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Abstract 

The importance of apoptosis as a means of homeostasis and maintaining genomic integrity, as 

well as the ability of cancer cells to escape this failsafe mechanism, has long been the subject of 

intense investigation. To investigate the possibility that prolactin might enable breast cancer cells 

to survive apoptotic insults, we stimulated T47-D and MCF-7 cells with ceramide (C2) and 

assessed the ability of prolactin to improve cell survival. Morphological studies and cell survival 

assays demonstrated a significant survival effect in T47-D cells exposed to prolactin. Because 

prolactin activates the Jak2-STAT5 pathway, we then proceeded to create a model in which the 

role of this pathway in apoptosis could be investigated. An initial attempt to inhibit 

dexamethasone-induced apoptosis in a human leukaemic cell line (CEM-C7) by establishing a 

stable clone expressing the prolactin receptor (for activating the JAK2-STAT5 pathway) was 

unsuccessful. Next, we established stable clones of breast cancer cells overexpressing STAT5b. 

Despite increased STAT5 signalling after prolactin stimulation, no enhancement of survival was 

demonstrated, implying that STAT5b is not responsible for survival following ceramide 

exposure. Surprisingly, increased STAT5 activation, following prolactin stimulation, actually 

increased cell death. 

The second half of this project involved investigation and characterization of the newly identified 

Met protein, which we showed to induce apoptosis in breast cancer cells as well as in other cell 

lines. Met is structurally related to SAF-B - which attaches to DNA at scaffold / matrix 

attachment regions and is thought to be involved in DNA transcription or mRNA processing. Met 

was shown to be confined to the nucleus, and partially co-localized with SAF-B, but not with 

splicing factor speckles. Signalling assays show that Met downregulates transcriptional activity 

within cells. 
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1 INTRODUCTION 



1.1 The Development of Cancer 

Cancer is a disease that involves multiple changes in the genome. The initial discovery of 

mutations within the genome associated with cancerous phenotypes led to the 

identification of oncogenes, whose presence conferred a dominant gain of function, and 

tumour suppressor genes, associated with recessive loss of function. Study of these genes 

has rapidly advanced our understanding of the nature of cancer, how it progresses and 

how it develops'. 

Accumulating evidence indicates that tumourigenesis is a multistep process in humans 

and reflects the genetic alterations that drive the transformation of normal human cells 

into malignant derivatives. Most cancers are diagnosed in the human population with an 

age-dependent incidence2. Analysis of various organ sites reveals lesions that may 

represent the intermediate steps through which cells have to evolve in the transformation 

from normality to a malignant phenotype3. This is further supported by increasing 

evidence showing that tumour cells invariably have mutated genomes, not just at one site, 

but multiple sites, from simple point mutations to massive disruptions such as 

chromosomal translocations4. The evidence in cultured cells is just as compelling. Rodent 

cells require at least two introduced genetic changes before they develop tumourigenic 

capability, and their human counterparts are even more resistant to transformation5. 

Transgenic tumour models also support the conclusion that tumourigenesis in mice 

requires multiple rate-limiting steps6. When considered together, these observations 

imply that for cancers to develop, each cell has to go through a series of genetic 
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alterations, which confer on the cells a growth or survival advantage until the final 

transformation of normal cells into cancer cells 3°7. 

In normal cells, regulatory pathways monitor the extra- and intra- cellular conditions in 

order to maintain cell proliferation and homeostasis. Thus in order for a cell to transform 

into a cancer cell, there are several obstacles to overcome before it can achieve 

immortality and ungoverned proliferation. There appear to be at least six essential 

alterations in cell physiology before this occurs: self-sufficiency in growth signals, 

insensitivity to growth-inhibitory signals, evasion of programmed cell death (apoptosis), 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasise. 

1__ ;2 Anontosis: Definition and Mechanisms 

The term `apoptosis' was first used in 1972 by Kerr et a19 to refer to the distinctive 

morphology of physiological cell death, and is interchangeably used with `programmed 

cell death'. Thus apoptosis results from the controlled activation of a death mechanism 

already encoded within the genome of every cell. This programme is usually directed and 

executed by the cell itself - an autodestruct mechanism that is aided by neighbouring 

cells only in the final stages when it is phagocytosed. 

Apoptosis was first described by its morphological characteristics, which comprise cell 

shrinkage, membrane blebbing, and nuclear fragmentation after chromatin condensation' 

11. This is followed by fragmentation into apoptotic bodies and eventual phagocytosis by 

surrounding cells12 
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The importance of apoptosis in the development of on organism has become increasingly 

apparent in recent years. This process is important early in embryonic development for 

the moulding of body parts - such as digit separation and cavity formation - and also the 

elimination of vestigial structuresi3. It is also important in tissue homoestasis, balancing 

cell division and attrition, and maintaining tissue mass. Damaged, diseased or genetically 

unstable cells are removed by apoptosis14. The controlled elimination of autoreactive 

lymphocytes is also mediated by apoptosis, the lack or disruption of which results in 

autoimmune diseases" 

Apoptosis is a programme, initiated and executed by cellular components under stringent 

control, requiring the coordinated activation of enzymes and the availability of adenosine 

triphosphate (ATP). In contrast, the other form of cell death - necrosis - does not require 

energy and is a result of the loss of the cell's ability to maintain ionic homeostasis. 

Apoptosis only involves one cell - the cell that is executing the programme - and does 

not lead to inflammation, destruction, or scarring and fibrosis of adjacent tissues. 

The apoptotic mechanism can be divided into two broad groups - sensors and effectors. 

The sensors monitor the extracellular and intracellular environment for conditions that 

determine whether a cell should live or die. Signals from these sensors regulate the latter 

group of components, which are responsible for effecting cell death if it is required. 

Extracellular death signals include Fas ligand (FasL), which signals via its binding to the 

Fas receptor16, and tumour necrosis factor(TNF)-a, which binds to the TNFR-1 

receptor 17,18 
. Intracellular signals that can initiate apoptosis include DNA damage, 
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signalling imbalance provoked by oncogene action, survival factor insufficiency, and 

hypoxia12. Most cells also depend partly on cell-matrix and cell-cell adherence-based 

survival signals, the loss of which can elicit apoptosis (sometimes known as anoikis)19. 

Both soluble and immobilized survival signals probably reflect the needs of the tissue to 

maintain their cells in appropriate architectural configurations. 

Many of the apoptotic signals converge eventually on the mitochondria, which respond 

by releasing cytochrome c when stimulated by pro-apoptotic stimuli. This portion of the 

apoptotic pathway is influenced in part by the Bcl-2 family of proteins which have both 

pro-apoptotic (Bax, Bad, Bid, Bim) and anti-apoptotic (Bcl-2, Bcl-xL, Bcl-W) members 

20 whose actions determine the release of cytochrome c'21 

The final effectors of apoptosis comprise a group of intracellular proteases called 

caspases2. Two `initiator' caspases, -8 and -9, activated by death receptors such as 

Fas23'24 or cytochrome c25, i6 respectively, trigger the activation of a dozen or more 

effector caspases which are responsible for executing the apoptotic program27. 

1.2.1 Pathways for Apo tosis 

1.2.1.1 Caspases - the executors of apoptosis 

Caspases are cysteine proteases that specifically cleave after aspartic acid residues in the 

P1 position of substrates23, and are present as inactive proenzymes in the cytosol. 

Caspases are homologous in structure and usually synthesised as inactive zymogens with 

four distinct domains12. Activation of caspases requires proteolytic cleavage, usually by 
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other caspases, between domains with the removal of a prodomain and a linker region, 

and rearrangement of large and small subunits into an active tetrameric complex12. An 

additional mechanism of caspase activation involves the recruitment of adaptor proteins 

that allow procaspases to come into close proximity with each other and enables caspases 

to activate themselves in vivo29-32 

Caspases can be classified as `initiators' or `effectors', where initiator caspases are 

responsible for activating effector caspases, that are the ultimate effectors of apoptosis29. 

`Initiator' caspases (namely caspase 8 and 9) have long prodomains with structural motifs 

(eg death effector domain, DED, or caspase recruitment domain, CARD) that allow 

enzymes to associate with their activators 33,34 It is this binding of DEDs in the 

prodomains of caspases to DEDs on adaptor proteins, such as Fas-associated death 

domain (FADD), that results in activation of the caspase23,24. `Initiator' caspases are also 

distinguished by the fact that they are able to activate themselves as well as downstream 

caspases to generate active enzymes12. In contrast, `effector' caspases, namely caspase-3, 

-6, -7, and -14, all have short prodomains. 

Thus in the caspase cascade activation sequence, apoptotic signals arising extracellularly 

(e. g. tumour necrosis factor (TNF)-a) or intracellularly (e. g. p53 activation following 

deoxyribonucleic acid (DNA) damage), result in the activation of either caspase-8, 

caspase-9, or both. These in turn proceed to activate the effector caspases - principally 

caspase-3 - which are responsible for many of the morphological changes associated with 

the apoptotic process3s, 36 
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Knockout mice deficient in various caspases have been created and have clarified the 

roles each caspase plays in apoptosis. Functional caspase-3 is required for some typical 

hallmarks of apoptosis and is essential for the formation of apoptotic bodies, chromatin 

condensation and DNA fragmentation 37 39. Cells lacking caspase-8 do not apoptose in 

response to tumour necrosis factor (TNF) signaling, but are still susceptible to serum 

deprivation, chemotherapeutic drugs, y-irradiation and dexamethasone-induced 

killing40'41 Caspase-9 is essential for apoptosis induced by intracellular activators, 

especially those that cause DNA damage42. Moreover, caspase-9 deficient cells do not 

show activation of caspase-3, implying caspase-3 is downstream of caspase-9, thus they 

are resistant to dexamethasone and irradiation but retain sensitivity to TNF-a and CD-95 

induced cell death42.43. This sensitivity can be explained by the presence of caspase-8, the 

initiator caspase involved in death receptor signaling that can activate caspase-342 in 

caspase-9 deficient cells43. From all the evidence, it appears that different death- 

signalling pathways converge on downstream effector caspases, of which caspase-3 is 

regarded as a key executioner of apoptosis as activated by extracellular or intracellular 

stimuli44 

Activated caspases have two targets: regulatory proteins of apoptosis, whose breakdown 

enhances apoptotic activity in the cell, and structural and housekeeping proteins, the 

degradation of which results in cellular disintegration. Regulatory proteins targeted by 

caspases include p21-activated kinase (PAK), focal adhesion kinase (FAK), inositol-3- 

phosphate (PI-3) kinase, protein kinase B (PKB/Akt), anti-apoptotic members of the Bcl- 

2 family and members of the 1AP family. Structural components that are degraded by 
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caspases include nuclear lamins, actin, various regulatory proteins (e. g. fodrin, gelsolin, 

keratin), and proteins involved in DNA repair (e. g. poly-(-adenosine diphosphate-ribose) 

polymerase (PARP))45'46 (Fig. 1.1) 

In the mitochondrial pathway, most caspases are activated after the release of cytochrome 

c, but there is evidence to show that disrupting the action of caspases only delays the 

onset of apoptosis47. However, in other circumstances, loss of caspases results in a 

pathological increase in cell number39'42.43 Very little is known about mutations in 

caspases in cancers. 

1.2.1.2 The Death Receptor Pathway 

The death receptor pathway is triggered by `death receptors' (DR) such as Fas/CD95, 

tumour necrosis factor receptor (TNFR)-1, DR3, and TNF-related apoptosis-inducing 

ligand receptors (TRAIL-R) 1 (also called DR4) and 2 (also known as DR5)'7 49 (Fig 1.1). 

The receptors are characterized by the possession of a conserved extracellular cysteine 

rich domain, and the presence of a ̀ death' domain within the cytoplasmic tail. 

These receptors initiate apoptosis in a similar fashion. This involves the binding of 

ligand, the formation of a trimeric or multimeric death-inducing signalling complex 

(DISC), and the recruitment of adaptor molecules. Each of the adaptor molecules binds 

procaspase-8, thus bringing the zymogens into close proximity with each other, initiating 

autoactivation and the release of activated caspase-8, which activates the caspase 

cascade. 
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Figure 1.1Role of caspases in apoptosis (based on Wallach et al 1997" and Ashkenazi et al 

1998°8). 

Initiator caspases -8 & -9 are activated by the death receptor pathway and the mitochondria/ 

pathway respectively. Both are capable of activating caspase-3, the main effector caspase for 

apoptosis. Caspase-3, apart from activating other caspases in the caspase cascade, also has 

specific targets. It cleaves inhibitor of caspase activated deoxyribonuclease (ICAD), and releases 

the inhibition on caspase activated deoxyribonuclease (CAD), allowing DNA degradation to 

begin. Caspase-3 also cleaves proteins involved in transcription (eIF-4GI) and DNA repair (DNA 

protein kinase), thus disrupting protein synthesis and DNA maintenance. These activities, as well 

as caspase-9 activation, can be inhibited by XIAP (red dots), a member of the inhibitors of 

apoptosis protein family. 
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All adaptor molecules are equipped with a death domain, allowing interaction with the 

death domain on the cytoplasmic tail of the death receptor. In addition, the adaptor 

molecules also possess a `death effector domain', by which these molecules can interact 

with procaspases or other adaptor proteins49,50 

As an example, TNF-a (Fig. 1.2) induces trimerization of its receptor (TNF-R1), resulting 

in recruitment of the signal transduction (adaptor) molecule TNF receptor-associated 

death domain (TRADD) through `death domains'. Recruitment of Fas associated death 

domain (FADD), another adaptor protein, by TRADD, in turn allows the recruitment of 

procaspase-8 to the signalling complex, and results in apoptosis through the activation of 

caspase-8, which initiates a protease cascade that cleaves cellular targets (including 

caspase-3)48. Thus, disruption of FADD will hinder caspase-8 activation, disrupting 

receptor-mediated cell death40. Surprisingly, this pathway is seldom altered in tumours, 

indeed it is often enhanced51. TRADD also recruits receptor-interacting protein (RIP) and 

TNF receptor-associated factor (TRAF-2), which result in activation of nuclear factor xB 

(NF-KB), and can suppress TNF-a-induced apoptosis52. This pathway itself can be 

blocked by TRAF-interacting proteins (TRIPs) which bind TRAF and block NF-KB 

activation 53 

Although TNF-R signalling was described in detail here, there are other members in this 

group, such as Fas, and TNF-related apoptosis inducing ligand (TRAIL) that signal in a 

similar fashion, involving the recruitment of death domains and culminating in the 

activation of caspase-8. 
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Figure 1.2The TNF Receptor Family (based on Baker et al 199850, Wallach et al 199717 and 

Pimental-Muinos et a1199954). 

This family includes TNF-RI, CD95, Fas and TRAIL-RI/R2 (green). Activation by ligand (black 

circles) results information of a trimeric/multimeric complex. Adaptor molecules (red, orange, 

pink) are recruited in various stages, and this comprises the death inducing signalling complex 

(DISC), which is able thus to recruit procaspases (blue) and activate them. Regulators of this 

pathway include decoy receptors (DcR]/2) which are able to hind ligand, but lack a death 

domain and are unable to recruit adaptor molecules required for signal transduction. Another 

group of inhibitors are the FADD like ICE inhibitory protein (FLIP) family, which bind the DED 

domain of FADD and prevent recruitment of caspase-8. The TNF-RI also recruits TNF-R 

associated factors (TRAFs -6 members), which links the death receptor pathway to the NF-kB 

pathway, with ultimate inhibition of cytochrome c release. The action of TRAF. s can be inhibited 

by Traf interacting protein (TRIP) to block NF-kB activation. 
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1.2.1.3 The Mitochondria! Apoptotic Pathway 

Apoptosis can also be triggered from within the cell in response to various stressful 

events, such as withdrawal of growth factors or DNA damage following radiation, 

hypoxia, heat and drugs55. (Fig. 1.3) 

When this pathway is activated, mitochondria release cytochrome c and activate effector 

caspase-9. Unlike the Fas/CD95 pathway, this is often the target of oncogenic 

mutations51. Mitochondrial release of cytochrome c is partly modified by members of the 

Bcl-2 family, probably as a result of changes in permeability of the mitochondrial 

membrane. These changes could occur via a permeability transition pore (PTP), a 

proposed channel formed in response to necrotic or apoptotic signals. Several theories are 

still under intense investigation regarding the mechanism by which cytochrome c, along 

with other proteins such as apoptosis-inducing factor (AIF), second mitochondria-derived 

activator of caspase (Smac)56/ direct IAP-binding protein with low pI (DIABLO)57 (an 

inhibitor of the inhibitor of apoptosis protein family) and certain caspases, are released 

into the cytosol following activation of the mitochondria. 

The PTP appears to be a contact point between the outer and the inner mitochondrial 

membrane. From current evidence, the pore in the outer membrane appears to be under 

the control of voltage-dependent anion channel (VDAC) and possibly Bax (a member of 

the Bcl-2 family of proteins), while the inner membrane is under the influence of the 

adenine nucleotide translocator (ANT) and Bax6' "62 

12 



Drugs, Heat, 
Hypoxia, UV, 

aas 

P13 Imme activation 

1 
Phosphorylatlon of AkVPKB 

t 

14 33 
(f1 

Bmd 

fBid 

I 8cl-Xi 

PfOg3P959B c85pBEB 8 

Bel-X. ° 
AL: 

Of H8K 

t  

1r 
or Bak 

Procaspase 9 

Caspase 9 

APOPTOSIS 

Figure 1.3The mitochondrial Apoptotic pathway, and the role of the Bcl-2 family in the 

induction or apoptosis (based on Gupta 2003, Cai et a11998w and Kroemer 19996). 

(Red lines: protective mechanisms, blue arrows: apoptotic pathways) Bcl-2 and Bcl-xL both 

prevent cytochrome c release from mitochondrion. When Bad dimerizes with either of them, Bax 

is released and initiates cytochrome c release. Truncated Bid (tBid)(formed by caspase-8 

processing of Bid) also activates Bax. Bcl-2 and Bcl-xL can prevent the formation of the 

apoptosome complex that comprises Apaf-1, cytochrome c and procaspase-9, which inhibits the 

downstream caspase cascade. Bad activity is regulated by phosphorylation by Akt/PKB, which 

initiates the sequestration of Bad by the 14-3-3 protein, thus inactivating it. Bax and Bak 

transcription are up-regulated in response to p53 activation. 
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Activated caspase-8 cleaves Bid, another member of the Bcl-2 family, which translocates 

to the nucleus and, in association with Bax, induces a conformational change and 

enhances opening of the PTP63. It is the opening of the PTP that is thought to be 

responsible for the release of cytochrome c into the cytoplasm64, where it binds to the 

Apoptotic protease activating factor (Apaf)-1/caspase-9 complex65. This complex 

formation results in the activation of caspase-9, which by activating caspases-3, -6 and -7, 

goes on to initiate the rest of the caspase cascade, resulting finally in cell death66 

Enforced expression of the pro-apoptotic members - Bax or Bak - results in increased 

mitochondrial membrane potential and release of cytochrome c, which can be blocked by 

overexpression of Bcl-267. 

Apart from the release of cytochrome c from the inter-membrane space of the 

mitochondria, apoptosis inducing factor (AIF) is also released. AIF, which also resides in 

the inter-membrane space of the mitochondria68 is a S7kDa protein. It was initially 

thought to be a protease, but has since been found to be homologous to NADPH- 

oxidoreductase69 and is thought to be responsible for the various nuclear changes that are 

characteristic of apoptosis, namely chromatin condensation, protein proteolysis and DNA 

fragmentation68. 

Another protein, Smac/DIABLO is released from the mitochondria following apoptotic 

stimuli. Smac/DIABLO is known to bind IAP proteins, and prevents their inhibition of 

caspase activities56 
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Ultimately, the final event of both pathways (i. e. TNF/TNFR-1 and activation of 

mitchondria) is activation of the caspase cascade that is responsible for digesting cellular 

contents. Cytosolic and nuclear proteins involved in DNA replication and repair, RNA 

splicing, cell division and cytoskeletal structure are digested, and their loss finally results 

in the morphological changes associated with apoptosis12. 

1.2.2 Regulators of Ap tosis 

Apoptosis being a gene-directed programme, it is not surprising that this pathway is 

safeguarded by many regulators and checks before it is allowed to proceed. Thus, there 

are many levels at which this programme may be aborted/prevented. A brief summary of 

the various proteins and pathways whose function it is to ensure that apoptosis occurs 

only when it is required, and not before, is outlined below. 

1.2.2.1 The Bcl-2 family ofproteins 

The first member of this family to be identified, Bcl-2, was discovered at the 

interchromosomal breakpoint of the t(14: 18), now known to be the distinguishing feature 

of follicular B cell lymphoma70'71. Oncogenes typically enhanced cell proliferation, 

however, in contrast, Bcl-2 exerted its effect by enhancing cell survival and defined a 

new group of oncogenes20,72,73 

The first pro-apoptotic member of the family to be identified was Bax - Bcl-2 associated 

protein X74. To date 17 members of the family have been identified and they can be 
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divided into 2 functional groups: those which promote apoptosis, such as Bax, Bad, Bid 

and those which suppress it, like Bcl-2 and Bcl-XOO. 75 

Mechanism ofAction 

Anti-apoptotic proteins, such as Bcl-2 and Bcl-xL reside on the outer mitochondrial 

membrane, where they are thought to prevent the release of cytochrome c (possibly by 

interacting with the voltage-dependent anion channel (VDAC))76. There is some evidence 

that Bcl-xL, and possibly Bcl-2, can bind apoptotic protease activating factor (Apaf) - 1, 

preventing the association of procaspase-9 with Apaf-l and cytochrome c, and hence, 

inhibits activation of caspase-97. 

The pro-apoptotic members, Bax, Bad and Bak, on reception of apoptotic signals, 

translocate to the mitochondria, where they initiate the release of cytochrome c, AIF and 

Smac/DIABLO78'79. In addition, Bad dimerizes with Bcl-xL, relieving its inhibitory effect 

on cytochrome c release80'81. Bad is itself regulated by Aktprotein kinase B (PKB), 

which phosphorylates Bad, allowing the protein 14-3-3 to bind and inactivate it82. 

Another member of the Bcl-2 family, Bid, is activated, by truncation to tBid, by caspase- 

883. tBid translocates to the mitochondrion where it stimulates Bax and Bad, and initiates 

cytochrome c release 84-86 (Fig 1.2). 

1.2.2.2 The inhibitor of apoptosis protein (IAP) family 

This family of proteins was first discovered in baculoviruses where they are responsible 

for suppressing the host apoptotic response to viral infection. Members of the IAP family 
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are characterised by a domain of -70 aminoacids named the baculoviral IAP repeat 

(BIR). Members can possess up to three tandem repeats of this sequence which appears 

to code for a zinc-binding fold87. The proteins are conserved between species, and are 

also found in humans, with all members possessing a BIR domain and the ability to 

suppress apoptosis, though the latter has still to be proven for many of them. 

There are six human IAPs - including c-IAP1, c-IAP2 and XIAP. The mechanism of 

action of these proteins is still under investigation, but they are known to be expressed in 

a wide variety of tissues, apart from XIAP, which has a restricted distribution88. 

Overexpression of XIAP, c-IAP1, c-IAP2 and other IAPs protects against apoptosis 

induced by various factors, including TNF, FasL, staurosporine, etoposide and growth 

factor withdrawal 88-91 
. The three IAP members mentioned have been shown to bind and 

inhibit the activities of caspases 3,7 and 9, but not caspases 1,6,8 or 1092"94. Thus, these 

proteins are able to block both the death receptor pathway as well as the mitochondrial 

apoptotic pathway. Consistent with reports that IAPs bind to caspases is the observation 

that they do not affect the release of cytochrome c from mitochondria95'96, thus raising the 

question of whether IAP suppression of apoptosis is complete, or only delays the 

inevitable87. 

1.2.2.3 Serine/Threonine protein kinases and apoptosis 

Apoptosis can be regulated not only intrinsically, but also by extrinsic factors, such as 

growth factors, hormones, and cellular factors. In this regard, serine/threonine kinases 

have been implicated in the regulation of apoptosis. Kinases involved include the 
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mitogen-activated protein kinase (MAPK) family, cyclic AMP dependent protein kinase 

(PKA), protein kinase B (PKB/Akt) and protein kinase C (PKC)97. 

Mitogen-Activated protein kinases (MAPKs) 

The kinases in this family that are involved in apoptosis are the p42/44 extracellular 

signal-related kinases (ERK) 1 and 298, p38 MAPK99 and c-Jun N-terminal kinase 

(JNK)100 speccally. The latter two enzymes appear to be involved in inducing 

apoptosis, while the former appears to enhance survival. 

On growth factor withdrawal, both JNK and p38 MAPK are activated10', resulting in 

upregulation of Fas ligand production and release102, and subsequent activation of 

caspase-31°3 Other triggers of JNK activation are hypoxia, TRAIL receptor stimulation, 

nitric oxide and cellular stress104-106 

Concurrent with the activation of JNK/p38, inhibition of ERK signalling is also noted1°'. 

This is probably due, in part, to caspase-3 which has been shown to cleave Raf-1 (an 

upstream activator of ERK)107. In addition, ERK activation has also been proven to 

suppress apoptosis induced by hypoxia1°8, growth factor withdrawal109 and 

chemotherapeutic agents"O The actual mechanism for ERK inhibition of apoptosis is as 

yet undefined. However, possible candidate substrates include Bad", and caspase-9112 
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Protein Kinase A (PKA) 

The PKA enzyme is a complex entity, consisting of two catalytic subunits bound to 

regulatory subunits. There are three isoforms for the catalytic subunit, and four for the 

regulatory subunits. Regulatory subunits can be bound to PKA as either homo- or hetero- 

dimers113. Depending on the regulatory subunit in use (RI or RII), PKA is identified as 

type I or II respectively. PKA type I appears to be anti-apoptotic, and is thought to have a 

role in phosphorylating Bad' 14, whereas the role of type II PKA is still unclear. 

Protein kinase B (PKB) /Akt 

The importance of PKB/Akt in the suppression of apoptosis is no longer in dispute, and a 

large body of literature is now devoted to identifying and mapping out the signalling 

pathways involving this protein kinase, its regulation, and the role it plays in 

tumourigenesis'15. PKB/Akt is thought to be the major pathway by which trophic factors 

are able to inhibit apoptosis, via activation of the phosphoinositide-3 kinase (P13K), 

which is the upstream activator of PKB. The targets of this cascade are Bad, caspase-9, 

transcription factors of the Forkhead family and inhibitor of IKB (inhibitor of nuclear 

factor kappa-B) kinase (IKK). 

Phosphorylation of Bad allows it to bind 14-3-3 proteins and release Bcl-XL. 14-3-3- 

bound Bad is thus sequestered from the cytoplasm, unable to inhibit anti-apoptotic 

proteins further"-8211'. Another action of activated PKB is to phosphorylate caspase-965, 

thereby reducing its protease activity12. 
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The third substrate of PKB is IKK-a, which it phosphorylates and activates' 16 IKK-a 

inactivates IiB, and brings about the nuclear translocation and activation of nuclear 

factor-KB (NF-KB), thus upregulating the transcription of various survival factors117. The 

final substrate of PKB/Akt is the Forkhead transcription factor FKHRLI, which has been 

shown to induce the transcription of FasL and TNF-a'°2,118 119, and the proapoptotic Bcl-2 

family member, Bax12o, izi 

1.2.2.4 The tumour suppressor gene- p53 

p53, the first tumour suppressor gene to be linked to apoptosis, is found mutated in many 

cancer types and is often associated with an advanced disease stage and poor patient 

prognosis' 22. It is now known that p53 is a checkpoint protein involved in cell cycle arrest 

that is responsible for ensuring retention of genomic integrity following DNA damagesl 

Studies in p53 knockout mice show that endogenous p53 is involved in apoptosis: it is 

required for radiation induced apoptosis in the thymus but not for apoptosis induced by 

glucocorticoids or other stimulil23. '24This implies that p53 is involved in apoptosis 

resulting from DNA damage and can be stimulation- and tissue-specific. Other stimuli 

can also induce p53 to promote apoptosis, and mutations of both upstream and 

downstream components of the pathway can be found in human tumours122. 

The p53 protein has several functions: it can promote apoptosis, induce cell cycle arrest 

and senescence. Thus loss of p53 function could result in increased viability, 

chromosomal instability and increased cell lifespan. However, there is evidence to show 

that it is the apoptotic function of p53 that is crucial to tumour suppression. Disruption of 
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several p53 effectors (e. g. bax, apaf-1, casp-9) can promote oncogenic transformation and 

tumour development in mouse model systems' 25-127. Some tumour-derived p53 mutants 

remain capable of inducing cell cycle arrest but have lost their ability to induce apoptosis 

128,129 

Please see Fig. 1.4 for overview of Apoptosis and its regulation. 

1.3 The Disruption of Apoptosis in Cancer 

The ability of a tumour cell population to expand reflects not only the rate of 

proliferation, but can also depend on the rate of cell attrition, which can be changed as a 

result of decreased apoptosis or necrosis. Apoptosis appears to be a major source of cell 

death 130, and there is increasing evidence that resistance to programmed cell death is 

characteristic of most, if not all, cancers4s M, l31.132 That apoptosis may serve as a barrier 

to carcinogenesis was first suggested in 1972, when Kerr, Wyllie and Currie described 

massive apoptosis in cells populating rapidly growing, hormone-dependent tumours 

following withdrawal of the hormone9. 

The discovery that apoptosis was a gene-directed program had a significant impact on the 

understanding of tissue development and homeostasis, for it meant that cell number was 

regulated by factors that controlled proliferation and differentiation, as well as survival 

factors48,51133 More importantly, this genetic basis implied that cell death, like any other 

metabolic or developmental program, could be affected by mutation with resultant 

susceptibility or resistance to the process. 
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It is clear that the apoptotic mechanism exists in all cell types throughout the human 

body, requiring only activation to be initiated 134. Upon activation, apoptosis proceeds 

through distinct stages, ending in the disruption of cellular membranes, dissolution of 

cyto- and nucleo-skeletal structures, extrusion of the cytosol, degradation of 

chromosomes and breakup of the nucleus, all this occurring within a 30-120 minute 

period. All that remains is a shriveled cell body that is engulfed by neighbouring cells and 

disappears within 24 hours". 

Several signal transduction pathways promote cell survival when stimulated by growth 

and/or survival factors and may be important in controlling cell number. One such 

pathway is the PI-3 kinase pathway, which can be activated by Ras and downregulated by 

the PTEN tumour suppressor13s Many studies using either transgenic or knockout mice 

13 have shown that disruption of apoptosis is important in tumour development 

Identification of apoptotic triggers is important as it provides insight into the forces of 

tumour development and progression. In skin, excessive exposure to ultraviolet radiation 

induces apoptosis - which serves to remove heavily damaged cells. When p53 function is 

lost, these damaged cells survive, paving the way towards future tumour development142. 

Other apoptotic triggers are also important. As tumours increase in size, they outgrow 

their blood supply, encountering hypoxia, which can activate p53 and trigger 

apoptosis'43 A p53 defect allows the cells to survive this hypoxic stress and enables cell 

proliferation within the tumour14a With repeated divisions, telomeres within the cell 

shorten until they trigger apoptosis, or signal for the cell to become quiescent. As 
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Figure 1.4 Summary of apoptotic (blue) and survival (red) pathways (based on Datta et at 

1999115, Mak & Yeh 2002139, Reed 1999140 and Reed 1999141). 

Apoptosis is induced in response to death receptor signalling, cytotoxic stress, such as serum 

deprivation, hypoxia and growth factor withdrawal, or DNA damage resulting from 

UV/radiation, heat, and drugs. All pathways activate either caspase 8 or caspase 9, and these in 

turn activate caspase 3, which is responsible for the morphological changes seen with apoptosis. 

At various stages of the apoptotic cascade, survival signals are able to intervene and inhibit 

apoptosis, and these factors include members of the Bcl-2 protein family, Akt/PKB and the IAP 

family. In addition, the death receptor pathway can be inhibited at the level of the death domain 

by FLIP or SODD. 
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telomere malfunction requires p53 to trigger apoptosis, in cells where there are p53 

mutations, they are able to survive this response despite being genomically unstable145 

Disruption of apoptosis may also be important in tumour metastasis, for which tumour 

cells require the ability to survive in the bloodstream and to invade a foreign tissue. 

Survival of epithelial cells in the bloodstream is normally prevented by their inability to 

survive in suspension, or the lack of appropriate tissue survival factors 1. Thus, 

mutations that allow tumour cells to survive and attach to and invade different organs 

would facilitate the metastatic process. 

1.4 Anontosis in Breast Cancer Cells 

Cancer of the breast is the most common cancer affecting women in the United Kingdom 

(18%)147. Studies of cancerous breast epithelium shows that the rate of apoptosis is 

increased in ductal carcinoma in situ and invasive cancer148.149, however, compared to 

normal breast epithelium, this is still reduced relative to the rate ofproliferation'so 

As an indicator of prognosis, increased rates of apoptosis, contrary to expectation, are 

associated with worse prognosis and survival 149,151.152 Similarly, in cancers of higher 

grade, apoptosis is increased, but there is also a concomitant increase in the proliferative 

rate. 149 

24 



1.4.1 Mutations affecting Apoptosis in Breast Cancer Cells 

1.4.1.1 The Bcl-2 Oncogene 

Oncogenes are genes whose products stimulate cell cycle progression. In normal cells, 

the activation of oncogenes triggers a failsafe mechanism against malignant 

transformation by directly inducing apoptosis or `sensitizing' the cell to apoptotic stimuli. 

However, when this mechanism is overcome, cell cycle progression can proceed 

unchecked. 

Mutation of Bcl-2 has been observed in at least 80% of breast tumours153 and, 

surprisingly, was associated with better prognosis in Bcl-2 positive patients'53 In 

addition, there was a positive association between Bcl-2 status and hormone receptor 

positivity and low histologic gradel54 . 

Bcl-2 appears to modulate cell division, and its loss is associated with increased tumour 

grade and proliferation, associated with high apoptotic and necrotic rates within 

tumours' 55. The presence of Bcl-2 does confer a survival advantage against apoptosis. 

MCF-7 breast cancer cells, positive for epidermal receptor 2 (HER-2), are more resistant 

to apoptosis and exhibit an upregulation of Bcl-2 and Bcl-xL expressionl56. Moreover, 

the ligand heregulin, which activates HER-3 and HER-4 receptors and downregulates 

Bcl-2 expression, can induce apoptosis in certain breast cancer cell lines157. Thus, aside 

from the influence of Bcl-2 on cell cycle progression, its increased expression in breast 

cancer cells can suppress apoptosis induced by a number of factors, and is associated 

lsa with the increased expression of proteins involved in metastatic spread 
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1.4.1.2 The c-Myc oncogene 

In normal cells, ectopic c-myc expression drives proliferation and prevents cell cycle 

arrest upon serum withdrawal, yet there is no accumulation of cell number as there is a 

corresponding loss of cells due to apoptosis'59. Survival factors, such as IGF-1, can 

suppress c-myc induced cell death without affecting c-myc-induced proliferation160. 

Likewise, c-Myc cooperates with Bcl-2 to transform cells161,162 because Bcl-2 allows c- 

myc-induced proliferation to proceed without apoptosis. 

1.4.1.3 The p53 tumour suppressor gene 

Loss of p53 function in vivo results in acceleration of the rate of tumourigenesis induced 

by mitogenic oncogenes, which is associated with decreased apoptosis in situ t63"16s G 

Myc induces apoptosis in a p53-dependent manner'66"167 and cells overexpressing c-Myc 

are more sensitive to various apoptotic stimuli such as serum-deprivation, hypoxia, Fas 

and TNF-a132. Another target of oncogene-induced sensitization is the mitochondrion, 

where c-Myc enhances cytochrome c release from mitochondria and cytochrome c is 

itself sufficient to sensitize cells to diverse agents '68'169. Oncogenes can facilitate 

cytochrome c release independent of p53169, though p53 is capable of inducing Bax and 

proteins that can affect mitochondrial functionl'o, l'1 Thus, p53 may be responsible for 

the sensitization to, as well as the active induction of, cell death in oncogene-expressing 

cells and mutations in the p53 gene would facilitate oncogenesis by allowing cells to 

evade oncogene-induced apoptosis. 
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The role of p53 in breast tumourigenesis is well documented. Mutations involving p53 

are fairly common172, with one study estimating a mutation rate of 20-40%173. Indeed, in 

BRCA1-associated tumours, 90% are associated either with mutations in p53, or exhibit 

increased expression of p53 protein174. In vitro studies involving the T47-D cultured 

human breast carcinoma cell line have shown that expression of wild-type p53 protein 

was able to inhibit proliferation 175 (T47-D cells possess a mutation in the p53 gene 17). In 

addition, Patel et al. showed that there was a strong correlation between overexpresion of 

p53 and breast tumour aggressiveness in patients with node-negative disease' 

1.4.1.4 The PTEN tumour suppressor gene 

The PTEN (phosphatase and tensin homolog deleted on chromosome 10) gene encodes a 

55kDa enzyme that possesses phosphatase activity178,179 Mutation or loss of PTEN has 

been implicated in a large number of cancers, including breast cancer18°. Despite this 

finding, PTEN does not appear to have a dominant role in the majority of breast cancers. 

Germline mutations are rare in breast cancer (6% of cancers)181, while loss of 

heterozygosity at the PTEN locus is the most frequent lesion observed182 In breast cancer 

cells, overexpression of PTEN can induce apoptosis, and cell cycle arrest183. Clinically, 

decreased expression of PTEN has been associated with a more advanced stage of breast 

cancer179. The PTEN enzyme has been shown to negatively control the P13-kinase 

survival pathway by dephosphorylating phosphatidylinositol-3,4,5 triphosphatetg'"tss, 

thus preventing activation of PKB/Aktlls 
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1.4.1.5 Death receptors in breast cancer 

The TNF-receptor family in the form of Fas (or CD95) is widely expressed in normal 

breast epithelia. FasL was found to be markedly higher in breast malignancies compared 

to normal epithelium and benign breast lesions'86 
. 

Moreover, there was a correlation 

between FasL and lymph node status, while Fas expression correlated with smaller 

tumour size and negative node status, which was consistent with another study that 

showed patients with Fas-positive tumours had longer disease-free survival when 

compared to Fas-negative patients'g'. In contrast, Fas expression was very low in several 

different breast tumour cell lines' 86 

1_5 Methods for the Detection of Apoptosis 

As investigation into the field of apoptosis increased over the last ten years, the number 

of methods of detecting apoptosis has increased in parallel. Most methods employ 

techniques that exploit characteristics that are unique to the dying cell. 

Evidence acquired over the last decade shows that the apoptotic mechanism is highly 

conserved, which has made it possible to devise methods for detecting the products at 

various stages in order to differentiate apoptotic cells. Methods for detecting apoptotic 

cells can be divided into the following categories: surface morphology and composition, 

nuclear events and DNA cleavage, cell dissolution, cytoplasmic biochemical activation 

events, and mitochondrial function and integrity'88. 
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1.5.1.1 Surface Morphological and Biochemical Changes 

The classical features of apoptosis, best observed under electron microscopy, can be 

detected with light microscopy with the help of dyes e. g. haematoxylin, or propidium 

iodide26°la9, l9o The first signs of apoptotic cell death are the condensation of nuclear 

material, with the accumulation of densely staining chromatin at the periphery of the 

nucleus. This is accompanied by cell shrinkage. Cell surface blebbing then occurs and the 

cell detaches itself from its neighbors. The nuclear outline becomes much folded before 

the nucleus disintegrates, dispersing the nuclear fragments throughout the cytoplasm. 

Eventually the cell fragments, resulting in the formation of several discrete membrane- 

bound apoptotic bodies. These bodies are then phagocytosed by surrounding cells. 

Apoptotic bodies are thus a common hallmark of apoptosis and can be found either 

extracellularly or inside other cells following phagocytosis. Apoptotic bodies can be 

diverse in appearance, but tend to be round or oval, and contain varying amounts of 

condensed chromatin. Their size varies considerably9"1°, 191 

Externalization of phosphatidylserine (PS) and phosphatidylethanolamine is another 

hallmark change to the cell surface during apoptosis192"194. Annexin V, which binds to 

these molecules, is a good marker for this process and can be detected using either flow 

cytometry or fluorescent microscopy 195" These phospholipids are normally found on 

the inner layer of the plasma membrane bilayer as well as other membranes. The reason 

why PS appears on the outer membrane is not clear but it has been shown to occur quite 

early, just after segmentation of nuclei. It has also been found that not all cells exhibit this 

1 phenomenon97, l9s 199 
, and that caspase inhibition can prevent its occurrence. 
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When interpreting Annexin-labeling results, care has to be exercised because towards the 

terminal stages of apoptosis, or during necrosis when the plasma membrane is leaky, 

Annexin can diffuse inside the cell and interact with intracellular PS. 

Permeability of the plasma membrane is another difference between necrotic and 

apoptotic cells which can be exploited by the use of large molecular weight DNA binding 

dyes, e. g. propidium iodide (PI), which are unable to enter intact cells without 

permeabilization, and thus are unable to label apoptotic cells until the final lytic stage. 

Conversely, smaller dyes that can attach to DNA can label both apoptotic and normal 

cells. By the use of flow cytometry, apoptotic cells can be distinguished from necrotic 

cells as those that show internal labeling with a small dye (e. g. DAPI, Hoechst 33342) 

without taking up PI198,200 

1.5.1.2 Nuclear changes and DNA changes 

It was observed at an early stage that nonmitotic cells entering apoptosis exhibited 

characteristic changes in nuclear shape and organization. This change is probably the 

most accurate indicator of apoptosis, though it does not have to be present for apoptosis 

to occur. Cells that have been enucleated may still be able to initiate and execute the 

apoptotic program, which indicates that the effector mechanism for apoptosis lies in the 

cytoplasm201. Despite this, nuclear changes provide an early and relatively unequivocal 

landmark of apoptosis in nucleated cells, which occurs just after surface blebbing 

begins2°2. 
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Another characteristic of apoptosis is the loss of DNA integrity where DNA 

fragmentation occurs with cleavage of DNA between nucleosomes. DNA fragmentation 

has been exploited by the addition of enzymes that are capable of adding labeled 

nucleotides to the 3'-OH ends of single-stranded DNA203'204. The labeled nucleotides can 

then be detected by immunological methods. Such assays were originally called TUNEL 

(terminal deoxynucleotidyl transferase mediated UTP nick end labeling) but may also be 

called ISEL (in situ end-labeling technique). 

When nuclei from apoptotic cells are extracted and analyzed by gel electrophoresis, a 

distinctive internucleosomal ̀ladder' of DNA fragments is usually apparent. This remains 

one of the most widely used methods for the detection of apoptosis, but requires 

extraction of DNA from a large number of cells. Moreover, apoptosis in these cells must 

be fairly synchronous for analysis, and this may not always be possible. Another problem 

with this and other DNA based methods involving electrophoresis is that spatial 

information as well as quantification of apoptosis is lost. 

1.5.1.3 Other Biochemical Changes 

Recent discoveries regarding the many steps in the apoptotic program include caspase 

activation and the cleavage of specific caspase substrates. By incorporating these specific 

substrates into cells and detecting the cleaved product, new assays have been developed. 

Other biochemical changes that occur in apoptosis which may be used as a marker 

include transglutamine activation, the expression of certain surface and intracellular 

antigens, changes in mitochondrial activity, and cytochrome c release. 
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1.6 Aims of Proiect 

1) Previous studies have provided some evidence for a protective role of prolactin in 

breast cancer cells, so one aim of this project was to investigate in greater detail the role 

of prolactin, and in particular its ability to activate the Jak-STAT pathway, as a survival 

factor for breast cancer cells. 

2) Initial studies with Met (a SAF-B related protein) suggested that its expression had 

profound changes on gene expression in cultured breast cancer cells. A second aim of this 

project was therefore to test the hypothesis that this protein might induce apoptosis in 

breast cancer cells. 
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2 Materials and Methods 
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Recombinant human prolactin was kindly provided by V. Goffin of INSERM, Paris. The 

freeze-dried powder was dissolved in 1.5M Tris (pH 8.0) and the concentration 

determined by the Micro Protein Determination kit (Sigma). A stock solution of 

500gg/ml was made, and stored in aliquots at -80°C. As concentration of a protein does 

not necessarily reflect the biological potency of the hormone, bioactivity was confirmed 

using the Nb2 Prolactin Bioassay (see Section 2.3). Unless stated otherwise, this was 

used in all assays requiring prolactin. 

All cell lines, unless stated otherwise, were obtained from the European Collection of 

Cell Cultures (ECACC, Porton Down). The HeLa cell line, a human cervical carcinoma 

cell line, was a kind gift from Dr. Craig McArdle (URCN, Bristol), and the SF cell line, a 

primary human fibroblast cell line, was kindly given by Dr. Andrew Morgan (University 

of Bristol). 

2_1 Micro Protein Determination 

The Sigma Micro Protein Determination kit (p. 225) was based on the Biuret and Lowry 

methods for determining protein concentration, with modifications to improve the 

sensitivity and stability of the reagents. A sample of the protein solution was mixed with 

the Biuret reagent and later with the Folin and Ciocalteu's phenol reagent. The colour 

formed was read at 570nm and protein concentration determined from a calibration curve. 

The Protein Standard solution provided was diluted 1: 100 using 0.85% (w/v) NaCl 

solution. This gave a protein concentration of 100mg/dL, and from this protein solutions 

of 0,25,50 and 75 mg/dL were obtained by diluting with the appropriate amount of 
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0.85% NaCI solution. 40µ1 of each protein solution, as well as the test solution, was 

pipetted into 0.5m1 Eppendorf tubes. 440µ1 of Biuret agent was added to each tube, 

mixed well and incubated at room temperature for 10 minutes. 20µl of Folin and 

Ciocalteu's phenol reagent was added to each tube, mixed well and incubated at room 

temperature for 30 minutes. 200µ1 of each solution was then transferred to a microtitre 

plate and absorption at 750nm determined using a microplate reader (Dynex Revelation). 

2_2 Cell Culture 

All adherent cell lines were maintained in Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 2mM L-glutamine, 10% fetal calf serum, incubated in a 

humidified 5% CO2 atmosphere at 37°C. The CEM-C7 cell line, and its sub-clones, as 

well as the Nb2 lymphoma cell line, were maintained in RPMI 1640 medium 

supplemented with 2mM L-glutamine and 10% fetal calf serum. Experiments were 

performed on cells in serum free medium (SFM): Ham's nutrient DMEM/F12 1: 1 mix 

without phenol red supplemented with sodium bicarbonate (1.2 mg/ml), 0.1% (w/v) 

bovine serum albumin (BSA) and apo-transferrin (10 pg/ml). 

2_3 Nb2 Prolactin Bioassay 

The bioactivity of prolactin was assayed using Nb2 rat lymphoma cells. 5x104 cells were 

plated in lml in each well of a 24 well plate in serum free medium and incubated for 24 

hours. Following this, varying concentrations of prolactin (final concentration ranging 
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from IOng/ml to IOµg/ml) were added to the wells and the cells incubated for a further 4- 

5 days. Cells were then counted using a Coulter Counter (p. 221). 

2.4 Cell Counting using the Coulter Counter 

On the day of counting, the medium was aspirated, and the cells gently washed with PBS. 

l00µ1 of trypsin was added to each well and cells were incubated at 37°C for 5 minutes 

before 9O00 of serum-containing medium was added to the wells. After resuspension, 

the cells were separated gently using a 21 G needle, and 0.2m1 of the cell suspension was 

added to 19.8m1 of PBS for counting in the Coulter counter. Cell density in 0.5m1 PBS 

was then assessed by the Coulter Counter. Each suspension was counted in triplicate and 

the average count taken in order to calculate cell concentration of the original suspension 

solution (by multiplying cell count obtained by 40). 

2.5 Induction of Anontosis 

Apoptosis in breast cancer cells was induced using the ceramide C2 analogue. Cells were 

seeded onto six well plates (3x105 per well) in complete medium, incubated for 48-72 

hours, and the medium changed to SFM for 24 hours prior to treatment. Cells were dosed 

with ceramide with or without prolactin and incubated for 24 hours before being collected 

for analysis of apoptosis. 
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2.5.1 Assessment of Apoptosis by Light Microscopy 

Cells (2.5x104 per well) were plated into 8-well Labtek Chamber slides in 500µ1 of 

medium and incubated overnight. After washing with Dulbecco's PBS (phosphate 

buffered saline) and starving for 24 hours in serum free medium (SFM), cells were 

exposed to ceramide in the presence or absence of prolactin for 24 hours before they were 

fixed and stained. For fixation, cells were first washed twice in PBS and air-dried. This 

was followed by dipping in acetone for 5 minutes. Slides were then air-dried and placed 

in the freezer for storage until they were stained. Staining was carried out by washing the 

slide with water, then dipping each slide 4-5 times in haemotoxylin, and rinsing with 

water before dipping 4-5 times in eosin. Slides were then dipped in 70% ethanol followed 

by 100% ethanol to fix the stains and then air-dried. Coverslips were fixed onto the slides 

with glue and allowed to dry before viewing under the light microscope. In order to 

assess the apoptotic index, a total of at least 1000 cells were counted, in at least three 

separate fields per well. Cells that exhibited nuclear shrinkage, chromatin condensation 

and also fragmented nuclei were all counted as apoptotic. 

2.5.2 Assessment of Apoptosis using FACS Flow Analysis 

After induction of apoptosis, cells (seeded in 6-well plates as previously stated) were 

collected as follows: the supernatant was aspirated and centrifuged (2000 rpm, 5 minutes) 

to collect floating cells. Attached cells were then washed with 0.5m1 PBS, which was 

collected and centrifuged to collect unattached cells. 200µl of trypsin-EDTA was then 

added to each well and incubated at 37°C for 5 minutes. A further 800µ1 of complete 
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medium was then added to the well, and cells transferred to a 1.5m1 Eppendorf tube. 

These cells were centrifuged at 2000 rpm for 5 minutes and the supernatant discarded. 

2.5.2.1 Analysis of cell cycle profile by flow cytometry 

This experiment relies on the ability of propidium iodide to bind DNA. The amount of 

propidium iodide bound is proportional to the amount of DNA, thus providing a measure 

of the quantity of DNA present in each cell. 

For analysis of cell cycle profiles, the pelleted cells were fixed in 70% ethanol for at least 

24 hours prior to analysis by flow cytometry. The fixed cells were re-pelleted (2000 rpm, 

5 min) and washed with PBS. The washed cells were then resuspended in Krishnan's 

reagent (p. 220) and incubated at 4°C in the dark for at least 30 min prior to analysis on a 

FACSCalibur flow cytometer (Becton Dickinson) (See Fig. 2.1). 
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Figure 2.1 Diagrams showing a 

typical dot plot (top) and histogram 

(bottom) obtained during FACS 

analysis of the cell cycle profile. 

Cells in G1 contain the normal 

quantity of DNA, while cells in G2, 

representing cells that have completed 

DNA replication, possess double this 

amount. Cells in S phase represent 

cells that are in the midst of 

replicating their DNA, in the synthesis 

phase, while cells in preGi contain 

less than the normal quantity of DNA 

and are thought to represent cells 

undergoing apoplosis. 
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2.5.2.2 Analysis ofapoptotic index using Annexin- V 

Another method of assessing whether cells have initiated the apoptotic pathway is to 

measure the expression of phosphotidylserine on the outer leaflet of the cell membrane. 

This phospholipid is found naturally on the inner leaflets of all cell membranes, but only 

appears on the outer leaflet when apoptosis is induced. This change occurs quite early in 

the apoptotic process. Annexin-V is a protein with a high affinity for phosphatidylserine 

in the presence of calcium, and when coupled to FITC, enables the detection of 

phophatidylserine on the cell surface by flow cytometry or fluorescent microscopy. 

Annexin-V can diffuse through leaky membranes in necrotic cells or cells undergoing 

late apoptosis, so propidium iodide is added simultaneously to identify the latter group of 

cells. Cells exhibiting only the annexin-FITC complex on their surface are assumed to be 

in early apoptosis (Figure 2.2). 

For detection of apoptotic cells using Annexin-V, cells (3x105 per well) were seeded in 6- 

well plates and transferred to SFM 24 hours prior to treatment. Cells were then incubated 

with various concentrations of ceramide, with or without prolactin at 37°C for 24 hours 

before collection for analysis. Floating cells were collected and added to cells obtained by 

trypsinization as previously described. The combined cells were pelleted (2000rpm, 5 

min), washed with binding buffer (ApoAlert® Annexin-V-FITC kit, p. 225), and stained 

with Annexin-V and propidium iodide as described in the manufacturer's manual. The 

labeled cells were taken up in the buffer provided to a final volume of 0.5ml. 1x104 cells 

were counted and the proportion of apoptotic, necrotic and live cells determined 

according to the pattern of fluorescence detected (See Fig. 2.2) 
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Figure 2.2 Figure to demonstrating the various populations that appear following Annexin- 

V and propidium iodide staining. 

RI is the population of live cells that excluded both stains. R2 is the cell population that exhibits 

dual staining, and is consistent with cells in necrosis or late apoptosis. Region R3 represents cells 

with Annexin-V staining alone, consistent with early apoptosis. 
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All FACS data were analysed using the CeliQuest software package (p. 221). 

2.6 Assessment of Cell Survival 

Cell survival was assessed by three independent methods - cell number, metabolic 

activity of cells (XTT metabolism), and colony formation. 

2.6.1 Cell Survival Assays - Cell Counting 

Cells (5x104 per well) were seeded in a 24-well plate and incubated overnight. After 

being washed twice with Dulbecco's PBS the cells were starved in SFM for 24 hours. 

Cells were pretreated with or without prolactin for 30 minutes prior to exposure to 

ceramide in SFM and incubated for the time specified, after which fetal calf serum was 

added to a final concentration of 10% (v/v). Following this, cells were incubated for 

another 4-5 days before being trypsinised and counted using a Coulter counter (Sect 2.4). 

2.6.2 Cell Survival Assay - Cell Proliferation Kit II (XTT) 

The Cell Proliferation Kit II (XTT) (p. 225) was used to ascertain the viability of cells 

after treatment with ceramide. XTT (sodium 3'-[l-(phenylaminocarbonyl)-3,4- 

tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate) is a yellow 

tetrazolium salt. It is cleaved into a soluble orange formazan dye by mitochondrial 

dehydrogenases, found only in metabolically active cells, and the optical density is then 

spectrophotometrically quantified by spectrophometrical absorbance using a scanning 

multiwell spectrophotometer. The proportion of cleaved XTT is directly proportional to 

the number of viable cells left in the population. 
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The components of the kit are a XTT labeling reagent and an electron coupling reagent. 

Both components are stored in working aliquots at -20°C. To assay one 96-well plate, 

5m1 of XTT labeling reagent is mixed with 0.1 ml electron coupling reagent and aliquots 

(50µ1) added to each well. 

Cells (1x105 per well) were seeded into a 96-well plate, in 10011 of medium, and 

incubated overnight. They were washed once with Dulbecco's PBS before being starved 

in l00µ1 of SFM for 24 hours. Following serum starvation, cells were pre-incubated with 

prolactin before the addition of ceramide. Cells were exposed to ceramide for 24-48hrs 

prior to the addition of fetal calf serum to the final concentration of 10% (v/v). (The time 

of incubation for each of the cell lines was determined by morphological analysis; MCF-7 

cells required 24 hours before developing the morphological characteristics of apoptosis, 

whilst T47-D cells required a further 24 hours before taking on the apoptotic 

characteristics. ) Cells were then incubated for a further 4-5 days before 50µl of XTT 

labeling mixture was added to each well. Cells were incubated with the labeling mixture 

for 18hrs before the spectrophometrical absorbance was measured using a microplate 

reader at 450nm. 

2.6.3 Cell Survival Cloning Assay 

T47-D cells (1x106 per well) were seeded into T25 flasks and incubated overnight. The 

cells were then washed twice with SFM and incubated in SFM for a further 24 hours. 

After incubation in the presence or absence of prolactin for 30mins, cells were exposed to 

varying concentrations of ceramide for 24 hours in the continued presence of prolactin 
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before they were trypsinized and set in agarose gels. Agarose gels were set up by first 

laying down a base layer of a 0.6% gel consisting of 1 volume of 1.2% solution of a low 

gelling agarose and 1 volume of 2x DMEM (p. 221), total volume 2.5 ml per 60mm petri 

dish. This was allowed to gel at room temperature before being incubated at 37°C in 5% 

CO2 while the top gel layer was prepared. The top layer consisted of a 0.35% gel 

prepared by mixing 4.5 volumes of 2xDMEM, 4.5 volumes of 0.7% agarose solution and 

1 volume of cells. For each plate, approximately 250 cells were plated. Plates were 

incubated for 10-14 days before being assessed for colony formation. Prior to staining, 

Neutral red solution (p. 221) was diluted 1 in 25 with PBS and 500µ1 of the final solution 

was added to the gels and incubated for at least 30 minutes prior to counting colonies 

consisting of four or more cells under a dissecting microscope. 

2_7 Growth Assays 

Cells (5x104 per well) were seeded in 24-well plates in complete medium and left to 

attach overnight. They were then washed twice with Dulbecco's PBS and transferred to 

SFM with or without prolactin before being incubated at 37°C in 5% CO2 for 4-5 days. 

Cells were then harvested and counted on a Coulter counter as previously described (Sect 

2.4). 

2.8 Measurement of Cell Proliferation using Thvmidine Incorporation 

Cells were seeded into 96-well plates in 100µl DMEM supplemented with 1% serum 

(that had been charcoal stripped, p. 216) and incubated overnight. The cells were then 

exposed to prolactin for 18 hours before the addition of [3H] thymidine (5OnCi/ml) for 6 

44 



hours. Medium was then discarded and 100µl of trypsin-EDTA added to each well. The 

cells were incubated at 37°C for 30 minutes before being frozen at 20°C for at least 3 

hours before harvesting. Cells were thawed before they were harvested and the 

radioactivity captured onto filter mats using a cell harvester (TOMTEC Harvester). Next, 

the filter mat was impregnated with wax enriched with a radio-scintallant and allowed to 

dry. Radioactivity was then determined in a Wallac MicroBeta Trilux 1450 liquid 

scintillation and luminescence counter to assess [3H]thymidine incorporation (software - 

1450 MicroBeta Windows Workstation, Version 3.2). 

2.9 Preparation of olasmid DNA 

2.9.1 Miniprep plasmid DNA preparation 

Plasmid minipreps were prepared using a QIAprep Miniprep Kit (p. 225). The bacteria 

were lysed under alkaline conditions, neutralized, and the lysate cleared of cell debris and 

genomic DNA using a filter. The plasmid DNA was then adsorbed onto the QlAprep 

membrane under high salt conditions, and released from the filter using a low salt buffer. 

E. coli bacteria transformed with the desired plasmid DNA were inoculated into 

antibiotic-treated LB and incubated for 18-20 hours at 37°C with gentle shaking 

(300rpm). Bacteria were then pelleted by centrifugation at 3000rpm for 15min at 4°C. 

The pellet was resuspended in 250µ1 of buffer P1, which contains RNase A, before 

addition of 250µ1 buffer P2 (lysis buffer). The solution was then mixed and incubated at 

room temperature for 5 min before being neutralized with 3501LI of buffer P3. The 

resulting cloudy solution was centrifuged for 10 min at 13,000rpm. 
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The supernatant was transferred to a QlAprep spin column and centrifuged at 13,000 for 

lmin. The membrane was washed using buffers PB and PE, which were added to the 

column and centrifuged at 13,000 for 1 min. The DNA was then eluted into a clean 

Eppendorf tube using 50µl of EB buffer amd stored at -20°C until required. 

2.9.2 Midi- or Maxi-prep plasmid DNA preparation 

Plasmid DNA was extracted from E. coil cultures using the HiSpeed Plasmid Purification 

Kit (p. 225). Briefly, transformed E. coli containing the desired plasmid DNA were 

inoculated into 150-250 ml of antibiotic-treated LB medium and incubated at 37°C for 

12-16 hours with gentle shaking (37°C, 300rpm). The bacterial cultures were collected by 

centrifugation (3000rpm, 4°C, 30 minutes) and the supernatant removed completely. The 

bacterial pellet was suspended in buffer P1, and an equal volume of buffer P2 added. The 

solutions were gently mixed by inversion before being incubated at room temperature for 

5 minutes. Chilled buffer P3 was then added to the mixture, mixed by inversion, and then 

poured into the prepared QIAfilter Cartridge and incubated at room temperature for 10 

minutes. 

A HiSpeed tip was prepared by the addition of buffer QBT. The bacterial lysate was 

passed through the QlAfilter cartridge by inserting the plunger and filtered onto the 

equilibrated HiSpeed tip. After the lysate had passed through the HiSpeed tip by gravity, 

the tip was washed with buffer QC. The DNA immobilized on the tip was eluted using 

buffer QF, and precipitated by adding isopropanol and incubating for 5 minutes at room 

temperature. A QlAprecipitator was attached to the nozzle of a 20m1 syringe and the 
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DNA solution emptied into the barrel. The plunger was inserted and the mixture filtered 

through the QlAprecipitator. The collected DNA was finally eluted into a clean 

Eppendorf tube with TE buffer and DNA concentration determined by 

spectrophotometry. 

2.10 Snectronhotometric Determination of DNA concentration 

This was performed using the GeneQuant II. The machine was first programmed to 

measure the concentration of dsDNA, at a dilution factor of 71. The cuvette was filled 

with 7Oµ1 of Elgastat water, which was used as the reference point. 10 of the plasmid 

preparation was then added, pipetted gently to mix, and the dsDNA concentration read at 

260A. 

2.11 Horizontal Aearose Gel Electrophoresis 

Plasmid DNA was isolated by agarose gel electrophoresis. A1% TAE gel was formed by 

dissolving SeaKem Agarose (0.5mg) in 1xTAE buffer (50m1) (p. 223). Ethidium bromide 

was incorporated into the gel by the addition of lµl ethidium bromide solution (10mg/ml) 

for every 10ml of the agarose gel. The cooled gel mixture was poured into a horizontal 

electrophoretic gel tank, the comb inserted, and allowed to set at room temperature for 

30-60 minutes. Sufficient 1xTAE buffer was used to cover the gel, before DNA samples 

were loaded. DNA samples for analysis were prepared by the addition of 2.5pl of loading 

buffer to 10µl of each sample. 
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Depending on the molecular weight of the DNA plasmid, the markers (either VII or VIII, 

p. 226) were also loaded onto the gel. Samples were electrophoresed at a constant voltage 

of 50V for 1-2 hours. 

DNA separated in this manner was visualized using a UV transilluminator and 

photographed. Gel blocks of desired DNA products could be cut out at the same time and 

plasmid DNA purified using the QlAquickTM Gel Extraction Kit (p. 225). 

2.12 Purification of DNA from Agarose Gels 

DNA was extracted from TAE gels using the Gel Extraction Kit. The DNA band of 

interest was excised from the gel using a sharp, clean scapel. The gel sample was 

weighed and placed in a 1.5m1 Eppendorf tube. 3 volumes of Buffer QG were added for 1 

volume of gel (100mg - 100µl). The tube was incubated at 50°C for 10min or until the 

gel dissolved. Following gel dissolution, the colour of the solution has to be compared 

with that of Buffer QG. If the colour is orange or purple, 3M sodium acetate can be added 

to alter the pH, as the QlAquick membrane works best at pH<7.5. Next, I gel volume of 

isopropanol was added to the mixture and mixed. The solution was then applied to the 

QlAquick spin column, centrifuged at 13,000rpm for lmin and the flow-through 

discarded. Next 0.5ml Buffer QG was added to the column, centrifuged as before, and the 

flow-through discarded. The column was then washed with 0.75m1 of Buffer PE by 

centrifugation as before. The QlAquick column was then placed over a clean Eppendorf 

tube and the DNA eluted into it with 501l EB by centrifugation. The eluted DNA was 

then stored at -20°C until required. 
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2.13 Restriction Enzyme Digests 

Restriction enzyme digests of plasmid DNA were performed to analyse DNA products as 

well as to isolate plasmid DNA of interest for subsequent reactions. A typical digestion 

would be performed at 37°C for 4-18hrs and would consist of the following components: 

x µl of DNA (containing 5-101tg plasmid DNA) 

5 µl restriction enzyme A 

5 µl restriction enzyme B 

5 µl appropriate restriction enzyme 1 Ox buffer 

+y µl nuclease free water (to bring final reaction volume to 50µl). 

Analytical digests were performed on a smaller scale and were typically as follows 

x µl of DNA (containing 1-21tg plasmid DNA) 

1 µ1 restriction enzyme A 

1 µl appropriate restriction enzyme l Ox buffer 

+y µl nuclease free water (to bring final reaction volume to 10µl). 

2.14 Ligation Reaction 

Following enzymatic digests to create free ends, insert DNA can be ligated to linearized 

vector DNA to form a circular plasmid. 1µl of T4 DNA Ligase (Roche) was added to 

reaction mixtures that contained 1 i1 of T4 DNA Ligase IN buffer, and various ratios of 

vector to insert DNA. The final reaction volume was IOµ1 and any shortfall was made up 
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with nuclease free water. Vector to insert ratios of 1: 1,1: 3, and 1: 6 were used, and the 

mass of DNA required for each reaction was calculated as follows: 

ng of vector x kb size of insert 
x molar ratio of 

insert 
= ng of insert 

kb size of vector vector 

Ligation reactions were incubated at 14°C overnight, and products of the reaction were 

separated and isolated by horizontal agarose gel electrophoresis. 

2.15 Transformation of competent E. coli with plasmid DNA 

Commercially available competent cells were used for the transformation (Top10, p. 225). 

2µl of the DNA plasmid was incubated with 50µl of competent cells on ice for 30 min. 

The cells were then shocked in a 42°C water bath for 30s, re-incubated on ice for 1 min 

before 2501t1 of LB was added. The cells were incubated at 37°C for 1 hour, then plated 

onto antibiotic-treated LB agar plates using an ethanol-flamed glass rod, and incubated at 

37°C overnight. Plates were examined the next day for colony formation and colonies 

were picked at random and inoculated into antibiotic-treated LB of various volumes as 

required for mini-, midi-, or maxi- DNA preparations. 

2.15.1 Storage of Transformed E. coli 

0.85ml of the clones of transformed E. coli incubated in LB(p. 220) overnight was added 

to 0.15m1 of sterile glycerol, and the solution pipetted to ensure thorough mixing before 

storing at -80°C. 
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2.16 Methods used in the Transfection of Cells 

The various cell lines used were transfected with a variety of methods. The T-47D, MCF- 

7, COS-7, HepG2, SF and Ros cell lines were all transfected using the Fugene6 

transfection reagent. Hela cells were transfected using Lipofectamine Plus, and the CEM- 

C7 cells were transfected by electroporation. 

2.16.1 Transfection of Cells using the FuGENE 6 Transfection Reagent (Roche) 

The FuGENE 6 reagent is a lipid based transfection reagent that complexes with and 

transports the DNA into the cell during transfection. Adherent cells are plated one day 

before transfection, aiming for a confluency of 50-80% on the day of transfection. 

Depending on the size of the plate to be transfected, varying amounts of DNA and 

FuGENE 6 reagent were used to transfect the cells according to the manufacturer's 

protocol. 

Transfection reactions were performed according to the manufacturer's protocol. Briefly, 

FuGENE 6 reagent was equilibrated to room temperature before use. SFM, enough to 

bring the total volume of the mixture to 1001l per transfection sample, was added to a 

small sterile Eppendorf tube. Next, FuGENE 6 was added directly into the SFM and the 

contents mixed by gentle tapping. DNA solution was then added to the prediluted 

FuGENE 6 reagent and the solution mixed again. The contents were incubated at room 

temperatre for 15-45 minutes to allow Fugene6 to complex with the DNA. 
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The transfection mix was added dropwise to each dish and swirled around to ensure 

thorough mixing. Cells were returned to the incubator for 24-48 hours depending on the 

assay performed. 

2.16.2 Transfection of cells by Lipofectamine Plus 

Lipofectamine Plus (p. 226) was used to transfect HeLa cells, as this method provided a 

higher rate of transfection ('80%) compared to other methods. HeLa cells were plated in 

6-well plates the day before transfection so that they were -40-50% confluent on the day 

of transfection. The transfection mix was constituted in serum free DMEM (SFDMEM, 

p. 222). The DNA was first added to SFDMEM (100µ1 per well to be transfected), 

followed by the Plus reagent. This solution was mixed by tapping and then incubated for 

15-20 minutes at room temperature. Lipofectamine reagent was then added to SFDMEM 

(1001il for every well to be transfected), and this was mixed with the pre-incubated DNA- 

Plus mixture for another 15-30 minutes. The transfection mixture was then added to each 

well (200µl of mixture per well), and the cells incubated at 37°C, 5% CO2 until the cells 

were required. 

2-16.3 Transfection of Cells by Electroporation 

CEM-C7 cells were prepared for electroporation by washing twice in PBS, before being 

resuspended to a fmal concentration of 10x106 cells per ml in PBS. 50Oµl of the cell 

suspension was then electroporated with 40µg of DNA plasmid in a 0.4cm cuvette 

(BioRad), using a BioRad Gene Pulsar II. Cells were electroporated using 1050µF and 

300V, the time constant ranged from 11.6-12.7ms. Cells were immediately transferred to 
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complete medium and allowed to recover for 48 hours before being placed in RPMI-1640 

medium containing selection antibiotic (G418) at 800µg/ml. Cells were kept in this 

medium for 2 weeks before being transferred to maintenance medium (RPMI-1640 with 

350pg/ml G418). 

2.17 Methods for Clonal Selection 

2.17.1 Clonal selection by serial dilution 

Clones of CEM-C7, MCF-7 and T47-D cells were obtained by limiting dilution. Parent 

cultures were harvested by the usual method and diluted to a final concentration of one 

cell per ml of complete medium. Cells were then seeded in to a 96-well plate at 200pl per 

well, so that on average there would be one cell every five wells. Cultures were left to 

grow over two to three weeks at 37°C in 5% CO2. Colonies detected after this period 

were transferred to T25 flasks for subsequent analysis. 

2.17.2 Clonal selection by colony formation in aga ose gels 

The CEM-C7, MCF-7 and T-47D cell lines were also cloned by plating in low gelling 

agarose gels using a method similar to that described in Section 2.5.3. A feeder layer of 

human fibroblasts (5x104 cells/dish) was initially seeded onto 60mm dishes and allowed 

to attach. The base gel consists of a 0.6% agarose gel, and is formed by mixing equal 

volumes of 2xDMEM (2xRPMI for CEM-C7 cells) (p. 221) and a 1.2% agarose gel 

solution. This mix is allowed to set at room temperature and then incubated with 5%CO2 

at 37°C till required. 
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Cells to be cloned are collected by trypsinization where necessary, and diluted down to a 

concentration of 400 cells per ml. The upper 0.3% gel is then formed by mixing 1 volume 

of cell suspension with 4.5 volumes of 2xDMEM (or 2xRPMI for CEM-C7 cells) and 4.5 

volumes of a 0.6% agarose gel solution. This gel was allowed to set at room temperature 

before the dishes were placed in a humidified chamber and incubated at 37°C in 5%CO2 

for 10-14 days. Colonies that developed were transferred to T25 in medium containing 

G418 before subsequent analysis. 

2.18 Protein Extraction and Western Blottin 

Cells were washed twice with PBS and resuspended in SLB supplemented with aprotinin 

(12.5pg/ml), leupeptin (12.5gg/ml), PMSF (1mM) and pepstatin A(lOpg/ml). The cell 

lysate was kept on ice for 10 minutes, with occasional vortexing to break up the DNA. 

The lysate was then centrifuged at 13,000rpm for 10 minutes at 4°C to pellet the genomic 

DNA. 40µl of crude cell extract was added to an equal volume of loading buffer 

(containing 5% 2-mercaptoethanol) (p. 221) and heated to 95°C for 5 minutes before 

being cooled to room temperature and loaded onto a vertical polyacrylamide gel (4% 

stacking gel and 8% separation gel) containing SDS (p. 222). 

Where appropriate, immunoprecipitation was performed on the crude lysate. In this case, 

750µl of crude lysate was incubated with primary antibody for 2 hours at 4°C with gentle 

rocking. Protein-A agarose beads were washed three times in ice cold SLB (p. 222) and 

suspended to a final volume of l000, and suspended beads (90pl) added to the mix and 

incubated for a further 1 hour at 4°C with mixing. The antibody-agarose-A bead 
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complexes were collected by centrifugation and washed 3 times in SLB (6000 rpm, 1 

minute, 4°C) and the supernatant removed. Loading buffer (containing 5% 2- 

mercaptoethanol) was added to the protein-A agarose-antibody pellet and the mixture 

heated to 95°C for 5 minutes. The mixture was centrifuged briefly to pellet the agarose 

beads, and the supernatant loaded onto the acrylamide gel as above. 

Electrophoresis was performed at 55V overnight with molecular weight markers (p. 226) 

run alongside samples. 

Separated proteins were transferred to a nitrocellulose membrane by using a semidry 

transfer blotter (BioRad) at 15V for 30 minutes. The nitrocellulose membrane was then 

incubated in a blocking solution (5% milk in TBS-Tween, p. 223) for 60 minutes at room 

temperature on a shaker. The membrane was washed twice with TBS-Tween before 

incubation with the primary antibody for at least one hour at room temperature on a 

shaker. Excess antibody was removed by washing the membrane in TBS-Tween for 30 

min at room temperature on a shaker, the buffer being changed every 5 minutes. The 

membrane was incubated with the secondary antibody for 1 hour and washed again 

before incubation with the horseradish peroxidase substrate in the ECL (Enhanced 

Chemiluminescence) Kit (p. 225), and then exposed to photographic film for 1-10 mins. 

The following antibody combinations were used (primary antibody; secondary antibody): 

Flag-Pr1R: anti-Flag M2 antibody (Sigma, 1: 1000 dilution); sheep anti-mouse, HRP- 

linked (1: 10,000 dilution). 
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STATS: anti-STATS, C-17 (Santa Cruz, 1: 2000 dilution); goat anti-rabbit, HRP-linked 

(1: 10,000 dilution). 

HA-STAT5b: anti-HA - mouse monoclonal (Sigma, 1: 3000 dilution); sheep anti-mouse, 

HRP-linked (1: 10,000 dilution). 

HA-Het, or Met-HA: rabbit HA-probe (Santa Cruz, 1: 1000 dilution); goat anti-rabbit, 

HRP-linked (1: 10,000 dilution) 

2.19 Lacto2enic Hormone Response Element (LURE) Reporter Assay 

Reporter gene assays are widely used to determine the transcriptional activity of cells. A 

reporter assay consists of a reporter gene linked to a promoter that is transfected into the 

cells. In the LHRE reporter assay, a luciferase gene is linked to 6 tandem copies of the 

STAT5 response element. The addition of prolactin to responsive cells results in the 

formation of STAT5 homodimers that bind to the STAT5 response element. This 

activates transcription of the luciferase gene with resultant expression of the luciferase 

enzyme. This enzyme catalyzes a reaction involving D-Luciferin and ATP in the presence 

of oxygen and Mge+resulting in light emission. Luciferase activity was quantified using a 

Dynex luminometer. 

Cells (1 xl 05 per well) were seeded into 24-well plates and incubated overnight before 

being transfected with the LH E reporter gene together with other plasmids as specified, 

using the Fugene 6 reagent as previously described. The cells were incubated overnight, 

and then transferred to SFM for 6 hours before the addition of prolactin. After incubation 

for a further 18 hours, cells were lysed in 65µl of lysis buffer A (p. 221). 20µl of the lysate 
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was added to 100µl of luciferase assay reagent (p. 220) (20 min, room temperature) and 

luciferase activity assessed immediately using a Dynex luminometer. The amount of light 

emitted was integrated over 12s (10011 assay buffer injected per sample, time to read 

10s). 

2.20 ERE-Tk-Luc Reporter Assay 

To assess transcriptional activity of the oestrogen receptor, cells were seeded into 48-well 

plates and incubated overnight. The cells were then transfected with ERE-Tk-Luc and 

various plasmids using FuGENE 6 and incubated overnight. The cells were then serum 

starved in SFM for at least 6 hours before the addition of 10-8M oestrogen (final 

concentration) for 18 hours. The cells were lysed and luciferase activity measured using 

the Dynex luminometer as above. 

2.21 ß-Galalactosidase Reporter Assa 

The ß-galactosidase enzyme is commonly used as a reporter molecule for many assay 

systems, primarily to assess transfection efficiency of mammalian cells. The ß- 

galactosidase enzyme encoded by the plasmid is constitutively active (under the control 

of a SV-40 promoter) so that assessing its activity provides a measure of transfection 

efficiency. 

Cells (3x104 per well) were seeded into a 48-well plate and incubated overnight before 

being transfected with a plasmid encoding a constitutively active ß-galactosidase enzyme 

(pSV-ßgal 60ng). The cells were then incubated overnight and serum starved for a further 
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24 hours before lysis in 65µl of lysis buffer A (p. 221). 3011 of the lysate was added to 

170µl of chlorophenol red-ß-D-galactopyranoside (CRPG) reagent (p. 219) and incubated 

at 37°C for sufficient time for the colour chage to develop. The colour intensity was then 

measured at 570nm using the RLX ß-microplate reader (Dynex Technologies). 

2.22 Cellular localisation Studies 

Cells were grown on 22x22mm cover slips to -50% confluency before transfection with 

various plasmids (as indicated in each experiment) and incubated for 24-48 hours to 

allow for protein expression. The cells were then washed with PBS (pH 7.4) and fixed in 

2% PFA in PBS (p. 218) for 20min at room temperature. The cells were then washed with 

PBS before permeabilization with 0.1% Triton X/PBS for 5 mins before being washed 

again in PBS. Non-specific protein binding was blocked by treating cells with 1% (w/v) 

BSA/PBS for 20mins before incubation overnight with primary antibody at 4°C (see 

experiments for antibody and dilutions). The cells were next washed 3 times with 

1 %BSA/PBS before incubation with secondary antibody for 1-1.5 hrs at room 

temperature in the dark. Following this, coverslips were washed three times in PBS 

before they were mounted onto glass slides (BDH) using DAKO fluorescent mounting 

medium. Slides were stored in the dark at 4°C until confocal microscopy. 

2.22.1 Confocal microscopy 

Confocal images were obtained using a Leica TCS SP scanning laser microscope 

equipped with a Kr/Ar laser using a 63x oil immersion objective. EYFP was detected 

using a filter set with excitation filter of 51Onm and an emission filter of 530nm. Cy3 was 
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visualized with a filter set with an excitation filter of 568nm and an emission filter of 

590nm. All images were processed with Leica software for 2D analysis. 

2.23 Genomic DNA Extraction 

High molecular weight DNA was extracted from cultured cells using the following 

method. 

A maximum of 5x106 cells were collected and washed with PBS. Cells were centrifuged 

at 1000 rpm for 5 min and the supernatant discarded. 700µl of Lysis Buffer B was added, 

and the cell pellet re-suspended. 35 µl of proteinase K (10mg/ml) was added to the cell 

suspension and the mixture placed in a heating block set at 55°C for a minimum of 4 hrs. 

Next, an equal volume (-750 µl) of phenol was added to the mixture, mixed thoroughly 

by inversion, and then centrifuged at 13,000rpm for 15 min. The aqueous phase was 

removed carefully and an equal amount of phenol / chloroform / indoleacetic acid added 

and the mixture centrifuged for 15 min at 13,000 rpm. Next, 70 µl of 3M NaAc (pH 5.2) 

and 3 volumes of absolute ethanol (at room temperature) was added to the extracted 

aqueous phase. The mixture was again centrifuged at 13,000 rpm for 15 min at 4°C. The 

pellet obtained was washed in 70% ethanol and re-centrifuged. Finally, the pellet was re- 

suspended in 100-500µl of TE to dissolve the DNA. 

2.24 RNA Extraction 

RNA extraction from cultured cells was performed using the RNeasy Mini Kit (p. 225) 

according to the manufacturer's instructions. The cells are first collected by gentle 
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trypsinization using 0.25% trypsin EDTA. Approximately 7x106 cells were then lysed in 

60011 buffer RLT (containing IOld of 2-mercaptoethanol per ml of RLT) and the sample 

homogenized using a 21 gauge needle and lml syringe. 6O011 of 70% ethanol was then 

added to the homogenized sample and mixed thoroughly by inversion. The lysate was 

then added to the mini-column which was centrifuged at 13,000rpm for 15s. The 

remainder of the lysate was added to the column, which was centrifuged as before. 

Next, 7001il of buffer RWl was added to the column, which was centrifuged as before 

and subjected to two washes using buffer RPE. Finally, RNA was eluted with two 501L 

aliquots of nuclease-free water. The extracted RNA was then either used immediately or 

stored at -80°C until required. 

2.25 Poly(A+) RNA Isolation 

mRNA was isolated using the PolyATract Isolation System IV (p. 225), which utilizes 

biotinylated oligodT bound to streptavidin-linked magnetic beads as a means of 

separating mRNA from total RNA. The mRNA was extracted according to 

manufacturer's protocol as follows. 

The volume of total RNA was brought up to S0011 using nuclease-free water, and heated 

at 65°C for 10 minutes. Following this, 3p. 1 of biotinylated oligodTs and 131l of 20xSSC 

(sodium chloride, sodium citrate buffer, as supplied) buffer was added to the RNA 

solution, which was allowed to cool to room temperature. 
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Magnetic beads were resuspended in the storage buffer and then collected by using the 

paramagnetic stand (Promega). The storage buffer was carefully removed and the beads 

washed 3 times using 3O0µ1 0.5xSSC per wash, each time collecting the beads on the 

magnetic stand. After the final wash, the beads were re-suspended in l0011 of 0.5xSSC 

buffer. 

The entire RNA solution was then added to the magnetic bead suspension and mixed by 

inversion. The mix was incubated at room temperature for 10 min, inverting the tube to 

mix the contents at regular intervals. The beads were then washed 4 times using 300µl of 

0.1 xSSC buffer. Following. the final wash, the beads were resuspended in 100µl of 

nuclease-free water. The beads were mixed, then collected on the magnetic stand, and the 

supernatant fraction containing mRNA removed and collected in an RNase free tube. The 

beads were resuspended in another 1001tl of nuclease-free water and additional mRNA 

collected. The mRNA was then aliquoted and stored at -80°C. 

2.26 Polymerase Chain Reaction 

The PCR amplification cycle consists of a number of steps: denaturation at 95°C, which 

causes the intertwined DNA strands to separate, annealing at 55°C, to allow the primers 

to anneal to the template of interest, and finally the extension phase, usually at 72°C 

(optimal temperature for Taq polymerase function) where Taq synthesises the 

complementary strand of DNA template. The recommended times for denaturation are 

between 15s-2min, annealing for 30-60s and extension times are usually 1-2 minutes. 
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After completion of the amplification cycles, the DNA synthesized can be analysed or 

used as required. 

The following is a typical reaction mix for PCR: 

Vol Final concentration 

IOx Buffer 5111 lx 

MgC12 (50mM) 2.5 µl 1.5mM 

dnTP mix (20mM) 0.5 Eil 0.2mM each 

Primer 1 (50pmoles) I t1 1µM 

Primer 2 (50pmoles) 1 µl 1 µM 

Taq pol 0.2 pl 0.025u/0 

Template DNA x µl 

dH20 to bring total reaction volume to 50µl 

Depending on the number of samples to be processed, a master mix is made and the 

sample DNA added to each reaction mix. The final DNA concentration in the mix should 

not exceed lOng/ml. Reactions were carried in thin-walled 0.5m1 tubes. For each PCR 

reaction performed. The conditions were optimized for each primer pair, so amounts and 

concentrations of each component added may vary from the standard protocol (indicated 

with each specific experiment performed). All components of the PCR reaction were 

obtained from Gibco-BRL, except for the primers (Invitrogen). 
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When using RNA (or mRNA) as a substrate, a combined reverse transcription-PCR (RT- 

PCR) assay was performed using the Access RT-PCR kit from Promega. 

A typical reaction mix consists of the following: 

Volume Final concentration 

Nuclease-free water (to final volume of 501t) Xjil 

AMVITJI 5x reaction buffer 10µ1 lx 

dNTP mix (10mM each dNTP) lµl 0.2mM 

5'primer 50pmol 11M 

3'primer 50pmol 1 µM 

25mM MgSO4 2µd 1mM 

AMY reverse transcriptase (5u/µ1) 11t1 0.1u/µ1 

ifi DNA Polymerase (5u/µ1) I ld 0. lu/µl 

RNA template Y. 1 

The RT-PCR reaction is started by the addition of the RNA template. All components 

were added into thin-walled 0.5m1 reaction tubes on ice. The tubes were then placed in a 

TECHINE thermocycler and the RT-PCR programme initiated. 

All RT-PCR reactions were optimized by using [Mg21 between 1mM and 3mM for each 

primer/template reaction. In addition, several reactions were performed at various 

annealing temperatures in order to identify the best annealing temperature for each primer 

pair. 
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2.27 LIl Uridine Incorporation as a measure of RNA transcription 

2.27.1 [3H] Uridine incorporation to assess total RNA synthesis 

To measure uridine incorporation into total RNA, cells were plated in 96 well plates and 

incubated overnight. They were then transfected with the plasmid of interest and 

incubated for 48 hrs. Following this, tritiated uridine (1 ELCi) was added to the wells for 

lhr before cells were lysed and the radioactivity transferred to Filter Mat A (Wallac) as 

follows. The medium was discarded and 100µl of trypsin-EDTA added to each well. The 

cells were incubated at 37°C for 30 minutes before being frozen at -20°C for at least 3 

hours before harvesting as previously described for thymidine incorporation. To measure 

[3H]uridine incorporation into poly(A) RNA, cells were plated into 60mm dishes and 

incubated overnight. They were transfected on the following day with the plasmid of 

interest and incubated for 48 hrs. [3H]uridine (20 µCi) was then added to each dish, and 

incubated at 37°C, 5%CO2 for 1 hr. Next, the cells were collected by trypsinization, and 

RNA extracted in the manner described previously. From the resulting RNA solutions, an 

aliquot was removed, to provide a measure of the total radioactivity of the RNA solution. 

The remaining solution was then subjected to mRNA extraction as described previously. 

Each mRNA sample was then placed into 6m1 polyethylene vials (Packard Biosciences) 

and 3mls of scintillant (Optiphase `HISAFE' 3 liquid Scintillation Cocktail, Perkin 

Elmer, p. 218) added to each sample before the radioactivity was measured in the 1400 

DSA Liquid Scintillation Counter (Wallac). Analysis was performed using 1400 DSA 

version 2.5 (software, Wallac). 
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3 Does Prolactin Protect Breast Cancer Cells against Apoptosis? 
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Early studies designed to block the release of pituitary prolactin failed to show a 

convincing therapeutic effect in the treatment of human breast cancer20$'206 although 

recent studies have returned to the possibility that prolactin may play a role in breast 

cancer207.. 08. Prolactin does have an established role in murine mammary 

tumourigenesis20` , 210, however. In humans, we know that not only are breast cancer cells 

able to synthesize their own prolactin211-213 but breast cancer tissue has been shown to 

have higher levels of prolactin receptors compared to normal breast tissue214. Moreover, 

the prolactin receptor can be activated by other lactogenic hormones, such as growth 

hormone (GH)215 which may account in part for the lack of efficacy reported for agents 

such as bromocriptine. Thus it appears that the time has come for a re-evaluation of the 

role of prolactin in breast tuomourigenesis2'6-218. Many cancer therapies rely on the 

induction of apoptosis and cell death to bring about a reduction in tumour bulk. Evidence 

suggesting that use of a prolactin antagonist could inhibit growth of breast cancer cells by 

inducing apoptosis219 prompted us to investigate this effect in greater detail. Two cell 

lines were used to investigate the possible effects of prolactin on survival from apoptosis. 

The MCF-7 and T47-D immortalized cell lines were derived from patients with 

disseminated breast cancer. It is known that T47-D cells express a high level of prolactin 

receptors, while MCF-7 cells express fewer receptors on the cell surface 0.221. 

3_1 RESULTS 

3,1,. 1_ Induction of Apoptosis using Ceramide 

In order to provide a system for identifying the anti-apoptotic effects of prolactin (Prl), 

initial studies were designed to assess the induction of apoptosis in T47-D cells by the C2 
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ceramide analogue, N-acetyl-U-sphingosine (C2), which had been shown previously to 

induce apoptosis in breast cancer cells222,223. 

3.1.1.1 Quanlification of'Apoplosis by Light Microscopy 

First, we used morphological analysis by light microscopy to assess the induction of 

apoptosis. T47-D cells (25x104 per well) were seeded into 8-well Labtek chamber slides 

in complete medium and incubated overnight before being transferred to serum free 

medium for 24 hours prior to treatment with ceramide. Ceramide was added at the 

concentrations shown, and cells were incubated for a further 24 hours. The medium was 

aspirated and slides washed with phosphate-buffered saline (PBS) before cells were fixed 

with 100% acetone. The slide was stained with haemotoxylin and eosin (H&E) and a 

cover slip mounted to aid viewing under the microscope. The extent of apoptosis was 

assessed by counting 1000 cells in three separate fields in the same well, at the same time 

determining the proportion of apoptotic cells. Fig. 3.1 shows a dose response of the effect 

of ceramide on T47-D cells. From this graph, it can be seen that apoptosis rises from -5% 

in untreated cells to -13% in T47-D cells treated with 30pM ceramide. The rate of 

apoptosis appeared to plateau after 20µM and this concentration was used for most 

studies. Over the course of these studies, the effectiveness of ceramide varied somewhat 

so that for some experiments it proved necessary to use higher concentrations. 
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Figure 3.1 Morphological assessment of apoptosis in T47-D cells exposed to ceramide. 

Cells in 8-well Labtek chamber slides were incubated with ceramide in serum free medium for 24 

hours before being fixed with acetone and stained with H&E for assessment under the light 

microscope. 
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T47-D cells were then treated with a single dose of ceramide (20µM) in the presence or 

absence of prolactin (200ng/ml) after being starved for 24 hours in serum-free medium. 

Following the addition of ceramide, cells were incubated for a fiuther 24 hours before the 

slides were washed, fixed and stained for assessment by light microscopy. As seen in Fig. 

3.2, there is a clear increase in the number of apoptotic cells to 13%±5 (SD) in cells 

treated with ceramide, which decreases to 4%±2 (SD) (p<0.05) in the presence of 

prolactin. The results shown are the mean of three experiments. 

Although these experiments seemed to demonstrate a clear protective effect of prolactin, 

there were several inherent difficulties in assessing apoptosis by this method. In 

particular, reproducibility proved extremely difficult to achieve and it could be argued 

that assessment by this method is subjective. Therefore we decided to investigate the use 

of other methods for assessing apoptosis. 

3.1.1.2 Quantification ofApoptosis by Analysis of the Cell Cycle Profile 

The cell cycle profile of a given cell population allows the observer to assess how various 

treatments are able to affect population dynamics, as well as allowing the identification of 

`pre-G1'cells that are undergoing apoptosis. 

As an initial experiment, a dose response to ceramide was performed in T47-D cells 

(Fig. 3.3a), which were then subjected to cell cycle analysis. Surprisingly, there did not 

appear to be any significant increase in the pre-GI population after ceramide treatment 

(1.6% in controls and 2.2% in cells treated with 70pM ceramide). 
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Figure 3.2 Morphological assessment of apoptosis in T47-13 cells exposed to ceramide in the 

presence of prolactin. 

I17-L) cells were treated with 201LAI ceramide in the absence or presence of prolactin 

(200ng ml). Cells were incubated with ceramide. / r 24 hours hefnre being. fixed and stained. The 

figure is the mean of 3 separate experiments (error bars indicate standard deviation, *pO. 0-5) 

each peº formed in triplicate. 

70 

Ctrl Prl C2 C2+Prl 



From this experiment, it would appear that DNA degradation is minimal in these cells. 

When cells were assessed morphologically, there were obvious signs of apoptosis 

present, but this was not reflected in the cell cycle profile. Ceramide did appear to arrest 

cells in the G2 phase of the cell cycle, however (Fig. 3.3b). The proportion of cells in the 

G2 phase increased from 14% in controls to 24% following treatment with ceramide. 

Thus we decided to investigate another method of assessing apoptosis. 

3.1.1.3 Quantification ofApoptosis by Annexin- VBinding 

As shown in Fig. 3.4, when T47-D cells were incubated with different concentrations of 

ceramide for 24 hours, there was a clear decrease in the fraction of live cells (80.6% to 

51.2%) and a corresponding increase in the number of necrotic cells (5.5% to 23.3%). 

The fraction of apoptotic cells, however, showed minimal change (1.3% to 2.7%). 

On the basis of this experiment, we were interested to assess whether prolactin would 

reverse the increase in the `necrotic'cell population following ceramide treatment after 

pre-incubation with 250ngIml prolactin. Therefore, T47-D cells were treated without or 

with 50µM ceramide for 48 hours before cells were analysed for Annexin-V staining 

(Fig. 3.5). 
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Figure 3.3 PreGt (a) and G2 (b) populations of T47-D cells after exposure to ceramide as 

assessed by Cell Cycle Profile analysis. 

Cells were serum slarred for 24 hours hefbre Irealment with ceramide. Cells were then incuhaled 

for a further 24 hours before they were collected by trvpsinization, washed and fixed with 70% 

ethanol, and stained with propidium iodide for analysis of the cell cycle profile on the flow 

cylomeler. 
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Figure -3.4 Annexin-V staining to assess apoptosis in T47-D cells exposed to ceramide. 

T47-D cells were deprived of serum für 24 hours hcfore exposure to ceramide. The cells were 

collected and stained with Annexin-V and pmpidium iodide to identify live, necrotic and 

apoptotic populations. 
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Figure 3.5 Use of annexin staining to assess possible protective effect of prolactin on 

ceramide-induced cytotoxicity in T47-D cells. 

Cells were treated with serum free medium alone (Ctrl), 200ng ml prolactin (Pr! ), 50jAf 

ceramide (C'? ), and 501zM ceramidc: with 200ng ml prolactin (('2 ' J'rl) and incubated 
. 
fin- 48 

hours. 7 hey were then collected by trypsinization, washed and stained with Annexin-V and 

propidium iodide 
. 
for analysisof the extent of uhoptosiS by flow cytomeirV. Me results vhown 

represent the mean oj'3 experiments (error bars indicate standard deviations). 
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3.1.2 Ability of Prolactin to Preserve the Proliferative Capacity of Breast Cancer Cells 

Exposed to Ceramide 

In the experiments described above, difficulty was experienced in demonstrating a 

classical apoptotic response in breast cancer cells. As an alternative approach to assessing 

the survival effect of prolactin, we decided to assess the clonogenicity of cells following 

the addition of ceramide as the cytotoxic agent. Initially, we used an indirect assay of 

clonogenicity by measuring cell proliferation after exposure to ceramide. Owing to the 

change in approach, we decided to include MCF-7 cells in the investigation as a separate 

control population, as -they have prolactin receptors, but fewer than T47-D cells(-8000 

sites and -26,000 sites per cell respectively)22°. 

3.1.2. / Quantification of Cell Survival using a Growth Assay 

For this study, cells were seeded into 24-well plates and left overnight to attach. They 

were then placed in serum-free medium for 24 hours before the addition of ceramide 

(40µM ceramide to MCF-7 cells and 50µM ceramide to T47-D cells) in the presence or 

absence of prolactin (200ng/ml). The cells were incubated further (MCF-7 cells for 24 

hours and T47-D cells for 48 hours) before fetal calf serum (10% v/v) was added to the 

wells. The cells were then allowed to proliferate for 4-5 days before being collected by 

gentle trypsinization for counting on the Coulter counter. 

In MCF-7 cells (Fig. 3.6a), the cell count fell from 45+16x104(SD) to 16+11x104(SD) 

after treatment with ceramide. After treatment with both prolactin and ceramide, there 
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Figure 3.6 Use of cell counting to assess the effect of prolactin on survival of (a) MCF-7 and 

(b) "I'47-D cells. 

MCI, '-7 and 147-/) cells were treated in serum free medium alone ((.. 'trl), with 200ng, tnl prolactin 

(Prl), 4OjjA'f ceramide in MCF-7 cells and 50p Af ceramide in T47-I) cells (C? ), or both ceramide 

and prolactin (C2+prl), MCI -7 cells were incubated 
, 
for 24 hours and T47 -D cells for 48 hours 

he/irre 10% (r. r) fetal calf serum was added. The cells were then incuhaied, / r a_Jiiriher 5 dues 

hefbre they were collected by t? psinizatiun and counted using a Coulter Counter. Figures 

represent the mean of three independent experiments (error bars indicate standard deviations, 

*: p -- 0.5). 
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was no significant protective effect of prolactin, the cell count being 17±7x104(SD). 

These data represent the mean of three separate experiments in the MCF-7 cell line. 

In T47-D cells (Fig. 3.6b), the number of cells fell from 10±4x104(SD) to 5±2x104(SDM) 

in cells after treatment with ceramide, but increased again to 7±2x104(SD) after treatment 

with ceramide plus prolactin (p<0.5). These data represent the mean of three separate 

experiments in the T47-D cell line, and show what appears to be a strong protective effect 

of prolactin. It was also observed that prolactin alone did not induce any significant 

proliferation in either cell population and confirms observations made by Vonderhaar that 

fetal calf serum inhibits prolactin-indiced proliferation 224. 

3.1.2.2 Quantification of Cell Survival using the X77' Cell Proliferation Kit 11 

For this assay, we seeded 5x104 cells in complete medium and allowed them to attach in 

96-well plates. They were then washed gently with Dulbecco's phosphate buffered saline 

before they were serum-starved for 24 hours. Following this, ceramide. (40µM to MCF-7 

cells, and 50µM to T47-D cells) was added in the, absence or presence of prolactin 

(200ng/ml) and cells were incubated for 24 hours (MCF-7 cells) or 48 hours (T47-D 

cells). The XTT was then added to the wells and incubated for a further 18 hours before 

the optical density was read at 450nm using a microplate reader. Fig. 3.7a shows the mean 

result from three experiments in MCF-7 cells. The addition of ceramide decreased the 

optical density from 2.0±0.4(SD) to 0.6+0.1(SD). The addition of prolactin did not give a 

significant increase in the optical density measured (0.7+0.3(SD)). Fig. 3.7b shows the 

mean data from four separate- experiments with T47-D cells. The optical density 
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Figure 3.7 Use of the X1T assay to assess the effect of prolactin on survival of (a) MCF-7 

and (b) T47-D cells. 

Cells were serum svurved for 24 hours before treatment with: serum free medium only (Girl), 

200ng. ml prolactin (Prl), ceramide (('2) (401, M it, MC'F-7,501AI in 7'47-D cells), or both 

ceramide and prolactin ((72 ' Prl). MCF-7 cells were incubated fier 24 hours, and T47-D cells for 

48 hours, before fetal calf serum was added to a final concentration of 10% (v v). ('e//. v were 

incubated for a further 5 days before the addition of. '7T and the optical densiNi' read 18 hours 

later. (*. -p --0.03). The above figures are the mean of 4 experiments, each performed with 6 

replicates. 
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decreased from 0.8±0.2(SD) in control cells to 0.3±0.1(SD) when cells were exposed to 

ceramide. The addition of prolactin resulted in a significant (p<0.05) increase in the 

optical density to 0.4+0.1(SD). 

3.1.2.3 Assessment of Cell Survival by a ClonogenicAssay 

The `gold standard' for measuring cell survival is to assess clonogenicity. Thus the ability 

of T47-D cells to form colonies in agar gels following cytotoxic insult by ceramide was 

assessed. Fig. 3.8 shows a dose response curve to ceramide using this assay in T47-D 

cells, and on this basis a concentration of 20µM was chosen for subsequent experiments. 

To determine whether prolactin could exert a protective effect in this assay, 1.5x106 cells 

were seeded into a T25 flask and allowed to attach. The cells were then serum-starved for 

24 hours before they were incubated in the absence or presence of 250ng/ml of prolactin 

for an hour. Ceramide (20µM) was then added in the continued presence of prolactin and 

cells were incubated for a further 24 hours. Following this, all the cells, including 

floaters, were collected by trypsinization and 250 cells were plated onto 60mm dishes in 

agarose gels and incubated for 14 days. Three replicates for each treatment condition 

were plated. The gels were then stained with 0.05% Neutral Red Solution for 1 hour 

before the number of colonies was counted using a dissecting microscope. A typical 

experiment is shown in Fig. 3.9. When results of 3 experiments were combined, treatment 

with ceramide resulted in a small decrease in the number of colonies formed (from 

183±63(SD) to 160±63(SD)), but there was no protective effect when cells were treated 

with prolactin (140±48(SD). Unfortunately, given the poor reproducibility of these 
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Figure 3.8 T47-D Clonogenic survival assay of T47-D cells exposed to ceramide. 

T47-D cells were seeded into T25 flasks and serum starved for 24 hours. The cells were then 

exposed to various concentrations of ceramide 24 hours before being collected by gentle 

trypsinization and seeded onto agarose gels at a concentration of 500 cells per gel. The gels were 

then incubated for 14 days before they were stained with neutral red solution and the number of 

colonies counted. 
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Figure 3.9 Use of clonogenic survival assay to assess the effect of prolactin on survival of 

T47-D cells. 

T47-D cells were seeded into 725 flasks and starved of serum for 24 hours. The cells were then 

treated without or with 250ng%ml prolactin. for 1 hour before addition of 201AI eeramide for 24 

hours. The cells were then trypsinized and seeded into agarose gels and incubated for 14 days. 

The gels were then stained with neutral red and the number of colonies counted. The figure 

represents a typical experiment. This experiment was performed 3 limes in triplicate. 
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experiments, it is difficult to draw any firm conclusions about the effects of ceramide or 

prolactin on clonogenicity of T47-D cells. 

3_2 DISCUSSION 

The sphingomyelin (SM) pathway is part of the stress response system linking diverse 

environmental stresses (UV, heat shock, oxidative stress and ionizing radiation) to 

cellular effector pathways 225,226. The second messenger in this system is ceramide, 

generated by hydrolysis of SM through SM-specific phospholipases C termed 

2 n. Sphingomyelinases (Smases) or by de novo synthesis 

Ceramide generation occurs early and is not dependent on caspase activation229-131. Use 

of exogenous ceramide (either analogs or neutra1222,232.233) or Smase elevates intracellular 

ceramide levels and results in apoptosis22s, z26 

Extracellular agents and insults (such as TNF, Fas ligands and chemotherapeutic agents) 

can activate sphingomyelinsases, which act on membrane sphingomyelin resulting in the 

release of ceramide225. Inducers of ceramide generation include 1,25-dihydroxyvitamin 

D3, TNF-a, endotoxin, interferon-gamma, interleukin-1 (IL-1), FasL, dexamethasone, 

ionizing radiation, chemotherapeutic agents, heat and nerve growth factor (NGF)234. 

Breast cancer is the most common cancer affecting women in the world today, making up 

18% of all cancers detected in women. In the UK, it is the commonest cause of death in 

women in the 40-50 age groups. The incidence of breast cancer increases from the onset 
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of puberty, peaks just before the menopause and then declines thereafter 5. There also 

exists a distinct geographical distribution, where incidence rates in the West are greater 

than in the Far East235 

All breast cancers arise from the epithelial cells of the terminal duct lobular unit and are 

classified according to histological appearance. There are seven categories: mucoid, 

papillary, classical lobular, tubular, cribiform, medullary and NOS (not otherwise 

specified)236. As with all cancers, the aggressiveness of the cancer is classified into 

grades, which refer to the degree of differentiation of the cells, and stages - which refer 

to the tumour size, number, presence of spread, whether it affects only lymph nodes or 

has metastasized to other organs236 

Prolactin is a pleiotrophic neuroendocrine polypeptide hormone with many actions, the 

mechanisms of which are still poorly understood237. It is synthesized as a 23kD peptide 

by lactotrophs in the anterior pituitary gland and upon secretion into the blood stream acts 

as an endocrine factor on its target organs. It is best known for its actions on the 

mammary gland, being critical for its proper development and maturation238, i39. Whilst its 

mitogenic effect has long been accepted, it has only recently become known that 

prolactin may have a survival effect on certain cell types240, and possibly in breast cancer 

cells too219. Recent studies have shown that the hormone may be locally produced in 

tissues (breast epithelial cells and decidual cells of the bone or brain) outside the pituitary 

gland237. The best-characterized action of prolactin is on the mammary gland where it 

stimulates DNA synthesis, epithelial cell proliferation, and the promotion of milk 
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production241'242In other mammalian cell lines, STATS has been implicated in 

tumourigenesis 243,244 as well as cell survival245, za6 

The role of prolactin in breast cancer has always been controversial, but recent evidence 

has shown that it may play a more significant role than was previously believed. Thus, 

for example, prolactin antagonists have been shown to inhibit proliferation in breast 

cancer cells247. One recent report suggests that this inhibition may actually be due, in 

part, to the induction of apoptosis by prolactin antagonists219. 

Using morphological analysis, we found that in T47-D cells there was a clear protective 

effect of prolactin. In these cells (Fig. 3.2), the number of apoptotic cells detected 

decreased after treatment with prolactin (13%±5 (SD) to 4%±2 (SD), p value<0.05). 

Several problems were encountered in using morphological analysis as a method for 

quantifying apoptosis, however. First, there was some difficulty in identifying the 

apoptotic cells in ceramide-treated wells, apart from those cells at an advanced stage of 

apoptosis. The gradual change from viable to apoptotic status made it difficult to identify 

apoptotic cells with confidence, making assessment somewhat subjective, except where 

cells displayed the classical features of very densely staining nucleus with a very little 

cytoplasm. Moreover, if only apoptotic bodies were left, it was difficult to know if they 

arose from a single cell or from several. 

Second, the loss of cells during washing prior to fixation added to the problem as the 

cells that were lost were likely to be cells that were least viable. This may have led to a 
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bias during assessment under the microscope when only viable cells were seen and 

resulted in a contradictory decrease in the amount of apoptosis detected as the ceramide 

concentration increased. It would have been interesting to have collected these ̀floaters' 

and analysed them by fixing and staining with H&E to assess their morphology. 

Due to these difficulties, we investigated the possibility of using other methods to assess 

apoptosis. Cell cycle analysis of T47-D cells after treatment with ceramide did not result 

in an increase in the preGi population. Cells were arrested in the G2 phase, however, 

which has been reported previously when T47-D cells were exposed to various 

chemotherapeutic drugs248. 

When assessing the cell cycle profile to estimate the degree of apoptosis that occurs in a 

given cell population, there is the assumption that the cells undergo DNA degradation 

resulting in a decrease in the DNA content of the cell. One possible explanation for a lack 

of change in the pre-GI population in breast cancer cells could be that either ceramide- 

induced apoptosis did not result in DNA degradation or laddering during apoptosis, as 

has been observed by other groups with MCF-7 cells249'zso. 

Use of annexin-V binding to determine the extent of apoptosis in breast cancer cells was 

also rather unsatisfactory. While the number of viable cells was clearly decreased, the 

apoptotic population (cells stained only with annexin-V-FITC) remained consistently 

small, with the majority of non-viable cells being stained both by annexin and propidium 
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iodide. Measurement of live and dead cell populations did not show any protective effect 

of prolactin on apoptosis / cell death. 

The method of Annexin-V staining relies on the expression of phosphatidylserine on the 

outer leaflet of the cell membrane early in the apoptotic process, but with maintenance of 

cell membrane integrity, which is responsible for excluding propidium iodide from the 

cells. In breast cancer cells, either phosphatidylserine exposure does not occur early 

during apoptosis, or cell membrane integrity is lost early in the apoptotic process as very 

few cells were labeled with Annexin alone, and the majority of non-viable cells were 

labelled with both Annexin and propidium iodide. This double staining implies that the 

cells were necrotic or in late apoptosis. 

It is possible that trypsin-EDTA may have affected membrane integrity, allowing 

diffusion of propidium iodide into the cell, so resulting in the large fraction of apparently 

necrotic cells detected. Identification of optimal conditions for each experiment was the 

main obstacle in obtaining consisting results. It was necessary to use various doses of 

ceramide ranging from 20µM to 70µW during the course of these studies in an attempt to 

obtain consistent results. Finally, as can be seen in figure 3.5, when all the cell 

populations were added together, they fail to make up 100% of the cell population. This 

was because a significant proportion of the propidium iodide stain appeared to detect cell 

debris, and this population could not be excluded from the total cell count. 
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Thus, we were unable to detect clear evidence of apoptosis either by cell cycle analysis or 

by Annexin staining, two methods currently in use to assess the extent of apoptosis. This 

suggests that T47-D and MCF-7 cells may have an inherent inability to undergo DNA 

laddering or typical apoptosis. There is increasing evidence to show that different forms 

of apoptosis or programmed cell death exist251-2s3 Development of the `classical' features 

of apoptosis requires the participation of specific caspases as well as other enzymes83'249 

T47-D cells have a mutated form of the p53 gene' 75; 254 
, which may account for their 

inability to undergo classical apoptosis. High levels of an oncoprotein MDM-2, a 

negative regulator of p53, have been found in both MCF-7 and T47-D cells lines248. 

MDM-2 functions by binding p53 and antagonizes its transcriptional activity, as well as 

promoting the degradation and nuclear export of the p53 protein248, and thus may 

contribute to the resistance to undergo apoptosis in these cell lines. A literature search 

revealed very few studies of apoptosis in T47-D cells, although detection of apoptosis in 

these cells by morphological analysis and flow cytometry using diverse apoptotic agents 

has been reported255-257 The extent of apoptosis induced in T47-D cells ranged from 

14%258, to 43%2ss This large increase detected using Annexin-V in the latter study, was 

in response to progesterone treatment. We did not wish to complicate our study by using 

a hormone to induce apoptosis, as there may be other pathways activated by progesterone 

which could interact with prolactin. Regarding the efficacy of a prolactin antagonist219 in 

inducing apoptosis, the authors reported a 3-to-15 fold induction of apoptosis in the cells 

by the antagonist, which was dose-dependent. Overall, there is agreement with our 

observations that the T47-D cell line is relatively resistant to apoptosis induced by a 

. variety of agents2sa, i59,2M 
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In addition to ceramide, we tried a variety of other cytotoxic/apoptotic agents (gamma 

irradiation, progesterone, taxol etc., results not shown), however, we were unable to 

detect any change in the preGi population or any increase in Annexin-V binding. 

As an alternative approach, we attempted to assess prolactin effects on clonogenic cells. 

First we used an indirect method of determining numbers of clonogenic cells by allowing 

cells to proliferate. After a period of proliferation, the number of T47-D cells was 

reduced from 10±4x104(SD) in controls to 5±2x104(SD) in cells after treatment with 

ceramide, but increased again to 7±2x104(SD) in cells treated with ceramide and 

prolactin (p<0.5) (Fig. 3.6b). 

These results show a clear protective effect of prolactin in T47-D cells. A potential 

criticism of these experiments could be that prolactin is simply stimulating proliferation. 

This seems unlikely, however, because there was no proliferative effect of prolactin in 

this experiment (10±4x104(SD) for control cells, versus 10±2x104(SD) for cells treated 

with prolactin). 

Similar results were obtained with the XTT assay (Fig. 3.7b), where there was an 

increase in optical density from 0.3±0.1(SD) in T47-D cells treated with ceramide alone 

to 0.4+0.1(SD) (p<0.05) when cells were treated with both ceramide and prolactin. 

Again, this indicates a protective effect conferred by the addition of prolactin. 
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Next, we assessed clonogenicity of T47-D cells directly by their ability to form colonies. 

Taking the mean of 4 separate experiments there was no clear protective effect of 

prolactin on the clonogenicity of T47-D cells (Fig. 3.9). Again, the extremely variable 

response to ceramide resulted in a much smaller effect of ceramide in these experiments 

than we predicted from the initial dose response (Fig. 3.8), making it difficult to assess 

any protective effect of prolactin. The apparent lack of protection by prolactin in this 

assay could result from the distance separating cells when they are suspended in agarose 

gels. We have recently found (Michael Norman, unpublished results) that the 

proliferative response to prolactin is strongly dependent on cell density. Thus, as 

clonogenic assays (Figs. 3.6 and 3.7) abolish cell-to-cell contact, this could account for 

the lack of survival benefit by the presence of prolactin. 

Should prolactin be confirmed as a survival factor, the implications could be far-reaching. 

Most breast tumours are capable of synthesizing and secreting prolactin211,261, and the 

prolactin receptor is found on most breast cancer cells 161-16'. Thus prolactin signalling 

may provide a mechanism for these cells to evade the apoptotic process. Conversely, 

antagonizing prolactin receptors in tumour cells, whilst simultaneously exposing the 

cancer to radio- or chemo-therapy, could increase the effciency of subsequent tumour 

kill, and thus increase the effectiveness of curent therapies. 

The results obtained by morphological assessment and the cell survival assays appear to 

confirm our hypothesis that prolactin can act as a survival factor in breast cancer cells. 

Other assays (cell cycle analysis, Annexin-V staining and colony formation in agarose 
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gels), however, do not support this hypothesis. A likely explanation for this discrepancy 

would be that the parameters under investigation in each assay were different, and 

ceramide could have distinct effects in each. The most obvious discrepancy lies between 

the morphological and growth studies (which show a protective effect of prolactin) and 

the Annexin-V staining (which does not show any protective effect by prolactin). It is 

possible that the `necrotic' population identified in the latter assay (Fig. 3.5) included 

cells which were still viable, and would have been able to recover subsequently had the 

assay been allowed to proceed for longer. 

Our difficulty in identifying `classical' signs of apoptosis such as Annexin staining in 

T47-D cells is not in keeping with available data, though there are very few papers 

regarding apoptosis in T47-D cells. Evidence from these publications255'258 suggests that 

T47-D cells can undergo apoptosis when treated with certain agents. It seems more 

likely, however, that differences in T47-D cells or other reagents (e. g. fetal calf serum or 

plastics) used in each laboratory will underlie variations in each response. 

One possible reason for the discrepancy in results between the cell survival assays and 

the clonogenic assay is that in the former, cells are more likely to remain in contact with 

each other. Thus it is possible that signalling initiated by prolactin is protective, but only 

under certain circumstances, perhaps requiring the presence of cell-to-cell interactions to 

be effective. Most of the results in this study only document small increases in cell 

survival. 
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4 Attempt to Create a Model for Dissecting the Contribution of the 

Jak2-STAT5 pathway to Apoptosis 
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Having obtained some evidence to support the hypothesis that prolactin enables breast 

cancer cells to survive the apoptotic insult of ceramide, we wished to investigate the 

signalling pathways underlying this mechanism. One of the major pathways activated by 

the prolactin receptor is the Jak2-STAT5 pathwa}2M. 

Based on previous work showing that it was possible to inhibit the apoptotic pathway 

when STAT5 is activated by a variety of cytokines246 65"268, we postulated that activation 

of the Jak-STAT pathway mediates the ability of prolactin to confer protection against 

apoptosis in breast cancer cells. 

The results in Chapter 3 showed that the amount of apoptosis detectable in breast cancer 

cells is both small and variable. Hence, due to the difficulties encountered in analyzing 

this pathway in breast cancer cells, we decided to create a model of apoptosis in an 

established cell line that could be used more easily to investigate the role of the Jak- 

STAT pathway. 

The CCRF-CEM cell line was established from a patient with acute lymphoblastic 

leukaemia. The CEM-C7 sub-clone of these cells could provide a useful test system for 

the analysis of apoptosis because these cells are particularly sensitive to glucocorticoid- 

induced apoptosis269, the extent of which is much greater than that detectable in breast 

cancer cells. Because no receptor capable of activating the Jak-STAT pathway has been 

identified in these cells, we decided to create clones stably expressing the prolactin 

receptor. 
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One advantage of transfecting CEM-C7 cells with the prolactin receptor would be that 

transfection of mutated receptors could be performed in the future for further dissection 

of the signalling pathways involved in any anti-apoptotic effects mediated by the 

receptor 

4.1 Results 

4.1.1 The Presence of Jak2 in CEM-C7 cells 

In order for the transfected prolactin receptor to be effective in activating signalling in 

CEM-C7 cells, the components of the Jak-STAT pathway have to be present. To confirm 

that Jak2 is expressed in CEM-C7 cells, 5x106 cells were lysed, and crude extract 

immunoprecipitated with anti-Jak2 antibody (New England Biolabs). After 

electrophoresis using a 12% acrylamide gel, a Western blot (Fig. 4.1) showed that Jak2 (- 

130 kDa) is indeed present in CEM-C7 cells. 

4.1.2 The Presence of STAT5 in CEM-C7 cells 

Evidence for expression of STAT5 in CEM-C7 cells has been obtained previously 

(personal communication by E. Brad Thompson). To confirm this finding, 3x106 cells 

were lysed and a cell extract was electrophoresed using a 12% acrylamide gel. As shown 

in Fig. 4.2, Western blotting with anti-STAT5 (C-17, Santa Cruz) confirmed the presence 

of STAT5 (- 92kDa) in these cells. 
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Figure 4.1 Expression of Jak2 tyrosine kinase in CEM-C7 cells. 

5x106 x cells were lysed and the crude extract immunoprecipitated with anti-Jak2 antibody (New 

England Biolabs). Western blotting was performed on immunoprecipitated extract using anti- 

Jak2 antibody. 

Crude 

92kDa ---k *NOW I 

Figure 4.2 Expression of STATS in CEM-C7 cells. 

3x106 x cells were lysed and crude extract electrophoresed and transferred to nitrocellulose. The 

membrane was probed with anti-STAT5b (C-I7 antibody, Sigma) as the primary antibody and 

anti-rabbit IgG as the secondary antibody. 
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4.1 
.3 Construction of the pCMV-Fla Pr1R plasmid 

A plasmid encoding the full-length human prolactin receptor, tagged with a Flag epitope 

on the N -terminus, was available at the start of this study (constructed by Dr. Hayley 

Whittington). This sequence was present in a pAdlox vector which lacks a selection 

marker. The cDNA was therefore first transferred to a vector with an appropriate 

selection cassette. (See Fig. 4.3) 

4.1.3.1 Isolation of Flag-Pr/R from Plag-Pr1R pAdlox 

The Flag-Pr1R pAdlox plasmid (10µg) was digested with Sall (50units, at 37°C for 3 

hours), and dephosphorylated to prevent re-ligation. The linearized DNA was digested 

with EcoRI (50units, at 37°C for 3 hours), and the resultant Flag-Pr1R cDNA fragment 

isolated. 

4.1.3.2 Creation ofpCMV vector 

The EGFP sequence was removed from the pEGFP-Nl plasmid (Invitrogen, Netherlands) 

by a 2-stage restriction digest. 10µg of pEGFP-Nl was digested with Smal (50 units, at 

25°C for 2.5 hrs) and then with NotI (50 units, at 37°C for 2.5 hrs). Blunt ends were 

created (10 units Klenow enzyme, 151il Klenow buffer, Ild 10mM dNTPs and 33µl 

digested vector DNA, incubated together at 25°C for 1 hour). The resultant DNA was 

purified and re-ligated (10 units T4 ligase, 14°C overnight). 
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4.1.3.3 Insertion of FlagPrlR into pCMVplasmid 

The pCMV vector was linearized by XhoI (10units) and EcoRI (10units) digests and 

ligated to the F1agPr1R using T4 ligase. The resultant plasmid was isolated under UV 

visualization after agarose gel electrophoresis and purified by gel extraction. 

Competent E. coli cells were transformed using the new pCMV-FlagPrlR plasmid and 

mini preps made from the resultant colonies. DNA was extracted for an analytic 

restriction digest (using Dra I) to select colonies with the desired plasmid inserted in the 

correct orientation (Fig. 4.4a, lane 2,5,10,11, and 13). Positive plasmids would exhibit 4 

separate bands while plasmids containing the insert in the wrong orientation would only 

exhibit 2 bands. The positive plasmids were then subjected to another restriction digest 

(using Bgl II) to confirm that the cDNA was orientated correctly (Fig. 4.4b). Plasmids 

with correctly oriented inserts would only have a single Bg1II restriction digest site. 

4.1.4 Western Blot of HEK 293 cells Transfected with pCMV-FlagPrlR 

Prior to using pCMV-FlagPrlR to transfect CEM-C7 cells, Hek 293 cells were transfected 

to ensure that the FLAG epitope could be detected on an expressed protein of the 

appropriate size. 3x106 cells were transfected with pCMV-F1agPr1R (51Lg) using FuGENE 

6, and incubated for 48 hours to allow for protein expression. The transfected cells were 

lysed and the crude extract electrophoresed before analysis by Western blotting. As 

shown in Fig. 4.5 the anti-Flag M2 monoclonal antibody (Sigma) detected a protein of 

90kD, as expected for the prolactin receptor. 
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(a) 

(b) 

Figure 4.4 Selection of transformed E. coli containing correctly oriented Flag-PrIR plasmid. 

(a) Selection of E. coli colonies containing plasmids with the Flag-Pr1R in the correct orientation. 

Colonies of E. coli were chosen at random and mini preps of DNA made. The resultant plasmids 

obtained were subjected to diagnostic digest by Dra 1. 

(b) Confirmatory diagnostic digest ofplasmids, previously identified by Dra 1, using Bgl II. 
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4.1.5 The ability of pCMV-F1agPrlR to activate signalling 

To confirm that pCMV-FlagPrlR was able to activate STATS, 3x104 COST cells were 

plated onto 24 well plates and incubated overnight. Each well was then transfected using 

Fugene 6 with STAT5b (SOng), LHRE reporter (250ng) and one of the following: empty 

pCMV vector (100ng), pCMV-FlagPrlR (100ng), original vector containing the Flag- 

tagged receptor pAdlox-FlagPrIR (100ng), or wild type PrIR (100ng). The cells were 

incubated overnight and then serum starved for at least 6 hours before the addition of 

growth hormone (250ng/ml) for a further 18 hours. Cells were then lysed in 100µ1 of Cell 

Lysis Buffer (Promega), subjected to a freeze-thaw cycle and 501il of the lysate analysed 

in a luminometer (Dynex Revelation) for luciferase activity. 

Fig. 4.6 shows that whilst the re-constructed plasmid pCMV-FlagPrlR does activate 

signalling in response to prolactin stimulation, its activity is much less than that of the 

original pAdlox plasmid. One point to note is the very much higher baseline activity 

(-3000 RLU) of the both the pAdlox and the wild-type plasmids compared to pCMV- 

FlagPr1R (-50 RLU). This could be due to an inadvertent mutation introduced into the 

sequence, resulting in decreased expression. 

COS-7 cells (5x106 in 60mm dishes) were transfected with either 2µg of pCMV-F1agPr1R 

or pAdloxFlagPrlR. Following a 24 hour incubation, the cells were lysed and the crude 

extract electrophoresed. Fig. 4.7 shows that the expression of pCMV-FlagPrlR is 

markedly lower than that of pAdloxFlagPrlR, providing an explanation for the 

discrepancy in signalling capacity (Fig. 4.6). 
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Figure 4.5 Detection of pCMV-FlagPrlR expression in HEK293 cells. 

3x106 cells were lysed. The crude extract was electrophoresed and transferred to a nitrocellulose 

membrane which was probed with anti-FlagM2 antibody (Sigma) as the primary antibody and 

anti-rabbit IgG as the secondary antibody (Control lane: untransfected HEK293 cell). 
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Figure 4.6 Signalling activity of the prolactin receptor expressed by different plasmids in 

COS-7 cells. 

COS-7 cells were transfected with the LHRF, reporter and either p(. MV (control plasmid), 

pCMV-rlagPruR(TP) (test plasmid), pAdlox-FlagPrlR (original Flag-tagged receptor) or wt- 

PrIR (wild type Pr1R plasmid). the cells were serum-starved for 6hrs hefore exposure to 250ng 

growth hormone (GH) or vehicle for 18 hours. This experiment was performed using the human 

growth hormone (GH) as an alternative since prolactin was not available at the time. 
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Figure 4.7 Expression of pCMV-FlagPrlR and pAdlox-FlagPrlR plasmids in COS-7 cells. 

COS- 7 cells were transfected with either pCMV-F1agPrIR or pAdlox-FlagPrlR. The cells were 

lysed and crude extracts were electrophoresed. Western blotting was performed using the anti- 

FlagM2 antibody. 
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In view of the discrepancy in both the signalling ability and protein expression of the 

pCMV-FlagPrlR plasmid compared to the pAdlox- FlagPrlR plasmid, it was decided that 

co-transfection of the original pAdlox-FlagPrlR with a vector containing a selection 

cassette was preferable to using the pCMV-FlagPrlR plasmid. The pcDNA3 (Invitrogen) 

commercial vector was chosen for this purpose as it contains a G418 resistance cassette. 

4.1.6 Cloning of CEM-C7 cells 

With time in culture, CEM-C7 dexamethasone-resistant cells accumulate270. The 

explanation for this instability is that, having only one functional allele coding for the 

glucocorticoid receptor, CEM-C7 cells resistant to dexametliasone accumulate rapidly as 

a result of spontaneous mutations in the remaining allele271. Thus, it was imperative to 

select clones sensitive to both dexamethasone, which induces apoptosis, and G418, - 

which would be used to select positive clones. Fig. 4.8 (top) shows an initial experiment 

to determine the G418 sensitivity of uncloned cells. 

4.1.6.1 Selection of CEM-C7 clones sensitive to dexamethasone 

To select glucocorticoid sensitive clones, CEM-C7 cells were cloned by serial dilution 

and the clones recovered were tested for dexamethasone sensitivity. Fig. 4.8 (middle) 

shows the response of the various clones to incubation with dexamethasone (1µM) for 48 

hours. Cell viability was analysed using the XTT assay. 
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4.1.6.2 Sensitivity of CL'M-C7 clones to G418 

The CEM-C7 clones obtained by serial dilution were then tested for G418 sensitivity. 

Fig. 4.8(bottom) shows the effect of exposure to G418 for 72 hours on cell viability, 

analysed by the XTT assay. 

Clones: 21D, 31E, 42G, 59E and 112B were selected for further study as they were 

sensitive to both dexamethasone and G418. 

4.1.6.3 Transfection of CEM-C7.21D cells with pEGFP-N1 

The CEM-C7 cell line is difficult to transfect, though most success has been achieved 

using electroporation272'273. In initial experiments designed to establish conditions for 

effective transfection of CEM cells, a commercial vector expressing the enhanced green 

fluorescent protein (EGFP), pEGFP-Nl (Clontech), was used. Cells were electroporated 

with varying amounts of DNA (15-451. Lg) at 10501F and 300V. Using this protocol and 

40µg of DNA, we were able to transfect about 2% of clone 21D, with the EGFP plasmid 

(Fig. 4.9) as detected by fluorescent microscopy. With the other concentrations of DNA 

used (10,20 and 30µg), however, no fluorescent cells were detected. The other clones 

(31E, 42G, 59E and 112B) selected for sensitivity to dexamethasone and G418 were also 

electroporated with pEGFP-Nl, but transfection efficiency was very poor (data not 

shown). 
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Figure 4.9 Transfection of CEM-C7 clones with EGFP-N1 by electroporation. 

6x106 CEM-C7 cells were electroporated with varying concentrations of EGFP-NI plasmid. The 

cells were incubated for 48 hours post transfection to allow for protein expression and the cells 

screened by fluorescent microscopy. The figure shows results obtained with clone 211) 

transfected with 40, ug of DNA. 
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4.1.7 Attempt to isolate CEM-C7 cells stably expressing the Prolactin Receptor 

CEM-C7.21D cells were initially electroporated with 40µg of pAdlox-FlagPrIR and 

pcDNA3.1 (80µg DNA in total), but no viable cells were obtained from this transfection. 

Since the concentration of DNA may have been toxic for the cells, CEM-C7.21D cells 

were next electroporated with 20µg of pAdlox-FlagPr1R and 20µg of pcDNA3.1 

(1050µF, 300V) (401tg of DNA in total). Cells were transferred immediately to RPMI- 

1640 medium that had previously been placed in a T25 flask, and incubated at 37°C in 

5% CO2. 

Following electroporation, cells were allowed to recover over 48 hours before they were 

placed in medium containing G418 (800µg/ml) to begin the selection process. This 

selection condition was maintained for 2 weeks, aller which the concentration of G418 

was decreased to 400pg/ml. Once cell numbers had recovered sufficiently, clones were 

obtained by serial dilution and then re-cloned in agarose gels. 

4.1.8 Attempt to Detect Fla tagged Prolactin Receptor in CEM-C7 cells 

4.1.8.1 Detection of FlagPrlR by Western Blotting 

A total of 25 clones were isolated after G418 selection. To test for PrIR expression, 5x106 

cells were collected from each clone and lysed. Mouse monoclonal anti-Flag M2 

antibody (Sigma) was used for immunoprecipitation and precipitates were 

electrophoresed on an SDS-Page gel. Separated proteins were then transferred to an 

Immobilon membrane by semi-dry transfer and the membrane probed using anti-Flag M2 

as the primary antibody and an anti-mouse antibody conjugated with horseradish 
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peroxidase (Amersham Pharmacia) as the secondary antibody. Fig. 4.10 shows a Western 

blot of the various clones obtained, none of which expressed a detectable Flag-tagged 

protein. 

Our inability to detect Flag-tagged protein could have been due to failure of protein 

expression, or failure to stably incorporate the prolactin receptor cDNA into genomic 

DNA. We decided to investigate this further by performing a PCR reaction on genomic 

DNA extracted from the clones to screen for incorporation of the Pr1R cDNA. 

4.1.8.2 Detection of Flag-PrIR by Polymerase Chain Reaction 

Genomic DNA from 5x106 cells of each clonal population was extracted. Then Ing of 

dsDNA was used as a template for a PCR reaction with primers specific for the prolactin 

receptor. Primers were complementary to different exons, so minimizing the risk of 

amplifying sequences from the CEM-C7 prolactin receptor gene. 

The primers used were: 

Forward: CTGTGGATTAAATGGTCTCC 

Reverse: TGCAGGTCACCATGCTATA 

The forward primer is complementary to a sequence in exon 8 and the reverse primer 

corresponds to a sequence in exon 10. 

The PCR reaction consisted of an initial dissociation period (94°C, 2 min), 40 cycles of 

dissociation (94°C, 30s), annealing (62°C, 1 min), and extension (68°C, 1 min), and a 
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final extension period (68°C, 7 min). Positive clones should allow amplification of a 

360bp fragment, and Fig. 4.11 shows that a number of clones (1,3 and 6) had 

incorporated the Flag-tagged prolactin receptor cDNA into their genome. 

4.1.8.3 Detection of'Flag-PrIR by STAT5 activation 

As we were unable to detect the Flag-PrIR by Western blotting, while PCR demonstrated 

that the Flag-tagged Pr1R cDNA had incorporated into the genomic DNA, we decided to 

test for Pr1R expression by detection of STAT5 activation. 

CEM-C7 clones (1x106) were serum starved for 24 hours, and then exposed to 250ng/ml 

prolactin for 30 min. The cells were then lysed and the crude extract subjected to 

electrophoresis. A Western blot was performed using the anti-STAT5b (C-17) antibody 

(Sigma). Fig. 4.12 shows that no activation of the STATS protein by prolactin could be 

detected (usually detected by a band shift as a result of phosphorylation of the STATS 

protein, thus activated STATS runs at a higher molecular weight compared to inactive 

STAT5), showing that despite incorporation of the Flag-Pr1R cDNA into the genome of 

the CEM-C7 cells, it was not being expressed at a sufficiently high level for detection of 

activation of signalling pathways. Unfortunately, clones 4 and 5 had a very poor STATS 

yield, hence the faint bands detected in the blot. 
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Figure 4.10 Attempt to Detect Flag-PrIR in CEM-C7 clones. 

89 Ctrl 

3x106 cells from each stable CEM-C7 clone were lysed and crude extracts immunoprecipitated 

with the anti-FlagM2 antibody (Sigma). Western blot was performed with anti-FlagM2 antibody 

(Sigma). The control lane contains crude extract from COS-7 cells transfected with pAdlox- 

FlagPrlR. 

-360bp -i 

Figure 4.11 Detection of prolactin receptor cDNA in CEM-C7 clones by polymerase chain 

reaction. 

Genomic DNA was extracted from CEM-C7 clones and subjected to polymerase chain reaction. 

The PCR products were electrophoresed on an agarose gel and three clones (1,3 and 6) positive 

for the prolactin receptor were identified (Positive control (+ve) was the product from PCR of 

pAdlox- F1agPrlR cDNA, and negative control (-ve) was a water blank). 
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Figure 4.12 Attempt to detect presence of Flag-tagged PrlR by activation of the STAT5 

protein. 

CEM-C7 cells have no known receptor for the activation of STAT5, thus any activation detected 

can be attributed to a stably incorporated Flag-Pr1R. Clones (3x106) were serum starved for 24 

hours prior to treatment without or with 250ng/ml Prl for 30 min. The cells were then lysed and 

crude extracts electrophoresed. Western blotting was performed with anti-STATSb (C-17 

antibody). 
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4.2 DISCUSSION 

The biological activities of prolactin are manifested through a specific membrane 

receptor - the prolactin receptor (PRLR). The PRLR is part of the cytokine 

haematopoietic superfamily of receptors, which includes the growth hormone (GH), 

erythropoietin and IL-2 receptors274. Members of this family are single membrane 

spanning receptors organized into three domains: an extracellular ligand binding domain, 

a hydrophobic transmembrane domain and an intracellular signaling domain containing a 

proline rich motif 17. 

Different forms of the receptor exist. A long (90kDa) and a short (40kDa) form - each 

generated by differential splicing of a single gene, differing only in the length of the 

cytoplasmic domain 275. The intermediate form is a deletion mutant of the long form 

which in the rat lacks 198 amino acids in its cytoplasmic region. This is the form found in 

rat Nb2 lymphoma cells and is the most responsive to prolactin276. There is also evidence 

for the presence of this form in some human breast cancers211. Both the long and 

intermediate forms transduce a differentiation signal as measured by induction of milk 

protein expression277, and all three promote mitosis278'279. 

4: 2.1 Signalling Pathways for Prolactin 

When prolactin associates with its receptor, it induces sequential receptor dimerization 

with the active complex involving one prolactin molecule bound to two receptor 

molecules237'264'M, resulting in a cascade of intracellular events. In mammary epithelial 

cells, prolactin has been shown to activate several signaling pathways (Jak-STAT 
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pathway281, Ras-MAP pathway282, PI-3 kinase pathway, PKC pathway237 and the FAK- 

paxillin pathway283) which are likely to contribute to the different responses e. g. 

proliferation, apoptosis or differentiation. 

4.2.2 The JAK/STAT Pathway 

The prolactin receptor does not have its own kinase activity and thus has to recruit other 

kinases in order to transduce intracellular signals. Jak2, a member of the Janus family of 

kinases, is constitutively associated with the prolactin receptor and undergoes 

phosphorylation when prolactin binds 284 
. The Jak2 kinase is transphosphorylated and 

activated as a result of receptor dimerization285. Once activated, Jak2 then phosphorylates 

tyrosine residues of the PRLR cytoplasmic domain286. The phosphorylated tyrosine 

residues serve as docking sites for the -SH2 domains of STAT5 proteins, bringing 

STAT5 protein into close proximity with Jak2. STAT5 is then activated by 

phosphorylation by Jak2, released from the receptor, undergoing homodimerization 

before translocation to the nucleus where STAT5 dimers regulate transcription of their 

target genes287 (Fig. 4.13). Two isoforms of STATS have been identified, STAT-5a and 

STAT-5b288. In mouse models, STAT-5a is required for full lobuloalveolar 

development289. 

We wished to investigate further the possible role of the Jak2/STAT5 pathway in survival 

signalling that had been studied in the previous chapter using breast cancer cells. The 

small and variable amount of apoptosis detectable in these cells led us to consider 

investigating this effect in another cell line where apoptosis could be more readily 

I'D 



induced and detected. The CEM-C7 cell line was selected because these cells apoptose 

readily when exposed to dexamethasone. We first confirmed that the components of the 

Jak2/STATS pathway were present in these cells (Figs. 4.1 & 4.2). Then, to provide a 

means for activating the Jak2/STATS pathway in these cells, we proceeded to create 

clones stably expressing the prolactin receptor. 

For these studies, a plasmid containing the Flag-tagged prolactin receptor and a selection 

cassette was first created (Fig. 4.3). Luciferase reporter assays showed that while the 

newly constructed plasmid did respond to prolactin stimulation, it appeared to have 

decreased signalling ability (Fig. 4.6), and to be expressed at much lower levels 

compared to the original pAdlox-FlagPrlR plasmid (Fig. 4.7), even though the Flag- 

tagged receptor was detectable on a Western blot. 

Disappointingly, the pCMV-FlagPrIR plasmid created did not appear to be expressed as 

efficiently as the original pAdlox-FlagPrlR plasmid. When transfected into HEK-293 

cells, the protein is detectable by its Flag-tag on western blots, and runs at the correct 

molecular weight (Fig. 4.5). The pCMV-FlagPrlR, pAdlox-F1agPrlR, and the wild type 

Pr1R all contain the CMV promoter driving transcription, thus transcription rates of these 

plasmids in the COS-7 cells should be similar. It may be, therefore, that a mutation which 

affected expression was introduced inadvertently. 

114 



Prolactin 

aa 

STATE 
k14i1 

WPa 

Figure 4.13 The JAK/STAT Signalling Pathway activated by the prolactin receptor (based 

on Bole-Feysot et al 1998237). 

Binding ofprolactin induces dimerization of the receptors. Constitutively associated Jak2 kinases 

are activated and induce tyrosine phosphorylation of tyrosine residues on the cytoplasmic tail of 

the receptor, which act as a docking site for STAT5 protein via the SH2 domains. STA T5 then 

undergoes transphosphorylation by JAK2 and activated STA75 is released into the cytoplasm. 

Activated STAT5 homodimerizes, translocates to the nucleus where it binds DNA and regulates 

target gene trasneription29. 
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We decided that it was more prudent to avoid the possibility of using a receptor that 

might not signal efficiently. Instead, CEM-C7 cells were co-transfected with the original 

pAdlox vector expressing the Flag-tagged PrIR and a commercial vector - pcDNA3 

(Invitrogen) - which included a selection cassette. 

Lymphoid cells are notoriously difficult to transfect. Probably the most efficient method 

of transfecting these cells is by electroporation and several groups have succeeded in 

transfecting CEM-C7 cells by this method 273,291 
. Other methods have been used with 

lymphoid cells, such as antibody-linked polyethyleneimine, which has been successfully 

used in Jurkat cells292'293. We tested this method of transfection using a commercial kit 

(ExGen500) that has become available recently, but with little success (data not shown). 

Other means of transfection, such as Fugene6, were also unsuccessful. 

Successful transfection of the CEM-C7 cells was achieved, at low efficiency, using 

electroporation. Of the G418 sensitive clones tested, clear evidence of transfection was 

obtained with only one clone (CEM-C7.2 1D) (Fig. 4.9), and all subsequent transfections 

were performed with this clone of CEM-C7 cells. 

Two separate attempts were made at transfecting the CEM-C7.21D cells with Flag- 

tagged prolactin receptor, but we were unable to isolate a single clone in which the Flag- 

tagged protein was detectable on Western blotting. We also attempted to detect cell 

surface expression using the anti-FlagM2 antibody linked to fluoroscein isothiocynate 

(FITC) (Sigma), but again no clones were detected using this antibody (data not shown). 
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Evidence from PCR analysis (Fig. 4.11) showed that 12 clones had incorporated the 

plasmid into their genome, even though the protein did not appear to be expressed, which 

was consistent with the failure to activate STAT5 by prolactin (Fig. 4.12). It is possible 

that receptor number on the cell surface was too low for the Flag-signal to be detected, 

though this should still have resulted in STAT5 activation. 

Failure to detect expression of the Flag-tagged receptor could result from defects in 

transcription of cDNA into mRNA, translation of the mRNA into the desired protein, or 

expression of the protein at the cell surface. The CEM-C7 cell line is an immortalized cell 

line and in the course of its development may have lost certain functions that are present 

in normal lymphoid cells. Alternatively, it is conceivable that some factor(s) could be 

present in these cells that block transcription of the gene or destabilize the mRNA. At the 

level of transcription, the cDNA could have been incorporated into a region of the 

genome that was `silent', and thus be unable to recruit the DNA transcription machinery. 

Another possibility is that by some mischance, all the plasmids that incorporated stably 

into the host genome were not intact or complete (e. g. linearization of the plasmid could 

have resulted in cleavage of the cDNA sequence), and thus when transcribed, did not give 

rise to an intact protein. 

Another possible explanation for the failure to detect Flag-tagged prolactin receptor could 

be that there was insufficient Jak2 in CEM-C7 cells. Lodish et a129° showed that surface 

expression of the erythropoietin receptor (EpoR) depends on the presence of Jak2. As the 

prolactin receptor is closely related to the EpoR, the extent to which it is expressed on the 
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cell surface may also be dependent on the amount of Jak2, and if other cytokine receptors 

had sequestered all the available Jak2, this may have affected surface expression of the 

transfected prolactin receptor. If the time had been available, we would have attempted to 

co-transfect cells with Jak2 cDNA, together with pAdloxFP and pcDNA3, to determine 

whether this would enhance expression of the prolactin receptor. 

Activation of STATs has been observed in many tumours295"297, and activation of the 

Jak/STAT pathway has been shown to promote survival pathways268'298. Moreover it has 

been shown that oncogenic activation of STAT, (e. g c-Src or Abl) is sufficient to induce 

cells to undergo transformation29', 300. The creation of a cell line where apoptosis could 

have been inhibited by activation of the Jak/STAT pathway would have been a very 

useful model to investigate the role of interactions between signalling pathways and other 

factors involved in deciding whether cells survive apoptotic insults. 

Unfortunately, it appears that either (a) by chance, none of those stable cell lines that 

incorporated cDNA did so in a manner that allowed protein expression, or (b) CEM-C7 

cells possess some property that prevents expression of the prolactin receptor. If (a) is 

true, it should be possible to derive a clone stably expressing the PRLR by continuing the 

study. However, due to time constraints, we did not feel that it would be profitable to 

continue these studies. 
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5 Creation of Stable Breast Cancer Cell Lines Overexpressing STAT5 
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5_1 Overexnression of STATS in T47-D and MCF-7 breast cancer cell lines 

Two closely related transcription factors, STAT5a and STAT5b, mediate signalling by 

the prolactin receptor. Both are actively involved in organ development and maturation; 

functions which have been definitively demonstrated by gene knockout studies301. 

STAT5a-knockout mice exhibit defective development of the mammary gland, and 

impaired lactation when the mice are pregnant302. The phenotype displayed is similar to 

that of prolactin receptor knockouts -303. Mice that are STAT5b -/- display a phenotype 

similar to that induced by a defective growth hormone receptor304. Mice lacking both 

STAT5a and STATSb are infertile, and also have defective immune functions305 

A role for STATS in cell cycle progression and survival has begun to emerge, and a 

number of target genes have been identified, including cyclin-dependent kinases (cdks), 

G1 cyclins, and cdk inhibitors306'307. Several studies have provided strong evidence that 

STAT5 is involved in anti-apoptotic signalling in haematopoietic celIS246 '268,308, and 

STAT5 has also been shown to induce Bcl-XL and Bcl-2 proteins, both of which are anti- 

apoptotic268,309"312. Likewise, constitutive STAT activation has been documented in many 

malignancies, mostly as a consequence of upstream oncogene activation - e. g. STATS in 

lymphoproliferative disorders activated by BCR"Ab1243'313 and STATs 1,3, and 5 are 

activated in mammary / lung tumours314,315 

Based on the above findings, we hypothesized that activation of STAT5 by the prolactin 

receptor could also be involved in anti-apoptotic signalling in breast cancer cells. To test 
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this hypothesis, we decided to overexpress STAT5a and STAT5b in breast cancer cells to 

determine whether or not the survival effect of prölactin could be enhanced. 

5_2 RESULTS 

5.2.1 Transient Overexpression of STAT5b in T47-D and MCF-7 Breast Cancer Cells 

This experiment was performed to ensure that endogenous STATS is not already present 

in sufficient quantity to provide a maximal signal in T47-D or MCF-7 cells. Thus 3x104 

cells (per well) were plated out in 48-well plates and incubated overnight. The cells were 

transfected with LHRE reporter (200ng) and either 200ng pcDNA (empty plasmid for 

control) or 200ng STAT5b expression vector using FuGENE 6. The cells were incubated 

for 24 hours to allow for gene expression, and serum starved for 6 hours before the 

addition of 2SOng/ml prolactin for a further 18 hours. Luciferase activity in cell lysates 

was then measured using a Dynex luminometer. 

From Fig. 5.1, it can be seen that overexpression of STATSb in T47-D cells results in a 

marked increase in activation of the LHRE STAT5 reporter gene (from 130±9(SD) to 

790±118(SD) arbitrary units, p value<0.05) in the presence of prolactin. In MCF-7 cells, 

there was also a clear increase (from 216±27(SD) to 749±39(SD), p<0.05), though less 

than that seen with T47-D cells. Interestingly, in the MCF-7 cells, the basal activity 

(216±27(SD) without prolactin stimulation) of the LHRE reporter is very much higher 

than that observed in the T47-D cells (130+9(SD)). 
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5.2.2 Creation of Breast Cancer Cell Lines Stably Overexpressing STAT5 

Since transient transfection with STAT5 increased the signalling activity of the LHRE 

reporter, we decided to create breast cancer cell lines stably overexpressing either 

STAT5a or STAT5b to assess the effect of increased levels of activated STATS on 

proliferation and survival in response to prolactin. We initially transfected the breast 

cancer cells with the HA-STAT5b plasmid as we have had previous experience working 

with this construct, and have detected it on Western blotting both in crude extracts and by 

immunoprecipitation. 

T47-D and MCF-7 cells (5x105) were plated onto 6-well plates and incubated overnight. 

The cells were co-transfected with 1µg HA-tagged STATSb plasmid and 1µg pcDNA3.1 

plasmid, which provided the selection marker, using Fugene 6 as the transfection agent. 

The cells were incubated for 48 hours to allow for gene expression before the medium 

was replaced with medium supplemented with G418 (1200gg/ml) to select transfected 

cells that had stably incorporated the pcDNA3.1 plasmid. The cells were maintained in 

this medium for 2 weeks, when the G418 concentration was decreased to 400pg/ml. 

Following the selection of resistant cells by G418, STAT5b-transfected cells were 

serially diluted and seeded into 96-well plates to obtain monoclonal populations of cells. 

Cells were incubated for 2 weeks and colonies transferred to T25 flasks, with 400pg/m1 

G418 to provide a selection pressure. A total of 13 colonies were derived from the MCF- 

7 line and 9 colonies from the T47-D line. 
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Figure 5.1 Enhanced activation of a STATS reporter by prolactin in T-47D and MCF-7 cells 

transiently overexpressing STATSb. 

T-47D or MCF-7 cells were co-lransfected with LHRE reporter plasmid (200ng) and either 

pcDNA3.1 (control vector, 200ng) or S1AT5b plasmid (200ng). 24 hours post transfection, cells 

were treated without or with prolactin (200ng ml) for 18 hours before measurement of luciferase 

activity. 
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5.2.3 Detection of Transfected STAT5b in Breast Cancer Cells by Western Blotting 

In order to detect the presence of the HA tag linked to STAT5b in colonies that 'had 

stably incorporated STAT5 cDNA, 5x106 cells from each clone were collected and lysed 

in 5O00 SLB. 400 of the crude lysate was denatured with 2xSSB and electrophoresed 

on an 8% SDS-PAGE gel. The rest of the lysate was immunoprecipitated with an anti- 

HA mouse monoclonal antibody (Sigma) (1: 1000) and immunoprecipitated proteins 

electrophoresed on an 8% SDS-PAGE gel. 

The separated proteins were semi-dry transferred to Immobilon-P membrane and the 

presence of immuno-precipitated HA-STAT5b detected using anti-STAT5b antibody C- 

17 (Santa Cruz) at a dilution of 1: 2000. Goat anti-mouse antibody at a dilution of 

1: 10,000 was used as a secondary antibody. The blot was developed using the enhanced 

chemiluminescence (ECL) kit from Amersham. Using this method, two clones expressing 

the HA tag were detected - one T47-D clone, designated T47-D. st5bl, and one MCF-7 

clone, designated MCF-7. st5bI (see Fig. 5.2). Comparing the two clones, there appears to 

be a greater expression of STAT5b in the T47-D clone, T. st5bl, compared to the MCF-7 

clone, M. st5bl. 

5.2.4 Effect of Stable STAT5b Expression on Signalling Activity 

To determine whether stable incorporation of STAT5b increased prolactin signalling 

activity via the STAT5 pathway, activation of transiently expressed LITRE reporter in 

- response to prolactin was assessed. 
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Each clone was seeded in a 24-well plate (5x104 cells in I ml) and incubated overnight. 

Cells were transfected with 200ng of LHRE reporter using Fugene 6 and incubated 

overnight. The cells were then serum-starved for at least 6 hours before treatment with or 

without 250ng/ml prolactin for 18 hours. The cells were then lysed and luciferase activity 

measured using the Dynex luminometer. 

As shown in Fig. 5.3, both clones with stably incorporated STAT5b cDNA show 

increased activation of the LHRE STAT5 reporter gene compared to the untransfected 

parent cell lines. In the parent T47-D cells, luciferase activity increased from 5±3(SD) to 

14±3(SD) (p<0.05). In clone T. st5bl, luciferase activity increased from 6±3(SD) to 

314±71(SD) (p< 0.05). 

In the MCF-7 untransfected parent line, there was only a very small increase in luciferase 

activity when cells were stimulated with prolactin (from 552+113(SD) to 680+56(SD), 

not significant), which was not unexpected due to the low level of prolactin receptor 

expressed by these cells. The MCF-7 clone stably expressing STAT5b (M. st5bl), on the 

other hand, showed a small increase in luciferase activity when stimulated with prolactin 

(423±64(SD) to 743+168(SD), p<0.05)), though this effect was largely due to a decrease 

in basal activity. Again, it should be noted that, compared to T47-D cells, the basal level 

of STAT5 signalling is much higher in MCF-7 cells, and its STAT5b clone, M. st5b. 1. 
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Figure 5.2 Detection of HA-STATSb in T47-D and MCF-7 clones by Western blotting. 

5x106 cells from each clone were lysed, and the crude extract was immunoprecipitated with the 

anti-HA antibody, and the proteins separated by electrophoresis. This blot was then probed with 

anti-STAT5b antibody (C-17, Sigma). Positive (f ve) and negative (-ve) controls are crude 

extracts from COS- 7 cells transfected with and without STA T5b respectively. 
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Figure 5.3 Effect of stable overexpression of STATSb on the ability of prolactin to activate 

the LHRE reporter. 

Parental 1.7-D and MCI -7 cells, together with clones urerexpressing SJA15h, were seeded in 

complete medium and incubated overnight. Me cells were then tran. sfected with the LHRIs 

reporter and incubated for 24 hours before being serum starved for 6 hours. Finally, cells were 

incubated in the absence or presence of 250ng prolac tin for afurther 18 hours. The results shown 

are from a typical experiment, which gave similar results on four separate occasions. 
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5.2.5 Effect of STAT5b Overexpression on the Proliferative Response to Prolactin 

5.2.5.1 Proliferative response to Prolactin Measured Using Cell Counting 

MCF-7 and T47-D cells (lml at 5x104 cells per ml) were seeded in 24-well plates. The 

cells were incubated overnight before they were washed and serum starved in SFM for 24 

hours before exposure to 250ng/ml of prolactin. After incubation for 4-5 days, cell 

number was determined by cell counting (Coulter Counter). 

Fig. 5.4 shows that while there is a modest increase in proliferation rate in the 

untransfected parent T47-D cells [(43±19(SD)x104 to 50±2(SD)xl04) cells per well], 

prolactin actually inhibits proliferation of the T. st5b1 clone. As expected, there is 

minimal effect of prolactin on the proliferative rate of MCF-7 cells, which may reflect the 

lower number of prolactin receptors in these cells. Neither was there any proliferative 

effect of prolactin on the M. st5b1 clone. This experiment was performed 4 times and a 

typical set of results is shown. From the graph, it can be seen that while the parent T47-D 

cell line exhibits a mild proliferative effect in response to prolactin, neither the 

untransfected MCF-7 parent line or either of the STATSb clones showed any increase in 

proliferative rate when compared to cells not exposed to prolactin. 
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Figure 5.4 Proliferation of clones stably expressing STAT5b as assessed by cell counting. 

Cells from the S1: 415b clones and both untransfecled T47-D and M('F-7 parent lines were serum 

starved for 24 hrs before exposure to Ong or 250ng of prolactin fr 5 days. ('ells were then 

harvested and counted on the Coulter Counter to assess proliferation. This figure is a typical 

experiment, which was performed on 4 separate occasions. 
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5.2.5.2 Proliferative response to Prolactin Measured by [3H]-Thymidine Incorporation. 

As an alternative measure of proliferative responses, thymidine incorporation was 

measured. 1x105 cells were seeded in l00µl in each well of a 96-well plate in 1%CSS and 

incubated overnight. The cells were then exposed to 250ng/ml prolactin for 18 hours 

before 12.5nCi of [3H]thymidine (in 20µl of 1 %CSS) was added to each well. The cells 

were incubated for a further 6 hours before the medium was discarded and l00µ1 of 

trypsin-EDTA added to each well for 30 minutes at 37°C. The plates were frozen at - 

20°C for at least 3 hours before harvesting of cells onto a filter mat. Activity was 

measured using a ß-microplate reader (Wallac software). 

Fig. 5.5 shows that prolactin increases [3H] thymidine incorporation in the untransfected 

T47-D cells by -36% (from 11190+850(SD) to 16640+1330(SD) p<0.05). In agreement 

with results obtained with cell counting, (Fig. 5.4) prolactin did not result in a significant 

increase in thymidine incorporation in the T. st5bl clone. Again, no response was 

detected in the MCF-7 parent line, or in its derivative, M. st5bl. 
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Figure 5.5 Effect of overexpressed STAT5b on 13HI thymidine incorporation in response to 

prolactin stimulation. 

T47-D, MC: F-7, T. st5bI and M. st5bI cells were seeded in I%C ASS and incubated overnight. Ihey 

were then exposed to Ong or 250ng of prolactin for I8hrs he/ore the addition of 13H/ thymidine. 

Thymidine incorporation was allowed to continue for 6 hours, after which cells were lvsed, 

harvested and the radioactivity measured on a ß-microplate reader. This experiment was 

performed 3 times and the figure shows the results from a typical experiment. 
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5.2.6 Does STAT5b Protect Breast Cancer cells against Apoptosis? 

5.2.6.1 Survival Assay of STAT5b Clones assessed by Cell Counting. 

MCF-7 or T47-D cells and their clones (5x104 per ml) were seeded into 24-well plates 

and incubated overnight. The cells were gently washed with SFM and then serum starved 

in SFM for 24 hours. After incubation in the presence or absence of 250ng/ml prolactin 

for 1 hour, cells were incubated with 40µM ceramide for 24 hours before FCS (10% v/v) 

was added. The cells were then allowed to proliferate for 4-5 days before being harvested 

by gentle trypsinization and cell number assessed using the Coulter Counter. 

From Fig. 5.6, it can be seen that the presence of overexpressed STAT5b in either the 

T47-D or the MCF-7 cell lines does not confer a survival advantage in ceramide-induced 

cytotoxicity. In fact, contrary to expectations, there appears to be a survival disadvantage, 

in the T47-D STATSb overexpressing clone, T. St5bl. In the untransfected T47-D parent 

cells, treatment with ceramide decreases the cell population (from 78±2(SD)xl04 to 

17+1(SD)x104, -21% of the untreated population) while in the STAT5b clone, the cell 

number decreases from 67+7(SD)x104 to 7+1(SD)x104 (-10% of the untreated 

population), a greater loss in cell number than that in the untransfected cells (p<0.005). 

Moreover, in the STAT5b over-expressing cells exposed to both ceramide and prolactin, 

the cell number decreases further to 5+1(SD)x104 (-8% of the untreated population). 

In MCF-7 cells, and the corresponding STATSb clone (M. St5bl), prolactin had no effect 

on survival. 
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Figure 5.6 Effect of prolactin on survival of STATSb expressing clones following ceramide 

exposure, assessed by cell counting. 

T-47D, MCF-7, T. st5bl or M. s(5bl cells were serum starved for 24 hrs before exposure to the 

absence or presence of 250ngýml prolactin for I hr. The cells were then exposed to OpM or 3O M 

ceramide for 24 hrs prior to being 'rescued' by IO%FCS (vv 1). The cells were allowed to 

proliferate for 4-5 days before they were trypsinized and the cell number counted by the Coulter 

counter. This experiment was performed 3 times, and the results shown are from a typical 

experiment. 
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5.2.7 Survival Assay of STAT5b Clones assessed by XTT assay 

1x104 MCF-7 or T47-D cells were plated into 96-well plates and incubated overnight. 

The cells were washed with SFM, and serum starved in SFM for a further 24 hours. Next, 

the cells were incubated in the absence or presence of 250ng prolactin for 1 hour before 

the addition of 40µM ceramide (Sigma). After 24 hours, FCS (10% v/v) was added to 

each well and the cells incubated for an additional 4 days. XTT was added and incubated 

with the cells for 4-8 hours before the colour density (570nm) was measured on a Dynex 

microplate reader. 

As shown in Fig. 5.7, neither MCF-7 cells nor the corresponding clone overexpressing 

STAT5 (M. st5bl) display a response to prolactin treatment. Fig. 5.7 also shows that in 

T47-D cells ceramide decreases the absorption at 470nm to -30% of the control. As with 

the previous assay, ceramide exposure decreases the absorption at 470nm in the STAT5b 

clone further, to -11% of control cells (p<0.05). Again, a greater decrease than that 

recorded for the untransfected parent cells. The presence of prolactin, as before, does not 

appear to contribute to the survival of the STATSb over-expressing cells. 
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Figure 5.7 Effect of prolactin on survival of STAT5b expressing clones following ceramide 

exposure, assessed by XTT assay. 

T47-D, MCP 7 and their STAT5b clones were plated into 96-well plates and the cells incubated 

overnight. The cells were serum-starved for 24 hours before exposure to Ong ml or 250ng ml 

prolactin jor I hour. The cells were then incubated in 0µM or 40pMfor 24hrs and then 'rescued' 

with lO%FCS (v, v). The cells were allowed to proliferate for 4-5 days before the addition off/7 

and the absorption at 470nm recorded. This was performed 3 times, and the figure shown 

represents a typical experiment. In each case, parental cells in the absence of ceramide are 

arbitrarily set at the value of 1. 
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5.2 
.8 

The Effect of Over-Expressed STAT5b on the Cell Cycle Profile of Breast Cancer 

Cells 

5.2.8.1 Does prolactin induce cell cycle arrest of clones over-expressing STAT5b? 

Given the results of the survival assays, we wondered whether prolactin stimulation of 

cells over-expressing STAT5b could induce cell differentiation and hence cell cycle 

arrest in GI. Flow cytometry was therefore used to assess any such effect. 

3x105 cells (T47-D, MCF-7 and their STAT5b clones) were each seeded into 6-well 

plates. The cells were serum starved for 24 hours prior to exposure to vehicle or 

250ng/ml prolactin for a further 48 hours. The cells were then collected, stained with 

propidium iodide, and the cell cycle analysed by flow cytometry. 

Fig. 5.8 shows that serum starvation induces a greater GI arrest in the T. st5bl clone, with 

80±0.4% (SD) of the cells in G1, compared to 60+2% (SD) of the parent T47-D cells 

(p<0.0001). The presence of prolactin does not alter this change. In the MCF-7 cells and 

the M. st5b1 clone, there is no cell cycle arrest, and prolactin does not alter the cell cycle 

dynamics. 

5.2.9 Attempts to Create Stable Breast Cancer Cell Lines Overexpressing STAT5a 
J 

Next, we attempted to create stable cell lines overexpressing the STAT5a protein. 
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Figure 5.8 Effect of prolactin on the cell cycle profile of STATSb overexpressing breast 

cancer clones assessed by flow cytometry. 

7.17-D, MCF-7, T. st5b I and M. st5bI cells were plated onto 6-well plates. The cells were serum 

starved for 24 hours and then exposed to the absence or presence of 250ng ml prolactin for a 

further 24 hours before they were analysed by flow cytometry. 
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T47-D and MCF-7 cells were co-transfected with 1µg HA-STATSa and 1µg pcDNA3 

plasmids as previously described. The cells were then incubated for 48 hours before they 

were exposed to G418 (1200µg/ml) for 2 weeks to select stably transfected cells. Cells 

surviving the selection process were then cloned in agarose gels. We had previously 

created STAT5b stable clones by serial dilution and it was evident that cloning by serial 

dilution was quite a harsh treatment, resulting in very few clones. Thus for the STATSa 

clones, we used a gentler cloning procedure, providing nutrients with a fibroblast feeder 

layer. 

Despite numerous attempts at agarose get cloning, we were unable to obtain any clones 

from the STATSa-transfected cell population. Observations showed that colonies were 

present, detectable at the microscopic level. However, after reaching a certain size, the 

colonies all failed to develop further and we were unable to obtain clones of breast cancer 

cells stably over-expressing STAT5a. 

5.2.10 Detection of STAT5a expression by Western blotting 

Concurrent to our attempts to create stable cell lines over-expressing the STAT5a protein, 

we performed transient transfections using the STAT5a and STATSb plasmids in COS-7 

cells to optimize detection of the proteins in stable clones. 

COS-7 cells (5x106) were seeded into 90mm dishes and incubated overnight. The cells 

were transfected with 5µg of HA-STAT5a using Fugend and then incubated for 24 hours 

before protein extraction. Crude extracts of the cells were denatured and electrophoresed 
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in an SDS-Page gel. Western blot analysis was performed using anti-HA antibody (clone 

H7). HA-tagged STAT5b-transfected COS-7 cell extracts were used as a positive control 

for both the HA-tag as well as protein expression. 

As shown in Fig. 5.9, a faint protein band running at a slightly higher molecular weight 

than STAT5b was detectable in the crude extracts of cells transfected with the HA- 

STAT5a plasmid. This is consistent with the documented size of the STAT5a protein 

(94kDa), compared to the 92kDa molecular weight of STAT5b316 Expression of the 

STAT5a protein was considerably weaker, however. Thus, although the two plasmids are 

similar constructs and under the control of the same promoter (CMV), for an unknown 

reason STAT5a expression appeared to be at a much lower level, providing a possible 

explanation for the difficulty in identifying cells stably expressing the protein. 

Unfortunately, due to lack of time it was not possible to pursue these studies further. 

5.3 Discussion 

While STAT5 has been shown to be a growth signal transducer in haematopoietic cells306 

and a survival signal transducer in red cell progenitors where it activates the transduction 

of Bcl-xL294, whether it plays a similar role in the survival of mammary cancer cells has 

yet to be determined. In mammary involution, STATS activity decreases, whilst that of 

STAT3 increases31' 
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Figure 5.9 Expression of HA-STAT5a and HA-STAT5b in COS-7 cells, assessed by Western 

blotting. 

COS-7 cells were transfected with either HA-STAT5a or HA-STAT5b plasmids. Crude extracts 

were prepared and electrophoresed. Western blotting was performed using the anti-HA antibody 

(H7 clone). 
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The purpose of the work described in this chapter was to determine whether enhancement 

of the prolactin signalling response could increase the protective effect of prolactin 

against apoptosis. In T47-D cells co-transfected with empty plasmid (pcDNA) and the 

LURE reporter, exposure to prolactin results in a small increase in luciferase activity. 

Overexpression of STAT5b together with exposure to prolactin causes this activity to 

increase at least 6-fold. From the results shown in Fig. 5.1, we can conclude that in the 

untransfected parent cell lines, levels of endogenous STATS are a limiting factor for 

activation of a STAT5 reporter. This increased activation therefore provided an 

opportunity to investigate the role of STATS in prolactin responses of breast cancer cells. 

Based on studies in other cell types, we hypothesised that STATS is involved in the 

survival pathway of breast cancer cells. Increasing endogenous levels of STAT5 might 

therefore be expected to increase signalling along this pathway following prolactin 

stimulation,, and the creation of stable breast cancer cell lines which over-express STATS 

should help to determine whether or not the STAT5 pathway is involved in anti-apoptotic 

signalling in these cells. 

Western blotting (Fig. 5.2) identified clones expressing HA-STAT5b, and LHRE reporter 

assays confirmed that STAT5b signalling was enhanced compared to that of 

untransfected parental T47-D cells (Fig. 5.3). 

Our original hypothesis was that overexpression of STATSb would either enhance 

responsiveness of cells to prolactin (if those responses were mediated by STAT5b), or be 
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without effect (if signalling pathways other than STATS were involved). Contrary to our 

expectations, the results obtained were not immediately compatible with either of these 

hypotheses. Figures 5.4 and 5.5 show that while there is a modest increase in 

proliferation in the untransfected parent T47-D cells, this is not reflected in the T47-D 

clone overexpressing STATSb. In fact, the results suggest that the level of STAT5b is not 

the determining factor in the proliferation of T47-D cells, and instead, its overexpression 

may actually inhibit the proliferative response to prolactin. As expected from earlier 

studies221283, there is a minimal effect of prolactin on the proliferative rate of MCF-7 

cells whether or not they overexpress STAT5b, presumably a reflection of the lower 

number of prolactin receptors in these cells221. 

Survival assays, whether assessed by cell counting or by the XTT assay, also suggest 

that, far from conferring protection from ceramide-induced apoptosis, over-expression of 

STAT5b actually results in increased susceptibility to ceramide-induced cytotoxicity in 

T47-D cells (Figs. 5.6 and 5.7). In MCF-7 cells prolactin has no significant effect on 

ceramide-induced cytotoxicity whether or not STATSb is overexpressed. 

Thus, contrary to our expectations, stable over-expression of STAT5b in these breast 

cancer cell lines did not enhance the proliferative or survival effects of prolactin. Instead, 

when all the data on proliferation and rate of apoptosis in T. st5b1 are considered, it 

would appear that by overexpressing STAT5b we have inadvertently created a cell line 

that could potentially be more susceptible to apoptosis. This goes against the 

conventional view that STATSb stimulation results in proliferation 318,319. Logically, it 
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should be presumed until proven otherwise that endogenous STATSb stimulation, in 

itself, will still result in proliferation of the cell population, however, it would be 

interesting to investigate how overexpressing STATSb alters the dynamics of cell 

metabolism, triggering cell cycle arrest and increasing susceptibility to apoptosis. Perhaps 

the most likely explanation for this would be that STAT5a mediates the proliferative and 

protective effects of prolactin in breast cancer cells and overexpression of STAT5b 

`squelches' the effects of STAT5a. Although STATSb appears to be expressed at a higher 

level than STAT5a in T47-D cells288, evidence from `knock-out' animals provides strong 

os evidence for a critical role of STAT5a, but not STAT5b, in mammary development3,32o 

Another possible explanation could be that over-expressed STAT5b induces 

differentiation of the T47-D cells under conditions of stress (i. e. serum starvation) so that 

the apparent increase in cell death when prolactin is added to survival assays could be 

explained by the accumulation of cells in GI as they differentiate. Cell cycle analysis of 

the clones following serum starvation (Fig. 5.8) does indeed show the accumulation of 

cells in G1, but this effect is not enhanced by prolactin, making it unlikely that STAT5b 

is promoting differentiation. There are several possibilities to consider regarding this 

unexpected response. One possibility is that STAT5b is not involved in the proliferative 

or survival pathways in T47-D cells, or if it is involved, it does not have a dominant role 

in these cells. Another possibility is that even though the basal level of STAT5 signalling 

has been increased in the STATSb clones, it is the signalling cascade downstream of this 

which is the limiting factor, and the increased STATS signalling is unable to elicit any 

further response. However, neither of these possibilities would explain why over- 
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expressed STAT5b actually reversed the expected responses. It is possible that increased 

expression of STAT5b interferes with cellular function and diminishes the ability of cells 

to withstand stress (e. g. when exposed to ceramide or deprived of serum). 

It was unfortunate that we were unable to isolate any breast cancer clones stably 

overexpressing STATSa. Since over expressed STAT5b does not appear to affect the 

ability of breast cancer cells to survive apoptosis, this indicates the possibility that 

STAT5a could be responsible for this effect, which was also suggested in a recent 

paper321. However, in view of the poor expression of the STAT5a plasmid as shown on 

Western blotting and the lack of time, we were unable to perform further studies to create 

stable STAT5a cell lines. 

In the MCF-7 cell line and its STAT5b clone, M. st5bl, the lack of prolactin response 

could be explained by the low level of expressed STAT5b (Fig. 5.2) which did not lead to 

a clear increase in STAT5b signalling (Fig. 5.3). There are several other possibilities to 

consider regarding the lack of response in MCF-7 cells. One possibility is that STAT5b is 

not involved in the proliferative or survival pathways in MCF-7 cells and its 

overexpression interferes with the functioning of whichever protein is responsible. 

Another possible reason, which would account for the high basal activity of STAT 

activation in these cells (Figs. 5.1 and 5.3), is that in this cell line STATS is constitutively 

active. This possibility is supported by a recent study showing that both T-47D and MCF- 

7 cell lines have constitutively active STAT5b322. If this is the case, it might explain why 

the cells did not exhibit any response to further STAT5b expression, as the level of 
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STAT5b may already be sufficient for maximal response in these cells. Another more 

interesting possibility would be that the expression of endogenous prolactin by the cells 

themselves 323,324 may be sufficient for maximal protection against apoptosis. This would 

also account for the failure to increase STAT5b response to prolactin stimulation. Thus in 

hindsight, it would have been interesting to measure the level of endogenous prolactin 

production in these two cell lines whilst they were in serum free conditions, in order to 

prove or disprove whether they were able to synthesis bioactive hormone despite serum 

starvation. Moreover, this could be further investigated by using neutralizing antibodies 

to prolactin to assess if this affected the cell cycle profile and apoptotic response in the 

MCF-7 cell lines. 

Finally, it is possible that the two STAT5b overexpressing clones are not `typical'. As 

only one stable clone was isolated from each breast cancer cell line, it would have been 

difficult to make any definitive conclusions from the results obtained because mutant or 

variant clones could have been inadvertently selected. 

In conclusion, over-expressing STAT5b does not appear to confer a survival advantage in 

breast cancer cells. In fact, overexpression of STAT5b seems to diminish responsiveness 

to prolactin. More work needs to be done to confirm this fording, however, as well as to 

assess what changes are induced by increased STAT5 signalling. 
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6 Induction of Apoptosis in Breast Cancer Cells by Met, a protein 

closely related to Het/SAF-B 
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6_1 Introduction 

The Met gene, identified by Dr. Shane Colley, bears a strong similarity to Het I(Heat- 

shock protein 27-Ere-Tata binding protein), also called SAF-B (Scaffold Attachment- 

Factor B) or HAP Q nRNP Al -associated protein), which was discovered independently 

by three groups32s-327. Over a region of 863 amino acids, Met shares 35% identity with 

Het/SAF-B. Like, SAF-B, Met has a SAF Box, an RNA binding domain and a 

glutamine/arginine rich region in the carboxyl terminus (Figs 6.1 and 6.2). SAF-B was 

first identified as one of four novel nuclear proteins that bind to the scaffold/matrix 

attachment regions (S/MARs) of DNA. S/MARs are thought to be responsible for linking 

chromatin to the nuclear matrix scaffold, and may be important for transcription of 

DNA 328. SAF-B is known to bind RNA polymerase 11 and is involved in alternative 

splicing of pre-mRNA326. Independently, Oesterreich et al. showed that expression of Het 

resulted in decreased transcription from the hsp-27 promoter325 and also caused down- 

regulation of transcription by the oestrogen receptor329. In addition, a third group used 

yeast two-hybrid screening to isolate a cDNA encoding a protein of 917 amino acids 

which associated with hnRNP Al (heterogeneous nuclear ribonucleoprotein Al) and had 

a sequence identical to Het/SAF-B. In the latter study, this protein was found to co- 

localize with heat shock factor-1 (HSF-1) following exposure to 42°C for 1 hour327. 
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MuMET 22 IT ELRVIDLRSELKRRNLDINGVKTVLVSRLKQAI 
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Figure 6.1 Met SAF Box and RNA binding domains. 

A) Mouse and human MET SAF Boxes aligned with corresponding domains in related proteins"". 

Numbers on the leji detail position of motifs, and Genbank sequence identifiers are listed für each 

protein (right). Conserved residues are highlighted in grey; '. ': any residue; V: YTWLIV 4A; 

'': STQNF, DRKH; 'b': KREQWFYLMI. B) RNA binding domains of mouse and human Met are 

based on previously defined sequence consensus3=1. Numbers left refer to initiating residue off' 

motif and Genbank sequence identifiers are listed for each protein. '. ': any residue; 

'U': LIVAGFWYMC; 'Z': 11, ST. Conserved residues are highlighted in grey. (Data from Dr. S 

Colley). 
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\ ZZ 
Nuclear localization signals 

Figure 6.2 Diagramatic representation of the Met protein. 

Met is a protein consisting of 1031 amino acids, - 3.7kb. It has three regions which bear strong 

homology to SAF-B, as indicated above (SAF-box, RNA binding motif and a glutamine%arginine 

rich region). Also located in the carboxy terminal are 3 nuclear localization sites. 
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Preliminary studies (performed by Dr. Shane Colley) showed that Met, like Het, down- 

regulated transcriptional activity of the oestrogen receptor in MCF-7 cells. However, 

analysis of a vector constitutively expressing ß-galactosidase (used as a control for 

transfection efficiency), suggested that increasing amounts of Met also resulted in 

decreased transcription of ß-galactosidase. Thus, over-expression of Met appeared to 

cause a generalized inhibition of transcription which might result either in cell toxicity or 

the induction of apoptosis in MCF-7 cells. The experiments described in this chapter 

were performed to further analyse the ability of Met to block transcription, and to 

investigate the possibility that Met might induce apoptosis in breast cancer cells. 

6.2 RESULTS 

6.2.1 Effect of Met on the activity of reporter genes in MCF-7 cells 

All plasmids containing the Het and Met moieties were constructed by Dr. Shane Colley, 

and all sequences were confirmed by sequencing. Full-length murine Met cDNA (3.7 kb), 

amplified by RT-PCR from mouse bone marrow, was cloned into pCR3.1 (Invitrogen) 

(pCR-Met). A BamH I/Eco RV digest of this plasmid was subcloned into Bgl II/Sma I 

digested pEYFP-C1 (Clontech) resulting in an amino-tagged enhanced yellow fluorescent 

protein (EYFP)- Met chimera: pEYFP-Met. 

pMet-HA was constructed as follows. The 3'end of Met cDNA was amplified with the 

HA tag using Pfu DNA polymerase (Promega) and specific primers (5'mid Met 

ATGGAACGCGAACGCTTGGAA and 3'HA-Met: AAAGCGGCCGCTCAAGCGTA 
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GTCTGGGACGTCGTATGGGTATGCAAATCGCCGTGGAGGTCCACT), resulting 

in a -4. lkbp fragment. This fragment was digested with Smal/Notl and the resultant 

397bp fragment isolated, and cloned into similarly digested pCR-Met, to generate pCR- 

Met-HA (pMet-HA). 

pHA-Het was constructed in the following manner. The amino terminus of the IMAGE 

clone 3611151 (GI 989737) was amplified by PCR using Pfu polymerase (Promega) and 

specific primers that coded for the haemaglutinin epitope (5'HA Het 

a aaggatccaaaatggcatacccatacgacgtcccagactacgccatggcggagactctgtcaggcct, 3'mid Het 

gtcgtcacccttcttagcatca). This resulted in a 1.6kb fragment which was digested using 

BamH I/Eco RV and subcloned into IMAGE clone 3611151. The latter was then digested 

with BamH I/Pst I and the insert released was subcloned into a similarly prepared pCR3.1 

to generate pHA-Het (with the HA tag at the amino terminus). 

Initial experiments by Dr. Colley were performed using the EYFP-Met chimera. Once an 

HA-tagged Met plasmid had become available, we decided to repeat the initial 

experiments using the HA tagged construct, which would be more comparable to the 

HA-tagged Het and would also avoid the criticism that the chimera might interfere with 

transcription as a result of toxic effects caused by the EYFP moiety. 
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6.2.1.1 Expression of Het and Met in MCF-7 cells Assessed by Western Blotting 

Fig. 6.3a shows a Western blot of the EYFP-Met chimera, reported to be migrating with 

an apparent molecular weight of 130kDa (Dr. S. Colley, personal communication). This 

blot was performed by Dr. Shane Colley. 

To confirm that HA-tagged Het and Met constructs of the appropriate size were 

expressed, a Western blot was performed. COS-7 cells (5x10) were seeded onto 90mm 

dishes and incubated overnight. The cells were then transfected with 5µg of HA-tagged 

Met or Het and incubated for 24 hours before cell lysates were prepared and Western 

blotting performed. The primary antibody was the anti-HA probe (Santa Cruz) diluted 

1: 1000, and the secondary antibody was anti-rabbit IgG (diluted 1: 10,000). 

Fig. 6.3b shows the expression of HA-tagged proteins migrating with an apparent 

molecular weight of 130kDa. Although the predicted molecular weight of the proteins is 

approximately 90kDa, Het has previously been shown to migrate at an anomalous rate 

with an apparent molecular weight of 130kDa327, probably as result of 25 charged 

domains on the molecule (basic N- and C- termini, and an acidic central amino acid 

sequence 326). It appears that MET migrates in a similarly anomalous manner. 
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Figure 6.3 Expression of Het and Met constructs. 

(a) Detection by Western blotting of pEYFP-Met expressed in MCF-7 cells (experiment 

performed by Dr. Shane Colley), (b): Detection by Western blotting of transfeeted HA-Het and 

Met-HA expressed in MCF-7 cells. 5x106 MCF-7 cells were transfected with 5µg of HA-Hei or 

Met-HA plasmids. Cells were incubated for 24 hours before being lysed and a Western blot 

performed on cell extracts using anti-HA probe (Santa Cruz). Control cells were transfected with 

empty plasmid. 
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6.2.1.2 Does overexpression of Het and Met regulate oestrogen signalling? 

The preliminary experiments performed by Dr. Colley had indicated that both Het and 

Met down-regulate a constitutively active ß-galactosidase reporter, and it was clearly 

important to confirm this fording. Also, these experiments utilized an EYFP-Met 

chimera, so it was important to show that the inhibitory effects on ß-galactosidase 

expression were not due to the EYFP moiety. Hence, the experiment was repeated using 

HA-tagged versions of both Het and Met. Oestrogen signalling was assessed using an 

oestrogen receptor response element linked to a luciferase reporter (pERE-Tk-luc332). 

MCF-7 cells (3x104) were seeded into 48-well plates and transfected with pERE-Tk-luc 

(150ng), pSV-ß-galactosidase (60ng, Promega) and varying amounts of HA-Het or Met- 

HA (50ng, 100ng, or 200ng) using FuGENE 6. A control plasmid, pcDNA3 (Invitrogen), 

was used to balance the amount of DNA used to transfect each well. Following an 

overnight incubation, the cells were serum starved for 6 hours before exposure to 10-8M 

E2 (170-oestradiol) for 18hrs. The cells were lysed and luciferase activity of the lysate 

measured using a Dynex luminometer. Concurrently, a sample of the lysate from each 

well was also assessed for ß-galactosidase activity, which was measured in a Dynex 

microplate reader. 

Fig. 6.4a confirms that both Het and Met decreased the ability of the oestrogen receptor 

to activate a reporter gene in a dose-dependent fashion (down to 43±13% (SD) of activity 
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Figure 6.4 Effect of Met and Het on reporter gene activity. 

(a): The effect of Met and Hei on the activation cif the ERE-tk-luc reporter gene by the oestrogen 

receptor. MCF 7 cells were transfected with pERE-Tk-Luc (150ng) and varying amounts of 

Met(M), Het(H) or empty plasmid (Ctrl). The cells were incubated overnight and serum-starved 

for 6 hours before treatment with 10-8M L2 for 18 hours. Next, cells were lysed and luciferase 

activity measured using the Dynex luminometer. This experiment was repeated on 5 separate 

occasions, and a typical experiment is shown here (mean } SI)). Control cells were treated with 

and without E2 and all cells transfected with Het or Met were treated with F, 2. 

(6): The effect of Het(H) and Met(M) on the activity of a constitutively active f-galactosidase 

reporter. MCF- 7 cells were transfeeted with pSL=ß-galaetosidase(IOOng) (under the control of a 

SV40 promoter) and varying amounts of Met or Het, with pcDNA3. I used to bring total DNA 

transfected up to 300ng. The cells were incubated overnight and serum-starved for 24 hours, then 

lysed and fi-galactosidase activity measured. The figure is taken from a typical experiment, which 

was performed 5 times (mean + SD). 
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of control when cells were transfected with 5Ong Het, and 47±14% (SD) of activity of 

control when 5Ong Met was used). 

Both Het and Met also caused a marked dose-dependent decrease in ß-galactosidase 

activity (Fig. 6.4b), however, even though ß-galactosidase is expressed from a plasmid 

(pSV-ß-galactosidase) under the control of a constitutively active SV40 promoter. The 

latter result suggests that Het and Met cause a generalized decrease in gene expression, 

although when ß-galactosidase results are used to `correct' oestrogen reporter results, the 

results from 5 separate experiments (Fig. 6.5) suggest that there may nevertheless be a 

specific effect on oestrogen signalling. It is possible that this effect is artefactual, 

however, resulting from differences in half-life of luciferase (about 3 hrs) and ß- 

galactosidase (over 20 hrs). For this reason, we would predict that if Het and Met block 

transcription, luciferase activity would be expected to decline more rapidly than ß- 

galactosidase, leading to a false conclusion if the former is ̀ corrected' by the latter. 

6.2.1.3 Effect of overexpressing Met on a constitutively active luciferase reporter. 

To confirm our hypothesis that inhibition of oestrogen signalling by Het329 and Met 

(Fig. 6.5) could be explained by differences in half life of luciferase and ß-galactosidase, 

we went on to investigate the effect of overexpressing Met on the activity of a 

constitutively active luciferase reporter. MCF-7 cells (1x104) were seeded into 48-well 

plates and transfected with 60ng pBR-RSV-Luc plasmid, 60ng pSV-ß-galactosidase 

plasmid, and varying amounts of Met. Following an overnight 
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Figure 6.5 Effect of Het and Met on the transcriptional activity of the estrogen reporter 

after correction of luciferase activity for ß-galactosidase activity. 

The above figure represents data from the mean of 5 experiments (each point represents 

percentage of control without Het or Met). 
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incubation, the cells were serum starved for 24 hours prior to lysis and the luciferase and 

ß-galactosidase activity measured. 

Fig. 6.6 shows that Met causes a dose dependent decrease in the activities of both 

constitutively active reporters. In accordance with our hypothesis, there appears to be a 

greater inhibition of the luciferase reporter (down to 25±2% (SD) with 50ng Met) activity 

compared to the decrease in the ß-galactosidase reporter activity (down to 38±4% (SD) 

with 50ng Met) (Student's t test, p<0.001), probably reflecting the shorter half-life of the 

luciferase enzyme. 

As a consequence of this discrepancy in the half-lives of both reporters, it is difficult to 

draw any firm conclusions regarding possible effects of Met on the activity of the 

oestrogen reporter, but the evidence would suggest that apparent inhibitory effects are 

primarily artefactual. 

6.2.2 Does Over-Expression of Met or Het Induce Apoptosis? 

The above experiments suggested that Met (and Het) have generalized inhibitory effects, 

which could be a result of, or lead to, apoptosis. As the experiments were performed in 

MCF-7 cells, we first investigated the cell cycle profile of this cell line after transfection 

with Met to determine whether the effects on reporter gene activity in the cells 

corresponded to a change in the pre-GI population of cells. 
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Figure 6.6 Effect of Met on the transcriptional activity of a constitutively active luciferase 

reporter, compared to its effect on the constitutively active ß-galactosidase reporter. 

MCF-7 cells were co-transfected with both pBR-RSV' Luc (60nß (under the control of a Roi, s 

sarcoma virus promoter) and pSV-ß-galactosidase (60ng), then serum stan'ed. for 24 hours prior 

to assaying for luciferase and fi-galactosidase activity (mean ± SD)(* :p0.01). 
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6.2.2.1 Comparison of Het and Met effects on the Cell Cycle Profile of Breast Cancer 

cells 

Plasmids encoding HA-tagged Het and Met cDNA were used to assess whether these 

proteins altered the cell cycle profile of MCF-7 cells. Transfection efficiencies of MCF-7 

cells are relatively low. Therefore, to allow identification of transfected cells, a plasmid 

encoding enhanced yellow fluorescent protein (pEYFP-C1, Clontech) was co-transfected 

with Het or Met. Using a gate that only accepted fluorescent cells, the cell cycle profile of 

the selected cell population was then analysed. 

MCF-7 cells (3x105) were seeded into each well of a 6-well plate and incubated 

overnight. The cells were co-transfected with pEYFP-C1 and either pcDNA3.1 (empty 

plasmid), HA Het, or Met-HA (1µg of each plasmid). The cells were then incubated 

overnight before serum starvation in SFM for 24 hours. The cells were collected, fixed in 

70% ethanol for 45 min at 4°C, stained with propidium iodide by incubation at 4°C for 1 

hour, and the cell cycle profile analysed by flow cytometry. The method of fixation in 

this instance was modified to a shorter incubation period as EYFP is known to leak out of 

permeabilized cells. 

Fig. 6.7 (top) shows a typical dot plot obtained with MCF-7 cells transfected with EYFP 

and stained with PI (FL1 and FL2 respectively). The gated region (polygon) shows the 

boundaries of the gate set to detect cells exhibiting EYFP fluorescence. Fig. 6.7 (bottom) 

is a histogram depicting the cell cycle profile of the EYFP transfected cell population. 

Regions have been drawn on both figures showing how the cell cycle profile (pre-G1, 
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GI, G2 and S) of the cell population is depicted. The histogram shown displays 2 peaks, 

which correspond to cells in G1 (taller peak) and G2 (shorter peak). Cells to the left of 

GI are described as the pre-GI population, while cells in S phase correspond to the 

population between the two peaks. This cell cycle profile is different from those 

previously obtained (See Fig. 2.1) because in order to analyse dual-coloured populations, 

the scales used in the dot plots for acquisition of data had to be on a log scale. In Fig. 2.1, 

being a single-colour analysis, the scale for acquisition of data was linear. 

In cells transfected with Het, the pre-G1 population of MCF7 cells increases from 12±3% 

(SD) (control cells) to 16±4% (SD) (Student's t test, p<0.05), and in cells transfected 

with Met, the preGi population increases to 23±6% (SD) (Student's t test, p<0.05). This 

represents the mean of 6 experiments, each experiment being performed in quadruplicate. 

Moreover, the pre-GI accumulation induced by Met is significantly higher than that 

induced by Het (Student's t test, p<0.001). When all 3 groups (pre-G1 populations from 

control, Het-transfected and Met-transfected cells) are compared by ANOVA, a 

significant difference between all the groups was found (p<0.001). The results from a 

typical experiment are shown in Fig. 6.8. 

6.2.2.2 Use of the EYFP-Met construct to analyse the effect of Met overexpression on the 

Cell Cycle Profile of MCF-7 Breast Cancer cells 

The pEYFP-tagged Met plasmid was used to investigate ability of Met to induce 

apoptosis in greater detail. This construct provided a simple method for analysing the 
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Figure 6.8 Comparison of the effects of Het and Met on the cell cycle profile of MCF-7 cells. 

Cells were co-transfected with pEY1, P-Cl (1µt; ) and either pcDNA3 (YP) (empty plasmid, I, uy) 

Het-HA (YH) (1µg) or HA-Met (YM) (lug). After an overnight incubation, cells were serum 

starved for 24 hours before they were collected and stained with PI for cell cycle analysis. This 

figure represents a typical experiment, of which 5 were performed in quadruplicate(mean ± SD) 

(* = p<: 0.05). 
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transfected population on the flow cytometer, because only transfected cells would 

exhibit EYFP fluorescence, enabling detection by the flow cytometer. Such an analysis is 

otherwise compromised by the fact that only a small proportion of cells are transfected. 

The pEYFP-C1 plasmid (Invitrogen) was used as a control. 

MCF-7 cells (3x105) were seeded into each well of a 6-well plate. The cells were 

transfected with EYFP-C1 or EYFP-Met (l µg of each plasmid) using FuGENE 6 (31l). 

After an incubation of 24 hours, cells were washed and transferred to SFM for a further 

24 hours. The cells were then collected, fixed and stained with propidium iodide before 

analysis by flow cytometry. 

Fig. 6.9 shows that the pre-G1 population of MCF-7 cells increases markedly when cells 

were transfected with Met. From the mean of 4 separate experiments, each experiment 

performed in quadruplicate, the increase was from 10±5% (SD) in control cells 

transfected with pEYFP to 37+10% (SD) in cells transfected with the pEYFP-Met 

(p<0.05). Importantly, the previous experiment (Fig. 6.8) using the HA-tagged proteins 

show that apoptosis induced by EYFP-Met is not due to the EYFP-moiety. 

6.2.2.3 Effect of Met on the Cell Cycle Profile of the mouse fibroblast cell line, MC3TC 

The Met gene was identified by screening a cDNA library of the bone marrow of an 

oestrogen-treated mouse. Thus, before proceeding any further with experiments in human 

cell lines, we wished to confirm that the effect of Met was reproducible in murine cells. 
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Figure 6.9 Effect of EYFP-Met on the cell cycle profile of MCF-7 cells. 

MCF-7 cells were transfected with pEYFP-C1 (Ipg) or pEYFP-Met (lµg. ('ells were serum 

starved for 24 hours before they were collected and stained with PI for cell cycle analysis. This 

experiment was performed 4 times, and a typical experiment is shown (mean ± SD) (* p<- 0.05). 
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We therefore decided to investigate the effect of over-expressing Met on the cell cycle of 

the MC3T3 mouse cell line. MC3T3 cells (a mouse calvarial fibroblast cell line) (3x105) 

were seeded into 6-well plates and transfected with either 1µg of pEYFP-C 1 (empty 

plasmid) or pEYFP-Met using FuGENE 6. The cells were incubated for 24hrs, before 

being transferred to SFM for a further 24hrs. Following serum-starvation, the cells were 

collected, fixed and stained with propidium iodide and the cell cycle analysed by flow 

cytometry. 

Fig. 6.10 shows that in the MC3T3 cells, Met induces a clear increase in the pre-G1 

population from 6+3% (SD) to 21+7% (SD) (Student's t test, p value). Thus we can 

conclude that the apoptotic effect is not due to inter-species differences in proteins. 

6.2.2.4 Effect ofMet overexpression on the cell cycle profile of different cell lines 

To ascertain whether the effect of Met on the cell cycle was limited to specific cancer 

cells, or if it was a universal effect and would affect all cell lines in the same way, we 

used Ros (rat osteosarcoma), HepG2 (human hepatocarcinoma), HeLa (human cervical 

adenocarcinoma) and SF (human fibroblast, primary culture) cell lines. For these 

experiments, 3x105 cells from each line, seeded in 6-well plates, were transfected with 

1µg of pEYFP-C1 or pEYFP-Met as described before. 

From Fig. 6.11, it can be seen that Met induces apoptosis in all of these cell lines, albeit 

to different extents. In Ros cells, the pre-GI population increases from 9±4% (SD) to 

18±6% (SD) (p<0.001). In HepG2 cells the increase is from 4+1% (SD) to 17+3% (SD) 
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Figure 6.10 Change in cell cycle profile of mouse MC3T3 cells following transfection with 

Met. 

MC373 cells were transfected with either pEYI P (control plasmid) or pE, YPP-Met. After an 

overnight incubation, the cells were serum starved for 24 hrs before they were collected, fixed 

and stained with PI, for analysis of the cell cycle profile by. f ow cytometry. This experiment was 

performed 3 times, and a typical experiment is shown (mean ± SD) (* -- p 0.05). 
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Figure 6.11 Effect of EYFP-Met on the cell cycle profile of various cell lines. 

3x105 cells from each of the cell lines shown above were plated out and transfecied with pEYI"'P- 

C1 (1pß or pEYTP-Met (jug). Cells were incubated overnight, followed by serum-starvation for 

24 hours before they were collected and stained with PI for cell cycle analysis. (A) Ros cells, 

(B) = HepG2 cells, (C) -- Hela cells and (D) = SF cells. Figures shown are representative of a 

typical experiment, experiments were performed in quadruplicate and each was repeated 3 

separate times (mean ± SD). 

(B) HepG2 cell line 
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(p<0.001). In the HeLa cell line, it increases from 17±4% (SD) to 33+5% (SD) (p<0.001) 

and in the SF (human fibroblasts) cell line, pre-GI increases from 4+2% (SD) to 17±2% 

(SD) (p< 0.001). The changes in pre-G1 are tabulated in Table 6-1. All statistical 

analyses were performed using the Student's t test. 

In addition to studying changes in the proportion of cells in the pre-GI phase, we went on 

to analyse the data from all cell lines to assess changes in cell cycle profile of the 

viable/intact cell population (i. e. cells in G1, G2 or S phase of the cell cycle). From our 

calculations, there appeared to be a general trend for the G1 population to increase, the 

G2 population to decrease and the S phase cells to remain constant, when cells were 

treated with Met (Table 6-2). However, in all but the HeLa cell line, these changes were 

not statistically significant. 

6.2.2.5 The effect ofMel on the cell cycle profile of breast cancer cells in the presence of 

serum. 

Because the initial aim of these studies was to assess the effect of Met on oestrogen 

signalling, all studies were carried out in serum-free conditions. To determine whether 

Met induced apoptosis only under conditions of stress (i. e. serum starvation) or whether it 

was a more generalized effect, MCF-7 cells (3x105) were seeded onto 6-well plates and 

incubated overnight. The cells were transfected with either 1µg of pEYFP-C 1 or pEYFP- 

Met and incubated overnight. The next day, half of the cells from each group of 

transfected cells were washed and subjected to serum-starvation as in previous 
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Cell Line % EYFP-transfected cell 

population in pre-GI 

% EYFP-Met-transfected 

cell population in pre-G1 

Student t- 

test 

Mean + SD (No. of samples) Mean + SD (No. of samples) 

MCF-7 10 ±5 (15) 37 ± 10 (16) p<0.05 

HeLa 17+3 (11) 33+5 (12) p<0.05 

HepG2 5+3 (16) 24 ± 15 (16) p<0.05 

MC3T3 6+3 (12) 21+7 (12) p<0.05 

Ros 9+4 (12) 18+6 (12) p<0.05 

SF 4+2 (15) 17+2 (14) p<0.05 

Table 6.1 Change in the proportion of cells in the pre-GI population without (EYFP) or 

with (EYFP-Met) the expression of Met. 
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Cell line 
% Viable population % Viable population % Viable 

(transfected 
in GI in G2 population in S 

plasinid) 

Mean I SD Mean + SD Mcan f SD 

HepG2 (YFP) 20+5 74 +5 6+2 

HepG2 (YFP-Met) 22 +4 68+5 11 +4 

HeLa (YFP) 45 + 6* 44+9 11 ±3 

HeLa (YFP-Met) 58+4* 31 +5 11 +l 

MCF-7 (YFP) 58+ 11 34+8 8+3 

MCF-7 (YFP-Met) 63+7 29 ±6 8+2 

MC3T3 (YFP) 40+ 12 49 + 14 11 +3 

MC3T3 (YFP- 
42+3 42+8 16±6 

Met) 

Ros (YFP) 52+15 41+15 6.4+1 

Ros (YFP-Met) 63 + 10 30 + 11 6+2 

SF(YFP) 40+4 52+4 8+4 

SF(YFP-Met) 42+4 50+4 9±4 

Table 6.2 Tabulation of the changes in the cell cycle profile of the viable cell population 

after treatment with Met. 

The difference between the preGi populations of YEP-transfected HeLa cells is signifrcanil}y 

different to that of the YFP-Met transfected cells (* = p<O. 05, Student's t test). 
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experiments. The other half of the transfected cells were left in normal medium 

containing 10%FCS until they were collected and stained with PI for cell cycle analysis. 

Fig. 6.12 shows that in the absence of serum, the proportion of cells transfected with Met 

in the pre-GI phase is 39±4% (SD), while in the presence of serum, 47±7% (SD) of the 

cells are in the pre-GI phase. This is in comparison to a pre-GI population of 9±3% (SD) 

in the control cells transfected with EYFP alone. Thus the ability of Met to induce 

apoptosis in MCF-7 cells is independent of whether or not the cells are stressed by serum 

deprivation. 

6.2.2.6 Does Met cause apoptosis as assessed by Hoechst staining? 

We next proceeded to verify that the increase in pre-GI population detected by flow 

cytometry is due to `classical' apoptosis. HeLa cells have been documented to undergo 

apoptosis under various conditions, which is detectable by Hoechst staining 333,334. Thus 

we examined pEYFP-Met transfected Hela cells by Hoechst staining to confirm that 

apoptosis is induced by Met. 

HeLa cells (2x105) were seeded into 60mm dishes and incubated overnight. The cells 

were transfected, with either 1µg of pEYFP-C1 or pEYFP-Met, and incubated for a 

further 24 hours. The cells were then serum starved for 24 hours before being fixed 

(2%PFA/PBS, 20 min at room temperature) and stained with Hoechst (IOµg/ml, 15min at 

room temperature in the dark). Fluorescent microscopy was performed and 300 

fluorescent cells per dish were counted. From the pictures taken, it can be seen that the 
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Figure 6.12 The effect of serum on the activity of Met. 

EYFP 
EYFP-Met/SFM 

D EYFP-Met/10%FCS 

MCF-7 cells were iransfected with pEYI''P-('/ or J) YI''P-Met (Ipg each) and incubated 

overnight. The following day, cells were eüherwashed and serum-starved for 24 hours (SFM or 

left in normal medium for 24 hours (DMEM). The cells were collected as usual, stained with PI 

and the cell cycle profile analysed by flow cylometry. This experiment was performed in 

quadruplicate, and repeated 3 times. The figure shows a typical experiment (mean ± SD) 

(/)- 0.01, Student's 1 ! es! ). 
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pEYFP-Met transfected cells (Fig. 6.13a) correspond to cells with the classical features of 

apoptosis, shown by Hoechst staining (Fig. 6.13b). Cell counts of the pEYFP and 

pEYFP-Met transfected cells (Fig. 6.13c) show an increase in apoptotic index from 3+1% 

(SD) to 20±2% (SD) (p<0.001), consistent with results obtained by cell cycle analysis 

(Fig. 6.11). 

6_3 DISCUSSION 

At the start of this project, all current knowledge regarding the Met protein was from 

work performed by Dr. Shane Colley. A fragment of the Met gene was isolated from the 

bone marrow of oestrogen-treated mice by PCR based subtractive hybridization. A full- 

length virtual cDNA sequence coding for a protein of 1031 amino acids was then 

generated based on this fragment and using homologous EST sequences. A 3.7kb product 

was then amplified and cloned from mouse bone marrow cDNA by RT-PCR, using 

primers designed on the basis of the virtual cDNA sequence. A corresponding virtual 

human Met sequence (91% homologous to the mouse sequence, 98% if conserved 

substitutions are taken into account) was generated using human ESTs335 and consisted of 

1034 amino acids. 

Met was found to share 35% homology with Het over 863 amino acids, with the greatest 

homology occurring in three distinct regions of the peptide (Fig. 6.1). The first of these 

conserved regions is a SAF box, which is located between amino acids 22-56 of the Met 

sequence. The SAF box proteins are known to bind to scaffold/matrix attachment regions 
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Figure 6.13(a, b& c) The induction of apoptosis in HeLa cells by Met, assessed by Hoechst 

staining. 

HeLa cells were transfected with lug of pEYFP-C1 or pEYFP-Mel. The cells were incubated 

overnight and then transferred to SFM for 24 hours. Next, cells were fixed and stained with 

Hoechst and assessed by fluorescent microscopy. Fig. 6.13(a): EYFP-Met-transfected cells seen 

through filter for EYFP(scale bars: 5um), (b): EYFP-Met-transfected cells seen under filter for 

Hoechst staining. Fig. 6.13(c) shows the change in apoptotic index of HeLa cells after expression 

of Met, assessed by cell counting. This experiment was performed in triplicate, and repeated 3 

times (mean + SD). The results shown are those ofa typical experiment. 
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(S/MARs) which are believed to be involved in the regulation of chromatin expression 

and gene expression328,336. The next conserved domain in Met corresponds to an RNA 

binding domain (beginning at residue 382). Such domains are usually about 80 amino 

acids long and contain two well-conserved sub-motifs RPN-1 (octamer) and RPN-2 

(hexamer)331. A similar sequence is also found in Het327, and similar sequences on other 

proteins have been shown to alter pre-mRNA splicing, and hence cellular responses such 

as growth, differentiation and apoptosis337. 

A third motif conserved between the Met and Het proteins which is rich in glutamine 

(26%) and arginine (31%) residues falls between residues 652-740 of Met, and there is 

73% identity between the two. In the Het protein, this sequence has been shown to 

interact with hnRNP D338, and was proposed to be responsible for the effect of Het on the 

transcriptional activity of the oestrogen receptor. Nayler et a1339 demonstrated that the C- 

terminal portion of SAF-B was able to bind the C-terminal domain (CTD) of the large 

subunit of RNA polymerase II. 

The Met sequence has also been shown to contain 3 separate nuclear localization signals, 

beginning at residues 593,726 and 800, all of which are found at the carboxyl end of the 

protein. Using Northen blot analysis, Met has been shown to be present in most tissues of 

the mouse (analysis performed by Dr. Shane Colley in this lab) (Fig. 6.14). 

Like Het, Met appeared in initial experiments to downregulate the transcriptional activity 

of the estrogen receptor. More careful analysis, however, showed that it also causes a 
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down-regulation of the constitutively active ß-galactosidase reporter (Fig. 6.4b). Although 

`correction' of luciferase activity by ß-galactosidase appears to leave a residual inhibitory 

effect of Het and Met on oestrogen signalling, it seems likely that differences in half-life 

of these two proteins are responsible for these changes, raising doubts about the earlier 

reports describing Het as a regulator of oestrogen signalling329. Similar arguments may 

apply to the ability of Het to downregulate Hsp27 transcriptional activity in various cell 

lines325. Experiments described in this thesis clearly show the potential for 

misinterpretation of reporter assays when a constitutively expressed reporter is used to 

control for transfection efficiency of a regulatable reporter340. 

That Met behaves in a similar manner to Het is not entirely unexpected. Het has been 

shown to bind RNA polymerase II (Pol 11)326, so the ability of Met to interfere with 

reporter gene activity could be due to its effect on RNA polymerase II activity. If Met 

does indeed function at the level of the polymerase, it would explain why it has a 

generalized effect on cellular activity, rather than exerting effects on specific gene 

sequences. 
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Figure 6.14 Northern Blot showing expression of Met mRNA in various tissues (BM= bone 

marrow. Experiment performed by Dr. S. Colley). 
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From the experiments described in this chapter, we conclude that Met induces apoptosis, 

not just in the MCF-7 breast cancer cell lines, but also in other cancer (HepG2, HeLa 

cells) and non-cancerous (SF) cell lines (Table 6.1). This effect is also preserved across 

the species barrier (Ros and MC3T3), as established by cell cycle profiling, and 

confirmed by Hoechst staining (Fig. 6.14). In HeLa cells, the remaining viable cell 

population appears to be arrested primarily in the G1 phase, with a corresponding 

decrease in the G2 population. The proportion of cells in the S phase remained 

unchanged (Fig 6.12). Similar changes were noted in the other cell lines, but these were 

not statistically significant (Table 6.2). 

From results shown in Figs. 6.9 and 6.8, apoptosis induced using the EYFP-Met chimera 

(37±10% (SD)) appears to be greater than that detected when HA-tagged Met is used 

(23+6% (SD)). This discrepancy may be due to preferential leakage of EYFP from cells 

(co-transfected with pEYFP and HA-Met) in late apoptosis owing to leaky membranes. 

Leakage of enhanced green fluorescent protein (EGFH) from permeabilized cells is 

known to occur (infomation from Invitrogen website). EYFP is very similar to EGFP 

(created by performing 4 amino acid substitutions to EGFP) in structure and size, and it 

can be expected to behave in a similar manner. In contrast, when cells are transfected 

with the EYFP-Met chimera, owing to the larger size of the product, there is less likely to 

be loss of EYFP. 

Similarly, the extent of apoptosis induced by Met varies depending on the cell line in 

question (Table 6.1). In Ros and HeLa cell lines, Met induces a twofold increase in the 
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amount of apoptosis detected, whereas in the MCF-7 and MC3T3 cell lines, this increase 

is threefold. In the HepG2 and SF cell lines, the increase is fourfold. The difference does 

not appear to be due to interspecies differences as Ros and MC3T3 cell lines are derived 

from rat mouse respectively. The difference in apoptosis detected could be attributed to 

several factors, the first being differences in transfection efficiency. A difference in the 

response of each cell line to serum starvation, leading to changes in cell cycle 

progression, survival signalling, and how these affect the response of the cell to apoptois 

could also be responsible. Another factor that has to be considered is the effect of 

transformation/immortalization on susceptibility to apoptosis. SF fibroblast cells were 

found to be particularly prone to apoptosis. These are primary untransformed cells and 

their reaction to Met is consistent with the hypothesis that the further along the 

transformation pathway a cell has gone, the more resistant it is to apoptosis. This leads on 

to the third possibility that the amount of apoptosis induced is affected by the presence or 

absence of mutations affecting the apoptotic programme, which will vary from cell line to 

cell line. 

Most probably, decreased expression of reporter plasmids is linked to the induction of 

apoptosis by Met and could, for example, result from decreased gene expression or 

mRNA translation, or increased mRNA or protein turnover. Given the similarity between 

Met and Het, together with evidence that Het interacts with RNA polymerase II, it seems 

likely that one consequence of overexpressing Met might be inhibition of mRNA 

synthesis. Whether or not effects on reporter genes are linked to the ability of Met to 

induce apoptosis is unclear. One possible path by which Met could induce apoptosis 
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would be by affecting alternative splicing, since Het has been shown to regulate 

alternative splicing339. Thus, Met may favour the splicing of or induce the transcription of 

pro-apoptotic proteins which result in apoptosis 

Alternative splicing is a rapidly advancing field despite its relative infancy. The 

discovery that various cell proteins and enzymes exist in various isoforms, each 

possessing a unique function, has opened up another avenue by which cells can regulate 

their activities and response to extracellular stimuli341. Studies on key apoptotic 

components confirm that one mechanism of regulation could well be via alternative 

splicing. The best known example of alternative splicing in apoptosis is that of the Bcl-X 

protein. This exists as two isoforms, a long form (Bcl-XL), well known for its anti- 

apoptotic effect, and a short form (Bcl-Xs) which has been shown to be pro-apoptotic3a2 

In the same study, caspase-9 was also shown to have both pro-and anti-apoptotic 

isoforms. One of the earliest caspases to be discovered, caspase-2 (or Ich-1), has a pro- 

apoptotic long form and a short anti-apoptotic form3a3,3aa In addition, alternative splice 

forms for Apaf-1345 and caspase-8346 have also been identified and their apoptotic 

activities investigated. 

In view of these findings, we decided to characterize the Met protein further, by 

investigating its cellular localization, its co-localization with sites of transcription, and 

whether it alters transcription and mRNA processing. 
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7 Met Expression and Function 
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7.1 Characterization of Met 

Because of its similarity to HetJSAF-B, in the previous chapter we investigated the 

involvement of Met in oestrogen signalling. In this chapter, we investigate other possible 

similarities between the two proteins, such as cellular localization. Also, because 

Het/SAF-B has been shown to be involved in pre-mRNA processing339, we hypothesized 

that induction of apoptosis by Met might result from altered RNA processing. All 

confocal images were acquired using a Leica TCS-NT confocal laser scanning 

microscope attached to a Leica DM RBE upright epifluorescence microscope with phase- 

contrast. Leica software was used to process the images acquired. 

7 1.1 The cellular distribution of Met 

HeLa cells (1x105) were grown on coverslips in 6-well plates and incubated overnight. 

The cells were transfected with 1µg of either pEYFP-C1 (control plasmid) or pEYFP-Met 

using Fugene6 and incubated for 48 hours to allow for protein expression. The coverslips 

were fixed (2% PFAIPBS, 20min at room temperature) and mounted onto glass slides 

(BDH) and viewed by confocal microscopy to determine the cellular distribution of Met. 

From Fig. 7.1, it can be seen that Met is confined entirely to the nucleus, in a speckled 

distribution similar to that reported for Het/SAF-B. In addition, as with HeVSAF-B 325, it 

is clear that Met is also excluded from the nucleolus. 
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(a) (b) 

Figure 7.1 Cellular distribution of Met assessed by confocal microscopy. 

HeLa cells were grown on coverslips and transfected with either pEYIT(a) or p/; YI P-Met(h). 

The cells were fixed and mounted onto glass slides and viewed by confocal microscopy. (Scale: 

white bar: 5pm) 
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7.1.2 Comparison of Met localization with other proteins 

7.1.2.1 Does Met co-localize with the SC-35 splicing factor? 

As Met has a speckled distribution in the nucleus, we investigated the possibility that it 

might co-localize with a nuclear protein that displays the `classical' speckled distribution 

within the nucleus, namely a serine/arginine-rich (SR) splicing factor. The SC-35347 

splicing factor is one such protein localized to nuclear speckles. Although initial studies 

with a partial Het/SAF-B sequence did suggest co-localization between the two339, a 

subsequent study showed that Het/SAF-B speckles were distinct from speckles 

containing SC-35327. 

1x105 HeLa cells were grown on coverslips in 6-well plates and incubated overnight. The 

cells were transfected with 1µg pEYFP-Met using Lipofectamine Plus and incubated for 

48 hours to allow for protein expression. The coverslips were fixed (2% PFA/PBS, 20min 

at room temperature) and permeabilized (0.1% Triton X/PBS, 5min, room temperature). 

The cells were then blocked with 1%BSA/PBS for 20min at room temperature. Next, the 

cells were incubated with mouse anti-SC-35 primary antibody (Sigma, 1: 1000 dilution in 

1%BSA/PBS) overnight at 4°C. Following 3 washes with 1%BSA/PBS, the cells were 

incubated with Cy3-conjugated donkey anti-mouse secondary antibody (Jackson 

Immunology) (1: 800 dilution in 1%BSA/PBS) for 1-1.5 hrs at room temperature in the 

dark. After 3 washes with PBS, the coverslips were mounted onto glass slides using 

DAKO fluorescent mounting medium and the slides analysed by confocal microscopy. 

Fig. 7.2 shows that Met does not co-localise with the splicing factor SC-35, but forms 

distinct speckles. 
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Figure 7.2 Distribution of Met compared with that 

of SC-35, an SR protein, assessed by confocal 

microscopy. 

HeLa cells were grown on coverslips and transfected 

with EYFP-Met. The cells were fixed, permeahilized 

and then stained for SC-35. Following detection of the 

primary antibody using a donkey anti-mouse 

secondary antibody, the coverslips were mounted onto 

glass slides and viewed by confocal microscopy. Cells 

transfected with YFP-Met(top), distribution of S(7- 

35(middle), and overlay showing different 

distributions of Met and SC-35(bottom). (Scale: while 

bar: S1um) 
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7.1.2.2 Co-localization ofMet with Het 

We next studied the distribution of Met in comparison to Het. HeLa cells were plated out 

as before and co-transfected with 1µg of both pEYFP-Met and pHA-Het. Following a 48 

hour incubation, the cells were fixed, permeabilized, and blocked before staining for the 

Het protein using an anti-HA mouse monoclonal antibody (Sigma, 1: 5000 dilution) (4°C, 

overnight). The cells were washed 3 times with 1%BSA/PBS and then incubated with the 

secondary antibody (anti-mouse linked to Cy3, Jackson Immunology) (room temperature, 

1-1.5 hrs in the dark). The cells were then washed 3 times in PBS and then mounted onto 

glass slides. 

Fig. 7.3 shows that Met partially co-localizes with Het (white arrows). The co- 

localization is not complete, however, as shown by the presence of some green (Met) 

speckles in locations where Het appears to be absent (broad arrows) suggesting that 

functions of the two proteins may not be identical. 
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Figure 7.3 Co-localization of EYFP-Met with HA- 

Het. 

Hela cells were transfected with pEYFP-Met and HA- 

lfet. The cells were fixed and stained with anti-HA 

antibody before viewing under the confocal 

micro. sccope. The pictures show the distribution of Met 

(top, Het (middle) and an overlay of both images 

('bottom) showing co-localization of Het with Met. (co- 

localization: narrow arrow; lack of co-localisation: 

broad arrows. ). (Scale: white bar. - S/tm) 
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7.1.2.3 Does Met co-localize with the oestrogen receptor (ER)? 

Although our initial experiments did not provide evidence in favour of a role for Met in 

the regulation of oestrogen receptor activity, we could not completely rule out such an 

interaction. In addition, several studies have shown that members of the nuclear hormone 

receptor family form discrete foci within the nucleus after activation by ligand 48,149 The 

question then arises whether these foci, which probably represent sites of gene regulation, 

coincide with Met speckles. Therefore, we decided to compare the distribution of Met 

with the ER. As it is quite difficult to detect endogenous ER, we used a red fluorescent 

protein tagged ER chimera (pRFP-ERa, provided by Donald McDonald). HeLa cells 

were co-transfected with 1µg of both pEYFP-Met and pRFP-ERa. After a 48 hour 

incubation, the cells were exposed to 10$M E2 for 1 hour, then fixed and mounted onto 

glass slides before viewing under the confocal microscope. 

Fig. 7.4 shows that Met (green) does not co-localise at all with ERa (red) in the absence 

of E2. Although it has been reported that E2 results in nuclear relocalisation of ER 349, We 

found that the images were unchanged for cells that had been exposed to E2 (Fig. 7.4d) 

showing that ERa either does not undergo nuclear localization on ligand binding, or else 

this change was very transient. 

7.1.3 Mechanism of Action of Met 

Met and Net induce apoptosis when overexpressed in cells while Net has been shown to 

alter splicing. Since changes in splicing have been linked with the induction of 

apoptosis342, "5°, we decided to investigate the possibility that the mechanism of Met 
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Figure 7.4 Distributuion of Met compared with the Oestrogen receptor (ER). 

MCF-7 cells were transfected with pEYFP-Met and pRFP-fina, incubated for 48hrs with or 

without exposure to 10-$M B2 for I hr, prior to fixing and analysis under the confocal 

microscope. (a) shows the distribution of EYFP-Met in MCF- 7 cells, (b) shows the distribution oJ' 

ERa, and (c) shows an overlay of the two images, with different distributions of Met and the LR. 

(d) shows an overlay of Met and ER following treatment with E2. (Scale: white bar: Slum) 
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action might involve altered splicing of caspases. 

7.1.3.1 The presence of Ich-1L and Ich-IS in HeLa cells 

43 Caspase 2 has been shown to have two isofonm which result from alternative splicing' 

The full-length caspase, called Ich-1L, is a 435 amino acid product, while the truncated 

form, Ich-1 s, is only 312 amino acids long. Figure 7.5 shows the isoforms of caspase-2, 

and how they arise following splicing from the two 5' donor splice sites (blue arrows). 

Splicing of the distal site (5'a) results in an mRNA encoding the full-length caspase-2. 

When the proximal site (5'b) is spliced, 61 base pairs of the intron (blue rectangle) are 

included in the mRNA sequence, resulting in the inclusion of an early Stop codon (red 

arrow), and hence translation of a shortened protein. 

The primers used in the reverse transcription - polymerase chain reaction (RT-PCR) are 

those described by Wang et al3a3 The purple triangles indicate the approximate positions 

of the primers. RT-PCR of mRNA is expected to result in two products, corresponding to 

the long and short forms of caspase-2. Owing to inclusion of the additional 61bp of the 

intron, following splicing at the proximal 5'site (5'b) for Ich-ls, the resulting PCR 

product is longer (-295bp) than the PCR product for Ich-IL (the full caspase-2) which 

does not include the additional 61 bases (-234bp). Thus when the products are 

electrophoresed on an agarose gel, the larger product corresponds to Ich-Is, while the 

smaller product corresponds to Ich-1L. 
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Figure 7.5 Alternatively spliced forms of Caspase -2 (Ich-1). 

Caspase 2 has two isoforms that arise due to alternative splicing of the 5 splice site. Splicing of 

the proximal site (5' b) results in the inclusion of a 61bp sequence, and places in frame a 

translational stop codon 21 amino acids downstream of the insertion site. This early stop codon 

results in the translation of a shortened protein, the truncated caspase 2 (Ich-IS). Splicing of the 

distal 5'splice site excludes the 61bp sequence and the early termination codon, resulting in the 

full length caspase 2 protein (Ich-IL) (Purple triangles: position of primers, showing how the 

PCR product from Ich-I L is shorter than the product from Ich-1 S)343. 
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3x107 HeLa cells were trypsinized, washed in PBS and resuspended in RNAlater 

(Ambion). Total RNA was then extracted from the cells using the RNAeasy Midi Kit 

(Qiagen) and poly(A+) RNA was isolated using the PolyATract Isolation System IV 

(Promega). mRNA was then reverse transcribed and the cDNA obtained subjected to a 

polymerase chain reaction (Access RT-PCR Kit, Promega), using primers for the Ich-1 

gene. These primers are on separate exons, separated by an intronic sequence of 2.8kb in 

genomic DNA, so avoiding the risk of amplifying genomic DNA. 

The primers were: 

Forward: GTT ACC TGC ACA CCG AGT CAC G 

Reverse: GCG TGG TTC TTT CCA TCT TGT TGG TCA 

The following PCR conditions were used: 1mM magnesium sulphate, 50pmol of each 

primer, and 20mM dNTPs. Reverse transcription was performed at 48°C, for 45 min, 

followed by a2 min denaturation at 94°C. The following PCR cycle was used: 40 cycles 

of 94°C for 1 min, 57°C for 1 min and 68°C for 2 min, and a final extension at 68°C for 

10 min. 

The products of the PCR reaction were electrophoresed on a 2% TAE agarose gel. Fig. 

7.6 shows a band migrating at -295bp and a weaker band at -234bp, corresponding to 

Ich-ls and Ich-1L respectively. 
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4 234bp (Ich-1L) 

Figure 7.6 RT-PCR of HeLa mRNA to demonstrate presence of the mRNA for Ich-Is 

(295bp) and Ich-1L (234bp). 

mRNA from HeLa cells was extracted and RT-PCR using primers specific for Ich-1 was 

performed (The control (Ctrl) was performed using a water blank). 
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7.1.3.2 Effect ofMet on alternative splicing ofpro-caspase2 

We next investigated the possibility that overexpression of Met in HeLa cells might result 

in a change in the amounts of the alternative spliced forms of Ich-1L and Ich- I Is 

3x106 cells were seeded in 100mm dishes and transfected with either 4µg of pcDNA3 (P) 

or pMet-HA (M) using Lipofectamine Plus reagent. The cells were incubated for 48 

hours and RNA extracted with the RNAeasy Kit (Qiagen). mRNA was isolated as before. 

The mRNA was then reverse transcribed and PCR performed using the Access RT-PCR 

kit (Promega), with the same conditions as described previously. 

Fig. 7.7 shows the cDNA products from RT-PCR of mRNA extracted from HeLa cells 

transfected with either pcDNA3 (P) or pMet-HA (M). In cells transfected with Met, the 

amount of PCR product for both the long and short forms of caspase-2 appears to be 

increased compared to the cells transfected with the empty plasmid. RT-PCR for 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the mRNA samples was 

subsequently performed as a control to assess consistency of mRNA extraction between 

the 6 samples. The primers used for PCR of GAPDH were as follows: 

Forward primer: AAGGCTGAGAACGGGAAGCTTGTCATCAAT (exon 3, bp241-270) 

Reverse primer: TTCCCGTCTAGCTCAGGGATGACCTTGCCC (exon 7, bp 740-711) 

The results in Fig. 7.8 show an increase in GAPDH amplification with mRNA extracted 
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4 295bp 

4 234bp 

Figure 7.7 cDNA products from RT-PCR assessing the effect of overexpressing Met on the 

relative abundance of the alternatively spliced forms of the Ich-1 (caspase 2) gene. 

HeLa cells were transfected with pcDNA3 (empty plasmid, pcDNA) or pMet-HA plasmid (Met) 

and incubated for 48hrs. 3 separate transfections with each plasmid were performed and the RNA 

extracted separately. mRNA was then isolated and RT-PCR using specific primers was 

performed The product from the Ich-1S is 295bp, and the product from the Ich-IL isoform is 

234bp. (M. " markers) 

S00bp 

Figure 7.8 cDNA products from RT-PCR of GAPDH mRNA in the above samples. 

mRNA from the above samples was suhjected to RT-PCR using primers specific to GAPDH. The 

. 
fragment from GAPDH PCR is about 500bp in size. (M. - markers) 
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from Met transfected cells in comparison to that from the control cells transfected with 

empty plasmid (pcDNA3). Similar results were obtained in two additional experiments 

(not shown) implying that total mRNA was extracted more efficiently from Met 

transfected cells. 

The results shown in Fig. 7.7 do not show an obvious change in the ratio of Ich-1L to Ich- 

's, but it is difficult to quantify bands visually. To obtain a quantitative measure of the 

ratio of long to short isoforms of Ich-1, the above PCR assay was repeated using a 

fluorescent moiety on the 5'end of the forward primer, and the fluorescence of the 

products of the PCR reaction was measured using an ABI Prism 310 Genetic Analyzer 

(analysis performed by Ms Sarah Groves, Dept of Pathology and Microbiology, 

University of Bristol). 

As shown in Fig. 7.9, there is no change in the ratio of the long to short forms of the 

caspase-2 PCR products in cells transfected with Met. 

7.1.3.3 Measurement of mRNA synthesis using [3H] uridine incorporation. 

Given that Met had an inhibitory effect on reporter gene activity, we decided to 

investigate whether this could be due to an inhibition of mRNA transcription. Therefore, 

we measured incorporation of uridine into RNA. 

HeLa cells (1.5x105) were seeded into 60mm dishes, and transfected with either 21Lg of 

pcDNA3 (empty plasmid) or HA-Met. After a 48 hr incubation, cells were exposed to 
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Figure 7.9 Ratio of the PCR products of Ich-! 1, to Ich-1s following transfection with Met. 

HeLa cells were transfected with either pcDNA3 (empty plasmid) or pMet-HA (Ipg each). 

Following a 48 hr incubation, cells were lysed and mRNA extracted. RT-PCR of'the mRNA, using 

fluorescent labeled primers, was performed and the products of the reaction analysed on an AB! 

Prism 310 Genetic Analyser (analysis performed by Dr. S. Groves). This figure is the mean of 

three separate experiments (showing the mean and standard deviation). 
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20jCi/dish for lhr, after which the cells (from medium, 1xPBS wash and following 

trypsinization) were collected, lysed and RNA extracted using the RNeasy Mini Kit. 

mRNA was then isolated using the Promega PolyTract A+ mRNA Isolation Kit and 

radioactivity measured using the 1400 DSA Liquid Scintillation Counter. As shown in 

Fig. 7.10, Met-transfected cells show a marked inhibition of mRNA synthesis (down to 

47%±14(SD)) compared to pcDNA transfected cells, (p<0.005). 

7.1.3.4 Measurement of total RNA transcription using [3H] uridine incorporation. 

To determine whether overall RNA synthesis was affected by Met, HeLa cells (3x104) 

were seeded in 96-well plates and incubated overnight. The cells were transfected with 

0.1µg of either pcDNA3 (empty plasmid) or pMet-HA using Lipofectamine Plus 

(Invitrogen), and incubated for a further 48 hours. Following this, cells were exposed to 

[3H] uridine (lttCi/well) for 1 hour. The cells were then lysed and transferred to Printed 

Filtermat A (Wallac), for determination of radioactivity. 
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Figure 7.10 Effect of Met on mRNA synthesis in HeLa cells, assessed by uridine 

incorporation. 

HeLa cells were transfected with 2, ug of either pcDNA3 (empty plasmid) or pMet-HA, and 

incubated for 48hrs. The cells were exposed to /3H/ uridine (20R('i dish) for Ihr, hebre cells 

were collected and RNA extracted. The mRNA fraction was isolated from this, and the 

radioactivity measured in the 1400 DSA Liquid Scintillation Counter (Wallas). phis figure is the 

mean of three separate experiments (showing the mean and standard deviation). 
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Fig. 7.11 shows that there is no significant difference (p= 0.67) in the overall rate of RNA 

synthesis following overexpression of Met in HeLa cells. 

7_2 DISCUSSION 

Using confocal microscopy, we were able to ascertain that Met was confined to the 

nucleus in a speckled fashion (Fig. 7.1), in a distribution that was similar, but not 

identical to that of Het (Fig. 7.3). This implies that while Met may be involved in some of 

the same processes as Het, this is not the sum of its actions, and thus Met is likely to have 

some unique functions. Methodological considerations, however, meant that we cannot 

be entirely sure that the small differences in location reflect true differences in the 

distribution of these proteins. It is possible that differences in expression result from the 

use of different vectors (Het in PCR 3.1 and Met in pEYFP-Cl), though both are driven 

by the same promoter (CMV). It is also possible that the EFYP moiety itself affects 

distribution, perhaps resulting in some degradation of the chimera at specific sites. 

Finally, incomplete co-localization could arise due to a difference in fluorescent 

intensities of EYFP and Cy3 since a certain degree of photo-bleaching was observed with 

Cy3. It was also noted that Met was excluded from the nucleoli of the cell, the main site 

of ribosomal RNA synthesis, processing and maturation351, which leads us to infer that 

Met does not have any direct activity on ribosomal RNA synthesis, a view that was 

strengthened by our results from [3H] incorporation showing that Met inhibited mRNA 

transcription without significantly affecting overall RNA transcription rates (Figs. 7.10 

and 7.11). 
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Figure 7.11 Effect of Met on transcription of total RNA in HeLa cells, assessed by uridine 

incorporation. 

HeLa cells were transfected with 0.1 pg of either pcDNA3 (empty plasmid) or pMe! -HA, and 

incubated for 48hrs. The cells were exposed to 13HJruridine (l pCi, well) for Ihr before cells lysed 

harvested, and radioactivity measured. This figure is the mean of three separate experiments 

(showing the mean and standard deviation. 
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The studies described in the previous chapter did not support a role for Met in regulation 

of ER signalling, but had not completely ruled out such a function. Moreover, earlier 

studies on nuclear hormone receptors demonstrated that ER could be induced to assume a 

speckled pattern in the nucleus after ligand activation349, so we decided to determine 

whether Met and the ERa co-localised in the nucleus. The complete absence of any 

overlap in distribution of the two proteins is compatible with our earlier conclusion that 

Met does not interact directly with the ER, but does not rule out an indirect interaction 

(Fig. 7.4). However, unlike a previous study349, we did not observe E2-induced speckling 

of ERa. The most probable reason was that we were looking at the distribution of 

overexpressed ERa, while the previous study had analysed distribution of endogenous 

ERa using labelled autoantibodies. 

In recent years, it has been accepted that the nucleus is organized into distinct structural 

components, called `nuclear bodies'. These include nucleoli, Cajal (coiled) bodies, 

promyelocytic leukaemia bodies and speckles352'353. Most of these structures have been 

implicated in RNA metabolism354 Nuclear speckles have been found to contain high 

concentrations of pre-mRNA splicing factors, such as SC-35, and correspond to 

interchromatin granules originally observed via the electron microscope355. Whilst the 

function of these speckles is still undefined, it is clear from the available evidence that 

they are involved with the storage and/or assembly of components of the splicing 

machinery356-35s The speckled nuclear distribution of Met therefore suggested that Met 

may be involved in mRNA transcription or processing and we were interested to compare 

its distribution with other proteins localized to speckles that are known to be involved in 
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mRNA splicing. One of these is SC-35, a splicing factor that is involved in mRNA 

processing359. From our studies, it is apparent that Met does not co-localize with SC-35 at 

all (Fig 7.2). Weighardt et a1.327 made a similar observation when studying possible co- 

localization of SC-35 and Het/SAF-B/HAP. In this initial study, Weighardt et al. had 

described a 917 amino acid protein that was a member of the hnRNP family, as co- 

immunoprecipitation studies using the anti-HAP antibodies also brought down 

ribonucleoprotein complexes327. In this and a later paper, they also demonstrated the re- 

localization of HAP/SAF-B into a distinctive punctate pattern that did not coincide with 

coiled bodies or speckles following heat shock. Incidentally, they had performed co- 

localisation studies of HAP/SAF-B with splicing factor SC-35 in HeLa cells without heat 

shock, and also found no co-localisation between the two proteins3n, 360. As Met appears 

to have a similar distribution, we propose that Met, together with Het/SAF-B, may reside 

in a previously unidentified nuclear domain, but this will require further investigation. 

Studies on uridine incorporation show that Met must exert a profound effect on mRNA 

synthesis. These experiments were performed on cells transfected with a plasmid 

expressing Met, so that inhibition of mRNA by -50% when cells are transfected with an 

efficiency of about 80% suggests an almost complete cessation of mRNA synthesis in 

cells overexpressing Met. Given that Met down-regulates both cellular transcriptional 

activity and induces apoptosis, we wished to identify the initiating event for these 

processes. It is possible that either Met induces apoptosis which then results in decreased 

transcriptional activity or that Met inhibits transcriptional activity which then results in 

apoptosis. The former seems more likely because apoptosis has been associated with 
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decreased mRNA levels361"363, probably due to degradation of RNA polymerase II, 

required for transcription of mRNA, by caspases3M. The latter posibility seems less likely 

because generalized inhibition of transcription by itself does not invariably result in 

apoptosis36s The presence of a SAF box and RNA binding domains within Met suggest 

that Met is involved in mRNA processing, and one way it could induce apoptosis at this 

level would be to alter splicing of proteins involved in apoptosis. 

Several studies have shown that various pro-apoptotic proteins, particularly caspases, 

have alternative splice forms 342 346 3cß, 367, and the expression of one over the other can tip 

the cell into apoptosis, or favour cell survival344'345,368Moreover, Valcarcel et al have 

recently shown that the apoptosis-promoting factor T-cell restricted intracellular antigen 

(TIA)-1369 is able to regulate splicing of the human Fas mRNA by strengthening the 

recognition signal of a particular splice site in the gene370, thus promoting apoptosis, and 

we speculated that Met may promote apoptosis via a similar mechanism. 

Thus, we decided to investigate the possibility that Met may affect the splicing and 

hence, change the ratio of caspase-2 (Ich-1) isoforms, which have been shown to have 

opposite functions343 The long form (Ich-1L) induces apoptosis, while the shorter form 

(Ich-1 s) blocks apoptosis. Various studies have shown, and we also confirmed (Fig. 7.6), 

that HeLa cells express both isoforms of Ich-1343,367 This, together with the fact that 

HeLa cells transfect relatively efficiently, made them the cell line of choice to assess 

whether overexpression of Met affected the ratio at which the long form of Ich-1 was 

expressed compared to the shorter form. 
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If our hypothesis were true, we would expect a relative increase in the amount of the long 

form of Ich-1, associated with either a decrease, or no change, in the amount of Ich-Is 

expressed. Unexpectedly, RT-PCR appeared to show an increased amount of mRNA for 

both Ich-1L and Ich-Is (Fig. 7.7). A similar change was observed using primers for 

GAPDH (Fig. 7.8) as an internal control, however. Similar results were obtained in three 

separate assays, suggesting that mRNA from Met transfected cells is more efficiently 

recovered, perhaps due to physical interaction between Met and mRNA preventing 

degradation, or increased efficiency of mRNA extraction from cells undergoing 

apoptosis. This was reflected in the results of the RT-PCR reactions using fluorescent 

primers (Fig. 7.9) which allowed us to quantify the relative amounts of Ich-IL and Ich-Is. 

Thus, regardless of the apparent increase in the amount of mRNA extracted from Met 

transfected cells, the proportion of Ich-1L to Ich-ls remains unchanged, and is not 

affected by Met. The question arises whether Met is involved in alternative splicing at all. 

The factors that point to a possible role are the presence of a serine/arginine (SR) rich 

domain (characteristic of a group of splicing factors called SR proteins, such as SC- 

35)347.371, and the RNA recognition motifs that are found in proteins known to affect 

alternative splicing (e. g. hnRNP Al and hnRNP D (Fig. 6.1)). Splicing of pre-mRNA 

occurs in a large ribonucleoprotein complex, termed the spliceosome. This consists of 5 

small nuclear ribonucleoproteins (snRNPs) and between fifty to a hundred polypeptides, 

some of which are splicing factors. The complex functions not only to identify splice 

sites, but also to position the pre-mRNA transcript into a configuration suitable for 

efficient excision of introns and ligation of remaining exons, to produce mature 

mRNA372. Whilst the `core' members of the spliceosome are the snRNPs, they are 
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facilitated in their function by various SR proteins, such as SC-35 and U2 auxiliary factor 

(U2AF)372. Indeed, it is the RNA recognition motifs (RRMs) of SR proteins that are 

responsible for binding of RNA and substrate spec city372.373. Thus it is possible that the 

RNA binding sites on Met do not recognize the splice sites of caspase-2 and thus, Met is 

unable to affect splicing of this protein. A construct that has been used by many groups to 

assess the ability of a protein to affect alternative splicing is the EIA minigene374-379. A 

partial sequence of Het/SAF-B (corresponding to the C-terminal portion of human SAF- 

B) has been shown to affect splicing of the EIA minigene339, but the properties of this 

fragment differ from those of the full length protein because Nayler et al found that the 

Het/SAF-B fragment co-localized with the splicing factor SC-35 whereas later studies 

with the full length protein found that SAF-B did not co-localize with SC-3532'. 

Nevertheless, it would clearly be interesting to test the ability of Met to affect splicing of 

the E1A minigene. 

There are a number of questions raised. Is Met a specific trigger for apoptosis in cells, 

and is there a mechanism by which cells could be stimulated to produce Met? If so, can 

Met production be initiated by known death ligands / stimuli? Alternatively, is the 

cellular concentration of Met so critical that a small change disrupts cellular metabolism 

so severely as to result in apoptosis? 

Thus, it would be interesting to assess the effect of Met on caspase activation, 

cytochrome c release, as well ratios of the bcl-2 protein family. At the same time, it 

would be interesting to assess gene activation and repression using microarrays, targeted 
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initially at genes that are important in cell survival and in apoptosis. Another avenue to 

pursue would be to assess whether Met affects the splicing of other proteins involved in 

apoptosis that are known to have alternative splice forms such as caspase-9342, caspase- 

8346 and Bcl-x380. 

In summary, the Met protein is located entirely within the nucleus, but is excluded from 

the nucleoli, which are concerned mainly with the synthesis, processing and maturation 

of ribosomal components351'3s1 Functionally, this is corroborated by the results of uridine 

incorporation, where Met overexpression profoundly inhibits mRNA synthesis but has 

very little effect on overall RNA transcription rate (Fig. 7.1 1), which represents primarily 

ribosomal RNA synthesis. Within the nucleus, Met is distributed in a punctate fashion, 

reminiscent of, but distinct from, other nuclear bodies such as speckles, although it has a 

very similar distribution to Het/SAF-B. Overexpression of Met has been shown to induce 

apoptosis, but the mechanism is still unclear. We investigated the possibility that Met 

may alter the alternative splicing of proteins involved in apoptosis, but analysis of 

alternatively spliced forms of caspase-2 did not show any relative change in the amounts 

of each transcript. 
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8 Final Conclusion 
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The development of tumours is due to the immortalization of cells, linked to various 

adaptations they undergo in order to bypass normal cellular mechanisms that would 

otherwise implement programmed cell death in response to DNA damage or lack of 

growth factors. 

We proposed that, in breast cancer cells, one possible survival pathway is provided by 

activation of the Jak2-STATS pathway, by factors such as prolactin382. In other 

mammalian cell lines, STAT5 has been implicated in tumourigenesis243, zaa as well as cell 

survival245,2a6. In addition, in recent years, there has been increasing evidence to support 

the idea that prolactin may have a role in breast cancer to an extent that was not 

previously appreciated217,219,3s3,384 

In Chapter 3, we showed that247'385 prolactin did exert a protective effect in T47-D cells 

exposed to ceramide. This conclusion is complicated by two factors, however: (a) a 

protective effect was found using some assays, but not others, and (b) we failed to detect 

certain apoptotic markers such as annexin staining and accumulation of preG1 cells. In 

addition to ceramide, we tried a variety of other cytotoxic/apoptotic agents (gamma 

irradiation, progesterone, taxol etc., results not shown), but were unable to detect any 

change in the preG1 population or any increase in Annexin V binding, suggesting that 

these cells are unusually resistant to apoptosis, perhaps because they lack functional 

p53176. Further experiments involving the T47-D cells were also complicated by the 

limited degree of protection afforded by prolactin, making any assessment of changes / 

decreases in the protective effect difficult to quantify. 
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We decided, therefore, to use alternative approaches to dissect out the pathways that may 

be involved in the protective effects of prolactin. First we attempted to create a model of 

apoptosis in which the role of the Jak/STAT pathway could be investigated more readily. 

To this end, we attempted to create a stable cell line from human leukaemic CEM-C7 

cells. We chose these cells because they apoptose readily when exposed to 

glucocorticoids. Also, prolactin had already been established as a survival factor in 

glucocorticoid-induced apoptosis of the Nb2 rat lymphoma cell line 386,387. Thus, we 

wished to translate this model into a human cell line in which we could more precisely 

assess the role of STAT5 in regulating apoptosis. 

CEM-C7 cells were shown to possess the components of the Jak2-STATS pathway, but 

we were unable to establish a stable line expressing the prolactin receptor, despite the fact 

that clones were isolated that appeared to have incorporated the prolactin receptor cDNA 

into their genome. Although this project may have provided some insight into the role of 

the Jak/STAT pathway in mediating the protective effects of prolactin, in retrospect, the 

information it may have provided might have been of limited value for understanding 

breast cancer. 

Next we attempted to create stable breast cell lines in which the survival effect of 

prolactin might be augmented. A clone of MCF-7 cells with stably incorporated STAT5b 

showed no obvious change in response to prolactin, but a clone of T47-D cells 

overexpressing STAT5b provided quite unexpected results. Rather than the enhanced 

protective response to prolactin we predicted, these cells exhibited a decreased 
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proliferative response to prolactin stimulation, and enhanced susceptibility to ceramide 

cytotoxicity following prolactin exposure. Had additional time been available, it would 

have been interesting to create stable cell lines expressing the STAT5a transcription 

factor, which could be responsible for the protective effects of prolactin. 

The last part of the study focused on work that had begun in our laboratory on a newly 

identified gene, which was originally thought to be involved in down-regulation of 

oestrogen signalling. Preliminary experiments by Dr. Colley appeared to support this 

finding, but subsequent studies raised doubts because it appeared that Met might be 

acting as a general inhibitor of transcription. We confirmed that Met exerts generalized 

inhibitory effects, and showed that constitutively active reporter genes used to control for 

transfection efficiency may lead to incorrect conclusions when they are used 

inappropriately. We then went on to show that Met has a punctuate distribution in the 

nucleus which is distinct from nuclear speckles, and overexpression of Met in a variety of 

cell types results in apoptosis. 

The results raise a number of questions. Is Met a specific trigger for apoptosis in cells, 

and is there a mechanism by which cells could be stimulated to produce Met? If so, can 

Met production be initiated by known death ligands/stimuli? Alternatively, is the cellular 

concentration of Met so critical that a small change disrupts cellular metabolism so 

severely that apoptosis ensues? Thus, it would be interesting to assess caspase activation, 

cytochrome c release, and changes in ratios of the bcl-2 protein family in response to 

overexpression of this protein. At the same time, it would be interesting to assess gene 
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activation and repression using microarrays, targeted initially at genes that are important 

in cell survival and in apoptosis. Another avenue to pursue would be to assess whether 

Met affects the splicing of other proteins involved in apoptosis that are known to have 

alternative splice forms such as caspase-9342, caspase-8346 and bcl-x380. 
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Appendix 

Ovine prolactin was purchased from Sigma. All tissue culture reagents and media were 

purchased from Sigma Corp., and tissue culture plastics (Nunc) were purchased from 

Fisher Scientific. Recombinant human prolactin was a kind gift from Vincent Goffin. All 

chemicals were purchased from Sigma Corp., unless otherwise stated. 

The HA-tagged Stat5a and Stat5b plasmids were a kind gift from Corinne M. Silva 

(University of Virginia). The pRK5-Jak-2 plasmid was kindly provided by Dr. J. Ihle (St 

Jude's Children's Hospital). pEYFP-Met, HA-Met plasmids were all constructed by Dr. 

Shane Colley. 

All primers were purchased from Invitrogen. 

Chemicals and Reagents 

1. Acrylamide/bisacrylamide solution (37.5: 1) 

2. N-acetyl-D-sphingosine (C2- ceramide) 

3.170-Estradiol 

4. Adenosine 5'-triphospate, sodium salt (ATP) 

5. Agarose, Type VII: Low Gelling Temperature 

6. Bovine Serum Albumin, Fraction V 

Biochemistry Stores, University of 

Bristol 

Sigma, Poole, Dorset, UK 

Sigma, Poole, Dorset, UK 

Sigma, Poole, Dorset, UK 

Sigma, Poole, Dorset, UK 

Sigma, Poole, Dorset, UK 

7. Charcoal / Dextran stripped Fetal Bovine Serum Perbio 
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8. Chlorophenol red-ß-D-galactopyranoside (CRPG) Sigma, Poole, Dorset, UK 

9. Co-enzyme A, sodium salt Sigma, Poole, Dorset, UK 

10. Dexamethasone (9a-fluoro-l6a-methylprednisolone) Sigma, Poole, Dorset, UK 

11. DL-Dithiothreitol (DTT) Sigma, Poole, Dorset, UK 

12. Fetal Bovine Serum First Link, UK 

13. Geneticin, G418 sulphate Gibco-BRL, Paisley, UK 

14. Hoechst 33258 Sigma, Poole, Dorset, UK 

15. Kanamycin Sigma, Poole, Dorset, UK 

16. LE Agarose, Seakem FMC Bioproducts 

17. L-glutamine Sigma, Poole, Dorset, UK 

18. Luciferin, sodium salt Promega, UK 

19. Neutral Red Sigma, Poole, Dorset, UK 

20. Optiphase ̀HISAFE' 3 Wallac 

21. Protein A-agarose beads. CN Biosciences, UK 

22. RNase A Sigma, Poole, Dorset, UK 

23. RNasesZap Ambion, Uk 

Solutions and Buffers 

1.4% paraformaldehyde (PFA): Solution made by dissolving PFA in PBS - heating to 

70°C, with stirring. 1M NaOH solution added slowly till PFA has dissolved completely. 

Stored in working aliquots at -20°C. Solutions can be stored at 4°C for 2 weeks. 

2. Antibiotic Stock solutions: All stored in aliquots at -20°C after filter sterilization. 

Ampicillin: l 00mg/ml in dH2O 
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Kanamycin: 30mg/ml in dH2O 

3. apo-Transferrin: 5mg/ml stored at -20°C in lml aliquots. 

4. ATP solution: 200mM ATP, stored in working aliquots, -20°C. 

5. Bovine serum albumin (BSA): 100mg/ml, stored at -20°C in 1 ml aliquots. 

6. Cell freezing solution: 10% DMSO, 20% FCS in the medium of growth. Mixture is 

made up just before use, filtered and chilled before cells are resuspended in it. 

7. Ceramide stock solution: 20mM in ethanol, Stored at -20°C. 

8. CPRG Assay Reagent: To be prepared just before use. 

4 plates 5 plates 6 plates 

CPRG Buffer 21m1 21m1 26m1 

ß-Mercaptoethanol 74µl 74µl 92µl 

CPRG Solution 2.8m1 2.8m1 3.5ml 

9. CPRG Buffer: 60mM Na2HPO4.7H20,40mM NaH2PO4110mM KC1,1mM 

MgSO4.7H20. pH to 7.3, filter and store at room temperature. Before use, add 50mM ß- 

Mercaptoethanol. 

10. CPRG solution: 62.5ml H2O with 250mg CPRG. Aliquot into light-tight tubes and 

store at -20°C 

11. CoEnzyme A solution: 135mM solution in dHZO, stored in working aliquots at -20°C. 

12. DMEM: supplemented with 10% FCS, 2mM L-glutamine. 

13. DNA loading buffer: 30% glycerol, 0.25% bromophenol blue. 

14. DTT solution: 1M solution, stored in working aliquots, -20°C, in the dark. 

15. G418 solution: 200mg/ml in dH20, filter sterilized and stored in aliquots at -20°C. 
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16. Hoechst Dye: 100pg/ml, stored in working aliquots at -20°C. 

17. Krishnan's reagent: 0.05mg/mi PI, 0.1% sodium citrate, 0.02mg/ml ribonuclease A, 

0.3% NP-40 (Igepal), pH 8.3. The solution is made up in 100ml of dHZO, and stored at 

4°C. 

18. L-glutamine solution: 200mM stock, stored at -20°C, in 5 ml aliquots. 

19. Luciferin Solution: 10mM, dissolve in Luciferase Assay Reagent and store in 

working aliquots at -80°C, in the dark. 

20. Luciferase Assay Buffer (lx): 20 mM tricine, 0.1 mM EDTA, 1.07 mM 

(MgCO3)4Mg(OH)2.5H20,2.67 mM MgSO4.7H20, pH to 7.8, filter and store at room 

temperature. 

21. Luciferase Assay Reagent: Prepare just before use, protect from light. 

for: l oml 20m1 50m1 

1X Luciferase assay 9.5m1 19m1 47.5m1 

buffer 

200mM ATP 26.61l 53.21il 133µI 

1M DTT 333µl 666µl 1.665m1 

135mM CoA 20µ1 400 1O00 

10mM luciferin 5000 imi 2.5m1 

22. Luria Bertani (LB) Broth: Yeast extract Sg/L, Bacto-tryptone lOg/L, NaCl lOg/L. 

Aliquoted and autoclaved immediately. For LB agar, l5g/L of bacteriological agar added 

to LB broth before autoclaving. 
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23. Lysis Buffer A (lx) for Luciferase Assay and ß-Gal Assay: 25mM Tris Phosphate, 

2mM CDTA, 10% Glycerol, 0.5% Triton X-100, made up as a 5x solution and stored at 

room temperature. 2nM DTT added just before use. 

24. Lysis Buffer B: 0.05M Tris HCI, pH 8.0; O. IM EDTA; 0.5% SDS 

25. Neutral red solution: 3.3g/1 in PBS, stored at 4°C in the dark 

26. PMSF solution: 200mM in methanol, stored at 4°C. 

27. Prolactin stock: Lyophilized solid is suspended in 10mM Tris HCl (pH 8), allowed to 

rehydrate for 10min on ice. Solution then centrifuged at 10,000rpm for 10 min at 4°C, 

and supernatant aliquoted and stored at -80°C. 

28. Propidium iodide stock solution: 1 mg/ml in dH2O; 0.1% sodium azide, stored at 4°C 

in the dark. 

29. Protein Loading Buffer (SSB): 4.8ml dH2O, 1.2m1 0.5M Tris HCl (pH 6.8), lml 

glycerol, 2m1 10%(w/v) SDS, 0.5m1 0.1 %(w/v) bromophenol blue. Stored at room 

temperature. Just before use, add ß-mercapthoenthanol (final concentration 5% (v/v)). 

30. Recipe for 2xDMEM / 2xRPMI: 

2x DMEM (I Omis) 2x RPMI (I Omis) 

7.5% NaHCO3 0.986m1 0.534m1 

L-glutamine (200mM) 0.2m1 0.2ml 

Fetal Calf Serum 2m1 2ml 

1 Ox DMEM/RPMI 2m1 2m1 
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dH2O 4.814m1 5.066m1 

31. Recipe for SDS-Page Gel: 

8% Separating Gel 4% Stacking Gel 

AcrylamideBis (30% Protogel) 21.4 mis 5.4 m1s 

Tris HC1,1.5M, pH 8.8 20 mis -- 

Tris HC1,0.5M, pH 6.8 -- 10 mis 

10% (w/v) SDS 0.8 mis 0.4 mis 

Water 37.8 mis 24 m1s 

10% Ammonium persulphate 0.8 mis 0.4 mis 

TEMED 27µl 20µ1 

32. RNase A solution : 10mg/ml, stored in working aliquots at -20°C. 

33. Running Buffer (5x): 15g Tris Base, 72g Glycine and 5g SDS in 1L dH2O. Stored at 

room temperature. 

34. Serum free DMEM: DMEM, 2mM L-glutamine. Stored at 4°C. 

35. Serum Free Medium (SFM): DMEM/F12,10µg/m1 apo-Transferyin, 0.01%BSA and 

2mM L-glutamine. 

36. Standard Lysis Buffer (SLB): 10mM Tris HCI, pH 7.6; 5mM EDTA (disodium salt);. 

50MM NaCl; 30mM Na pyrophosphate; 50mM NaF; 100µM sodium orthovanadate, 1% 

Triton X-100. Store at 4°C. On day of lysis, the buffer is supplemented with 1 mM PMSF, 

2.5pg/ml aprotinin, 2.5µg/ml leupeptin and 50pg/ml Pepstatin A. 
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37. TAE (50x): 242g Tris HCI, 57.1 ml glacial acetic acid and 100m1 0.5M EDTA (pH 

8), in 1L of dH2O. Stored at room temperature. 

38. TBS-Tween (10x): 100mM Tris HCI, pH 8.0; 1.5M NaCl; 0.5% Tween. Stored at 

room temperature. 

39. TE buffer: 10mM Tris-Cl, pH 8.0; 1 mM EDTA. Stored at room temperature. 

40. Transfer Buffer: 3g SDS, 87g glycine, 17.4g Tris Base; dissolved in dH20, with the 

addition of 600m1 methanol, before bringing final volume to 3L with dH2O. Stored at 

room temperature. 

Laboratory Equipment 

1. Avanti 30 centrifuge 

2. Capacitance Extender Plus 

3. CellQuest software 

Beckman, Fullerton, CA 

BioRad, Hemel Hempstead, UK 

Becton Dickinson, Oxford, UK 

4. Clifton heating block and stirrer 

5. Cell Counter Model Dn 

6. Consort E844 electrophoresis powerpack 

7. Coverslips (22mmx22mm) 

8. EPS 600 electrophoresis powerpack 

9. FACS Calibur 

10. Gene Pulser II 

11. Gene quart spectrophotometer 

12. Glass Slides 

13. Grant heating block 

Jencons-PLS, Leighton Buzzard, UK 

Coulter, UK 

Jencons-PLS, Leighton Buzzard, UK 

BDH 

Pharmacia, Little Chalfont, UK 

Becton Dickinson, Oxford, UK 

BioRad, Hemel Hempstead, UK 

Pharmacia, Little Chalfont, UK 

BDH 

Jencons-PLS, Leighton Buzzard, UK 

220 



14. Grant waterbath Jencons-PLS, Leighton Buzzard, UK 

15. GraphPad Prism Software GraphPad Prism CA 

16. Hettich zentrifugen Rotanta 46R Jencons-PLS, Leighton Buzzard, UK 

17. Leica TCS-NT confocal laser scanning microscope Leica 

18. Leica DM RBE upright epifluorescence microscope Leica 

19. Leica Confocal Software Leica 

20. LKB EPS 500/400 electrophoresis powerpack Pharmacia, Little Chalfont, UK 

21. Meltilex A (melt-on scintillator sheets, 73x109mm) Wallac 

22. Microcentaur tabletop microcentrifuge 

23. Microcentrifuge tubes 

24. Microfluor-Microtitre Plates 

Jencons-PLS, Leighton Buzzard, UK 

Appleton Woods, Selly Oak, UK 

Dynex Technologies, UK 

25. Micromax RF 

26. Microsoft Word Software 

27. Midi horizontal electrophoresis unit 

28. Mini-plus horizontal electrophoresis unit 

29. MLX microtiter plate luminometer 

Thermo Life Sciences, Basingstoke, UK 

Microsoft 

Jencons-PLS, Leighton Buzzard, UK 

Jencons-PLS, Leighton Buzzard, UK 

Dynex Technologies, Ashford, UK 

30. Plasticware Fisher, Loughborough, UK 

31. Plugged 2Oµ1,200µl and 1000}tl tips Anachem, UK 

32. Printed Filtermat A(glass fibre filter 90x120mm) Wallac 

33. Protean II xi cell Western Blot tank BioRad, Hemel Hempstead, UK 

34. RLX ß-microplate reader 

35. Stuart Scientific Platform Shaker STR6 

36. Trans-blot SD, semidry transfer cell 

Dynex Technologies, Ashford, UK 

Prior Lab Supplies, UK 

BioRad, Hemel Hempstead, UK 
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37. Techne Genius Thermocycler Jencons-PLS, Leighton Buzzard, UK 

38. TOMTEC Harvester 96 Mach 3 Receptor Technologies, Ltd. 

Banbury, UK 

39. Ultracentrifuge Beckman, Fullerton, CA 

40.1450 MicroBeta Liquid Scintillation and Luminescence Counter Wallac 

41.1450 MicroBeta Windows Workstation Version 3.2 Wallac 

42.1400 DSA Liquid Scintillation Counter Wallac 

43.1400 DSA version 2.5 (software) Wallac 

Kits: 

1. Access RT-PCR System 

2. ApoAlert® Annexin-V-FITC Kit 

3. Enhanced Chemiluminescence Kit 

4. HiSpeed Plasmid Purification Kits 

5. Po1yA+Tract (mRNA) Isolation System IV 

6. Protein Microdetermination Kit 

7. QlAprep Miniprep Kit 

8. QIAquick Gel Extraction Kit 

9. RNAeasy Midi/Maxi Kit 

10. Top10 Competant E. Coli 

11. XTT Cell Proliferation Kit II 

Promega, 

Clontech Laboratories, Basingstoke, UK 

Amersham 

Qiagen 

Promega 

Sigma, Poole, Dorset 

Qiagen 

Qiagen 

Qiagen 

Invitrogen 

Roche 
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Enzymes, Vectors and Antibodies: 

1. ANTI-FLAGG M2 monoclonal antibody, FITC-conjugate Sigma 

2. ANTI-FLAGS M2 monoclonal antibody Sigma 

3. EZviewTM red ANTI-FLAGS M2 affinity gel Sigma 

4. Monoclonal Anti-HA, clone HA 7 Sigma 

5. Anti-HA probe, rabbit polyclonal Autogen BioClear 

6. Monoclonal anti-splicing factor, SC-35 Sigma 

7. Anti-Stat5b, C-17, rabbit polyclonal Autogen Bioclear 

8. Donkey anti-mouse, Cy3-linked Jackson Immunology (Stratech 

Scientific, Soham, Cambs, UK) 

9. FuGENE 6 Roche 

10. Goat anti-rabbit, HRP-linked Amersham 

11. Lipofectaminelm reagent Invitrogen 

12. Plus"' reagent Invitrogen 

13. pEGFP-N1 vector Clontech, Basingstoke, UK 

14. pEYFP-C1 vector Clontech, Basingstoke, UK 

15. Sheep anti-mouse, HRP-linked Amersham 

16. Taq polymerase Gibco 

17. Molecular Weight Markers VII / VIII Roche 

18. Full range RAINBOW (molecular weight markers) Amershanm 
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