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Abstract

This thesis concerns the development of motion estimation and segmentation techniques for current and
near-future video compression systems. The prevailing block-matching algorithm finds the closest
match between pixels in a current block with a block of pixels located in a previous frame within a
neighbourhood of current blocks’ location. The matching criterion commonly used is the sum-of-
absolute-difference (SAD) and the motion vector of the current block is the offset from the current
block which gives the minimum SAD. Although BMA via SAD minimization is very simple to
implement and can readily be implemented on real-time embedded systems, it is not without its
drawbacks. The two main ones are the lack of sub-pixel resolution without interpolating the reference
frames, and the inability to estimate vectors at motion boundaries and areas of little texture. This thesis
extends the method from simple minimization of SAD with the introduction of the SAD-map; the
distribution of SAD values over a search range of offset is considered instead. Using this distribution,
sub-pixel motion vector can be evaluated by models without actually interpolating reference frames.
This interpolation-free sub-pixel refinement achieves within 75% of the performance achievable by
actual interpolating the reference frame. A novel reliability measure and a smoothness constraint are
proposed and applied in a novel queue-based block matching algorithm (QBMA). QBMA produces a
field both lower in entropy for better compression, and a more natural field better suited for global

motion estimation (GME) and motion segmentation.

To further improve the coding efficiency in motion estimation, another concept introduced is the global
motion estimation which (i) provides a more compact representation of the motion field; and (i1) allows
the reference frame to be warped, which represents a better match to the input frame than the original
reference frame. The former property reduces the motion vector field information, thus reducing the
number of bits required to code the motion vectors. The latter reduces the displaced frame difference
energy, thus lessening the number of bits required to code the residue at any specified quality. Two
novel methods are introduced which are suitable for real-time applications, one based on iterative
regression (SAD-based iterative regression GME, SIRGME) and the other based on the Hough
Transform (HT) called the progressive Hough-transform GME (PHGME). The SIRGME algorithm can
be readily adopted in DSP-based algorithm for real-time applications; with the motion vector field
obtained by QBMA and the use reliability based on the distribution of SAD-map, the global motion
obtained by SIRGME offers a more accurate initial estimate. This improves the chances of reaching the
global minimum, and the rate of convergence of SIRGME. With the much superior robustness towards
outliers, using Hough Transform for GME provides a much more accurate estimate of the motion
vector field. The high complexity in HT 1s alleviated greatly in the proposed PHGME via various

progressive optimization techniques, bringing it a step closer to real-time implementation.



Although global motion estimation offers great improvements tn motion estimation, especially in
scenes dominated by a single global motion, scenes exist where more than one motion dominates. The
concept of global motion 1s further extended to motion segmentation, which is viewed as partitioning a
picture into several regions, each with its own global motion parameters. Global motion estimation
becomes a special case of motion segmentation with a single segment. The main problem of motion
segmentation is complexity and robustness. The Expectation-Maximization (EM) algorithm augmented
by various simplification methods (Adaptive EM segmentation, AEMS) is introduced into the motion
segmentation framework tor reduced complexity. The Hough-transform is further incorporated into the
EM algorithm as an initialization step to introduce robustness; and a simplifying segment merging
algorithm 1s used to reduce the bitrate for segmentation information, together with the pre- and post-
processing steps. The resulting proposed method, Pre/Post- AEMS (PPAEMS), offers a further

reduction in bit rate at reduced complexity and improved robustness.

The algorithms proposed throughout this thesis are based on the SAD-map and its accompanying
concepts; these algorithms are computationally tractable and are highly parallel in nature; a sub-pixel
modelling algorithm 1s also proposed which circumvents the resolution problem of block-matching
without frame interpolation. The accompanying improvements to the EM algorithm and HT are also
low-complexity and entails reasonable memory requirements. Consequently, the algorithms proposed

are all suitable for real-time applications, either with a DSP-based system or a hardware VHDL-based

platform.
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Chapter 1:

Introduction

1.1 Background

As communication bandwidth and storage technologies advanced into the twenty-first century,
numerous real-time applications, deemed too complex in the past, have become common-place.
Amongst these applications, digital video 1s the undisputed leader in terms of the pace at which it has
been assimilated into everyday use and the breath and extent of its influence. Video surveillance,

Digital TV, DVDs and video-phones are but a few examples of its numerous applications.

The advantages of using digital over analog video are in large extent similar to that of all other media.
Digital signals are more robust to transmission noise and storage of digital data allows perfect
reconstruction; that is, no degradation in quality when digital video is copied. Various digital media can
be meshed together to provide a richer user experience for the entertainment and education industry.
Encryption technology also allows security and anonymity in the media which is not possible in its
analog counterpart. Perhaps, most important of all is the possibility of processing digital video mn
increasing variety of ways. Error-resilience and video compression are the two most prevalent

processing. Digital video compression ts the main focus of this thesis.

Digital video compression owes its success much to the fact that it exhibits high redundancy within
individual frames as well as high similarity between neighbouring frames. These redundancies, when
effectively exploited, can lead to a substantial reduction in the bit-budget for representing the video
sequence. To ensure interoperability and minimize time to market, various video coding standards have

been proposed. Examples include the ITU’s H.263, used in video-communications applications, and

MPEG-2 used in DVDs and digital TV.

Whereas intra-frame redundancies are mainly reduced by transform coding, the inter-frame
redundancies can be effectively removed by motion estimation. Block matching algorithms are used
extensively for motion estimation in all video compression standards due to their low complexity.
However, many pixel-based algorithms exist, which are more robust to noise and produce more
accurate motion field. These methods, like that proposed by Horn and Schunck [Hor-81], are
computationally intractable and cannot be readily adopted by digital signal processing and hardware

designers. This thesis tries to bridge this implementation gap by efficiently integrating some of the
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more complex algorithms and concepts into the simple block matching framework. This would improve

the capability of existing video coding systems to estimate motion fields more efficiently and robustly.

In addition, more complex methods of motion estimation, such as global motion estimation and motion
segmentation, can provide higher compression and should be adopted and used in the next generation
of video coding standards. Existing algorithms related to these methods are too complex to be

implemented real-time. Two particular algorithms, the Hough Transform and the Expectation-

Minimization estimation are investigated, simplified and embodied into the global motion estimation

and motion segmentation process.

1.2 Research Objectives

Motion-related processing in video coding systems usually involves a direct block matching algorithm
(BMA), which is both computationally tractable and effective. The main drawbacks are the lack of
tfloating-point sub-pixel resolution and artificial discontinuities due to the aperture problem. One of the
research objectives of this thesis is to find means of mitigating these problems by adopting existing,
more complex methods and reducing their complexities to make them realizable in real-time coding
systems. The proposed framework makes use of the SAD (sum-of-absolute-difference) distribution

(termed the SAD-map) to derive a few new concepts, leading to the Queue-based BMA (QBMA).

The motion vector field representation constitutes a large proportion of the bit budget in state-of-the art
video coding systems and in low bit-rate applications where the residual texture information is highly
quantized. The second aim of this thesis’ work entails finding more compact representations of this
field. As a result, novel methods of global motion estimation (GME) and motion segmentation
(MotSeg) are used on the QBMA vector field. In particular the Hough Transform (HT) and

expectation-minimization (EM) are utilized in this thesis to reduce complexity and improve robustness

of GME and MotSeg.

The main thrust of this thesis is to attempt to tackle the decade-old problem of BMA-based motion
estimation from a different angle, based on more robust and sophisticated algorithms. The main targets

include:

. Reduce complexity and processing time.

. Improve the quality of the motion vector field by the block matching algorithm (BMA)

. Provide a more compact representation of the motion vector field through global
motion estimation (GME) and motion segmentation (MotSeg).

. Provide an improved warped version of the reference frame which better matches the

input frame for multiple-pass BMA.

The main aim is to provide the intra-coder (texture coding) with the displaced frame difference (DFD)

(or textural residual) containing the little entropy as possible. The principal concern in this thesis 1s

-9
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lossless inter-frame processing. It is believed that providing a lowest entropy residual to the texture
coder and quantizer s crucial to having a good rate-distortion curve as the amount of information to
start with 1s minimized. Another part of the thesis is concerned with removing redundancy in the
motion vector field without affecting the textural entropy. This is not related to the rate-distortion
optimization problem, but is aimed at reducing the overhead of coding the motion information which

constitutes a higher proportion of the bit budget in recent coding standards where block sizes get

smaller and target bit-rates get lower.

1.3 Thesis Structure

The thesis documents the result of three main areas of author’s research work. Chapter 2 lays down the
basics of digital video and introduces the necessary nomenclatures required in subsequent chapters.

Chapter 3 and 4 feature the local motion estimation, in particular the block matching algorithm (BMA).

Chapter 3 provides some historical and theoretical backgrounds on motion estimation; chapter 4
introduces the novel approach to BMA which facilitates the introduction of smoothness constraint on
the motion vector field, without degrading the predictive capability of motion estimation. The SAD-
map is introduced which forms the basis of the Queue-based BMA, QBMA. In addition, a novel
reliability measure is introduced which out-performs other measures in terms of registering how well a
block’s motion vector is estimated. The chapter also introduces a novel means of circumventing the
lack of motion vector resolution in BMA without frame interpolation. The combined QBMA and sub-

pixel modelling will be used in algorithms proposed in subsequent chapters.

In chapters 5 and 6, motion estimation is given a global prospective. Chapter 5 begins by introducing
the advantages of global motion estimation and reviewing some of the solution common to this
problem. The traditional regression-based global motion estimation (GME) method is improved with
the use of SAD-map. Termed the SAD-map-based iterative regression GME (SIRGME), this novel
method provides a more compact motion vector field than the traditional GME (TGME). Chapter 6
introduces another approach to GME, using the Hough Transform (HT). The thesis introduces the

PHGME which introduces robustness to SIRGME without imposing excessive processor and memory

requirements to the video coder.

The theory used in global motion estimation is extended into motion segmentation in chapter 7. The
expectation-maximization (EM) algorithm is introduced and adopted in motion segmentation. The
SAD-map is again used as the input to the EM-based motion segmentation. The Hough transform is
also used to provide an nitial estimate of the segmentation and the parameters. The combination of
SAD-map, HT and EM is shown to provide a low-complexity solution to the usually computationally

intractable problem.
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All algorithms described in chapters 4 to 7 are applied in simulations performed on an 850MHz
Pentium 3 Laptop with 512 Mbytes of RAM. The thesis ends with Chapter 8, which provides some
useful conclusions drawn from the simulations and observations on the algorithms described in the

preceding chapters. This final chapter also gives some recommendations for future work.



Chapter 2:
Basics of Digital Video

This chapter lays down the necessary ground work for succeeding chapters. First the basic
nomenclature of digital video is used in this thesis. Terms and representation required for the following
chapters are defined, followed by the common formats and parameters pertaining to digital video. Next,
the statistical depictions of digital video are discussed and how redundancies can be exploited s

investigated. For completeness, the common video compression standards, namely H.261, H.203,

H.264, MPEG-1, 2 and 4, are briefly introduced.

2.1 Anatomy of Digital Video

2.1.1 Digital Video Representation

A digital image is both discrete and quantized. It is a discrete spatial distribution of intensity / (x.y)

where x€ {0,1,...,W ~1}and ye {0,1,...,H -1}, W and H being the number of horizontal pixels and

vertical lines in the image respectively. Each pixel can only take values from a quantized set of values.

The extent with which these values can take depends on the number of bits, B, used in the imaging

system. The common values are B=8 (1€ {0,1,...,255}) or B=10 (1€ {0,1,...,1023}). A digital
video sequence as illustrated in Figure 2.1 is a sequence of digital images whose pixel values vary with

time, ¢. It can be represented as [/ (x, y,t) wherete {0,1,...,T —1}, T being the number of images in the

sequence, or a contiguous part of a long sequence of interest. In real time applications 7 may be

infinite. Hence a grey-scale digital image is a mapping single-valued mapping of 3 independent

variables:

I1:o,w-1]x[o,H -1]x[0,T -1]- 0,28 -1 Eq 2-1

By using the position vector representation p = (x, y) and putting the emphasis of ¢ at the frame level

instead of the pixel level, the following representations of an image sequence are interchangeable:

I(x,y,t)=1(p,t)=1,(p) Eq 2-2
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Figure 2.1 Graphical depiction of a video sequence I(x, y, 1).

2.1.2 Colour Representation

Colour video sequences are collections of 3 mappings (refer to Eq 2-1) which depend on the colour
system used. The common colour component systems are the RGB and the YC,C,; others include the
YIQ, YUV and HSI. The RGB system represents the colour images in the intensities of the 3 primary

colours red, green and blue.

R:lo.w —1]x[o,/#7 = 1]x[0,7 —1]—>[0,28 -1 Eq 2-3
G:lo.w -1lx|o,H -1]x[0,T -1]—10,28 - 13
B:low -1]x|o,H -1]x[0,7 - 1]—10,28 - 1]

However, the digital video industry frequently uses the YC,C, system that represents colour images as
one luminance component Y and two chrominance (colour difference) components, C, and C,. The

conversion between these two colour systems can be represented as the following matrix equation:

T ¢ 0.299 0.587 0.114 ] R Eq 24
C,-2°"|=|-0.147 -0289 0436 (|G
1C,-2""] | 0615 -0515 -0.100| B

The natural colour differences varies as signed integers between [—- 2871 281 - 1], the 2% offsets in Eq

2-4 causes C, and C; to take up unsigned values in the range [O,ZB —l]. Representing video In

luminance and chrominance components can be traced back to the analog video broadcast industries,
where chrominance information is added to the black and white television signals for compatibility.
The human visual system 1s more sensitive to the luminance variation than the chrominance variation,
so the Cpand C, components can be sub-sampled without apparent loss in the subjective video quality.

A few chrominance sub-sampling spatial schemes are commonly used, these include the 4:1:1 system,
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4:2:2 system and the 4:2:0 system. Figure 2.2 illustrates the relative distribution of the luminance and

the chrominance pixels:

X Pixel Cb and C, information

OOXOOOOXOO

O OXO O O OXO O
O OXO O O OXO O
O OXO O O OXO O

QO Pixel with only Y mformatlon

T X0 OO OXO OXO

OXO OXO OXO CXO
OXO OXO OXO CXO
OXO OXO OXO OXO

(3) 4:1:1 (b) 4:2:2

Figure 2.2 Distribution of Y, G, and C, pixels in various colour sub-sampling formats.

2.1.3 Common Video Formats and Applications

The International Consultative Committee for Radio Recommendation 601 (CCIR-601) defines digital
video format for the exchange and storage of digital formats. As a legacy of analog video, two size
formats and refresh rates are used, the 525/60 of NTSC system uses 720x480 pixels at 30 frames per
seconds (fps) and the 625/50 or PAL system uses 720x576 pixels at 25 frames per second. Pixel rates
are both set at 13.5 MHz; a colour space of YC,C, at 4:2:2 is used. All pixel data are quantized to 8 bit-
wide code. The Y component has its value clipped between 16 and 235, with 16 representing total
darkness and 235 representing full-scale brightness. As C; and C, components are difference values,
they are zero-offset with the value 128 and the clipped between 16 and 240 with a value of 128

representing zero colour difference. Values not in the range are used for synchronisation purposes.

To cater for applications with lower video quality, CCIR-601 recommends the SIF format
(352x288 @25fps, 352x240@30fps) and the QSIF format (176x144@25fps, 176x120@30fps), both

with 4:2:0 chrominance sub-sampling.

To accommodate transferring sequences between the CCIR-601 formats, a family of Common
Intermediate Formats (CIF) 1s proposed and widely used in the video processing community. The

format adopts the 625/50 resolutions as illustrated in Table 2.1 and the 525/60 refresh rate of 30 fps.
Like SIF, CIF uses the 4:2:0 YC,C, colour space.
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Table 2.1 Resolution of various members of the CIF family.

Luminance Chrominance
Pixels per line  Lines per frame Pixels per line  Lines per frame
SQCIF 128 06 64 48
QCIF 176 144 88 72
CIF 352 288 176 144
4CIF 704 576 352 288
16CIF 1408 1152 704 576

In this thesis, three typical types of video sequences are considered. The first type is used in low-
complexity mobile video communication applications where the user is less demanding on the quality
but is more sensitive to the delays. The target bit rate of such system would typically be below 100
kbps. The typical resolution of such applications would be that of the QCIF format. To reduce
processing times and bit-rates, a frame rate of 10 fps is used (based on skipping 2 frames out of the
assumed 30 fps input sequence). The second application is for transmission of video via Wireless LAN
in home, office or public premises. The quality requirements are higher and off-line processing may be
possible; the typical bit-rate of this application ranges from 500 kbps to 24 Mbps. The video format
would likely be CIF@30 fps. The third application is video surveillance in personal home and pubhic
places. The requirement of this application is more scalable, depending on whether the video stream
needs to be transmitted or stored; however, for obvious reasons, video compression has to be done real-
time. In these two cases the QCIF@ 10fps and CIF@30 fps are also reasonable formats. In summary,

simulations in subsequent chapters will be based on the two stated sizes and frame rates typical to the

three applications mentioned above.

2.2 Characteristics and Quantitative Measures of Digital Video

2.2.1 Statistical Characteristics of Digital Video

The two most important forms of redundancy in image signals are statistical redundancy and subjective
redundancy [Has-98]. We represent the amount of redundancy as the reduction in entropy in the video
data. We first define various entropies and illustrate how statistical redundancies exploited in video
coding. The amount of information carried by an image can be represented by its entropy [Sha-48] as

defined as:
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H(I)= p;log, p, Eq 2-5
p, =PU(x,y,t)=1) ie[0...2%)

If an image data 1s fully random, its entropy will be close to B bits; the lower the entropy value, the less

random the data. Correlation amongst pixel values can be indicated by the difference equations along

1ts X- and y- axes:

[x(x!y!t)=I(x!yrt)-l(x_lsyrt) Eq 2-6
1,(x,y,8)=1(x,3,6) = 1(x,y = L,1)

On the other hand, the entropy of the derivative with respect to time defined below, gives an indication

of how much the images change in time. It is commonly known as the frame difference (FD).

[y ) =1(x,y,8) = 1(x, y,t = 1) Eq2-7

Another form of temporal entropy deals with moving objects. Pixels belonging to a stationary object
will not change pixel intensities between two frames. Pixels belonging to a moving object change their

pixel location from frame to another. The displaced-frame difference (DFD) of a pixel at (x,y) 1s

defined as the difference between the pixel value of the current frame and a corresponding pixel at

location (x +u, y — v)of a previous frame.

DFD(x,y.t;u,v)=I1(x,y,t) = I(x+u,y+v,t-1) Eq 2-8

The vector v=(u,v) is the displacement of pixel (x,y) due to object motion. The set of motion
vectors (i,v) within a picture is collectively known as the motion vector field and process of finding

(u,v) is commonly known as motion estimation.

In order to reconstruct a picture with motion estimation, the DFD information alone is insufficient;

information about the motion (u,v)1s also required. Hence the last entropy to be defined, called the

motion vector entropy, is the amount of information carried by the motion vector field. A picture with a

uniform motion (say panning by a camera) would contain very low entropy than a picture with many

independently objects moving in different directions.

The entropies of three QCIF sequences are examined: AKIYO, FOREMAN and STEFAN. The plots
are presented in Figure 2.3, Figure 2.4 and Figure 2.5, with the three pictures depicting the first, middle

and last frames of each sequence. The entropies and the key used are listed below:
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B H(I) — pixel entropy. H(I)
: H(Ix+1y) — spatial derivative entropy. H (l\ )+ H (lk )
. H(l") — tframe difference entropy. l!(f)

° H(DED+MYV) — combined entropy of displaced frame difference and motion vector

field. H(DFD)+ H(v)

As indicated in the figures. pixel entropies of both sequences are around 7 bits. which means a possible
reduction of 12.5% can be achieved by simply losslessly compressing the raw image sequence. The
entropies of the spatial partial derivatives ot all three sequences are lower (4.2, 5.0 and 6.0 bits
respectively). indicating a strong correlation amongst neighbouring pixels. this redundancy can be

removed by predictive coding within the frame. or commonly known as Intra-Coding.

Entropies of Akiyo.Qcif @ 10 fps

un

----------------------------------------------------------

Entropies
o

3
2 SV 4
1
0
0 50 100 150 200 250 300
Frame Number
—H) ------- H(Ix+1y) ~ H(]'") = H(DF D+MV)

Figure 2.3 Entropies of AKIYO.QCIF sequence.

The entropies of the FD and DED+MV vary interestingly amongst the three sequences. AKIYO.QCIF
sequence is relatively static and hence simple frame differencing can remove a lot of inter-frame
redundancies: motion estimation does reduce the entropies further, but not by much. Both FD and DFD
reduce the temporal redundancies ot the sequence: prediction of this sort is termed as Inter-Coding.
Both FOREMAN.QCIF and STEFAN sequences have a fast moving objects and simple frame
differencing does not necessarily outperform Intra-Coding schemes. Motion estimation reduces the

entropy by a substantial amount.

- 10 -



Chapter 2: Basics of Digital Video

Entropies of Foreman.Qcif @ 10 fps

Entropies
-—

0 50 100 150 200 250 300
Frame Number

—H({) ----- H(Ix+1y) H(T') H(DFD+MV)

Figure 2.4 Entropies of FOREMAN.QCIF sequence. H(I) = pixel entropy.
H(Ix+ly)= partial derivative entropy; H(I" )=temporal derivative entropy:;

H(DFD+MV )=entropies of DFD and displacements.

An interesting observation can be made with the STEFAN.QCIF sequence — in certain frames (around
frames 100 and 190) H(DED+MV) is higher than H(Ix+ly). implying that motion estimation 1s no
better than simple Intra-Coding. In fact. this is the case in parts of all frames and is more dominant in

the mentioned frames. The motion failure can be due to:

. The motion 1s too large to be estimated.
. The motion does not exist due to previously occluded regions
- The motion 1s too complex to be estimation accurately enough, e.g. objects undergoing

expansion and distortion

. Object not present in the previous scenes appearing in current frame.

Regardless of the reason. m order to achieve good compression efficiency. any video compression
systems should have the mechanism to change between Inter- and Intra-Coding adaptively in different

reegions of a frame.

L=

> 11 -
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Entropies
-

)

]

0 50 100 150 200 250 300
Frame Number

H(I) == - - - H(Ix+Iy) H(T") H(DFD+MV)

Figure 2.5 Entropies of STEFAN.QCIF sequence. H(l) = pixel entropy.
H(Ix+ly)= partial derivative entropy; H(I" )=temporal derivative entropy:

H(DEFD+MV)=entropies of DFD and displacements.

The entropy of the temporal derivative. on the other hand. is very different in AKIYO and STEFAN
sequences. The AKIYO sequence demonstrates a much lower H(I'). as evidenced by the relatively
static nature of the sequence. STEFAN. a typical sports sequence. exhibits a much more dynamic inter-
frame activity. Both sequences. however. can still be compressed further by exploiting this inter-frame

redundancy.

2.2.2 Video Bit Rates and Compression Ratio

The amount of data 1s measured n bits. which is the number of binary symbols required to represent
the data. The following bit rates are commonly used to represent video data:

. Bits per frame (bpf)

. Bits per pixel (bpp)

. Bits per second (bps)

The essence of all compression is throwing data away. It the data to be discarded are purely redundant
and 1s required for complete construction. the compression is termed lossless compression: if quality 1s
reduced as a result of the compression. the process 1s known as lossy compression. The effectiveness of

a compression scheme 1s mdicated by 1ts “compression ratio.” which is determined by dividing the
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amount of data to begin with by the amount of data after compression. Through the removal of
redundancies and sometimes at the expense of fidelity, a compression system reduces the entropy of the
video data, thus reducing the bit-rates required to store or transmit the bit stream. To have some idea of
the compression ratio required in common application, we refer to Table 2.2 (raw bit rates of some
common video formats) and Table 2.3 (typical target bit-rate required by current communications and

storage system).

Table 2.2 Raw bit rates of popular formats.

Format Size Colour  Frame Bit Rates
Name Format format Rate Per frame  Per pixel  Per sec.
HDTV 1280x720  4:2:2 6O fps 18.432 Mbpf 20 bpp 1.1 Gbps
CCIRGOI(PAL) 720x576  4:2:2 25 1ps 6.6 Mbpf 16 bpp 166 Mbps
CIF 352x288  4:2:0  29.97 fps 1.2 Mbpf 12 bpp 36.5 Mbps
QCIF 176x144  4:2:.0 2997 fps | 0.304 Mbpf 12 bpp 9.1 Mbps

For a HDTV system requiring a 20 Mbps to transmit its 600 Mpbs raw-video content, the compression
system needs a compression ratio of 30:1. In a video-phone application, a typical video requires a QCIF
format at 10 frames per second (fps), which results in a raw bitrate of 3 Mbps; at a channel capacity of

24 kbps, the encoder needs to be compressing at a rate of 125:1.

Table 2.3 Bit rates of popular applications.

Application Bit rate
POTS Videophone 10-25 kbps
ISDN Video Conferencing 384 kbps
VideoCD 1.5 Mbps
DVD 2-10 Mbps
WLAN video 0.1-10 Mbps
HDTV 20 Mbps

2.2.3 Reconstruction Fidelity

If data is compressed without any loss, perfect reproduction is possible; however, the compression
process for video data is usually lossy In nature. As compression ratio increases, reconstructed data

bear less resemblance to the original. An objective measure commonly used to represent the amount of

- 13 -
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degradation 1s the mean square error (MSE) between the reproduced and original image (/" and /

respectively):

| H-1W -] Eq 2-9

MSE(I.1')= T 2 2 (1 (v.vor)—1 (x.vat ')T

() vv=()

Another measure of fidehity 1s the peak signal to noise ration (PSNR):

PSNR(/.1')=10log

&l

( (zgﬁly w tq 2-10
/

:’{‘V’f.s [ L‘( ! .
\ /

As PSNR provides a positive measure to fidelity and its logarithmic scale provides a more consistent
indication of percerved picture quality. 1t 1s very widely used indeed. In Figure 2.6. the number of bits
to represent an image of the QCIF AKIYO sequence is progressively reduced. The effect is similar to
removal of least significant bits by quantization. A PSNR value in the range of 30 to 50 dB is present

little distortion to the original image: any value below 25 dB becomes quite intolerable.

: ! ) |

(a) 6 bits: MSE = 3.52: (b) 5 bits: MSE = 16.6: (¢) 4 bits: MSE = 85.1:
PSNR =42.7 dB. PSNR = 35.9 dB. PSNR = 28.8 dB.
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(d) 3 bits: MSE = 322.1; (e) 2 bits: MSE = 1601.7: | bit: MSE = 43785.0:;
PSNR = 23.1 dB PSNR =16.1 dB PSNR = 11.7 dB

Figure 2.0 PSNR of images quantized at different bits

. 14 -
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It should be noted that quantitative measures like MSE and PSNR provide a tangible measure of the
amount of distortion brought about by the compression system; they do not take into consideration on
how the viewers’ response towards the distorted image. More subjective measures like the mean

opinion scores are one of the recent attempts to incorporate subjectivity into the distortion

measurements [Wan-02].

2.2.4 Rate-distortion Theory

The contribution of Shannon’s theoretical analysis of the relationship between fidelity and coding rate
has expedited the progress of research tn video compression techniques. As Figure 2.7 illustrates, the

PSNR increases with bit-rate while MSE decreases with bit-rate.

Rate-Distortion Plot of AKIYO.QCIF Rate-Distortion Plot of AKIYO.QCIF

5000 +— 60
O -
& 4000 4 3
2. & 40 - |
= 3000 - & -
92 ' & 30 - | |
£ 2000 - 2o |
2 3
o 1000 = 10 :
0 ' ! T j . 0 | I J Y J I 1 1'
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
_ Bits/Pixel Bits/Pixel
(a) (b)

Figure 2.7 Rate-Distortion plots of AKIYO.QCIF with quantization by bit truncation. (a) uses
distortion 1n terms of MSE; (b) uses fidelity measure (PSNR).

A direct use of R-D plot is to estimate the performance of a coding scheme. Take the simple algorithm
of bit truncation used in Figure 2.7 for example. In order to achieve a PSNR of 30 dB we need
approximately 4 bits per pixel. Another use of R-D plot is for comparison performances of difference
coding schemes. In Figure 2.8, we compare two schemes — (a) is bit-truncation as in Figure 2.7; and (b)
the bit-truncation of frame difference. The R-D curve of (b) lies entirely above that of (a), indicating a

(b) is a more superior coding scheme. At 4 bits/pixel (bpp), say (b), an improvement of 11 dB over (a)

can be achieved.

- 15 -
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‘ R-D Plot of AKIYO.QCIF from (a) pixel quantization & (b)
frame differnece quantization
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Figure 2.8 Rate-Distortion plots of AKIYO.QCIF of two simplistic coding
schemes: (a) uses simple bit truncation of original image; (b) bit truncation of

frame difference.

2.3 Video and Image Compression

Compression in general involves removing redundancies from the actual data. If the removal entails no
loss in information from the original data, actual reconstruction can be carried out to recover the
original data. This type of compression is termed lossless compression. Video data has abundance of
redundancy to be exploited both spatially within a frame and temporally across frames. Whenever this
redundancy is fully exploited but the amount of information is still too large to be either transmitted or
stored, lossy compression 1s required to bring the bit-rate further down at the expanse of quality. As a
result of lossy compression, the original video can only be recovered partially, thus reducing the quality
of the video. How this quality is compromised with the bit-rate using different schemes is studied in the

field of rate-distortion theory. This section describes the various classes of compression techniques

used for video compression.

2.3.1 Entropy Coding: Lossless Compression

Since the beginning of the nineteen-eighties, the first-generation compression systems had based their
techniques on lossless compression [Re1-97]). They are also called entropy coding, as the main target is

to allocated longer code lengths to less probable data to lower the overall bit rate to the towards the

-16 -
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theoretical minimum, its entropy. Lossless processes have relatively low compression ratios, typically

in the order of 2:1. Three most widely used entropy codes:

Huffman coding
Arithmetic coding

Run-length coding

2.3.1.1 Huffman coding

The Huffman code (accredited to D. A. Huffman, 1952) is a prefix code which assigns codes of

different lengths based on the a priori probabilities of the data.

A typical binary Huffman coding process is as follows:

1.

Obtain a large enough of training data and form a histogram p(i) where i is the pixel value and

p(i)is the probability of occurrence of .

Arrange the probabilities in ascending order.

Merge the two codewords with the lowest probabilities to form a new aggregate code with the
new probability as the sum of the probabilities of the two original codewords.

Repeat the merging process until all codewords are merged.

Build each codeword by splitting the aggregates in the reversed order, adding a one and a zero to

each split.

The resulting code has codewords whose length is [ p(i) | where [ ] denotes the integer ceiling. Hence

Huffman coding is only optimal if the data probabilities are powers of 1/2, that is 1/4, 1/8 and so on. In

other cases, an alternative coding scheme, the arithmetic coding, can provide a more optimum

compression rate.

2.3.1.2 Arithmetic Coding

In contrast to the Huffman codes which work with integer numbers, Arithmetic codes make use of

progressively small intervals of a floating point number to represent a sequence of symbols, thus

resulting fractional bits representation.

As an illustration, take 4 symbols {a, b, ¢, d} with probabilities {0.1, 0.2, 0.3, 0.4}, the sequence

“ddcab” can be coded as a floating point number within the range (0.93736, 0.93808).

- 17 -
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0.0 — 07 — 0.91 —-8.937crrer— 0,937
a § i ‘
01/ 073 7 |—0919 .~ .0.9406 0.93736
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Figure 2.9 An 1llustration of arithmetic coding.

If we choose to represent the floating by 4 bits, we can code “ddcab” as {1111}

(_l_ + 2 + 1 + L 0.9375). Requiring just 4/5 = 0.8 bits per symbol.

2 4 8 16

2.3.1.3 Run-length Coding

For data sequences with a majority of zeros populated sparsely by non-zero values as depicted below, a

useful compression scheme 1s run-length coding.

{12,0.0,0.0,34,0,0,0,0,0,0,0,0,0,0,0,- 20,10,0,0,0,0,0,0,0,0,0} Eq2-11
| J
{(12,4),(34,11),(-20,0).(1,10)}

The run-length code system represents the sequence as value-run pairs (v,r) where v denotes the value

of the non-zero value and r denotes the number of running zeros following v. Assuming same number

of bits are used to represent v and r as the original data, a compression ratio of 8/28=0.2857.

As lossless coding does not remove any video data in order to achieve compression, the decompressed
image can be fully recovered. However such lossless compression alone is not enough for video data to
be transmitted in most of the current communications channels. Lossy video compression systems use
lossless techniques where they can, but the major part of bit savings come from discarding data. A
video sequence to be processed 1s separated into two general groups of data. One group, containing all

the important information, 1s transmitted losslessly; the other group, with all the less crucial

- 18 -
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information, will have selected bits discarded. As the decompressor receives a truncated version of the
original data, the reconstructed video can only bear a close resemblance to the original sequence. How
much is the fidelity of the decompressed video depends largely on the nature of the input video
sequence, the allocated bit budget and the efficiency of the compression algorithms. The following

sections discuss the various means to remove redundancies of the video data to achteve much higher

compression ratios.

2.3.2 Perceptual Coding

All second-generation techniques [Rei1-97) make use of some properties of the human visual system
(HVS) in the compression algorithms 1n order to achieve higher compression ratios while still
maintaining acceptable i1mage quality. Perceptual coding takes advantage of the non-uniformity
between the perceptual quality of images and the amount of data required to represent them. Lossy
compression systems take the characteristics of our eyes into account. A HVS is commonly modelled
as a low-pass filter, a logarithmic nonlinearity, and a multi-channel signal-sharpening high-pass filter

[Rei-97]. Four properties of the HVS are listed below:

. Non-linearity of intensity sensitivity — the sensitivity reduces as the background
intensity increases.

. Non-separableability of temporal and spatial sensitivity — the threshold sensitivity
depends on both the spatial and temporal frequencies. In fact, for regions with high
spatial frequency, the HVS resembles a low-pass filter; for uniform regions, the
response is essentially band-pass in nature.

° Directional anisotropy — the eye 1s more sensitive to horizontal and vertical frequencies

than in the oblique directions, with minimum decreased by about 3 dB around 45°.

* Spatial and temporal masking effect — sensitivity is reduced in the neighbourhood of

regions with large intensity vanations.

By exploiting the above properties, lossy schemes exploit our reduced ability to see detail immediately
after a picture change, on the diagonal or in moving objects. Unfortunately, the latter doesn't yield as

much of a savings as one might first think, because we often track moving objects on a screen with our

eyes.

In addition to the response to intensity, another property of the HVS is concerned with colour response
— the perception of fine colour details 1s mited compared with that of intensity. Hence chrominance
resolution can be reduced by factors of two, four, eight or more, depending on the application. This

gives rise to the 4:2:0, 4:2:2 and 4:1:1 subsampling schemes discussed in previous section.

- 19 -
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2.3.3 Transtorm Coding

Video compression also relies heavily on the correlation between adjacent pixels. The spatial
difterential entropy 1n the previous section reveals a substantial amount of spatial redundancy.
Predictive coding encodes pixel values in terms of the difference between the current pixel value and a

ncighbourhood. Another way of removing spatial redundancy is by

predicted value trom the causa
transforming the pixel data into another domain whose coefficients are distributed more favourably for
compression. The distribution can have lower entropy. or the energy can be compacted in just a few

coetticients. A common transform used n video coding 1s the Discrete Cosine Transform (DCT).

Predictive coding relies on making an estimate of the current pixel from the previous values for that
location and other neighbouring areas. The rules of this prediction are intrinsic to the encoder and
decoder system and are hence known a-priori to the decoder. For any new pixel. the encoder need only
send the difterence or error value between what the rules would have predicted and the actual value of

the new element. The more accurate the prediction. the less data needs to be sent.

(a) (b)
Figure 2.10 A frame in FOREMAN.QCIF sequence (a) and magnitude of
its 8x8 block DCT coetticients (b). Entropies of (a) and (b) are 7.29 bits

and 4.87 bits respectively.

From Figure 2.10, the DCT energies are compacted into the low frequency coefficients. It is also noted
that the oblique edges n the top background manifest as blocks with non-zero higher frequencies
coefficients. Coefficients at the lower right portions of the picture are more sparsely distributed as there
is more variation in the pixel data around the region. Since a major part of the picture is uniform and
pixels do not change abruptly, transform coefficients are very compact. A comparison of entropies

between pixel data and the transtorm coefhicients in Figure 2.10 shows a reduction of approximately

2 42 bits by DCT
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2.3.4 Motion Estimation and Compensation

The motion of objects or the camera from one frame to the next complicates predictive coding, but it
also opens up new compression possibilities. Fortunately, moving objects in the real world are
somewhat predictable. They tend to move with mertia and 1n a continuous fashion. By finding
correspondence of the regions between frames. predictive coding can be applied in the temporal
domain. The process is typified by finding the apparent motion of objects in the scene. hence the term
motion estimation. Motion estimation has been known to be the main contributor to the large
compression ratio of video coders. The down side of motion-compensated compression is the inter-
frame dependency. Effects of errors induced in one frame gets propagated to subsequent frames. As a

result, independently coded pictures must be used at regular intervals to remove such dependencies.

The correspondence between two or more frames in the picture sequences are widely exploited in both
video compression and analysis applications. In video compression. frame differencing (FD) is the
simplest means to remove temporal redundancy to achieve higher compression ratios. However, inter-
frame relation between co-located pixels only holds if the objects remain stationary; object motion
reduces this inter-frame correlation. A better alternative to simple frame-differencing i1s motion
estimation: by matching each pixel with a neighbouring pixel from other frames which gives the best
match. a displacement is found and the resulting residue is the difference between the current pixel and
the best-matched pixel trom another frame. The collection of displacements from all pixel is termed as
the displacement field or motion vector tield (MVF); the resulting pixel residues form the displaced
frame difference (DFD). The dense MVF requires a fair amount of bits to code; it is commonly
replaced by a sparse version in which groups of pixels are represented by a single motion vector as

depicted in Figure 2.1 1.

Figure 2.11 An illustration of advantage of local motion estimation and displaced frame difference:
(a) shows an absolute frame difference (|FD)); (b) shows the absolute displaced frame difference
(|DFDJ) and (¢) shows the motion vector field. Comparison of (a) and (b) reveals that motion

estimation reduces inter-frame redundancy better than simple frame differencing.
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The DFD in (b) shows a marked reduction in the residual energy compared with the FD in (a). The ship
at the left hand side is correctly predicted by motion estimation. This thesis ts mainly concerned with
improvements on existing motion estimation algorithms and proposal of novel algorithms for
representing such fields. In additional a better match can be obtained by ‘warping’ the reference frame,
either by a single motion parameter (as in global motion estimation) or a few parameters, each on a
separate region (as in motion segmentation). The warping of the reference frame gives a better

predictor and hence reduces residual entropies.

2.3.5 Quantization — Lossy Compression

When perceptual redundancy and all statistical redundancies (spatial, temporal and those due to
distribution of the codewords) have been fully exploited, the only means of further compression is to
remove some information by means of quantization. In general, quantization is the process where a set
of data is represented by a reduced set of symbols. As a result of quantization, a range of data symbols
are represented as a single symbol and consequent reproduction would only yield an approximation of

the original data. It is this approximation that accounts for distortion caused by quantization.

We have cited earlier an example of quantization, which is the reduction of least significant bits in pixel
value. Quantization where a single data value is coded as a symbol representative of a range of values
is called scalar quantization. A representative scalar quantization scheme is the linear quantization

where the quantized value 1s equally spaced in the domain and the ranges of every quantizer value are

equal.

———
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(a) (b)
Figure 2.12 Quantizer transfer function, where x-axis is the input and y-axis is the

representative value. (a) Linear quantization; (b) Non-linear quantization (exponential)
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As illustrated in Figure 2.12, scalar quantization converts a single data value to its corresponding
quantized value. Vector quantization, on the other hand, maps a group of data into a vector and assigns
another vector from a reduced set of code vector which best matches the original vector. An example of

vector quantization is colour quantization as shown below where Cp, and C, are quantized jointly.

After describing the general classes of compression techniques, the next section summarizes the past

and state-of-the-art compression standards commonly used in the industry.

2.4 Video Compression Standards

Standardized coding for system inter-operability is the main necessity for widespread deployment of
video communication and storage services [Has-94]. Since the dawn of digital video processing in the
nineteen-seventies, ISO/IEC and ITU has proposed various compression standards. These standards
undergo substantial changes due to the technological advancements which provide ever-increasing
processing power required by the video processors, and the rapid changes in demands from the, mass-
consumer, military and medical sectors. Table 2.4 gives a summary of what these standards are and

what applications they are targeted at:

Table 2.4 Various video coding standards and their applications.

m Date/Author | Resolution Supported | Data Rates Applications

H.201 1990,ITU QCIF, CIF 40 Kbps - ISDN-based video
Mbps conferencing

MPEG-1 1993, 352x240, 352x288 <1.5 Mbps VideoCD
ISO/IEC |
H.263 1995, ITU SQCIF, QCIF, CIF, | <2 Mbps, VLBR video over
4CIF, 16CIF more effective | POTS, GSM, video
at <64 Kbps conferencing,
MPEG-2 1994, 7120x576 or below | <15 Mbps DVD
ISO/IEC
MPEG-4 1998, Highly scalable Highly Digital television,
ISO/IEC scalable interactive graphics
applications,
interactive

multimedia internet
distribution.

Highly Next generation
scalable codec for all
purposes.

H.2064 TBD, ITU

Highly scalable
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2.4.1 The generic Encoder

Despite the numerous video coding standards, all are based on general structure as shown n Figure

2.13.
ot
T2
é
L ©

E[Kex {blocks): % Key (signals):
" P = Partitional /= input frame
T = Transform Coder . e= displaced frame diff (DFD)
Q = Quantiser p = predicted frame
Q" = Dequantizer €= reconstructed DFD
T! = Inverse Transform r = reconstructed frame
FS = Frame Store &= partitioning information
ME = Motion Estimator - b= bit-stream
MC = Motion Compensator v = motion vector field
E = Serializer + entropy coder. ¢ = quantized coefficients

Figure 2.13 The generic framework of video compression system.

In the typical video encoder, the input frame i is partitioned into manageable blocks in the partitioning

functional block P for further processing. Usually the luminance picture is partitioned into 16X10

blocks. Taking the mandatory 4:2:0 format supported by all standards, the two chrominance frames

have partitions of 8x8 blocks. The luminance block is commonly subdivided further into four 8x8 sub-

blocks. Along with the two chrominance blocks, the six blocks forms the basic coding structure of the

typical encoder, usually called the Macro-block, as shown in Figure 2.14.

-24 -



C<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>