined to be g" E G. The algorithm proceeds by doing computations in the 

implicit representation instead of the usual explicit representation. For example, to 

compute a+b in implicit form, gQ " gb is computed instead which costs one multipli- 

cation. For a-b, we compute gQ - (gb)_1 costing one inversion and one multiplication. 

To compute a"b in implicit form, one call to an DH-oracle, that computes g"b given 

g4 and gb, is needed. For the implicit form of a-1, one uses the fact that aP-1 =_ 1 

(mod p), so ga°-Z = g"', which would cost O(lg p) calls to the DH-oracle. Hence, 

granted access to a DH-oracle for the group G, all algebraic algorithms in 7Lp can be 

converted to work in the implicit representation in G. 

In this chapter we will build on the work in [MSV04] by tightening the reduction 

and trying to extend the result to the remaining curves that were missed. Our goal is 

to show that, for the elliptic-curve cryptosystems described in the various standards, 

the number of group operations and DH-oracle calls required to reduce the DLP 

to the DHP is reasonably "small. " Say for example that the number of calls to the 

DH-oracle is less than 2' then, if we believe that the much more extensively studied 

DLP over the same group takes at least 2t operations to solve then an algorithm for 

solving the DHP, and thus breaking the DHP protocol, would require a minimum 

of 2t"' group operations. Our target is therefore to minimise the value of r, in order 

to get the tightest possible security reduction. 

In [MSVO41, affine coordinates were used to represent the points on the aux- 

iliary elliptic curve groups. This representation requires division and hence a 

DH-inversion oracle was needed, which was implemented via repeated calls to the 

DH oracle using the relation g'-' = g°"-2 at the cost of O(Ig p) calls to a DH-oracle 

to compute the exponentiation. This approach is clearly an expensive choice as it 

leads to a large increase in the number of DH-oracle calls. To avoid this extra cost, 

we use projective coordinates to avoid division, and as a further refinement we also 

use a specially tailored optimised square root extraction algorithm. 

The reduction method involves lots of exponentiations, so one may also consider 

using addition chains to reduce the cost of exponentiation. However, it turns out that 
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this saves very little and only complicates the analysis. So it was decided to only 

use a more generic method of exponentiation and concentrate on the other critical 

areas of the reduction algorithm. Section 6.4 expands on this point and justifies this 

decision. 

Appendix A. 1 provides a list of auxiliary elliptic-curve groups that give almost 

the tightest possible reduction from the DLP to the DHP, using the Maurer method. 

We need to address two cases that depend on the way we define the DH-oracle 

that will be used in the reduction. The first one will be an oracle with respect to a 
fixed generator of the cyclic group G, while the second is when the generator can 
be freely chosen by the environment i. e. the generator is part of the input to the 

DH-oracle, i. e the oracle is given a triple (g, g°, gb) where (g) =G as input instead 

of just (ga, gb) when g is fixed. 

6.1.1 Case 1: Fixed base DH-oracle 

We now define the problems DLP and DHP in the case of a fixed generator g of a 

cyclic group G. 

Definition 6.1(DLP and DHP). Let G be a cyclic group. Fix a generator g of C and 
write G= (g). 

" Given hEG, the problem of computing the integer aE 10, IGA) such that gi' =h is 

called the Discrete Logarithm Problem (DLP) with respect to g. 

" Given two elements g°, gb E G, where a and b are unknown, we call the problem of 

computing gab the Diffie-Hellman Problem (DHP) with respect to g. 

In the definition of the DLP, the existence and uniqueness of the integer a arc 
implied by the fact that the group G is cyclic of prime order (GI = p. Next, we 
formalise the notions of Diffie-Hellman (DH) and Discrete Logarithm (DL) oracles. 

Definition 6.2 (DL and DH oracles). Let G be a cyclic group. Fix a generator g of G 

and write G= (g). 

"A DH-oracle takes as input two elements g4, gb cG and returns gab. We write 

yx(a, gb) = fib. 
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is A DL-oracle takes as input an element h= g° EG and returns a mod IGI. We write 

DL(h) = DL(g") = a. 

Both oracles return answers in unit time (by definition of oracles). 

The equivalence between the two problems for any group was theoretically 

established by Maurer and Wolf in the nineties [Mau94, MW96a, MW96b, MW99, 

MWOO], but it relies on the existence of some auxiliary elliptic curves whose orders 

must be smooth. These auxiliary elliptic curves are not necessarily easy to build 

and it seems they are exceptionally hard to find in general. Hence, a more concrete 

treatment for the elliptic curve groups used in practice proved necessary and this 

was done in [MSV04]. The paper discussed the computational equivalence between 

the DLP and DHP, and it also presented an explicit list of auxiliary elliptic curves 

needed for the reduction. 

The optimised reduction algorithm 

Given an element hEG and granted access to a DH-oracle for G, we want to find 

the unique integer a modulo p such that h= g". We assume that we have an elliptic 

curve E over ]Fp, given by the Weierstrass equation y2 = x3 - 3x + b, with smooth 

order that can be written as a product of coprime integers 

IEt = fJ q;, 
j=l 

(6.1) 

with qj<B of roughly the same size, where B is a fixed smoothness bound that is 

polynomial in log p. 

The specific choice of y2 = x3 - 3x +b for the defining equation of E saves 1T. 5 

while adding points on it as we can optimise the addition formulae to save one 

multiplication. 

To solve a DLP in G, Maurer's approach is to use the given DH-oracle and solve 
the problem in the implicit representation over the elliptic curve E, which is sup- 

posed to have a smooth order (Hence we can use the Pohlig-Hellman simplification, 

see below for the details). 
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So, given h= ga EG and the elliptic curve E, as above, we check whether 

g} = ga3'3a+b can be solved for y. If so then we have found a point Q on E in its 

implicit form, otherwise we replace a by a+d for some random, small, integer d 

and do the checking again until we get a point Q on E. 

Note that, at this stage, we know Q in its implicit representation only. The idea 

now is to solve Q= kP over E, where P is a generator of E. Upon finding the value 

of k, we then compute kP in the explicit representation and hence recover the value 

of a, from the explicit first coordinate of Q. Given that E has a smooth order, we 

simply use the naive Pohlig-Hellman method of first solving the problem in the 

subgroups of E of prime power order, and then recovering k using the Chinese 

Remainder Theorem (CRT). The reader is referred to Algorithm 14 for the detailed 

description of the algorithm. 

The crucial point to note is that we have a wide choice of curves over F, that 

have sizes distributed in the Hasse interval [p +1-2, Cp, p +1+2 N(p-j. So, with 

a bit of luck, one hopes that one of these sizes is smooth enough and hence the 

corresponding auxiliary elliptic curve would make solving our DLP easy, granted 

access to an appropriate DH-oracle. We draw the reader's attention to the fact that 

this is the same reason that makes the ECM factoring method so successful. 

In the description of Algorithm 14, note that for the comparison step (12: ) to 

test whether a point (X :Y: Z), in projective Jacobian coordinates, is equal to a 

point (x, y), in affine coordinates, we simply check whether (X/Z2, Y/Z3) = (x, y) i. e. 

xZ2 =X and yZ3 = Y. In the implicit representation this becomes 

(gZ2)x = gX and (gZ')y = gY. 

This use of projective coordinates gives our greatest improvement over [MSVO4I. 

We also make extra savings by storing precomputed values and using them through- 

out the algorithm. The next two subsections will describe the other improvements. 
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§6.1 Maurer's reduction method in ]Fp 

Algorithm 14 Solve a DLP in a group G given access to a DH-oracle for G 

Input: A cyclic group G= (g) of prime order p, an elliptic curve E/Fp : y2 = x3-3x+b, 
generated by P, IEI = ns, 

_1 qj and h= ga EG 
Output: a= . D1(h) 

Step 1. Compute a valid implicit x-coordinate related to the DL a 
I: repeat 
2: Choose d randomly, and set gx E- hg' (gx (-- ga+a) 
3: gz gx3-3x+b 
4: until e')12 =g (Test quadratic-residuosity of z (mod p)) 

Step 2. Compute gy from gZ = gY2: 
5: Extract the square root of z in implicit representation, to obtain gY 

Now, Q= (x, y) is a point on E known implicit only: (gx, gy) 
Step 3. Compute k: Q= kP in E(F ): (Pohlig-Hellman) 

6: for j=1,..., s do 
7: Compute Qf = (g"J, gVI, gWi), where (ul, vj, wj) = qjQ (Projective) 

8: Set i 4- 0, (u, v) *-- O, Pj +- qP (Affine) 

9: repeat (Solve Qj=k, Pi in the subgroup of E(Fp) of order qj) 
10: i4-i+1 

11: (u, v) +- (u, v) + Pi ((u, v) E- iP f=i ýP) 

12: until (g )" = g"j and (g J )v = gvJ (Test if (gu, ga) equals (guI, gai, gwi)) 
13: kj 4- i 

14: end for 
Step 4. Construct a 

15: Compute k (mod (El) such that YjE (1, ... , s) :k- kj (mod qj) (CRT) 
16: Compute kP =Q in aff ine coordinates 
17: Then x (mod p) is the abscissa of Q, and a=x-d 

Square root extraction 

We will now describe the special cases in the explicit notation. The next formulae 

are used by Algorithm 15, in the implicit representation, to compute gy from gz = 

9 y2 = gz3-3x+b. 

Suppose a is known to be a quadratic residue modulo p, using the Legendre 

symbol for example (g 2.2), and we want to compute xE Fp such that x2 =_ a 

(mod p). Then, besides the general Tonelli and Shanks algorithm used in (MSV04], 

we also treat two special cases: 

1. If p-3 (mod 4) then x =_ a(''+1)/4 (mod p), 

2. If p-5 (mod 8) then do the following: Compute s= a(P-5)/8, u=a"s, t=s"u. 

If t=1 then x=u otherwise x= 2''1)14 " u. 
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Algorithm 15 Implicit square roots in a group G using a DH-oracle for G. 
Input: A cyclic group G= (g) of odd prime order p, and g; = gY2 e G. 
Output: gy. 

I: if p-3 (mod 4)then 
2: gy e+1)/4. 

3: else if p=5 (mod 8) then 
4: g5 t- e')", gU 4. _ gZ, g' 4- gSU. 
5: if gt =g then 
6: gy g". 
7: else 
8: gy gu"2(P'')/4. 
9: end if 

(First case: p=3 (mod 4)) 

(Second case: pa5 (mod 8)) 

10: else 
11: Write p-1= 2` " w, w odd. (Tonelli and Shanks algorithm for p is 1 (mod 8)) 

y t- n, -»n, f- Y2y - ý y. 12: Set gs ý- gr F- eg gb gZ g gz (Initialise) 
13: while gb *1 do 
14: Find the smallest mz1 such that glut = g. (Find exponent) 
15: Set gt F- g( ), g3 E- gt, r t- m, gy «- gyt, gb F - gbs. (Reduction) 
16: end while 
17: end if 

Treating these special cases is worthwhile since half the primes arc congruent 

to 3 modulo 4, and half of the remaining primes are congruent to 5 modulo 8. The 

only remaining primes are all congruent to 1 modulo 8. We gain no advantage by 

using similar methods for this case, so we simply use the Tonelli-Shanks algorithm 

for the remaining primes as described in Chapter 2 (Section 2.2 on page 43). 

Explicit and implicit point multiplication 

As already stated, we use the projective coordinate system in Step 3 of Algorithm 14 

instead of the affine coordinate system. The formulae for addition and doubling 

of points2 in the implicit representation follow from their standard explicit coun- 

terparts [BSS99, p. 59-60] as follows (Recall that we are assuming that a= -3 and 

p>3 in the defining equation of our elliptic curve E). 

2Recall that "doubling" is the operation of adding a point to itself: 2P =P+P. 
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§6.1 Maurer's reduction method in Fp 

Doubling. LetP=(X: Y: Z)andQ=2P=(X': Y': Z'). Then 

%X2 = D`I f (8x. gX ) 
$Y2 = DW(gY, $Y) 

$Y` = yH(e, $y2) 
z2 

= Lll(gz, 
gZ) 

gZ4 
= EW(e, gZ2) 

3X2 + aZ4 gAl = (8X2)3 " (gz4)a 

A2 = 4XY2 $A2 = (ß(8X, 8Y2))4 

A3 = 8Y4 gA3 = (8Y4 )8 
X' = Ai - 2A2 gX' = ýffl(gA1, gA1) " (8A2)-2 
Y' = 11ý(A2 - X') -113 gý" = . Lm(gA1, gA2. (8x)-i) . (e3)-1 

Z' = 2YZ gZ, = D`H((8Y)2, gZ) 

So the cost of explicit doubling is 8 TI and that of implicit doubling is 8, +4 +149N. 

Addition. Let P= (Xi : Yl : Zl), Q= (X2: Y2: Z2) and R= P+Q = (X3 : Y3: Z3). 
Then 

$Zi = D`I((gZ1"$Zl) 

$'z1 = IYH($Zl, $Zl) 

9Z2 = D'1 i($Z2, $Z2) 

9z 
2= D`H(gZ2, gZ2) 

Al = X1Z2 2 $'ti = M(ö a, gz) 

A2 = X2Zi gA2 = m((gxz, g) 

A3 = Al - A2 gA3 = gAi . (gAz)-1 

A4 = Y1Z2 8Aa = M(9Y1,8Z2) 
A5 = Y2Zi gA5 = D`H($YZ, gzi) 
A6 = A4 - A5 gA6 =a. (gAs)-1 

A7 = Al -F+ A2 9A 7 = gA1 
. gAz 

A8 = A4 + A5 9As = gAa . gAs 

gA3 = m((gA3, gA3) 

3 = 1J l7 
(gA3, gA3 ) 

Z3 = Z1Z2A3 gZ3 = M(IYH(gZ1, gZ2), gA3) 

X3 = A6 - Ä7A $X3 = `ý`t{(gA6, gA6) " (`iý(ý7,3))-1 

A9 = A7A - 2X3 gA9 = 1)J( ((gk7, gä) 
. (gXs)-2 

Y3 = (A9A6 - Ä8A3)/2 g'3 = {1'%1(89, g"6) 
. (. M(gA8, g3))-1}1/2 

For the implicit square root extraction in the computation of g'3, we pre-compute 

2-1 (mod p) and use exponentiation. Hence the cost of explicit addition is 161A and 

that of implicit addition is 16Db + 5I + (8 +2 lgp)Tl. 

The cost of each operation is summarised in the following table. 
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Point doubling Point addition 

Explicit Implicit Explicit Implicit 

D 8 16 

4 5 

9l2 8 14 16 jlgp+l 

For the affine coordinates, note that we only need the explicit case (In the j-loop). 

The costs are (see 2.3.1 and take M=S= fit): 

1Z +40 for doubling and 13 + 3IR for addition. 

Exponentiation 

Since we will need to compute kP for different values of k but a fixed P, pre- 

computing the values 2'P, 22P,..., 2UUgkJP will save us some computation. Then, 

using the right-to-left binary method, we expect only I Ig k elliptic curve additions. 
We now summarise the costs of exponentiation. 

Implicit exponentiation in projective coordinates. The cost of the precomputation 

is about 

(8Zb + 4Z + 141M) Ig k (6.2) 

and then each exponentiation would cost about 

(si 
+ 

23 
+ 

4(31gp 
+ 13)TI Igk. (6.3) 

Explicit exponentiation in affine coordinates. The precomputation cost is 

(1Z + 4Wt)1g k 

and then each exponentiation would cost 

2(13+30)1gk. 

(6.4) 

(6.5) 
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§6.1 Maurer's reduction method in 1Fp 

Complexity of the optimised reduction algorithm (Algorithm 14) 

The average case complexity analysis of Algorithm 14, presented next, yields the 

following theorem. 

Theorem 6.2. Let G be a cyclic finite group of prime order p. Assume an elliptic curve E 

over Fp has been found, whose B-smooth order is 

Eqj, 

IEI = 
; _l 

where qj are not necessarily prime but are coprime of roughly the same size. Then, solving 

a given instance of the DLP in G requires on average about 

log 

ýB Blog 
Bp 

)M. 

For comparison, we quote below the asymptotic costs obtained by [MSV04] 

03 
log B 

Z6+0 
Blog 

Bp w2' 

While the number of multiplications has remained the same, the number of 

DH-oracle calls has now become quadratic in the size of the group G instead of the 

previously cubic cost. 

Note that, in order to get a lower bound on the cost of solving a DHP instance, we 

no longer require the auxiliary elliptic curves' orders to be smooth. This is because 

as long as we assume that the DLP is an exponentially hard problem then we do 

not mind if the reduction from the DHP to the DLP is exponential too. This remark 

will allow us to choose s=3 later, and then the task will be to find smooth elliptic 

curves whose orders are product of three coprime numbers. This is a significant 

relaxation of the smoothness condition. 
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Analysis of the average case complexity of Algorithm 14 

To simplify this task, each step of Algorithm 14 (see page 121) will be studied 

separately and then the partial results will be summed up to obtain the total average 

cost of the algorithm. 

Step 1: 

We first precompute g2' for i=1, ..., Llgpi. This will allow us to compute any 

power gk with an average cost of 11 lgM, using the double-and-add algorithm of 

exponentiation. The precomputation requires LlgpJ squarings, which costs 

Igp92. 

Without loss of generality, we set d=0 at the start of this step. Then, evaluating 

gz g-3x+b 
= gx3 . ((gx)3)-1 , gb requires 

2Z5 + +13 + (4 +2 Ig b)M. 

Note that 

$(x+d)3-3(x+d)+6 _ gx3-3x+b . (f2)3d , (gx)3J2 . _3d. 

So for a second evaluation, we only need an extra 

(3 +Z lg(3d) +3 lg(3d2) +2 lg(d3 - 3d)) 'M - (3 +3 1g 3+6 Ig d)' 1. 

For the quadratic residuosity check we need to compute g=o". First pre- 

compute gZ2' for i =1, ... , hlg 51, then the total cost is 

(lg2+2Igp21)Zb~(Zlgp-2)ZfD. 

Now, let v be the number of iterations for Step 1. Since Fp has (p -1)/2 quadratic 
non-residues, the probability for having v=k iterations is 

Pr[v-k]. P-1 lk-t. p+l. 
2p l 2V 
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§6.1 Maurer's reduction method in ]Fp 

Hence, the expected number 9 of iterations for Step 1 is 

Co Co k-1 

k" Pr[v = k] =P1k 
P2 1 2p 

;e1 2' 
2P 

ýCPP 
k=1 k=1 

Thus the total average cost of this first step is lg p17t + [2D5 + 1Z + (4 + 11 1g b)9J2] + 

[(3+3183+61gd)Wl1+2x(31gp- 3)ZSj. That is 

(3 1g p -1)DS + 1Z + (19P + 21g 
b+6 1g d+ 7+ 31g 3)Ut. (6.6) 

Step 2: Following Algorithm 15, we treat three cases: 

1. If p =_ 3 (mod 4) then, using the precomputations from the previous step, we 

can compute gz(P+l)14 in an average of 

2 lg p 
41 Z-5 N (I IgP -1)ý . 

2. If p-5 (mod 8) then the computation of gz(P-5)/S, gZs and gsu costs (2 + 

Ig j)Z 
N (21gp + 1) Z. 5 on average. 

If t=1 then no further computation is needed and the total cost is (2118 p+ 
')Zb. Otherwise, t*1 and then computing 

9u. 2(P-1)1+ 
= DH(gu g(2(P-i)/4) mod P) 

will cost an extra 1D + (7 lg !+ 12 1g p)9JL 

Since t behaves like a random variable, the average cost for this case is then 

(1 19 p+ 2)Z-j + 2(1Db + (21gp - 3) m). 

3. Otherwise, we use the general (implicit) Tonelli and Shanks algorithm. We 

first write p -1 = 21 " w, where w is odd. 

The initialisation step requires roughly (I Ig 21 +2)Z. 5. Finding the exponent 

and reducing it requires (r + 2)Z. 5 per iteration, and at most e iterations are 
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expected. Since r:: 5 e, we will need e" (r + 2): 5 e" (e + 2) calls to the DH-oracle. 

Hence, the total number of the DH-oracle calls is about 

(l2lgw -1 
2 +2+(e+2)e) . 

Since p is odd, we can easily see that the expected value of e is 

00 co 
Ek"Pr[e=k] = 

Ek"(1/2)k 
=2. 

k=1 k=1 

Bearing this in mind, we get w= p/2e = p/4 and the total cost is then estimated 

to be 
(21gp+ 2)»j. 

Note. When concluding, we will use the weighted average of the costs above, 

which is 

(2 Igp +$ )Z i+ $(21gp - 3)ßt. (6.7) 

Step 3: Before entering the j-loop, we first pre-compute 

2'Q for i=1,..., 11g lEIl-l/'j. 

This is enough since qj are of roughly the same size, so qj ft JEJ1I' and then q/ %ti 
JE11-its. 

Using equation (6.2), the cost of precomputation is found to be about 

(8D. 5 +43+149J) 
(1- s, 

lgtEI. 

We also pre-compute 21P for i=1, ..., tlg IEIJ in affine coordinates3. According 

to equation (6.4), this costs about 

(1Z + 4'b2) Ig JEt. 

3 We need i up to lg (EJ as we will use these precomputed values in Step 4 too. 
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§6.1 Maurer's reduction method in ]Fp 

Now, let j be fixed (We want to analyse the cost of one j-loop). The cost for 

computing Qj = (g'J, gain g'') such that (u j, vj, wj) =9Q, given by equation (6.3), is 

about 
(8i 

+5+ 4(31gp + 13) 92) yj, 

where we have set yj= lg(IEI/qj). For the evaluation of Pj = qj P, in affine coordi- 

nates, equation (6.5) gives 

3+ 2ý)Yi. 

For the i-loop, we note that g 
and 

g 
need to be computed only once for each 

j-loop, which costs 2Z6. 

Now fix i. Computing iR = (i - 1)R + R, in affine coordinates, can be achieved 

with one elliptic curve addition costing 121 + 3IR, since (i - 1)R has been computed 

and 1R =R is trivial. 

The cost of comparison is about 2x2 1g pW =3 1g p92. 

On average there will be q j/2 i-loops for each j-loop, and therefore the average 

cost of the i-loop is 
2ý (13 + 3(lg p+ 1)M). 

Hence, the cost per one j-loop is 

(8y j+ 2)Z5 +(1 qj + 3yj)Z + 
((1gp 

+ 1)qj +4 (31g p+ 19)yj)WR. 

Noting that 
ss 

yf=Elglgl =(S-1)lgIEI, 
E 
! =1 ! =1 

we find that the total cost for Step 3, without the precomputation costs, is on average . 

S 

(8(s - 1) lg JEt + Zs)Zb +2E q1 + 3(s -1) lg lEt 3+ 

+2M. 
i=l 
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Adding the precomputation costs, we finally get the total cost of Step 3 

(8(s -1 /s) lg IE) + 2s)1 +2t 
(q 

j+ (3s+2- 
s) 

Ig 1E1 ̂3+ 
i=1 (6.8) 

((1P 
+ 1) qj + ((31gp + 19)(s - 1) + 18- is )1gIEI 912. 

i=1 

Step 4: We use the Chinese Remainder Theorem to reconstruct k mod (EJ from k= ki 

(mod qj), j =1, ..., s. We compute 

s 

k= Ekj- I q" 4j (mod IEI), 
j=1 

re 
(1j)1 

mod q j. This requires 0+ 2s12 operations. Note that inversions whe 

are computed in Fq,, 
... , 

IFq,. 

For computing kP, in affine coordinates, we use the previously precomputed 

values of 2'P. So this exponentiation would cost only (13 + 3`W) I lg k. Taking 

k mod (EI to be I1 on average, we find the average cost of Step 4 to be 

2(1g IE) -1)Z + Z(1g 
JET - 1)W. 

Conclusion. We conclude that the total cost of Algorithm 14 is 

8(s- 
s)1gIEI+ 21gp+2s+ 8)Zfj 

+1t qi + (3s +5-4 )1g lEI+ 
1 

25 
2 

t_1 
2s2 

(1gp+1)1i=1qß+(1(31gp+19)(s-1)+e-1)IglEl+ 

+ilgp+ ilgb+61gd+31g3+ 1w. 

(6.9) 

Neglecting small terms and making the approximation4 jE) p and b : t: p/2, the 

average cost of Algorithm 14 is then found to be 

'By Hasse'sTheorem: JE1= p+1-t where Its 52 is the Fröbenius trace, so IEJ = p(1 +(1 -t)/p) N+ p, 
b= p/2 is the average value of b, and d is small. 
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{(Ss- 
+)1gp+2s+}+ 

tgj+(3s+-1=1 

2(lgp+1)qj+((31gp+19)(s-1)+ 4 
-1S 

)1gp M. 
t=1 

Note that if we take qj to be of roughly the same size and fix B to be of a similar 

size then 

and then 

log IEi log p N 

N log B1 log B 

E qj B=sB-- 
Blogp 

_B1gp log B 1g B 
i=1 i=1 

In practice, the cost of an inversion is at most 109Jt for the range of operand- 

sizes in the standards, see [BSS99, p. 371. Using this fact we have now established 

Theorem 6.2, stated on page 125. 

6.1.2 Case 2: Random base 

In the random base case, the DH-oracle is given a triple (g, ga, gb) where g is chosen 

at random and not necessarily a fixed generator of the cyclic group G. The definition 

of the DH oracle in this case then becomes: 

Definition 6.3 (Random base DH oracle). A random base DH-oracle takes as input 

threearbitrary elements h, ha, hb EG and returns hab in unit time. We write D`t! (h, ha, hb) _ 
hab. 

Note that if we invoke the DH-oracle with (ga, g, gb) _ (ga, (ga)ila, (ga)b/a) then 

we obtain 
(ö )(lla) (bla) = gb/a. (6.10) 

Hence, in such a setup we can use our DH-oracle to perform divisions in a 

straight forward manner, and thus there will be no need to use non-affine coordinate 

systems to avoid division. This was first pointed out to me by my colleague Pooya 

Farshim and then by Fre Vercautern. 
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By Section 6.4 (page 137), we do not expect major savings using this approach 

either (a factor of about 23.2 at most). 

6.2 Implications on the security of the DHP 

The implications of this reduction on the security of the DLP was addressed 

in [MSVO4]. We only comment on its implications on the security of the DHP, 

as it is here where the work done in this chapter matters most. 

Let CDLP, CDHP denote the costs of solving the DLP and DHP on an elliptic curve 

of size p, respectively. By Maurer's reduction, we have CD p= NI)f, - CDIIP + Nom, 

where Nr, 5, NMI are respectively the number of calls to the DH-oracle and number 

of multiplications in G. Hence, for NU a CUP we get 

CDHP = 
CUP -N CDLP 

NDg NZ$ 

Since solving the DLP on an elliptic curve E is believed to take at least ] 

steps [BSS99], in general, then setting 

TDII = 
omN, 

zg 

we see that TDH gives us a lower bound on the number of operations required to 

break the DHP, as long as we have Nye a CDLP. Hence, it is the value of TD1ß that 

gives the exact security of the DHP, given the best auxiliary elliptic curves that we 

can find. 

The tightness of the security reduction is controlled by two values. The first 

being the number of field multiplications Nan, and second and most important 

is the value of TDH for the reason put forth earlier. Tables 6.1 and 6.2 give the 

logarithms of these key values, namely 1gNan and 1gNzg, for the curves in the 

SECG standard [SE000]. They also give Ig NTE7, the logarithm of the (believed) 

generic minimum cost for solving an instance of the DLP on an elliptic curve E. 

The column headed adv gives the number of security bits gained on the previous 

results from [MSV04]. The last rows of the tables are detached to indicate that the 
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values are theoretical and that no auxiliary elliptic curves could be generated for 

them, mainly due to the sheer size of the numbers that needed to be factored. 

secp curve Ig JEJ 1g Nm 1g NN , 19 TDH adv 
secpll2rl 55.9 46.3 11.4 44.4 6.4 
secpll2r2 54.9 45.6 11.4 43.5 5.5 
secpl28rl 64.0 51.9 11.6 52.4 6.4 
secpl28r2 63.0 51.2 11.6 51.4 5.4 
secpl60kl 80.0 62.9 12.0 68.0 8.0 
secpl69rl 80.0 62.9 12.0 68.0 6.0 
secpl60r2 80.0 62.9 12.0 68.0 7.0 
secpl92kl 96.0 73.8 12.2 83.8 7.8 
secpl92rl 96.0 73.8 12.2 83.8 6.8 
secp224kl 112.0 84.7 12.4 99.6 6.6 
secp224rl 112.0 84.7 12.4 99.6 7.6 
secp256kl 128.0 95.5 12.6 115.4 7.4 
secp256rl 128.0 95.5 12.6 115.4 7.4 
secp384r 1 192.0 138.8 13.2 178.8 8.8 

se cp 52lrl 260.5 184.9 13.7 246.8 - 

Table 6.1: Summary of results for curves of large prime characteristic 

Now, given our estimates for the number of group operations and DH-oracle 

calls, we see that the smallest s for which Ng « is s=3. The reduction cost is 

then (see Conclusion on page 130 for general s) 

(149 55l ((1gp 1/ 3 1gP+ ++ 2)(3P )+(21gP+ 4 1g p) V. 68/ 

As an illustration of the advantage gained over the previous results presented 

in [MSVO4], we consider the security of DHP for secp2 56r1: The DLP on this curve 

requires about 2128 computational steps, employing the currently known methods. 

Using our auxiliary elliptic curve, which can be found in Appendix A. 1, we deduce 

that the DHP cannot be solved in less than 2115.4 computational steps, as opposed to 

2108 from the previous paper. That is a gain factor of about 21.4 over the previously 

reported value in IMSVO4], see Table 6.1. 

Since an amount of computation of about 2115.3 5.1034 group operations is 

infeasible with today's computational power, one can draw the conclusion that a 

secure implementation of a protocol whose security depends on the intractability of 
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sect curve ig Ii-El 1g Nvj Ig Nt , Ig TDH adv 

sectll3rl 56.0 46.4 11.4 44.6 6.6 
sectll3r2 56.0 46.4 11.4 44.6 6.6 

sectl3lrl 65.0 52.6 11.7 53.3 6.3 
sectl3lr2 65.0 52.6 11.7 533 6.3 
sectl63kl 81.0 63.5 12.0 69.0 7.0 
sectl63rl 81.0 63.5 12.0 69.0 7.0 
sectl63r2 81.0 63.5 12.0 69.0 7.0 
sect193rl 96.0 73.8 12.2 83.8 6.8 
sectl93r2 96.0 73.8 12.2 83.8 6.8 
sect233kl 115.5 87.0 12.5 103.0 7.0 
sect2 33rl 116.0 87.4 12.5 103.5 7.5 
sect239kl 118.5 89.1 12.5 106.0 8.0 
sect283kl 140.5 104.0 12.8 127.7 8.7 
sect283rl 141.0 104.3 12.8 128.2 7.2 
sect4A9kl 203.5 146.5 13.3 190.2 8.2 
sect409r1 204.0 146.9 13.3 190.7 - 
sect57lk1 284.5 201.0 13.8 270.7 

sectS71rl 285.0 201.3 13.8 271.2 - 

Table 6.2: Summary of results for curves of even characteristic 

the DHP on the curve secp2S6rl can safely be used, provided the DLP is really of 

the conjectured complexity. 

Note that the SECG standard [SECOO] includes all the curves in the NIST [NISOO] 

and the most used ones in the ANSI [ANS991 standards, and hence it covers the 

most commonly used elliptic curves in practice. 

6.3 Building the auxiliary elliptic curves 

By the argument presented in the previous section, we need to construct elliptic 

curves whose order is a product of three coprimc numbers of roughly the same 

size. That is qj - p1'3. Muzereau et al. [MSVO4] used the Complex Multiplication 

(CM) technique to build auxiliary elliptic curves with smooth orders but this does 

not perform very well as p gets larger, due to the prohibitive precision then needed 

for the calculations. In our case, it proved to be computationally more efficient to 

generate random elliptic curves and then test if their sizes are of the required form. 

Let us estimate the probability that a number in a large interval centred around p 
is a product of three co-primes of roughly the same size. This probability is bounded 
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below by the probability that a number n is a product of exactly three distinct primes 

of size roughly n1/3, of which there are about n113/ log n1/3 = 3n113/ logn, by the 

prime number theorem. The number of products that can be made out of these is 

roughly (3n113/ logn)3 = 27n/(logn)3, so their proportion is 

27n/(logn)3 
_ 

27 
n log3 n. 

Hence, a rough lower bound on the probability that we want is 27/ log3 n, which 

is not negligible, and hence we conclude that numbers that are products of three 

coprimes are not rare and can be found in expected polynomial time 5 

For most cryptographic groups G from the SECG standard, auxiliary elliptic 

curve E of the form y2 = x3 - 3x +b were successfully generated by finding a suitable 

value of b. When trying to generate the auxiliary elliptic curves, the main difficulty 

was to actually factor JEt. For large IGI, factorisation fails most of the time and 

another random value of b is tried without any success. This is the main reason for 

failing to produce the necessary data for the three curves secp521r1, sect571r1 and 

sect571k1. However, two missing auxiliary elliptic curves from [MSVO4], namely 

5We should note that the following argument that was presented in [BenO5a, Ben05b], although 
mathematically correct, is not the probability needed for the analysis of our method. 

Let us estimate the probability that a number in a large interval centred around p is a 
product of three co-primes of roughly the same size. 
Given three randomly chosen (positive) integers, we first want to compute the proba- 
bility that they are pairwise coprime. Let p be prime. The probability that p divides two 
of these integers but not the third is 3/p2 - (1-1/p) and the probability that p divides all 
of them at once is 1/p3. So, the probability that p is not a common divisor of any two of 
these integers is 

31132 
1- 1-p 

Hence, the probability that three randomly chosen integers are pairwise coprime is 

(i_A+)= j (1_)2(1+)o. 
2867474. 

p primep prune 

The infinite product is clearly convergent but a closed form of its value could not be 

obtained by the author. The numerical approximation 0.2867474 was obtained using 
PARI, [BBB+98]. 

For a large interval (m, n), the product should be taken only for p5m-n. Now, since 
1- 3/p2 + 2/p3 is positive, strictly increasing approaching 1 from below, we deduce that 
the above estimate is a lower bound to the actual probability we want. 

The above analysis estimates the probability that three randomly chosen numbers are relatively 
coprime, whereas we want to know the probability that a random number factors into a product of 
three coprime numbers. 
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secp224kl and sect409r1 were successfully found. While the first seems to have 

just been forgotten, the second was certainly due to the difficulty of generating the 

auxiliary elliptic curves using the CM method. 

6.3.1 The factoring procedure 

To factor a number n into three co-prime numbers of roughly the same size, we first 

factor n completely then try to write the factorisation in the desired form. If this 

fails then n does not satisfy the property we want. 

Let n= rj, `_1 p" be the prime factorisation of n. Write n= jI', q;, where qj =p e' 

are coprime. We want to write n= 414243 such that 71 are coprime and have the 

same size roughly. Clearly we need mz3 to start with, so if m<3 then we abort at 

this stage. 

There are (3) = m(m - 1)(m - 2)/6 Im3 ways of grouping the qi's into three 

groups. The search tree comprises m+1 levels, where the root node is (1,1,1), and 

the nodes at each level ¬ are obtained by multiplying one component of the parent 

node by qt to get all possible groupings of jI jst of (at most 3 children per parent 

node). 

To save on the cost of traversing the tree, we use a depth-first search and adopt 

an early abort strategy: Note that there is no need to pursue the subtree that has 

a root 4; » n1"3 for some 4;, so if any component of a node is significantly greater 

than n113 then we stop pursuing the current branch and backtrack. The first 5 levels 

of the tree are illustrated in Figure 6.1. See Algorithm 16 for the exact details. 

Algorithm 16 Factorisations of an integer into three equi-size coprimes. 
Input: An integer n, a parameter e defining the interval [Bg, Bu] = [nl/3-e, n1/3+E]. 
Output: A set Q of possible factorisations of n into three coprimes in [Be, Bu]. 
1: Let n= fl `1 pi' be the prime factorisation of n 
2: If m<3 or p, ' > B. for some iE (1, ..., m} then 
3: return 0 
4: end if 
5: Set S= (Pi', P2 ,..., Pm )" 
6: qF-(1,1,1), Q#--0, depth +-1 
7: tocoprimes(S, q, Q, depth) 
8: return Q 
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Figure 6.1: The first 5 levels of the factoring into 3 coprimes tree. 

Algorithm 17 tocoprimes subroutine 
Input: S= (pil, p2,..., p, ), q e N3, depth e N, Q c N3. 

1: qi- q 
2: for j =1, ..., min(3, depth) do 

3: qa- q 
4: qj E- q jSdepth 

5: ifgj 5Buand depth <mthen 
6: tocoprimes(S, q, depth + 1, Q) 
7: end If 
8: end for 
9: If depth =m and ql, 42, q3 >_ Bt then 

10: Q4-Qu{q} 
11: end If 

6.4 Can we do better using Maurer's approach 

Here, it is argued that not much improvement can be made using Maurer's reduc- 

tion, as described in Algorithm 14. 

Note that merely computing g3, from a random x mod p, costs at least 2x 

1g(p/2)ZS5 on average. For s=3, we find that the ratio of the estimated DH-oracle 

calls needed for the reduction to this lower bound is 

149 Igp+ä 149N236 
21gp 12 

Step 2 of the reduction algorithm is not independent from the first so its cost 

can be reduced further, but the third step does not seem to have any correlation 

with the previous steps. If we say that Step 3 costs at least one exponentiation, to 
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compute one of the (IEI/qj)Q, where qj ý (EI1'3, then the ratio drops to 

16 1g p+~ 149 
z 23,2. 

(2 + 2/3) lg p 16 

If we further assume that (IEI/q j)Q are all independent for j=1,2,3 then the 

ratio drops to (149/6)/(2 +3x 2/3) 22.6. 

Hence, it turns out that about 3 bits of security is all that can be hoped for above 

our result! 

6.5 Concluding remarks 

Assuming the DLP is an exponentially hard problem, we have shown that the 

Maurer-Wolf reduction with naive search yields a concrete security assurance for 

the elliptic curves recommended by the current standards, for which we could 

generate the auxiliary elliptic curves. We have found two new auxiliary elliptic 

curves, missing from [MSVO4], namely secp224kl and sect499rl. It remains open 

to find auxiliary elliptic curves for the curves secp52lrl, sectS71rl and sect571k1. 

These will have sizes larger than 500 bits, which presents the current factoring 

algorithms with a big challenge. 

Appendix A. 1 starting at page 147 lists the auxiliary elliptic curves that we 

constructed to give almost the tightest possible (Maurer) reduction. 

138 



Chapter 7 

Conclusion 

:; ii 
- "And it was said (in the end): Praise and thanks be to God the lord of the worlds", 

The Quran 

7.1 Review of results 

In this thesis, we have addressed three instances of cryptographic problems and 

improved on their current performance using both traditional and new techniques. 

In Chapter 4, we allowed the parameter sizes of the RSA cryptosystem to get too 

large, as suggested by NIST, and proposed new ways to implement the modular 

arithmetic. We used the wooping error detection technique in a novel way to allow 

us to achieve better practical performance than would have been possible otherwise. 

In Chapter 5, we saw how important is it to take into consideration the exact cost 

analysis of proposed cryptographic primitives, as asymptotic security results may 

be misleading and lead to inefficient or insecure systems when instantiated with 

practical parameter sizes. We tried to remedy the GGH hash function proposal via 

relaxation of storage requirements and modification of the compression function to 

break its linearity. This cost us to lose the desirable (asymptotic) provable security 

property, but has allowed us to make a concrete proposal that we hope will be made 

secure or at least serve as a starting point for future proposals. 
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In Chapter 6, we saw a different type of efficiency tightening exercise. This 

time we addressed efficiency in theoretical arguments of computational reduction 

between cryptographic hard problems. We used an alternative representation of 

the elements to decrease both the time and space requirements by a logarithmic 

factor. 

7.2 Open problems and future research 

The field of cryptologic research is very young with many open problems, and the 

topics studied in this thesis are no exception to this rule. Here, we list some of the 

issues that are directly related to this thesis that we wish to study and hopefully 

solve. 

It is a natural question to ask whether we can improve on the speedups we have 

already gained with our proposed approaches. The answer was negative for the 

equivalence between the DLP and DHP chapter where we showed, in Section 6.4, 

that not much can be saved for the range of parameters we were interested in unless 

we use a whole different reduction method altogether. 

There is however at least one type of DH-oracles that is not covered by our 

analysis in Chapter 6. Consider the special DH-oracle which, given a group element 

h= g" cG as input, returns hx = g"x where x is a fixed secret clement of the group 

in question. The problem associated with this type of DH oracles is referred to 

as Static Dtfie-Hellman Problem (SDHP), and asks for the recovery of the secret x. 

A reduction for this oracle type is not yet known despite it being a more realistic 

model of, for example, a compromised smart card that holds the secret x; and hence 

some research needs to be directed towards this problem. This is because we do not 
(currently) know how to use such an oracle to perform arithmetic in the implicit 

form (on the exponents) and hence we cannot use the Maurer's reduction. Brown 

and Gallant showed in [BG04] that such an oracle can be used to recover the secret 

x in less than Vp- calls, namely Vp- oracle calls using space O(max( p/d, Nrd`) where 

p= #G is prime and d is a divisor of p -1. This running time applies only in the case 

when p-1 has a factor d of order p1/3, which is true with significant probability, 
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and when at least d oracle queries are made. Cheon also describes a similar attack 

in [Che06] and further extends it to the case where p+1 has a small divisor by 

exploiting the structure of )Fp and ]Fpz. We speculate that it might be possible to 

generalise these attacks to work over higher extensions of ]Fp or over elliptic curves 

but it seems that the restrictive nature of the static DH oracle limits us so much and 

makes this infeasible [Che06]. 

One interesting open problem relating to the design of LASH is to find good 

values for the initial vector IV to circumvent similar attacks to the one on IV = 0. 

However, since any compression function based solely on lattices will be linear 

and thus will suffer from sub-exponential attacks using a generalised birthday 

attack, the chapter on building practical hash functions based on lattice problems 

seems closed, unless a completely different design strategy is used. The source of 
difficulty stems from the fact that it seems hard, if not impossible, to avoid these 

attacks without losing the lattice structure. 

The chapter on speeding up RSA arithmetic, however, touches on a fertile subject 

and has many open questions and possible improvements to be investigated. We 

will now suggest some possible ways of improving on the (software) solutions 

given in Chapter 4. One can also explore the possible hardware improvements that 

can be exploited but this is beyond our scope in this thesis. 

7.2.1 Shamir's RSA for paranoids 

Shamir suggested in [Sha95] to use "Unbalanced RSA" where the modulus N is a 

product of a very large prime q and a smaller prime p, e. g. for 5000 bits he suggests 

using p of size 500 bits and q of size 4500 bits. 

The key idea here is that RSA is usually only used for key encapsulation, so we 

can take p to only be as big as the key-size while we let q as big as it needs to be 

such that the product pq =N is of the required size. Now let x= ke mod N be the 

encapsulation of a key k<p, then for decapsulation we can see, using the Chinese 

Remainder Theorem, that we only need to compute k= xd mod p-1 mod p since we 

already know that 0<k<p<qi. e. there is no need to compute k=d mod q-1 mod q 

or any other further computation. For the optimisation of encapsulation, Shamir 
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proposes using e= 20 as then we can compute kw as (k10)2 mod N which only costs 

10 integer multiplications and 1 modular multiplication provided k<p< q1110, and 

the "wraparound effect is similar to the squaring operation of full size numbers in 

Rabin's scheme. " 

This variant of RSA would clearly be of great interest if 15,360-bit RSA is to be 

used in practice for key encapsulation. Further research needs to be done regarding 

the security of this proposal and the possible padding schemes (like RSA-OAEP) 

that need to be used to avoid attacks similar to those presented in [GGOQ98]. 

7.2.2 Using convolutions to speed up Montgomery reduction 

Roughly speaking, convolutions allow us to compute the sum of the upper and 

lower halves of a product. In this section, we will show how this may save us 

computation time and then describe how to actually compute these convolutions. 

Let us recall the description of the Montgomery reduction steps (see Algorithm 3 

on page 41). 

1: u f-- (-m'i)z mod R 
2: x f- (z + um)/R 
3: if xzm then 
4: x--x-m. 
5: end if 
6: Return x 

As we have pointed out before, (z + um)/R is simply the upper part of z+ um i. e. 
(z + um)u. The left diagram of Figure 7.1 illustrates the operation z+ uni graphically. 

We will now show a nice modification that will allow us to compute (z + um)/R 

a bit faster. Note that if we compute (um)� + (um)s instead of the full um then the 

lower half of the addition z+((um)� + (um)s) is going to be equal to (um),,. Hence, we 

can read the value of (um)u straight away and add it to z� to get an approximation 

to (z + um),,, which will be off by at most 1 (carry value). This then can either be 

corrected by wooping or other techniques. 
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c 
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y 
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(um)u (um)e I 

(z + um)u 0 

z 

(um)u (um)u + (um)e 

I zu + (um)u (um)u 

Figure 7.1: Using convolution to compute (z + um)u. 

Computation of convolutions 

There is a general technique to compute convolutions using FFTs when the number 

of words is a power of 2, but we will first construct special methods based on the 

Karatsuba and Toom-3 multiplication algorithms then comment on the possible use 

of FFT in our case. 

Karatsuba-like convolution. Let f (x) = (ao + alx)(bo + bix) = w2x2 + wlx + wo. 

....................... 
11 
11 

W2 , 
1 

1 wo , 1, 

1---- -w- --- we . 

Note that f (l) -f (-l) = 2w1 and f (l) +f (-l) = 2(wo + w2). So we can construct 

(uv)¬ + (uv)� = (wo + w2) + bt(wl)e + (wl)u + carries. 

This will only cost two half-size multiplications to compute P±1), and hence a 

total of 

2? C(n/2) + 4n 3ýC(n). (7,1) 

[Justification: 2(n/2)t 3= (2/21g3)nl 3= (2/3)n' 3. ] 

Toom3-like convolution. Write a(x) = ao + aix + a2x2, b(x) = bo + blx + b2x2 and 

a(x)b(x) = wo + wlx + W2x2 + w3x3 + W4X4. 
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r---------------r---------------I 
W4 

4417 

'c 

wo 
...... L ............... ....... Wt 

For wu + w¬ we are interested in computing 

(w4 + wl)bt + (w3 + wo) + (w2)1P + (W2)� + carries. 

Let C#1 be a root of x3 -1 (e. g. C= exp(2in/3)). First compute 

a(C)b(C) = WO +wi+wz+W3+W4 

a(ý1)b(ý1)= wo+W1C+W2C2+W3Z3+W4Z4 =B 

a(C2)b(C2) = wo + W1Z2 + w2C + w3C6 + w4t8 =C 

i. e. 

A= (wo+W3)+(WI+w4)+W2 

B= (wo+w3)+(wi+wq)C+w212 

C= (wo+w3)+(wl+w4)C +w2C 

Solving for (wo + W3), (wl + w4) and w2, we get 

wo + w3 = (2 + C)(B - CC)/3 

wi +w4 = (2+t)(A-B-(B-C)C)/3 

roe = (1-Q(A-B)/3 

The Karatsuba convolution is very easy to implement but the Toom-3 variant 

seems harder to implement as it requires us to deal with complex numbers. It would 
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be interesting to see how one can handle this issue without introducing too much 

computational overhead. 

FFT based multiplication. The authors of [PG05] suggest using cyclic convolu- 

tions instead of half products and achieve, in [PG06], a complexity of O(2.5n log n) 

for a reduction algorithm with the use of negacyclic convolutions, but it is unlikely 

that these will beat our proposal around the 15K bit operands case. 

It is argued in [Gar07] that the Schönhage method becomes as efficient as the 

Karatsuba and Toom-3 methods at about 217 = 131,072 bits, which is close to the 

value of the generic FFT multiplication threshold used in the GMP library namely 

30 x Toom-3's threshold: 30 X 128 = 3840 words (122,880 bits). These sizes are too 

high for our purpose. The reader may be interested in having a look at [Zur94] to a 

see a report on concrete implementation of a wide range of multiplication methods 

(but run on an old machine). 

7.2.3 Cache oblivious Montgomery and Barrett methods 

If the cache size is too small then the recursive nature of the used multiplication 

methods and the large sizes of the operands may cause cache misses and hence 

slow the computation considerably. 

One possible way of circumventing this problem is to use an iterative version 

of the multiplication algorithms. For a description of an iterative version of the 

Karatsuba method see [LLH03]. 
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Appendices 

A. 1 The auxiliary elliptic curve groups 

A. 1.1 Elliptic curve domain parameters over 1Fy 

secpll2rl 
IGI= 4451685225093714776491891542548933 
b= 2281028298640880380471050241629229 
tEJ = 161721374756 

secpll2r2 
(G(= 1112921306273428674967732714786891 
b= 206183575593038548653640501094854 
JEt= 105310592296 

secpl28rl 
IGI= 340282366762482138443322565580356624661 
b= 296382216672105127948448095681044076642 
JEt= 7551279841752. 

secp128r2 
IGI= 85070591690620534603955721926813660579 
b= 73019542618206173582301377146548133543 
JEJ= 4222485329260.4376586107537.4603369401979 
secp160k1 
IGI= 1461501637330902918203686915170869725397159163571 
b= 1014269469389219214184903107646149695236127481640 
(EJ = 11130827212809215 
secp160rl 
IGI= 1461501637330902918203687197606826779884643492439 
b= 1231565154230325865757423073063591837019188457168 
JEJ= 11174885494467645 
secp160r2 
IGA= 1461501637330902918203685083571792140653176136043 
b= 19878710007803495986099641303621720692363507758 
JEJ= 10573725526879272.11520572597065679.11997678180434227 
secp192kl 
IGI= 6277101735386680763835789423061264271957123915200845512077 
b= 1094708638413029664629646177364452405008715587623144058105 
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JEJ= 16352962116221436126.17705499411507224387" 
21679764265977655387 

secpl92rl 
IGI = 6277101735386680763835789423176059013767194773182842284081 
b= 73398673199696175201906191077775951800878826985233013574 
IEI = 17294274520438999164.19491494149529285201" 

18621372472744345117 
secp224kl 
IGI = 2695994666715063979466701508701964034651032708312007454\ 
8994958668279 
b= 24618590432167307909930264143550961204039679464315847760\ 
586750945971 
JET = 25996959705011679445066.33448358726421720956541" 

31004280361955770972381 
secp224rl 
IGI= 2695994666715063979466701508701962594045780771442439172\ 
1682722368061 
b= 861814932527596025116148711861115855634130668475173705465\ 
8821880904 
SEI = 29343613141744570024644.31798414632322188707593" 

28893487975414890420151 
secp256kl 
IGI= 115792089237316195423570985008687907852837564279074904\ 
382605163141518161494337 
b= 5860372311642139591868908991386138368626851126235832204\ 
6880666663466737354099 
IEI = 47494383239999767419320745.45175228939925617688211569" 

53967993991985944506666061 
secp256rl 
IGI= 115792089210356248762697446949407573529996955224135760\ 
342422259061068512044369 
b= 4765589410146331676223652613201639325305727084000142383\ 
9782911257030924437529 
(El= 50851524730203743853228640.55497037692343386526156881" 

41030339309908399787973083 
secp384rl 
(GI= 394020061963944792122790401001436138050797392704654466\ 
67946905279627659399113263569398956308152294913554433653942643 
b= 8989010369169358436741847681979570105581243690574208263\ 
269556059650466158270056995485882025406947986682587367889624 
IEI = 339869870481891547400546585225179213290" 

349579759801582203099222931053813745553- 
331634259739663319085318305031105092059 

secp521r1 
Not available due to hardness of factoring. 

A. 1.2 Elliptic curve domain parameters over ]F2. 

sectll3rl 
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IGI = 5192296858534827689835882578830703 
b= 987637099543013757029545810016098 
IEI =178524038025.170996556499.170088694619 
sectll3r2 
IGI= 5192296858534827702972497909952403 
b= 4583769363017101608245187708458901 
JE) =173146840968.166401825973.180213306239 
sectl3lrl 
IGI= 1361129467683753853893932755685365560653 
b= 1258328605209306875070716696495675196119 
IEI= 11939631029912 
sectl3lr2 
IGI= 1361129467683753853879535043412812867983 
b= 358232342344119392058404230806453594114 
(EI= 11466564749342 

sectl63kl 
IGA= 5846006549323611672814741753598448348329118574063 
b= 177673376973323847770354736271782956689983248537 
JEt= 18247804538816661 

sectl63rl 
IGI= 5846006549323611672814738465098798981304420411291 
b= 1587404867306359898884819339154082781653585209324 
JEt= 17869920899977912 

sectl63r2 
IGI= 5846006549323611672814742442876390689256843201587 
b= 2956283323980422889291478477370320953355731576940 
JEt= 18200719603559559 
sectl93rl 
IGI= 6277101735386680763835789423269548053691575186051040197193 
b= 35338895987916163832451188982915353767627436600288649159 
IEI= 16547960255111188472.19478515037898861263" 

19474165359321867611 
sectl93r2 
IGI= 6277101735386680763835789423314955362437298222279840143829 
b= 441755957568112116066633401133360511847396492629731764429 
JEt= 19387762096509288342.18577800791543661067" 

17427583967788534019 
sect233kl 
IGI= 3450873173395281893717377931138512760570940988862252126\ 
328087024741343 
b= 25122149205491735595137688390486707351370368980297988538\ 
30832766551245 
JEt= 155403009344278118554232.153385740717714666739125" 

144772003913287824778231 
sect233rl 
IGI= 6901746346790563787434755862277025555839812737345013555\ 
379383634485463 
b= 70409381647557063417408192870522518425634682631728828182\ 
1773151878529 
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Appendices 

JET = 206799617030336682555416.195185490238925230580889" 
170986465134593155152949 

sect239kl 
IGI = 2208558830972980411979121875928648149482165613217098488\ 
87480219215362213 
b= 27650235244228507853355450435057293014412082341226059038\ 
361077531582683 
IEI = 543814925489365240837668.610576362599114416948097" 

665147345183743261991485 

sect283kl 
IGI = 3885337784451458141838923813647037813284811733793061324\ 
295874997529815829704422603873 
b= 28183552298654367145273437136771989603707301993060462481\ 
46777682199067799961811453900 
IEI = 16292450803352497273678817784- 

15201361952350557812684097049 - 15687721231974421411325545219 

sect283rl 
IGI = 7770675568902916283677847627294075626569625924376904889\ 
109196526770044277787378692871 
b= 71767445486180876851805109646321526052188997926851304655\ 
95965436250552932458637035413 
IEI = 16932408152570400028840713015" 

19857620455536755941661666843.23110686327095779427460999989 

sect409kl 
IGI = 3305279843951242994759576540163855199142023414821406096\ 
4232439502288071128924919105067325845777745801409636659061773\ 
1358671 
b= 13877074019970923581077302466204224976964264102344770827\ 
4370480173588453714079223650928941369852833083698503107547969\ 
459853 
SEI= 54923628603232455334113678631129360414184" 

62030988940606152064529997029577410596573- 
97015317302467505937973376689033052671801 

sect409rl 
IGI = 6610559687902485989519153080327710398284046829642812192\ 
8464879830415777482737480520814372376217911096597986728836656\ 
7526771 
b= 13817711446362728360145301111436486530925505507402770142\ 
258673028256246338430064054266470642072686266547046134340903\ 
3831354 
IEI= 87268656040437200019781889318456334448900" 

81063003278915230074335552542219354685229- 
93445254974986510684197220630040488205129 

sect571k1 
Not available due to hardness of factoring. 

sect571rl 
Not available due to hardness of factoring. 
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§A. 2 Trace of a single execution of LASH-160 

A. 2 Trace of a single execution of LASH-160 

To help with finding bugs in implementations of LASH, we give a trace of the 
internal variables when hashing the three-byte ASCII string "abc". 

First compression function iteration. 

r: 00 Co 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 60 00 00 00 00 90 00 00 00 60 

61 62 63 80 00 00 00 00 00 60 60 60 00 00 00 00 00 60 00 00 
00 00 00 00 00 09 00 09 00 00 00 00 00 00 60 00 00 00 00 00 

mit t: 61 62 63 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
90 00 00 00 00 00 00 00 90 00 00 00 09 90 00 00 00 00 00 00 

(1=321) ee 72 Se a4 bf bb f6 55 if al 48 lc of 02 55 lb 16 75 30 2d 
3f eb 68 as c6 e3 la 2d eb 14 2f d0 e5 6a 2c cl ff 07 77 3c 

(i=322) 51 ff 6e 9f e3 7a bl 4b 74 Co e9 64 Ob fl 57 70 31 8b as 5d 
6c 2a 53 12 70 a9 fd 47 18 ff 43 ff b5 4f 96 ed Co 06 7e b3 

(1=327) 36 Ob 20 47 ec dd 3e Sb 6f e4 a8 if 01 46 76 11 79 a7 94 5f 
c1 45 69 87 a0 d6 3c 32 80 a9 09 e2 cf 7c 81 01 of d6 63 id 

(i=329) da 32 OS 53 9e 85 47 be fc f4 a3 43 Co 01 6c 66 98 48 dc 7b 
b0 47 be a2 b6 4b 6c Sf bf 94 71 Sc 95 5f 9b 2e da ea 92 ed 

(1=330) 9a d6 2c 38 as 37 of c7 Si 81 b3 3e e4 Co 27 Sc ed 67 7d c3 
cc 36 Co f7 dl 61 el 8f ec d3 Sc f4 3f 25 7e 48 07 d5 a6 lc 

(i=334) 28 53 00 cl 6a db 16 ac 6b 33 Sb 47 47 4d 37 57 11 26 38 b9 
21 55 61 3f ed 50 e3 e4 07 e9 dl 24 6c 64 69 b0 bi 9b 89 36 

(i=337) f1 cc ba 4f e7 of 9f 6c Of 5a 40 53 f9 f5 40 ba 9e 36 33 dd 
e0 10 57 94 0c f1 2b 00 f6 eb 26 3f 82 d9 99 dd f0 86 f1 e0 

(i=338) Co 95 33 09 75 2c 73 f5 cf fe 67 38 05 a7 e8 c3 01 c3 43 d8 
04 cf 12 8a 61 10 cc 48 12 da 28 94 9d of 0e Od Id c5 dc 48 

(i=342) cl dS as fa 44 f5 ec of Sd 7b 3b cl CS 4b Of a8 Od 75 eb el 
67 Sc 22 85 85 cf 87 3e 67 f9 c9 dc b9 de 10 62 38 db 51 78 

(1=343) cd d6 ea 71 35 c4 b5 28 17 09 b8 95 4e Ob b3 cf f2 81 9d 89 
70 bf of 95 80 f3 46 f9 5d 4e e8 7d 01 fa ff 64 8d f6 67 ed 

(i=344) 49 e2 eb bl ac b5 84 fl 90 c3 46 12 22 94 73 73 19 66 a9 3b 
18 c8 12 22 90 ee 6a b8 18 44 3d 9c a2 42 lb 53 8f 4b 82 03 

Final compression function iteration. 

r: 49 e2 eb bi ac bS 84 fl 90 c3 46 12 22 94 73 73 19 66 a9 3b 
18 c8 12 22 90 ee 6a b8 18 44 3d 9c a2 42 lb 53 8f 4b 82 03 

s: 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Co 00 00 00 

Init t: 51 e2 eb bl ac b5 84 fl 90 c3 46 12 22 94 73 73 19 66 a9 3b 
18 c8 12 22 90 ee 6a b8 18 44 3d 9c a2 42 lb 53 8f 4b 82 03 

(i=1) a6 13 4f 38 99 14 9e 7c 66 66 08 cb 08 £6 d1 06 2b d8 b4 4a 
27 62 of e5 62 db 26 d6 17 Sa 3e 32 95 d2 c6 42 67 df 3d 2c 

(i=4) 74 8d 4c 8d ca 78 25 69 c5 80 93 al ab b8 8a ec 8d 36 47 Sc 
99 6d le f4 fc d8 e9 a8 04 16 Sc 31 ab d3 Sc 35 f7 8a 2c 04 

(i=7) 77 e3 84 5b 44 75 7a 9a 29 07 80 00 c5 43 60 8f 4f ei 2d be 
f7 00 30 66 07 e7 18 42 01 d9 2e le 67 fl Sb 4b f8 20 if 94 

(i=8) ec e6 da 93 12 of 77 of Sa 6b 07 ed 24 Sd eb 65 f2 bl e6 a4 
59 Se c3 78 79 £2 07 51 9b d6 fl 10 54 ad 79 4a 0e 21 b5 87 

(i=9) 57 Sb dd e9 4a bd fl ec of 9c 6b 74 11 be 05 £0 c8 54 a8 Sd 
3f Co 21 Ob 8b 64 12 60 as 70 ee b3 26 9a 35 68 Od 37 b6 id 

(i=10) be c6 52 ec a0 f5 bf 66 ac fl 9c d8 98 a9 64 0a 53 2a 4b if 
f8 a6 83 69 le 76 84 6b b9 7f 88 b0 e9 6c 22 24 2b 36 cc le 

(i=14) 69 52 eb b8 05 60 34 69 02 29 6a 52 95 fe 95 6e da 17 as 39 
83 7c 26 2b d7 Sc e6 c9 4c 91 fa bb £8 7b be 21 ee 08 b9 da 

(i=16) ec cl 98 44 9e 2c 99 d4 77 2c Co 8a 63 78 92 c3 Ob 7b 31 26 
e2 96 b1 01 7a le 9f of ae of 8d cd 6a 86 cb 30 88 05 7c ac 

(i=17) 01 44 07 fl 2a c5 65 39 e2 al c3 e0 9b 46 Oc Co 60 ac 95 ad 
cf f5 cb Sc 50 cl 61 68 94 51 eb 66 7c f8 d6 3f 97 9f 79 6f 

(i=18) 9a 59 8a 60 d7 51 fe 05 47 0c 38 e3 fl 7e da 3a 5d 01 c6 11 
56 e2 2a a6 db 97 04 2a 4d 37 4d be of 0a 48 4a a6 ae 13 6c 
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Appendices 

(i=20) 18 b2 23 7S Sa Co ab 91 e0 d8 9d 4e 66 81 30 72 2b 7b c3 66 
87 46 bl 93 3a bi 8f 00 f0 19 66 a4 71 68 db Sc 18 b9 22 7b 

(i=22) 27 of al ce £3 dS 2e 00 8d 64 36 la cb ec as 7S 81 b3 91 e9 
84 9b e2 f7 cl 9e ee la 7b cf a9 66 2a 4e 3d ba ab cb 94 86 

(i=23) 75 le fe 4c 4c 6e 43 83 fc 11 c2 b3 97 51 10 ea 84 09 c9 ae 
fe 98 37 28 25 25 db 79 95 Sa if 69 ec 07 23 lc 09 Se a6 18 

(i=24) ea 6c Od a9 ca c7 dc 98 7f 80 6f 3f 30 id 7S 55 f9 ec if e6 
cc 12 34 7d 56 89 62 66 f4 74 0a df 8f c9 dc 62 6b be 39 Oa 

(i=26) as 03 82 f7 d9 24 5a fl 18 95 f2 ae dd a9 0e 21 Se 77 94 e9 
22 4a 02 f7 53 de 93 ca 7b 61 69 f9 1a 9f 7f c4 24 a2 9b 68 

(i=27) d6 cl 19 6c 27 33 b7 6f 71 2e 67 31 4c 56 9a ba 2a dc ff Se 
25 as 3a c5 cd db e8 fb df e8 56 S8 34 2a SS 67 e6 Sb 81 ca 

(i=31) d7 71 7d Sc 55 fl 4e e4 bf 3d 64 of as of of 3d 99 89 8b f7 
f1 05 a5 3a d0 31 20 c9 59 e5 ab 89 98 b1 42 c6 60 e6 57 6d 

(i=32) 2b 72 2d f0 75 if 0c 7b 34 8b 73 0c 23 48 48 52 is f8 38 83 
8a dl 0a a5 45 34 76 01 27 Sf a8 de c9 15 c9 b3 Sf 00 e2 43 

(i=34) if 15 81 fl 25 83 2c a9 £2 22 e8 Sa 32 as c6 ab b5 Od bb f2 
37 Sd a3 71 as 9f eb 04 7d 97 76 58 c6 6a fa 17 e6 ed 41 Sd 

(i=36) 46 es 75 94 79 84 dc Gd 12 50 a6 fl a7 f3 dS 08 33 66 54 67 
ba cc 50 fd 43 6b S0 6f f2 9a cc 90 94 e4 f7 6c 17 51 c8 4a 

(i=37) 68 ec 25 88 lc d8 dd bd 76 70 d4 of 3e 68 23 17 90 e4 ad as 
cf 4f bf as cf 04 lc d4 Sd of cf e6 cc b2 71 69 6c 82 2c d1 

(i=48) 75 cc 53 as 43 88 di 60 ca 71 84 13 Se 96 el ae 05 32 be fd 
4d a8 58 bf 52 73 c9 60 f6 db 34 51 41 bS c7 at 3a fc 29 26 

(i=42) 9e dl 60 8a 71 as £8 10 be 14 d8 14 0e fa 01 dc c3 c9 31 4b 
Sc 0S d6 18 eb 88 4c cf a3 67 cd !d a6 20 3c a4 90 34 f7 a0 

(i=43) 44 fa 65 97 51 d8 la 37 6e 68 7b 68 Of as 65 fc fi 87 c8 Co 
as 14 33 96 44 21 61 52 12 14 59 b6 72 85 a7 19 93 8a 2f 6e 

(i=45) Se b4 0b Co 56 e5 fa 65 90 2f 2b Sc b2 fe 66 ac SS a7 f6 7e 
41 89 81 a5 at 9f ba eb 27 97 c8 63 fe le 73 7e fe ff 32 c4 

(i=47) 60 ea e5 7a fc 0e ff 72 70 Sd 4d 83 62 f2 69 00 56 57 Sa 9e 
6f 47 18 la of ae 17 69 80 30 dd e6 6d cb ff 17 ca 64 9d 39 

(i=48) 6e 2c lb 54 b6 b4 28 77 7d 3d 7b as 89 a2 fd a3 as 58 0a 02 
8f 75 d6 bi 64 fc 26 c6 fe 89 76 fb f0 3a ac a3 63 30 02 a4 

(i=53) 94 81 28 S1 as c2 6a ad Si f7 21 ce 8e of dd dl cc if ba f6 
32 c9 d7 61 c8 lc 54 84 9S fe c4 0a 4d b8 05 3c 78 b3 71 51 

(i=56) 37 92 80 77 fa cf 67 9c 65 39 57 as 48 55 06 d6 d9 Sf e8 18 
59 79 cb 04 is id 64 e8 bS 2c 82 al c2 06 14 99 f6 0c 0a 66 

(1=57) ff 35 91 cf 20 24 74 99 54 47 99 de 22 Of ac ff de 6c c8 46 
7b a0 7b £8 bf 71 05 98 19 4c b0 Sf 59 7b 62 a8 S3 8a 63 ff 

(1=58) 78 fd 34 e0 78 4a c9 a6 51 36 a7 20 58 e9 66 as 07 71 dS 26 
a9 c2 a2 a8 b3 14 59 99 c9 b0 d0 8d 17 12 d7 f6 62 e7 el 58 

(i=59) 7a 76 fc 83 89 a2 of fb Se 33 96 2e 9a if 40 Sf ad 9a da 33 
89 £0 c4 cf 63 08 fc ed ca 60 34 ad 45 d0 6e 6b bO f6 3e d6 

(i=63) fb ad 70 41 8b 1b b7 9e 6f 8b be 83 a7 lc 2f 6d of d0 b4 ed 
2f 19 c9 dc 43 36 le 14 7a 54 d7 01 46 80 d2 8b de b4 d5 4b 

(i=64) bl 2e a7 bS 49 id 30 66 12 9c 14 a9 fc 29 2c Sc fd 12 ea c7 
e9 bf f2 el 50 16 4c 36 at 64 cb a4 9a 81 82 of fe e2 93 e2 

(i=67) 2a 21 28 6b ca 54 a4 24 14 15 dc 4c 0d 81 52 bl 0a Of d9 d5 
2b £5 cc 9b f6 3f 51 43 81 32 ed cb 4a 7S 25 43 ff 92 f7 02 

(i=72) 10 id a5 79 74 cd 97 aS ca 96 13 Co cb 83 cb 79 ad 20 31 fb 
80 02 c9 8a 64 81 87 ld 3b d8 16 d0 57 55 S3 65 26 42 eb as 

(i=73) 82 e3 at f6 82 77 10 98 4b 4c 94 f7 3f 41 cd f2 75 c3 42 53 
a6 57 d6 87 13 8f c9 53 15 92 be f9 Sc 62 33 93 48 69 9b 99 

(i=78) 09 18 6d c3 57 09 d6 94 c8 Sa 3e 70 32 c2 83 73 ac 37 00 SS 
if 11 79 98 4b b5 le 60 12 81 ca 3b 92 3c ed 39 71 6e as 79 

(i=79) 4e 91 a2 8f 24 de 68 Sa c4 d7 4c la ab b5 04 29 2d 6e 74 13 
21 98 41 3b Sc 0d 44 b5 if 7e b9 49 d4 72 c7 f3 17 97 ad 86 

(141) 0d ed e7 16 59 as 35 2f 56 9d 48 97 b9 Sf 7d 1c ae 24 15 4a 
95 S6 43 b4 24 b0 55 0d 45 d3 c6 46 c3 80 89 29 fl 51 53 of 

(i=85) 44 b7 98 97 18 f8 7a b6 Sb 69 15 6c 4b 25 79 99 be ce 6e 3d 
16 0c c4 eb 98 6e S7 86 ed 76 d7 9e e9 d5 16 26 e0 Sf 95 e5 

(i=86) 20 ee 62 48 99 b7 c8 fb 12 9e el 39 20 b7 3f 95 39 dc 18 b6 
09 8d 7a 6c cf e2 15 88 86 3e 7a of 41 fb 6b 33 dd 4e a3 27 

(i=91) Se c8 ab 7a ff 93 ff c5 c3 if as 87 65 3e 74 61 06 bl as 7c 
0S 0a 88 16 48 dS 96 3e 67 7S ee 6d 43 74 33 d6 ee a6 c9 7c 

(i=94) of 22 df b8 d9 dc 31 2b 91 56 6a 38 e6 fd c2 a6 ad e6 76 49 
da 9c 4e 12 c5 e3 40 b7 fa f6 a4 ee 7a e8 11 d8 67 6e 6c 8d 

(i=98) a8 61 bb d0 2a 36 65 69 79 9f 9c 9e c2 34 Sc 57 0e as c4 8e 
61 d1 la df 9a 75 66 b3 77 04 4e 67 6d 69 a7 59 9e e2 2a 8f 
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§A. 2 Race of a single execution of LASH-160 

(i=102) cd 29 da c3 23 75 41 81 ca f9 d0 dc 9c 7d be bd ea dc 8e 3f 

e2 90 68 24 21 as d2 80 4c 96 14 63 ea 77 51 d2 91 63 e6 10 
(i=104) be 18 ff 8b 42 68 3a Co a6 11 21 36 d0 bb 98 06 is 42 6a 76 

ac 41 e9 e3 6f of 59 b5 18 63 e9 15 b0 73 ce e0 3b dc d3 91 
(i=107) 76 84 fc 7a 31 8d 02 df 99 Oa 60 12 e8 0c f2 3a 5a lc b3 a8 

12 id 20 ad 20 70 18 63 Sd ea le cl 7d 48 60 a6 37 59 el 3b 
(i=109) 0c 2c b6 e6 2e 7c fl 04 61 29 53 Ob 27 e8 0a 8b b4 50 fl 82 

5b 4f 86 89 57 3a c9 84 lc 38 63 48 b2 14 2d 7b c9 if dd b8 
(1=113) 60 a2 a7 3c c4 24 ab 70 Se 18 42 30 of 07 fd 84 13 2c 09 d3 

b5 83 c4 63 a0 6c 2f 60 53 02 14 c9 71 62 72 02 fe eb as 8d 
(1=114) 99 £6 1d 2d la ba 53 2a ca 15 31 if 14 cf lc 77 ec 6b e5 eb 

06 dd f8 al 7a bS 61 c6 2f 39 de 7a f2 21 Co 47 85 20 76 5a 
(1=115) 19 2f 71 a3 Ob 10 e9 d2 84 81 2e 0e 03 f4 e4 96 df 64 24 c7 

le 2e 52 d5 b8 8f as 18 95 15 15 44 a3 a2 7f 95 ca a7 ab 26 
(i=118) 3c 66 3c 03 44 64 5f c3 da 17 d6 c8 6f fl d3 85 04 2c 43 ba 

17 6d 2e ed 09 e9 de 36 6f Se 47 as 7f d9 49 46 4b 66 f9 6b 
(1=119) 77 a9 73 ce a4 9d b3 39 cb 6d 6c 70 29 5d d0 74 f3 51 Ob d9 

0a 66 6d c9 21 3a 38 6a ad 38 90 dc e5 b5 80 10 fc e7 b8 b9 
(1=121) b8 63 ae 11 db 68 13 72 if e3 Sd c6 bf 05 8a e6 10 40 fa fe 

d2 85 60 c2 60 16 50 bb 07 6c ce b6 2e e7 e6 ec 33 bl 69 3a 
(1=122) 34 a4 68 4c le 9f de d2 58 37 d3 b7 15 9b 32 9a 5c 3d e9 ed 

f7 4d if b5 59 55 2c d3 58 c6 02 f4 08 30 18 52 Of e8 33 eb 
(i=123) e7 20 a9 06 59 e2 15 9d b8 70 27 2d 06 fl c8 42 16 a9 e6 dc 

e6 72 47 d4 4c 4e 6b of 70 17 Sc 28 46 0a 61 84 75 c4 6a b5 
(1=126) 00 d3 94 b9 dS 23 cf d8 fb a7 f2 8d 3f 45 3e 33 6c 3f 8e 96 

52 6f 36 c3 71 16 8a a2 69 56 38 40 97 64 95 c2 4f Od 9c lb 
(1=127) 8b ec 47 a4 88 9f 10 92 36 ea 29 58 9f 7e 92 a9 Sd 95 24 3e 

0c db 33 b2 60 3b 52 cl Sc 4f 77 lc of b5 of f6 8d e7 e5 4d 
(1=131) c8 3b bi 52 13 b8 c3 7d e9 66 6a 12 da cl c9 74 bd ce 78 b4 

fd 31 c9 Sa la a7 4f b0 4b 74 3f 3b a2 ae 2e d2 as 38 3f 81 
(1=132) 91 78 00 be cl 43 dc 30 d4 19 e6 53 94 fc 0c ab 88 2e bi 08 

73 22 if 10 c2 61 bb ad 3a 63 64 03 cl al 27 11 81 50 90 db 
(1=135) e3 bb 60 85 fe 92 46 de 5f 32 99 3e 47 78 4d 65 c3 71 e8 d3 

d3 Sb 73 66 b3 b7 Si 55 f4 cf 61 f2 b0 c6 of 30 74 49 cf b7 
(1=137) 17 36 b2 c8 Se Sb 83 2d c9 e0 24 57 fa 63 00 ei 04 2b 23 16 

0a 26 d3 9f 07 2d 42 ab 8a 77 lb Se ad b5 de 55 3c 68 c2 b0 
(1=138) ea 6a 2d la al bb 4c 6a 18 4a d2 e2 13 16 eb 94 80 6c dd 51 

4d Sd 9e ff 40 81 b8 9c e0 0d c3 18 19 b2 cd 44 61 30 el a3 
(1=141) e0 d8 78 ed d5 36 9e ad 78 13 Of 31 7d c4 76 ad 33 57 90 cd 

8e 17 d9 42 77 4c 18 d5 34 83 b4 6e of Sa 87 be Se if d0 c8 
(1=142) 3d ce e6 38 a8 6a 19 ff bb 73 d8 6e cc 2e 24 38 4c 0a 7b 80 

0a 58 93 7d ba 83 e3 35 6d d7 2a Sf 05 10 2f 6a ca lc bf b7 
(1=144) e8 e6 43 2e 16 b5 ec 33 36 c5 lb ce 95 6b 73 a2 fa 95 94 33 

15 Ob Of be 74 be 26 6c 38 37 63 b3 7b el 85 00 72 d6 2b b4 
(1=146) be c7 ee 46 73 ab 5a 7e 09 f9 96 20 d8 cb 3c df 49 ff 42 be 

0e be fa 71 f0 ff e0 a7 7b 6e 2e 13 b4 35 fb fl c8 6c d3 6e 
(i=148) 95 2a c4 27 le c3 b7 74 77 44 69 54 53 ld 7f 3f 12 3c 91 28 

be 49 13 24 db b2 5c e8 35 a9 71 4a 7195 34 45 3e Sd 29 04 
(i=151) d4 Id Of fe 81 99 98 if 8f al 5f c2 9e f0 b3 ba 64 7f fl fl 

f9 98 7d d2 66 cb Of d3 e8 25 b2 04 ba d8 6b 10 9e 96 7d 7a 
(1=154) 15 65 fl 3d 74 e4 6f 82 65 82 0a da fb e6 21 05 37 b3 6c 43 

3c f8 46 Of b5 35 bd 5e 01 d8 9d b7 36 19 25 4b el cd 48 da 
(1=155) c5 a6 39 11 b3 d7 ba 59 c8 58 eb 85 13 43 17 73 82 86 a0 be 

8e 3b a6 d8 12 84 27 0c 8c fl 50 a2 e9 95 66 05 lc 10 7f a5 
(1=156) 8c 56 7a 67 95 16 ad a4 9f bb cl 66 be Sb 74 69 10 dl 73 f2 

09 8d e9 38 bb cl 76 76 3a 7c 69 55 d4 48 e2 46 d6 4b c2 dc 
(1=158) c4 be 41 17 d6 5e 81 e3 92 06 98 c9 94 3c if 81 4d c7 ei 3d 

dc cl 64 8a fe 21 3f b3 89 e6 17 e0 ed fb cd f9 52 8c 7c 17 
(1=159) 70 f4 a7 de 86 9f d7 cS dl f9 e3 as f7 12 00 2c 6S 24 d7 ab 

27 94 98 05 50 64 9f 7c c6 35 81 8e 78 14 80 e4 05 (98 bd dl 
(1=163) if Sf 8f 41 32 d7 3d 8c 81 3a 2b 82 36 05 4b 03 c8 fa b8 56 

3f fl 8e 73 9b 37 d3 f7 18 78 el 57 bS 63 ea 92 90 21 70 be 
(1=164) 79 0e fa 37 a3 83 75 f2 48 ea 6c ca 18 44 3e 4e 9f Sd 8e 37 

ea 09 eb 69 09 82 a6 2b 93 ca 24 b7 7e a0 39 fc 3e ac 89 6f 
(1=168) 19 f6 3c 57 fd 32 e9 da b9 96 a4 30 df f4 7f 96 81 9c 81 82 

cl 6c cl 4a b4 9a 03 21 01 15 f7 eb f9 f2 7c Sc 07 e9 d8 d9 
(i=169) 66 96 24 99 Id 8c 8f 45 al 07 50 68 45 bb 2f d7 c9 7e Co 75 

0c 43 24 20 95 45 lb 7e 17 83 42 be 2d 6d ce 9f 67 b2 15 28 
(i=172) c8 85 dc e6 bd 74 dl 65 fb b6 bb 50 b6 67 67 3d 90 2e 01 bd 

ee 82 17 6b 6c a8 fl Si a2 9b 9f b4 9b b8 al d3 e2 04 58 88 
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Appendices 

(i=179) 75 99 bi if bi 47 23 Cl ea 6e 68 is 9e a9 87 97 3f 99 e9 2e 
9a ba 7d 32 is e9 39 41 el Be ea 8b fe Be 82 7e fa 61 4e f6 

(i=182) 64 d8 66 2c be lc be bb bd cc 6a df 56 f6 27 if 81 b9 43 dd 
AS a2 ee de 54 4f A0 it 22 d6 cc ca it d9 59 e1 dA 42 f9 Ge 

(1=186) 11 38 51 d0 ab 64 11 68 c8 95 03 d3 29 48 89 6e 39 66 e3 cS 
47 c2 48 8d bf 37 71 9d Sa 3c 93 7a 32 21 3b 29 c3 8d di 71 

(1=190) 76 el 77 de 58 c4 Sc Ac b7 dd 58 89 34 Id 22 62 cc SS 4S b4 
ff of e8 7S 01 S7 cb 4c CS 24 94 26 6a 87 42 d0 64 dS b2 bA 

(i=192) da 04 dc 87 7e d2 99 6c 02 81 47 c8 89 ca 2d 37 as 4c 18 66 
61 fe a0 c2 at 3f Ad 6c If d3 6f Se db 33 3a 36 cb 85 f3 f8 

(i=195) 3f 32 c9 eb at 37 b2 92 to 2e a7 13 2d b9 7S Sc 52 S7 ed 9f 
SS dl f2 24 90 f7 Sa Ac 07 IS 8f 68 Sa 9e 22 a7 77 bd S9 bf 

(i=200) f8 7a f0 of bS 9c e0 7f 74 S1 cc be S3 c7 22 ec 9d fb dc e7 
as 7e fd f9 29 eb 2d Se 69 04 47 b5 2a 86 64 c7 di 6c c4 a7 

(1=201) fd 33 38 16 b9 b0 45 ad 61 bS 2f 21 Iced 30 99 fd 46 88d6 
f2 d3 as 04 fe 84 21 31 bb 66 36 6d 77 26 4c 09 it c6 73 12 

(1=202) c2 38 it Se e0 b4 59 12 8f a2 93 44 61 96 56 a7 as a6 cb 7a 
el lb ff bl 09 59 ba 2S Be b8 98 Sc 2f 73 ec fl 33 e6 cd cl 

(i=204) a9 a4 b6 63 99 fc 80 16 a3 07 cl 31 CS b9 bb SA dA b4 78 da 
2c bf ee f9 Se 66 cS fa 27 ac 6b ae 91 62 a4 3e d3 ce of el 

(i=205) df 8b 22 28 9e bS c8 3d a7 lb 26 Sf b2 Id de bS 79 da 86 87 
8c 0a 92 e8 a6 Sb 72 AS fc 4S Sf 81 e3 c4 93 f6 20 6e 17 23 

(1=206) 97 cl 09 94 63 ba 81 85 ce if 3a c4 e0 Aa 42 dS de 83 ac 95 
39 6a dd 8c 95 a3 c7 b2 07 Ia f8 7S b6 16 is es d8 bb 97 Ab 

(i=209) 25 96 e2 4c 99 at ed 4a d3 d8 82 eb e4 le a7 66 cb e7 cf fa 
e2 90 eb 39 f5 ee 6b at 4f 6f as 80 Sb of e9 b8 2a Id 86 c3 

(1=210) 68 le bi 2S 51 d7 d4 b6 98 dd 3b 33 Ab 22 bb 6b 19 d4 33 Id 
47 39 11 47 a2 4e b6 45 3e b7 fa 2d 96 84 82 ac fd 6f e8 b2 

(1=212) 79 dc 94 b3 20 bG Sc ec 7f 49 AA 38 c4 6a e2 6f 0d 39 61 Aa 
ab Sc 76 f0 c8 Sc 63 as 89 Sb e9 7S eb 31 ad 81 96 63 bb 84 

(1=214) 7e id as 71 03 3e Sb cS 37 7f e7 a4 89 6f 9b b7 34 3d 75 6f 
d9 49 da 13 2d 05 89 b3 36 bb 34 19 da 79 e2 2e al 38 S4 18 

(i=216) 6a 25 Aa b2 74 fc 3e 53 86 58 9f da 70 db 69 be ed 85 9c 73 
ed ae 68 00 91 28 ee Sc Sc c9 e1 79 2S id dl 76 f6 es Sf cd 

(i=218) 97 f8 f6 ba 79 3d of 11 e9 e6 6e b3 28 11 47 28 b2 $a 55 bb 
14 b2 lc 65 bf IS 52 7f cl 72 07 87 d2 7d Ic la es 2d b4 7a 

(1=219) 812S c9 a6 81 42 if 82 a7 c9 fc 82 Al c9 7d If le 4f Sc 74 
Sc d9 20 79 24 43 3f e3 e4 d7 bG ad e0 2a 7c 6S 89 lc fc cf 

(i=220) 65 Id f6 79 6d 4a is c3 18 87 df 10 d0 a2 3S 4S OS bb if 79 
IS 21 47 7d 38 as 6d dO 48 fa 15S6 06 38 29 CS d4 cc eb 17 

(i=227) 7a cd de da 84 cb 3c 99 1A b4 b2 fc d8 a7 76 b6 c3 9e ad 48 
ee d9 7d 64 a4 6d 72 89 90 21 19 6a 6b 66 16 29 17 2S 94 3d 

(i=228) is e2 Be c2 e5 e2 bd e0 e6 ac df cf c4 of 7b f7 34 Sc 99 d6 
bd bZ 35 9a 8b d9 37 Be 49 69 40 6e if cb 44 16 Sb 48 f9 e6 

(1=233) of 82 b9 d9 ca 58 d2 90 ce Ad f6 50 Ab as 73 24 07 48 98 db 
fe 23 13 7d 19 as 10 46 7f SA ac 33 84 84 Sc 3d Sf Sc Se 14 

(i=237) a3 89 47 6b 89 18 fd a7 b3 83 Ab 09 13 e6 Sa as 4e It 90 08 
dl If fb 82 Sa 19 ce 29 Od if as eb ba 6b f8 02 64 IS a6 3b 

(i=242) 9e 4e d8 9e 96 ec 94 3S 4S 42 ab 2b Aa cb as ba fe 66 it If 
52 56 di 7a 87 ec ba 31 12 68 f6 a9 9d f9 c7 db Ic 4b ad 0 

(1=243) 4b 49 9d 2f c9 f9 18 3c d3 d4 6a cb 35 e2 eS 30 13 b6 d9 86 
69 d7 18 50 7f 19 ad id 1a 65 37 la Sb dc SS as f5 03 c3 Sc 

(i=244) 20 f6 98 f4 Sa 2c 65 30 da 62 fc Sc dS Ad fc is 89 cb 89 68 
ca ee 99 97 S5 11 ba f0 66 6d 3c Sb cc 9a 38 38 c4 dc 7b c4 

(i=245) 9d cb 4S of If bd 38 3d ce 69 8a Ic 94 ad 27 2c 6e 41 9e I8 
b2 4f b0 18 9c e7 b2 Id d9 59 44 60 Ad Ab f6 lb 52 ab S4 7c 

(i=247) 77 11 c2 c4 cc b8 fd ce Al 76 7e 23 22 3f e6 cc 99 58 83 Be 
c7 ff 98 79 b3 68 f9 13 dl 86 17 4c 15lA 37 Sc IA Be e2 4b 

(i=248) 98 eb 88 41 at 6S f8 93 92 a9 Sb 17 29 cd 78 8b 39 83 9a 73 
3d 14 48 61 14 7f 7a 3a a7 7e 44 if Al 18 3c cd 81 4c cS d9 

(i=251) 18 c8 d6 62 7b ab 75 68 3f a4 50 as Sc da 6c 92 c7 1559 13 
68 2b 2d 47 29 2f 62 9b be ff 8b is 19 45 of b9 89 51 66 4a 

(1=252) 2b 48 b3 30 9c 85 bb eS 14 Si 4b 6d ed Ad 79 86 ce a3 eb d2 
08 56 44 be 9f 44 12 83 if 16 Ac 3c cf 3d 3c Sc 7S S9 Ob Sb 

(i=253) if Sb 33 Od 6a a6 95 2b 91 26 18 68 b2 9e ac 93 c2 as 79 64 
c7 f6 6f d3 84 ba 27 33 07 77 23 bd 16 13 34 b9 48 45 13 99 

(i=256) 6f 93 59 Al 7d 26 72 19 b2 as 3e eS 87 4b a7 58 53 dd 86 58 
ce 84 Al 92 24 eS 3e 18 7d Sc d3 as 77 2a bS 00 le 3d 46 63 

(i=258) 87 34 a9 39 a3 la 85 79 8f ce Sf bf cd ca 7c AS 4e a2 17 8b 
db 79 08 20 b6 a4 de 43 94 71 49 ba 27 12 16 17 9f 84 16 Sb 
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§A. 2 Trace of a single execution of LASH-160 

(i=262) 6f bb d4 ac bb bb d5 bi bS c2 72 3f as 96 9d df 94 1f ec 38 
d6 3d 99 53 c3 98 es dl 26 30 e9 e5 3e f7 8c 2c 4f 6c 77 72 

(i=265) 4a f0 14 94 42 e6 48 c9 56 12 as 65 9e a9 id be 62 40 c6 7e 
53 12 46 4e 88 29 18 de la 37 77 77 id 97 b7 43 34 e2 8c 22 

(1=270) b8 ea 54 £0 d6 cl 7d 09 3e 99 d5 d8 b6 4a 6d 14 88 34 d9 fe 
30 e0 67 28 ce a6 ed 8b 15 fc 08 as 0a 8b be dl c6 al 2c 4d 

(i=275) 5a df 3e 09 ce 2f 77 49 9a 2d b0 Od f6 32 f4 if fb 4c 7a 4e 
68 06 Sb 3b 4e 83 bb ac of 42 85 7f b7 86 83 62 f9 ae 20 54 

(i=276) d7 81 33 f3 e7 27 e5 43 da 89 44 e8 2b 72 dc a6 26 bf 92 of 
b8 3e 81 2f 61 03 98 7a 10 lc cb fc 8c 33 7e 27 8a el 2d 48 

(1=278) 66 f9 b0 95 dc 11 fe 3b 48 83 84 44 bf 4d 11 e6 0e 46 bd 62 
d9 df dl 67 87 f7 ab fa ed ea ec d6 d2 b0 53 d4 85 a6 be 7b 

(1=279) f4 28 28 12 7e 06 e8 54 40 f1 7e 84 lb el ec lb 4e 2e 44 8d 
43 f7 72 b7 bf ld 9f Od 6d c7 ba f7 ac f6 d0 a9 32 al 83 0c 

(1=281) ec d7 16 41 f6 83 8a 49 2a 0a 76 f2 15 21 48 of 29 63 84 75 
ca 22 e5 cf 60 6d d7 33 61 da 3a d4 7a 17 as of of 76 30 07 

(i=283) 63 13 0e £0 e4 b2 02 c6 cc ff 60 0b 0d 8f 42 of 85 f7 5f as 
0a 0a 6c fa d3 85 78 83 99 00 2e e7 fa f4 78 10 89 be ad dc 

(1=286) 24 12 15 67 20 as bl b4 fb 77 dd ad 02 79 5b e7 f3 fi 9f 06 
9e e5 al 3a bb Oc a3 f6 bi al 7e if 20 e8 8b 90 66 8a ce b6 

(i=287) 50 d3 14 6e 97 e6 a9 63 e9 a6 55 2a a4 6e 45 00 eb 5f 99 46 
fa 79 7c 6f fb f4 2a 21 24 b9 if 6f 58 0e 7f a3 e6 67 9c d7 

(1=288) ba ff d5 6d 9e Sd e5 5b 98 94 84 a2 21 10 3a ea 04 57 07 49 
3a d5 10 4a 39 34 12 a8 4f 2c 37 10 a8 46 a5 97 f9 e7 79 a5 

(1=292) ce 2e aS 52 08 89 a6 5a 9f Ob Co 9a d0 fe 69 62 81 f9 fc 2a 
53 cd 7e 44 70 90 a6 83 84 6c if 97 d3 b9 bd 38 49 119199 

(12293) b9 42 d4 22 ed f3 d2 lb 9e 12 37 d6 c8 ad 57 91 f9 76 9e if 
3d e6 76 b2 6a d0 92 17 Sf al 5f 7f Sa e4 30 50 ea 6f d7 bf 

(1=294) e6 2d e8 51 bd d8 3c 47 Sf 11 3e 4d 04 as 96 7f 28 ee lb cl 
32 d0 8f as d8 ca 42 73 f3 7c 94 bf 42 6b Sb c3 02 10 27 f7 

(1=295) 00 Sa d3 65 ec a8 21 bi 8b d2 3d 54 7b e1 fe 2e 16 id 93 3e 
d4 cS 79 c3 d0 38 3c b3 4f 10 6f f4 82 53 e2 ee 75 28 c8 47 

(1=297) c6 3d ed 92 d7 be 50 81 70 3c 69 15 7a e8 75 6a 0e cc 81 6d 
4c 42 lb b8 ba 51 34 21 49 50 cb 88 5d 88 22 d6 fc 53 3b 5f 

(1=300) bl a5 97 58 ba d6 7d 6c 84 6b 39 fa e4 14 36 69 15 43 bd 65 
fb 30 4a 30 37 f3 29 Ob 62 48 39 82 9d e4 b6 bl 31 93 23 e6 

(1=302) de e4 82 Co 64 9c 60 86 bi 56 4d 29 b4 £9 a0 95 d6 42 c4 dc 
37 28 f9 le 66 6b a6 ad 57 32 52 7a Ob de f6 Od CS 6e 58 26 

(1=303) 0e 11 cl ab cc 46 26 69 cb 83 38 3d e3 c9 85 ff 02 03 c3 e3 
at 64 fl cd 54 9a le 2a f9 27 3c 93 03 4c 10 4d 21 02 33 Sb 

(1=304) 83 41 ee ea b7 ae d0 2f ae 9d 65 28 f7 f8 55 e4 6c 2f 84 e2 
bS db 2d cS 03 88 4d a2 76 c9 31 7d lc 44 Se 47 61 5e c7 36 

(1=310) 9f 30 10 3f d2 c4 45 Sf db dc 50 90 al be 38 fe 99 la 98 11 
85 Co 97 f1 c4 87 54 19 b2 cl e0 6b 4b be db e9 56 48 e0 2e 

(1=318) c3 of ab 35 27 e3 e6 a7 f7 cb 52 e5 be d4 ad 2e c6 59 83 79 
2f 86 7a 0b 11 72 68 48 82 a6 4a 97 0c bb e2 60 92 40 8f 1c 

(12319) be 13 6a £0 Id 38 05 48 3f e7 41 e7 11 of c3 a3 16 86 c2 64 
97 30 40 ee 0b 9f 53 Sc bi 76 2f 01 38 7c el 67 09 7c 87 cb 

(1=323) Cl 76 f7 00 18 Sc c4 03 35 3c 60 88 59 Ob b2 as 4b al d8 d9 
c7 Sd 71 d9 73 49 19 3f cb a3 la 15 67 4c c6 dl 35 3d 86 d2 

(i=324) 6f if 5a 8d 28 57 e8 c2 10 32 b5 a7 fa 53 ce 94 4d f6 f3 of 
3c 8d ac 18 Se bl c3 05 ae bd 47 00 7b 7b 96 b6 9f 69 47 dl 

Final hash function result: 

Hash: 67 S8 25 ec f3 ba f5 c9 4f fe 38 al Sb c0 ab 40 77 9b 96 4d 
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Epilogue 

I end with the following verses from the ending of a long "scientific" poem written 
by ý JI ag-94fibi on The Quran I ICI-' II v33 l,: yl '" 1173 

verses). These verses include thanking God for easing the completion of an elegant 
work, praying for forgiveness for any mistakes or errors, and sending prayers 
upon the prophet Muhammad and his companions. I then finish with two prayers, 
that the prophet Muhammad - may peace and blessings be upon him - taught 
us, exalting God (Allah) and asking Him for forgiveness and mercy and bearing 
witness that there is no deity (worthy of worship) but Him - May Allah accept. 
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