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Abstract 

In this thesis we consider a range of problems concerned with the interaction of small- 

amplitude waves with topography of arbitrary profile. The work was motivated by 

the success of two-dimensional techniques which switch from normal to tangential 

derivatives and the lack of any obvious means of extension to three dimensions. We 

introduce a novel approach which generalises these earlier techniques and applies the 

full linear theory to three-dimensional problems. 

Chapter 1 provides a brief introduction to the thesis and is followed in Chapter 

2 by a summary of the basic theory of water waves together with an overview of the 

main techniques either used, or discussed, in this thesis. Throughout this thesis, the 

main approach is to formulate an integral equation and convert it to weakly singular 

form by switching from normal to tangential derivatives. With this novel technique in 

mind, we typically present two distinct approaches, each with their own advantages 

and each dealing with the most singular part of the equation analytically. 

In Chapter 3 we investigate two-dimensional sloshing over an arbitrary bed, demon- 

strating the approach we extend in this thesis. We then move to three-dimensional 

problems and in Chapter 4 we employ multipole techniques to address problems in- 

volving semicircular and hemispherical geometries. In Chapter 5 we introduce our 

main techniques by investigating the interaction of waves with a uniform infinite un- 

derwater ridge and in Chapter 6 we extend these ideas to deal with an infinite step 

of arbitrary profile. In Chapter 7 we investigate the scattering of plane waves by 

an axisymmetric seamount. Finally, in Chapter 8 we introduce a fully linear general 

theory for applying these techniques to arbitrary patches of topography. 
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Chapter 1 

Introduction 

The problem of the effect of submerged bodies or topographic features on the propa- 

gation of surface gravity waves is one of considerable interest to engineers designing 

coastal or offshore structures. With the rapid recent growth in offshore exploration 

and engineering projects this continues to be the case, with increasingly accurate 

methods being sought as well as extending our knowledge about the environment for 

which the engineers must design. 

In this thesis we develop techniques for applying fully linear wave theory to prob- 

lems involving the interaction of water waves with topography of arbitrary profile. 

We develop our techniques illustrating the key points in their application by solv- 

ing three-dimensional problems involving classes of geometry having some degree of 

symmetry. The thesis concludes by presenting a fully linear theory for genuinely 

three-dimensional problems involving arbitrary patches of topography. Our approach 

is to form an integral equation which is at most weakly singular. We then make signif- 

icant analytical progress in the formulation, deriving a new form of integro-differential 

equation and associated integro-differential operator which is perfectly constructed 

for solution by extremely efficient and accurate techniques. 

The three-dimensional problem of wave/body or wave/topography interactions 

is extremely complicated primarily due to the Neumann boundary condition on an 

arbitrary curve. To date, only one explicit solution has been found for a specific vary- 

ing topography by Roseau [84]. Inevitably the complicated nature of the boundary 
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Chapter 1. Introduction 

condition over an arbitrary bed has demanded approximations of some sort to be 

made in order to progress. Perhaps the most obvious approach is to perform a direct 

numerical assault on the equations of motion, an approach reviewed extensively by 

Mei [60] to whom the reader is referred. Typical examples of the issues involved are 

highlighted in Davis [18] who investigated two-dimensional oscillations in a canal of 

arbitrary cross section, and Fenton [34] who considered the forces on axisymmetric 

bodies of revolution. Both of these papers illustrate the type of numerical issues 

arising in a direct approach. We shall not consider this style of approach any further 

and will instead consider approaches which are analytic in character. 

In order to extract some of the key features of the problem numerous papers in- 

vestigated the scattering of waves by a step, or sill of constant depth. Lamb [49] 

first dealt with scattering by a vertical step using the shallow water equations, an 

approach repeated in Mei [61]. Miles [62] used a variational approach in conjunc- 

tion with an eigenfunction matching technique to deal with this same problem and 

in the course of doing so, introduced the scattering matrix formulation that we em- 

ploy in our problems. Mei & Black [59] extended these ideas to deal with scattering 

by rectangular obstacles whereas Kirby & Dalrymple [46] solved the similar prob- 

lem of oblique diffraction by a rectangular trench. Devillard, Dunlop & Souillard 

[22] approximated the arbitrary step problem by using a step discretisation, approx- 

imating the bed profile by a series of piecewise constant steps; following an identical 

approach, Bender and Dean [5] investigated the scattering of waves by axisymmetric 

topographies. Fitz-Gerald, [35] looking at the two-dimensional step problem, used 

complex-variable techniques to convert the problem into one defined on an infinite 

strip, albeit with a more complicated free-surface boundary condition. As a by prod- 

uct of this approach he was also able to prove uniqueness for the problem. Evans 

& Linton [27] combined the approaches of Devillard, Dunlop & Souillard, [22] and 

Fitz-Gerald, [35] to derive an alternative step approximation; however, this approach 

remains limited to two dimensions due to the use of complex-variable techniques, and 

furthermore the mapping function must be known. 
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Porter [73] revisited Miles' [62] problem for oblique scattering by a step, developing 

Miles' eigenfunction expansion matching approach and solving the resulting integral 

equations by a Galerkin method. More recently Rhee [82] and [83] has looked at the 

scattering of oblique waves over a step to second-order. 

Prior to the 1960's, typical methods of dealing with more complicated problems 
involving wave/topography interaction were the shallow water equations and also 

geometrical optics or ray theory which had been deduced from the shallow water 

equations. For a literature survey up to this date the reader is referred to Wehausen 

& Laitone [101]. Keller [45] gave the geometrical optics approach a more rigourous 

footing by demonstrating that it could be deduced from the full linear theory. Shen, 

Meyer and Keller [85] employed these techniques to investigate the scattering and 

trapping of waves around conical islands and submerged sills. Shen et al found that 

their theory predicted finely tuned near-resonances over a sill. Interestingly Provis [80] 

conducted experiments to verify the existence of these near-resonances but was unable 

to excite them experimentally. Longuet-Higgins [52] also considered the trapping of 

wave energy round islands but using shallow water theory, and similarly to Shen et 

al they found that their theory predicted near-resonances over the sill. This time 

Barnard, Pritchard and Provis [4] tried to verify the results experimentally, but again 

these near-resonances could not be excited. Renardy [81] considered the sill problem 

using full linear theory and although near-resonances were still predicted, he found 

that their locations and the associated amplitudes differed markedly from Longuet- 

Higgins' [52] results. 

The obvious practical implications of near-resonance water wave motions in cer- 

tain geometric configurations, briefly reviewed above, has led many researchers to 

consider an associated, but more theoretical situation in which waves are completely 

trapped by topography/structures. Such waves are often referred to in the literature 

as trapped waves or edge waves. Stokes [90] established the existence of edge waves 

for a plane beach and Ursell [98] found that the Stokes' edge wave was the first in a 

sequence of such modes that increased as the beach slope became shallower. These 
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Chapter 1. Introduction 

edge waves travel along the shoreline, whilst their amplitude decays exponentially 

away from the shoreline. Some years later, Ursell [97] also proved the existence of 

edge waves over a submerged cylinder; there also, waves are able to travel along the 

direction of the cylinder supported above, but decaying exponentially away from, the 

cylinder. Lavrentiev & Chabat [50] proved that edge waves were supported by any 

ridge protruding from a bed of otherwise constant depth, a result also considered by 

Jones [44]. Many papers, deal with such edge waves using a variety of techniques 

such as the multipole technique presented by Thorne [92]. These multipole tech- 

niques, which are extensively reviewed in Linton & McIver [51] are naturally suited 

to circular boundaries as we shall see in Chapter 4. These papers tend to look for 

trapped modes around various configurations of either horizontal or vertical cylinders. 

One example of the full linear theory being applied to edge waves is Evans & McIver 

[28] who investigated edge waves over a shelf, a problem with an obvious connection 

to the problem considered in Chapter 6. 

Smith & Sprinks [86] introduced the mild slope equations (MSE) (also indepen- 

dently derived by Berkhoff [6]) which performed a depth averaging and allowed com- 

plicated topographies to be handled albeit in an approximate way. Many papers 

followed from this and it still remains a very popular approach to water wave prob- 

lems because of its relative simplicity and its practical ease of use. Booij [8] produced 

a significant paper benchmarking the accuracy of the MSE which, despite its name, 

can be accurate for slopes of 0(1). Various improvements to the MSE have sub- 

sequently been proposed, for example Chamberlain & Porter [11] who termed their 

improvement the modified mild slope equations (MMSE), Porter & Staziker [71] who 

develop more accurate matching conditions at the joins of different topographies and 

Chamberlain [13] who investigates the inclusion of evanescent modes in the MMSE 

approach. Yet more sophisticated modifications were proposed by Athanassoulis & 

Belibassakis [3] who include extra terms in the approximation to handle the bottom 

slope better, also by Miles & Chamberlain [64] who proposed a systematic hierarchy 

of approximations of which the first terms include the MSE and the third term is, 
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in essence, the MMSE. Porter & Chamberlain [70] used the MMSE to consider the 

scattering and near-trapping of water waves by axisymmetric topography, a problem 

which we consider in Chapter 7. 

Staziker, Porter and Stirling [89] presented a different approach for the two- 

dimensional (normal incidence) problem of waves incident on a submerged ridge that 

we generalise to three dimensions in Chapter 5. They formulated it as an integral 

equation and converted from normal to tangential derivatives. Subsequently this 

technique has been used to good effect for example by Porter [74] investigating scat- 

tering by an arbitrary submerged cylinder and again by Porter [75] in looking at 

two-dimensional wave trapping by pairs of cylinders. It was also used in a polar coor- 

dinate system by McIver & Porter [58], who investigated axisymmetric wave trapping 

by a submerged torus (a three-dimensional problem, but on account of the assumed 

modes of motion, quasi two-dimensional). These techniques for two-dimensional water 

wave problems are capable of producing extremely accurate results. They accomplish 

the high degree of accuracy in part by retaining an exact formulation of certain in- 

tegral equations which incorporate the complicated Neumann boundary condition on 

some arbitrary curve with no approximation, but also by using a formulation which is 

amenable to solving by the Rayleigh-Ritz method. However, in these two-dimensional 

problems mentioned above, the derivation of the integral equations relies essentially 

on the existence of the Cauchy-Riemann equations which have no analogue in three 

dimensions. 

The key point to note from the literature is that almost all of the work either 

solves a two-dimensional problem, and/or solves a three-dimensional problem having 

made some simplifying assumptions. In contrast, in this thesis we seek to generalise 

exact two-dimensional "derivative-switching" approaches to deal with fully three- 

dimensional problems. We achieve this by applying an idea introduced by Noblesse 

[67] and Noblesse & Yang [68]. However, in a radical departure from their approach, 

which they apply to floating bodies, we shall show how these techniques may be 

applied, to three-dimensional problems retaining an exact formulation. We develop 
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Chapter 1. Introduction 

a complete theory and a new form of integro-differential equation which is amenable 

to extremely powerful solution techniques. As a by product of this analysis we also 

introduce a deceptively simple boundary element scheme, which due to the way the 

kernel of the associated operator is constructed is also capable of impressive results. 

The content of Chapter 3 forms the basis of the publications Chapman & Porter 

[14] and [15]. Aspects of the material in Chapters 5 and 7 form the basis of Chapman 

& Porter [16]. 

6 



Chapter 2 

Background theory 

2.1 Equations of motion 

We consider wave motions of an ideal fluid (i. e. one which is inviscid and incom- 

pressible) within a domain bounded by a fixed bottom and having a free surface with 

the atmosphere. Coordinate systems may be chosen to suit the geometry, however, 

without loss of generality we may proceed using a Cartesian co-ordinate system with 

the x and y axes in the undisturbed free surface of the fluid and the z axis oriented 

vertically downwards. The fluid motion is assumed to be irrotational; therefore the 

fluid velocity may be written as the gradient of a scalar potential 1. Furthermore if 

we assume the fluid is incompressible then the fluid velocity, given by u= V4), must 

have zero divergence and hence the potential 1 must satisfy Laplace's equation 

2 
v2ý =+ 

ý2+ ä2 
=a (2.1.1) 

y 

As the fluid is inviscid we may also apply Bernoulli's theorem to the fluid motion 

which in its most general form gives 

04) 
+ 

1(v(p. 
04)) +P- gz = C(t), (2.1.2) 

where g is the acceleration due to gravity and P the pressure such that in the 

absence of external forcing the rest position of the free surface is at z=0. Further 

analysis will proceed on the assumption that there is no excess external pressure or 

forcing at the fluid surface and therefore we may set C(t) = Pa/p where P. is the 
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Chapter 2. Background theory 

atmospheric pressure and p is the fluid density, both of which are assumed to be 

constant. 

In order to formulate the boundary conditions we note that the free surface may 

be defined by the equation ý=0 where 6 is given by 

e=z- ((X, Y, t), (2.1.3) 

and where ( gives the surface depression. For this fluid motion, one boundary con- 

dition is that fluid does not cross the free surface. Hence 

Dý 
=0 on = 0, or aý ac + aý ac 

_ 
aý + aý 

=0 on e=0. 
Dt ax ax ay ay az at 

(2.1.4) 

Also fluid does not penetrate fixed boundaries, therefore the component of fluid ve- 

locity normal to the boundary is zero or, 

an 
0' 

where n is the normal to the boundary, oriented so that it points out of the fluid 

domain. The fluid motion is therefore defined by the following set of equations 

v2ýp =0 throughout D, (2.1.6) 

subject to the kinematic and dynamic boundary conditions given by 

and 

respectively and 

a( a( 
_ 

aý a( 
ax ax + ay ay 7z + 

ý3t = 0' on z= «x, y, t), (2.1.7) 

-g( +5+1 (V4))2 = 0, on z= C(x, y, t) (2.1.8) 

-5 
n=0 

on solid boundaries. (2.1.9) 
ä 

Given the complicated form of the free surface boundary conditions, the usual ap- 

proach is to form a perturbation expansion in a small parameter and proceed using 

either a linearised theory, or sometimes also continue to second-order to solve a so- 

called weakly non-linear formulation of the problem. For a detailed discussion of the 

8 



2.1. Equations of motion 

equations of motion and their linearisation see, for example, Weihausen & Laitone 

[101] or Mei [61]. We will see that higher terms in a perturbation expansion become 

increasingly complex, therefore in domains where linear theory is no longer valid, it 

becomes more common to solve the above equations using a fully non-linear solu- 

tion technique. This latter approach often becomes an exercise in numerical analysis, 

which although undeniably useful, arguably does not give the same physical insight 

as a more analytical approach to a linearised problem. Therefore, for most of this 

thesis we will use classical linear water waves theory, however, as in Chapter 3 we 

solve a specific problem to second-order, we shall proceed to derive the equations of 

motions to second-order. 

The choice of small parameter should arise naturally from a scaling analysis of 

the equations of motion although often this approach is not presented and the small 

parameter is simply given. We will adapt the approach of Mei [61] who used a 

scaling analysis to deduce the linearised equations, and apply the same analysis to 

deduce the first 2 terms in the small parameter expansion. We now seek to transform 

(x, y, z, (, 1, g) -' (x', y', z', C', 1', g') where the primed variables are dimensionless. 

We suppose that the dimensions (x, y, z, h) are characterized by comparison with 

a typical surface wave's wavelength A which is related to the wavenumber k by 

A/27r = 11k. Time is characterised by 1/w where w is the angular frequency, the 

surface elevation by a and the potential by kaw where this latter scaling is chosen 

to ensure that the surface velocities are aw as expected. Therefore 

(x, y, z) _1 (x', y, z1), (2.1.10) 

= aC', (2.1.11) 

_ e', (2.1.12) 

wt', 
(2.1.13) 

9= 9, (2.1.14) 

where g has also been scaled according to the appropriate scalings for length and 
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Chapter 2. Background theory 

time. We now transform the general equations and find that in terms of the new 

variables, equations (2.1.6) and (2.1.9) remain unchanged so that 

and 

V24)' =0 throughout D (2.1.15) 

any 
0 on solid boundaries. (2.1.16) 

The remaining free surface conditions require more careful treatment. Firstly consider 

the kinematic boundary condition (2.1.7) which transforms into 

ka 
a'äx'+a ä'- 

a+ ä- =o on z'=kau'. (2.1.17) 
yy 

We define the parameter c by 

6= ka (2.1.18) 

in which case the kinematic boundary condition becomes 

av 49(' 
ät + Xäxß + a7' ä') özý' on z' = EC'. (2.1.19) 

Likewise the dynamic boundary condition transforms into 

a 
-g'('+2(Vp)2=0 on z'=e('. (2.1.20) 

We shall now assume e to be a small parameter thus obtaining the condition for 

linearised water wave theory that wave height is small in comparison to wavelength. 

For the time being we shall balance terms assuming that g' = O(1) although we will 

return to this point later. We proceed by making a perturbation expansion in the 

small parameter to O(e) which will yield the linearised and second-order equations. 

Therefore substituting 

ý' _ ýi +6 ý2 + O(e2) (2.1.21) 

+ 0(,, 2) 
. 
(2.1.22) 

into the scaled free surface equations and expanding terms in I' as a Taylor series 

about the undisturbed free surface z' = 0. We obtain to O(e) 

a(1 
+ 

19 2+ a(' 
+5' 

5( a1+1 a2ýi 
+ea2 (2.1.23) 

at' at, ax' ax' ay' ay'ý = az' 5zi2 az' 
10 



2.1. Equations of motion 

and 
ail 

+e 
a2 

+ 
aaz1 atý - 

g(C r __V + 6(2 
at, 

+ (V I )z =0 (2.1.24) 
at 2 

where both equations are evaluated on z' = 0. Therefore the linearised (first-order) 

equations are 

ail aýi 
at, = azý (2.1.25) 

(1 a-)i 
i (2.1.26) = 9- at, , 

both of which may be combined to give 

aatl 
gazI=0 on z'=0. (2.1.27) 

At second order we have 

49(2 Li ail ac ail 
__ 

aý2 a2V T' + ax' ax' + ay' ay' az' + CI 
azi2 

(2.1.28) 

aV2 gCZ= _2(V )2 - (1aaz2Viat at , (2.1.29) 
which combine similarly to give 

o24)' 
9a-1 

äßl ä' (82ýi 
-9 

äff') 
- 

äý 
(0(P1)2 on z'=O. (2.1.30) 

at/2 g/ät äz l ät äz J at, 
We now return to physical variables by simply dropping the prime on the variables 

and summarise as below 

024)$ 
a4)i 

On 

With linear free surfac( 

=0i=1,2 throughout the fluid, (2.1.31) 

=0 on solid boundaries. (2.1.32) 

boundary condition and surface elevation given by 

a2, (D1 
_ 9&D, =0 (2.1.33) 

& az 
l äýlLO 

ý1 =1 (2.1.34) 
9 at 

respectively and the second-order free surface boundary condition and surface eleva- 

tion given by 

a2 I2 
_ 

&I 2_1 
ail a fa2c all l_a2 

ate 9 az gat az 5t2 +9 az J at 
(Vý1) (2.1.35) 

a\ 
(2 =1 (194ý2 +(Ia at + 1(V 

i)2 ) (2.1.36) 
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Chapter 2. Background theory 

respectively. 

Throughout this thesis we will work in the frequency domain. Therefore assuming 

time-harmonic motion of angular frequency w, we may introduce complex valued 

functions 01 , 77, such that 

F (x, y, z, t; K) = Re {! 51(x, y, z; K)e ; "t} (2.1.37) 

Ci (x, y, z, t; K) = Re {'j' (x, y; K)e-"} (2.1.38) 

where the frequency parameter is 

K= w2 (2.1.39) 
9 

The time-independent first-order potential now satisfies 

V2g1 = 0, throughout the fluid, 
X01 

+ KO1 = 0, on z=0, (2.1.40) 
001 

= 0, on solid boundaries, 
än 

with the surface elevation recovered from 

) 77, =Re 
-iw, }, on z 19 JJJ 

We shall use the solution of the linearised problem in a domain of constant depth h as 

the basic building block of the solution method for more complicated geometries. In 

such a domain it is routine to separate variables to find that the solution to equations 

(2.1.40) corresponding to surface waves propagating at an angle 0 to the x axis is 

given by 

Z) _ 
iga cosh k(h - z) 

eik(scooe+veine) (2.1.42) ý( 
' y' )w 

cosh kh 

in which case the free surface boundary condition yields the dispersion relation 

K=k tanh kh (2.1.43) 

relating the wavenumber k to the frequency. As an aside our scaling assumptions 

required that g' = 0(l), which we see from (2.1.43) is equivalent to requiring 
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2.1. Equations of motion 

tanh kh = 0(1) as well as ka « 1. In practical terms this tells us that the equations 

of motion are valid in intermediate to deep water, a constraint which was clear in 

Stokes' [91] original exposition. Alternatively, if the amplitude of the wave motion 

is comparable to the fluid depth then one would re-expand and in fact recover the 

shallow water equations; see for example Wehausen & Laitone [101] who give a very 

clear exposition of this approximation. 

It can be seen graphically that for a fixed K, (2.1.43) has only one positive real 

root (see for example Mei [61] §7.4). However, by allowing'the wavenumber to be 

complex there is an infinite number of eigenvalues ik,,, n>1 which lie on the 

imaginary axis and satisfy the dispersion relation 

K+ kn tan k,, h = 0. (2.1.44) 

It is customary to order the k� in ascending order so that 

(n-2)it<k�h<n7r (2.1.45) 

and, in fact as n -+ oo 

knh = n7r +0 
(). (2.1.46) 

n 

If we also define ko = -ik, then the separation of variables approach gives a set of 

depth modes 

? P,, (z) = N, -, 1! 2 cos kn(h - z) n>0 (2.1.47) 

with normalisation 

Nn =2 
(1 

+ sin 
n>0 (2.1.48) 

nJ 

such that the orthogonality relation 

h 
On(z)4-'m(z) _ hömn (2.1.49) 

holds, and which Kreisel [47] has proven is complete. For convenience we note that 

our definition of ko gives 

'o(z) = Ný*112 cosh k(h - z) 
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and 

No 
1 sinh 2kh\ 

=2 1+ 
2kh 

(2.1.51) 

which by comparison with (2.1.42) we see corresponds to depth dependence of a 

propagating mode. 

2.2 The Mild Slope Equation 

For wave problems involving variable depth domains, the bed condition usually calls 

for some kind of approximation. In many physical problems it is appropriate to 

assume that the bed slope does not vary significantly within a wavelength; this is 

the basis of the mild slope approximation. The mild-slope equation (MSE), often at- 

tributed to Berkhoff [6], and later refinements by Chamberlain & Porter [11] (modified 

mild-slope equations - MMSE) introduce approximate analytical techniques essen- 

tially involving depth-averaging under the assumption of small variations in the bed 

shape. Chamberlain & Porter [11] derived the MMSE via a variational formulation, 

whereas Berkhoff [6] derived the MSE by a depth-averaging formulation. We shall 

follow the derivation in Mei [61] which in turn follows Berkhoff's original exposition; 

however, we shall recover Chamberlain and Porter's MMSE by retaining some terms 

which Mei/Berkhoff neglected. 

We consider time harmonic waves in a fluid domain having a fixed arbitrary bed 

defined by z= h(x, y) in which case the exact equations of motion are given by 

(2.1.40) as 

2 

az4)+v24> = 0,0<z<h, V= 
(-. 

' 
y (2.2.1) 

2( 
Iz + K1 = 0, on z=0, (2.2.2) 

äz _ -Vh. v-D z= -h(x, y). (2.2.3) 

We observe that, for any two sufficiently smooth functions f and 4) 

z 

azý'a - az)=faz - äz 
(2.2.4) 
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and we note that in the case of constant depth the potential separates to the form 

=f (z)cb(x, y) where f takes the form 

f= sech(kh) cosh(k(h - z)). (2.2.5) 

We now suppose that, in the case of slowly varying h (i. e. Vh/kh « 1) we may 

seek a solution of the form 

-b (x, z) =f (z, h(x, y))0(x, y) (2.2.6) 

where f is given by equation (2.2.5) but we now allow h to vary with the horizontal 

coordinates. We then remove the depth dependence by integrating equation (2.2.4) 

over the depth, and using equations (2.2.2), (2.2.3) and the dispersion relation (2.1.43) 

to give 
jh 

fý -ýzIh =- f02(p +k2fýdz. (2.2.7) 

e note that the bed condition (2.2.3) together with the anticipated form of 1 from W 

(2.2.6) gives 

and also 

f9I=- f2Vh. VOIh - f(Vh)20f o. (2.2.8) 
h 

Th- 
Ih 

ve =f VO + 02h Oh, and (2.2.9) 

4(Vh)2 
=f V20 + 2V . Vh ++ cgf V2 h. (2.2.10) 

Finally, Leibniz's rule gives 

V. 

J 
hf2V 

dz=J 
h (f2v2+2fvh. 

v) dz+f2Vh. VgIh (2.2.11) 
0o 

which allows us to rewrite equation (2.2.7) as 

v. 
ýh f 20¢ dz + (Oh)2 

(fh 
f42 dz + f0a 

l 

fh a +V2hJ fugte dz + h 10 k2f20dz= 0 (2.2.12) 
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We note that 0 is independent of z so (2.2.12) may be rewritten as 

V. (UoVO) + Vocb =0 (2.2.13) 

where 

Vo = k2Uo + U1V2h + U2(Vh)2, (2.2.14) 
h 

Uo =1 f2 dz, (2.2.15) 
0 

ffdz, 
Ul = (2.2.16) 

U2 
fha2f 

fah dz+ fýhl_h (2.2.17) 

We now proceed to calculate the Ui explicitly. Uo is easily calculated from (2.2.5) 

as 
2kh Uo (h) 

2 tanh kh I1+ 
sink 2kh) 

(2.2.18) 

and we note from the dispersion relationship that k= k(h) and therefore we deduce 

that 

k'(h) = -2k2(K + sinh K)-1 where K= 2kh (2.2.19) 

which enables us to write 

of= kh' (z Binh (k(z + h)) - k-1 sinh(kh) sinh(kz)). (2.2.20) TO sechkh 

Ul may now be easily evaluated to give 

Ul(h) = 
ksech2(kh) {sinhK - Kcosh K}. (2.2.21) 

4(K+sinkK) 

In principle U2 can also be calculated in the same manner although the algebra is 

somewhat simplified if we note that Leibniz's rule combined with (2.2.15) and (2.2.16) 

gives 

U2 = Ul(la) -fh 
(Lf)2 

dz (2.2.22) 
a 

from which we deduce that 

_ 
ksech2(kh) 

U2 (h) 
12(K + sinh K)3 

{K4 + 4K3 sink K-9 sink 1C sinh 2K 

+3K(K +2 sinh K) (cosh2 K-2 cosh K+ 3) }. (2.2.23) 
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Finally, following Porter and Porter [78] we transform equation (2.2.13) into its canon- 
ical form by writing 

q5(x) = (Uo(h(x, y)))-112 (x). (2.2.24) 

Then 0 satisfies 
0 +rc(x, WO=0 

(2.2.25) 
r, (x) = k2 + AV2h + B(Vh)2, 

where A(x) and B(x) are found using equations (2.2.12) and (2.2.23) to be 

A= -2k/(K + Binh K) (2.2.26) 

B= k2 {K4 + 4K3 sink K+ 3K2 (2 cosh2 K+ 1) + 181C Binh K 

+3 sinh2 K(2 cosh K+ 5)}/{3()C + sinh K)4}. (2.2.27) 

Berkhoff/Mei obtain the MSE by discarding the terms including Ul and U2 in 2.2.14 

on the basis that V2h and Vh are small, although curiously when they introduce 

the transformation (2.2.24) terms of the same order reappear. In contrast, when 

we retain terms of this order we obtain Chamberlain & Porter's MMSE [11]. It is 

not surprising that we obtain the same result as Chamberlain and Porter as the two 

approaches yield the same forms of modified equations with identical definitions of 

the U;. 

2.3 Green's identity and integral equations 

Throughout this thesis our main method of solution will be to formulate problems 

as integral equations and then to solve them using techniques appropriate to the 

structure of the particular form of the integral equation. There is a vast literature 

dealing with the solution of integral equations and the numerical difficulties therein. 

For an introduction to solution techniques from a practical perspective see for example 

Porter & Stirling [72], in which they observe that integral equations 

"offer a powerful (sometimes the only) technique for solving a variety of 

practical problems. One reason for this utility is that all of the conditions 
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specifying an initial or boundary value problem for a differential equation 

can often be condensed into a single integral equation. In the case of 

partial differential equations the dimension of the problem is reduced in 

this process so that, for example, a boundary value problem for a par- 

tial differential in two independent variables transforms into an integral 

equation involving an unknown function of only one variable. " 

This highlights a significant benefit of the integral equation approach, but is by no 

means the only benefit, as the "smoothing" process inherent in integration proves to 

have advantages when seeking approximate solutions. 

The integral equation is constructed by applying Green's identity to the potential 
0 and a Green's function G so that 

(2.3.1) 
[I 

GV20 - OV2G dV =- dS 
n D 

I1Gs 
an Ön 

where S is the bounding surface of the fluid domain D and n is the outward facing 

normal. The Green's function represents an oscillating source placed in the fluid at 

a field point ro and as such satisfies 

VC = -5(r - ro). (2.3.2) 

Typically the structure of the problem and choice of Green's function is such that we 

end up with an integral equation of the form 

c5(ro) = q=, (ro) - 
Jfe 

0 
an 

dS (2.3.3) 

where O_,,, is given, but as yet unspecified function and SB C S. For clarity of 

exposition we now consider a one-dimensional prototype integral equation which is 

the direct equivalent of (2.3.3) 

O(x) = 
1b 

k(x, t)q5(t) dt +f (x) a<x<b, (2.3.4) 
a 

where k(x, t) is called the kernel of the integral equation and the function f (x), 

which is assumed to be known, is called the free term. Integral equations are also 

18 



2.3. Green's identity and integral equations 

classified according to their structure, so that 

fb f (x) =J k(x, t)O(t) dt a<x<b (2.3.5) 
n 

is called a Fredholm equation of the first kind whereas (2.3.3) is called a Fredholm 

equation of the second kind. For completeness, the Fredholm equation of the third 

kind is 
b 

? /i(x)O(x) =j k(x, t)q5(t) dt +f (x) a<x<b, (2.3.6) 
a 

where O(x) is a given function. We do not consider this form of integral equation 

further, and in any case if O(x) does not vanish in [a, b) then it reduces trivially to 

a second kind integral equation anyway. Finally, an integral equation is defined as 

singular if: 

1. at least one of the integration limits, or the interval in which the equation holds, 

is infinite; or 

2. the kernel is unbounded in the given interval. 

Singular integral equations arise naturally in Green's function formulations where the 

nature of the singularity is a crucial factor in the complexity of the solution technique. 

If we define r as Ir - roI , the distance between the source point and field point then 

the singularity is classified according to the following behaviour of the kernel as r -º 0 

Dimension Weakly singular Strongly singular Hypersingular 
2D 

3D 

O(r-"), aE (0,1) 

O(r-1) 

O(r-1) 

O(r-2) 

O(r-2) 

O(r-3) 

Thus, in our example (2.3.4) which may be viewed as the integral equation result- 

ing from a two-dimensional problem, then a kernel of the form 

k(x, t) = 
k(x, t) 

aE (0,1) 
ix - tia' 

(2.3.7) 

where k is a bounded function is a weakly singular kernel. It should be noted that 

a logarithmically singular kernel 

k(x, t) = k(x, t) log ix - ti (2.3.8) 
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Chapter 2. Background theory 

if rewritten as 

k(x, t) _ 
k(x, t) Is tl Clog Ix - tI 

EE (0,1) (2.3.9) 

is also seen to be weakly singular. A kernel of the form 

k(x, t) = 
(x' t) (2.3.10) 

is called strongly singular, or alternatively Cauchy singular, finally a kernel of the 

form 

k(x, t) _ ýx(x, 
t) 

2 
(2.3.11) 

is called hypersingular. A large body of literature concentrates on techniques for deal- 

ing with Cauchy singular or hypersingular problems as these kernels, which require 

special treatment occur frequently in physical problems, but often as a consequence 

of the solution technique chosen. Also, for Cauchy and hypersingular kernels the inte- 

grals have to be interpreted in a specific way, see, for example Appendix C to Linton 

& McIver [51]. Weakly singular kernels, in contrast, are much more straightforward 

to deal with. The main goal of this thesis is, rather than to develop new techniques 

for dealing with Cauchy singular kernels, to formulate the integral equation so that 

it has a kernel which is, at worst, only weakly singular. 

Once we have formulated the equation as a weakly singular integral equation 

there is a range of straightforward and powerful methods of solution which require 

no further special treatment. Typically we define an integral operator 

b 

k(x, t)O(t) dt (KO) (x) = O(x) -1. 
n 

where )C E L2(a, b) which is equipped with an inner product 

(u, v) =J6 u(x)v(x) dx (2.3.13) 
a 

in which case the integral equation (2.3.4) becomes 

(KO) (x) = f(x)" (2.3.14) 
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2.3. Green's identity and integral equations 

Perhaps the most straightforward means of finding an approximate solution to 

(2.3.14) is collocation, which at its simplest requires the equation to hold exactly at 

a fixed number N of points. Therefore if x; is the i'th collocation point, Oi the 

potential at that point and f; the value of the forcing term, then the collocation 

scheme is 
b-a N 

Oi -E k(xs, xx)»i = fi, i=1, ... , N. (2.3.15) 

The point i=j typically requires careful treatment but can be calculated, see for 

example Linton & McIver [51]. This has converted the integral equation into a matrix 

equation of the form 

(I - A)p =f (2.3.16) 

where I is the identity matrix and p, f are vectors whose entries are the potential 

and forcing terms respectively at the collocation points. Solution of the matrix equa- 

tion is straightforward by standard methods such as LU decomposition. Leaving 

aside questions of convergence, intuitively one would expect that, as the number of 

collocation points increases we would get a closer approximation to the potential by 

interpolating from the values at the collocation points. 

A more sophisticated approach is the so called boundary integral element approach 

where the interval over which 0 is to be approximated is split into N equal elements 

of length 2h so that 2hN =b-a. We then collocate at the mid points x; of the 

panel to obtain the set of equations 

xc) -E 
k(x., t)O(t) dt f (xi) iN (2.3.17) 

N fe 
O( 

. 
7=1 f 

where Ef is the j'th element (t1 - h, t3 + h) . The potential is then chosen to take 

a particular form cj (t) in each element such that 

f k(x1, t)Oi(t) dt = AijO(x1) (2.3.18) 
Ef 

in which case we again arrive at a matrix equation 
N 

«(xi) -E AijO(xi) = .f 
(xi) i=1, ... , 

N. (2.3.19) 
j=1 
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Chapter 2. Background theory 

What now distinguishes various boundary integral element approaches is the choice 

of the form of the potential on an element. Typically one might choose a polynomial 

approximation to 0 on the element with the form (2.3.18) recovered by requiring 

continuity of 0, and as many of its higher derivatives as necessary to determine the 

polynomial coefficients, at the end points of the elements. Again, intuitively it is 

expected that increasingly sophisticated choices for the representation of 0 will give 

increasingly accurate representations of the solution. For our purposes the simplest 

possible representation of ¢3(t) = 0(t1) i. e. 0 is a constant on each panel equal to 

its value at the midpoint, is ideal as it shows trivially how (2.3.18) is arrived at. In 

this case 

Atj = 
fl 

k(xi, t) dt (2.3.20) 

and the accuracy of the method is also anticipated to be improved by increasing the 

accuracy of the integration over the boundary element. In contrast if we choose the 

simplest possible quadrature, namely the midpoint rule, in (2.3.20) we see that we 

recover the simple collocation scheme (2.3.15). 

The final method of solution we will use is the so-called Rayleigh-Ritz method 

which depends upon a variational approach to equation (2.3.14). To illustrate this 

method we will assume that K is a self adjoint operator on a Hilbert space f-l = 

L2 [a, b] i. e. 

(JCu, v) = (u, lCv). (2.3.21) 

This restriction that 1C is self-adjoint is not critical as the theory that follows can 

be extended to deal with non-self-adjoint operators provided the adjoint problem is 

given. 

We now consider a functional J: l -+ C defined by 

J(P) = (p, f) + (. f, p) - (Kp, p), pE 71 (2.3.22) 

which is designed to be stationary at p=0 where its value is 

J&) =P= (01 f) (2.3.23) 
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2.3. Green's identity and integral equations 

which is typically a quantity of interest in the physical problem. Any approximation 

to 0, say gives rise to an approximate value P of P. Then the variational 

principle above gives the estimate 

IP-Pi =O(II5- l11) (2.3.24) 

which implies that approximations to the quantities of interest are second-order accu- 

rate with respect to first-order approximations to the exact solutions of the integral 

equation. Adopting this approach we approximate 0 by E 7-IN+l, an N+1 

dimensional subspace of 7-1 spanned by a set of test functions pn(x) E ß-1N+1 by 

writing 

0 ;_=1: anpn(X) . 
(2.3.25) 

nýO 

This approximation is substituted in place of p in (2.3.22) to give 

NNNN 
J(p) = an (pn, f) +E an (f, pn) -EE anam ()Cpn, p,, ). (2.3.26) 

n=0 n=0 n=0 m=0 

We now make this expression stationary with respect to the coefficients an by re- 

quiring 

o9an 
=0n=0, ... , N, (2.3.27) 

Oan 

which implies the system of equations 

N 
(Pn, f) - 

1: am (Kpn, pm) =0, n=0, ... , N. (2.3.28) 
M=0 

Finally, taking the complex conjugate of (2.3.28) and using the self-adjointness of K 

we arrive at 
N 

E 
an ()Cp 

n, Pn) = (. f, pn) n=0, ... , 
N, (2.3.29) 

M=0 

which has, once again, reduced the integral equation into a matrix equation. 

This method is equivalent to Galerkin's method, a so-called projection method, 

which is arrived at in a different manner. In this approach we again seek to approx- 

imate the solution 0 to Kq =f in EN, aN dimensional subspace of R. We 
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assume EN is spanned by a set of functions p,, so that we may approximate 

Oj= ZQnpn(x)" 

n-0 

(2.3.30) 

Galerkin's method then requires that the residual (K0 - f) is orthogonal to each of 

the functions p�,, m=0, ..., N which ensures that KO =f is within EN . This 

requirement gives equation (2.3.29) exactly, thus establishing the equivalence of the 

two approaches. We now expect that, by choosing larger dimension subspaces, we 

will converge to the true solution as N -º oo thus enabling us to obtain whatever 

degree of accuracy we wish by choosing N sufficiently large. One final point is that 

a judicious choice of the subspace, which incorporates some of the physics of the 

solution, will give more accurate approximations for fixed N than an injudicious 

choice. For further discussion of these matters the reader is referred to Porter & 

Stirling [72]. 

One interesting consequence of (2.3.29) is that if we choose 

pn(x) -0xE 
[a, b] \ [(n - 1)2h, n2h] 

1xE [(n - 1)2h, n2h] 
(2.3.31) 

where h= (b-a)/2N the set of equations we obtain from the Rayleigh-Ritz/Galerkin 

method is identical to that obtained from the boundary integral/collocation method. 

Thus we may infer that the collocation approach is second-order accurate in an L2 

norm sense, although this choice of spanning function is not necessarily the most 

judicious choice. 
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Chapter 3 

Two-dimensional sloshing over an 
arbitrary bed 

3.1 Introduction 

The sloshing problem is a classical eigenvalue problem of fluid mechanics, a standard 

reference for which is Lamb [49]. The references in Lamb show the problem's long 

history and the illustrious names involved with it; however, he notes that despite 

such long standing attention, the number of cases of motion with a variable depth 

for which the solution has been obtained is very small. Lamb presents the analysis 

for a triangular canal whose section consists of two straight lines inclined at 7r/4 to 

the vertical and which, to date remains one of the few cases for which an analytical 

solution is known. During the mid-twentieth century there was an upsurge of interest 

in the sloshing problem driven by the need to develop a theory of the motion of fluid 

within partially filled containers. The main applications of the era as highlighted 

by Moiseev [65] were all aspects of fuel tank problems, ranging from aircraft fuel 

within wings to liquid-fuelled rockets, as well as, for example, seismic oscillations of 

structures under water pressure. Moiseev [65] and subsequently Moiseev & Petrov 

[66] provided extensive reviews of the linear theory and main references of the period. 

Although Moiseev states that most of the applications occur in circumstances where 

perturbation theory proves extremely effective, he reiterates that even the linearised 

case calls for numerical calculation. Moiseev does not deal with non-linear oscillations 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

where he states that many of the algorithms of the time were clumsy and convergence 

was unproved. 

The advent of high-power computational facilities has enabled researchers to make 

progress, albeit numerically, in the sloshing problem. The motivation is still driven 

by the technological problems arising from the often violent motion of the fluid within 

partially-filled fluid containers. Efficient and accurate calculation of sloshing frequen- 

cies remains an important goal as it is desirable to avoid the resonance which is 

known to occur in a system externally forced at, or near, a sloshing frequency. It is 

also known that violent motions can induce large pressures so accurate modelling of 

the motion is also required to estimate the pressures and to engineer safe containers. 

Research has continued actively in two complementary directions, namely identifying 

the sloshing frequencies, and modelling the non-linear fluid motion. 

There has been much work on non-linear sloshing motions based on improving 

modal approaches or using computational fluid dynamics code. Some papers are 

discussed below and the references therein provide a fair coverage of the field. Faltin- 

sen [29] found analytic results for the motion of a two-dimensional rectangular tank 

forced to oscillate harmonically at frequencies close to the lowest natural mode of 

oscillation and with small amplitudes of roll or sway. Faltinsen et al. [30], Faltinsen 

& Timokha [31], Faltinsen & Timokha [32] and Faltinsen Rognebakke & Timokha 

[33] develop a multi-dimensional modal approach using generalized domain and sur- 

face modes rather than natural modes. This basic approach, and its refinements 

in the later papers as they develop are shown to model sloshing in intermediate to 

small depths and in tanks where the length to breadth ratio is 0(1) and therefore 

a two-dimensional approach is questionable. However, they note the difficulties in- 

herent in a modal approach of dealing with run-up, overturning and dissipation due 

to local breaking. The sloshing problem is also amenable to non-linear solvers, for 

example see Wu & Eatock-Taylor [103] who apply their finite-element method code 

to consider the sloshing problem in a rectangular tank. Their approach is to perform 

a finite-element analysis, obtaining the solution through a variational principle and 
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obtaining the fluid motion by a Galerkin approach. They extend this work in Wu 

& Eatock-Taylor [104] where they consider three-dimensional translational motion 

in a rectangular tank and observe travelling waves and bores in addition to standing 

waves. Their work is calibrated by checking that their three-dimensional code applied 

to two-dimensional motion gives consistent results with two-dimensional solvers. In 

the course of this paper they clearly demonstrate that there remain many interesting 

problems associated with the sloshing problem. 

The other main direction of research has focussed on the calculation of linear 

sloshing frequencies. Davis [18] established important results regarding uniqueness of 

solution and provided asymptotics of the eigenvalues for two-dimensional oscillations 

in canals of arbitrary cross section. In Davis [19] significant progress was made in 

asymptotics for the semicircular cross section which at the time remained unsolved. 

Packham [69] solved the case for a triangular canal with sides inclined at ir/6 to the 

horizontal. Craggs & Duck [17] show how techniques from complex-variable theory 

may be applied to two-dimensional problems and proceed to solve the segmental and 

arbitrary triangular cross section. Fox & Kuttler [36] provide an extensive review 

of the two-dimensional sloshing problem and appropriate references. In their paper 

they provide upper and lower bounds for numerous cross sections by using conformal 

mappings from the specific geometry to one whose explicit solution is known. They 

also refer to a series of papers by Henrici, Troesch & Wuytack [41], Troesch & Troesch 

[93], Miles [63], Troesch [94] and Troesch [95] on the `ice-fishing' problem, or sloshing 

in a strip aperture in an infinite half-space. This is important in providing bounds on 

sloshing frequencies through domain monoticity, meaning that if two domains have 

the same free-surface but one domain contains the other then the containing region 

has the larger sloshing frequency. This theoretical result is also confirmed in the 

numerical results we produce in this chapter. Later work by McIver [56] has looked 

at cylindrical and spherical containers filled to arbitrary depths. Evans & Linton [26] 

also considered both an infinite and finite cylinder with semicircular cross section as 

well as a hemisphere, and presented an extremely efficient technique of calculating 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

the lowest sloshing frequencies. 

Despite the long history of the sloshing problem, there is relatively little work 

on the case of arbitrary bed shapes. Booij [8] has used the MSE (see Chapter 2) 

to compute oblique sloshing in a tank with a flat sloping bottom and appeared to 

obtain quite good agreement with a numerical solution based on a finite-element 

method. The focus of this chapter is on solving the sloshing problem to second- 

order providing a weakly non-linear solution. Essentially this introduces the much 

more complicated free-surface problem whereby the first-order potential forces the 

second-order potential, in essence having the effect of a pressure distribution on the 

free-surface in the second-order problem. Wehausen & Laitone [101] §21 discuss this 

problem in general, whereas later papers on second-order scattering such as Vada [99], 

McIver & McIver [55] and McIver [54] make use of the specific form of this forcing 

to solve scattering problems. One specific use of the MSE is in McIver & Smith [? ] 

where they investigate sloshing problems in closed basins. 

We base our approach on the Green's Identity method of Porter & Porter [77] 

and, through careful formulation and manipulation, we are able to extend it to the 

much more complicated second-order problem. Fundamental to this is the use of the 

Cauchy-Riemann equations to convert normal to tangential derivatives simplifying the 

integral equations to be solved. It should be emphasized that our formulation is exact 

at each order, satisfying the no-flow condition at the bed and the complicated free- 

surface boundary conditions. We show how to apply the approach twice, non-trivially 

dealing with the problem of defining the first-order potential on the free-surface, which 

is required to feed into the second-order problem. This key step to our problem did not 

need to be calculated in Porter & Porter [77] to determine the scattering coefficients 

and was therefore not considered. The second-order problem requires more careful 

manipulation as, in this case, the integral equation to be solved is inhomogeneous. 

However, we find it is possible to solve it and find a solution expressed in terms of the 

coefficients of the first-order solution. We formulate the problem and then proceed to 

solve at first-order showing how to calculate the sloshing frequencies and how to obtain 
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an expression for the first-order potential. We then show how to solve the second-order 

problem, again yielding solutions for the second-order potential on the free-surface 

which is required to calculate the free-surface elevation. We present calculations of 

the sloshing frequencies confirming that our method gives correct results for known 

bed shapes. We also compare our results for sloshing frequencies with those predicted 

by the MSE and MMSE and present results showing that, for the sloshing problem at 

least, the MSE/MMSE's effectiveness not only depends upon the maximum slope but 

on the specific geometry under consideration. Although our formulation is exact, the 

Calerkin approximation used to solve the integral equations provides an approximate 

solution at first-order, so we present data indicating the rapid convergence of the 

approximation. Finally we show the second-order corrections to the first-order surface 

elevations. 

3.2 Formulation and preliminaries 

The problem is to solve the free sloshing problem to second-order in a tank D whose 

walls are at x=0, x=l and whose bed is given by the curve C defined as z= h(x). 

The fluid motion, which is taken to be two-dimensional, may therefore be described 

in terms of a velocity potential ýD(x, z, t) where x is the horizontal axis and z is 

the vertical axis. Furthermore, as usual we assume time harmonic motion of angular 

frequency w for the first-order potential. The linear boundary value problem from 

(2.1.31) to (2.1.33) now becomes 

(aa1 (3.2.1) v2ýi = 0, x, y) E D, v= 
8x' 8z 

a), 
, 

a01+Kq1 
= 0, onz=0,0<x<1, (3.2.2) 

a01 
= 0, on {x = 0, zE (0, h(0))} U {x =1, zE (0 < h(l))}, (3.2.3) 

ax 

aml_ 
On - 0, onz=h(x), 0<x<1. (3.2.4) 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

In the case of constant depth h(x) = ho this problem is easily solved by separation 

of variables to give modal solutions 

ON = Cn cos px cosh p (ho - z) (3.2.5) 

for arbitrary coefficients C,, where 

lln = 
n7 

n=1,2 ..... 
(3.2.6) 

l 

with frequencies w=w,, determined by the dispersion relation 

K=µ,, tanh(u�ho). (3.2.7) 

So for the first mode, for example, the dimensionless wavenumber µ, ßl is given by it 

which, for a tank where l/ho =1 gives a dimensionless frequency KI = 3.1299, and 

for a tank where l/ho = 2, gives Kl = 2.8813. 

We also follow Vada [99] and McIver & McIver [55] to express the second-order 

free-surface boundary condition (2.1.35) as 

824P2 a4ý2 21 2-g az = Re[F(x)e )+ F3(x), on y=0 (3.2.8) 

where 

and 

F(x) =ý2- IiWol 5 7Z 
(KO, 

+ 
o' 1 

(3.2.9) 
J: 

_ -o 

Fa(x) =4 
101 i_ ii 

LO 
(3.2.10) 5X-2 OX2 

and 7 denotes the complex conjugate of 0. 

In the solution to both the first and second-order problem we will make use of 

the Green's function for a two-dimensional infinite domain with a constant depth d 

which we will denote Gi(x, zI xo, zo) , and which satisfies 

V2GI = -Ö(x - xo)b(z - zo), -oo <x< oo, 0<z<d, (3.2.11) 

OG, 1+ KG, =0 on z=0, (3.2.12) 

0G1 
_ Dz =0 on z= ho, -oo <x< oo . 

(3.2.13) 
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It has the form 
00 zz G, zI xo, zo) =n0 

(o 
e kýj=-=aj (3.2.14) 

n=O 
2knho 

and a derivation is presented at Appendix A. An alternative derivation of this Green's 

function is presented in Mei [61] however, it should be noted that the final expression 

therein contains a sign error. 

We now construct, using the method of images, a Green's function G(x, zI xo, zo; K) 

for the tank satisfying (3.2.11) - (3.2.13) for 0<x<l with Gx =0 on x=0,1 for 

0<z< ho. Hence 

00 
G(x, zlxo, zo) = {Gl (2ml + x, zlxo, zo) + Gl (2ml - x, zlxo, zo)} (3.2.15) 

m=-oo 

or by using (3.2.14) 

00 00 
G(x, zlxo, zo) _EE 

'i%n(z)'on(zo) {e knl2ml+a-xol +e knl2ml-x-xol }. (3.2.16) 
2knho 

m=-oo n=0 

from which we deduce that 

00 
G(x, zlro, z0) =E 

0n z) 

' 

(zo) 
{Cosh 

k 
. 

(l - Ix - of 
h 

cosh kn, (l -x- xo)I 

n=O 
(3.2.17) 

We note that G converges everywhere in the domain apart from (x, z) = (xo, zo) 

where it possesses a log singularity. 

3.3 First-order solution 

We proceed to find the first-order potential using the method of Porter & Porter [77]. 

We apply Green's Identity 

a01 
D(ßIV2G 

- GOZ0i) dD =s Oi ac 
an -G an J ds (3.3.1) 

f(- 

where s measures the arc length on S, the boundary of D, which gives 

=l -Oi(xo, zo) 
S 

Oi ac an - Gaol 
an l ds. (3.3.2) 
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Now the boundary conditions on G and 01 mean that the only contribution is from 

C and therefore 
n 

01 (xo, zo) _-J 01 
5ds. 

(3.3.3) 

In this form equation (3.3.3) represents a homogeneous second-kind integral equation 

for 01 and hence could be used to determine the sloshing frequencies at first order. 

We choose to proceed further following Porter & Porter's [77] technique of converting 

normal derivatives to tangential derivatives by using the Cauchy-Riemann equations 

in the form 
19 a 

5s7Pn(z)e±kz =T 
-Xn(z)etkn (3.3.4) 

Ö 
n(z)efknx _a xn(z)efknx' än äs l 

where 
an= (-h'(x)ax 

+ 8z) , 

a1 
äs Q 

(2äX 
+h'(x)öz)' (3.3.5) 

Q= (1 (h'(x))2), 

X" (Z) = Nn 1/2 
sink (ho 

- z). 

Now using these equations we deduce that 
82G 82H 

Ontno asaso 
(3.3.6) 

s} 

where 

00 "' H(x, zlxo, zo; K) _ I- 
2knho 

Xn (Z)X (ZO) {cosh kn(l - Ix - xon) 
oncosh 

kn(I -x- xo) 

n=0 
(3.3.7) 

We can now derive an integral equation by differentiating equation (3.3.3) with respect 

to no. To do this we extend the definition of no, the normal derivative with respect 

to field coordinates, into the fluid domain where we perform the differentiation. Then, 

noting that this derivative must vanish as we approach the curve zo = h(xo) we find 

that 

z 
6=ono&i(xo) yo) =-f 01(x, y)aaanG(x, zlxo, zo)ds 

c 

s = 
ic1(x, 

z)aaH(xzI2o, zo)ds 
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which on integrating with respect to so, becomes 

Co =f 01(x, z)-sH(x, zlxo, zo)ds. 

We take the limit xO -+ 1 where it may be shown from the definition of H that the 

integrand vanishes and hence Co, the constant of integration, is zero. We may now 

integrate by parts to obtain, 

o_ [0, H(x, zlxo, h(xo)))c -fH0 ds. 

Now it may be easily seen from the definition of H(x, zlxo, zo) that the first term 

above vanishes to give 
f 

H0s1ds=0. (3.3.8) 

If we now define 

and 

4i (x) = [20-1 + h'(x) 
ý0i 1 

(3.3.9) 
J z=h(x) 

00 
m(xo, x; K) =E 

Xn(h( )) hoh(xo)) {cosh kn(l - Ix - xol) 
oo 

cosh kn(l -x- xo)} 

n=0 n 

(3.3.10) 

the integral equation may be rewritten as 

m(xo, x; K)ql (x) dx = 0,0 < xo < 1. (3.3.11) 
f 

Non-trivial solutions of this homogeneous first kind integral equation furnish the 

sloshing frequencies for the tank containing the particular bed shape z= h(x) and 

the corresponding function ql(x) which is related to the tangential flux along the bed. 

In order to solve the second-order problem, however, we must find 01 in a suitable 

form to feed into the second-order problem. Specifically this requires the value of 01 

on z=0 so we proceed to find the general form of 01 everywhere in D and, in 

particular, its value on the free-surface, z=0. 

We now use equations (3.3.4) to deduce the relation 

ac aL 
an = as 

(3.3.12) 
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where L(x, zlxo, zo; K) is given by 

00 Xn(z), n(zo) 
{sinhkn(l - lx - xol- siinh kn(l -x- xo) lx< 

xo, J' 
n=O 

2k ho sinh k ,, l L- 
00 

E Xn(z)V)n(zo) {sinhkfl(l - lx - xol) + sinh k(l -x- xo) tx> 
xo. 2knho sink knl J' 

n=0 
(3.3.13) 

Therefore performing integration by parts in equation (3.3.3) we deduce that 

01(x0, zo) =- [01(x, z)L(x, zJxo, zo; K)]c +f L(x, zixo, zo; K) 
a0 gis' z) ds. (3.3.14) 

c 
A careful treatment of the term [q'1L]c noting that L is discontinuous at x= xo 

yields 
00 

[OL]c = 01(xo, h(xo)) Xn(h(xo))o n(zo) (3.3.15) 

n=0 
This may be simplified using the result 

00 xn(h(xo))'ib�(zo) 
_ 

0,0 < zo < h(xo), 
f (zo) (3.3.16) 

1ýýho 1, h(xo) < zo < ho 
n=O 

which is found by expanding the function of zo on the right hand side in the complete 

set {Vi,, } to give 

[giL]c= 'i(xo, h(xo))f(zo). (3.3.17) 

Finally, upon substituting in equation (3.3.14) we obtain the equation 
1 

01 (X0, zo) =f L(x, h(x)1 xo, zo; K)gi(x) dx, (xo, zo) E D. (3.3.18) 
0 

This may be used to find 01 everywhere in D. However, for our purposes we note 

that we simply require the expression for 01 on the undisturbed free-surface z=0. 

Hence 

01 (X0,0) =f L(x, h(x)lxo, 0; K)gi(x) dx. (3.3.19) 
` 

0 
This result is in terms of the bed-flux function ql (x) already computed and gives 

us all the information we require, both to compute the time-independent first-order 

wave elevation given by 

771 (x) = Re iw 01 () (3.3.20) 11 f-9 

and to feed the first-order results into the second-order problem. 
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3.4. Second-order solution 

3.4 Second-order solution 

Recall the second-order potential 4ý2 must satisfy Laplace's equation together with 

zero normal derivative on fixed boundaries. Furthermore it must satisfy the compli- 

cated free-surface boundary condition (FSBC) 

a2'1)2 a-2 21it =0 (3.4.1) 
ate-9äz- 

Re[F(x)e -]+F. (x), on z 

as stated in (3.2.8) and where the terms on the right hand side are defined in equations 
(3.2.9) and (3.2.10). Now, following McIver & McIver [55], we observe that the right 

hand side of the FSBC suggests that 402 has the form 

'2 (x) z, t) = ea (x, z) - ]Pt + Re[02 (x, z)e 2iwt1 (3.4.2) 

where the steady and double frequency components of the potential, 4), and 02, both 

satisfy Laplace's equation and have zero normal derivatives on the fixed boundaries. 

The FSBC implies the two conditions 

äff, 
__ 

F3(x) 
äz g 

and 
M 4KO2 + az = 9(x), 

onz=0,0<x<l (3.4.3) 

onz=0, O<x<l (3.4.4) 

where 

9(x) _ -(9)2 + K201 + 
201 ýýi 

(3.4.5) 
go 

The choice of r simply affects the position of the mean free-surface and is set to a 

value which guarantees mass conservation, i. e. by requiring no net flux across the 

undisturbed free-surface. Furthermore, noting that since 01 satisfies a homogeneous 

problem, it may be taken to be real without loss of generality, therefore it is evident 

that F3 (x) =0 in equation (3.4.3) and consequently ', has zero normal derivative 

on the boundary z=0. Then (see, for example, Dettman [211) 

Jf 04D,. V4i, dD=-114i, V24); dD+1e, D(D,. nds=0. (3.4.6) 
DDs 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

Therefore VJ __ 0 in D and so we deduce that I is a constant which we may set 

equal to zero without loss of generality. 

We now turn to solving for the double frequency component . 02 and we note that 

g(x) may be calculated in terms of (3.3.19). The full boundary value problem for 02 

is 

V202 = 0, (x, z) E D, 
002 
äx = 0, on {x = 0, z c- (0, h(0))} U {x = 1, zE (0, h(l))}, 

4K102+ 
90 

= onz=0,0<x<1, 
002 
On =0, onz=h(x), 0<x<l. 

(3.4.7) 

We proceed to solve for 02 using the same techniques applied at first-order, but now 

use the Green's function G given by (3.2.17) for a frequency of 4K. So, applying 
Green's identity, but this time to 02(x, z) and G(x, zJxo, zo; 4K) 

, gives contributions 
from the free surface and the bed only. Thus 

-02(x0, zo) =f 
_0-02ý 

G(4K)+G(4K) ý2 
dx+J 02(x, z)nG(4K)ds. (3.4.8) 

We now apply the FSBC to obtain 
/' r 

-02(xo, zo) =J G(x, Ojxo, zo; 4K)g(x) dx +J q52(x, z)a G(4K) ds. (3.4.9) 

In order to proceed as before we need the result 

o 
G(x, zl xo, zo; K) =a L(xo, zo I x, z; K) (3.4.10) '5n- 

09so 

which is deduced from equations (3.3.4) and where L(K) is defined by (3.3.13). We 

now differentiate with respect to no to give 

-Ono 52(xoi zo) =ft ý9 G'(x, 0jxo, zo; 4K)9(x) dx -J 8söso 
H(4K)cb2 ds. (3.4.11) 

Then applying the bed condition and converting from normal to tangential derivatives 

we find 

0 =11 ä9p L(xo, h(xo)lx, 0; 4K)g(x) dx -f 02 
ä 

92 
H(4K) ds on zo = h(xo). 

Saso (3.4.12) 
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3.4. Second-order solution 

We may now integrate with respect to so. So 

jf Co = L(xoh(xo)lx, 0; 4K)g(x)dx-J 02a H(4K)ds on zo = h(xo) (3.4.13) 
c 

and using the limit xo -º 0 we deduce that Co = 0. Integrating the second integral 

by parts we find that 

tr 
-JL(xo, h(xo)l x, 0; 4K)g(x)dx = -[02H(4K)]c+J H(4K) 1902 on zo = h(xo), 

(3.4.14) 

where, since H(4K) =0 at xo = 0,1 the first term on the right hand side of the 

equation vanishes, giving 

f L(xo, h(xo)Ix, 0; 4K)g(x) dx =f H(4K) 2 ds on zo = h(xo). (3.4.15) 
o as 

Now, defining 

42(x) =Ix+ h'(x) ZJ (3.4.16) 
l z=h(x) 

and using equation (3.3.10) we may rewrite the integral equation (3.4.15) as 

f (xo) °-f1 L(xo, h(xo)1 x, O; 4K)9 (x) dx = 
ý` 

m(x, xo; 4K)42(x) dx. (3.4.17) 

Once we have solved for q2 (x) we find that the solution for 02 on the free-surface 

follows using a similar procedure as used previously in equations (3.3.13) to (3.3.19). 

Thus omitting the details we find 

a 
02(xo> 0) = P(xo) -f L(x, h(x) Ixo, 0; 4K)42(x) dx, (3.4.18) 

0 

where 
1 
G(x, O xo, O; 4K)9(x) dx. (3.4.19) p(xo) °-f0 

Once again, 02 is given in terms of a bed flux function q2(x) which we have al- 

ready computed. Now it may be shown from (2.1.36) and (2.1.38) that 772 may be 

decomposed as 

7)2 = 7)20 + Re {7)22e-2'Wt1 (3.4.20) 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

with the time independent expressions r72o and 7722 given by 

r1 (aol(x, 0))2 
22 

7120=-g+4g äx J -K ( 1(x, 0)) (3.4.21) 

and 

7122 = -2iwq5z(x, 0) +1 
ä-0i(x, 0)ý2 

+ 3K2 (, 01 (X, 0)) z (3.4.22) 9 4g 
(ax 

respectively. We set r by requiring 
I I 
ijzo(x) dx =0 (3.4.23) 

0 

therefore obtaining 

r4 
Jl (a0Ox'0))z-Kz(01(x, 

0))zdx. (3.4.24) 

Mass conservation is now equivalent to requiring that 

/' 
ijzz(x) dx = 0, (3.4.25) 

however, we have no free parameters so it remains to confirm that this identity does 

indeed hold. To do this we apply the divergence theorem to the boundary value 

problem for 02 we find 

0=1J V. V02dxdz = 
Jn. 

V52ds 
Ds 

_ 
1002 1 

dx 1az 

==o 
ft rt 

=J g(x) dx - 4K J ¢2 (x, 0) dx. (3.4.26) 
00 

In which case, on using (3.4.5) and (3.4.26) we find that 

'/ ý1 (001) 222 9201 () 2iw fo 9 
02(x, 0) dx = 4g J2 ax + 3K ý1 + 0i 9x2 dx, 3.4.27 

furthermore we observe that 

0' 

(1)2+ý1dX 
= Jo äx 

Chi gx1) 
dx 

_ i901 c5l 
äx 0 

= 0. 
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3.5. Approximation and numerical method 

In which case we deduce that 

zz 
z 2iw f1 /ýý (21-1) 

9 �o 
0z (x' 0) dx =1 49 Jo + 3K 01 dx, (3.4.28) 

which when used with (3.4.22) establishes conservation of mass and provides a useful 

check for our numerical results. We note that we have all the information to calculate 

the second-order potential throughout D, and specifically to calculate the second- 

order surface elevation. Therefore we have effectively formulated the solution of the 

sloshing problem for arbitrary bed topographies exactly to second-order. 

3.5 Approximation and numerical method 

Although our formulation of the problem so far is exact we must resort to numerical 

techniques to generate results. A discussion of the key steps involved is presented 

below. 

3.5.1 Calculation of the bed flux ql (x) 

We solve the integral equation (3.3.11) numerically by using a Galerkin method where 

we approximate ql (x) by 

Q1 = 17, =Z anvn(x). (3.5.1) 
n=1 

We introduce an operator M where 

1 
(M4i)(xo) =f m(x, xo; K)4i(x) dx (3.5.2) 

0 

and define an associated inner product 

I 
(4i, p) =f 4i(x)p(x) dx. (3.5.3) 

0 

A variational principle equivalent to Galerkin's method is used to approximate the 

solution of the integral equation and takes the form 

(M i, vm(x)) = (3.5.4) 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

This results in the matrix equation 

NN 
E anMmn = an(Mvn, v, n) = 0, m=1, ... , N. (3.5.5) 
n=1 n=1 

We now choose appropriate trial functions to model ql(x) the fluid flow along the 

bed particularly at x=0,1. A local analysis of the fluid flow shows that q, (x) -- 0 

as x -º 0,1 to give zero normal flux. Therefore we choose 

vn(x) =L sin 
(nix) (3.5.6) 

and we construct the matrix M with elements M,,,,, defined by 

/I 
vm(x) 

1 r. Xr(h(X))Xd(h(z)) {cosh k,. (l - Ix - zI) -l sh kr(l -x-z) }vri(z)dzdx. 
Jo 

I 

r=O 

1 
2k r 

(3.5.7) 

We note that the terms in cosh k,. (l -x- z) are separable, so we define 

k(l/2 - x) 980n = Xo(h(X)) 
sin kl/2 v(X) dx, 

I 

I COS/22 -9COn = xo(h(x)) 
cos 

vn(x) dx' 

G"`n 
4kd 

f 
gson9so tan(kl/2) - an(kl/2) 

}' 

1 sinh kr(l/2 - x) 
gsrn =f Xr(h(x)) 

sink krl/2 vn(x) dx, r=1,2, ... 0 

J col/2 
gern = Xr(h(x)) Vn(x) ,r1,2, ... cosh krl/2 

a(r) 
m, 4k gsrngsrm tanh(krl/2) - tanh(krl/2) 

ng 
rd 

{ 

We also break the terms in cosh k, (l - Ix - z1) into 

Wmn = /cd 
J 

Xo(h (x))v(x) 
f 

Xo(h(z))cosk(sinkl 
x_ zl )v�(z) 

dzdx (3.5.8) 
00 

and 

00 1 ,l- f(h(z))vn(z) 
cosh ks inh 

kl l 
z1) dzdx (3.5.9) emn = 2k d 

lIvn(x)x, 
(h(x))f 

1X 

r 
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3.5. Approximation and numerical method 

to give 
00 

Mmn = Gmn 
- 

G(r) + 2Umn '. I 8mn. (3.5.10) 
r=1 

The only term which presents any computational difficulties is em, n which contains 

a logarithmic singularity. Porter & Porter [77] explain how to deal with this term 

by subtracting the asymptotic leading order contribution and then identifying it as 

a log function which may be integrated out explicitly. The sloshing frequency and 

associated bed-flux were found using a standard bisection approach typically involving 

12 bisections and hence calculations of the matrix coefficients, to achieve six significant 

figure accuracy. 

3.5.2 Calculation of the first-order potential on z=0 

To calculate the first-order wave elevation and to solve the second-order problem 

we need an easily calculated expression for 01(x, 0) . We obtain this by expanding 

01(x, 0) as a Fourier cosine series to remain consistent with (3.5.6) thus obtaining 

the expression for the first-order potential on the free-surface in a readily computable 

form 
00 

01(x, 0) =Zb, cos(slrx/l) (3.5.11) 

s=0 

where 

be = 
-' 
J1/ L(x h(x) Ixo, 0; K)ql (x) cos(s7rxo/l) dx dxo. (3.5.12) 

l00 

Of course, bo must be equal to zero to guarantee mass conservation, however, antic- 

ipating a more compact means of presenting further results, we leave the summation 

from s=0 but noting that bo = 0. Now, using our expression for ql (x) as calculated 

above we may insert into equation (3.5.12) to give 

f f= 
aJ L(x, h(x)lxo, 0; K) sin(n7rx/l) cos(sirxo/l) dx dxo. (3.5.13) 

0 

In practice we truncate the cosine series for 01(x, 0) taking no more terms than N, 

the truncation size for the Calerkin approximation. Now, the Fourier coefficient b, in 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

the form presented at (3.5.13) is computationally expensive in that, for each s, there 

is a sum of double integrals of the discontinuous function L which itself involves a 

sum. If we define 

t 
() 

cos 
(s1rxo) dx dxo (3.5.14) Ln3(K) = 

ffL(x, 
h(x)Jxo, O; K) sin 

nirx 

00 

then the b, may be constructed from sums of the L,,,, (K). We note that within 

the double integral the discontinuous function L(x, h(x) Ixo, 0; K) is evaluated on the 

free-surface thereby removing the dependence on the arbitrary function h(xo) and 

therefore allowing us to separate in the form 

1 00 Xr(h(x))Gr(0) nýrx L�� (K) = -1 
Z 

2k 
, 

sin 
(-T-) (Il(x) + 12(x)) dx (3.5.15) 

r=O ' 0 

where 
t 

-/ 
sgn (x - xo) sinh k,. (l -1x- xo 1) s7rxo Ii (x) f 

Binh krl cos 
(-j--) dxo, (3.5.16) 

0 
t 

12(x) 
sink k, 1 cos 

('9 
l) 

dxo. (3.5.17) _ 
JS'nhkr(1_xxo) 7rxo 

0 

Using Gradshteyn & Ryzhik [37] (§2.671: 2) we may integrate these directly to give 

sirx krl2 (-1)' cosh krx - cosh kr(l - x) sil (-r)' () Il x kl2 + s2in2 sinh(kl) 
+ 2kl2 

+ s2in2 

12 (X) = 
krl2 cosh kr(l - x) - (-1)' cosh krx (3.5.18) 

krl2 + s2in2 sinh(krl) 

Finally, simplifying we obtain 

11 (X) + I2 (X) _ (k212 
+ s2in2) 

sin 
( six) (3.5.19) 

r 

which may be used in equation (3.5.15) to compute L,,,, (K) 
. In practice no further 

progress may be made analytically with equation (3.5.15) due to the presence of the 

h(x) term so it must be computed numerically. This however presents no difficulties 

for a Gaussian quadrature as the procedure above has reduced the problem to a single 

integral with smooth integrand. We note from our numerical results that the decrease 
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3.5. Approximation and numerical method 

of be is much more rapid than the worst case of O(s'4) predicted by Fourier theory 

and therefore our evaluation of 01(x, 0) is not limited by taking modest truncation 

sizes in the Galerkin approximation. 

3.5.3 Calculation of g(x) 

We note that g(x) depends on products of the first-order potential on the free surface 

and its derivatives which we have found as a finite Fourier series as below 
N 

01(x, 0) = b,, cos(nnx/l). 
n=1 

Therefore treating each component of g(x) separately we have 
NN 

0- 1: 1: bnbm COS f lnx COS PmX 

n=1 m=1 
NN 

-2E> 
bnbm(COS /1n+mx + COS fln_mx). 

n=1 m=1 

Also 

12 NN 

C1J=E ILn/imbnb,, sin µ,, x sin /cmx 
n=1 m=1 

NN 
1: 1: 

µnpmbnbm(COS ILn_mx - COS /2n+mx) i 

n=1 m=1 

and 

01 19,01 
Ö2ýx2 

1N b,, COS iinx µm. bm COS µmx 

n-1 m=1 
NN 

2> 
bnbmµm COS /1m+nX + COS µn_mX) . 

n=1 m=1 

Combining the above three results and simplifying we find that 

g(x) 
NNEE 

bnbm(3K2 + 2Pnf2m -112) COS /1n_mx 
-iw/g 4 

n=1 m=1 
NN 

+4 bnbm(3K2 - 2/lnilm - /gym) COSµn+mX 
n=1 m=1 

Now we seek to write 2N 

g(x) =Eg, cos(sirx/l) (3.5.20) 

e=o 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

where the limits reflect that terms in µ, ß_m contribute for s=0... N-1 and the 

terms in µn+,,, contribute for s=2... 2N. After some algebra it may be seen that 

the four distinct contributions to the Fourier series for g(x) simplify to give 

g(x) 
N 

E bn (3K2 + µn) 
-iw79 4 

n-1 
N-1 N 

+4EE bn-. bn(6K2 + 2µn/-In-s - iLa) COS /-ldx 

8=1 n=s+1 

N+1 s-1 
+4 b3_nbn(3K2 

- µs-n(2pn + pa-n)) cos jlax 

s=2 n=1 

2N N 
+4EL: be-nbn(3K2 - P8-n(2/n + Ps-n)) COS /1, X 

a=N+2 n=s-N 

This expansion has been extensively verified using Mathematica for a wide range of 

values of bn. The coefficients of this series are extremely easy to calculate and give 

us a much easier form of g(x) to deal with. 

3.5.4 Calculation of the integrals f (xo) and p(xo) 

The integrals f (xo) in equation (3.4.17) and p(xo) in equation (3.4.19) as they are 

currently defined are rather complicated. However, the fact that they are defined on 

y=0 enables us perform the integration analytically. We are able to do this by 

simplifying the expression for g(x) using the approach presented in section (3.5.3) to 

calculate g(x) as a Fourier cosine series (3.5.20) in terms of the Fourier coefficients 

b, introduced in equation (3.5.12). Thus we write 
2N 

g(x) =E g� cos(nirx/l). (3.5.21) 

n=o 

and then, using Gradshteyn & Ryzhik [37] (§2.671: 2-3) it is possible to integrate 

f(xo) and p(xo) to give 
00 

f(xo) = 
Xr(h(xo)) br(0) 

2kho 
f'-(XO), (3.5.22) 

r=o 
where 2N 217rs 

_ sin(sirxo/l) (3.5.23) fr(xo) g k212 + 7x282 
8=0 
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and 
2N o0 

P(xo) =7Z 9a E 
(k212 

+)2S2) 
cos(s7rxa/l). (3.5.24) To- 

r=0 r 7r 

) 

3.5.5 Calculation of the second-order bed flux q2(x) 

Once again we solve using the Galerkin method to find 

q2 9'2 =Z Cnvn(X) (3.5.25) 
n=1 

where the coefficients c� are found by solving the matrix equation 

N 
E c�Mm�(4K) = f,,, m=1... N. (3.5.26) 
n=1 

Where we define fm by 
t 

Im =f f(xo)v.. (xo) dxo (3.5.27) 
0 

and M, n�(4K) is the matrix defined in equation (3.5.10) but operating at 4K. The 

integral in (3.5.27) must be integrated numerically to form the integral equation, but 

this is relatively inexpensive. In particular, it is worth noting that our code used 

the extremely efficient routine for summing a Fourier series in Acton [2) to both sum 

quickly, and to avoid oscillatory effects. Solution of this inhomogeneous problem is 

routine, and typically an order of magnitude quicker than the first-order solution, 

requiring only one calculation of the matrix coefficients. 

3.5.6 Calculation of the second-order potential on y=0 

Calculation of the second-order potential on y=0 poses no additional problems to 

those encountered for the first-order potential. Equation (3.4.18) gives two contribu- 
tions to 402 

02(xo, 0) = P(xo) + d(xo) 

where 
d(xo) =-f` L(x, h(x) I xo, O; 4K)g2(x) dx. 

0 

(3.5.28) 

(3.5.29) 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

We see from the definition of p(xo) (3.5.23) that it is already in the form of a Fourier 

cosine series, and d(xo) may be evaluated to give a Fourier cosine series exactly as 

for the {b8} at first-order. Therefore we may add both contributions to give X52 as a 

Fourier cosine series with coefficients {ds} for s=0.1,2 .... 

3.6 Results 

The numerical method for the first-order solution has been checked against several 

analytic results for its accuracy. The first check is made by comparing the computed 

sloshing frequencies against the known exact solutions (3.2.5) for a flat-bed. It was 

found that our method converged to six significant figures for modest truncation sizes 

(N = 8) of the bed flux approximations. Another check can be made by comparing 

our results with those of Porter & Porter [79] who considered scattering by a periodic 

ripple bed. In their work they showed that the onset of Bragg resonance for the 

scattering of waves by it smooth periodic bed was governed by frequencies at which 

sloshing occurs over a, single period of the bed contained within solid vertical walls. 

In our problem, we have considered a more general situation in which the bed shape 

does not have to belong to a smooth periodic structure. In particular Porter & Porter 

[79] produced sloshing frequencies for values of a/ho = ,z in the two bed shapes given 

by the functions 

h(x) =a+ 1(ho 
- a)(1 - cos(27rx/l)) (3.6.1) 

and 

h(x) = ho - 2(ho - a)(1 - cos(2rx/1)). (3.6.2) 

These functions represent cosine curves with minima of h(x) =a at x=0 and x=l 

in the former case and at x= 21 in the latter case. Our results using a truncation 

pararneter of N=8 are K1 = 3.0739 and Kl = 2.9508 respectively and agree with 

those of [79] to the same accuracy. In figure (3.1) we show, graphically, the variation 

of sloshing frequencies KI as a/ho is varied between a/ho =1 and unity, which 

corresponds to the flat-bed solution previously mentioned. In figure (3.1) we also plot, 
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3.15 

3.1 f ý` 

K! 3.05 

---7-- -, 

A: Exact 
a A: MMSE 

.. _.. _.... 3 ....... 

2.95 
1 0.9 0.8 0.7 0.6 0.5 

(1/ ho 

Figure 3.1: Sloshing frequencies for the first mode over periodic beds given l)y (A: 
h(x) =a+ 0.5(ho-a)(1-cos(27rx/l))) & (B: h(ay) = h0-(). 5(hO (i, )(1-cos(27r. r/l))) 

for comparison results using the MMSE which were produced via, direct integration 

using an adaptive-stepsize Runge-Kutta-Fehlberg scheme. It can be seen that, as 

the bed-shape approaches the flat-bed case. all the results approach the analytic 

solution. Likewise the exact results agree with Porter & Porter [79] as o/11. O -* 0.5 to 

within four significant figures and with a truncation size of N=8. They also show 

the correct monotonic decreasing behaviour as a/hoý -0 and as predicted by Fox 

& Kutler [36]. It can be seen that, for mild-slopes the MMSE' produces reasonable 

accuracy as expected, whereas for moderate slopes the results appear more geometry- 

sensitive. In particular, by using the MSE, one of the geometries fails to show the 

correct monotonic decreasing behaviour of the frequency for even nioderat, e slopes. 

As a further check. we confirmed the calculations for the MMSE by independently 

solving via a Green's function formulation giving identical results to those found by 

direct integration. 

We shall adopt the previous notation in what follows by defining a to be the 

minimum value of h(x) over 0<x<1. We proceed for the rest, of the paper to 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

0 

a 

ho 

Figure 3.2: Geometries considered for the second-order sloshing problem 

consider the two specific geometries in figure (3.2) and for which in the limit a. 0 

results are known. Results are presented for domains having various aspect ratios 

l/h0 and where a/ho is varied in the interval [0,1]. The bed shape for the first 

geometry is an arc of a circle whose intercept with the vertical walls of the tank at a 

depth of a defines the radius and in the limit a -> 0 (when I/h0 = 2) approaches 

the semicircular canal for which results have been computed independently by Evans 

& Linton [26] using a semi-analytical method. The second geometry is a canal with a 

triangular bed which in the limit a --f 0 (when l/ho = 2) approaches the geometry 

for which Lamb [49] provides an analytic solution, corresponding to sloshing in a 

right-angled wedge. Lamb's sloshing frequencies are thus determined by the roots of 

the equation 

tank kh0 =± tan kh() (3.6.3) 

where +(-) corresponds to antisymmetric(symmetric) modes. 

Figure (3.3) shows a graph of the sloshing frequency normalized by dividing by 

the flat-bed solution (3.2.7) plotted against a/ho for the first sloshing mode over 

a triangular bed in a tank whose aspect ratio is governed by the relation l/ho = 

2 cot(7r/n) for n=3,4, ... , 
8. This means that, when a=0, the angle that each 

section of sloping bottom makes with the horizontal is 7r/n. Thus, in figure (3.3). 

the variation of u/ho from unity to zero represents the transition from the flat-bed 

solution to the triangular canal solution. This case was run first with the trial function 

sin(n7rx/1) where we found that in the limits a/ho -> 1 we obtained the correct 

results to the required accuracy. In the limit a/ho -* 0 we obtained the results given 
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Figure 3.3: Normalized sloshing frequencies for the first mode over a triangular bed 

making an angle of 7r/n, n=3, ... ,8 with the horizontal 

by Lamb [49] for the bed of slope 7r/4 accurate to four significant figures ( Kl = 

1.000 ). Their, noting that the first mode is antisymmetric. We anticipated a bed-flux 

symmetric around 1/2 and therefore ran the code again choosing sin((2n, - 1)irx/1) 

as the trial function. The latter results are presented because, as expected, they give 

slightly better convergence for fixed maximum truncation size. Results over the same 

bed shapes are also presented at figure (3.4) for the second mode which is symmetric 

and therefore requires the trial function sin(2nirx/1) . 
In this case we are able to 

verify that, in the limit a/ho -* 0, the results for the bed of slope 7r/6 agree with 

analytic results in Lamb [49] and Packhain [69] in which KI = 3.464. 

Figure 3.5 shows a graph of the non-dimensional frequency KI against a/ho for 

the first mode over a symmetric bed in the shape of an arc of a circle and where the 

tank aspect ratio is l/ho = 2. The results are bounded from above by the rectangular 

canal solution and from below by the semicircular canal solution which has also been 

computed by Evans & Linton [26] as KI = 2.7114. This case was run first with the 

trial function sin(n7x/l) where we found that, in the limits a/hoý -1 and a/hog '0 

we obtained the correct results. Again we re-ran the code anticipating a bed flux 
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Figure 3.4: Normalized sloshing frequencies for the second mode over a triangular 
bed making an angle of 7r/n with the horizontal 

symmetric around 1/2 using sin((2n - 1)7rx/1) as the trial function and we present 

the latter results. Alongside we provide, for comparison, equivalent results using the 

MMSE. Surprisingly in this case the accuracy of the MMSE results is extremely poor 

even for mild slopes. 

For the flat-bed case a/ho =1 all of our results were found to agree with the 

analytical results to six significant figures with modest truncation sizes (N= 8). For 

the limit a-0 we obtained four significant figure accuracy against known results 

for the triangular bed shape and three significant figures for the semicircular bed 

shape using the sin(n7rx/l) trial function and using a truncation size of (N= 48). 

Using Legendre functions we were able to obtain six significant figure accuracy for 

the first symmetric mode in the triangular canal problem where 1/h0 = 2. It is to be 

expected that our approach will cause problems when a=0 as, at this point the bed 

meets the free-surface. This problem manifests itself in our assumptions about the 

local behaviour of the fluid flow at, the join with the canal walls. In the case of the 
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Figure 3.5: Sloshing frequencies for the first iuodc over an are shaped bed 

semicircular bed the condition at, the end of the bed remains zero flux; however, this 

is inconsistent with the free-surface condition at this point,. In the triangular case 

the Legendre function was chosen to model the high fluxes anticipated in the region 

thus apparently improving the local modeling and regaining the required accuracy. 

We foiuid that, in order to improve on these results, we needed tu take more ternis in 

the Fourier series expansion and even then found weak convergence as expected with 

a Fourier series representation in this case. 

Table (3.1) shows how convergence for the first mode of the triangular bed depends 

upon the truncation size. We use a dash to denote no further improvement in results. 

It is clearly seen that the Galerkin approach provides efficient convergence reaching 

at least four significant figures for a truncation size of (N = 12). In fact it is only the 

extreme case where a/h. () 0 that increased truncation size is required to acc"onnt 

for the problems we anticipate at that limit in this formulation; nevertheless we see 

that four significant figures are still obtained for a modest N= 12. 

We move now to the results for the second-order problem where it, can be shown 
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a/ho N=6 N=12 N=18 N=24 N=30 N=36 N=42 N=48 
1.00 1.44066 - - - ---- 0.90 1.42759 - - - ---- 0.80 1.41125 1.41124 - - ---- 
0.70 1.39083 1.39082 - - ---- 0.60 1.36537 1.36535 - - ---- 0.50 1.33372 1.33369 - - ---- 0.40 1.29445 1.29441 1.29440 - ---- 0.30 1.24579 1.24569 1.24568 - ---- 0.20 1.18525 1.18504 1.18502 1.18501 ---- 0.10 1.10859 1.10810 1.10804 1.10803 1.10802 --- 0.05 1.06134 1.06043 1.06032 1.06029 1.06028 1.06027 -- 0.00 1.00367 1.00094 1.00042 1.00024 1.00015 1.00010 1.00007 1.00006 

Table 3.1: Convergence of results for sloshing frequency K 

that the analytical solution for the forced double-frequency term at second-order for 

a flat-bottomed tank corresponding to the nth first-order mode of 

gA cos µ,, x cosh µ,, (y - d) 

w cosh µ,, d 

where K=w, 2, /g, is given by 

_ -iA2 f (3K2 + µn) -i3A2 f (K4 - /4) cos 2µ�x cosh 2p (d - z) (3.6.4) 02 
1G K3 

+ 
16 K7 cosh 2p�d . 

The expression for 02 is easily derived following the formulation of the problem in this 

paper. For an alternative derivation in the time domain, see Wu & Eatock-Taylor[103] 

who use this result to calibrate their finite-element analysis code. However, it should 

be noted that the second term in the expression above differs slightly from that 

presented in the reference which appears dimensionally incorrect. Our code was run 

with a Fourier series truncation size of 10 to find the first sloshing frequency to six 

significant figure accuracy. We found full agreement with the second-order analytic 

solution in (3.6.4), to five significant figures. In particular we found that in the limit 

a --+ 1, the contribution to 02 came from p(xo), (3.4.19) . However, as we decreased 

a we found that the contribution from d(xo) (3.5.29) grew such that we still obtained 

agreement with (3.6.4) to five significant figures. 
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n an b� c� da 
0 0.988842i 
1 0.925275 2.67999 00 
2000.5310201 -0.4930301 
3 0.368583 0.011046 00 
4000.205348i 0.1429881 
5 0.012162 0.000303 00 
6000.040089i 0.002149i 
7 0.080727 0.000019 00 
8000.039160i 0.000132i 
9 0.002728 0.000001 00 
10 000.018101i 0.000010i 
11 0.036602 000 
12 000.018440i 0 

Table 3.2: Table of results for second-order sloshing over a triangular bed where 
a/ho = 0.6, N= 12 and KI = 2.73073 

We now solve the full second-order problem for second-order sloshing over a tri- 

angular bed. Table (3.2) displays the results for the case where a/ho = 0.6 for a 

truncation size of N= 12. It can be shown from our formulation that mass conser- 

vation is guaranteed using the infinite Fourier series representation of the first-order 

potential on the free-surface. Therefore calculation of the integral of rM2 over the free- 

surface provides a valuable measure of the error introduced in truncating the Fourier 

series. In this case we find that the integral of 7722 over the surface is 3x 10-6 which 

implies that we have retained the 5 significant figure accuracy we obtained for the 

flat bed with this truncation size. 

Figure (3.6) displays as contour plots, the temporal evolution of the free surface 

elevation over a single period of the first-order wave for (a) linear solution and (b) 

- (d) to second-order for a range of wave steepness parameters. We normalized the 

first mode of the free surface potential to give a first-order surface elevation of unit 

amplitude in order to compare all other contributions with this dominant mode. In 

order to construct the total surface elevation including both the first and second-order 

terms we use 17 = e771 +e2r2 where e represents the wave steepness. We observe that 

the diagrams confirm that the second-order effects tend to increase the crest heights, 
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Figure 3.6: Temporal evolution of wave elevations plotted against x/l E [0.2] for 

sloshing over a triangular bed where (a/ho) = 0.5. The vertical axis is wt/ir E [0.2] 

and decrease the troughs as expected. At figure (3.7) we present a three-dimensional 

representation of the results from (3.6d). To aid interpretation lines of constant time 

have been marked on the surface so the behaviour of the surface elevation over time 

is clearer. 

The major computational effort is in finding the sloshing frequency via a bisection 

method where each step involves a calculation of the matrix in (3.5.10). There is 

significant code reuse provided the matrix equation is coded with frequency as a 

parameter, in which case to solve the second-order problem we only need calculate 

the matrix once more using a frequency twice the first-order sloshing frequency. We 

observe that, once the linear sloshing problem is solved for the bed shape under 

consideration, the second-order problem may be solved relatively easily with our 
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Figure 3.7: Temporal evolution of wave elevation to second-order (E = 0.3) blotted 
against x/l E [0,2] for sloshing over a triangular bed where (("/ho) = 0.5 

. 
The 

vertical axis is wt. /ir E [0,2] 

approach. 

3.7 Forced sloshing over an arbitrary bed 

We consider the two-dimensional motion of fluid in a tank which is forced laterally at 

a frequency w. If the forcing is of small amplitude a. in comparison wit 11 a typical 

dimension of the tank 1 then this suggests the small parameter of the problem as 

e= all. In this case we could apply the scaling argument of section (2.1) to derive 

the equations of motion, however, as the small parameter is evident we derive the 

linearised equations in an unscaled coordinate system. 

We consider a 2D tank which if at. rest would have vertical walls at. r; = 0,11 and 

an arbitrary profile bed defined by z= h(r). The tank is forced to move laterally 

so that positions fixed relative to the tank walls oscillate laterally around their rest. 
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Chapter 3. Two-dimensional sloshing over an arbitrary bed 

positions with the displacement given by ae-" where a/I =c«1. To deal with 

the free surface boundary condition we must have the surface elevation ((x, t) = O(c) 

and, to match the lateral motion, the fluid potential t (x, z, t) = 0(c). 

In this case we form a perturbation expansion 

4)(x, z, t) = _O1(x, z, t) +0(e2) (3.7.1) 

C(x, t) = «1(x, t) + 0(e2) (3.7.2) 

and substitute into the dynamic and kinematic boundary conditions, expanding as a 
Taylor series around the undisturbed free surface to give, to leading order 

a0i a(, 
on z=0, (3.7.3) 

az at 

at gCi =0 on z=0. (3.7.4) 

As there is no other forcing we may write 

qi(x, z, t) = O(x, z)e . )t (3.7.5) 

(i(x, t) = r7(x)e-u., t (3.7.6) 

in which case we recover the usual linearised free surface boundary condition 

z+ 
Kc =O on z=0, (3.7.7) 

where, as before K= w2/g and the free surface depression is recovered from 

77 = Re 
r- u"ý O(x, 0) }. (3.7.8) 
111 9 JJJ 

The solid boundary conditions are now more complicated, and we deal with them in a 

similar manner to the free surface boundary condition. We assume that the boundary 

is defined by e(x, z, t) =0 in which case the condition that fluid does not penetrate 

the fixed boundary is compactly written as 

Dt =0 on C=0. (3.7.9) 

f" 

'I 
' a,. 

f j. 
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3.7. Forced sloshing over an arbitrary bed 

So, for example, on a vertical wall we can define e=x- ele-ill in which case the 

linearised boundary conditions for the vertical walls become 

00 
-x = -ilw on = 0,1. (3.7.10) 

On the bed we define l; by l; =z- h(x + cle "? t) in which the linearised boundary 

condition becomes 

n. V(qS + ilwx) =0 on z= h(x). (3.7.11) 

The boundary conditions on the solid boundaries of the tank suggest the transforma- 

tion 

0+ ilwx = cp (3.7.12) 

used by Graham & Rodriguez [38] which transforms the boundary value problem to 

v2cp =0xE (0, l), zE (0, h(x)) (3.7.13) 

a ä-Z + K(cp - ilwx) =0 on z=0 (3.7.14) 

a- 
j-- =0 on x=0,1 

x 
(3.7.15) 

an- 
=0 on z= h(x) (3.7.16) 

an 

We proceed in exactly the same manner as section (3.3) by applying Green's Identity 

to give 
r OG 

-cp(xo, ZO) = ilw 
jx G(x, 0; xo, zo) dx +J Van ds (3.7.17) 

0 C 

which when compared with (3.3.3) has an identical form apart from the first integral 

on the right hand side. Much of the analysis is identical to section (3.3), accordingly 

we only present key steps below. Therefore, differentiating with respect to no using 

(3.3.6), (3.3.12) and applying the bed condition we obtain 

-ilw 
ax 

L(x, 0; xo, zo) dx =J cps asö 
ds (3.7.18) 

aso o c 

Therefore, integrating with respect to so, integrating by parts, and then taking the 

limit xo -+ 0 to determine that the constant of integration is zero, we obtain the 
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integral equation in the form 

fl 
ilw Jx L(x, 0; xo, zo) dx = 

fHds. 
(3.7.19) 

c 
Calculation of the left hand side is routine, and the right hand side is identical to the 

form in (3.3.8)-(3.3.11). Therefore by comparison with the method of approximation 
in (3.5.4) we see that, if we define 

ft 
F(xo) = ilw Jx L(x, 0; xo, zo) dx (3.7.20) 

0 

then the solution 

is given by the solution of 

N 
1: anvn(x) (3.7.21) q= 

n=1 

(M4, vm) = (F, vm) m=1, ... ' N. (3.7.22) 

This results in a matrix equation of the form 
N 

EanMm, 
n=Fyn m=1,..., N. (3.7.23) 

n=1 

where the matrix M,., n is calculated from (3.5.10). Finally, we recall that (3.7.23) 

solves for cp, therefore to recover the potential 0 we must use (3.7.12), thus effectively 

solving the linearised forced sloshing problem. 

3.8 Remarks 

In a weakly non-linear model of wave problems, in order to produce reliable results 

at second (and higher) orders, extremely accurate solutions are required at the lower 

orders. In this chapter we have shown how to provide a lower order(linear) solution 

for a complicated geometry and feed it into the next higher order of approxima- 

tion retaining an exact formulation with regards both to the bed condition and the 

free-surface condition. This approach may be extended to higher orders giving the 

possibility of highly accurate representations, although it is noted that the calcu- 

lation of the free-surface coefficients becomes increasingly more complicated as the 
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order increases. The solutions are shown to converge rapidly requiring quite mod- 

est truncations of the series representations of the solutions. We have also shown 

how the forced sloshing problem may be addressed, presenting the simple linear case 

away from resonance to illustrate the technique. The more complicated case of forced 

sloshing near resonance may be tackled by the same approach although this requires 

solution to third order in an expansion of the parameter e1/3 which is needed to deal 

with the subharmonic terms arising near resonance. 

Although useful in its own rights and offering a practical means of investigating 

second-order effects, it is envisaged that this method will provide a valuable means of 

testing fully non-linear solvers. It will enable them to be calibrated against a weakly 

non-linear model of motion over more realistic geometries. 
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Chapter 4 

Multipole techniques for water 
wave problems 

4.1 Introduction 

In this chapter we consider water wave interaction with specific bottom topogra- 

phies which are amenable to solution by a particular semi-analytical approach, com- 

monly referred to as the "multipole method". The two geometries considered are an 

infinitely-long semicircular protrusion from an otherwise flat bed and a hemispherical 

protrusion from an otherwise flat bed. As far as the author is aware, no such work has 

been done on these three-dimensional problems. It is worth noting that Chakrabarti 

[10] considered the problem of two-dimensional scattering by a semicircular protru- 

sion, although the author was unaware of this work during the preparation of this 

thesis. For each problem under consideration the main part of the analysis deals with 

the scattering of incident wave energy from the topography. We shall also introduce 

the concept of so-called "edge waves" or trapped waves and establish that the infinite 

semicircular ridge supports such waves. 

Our main reason for solving these specific problems is to produce accurate results 

for oblique scattering by an infinite ridge and scattering by axisymmetric topography. 

We use these results to verify the techniques we develop later on in this thesis before 

applying them to more arbitrary topographies for which no such results exist. 

The main idea of multipole techniques is to construct solutions to the boundary 
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value problem by distributing singularities within a floating body, or in our case patch 

of topography, so that as many of the boundary conditions as possible are satisfied. 

We then form a solution by expanding as a series of these multipoles and satisfying 

any remaining boundary conditions. Although similar techniques had been used in 

an ad-hoc manner previously (see for example, Havelock [39] and Ursell [96], [97]), 

Thorne [92] established a framework for the construction and use of multipoles in two 

and three dimensions in both finite and infinite depth. In fact we follow Thorne's 

style of approach to construct the multipoles we shall use in this chapter. 

Multipole methods have subsequently seen widespread use in similar wave scat- 

tering problems involving' geometries with a combination of circular and rectangular 

boundaries. Indeed, so much so that Linton & McIver [51] have compiled a catalogue 

of multipole potentials in the Appendix of their book which includes complete sets 

of multipoles potentials for cases in both two and three dimensions and in finite and 

infinite depth, and for origins that are submerged and in the free-surface. These re- 

sults are based largely on those presented by Thorne [92], although they do present 

a greater set of multipoles which are likely to suffice in many problems. They do 

not, however, explicitly include the case that we are considering here in which the 

origin coincides with the bottom of the fluid. It is possible to use the appropriate 

multipole potentials for waves in finite depth, as quoted in Linton & McIver [51] and 

take the limit as the source point goes to the fluid bottom. However, because they 

are designed for sources placed arbitrarily within the fluid they are more complicated 

than they need to be for our case and therefore it is desirable to derive them from first 

principles. We add that it can be shown that the multipoles derived here do indeed 

coincide with the definitions of Linton & McIver [51] although some lengthy algebra 

needs to be done to show this since an image source in the fluid bottom coincides 

with the source from the fluid domain. 
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4.2 Scattering of oblique waves by a semicircular 
ridge 

In this section we consider the scattering of oblique waves by an infinite ridge of 

semicircular cross section protruding from a region of otherwise constant depth ho. 

4.2.1 Statement of the oblique scattering problem 

Cartesian coordinates are chosen with z vertically downwards and z=0 coinciding 

with the mean free surface. A semicircular ridge protrudes within the fluid from oth- 

erwise constant depth ho so that the axis of the cylinder is on z= ho, x=0 for 

-oo <y< oo. Polar coordinates are based on the axis of the cylinder, which is of 

radius a (< ho) so that x=r sin 0 and ho -z =r cos 0. The uniformity in the geom- 

etry in y allows the velocity potential to be written (D(x, y, z, t) = R{cb(x, z)e`lve'"'t} 

where, as in Chapter 2, a time dependence of angular frequency w has been assumed. 

It follows that q5(x, z) satisfies 

(V2-12)qS=0, in D (4.2.1) 

where V2 = äxx + 19-,;, and DC JR2 is the cross-section in y of the domain occupied 

by the fluid. In addition, there are no-flow conditions 

and 

ac 
_ az_ 

0, on z= ho, x0 (-a, a) (4.2.2) 

ao 
= 0, on r=a, 0E (-7r/2,7r/2) (4.2.3) 

är 

on the bottom on the fluid domain and also the linearised free surface condition 

Ko + 0Z = 0, on z=0, -oo <x< oo (4.2.4) 

where K= w2/g and g is gravitational acceleration. 

We also need to specify radiation conditions at infinity. Thus, a wave is incident 

from x= -oo, and this may be described by the potential 

fit� (x, z) = No 1/2ec°`x cosh k(ho - z) (4.2.5) 
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which is found by considering separable solutions, where k is the positive real root 

of the dispersion relation K=k tanh kho and a= (k2 - 12)1/2 =k cos Bi, « . Note 

that l is related to the incident wave angle 8=,,, (zero for normal incidence) and 
incident wavenumber k, via 1=k sin 9i�, 

. That is, a and l are the components of 
k resolved into the x and y directions respectively. 

The boundary-value problem is linear and so we may write 

0(x, z) = oinc(X, z) + 0. (X, z) (4.2.6) 

where 0, is the scattered part of the potential which has far field behaviour of the 

form 
(T - 1)Ný 1/2 cosh k(ho - z)eicx, x -+ oo ýe 
RNS 1/2 cosh k(ho - z)e-'cx, x --º -oo 

(4.2.7) 

where R and T represent the reflection and transmission coefficients respectively 

and are the principle unknowns of the problem. 

The scattered part of the potential will be expanded over a sum of multipoles, 

which are derived below. 

4.2.2 Derivation of Multipoles 

The functions cp,, we shall derive below are solutions of the modified Helmholtz 

equation, 

(V2 - l2)cw� = 0, in D (4.2.8) 

satisfying the linearised free surface condition 

and 

Kcp, 
ý + as "=0, on z=0 (4.2.9) 

az 
0, on z= ho (4.2.10) 

In addition, it will be required that, for the scattering problem, cp� represent outgoing 

waves as IxI -º oo in accordance with the radiation condition. 

The starting point of the multipole method is to consider functions which are 

singular with respect to polar coordinates, at the centre of the semicircular cylinder, 
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satisfying the modified Helmholtz equation. These are termed "free space potentials" 
(because they currently neglect the other conditions that need to be satisfied by gyp� ) 

and involve the modified Bessel function of the second kind, K,, (lr). 

We start with an integral representation for K, namely 

Kn (X) 
00 

e-x cosh Pe-'-" dµ 
2J oo 

(4.2.11) 

which can be found in Watson [100] for example. We let X= lr and make the 

substitution it =t+ iB which results in 

00 
Kn(1r) =1I e-lrcosh Et+iOle nee-one dt (4.2.12) 

00 2 

where the contour of integration is shifted back onto the real axis since there are 

no poles in the integrand and the contribution from t= ±oo is zero. Expanding 

the hyperbolic function in the exponent in the integrand and using x=r sin 9 and 

ho -z=r cos 6 gives 

00 
Kn(lr)e 9_2% e-1(ho-z)cosh te "x sinhte-nt dt (4.2.13) 

00 Jl 
and it is clear that this representation is valid only if z< ho (in terms of original 

variables, for -27r <0< 27r). Now we can use the relation K_,, (p) = K�(µ) (see 

Abramowitz & Stegun [1]) to give 

00 
Kn(lr)e-in° _-fe 

I(ho-z)coshte-ilxsinhtent dt (4.2.14) 

J00 
and then it follows that 

Kn(lr) cos n9 =1ý e'I(ho-z) cosh t cos(lx sinh t) cosh nt dt (4.2.15) 
0 

and 
00 

K,, (lr) sin nO =r e-'(h°-z) cosh t sin(lx sinh t) sinh nt dt (4.2.16) 
Jo 

These can be recognised as functions which are symmetric and antisymmetric (respec- 

tively) about x=0. We require only functions which have a Neumann boundary 

condition on B= ±7r/2, and so this limits us to half the set of multipoles previously 

derived. 
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Thus we require 

00 
K2� (lr) cos 2n0 e-I(h°'z) soh t cosh 2nt cos (Ix sinh t) dt (4.2.17) 

0 

for n=0,1,2.... and 

00 K2i, 
_, 

(1r)sin(2n - 1)0 = 
ýe-l(ho-z)`oshtsinh(2n- 

1)tsin(lxsinht) dt (4.2.18) 
0 

for n=1,2, .... These two functions satisfy the modified Helmholtz equation and 

Neumann boundary conditions on 0= ±2ir and the integral representations are valid 

for z< ho 
. 

Before continuing, we briefly mention that a change of variables cosh t= 

v seems an appropriate move to make. Some of the resulting terms will become 

simpler, others more complicated. However, the change of variables introduces a 

factor of (v2 -1)1/2 in the denominator which introduces singular behaviour into the 

integrand. From a numerical point of view this is not desirable, so we shall stick with 

the representation already derived. 

In the multipole method, we add another function to the `free-space' potentials 

introduced, motivated by the integral representations which have already been de- 

rived, which also satisfies the field equation and the condition on z= ho and which 

can be used to satisfy the free-surface condition. Let us consider first the symmetric 

multipoles. Then define the multipoles as 

cp2n(lr, 6) = K2n (lr) cos 2n0 +1ý A(t) cosh(l(ho - z) cosh t) cosh 2nt cos(lx sinh t) dt 
0 

(4.2.19) 

which satisfies the Neumann condition on z= ho. The function A(t) takes the role 

of a Fourier transform function, and its definition is now chosen to satisfy the free 

surface condition, namely 

(Kv� + 
a`P" 

=0 (4.2.20) 
Dz ), 

0 
for all xE (-oo, oo). Thus it follows that 

A(t) e-th° cosh t (I cosh t+ K) 
4.2.21) 

1 cosh t sinh(lho cosh t) -K cosh(lho cosh t) 
( 
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4.2. Scattering of oblique waves by a semicircular ridge 

At this point we need to concern ourselves over possible poles in A(t). These occur 
if there exists a value of to E (0, oo) such that 

I cosh to tanh(lho cosh to) =K=k tanh kh (4.2.22) 

(on using the dispersion relation (2.1.44)) which implies 

I cosh to = k, or to = cosh-'(k/1). (4.2.23) 

Clearly, for a scattering problem where I=k sin 9,,,, we have k>l and therefore 

such a value of to does exist. To proceed we now rewrite (4.2.19) following Thorne 

[92], in terms of a principal valued integral plus an as yet unspecified function X2n . 
Thus 

cp2n(lr, 9) = K2n(lr) cos 2n0+ 
00A(t) 

cosh(l(ho-z) cosh t) cosh 2nt cos(lx sinh t)dt+X2n, 

(4.2.24) 

where X2n satisfies (4.2.8) to (4.2.10). Again, following Thorne [92] we evaluate the 

principal valued integral by considering a contour integral consisting of the real axis 

indented at to so that the contour does not enclose the pole, the imaginary axis plus 

a circular arc of large radius. The contour is closed in the first quadrant for x>0 

and in the fourth quadrant for x<0 to ensure that the contribution from the large 

arc vanishes in the limit x -º ±oo. Thus in the limit x -º ±oo the principal valued 

integral is equal to ±i7r respectively times the residue at the pole. 

We now work out the value of the residue at the pole by first concentrating on 

A(t). We write 

G(t) =l cosh t sinh(lho cosh t) -K cosh(lho cosh t) (4.2.25) 

which defines the denominator of A(t). Then, as discussed, G(to) =0 whilst 

G'(t) =I sinh t[sinh(lho cosh t) + lho cosh t sech(lho cosh t))] (4.2.26) 

and using 1 cosh to = k, a= (k2 -12)1 2 =I sink to we find 

G'(to) = 2akho sechkhoNo, (4.2.27) 
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Chapter 4. Multipole techniques for water wave problems 

In which case the residue of A(t) at to is found to be 

Res(A(to)) = lim(t - to)A(t) = 2N ah 
(4.2.28) 

00 
Then, as x -º ±oo, the contribution from the principal valued integral is evalu- 

ated as 

Re f7r1e 
kho(1 + K/k) cosh kho 

cosh k(h )[] () 2crhoNo o-z cosh 2nto e`°2 } 4.2.29 

which then simplifies to 

-7r cosh k(h 2ahNo o- z) cosh[2nto] sin alxl. (4.2.30) 

Then, in order that the multipole is proportional to ei"Ix1 as IxI -º oo, the function 

X2n is given by 

X2" = 2a 
iir 7r 

cosh k(ho - z) cosh[2nto] cos ax (4.2.31) 
hoNo 

It thus follows that as x -º ±oo, 

cp2n ̂' 
17f 

cosh k(ho - z) cosh [2nto]e'°I'l. (4.2.32) 
2ah0No 

We apply a similar procedure to derive the `antisymmetric' multipole potentials, 

cp2n_1. Then we find 

cw2n_1(lr, B) = K2�-, (1r) sin(2n - 1)0 

+ 
300 

A(t) cosh(l(ho - z) cosh t) sinh(2n - 1)t sin(lx sinh t) dt + X2n_1 (4.2.33) 
0 

and that 
7ri 

X2"_1 = 2ah0No cosh k(ho - z) sinh[(2n - 1) to] sin ax (4.2.34) 

such that as x -º ±oo, 

W2"-1 ~ 2ahoNo cosh k(ho - z) sinh[(2n - 1)to]e'ýI'1. (4.2.35) 

The final part of the process is to re-expand the integrand in terms of polar 

coordinates. In the following we will use the formula (see Abramowitz & Stegun [1]) 

00 
el=(v+i/�) = 

r` VmIm(Z) (4.2.36) 

m=-"oo 
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4.2. Scattering of oblique waves by a semicircular ridge 

where I,,, (z) is the first kind modified Bessel function of order m. In addition the 

identities I,,, (-z) = (-1)mI,,, (z) 
, I_,,, (z) = Im(z) will be used. 

Using z= ±lr with v= exp(t ± iB) in the equation above, 
00 

e±Ircosh(tti0) =E emte±imo(±1)mIm(lr) (4.2.37) 

m=-oo 

l 

Expanding the cosh on the left hand side and reintroducing x and z through their 

relation to r and 0 gives 
00 

etl(hp-z)cosh teilxsinht = emtefimo(±1)mlm/lr) (4.2.38) 

m=-oo 

ll 

From this it follows (after substantial algebra) that 

00 
cosh(l(ho - z) cosh t)eulx8i ht = Io(lr) +2E I2in(lr) cosh 2mt cos 2mG 

m=1 
00 

+ 2i E IZm_1(lr) sinh(2m - 1)tsin(2m - 1)0 (4.2.39) 

M=l 

Thus, taking real and imaginary parts gives 

00 
cosh(l(ho - z) cosh t) cos(lx sinh t) =E emI2m(lr) cosh 2mt cos 2m9 (4.2.40) 

m=o 

where e�, = 2, m>1 and co =1 whilst 
00 

cosh(l(ho - z) cosh t) sin(lx sinh t) =2 12m_1(lr) sinh(2m - 1)t sin(2m - 1)0. 
M=I 

(4.2.41) 

These results can now be used to give, for n=0,1,2.... 

00 
V2i(lr, 0) = K2�(lr) cos 2n0 + Am�I2in(lr) cos 2m0 (4.2.42) 

M=O 

where 

Amn = Em f-00 A(t) cosh 2nt cosh 2mt dt 
���o 

lEmll 
+2ahoNo cosh[2nto] cosh[2mto] (4.2.43) 

and for n=1,2, ... , 
00 

cp2n_l(lr, 0) = K2n_l(lr) sin(2n - 1)0 +Z BmnI2m-i(lr) sin(2m - 1)0 (4.2.44) 
m=1 
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Chapter 4. Multipole techniques for water wave problems 

where 

00 
Bmn =21 A(t) sinh(2n - 1)t sinh(2m - 1)t dt 

�o 

+sinh[(2n - 1)tol sinh[(2m - 1)to]. (4.2.45) 
ah 0N o 

Note that these representations are only valid within the range 0<r< 2ho (see, for 

example, Thorne [92]). 

4.2.3 Solution of the scattering problem 

The scattered component of the potential is a sum over all possible multipoles, 
00 00 

0s(x, z) = No "2 > 
Ena2ný2n(lr, 8) + 2iNj 1"2 E a2n-1cp2n-1(lr, 0) (4.2.46) 

n=O n=1 

where a, ,n=0,1, ... are undetermined coefficients and other terms provide sim- 

plification in the final expressions. 

The reflection and transmission coefficients, R and T, are given by the far-field 

behaviour of the multipole potentials so that, after some algebra we find 

00 
R= 

7rl 

2ah0N0 
E Ena2n cosh[2nto] -2E a2n_1 sinh[(2n - 1to] (4.2.47) 
n=0 n=1 

and 
00 00 

T=1+ 71 E ena2n cosh[2nta] +2E a2�_1 sinh[(2n - 1)to] (4.2.48) 
2ahONo 

(n=O 

n_1 
The only part of the solution which needs to be applied is the condition on r=a, 

-2 ýr <0<2 17r, and this will determine the coefficients an . In order to do this, we 

need to expand the incident wave potential in terms of the polar coordinate system 

used. Thus, referring to equations (4.2.5), (4.2.23), (4.2.40) and (4.2.41) 

00 
Oj,, ý= No "2e'ax cosh k(ho - z) = NIT 112 e ,,, cosh[2mto]12in(lr) cos 2m0 

M=O 
00 

+2iNý 1/2 > sinh[(2m - 1)to]12m_1(1r) sin(2m - 1)0 (4.2.49) 
M=l 

Now imposing the no-flow condition 

DOB aOr 
on r=a -1 it <0< 17r (4.2.50) 

8r Or ''12 

70 



4.2. Scattering of oblique wavds by a semicircular ridge 

implies the decoupled systems of equations (after subsequently equating coefficients 

of cos 2m9 , sin (2m - 1) 0 ), 

00 
a2m +A= -Z2, n. cosh[2mt0], m=0,1,2.... (4.2.51) 

Em 
n=0 

and 

a2m_1 + Z2m_1 E a2n_1 Bmn = -Z2m_l sinh[(2m - 1)t0], m=1,2.... (4.2.52) 
00 

n=1 

where we have written 

Z"' = _I, � 
(la) 

(4.2.53) 
K;,, (la) . 

The decoupling is expected, and is as of a consequence of the symmetry of the ge- 

ometry about x=0. Thus, one could have separated the original problem into 

symmetric and antisymmetric parts from the outset and, in doing so, the incident 

wave potential would also have to be decomposed into the sum of a symmetric and 

antisymmetric part. This explains why the two systems represent equations for the 

coefficients associated with the symmetric and antisymmetric multipole potentials, 

and the forcing terms on the right hand side are then simply the effect of the sym- 

metric and antisymmetric components of the incident wave. 

4.2.4 Numerical procedure 

Numerically, the system is truncated at a finite value, N, say so that coefficients b,,, 

for n=0,1, ..., 
2N+ 1 are found and then the reflection and transmission coefficients 

can be found from (4.2.47) and (4.2.48). Some numerical efficiency can be exploited 

by noting that and B�, � are symmetric with respect to the integer variables 

m and n. 

The core of the numerical procedure is in the computation of the integrals defining 

Amn and Bmn which are of principal value type. A standard method for dealing with 

these types of integrals is encapsulated in the follotving prototype example. Consider 

the following integral, 

I= 
goof (t) 

dt (4.2.54) 
0 g(t) 
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Chapter 4. Multipole techniques for water wave problems 

where there is a pole in the integrand at t= to. That is, g(to) = 0, g'(to) 0. 

Then as t --+ to , g(t) :.. (t - to) g'(to) , so that we may write 

I=f 
2t0 rf (t) 

-f 
(to) l 

dt +Jmf 
(t) 

dt (4.2.55) Jo g(t) (t - to)g'(to)J 2ao 9(t) 

since the second term in the first integral evaluates to zero, whilst the integrand is 

now bounded (in fact zero) at t= to. 

Applying this to A,,,,, we find 

1 
Amn = em JI 

f2t° rA(t) 
cosh 2nt cosh 2mt - 

cosh 2nto cosh 2mto 
dt 

oL (t - to)2ahoNo J 00 
+ Cm 

j A(t) cosh 2nt cosh 2mt dt + lEm7r 
cosh[2nto] cosh[2mto] (4.2.56) 

t° 2ahoNo 

and to Bn,,,, gives 

r2t° sinh[(2n - 1)to] sinh[(2m - 1)to]1 sinh[(2m dt , Bmn =2J 
[A(t) 

sinh(2n - 1)t sinh(2m - 1)t - (t - to)2ahoNo 0 

+21 A(t) sinh(2n - 1)t sinh(2m- 1)t dt 
to 

+a öNo 
sinh[(2n - 1)to] sinh[(2m - 1)t0]. (4.2.57) 

The analysis leading to the second terms in the integrals [0,2to] is essentially the same 

as in the determination of the residues in the derivation of the multipoles previously. 

We shall use a Gaussian quadrature routine for finite intervals of integration and 

truncate the integrals at a finite value T based on assuming large- t asymptotics for 

each of the integrands. Thus, if we wish to ignore any contribution to the integrals 

from values of the integrand which has absolute value less than e, we find that the 

appropriate condition is 

lhoeT - qT =- log(e) (4.2.58) 

where q= 2n + 2m and q= 2m + 2n +2 for the symmetric and antisymmetric 

systems (respectively). 

4.2.5 Normal incidence scattering 

We note that the systems derived for oblique scattering do not encompass the case 

of 6i�, =0 (that is when l= 0) where the waves are normally-incident upon the 
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4.2. Scattering of oblique waves by a semicircular ridge 

semicircular ridge. In this case the problem is fully two-dimensional. 

The multipole method can be used to derive systems of equations for the case 

of normal incidence, and it is usual in this case to start from scratch, replacing the 

singular Bessel functions K,, (1r) in combination with trigonometric functions cos nO 

and sin nO, used for the oblique-incidence (1 ,E 0), with the corresponding singular 

two-dimensional harmonic functions 

r-" cos nO, r-" sin nO, (4.2.59) 

The process of deriving multipole potentials using the functions above as the starting 

point is essentially the same as outlined for the oblique case, with integral repre- 

sentations for those functions being used to derive expressions in terms of Cartesian 

coordinates. See Linton & McIver [51) for more details. Thus, a similar system of 

equations can be derived as for the obliquely-incident case from which the reflection 

and transmission coefficients can be determined. However, another route to this for- 

mulation comes from taking the asymptotic limit as 1-º 0 in the expressions already 

derived for oblique incidence and in some sense provides a more direct route when 

compared with the approach outlined earlier. 

First we note the asymptotic forms for small argument, 

M (4.2.60) 
(! )� 

Ko(x) - log(x), Km(x) (m -1)! Im(x) 
m! 

G2) 

Also relations for derivatives of Bessel functions exist, namely II(x) = -Ii(x) , 
KK(x) = -Kj(x) with 

(x) + Im+i(X), K;,, (x) _ -1(Km_i(x) +K, �+t(x), (4.2.61) 4(X) = Im-i 

Therefore, as 1 -º 0, it can be shown that 

(la)2 
Zo N -2 (4.2.62) 

With some further work, it can also be shown that as l -º 0, 
2m 

Zmý., 
m! (m2 1)i 

(21 
m. =1,2,... (4.2.63) 
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where Z�, are defined by (4.2.53). The next point to consider is 

to = cosh-'(k/1) - log(2k/l), as l -º 0. (4.2.64) 

It follows that 

cosh(2mto) N 
E1 

(2k)2m 
sinh(2mto) 

(jk) 2m(4.2.65) 

The factor of m, in the denominator accounts for the special case of m=0, where 

cosh 2mt = 1. 

The next part of the process we consider is the integrals defining A�tn and Bmn 

A change of variable is needed to extricate the variable l from those integrals and we 

use u= lho cosh t. Then 

t= cosh-1(u/lho) - log(2u/lho) (4.2.66) 

It follows that, for n=0,1,2, ... , 

cosh 2nt ti 
E (2u) 2n 

sinh(2n - 1)t ~ 
2(2 u) ) 2n-1 

(4.2.67) Th-o J `l oJ 

Under this proposed change of variable, it can be readily shown that dt N du/u 

in the limit l -º 0 and so 
1 °O e-u(u + Kho) 2u 2n+2' du i7r 2k 2n+2m 

Amn N 
En 

Jho 

u sinh u- Kho cosh u 

(lho) 

u+ 2E,, khoNo 
( 

l) ' 
(4.2.68) 

where we have used a -º kasl -º 0. This expression holds for all m, n=0,1,2, ... . 
Continuing further still, the matrix elements for normal incidence we need to 

consider are 
Amn = Z2m n Amn (4.2.69) 

Em 

At this point we need to make a clear distinction between the case of m=0 and 

m>1. Using the asymptotic form for Z27z and A,,,,,, for m>1 and after some 

algebra we find 

Am" N 
(2/lho)2n(a/ho)2m(la/2)2m 00A(u)u2n+2m-1 

du 
(2m)! (2m - 1)! o 

- 
7ri (ka)2m(2k/l)2"(la/2)2m 

(4.2.70) 
2kh0No (2m)! (2m - 1)! 
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where we have written 

In the case where m=0, 

e -"(u + Kho) 
osh u 

(4.2.71) A(u) =u sinh u- Kho cosh-u- 

00 

Aon ^' -2(1a/2)2(2/1ho) 
2n J_ A(u)u2n-1 du 

- 
Ir1 

(la/2)2(2k/1)2n. (4.2.72) 
ol1 khoNo 

A similar procedure for the antisymmetric system yields 

Bmn = Z2m-1Bmn (4.2.73) 

so that, 

(2/lho)2n-1(a/ho)2m-1 (la/2)2m-1 ý00A(u`u2n+2m-3 
du Bmn ^ý (2m - 1)! (2m - 2)! 0/ 

7f2 (ka)2m-1 (2k/1)2n-1(la/2)2m-1 

2khoNo (2m - 1)! (2m - 2)! 
(4.2.74) 

for m, n=1,2, ... . 

The right-hand side term can also be approximated in the limit using results 

already established, so that 

2(la/2)4m 1 2k 
_ 

(la/2)2m (ka)2m 
-Z2.. cosh[2mto) (2m)! (2m - 1)! 2 

(l)2, 
(2m - 1)! (2m)! 

(4.2.75) 

for m=1,2.... and 

2(la/2)4m-2 1 2k 2m-1 
= 

(la/2)2m-1 (ka)2m-1 
-Z2m_l sinh[(2m-1)to] ^ý - (2m - 1)! (2m - 2)! 2 

(l) 
(2m - 2)! (2m - 1)! 

(4.2.76) 

whilst the case of m=0 simply gives the right-hand side 

-Zo - 2(la/2)2. (4.2.77) 

We can now substitute in the asymptotic forms for both the symmetric and anti- 

symmetric systems, and in doing so, find it convenient to re-scale the coefficients 

with 

_ 
bn la n 

an (n - 1)! 
(2) 

(4.2.78) 

for n=1,2, ... and ao = bo and b� are the new set of unknowns. 
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We start first with the system of equations for the even coefficients ao given by 

(4.2.51) with m=0. Then, with all the asymptotic limits in place and with the 

change of unknown variables we get 

00 

1)ý 
()2A= 

2(la/2)2 (4.2.79) bo + boÄoo +Z (2n 
b2n 

i 
Taking the limit as l --+ 0 in this equation reduces all but the first term on the 

left-hand side to zero and hence shows that bo = 0. In fact it shows that bo = 0(12) 

as l -º 0 in the oblique problem. Consideration of the remaining equations for a2m 

with m>1 using all of the terms taken in the limit 1 --º 0 gives, after considerable 

algebra 
°° (ka)2m 

b2m '+' 
> b2nAmn = (2m)! 'm=1,2.... 

(4.2.80) 
n=1 

where 
(a/ý012n+2m 10 00 ý1 ka 2n+2m 

Amn (2n - 11)! (2m)! A(u)u2n+2m-1 du - 2kh0No (2 
n 

-)1)! (2m)! 
(4.2.81) 

The antisymmetric system is transformed, in a similar fashion to give 

where 

00 (ka)2m-1 
b2m-1 +Z b2n-1 imn 

=, m=1,2.... (4.2.82) 

n=1 
(2m- 1)! 

(a/h0)2n+2m-2 00 7f1 (ka)2n+2m-2 
Bmn 

-- 
[A(U)U2n+2m_3 

du - (2n - 2)! (2m - 1)! 2khoNo (2n - 2)! (2m - 1)! 
(4.2.83) 

These systems are independent of 1, as required. It remains to consider expressions 

for the reflection and transmission coefficients by taking the limit l -º 0 in (4.2.47) 

and (4.2.48) for the oblique scattering coefficients. Using the relationship between 

the coefficients a,, and btt (4.2.78) and the asymptotic forms for the other factors we 

find 

= 
it °. ( (ka)2+º (ka)2n-i 

L- ben-1 (4.2.84) R 
2khoNo 

1 
b2r 

(2n - 1)! (2n - 2)! 

and 
17( 

00 (ka)2n (ka)2n-1 

+ b2n_1 (4.2.85) T=1+ 
2khoNo 

E (ben 
(2n - 1)! (2n - 2)! 
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4.3. Edge waves 

The systems of equations and expressions for R and T for normal incidence shown 

here have been independently verified by using the multipole method directly for 

two-dimensional scattering (as referred to at the beginning of this section). 

As a final point, we note that we may write Amn = C2m, 2n and Bmn = C2M-1,2n-1 

where 

(a/h0)n+'r` °O " n+, -1 
7f1 (ka)n+m 

Cmn 
- -(n 

- 1)! (m)! 
j 

A(u)u du - 2khoNo (n - 1)! (rn)! 

and by defining 

the systems of equations are simply 

(ka)'n 

00 
b2m + b2nC2m, 2n = F2m, 

n=1 

and 

resulting in 

and 

4.3 

00 
b2m-1 + b2n-1C2m-1,2n-1 = F2m-1, 

n=1 

m= 1,2,.. 

m=1,2,... 

00 
RoE (2nb2nF2n - (2n - 1)b2n-1F2n-1) 

2kh0N 

00 
T=1+ 17r (2nb2nF2n + (2n - 1)b2n-1F'sn-i) 

2khoNo 
n-1 

Edge waves 

4.3.1 Introduction 

(4.2.86) 

(4.2.87) 

(4.2.88) 

(4.2.89) 

(4.2.90) 

(4.2.91) 

In the case where there is an incident wave exciting the system, the problem is pre- 

scribed in terms of k and 8;,, c , the incident wavenumber and wave angle. Edge 

waves are found by specifying k and 1, the "longshore" wavenumber (defined by 

1=k sin Oi, ac in the scattering problem, as the component of k in the y direction) as 

independent parameters and seeking solutions in which the wave field decays expo- 

nentially away from the ridge. The latter condition, of decay away from the ridge, is 
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ensured by requiring l>k, a condition which is often referred to as being in a regime 

where the frequency is below a cut-off value. Of course, it still remains to satisfy all 

the remaining conditions of the problem, which has now been rendered homogenous 

due to the absence of the incident wave term. Basic inspection of the condition l>k 

with the corresponding relationship between 1 and k used for a scattering problem, 

namely l=k sin O,,,, 
, clearly shows that no real scattering angle ein, exists. 

To illustrate these ideas further, it is useful to consider a prototype problem in 

which there is a rapid change in depth from ho for x< -a, to hl from -a <x<a, 

and back to ho for x>a and consider the water wave problem from the viewpoint 

of "linearised long wave theory" (see, for example, Mei [61]). Then, a wave of radian 

frequency w, satisfies (according to this shallow water theory, in which the depth 

dependence is integrated out in each of the two constant depths) 

a2 a2 

Cax2 +y2+ ko2 
ý=0, 

x0 (-a, a) (4.3.1) 

and 

where 

a2 192 2 Cax2 -! - aye + k1) C=0, xE (-a, a) (4.3.2) 

w2/gh; = k?, i=0,1. (4.3.3) 

It is clear that if ho > hl then ko < kl and vice versa. Note that we have not yet used 

the fact that ((x, y) = 71(x)eilY , which is assumed on account of the uniformity of the 

geometry in the y -direction. This is done so that the equations above can be seen 

clearly to represent the usual two-dimensional wave equation (occurring in optics, 

acoustic, electromagnetics etc), with different wavenumbers in the two intervals of x. 

If ci, i=0,1 is the wave speed in the two intervals then ki = w/c;, so that it is 

seen that the wave speed increases when the depth decreases and vice versa. Now we 

have 

äx -(l2-k0)ij=0, 

and 

ä, 

9277 
x +ski -l2» =0, 

x (-a, a) (4.3.4) 

xE (-a, a) (4.3.5) 
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after using the complex exponential dependence on y. These two equations have 

been written in this particular way since it can be seen that if l> ko, then only 

exponentially decaying solutions can exist for x< -a and x>a, whilst if l< kl 

wave-like modes will exist in -a <x<a. That is, for ko <l< kl a wave would 

be capable of propagating in the interval xE (-a, a) but would decay exponentially 

away from this interval. In order that this condition hold, we must have ho > hl. 

This basic example can be used as a heuristic argument to argue that that edge waves 

should usually be found in cases where there is a protrusion above some constant depth 

(where the depth decreases locally). Indeed, there are no known examples of edge 

waves in the contrasting case of pure submergence below a constant depth. In fact 

it is believed that Bonnet-Ben Dhia, A. S. & Joly, P. [7] prove that there are no edge 

waves over a depression, although an important typographical therein introduces and 

element of uncertainty in this assertion. 

Edge waves of this type along one of the Cartesian directions in which the ge- 

ometry is uniform in a water wave problem have some similarities with optical wave 

propagation in media of differing refractive index (as already alluded to), and this 

is a useful analogy to draw on in motivating the physical interpretation of the wave 

motion in our problem. Thus, when there are two media, one of which possesses a 

reduced wave speed, there is the possibility of total internal reflection. 

Edge waves in the context of water waves have a long history, with Stokes [90] in 

1846 demonstrating their existence over a long plane sloping beach. The Stokes edge 

wave (as it is known) was later classified by Ursell [98] as the first mode in a sequence 

of possible modes whose number increases as the beach angle decreases. Meanwhile 

Ursell [97] had proved the existence of symmetric edge waves over a submerged hori- 

zontal cylinder in water of infinite depth, provided the radius was sufficiently small. 

He used the multipole method as the basis of his solution and then used arguments 

based on the theory of determinants of infinite matrices to prove that an edge wave 

exists for a cylinder of any radius and submerged to any depth below the free surface. 

In doing so, an approximate dispersion relation for the edge waves was also derived, 
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on the basis of the radius of the cylinder being small. Later, McIver & Evans [57] 

showed by direct numerical computation of the multipole system that this edge wave 

was the first in a sequence of edge wave modes that increased in number as the cylin- 
der approached the free surface. Thus, the second edge wave mode "cuts in" when 
d/a 1.07 where d is the depth of submergence of the centre of the cylinder below 

the free surface and a is the radius of the cylinder. Subsequently, Porter & Evans 

[76] showed that a sequence of antisymmetric edge waves (that is, the wave motion 
is antisymmetric about the vertical line drawn through the centre of the cylinder as 

opposed to symmetric in previous work) interlaced those found by McIver [57], the 

first occurring for d/a -- 1.18. Evans & McIver [28] numerically computed the edge 

waves over the rectangular protrusion (as used in our basic example above) under 

the basis of full linear theory (as opposed to shallow water theory) and demonstrated 

the existence of an interlaced sequence of symmetric and antisymmetric edge wave 

modes, which increase with increasing shelf width and increasing height of step; a 

fundamental symmetric edge wave mode exists for all rectangular protrusions of non- 

zero width. Evans & Kuznetsov [25] discuss trapped modes about submerged bodies 

in more general situations. 

In fact, the existence of trapped modes can be established under quite general 

conditions although, as we have seen, explicit solutions are rare. It can be proved 

that when topography protrudes above an otherwise constant depth bed, then that 

topography supports edge waves. For a detailed proof see Lavrentiev & Chabat [50], 

Jones [44], or Kuznetsov et al [48] who give a thorough review of the theory of edge 

waves. 

4.3.2 Edge waves over a semicircular ridge 

Of course, the work on edge waves above circular cylinders in infinite depth, referred 

to in the introductory paragraphs above, is closely related to our present problem in 

which we are considering a semicircular bottom protrusion in constant finite depth. 

The multipole method is used here and we have already identified in the scattering 
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problem symmetric and antisymmetric components of the solution. 

To be specific, let us write down the boundary value problem now being considered. 

We seek a function O(x, z) satisfying 

(V2 - l2)0 = 0, in D (4.3.6) 

with 

ýx = 0, on z= ho, x¢ (-a, a) (4.3.7) 

0,. = 0, on r=a, 0E (0,7r) (4.3.8) 

and 

Kq5+cz=0, on z=0, -oo<x<oo (4.3.9) 

with the additional "edge wave" condition 

0--º0, as IxI -->oo, 0<z<ho (4.3.10) 

which can be thought of as replacing the radiation conditions in the scattering problem 

which defined R and T in terms of a unit amplitude incident wave. 

As already mentioned, in the formulation of the scattering problem, when l>k, 

there are no real values of to (defined by to = cosh-1(k/l)) at which poles occur 

in the function A(t). Consequently, as Jxj -º oo, it must be that 0�(1r, 0) -º 0 as 

lxj -º oo since the function K�(lr) decays exponentially with Ir and the resulting 

integral modification to this free-space potential defining the multipole also decays 

to zero by the Riemann-Lebesgue Lemma. In other words the integrand is regular 

everywhere and modulated by an increasingly oscillatory term in x as jxj increases, 

so that the in the limit, the integral must vanish. Thus, the integral no longer needs 

to be indented around any poles, and so (4.2.29) and (4.2.34) are replaced, for l>k 

by 

02n (1r, 0) = K2n(lr) cos 2n0 +Jw A(t) cosh(l(ho - z) cosh t) cosh 2nt cos(lx sinh t) dt 
0 

(4.3.11) 
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and 

3b2,1 (Ir, 0) = K2�_1(lr) cos(2n - 1)0 
rO0 cosh(l(ho - z) cosh t) +J A(t) 

cosh(lho cosh t) sinh(2n - 1)t sin(lx sinh t) dt (4.3.12) 

Note that these are now real functions. It is a simple matter to follow the procedure 

used for deriving the solution to the scattering problem with the modified definitions 

above. In particular, though, we may now consider separately symmetric and antisym- 

metric solutions since there is no longer any asymmetry introduced by the presence 

of an incident wave and because the problem is linear and homogenous. That is to 

say, we may write either 

or 

00 
os (X, z) = No 1/2 Z 

Ena2442n(lr, 0) (4.3.13) 
n=O 

00 
oa (, 

) z) = 2iN0 1/2 E a2n-102n-i (lr, 0) (4.3.14) 
n=0 

where the superscripts on 0 are used to denote symmetric and antisymmetric po- 

tentials respectively. Such representations are ensured, by the construction of the 

multipole potentials, to satisfy all but the no-flow condition on the cylinder. There 

is no incident wave present in this problem, so following through the procedure used 

for the scattering problem leads to either 

00 
a2m + Z2m Z 

a2n 
En 

Amn = 0) m=0,1,2.... (4.3.15) 
Em 

n=0 

for the symmetric edge waves or 

00 
a2. -1 

+ Z2m-1 E a2n-1 Bmn =0m=1,2.... (4.3.16) 
n=0 

for the antisymmetric edge waves. These two independent systems of equations are 

the analogues of those occurring in (4.2.52) and (4.2.53) in the scattering problem, 

however, note that the definitions of A�, n and B�,,, are now also slightly altered as 

a consequence of the modified definitions of the multipoles so that 

Amn = em 
100 

A(t) cosh 2nt cosh 2mt dt (4.3.17) 
0 
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4.4. Scattering by a hemispherical seamount 

and 
00 

Bmn =2J A(t) sinh(2n - 1)t sinh(2m - 1)t dt. (4.3.18) 
0 

Notice that the homogeneous systems of equations (4.3.15) and (4.3.16) for determin- 

ing the edge waves are real, and thus the problem of finding solutions is one in which 

the real zeros of a real determinant needs to be found. As in the scattering problem, 

each infinite system of equations is numerically truncated to size N+1. 

Similar comments made on the numerical procedure for the scattering problem 

apply here, although the computation of the factors Amn and B�a,, is somewhat 

simpler here, since there are no poles in the integrand. 

4.4 Scattering by a hemispherical seamount 

4.4.1 Statement of the scattering problem 

We choose a Cartesian coordinate system with the z axis oriented downwards and 

with the origin and x and y axes in the undisturbed free surface. A hemispherical 

seamount of radius a, with center at (0,0, ho) protrudes into the fluid domain D 

from a bed of otherwise constant depth ho. We also define a spherical coordinate 

system (r, B, a) with origin at the centre of the hemisphere such that 

r= (x2 + y2 + (ho - z)2)1/2, 

R= (x2 + y2)1/2 =r sin 6, 

x=R cos a, y=R sin a, ho -z=r cos O. 

We recall the boundary value problem to be solved is 

v2o = 0, 

a0 + KO = 0, 
ac 

__ TZ 

__ 
00 
Fr ý' 

rED, 

on z=0, 

on 0= ir/2, r>a, 

on r=a. 
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Chapter 4. Multipole techniques for water wave problems 

We consider the scattering of an incoming plane wave Oi�, = e''kxo(z) which may 
be expanded by the Jacobi-Anger expansion in coordinates (R, a, z) as follows 

00 

Oinc _ imNý 1/ZJ 
, (kR)ei? cosh k(ho - z), (4.4.8) 

m=-oo 

or equivalently 

00 00 
Otnc _E nc cos ma emirNj"1/2J�, (kR) cos ma cosh k(ho - z) (4.4.9) 

m=o m=o 
where eo =1 and em = 2, m>1. To complete the formulation of the problem, we 

apply a Sommerfeld radiation condition [88] which may be written as 

lim R1/2 
(aR 

- ik 
) 

0e = 0, (4.4.10) 
R-. oo 

where ¢, is the scattered wave potential. This radiation condition is equivalent to 
00 

im? Po(z)H�i(kR)Ame'ma (4.4.11) 
m=-oo 

in the case of axisymmetric problems, or alternatively 

00 
08", E E, nimoo(z)Hm(kR)Am cos ma. (4.4.12) 

m=o 
This may be written as 

0, - io(z)H.. (kR)A(a) (4.4.13) 

where A(a), is the angular variation of the scattered wave and is defined by 
00 

A(a) =E EmimA�, cos ma. (4.4.14) 
m=o 

The total potential 0 is given by 

0= *inc + *8" (4.4.15) 

and, to remain consistent with (4.4.9), we expand 0, as 

00 
O, =E c�, cos ma. (4.4.16) 

M=0 

The solution proceeds by solving the boundary value problem for each a mode in 

turn. The principal unknown of this problem is now the angular variation of the 

scattered wave A(a). 
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4.4. Scattering by a hemispherical seamount 

4.4.2 Derivation of the multipoles 

We proceed as before by defining multipoles using Thorne's approach [92]. The 

solution to (4.4.4) in spherical coordinates which is singular at r=0, z= ho is 

given as 

Pn (cos B) (_1)�z 00 

rn+i - (n - m)! 
op 

e-µ(ho-z)Jm(pR) dp, n>m>0, (4.4.17) 

see, for example, Linton & McIver [51] where P,, -(x) are the associated Legendre 

polynomials. Throughout we choose the definition 

pm(X) = (_1)m(1- x2)m, 2d ä (x) 
(4.4.18) 

which is consistent with Gradshteyn & Ryzhik [37] and Abramowitz & Stegun [1], 

but differs by the factor (-1)m from Thorne [92]. Therefore we define the multipoles 

as 

n+l / vn (r, 0) 
- 

(-a) P, -, (cos 0) 
r 

n+l 00 /' 
+J µ"A(µ) coshµ(ho - z)J,,, (µR) dµ. (4.4.19) 

(n-m)! o 

Now to satisfy no-flow on the bed (4.4.6) we must have 

4 
4Pn (Cos B) =0 for 0= 7r/2 (4.4.20) 

but by Abramawitz & Stegun [1] (8.6.3) we have 

nim 
d (Pn (t)) 

I= ý1ý2 
sin 2 

(m -F n) 
r(? + 1) 

. 
(4.4.21) 

t=o 
(2 

2) 

Therefore to satisfy the bed condition we must have m+n= 2p . We now choose 

A(µ) to satisfy the free surface boundary condition, therefore 

__ 
(K + µ)e-µh0 A(p) 

µ sinh pho -K cosh pho' 
(4.4.22) 

which, for a scattering problem, has a pole at µ=k. We recall the radiation condition 

(4.4.10) which is equivalent to 

co " Hm(kR) as kR -º oo, (4.4.23) 
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therefore using 
rH�ý(z) 

N ez - ä) (4.4.24) 
VVV Erz 

we note that, when we formulate the multipoles using contour integrals, we need 

to close the contour and go around the pole in the upper half plane to ensure the 

contribution from the enclosing semicircle goes to zero, in which case the contribution 

from the pole is ii times the residue at the pole. 

We now proceed as before by writing 

v, '� (r, e) =a 
(''P(cosO) )r 

(-1)nan+l o0 
+J µnA(fý) cosh µ(ho - z)Jm(/R) dp + Xn (4.4.25) 

(n-m)! o 

where the imaginary part is included in Xn and is chosen to satisfy the radiation 

condition. Calculation of the residue proceeds identically as before, therefore after 

some algebra we find 

and 

i7r a (-1)" 
4.4.26 Wm 2No. ho) (n - m)t 

(ka)" cosh k(ho - z)Hm(kR) () 

iir (a) (-1)"` 
m Xn = 2No . To- (n - m)! 

(ka)" cosh k(ho - z) Jm (M), (4.4.27) 

in which case 

ýy n+l /-1)na' o0 

cpn (r, B) _ 
(r) PT (cos B) + l(n 

- m) 
µnA(µ) cosh µ(ho - z) J,,, (µR) dµ 

�� 

+ 2N 
(( - 

1)n 
)ý 

(ka)n cosh k(ho - z)J�a(kR). (4.4.28) 
00 

Now, from Cadby & Linton [9] or Thorne [92], we have 

00 
efµ(ho-=) Jm(tiR) = (ý)" Z 

(m+ s)! 
Ps (Cos 8) (m )' (4.4.29) 

s=M 

where the above result takes into account the different definitions of the associated 

Legendre polynomials. Then, using (4.4.29) we deduce that 

cosh p(ho - z)Jm,. (pR) =1E 
((-1m + ()! 

P; (cosO)(µr)' (4.4.30) 

S=M 
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in which case we may rewrite (4.4.28) as 

(2)n+l P, m(cos8)+> 
00 

A; (r)8P; (cosO) (4.4.31) cpn (r, 8) = ra s=m 

where, after some simplification, 

A; - 
(1 + (-1)n+9) f iira 

(ka)n+$ +I 
00 

(aj )"+'aA(µ) dµ }. (4.4.32) 
2(n-m)! (m+s)! l2Noho 

o ))) 

4.4.3 Solution and numerical procedure 

We proceed, as before, by expressing the m'th mode of the scattered wave potential 

0m as a sum of the multipoles so that 
00 

om = Em1mNp 
1/Z E'\n 

cn 

n=m 

(4.4.33) 

where the normalisation of the constant coefficients {An } is chosen to simplify later 

expressions. We also need to express the incident potential in terms of the associated 

Legendre polynomials, therefore using (4.4.30) in (4.4.9) we obtain 

0inc =e mN0 1/2 Z «-1)m+ (-1)a)P, 
m(cos 0)(ka)3 1 

r). (4.4.34) 

2(m + s)! \a 
a=m 

It finally remains to solve the no-flow condition on the sphere (4.4.7) which is equiv- 

alent to 
I 

(4.4.35) 
är 

,, _a 
ör J,. 

=a 
So, using (4.4.33) and (4.4.34) in (4.4.35) we obtain the system of equations 

00 00 

E a;; -(n+ 1)Pn (COS B) +E AnäsPm (COS B) _ 

n=m 8=m 

00 ((-1)m + (-1)') 
s(ka)'P, (cos 0). (4.4.36) 

2(m + s)! s=m 

This may be simplified if we multiply throughout by P; (cos 0) and integrate using 

the orthogonality condition 

1-1 1 
Pn (x) P. m (x) dx =2 

(n + m)! 3dn, (4.4.37) 
2n+1(n-m) 
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(see, for example Gradshteyn & Ryzhik [37]) or alternatively (as n+s is even by the 

bed condition) using 

8n 
f 

Pn (x)Pg (x) dx = 
((2sn 

++ 1)( 
ms 

-)! 

Sm)! 
' 

(4.4.38) 

(Linton & McIver [51]), both of which are equivalent to equating terms containing 
P; (cos 0) and result in the system 

00 
ý' -E An An. 

Ss= 
(ka)8 

((-1))m ++(11)')S 

n=m 
S=M .... ,. 

(4.4.39) 

We recover the Fourier coefficients Am in the expansion (4.4.14) by substituting the 

far-field form of the multipoles (4.4.26) into (4.4.33) and comparing with (4.4.12) to 

give 

Am = 2Ni7ra 

00 

pho ((_1)m)! 
en (ka)" (4.4.40) 

n=m 
n 

We solve the system by truncating the infinite sums in the expansion of the multipoles 

as before to take the first N terms and by considering the first 2M+1 angular modes. 

The multipoles are symmetric/anti-symmetric according to whether m is even/odd 

and we find it convenient to consider each separately. So for m=0, ..., 
M the even 

problem is given, after some simplification, by 

, \2m _N 
2m + 2q 

B2m. \2m _ 
2m + 2q (ka)2m+29 q=0, ... ,N 

(4.4.41) 
9 2m+2q+1 pq p 2m+2q+1 

p=0 

where (4.4.32) becomes 

B2m _1 
i7ra 

(ka)4m+2(p+9) + 
foo 

( aµ)4m+2(n+9), q(µ)a dµPq 
2p! (4m + 24)! 

{ 

2Noho 
(4.4.42) 

and for m=1, ... ,M the odd problem is given by 

N 

, \2m, -1 - 
2m + 2q -1 B2m-lý2m-1 

Q 2m+2q P4 p 
p=0 

-- 
2m + 2q - 1(ka)2m+2q-i 

q=0, ... ,N 
(4.4.43) 

2m + 2q 
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in which case (4.4.32) becomes 

B2m_1 =1 
iira 

(ka)4m+2(P+q-1) Pq 2p! (4m + 2q - 2)! 2Noho 

+ 
j00 

µ)4m+2(p+q-1)A(pp)a dµJ. (4.4.44) (a 

Calculation of the principal valued integrals proceeds as before with us truncating 

each of the integrals of the form 

a£00 a(am)PA(ii) dµ p=0,1, ... , 4M + 2N, (4.4.45) 

at a value T (p) so where the contribution from the integrand is e. In this case we 
determine T (p) from the solution of 

2Tho/a -p log T=- loge. (4.4.46) 

4.5 Results 

4.5.1 Scattering by a semicircular ridge 

Firstly we shall investigate the rate of convergence of the multipole solutions in terms 

of the truncation parameter N which we recall truncates the infinite sums taking the 

first N+1 symmetric and the first N antisymmetric, multipoles respectively. Table 

(4.1) shows the rate of convergence of the absolute value of the reflection coefficient 

for normal scattering by a semicircular ridge whose amplitude is half of the fluid 

domain's depth. Where a numerical value has converged to a value which does 

kl = 0.5 1 1.5 2 

N=1 0.200953954 0.234190524 0.153975563 0.062442503 
N=2 0. xx1245504 0. xx6689068 0. x61893932 0. x77207676 
N=3 0. xxxxxx836 0. xxxx91575 0. xxx912458 0. xxxx94690 
N=4 0. xxxxx xx7 0. xxxx ooac7 0. xxxxx x72 0. xxxxx c794 
N=5 0. xxxx, oocxx 0. xxxxx xxx 0. xxxxx xxx 0. xxxxx xxx 

Table 4.1: Convergence of IRI against truncation size N for normal incidence to a 
semicircular ridge with radius: depth ratio a/ho = 0.5 

89 



Chapter 4. Multipole techniques for water wave problems 

kl = 0.5 1 1.5 2 
N=1 0.195978328 0.228804676 0.150716980 0.061298505 
N=2 0. xx6280365 0. x31322387 0. xx8637025 0. x75944732 
N=3 0. xxxxxx856 0. xxxxx5425 0. xxxx56817 0. xx6032205 
N=4 0. xxxxxxxx8 0. xxxxxxx3l 0. xxxxxxx40 0. xxxxx2331 
N=5 0. xxxxxxxxx 0. xxxxxxxxx 0. xxxxxxxxx 0. xxxxxxxxx 

Table 4.2: Convergence of IRI against truncation size N for 10° oblique incidence 
to a semi-circular ridge with radius: depth ratio a/ho = 0.5 

kl = 0.5 1 1.5 2 
N=1 0.426877868 0.617583581 0.670778358 0.657608720 
N=2 0. xxxx38514 0. xxx278564 0. x69795829 0. xx5697630 
N=3 0. xxxxxx439 0. xxxxxx319 O. xxxxx4992 0. xxxxx4987 
N=4 0. xxxxxxxx8 0. xxxxxxxx8 0. xxxxxxxxl 0. xxxxxxxx5 
N=5 0. xxxxxxxxx O. xxxxxxxxx 0. xxxxxxxxx 0. xxxxxxxxx 

Table 4.3: Convergence of IRI against truncation size N for 80° oblique incidence 
to a semicircular ridge with radius: depth ratio a/ho = 0.5 

not, change with increasing N we replace the value with an x. We see that, in all 

cases convergence is extremely rapid with our approximations reaching 9 significant 

figures accuracy at a truncation size of N=4. We now consider oblique incidence 

for the same topography for both nearly normal (10°) and glancing incidence (80°) 

over the semicircular ridge of height half the fluid domain depth. Table (4.2) shows 

the results for 0= 10° and once again we see that 9 significant figures accuracy is 

reached with a truncation size of N=4. Similarly, table (4.3) shows the results for 

0= 80° which also achieves 9 significant figures accuracy with a truncation size of 

N=4. As we have reached 9 significant figures accuracy for typical wavenumbers of 

interest with a truncation size of N=4, then we choose a truncation size of N=5 

in all the results that follow. 

Figure (4.1) shows the variation of the reflection coefficient for dimensionless 

wavenurnbers kl E [0,5] for a range of radii from a/ho = 0.1 to a/ho = 0.9. 

As expected, the greater the radius the more pronounced the variation of the reflec- 
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01 V \w 

0 
012345 

H 
Figure 4.1: H(He(t Hill (ox'f3i("ients for scattering at normal incidence bYa sell ieireiilar 

ridge for height to depth ratios n/ho = 0.1.... . 
0.9 

tion coefficiel it. We also observe that for alho greater 1liati approximately 0.. 1 there 

are zeros of the reflection coefficient and by the time n/ho =- (1.9 I he first peak is very 

pronounced and a second zero is evident, within the range of jut It crest. WC front that 

as the angle of incidence i5 increased the curves var' tiinootlily; however. for angles 

close to normal incidence the same qualitative behaviour occurs. This is evident trout 

figure (4.2) which shows the results for : 30° incidence where we see t he growt Ii of t he 

first peak of II? I a5 alho increases and the lnesvilc' of zeros of rcfl("(. tioli for (1/11() 

greater than approximately 0.4 
. 

It is worth noting that. kilt hough t h(, curves ill figure 

(4.2) have the same qualitative shape as those irr figure (4.1). we see that maximmil 

value of I I? is lower in Ole oblique case. 

The general trend of decreasing rnaxinrinni value of I RI wit h increasing oblique- 

liess is still evident iii figure (4.3) which )lots results for 45° incidence. With this 

level of obliqueness we observe sonne different structure to the curves. For instance a 

first zero of I RI is now evident for a/hol = 0.3. also we sec that for n/h11 = (). 8 and 

above there is a local rniniuinun of RI but no longer a zero. For u/ho = 0.9 this 
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local uºiuiºurnnu is particularly easy to see. As the obliqueness increases to 60° as in 

ligu re (1.1) t liV º"haracteristi(s of the curves change, although in general there is still 

a decrease ill the ºnaxiunºººº value of I R. There is no zero of reflection evident as 

(I//º� gels its large as 0.6, ill fat t lie first, zero only occurs on the curve for a/h = 0.7 

hut I his I iºue t It(, peak value of IR occurs after the first zero rather than its before. 

We : ºlso see I Iºiº. I. al iuº"reatieºI obliqueness lh<, behaviour of the curves is rather more 

seusit ive to I lie height of 11ºe ridge with siguilicaiit difference in form for the values 

ulho == (1.7,0.8, a. ncl 0.9. 

To give :º furl her iu<liº"a. tion of how the angle of obliqueness affects the reflection 

coefficient, figure (-1.5) plots I Ul against, wa, vennnihcr A-1 for a range of angles of 

illuidcu("(' to rr ridge where n/h() = 0.9. We can discern three characteristic forms 

of curve; for Iuu(lerate angles of' incidence there is a large peak of reflection followed 

l, v successive peaks wit it zeros of' reflection in between. For mid-range angles of 

incidence there reura. irrti an initial peak kirrt, there are no zeros of reflection whereas 

for . rlrlo, u"liilIg glaur"irrg incidence there is a small peak before it zero reappears and 

I heu IUl reaches a higher peak value. Figure (4.6) shows the variation of I RI with 

0I, 2..... 81), for a. less severe ridge where a/ho = 0.5. For clarity we mark on 

lie sutu l ce lines of constant 0, but, the important feature to notice is that there is a 

cant itillo SI rantiit ion as 1) Varies. 

4.5.2 Edge waves over a semicircular ridge 

T() S(dvc t Il(' ('(IA(- wave problem in (4.3.15) and (4.3.16) we fixed the frequency param- 

('ter //i and I'Min It he edge wave l'requencv kho (< 1h0 ) at which the determinant, 

of t lie result ink; wtiteui VaniSIle<I. As tile systelu! was simple to calculate not hing more 

sophisticated Ihaui a Siuut>k' bisection nietlx>d wa necessary to reach the required 

accul-ac N.. 

I'igiirc (1.7) 411( ws the dispersion relation for a semicircular ridge of height 0.95 

t he fluid1 (lcl>t h. The odd tinuil>cr("dl iuo(lcs itire found by solving the s innietric prob- 

hin (l. a. I T) and t lice even numbered modes arise frone solving the anti-symmetric 
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(IP])tli ratio a/h() = 0.95. 

problem (4.3.16). We see that, in this extreine case we are ai)I( to final three iui ies 

although the higher modes only exist above certain threshold frequencies. Figure 

(4.8) is an alternative way of prescnt. ing this data where we normalise by thc cut -()IF 

frequency. We note that this replicates the results in Porter << Evans [761 who solved 

the edge wave problem for multiple submerged cylinders in infinite delAh. We would 
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Figure (4.9) shows the edge wave dispersion relation for a. ridge wleere rr//IO = 0.9 
. 

and already it can be seen that we no longer have a tlIir(l mode. Also the seconds 

inode now ci115 in for larger values of Ihn and is becoming less 1>runo>ni("ed. BY figure 

(4.10) where (i/ho = 0.83 the second nio(le now eiits ill for even larger values of 
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1ho and is much less pronounced. In fact, by (4.11) where a/ho = 0.8 the second 

mode has disappeared and the only solution is from the first mode. To summarise 

the characteristic behaviour, we observe that as the depth over the ridge decreases 

(a/ho -º 1) then more modes occur and the values occur further from the cut-off 

value. Conversely, as the depth over the ridge increases the curves become shallower 

as the edge wave frequencies become close to the cut-off value. 

4.5.3 Scattering by a hemispherical seamount 

For a hemispherical seamount we have two truncation parameters which we must 

consider; the first is N the maximum number of multipoles taken and the second 

is 111 the number of angular modes we take in the expansion of A(O). Table (4.4) 

displays typical results for scattering by a hemisphere whose radius is half the depth 

of the fluid domain. Once again we use an x to denote where a value shows no 

further improvement with increasing N. In this table we observe that each entry 

has achieved 9 significant figures with a truncation of at most N=4. Likewise if 

we now consider the angular modes, we see that the fifth mode is at best six orders 

of magnitude less than the angular mode with the greatest magnitude. Therefore we 

deduce that truncating at N=4 and M=5 will give us at least 6s. f. accuracy. In 

fact for modest truncation sizes it is possible to achieve machine accuracy extremely 

rapidly. However for our needs 6s. f. will be more than sufficient. Accordingly our 

results that follow will be truncated at these modest, and consequently quick to 

compute, truncation values. 

We now plot the magnitude of the angular variation, (A(B)) for 0E [0,27r], for 

a range of wavenumbers kho E [0.5,5] where they have been non-dimensionalised 

with reference to the fluid domain's depth. Figures (4.12) to (4.17) show the angular 

variation for a range of seamounts a/ho = 0.5,0.6, ... , 0.9 and also for a/ho = 0.99. 

As we have non-dimensionalised the incident waves with respect to ho rather than a, 

direct comparison may be made between the plots for the different sized seamounts. 

In figure (4.12) we plot the results for a seamount where a/h = 0.5. In this case 
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4.5. Results 

Mode 
kl N 0 1 2 3 4 5 

1 4.75228954)x04 1.15842144E-02 7.85037750E-05 1.83676472E-07 2.18630706E-10 1.58165096E-13 
0.5 2 x. xxx54098E-04 x. xxxxxx65E-02 x. xxxxxxx5E-05 x. xxxxxxxxE-07 x. xxxxxxxxE-10 x. xxxxxxxx&13 

3 x. xxxxxll61r04 x. xxxxxxxxE-02 x. xxxxxxxxE-05 x. xxxxxxxxE-07 x. xxxxxxxxF 10 x. xxxxxxxxF. -13 
1 5.91946747E-03 3.58118455E-02 9.73400633E-04 9.094407271-06 4.32891264E-08 1.25241332F-10 

1 2 x. x2318503E-03 x. xxxx91961r02 x. xxxxx810E-04 x. xxxxxx64E-06 x. xxxxxx71E-08 x. xxxxxxx3E-10 
3 x. xxxxx619E-03 x. xxxxxxx7E-02 x. xxxxxxx11r04 x. xxxxxxxxE-08 x. xxxxxxxxE-08 x. xxxxxxxxGl0 
4 x. xxxxxx20F, 03 x. xxxxxxxxE-02 x. xxxxxxxxE-04 x. xxxxxxxxE-00 x. xxxxxxxxF 08 x. xxxxxxxxF-10 
1 1.949197691-02 5.20363420E-02 3.21329201E-03 6.73400301E-05 7.20416700E-07 4.08722008E-09 

1.5 2 x. x5501406E-02 x. xxx77890E-02 x. xxx30348E-03 x. xxxx10S31r05 x. xxxxx9811i07 x. xxxxxx06E-09 
3 x. xxxxx762E-02 x. xxxxxxx9l-02 x. xxxxxxxxE-03 x. xxxxxxxxE-05 x. xxxxxxxxE-07 x. xxxxxxxx&00 
4 x. xxxxxxx3E-02 x. xxxxxxxxE-02 x. xxxxxxxxE-03 x. xxxxxxxxl-05 x. xxxxxxxxF 07 x. xxxxxxxxF 09 

1 3.39158512E-02 5.23504493E-02 5.70424627E-03 2.11319712E-04 4.00803166E-06 4.62072830E-08 
2 2 x. 42248006E-02 x. xx619526E-02 x. xxx43481E-03 x. xxx2174OE-04 x. xxxx4720E-00 x. xxxx3094F 08 

3 x. xxx52553E-02 x. xxxxx629E-02 x. xxxxxx90E-03 x. xxxxxx50E-04 x. xxxxxxx1 E-00 x. xxxxxxxxF 08 
4 x. xxxxxxx6E-02 x. xxxxxxxxE-02 x. xxxxxxxxF 03 x. xxxxxxxxE-04 x. xxxxxxxxF 06 x. xxxxxxxxF-0M 

Table 4.4: Convergence of the angular scattering coefficients IA"I against truncation 
size N for wave scattering by a hemispherical seamount with radius: dcpth ratio 
a/ho = 0.5 for incident wavenumbers kho = 0.5,1.0,2.5 & 2.0. 

the most interesting structure is for long waves where the seamount causes a rapid 

change of depth within a single wavelength and we observe a distinct lobe shape for 

kho = 0.5,1.0,1.5. However we also note that the amplitude of the angular variation 

remains small. As the wavenumber increases we see that the lobe structure flattens 

out and by kho =3 looks more elliptical with the major axis oriented along the axis 

of propagation of the incident wave. It is possible to discern from the wave kh0 = 3.0 

that there is slightly more scattering in the 0=0 direction than the 0= 180° 

direction which is to be expected as the wave is incident from r= oo along the axis 

0=0. As the wavenumber increases further we expect the effect of the hump to 

become less pronounced as the higher frequency waves do not `feel' the submerged 

seamount as greatly. As expected the scattered amplitude tends to decrease now, and 

we see that the elliptical shape becomes more circular for higher frequencies. 

In figures (4.13) to (4.16) we see clearly the effect of increasing the seamount 

radius. The longer waves still generate a lobe shape but the transition to a more 

elliptical shape comes sooner. Also, as would be expected, by inspection of the scales 

of the plots we see that the amount of scattering increases significantly from for 

example a maximum of 0.12 in figure (4.12a) for a/ho = 0.5 to a maximum of 3.0 

in figure (4.16a) for a/ho = 0.9. Also of note is that, as the height of the scamount 
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Figure 4.15: A(H)j for scattering by a hemispherical IIIIUip where (I/h() = 0.8 

ing by a sea. mount where a/h. O = 0.99. We see that there is significant scattering 

back along the axis of propagation but also there are two Si(lelolles scattering energy 

sideways. There is also relatively little scattered wave to the l((ýý<ýr(l si(IP of the 

SC£Llnount. 
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4.6. Remarks 

4.6 Remarks 

\Ve have seen in this chapter that rnultipoles have excellent convergence properties 

with modest truncation sizes of infinite sums reaching a high degree of accuracy. In 

fact their convergence is so rapid that, to all intents and purposes, these results may 

be viewed as exact numerical solutions to the problems under consideration. 

In this chapter we have solved two particular three-dimensional problems, which 

to the best of the author's knowledge have not been solved before. This is perhaps 

not surprising as the geometries under consideration are not particularly physically 

realistic. Furthermore, as the majority of techniques for dealing with more arbitrary 

geometries tend to make some sort of assumption of mildness of slope in the topog- 

raphy then these two problems would be unlikely to he considered due to the steep 

gradients at the join with the domain of constant depth. 

As our methods will make no such approximation and deal with the bed c"ouclit ion 

exactly, then these multipole results will provide useful benchmarks giving exact 

results for simple geometries against which our later results may be validated. 

103 



Chapter 4. Multipole techniques for water wave problems 

104 



Chapter 5 

Wave interaction with a ridge of 
arbitrary profile 

5.1 Introduction 

The three-dimensional problem of wave/body or wave/topography interactions is ex- 

tremely complicated due primarily to the Neumann boundary condition on an arbi- 

trary curve. As we have seen in Chapter 2 these problems have tended to be solved by 

making some kind of simplifying assumptions about the topography or body which 

allows progress to be made with the numerical solution of the problem. 

We have seen in Chapter 3 how established techniques for two-dimensional wa- 

ter wave problems that convert from normal to tangential derivatives are capable of 

producing extremely accurate results. However, in the form in which Chapter 3 is 

formulated this conversion from ä/än to alas is really an expression of the Cauchy- 

Riemann equations which have no analogue in three dimensions. In contrast to our 

ultimate goal which is to develop solutions to the problem of scattering in three di- 

mensions over arbitrary bed shapes, in Chapter 4 we considered two specific problems 

of rather specialised bedforms. This will enable us to provide an independent means 

of verifying the results from this and later chapters. 

In this chapter we introduce the key principles behind our techniques for modeling 

fully three-dimensional wave/body or wave/topography interactions. We do this by 

formulating the problem as an integral equation and then retaining a formulation that 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

satisfies the bed condition exactly. The aim is to arrive at an integral equation formu- 

lation which is at most log-singular (of course, it is also possible, and mathematically 

simpler, to arrive at other types of integral equation which are Cauchy-singular or 

supersingular). We start, in this chapter, by choosing the simplest possible three- 

dimensional problem of oblique scattering by a submerged infinite ridge of constant 

cross section, to present the techniques and indicate the main issues underlying their 

application. In later chapters we will extend the technique to more complicated 

problems. Some of the work in this chapter was presented, as work in progress, by 

Chapman and Porter [16] to the 20th International Workshop on Water Waves and 
Floating Bodies at Spitzbergen. 

The two-dimensional (normal incidence) version of this problem was solved by 

Staziker, Porter and Stirling [89] who formulated the problem as an integral equation 

and converted from normal to tangential derivatives. This technique has subsequently 

been used to good effect on a range of problems by Porter, see for example [74] 

investigating scattering by an arbitrary cylinder or [75] looking at wave trapping by 

pairs of cylinders. However, this formulation, which we employed in Chapter 3, was 

strictly two-dimensional with no obvious means of extension. Given the complicated 

nature of the two-dimensional problem it is not surprising that the three-dimensional 

case we deal with here has, to the best of our knowledge, received no attention. 

Of course approximate techniques such as the mild slope equation have been 

applied to three-dimensional scattering problems, see for example Porter & Porter 

(78] who investigated scattering by three-dimensional periodic topography and the 

phenomenom of Bragg resonance. There is a wide body of literature concerning this 

specific approach, see Porter & Chamberlain [70] for an overview of two-dimensional 

wave scattering problems. In contrast we will introduce an approach which makes no 

approximation whatsoever and applies the full linear theory to a three-dimensional 

scattering problem. 

106 



5.2. Formulation of the scattering problem 

5.2 Formulation of the scattering problem 

Cartesian coordinates (x, y, z) are chosen with the x and y axes lying in the undis- 

turbed free surface of the fluid and z directed vertically downwards. The fluid is 

bounded below by Sb : {z = H(x), -oo < x, y< oo} where H(x) is assumed to be 

a continuous function with H(x) = ho, a constant, for x0 (0, e) and H(x) = h(x) 

for xE (0, e) and it is assumed that h(x) < ho. Thus the topography consists of an 

infinitely-long ridge with constant cross-section in the (x, z) -plane and which pro- 

trudes from an otherwise flat bed of depth ho. We denote the curve z= h(x) in the 

(x, z) plane, which defines the edge of a section of the ridge by r. 

On the lower boundary of the fluid, Sb , we define an orthonormal basis by 

n= (-H'(x), 0,1)/Q(x) 

s= (1,0, H'(x))/o(x) , 
t= (0,1,0) 

a(x) =1 (H'(x))2 (5.2.1) 

representing, respectively, the normal (out of the fluid) and tangential unit vectors, 

perpendicular and parallel respectively to the y-axis, on the surface Sb. 

.. A_ y B+ 
x 

ý_X, y) 

z 
A+ 

o h(x) 

(-X, -Y) 

as \ 

(X. Y) 

Figure 5.1: Geometrical description of the scattering problem for waves obliquely 
incident on an infinite uniform ridge in a domain of otherwise constant depth 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

The fluid potential 1 satisfies 

V24, = 0, rED, (5.2.2) 

where D: {O <z< H(x), -oo < x, y< oo} is the fluid domain which is bounded 

by the surface OD, 

n. 0e = 0, rE Sb (5.2.3) 

and 
De 

+ Ký = 0, on z=0. (5.2.4) 

To complete the formulation of the problem, we need radiation conditions at 
infinity, which are written as 

(r) 
A-4)0 (r) + B_ I (r), x -ý -00, ýI)(5.2.5) 

Acre 44(r) define waves propagating obliquely towards x= ±oo respectively in 

water of constant depth ho, whilst A± and Bt represent wave amplitudes associated 

with waves that are incoming and outgoing (respectively) on the ridge from x= ±oo . 
More specifically, 

cö (r) = e±i ehhhI o(z) = cö (x, z)e; 1" (5.2.6) 

where a=k cos 0 and l=k sin 0 are components of the wavenumber, k, in the x 

and y directions (respectively) for a wave propagating at an angle ±0 with respect 

to the positive x -axis. 

We define reflection and transmission coefficients for waves of unit amplitude 

incident from x= -oo by R_ = B_/A_ and T_ = 13+/A_ . Likewise we define 

reflection and transmission coefficients for waves of unit amplitude incident from 

x= +oo by Rz = B+/A+ and T+ = B-/A+. It follows from (5.2.5) that 

(B+)=S1 
A+) 

s=(T_ R+) (5.2.7) 

where S is referred to as the scattering matrix. The scattering matrix is regarded 

as the principal unknown in this problem sec, for example Porter & Chamberlain 
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5.2. Formulation of the scattering problem 

[70] who also proved the relation SS = I, where the overbar denotes complex con- 

jugation. This last relation gives rise to the Kreisel [47] relations which include a 

statement of conservation of energy. Porter & Chamberlain's elegant proof is entirely 

independent of formulation and shows that any formulation which incorporates the 

exact far-field structure of (5.2.5), as ours certainly does, will satisfy energy conser- 

vation exactly. Consequently, we remark that energy conservation being satisfied is 

therefore an unreliable check on the numerical accuracy. In fact our final notation 

in this specific problem will prove to be more compact if we consider a non-standard 
form of scattering matrix M defined by the relation 

T- R (B+) 
=M( A+) M=(R T+) 

(5.2.8) 

Now, due to the lack of dependence of the geometry upon y, the exponential 

variation in y, namely eilt', assumed by the far field waves through (5.2.5) and 

(5.2.6) is inherited by '(r) allowing us to write 

fi(r) = «(x, z)e'1 (5.2.9) 

At this point, it is common practice to use this factorisation to reduce the boundary- 

value problem stated above to a two-dimensional problem for q(x, z) in which the 

field equation is reduced to the modified Helmholtz equation. However, we shall need 

to use a three-dimensional coordinate system in our solution procedure and therefore 

we leave it until later before making use of the particular form of c assumed above. 

The method of solution relies on the use of a Green's function appropriate to this 

problem. Thus we define G(r; ro) where ro = (Xo, yo, zo) is to be regarded as the 

field point and r the source point, satisfying 

V2G(r; ro) = -8(x - xo)5(z - zo)ei ("0-Y), in 0<x, zo < ho (5.2.10) 

with 
ýG+KG=0, 

on z=0 (5.2.11) 

and 
aG 

= 0, on z= ho (5.2.12) 
äz 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

holding for -oo < x, xo, y, yo < oo. Thus, G represents a line source along (x, z) _ 
(x0, zo) with the same assumed variation along its length as in the problem for 4). 

As in the problem for (D, the dependence can be made explicit by writing 

G(r; ro) = 9(x, z; xo, zo)e'l(yo-v) (5.2.13) 

Then it is readily shown, using standard Green's function methods (see Appendix A), 

that 
er(z)0r(z0) 

e-"1'-'01, 9(xß z; xo 9 zo) L. 2ah 
(5.2.14) 

To r=O 
(or alternatively see, for example, Heins [40]), where {or(z)} are the usual depth 

eigenfunctions given by (2.1.47) and 

a,. = kT +12, ao = -i l2 - k2 = -ia (5.2.15) 

with ko = -ik where the k, are the roots of the dispersion relation (2.1.44). We 

note that as Ix- xo I -º oo, 

e; t(vo-v) i')o(z) o(zo) ejalx-xol 2aho 
(5.2.16) 

We will find it convenient to decompose G and consequently, g in the form 

G= Go +0= e'<(v°-v) (go + g) (5.2.17) 

where 
Go (r; ro) = e'i(vo-v)l'oo(z)'Oo(zo) cosa(x - xo) (5.2.18) 

2aho 

is the separable component of the wave-like part of the Green's function previously 

exposed in (5.2.16) and 

G(r; ro) = eýý(vo-v) 
{o(z))o(zo) 

sin aýx - xaý + 
00 0r(Z)or(zo) 

e ar. Ix-xol 
2aho 2arho 

r=i (5.2.19) 

is the remainder of G. By `separable' we mean that Go may be decomposed into 

the product of two functions one depending on the source variables (x, z) and the 

other on the field variables (xO, zo) . We decompose the Green's function in this way 
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5.3. Derivation of the integral equations 

so that the property G(ro; r) = G(r; ro) holds. This is a critical step as it means 

our integral kernels will be self-adjoint, a property which allows extremely accurate 

solution techniques to be employed. Significantly (in terms of what follows), a similar 

relation does not hold for Go, although we note that the definitions (5.2.6) can be 

re-used in (5.2.18) by exploiting its separable form to give 

Go(r; ro) =1 
{(r)Ii(ro) To + (r)(ro)1 . 

(5.2.20) 
4aho 1 

At this point it is convenient to define functions related to the depth eigenfunctions 

t, b,. (z) which will play an important role in our formulation. Thus we define 

rz 
X, (z) = -k,. J i,. (z)dz = N, -112 sin k, (ho - z), r=0,1,2, ... ho 

with ko = -ik implying that 

Xo(z) = -iNý 
1/2 sinh k(ho - z) 

which recovers the functions introduced in (3.3.5). 

5.3 Derivation of the integral equations 

(5.2.21) 

(5.2.22) 

In this section, we set out to develop an exact formulation in terms of integral equa- 

tions of the solution to the problem, as a means of calculating the scattering matrix 

M. 

The first step is to apply Green's identity to the functions 1(r) and G(r; ro) 

in a sub-domain DXy of D, bounded laterally by four vertical planes defined in 

terms of the four vertices (±X, ±Y, z) ,0<z< 
ho (see figure 5.1). Here, Y>0 is 

arbitrary, and it is to be assumed in what follows that the limit X -º oo is taken. We 

acknowledge that the introduction of these vertical planes at ±Y is artificial and we 

will see later that it may be avoided. However, it provides a three-dimensional domain 

with closed sides to which Green's identity may be applied. Even more importantly, 

as we shall see, consideration of the three-dimensional problem is necessary to make 

headway with the two-dimensional version of the problem. 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

5.3.1 A three-dimensional formulation 

Green's Identity states that 
fff(GV2 

- ýDV2G) dx dydz = fJ(Gn. V - 4)n. VG) dS (5.3.1) 
DXY SXY 

where Sxy is the closed boundary of Dxy, dS being a surface element on Sxy 

and the definition of n has been extended to boundaries other than those coinciding 

with Sb to mean the outward unit normal to Sxy. Using the definitions of t and 

G it can be found, after some routine algebra, that 

ýý(ro) = A-4)ö (ro) + A+4) (ro) - 2y 
JJ -D(r)n. OG(r; ro) dS (5.3.2) 

E 

and E is the two-dimensional surface of the ridge confined between the planes y= 

±Y. Here j z= 1 for ro E D, M=1/2 for ro E OD, and p=0 for ro ODU OD . 
In the derivation of the above, use has been made of (5.2.3), (5.2.4), (5.2.11) and 

(5.2.12) to both extract the free terms and to eliminate the contribution from the two 

parallel sides of Sy which coincide with the planes y= ±Y. 

Fundamental to our approach is Noblesse's [67] [68] idea of converting the integral 

equation to a weakly singular form by defining a vector Green's function L which is 

no more singular than G, and will enable the integral equation to be converted to a 

weakly singular form. 

We define a vector Green's function L related to the Green's function G by 

VG =VxL- 5(x - xo)bz(z - zo)ei (Y0-Y)k. (5.3.3) 

The choice of L is clearly not unique and, in particular, we note that L can be 

replaced by L+ VW for any scalar potential V. In electromagnetic wave theory, this 

operation is termed a gauge transformation where cp is called the gauge. The most 

common gauge to use is the Coulomb gauge in which Vp=0 is chosen, although 

this is dictated by a desire to simplify the final equations as much as possible. In this 

respect, after inheriting Noblesse's notation so that here, and elsewhere, 

z 
Gy 

n 
G(x, y, z'; ro) dz', etc... (5.3.4) 

,, 
ay 
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5.3. Derivation of the integral equations 

we choose (for reasons that will become clear) 

L= (Gý) -Gi, 0), (5.3.5) 

which was also used by Noblesse; other choices for L could be (0, Gs, -GI) or 
(-Gz, 0, Gz). These forms may be verified by direct substitution of (5.3.5), or the 

alternative forms, in (5.3.3) and by using (5.2.10). In particular, we note that 

LIZ_N = 0, an important property which would not have followed from employing 

the alternative versions of L. 

It is worth highlighting that our (5.3.3) differs subtly from its equivalent in No. 

blesse [67] in that we have included a missing term which involves the delta functions. 

Although rather technical, this omission in Noblesse's exposition proves to be signif- 

icant as it serves to highlight that points where the source and field point coalesce 

need special treatment. 

For example, we note that 
I 

bz(z - zo) =f 5(t - zo) dt = -H(zo - z) (5.3.6) 
ho 

where H(x) is the Heaviside step function. So now (5.3.2) becomes 

µ(D (ro) = A-(D+ (ro) + A+ýý (ro) - 
1- ff ý(r)n. V xL dS 

Sb 

1(r)5(x - xo)FI(zo - z)e11(vo-11) 
S 

(5.3.7) 

$y 

since n. k = 1/Q. Now to deal with the final term we note that dS =a dx dy so 

- JJ ý>(r)8(x - xo)a(y - yo)H(zo - z) ds 
Sy 

h(x, y))5(x - xo)b(y - yo)H(zo - h(x, y)) dx dy 
Sp 

_ --D(xo, yo, h(xo, y)))H(zo - h(xo, yo)) (5.3.8) 

which is zero for points ro E D, -2-1)(Xo, yo, h(xo, 1/0)) for points ro E OD and 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

-(I'(xo, yo, h(xo, yo)) for points ro 0DU OD. Thus 

`I)(ro) = A-(I'o (ro) -}- A+ýo (ro) - -L 
fJ(r)n. 

V xL dS for ro EDU OD 
Sp 

(5.3.9) 

which establishes that, unlike the traditional form (5.3.2), the formulation in (5.3.9) 

gives a continuous definition of the fluid potential as the field point moves from the 

fluid domain to a point on the boundary. This property of the weakly singular formu- 

lation (5.3.9) is acknowledged by Noblesse who indicates how it may be established 
by direct consideration of (5.3.9) rather than through any discussion of the additional 

term we have highlighted. 

At this point Noblesse's (67] approach is to perform a three-dimensional analogue 

of integration by parts using the vector identity 

Vx (-cDL) = 4)V xL+W xL 

and Stokes' theorem. However, at points where the source and field point coalesce, 

nwq they do along the bed, the conditions for the applicability of Stokes' theorem 

no longer apply. In our formulation we show how this issue is dealt with in two 

dimensions (later on in this chapter) and also how it may be properly dealt with in 

a fully three-dimensional context (Chapter 8). 

Now, noting that n=sxt, 

tß. 0 xL= (s x t). (0 x L) _ (s. V)(L. t) - (t. V)(L. s) _ 
OLZ 

- 
OL1 (5.3.10) 

cis at 

using a standard vector identity, where we have employed the abbreviations DIN = 

s. V, 0/Ot = t. 0 and defined 

Li(r; ro) = L. s = Gy/Q(x), (5.3.11) 

L2 (r; ro) = L. t = -G=, (5.3.12) 

from (5.3.4) and (5.2.1). Thus we now find 

(5.3.13) <1, (ro) = A_(Ibo (ro) + A+cI) (ro) - 2Y 
Jf C 

c9sý 

"ý 1) 4)(s, t) dsdt 
E 
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5.3. Derivation of the integral equations 

where we have written 1(r)IE = I(s, t) in terms of coordinates aligned with s and 

t lying on the surface of the ridge E. Clearly in the transformation that has taken 

place from (5.3.2) to (5.3.13) we have required to be working in a three-dimensional 

domain. Also we note that t=j so that dt = dy and 8/8t = 8/8y, but we retain 

t to be consistent with later chapters. 

Our approach, which is a significant departure from Noblesse [671, is to modify 
(5.3.13) to put it into a form which allows us to define a self-adjoint integral oper- 

ator. This crucial step allows us to implement a solution using the Rayleigh-Ritz 

(equivalent in this context to Galerkin) technique which is well known to have excel- 

lent convergence properties (see Chapter 2 and, for example, Porter [73]). With this 

strategy in mind, we mimic the decomposition of the Green's function G performed 

in (5.2.7), by writing 

Li = Lot + Li, i=1,2, (5.3.14) 

and the two components of L; are derived directly from the two components of G 

in (5.2.7). Thus, in particular, we find 

Loi = fix) 4aho 
Cko(x)) 

if -(r)4ýö 
(ro) + f+(r)ß'0 (ro)1 

L02 = -(GO) X= 4aho 
(0') 

k 
{7(r)(ro) 

-7+ (r)ý0 (ro)} 

in terms of newly-defined functions 

ff (r) = et' ellyxo(z) (5.3.16) 

where (5.2.19) and (5.2.20) have been used and we note that TO(z) = -Xo(z) 

At this point, we shall introduce some more notation so we define 

Ft (s, t) =(ýä- kQ (x) ä) ff (r) I (5.3.17) 
rEE 

and we also introduce the inner product notation for functions u(s, t), v(s, t) ER 

(where 1-l is the space of functions whose derivatives belong to L2(E) ) 

(u, v) = 2Y 
Jjti7 ds dt. (5.3.18) 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

Then, using the decomposition in (5.3.14) with (5.3.15) in (5.3.9) we find, after some 

algebra, that 

- (s, t) ds dt 4'(ro) = A-(Dö (ro) + A+ýö (ro) - 2Y 
If 

-1 
{(ro) (', F-) + 4) (ro) (-D' F+) } (5.3.19) 

4aho 

This is a good point at which to pause for a moment and go back to (5.3.9) in 

order to establish relations which arise from consideration of the far field. First, we 

note that as Ix - xo l -º oo, 

Li ý1 
(kx) 

o(z)o(zo)e'-2ole"(vo-(5.3.20) 2caho ) 

and 
L2 sgn(x - xo) Xo(z)'Oo(zo)e"Ix-xole; a(vo-v) (5.3.21) 

2aho k 

which may be determined from (5.2.16), the far-field form of G. Hence, taking 

xo -+ -oo in (5.3.9) and (5.3.13) and using the far-field form of 1 provided by 

(5.2.5) gives, after considerable algebra, 

B- A+ 
2ah 

(4), F'-), (5.3.22) 
0 

where the inner product notation (5.3.18) has been invoked and F_ is defined by 

(5.3.17). In a similar manner, taking the limit xo -º oo, we obtain 
i 

B+ = A- - 2aho 
(-b, F+). (5.3.23) 

These last two equations hold the key to the continued development of the formula- 

tion, since now they can used to substitute in the second line of (5.3.19), resulting 

in 

, D(ro) = z(A-+B+)4ö(ro)+2(A++B-)I (ro) 

_1 
äL2 

- 
aLi 

ý(s, t) ds dt. (5.3.24) 
2Y 

ff( 
äs TF 

E 

Equation (5.3.24) may be regarded as a second-kind integral equation for 4) for points 

on E, by moving the field point ro onto (so, to) E E. The forcing term is a weighted 

sum of the two incident wave modes cö . 
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5.3. Derivation of the integral equations 

5.3.2 A two-dimensional formulation 

At this point we may drop the three-dimensional formulation acknowledging the ex- 

ponential dependence in y, yo and substituting (5.3.11), (5.3.12) and (5.3.14) into 

(5.3.24) to obtain 

O(xo, zo) =2 (A_ + B+)Oö (xo, zo) +2 (A+ + B-)Oö (xo, zo) 

+f2 
(Is 

9x - 9) O(s) ds, (5.3.25) 

r 

which has reduced our formulation to a two-dimensional representation in a plane of 

constant y. Here, the normal and tangential vectors are redefined appropriately to 

give their two-dimensional equivalents so that in coordinates (x, z) (5.2.1) becomes 

n= (-h'(x), 1)/Q(x) 
a(x) =1+ [h'(x)]2. (5.3.26) 

S= (1, h'(x))la(x) 

Crucially to our approach (5.3.3) becomes 

00 12 

än9 9x 
12 

ý' JS(x - xo)H(zo - z) (5.3.27) 

and once this relation has been identified we are able to proceed with our techniques 

in a two-dimensional formulation which proves simpler and clearer for this problem 

and its extension in Chapter 6. 

In Chapter 8 we will see that (5.3.24) may be solved in a fully three-dimensional 

framework. However, as we see from (5.3.25) this problem is essentially quasi two- 

dimensional. Therefore we will proceed to solve this problem in its two-dimensional 

formulation using (5.3.25), but still using all of the principles of the fully three- 

dimensional approach. This has the advantage of indicating the key features of our 

theory as well as showing the link between the approach used in Porter & Porter [77) 

and Chapter 3 and our extension of their approach to three-dimensional problems. 

In order to proceed in this way, we must redefine some of the notation introduced 

earlier so that (5.3.16) reduces to 

ft(x, z) = ef" Xo(Z) (5.3.28) 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

and consequently (5.3.17) becomes 

Ff (x, z) =-faä+ 
i12 

f}, (x, z) E I'. (5.3.29) 
käs io 

We also redefine the inner product (5.3.18) as 

v ds (5.3.30) (u, v) = 
fr 

u 

where s is an element of the arclength of r. 

We present two alternative methods of solving equation (5.3.25) which will provide 

a useful check on results, as although each is based on (5.3.25) they result in different 

formulations and approaches to numerical solution. The first approach is to move the 

field point onto the bed and treat (5.3.25) as a second-kind integral equation for q5 . 
Therefore if we define an integral operator 

_z (Kiý)(so) _ O(so) - Jr 

(I;: 
-1 ?)O ds (5.3.31) 

and then define a pair of functions cpi on r such that 

(Kw )(so) = 0ö1 (5.3.32) 

then it follows that the solution of (5.3.25) is given by 

= 51 (A- + B+)wt +z (A+ + B-)coj " 
(5.3.33) 

We note that Kl is not a self-adjoint integral operator, i. e. for functions u, vEf 

(2.3.21) does not apply. 

Alternatively, we may develop the formulation in an analogous manner to that 

appearing in the two-dimensional scattering problem considered by Porter & Porter 

(77], anticipating a self-adjoint structure in the final integral equations that is not 

enjoyed by an integral equation arising directly from (5.3.25). Thus, we first introduce 

quantities which apply to the field variable ro, namely 

no = (-h'(xo), 1)/a(xo) 
_ 

(a7X0 aa1 (5.3.34) 
so = (1, h'(xo))/o(xo) 

ý0 -n zoJ 
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5.3. Derivation of the integral equations 

and extend the definition of the orthonormal basis, {no, so} to points away from the 

curve r. 

" We now apply the operator no. Vo = ä/äno to (5.3.25) for field points off r to 

obtain 

o' 
=ä (A- + B+) ano cö +2 (A+ +B 

no 
ö 

+a 
oJr\ös9? 

-l ids, (5.3.35) 

Now, in terms of field variables (5.3.27) becomes 

9Z° (5.3.36) 
12 

aaog = -ä ogxý 
+a 

for points off r. Using this result we switch from normal to tangential derivatives so 

that 

oý 
= 2(A_ +B+)ano00 + 2(A++B_)a 

0 

_aa,. ZZO 12 ýxZO 
12 zo - 

12 ds. 5 9 (. 3.37) 
aso Jr 

(as? 
0- 9ý0) Ods + To Jr 

(as2-9- 

a 

This step is critical and therefore worthy of special note; we were able to take the 

derivatives under the integration sign and then back out again precisely because the 

field point is not on the bed thus ensuring convergence of the integrals. Now, it is 

routine to confirm from (5.2.6), (5.3.29) and (5.3.36) that 

aao o. Ft (5.3.38) 

for field points on r. Using this result we may now let the field point move on to the 

bed and apply the bed condition to give 

+B_) n F- o= (a_+B+) 5--F+ ono n0 

_ä0 
fr ( lz 

/)0 
ds +z ZO 

1? 
9s`° 0 ds. (5.3.39) 

äso l as 9xzzp xp -a zzp 
zp 010 r äs o 

The next step is to perform an integration by parts, however, care must be taken 

to consider discontinuities of the integrand. This is the two-dimensional analogue of 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

considering points in the three-dimensional problem where Stokes' theorem does not 

apply and is an issue not addressed by Noblesse [67]. We will return to this in a 

three-dimensional context in Chapter 8. Therefore in (5.3.39) we note that gxxý is 

continuous in x whereas gsz0 contains a factor sgn(x - xo) which will throw out an 

extra term in the integration by parts. Therefore 

0= 2(A-+13+)F++ 2(A++I3_)F_ 
22z2 

^tt0 
_^ZZý 

ZZU zz0 g 
x0 

9J ds + (O ofas1a (9. a t+ 
Uso Jr ra' as U 

+ 
ý' 0l ds - Uo rs+u 

U0 y 
ýýö 

(5.3.40) 

where the square brackets denotes the jump in the quantity at x= xo. Thus once 

again we have obtained a second-kind integral equation for 0 on I' although its form 

and structure is entirely different to (5.3.25). 

We pause for an instant to consider the explicit form of the free term which is 

found to be 
00 

9xt0ý2! = O(xo, h(xo)) Xr h 

oo)) 
(5.3.41) 

r=O 

after using (5.2.21) in (5.2.14). Now we note from Chapman & Porter [14], or alter- 

natively (3.3.16), that 

00 Xn(h(�ho (zo) 
k= 

H(zo - h(xo)) (5.3.42) 

nao 

which, if we integrate between ho and z0, results in 

0 Xn(h(Xo))Xn(Zo) 
= ho - h(xo) (5.3.43) 

�=o 
knho 

for all points in the fluid domain. Therefore if we let zo - h(xo) in (5.3.43) we find 

that we can sum (5.3.41) explicitly to give 

[ý 9xs0]=o = O(xo, h(xo)) (ho - h(xo)). (5.3.44) 

Now we observe that (5.3.40) is a second-kind integro-differential equation for 0 
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defined on the curve I'. Therefore if we define an integro-differential operator 
z 

(Kaý)(so) _-1o q5(so)(ho - h(xo)) 

/' 2 a0 2^ 
-aJ)ý(. zzO 1 9xx° + Lds + l- +sý0J ds, (5.3.45) 

röJ 010 ras v 
then define a pair of functions c on I' such that 

(C2 co)(so) = F't(so), (5.3.46) 

we see that the solution to (5.3.40) and hence (5.3.25) is given by 

+ ! (A+ + B-) Sas . (5.3.47) «(so) =ä (A- + B+) ýo 22 

It can be readily shown that /C2 is a self-adjoint operator so that (2.3.21) applies. 

This fact can be established by repeated integration by parts and use of the symmetry 

properties of the integrand which we highlighted in the discussion after (5.2.19), 

although the algebra is somewhat protracted and tedious. 

We note that the form of (5.3.40) is entirely different from (5.3.25) therefore each 

method provides an independent check on the other. However, if we compare (5.3.33) 

with (5.3.47) we must have cpi = cp2 in which case, as the approach to determining 

the scattering matrix is identical whichever method is used, we drop the suffix on 

cpf. 

5.3.3 Recovery of the scattering matrix 

In our two-dimensional notation (5.3.22) and (5.3.23) become 

B_ = A+ -i 2aho 
(0, F=), (5.3.48) 

and 

B+ =A- - 2aho 
(0'F'+)" (5.3. "9) 

Then using (5.3.33) or (5.3.47) we deduce that 

B_ =A+-a{(A_+B+)P±+(A++B_)P=} 1 (5.3.50) 
B+=A_-a{(A_+B+)P+ +(A++B_)P+}. 
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where we have defined 

Pf = (co 
, Ft), and A= 

4aho 
(5.3.5 1) 

. 

and the superscripts and subscripts on the left-hand side correspond to those that 

are attached to quantities on the right-hand side. Then rearranging these equations 

we find 

(I + AP) 
(B+) 

(I _ aP) I Ä-) 
, where p= 

P+ P± f (5.3.52) 
+/ 

and I is the 2x2 identity matrix. Finally, comparison with (5.2.8) shows that 

M= (I + )P)-1 (I - AP). (5.3.53) 

5.4 Approximation and numerical method 

The problem of determining the reflection and transmission coefficients has been re- 

duced to one in which we need to determine the four matrix elements P: of P which 

are defined in (5.3.41) in terms of inner products involving functions c which are 

the solution of the integral equations in (5.3.25) or the integro-differential equations 

in (5.3.40). These alternative formulations of the problem call for different styles 

of approach depending critically upon whether or not the integral operator is self- 

adjoint. 

5.4.1 Boundary element approach 

The operator ICI is not self-adjoint and furthermore the physical nature of the ad- 

joint problem is unclear. Therefore it is not evident how to solve integral equations 

based on this operator by the Rayleigh-Ritz method. In fact we find that this for- 

mulation is particularly amenable to a boundary element approach. In what follows 

we assume that the bed profile z= h(x) is single-valued in x, that is to say there 

are no overhangs. This is not unduly restrictive, our main reason for requiring it is 

simplification of the parameterisation of the curve by projecting the curve IF onto the 
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x axis. In any case this is purely a numerical issue in that it affects how we choose to 

parameterise the surface. If h(x) was no longer single valued the method would not 
fail, we would choose an alternative parameterisation defined along the curve rather 

than using projection and parameterising along the x axis. 

Projecting (5.3.24) onto the x axis using ds = odx and 0/0s = Q'1O/0x results 

in 

(K iO)(xo, h(xo)) _ O(xo, h(xo)) - 
fl (d 

-- l2g=) dx (5.4.1) 

where the argument of the Green's function terms gZ and gi is (x, h(x); xo, h(xo)) 
. 

Therefore defining a pair of functions Bpi (x) for xE [0, e], the integral equation 
(5.3.25) becomes 

(1Civ )(xo) = Oö (xo, h(xo)), xo E [0,1. (5.4.2) 

We now solve (5.4.2) by a boundary element approach, namely subdividing the x 

axis into N equal length elements and assuming 0 takes a specific form on each 

element. Often in boundary integral approaches increasingly sophisticated choices 

of the form of q are taken. For example piecewise polynomials, defined on each 

element so that and one or more of its derivatives are continuous at the ends of 

adjacent panels, might be chosen in the hope that they will better approximate the 

exact solution. In fact we find that, in this formulation, the simplest approximation 

thät 0 is a constant on each panel is extremely effective. Thus writing (5.4.2) in full 

using (5.4.1) and assuming <p is a constant on each panel results in the equation 

(xo, h(xo)) -N ýn 
Yn2 n ýa 29zdxýö ýO (xo, h(xo)) (5.4.3) 

n=1 
a 

where x,, = (2n - 1)b with ö= e/2N, defines the position of the midpoint of the 

n'th panel. In this form it is clear that the main advantage of choosing such a simple 

form of cp on each panel enables us to integrate out the potentially most singular 

term in the equation explicitly. Therefore we may write 

N z�+b \ 
ýo (xo, h(xo)) -E wn [9zl 

2: n-15 -12 J_g dx f= 00 (xo, h(xo)) (5.4.4) 
n_1 x� ö 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

We proceed by collocating, i. e. requiring (5.4.4) to hold exactly at the centre point 

of each panel in xo, therefore (5.4.4) becomes 

N 

wm -ý ýn (Arran 
- Z2Bn+n) = 00, 

M, ? 72 = 1ý 
... , 

N, (5.4.5) 

n=1 

Where fpm = fo (xm, h(Xm)) 
, 

co, 
m =0 (xm, h(xm)), 

Amn = [gi(x, h(x); xm, h(xm))), ". ±ä (5.4.6) 

and 
x�+a 

ýmn = gz(x, h(x); x�j, h(x,,, )) dx. (5.4.7) 
xn-a 

We now simply solve (5.4.5) which is a system of two straight forward NxN matrix 

equations differing only by the forcing terms on the right hand side. 

Finally, using (5.3.33) in (5.3.51) we deduce that 

N 

v- Fnf (5.4.8) 
n=1 

where F�± is given by 

a 
ý''nf = x�-a 

112 £n+6 
[f. ± (x, h(x))x�+d - ff (x, h(x» dx (5.4.9) 

thus giving us all the information we require to calculate the scattering matrix. It 

should be stressed that there are no numerical difficulties with any of the calculated 

quantities. The only quantity which would have been expected to cause difficulties, 

that is Amn for m=n, is integrated out explicitly. Although deceptively simple, this 

approach is extremely powerful and efficient, when it is compared with the amount of 

effort required to implement the traditional approach using normal derivatives rather 

than our switch to tangential derivatives (see for example Fenton [34]). 

5.4.2 Rayleigh-Ritz approach 

Crucially to what follows the integro-differential operator JC2 is self-adjoint. There- 

fore, in order to solve the integro-differential equation, we use a standard variational 
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5.4. Approximation and numerical method 

principle applicable to self-adjoint operators and, with p'ý E 7.1 we define the func- 

tional J2 :xx 7-1 -º C by 

J2 (p+) p) _ (p+, F) + (F+, p-) - (KP+, p-). (5.4.10) 

It is easily shown that the functional . 12 is stationary with respect to variations in 

p+, p- when p+ = cp+ and p= co where it takes the value 

J2(ýP+, c)= P± = P+" (5.4.11) 

A second functional, Jl : 7-l -+ R is defined by 

Ji (Pt) = (pl, Ft) + (Ff, p: k) - (KP}, Pt) (5.4.12) 

is designed to be stationary at pt = cpt where its respective values are 

(5.4.13) JiW) = p+, �i(v) = P--. 

An approximation to cpf , say cpf gives rise to approximate values of Pt 
, say Pt 

. 
The variational principles above immediately give rise to the estimates 

IPT-1'f1=O(IIca -ý*IIJIw}-;; *II) (5.4.14) 

where the superscripts and subscripts on the left-hand side correspond to the first and 

second factors on the right-hand side. That is, the approximations to the quantities 

of interest are second-order accurate with respect to first-order approximations (in an 

L2 norm sense) to the exact solutions of the integral equations. 

Adopting this principle c is approximated by cps E 7-IN+i, an (N + 1)- 

dimensional subspace of f (as yet undefined), spanned by a set of test functions 

pn(s, t) E fN+l 
1 

by writing 

N 

ýt = anpn(S). 

n=0 

(5.4.15) 

This approximation is substituted in place of p: ý in (5.4.10) and (5.4.13). By mak- 

ing the resulting expressions stationary with respect to an , we arrive at the two 

125 



Chapter 5. Wave interaction with a ridge of arbitrary profile 

independent system of equations 
N 

E 
an (Kpn, pm) _ (F±) pm) 

n=0 

(5.4.16) 

where the coefficients an are determined by selecting F+ on the right-hand side, and 
likewise for an . The system of equations (5.4.16) are equivalent to direct application 

of Galerkin's method to the original integral equations in which (5.4.15) is substituted 
into (5.3.40) and the residual is forced to be orthogonal to the space fN+i spanned 
by the functions p,,. 

The resulting approximations to P. are 

_1: at (, 
l' � 

Pi 
nnr 

F'f 

n=0 

(5.4.17) 

where superscripts and subscripts correspond across both sides of the equation. The 

test functions p�(s) are defined to model the potential cp over the ridge and although 
it is possible to do so, we choose not to specify p,, at this point. 

Things now become a little complicated as we sift through the details of what 
(5.4.16) and (5.4.17) imply. We write 

(KPn, Pm) °- Kmn = limin + Km(2n) + Km(3n) + Km(4n) + Km(5n) (5.4.18) 

where 

and 

ICmn = -f pm(so) do Jr 
9xx0 

d dss) ds dso, (5.4.19) 

£ m(2n) = pm(so) 
dd 

-I2 fgxý p�(s) ds dso, (5.4.20) 
r so 

Km3ý = l2 
j 

pm(so) J 
9'zO C 9) 

ds 
ds0 

d 
(5.4.21) 

s vo 

IC , 
(�°n = 9opn(s) ds 

dso 
l4 J Pm(so) 

f 

ao 
(5.4.22) 

r r 

Km(5n) = -l2 (ho - h(xo))Pm(so)Pn(so) oo 
r 

(5.4.23) 

To simplify matters further, it is assumed that x(s) is monotonic increasing with s 

(i. e. h(x) is a single-valued function and so the ridge has no overhangs) so that we 
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5.4. Approximation and numerical method 

may project the integration from the curve IF onto the interval xE [0, PJ U. Further- 

more as h(x) is single valued, the arc-length s may be parameterised by x so that 

s= s(x), ds =o , (x) ds and also p�(s) - p, a(x). Then after integrating (5.4.21) 

and (5.4.22) by parts noting that there are no discontinuities which affect the inte- 

gration, and that the free terms are zero by construction, we obtain the simplified 
(and computationally friendly) form 

m mit 

t 
0))p(x)pn(xo) dx dxo, _ x. r "Za(x h(x); x0h(x n 

00g 0 
(5.4.24) 

Km> 
l[ 

= 12 J 9x0°(x, h(x); x0, h(x0))pn(x)p(xo) dx dxo, 
00 

(5.4.25) 

K3n = 
Ie 

0f 

f 
zzo(x, h(x); X0,1i(xo))iýn(x)Pýn(xo) dx dxo, l2 

o 
(5.4.20) 

Km4) = 
e 

l4 9:: o(x, h(x)i xo, h(xo»Pn(x)pºn(xo) dx dxo, f0 
0 

f (5.4.27) 

and 

K(S) = -l2 mit 
f 

(ho - h(xo))Pn(x0)Pm(xo) dxo (5.4.28) 

Without loss of generality we may assume that p�(x) is real so that Km,, in turn 

is a real matrix. Furthermore the individual kernels have the following symmetry 

properties 

K(11) = K, ß, 1) (5.4.29) 

K"n) = K"m, (5.4.30) 

K('? = K(4) (5.4.31) 

Km5? = K5,1 (5.4.32) 

which are easily deduced from (5.4.23) to (5.4.27) by switching variables. Hence it 

follows that K�a� is a real symmetric matrix, a property which is a direct consequence 

of the self-adjointness of K2 
. 

Let us now consider the right-hand side terms in (5.4.16) and develop them in a 

similar manner. Thus from the definition of F, in (5.3.29), and integrating by parts, 

(F±, pm) F'° 
J 

{± 
ll- 

(112) 
pºý+ ff (x, z)I(=, s)Er ds. (5.4.33) 

ko, r 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

Projecting onto the x axis and, as p,, (x) is real, 

m= 
rl {±P(X) 

±ix F' Jo - 1ý 1ýýº(x)} e Xo(h(x)) dx. (5.4.34) 

It follows that F,, = Fm and on account of Kmn being real, an = ant. Thus only 

one complex set of equations in (5.4.16) needs to be solved. Alternatively, a pair 

of systems of real equations for the real and imaginary parts of the right-hand side 

terms, F, n could be solved to generate an . 
All that is required of the functions pn(x) is that they define a complete set in 

the interval (0, t). However, functions which incorporate the local fluid behaviour at 

the end points of r will in general provide better results. For topographies where 

the join with the region of constant depth is not continuous, the flow at the join is 

locally like potential flow within a wedge and hence the bed flux must vanish at the 

join. In such cases therefore we choose p,, (x) = cos nirx/e which gives the required 

behaviour at the join. In the case of smooth joins Legendre polynomials, or a full 

Fourier series, would be appropriate. 

The case of normal incidence requires more careful thought because, when l=0 

and po(x) =1 then the matrix Kmn becomes degenerate with zero entries in the first 

row and column. This is because we formulate the problem in terms of the potentials 

p�(x) and then find the flux q�(x) = p;, (x), whereas the normal incidence problem 

is determined by the bed flux (see for example, Porter & Porter [77] or Staziker et 

al [89]) 
. 

Thus in the case of normal incidence the correct approach is to expand 

the flux functions q�(x) as a complete set and then the p�(x) do not appear. In 

fact, using this approach we recover Porter & Porter's [77] formulation exactly, thus 

showing how our approach generalises theirs to three-dimensional problems. 

Let us briefly discuss some of the issues surrounding the computation of the solu- 

tion. There are five separate elements, i=1,5 which make up Kmn . Although 

symmetry implies only half the elements need to be computed, and that they are real, 

each factor requires the evaluation of a double-integral in which the kernel is not sep- 

arable. The infinite sums in the kernels decrease exponentially away from the line 
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5.5. Edge waves over a ridge 

x= xo where convergence is only algebraic, therefore the kernels are relatively easy 
to compute. It is worth noting that, in Km(1n) it is easy to see, with reference to Porter 
& Porter [77], that the kernel gx'ý contains a logarithmic singularity. Thus we write 

9x, 0 (X, z; xo) zo) - 9xx' (x, z; xo, zo) - 2-1nT(x, z; xo, zo) (5.4.35) 

where 

ý'ZxxoZo(x z" xo, zo) = 
aXo(z)Xo(zo) 

2 2h sinalx-xo1 0 
ýarXr(z)Xr(z0)e 

cYrýx_xoý 
- 

sin(rirz/ho)sin(r7rzo/ho) 

_ 

e-, rýx-xollhol 
1 (5.4.3G) -E 2krho rr 

and 

sine 2ir(z + zo)/ho + sinh2 57r(x - xo)/ho T(x, z; x, zo) _ (5.4.37) 
sine 2ir(z - zo)/ho + sinh2 2ir(x - xo)lho 

The sum in (5.4.36) above is now convergent for all x-xo and Abramowitz & Stegun 

[11 has been used to sum the series explicitly. 

5.5 Edge waves over a ridge 

We turn to the edge wave problem, where much of the analysis carries forward from 

the scattering problem. Again, to be specific, let us write the boundary value problem 

to be considered in the quasi two-dimensional formulation. We seek O(x, z) satisfying 

(V2 - l2) = 0, in D, (5.5.1) 

with 

ao 
= 0, xE (-oo, 0) U (e, oo) (5.5.2) 

äz 

, go 
On = 0, (x, z) E I', (5.5.3) 
On 

with the "edge-wave" condition 

0-4O, 1 xI --+ 00. (5.5.4) 
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Chapter 5. Wave interaction with a ridge of arbitrary profile 

As in Section (4.3.1), we consider l to be the given parameter of the problem and 

seek a value of k (below the cutoff so k< 1) for which edge waves are found. 

The edge wave condition necessitates a modification to the Green's function in 

(5.2.14) which we may continue to write as 
00 

ýrz Or(Z0) 
arlx_xol g(x x' x o, zo = 1: 

2a he- 
5.5.5) 

r_0 ro 

provided we modify the ar in (5.2.15) so that 

a, = iz + kT ao = l2 +k=a. (5.5.6) 

This has the effect of changing what was a propagating mode before, into an evanes- 

cent mode thus ensuring that the Green's function satisfies the edge-wave condition. 

We proceed, as before by applying Green's identity to the functions g and 0 and 

switch from normal to tangential derivatives using (5.3.27) to give 

1 
O(xo, zo) =f 

(-2- 

s 
9x -12 12 9z) «(s) ds. (5.5.7) 

r 
This is a simplified version of (5.3.25) in that there are no forcing terms. Once again 

we may solve it in two different ways according to how we formulate the integral 

equation. Thus solving (5.5.7) directly via a boundary integral approach we would 

define an integral operator e1 as 
2l 

(ei0)(so) = O(so) -f 
Cý 

9. -- 9z J «(s) ds (5.5.8) 

r/ 
in which case the problem to be solved is 

(c10)(so) = 0. (5.5.9) 

The boundary integral equation approach proceeds exactly as before, therefore we do 

riot present the detail, but note that it results in a matrix equation of the form 

Eml, ), 0�=0 m, n= 1,..., N. (5.5.10) 

We solve the equation by finding the value of k for which the determinant of the 

matrix vanishes thus identifying the particular frequency which supports edge waves. 
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5.6. Results 

Alternatively we may reformulate (5.5.8) in a form suitable for solution by the 
Rayleigh-Ritz method. Thus, taking the normal derivative and proceeding as before 

we arrive at the integral equation 

'9 zo 00 12 ra cz ash gxxo 
as 

+ ýgxo°ý ds 
-z Qo 

Jr 

(gzzo 

fýs 
ý9szo0 

ds 

rJ J 
12 

- 0(so)(ho - h(xo)) _0 (5.5.11) 
010 

which, if we define 62 as 

(62ý)(s0) = 
ýýý(so)(ýo 

- h(xo)) -o 
Cgi 

o+ 
ý2gxö0¢ 

J as 
r 

+ 
0,0 

% (gx=o 
aý + 

le 
g; ý00) ds, (5.5.12) 

may be written as 

(E20)(s0) = 0. (5.5.13) 

Solution of this equation follows exactly as before with no new issues introduced by 

the slightly modified Green's function, thus once again we arrive at a matrix equation 

of the form 

E(2) c,., =0m, n=0,. - -, N. (5.5.14) 

Again, we solve this by finding the values of k<l for which the determinant vanishes. 

5.6 Results 

Let us first consider the convergence properties of the boundary element (BE) method 

and the Rayleigh-Ritz (RR) method by comparing them with exact results for a semi- 

circular ridge found by multipole techniques. We solved the problem for a semicircular 

ridge where the radius to depth ration a/h = 0.5 truncating the multipole system 

at N= 16 which by reference to Chapter 4 can be viewed as giving exact solutions, 

certainly to the number of figures displayed below. We then varied the number of 

panels in the BE method for a range of incidence angles presenting the results for 

0= 0°, 30°, 45° and 60° in tables (5.1) to (5.4) respectively. We extrapolated to 
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the results for N= oo by interpolating the data against 1/N and finding the inter- 

polated value for 1/N =0 using the standard cubic spline interpolating routine in 

Matlab version 6.5 Release 13. It should be stressed that there is no mathematical 

basis for supposing that this method will converge to the correct answer. The extrap- 

olation was done simply to investigate whether it did improve the convergence of the 

system. 

kl 
N 1 2 3 4 5 
20 0.237085 0.080225 0.004956 0.002579 0.000847 
40 0.237068 0.078341 0.004503 0.002447 0.000769 
60 0.237051 0.077868 0.004398 0.002412 0.000750 
80 0.237041 0.077670 0.004356 0.002397 0.000742 
100 0.237036 0.077565 0.004333 0.002388 0.000738 

120 0.237032 0.077502 0.004320 0.002383 0.000736 
140 0.237030 0.077460 0.004312 0.002380 0.000734 
160 0.237028 0.077431 0.004306 0.002378 0.000733 
180 0.237026 0.077410 0.004301 0.002376 0.000732 
200 0.237025 0.077394 0.004298 0.002375 0.000731 

00 0.237018 0.077294 0.004278 0.002367 0.000727 

exact 0.236692 0.077295 0.004282 0.002367 0.000728 

Table 5.1: Convergence of IRI by the Boundary Element Method for scattering at 
normal incidence by a semicircular ridge where a/ho = 0.5. 

It should be noted that we anticipate the semicircular ridge problem to be a severe 

test of our numerical approximation. This is simply because, in both BE and RR we 

have projected our integrals down onto the x axis. This technique breaks down when 

the gradient is infinite as occurs at the joins of a semicircular ridge to the constant 

depth domain. To resolve this numerically one would instead parameterise in terms 

of arclength at the expense of complicating the numerics somewhat. Alternatively as 

we have done, we restrict our applications to topographies where the gradient does 

not become infinite (or contain any overhangs). In our numerical integration schemes 

we use a 10 point Gaussian quadrature scheme which performs the quadrature at 
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internal points of the interval therefore enabling us to investigate the semicircular 

ridge numerically as we never calculate quantities of interest at the end points where 
the gradient is infinite. 

We see from table 5.1 that normal incidence provides a severe test in that, at 
best, 200 panels gives 2-3 s. f. accuracy. We also note that extrapolation does not 
improve the convergence. Further increases in the number of panels does not change 
the convergence significantly, but increases the running time markedly. The main 

reason is that, on the end panels, the slope of the topography changes significantly 

and therefore there is significant fluid motion that cannot be resolved by assuming 

the potential is a constant on the panel. 

kl 
N 1 2 3 4 5 

20 0.180226 0.059298 0.001009 0.004151 0.001679 
40 0.180382 0.057664 0.000437 0.004115 0.001613 
60 0.180409 0.057251 0.000300 0.004104 0.001596 
80 0.180419 0.057077 0.000243 0.004098 0.001589 
100 0.180423 0.056985 0.000214 0.004095 0.001585 
120 0.180425 0.056930 0.000196 0.004094 0.001583 
140 0.180427 0.056893 0.000185 0.004092 0.001582 
160 0.180428 0.056868 0.000176 0.004092 0.001581 
180 0.180429 0.056849 0.000171 0.004091 0.001580 
200 0.180429 0.056835 0.000166 0.004090 0.001579 

00 0.180431 0.056746 0.000138 0.004087 0.001576 

exact 0.180431 0.056752 0.000140 0.004087 0.001576 

Table 5.2: Convergence of the Boundary Element Method for scattering at 30° inci- 
dence by a semicircular ridge where a/ho = 0.5. 

Interestingly we see in Table 5.2 that obliqueness appears to help the convergence 

of the system. Most values converge to values where only the fifth decimal place 

changes above a value of 100 panels. Furthermore the extrapolation appears to be 

successful giving four significant places in most cases. The results for kl =3 are 

the only exception as they only achieve 1 s. f. and then only after a large number of 
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kl 
N 1 2 3 4 5 
20 0.091132 0.003878 0.024234 0.015633 0.006520 
40 0.091391 0.002509 0.024899 0.015723 0.006492 
60 0.091446 0.002161 0.025062 0.015742 0.006485 
80 0.091468 0.002014 0.025130 0.015750 0.006482 
100 0.091478 0.001936 0.025166 0.015754 0.006480 
120 0.091485 0.001889 0.025187 0.015756 0.006479 
140 0.091489 0.001858 0.025202 0.015758 0.006478 
160 0.091491 0.001836 0.025211 0.015759 0.006478 
180 0.091493 0.001820 0.025219 0.015760 0.006477 
200 0.091495 0.001808 0.025224 0.015760 0.006477 

00 0.091504 0.001733 0.025258 0.015764 0.006475 
Foxact 0.091503 0.001738 0.025256 0.015764 0.006476 

Table 5.3: Convergence of the Boundary Element Method for scattering at 45° inci- 
dence by a semi-circular ridge where a/ho = 0.5. 

panels is taken. This arises because there happens to be a zero of reflection at 3.0788 

which is so close to the value 3 that the BE method cannot resolve the "bounce" 

sufficiently accurately. 

The results in tables 5.3 and 5.4 all seem to confirm that an element of oblique- 

ness helps convergence of the system. At 45° and for kl > 3,140 panels suffices 

to give 4 d. p. accuracy and the effort in extrapolating gives 5 or 6 d. p. accuracy. 

At 60° incidence 100 panels generally suffices for 4 d. p. accuracy and the extrapo- 

lation generally gives 5-6 d. p. accuracy. These results are particularly impressive for 

such a simple collocation scheme when tested against such a demanding topography. 

Undoubtedly they are able to achieve these results because the switch to tangential 

derivatives enables us to integrate the most singular part of the kernel explicitly. 

Table 5.5 presents results for the RR method applied to the same scattering 

problem namely oblique incidence to a semicircular ridge of radius to depth ratio 

a/ho = 0.5. We ran results for a range of truncation sizes N of the trial space to 

investigate the convergence properties of the RR method. It is worth noting that for 
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kl 
N 1 2 3 45 
20 0.076042 0.134630 0.104805 0.055917 0.024469 
40 0.075837 0.135734 0.105513 0.056136 0.024508 
60 0.075793 0.136015 0.105688 0.056188 0.024517 
80 0.075776 0.136134 0.105761 0.056209 0.024520 
100 0.075767 0.136197 0.105800 0.056220 0.024522 
120 0.075762 0.136235 0.105823 0.056227 0.024523 
140 0.075759 0.136260 0.105838 0.056232 0.024524 
160 0.075756 0.136277 0.105849 0.056235 0.024524 
180 0.075755 0.136290 0.105857 0.056237 0.024524 
200 0.075753 0.136300 0.105862 0.056238 0.024525 

00 0.075746 0.136361 0.105899 0.056249 0.024526 
1 exact 0.075747 0.136357 0.105897 0.056248 0.024526 

Table 5.4: Convergence of IRI by the Boundary element method for scattering at 
60° incidence by a semicircular ridge where a/ho = 0.5. 

all values of N the RR method was noticeably quicker than the BE for greater than 

100 panels. We see that through most of the runs convergence is rapid to typically 3sf 

with a trial space of around 10. The exceptions are for 30° when ki =3 which as we 
have already seen that the proximity of a zero of reflection affects the convergence. 
With this in mind we investigate 45° and kl =2 where convergence is not as good 

and it transpires that there is a zero of reflection at 2.026416. 

Thus it appears that, in general, the RR method is characterised by rapid con- 

vergence with modest truncation sizes. However, the end effects of our projection 

method are evident in that increase in dimension of the trial space does not appear 

to change the convergence significantly. In essence the RR method uses a Fourier 

cosine series to model the potential, and from Fourier theory it is well known that the 

Gibbs' phenomenom affects the convergence at the end points of the range. This, in 

conjunction with the limitations of the projection method for infinite gradients, must 

be the prime reason for no further significant improvement in results. 

Despite providing a severe test, the semicircular ridge problem confirms that the 
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kl 
0 N 1 2 3 4 5 

5 0.237009 0.077260 0.004294 0.002353 0.000747 
10 0.237017 0.077292 0.004281 0.002364 0.000728 
15 0.237018 0.077293 0.004279 0.002366 0.000727 

0° 20 0.237018 0.077294 0.004278 0.002366 0.000727 
25 0.237018 0.077294 0.004278 0.002366 0.000727 
30 0.237018 0.077294 0.004278 0.002366 0.000727 

Exact 0.236692 0.077295 0.004282 0.002367 0.000728 
5 0.181811 0.059348 0.000019 0.004621 0.001677 
10 0.180657 0.057252 0.000001 0.004267 0.001622 
15 0.180571 0.057027 0.000106 0.004156 0.001592 

30° 20 0.180493 0.056888 0.000109 0.004131 0.001587 
25 0.180477 0.056848 0.000126 0.004113 0.001582 
30 0.180457 0.056812 0.000126 0.004107 0.001581 

Exact 0.180431 0.056752 0.000140 0.004087 0.001576 
5 0.092749 0.004323 0.024976 0.016205 0.006680 
10 0.091693 0.002239 0.025300 0.015925 0.006545 
15 0.091620 0.002007 0.025249 0.015824 0.006503 

45° 20 0.091549 0.001867 0.025265 0.015804 0.006493 
25 0.091535 0.001826 0.025258 0.015788 0.006486 
30 0.091517 0.001790 0.025262 0.015783 0.006484 

Exact 0.091503 0.001738 0.025256 0.015764 0.006476 
5 0.074471 0.133630 0.104954 0.056326 0.024707 
10 0.075553 0.135829 0.105792 0.056334 0.024594 
15 0.075637 0.136084 0.105826 0.056276 0.024553 

60° 20 0.075710 0.136232 0.105877 0.056274 0.024545 
25 0.075725 0.136277 0.105884 0.056265 0.024539 
30 0.075744 0.136315 0.105897 0.056265 0.024537 

Exact 0.075747 0.136357 0.105897 0.056248 0.024526 

Table 5.5: Convergence of IRI by the Rayleigh-Ritz method for oblique scattering by 

a semicircular ridge where a/ho = 0.5. 

method of switching from normal to tangential derivatives and its implementation in 

both RR and BE work. This is important given the lack of published exact results 

for fully three-dimensional scattering problems. Our final check on the accuracy of 

the methods is to compare results from BE and RR methods against each other for 

oblique scattering by a topography where the gradient is nowhere infinite. This will 

provide the final confirmation of the methods as, although they are derived from the 

same integral equation, their formulation and implementation are entirely distinct. 
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5.6. Results 

In figure (5.2) we plot results for oblique scattering by a ridge whose profile is 

a single period of a sine function with a maximum height h,,,, ax = 0.5ho and the 

length to depth ratio l/ho = 1. Results for the RR method were produced with a 

truncation size of N= 32 which was chosen to avoid convergence issues. We will 

return to the issue of the rate of convergence of the RR method later. The results 

for the BE method were produced with a modest number (N = 100) of panels. We 

plot the results for the RR method as solid lines with no marker; the BE results for 

the same problem are overlaid as markers of the same colour. It is evident from the 

plots that the two sets of results are visibly indistinguishable. In fact for almost all 

of the range of values the results agree to at least 5 d. p. and in many cases to 6 d. p. 

The only area where the error is greater is in the immediate vicinity of zeros as we 

have already seen. 

This is the final confirmation that both methods and their implementations give 

accurate results. Accordingly, from now we shall concentrate on investigating the 

effect of the truncation size N upon convergence of the Rayleigh-Ritz method. Tables 

5.6 to 5.8 all show results for the same topography, identical to that used to produce 

figure 5.2, namely a ridge for which h(x) = ho(1 - 0.5sin(7rx/1) and l/ho = 1. For 

normal incidence it is clear from table 5.6 that convergence is rapid with 4 d. p. being 

achieved typically with N=4-6 and 5 d. p. by N= 10 although improvement of 

the sixth decimal place is somewhat slower. 

The position is generally the same for angles of incidence 30° and 60° in tables 

5.7 and 5.8 respectively. Therefore we conclude that the Rayleigh-Ritz method is 

extremely quick to converge to accurate results with an even higher degree of accuracy 

obtained by only a modest truncation size. Accordingly for the figures that follow we 

use a truncation size of N= 10 as any larger would not produce a change in results 

that would be discernable from the plots. 

We now plot results for oblique scattering by a ridge in the shape of a hump defined 

by a single period of a cosine functiom so that h(x) = ho - h�. y(1- cos irx/l) . This 
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Figur c 5.2: Comparison of BE and R. R methods for oblique scattering by a ridge 
where 1i(. ß) = ho(] - 0.5 sin(7rx/1)) and l/h0 =1 

to, f)ogrrpliy is characterised by a smooth join with the domain of constant depth. 

Figure 5.3 shows how, for this particular topography when h,,,,,,. /hc = 0.75, the 

reflection coefficient varies against the angle of incidence for a fixed wave, , III il)cr ki 

t he value of which is marked in the legend. In contrast figure 5.4 shows the effect of 

altering 11,,,,,,,. /110 for this same topography. this time plotting the reflection coefficient 

I /HI against, wavennrnilrer H. 

Finally we turn to the edge ýýave problem. which for vnriely we choose to solve 

using t he boundary element, formulation. Results are presented for edge waves over 

ar ridge for which li. (T) = h0 - 0.95ho(1 - cos in/i) at figure 5.5 and were produced 

using a system with 100 panels. The numerical problem involves finding frequencies 

loll� < lho for a given lh() such that the determinant irr (5.5.13) vanishes. The values 
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5.6. Results 

kl 
N 1 2 3 4 5 
2 0.223104 0.110831 0.032456 0.011015 0.004754 
4 0.222076 0.105698 0.025625 0.005701 0.001800 
6 0.222036 0.105636 0.025632 0.005608 0.001577 
8 0.222026 0.105614 0.025629 0.005610 0.001578 
10 0.222023 0.105607 0.025628 0.005611 0.001578 
12 0.222021 0.105603 0.025628 0.005611 0.001578 
14 0.222021 0.105602 0.025628 0.005612 0.001578 
16 0.222021 0.105601 0.025628 0.005612 0.001578 
18 0.222020 0.105600 0.025628 0.005612 0.001578 

32 0.222020 0.105600 0.025628 0.005612 0.001578 

Table 5.6: Convergence of JR1 against truncation size N for scattering of uonually 
incident waves by a ridge where h(z-) = ii (1 - 0.5 sin(7rx/1)) and I/h. 0 =] 

N 1 2 3 4 5 
2 0.169307 0.073674 0.006435 0.006869 0.0050-1.1 
4 0.169188 0.077948 0.015823 0.001472 0.000334 
6 0.169180 0.077890 0.015805 0.001490 0.000226 
8 0.169177 0.077870 0.015809 0.001498 0.000222 
10 0.169175 0.077861 0.015810 0.001500 0.000221 
12 0.169175 0.077857 0.015810 0.001501 0.000221 
14 0.169174 0.077855 0.015809 0.001501 0.000221 
16 0.169174 0.077853 0.015809 0.001501 0.000220 
18 0.169174 0.077852 0.015809 0.001502 0.000220 

32 0.169174 0.077850 0.015809 0.001502 0.000220 

Table 5.7: Convergence of IRI against truncation size N for scattering of oblique 

waves incident at 30° to a ridge where h(x) = h. 0(1 - 0.5sin(lr: r/l)) and I/h, i =1 

of khoý inevitably have to be found by a bisection method wliicl1 scar(I1cs for cliallges 

in sign of the determinant between two values of kh0 and reduces the interval until 

a required tolerance is achieved. We optimise the numerical systeiii hv <ipplý ink a 

routine which calculates the determinant at a range of vales kho for the largest value 

of lh, oý of interest and is used to find coarse intervals in which edge wave frequencies 

may be found. These intervals are then used as seed values for calculation of the edge 
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kc 
N 1 2 3 4 5 
2 0.052524 0.100347 0.082467 0.046529 0.021832 
4 0.052628 0.098438 0.077827 0.042036 0.018972 
6 0.052621 0.098483 0.077851 0.042038 0.018947 
8 0.052620 0.098498 0.077857 0.042038 0.018946 
10 0.052619 0.098504 0.077860 0.042038 0.018946 
12 0.052619 0.098507 0.077861 0.042038 0.018946 
14 0.052619 0.098508 0.077862 0.042039 0.018946 
16 0.052619 0.098509 0.077862 0.042039 0.018946 
18 0.052619 0.098510 0.077862 0.042039 0.018946 
20 0.052619 0.098510 0.077863 0.042039 0.018946 

32 0.052619 0.098511 0.077863 0.042039 0.018946 

Table :;. H: Convergence of IRI against truncation size A' for scattering of oblique 

waves incident at 60° to a. ridge where h(: r) = h0(1 - 0.5sin(7r. r/1) and 1/ho 

o. si 
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80 

Figure 5.3: oblique scattering by a ridge for which h(i) = ho - o. 75h0(1 - cos ýrx/l) 

-I/? I against 0 for fixed wavenuniber kl. 

wave frequencies for all 1h0 of interest by Ridder's method. The underlying approach 

iii 161der's method is still to find roots by bisection however. it uses earlier values to 

forecast, an approximate value and squeeze the interval so that after around 3 steps, 

only a couple of bisect ions is required. This provides significant efficiency. particularly 

if the Rayleigh 
-Rit. z method were to be used as in this method the calculation of the 
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determinant is computationally expensive. 

5.7 Remarks 

In this chapter we have shown how to formulate a three-dimensional problem as an 

integral equation which satisfies the fixed boundary condition exactly. It provides 
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a. geueralisat iou of' the two -dimensional Cauchy Riemann equation based approach 

high lighted in Chapter 3. The switch to tangential derivatives in loth 2 and 3 di- 

iueusiolls is (rit, ical as it is this which transforms the system to a weakly singular form 

winch allows explicit treatment of the singularity. 

WC have offered a choice of two methods, both of which allow the most singular 

art of the integral equation, which in any case is at worst weakly singular, to be 

integrated explicitly. Time boundary element method provides an easy to implement 
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5.7. Remarks 

system which typically reaches engineering accuracy (3-4 s. f. ) by typically solving 

a, 100 x 100 system of equations. The Rayleigh-Ritz method is uunwri< ally more 

demanding, but in contrast achieves at least 5-6 s. f. by solving a 10 x 10 system. 

The main advantage of these methods is that the switch to tangent i: il dcrivat ive :s 

produces simpler numerical schemes than traditional Cauchy-singular formulations. 

This is evident in our boundary element method where the switch means that no 

further special treatment is needed to evaluate the derivatives of t he Green's function. 

The additional effort in the analysis for our other approach is rewarded by allowing 

us to employ the Rayleigh-Ritz method and to retain an exact formulation. 
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Chapter 6 

Scattering of obliquely incident 
waves by a step of arbitrary profile 

6.1 Introduction 

In this chapter we show how the ideas from Chapter 5 may be used to tackle the 

more realistic, and substantially more demanding, problem of oblique scattering by a 

step of arbitrary profile. The problem of scattering by a step between two domains 

of constant but different depth is of great practical interest and continues to receive 

attention, even in two dimensions. A brief overview of the background to this problem 

is presented below. 

Lamb [49] first dealt with the shallow-water (or very long wavelength) problem of 

wave scattering by a vertical step, an approach which is repeated in Mci [61]. Miles 

[62] used a variational approach to solve an eigenfunction matching technique to deal 

with this same problem and also introduced the scattering matrix formulation that 

we employ in these problems. Mei & Black [59] extended these ideas to deal with 

scattering by rectangular obstacles whereas Kirby & Dalrymple [46] solved the similar 

problem of oblique diffraction by a rectangular trench. Porter [73] revisited Miles' 

[62] problem developing Miles' eigenfunction approach and solving it by a Galerkin 

method. More recently Rhee [82] and [83] has looked at the transmission of oblique 

waves over a shelf to second-order. The natural extension of the vertical step is the 

linear slope joining two domains of different depth, a problem considered by Booij 
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Chapter 6. Scattering of obliquely incident waves by a step of arbitrary profile 

[8] who used it to assess the accuracy of the mild slope equations. The Booij profile 

continues to be used as a canonical test of a wave scattering theory, see for example 

Ehrenmark & Williams [24]. 

Turning to arbitrary profiles, Evans & Linton [27] present a novel technique 

whereby the two-dimensional arbitrary step problem is mapped into a uniform strip 

where the effect of the step manifests itself as a more complicated free-surface con- 

dition which is then discretised, hence the step approximation. Athanassoulis & 

Belibassakis [3] present what is essentially an extended version of the mild slope 

equations with an additional term to deal with the bed slope to tackle with the 

two-dimensional scattering problem. Porter & Porter [77] tackle the two-dimensional 

problem by forming an integral equation and switching from normal to tangential 

derivatives to finally solve the integral equation by the Galerkin method. As for the 

ridge problem discussed in Chapter 5, the oblique arbitrary step scattering problem 

has, to the best of our knowledge, received no attention in the literature. 

This chapter, investigating the scattering of obliquely incident waves by a step 

of arbitrary profile, provides a full generalisation of Porter & Porter's [77] equivalent 

problem for normal incidence. We keep our notation as close as possible to Porter 

& Porter's so that the nature of the extension is made as transparent as possible. 

Accordingly we solve this problem in its quasi two-dimensional formulation, switching 

to tangential derivatives using equation (5.3.27) which we deduced from the three- 

dimensional formulation of the oblique problem. This chapter therefore serves to 

illustrate how the ideas applied to a simple problem in Chapter 5 may be extended 

to more complicated, and physically more realistic, problems. 

The significant difference from Chapter 5 is that, instead of a ridge of arbitrary 

profile, we now have a step of arbitrary profile joining two regions of constant, but 

different depth. The bed profile, which is uniform along the y axis, is determined by 
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6.2. Formulation and preliminaries 

A, A2 

x 

B1 nz 

hi hx 

h2 

b 

.............. 

Figure 6.1: Geometrical description of the scattering problem for waves obliquely 
incident on an infinite step joining two domains of otherwise constant depth 

z= H(x) for -oo <x< oo where 

hl, x<0, 
H(x) = h(x), 0<x 

h2,9 < x, 

with hl and h2 constant. We present the case of scattering by a step whose profile 

does not dip below the deeper of the two domains of constant depth. The case of a 

step with a depression is more complicated, but does not add any new understanding 

to the problem. By following the methods in this chapter and referring to Porter & 

Porter [77] the extension to a step with depression should be straightforward. 

6.2 Formulation and preliminaries 

We proceed as before having reduced the three-dimensional problem to a quasi two- 

dimensional problem. The boundary value problem we will solve is 

(V2 -12)q5 =0 in D: -oo <x< oo, 0<z< H(x), (6.2.1) 

T+K-0 
=0 onz=0 (6.2.2) 
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Chapter 6. Scattering of obliquely incident waves by a step of arbitrary profile 

with K= w2/g as usual, 

a0=0 
on 

r z=h1 x<0 57 l z=h2 x>Q 

and 

(6.2.3) 

00 
an =0 on r: :0<x<t, z= h(x). (6.2.4) 

We modify our notation from the previous chapter to recognise that we have two 

regions of differing constant depth. So, now the far field behaviour of 0 is given by 

0(--, z) - -{Ale'"x + Bie 'atz}'t i, o(z), x --+ -oo (6.2.5) 

,- {A2e; a2x + B2e_; c(2x}02, o(Z)7 x --> 00 (6.2.6) 

where A; and B; are the wave amplitudes associated with incoming and outgoing 

waves (respectively) propagating at angles ±O to the x axis. Thus ai =ki cos Bi , 
I=k; sin O are the components of the wavenumbers ki , 

defined by the dispersion 

relations 

K=kitanhkih;, i=1,2. (6.2.7) 

We also define the depth modes according to the depth of the region under consider- 

ation so that 

Ni-n'2 cos ki, 
n(hi - z), Ni 

n=1 
(1 + 

Sink ki lLi) 
(6.2.8) 

x, n xJ 

and 

ai, n = l2 + ki2, 
n, ai, o = -1CYi (6.2.9) 

where ki, 0 = -iki and ki, n, n=1,... are the positive roots of 

K= -k;,,, tan k=,,, hi. (6.2.10) 

The principal unknown of this problem is the scattering matrix S introduced at 

(5.2.7) which given the form of the far-field in (6.2.5) and (6.2.6) takes the form 

S_ 
Rl -T2 (6.2.11) C -T1 R2 
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6.3. Oblique scattering by a step of arbitrary profile 

where Rl = B1/A1, Ti = -B2/A1, R2 = B2/A2 and Tl = -B2/A1. We note that 

to recover the transmission coefficients for the free surface displacements we must 

take into account the different depths into which the transmitted waves propagate so 

that 

Ti = Ti7P2, o(0)/ibl, o(O) Ts = T20i, o(O)/02, o(O), 

see Miles [62]. 

Analogously to (5.2.20) we introduce a set of functions related to t, b 
,,, 

(z) by 

Xi, n(z) = -ks,,, JO,,, (z') dz' = N, -�12 sin k;,, (h; - z), n=0,1, ... (6.2.12) 
h{ Ih, 

with ki, o = -ik; implying 

Xi, o(z) = -iNi, 
012 sinh k; (h; - z), (6.2.13) 

The oblique incidence Green's functions gi for regions of constant depth hi are given 

by 
00 

(x, z) 96 (XO, zo) 
n=0 

(6.2.14) g' -E 2ati, nh; 
e 

as in (5.2.13) so that 

9i ^, io=, o(z) i, o(zo)e; cx: lx-xol, Ix - xOJ -+ 00. (6.2.15) 
2aihi 

6.3 Oblique scattering by a step of arbitrary pro- 
file 

When the profile of the step does not dip below the depth of the deeper region of 

constant depth we solve the problem by considering two regions of constant depth 

and applying appropriate matching conditions at the intersection of the two regions. 

Region 1 is defined by x <0,0 <z < hl and region 2 as 0<x, 0<z <h2- 

We start by defining a Green's function g_ where 

9-=9i(x, z; xo, zo)+9i(-x, z; xo, zo) (6.3.1) 
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which satisfies (6.2.1) in x<0,0 <z< hl 
, 

(6.2.2) on z=0, x<0, and (6.2.3) on 

z= hl, x<0. It is constructed so that 

09- (6.3.2) 
ax -0 on x=0,0<z<hl. 

We now apply Green's identity to the domain -X < xo, x<0,0 <z< hl and 

evaluate the limit X -º oo from (6.2.5) and (6.2.15) to give 

hl 

O(xo, zo) = -2A1 cos(aixo)0i, o(zo) +f 9-(0, z; xo, zo)gx(0, z) dz, 
0 

xo<0,0<z<h1. (6.3.3) 

Then using the far-field forms of 0 from (6.2.5) and gl from (6.2.15) in (6.3.3) we 

deduce that Al and BI are related by 

o 

hl 
1 

aihi 
(6.3.4) 

Similarly we define a Green's function g+ where 

g+=g2(x, z; xo, zo)+g2(-x) z; xo, zo) (6.3.5) 

which satisfies (6.2.1) in x>0,0 <z< h2 1 
(6.2.2) on z=0, x>0, and (6.2.3) on 

z= h2,0 <x and is constructed so that 

ag+ 
=0 on x=0, O<z<h2. (6.3.6) 

ax 

Again we apply Green's identity, this time to the domain 0< xo, x<X, 0<z< h2 

and evaluate the limit X -º oo from (6.2.6) and (6.2.15) to give 

hl 

«(xo, zo) = 2A2 cos(a2xo)1P2, o(zo) -f 9+(0, z; xo, zo)»ý(0, z) dz 
0 

-1 0(x, z) -2-g+ (x, z; xo, zo) ds, 0< xo, 0<z< H(xo). (6.3.7) 

Then using the far-field forms of 0 from (6.2.5) and 92 from (6.2.15) in (6.3.7) we 

deduce that A2 and B2 are related by 

B2 
ý 

z) cos a24 dx. z= A2 - azhz 
ý%z. o(z)ýx(0, z) dz - azhz Jr 

ý(x' z) än 
(0ýýz, o( 

(6.3.8) 
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6.3. Oblique scattering by a step of arbitrary profile 

We now find it convenient to decompose the Green's functions so that 

9i = gý + 9i (6.3.9) 

and consequently 

9f = 9t + 9t (6.3.10) 

where 

o_ i0', 0(z) i, o(zo) 
cos ai(x - xo) (6.3.11) gi- 2a, hi 

and 
Oi, o(Z), Oi, o(z0) Wi, n1Z)Wi, n(z0) aj, Ix-ro1 gi= - sinaiIx - xoI +E e- (6.3.12) 

2aihi 
n=1 

2ai, nhi 

Using (6.3.9) and (6.3.11) in (6.3.2) and (6.3.5), we deduce that 

90-(0, z; xo, zo) = i0i, o(z)0i. o(zo) cos alxo (6.3.13) 
alhl 

and 

9. °o(0, z; xo, zo) = i' t/2, o(z)'2, o(zo) cos a2xo. (6.3.14) 
a2h2 

Then using (6.3.10), (6.3.13) and (6.3.4) in (6.3.3) we find that we may write 

hl 
O(xo, zo) = -(A1 + B1) cos(aixo)0i, o(zo) +f (0, z; xo, zo)0x(0, z) dz, 

0 
xo < 0,0 < zo < hl (6.3.15) 

and similarly, using (6.3.10), (6.3.14) and (6.3.8) in (6.3.7) we find 

/'h «(xo, zo) = (A2 + B2) cos(a2xo)02, o(zo) -J 9+(0, z; xo, zo)q: (0, z) dz 
0 

-10(x, z) ä 9+(x, z; xo, zo) ds, 0< xo, 0<z< H(xo). (6.3.16) 

Before proceeding further we convert the normal derivative in the integral along r 

in (6.3.16) to tangential derivatives using (5.3.23) to give 

hl 
0(x0, zo) _ (A2 + B2) cos(a2xo)1P2, o(zo) - 

in 
9+(0, z; xo, zo)0: (0, z) dz 

0 
21 

- fc! (x, z) (-(+)(xz; xozo) + (+); (x, z; xo, zo)J d3, 

\ 
0< xo, 0<z< H(xo). (6.3.17) 
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We obtain our first integral equation by matching the expressions for 0(0, zo) 

from (6.3.15) and (6.3.17) for 0< zo < hl . The first step is to take the limit xo -º 0 

in (6.3.17) and then integrate by parts by parts so that 

hl 
0(0, zo) = (A2 + B2)'b2, o(zo) -f 9+(0, z; O, zo)0ý(0, z) dz 

0 
12 

- äs 
«(x, z)(9+)x(x, z; 0, zo) + O(x, z) _ (9+)z(x, z; 0, zo) ds, 

0< zo < hl. (6.3.18) 

The free terms at the end of I' vanish because (g+)z(P, h2; 0, zo) =0 and likewise 

for (9-+)x*. The free terms at the beginning of r vanish because, from (3.3.16) 

00 
(9+)` (O, hi; 0, zo) _ 

X2, n(hi)02, n(zo) =f (zo) ° 
0' o< zo < hi, 

k2 nh2 1, hl < zo < h2. 
n=0 

(6.3.19) 

The fact that the value of the summation is undetermined at zo = 0, hl does not 

present a problem because we will solve the integral equations as integral operator 

equations in a Hilbert space which is required to be L2 integrable. So this require- 

ment is not affected by the summation only being defined almost everywhere (see 

for example Porter & Stirling [72] and Weir [102]). In fact we use (6.3.18) to define 

the values of 0(0,0) and q(0, hl) 
, hence our extension of the range of validity to 

0<zo<hi. 

Therefore matching (6.3.18) with (6.3.15) evaluated at xo =0 we find, after some 

rearrangement 

/'hl ir 

J 
{9-(0, z; 0, zo)+9+(0, z; 0, zo)}0x(0, z)dz+_s b(x, z)(9+)x(x, z; 0, zo)+".. 

2 

+ (g+); (x, z; 0, zo)O(x, z) ds = (Ai + Bi)0i, o(zo) + (A2 + B2) b2, o(zo), 01 

0< zo < hl. (6.3.20) 

In order to simplify (6.3.20) and expose the structure of the integral equations we 

define 
P(x) = q5(s(x)), (x, Z) E r, 

q(z) = 0x(0, z), 0<z< hl, 
(6.3.21) 
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6.3. Oblique scattering by a step of arbitrary profile 

so that p'(x) = Q-10q/as for (x, z) E r. Then using (6.3.21) in (6.3.20) and with 
ds =u (x) dx for (x, z) Er we have 

in hl 
kii (zo, z)4(z) dz +Jt ki2a(zo) x)p'(x) + 12k12b(zo) x)p(x) dx = 

(Al + Bl)b1, o(zo) + (A2 + B2)i2, o(zo), 0< zo < hl, (6.3.22) 

where the real valued kernels are given by 

ki2a(zo, x) _ (9+)'(x, h(x); 0, zo), (6.3.23) 

kl2b(zo, x) = (9+)z(x, h(x); 6, zo) (6.3.24) 

and 

kii(z, zo) =g_(0, z; 0, zo)+g+(0, z; 0, zo)" (6.3.25) 

The explicit forms of the kernels (6.3.23) to (6.3.23) are given by 
00 

ki2a(zo, x) _ 
2h2 

2, o(zo)X2, o(h(x)) cos(a2x) +E '+1ý2, n(z 
ZX 2(h(x))e 

a,,,,: 
n-1 

(6.3.26) 
00 

kl2b(zoI x) = 02, 
o(zo)X2, o(h(x)) sin(a2x) -ý 

V)2, 
n(zo)X2, n(h(x)), 

a2k2h2 
n=l 

a2, nk2, nh2 

(6.3.27) 

and 
{&in(zh)in(zo) 

+ (6.3.28) kil(z, zo) _ 
00 

n=1 
al'nýl a2'nh2 

A second integral equation will be obtained by applying the bed condition to 

(6.3.17), therefore as in Chapter 5, we extend the definitions of no to field points off 
the curve and take the normal derivative to obtain 

hl 

ano 0(x0) zo) _ (A2+B2) aýo (cos(a2xo)02, o(zo)) - a- 9+(0, z; xo, zo) 0�(0, z) dz 
10 

cz 
an 

O(xr Z) 
S 

+' (9+)s(x, z; xo, zo) ds, ao 
Jr 

(_. (4(xz; xozo) ä 

0< xo, 0<z< H(xo). (6.3.29) 

We now switch from normal to tangential derivatives using (5.3.36), so that 
z 

19 
aýo 

(cos(a2Xo) 
2, o(zo)) _- k2 

o 

(iX2, 
o(zo) sin(azxo)) -- 

(iX2, 
o('zo) cos(a2xo)) 

(6.3.30) 
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and also 
hl hl 

ono 
9+(0, z; xo, zo)ox (0, z) dz =-f (9+)yý(0, z; moo, zo)Ox(0, z) dz 

00 
12 

+ 
Jo 1o 

hl 
(9+)Z0 (0, z; xo, zo)5x(0, z) dz. (6.3.31) 

The final term in (6.3.29) includes those appearing in (5.3.37) to (5.3.45) and so we 

do not repeat the details. We now move the field point onto the bed and apply the 

bed condition to give an integro-differential equation 
{___(ix2, 

o(zo) 0= (A2 + B2) sin(a2xo)) -k 
2 

(iX2, o(zo) cos(a2xo)) 
hl 

12 

12 hl 

oolJ 
(9+)Zo(0, z; xo, zo)0x(0, z) dz +f (9+)ßö(0, z; xo, zo)cx(0, z) dz - ýo 0 as 

12 
+ aso 

((9+)ý 
ý(x, z; xo, zo) aý + (9+)xö°(x, z; xoý zo)ý ds 

12 

Qo 

Jr( 
(9+)ýZ0 (x, z; xo zo) ao + 

lu 2( 
(x, z; X(), zo)ý) ds 

12 
+ 0(so)(h2 - h(xo)) (Xe, zo) E r. (6.3.32) 

01o 

This may be rewritten as 
{-! 

_(iX2, o(zo)sin(c2xo)) 0= (A2 + B2) 
0- 

(iX2, o(zo) cos(a2xo)) 

ihl 2 

Z2 -U0 

k2lb(xo, zo; z)4(z) dz + is-- 
0 010 o 

k2ia(xo2 zo; z)4(z) dz -- 
Ihl 

t 
+ao 

JO 

(k22a(x0, 
zo; z)p (x) +l2 k22b(X0) zo; z)p(x)) dx 

12 t 
--J 

(k22c(xo, 
z0; z)p (x) + 12k22d(xo, zo; z)p(x)) dx 

Qo 0 
12 

+- 0(so)(h2 - h(xo)), (Xo, zo) E r, (6.3.33) 
010 

where 
k210(xo)zo; z) _ (9+)xoo(O, z; xo, zo), 
k2lb(xo)zo; z) _ (9+)Z0(O, z; xo, zo)t 

k22a(xo> zo; x) _ (9+" °'x, h(x); xo, zo) 
(xo, zo)=E P. 

k22b(xo, zo; x) _ (9+)'z (x, h(x); xo, zo), 

k22c(xo, zo; x) = (9+)xz°(x, h(x); xo, zo) 
k22d(xo, zo; x) = (9+)zz°(x, h(x); xo, zo), 

(6.3.34) 
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6.3. Oblique scattering by a step of arbitrary profile 

By comparing (6.3.34) with (6.3.23) and (6.3.24) it is immediately evident that 

k2ia(xo, x) = k120(z, xo), (6.3.35) 

k2lb(xo; x) = ki2b(z; xo), (6.3.36) 

where, we have recognised that the arguments for (xo, zo) Er depend solely on x 
and xo. 

The explicit forms of the remaining kernels are 

k22a(xo; x) - 
X2, o(h(x))X2, o(h(xo))a2 {sin a2lx - xol - sin a2(x + x3)} 

2h2(k2)2 

00 
_0 

X2, n(h(x)) 
2h2 

X2, n 
(k2, n )(h(2 

xo))a2, n {e-ck2, nIX-=o1 - e-a2,. %(s+xo)}' (6.3.37) 
n=1 

k22b(xo; x) - 
X2,0(h(x))X2, o(h(xo)) {-sgn(x - xo) cos a21 X- xoI + cos a2(x + xo)} )2 

00 
_Z 

Xz, n(h2_2(_2 
n)2 

(xo)) 
{-sgn(x - xo)e °`', nI=-=ol +e aý, ýl=+=o)}, (6.3.38) 

n==1 
22c(x; x0) _ k22b(xo; x) 

and 

(6.3.39) 

k22d(xo; x) - 
X2,0(h(x))X2,0(h(xo)) {sin a2I x- xol + sin a2(x + x0)} 

2a2h2(k2)2 

00 

+E X2, n(h(x))X2, n(h(xo)) {e-a2, nlx-=oi + e-a2, n(x+xo)}. (6.3.40) 
n=1 

2a2, 
nh2(k2 n)2 

Finally, as in Porter & Porter [77] we employ a more succinct notation to expose 

the structure of the integral equations. We keep our notation identical to that in 

Porter & Porter so the extension of the structure to the oblique case is clear. Thus 

we introduce integro-differential operators K; 3 defined by 
hl 

(Kii4)(zo) =f ki1(zo, z)q(z) dz, (6.3.41) 
0 

ki2a(zo, x)p(x) +l2 k12b(ZOP x)p(x) dx, (6.3.42) (K12p)(zo) =f0 

both defined for 0< zo < hl whereas, for (xO, zo) E r, we have 

(K214)(xo) _-af 
hl 

k21a(xo, z)q(z) dz + 
12 

J 
hl 

k21b(xo, z)q(z) dz (6.3.43) 
äso o (7o o 
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and 

0% (K22P) (xo) _-oJ 
(k22a(xo+ 

x)p'(x) + 12k22b(xo; x)p(x)) dx 

12 1oI 
(k22c(xo; x)P'(x) + 12k22d(xo; x)p(x)) dx - 

l2 
O(so)(ho - h(xo)). (6.3.44) +ý 

01o 

We also introduce the inner products 

/' 
(4i, 42)i =J 4i(z)g2(z) dz, (pi, p2)2 = i(s)p2(s) ds. (6.3.45) 

o 

hl 

Jr r 

If we now write 

fl; (z) = z/)t, o(z), 0<z< hi, i=1,2, (6.3.46) 

f21 (S) = 0, (x, z) Er (6.3.47) 
2 

f22 (8) _- k2 
lag 

äa s 
(X2, o(z) sin(a2x)) - kil 2Q 

(X2,0 (Z) cos(a2x)) (6.3.48) 

then the integro-differential equations (6.3.22) and (6.3.33) may be rewritten as the 

operator equations 

Kiiq + K12p = (Ai + B1)fii + (A2 + B2)f12 (6.3.49) 

K21q + K22p = (Al + Bl)f21 + (A2 + B2)f22. (6.3.50) 

These can be further simplified to the equation 

Kv = (A1 + B1)fl + (A2 + B2)f2 (6.3.51) 

in L2(0, hl) (D L2(0,2) where 

ICii K12 q fis (6.3.52) K 
1<21 K22 'V=p 

fi = f2i 

and we define a composite inner product 

(v(1)ß v(2)) = (q(l), q(2))1 + (p(1), p(2))2. (6.3.53) 

The solution of (6.3.51) is given by 

v= (Al + Bi)v(1 + (A2 + B2)v(2), (6.3.54) 

r t, 
,ý ý,; 
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where 

Kv(1) = f;, i=1,2. (6.3.55) 

The equations (6.3.4) and (6.3.8) can now be written as 

Bi = Ai -Z (v, fi), B2= A2 -Z (v, f2), (6.3.56) 
alhl a2h2 

so that, when we insert (6.3.54) into these expressions we find that the scattering 

matrix is given by 

S= (D + iV)-1(D - iV) 

in which 

D aihi 0v_ (v('), fi) (v(2), fi) 

0 a2h2 (v(l), f2) (v(2), f2) 

6.4 Approximation and numerical method 

(6.3.57) 

(6.3.58) 

The integral equations we have derived extend those obtained for the normal incidence 

case to a more general oblique case. Therefore, although the equations involved for 

oblique incidence are inevitably more complicated than those for normal incidence, 

when framed as operator equations they possess the same overall structure. As we 

have kept our notation consistent with Porter & Porter [77] and our integro-differential 

equations in operator form have the same structure, we follow their discussion of the 

approximation exactly. Thus we seek to approximate the real quantities 

Vjj = (v(i), ff), i, j = 1,2, (6.4.1) 

where 

Kv'`) = fi, i, j=1,2, (6.4.2) 

and K is a self-adjoint operator on 9-l = L2(0, hl) ®L2(0, f), which is equipped with 

an inner product (.,. ) 
. 

The functional J2 : 7-l x 7-l -º C defined by 

J2(P(I), P(2)) = (P(1), f2) + (f1, P(2)) - (Kp('), P(2)) (6.4.3) 
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is easily seen to be stationary at p(i) = v(2) , for i=1,2 and the stationary value is 

J2(v(1), V(2)) = V12 = V21. The reduced functional Jl :f -º R where 

Jl (P(t)) = (p(i) f) + (f2, p(i)) - (KP( i), p(i)i (6.4.4) ' ý. 

is also stationary at p(i) = vli) , 
for i=1,2 and Jl(v()) = Vii is the stationary 

value. We can therefore obtain estimates Vi,; say of Vij by approximating v(t) by 

, P) E RN+l 
,a chosen N+1 dimensional subspace of 71; these will be second-order 

accurate in the sense that 

ivii - Viii = 0(IIV(') - x(°)1111(') - -; (t)II)" (6.4.5) 
Suppose then that fN+l is spanned by the given functions po, ... , PN, and hence 

that 
N 

, 'W _E Cn1)pn, i=1,2. (6.4.6) 

n=0 

Then the stationary points v(i) ; ý-, v(t) of both J1(v(i)) and J2(v(1), v(2)) are given 

by solving 
(Kv(i) - f1, p�, ) = N, (6.4.7) 

for co'ý.... cN 
with i=1,2. The equations (6.4.6) and (6.4.7) are also equivalent 

to Galerkin's method in this case. Combining them gives a system which determines 

the coefficients in (6.4.6) explicitly in the form 
N 

Zcn)(KPn, Pm) = (fi, Pm), m=0,..., N, (6.4.8) 
n=0 

for i=1,2. The approximations to V; j are given by 
N 

Vif =Ec, ') (Pn, fj), i, j=1,2. (6.4.9) 
n=0 

We now present the implementation of this approximation for which it is clearer 

to revert to a system which considers the components relating to q(z) and p(s) 

separately. Thus, instead of (6.4.6) we write 

( 
4(`)(z) = 

Ni 
li) 

4n (z) 0<z< h1 
i-0 i=1,2, (6.4.10) 
N2 
E Cn(2t)Pn(S) SEr 
n=o 
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where the choice of test functions {q�} and p� remains arbitrary, but will be dis- 

cussed later, and the coefficients c; l') and c;? ̀ý are to be determined. 

Once we apply the Galerkin approximation (6.4.8) to our system, the resulting 

matrix system inevitably differs from Porter & Porter's due to our differing definitions 

of the underlying integral operators. Thus, from here on we diverge from Porter & 

Porter's exposition. 

Before we apply the Calerkin approximation (6.4.8) we define additional terms 

which we shall use to show the structure of the integral equations. Again we try to 

keep our notation consistent with Porter & Porter's thus we define 

F(")= (gn, 'Jý,,. )1, r=0,1,2, ... ,n=0,1, ... , Ni, i=1,2 (6.4.11) 

and 

E, ',; =f X2, r(h(x))e-«2'xPn(x) dx, 
0 

r=1,2,..., n=0,1, ... , N1, (6.4.12) 
fl 

F(22) =a X2, r(1(x))e 
0 

ýrxp 
nýxý 

dx, 

r=1,2,..., n=0,1,..., N1. (6.4.13) 

The term FIr) correspond to the equivalently named terms in Porter & Porter, 

whereas E, r) is a new term arising from the obliqueness. We also define 

l 

an =1 iX2, o(h(x)) sin(a2x)p'�(x) dx, 
0 
t 

bn = iX2,0(h(x)) cos(a2x)p;, (x) dx, 
0 
t 
iX2, o(h(x)sin(a2x)p�(x) dx, do =f0 

c 
iX2, o(h(x) cos(a2x)pn(x) dx, en =f0 

Ni, (6.4.14) 

n=0,1, ... , N1, (6.4.15) 

(6.4.16) Ni, 

n=0,1, ... , N1, (6.4.17) 

where the a� and b� correspond to the equivalent terms in Porter & Porter and the 

do and e,, are additional terms arising from the obliqueness. Then, the Galerkin 

approximation transforms the system into a coupled system of equations for the 
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unknown coefficients which is given by 

Ni N2 

cnl') K(mini) + cn2i) K(ln) = Fm ö), M= 0, ... , 
Ni 

n=O n=O 
Ni N2 

c, ý, l') KZn) + c2z>Km2n) =F(ä), m=0, ... , N2 
n=0 n=0 

for i=1,2, and from (6.4.9) 

N1 N2 
V, j =L cnl'ý nO +E cý2i> nO 

I 
n=0 n=0 

The elements of the system are defined as follows 
(11) 

Kmn = (Kllgn, qm)1, m, n=0, ... , 
N1, 

(12) 
Kmn = (K12pn, 4m)1, m=07 ... I 

N1� 

K(21) 
mit = K(12) 

nm m=0,... , 
N2, 

(22) 
Kmn = (K22Pn, Pm)2, m, n=0, ... , 

N2, 

F, M(l*) = (oi, r, qm)1, m=0, ... , Ni, 
2i) Fmo = (f2i)Pm)2, m=0, ... e 

N2, 

i, j=1,2. 

n=0,..., N2, 

n=0,..., N1, 

(6.4.18) 

(6.4.19) 

(6.4.20) 

(6.4.21) 

We note from (6.3.47) that F,, ZO )=0 and on using (6.4.14) and (6.4.17) that 

F'mö ) : -- 
a2 

a- T12 
2 

en, (6.4.22) 

where to obtain this last result we have integrated by parts once and projected the 

integral onto the x axis as we are, by now, well used to doing. 

We can now expose the structure of the individual kernels so that 

0o F(11)F'(11) F, ('2)F((1T ) 

K(min) _ (6.4.23) 

r=1 al rhi az aha 

and 

F(12) z (ls) 00 ý (zz)F(lr) l2Enr2)F(lr ) 
m K(, ln) = Kn(21) = 

b"F�Lo 
+l 

d_Fmo Fn' 
_ 

(6.4.24) 
k2h2 a2k2h2 r_1 

k2,,. h2 a2,,. k2,,. h2 

The matrix Km2n) is composed of five individual kernels so that 

ICm22) = K(22a) + 12(Km2» +K ')) + 14K(y2, ný 
_ 

12Km2ýe)6.4.25) 
n 
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where 

Km2na) 
e1 

k22a(x; xo)Pn(x)pM(xo) dx dxo, =f0fo (6.4.26) 

Km2n2 6) 
11 

=ff k22n(x; xo)Pn(x)pm(xo) dx dxo, 
0 o 

(6.4.27) 

K(m2nc) 
1 ft 

=JJ k22c(xi x0)Pn(x)pm(x0) dx dxo, 
00 

(6.4.28) 

K(22d) 
1l 

_ k22d(x; xo)Pn(x)Pm(xo) dxdxo, I0[o (6.4.20) 

Km2ne) = 
1 

(h2 - h(xo)Pn(xo)Pm(xo) dxo, f (6.4.30) 
0 

and in these last results we have integrated by parts where appropriate and projected 

all integrals onto the x axis. We note that (6.4.26) to (6.4.30) correspond to equations 

(5.4.24) to (5.4.28). 

For completeness the structure of the remaining elements is 

00 
K(2na) _ -w-Wm(n) - e(a) + a2 anbm + ambn + 

a2, r Fnr2)Fmr2 
(6.4.31) 

r 
k2 2k2h2 

_1 
k2, r 2k2rh2 

dnam - enbm 00 E(r2)Fm2r ) 
Km2n6) 

- wmbn +e (b) +-2 (6.4.32) 

2(k2)2h2 
r=l 

2(k2r)2h 
dnem + Cýmen 

00 ' 
22)Emr) 

K(22ý _ _w(ý +e (d) + (6.4.33) 
mit mit mit 2a2(k2)2h'2 

r_1 
`ZCY2, r(k2r)2h2 

where we define 

W(a) = 
a2 't 

iX2, o(h(xo))pm(xo) 
ft 

iX2, o(h(x)) sin(a2lx - xoJ)p (x) dx dxo, 
2(k2 )2h2 o0 (6.4.34) 

Wm = 2( 

12h2 1t 
iX2,0(h(xo))pm(xo) 

ft 
ix2, o(h(x))sgn cos(a2lx - xpI)Pn(x) dx dxo, 

(6.4.35) 

1X2,0(ll(xp))pm(xo) 
1e 

iX2, o(h(x)) sin(a2Jx - xoJ)pn(x) dx dxo, w(in)n = 2az( 2)Zh2 

10 1 

(6.4.36) 
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and 
00 a2 // e(-) ,r /%t xx %t xe a2, rix-xoý x dx dx 

_ý 2(k 2, r)2h2 0 
X2, r1 l o))pml o) 

1 
X2, r( 

( )) ihn( ) o, 

(6.4.37) 
°O 1 

eine =( )2 
f 

X2. r(h(xo))iý,, (xo) fe 
X2, r(h(x))sgne a2, rlx-xol pn(x) dx dxo, 

r=1 
22, 

r 
ý2 

00 

(6.4.38) 

i 00 1 

emn - 
r=1 2a2, 

r(k2, r)2%t2 Jo 
X2, r(h(xo))pm(xo) 

L 
X2, r(h(x))e-«2, rIx-xoI pn(x) dx dxo. 

(6.4.39) 

and for compactness we have written sgn for sgn(x - xo). 

6.5 Boundary element approach 

As usual it is possible to solve the integral equations via the boundary element ap- 

proach and we proceed to do so in order to provide an independent check on the results 

from the Rayleigh-Ritz approach. In this case we subdivide the vertical boundary 

x=0, zE (0, hl] into Nl panels and the horizontal axis defined by xE [0, f] into 

N2 panels. The process follows in a similar manner to before therefore we just present 

the key steps. Firstly we define some notation 

Im = [(m - 1)hl/Nl, mhi/Nl] m=1, ... , Nl, (6.5.1) 

I" _ [(n - 1)Q/N2, nP/N2] n=1, ... , Ni, (6.5.2) 

zz _ (j - 0.5)h, /Ni j=1, ... , N1, (6.5.3) 

xi = (i - 0.5)2/N2 i=1, ... , N2) (6.5.4) 

h; = h(xi) i=1,..., N21 (6.5.5) 

ollo = '+/)i, o(zj), 
(6.5.6) 

')20 = ib2, o(z3) 
(6.5.7) 

and we collocate assuming that the quantities of interest, are constant over a panel 

so that 

ao(6ezm)=4m m=1,..., N1 (6.5.8) 
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and 

O(xn, l ) _pn n= 1ý... 
'N2. (6.5.9) 

Our first boundary element equation is derived from equation matching (6.3.15) and 
(6.3.17) on xo =0 so that, after some manipulation which we are now used to we 
have 

Ni N2 

K;; ngm+EKýýZlpn=(A1+Bi) 
0+(A2+B2) 0 j=1,..., N1 (6.5.10) 

M=1 n=1 

where 

(11) 
_% Kj�ý 

f g_ (O, z, 0, zj) + g+(0, z, 0, z1) dz (6.5.11) 
Im 

and 

Kjn-[-g+ x(x, h(x); 0, zi)}r� + l2 J1 9+(x, h(x); 0, zj) dx. (6.5.12) 
i. 

Our second boundary element equation is found from (6.3.17) so that 

N1 N2 

Km1)gm +L Kýn6)Pn = (A2 + Bz) cos a2xi 1'2o(h) z=1, ... , N2 (6.5.13) 
m=1 n=1 

where 

imlý =f 9+(0, z, xi, h; ) dz (6.5.14) 
Im 

and 

K(22) = bý; + [-9+ '(x, h(x); x:, hi)}1 + l2 
f 

9+(x, h(x); x:, h; ) dx. (6.5.15) 
I. 

We combine these into one system so that 

K. v = (A1 + B1)fi + (A2 + B2)f2 (6.5.16) 
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where 
A... K! Ný ]iii) 

... 
Ii1N2 

. (II) IAN 
ý NN 

K"'), (I1) I1N11 (11) KN1N2 

(6.5.17) 
KII21) 

... KIN) KI1 K1N2 

(21) 
A, -(21) /' NI VI 

-(22) 
N, t 

-(22) 
... 

Ii N N z z 
10 

Ni 
f, 10 

N1 
20 

vf ý- a111<1 f2 = (6.5.18) 
() ('OS((12x"i))2o(h1i) 

COS ((V2 x N2) ßi)20 
(%t. 

N2 

In Iltis f'uriu we tie that, th e system has an iden tical structure to that in (6.3.51) 

nu(I ((i.: 3.52) and therefore it is now routine to deduce the scattering coefficients by 

h lowing ((;. 3.5i) to (6.3.58). 

6.6 Results 

In It luv reetinlts tliatfollow we eise the Legendre polynomials to model the bed flux along 

the varying slope. This is in contrast to Porter & Porter [77] who suggest the Jacobi 

p(, lVnuniiails for profiles which do not, join the domains of constant depth smoothly at 

tIue ('nd ImintS. The discussion in Porter & Porter [77] concerning convergence of the 

s stew .uýý, rdint; tu the choice of trial functions carries forward to the oblique problem 

un milged, t. h('reh)Fe we will not labour this point, further. We would Anticipate slower 

c(niverg('n("e rates with the choice of Legendre functions for non-smooth joins rather 

t haul a SrI whip Ii incorpor<aied the singular behaviour at the end points and our 

nnnueri(al experiments confirmed this. In all of the results we non-dimensionalise the 

profile of the Step by using the transformation 

Ii(. r) = (h. ) - h(ex))/b, <x<1, b= /12 - h1, (6.6.1) 

sýý that, Ii(U) I and 
/(I) 

= 0. 
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6.6. Results 

4 

Figure 6.2: lleflection coelliciCIlt, 132 
, against, wrtivenumber k. 

-1112 
for aclinutit norriiial 

incidence (H=0.01° ) to the plane slope profile 
ii(x) 

=1- . r. 
111111 =i for various 

values of l/b as indicated in the legend. 

Figure 6.2 shows the reflection coefficients for the linear sloping profile 
h(X) 

= 1-. r 

as in Porter & Porter [77]. figure 5 where we have 115(51 i<lentirrl parameters and are 

very close to normal incidence (0 = 0.01° ). We note that for exact lv normal incidence, 

with sonic ininor modification to the trial functions, our fornnrlat ion reduces exactly 

to that in Porter & Porter [77]. Accordingly we present results for almost normal 

incidence to demonstrate that our results approach those for normal incidence in 

the limit. In fact figure 6.2 (produced using Legeudre polvnonºials and Xi = 10. 

N2 = 15) i5 identical to the published results for normal incidence. Willi the (I'll a 

points agreeing to at, least, 4 s. f. with the published results. The high truncation 

sizes were chosen to ensure accurate results, for the case of //b = S. We note also 

that the boundary element results agree with the }published results to 3 s. f. using 

truncation sizes Ni = 100. N2 = 100. This extreme case coiifiriuis that both of our 
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cl. (i. Scnl terilnt; of ohligii ly incident waves by a step of nrhitrar; y profile 

i (('IIio Is (c witli Ilornial in<idenc(' correctly. Furl h('I experirn(, jlts on this and other 

tot)ograpllies show agreeinent with results for normal incidence and smooth changes 

II he curves its we move away from normal incidence. 

Figure 6.3 shows the effect, on the reflection coefficient of oblique incidence, for 

Wva V('s travelling from deep to shallow water. The results were produced rising the 

I)(niuda. rv ('leiueul nmethod with truncation sizes Ni = 100, N2 = 100 and a step-size 

of _ 0.0S' . 
The fact that, we have still achieved accurate results with a, moderate 

t ri, it spn. c e size i oii(irins the accuracy of this method. 

0.2 

0.15 

irk 
0.1 

1J-, H 

0.05 

0 
0 0.5 1 1.5 2 2.5 

A2/12 

3 3.5 4 

1' Igllrl' 6.3: Reflection covfficien t, I i>'21 
, 

against Waveiiumber ? '2h2 for 0= 45 1I1C1- 

clc'nc"c' to t he tll. IU( slope ])"()fill' h(a) =1-a. h1 /h2 = 14 for various values of l/b as 
inclic"; I. I('(I in tIx' l(L! ('Ilcl. 

WO u4)w result's for a smoothly varying bed form defined by 

h(x) =1- 3x2 + 2x (6.6.2) 

Which joiuti the domain", of constant depth smoothly. In this case the choice of Leg- 
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endre polynomials (as would any other complete set, such as a Fourier series) is ap- 

propriate and, now there is a smooth join, has rapid convergence with truncition 

size. Figures (6.4) to (6.7) plots the reflection coefficient 1 I? 2 for oblique scatter- 

ing of waves incident from the deeper domain for t lºc depth ratio 1i1 /hl = 1/4 and 

f. '/b = 1/2.1.2,4,8 for a range of angles of incidence. Figure (6.4) where 0=0.1 ° 

agrees with the normal incidence results presented in Porter k Porter [77] as a visual 

inspection can confirin. When the underlying data is conºl)areºi, as wit 1º I he infinite 

ridge probleni, we find agreement to at least 4 s. f.. Figures (6.5) to (6.7) show results 

for the same problem with angles of incidence 30°, 45° a. nd 60° respectively. For 

most of the data points truncation sizes of Ni = 8, N2 = 12 were sufficient to give 

at least 4 s. f. accuracy, however, for £/b =8 and for kº hº>3 we found t 1ºa. t N2 = 15 

was necessary to obtain this degree of accuracy. 

0.35 ,.,,,,, 

0.3 -1 
2 

0.25 

A2h2 

Figure 6. -1: Reflection coefficients for oblique waves iuci<leut from deeper water at 
0.1° to the step h(x) =1- 3X2 + 2x'3 where h. 1/h2 = 0.25. 

Using I= ki sill 0, which in turn implies k1 sin H1 _ k2 sin 02 thy fa. inoits Surd' s 

law of refraction, we find that for waves travelling from shallow to deeper water, total 
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0.35 ....... ,rr -r r,, -r r- ,, r-TT, , rT. , -r T.. r... , .. 

0.3 

0.25 

0.2 

0.15 

0.1 ... 

0.05 

p 
0 0.5 1 1.5 2 2.5 3 3.5 4 

k21t2 

Figure 6.5: Iiefieetiotr coefficients for oblique waves incident from deeper water at 30° 
he st i 1i(. r) =1-3: r2 + 2: x where hI/ h2 = 0.25. 

0.35 
1 -. . 

! lb = 0.5 
0.3 

=: 1 

0.25 

k2 h2 

r 

.: ýf 

Figure 6.6: fefiec"tioti coefficients, for oblique waves incid(Pilt from deeper water at 4 

to the Sie! ) h(x) =1-3: c2 + 2x'3 where hi/jag = 0.25. 
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. rrT.,,, TT 0.35 T--T 

l/b = 0.5 
0.3 -----.. 

.4 

0.25 

I R21 
0.2 

0.15 

0.1 

0.05 ..... _... 
i. 

0 0.5 1 1.5 2 2.5 3 3.5 4 

4'2112 

Figure 6.7: Reflection coefficients for olblique waves incident from deeper water at 60" 
to the step h(x) =1-3 . r2 + 2x3 where hi/112 = 0.25. 

reflect ion is possible. This occurs if k 2/kt < sin Bi <1 in which case the"*" is no 

transmission. In this case we obtain a solution in which a wave travels along t he st (1l) 

and decays exponentially away from the step. Figures (6.8) to (6.11) show how the 

reflection and transmission coefficients for oblique scattering of waves incident from 

the shallower domain vary with aspect ratio of the step (lb. Again we consider the 

smooth cubic slope h(x) =1- 3x2 + 2x3. in this case for a depth ratio hi /h. = 0.5 

for a range of angles of incidence. Porter [73] presented results for oblique scattering 

by a vertical step and we see that, at least. for small aspect ratios of t the arbitrary 

profile, the curves have the same qualitative behaviour. The critical angle depends 

solely on the depth difference b as the figures show; whatever the value of I. the 

critical angle occurs at the same point. Apart from in figure (6.11) and to a lesser 

extent (6.10) it is not clear how changes in the step profile affect the reflection and 

transmission curves. To iuake this more obvious we replot, the data for fixed angles 

of 30° and 60° in figures (6.12) and (6.13) respectively. 
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1.6 

1.2 

0.8 

0.4 

k, h, 
Figure (i., +: Reflection and transirliti*ion coefficients for oblique waves incident from 

tili, ilh vi (1U>ufriu onto the step h(x) 
=1-3. x2 + 2x`ß, lei/h2 = 0.5, ('lb = 1. 

11.1" ( ). 30" ( ), 15° ( )' 60° ( ). 

2 

1.5 

1 

0.5 

k"1h, 
I'igiure (i. 9: Reflection an(l transmission coefficients for oblique waves incident from 

the shallower domain onto the step h(x) =1- 3aß + 2i: 3, hi/h2 = 0.5, (/b = 2. 

U. I'' ( ), : iO" ( ), 45° ( ), 60° ( ). 
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Figure 6.10: Reflection and transmission coefficients for oblique waves iu<"i(1Vut from 
the shallower domain onto the step h(a") =1- 312 + 2j-'3, h1 /h1 = 0.5. (/b = -1. 
0.1° (-), 30° ( ), 45° ( ), 60° ( -). 
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1 
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0 1_--, , 
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k1h, 

Figure 6.11: Reflection and transmission coefficients for oblique wivVs in("ideut from 

the shallower domain onto the step h(x) =1- 3x2 + 2: r. 1,111/11,2 = 0.5, f/b = 8. 
0.1° (-- ), 30° ( ), 45° ( ), 60° (- ). 
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01 `- 
0 0.5 1 1.5 2 

Figure 6.12: Reflection coefficients for oblique waves incideººt fronº the shallower 

(louMiu uuto the step h(: r) =I- 3x2 + 2. r. ß, h1/h2 = 0.5.0 = 30°. 
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Fi iirP 6-13: RrfIe t. iou coefficients for oblique wav(, S i"cideiit frone the shallower 
doiiiaiu uuto Ole step h(r) =1- 3x2 + 2x3, h1/h2 = 0.5,0 = 60°. 
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0.1 

0.01 
0.1 

Figure 6.14: Reflection coefficients for Booij' test problem at 0.01" incidence 

0.1 

0.01 

0.1 

Figure 6.15: Reflection coefficients for Booij' test problem at 30° incidence 
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0.1 

0.01 

0.1 

Fignrc 6. I6: Reflection coefficients for Booij' test problem at. 45° incidence 

0.1 

0.01 

0.1 

Figure 6.17: Reflection coefficients for Booij' test problem at 60° incidence 
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6.7.1(vniarks 

6.7 Remarks 

In this chapter we have shown how our techniques of converting frone nuruial t() t, ui- 

gential derivatives motivated by ideas from three-dimensional vector calclilIIs enable 

us to generalise the two-dimensional problem of scattering by an arbitrary step con- 

sidered by Porter & Porter [77]. Although we have presented our approach in its c111asi 

two-dimensional form we stress that all of the analysis could have been done in its 

natural three-dimensional form. However, it would have appeared more complicated 

than necessary and the link with Porter & Porter might not have been quite is clear. 
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Chapter 7 

Scattering of plane waves by an 
axially symmetric seamount 

7.1 Introduction 

In this chapter we apply the techniques of Chapters 5 and 6 to problems involving 

surface water wave scattering by axisymmetric topography. This problem has received 

considerable attention and an overview of some of the key papers is presented below. 

In a key paper Longuet-Higgins [52] used shallow water theory to conduct a thor- 

ough investigation of the trapping of wave energy around axisymmetric islands. In 

this investigation he considered the interaction with a circular sill and found that, 

for certain frequencies, the theory predicted large responses. Barnard, Pritchard & 

Provis [4] conducted experiments to search for these "near-resonances" but were un- 

able to find any sign of their existence. Accordingly Renardy [81] applied the full 

linear theory to Longuet-Higgins' [52] sill problem and established that "the nearly 

resonant frequencies differ significantly ... " and "the observed amplitudes at a given 

frequency differ greatly. " Shen, Meyer and Keller [85] used a geometrical optics ap- 

proach to calculate the spectra of waves around conical islands, and for this problem 

too, experiments by Provis [80] found markedly different results to the theoretical 

results. 

Smith and Sprinks [86] also looked at the scattering of surface waves by a conical 

island using essentially the mild slope equations which they had developed indepen- 
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dently from Berkhoff [6]. In the course of developing this paper they communicated 

with Provis so that they could compare their results against those of Barnard et al. 

[4] experiments. As we have discussed, Barnard et al. were unable to confirm the 

near-resonances which were also predicted by Smith & Sprinks' theory [86]. Moving 

forward Chamberlain & Porter[12] revisited the axisymmetric topography problem 

using the MMSE (see Chamberlain & Porter, [11]), and an improved matching con- 

dition at the join of the topography with the constant depth domain (see Porter & 

Staziker [71]). In this paper Chamberlain & Porter also found near-resonances but 

they proved to be extremely difficult to locate. In an entirely different approach Ben- 

der & Dean [5] solve axisymmetric problems by discretising the topography as a series 

of steps and matching constant depth separation solutions at the interface between 

the regions of constant depth. 

As in Chapters 5 and 6 although we consider three-dimensional problems, these 

problems are quasi two-dimensional in that they may be reduced to a problem de- 

pending on only two dimensions by factoring out the angular dependence (noting 

that the extra dimension manifests itself by modifying the field equation). Thus the 

techniques of the last two chapters may be applied, albeit in polar coordinates, to 

solve problems involving axisymmetric geometries. Instead we choose this problem 

to demonstrate the three-dimensional nature of our solution technique by retaining 

a three-dimensional formulation throughout. This approach serves to illustrate some 

aspects of the general theory which will be developed further in Chapter 8. Of course, 

once we have formulated the integral equations and performed all of the switches from 

normal to tangential derivatives, we still factor out the angular dependence to give the 

identical system of equations had we followed the quasi two-dimensional approach. It 

is interesting to note the following quote from Chamberlain & Porter [12], 

"An investigation of this problem using full linear theory would be formidable 

.... 
As far as we are aware, there is no full linear solution available for 

axisymmetric scattering which will serve to examine the accuracy of the 
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modified mild-slope equation for such geometry. " 

which, to the best of the author's knowledge remains the case. Given the lack of 

exact results we present two alternative fully-linear formulations of the same problem 

which will serve as independent checks against each other. As in the ridge problem of 

Chapter 5 we also compare our results with those derived from the multipole approach 

of Chapter 4 in the specific case of a hemispherical bed protrusion . 

7.2 Formulation and preliminaries 

Cylindrical polar coordinates (r, 0, z) are chosen with z directed vertically down- 

wards. The origin is placed in the undisturbed free surface of the fluid, and the z 

axis is chosen to coincide with the axis of symmetry of the seamount. The fluid is 

r 

`I'rnc B=0 

z= lý 

Figure 7.1: Geometrical description of the axially symmetric scattering problem 
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bounded below by Sb : {z = H(r), 0<r< oo, 0E [0,27r)} where H(r) is assumed to 

be a continuous function with H(r) = ho ,a constant, for r0 [0, a) and H(r) = h(r) 

for rE [0, a) . Furthermore, it is assumed that h(r) < ho for rE [0, a) , and we 

define hl as the maximum height of the seamount ie hl = ho - min(te(r)), rE [0, a] . 
Thus the topography consists of an axially symmetric seamount with constant cross- 

section in the (r, z) -plane as 0 varies and which protrudes from an otherwise flat bed 

of depth ho. The profile of the cross section is denoted by I' defined by z= h(r). 

As we work in cylindrical coordinates we write vectors in the form F= (Fr, Fe, Fz) 

Frr + F0 + Fzk where r, 9 and k are the conventional cylindrical coordinate sys- 

tem unit vectors. On the lower boundary of the fluid, Sb, we define an orthonormal 

basis by 
n= (-h'(r), 0,1)/v(r) 

S= (1,0, h'(r))/Q(r) Q(r) =1 ((h'(r))2 (7.2.1) 

t= (0,1,0) 

representing, respectively, the normal (out of the fluid) and tangential unit vectors, 

perpendicular and parallel to the O -axis, on the surface Sb. In this problem t=9 

although we will use the notation t for consistency and to maintain the link with the 

fully three-dimensional theory. 

As usual the flow is described in terms of a time-harmonic velocity potential, 

4)(r) (see Chapter 2). Here, r= (r, 0, z) and fluid motion assumes a time-harmonic 

variation of angular frequency w. Then 4cD satisfies 

V2c = 0, rED (7.2.2) 

where D: {O <z< h(r), -oo <r< oo, 0E [0,2ir]} is the fluid domain, 

n. V=0, rE Sb (7.2.3) 

and 
aD 

+ K(P = 0, on z=0 (7.2.4) 
T 

where K= w2/g and g is gravitational acceleration. In this co-ordinate system the 
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gradient operator is defined as 

(V= 
a' 1 a' a1 (7.2.5) 
Tr r äe äz J 

We assume an incident plane wave ýP;, ac 
from infinity whose direction of propaga- 

tion may be taken, without loss of generality, to be the line 0=0. To complete the 

formulation of the problem, we impose a Sommerfeld radiation condition requiring 

the scattered wave V to be outgoing at infinity, and which may be written as 

(kr) ä (a 
- ik I 4ýS -º 0, kr -º oo. (7.2.6) 

The potentials are related by 

_ ij, ti, +ýDs (7.2.7) 

where the incoming plane wave 4);,, c may be expressed using the Jacobi-Anger ex- 

pansion, as 

` 'Dino =e 
ikx7IO / 

lz/ 

00 00 
_Z 1mJ.. (kr)eime0o(z) = eom (7.2.8) 

m=-oo m--0o 

which we alternatively write as 
00 

=E OOme"' (7.2.9) 

m=-oo 

where 

oo = i'J. (kr), Oo(z)" (7.2.10) 

In the far field the scattered potential cI , may be expressed in the form 

00 
SEA.,, 

aim'H, 
(�1)(kr)eimo o(z), kr -º oo (7.2.11) 

which implies, and is implied by, the radiation condition. 

The method of solution relies on the use of a Green's function appropriate to this 

problem. Thus we define G(r; ro) where ro = (ro, 00, zo) is regarded as the field 

point and r the source point, as satisfying 

V2G(r; ro) = -5(r - ro), in D (7.2.12) 

181 



Chapter 7. Scattering of plane waves by an axially symmetric seamount 

with 
ýG+KG=O, 

on z=0 (7.2.13) 

and 

aG 
-az-= 

0' on z= ho (7.2.14) 

holding for 0<r, ro < o0 0<0,00 < 21r. We present the derivation of the 

appropriate Green's function in Appendix A and for further details the reader is 

referred to Hulme [43]. We show that the Green's function separates out the 0 

dependence by expanding as 

00 
G(r; ro) =E Gm(r; ro) 

m=-oo 

where 

G,,, (r; ro) = g�, (r, z; ro, zo)e-im(B-B0) 

and the specific form of g,,, is 

(7.2.15) 

(7.2.16) 

00( )00(o) 00 
9m= 

1J.. (kr<)Hm(kr>) zz+1 ýIm( 
*+r<)Km( nr>) 

n(z'ý'n(zo 4 %b0 7r 
n_0 

0 

(7.2.17) 

where we have employed the compact notation 

r< = min{r, ro} and r> = max{r, ro}. 

Due to the lack of dependence of the geometry upon 0, it is common practice to 

reduce the boundary-value problem stated above to a two-dimensional problem for 

O(r, z) in which the field equation is reduced to the modified Helmholtz equation in 

polar coordinates. Hulme [43] does exactly this, taking advantage of the axial sym- 

metry to reduce the dimension of the problem by integrating over 0 to remove the 

angular dependence and make use of so-called ring sources. However, the strategy 

we have decided to adopt in tackling this problem uses a three-dimensional coordi- 

nate system and leaves it until the end of the formulation before removing the 0 

dependence. 
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As in (5.2.17) we decompose G into a form which will enable us to construct a 

self adjoint integral operator. In effect this separates the Green's function into its 

real and imaginary parts so that 

G=Go+G 

where 
00 00 

Go =E Gom =E Some ; m(e-00) (7.2.19) 

m=-oo m=-00 

and 

90m = 4Jm(kr)Jm(kro)00 
(zh00(zo) 

(7.2.20) 

is the separable component of the wave-like part of the Green's function previously 

exposed in (7.2.14). Also 
00 

G= 9me im(B-Bo) (7.2.21) 
m=-00 

is the remainder of G, where 

1Jm(kr<)Ym(kr>)V0(z öo(zo 

+ 27r 
Im(knr<)K. (knr>) n(xhon(zo) (7.2.22) 

n=1 

As in Chapter 5 we now have the property G(ra; r) = d(r; ro) which will result in a 

self-adjoint integral operator which is crucial to our main solution technique. 

7.3 Derivation of the integral equations 

In this section, we set out to develop an exact formulation in terms of integral equa- 

tions of the solution to the problem, as a means of calculating the far-field of the 

scattered potential, and also for finding the free surface elevation. 

The first step is to apply Green's identity to the functions 1(r) and G(r; ro) in 

a subdomain DR of D, bounded laterally by a vertical boundary of radius R (see 

figure 7.1). Here, R>a>0 is arbitrary, and it is to be assumed in what follows 
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that the limit R -+ oo is taken. Now Green's identity states 

fff(Gv24ý - DV2G) dV = ff (Gn. V4) - ýDn. VG) dS (7.3.1) 
DR SR 

where SR is the closed boundary of DR, dS being a surface element on SR and the 

definition of n has been extended to boundaries other than those coinciding with Sb 

to mean the outward unit normal to SR. 

Green's identity applied first to (Di,,,, and G for a domain of constant depth 

without a scamount gives 

Jff{cv2inc - (D, ncv2G} dV = 
ff {Gv ins - (DtncVG}. n dS (7.3.2) 

DR ER 

which implies 

, 
(ro) = JJ 

{Gýýýný - ýsýýOG}. n dS, (7.3.3) etnc 
ER 

where we have used the fact that 4)i, « satisfies the Sommerfeld radiation condition 

and Eß denotes the cylindrical surface at r=R. 

Now apply Green's identity to G and olo 

µý(ro) _ 
ýý{G0ý 

- eVG. }n dS 

+ ff{GV5 - 45VG. }n dS 
ER 

+ (7.3.4) 

ER 

where the second term on the right had side is zero in the limit R --+ oo as both G 

and 41 satisfy Sommerfeld radiation conditions and so are outgoing wave potentials. 

Furthermore the third term is 4)t�, from equation (7.3.3). Here, as in Chapter 5, 

it =1 for ro E D, u= 1/2 for ro E OD, and µ=0 for ro 0DU äD . Now V 4). n 

vanishes on E so we have 

(Dtnc(ro) - 
ff 

D(r)VG(rlro; K). n dS. (7.3.5) 

E 
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and E is the two-dimensional surface of the topography. 

At this point it is convenient to consider the equation satisfied by the m'th mode 
in the expansion 

+00 +00 

1(ro) = -ýDm(ro, Bo, zo) =E 0m(ro, zo)eimeo (7.3.6) 
m=-oo m=-00 

and which on substitution in (7.3.5) is found to be 

µ4)m(ro) = 4)oý.. (ro) - 
ff 

4�z(r)V{Gm(rJro; K). n dS. (7.3.7) 

E 

Henceforth we concentrate on solving for the m'th mode, leaving the summation over 

m unstated, noting that we must perform the summation over m to recover the 

solution for the total potential (P. 

As in the previous two chapters, we follow the main idea of Noblesse [67] and 

define a vector Green's function Lm related to the Green's function Gm and which 

satisfies 

VC =VxL -1ä(r - ro)s(O - Oo)5; (z - zo)k. (7.3.8) 
r 

Here Lm = (T (Gm)B, -(G,, )-, 0) and as we are now used to Fr = f, OF/Or dz. 

Equation (7.3.8) may be verified by substitution so that 

r rB k 
aGm 1 aG�a aG�a 1aaa ýG"` - Or 'r 00 ' az r Or aB az 

I (G�+)ä -r(G+, +)r 0 

-1 b(r - ro)b(O - Bo)Y(z - zo)k. (7.3.9) 

The first two elements of VG work out trivially whereas the third uses 

(Gm)rz = --ý (r(Gm)r)r -r (Gm)BB -T 
9(1' 

- ro)a(O - eo)as(x - z) (7.3.0) 

which follows from integrating (7.2.12) with respect to z. Then using (5.3.6) in 
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(7.3.9) we have 

j (ro) = 4)inc(ro) - 
ff 

D(r)nV xL dS 
Sb 

- ff(r)! (r - ro)s(e - eo)H(zo - z) 
dS 

Sb 

since n. k = 1/a. Now to deal with the final term we note that dS = rQ dr dO so 

that, analogously to (5.3.8) 

- fJ(r)! 5(r - ro)b(B - 00)H(zo - z) 
dýS 

= 
Sb 

- 1(ro, eo, h(ro, Bo))H(zo - h(ro, eo)) (7.3.12) 

which is zero for points ro E D, -2 '(ro, Bo, h(ro, 9o)) for points ro E äD and 

--I, (ro, Bo, h(ro, Bo)) for points ro VDU aD. Thus 

1'(ro) = ýD;,,. (ro) - Jf c(r)n. V xL dS for ro EDU , 9D (7.3.13) 
Sb 

which establishes that, unlike the traditional form (7.3.7), the formulation in (7.3.13) 

gives a continuous definition of the fluid potential as the field point moves from the 

fluid domain to a point on the boundary. As in earlier Chapters, the choice of L�j 

is not unique, however, we have chosen the form which gives the important property 

that L,,, =0 on z=ho. 

As in earlier chapters we use the relation n=sxt to switch from normal to 

tangential derivatives. So 

n. (0 x Lm) = (s x t). (V x Lm), (7.3.14) 

then using 

txVx Lm = V(t. Lm) - Lm x (V x t) - (t. V)Lm, - (L,,,. V)t (7.3.15) 

we find, after some algebra, that 

n. (0 x Lm) = T(s. 0)(rLm. t) - (t. V)(L�,. s) =r ös(rLm2) -! Lmi (7.3.16) 
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where we have employed the abbreviations 9/as = s. 0, ö/ät = t. V and defined 

Li�. (r; ro) = L�a. s = 
rv(r) 

(Gm)e (7.3.17) 

L2i, (r; ro) = Lm. t = -(G,,, ); (7.3.18) 

from (7.3.9) and (7.2.1). Thus we now find 

(ro) = (Dom(ro) - 
ff (r 

as 
(rL2m) - 

OL'M) 
4)�ß(e, t) dS (7.3.19) 

E 

where we have written 4ý m(r)jE = ý%, (s, t) in terms of coordinates aligned with s 

and t lying on the surface of the seamount E E. 

Before proceeding any further, we mimic the decomposition of the Green's function 

G�t performed in (7.2.18), by writing 

Li, = Loim + Lim, i=1,2, (7.3.20) 

and the two components of Li, are derived directly from the two components of Gm 

in (7.2.18). Thus, in particular, we find 

Loam = re(r) 
(Gor)e = 4kho 

(rQ(r)) 
fº, º(r)ýom(ro) 

Loam =-(Go)r = 4kho rf 
(r) ýDom(ro) 

in terms of the newly-defined function 

fm(r) = imJ. (kr)Xo(z)e'mo 

where we have acknowledged that t=6 and the result To (z) = -Xo(z) 

(7.3.21) 

(7.3.22) 

(7.3.23) 

At this point, we shall introduce some more new notation and first define 

()_110 
Ofm(r) im öfm(r) 

7.3.24 F"` S' t 4kho 
(r 

ös 
(r 

Or 
)+ 

ro(r) ät 
) 

rEE 
'() 

We also introduce the inner product notation for functions u(s, t), v(s, t) E ii (where 

H is the space of functions whose derivatives belong to L2(E) ) 

(u, v) = ffuti dS (7.3.25) 

E 
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We now substitute the decomposed form of Lm into (7.3.19) to obtain, after some 

algebra 

(Dm(ro) = ('om(ro)(1 - (gym, Fm>) - 
ff 

r äs 
(rL2- 

--) 

E 

aLlm 
ý�ý(s, t) dS. 

at 
(7.3.26) 

Here, the Leim and L02,,, are separable and have contributed to the inner product 

term -4)0,,, (, D,,,, F.. ). As in Chapter 5 we find that consideration of the far field in 

(7.3.19) enables us to relate this inner product term to the scattering coefficients A,.. 

First, we note that as (ro - r) --º oo, 

Lt"' "' 4kho 
(rv(x)) 

Jm(kr)H.. (kro)Xo(z)Lo(zo)e im(e-ea) (7.3.27) 

and 

L2m N1äJ. (kr)Hm(kro)Xo(z)'ýbo(zo)e im(O-00) (7.3.28) 
4kho ter 

which may be determined from the far-field form of G�, by using (7.2.19). Hence, 

taking ro - oo in (7.3.19) and using (7.3.27) and (7.3.28) in conjunction with the far- 

field form of 4 provided by equations (7.2.7) and (7.2.11) gives, after some algebra, 

Am = -(emr Fm' (7.3.29) 

where A,,, are the coefficients in (7.2.7). In fact, if we are seeking the far field of 

the scattered potential these {A�, } may be viewed as the principal unknowns in 

our problem. This last equation holds the key to the continued development of the 

formulation, since now it can used to substitute in (7.3.26), resulting in 

(r2m) 
_ 

Olim 
m(s, t) dS. (7.3.30) 4',,, (ro) = (1 + A,,, )45om (ro) - 

ff 

Now (7.3.30) may be regarded as a second-kind integral equation for 'm for points 

on E, by moving the field point ro onto (so, to) E E. As in Chapter 5, this lends 

itself to a boundary integral/collocation approach. So we define an integral operator 

(? i-, 'm)(so, to) _ (so, to) + 
fa 

Jr (r2m gat- 
ý%, (S't) dS (7.3.31) 

E as 

) 

188 



7.3. Derivation of the integral equations 

and a set of functions co$ , m= 0,1, ... , such that 

(KiV))(so, to) = tom (7.3.32) 

then the solution to the m'th mode problem is given by 

ýD,,, = (1 + A,,, )pml), (7.3.33) 

and consequently, on substituting (7.3.33) in (7.3.29) we deduce that 

Am _ -«Pml), Fm) (7.3.34) 
1+(V. 1>>Fm) 

Alternatively we may develop the formulation anticipating a self-adjoint structure 
in the final integral equations that is not enjoyed by an integral equation arising 

directly from (7.3.31). Thus, we first introduce quantities which apply to the field 

variable ro, namely 

no = (-h'(ro), 0,1)/a(ro) 

so = (1,0, he(ro))/o-(ro) 

to = (0,1,0) 

ö1aa 
VO (7.3.35) - 

(&' 
r äe°' ä. -o 

The definition of the orthonormal basis {no, so, to} is extended to points away 

from the surface E where we apply the operator no. Vo to (7.3.30) for points off E 

to obtain 

no. VoýP,,, = (1 + A�z)no. Vo-o. 

I (r2m) a,, � m(s, t) dS (7.3.36) - no. ýo 
LIE 

at 

Results analogous to (7.3.8) can be established so that vector potentials, Ili,,, and 

oý,,, , are defined, for points off E by 

VoLim = V0 X Him, (i = 1,2), and Do4)om = Vo X '1 om, (7.3.37) 

which, for similar reasons as chosen earlier, are defined by 

Hý (r; ro) = 
((Zim)0o', 

-(L: m)rý ý) "i=1,2 
(7.3.38) 
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and 
/ ýOm(rO) = r1 0(ýOm) 

zp 
gpr-lýOm)rp 

zp, o)" (7.3.39) 

As earlier, the convention of subscripts and superscripts implying differentiation and 

integration (respectively) apply here. 

Thus, using no = so x to we find, in a similar manner to before, that 

no. VoLim =1a (roHi2m) - 
OHýim (7.3.40) 

ro ja 5to 

where O/Oso = so. V0 , a/0t0 = to. V0 . Here, 

zzo 
H11, 

m(r; ro) = Hlm"so= 
(GM)OOo 

ro(r)roa(ro) 

2 im(0o-o) 
=me h11, 

m(r, z; ro, zo) 
ro(r)roa(ro) 

(7.3.41) 

-(G. ) 
H12, m(r; ro) = Hlm"to= 

ru(rOro 

ime""(Bo-B) h12, m(r, z; ro, zo) = 
rum 

(7.3.42) 

-(Gm)ZOO 
m(r; ro) = 112m-SO= ro Hs1 -imeim(B0-B) - h21 m(r, z; ro, zo) (7.3.43) 
, roa(ro) , roa(ro) 

Hs2, m(r; ro) = H2m"to=(Gm); rý = e, m(Bo-B)hza, m(r, z; roe zo) (7.3.44) 

where 

ItIi, 
m(r, z; ro, zo) = 9mlzzo = ZJm(kr<)Ym(kr>) 

X0( 
0(zo) 

00 
+ 2ý 

ýIm(knr<)Km(knr>)Xn(z)XO(z0 
knh 

n=1 
(7.3.45) 

h12, 
m(r, z; r0, zo) = 9mlrö° = 

är 
hiim(r, zi ro, zo) (7.3.46) 

0 

h (r z" r z) l xzo =ah (r z" r z) =h (r zr z) (7.3.47) 21, m is of 0= gm r ýý, 11,,, e o, 0 12,,, o, o; e 

h22, 
m(r, z; ro, z0) = 9mlrro = 4Jm(kr<)Ym(kr>)Xo(z)Xo(z0) 

0 
°O zz 

+ý 

n=1 

Im(k,, r<)Km/ lknr>)Xn( 

) ön( 0 

(7.3.48) 

Notice from above that 

Hij, n(r; ro) = Hji, 
m(ro; r), i, j=1,2 (7.3.49) 
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7.3. Derivation of the integral equations 

a property which holds as a direct consequence of the original decomposition of G,,, 

in (7.2.18). 

Less complicated, but along the same lines, 

no. Vo1o�z =1a (ro`yzm) - äto 
(7.3.50) 

ro so ä 

where 

ZOm 
`Fl, n(ro) = ýý. so= 

rýýýro) kro (ro) 
f., a(ro) (7.3.51) 

`'2m(ro) =` Om. to= - ((Dom)rö= 
ärof n(ro) 

(7.3.52) 

and fm(r) is defined in (7.3.23). 

We now substitute (7.3.40) and (7.3.50) into (7.3.36) and let the field point ro -º 

(so, to), a point on E, to obtain 

0= 4iho(1+A�j F�, (so, to) -o öso 

(ro fJ (9 
(rH22, 

m) - H12,, ß -Dm(s, t) dS 

r es at 
+ ato 

J (r e 
(rH2i, m) -e Ilii, m) em dS (7.3.53) 

j7s it 

and the bed condition (7.2.3) has been applied to render the left-hand side zero. 

Thus (7.3.53) now represents an integro-differential equation for the function ý,,, . 
It proves convenient to define the integro-differential operator in (7.3.53) as 

a (K24)m)(SO, to) =o as o 

(rolf (r 
as 

(rH22, m) - 
19 H12,. J 4),,, (s, t) dS 

E 

ä1ö (rH2i, m) -a Hii, m ým dS. (7.3.54) 
- Ito 

ýý 

r as at 
E 

If a set of functions v, ný(s, t) is defined on E to satisfy 

(K2ýom2» (so, to) = Fm(so, to), (so, to) EE (7.3.55) 

then it follows that the solution of (7.3.53) is given by 

4�i(s, t) = 4iho(1 + Am)co (s, t). (7.3.56) 

191 



Chapter 7. Scattering of plane waves by an axially symmetric seamount 

Using (7.3.52) in (7.3.29) gives, after some rearrangement 

Am _ 
-4iho (ýo , F'm) (7.3.57) 

1+ 4iho (cpim), Fm) 

thus effectively solving the problem for the m'th mode. 

7.4 Approximation and numerical method 

The problem of determining the angular variation of the scattered wavefield has been 

reduced to one in which we need to determine the constants A,,, in terms of inner 

products (7.3.30) and (7.3.53) involving functions cp�6i which for i=1,2 are the 

solutions of the integral equations (7.3.28) and (7.3.51) respectively. As in Chapter 

5, each of the integral equations is amenable to different approaches, depending upon 

whether the underlying integral operator, is, or is not, self-adjoint. 

7.4.1 Boundary element approach 

We have already seen that non self-adjoint operators such as Kl are best suited to the 

boundary element approach in this weakly singular formulation and this is the course 

we follow now. Until this point we have not taken advantage of the axial symmetry 

to reduce the dimension of the problem retaining a three-dimensional formulation 

so we may operate on the equation using vector differential calculus. At this point 

we acknowledge that the factors eime and eim(e0-B) are embedded in the definitions 

of 4),,, and G,,, etc and so we simplify the integral equation (7.3.30) to give its 

two-dimensional form 

2 
. 

(r, z) ds. Om(ro, zo) = 0om(ro, zo) (1 + Am) 
- 27r 

US- 
(-r(9m)r) + 

ro 
(9m)Z 

r (7.4.1) 

The associated integral operator 1C1 reduces to 

/ý 
(1ýio)(SO) = Om(ro, zo) + 27r J 

(L(_r(m)) 
+2 (9 ), 

) 
Om(r, z) ds (7.4.2) 

ro, 
r 
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and on defining the real quantity 

R(so) =i 'Oom(so), (7.4.3) 

we obtain a real integral equation 

(1C, V )(so) = R(so) (7.4.4) 

gives the solution in the form 

om = 1m(1 + AM)cPný. (7.4.5) 

We solve this equation by projecting the curve I' down onto the r axis dividing 

the interval [0, a] into N intervals of equal length. Thus we define 

r; = the mid point of the i'th panel, 

Ii = the i'th interval on the r axis, 

I's = the i'th panel on the r projecting onto I;, 

Wi' = c' at the mid point of the i'th panel, 

in which the collocation scheme becomes 

N 
19 w! ' + 27 cps 

Is 
(-r9�ºfr(r, h(r); ri, h(rj))) + 

m 2 

rv 
gmjz(r, h(r); r1, h(r, )) ds i=1, ... , 

N. (7.4.6) 

Then upon projecting, and integrating the first term in the integral explicitly it 

becomes 

cps" - (M, "1ä - M, 2-)cps Zj = 1, ... ,N 
(7.4.7) 

where 

Mil' = 27r [r9m. I 
r(r, 

h(r); ri, h(ri))]t1 (7.4.8) 

and 

Mä =2irm2f 
lg, 

nIz(r, 
h(r); r;, h(ri))dr. (7.4.9) 

ýr 
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Also, in order to calculate the Af, using (7.3.29) we need 

(h(r)) + J, ý kr hr ds Fm- 1m2%7r 
o 

(-rxo DJ, (kr)) 

ý2 
)Xo()) 

r, 
7r 

2khoNo/2 
[-krJ, m(kr) sinh k(d - h(r))]1; + 

m2 J1 Jm(kr) sinh k(d - h(r)) dr 
r 

I; 

= _(_i)m+1 fm, (7.4.10) 

which also serves to define the real quantities f; `. The using (7.4.5), (7.4.10) and 

(7.3.29) we find, after some rearrangement that 

N 
-i ý Wp nfý" 

Ami = i=1 (7.4.11) 
N 

1+1>: fm 
i=1 

where the products under the summation are real quantities. 

7.4.2 Rayleigh-Ritz approach 

The integral operator 1C2 is self-adjoint and therefore amenable to solution by the 

Rayleigh-Ritz method. In order to solve this integral equation, we use a standard 

variational principle applicable to self-adjoint operators. So, with p,.. EH= L2(4 

we define the functional J: f -º C by 

J(pm) _ (pm, Fm) + (Fm) pm) - (K2Pm, Pm) (7.4.12) 

where we have used the inner product notation of (7.3.25). This functional is designed 

to be stationary at p,,, =c where its value is 

j«pm(2ýý = «p(2), Fm) = Pm. (7.4.13) 

An approximation to cp, n) 
, say Vý, i gives rise to approximate values of Pm , say Pm . 

The variational principles above immediately give rise to the estimate 

l1m-Pml=0(IIcPm) 'JPm)11)2 (7.4.14) 
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That is, the approximations to the quantities of interest are second-order accurate 

with respect to first-order approximations (in an L2 norm sense) to the exact solu- 

tions of the integral equations. 

Adopting this principle Wm is approximated by V-2) E 7ljv+1 , an N+ 1- 

dimensional subspace of 7-f , spanned by a set of test functions v; (s, t) E NN+t 

by writing 
N 

, pcmý '(2) _ a; mý�ý 
m 

1=0 

This approximation is substituted in place of p,,, in (7.4.12). By making the resulting 

expression stationary with respect to ai(m) , we arrive at the system of equations 

N 
E aa) (Kv(m), vv'» _ (Fm, vi). i=0,1, ... ,N 

(7.4.16) 

j=0 

The system of equations at (7.4.16) is equivalent to direct application of Galerkin's 

method to the original integral equations and the resulting approximation to Pm is 

_N Pm =Z a') (vi(), Fin) 

i=0 

(7.4.17) 

The test functions are defined to model the potential D,,, over the ridge, so that it 

is sensible to write (noting, for the first time, that in fact 0- t) 

vi(') (s, t) = e"tgi(s) (7.4.18) 

and although it is possible, we choose not to specify q; at this point, but we note 

that, without loss of generality, we may assume that q; is real. 

Things now become rather complicated as we sort through the implications of 

(7.4.16). We write 

()C2vt, vi) K m) Keil) + K'2 + ICs(j m+ ICfz2 (7.4.19) 
m i 

in a notation which is implied (in an obvious way) by the four separate components 
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of ! C2 so that 

C(2m) = ff) la (so, to)ro äso 

(ro 
la ff (ras 

(rHaa,,, a)) vi(') (s, t) dS dSo, 
E E 

(7.4.20) 

) ICýi2= ffY 1ä (soto)__. 
roäso 

ro a f v(-)(s, t)dS dSo, (7.4.21) 
ll (_Hi2, 

m\ 
E £ 

IC {j2� = 
ff 

v(-) (so, to)cto 
ff ( 

r äs (rHsi, m) 
) 

v; m)(s, t) dS dS0, (7.4.22) 

and 

Kfl� =J 
If: 

tHi1, 
mvi(')(s, t) dS dSo. (7.4.23) 

EE 

At this point, we acknowledge the fact that 0=t, so consequently o9/at 

r-10/O0 and dS =r dO ds . We then exploit the dependence on the 0 coordinate in 

v; and IIj (sce (7.3.41)-(7.3.44), (7.4.18)), to reduce (7.4.20)-(7.4.23) to 

and 

IC; ý mý = 47rz 
f 

4. i (so) 
äs° r0 

f (ý7 
(rhzz,,, ý)) q{ (s) ds dso, (7.4.24) -L a 

rr 

dso, (7.4.25) K ili1ý; = -4ýzmz J qi (s0) 
äso 

(rofh12, 

m 
q1rs) ds 

rr 

IC{j2;, ß 
= -4ýzmz 

q'(so) J (L 
(rh21, 

m)) q{ (s) ds 
aoo, 

(7.4.26) 

rr\ 

ICfil� = 4ýzm4 
/' 4'( so) %hll, 

mq{(s) 
ds dso (7.4.27) J ro fra ao 

rr 

rrý 

K ý1ý; 
= -4ý2m2 J qi (s0) 

äso 

(ro 
f 

hi2, m 
q1(s) 0, s dso, (7.4.25) 

rr 

IC{j, m 
= -41rZm2 

q'ýö°) % (( 
rh21, m)) qi(s) ds 

ao° 
(7.4.26) 

r 
Jr 

At this point we may integrate by parts, taking care to deal with any discontinuities 

in the integrands. In fact, only h12,,,, and h12, m are affected and in (7.4.26) we apply 

integration by parts to the integral of a discontinuous function which is smooth, so 

throws up no additional term. In contrast only (7.4.26) requires special treatment as 
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h21, m is discontinuous along r= ro. Therefore we deduce that 

Ký22 = 47r2 
If 

h22, mrg(s)roqq (so) ds dso, (7.4.28) 

rr 

ij, 
mý 

= 47r2m2 
Jf 

hi2, m 
q` ýs) 

roqý (so) 
ds 

dso, (7.4.29) 

rr 

Ki(jl") = 47r2m4 
ff 

h9irs) giroo) ds 

Qoo 
(7.4.30) 

rr 

while 

K'21) = 4ir2m2 
ff 

h2i, mrgj'(s) 
qi (so) 

ds 
dso 

ro Qo 
rr 

- 4ir2m2 J ga(so)qi(so) [hsi, 
m]rý+ dso" (7.4.31) 

r 

We find, using (5.3.35) that 

, o+ -1 [ý21, 
m)ro_ - 2-rro 

(ho -1ý(ro)) (7.4.32) 

which can be used to simplify (7.4.31) further. 

The integral equation has now been reduced to one which is determined by four 

integral kernels which are at worst only weakly singular. The kernels K(I� and K f22) 

relate to the self interactions of the flows along and across the seamount respectively, 

whereas K J2) 
and Kj'j' relate to the cross interactions between these two flow 

directions 

As in earlier chapters, it is assumed that h(r) is a single-valued function and 

so the seamount has no overhangs, allowing us to project the integration from the 

curve IF onto the interval rE [0, a]. This implies the simplified (and computationally 

friendly) form 

aa 

K'" = 4n. 2m4 
J 

Jh 
(r, h(r); ro, h(ro))r 4iýr 

r 
rod 

r dro 
o 

00 

where 

qi(r) = qi(s), ds = a(r) dr. 

(7.4.33) 

(7.4.34) 
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We note that boundedness at the origin is guaranteed as, either m=0 or h; j, m 
behaves like rm, or rä as r -º 0 or ro -+ 0 respectively . We also note from 

(7.4.33) that K X11) 
= Kß; 11 and by assumption, K (11) is real. 

A similar procedure is followed for the remaining elements K a) a,, 3 = 1,2 and ( 

the details are omitted. We find that 

1 02) 
= 4ir2m2 J 

fo 
hi2, m(r, h(r); ro, h(ro)) qy(r) 

rogj (ro) dr dro (7.4.35) 
0r 

1 (21) = 4ir2m2 JaJa h2i, m(r, h(r); ro, h(ro))rqý(r) q(oo) dr dro fij, 
m 

47r2m2 
Ja 

gi (ro) q(ro) 
(ho - h(ro)) 

dro (7.4.36) 
- 27rro 

fafa 
IC(j 2) = 47.2 h2 2, m(r, h(r); ro, h(ro))r4'(r)ro4; (ro) dr dro (7.4.37) 

so that ICX21, ) 
= ICS; 2? and IC(2n) = K, 

22, 
) are all real and convergence at the origin 

is guaranteed by the structure of the kernels. Hence, the matrix of elements K !! n) in 

(7.4.19) is real and symmetric. Furthermore we note that 

(7.4.38) 

which may be easily shown using the standard results 

Jm(z) 

Ym(z) 

Im(Z) = I_m(z)e 

Km(z) = K_m(z). 

Let us now turn to the the right-hand side terms in (7.4.16). Thus from the definition 

of Fm in (7.3.24) 

vj(m)) ° Fj�� = 4kho 

Crös(krJ, 
'�(kr)Xo(z)) - 

mýJ,,. ( r)Xo(z)ý 4i(S) dS, 

E (7.4.39) 

then projecting onto the r axis gives 

Fj, 
m = 

-lm+l/2 / 1 
(7 4 40) 

a 
Binh k(d - h(r)) 

{krJ(kr)(r) 
+ m2Jm(kr) dr 

0 
2khoNJ JJ 
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It follows that Fj,, = F'j, 
_,,, and therefore we deduce that 0,,, = 5_,,, where the 

Om are defined in (7.3.6). Thus to obtain the sum from -M -+ M we only need 
to solve the first M+1 equations i. e. for m=0,1, ..., M and use the result that 

Am = A_m. This is as expected since the incident wave has 8;,,, =0 which implies 

symmetry in 0. 

Let us now briefly turn to some of the numerical issues surrounding the compu- 

tation of the solution. Firstly the main requirement on the test functions q; (r) is 

that they form a complete set on the interval [0, a]. If we also require that they be 

orthogonal with respect to the inner product, this implies that the Bessel functions 

of the first kind of order m, J.. (km,,, r/a) n=1.... are the natural choice, where 

kmn is the n'th zero of either Jm(r) (Fourier-Bessel series) or Jm(r) (Dini series). 

As discussed earlier, trial functions which incorporate the local fluid behaviour are 

likely to provide better approximations for a fixed truncation size; in this respect 

J�, (\ir/a) has the correct behaviour as r -+ 0. The behaviour at r=a depends 

upon whether, or not, the patch of topography joins the domain of constant depth 

smoothly. If the join is smooth then the Fourier Bessel series is appropriate, whereas 

for a join with discontinuous slope, then the Dini series is more appropriate. If the 

join has a discontinuous slope then the local fluid motion is like that within a wedge 

and consequently the bed flux must vanish at the join where a wedge flow has a 

stagnation point. In this respect the potential should be modeled by a Dini series so 

that the flux will vanish. The only additional complexity with a Dini series is that 

the set of test functions for the m=0 mode must include a constant term which is 

not required for higher order modes. In fact our numerical experiments demonstrated 

that, even for a smooth join, the Fourier Bessel series offered no advantages over the 

Dini series. Accordingly, for all results that follow we used the Dini series. 

Before turning to some of the numerical issues we note that in our approach we 

non-dimensionalize the bedform using the transformation 

h(r) _ 
h0 h (ar) 

0: 5r: 5 1 (7.4.41) 
i 
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so that h(1) =0 and h(r) =1 where ho - h(r) = hl . Thus h effectively scales the 

bedform to fit into a unit square. Now there are four separate elements, Kjý'°, a,, ß = 
1,2 which are real and make up K; j and, although symmetry implies only half the 

elements need to be computed, each factor requires the evaluation of a double-integral 

in which the kernel is not separable. It is illustrative to consider the asymptotic 

behaviour of the infinite sums arising in each hap,,,, 
. For this we use the following 

asymptotic results from Watson [100] §7.23 

jm(z) , 
ez (7.4.42) 
2irz 

Km(z) , "" 1/ ýe z (7.4.43) 
V 2z 

and the similar forms for their derivatives 

Im (z) - 
eZ (7.4.44) 
27rz 

K;, 
ý(z) - 

7e-z. (7.4.45) 

Furthermore we note that the dispersion relation (2.1.44) implies (2.1.46) i. e. knd N 

n7r as n -s oo and therefore we also deduce that 

Xn(h(r)) ^' f sin(nirhlh, (ar)/ho)" (7.4.46) 

Using these results we see that the summands in the hapm all include the term 

e-nnlr-*ollho (7.4.47) 

in their asymptotic form. Therefore the kernels are relatively easy to compute apart 

from along the line r= ro where convergence is only algebraic. We anticipate the 

severest problems in the kernel h22, where along the line r= ro we see that the 

summand behaves like 
0 

(7.4.48) 
n=1 n7r 

and which is indicative of the logarithmic singularity. Thus following the approach 

of Porter & Porter [77], we write 

e, j =f gf(ro) 
f 

4, (r) 
> I;,, (k r<)K;, (k r>) 

Xn(r Xon(ro) 
rro dr dro (7.4.49) 

h 
oo n=1 
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then using (7.4.44), (7.4.45) and (7.4.46) we rewrite the infinite sum in (7.4.49) as 
00 rxn(h(r))xn(h(ro)) 

, 
IL %1p I(knr<)Km(k,, r>) 

n=1 

e n7rlr-roI/d 1 

+ 
ný rrp sin(n7rhlh(r)/ho) sin(n7rhili(r)/ho)] 

-0 
e-nalr-roI/ho 

sin(nirhlh(r)/d) sin(nirhlh(r)/ho) (7.4.50) 

n_1 
n7r rro 

The sum in the square brackets, which we now call S(r, ro) , now converges for 0< 

r, ro < a, as we have removed the asymptotic leading order contribution (convergence 

of the integrand at r, ro =0 is ensured as the infinite sum is multiplied by rro ). We 

call the corresponding integral ei(, 1) so that 
aa 

e; ý) =Jq (ro) J q(r)S(r, ro)rro dr dro. (7.4.51) 

00 
The asymptotic leading order contribution, which appears as the last term in (7.4.50) 

can be summed explicitly (Gradshteyn & Ryzhik [37], §1.462) to 

1 
In T(r, ro) 27r(rro)1/2 

(7.4.52) 

where 

sine{l7rhj(h(r/a) + h(ro/a))/ho} + sinh2{2ir(r - ro)/ho} T(r; ro) =2 (7.4.53) 
[sin 

e{21rhi(th(r/a) - h(ro/a))/ho} +sinh2{27r(r - ro)/ho} 
The logarithmic singularities are now contained in the integral 

aa 

-i- 
f 

4q(ro) 
f 

4(r)(rro)1121n[T(r, ro)] dr dro = efýl + ell (7.4.54) 

00 
where 

aa 
fq(ro)fq: 

(r)(rro)h/2In[a_hIr - rojT(r, ro)) dr dro (7.4.55) e,, ) 27r 
00 

and 
11 

eil =a fq(aro)rV2f(ru/2q(ar) - röý2gl (aro))1n ýr - roý dr dro 

00 
1 

+2_ 
fqj(ar)qi(ar)r[rln(r)+(l-r)ln(l-r)-Ij dr. (7.4.56) 

0 
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Notice that, as in Porter & Porter [77], we have dealt with the logarithmic sin- 

gularity in such a way that it has been integrated out analytically. The resulting 

contributions are such that eif) is independent of all parameters, so only needs to be 

calculated once, and e; j) is independent of frequency so only needs to be calculated 

once for each specific geometry. 

The Bessel functions were calculated by the standard SLATEC routines, taking 

into account the exponential factors in Im and K�, so that their product could be 

calculated without loss of precision. We remark that these routines also allow us to 

create the kernel matrices for each angular mode in one step without adding significant 

computational overhead. 

7.4.3 Conservation of energy 

A discussion of the approximation would be incomplete without a consideration of how 

well the approximation handles the conservation of energy. A statement equivalent 

to the conservation of energy in this problem is given by 

where 

1 f27 IA(0)12 dO = -2ReA(O) (7.4.57) 

00 
A(O) = Ao +2 Am cos mB (7.4.58) 

m=1 

represents the normalised angular variation of the scattered wave amplitude. This 

relation, first derived by Maruo [53], is discussed extensively in Mei [61] who presents 

a derivation of this and a range of similar results for scattering problems in both two 

and three dimensions. In our approximation we take a finite sum in (7.4.58) so that 

Therefore 

M 

A(O) N A(B) - Ao +2EA,,, cos mB. (7.4.59) 
M=l 

-2ßeA(0) = -2Re 

(Ao 
+2 Am (7.4.60) 

1 

f 
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and 
MM 

JA(B)12 = 
(Ao 

+A 
(Ao* 

+2> An cos(nO) 
M=l n=1 

Mm 

= AoAö + 2Ao A;, cos(nO) + 2AO* An cos(mO) -}- ... 
n=1 m=1 

MM 

2 AmAn (cos(m + n)9 + cos(m - n)O) . (7.4.61) 
m=1 n=1 

Therefore using (7.4.60) and (7.4.61) in (7.4.57) we deduce that energy is conserved 
if 

MM 

IAo12+2EIA,,, 12=-Re 
(ý0 

+ 2> Am . (7.4.62) 
M=1 m=1 

Now equations (7.3.53) and (7.4.11) show that whatever formulation we choose the 
far-field coefficient Am has the form 

(7.4.63) 

where a, is a real quantity. Therefore it is routine to deduce that 

IAmI2 = -ReA,, Vm (7.4.64) 

thus establishing that both of our formulations satisfy energy conservation exactly on 

a mode by mode basis. 

7.5 Results 

We first consider the scattering of plane waves by a hemisphere, a problem which 

was solved in Chapter 4 by a multipole approach. As before, this will provide quite 

a severe test of our approach because of the steep gradients near the join of the 

seamount with the constant depth domain. We will investigate how the convergence 

properties of each system vary with the two main truncation parameters which are 

M the maximum number of angular modes and N, the number of panels for the 

Boundary Element method or the truncation limit of the set of test functions in the 

Rayleigh-Ritz method. 
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For clarity and compactness of presentation, rather than present tables of con- 

vergence for each of the A,, for a given problem, we consider convergence of JA(O) I 

for the values 0=0, ir/2 and 7r. These values of 0 are chosen to provide different 

combinations of the A., and our numerical experiments show that this approach 

accurately represents the convergence of the real and imaginary components of the 

underlying Am. 

M 
N 0 1 2 3 
50 0.005894 0.077478 0.079420 0.079438 
100 0.005913 0.077521 0.079466 0.079484 
150 0.005918 0.077532 0.079477 0.079495 
200 0.005920 0.077536 0.079482 0.079500 

Table 7.1: Convergence of IA(0) I (= 0.079509) using BE method for scattering by a 
hemisphere of radius a/ho = 0.5 for kho = 1. 

M 
N 0 1 2 
50 0.005894 0.005894 0.003951 
100 0.005913 0.005913 0.003968 
150 0.005918 0.005918 0.003972 
200 0.005920 0.005920 0.003973 

Table 7.2: Convergence of IA(ir/2)1 (= 0.003977) using BE method for scattering by 

a hemisphere of radius a/ho = 0.5 for kho = 1. 

M 
N 0 1 2 3 4 
50 0.005894 0.005894 0.065695 0.063754 0.063772 
100 0.005913 0.065701 0.063757 0.063775 0.063775 
150 0.005918 0.065702 0.063757 0.063776 0.063776 
200 0.005920 0.065703 0.063758 0.063776 0.063776 

Table 7.3: Convergence of IA(7r) I (= 0.063776) using BE method for scattering by a 
hemisphere of radius a/ho = 0.5 for kho = 1. 

We turn first to the BE method and investigate convergence for a wave where 

kho =1 incident on a seamount where a/ho = 0.5. The results which are presented 
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in tables 7.1 to 7.3 are to be compared against exact value determined by the multipole 

method which is indicated in the caption. The first point to note is that convergence 
in M is rapid with no improvement in the first 6 d. p. for M=4 at a fixed value 

of N. With a modest N= 100 we see that we generally achieve 5 d. p. accuracy, 
but further improvement is extremely slow. We also observe subjectively that, as 
N increases the computation time increases rapidly, this is mainly due to our using 

a ten point Gauss-Legendre quadrature for the integral quantities. Speed might be 

improved by using a less sophisticated quadrature scheme for larger numbers of panels 

but at a potential loss in accuracy which would need to be investigated. 

M 
N 0 1 2 3 4 
0 0.005592 0.076452 0.078326 0.078343 0.078343 
2 0.005923 0.077438 0.079371 0.079389 0.079389 
4 0.005923 0.077504 0.079445 0.079463 0.079463 
6 0.005923 0.077523 0.079466 0.079485 0.079485 
8 0.005923 0.077532 0.079476 0.079494 0.079494 
10 0.005923 0.077536 0.079480 0.079499 0.079499 

32 0.005923 0.077544 0.079489 0.079507 0.079508 

Table 7.4: Convergence of IA(0)l (= 0.079509) using Rayleigh-Ritz method for scat- 
tering by a hemisphere of radius a/ho = 0.5 for kho = 1. 

M 
N 0 1 2 3 
0 0.005592 0.005592 0.003717 0.003717 
2 0.005923 0.005923 0.003989 0.003989 
4 0.005923 0.005923 0.003982 0.003982 
6 0.005923 0.005923 0.003979 0.003979 

8 0.005923 0.005923 0.003978 0.003978 
10 0.005923 0.005923 0.003978 0.003978 
11 0.005923 0.005923 0.003977 0.003977 

Table 7.5: Convergence of I. A(7r/2)J (= 0.003977) using Rayleigh-Ritz method for 

scattering by a hemisphere of radius a/ho = 0.5 for kho = 1. 

In tables 7.4 to 7.6 we turn to the results for the same problem as in tables 

7.1 to 7.3 but solved by the Rayleigh-Ritz method. The first point to note is that 
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M 
N 0 1 2 3 
0 0.005592 0.065273 0.063400 0.063417 
2 0.005923 0.065598 0.063665 0.063683 
4 0.005923 0.065663 0.063723 0.063741 
6 0.005923 0.065682 0.063740 0.063758 
8 0.005923 0.065691 0.063747 0.063765 
10 0.005923 0.065695 0.063751 0.063769 

32 0.005923 0.065703 0.063757 0.063776 

Table 7.6: Convergence of IA(7r) I (= 0.063776) using Rayleigh-Ritz method for scat- 
tering by a hemisphere of radius a/ho = 0.5 for kho = 1. 

convergence in M is the same in this approach with no improvement in the first 6 

d. p. achieved with M>4 for a fixed value of N. We see from the tables that 

convergence in N is also achieved in N=7- 10 resulting in a significantly smaller 

matrix system than the BE method. Further improvement for this problem is also 

slow, primarily due to the end effects near the join. However, tables 7.1 to 7.6 also 

serve to confirm the validity of our general method, and its implementation in our 

two different formulations. 

M 
N 1 2 3 4 5 6 
25 1.397025 1.787216 1.839638 1.843196 1.843346 1.843350 
50 1.397603 1.787824 1.840248 1.843807 1.843957 1.843961 
75 1.397729 1.787957 1.840382 1.843941 1.844090 1.844095 
100 1.397781 1.788011 1.840437 1.843996 1.844145 1.844150 
125 1.397804 1.788035 1.840462 1.844020 1.844170 1.844174 
150 1.397814 1.788047 1.840473 1.844032 1.844181 1.844186 
175 1.397821 1.788054 1.840480 1.844039 1.844188 1.844193 
200 1.397826 1.788059 1.840485 1.844044 1.844194 1.844198 

Table 7.7: Convergence of JAýO) I using BIE method for scattering by seamount where 
h(x) =1 for 0 <x< b and h(x) = 0.5(1+cos(ir(x-b/a)/(1-b/a))) for b<x <a. 

a/ho = 4, b/ho = 3, and kho = 0.5. 

We now investigate the convergence properties for a topography considered by 

Chamberlain & Porter [12] where they solved the axisymmetric problem by approx- 
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M 
N 0 1 2 3 4 5 6 
0 0.618909 1.260156 1.653392 1.704279 1.707620 1.707757 1.707760 
2 0.644213 1.385082 1.775686 1.828136 1.831688 1.831837 1.831842 
4 0.648517 1.396603 1.786776 1.839195 1.842753 1.842902 1.842906 
6 0.648774 1.397103 1.787348 1.839766 1.843323 1.843472 1.843477 
8 0.649265 1.397558 1.787771 1.840182 1.843739 1.843889 1.843893 
10 0.649456 1.397724 1.787949 1.840367 1.843925 1.844075 1.844079 
12 0.649480 1.397771 1.788005 1.840428 1.843986 1.844135 1.844139 
14 0.649497 1.397803 1.788035 1.840458 1.844016 1.844166 1.844170 
16 0.649507 1.397815 1.788046 1.840469 1.844027 1.844177 1.844181 
18 0.649519 1.397827 1.788059 1.840483 1.844041 1.844191 1.844195 
20 0.649520 1.397832 1.788065 1.840490 1.844049 1.844198 1.844203 

30 0.649542 1.397859 1.788091 1.840516 1.844075 1.844225 1.844229 

Table 7.8: Convergence of IA(0)l using Rayleigh-Ritz method for scattering by 
seamount where h(x) =1 for 0<x<b and h(x) = 0.5(1+cos(7r(x-b/a)/(1-b/a))) 
for b<x<a. a/ho = 4, b/ho = 3, and kho = 0.5. 

imating with the Mild-Slope equation. The geometry considered in tables 7.7 and 

7.8 is a seamount with a constant depth plateau of radius b<a and a smoothly 

joining cosine shoal for b<r<a. We observe that, although obviously this problem 

is amenable to solution by the approach in this chapter, it has more similarity with 

the arbitrary step problem of Chapter 6 rather than the ridge of Chapter 5 for which 

this chapter provides the axisymmetric equivalent. The `step' approach is followed by 

Chamberlain & Porter who solve the problems over the constant depth domains by 

a constant depth solution and match these with a MMSE solution for the shoal. We 

remark that, although Chamberlain & Porter discuss scattering over this topography, 

they concentrate on the local field over the plateau rather than the far field variation 

which our formulation is principally set up to find. Of course this local field may be 

recovered from (7.3.26) once the system has been solved. 

Again, the results from the BE and RR methods appear to converge to the same 

values thus confirming their accuracy. In each case a choice of M=6 is sufficient 

to seek 6 d. p. accuracy. The BE approach gives 4 d. p. and 5 s. f. accuracy for 
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N- 125 however, further improvement is very slow to achieve. The RR method can 

achieve comparable accuracy for N= 13 and M=5 giving a much smaller system 

to solve. We remark that this geometry is likely to need a larger amount of terms in 

the approximation to solve by RR as most of the change in the geometry occurs in a 

small region. To see this, in tables 7.9 and 7.10 we present the results for the same 

plateau, but where the shoal extends for much more of the seamount's domain. It is 

clear that for each method convergence is more rapid with M=3 being sufficient 

and N szý 75 for the BE method or even more impressively N5 for the RR method 

to achieve 5 d. p. accuracy. 

M 
N 1 2 3 
25 0.078344 0.079869 0.079880 
50 0.078359 0.079884 0.079895 
75 0.078361 0.079887 0.079898 
100 0.078362 0.079888 0.079899 

Table 7.9: Convergence of IA(0)) using BE method for scattering by seamount where 
h(x) =1 for 0<x<b and h(x) = 0.5(1+cos(7r(x-b/a)/(1-b/a))) for b<x<a. 
a/ho = 0.5, b/ho = 1, and kho = 0.5. 

M 
N 0 1 2 3 
0 0.003065 0.076605 0.078088 0.078099 
2 0.003385 0.078239 0.079763 0.079774 
4 0.003424 0.078340 0.079865 0.079876 
6 0.003433 0.078360 0.079886 0.079896 
8 0.003433 0.078361 0.079887 0.079898 
10 0.003433 0.078363 0.079889 0.079899 
12 0.003433 0.078363 0.079889 0.079899 

Table 7.10: Convergence of IA(0)I using Rayleigh-Ritz method for scattering by 

scamount where h(x) =1 for 0<x<b and h(x) = 0.5(1+cos(ir(x-b/a)/(1-b/a))) 
for b<x<a. a/ho = 0.5, b/ho = 1, and kho = 0.5. 

Finally we note that, in the testing process for this particular geometry, we also 

considered Longuet-Higgins [52] approach where he considered long waves over a 

circular sill. We observe that as b/a -º 1 in this problem the seamount approaches 
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a circular sill. The limit is naturally difficult to take numerically so we used this 

approach simply to confirm that our scattering coefficients were of the correct orders 

of magnitude. 

We have laboured the point for convergence over this particular topography to 

establish definitively that our results are correct. This is mainly because our main 

point of comparison with Chamberlain and Porter [12] is the scattering coefficients 

and in a range of numerical data kindly provided by P. Chamberlain we find our 

method gives markedly different values of the A,, which correspond directly with 

the B71 in Chamberlain & Porter [12]. We present in figure 7.2 results corresponding 

to their figure 2, namely contour plots of I )l for the cosine shoal where a/ho =5 

and b/h0 =4 and hl/h0 = 15/16 for frequencies Kho = 0.25,0.5,0.75 and 1.0 . 
We 

plot the wave field directly over the seamount as this is the most interesting region. 

In fact, our plots are remarkably similar to those in Chamberlain & Porter [12] with 

figure 7.2 (a) and (b) bearing the most striking similarity. In particular we observe 

the excitation of the fifth mode at a frequency of Kho = 0.5. Thus we observe that 

although this particular geometry is itself quite a severe test for the MNISE as the 

slope is 0(1) and certainly not mild, nevertheless a visual inspection of the plots 

appears to indicate that the MIME is performing well. 

For further comparison we also present in figure 7.3 results corresponding to Cham- 

berlain & Porter's [12] figure 3, namely contour plots of III for the cosine shoal where 

a/1g = 10 and b/ho =6 and hl/I0 = 9/10 for frequencies Kho = 0.0715 and 0.466. 

Once again the results are strikingly similar to those in Chamberlain & Porter [12] 

with clear excitation of the m=3 mode in 7.3(a) and the m=8 mode in 7.3(b). We 

ran experiments to see how sensitive our results for figure 7.3(a) were to perturbations 

of the frequency. In this respect we confirmed Chamberlain & Porter's finding that 

near-resonances were hard to excite, furthermore we found that our results suggested 

a maximum excitation at Kh0 = 0.0719, however the maximum amplitude attained 

was only 1% greater than that at Kho = 0.0715. Of course since we did not have 

access to Chamberlain & Porter's underlying data a more detailed investigation of 
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Chapter 7. Scattering of plane waves by an axially symmetric seamount 

7.6 Remarks 

In this chapter we have shown how the fully linear theory may be applied to axisym- 

metric problems. We have shown how the principles developed in Chapters 5 and 6 

may be applied to problems with a different (cylindrical) natural coordinate system. 

Furthermore we have also solved this problem retaining its three-dimensional nature 

to indicate some of the principles we develop further in the next chapter. 

We compared our results with Chamberlain & Porter's [11] MMSE approach which 

is arguably the most sophisticated recent approximate solution. We observe that 

when Renardy [81] applied the full linear theory to Longuet-Higgin's [52] sill prob- 

lem lie found that the approximate solution predicted different resonant frequencies 

and overestimated the resonant amplitudes when compared with the fully linear the- 

ory. Interestingly our results appear to indicate that the MMSE predicts both the 

frequency and the amplitude accurately. This in itself is an important observation 

as, until now, there have been no exact results to compare the MMSE against (see 

Chamberlain & Porter [12]). Interestingly Chamberlain [13] found that for the ax- 

isymmetric problem, inclusion of evanescent modes in a MMSE approach did not 

introduce any new frequencies, although it did improve the approximations to their 

values. There has been insufficient time to test the accuracy of the MMSE for this 

problem extensively and it remains an area which would certainly merit further in- 

vestigation. 
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Chapter 8 

Wave scattering by an arbitrary 
patch of topography 

8.1 Introduction 

In the three previous chapters we have concentrated on developing techniques for 

solving scattering and related problems involving arbitrary topographies which have 

possessed some form of symmetry. Thus, in Chapters 5 and 6 we considered infinitely 

long bed protrusions or escarpments having arbitrary profile, whilst in Chapter 7 we 

considered axisymmetric seamounts. In each case we were able to take advantage of 

the symmetry in the geometry to ultimately reduce the three-dimensional problem 

to one involving just two coordinates, the third coordinate manifesting itself in the 

transformation of the field equation (often referred to as quasi-2D). In each prob- 

lem we have seen that although they can be reduced to two-dimensional problems, 

consideration of the three-dimensional nature of the problem is still crucial to its 

solution. 

The technique used throughout this thesis has been to derive weakly singular 
integral equations for wave scattering over some class of arbitrary bed topography. 

We have achieved this from converting from normal to tangential derivatives and 

have shown how, unlike the traditional approach, this produces a representation of 

the potential which is continuous as the field point moves from the fluid domain to 

the boundary. We have then shown how this alternative form can yield a simple 
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Chapter 8. Wave scattering by an arbitrary patch of topography 

boundary clement approach, or by a second application of the derivative switching 

we can derive an alternative integral equation which is set up perfectly for solution 
by the Rayleigh-Ritz method. 

In this final chapter we take advantage of the experience gained from consid- 

Bring specific examples to develop a general theory applicable to a genuinely three- 

dimensional protrusion of bed topography from an otherwise flat bed. Having reached 

this point, we observe that we could have developed this theory from the outset, in 

which case each of the specific cases in Chapters 5,6 and 7 would have been shown 

to be particular reductions of the general theory. 

8.2 A general theory 

We consider a bed protrusion with, for simplicity, some kind of "Cartesian" support. 

The bed Sb is defined by the single valued function z= h(x, y) for (x, y) E Sp, 

where Sp is the projection of the bed onto the two-dimensional plane and where, for 

simplicity, we assume Sp = {(x, y) :xE (0, a), yE (0, b)} . The bed is of constant 

depth h= ho for (x, y) 0 Sp and we do not exclude the possibility that h= ho for 

points or regions of (x, y) E Sp. We define a set of vectors 

n= (-h=, -hv, 1)la v= 1+hx+h&, 
s= (-h2,0,1) /0s o=1+ hy, (8.2.1) 

t= (0, -h, 1)/0 i Ort = . 
/1+h, 

so that n is the unit normal to Sb, oriented so that it points out of the fluid. The 

unit vectors s and t, both of which are orthogonal to n, are tangent to Sb and their 

projections onto Sp are oriented in the x and y directions respectively. It follows 

that 

n=Tsxt, (8.2.2) 

where 
°°at 1 (8.2.3) 

a1 --S. t 

As usual we let (I)(r) be the time-harmonic potential, at a position vector r= (x, y, z) 

and operating at frequency w127 r. A wave is incident from infinity and is described 
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8.2. A general theory 

by a potential 4)i,,,, there is also a scattered wave field given by (Ds so that the total 

potential = ýPt, + V. Then Green's identity applied to the fluid domain gives 

µý(ro) = 4? snc(ro) - 
ff 

I(r)n. VG(r; ro) dS (8.2.4) 
Sy 

where ro = (x0, yo, zo) is the "field point" and D is the fluid domain which is bounded 

by the surface äD where, of course Sb C äD. Here µ=1 for ro E D, µ= 1/2 

for ro E 9D, and p=0 for ro ýDU äD. Here G(r; ro) is a point source Green's 

function chosen to satisfy the no-flow condition on z= ho 
, the free-surface boundary 

condition on z=0, and 

V2 G(r; ro) = -S(r - ro) (8.2.5) 

as well as satisfying a Sommerfeld radiation condition. 

Now, as in earlier chapters, we define a vector Green's function L related to the 
Green's function G by 

VG =VxL- 5(x - xo)b(y - yo)SZ(z - zo)k (8.2.6) 

where L= (G;, -Ge, 0) and we use the notation defined in (5.3.4). This may be 

verified by substitution so that 

ijk 
VG = (Ga, Gy, Gr) = ä-- ä, &- 5(x - xo)5(y - yo)bz(z - zo)k. (8.2.7) 

G: -Gi 0 

The first two elements of VG work out trivially whereas the third uses 

Gzr =- Gsx - G'y - 8(x - xo)b(y - yo)b`(z - zo) (8.2.8) 

which follows from integrating (8.2.5) with respect to z. Also using (5.3.6) in (8.2.4) 

we find that 

d)i .. (ro) `JJ D(r)n. V x LdS 
Sb 

- 
11 

xo)a(y - yo)H(zo - z) 
S 

(8.2.9) 
01 

Sb 
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Chapter 8. Wave scattering by an arbitrary patch of topography 

since n. k = 1/Q, here H(x) is the Heaviside step function. Now, careful consid- 

eration of the surface element dS and its projection onto the (x, y) plane shows 

that 

dS = n. (ags x Qtt) dx dy 

= a. atn. 
n n) dx dy 
T 

=a dx dy, 

so that 

-J 4)(r)5(x - xo)a(y - yo)H(zo - z) 
dS 

Sb 

(8.2.10) 

- 
JJ 

e(x, y, h(x, y))5(x - xo)b(y - yo)H(zo - h(x, y)) dx dy 
Sp 

= -('(x, y, h(x, y))H(zo - h(xo, yo)) (8.2.11) 

which evaluates to zero for points ro E D, -2(P (xo, yo, h(xo, yo)) for points ro E Sb 

and -4>(xo, yo, h(xo, yo)) for points ro 0DU Sb. Thus combining this result with 
(8.2.0) 

(I)(ro) = 4';,,, (ro) - Jf 4)(r)n. V xL dS for ro EDU 8D (8.2.12) 

Sb 

which establishes that, unlike the traditional form (8.2.4), the formulation in (8.2.12) 

gives a continuous definition of the fluid potential as the field point moves from the 

fluid domain to a point on the boundary. We could at this point approximate the 

integral equation in this form by a collocation/boundary integral approach. However, 

we have seen this several times so far and the extension to this case does not provide 

any further insight. Noblesse [67] too treats (8.2.9) as a second kind integral equation 

for the fluid potential in which the LHS of (8.2.12) is continuous as ro -º Sb, and 

converts it to a weakly singular form by performing the three-dimensional analogue 

of integration by parts using the formula 

(V x L)4) =Vx (4)L) - 0-P x L. 
. 
(8.2.13) 
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In his approach, though, Noblesse fails to make explicit the treatment of the term 

arising from the delta function in the equation satisfied by the Green's function. 

Following Noblesse's approach but glossing over any of these difficulties we would 

obtain 

JJ 4; n. 0 xL dS = ýL. dr -fn. (V x L) dS. (8.2.14) ir 

Sy 3y 

Here we have used Stokes' theorem to convert the surface integral to a line integral 

around IF which includes OSb plus any other "cuts" in Sb where there are jumps in 

L. Noblesse does not consider points where Stokes' theorem does not apply, namely 

where the first derivatives of L are discontinuous. However, as we shall see, they 

make contributions which cannot be neglected. Now, since L=0 by construction 

for regions where z= ho, then the only contributions from this line integral would 

be from discontinuities in L. 

Our earlier work in Chapters 5 to 7 has shown that it is possible to reformulate the 

integral equation in a way that allows a variational principle equivalent to Galerkin's 

method to be used. We know from our experience so far that the integral equation in 

the form (8.2.13) would result in a non- self-adjoint integral operator where the adjoint 

problem is not evident and so it is not amenable to solution by the Rayleigh-Ritz 

method. Therefore we apply the steps already seen in earlier chapters, anticipating 

that we will be able to construct a self-adjoint integral operator which will allow us 

to employ the Rayleigh-Ritz method. 

Thus we manipulate (8.2.12) to get it into a form which we know will provide a 

self-adjoint integral operator. This requires a knowledge of the explicit form of the 

Green's function, a derivation of which is presented at the Appendix and where it is 

shown that 

= 
00 0zo) G(r; ro) 21 

Z Ko(k�R) n(zhon( (8.2.15) 

n_o 
where 

R- /r2+r_2rrocOs(0o_0), (8.2.16) 
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Chapter 8. Wave scattering by an arbitrary patch of topography 

or alternatively 

= (x - xo)2+ (y - yo)2, (8.2.17) 

and we have written (x, y) = r(cos B, sin 9) and (xo, yo) = ro (cos Bo, sin Bo). Alterna- 

tivcly we may write 

C(r; ro) =1 I1o(kR`'Lfj 0ýz0ý +1r 1{OýýnRý0n(Z)1Jn(ZO) (8.2.18) l14l/ h0 2ý 
nLaýi 

h0 

where the first term represents the propagating mode and the sum contains the evanes- 

cent modes. We have already seen in Chapters 5 and 7 that the key step to construct a 

self-adjoint operator is to decompose the Green's function into its real and imaginary 

parts. Therefore we write G= Go +G where 

Go =I Jo(kR)V)O(z)oo(zo) (8.2.19) 

and 
G'_ _1}, 0(kJ1)00(z)ýG0 

0) 
�ý. 

1 c00 `Ko(k R)0. 
(z)0. (zo) (8.2.20) 

ho 4 110 2r 
-l nL 

We also assume that the incident wave is a plane wave propagating at an angle 8;,, c 

to the x -axis so that 

4)i�, (r) = pikrcae(0-e, nc) , o(z) 

or alternatively, using the Jacobi-Anger expansion, 
00 

=E iJM(kr)eim(o-oi�c)WO(z) 

and for case of notation later we define 

Iom(r) = imJJ(kr)e'm000(z). 

(8.2.21) 

(8.2.22) 

(8.2.23) 

The argument, 2?, for the Green's function proves inconvenient to deal with and 

obscures some of the structure of the problem; therefore to proceed we need the 

following results all derived from Gradshteyn & Ryzhik (37] §8.530 
00 

Jo(kR) => Jm(kro)Jm(kr)etm(OO-B) (8.2.24) 
M--00 

00 

Yo(kR) =E Ym(kr>)Jm(kr<)eim(00-e) (8.2.25) 

m--oo 
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and 

00 
Ho(kR) =E Hr(kr>)Jr(kr<)e'm(B0-e) (8.2.26) 

m=-oo 

where 

r> = max{r, ro} and r< = min{r, ro}. (8.2.27) 

Using these results we see that we recover exactly the form of the three-dimensional 

Green's function in polar coordinates as detailed in the Appendix. 

The final piece of information we require comes from the radiation condition which 

requires the scattered waves to be outgoing at infinity. The most general form of the 

far field of a wave which satisfies this requirement is 

00 
-ýPs(ro) Hm(kro)imAmeimeo'o(zo) as kro -º oo (8.2.28) 

m=-oo 

see, for example Mei [61]. Then using the far field expansion of the Flankcl function 

we may write 

00 

ýDs(r°) 
2kr e; 

(krp-a/4) 
°( )E Ameimeo as kr° --+ co (8.2.29) 

° 
M=-oo 

which we observe is a scattered wave with angular variation defined by the complex 

coefficients {Am}. So if we define the angular variation by 

00 
A(O) =E Ame"9 (8.2.30) 

then this quantity, often called the diffraction coefficient or directivity factor, may be 

viewed as the principal unknown of the problem. 

We obtain the vector quantities Lo and L in an obvious manner from substituting 

the decomposed Green's function in (8.2.6) to give the relations 

Lo = ((Go)', -(Go)', 0) (8.2.31) 

L= (Go I', -Gx, 0) (8.2.32) 
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Now, from (8.2.10), (8.2.23) and (8.2.24) we see that Go may be decomposed into 

00 
Go(r) 

Oho 
4)om(ro)ý'om(r), (8.2.33) 

m=-oo 

then defining a set of vector functions To,,, by 

To. = ((I'om),, 0) (8.2.34) 

so that 

Wom =VX Wom, (8.2.35) 

we deduce that 
00 

Lo(r) th ý -om(ro)`'om(r)" (8.2.36) 

m 
We are now in a position to substitute the decomposed Greens function into (8.2.12) 

to give 

<I'(ro) = <I'i�c(ro) - 
if 

4'(r)n. V xL dS - ff 1(r)n. V x Lo dS. (8.2.37) 
, IS6 

Sy 

and then, if we define 

F(m)(r) = n. 04'o,,, (r) = n. 0 x Wo, �(r) 
(8.2.38) 

and an inner product as 

(u, v) = 
Jf 

u(r)v(r) dS (8.2.39) 
Sb 

then (8.2.37) may be rewritten as 

00 
(I)(ro) = (I't. c(ro) -Jf (I)(r)n. V xL dS -1 To (ro) (ýý F'iml) (8.2.40) 

S6 
4ho 

m__00 

Simplifying, using (8.2.22) and (8.2.23) we obtain 

00 
(I)(ro) = 1: 4'om(ro)(e-"O-o -Ok_(, F(m))) - 

if 
, (r)n. V xL dS. (8.2.41) 

6 

In previous chapters, consideration of the far-field behaviour as kro -+ co in the 

equivalent of (8.2.12) has yielded a relation between the inner product term appearing 
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in (8.2.41), and the general case is no different. Therefore, from (8.2.18) we deduce 

that 

G IHo(kR)00(z)oo(zo) (8.2.42) 

which may be rewritten as 

00 
GN 

Oho 
E 1mHm(kro)eimeoý (r) (8.2.43) 

m=-oo 

using (8.2.26) so it follows that 

00 1 1: L' 
Oho 1mH.. (krr)e, moo0o(zo)Wom(r). (8.2.44) 

m=-oo 

Then, taking the limit kro -º oo in (8.2.13) and using (8.2.28), (8.2.38) and (8.2.44) 

we find that 

00 00 
E Hm(kro)1mAmeimoo4 �/, o(zo) _ -4h 

E imHm(kro)eimooY'o(zo) JJ cz)T dS, 

m=-ý o 
m=-0o Sb 

(8.2.45) 

from which it is clear that 

Am 
4h° 

(ýP' F(m)). (8.2.46) 

This result is the key to progressing with (8.2.41) which now becomes 

I(ro) =E ýDom(ro)(e-i'rs`"` + Am) - 
Jf 1(r)n. ° xL dS. (8.2.47) 00 

M=-00 Sb 

We will now proceed to form an integral equation by taking the normal derivative 

of (8.2.47) with respect to the field variable and then applying the bed condition. 

Firstly we define the field variable analogue of (8.2.1) as 

no = (-hxo, -hyo, 1) /co O'o =1+ xo tyo 

s° = (-hxo, 0,1) /o, 
so Qgo = V-1+ hxo, (8.2.48) 

to = (0, -hy(,, 1) /vto Qto =1+ hvo, 

and also °o is understood to be the gradient operator with respect to the field 

variables 

aaö (8.2.49) °0 = 
(äßo' 

5--o-, 5Z7-0- 
0 8z° 
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So 

00 
iio. VocIh(ro) = no. Do > 4' om(ro)(e_Imo1na +Am) - no. VoJJ (D(r)n. V x LdS. 

MM-00 Sb 
(8.2.50) 

As in earlier chapters, in order to be able to take the gradient operator inside the 

integral we need to be able to say that ro is not on Sb. This is permissable as the 

definitions in (8.2.48) are all extensible off the curve zo = h(xo, yo) for which they 

are defined. This point is crucial as it allows us to write 

V0[n. VxL] =V0xII (8.2.51) 

where, in accordance with a similar transformation earlier 

II= 
([n. 

y x [n. V x L]Z0 
, 0) 

Yo xo 

= (n. 0 x Ll , -n. 0 x L2 , 0) (8.2.52) 

and 

Ll = Lro - 
(G-Y"0 G--"0 Q) = (L11 

, -L12 , 0) , 
(8.2.53) 

Yo - Yo + TYo 

L2 = Lzp = 
(Gy ZO 

, 
Cxrö 

, 0) = (L21 
, -L22 9 0) (8.2.54) 

In confirming the relation in (8.2.51) with the associated definition of H in (8.2.52) 

use is made of 

V G=0 #- V [n. Vo x L]. (8.2.55) 

which holds for r 76 ro, a fact which is ensured by the requirement that ro V Sb 

when the transformation in (8.2.51)is made. So we have, from (8.2.50) 

00 r 
no. VoýI>(ro) = no. Do x `yom(ro)(ý-irrot 0+ Am) - no. Vo x J1'(r)H(r; ro) dS 

m--oo S6 
(8.2.56) 

the transformation in (8.2.51) having been made for r0 ro, and then the curl 

operator Vox is taken back outside the integral operator so that the kernel is no 
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more than log-singular again. Then, and only then, can ro be sent onto Sb so that 

the left hand side goes to zero and therefore 

no. V0 x 
ff 

-1)(r)H(r; ro) dS = 
Sy 

m 
no. Vo xE Wom(ro)(e ; mo:,, c .. f. A�a); ro E Sb. (8.2.57) 

m=-oo 

If we now define an integro-differential operator 

(K4') (so, to) = no. Vo x 
ff 

1(r)H(r; ro) dS; ro E Sb, (8.2.58) 
Sy 

and a set of functions 4) m(so, to) such that 

(KO m) = no. Vo x ýVo,,, (8.2.59) 

then it follows that 
00 

_E 4) m(e-im° + Am) (8.2.60) 
m=-oo 

We now substitute (8.2.60) into (8.2.46) to obtain, after some rearrangement, an 

infinite system of equations for the scattering coefficients 

00 00 

A, + 1 (gym F("))Am e_imO. nc F(n)) nEZ. (8.2.61) 
4 4hp 

00 
In practice we would solve this problem by truncating the sum at a fixed value Al 

anticipating convergence to the exact solution as M -. oo . 
In this case we would 

end up with a matrix system to solve of the form 

(I + B). A = -B. e (8.2.62) 

-- where 

I=bnm 

B= Bn, 
m =4 

(ýPmF(n)) 

AAm 

e=e ; mol- 

n, m= 

n, m= -Af.... .. f 

m= Af 
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which is routine to solve. 

Before proceeding any further it is worth highlighting that the new integral op- 

orator defined at (8.2.58) is the crux of this thesis. Although it looks unwieldy at 
this stage, it has a structure that is perfectly suited for solution by the Rayleigh-Ritz 

technique. In fact the other main aspect of our technique, as we shall see, is that the 

Rayleigh-Ritz method is fundamental in that it allows us to integrate by parts and 
therefore keep the kernel only weakly singular. 

The prototype equation (8.2.59) is solved by the Rayleigh-Ritz method formulating 

a variational principle as illustrated at (2.3.22) to (2.3.30). We choose trial functions 

to model the fluid potential on Sb and these may be written as p; (s, t) = p; (x, y) 

which acknowledges that the surface tangential vectors can be parameterised by the 

area coordinates in the projected plane S,. So we write 
N 

1: aim)pi(so, to) (8.2.63) ým = 
i=0 

then the solution of 
(ft I)m) = F(m) (8.2.64) 

which combines (5.3.38) and (8.2.59), is given by solving 

Za, m)(Kpc, P, f) = (F(m), pp) j=0,..., N. (8.2.65) 
i-o 

So, consider the right hand side term 

F. ') _ 
IlFjno. 

Vo x To�, dSo (8.2.66) 
Sb 

=f 775 Wo�,. dro - 
11 

no"(VoP. i x `Po�º) dSo (8.2.67) 

OSS Sb 

where we have used the result 

Ox(Av)=AVxv+0Axv (8.2.68) 

together with Stokes' theorem to convert one of the surface integrals to a line integral 

around the boundary of Sb. Now TO.. is continuous on Sb and Wo,,, =0 on ý9Sb 
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so the line integral term vanishes. Also 

no"(Vpi x Tom) = -Vopi. (no x'I'o) 

= -Vopi. ((so x to) x` om))To 

_ -Vopi"T0[(SO"WOm)t0 - 
(to. W0m)So))] 

[OSo(so. WOmm)ototo"Vopi =-I 
01 

-Uto 
(to 

" 
WOm) Qeo so " 

DOpi] 

_ -01 I(i. 'om)ayo - (J. ̀ý'o.. )ýxo] (8.2.69) 

therefore 

) Opi 7p--i dSo F' (m, 
. mom ayo - (J Tom) axo 010 

IIfr 

Sb 

= llr(. " 
WOm) - 

(J. WOm) aOn dxo dyo (8.2.70) 
ayo Sp 

since dSo = ao dxo dyo as shown earlier. In a similar fashion we consider the left 
hand side terms of (8.2.66) which is of the form 

N 

Ea(m)K, (j) (8.2.71) 
i=0 

where 

K 
jm) = 

Jf(so, 
to)no. Vo x Ji dSo (8.2.72) 

Sb 
and 

J; _f 
%pi(s, 

t)HdS. (8.2.73) 
Sb 

Now H may have discontinuities, but J; is continuous. So, as before we get 

Ki' = 
ff {(iJ. 

) Lpj: 
- (j. J; )ý 

J 
dxo dyo. (8.2.74) 

Sp 

Also 

ff p; n. V x L1 ds 
Sy 

= fPiLi. dr - 
ff 

n. (Vp; x LI) ds (8.2.75) 
r Sb 

229 



Chapter 8. Wave scattering by an arbitrary patch of topography 

using Stokes' theorem, where r is OSb on which Ll =0 and any other curves on 
Sb on which L1 is discontinuous. Let us leave the line integral term for a while, so 

i. J4 = fJ Vp;. (n x L1) ds +Jp; Ll. dr 
se r 

=ff 
[(i. 

Li) - (j. Lx) ] dx dy +f psLl. dr 

r 

=ff 
[L1ii 

+ L12 
] 

dx dy +fp; Ll. dr, (8.2.76) 

r 

where L11, L12 are defined by (8.2.53). Similarly 

-j. Ji = 
I/ I L21 

ýyi 
+ L22 

Ox '1 dx dy +fp; L2. dr, (8.2.77) 

5, 
Lr 

where L21, L22 are defined by (8.2.54). We now consider the line integral terms where 

the only contribution is from curves along which L1 and L2 are discontinuous. Of 

course, whether or not the Li have lines of discontinuity, depends critically on the 

form of the original Green's function chosen. So, if for example the form in (8.2.18) 

is chosen, then using the form of R in (8.2.16) it is clear that the Lap, a,, ß = 1,2, 

possess no lines of discontinuity. In contrast if (8.2.18) is decomposed using (8.2.24), 

(8.2.25) etc. we would obtain the alternative form 

00 G_ lm(0-00) 14 

0 
J,,, (tir<)Y�(krý)'ºGo(Z)o0(zo) 

MM-00 l 
I ý;,, r ICm lýnr, 

00 

ýr .. 
( <) () . 

(z 

ott(zo) 
(8.2.78) 

n-l 

from which we deduce that the curve r= ro will be the source of any discontinuities. 

In fact making this choice for G will result in an additional term whose contribution 

may be calculated exactly as in (7.4.32) which in turn used (5.3.35). This may be 

established by converting both line integrals appearing in (8.2.75) and (8.2.76) into 

polar coordinates and calculating the jump in the integrand on the line r= ro. 

We proceed using the form of Green's function in (8.2.18) with the result that 

there are no additional terms introduced. However, we flag that if an alternative 
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8.3. Application to quasi two-dimensional problems 

form of the Green's function is chosen, care must be taken to consider any lines of 
discontinuity which might exist. Consequently we have 

+ K'' =JJ dx0 dy0 ff dx dy LLI I 
may' opj + L12 ` apj 

Sp Sy 

L21 ap: 2plj 

+ L22 api (8.2.79) äy öxo 8x öxa 

or alternatively 

Opj or + GzZO Opi 
+ Kf' =JJ dx0 dy0 ff dx dy GzZp ap 

I. �v° ay ýy° xv° Ox ýy° 
Sp SP 

cýxo ay` ä+ x=o äx äI" (8.2.80) 
Thus we have finally achieved a form of the kernel which is at worst Log-singular. This 

was achieved in (8.2.75) and also in (8.2.76) where the integration by parts switched 
the differential operator from the Green's function term onto the test functions. 

8.3 Application to quasi two-dimensional problems 

We have already considered two classes of axisymmetric problem. The first, in Chap- 

ters 5 and 6 was the case when the topography does not vary in one of the (Cartesian) 

coordinates. The second class, in Chapter 7, was where there is rotational symmetry, 

i. e. the topography does not vary with the 0 coordinate in a cylindrical coordinate 

system. Both of these may be recovered from the general theory developed in Section 

8.2. 

We stress here that much of the analysis of the previous section is independent 

of coordinate system. Moreover if one chooses a particular coordinate system, a 

consistent application of the general theory will result in an equivalent system what- 

ever coordinate system is chosen. For example if the general theory is developed in 

cylindrical coordinates, then we can recover the Cartesian version by a change of co- 

ordinates in the final system, and of course the reverse also applies. We remark that 

the algebra to demonstrate this is somewhat complicated and protracted though. 
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Chapter 8. Wave scattering by an arbitrary patch of topography 

So for example in Chapter 5 all of the formulation up to (5.3.24) was essentially 

three-dimensional and mirrors the development in the general theory up to (8.2.41) 

(albeit given a slightly different form due to the different far-field structures). If the 

steps in the general theory from (8.2.42) on are applied to (5.3.24) we eventually 

recover the system of equations in (5.4.24) to (5.4.28) and (5.4.34). Here we do 

have to account for the discontinuity of the oblique Green's function along the line 

x= xO.. In fact, if one apples the general theory as in Section 8.2, then it transpires 

that reduction of each step to its two-dimensional form recovers the equivalent step 

In Chapter 5. 

Alternatively, had we chosen to develop the general theory in cylindrical coor- 

dinates, then the link with the axially symmetric problem would have been clearer. 

In any case the analysis in Chapter 7 up to (7.3.30) is totally general (in cylindrical 

coordinates) taking no advantage of the symmetry. Thus using (7.3.30) as the start 

point (which equates directly to (8.2.41)), and mirroring the steps in the general the- 

ory from (8.2.41) on we would recover the system developed in Section 7.4 exactly. 

We note that, as this approach employs the Green's function in the form of (8.2.77) 

there is a line of discontinuity on r= ro whose contribution must be included. 

8.4 Numerical approach for arbitrary patch prob- 
lems 

Unfortunately time has precluded a numerical implementation of the General theory, 

therefore the efficient computation of (8.2.80) remains an area for further develop- 

ment. We stress, at this point that this is now purely a numerical issue whereby we 

now have a complicated quadruple integral to calculate, and therefore the computa- 

tion time is likely to be increased significantly. In previous problems we have seen 

how convergence of the system is improved by selecting a set of test functions which 

model the local fluid flow in some sense. In this case it is somewhat more complicated 

to define a complete set over the surface of Sp which incorporates local fluid flow. 
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It would seem that, whatever coordinate system is chosen, the only prospect of 

simplifying the resultant system of equations is to choose a set of test functions which 

reduces the computational complexity of the system. We have already seen in Chapter 

2, for example, how one particular simple choice of test function in (2.3.30) reduced 

the complexity of the system recovering a simpler form alternatively derived by the 

boundary element approach. With this in mind we suggest the following strategy for 

implementing a practical solution scheme. Firstly we form a grid on Sp by dividing 

one coordinate axis into N equal elements and the other into Al elements so that 

we have I=NxM panels P;, each of which is an element of area corresponding 

to a cartesian grid. Then we set our test function q;, i=1, ... ,I to take the form 

qi = 
fi, rEP;; (8.4.1) 
0, r. P� 

where fi is a function of the coordinates in the projected space and is chosen to 

have some simplifying form on the panel. We remark that this definition obviously 

provides an orthogonal set with respect to the inner product defined on Sb as was 

required in our derivation of the Rayleigh-Ritz method. 

If we now turn to the specific form of the test function on each panel, then from 

(8.2.80) the simplest form is to assume the potential is planar on the panel. There are 

obviously several different ways we might achieve this, for example we might define 

the function ff by 

fi =x+b; y, (8.4.2) 

where importantly the derivatives of this potential function are constants. The extra 

constant b; is required to acknowledge that the relationship between the tangential 

derivatives varies from panel to panel. As this increases the number of unknowns in 

the system, we would need to introduce an auxiliary system to enable us to calculate 

the b; by, for example requiring the potential to match at the mid points of the edges 

of adjacent panels. We observe that this approach is entirely equivalent to solving 

(8.5.3) by a boundary element method collocating at the mid-points of the edges 

of the panels and suggest this as a practical first step in implementing a numerical 
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solution. 

Of course more sophisticated choices might be made. However, as we have seen 

In Chapters 5 to 7 simple choices can still achieve impressive results. Any numer- 

ical investigation would need to investigate whether increased sophistication had a 

marked improvement in accuracy, and particularly whether the increased computa- 

tional complexity had a corresponding improvement in the results. 

8.5 Remarks 

In this chapter we have demonstrated how our techniques originally developed for 

three-dimensional problems having some form of symmetry can be extended to deal 

with genuinely arbitrary three-dimensional wave scattering problems. The theory 

Introduces a new integral operator which at first sight looks unwieldy, but is in fact 

perfectly structured for implementation by the Rayleigh-Ritz method. 

We observe that, although these techniques have been applied to wave/topography 

problems, they are equally applicable to three-dimensional wave/body problems. The 

method has promise in dealing with the problem of wave scattering by a floating 

body, particularly with forward speed. Our fully linear approach retaining an exact 

formulation and allowing solution by the Rayleigh-Ritz method offers the potential 

for extremely accurate solutions. Noblesse & Yang [68] highlight the waterline line- 

integrals as causing significant problems. However our approach has the potential 

to simplify this issue radically. This can be seen if we redefine the functions X,. (z) 

introduced at (5.2.21) for example, as 

Z 
Xr. (z) = -1-,. 

f 
i, (z')dz' = N, 112 sin k-�(ho - z), r=0,1,2, .... 

(8.5.3) 
0 

With this definition we see that the test functions take a value of zero at the free sur- 

face which would eliminate any free surface line integrals. This is an interesting area 

of extension of our theory which has the potential to make a significant contribution 

to a problem of considerable practical interest. 
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Although inspired by an idea introduced by Noblesse [67] our approach differs 

significantly in many respects. Firstly we have established a consistent and sound 

mathematical framework for the techniques and have shown how a consideration of 

the singularities is crucial. We choose a specially constructed Green's function which 

restricts the contributions to the arbitrary patch of bed and whose structure allows 
for explicit treatment of any log singularity. We have shown how the surface integrals 

may be projected down onto a plane thus simplifying the numerical implementation 

greatly. We have also presented a wide range of experimental data to compare the 

techniques against existing approximate solutions. We have retained an exact for- 

mulation throughout making significant analytical progress with integral equation. 

Rather than make a simple panel based approximation of the integral equation, one 

of our approaches is based on an extremely accurate method of solution which incor- 

porates the local behaviour of the fluid without discretising the topography. Above 

all we have shown how a second implementation of the derivative switching tech- 

nique provides an alternative formulation which is perfectly set up for solution by the 

Rayleigh-Ritz method, which is itself fundamental to ensuring the system remains 

weakly singular. 
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Chapter 9 

Conclusions 

In this thesis we have considered a wide range of problems which, to one extent or 

another, have been discussed by other authors generally in a two-dimensional context 

and usually solved via making simplifying approximations such as the mild-slope 

equations or some form of collocation scheme. In contrast we have retained an exact 

formulation and applied the full linear theory to the three-dimensional extension of 

these problems. 

In Chapter 3 we considered a two-dimensional problem of sloshing over an arbi- 

trary bed showing how an extremely accurate first-order solution could be fed in to 

give a correspondingly accurate second-order solution. This chapter can be viewed as 

a vehicle for developing and presenting the two-dimensional techniques we sought to 

extent to a fully three-dimensional context in this thesis. In the absence of exact re- 

sults against which we could compare our later results, in Chapter 4 we presented new 

results for two problems having specific geometries using a multipole based approach 

so that we could validate our later chapters. 

In Chapter 5 we introduced our techniques to deal with the scattering of oblique 

waves by an infinitely long ridge of arbitrary profile. We also showed how such a 

topography can also support edge waves. Chapter 6 extends these ideas to deal 

with the much more complicated problem of the scattering of oblique waves by an 

infinite step. In Chapter 7 we show how the same techniques can be applied to axis- 

symmetric problems; however, we presented them in a different way to illustrate the 
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three-dimensional nature of the problem and to lead the reader more gently into a 
discussion of the fully three-dimensional problem. 

Finally in Chapter 8 we show how the techniques can be applied to genuinely 

three-dimensional problems. In doing so we have developed a completely new the- 

ory and associated integral operator possessing a remarkable structure which allows 

extremely accurate solution techniques to be applied. Interestingly the solution tech- 

nique itself plays a key and integral part in making sure the integral equation is only 

weakly-singular. The key difference from other approaches is that we make significant 

analytical progress with the formulation which remains exact and allows us to employ 

sophisticated solution techniques. We tend to be left solving a small matrix based 

system and still achieving a level of accuracy that would require much larger systems 

in a boundary integral approach. 

This theory offers many areas for further development. Foremost must be de- 

velopment of an efficient numerical scheme to implement the fully three-dimensional 

theory. Once accomplished this will open up a wide range of problems to solution by 

the fully linear theory rather than the approximate approaches required at present. 

Wo have indicated how the theory may be applied to floating body problems where 

it has the potential to make a significant contribution. 

As we have developed a fully linear theory, it will provide a valuable means of 

testing approximate solution techniques over more realistic geometries. In particular 

an area for further development would be to conduct an extensive evaluation of the 

accuracy of the AMAMSE for problems such as axis-symmetric scattering. 

In summary, the techniques wo have developed involve formulating the problem 

as an integral equation with at worst a weakly singular kernel. In developing them 

we have constructed a new theory for water wave scattering problems over arbitrary 

topography which allows the implementation of extremely accurate and efficient so- 

lution techniques. 
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Appendix A 

Green's Functions for constant 
depth fluid domains 

Throughout this thesis we make extensive use of Green's Second Identity and appro- 
priate Green's functions to formulate our problems as integral equations. Whereas 
there is some freedom in the choice of the form of Green's functions we will choose 
them so that their contributions vanish on at least some of the boundary. Our main 

problems of interest are wave problems over a defined patch of topography in an 

otherwise constant depth domain or those involving a submerged body in a domain 

of constant depth. We therefore need to define Green's Functions satisfying the bed 

condition and the free surface condition for a constant depth domain. Where the 

fluid domain is of more complicated form we may use combinations of these basic 

Green's functions to construct more sophisticated Green's functions which simplify 
the integral formulation further. Thus these constant depth Green's Functions may 
be viewed as the basic building blocks of the solutions. 

The Green's function G(rlro; K) is defined to be the potential at any field point 

r= (x, y, z) due to an oscillating source of unit strength at ro = (xo, yo, w) and 

having frequency parameter K. The precise form of the source is defined by the 

characteristics of the problem we wish to consider. We will consider three specific cases 

each of which will require a different fundamental Green's Function. However, before 

we progress to each of the three cases we may make some progress with determining 

the depth dependence of the Green's functions. We define the constant depth fluid 
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domain as D where 

-oo<x, y<+oo, 0<z<ho. 

In a domain D the conditions for G(rJro; K) are 

V2C = d(z - zo) f (x, y) rED (A. 1) 

G, + KG =0 w2 = Kg, z=0 (A. 2) 

Gs =0z= ho (A. 3) 

where f (x, y) depends upon the form of the source and will be discussed for each 

of the three cases in turn. We will also require the Green's function to satisfy a 
Sommerfeld radiation condition [88), implying that waves generated by the source in 

the fluid can only be outgoing. 

A. 1 Separation of the depth dependence 

As we have a finite and constant depth domain, we are able to perform an eigenfunc- 
tion expansion to derive the form of the depth dependence. We therefore perform a 

separation of variables on Laplace's equation seeking a solution of the form 

G(x, y, z) = 9(x, y)'b(z) 

If if this is substituted in Laplace's equation we obtain 

V ig(x, y)'t(x) + 9(x, y), ýý(Z) =0 

where V1 is the two-dimensional Laplacian and ' represents differentiation with 

respect to the dependent variable. It is now a routine matter to recover the depth de- 

pendence in terms of the well-known complete orthonormal set of depth eigenfunctions 

{z/i�(z)} in (0, ho] introduced at (2.1.47). For clarity of exposition we summarise the 

properties of the cigenfunctions which are defined as 

o', (Z) = Nn-112 cos k-�(4 - z) (A. 4) 
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with 
1 sin 2k�ho l Nn =21+ 2k�ho J (A. 5) 

chosen so that the depth modes have a weight ho and satisfy the orthogonality 

relation 
1 ho 

of 
'fin (z)', m (z) dz = J,,., (A. G) 

The eigenvalues {k�} defined for n>1 and kn >0 are obtained as the ascending 

solutions of the well-known dispersion relation 

K+k,, tan k�ho =0 (A. 7) 

which is deduced from the free-surface condition. This equation also has a single 

complex root which we define as ko = -ik and where k is the single positive real 

root of the dispersion relation in the form 

K=k tanh kho (A. 8) 

We introduce a set of functions {X�(z)} related to the eigenfunctions and defined as 

Xn(z) = N, -, 1! 2 sin k�(ho - z) n=0,1, ... 
(A. 9) 

which have the same normalizing factor and weight over [0, hoI. 

, 
Continuing the separation of variables we deduce that for each depth mode there 

must be an associated horizontal mode g�(x, y) so that the solution of the homoge- 

neous version of equation (A. 1) may be expressed as 

00 
G=E A�g (x, y)0n(z)" (A. 10) 

n=o 
Now substituting in (A. 1) we deduce that 

00 
E An 

Wn(z){VH9n(xo y) - kngn(x, y)} = b(x - zo)f(x, y) (A. 11) 

n=0 

and upon multiplying throughout by (z) and integrating over [0, ho] we deduce 

that 

ho 
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and the horizontal mode must satisfy 

0119n(x, y) - kn9n(X, J) =f (x, 2J) . 
(A. 12) 

Finally we deduce that all constant depth Green's Functions satisfying the linearized 
free surface condition may be expressed as 

00 
n l'ZO) G(rlro) = 9, (x, 1/I xo, ? lo) 

Yin('Z)Y' (A. 13) 
n=0 

where the horizontal mode is derived from equation (A. 12). We now proceed to 
deduce the precise form of the Green's function by solving (A. 12) for three different 

situations. 

A. 2 Two-dimensional and quasi two-dimensional 
Green's functions - Normal and oblique inci- 
dence problems 

A. 2.1 2D Green's Function 

In domains where the problem is independent of one of the horizontal coordinates, 

which wo will set as y without loss of generality, the problem is two-dimensional. 

In this case the source function is a line source of constant strength along the line 

(x, z) _ (xo, zo) and f (x, y) in equation (A. 1) takes the form S(x-xo). We note that 

this problem may be solved by Fourier Transform techniques, see [61) for example, 

although it should be noted that his final result contains a sign error. However the 

final result can be obtained more directly by solving A. 12 which in this case reduces 

to 

g �(x) -k gn(x) = -ö(x - xo). (A. 14) 

We see that the solution has the form 

/iekn(x-xo) + ße-ký(x-xo), x- xp < 0; 
g^ýxIxo) I Cekn(x-xo) + Do-k�(x-xo) 

(A. 15) 
x-Xpi0. 

Now radiation conditions require that modes are exponentially damped at infinity and 

propagating modes are outgoing therefore we must have B=C=0. Furthermore 
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A. 2. Two-dimensional and quasi two-dimensional Green's functions - Normal and 
oblique incidence problems 

continuity of g,, at x= x0 requires that A=D. Our final condition is obtained as 

a jump condition 

-1 19n]x=xo - (A. 16) 

where the square brackets denotes the jump in the enclosed quantity. This condition 

is obtained by integrating equation (A. 14) between [x0 - e, xo + e] and then taking 

the limit e-0. From this we deduce the value of A and therefore we find that wo 

may write the 2D Green's function in the compact form 

00 
- G(x, zI x0, zo; K)= E 0`Z)O'(Zo)e 

knlx pol (X, z) 0 (x0, z0) (A. 1%) 

n=0 n 

A. 2.2 3D Oblique Green's Function 

We consider problems of oblique incidence where an incoming wave makes an angle 

of 0 with the x axis and where the wavenumber 0 in the y direction is regarded as 

given. In this case we may write 

-5(x - xo)e'Q(vo-v) (A. 18) 

and hence equation A. 12 reduces to 

(A. 19) vH9n(x, y) - kng (x, y) = -ö(x - x0)e'Q(vo-v). 

If we make the substitutions 

9,, (x, y) = Xn(x)e'Q(vo-v) 

and 
k2 ß2 

equation A. 19 simplifies to 

X� 10 (x) - attX�(x) = -b(x - xo), (A. 20) 

which has exactly the same form as equation A. 14. Hence we may immediately write 

C(rlr0; K) - 
ýn(2)ýnlzo)e-«nl: 

-xoleýP(vo-v) r 96 ro (A. 21) 

n=0 
d 
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Chapter A. Green's Functions for constant depth fluid domains 

We note that 

ao = (Q2 - k2)1/2 

which represents a propagating wave if 0<k. In this case 

ao = _i(k2 _ ß2)1/2 

and we may write 

(k2 - ß2)i/2 =a= ksinO and ,6= kcosO 

thus showing the propagating wave represents a horizontal wave making an angle 0 

with the y axis, as required. 

A. 3 Three-dimensional Green's function - the ring 
source 

In this section we develop a Green's function in the same form as Hulme [43]. In his 

work he takes advantage of the axisymmetry in his problem to reduce the equations to 

a quasi-two-dimensional form by developing a Green's function which is a ring source 

with a harmonic variation in 0 around the ring. Our approach will recover the ring 

sources albeit with a slightly different normalisation than that chosen by Hulme. 

The Green's function representing a time-harmonic source of unit strength at 

r= ro in a domain of constant depth ha satisfies 

O2G(r; ro) = -6(r - ro), in 0<z, zo < ho (A. 22) 

with 
ýC+KG=0, 

on z=0 (A. 23) 

and 
OG 

on z=d (A. 24) Oz 
As we may separate the periodic behaviour in 0 from our physical problem we there- 

fore seek to express G as a sum of ring sources in the form 

G(r; ro) _Eg,, (r, z; roe zo)e-Im(o-oo) (A. 25) 
00 

MM-00 
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A. 3. Three-dimensional Green's function - the ring source 

where g,,,, represents the ring source. Rewriting equation (A. 22) in cylindrical polar 

coordinates and substituting for G using equation (A. 25) we obtain 
00 1aa a2 m2 

-im(g_go) 

r 
(rar) 

+ 
z2 r2 

g', e a(r - ro)ö(B - Bo)ö(z - za). 
(-b- 

m=-oo 
(A. 26) 

We deduce the equation satisfied by gm by multiplying equation (A. 26) by elm(e'©o) 

and integrating around a ring of radius r to give 

/ 22 a '9 27rr 
(r 

är 
(r 

är) + äz2 2) 9ýn - -5(r - ro)b(z - zo). (A. 27) 

We may now separate out the depth dependence by writing 

00 Wn(z)V)n(zp) 
9,,, (r, z; r°, z°) = a,,,,, d 

(A. 28) 
n=° 

and then multiplying throughout by 0. (z) and integrating over the depth to give 

\z 

rr 

(r 
är 

(0I- 
k2 + m) J amn ° -2r, - ro). (A. 29) (n 

z 

Solutions of the homogeneous equation are given by 

n=0 Jm(kr) H, P(kr) 

n>1 Im(knr) K, ý(k�r). 

By letting r -º ro in equation A. 29 we deduce that the amn must be continuous at 

r= ro .A further-jump condition" is found by integrating A. 29 between r= ro -e 

and r= ro + 
7e 

and then letting e --+ 0 to give 

fr lr°+ 
__1 i am r° 27rro 

For the case n=0 we require bounded solutions as r -+ 0 and outgoing waves as 

r-ºOO, SO 

_ 
A,, oJm(kr), r< ro; (A. 30) 

amo -{B,. ioHm(kr), r> ro. 

Now continuity at r= ro gives 

CJm(kr)Hm(kro), r< ro; (A. 31) 
a"`° ={ CHm(kr) Jm(kro), r> ro. 

245 



Chapter A. Green's Functions for constant depth fluid domains 

Applying the jump condition we obtain 

kC[J.. (kro)II, '(kro) - Jm(kro)JIm(kro)] =- kC 21 
=-1 (A. 32) 

7rkro 27rro 

and therefore 

aro =I Jm(kr<)Iim(kr>) (A. 33) 

where 

r< = min{r, ro} and (A. 34) 

r> = max{r, ro}. (A. 35) 

For n>1 we must choose bounded solutions, continuous at r= ro, therefore 

amn = CnIm(%nr<)Km(knr>). (A. 36) 

The jump condition gives 

knCn[Im(knro)I<m(knro) - Im(knro)Km(knro)) = knCn -L 
_-1 (A. 37) knro 2irro 

from which we deduce that C� = 1/21r finally giving the expression for the m'th ring 

source as 

= 
1Jm(kr<)IIm(kr>)VLo(z)ý'o(zo) 

+1E +Gn(x)ýGºº(zo) 9", d 27r 
E1"'(k"r<)Iým(knr>) 

d 
n: 0 

(A. 38) 

We note that this agrees with the form given by llulme, although it should be noted 

that he used a source of strength 4ir rather than our unit strengh source. This scaling 

was unimportant to IIulmo as his technique involved considering a surface distribution 

of sources rather than our Green's formula approach. Accordingly it should be noted 

that our representation of the ring source Green's function differs from Hulme's by a 

factor of 1/41r. 

A. 4 Three-dimensional Green's function - an al- 
ternative derivation 

An alternative form of three-dimensional Green's function may be developed from 

(A. 22) by choosing cylindrical coordinates (R, 0) centered on (x0, yo) and with R 
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A. 4. Three-dimensional Green's function - an alternative derivation 

defined by 

R= {(x - x0)2 + (y - yo)2}1/2. (A. 39) 

In which case the solution must be independent of 0 and so equation A. 22 satisfied 
by g,, (R) becomes 

d29" 
+1 

d9, ß _kg 
b(R) (A. 40) 

dRz R dR 2irR 
In fact if the problem for G(rJro; K) is framed in cylindrical polars defined as above 

then the result we derive by eigenfunction expansion may be obtained by Ilanl el 

transforms, see for example [23]. We proceed by making the substitution S=k,, R 

in which case equation (A. 40) becomes 

d29ri 1 dgn S(S) (A. 41) 
dS2+SdS-9" 27rS 

which we recognize as the modified Bessel equation of order zero. We seek the solution 

which is singular at S=0 and satisfies a Sommerfeld Radiation Condition. The 

radiation condition requires that waves are outgoing at infinity and that the energy 

is finite. In a cylindrical coordinate system it is well known that this implies, and is 

implied by, the requirement that 

um 
o 
R112 

{on 
8R - ikng1 = 0. 

R 

We therefore chose the solution that is singular at the origin 

9n = AKo(k R)" 

To find the value of A we apply the source condition 

1imR. o(27rRdR) _ -1 

which ensures that we have a unit strength source as required. In this case using the 

fact that Ko(x) .:. log(x) as x -- 0 we deduce that A= 1/21r . 
It remains to check 

that our solution satisfies the radiation condition. We note that, 

K0(k�R) =2 
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Chapter A. Green's Functions for constant depth fluid domains 

and in the limit 1l -º oo it is well known that 

Ilol)(k�IZ) N , ýkýtý 0l(k^n-"/°) as R -º oo. 

It is therefore obvious that, only the n=0 mode propagates to oo and furthermore 

it satisfies the radiation condition, hence we may write 
ý 

Yin z)yýn(x0) 
G(rjro; K) = 

2ý ICo(ýnR) 
(r 

96 ro. (A. 42) 
n. 0 

We observe, unsurprisingly given that both Green's functions were derived from the 

same equation, that we can recover the form of (A. 38) by decomposing (A. 42) using 
(8.2,2G) etc. 
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