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Abstract 
This thesis contains analytical, numerical and experimental results concerning the measurement of elastic 

moduli of soils using pulse tests in laboratory samples. Particular emphasis is placed on the most 
frequently adopted configuration: bender-element transducers and propagation along the axis of 

cylindrical samples. 

Arrival time selection in the received pulse is generally perceived as problematic and near field effects 

often quoted as the main cause of error. A bench test experiment with a progressively shortened sample 

of reconstituted Gault clay is performed to clarify the extent of the problem and test the near field 

hypothesis. The results reveal that current procedures are compatible with an uncertainty in moduli of 

circa 100% of the mean estimated value. Use of a non-dispersive propagation model is identified as the 

main conceptual error. New signal-independent criteria are developed to avoid near field effects. Their 

application to the bench test results reveals that this is not the cause of the observed dispersion. Material 

dispersion effects due to Biot-like fluid interaction are then examined, showing their irrelevance in the 
Gault case and giving clear relevance criteria for the general case. A transfer function approach is 

developed to deal with interference caused by end rebounds and bender length. A waveguide model of 

the effect of lateral boundaries is also developed. Both models are able to explain recurrent features of the 

recorded traces. Multimodal propagation is ill suited for measurement purposes but material constraints 

and transducer characteristics make it very likely for most current test configurations. 

The effect of elastic anisotropy is also considered. An algebraic approach is used to show that all types of 

elastic anisotropy are possible in soils. The characteristics of anisotropic or directional dispersive 

propagation are illustrated with soil results. It is also shown that measured anisotropy does not support 

the assumption of elliptical wavefronts. 
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1 INTRODUCTION 

"Elasticity, gravity, cohesion of parts, communication of motion by impulse; these are probably the 

ultimate causes and principles we shall ever discover in nature; and we may esteem ourselves 

sufficiently happy if , by accurate enquiry and reasoning, we can trace the particular phaenomena 
to, or near to, these general principles. The most perfect philosophy of the natural kind only staves 

off our ignorance a little longer: As perhaps the most perfect philosophy of the moral or 

metaphysical kind serves only to discover larger portions of our ignorance. " 

David Hume "An enquiry concerning human understanding" 

1.1 MOTIVATION AND OVERVIEW 

Perhaps the main developments in soil testing during the last twenty years have been those related to 
laboratory stiffness determination. The development of local measurement systems (e. g. Jardine et al. 
1984) was crucial in achieving a much-improved picture of soil stiffness. Around 1980 laboratory 

equipment was only measuring strains bigger than 0.1% Resolution has been increased now by nearly 

three orders of magnitude (Lo Presti et al. 1999). Figure 1-1 illustrates how this affects test results. 

As a consequence of this improved resolution, it was soon appreciated (Burland, 1989) that the higher 

stiffness values thus obtained in static tests were similar to those obtained in dynamic tests. The 

traditional distinction between dynamic and static stiffness disappeared and was substituted by another 

picture, by now already traditional -Figure 1-2. In this picture dynamic and static measurements are 

shown to collaborate in the determination of a unique, highly non-linear, strain-dependent, soil stiffness. 

Another element of this picture is a certain threshold value beyond which the strain dependency of 

stiffness begins. This is easily identified with an elastic limit, and therefore the stiffness values measured 
before that threshold are identified as elastic moduli. As elastic moduli have been used generously as 
fitting parameters in soil mechanics literature, it has been customary to identify those threshold values 

adding some suffix to the elastic parameter being discussed. Here we partly follow the notation of 
Pennington (1999) and a0 is employed, writing Do when referring to the stiffness tensor of a general 

elastic material. However, we will generally drop the suffix when referring to specific moduli, writing for 

instance, G and E for the shear and Young modulus of an isotropic material; 

The elastic Do properties are far from being constants for any particular soil. They are best thought of as 

state functions, depending on state variables such as stress state and void ratio. During the last decade 

extensive research programmes have been carried on world-wide on different soils to measure them under 

a variety of conditions-see the symposia proceedings of Sapporo'94 (Shibuya et al. 1995) or Torino'99 

(Jamiolkowski et al. 1999)-. 



There are various reasons to justify this interest. First, it has been shown repeatedly (e. g. Burland 1989) 

that deformation analyses of geotechnical structures under monotonic loading require an accurate 
description of soil stiffness to be successful. The elastic Do properties are a basic element in such a 
description. Secondly, if the elastic properties result from a complex function of state, inverting this 

function is one possible mean to infer state properties. This is particularly useful in the field where elastic 

measurements are relatively common, cheap and quick to perform, (for an application to obtain stress 

state, see Fioravante et al. 1998). Finally, a thorough understanding of state evolution is needed to 

formulate soil behaviour under complex loading paths, and measurement of elastic properties offers one 

plausible way to achieve that purpose. 

One important result of this research has been (Stokoe et al. 1995, Pennington 1999) the recognition that 

in most cases the elastic properties show directional dependency or, in other words, that they are 

anisotropic. Widespread recognition of anisotropy in D. is still relatively recent'. Measurement 

procedures developed under the assumption of elastic isotropy have been applied to recover anisotropic 

elastic constants without too much worrying about their appropriateness. In this thesis we will address this 

issue with a double objective in mind: as a necessary step to assess the evidence so far produced and as 

guidance to future experimental research. Regarding this last reason the ongoing geotechnical research 

programme at Bristol has been a particularly strong stimulus. 

1.1.2 Stiffness measurements & pulse tests 

The laboratory techniques now available to measure Do are quite diverse (see Lo Presti et al. 1999). 

Basically, though, a substantial division can still be made between static and dynamic procedures. 

Dynamic procedures are those where inertia effects are explicitly taken into account to interpret the test 

results. Static procedures are those where inertia effects are disregarded. Although this definition is clear 

enough, two shades are worth adding. First, this excludes cyclic static tests (e. g. cyclic simple shear, 

cyclic triaxial) from the dynamic realm, as, due to the relatively low frequency of the applied load, they 

are interpreted without inertia effects. Second, it is possible -and indeed advantageous, as shown by recent 

research: Kuwano, 1999; Pennington, 1999- to use simultaneously static and dynamic procedures to 

measure Do in soils. 

Notwithstanding this, there is now a strong presumption that one particular kind of technique is due to 

play a major role in the future practice of soil testing. This technique is laboratory pulse testing, a 

particular type of dynamic procedure. Although other configurations are possible, the recent surge in 

popularity of these tests is built on the incorporation of piezoelectric transducers in standard static testing 

devices. Indeed, in his recent (2000) Rankine lecture, Atkinson signalled how both their usefulness and 

relative simplicity are quickly driving those tests into the realm of routine laboratory practice. 

lAnisotropy might be seen as a second order modification of an isotropic property. Obviously, a sharper instrument will be more 
likely to detect anisotropy than a blunter one. It is then reasonable for older stiffness measurements to obtain an isotropic picture of 
elastic properties (e. g. Rowe, 1971) 
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It is also reasonable to suspect that laboratory pulse tests will be of some importance for geotechnical 

research. First, most of the research programmes on Do we have just alluded to use them already to a 

certain degree. Second, the relative robustness of piezoelectric transducers and perceived simplicity of 

pulse tests have made them very strong candidates for more complicated endeavours. For instance, of all 

the dynamic procedures employed in soils, only pulse tests have been used so far to measure elastic 

properties under the assumption of anisotropy. 

This brilliant perspective does not mean, however, that there are no problems regarding either the 

performance or interpretation of laboratory pulse tests. This can be illustrated by reference to recent work 

at Imperial College: Figure 1-3 shows pulse test measurements by Kuwano (1999) on Ham River sand. 

Later on we will consider the possible meaning of these results, here it is enough to note that Jardine et al. 

(1999) felt compelled to abandon continuum-based models to explain them. 

1.1.3 Thesis overview 

In this thesis we share Atkinson's view about the central role that laboratory pulse tests will play in soil 

mechanics, therefore their present limitations and future possibilities are one of its major themes. The 

other theme, intertwined with the first, is that of elastic anisotropy, its measurement and importance for 

soil modelling purposes. Our approach will be mostly based on the theory of elastic wave propagation or 

elastodynamics. This deserves some comment. 

Elastodynamics is a vast, long-researched subject (e. g. Achenbach, 1973, Graff, 1975). This theory forms 

the basis of nearby subjects such as seismology (e. g. Aki & Richards, 1980, Sheriff & Geldart, 1982, 

Udias, 2000) or ultrasonic testing of non-soil materials (e. g. Mason, 1958, Krautkramer & Krautkramer, 

1990). Within the geotechnical literature the situation is somehow blurred for historical reasons. 

Between approximately forty and ten years agog, the situation was clear: there were static properties, 

measured by static methods for static problems and there were dynamic properties, measured by dynamic 

methods for dynamic problems. Accordingly, a substantial corpus of dynamic and static soil research was 

conducted along different paths. Bluntly speaking, two communities grew side by side looking at the 

same object from differing viewpoints. As usually happens in these cases, they developed different 

conventions, worries and priorities; in short, they developed differing languages. 

Although the divide between static and dynamic soil properties has fallen, the methodological barrier 

seems to still have some hold over the minds. This is manifest in the differing roles of elastic theory in 

both fields. Elasticity was and still is central to soil dynamics literature (e. g. Kramer 1996) but was 

generally regarded as of marginal interest for those involved in static problems (Wood, 1990), occupied 

by the modelling challenges of irrecoverable behaviour. There is even a tendency in current mechanical 

2This is arbitrary, of course. But, on one hand, it seems reasonable to place the onset of the separation with the development of the 
resonant column test to measure "dynamic" stiffness (e. g. Hardin & Richart, 1963). On the other hand, the XI European Conference 

on Soil Mechanics held at Florence in 1991 might well be chosen to mark the end of this separation, at least for the geotechnical 
community at large (Uric), 1992). 
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theories of soil behaviour to dismiss from the onset the possibility of elastic behaviour -e. g. 
hypoplasticity, Kolymbas 1989. 

In the case of laboratory pulse tests this dubious theoretical status has been compounded with a certain 
lack of familiarity with dynamic problems. As we have said, laboratory pulse tests act, in most cases, as 

an extra measuring tool within some traditionally "static" instrument. Physically they represent a small 

modification to an otherwise familiar apparatus that is still performing its job. They are dynamic intruders 

in a static world. It should come then as no surprise that their theoretical treatment has been scarce and 

their interpretation more often than not based on rather sketchy models. This might be opposed to the 

situation of field pulse tests, a traditionally "dynamic" method, where the interpretative elastic-based 

models have reached a considerable degree of refinement -e. g. Foti, 2000. 

It is our purpose here to fill, at least partially, this gap. This reliance on elastodynamics then makes it 

necessary to include some of its results. This is made in a stepwise manner, exposing the concepts as 

needed. We begin in this chapter, recalling the basic elements of elastodynamics and wave motion, 

making some emphasis on the different vestments of the superposition principle. The chapter ends with 

an exposition of plane elastic waves, with particular consideration of the isotropic case. 

Isotropy is much simpler than anisotropy; however, we will see that, even within the restrictions imposed 

by isotropy, there is scope for some important interpretative issues regarding pulse tests. For expositive 

purposes it is thus very convenient to address first the subject within an isotropic context and leave the 

introduction of anisotropy for a second stage. There is also another reason for this two-step approach. As 

Chapter 2 will show, isotropic elasticity has been and still is the framework of most pulse test 

interpretation in soils. This is not due to some generalised forgetfulness about anisotropy but rather due to 

the limited scope of most equipment: if a property is measured just in one direction it is pretty much 

useless to wonder about some theoretical directional dependence. 

The second chapter, therefore, will examine the current practice of pulse testing in soils, while exposing 

from a rather general viewpoint the material constraints that lie beneath this practice. One of them -fluid 

coupling- has made shear waves the tool of choice in most cases. Chapter 3 will describe a bench shear 

pulse test series on Gault clay whose results will be used to illustrate the limitations of the simpler 
interpretative models commonly adopted. Chapter 4 will introduce the concept of dispersion, which 

provides a very natural framework for most subsequent discussions. This will be shown there by 

reference to near field effects, an issue that has been recurrently discussed in the literature. Chapter 5 will 

address material dispersion due to viscous effects and the bi-phasic nature of soil. On Chapter 6 

geometric dispersion will be addressed. All this will be made within the assumption of isotropy and 
focusing on shear wave measurements. 

Soil anisotropy is a subject where the discussion can quickly become tangled. Chapter 7 will introduce a 

framework that will hopefully help to avoid some traps, and this will be illustrated with a brief excursion 
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into static measurements. The discussion there will also dwell on the justification and limitations of the 

elastic approach employed so far. Chapter 8 will then go back to dynamics, discussing anisotropic 
dispersion. Chapter 9 will finally recapitulate and offer some advice for future work. The appendixes 

contain either additional background information -I and II- or some lateral developments of the main 
discussion -III and N. 

1.2 BASIC CONCEPTS 

1.2.1 Elasticity and elastodynamics 

1.2.1.1 Stress-strain relations 

Until further notice the results and concepts of elastic theory employed in this thesis will be based on the 
following three basic assumptions: 

0 The appropriate measure of deformation is the small strain deformation tensor, c. This is related to 

the derivatives of the displacement vector, u, by the following linear relationship -where the familiar 

and compact comma notation is introduced for spatial derivatives 

i =1r 
I [Zi+& 

Eýi = lu,, i+ui, t 
i 

äx, 2 
(1) 

" Linearity is also predicated of the relation linking stress and strain, written by means of a fourth 

order stiffness tensor, D0, as 

ßkj= DuxrrjErij (2) 

" The stiffness tensor D, has the following symmetries 

Dokr 
r= 

Dokrrý Dolq = Doxtq Doýjxl = Dorl; 
1 

(3) 

The assumed symmetries of Do imply that, at most, only 21 components are different. This allows the 

stress-strain relation (2) to be rewritten using a 6x6 symmetric matrix to represent the stiffness tensor and 

6x1 vectors to represent stress and strain. This is sometimes convenient and is written using a convention 

carrying the name of Voigt: 

all D11 D12 
"" "" ". 

D16 eil 

C22 D12 D22 e22 

O33 633 
(4) 

a23 ." "" 6"23 

031 
"" 

e31 

X12 D16 D66 e12 

The number of independent components in D, is further reduced when account is taken of the material 

symmetries. Chapter 7 will address this issue in some detail. Here we will just state that for the case of an 
isotropic material there are only two independent components and Do takes the following form 
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Doom = A8O Ski + p(oköJ, + olökJ) (5) 

Where S stands for the usual Kronecker symbol and ? and µ are Lame's coefficients, whose relationships 

with other currently used moduli are collected in Table 1-1. 

1.2.1.2 Dynamic equilibrium 

From Newton's second law and the elastic constitutive relation (2) the basic differential equation of 
dynamic equilibrium follows Udias, 2000- as 

Pum -�m+ 
Domnpup, 

Qn (6) 

These are three linear partial differential equations on um, where f,, and um stand, respectively, for the 

components of the force field and displacement vectors. Note that the absence of any forcing or loading 

term in the equation will make it valid only away from any such source of movement. In that case only 

movement propagation is dealt with, and not its generation. Substitution of (5) into (6) leads to the 

corresponding expression for homogeneous isotropic materials 

Pam = fm +(A+p)Uk, lon +iUum, Ik 

= fm +(/i +p)v(v"u)+, lv2u 
(? ) 

From the second expression above and using Helmholtz potentials it can be shown-e. g. Bedford & 

Drumheller, 1994- that dilatational movement is uncoupled from shear movement. This result is only 

valid for isotropic solids and we will recover it later in a different guise. Now it is preferable to take a 

step back and introduce a different approach to our problem. 

1.2.2 Linear systems 

1.2.2.1 Superposition: unit response and transfer functions 

Linearity is a requisite for superposition, and superposition is the basic tool to obtain solutions to linear 

problems. The idea is to build solutions to complex problems as linear combinations of solutions to 

simpler ones, something that is pretty intuitive when considering spatial dimensions and a little bit less so 

for the time dimension. Superposition in time, fundamental in dynamic problems, is presented in different 

ways in different contexts. In experimentally oriented work (e. g. Ewins, 2000, Doyle, 1989), there is a 

preference for the concepts of linear systems theory like transfer functions. On the other hand, 

theoretically oriented work (e. g. Graff, 1975, Aki & Richards, 1980) uses a more mathematical approach 
based in concepts like Green functions or fundamental solutions. In our case both approaches are useful 

and it is convenient to appreciate their relations. 

From the abstract viewpoint of linear systems theory -e. g. Lynn, 1989- any dynamical process might be 

characterised by its time dependent inputs and outputs. In a linear system the response to a unit impulse is 

given by the unit response function h(t), a system characteristic. The role of this function can be clarified 

by reference to a simple, one-dimensional, linear system. Figure 1-4, taken from Brigham (1988) is 

helpful for this purpose. The response of the linear system to a unit impulse is given by h(t). The 
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response to a series of impulses acting at times rO, r1, t2, is obtained by superposing responses shaped 
by h(t), but shifted in time and with amplitude proportional to that of the impulse. This process could be 

extended to a continuous input x(t) obtaining the corresponding response, y(t), as a convolution' of this 

input and the unit response function h(t). Thus the behaviour of a one-dimensional dynamical system can 
be concisely expressed as 

y(t)= h(t) * x(t) (8) 

As explained in Appendix I, a time domain function might be alternatively represented in frequency 

domain by its Fourier transform. The frequency domain representation of the unit response function is 

known as its transfer function. H(f). In frequency domain convolution is a much simpler operation 
because it reduces to multiplication, and the behaviour of a one-dimensional dynamical system is 

expressed by 

y(j)=H(f)'X(f) (9) 

Frequency domain representations are generally complex. Expressing them in polar form, the previous 

equation brings out the following amplitude and phase relations, 

lýI=IHIIXI 
By = BH +&X 

(io) 

The main attraction of this abstract approach is that it might be equally applied to very different elements 

involved in the measuring process: hardware like the transducers or software like a smoothing filter 

operator applied to the output signal. It is then very helpful to see the whole measuring process as a series 

combination of linear subsystems and an example of this with laboratory pulse tests in mind is shown in 

Figure 1-5. The global transfer function will be product of all the partial subsystem transfer functions, 

whose contributions might be separately studied. 

From this viewpoint the role of elastodynamics is to provide a transfer function for the elastic subsystem 

- for instance the soil sample in Figure 1-5. In fact, the decomposition idea might be also applied to the 

elastic subsystem, separating, for instance source and various path effects as it is commonly done in 

exploration geophysics -Sheriff & Geldart, 1982. Accordingly, various elastodynamic and 

phenomenological models might be employed together according to the purpose of the modelling 

exercise and/or the characteristics of the measuring system. 

Elastodynamic transfer functions might then take different forms. In some cases they will relate the input 

force history at some point and the output displacement history at some other point; in other cases the 

sought output will be the velocity or acceleration history4. Yet in other circumstances the needed transfer 

3 This concept is explained in Appendix I. 
In experimental vibration analysis these varied possibilities have brought a specific nomenclature for each transfer function: if the 

output is displacement receptance, if the output is velocity it is called mobility and accelerance if the output is acceleration (Ewins, 
2000). 
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function should relate the recorded displacements of two points -that is the case, for instance, in many 

seismological applications. 

1.2.2.2 Spectral analysis 

Based on superposition, harmonic or spectral analysis is a very useful tool to obtain transfer functions 

for all kind of linear systems. The idea is to solve the problem for a single harmonic time dependency and 

then use the frequency as parameter to synthesise the total response. That is, for a single time-harmonic 

input we have a frequency dependent output, with identical harmonic time dependence 

exp(iwt) S r(w)exp(itt) `(11) 

The frequency dependent coefficient, r(w), is the transfer function of the system. To see that, consider an 

input where all the frequencies are equally represented and sum their corresponding responses 

j exp(iwt)dwS fr(w)exp(itvt)dco (12) 

Using the Fourier transform definition given in Appendix I the input -left hand- represents a unit 

impulse, consequently the output -right hand- is the unit response function and r(W) its Fourier transform 

or transfer function. A general input-output relation will be obtained introducing the input Fourier 

transform, say a((u), within the integral sign. 

In the elastodynamic case this approach is also valid but two extensions are needed. The first one is to 

consider input and output as vectors; each force component -for instance- will generally induce 

movement in three directions. This generalisation can be dealt with using some matricial housekeeping 

and presents no further problem. A more fundamental question is posed by the extra required 

generalisation: spatial dependency. The elastodynamic transfer function is generally a double function of 

position: the input and output locations are not indifferent. This can be appreciated by reference to the 

scheme in Figure 1-6, representing a cantilevered plate with some load history acting at xa. It is pretty 

intuitive that the response -say, displacement- recorded at point x near the loaded comer will be different 

from that recorded at y, near the free comer. Hence, in analogy to (11) above we will now write 

exp(iwt) -L-* rpq (w, x, xo)exp(iwt) (13) 

The subindex indicate that this is a matricial transfer function relating the q-input component with the p- 

output component. This expression naturally brings about the question of how can this spatial 
dependency of the transfer function be established. Postponing briefly the answer to that question, it is 

now more interesting to write the complex transfer function in exponential form, to give 

exp(iwt) S)Apq(W, x, xo)exp(i(t(-'i'pq(w, x, xo))) (14) 

If the output is considered as a function of space and time, the right hand side can be seen as describing 

some kind of motion, with the frequency as parameter. There is a specific nomenclature readily available 

to describe this type of motion and its introduction is the subject of next section. 
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1.2.3 Wave motion 

1.2.3.1 Definitions 

A wave is a concept with strong intuitive appeal and no all-encompassing definition -Witham, 1974. For 

our purposes the following expression of harmonic waves is general enough 

u(x, t) = a(x) cos[O(x, t)] = Re{a(x) exp[i0(x, t)]} (15) 

There are considerable notational and operational advantages in using the complex exponential version, 

and that will be favoured throughout, with the implicit understanding that the real part is being 

considered. In the preceding expression a represents the amplitude of the movement whose space 
dependency allows for possible attenuation. The phase function is represented by 0 and holds the 

information about the periodic nature of the harmonic wave motion. 

For any given time, to, all the points x where O has the same value form a surface of constant phase, 

W(x), which is called a wavefront. Measured in radians per unit time, the angular frequency, co, is 

defined as the time derivative of the phase function. The wave vector, k, is defined as minus the spatial 

gradient of the phase function, 

w(x, t)= ö 
k(x, t) = -V O 

(16) 

Differentiating the constant phase condition a phase velocity vector, c, parallel to the wave vector can 

also be defined 

Ödt+V ®dx=O=w=k dt 
=kc (17) 

Thus defined, the phase velocity vector is immediately identifiable with the wavefront velocity along its 

normal. The modulus of k, k, is called wavenumber and the modulus of c is the phase velocity v. From 

(17) the following basic relation between angular frequency, wavenumber and phase velocity results 

w=kv (18) 

The wavenumber has, consequently, units of radians per unit length and an equivalent expression can be 

written eliminating the radians and introducing the frequency f and wavelength X, 

Af=v (19) 

These relations are familiar but it should be noted that, although not explicitly indicated in the last 

equations, all the quantities involved are generally functions of time and position, i. e. they have only 

local meaning. 
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There are a number of other vectors parallel to k that are found to be useful within the theory. They are 

the slowness vector q and the normalised slowness vector, p. The relations between them are the 

following: 

k=cvq= CV 
vp= 

0) 
v0c 

(20) 

agll =v 11PIl =1 ml =v 
The slowness vector modulus is just the inverse of the corresponding phase velocity. The normalised 

slowness has unit modulus, i. e. the normalised slowness is the unit vector normal to the wavefront. 

1.2.3.2 Wave motion and transfer functions 

Comparing now equations (14) and (15) it is apparent that for any fixed harmonic input -i. e. fixed xo and 

co-, the output of an elastodynamic system is a frequency dependent harmonic wave. To be more precise, 

the complete output may comprise up to three different waves for each q-component of the input. If we 

consider a fixed input location the explicit reference to xa is unnecessary, and the wavefront at time to, 

wave vector and phase velocity vector can be written in terms of a given transfer function phase 

W (O), x) =w= to 

k(w, x)= V1'Y(w, x) (21) 

Q) 
c= OXT(w, x) 

This allows the interpretation of any measured transfer function in terms of wave properties. One 

advantage of using this wave nomenclature in elastodynamics is that it suggests analogies with other 

wave phenomena: mechanical -e. g. fluids- or non-mechanical -e. g. optics. Another is that in many 

circumstances the simplest approach to obtain an elastodynarnic transfer function relating the movement 

at two points is to assume that it is transported by some specific wave motion -attenuation and wavefront 

shape. A simple and useful example of that is provided by harmonic plane waves. 

1.2.3.3 Plane waves 

Plane waves are characterised by a plane wavefront, something illustrated schematically in Figure 1-8. In 

this case the phase function of the harmonic wave has a rather simple expression 

0=wt-k"x (22) 

In this case the wave vector, k, is independent of position although it may be dependent on frequency. 

Attenuation might be included allowing for a complex wave vector. If interest is focused on a single 

direction, plane wave propagation becomes a 1-D spatial problem as all that matters is what happens 

along the direction indicated by p. Using a Cartesian frame including p, the wave vector has only one 

component which coincides with the wavenumber, the one-dimensional nature of the movement is then 

clear and we can write the wave-induced transfer function relating movements at two points as 
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r(w, x) = exp(-i(k, (to)x+ik, (tv)x))= e-"£' (23) 

The space dependent output corresponding to an arbitrary input of frequency domain expression a(w), is 

then given by 

10 - 
u(x, t)= 

1 Ja(w)r(w, x)e'"dw= 
.L ja(w)e-" e``"dw (24) 

2; r_� 

It is then practical to place the coordinate origin at the input point to see that a(w) is simply the Fourier 

transform of the movement at the input location 

Go 
u(O, t) _ 

2ý Ja(w) e'Mdty (25) 

To establish the wavenumber-frequency relation the constitutive equation describing the propagating 

media needs to be enforced. This is done in the following section. 

1.2.4 Bulk plane waves 

1.2.4.1 General 

We have just seen that a propagating plane wave offers an attractively simple transfer function between 

the recorded motion at two points. The question now is what kind of plane waves can propagate within 

the bulk of some elastic solid. 

If the solid is isotropic there are a number of ways to proceed, but considering our interest in anisotropy it 

is best to keep some generalitys. A harmonic plane wave may be then substituted in equation (6) with 

zero body forces. Using the normalised slowness to express its phase and considering that the wave- 

transported movement could take place -or be polarised- in any direction, d, this harmonic wave is 

written 

u(x, t) =d exp(i (avt - kx)) (26) 

after some simplifications, the following expression is retrieved 

Pv2do = Downpq dpPmPq (27) 

This equation relates the polarisation of the wave-like movement (d), its propagation direction (p) and its 

phase velocity (v). It can be arranged in the form of an eigenvalue problem 

i IJ = D, IukPlPk 
[r 

-p v21]d =0 
(28) 

As a tribute to its earlier proponents, this form is often known as the Kelvin-Christoffel equation and the 

tensor I' as the Kelvin-Christoffel tensor or the acoustic tensor. Due to the symmetries of the elastic 

We follow here the presentation of this subject by Crampin (1981) 
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tensor r is also symmetric. I' is also positive-definite as the elastic tensor is positive definite6. 

Consequently (see e. g. Landesman & Hestenes, 1992) the characteristic equation 

det[ I';, - pv'Sij] =0 (29) 

has three positive real solutions (eigenvalues), possibly different from each other, each one associated 

with a different direction (eigenvector). Moreover, these three eigenvectors form an orthogonal set. This 

means that for any given elastic tensor C and any given propagation direction p there are, in general, 

three possible plane waves, with phase velocities v; and polarizations d1 

1.2.4.2 Isotropy 

All this has general validity but it is now time to introduce the assumption of isotropy. Using the isotropic 

stiffness (5) to form the acoustic tensor (28) and expressing it in a Cartesian frame with p as one of the 

basis vectors we obtain, 

i- =(2+p)P1®P; +fU(si-p (&p; )=2p10p3+pö (30) 

From this expression it is immediately recognisable that 

0 the preceding result is equally valid for every given direction p i. e. in the isotropic case plane wave 

propagation properties are isotropic'. 

" associated with the eigenvalue ?. +µ there is one eigenvector along the direction given by p i. e. the 

wavefront normal. This is a wave oscillating along the propagation direction and is called aP wave. 

0 associated with the eigenvalue µ there are two eigenvectors perpendicular to p. These are waves 

oscillating on a plane orthogonal to the propagation direction and are called S waves. 

" The P wave involves only volumetric strain, whereas the S waves involve no volumetric strain at all. 

This is plain if the general expression of the movement is considered. 

u, = 
{a 0 Ole -i4 "vJ 

(31) 

-i r 

u, = {0 b c}e 

These are familiar results and are even more familiar if we write the phase velocities using the Young's 

modulus, E, Poisson's ratio, v and shear modulus, G: 

. 1+ý E 1-v 
VP = 

P_P(1 + vX1-2v) 
G 

PP 

(32) 

6 Chapter 7 delves more into this issue 
' This result will be generalised to anisotropic cases in Chapter 8 

12 



These are usually known as the compressional or primary velocity, v., and the shear or secondary 

velocity, v,. The ratio between both velocities is only dependent on Poisson ratio. 

-v- j 
Vs =V P 2(1- V) 

(33) 

Figure 1-9 illustrates this dependency for a range of Poisson ratios typical of soil. Honouring its name, 

the primary velocity vp is always bigger than the shear or secondary velocity, v,, by a factor between 1.5 

and 3 for the most probable range of Poisson's ratio. 

1.2.5 Elastodynamic transfer functions 

The preceding strategy can be replicated in other cases, using differently specified waves -for instance 

with spherical or cylindrical wavefronts- or a different material model -viscoelastic for instance, see 
Chapter 5. But it is clear that it offers a rather limited answer to the search for elastodynamic transfer 

functions. Although bulk waves propagate according to the material properties they do not reflect the 

effect of loading or boundary conditions. A more general approach to obtain elastodynamic transfer 

functions is provided by the Green function concept. 

1.2.5.1 Green functions 

A Green function, GR, gives the time history of displacements when an instantaneous load is applied at 

an isolated point, say xo, in some elastic body. This is obtained as the solution of the elastodynamic 

equilibrium equation (6) subject to an specific set of boundary conditions. By a generalisation of the 

common concept of elastic reciprocity it can be shown -Achenbach 1973- that the response u(x, t) to a 

general input load history f(x, t), is given by 

u(x, t)= JGRX *fz dxo+ j(GRx *t-u*tGR )ds (34) 

vs 

where t denotes the surface traction and the symbol * indicates time convolution. The elastic body is 

assumed quiescent before the application of f(x, t) and with known boundary conditions. The first term on 

the r. h. s. gives the response due to loads inside the body, the second term the contribution of the 

boundary. As it is apparent, the unknown response, u, also features in the second term. If this second 

term is null then we can identify directly the Green function with the sought-after unit response function. 

In principle the Green function boundary conditions should be chosen to satisfy this criterion in 

accordance with the problem boundary conditions. In practice the catalogue of available Green functions 

is rather limited, simple geometry being a basic requirement. This opens various possibilities. 

1.2.5.2 Fundamental solutions 

The first and simplest is to ignore the influence of the boundaries altogether, dropping the second term in 

(34). Mathematically this is equivalent to obtaining the Green function for a body of infinite extent. This 

is called a fundamental solution -Bonnet, 1995- and such solutions are known for a variety of material 

models. Physically, this may be an adequate approximation if the points x whose response is sought after 

are far away from the boundaries. The scheme of Figure 1-7 represents a cantilevered plate with some 
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load acting at X. A fundamental solution might be adequate to evaluate the response at points such as x,, 

x2 or x3 but is rather unlikely to do so at points such as x4 or x5. The fundamental solution approach is 

then useful to incorporate the effect of loading but not that of boundary conditions. An example of this 

approach is studied in Chapter 4. 

1.2.5.3 Modal solutions 

A second possibility is to obtain all the solutions of the homogeneous unforced case for given boundary 

conditions. These solutions are called modes and each one represents a possible type of elastodynamic 

transfer function for the system. The particular transfer function corresponding to some specific loading 

may then be obtained as a combination of modal solutions. The potential of this approach is illustrated in 

Chapter 6. 

1.2.5.4 Spatial discretization 

The third possibility is to solve the problem through some spatial discretization scheme. Finite elements 

are perhaps the most popular, although the modelling requirements of dynamic problems with rapidly 

varying loads are rather subtle and computationally intensive-Hitchings, 1992. Boundary element 

techniques whose starting point is equation (34) above, offer an interesting alternative -Dominguez, 
1992. Obviously, the drawback of this approach is that no analytical formulation is explicitly available 
for the obtained transfer function. If the purpose of the exercise is to evaluate some material property by 

comparison with an experimentally obtained transfer function we face a rather cumbersome inverse 

matching problem. 

1.3 SUMMARY 

The small-strain stiffness is one of the fundamental properties of soils. Laboratory pulse tests are one of 

the most popular and promising tools available for its measurement. This thesis deals with the 

interpretation of laboratory pulse tests in soils. Elastodynamics offers an ample theoretical bosom and is 

here adopted as a heuristic guide. Its basic hypotheses have been recalled and its relationship with the less 

theoretically committed lineal systems framework has been outlined. As an application the case of bulk 

plane waves in isotropic solids has been developed. 
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Figure 1-1 Increased resolution in stiffness measurements. Chiba gravel results by Jiang & Kohata 
(1996) as quoted by Tatsuoka (1999). 

15 



Typical strain ranges 
{*- -i 11 0I Retaining walls 

0 
m ýý--ý-ºý Foundations 

vii -- -ýf-ºý Tunnels 

0.0001 0.001 0.01 o- 10 10 
Shear strain, es: % 

Dynamic methods 

i Local gauges 

Conventional soil testing 

Figure 1-2 Stiffness-strain behaviour of soils with typical strain ranges for laboratory tests and 
structures (after Atkinson, 2000) 

300 

V 

1 
N 

C. 

v 
y 

. 
°a lye 

e 1"J 

5u 

U 

B 

pý 
wsoa 

IE . olidaw; 40CA-4S-wýwHmRivaa. d 

5: 100 ISO 200 25C 
P' (kPa) 

Figure 1-3 Anisotropic velocity measurements using bender elements in a sample of Ham River 
sand (after Jardine et al. 1999) 

16 



LINEAR SYSTEM 
ak1 shº bw hº vlU - blt) 

41 -0 sWs 

*11 v(t)-bit"rl 

t "s pal ett 

k z1t) ttah"r1l Yh) "keMtlýk, ýh"r, 1ýrMý"rr1 

"k=4h"+Zl 

*o ý1 $t k) hl- fe 71 71 

th! yIU 

a(nrrl nlt"nrr/: Inrrlkr 
ýýýsa 

t a1 Mr t 

Figure 1-4 Time superposition in linear systems. From Brigham (1988) 

S 
e. g. soil test 

x(t) 

S 
x(t) 

S1 X12(t) S2 X23(t) S3 
e. g. transducer e. g. sample e. g. transducer 

Figure 1-5 Dynamical systems: a gradable black-box approach 

y(t) 

y(t) 

17 



18 

Figure 1-6 Transfer functions in elastodynamics 

Figure 1-7 Fundamental solutions and boundary conditions 
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2 CONTEXT AND PRACTICE OF PULSE TESTS IN SOILS 
2.1 THE CONTEXT OF PULSE TESTING 

2.1.1 Dynamic testing 

It is useful to distinguish various conceptual steps in the dynamic procedures employed to measure elastic 

properties. First, a movement is generated in the elastic body under consideration and some particularities 

of this movement are recorded: for instance the time history of movement at some points, u; (t). Second, 

taking account the geometry of the test set-up, those movement particularities are combined to obtain 

some characteristic dynamic properties of the body, (e. g. characteristic velocities va. Finally, some 

theoretical relations between the elastic properties and the characteristic dynamic properties are employed 

to obtain the elastic Do properties. Formally this can be expressed as follows 

v; = F(uj (t), test set - up) 

v; = S(D0) 
(35) 

It is clear that dynamic tests require, in general', a more involved interpretation procedure than static 

tests. In particular, explicit expressions such as F could not always be obtained even if the test set-up is 

carefully designed; moreover, there is no guarantee that the relations between Do and v,, symbolised by S, 

would be explicitly invertible'. These are important inconveniences of dynamic procedures. 

Their advantages, on the other hand, are well known. Dynamic procedures have a wider scope than static 

procedures, and similar techniques could be employed in the field and the laboratory, thus providing a 

very direct way to transfer results between both. Most dynamic techniques are non-intrusive (e. g. 

SASW), or very mildly intrusive (e. g. cross-hole or bender element testing) and non-destructive, thus 

allowing repeated testing of the same sample or site at will. This makes them ideal for control purposes 

as a change-tracking tool. Dynamic tests have also the potential to map inhomogeneities of the tested 

elastic body and this is, in fact, a main application of field geophysics. In contrast, static procedures are 

always relying in local measurements and, therefore, place more strict interpretative constraints on the 

homogeneity of the test element. 

2. l .2 Types of dynamic tests 

The dynamic procedures employed for soil testing are usually classified into field and laboratory methods 

-see Kramer 1996 for a general review. Another possible classification might be established if we focus 

on the interpretation procedure employed. Figure 2-1 - adapted from Pollard 1977- illustrates such a 

classification. Two categories are employed in it, both related to important characteristics of the 

movement being measured. The kind of input: continuous excitation will be employed to generate steady 

state movements, whereas pulse input will generate some transient movements. End effects involve 

I In the anisotropic case there are, nevertheless, some difficulties even for static tests: see Chapter 7 
Such is the case for Rayleigh waves, and there, on the inversion procedures, lies one of the prominent difficulties of methods using 

them, like the SASW (Foti, 2000). 
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reflection and/or refraction of the waves and the test interpretation procedures might allow for them or 

not. 

Figure 2-1 also includes an indication of where the most important geotechnical procedures could be 

fitted. In many cases this classification is rather obvious. The resonant column is the classical dynamic 

laboratory test and a neat example of resonance analyses. Cross-hole and down-hole are field tests where 

the input is some sort of impulsive loading and they are interpreted without account for any reflection or 

refraction10. 

The inclusion of the spectral analysis of superficial waves (SASW) method within the pulse methods 

seems reasonable as the load is impulsive and the waves measured are propagating over an unlimited 

surface. The steady state Rayleigh-wave method on the other hand is aa clear example of travelling-wave 

type analyses. 

Bender element testing has also been included within the pulse category. Contrary to the previous, this is 

a laboratory test. This is interesting, because, at least in principle, discounting of end effects is harder to 

achieve within the laboratory, as they require either a perfectly absorbing boundary or a very big distance 

to the boundaries. 

In geotechnical practice the methods beneath the echo heading are not really employed" for the 

measurement of elastic properties but rather to locate discontinuities -rock substrata or pile flaws. This is, 

also, an interesting peculiarity of soil mechanics, because the use of echoes from specimen ends is the 

most commonly employed procedure for measurement of elastic constants in most industrial materials, 

like metals or ceramics, -Papadakis 1990- but also in rock core measurements in the laboratory - 
Schreiber et al. 1973- 

2.1.3 Dynamic testing of soils: material constraints 

Soil Mechanics as a discipline might be placed on the crossroad between Geology and Materials Science. 

It is therefore to be expected that the application of dynamic testing procedures to soils will have much in 

common with analogous activities in both sciences. This is, in fact, the case. Field techniques are, 

although sometimes different in configuration and purpose, strongly linked to those employed in 

seismology and geophysical prospecting. Within the laboratory, most procedures employed to obtain 

elastic parameters were borrowed or adapted from previous material science techniques. 

In general, seismic applications of elastic wave propagation theory preceded those of acoustic testing of 

materials, but this trend was reversed for the particular case of elastic anisotropy. Within the material 

science community, anisotropic wave propagation received much attention from the beginning, (e. g. 

Mason, 1958) as crystalline materials under study were obviously anisotropic. It took around three 

At least in the propagation direction 
But see below on a proposal by Arulnatham et al. (1998) 
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decades more for seismologists (see Crampin, 1984) to make systematic consideration of this property. 
Previously anisotropy was regarded as a second order effect, partly because the focus was set on other 

complex propagation problems, like those posed by inhomogeneous layered media (Aki & Richards, 

1980); and partly because the data acquisition techniques did not favour its observation. This situation 
has changed dramatically in the last twenty years, and now the consideration of elastic anisotropy plays a 
key role in many seismic studies (e. g. Crampin, 1999). 

Although there is much to be learned from those related fields, direct extrapolation is not granted. Elastic 

waves in soils have some peculiarities that affect considerably the performance and interpretation of 
dynamic tests. It is worthwhile to address them in general before going into more detail. 

The first peculiarity to note is that soils have lower wave propagation velocities than most other materials 

of engineering interest. This, of course, is a consequence of their relatively low stiffness: Figure 2-2 

illustrates the isotropic velocities corresponding to a typical range of soil stiffness. Soils are perhaps the 

softer materials were shear wave propagation is possible: velocities as low as 3m/s have been measured 

on marine sediments. As for the faster, compressive velocity, only for the stiffer soils (dense sands) will 

it reach above 1 km/s. Most other solids are well above this limit, and the same happens with many 
liquids. Water, for instance, has a vp of circa 1.5 Krn/s a value substantially higher than the corresponding 

one in most soils. This is particularly interesting because soils are porous materials and, in many 
instances, they are saturated with water. 

It is then to be expected that porewater will cause great interpretative difficulties to dynamic 

measurements of v, in saturated soils. Roughly, most energy will travel at velocities which bear more 

relation with the stiffness of water than with that of the solid skeleton. There is a complex dynamic 

coupling between porewater and soil skeleton -Biot, 1956- and Gajo & Mongiovi -1994- have illustrated 

how this coupling precludes an easy measurement of the bulk modulus of soils in saturated samples. We 

will be back on this issue later, here its enough to say that this problem has induced most geotechnical 

researchers to work on dry granular materials (e. g. Moncaster, 1997) or/and to concentrate on shear 

velocity measurement (e. g. Kuwano, 1999). 

Another interesting consequence of low propagation velocities is most easily seen if we consider the 

basic relationship between wavelength, frequency and velocity of propagation. 

Af=v (36) 

Figure 2-3 represents this relationship for an interval of velocities typical of shear waves in soils and in 

other materials like rocks (Simmons, 1964), ceramics or metals (Krautkramer & Krautkramer, 1990). In 

the figure it is also indicated the range of frequencies typically employed in soil pulse testing in the 

laboratory and in the field, as well as the corresponding one for ultrasonic testing of materials 

(Krautkramer & Krautkramer, 1990) and exploration geophysics (Teldorf et al., 1990). These frequency 

ranges give in turn a range of characteristic wavelengths, Xw, for each case. 

22 



It is worth noting at this juncture that the frequencies of interest in seismology and earthquake 

engineering are generally below 100 Hz (Kramer, 1996). The classical dynamical laboratory test for soils, 

resonant column, usually proceeds below 100 Hz and, therefore, is testing directly within that range of 
interest. Field pulse tests, like cross-hole, are not very far away either. Laboratory pulse tests, on the 

other hand, work at relatively much higher frequencies, although unlike in most materials not high 

enough to qualify them as ultrasonic -the common hearing range is 20Hz to 20kHz (Lighthill, 1978). 

In most aspects of wave theory the comparison of the characteristic wavelengths with some characteristic 
length of the problem, d,. up, 

is key to the modelling problem. For instance, considering the propagation 

of waves within a finite body we can safely ignore the effects of its finite size as long as this is 

substantially higher than the wavelengths involved. A number of useful simplifications depend on the 

achievement of movement frequencies, f, high enough to make the corresponding wavelength, X, far 

smaller than d,,, 
_,, P. 

For most laboratory tests on soils the characteristic dimensions of the sample range between 2 cm (e. g the 

wall thickness of a hollow cylinder) and 20 cm (height of samples in large triaxial apparatuses). Now, 

looking at Figure 2-3 it appears that similarly sized wavelengths are typical of most lab tests. Following 

the previous discussion one might wonder why test set-ups for soils are not modified, allowing for bigger 

distances, or, if this looks unpractical, why then are not soils tested with higher frequencies. This 

possibility is hindered by a second important peculiarity of soils: they rank among the highest attenuating 

materials. 

There are many possible measures of wave attenuation (Kramer, 1996). For our purposes here, is useful 

to look at it as the coefficient12 relating the amplitude of a wave at two points, spaced at a distance d, i. e. 

AZ = Ale-ad (37) 

Furthermore, it is also useful to consider now this attenuation coefficient, a, as a sum of three different 

factors, whose meaning is explained below, 

a=a8+asc+aa (38) 

The attenuation or damping of elastic waves is a concept whose neat experimental appearance - Figure 

2-4- contrasts with its many interpretative difficulties. In principle, elastic materials are meant to be 

conservative i. e. they should not dissipate energy and the movement should continue indefinitely. For 

"Attenuation is usually expressed in dB/unit length or like in the formula (37) above in neper/unit lenght. Decibels are obtained as 
201og(A2/A, ). One neper is 20/In10 dB or 8.686 dB. 
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elastic homogeneous materials the only cause for amplitude attenuation of elastic waves should be the 

geometrical spread of energy in expanding wavefronts. This is known as geometrical attenuation and is 

represented above by the factor a.. But the fact is that all elastic waves die out, even when confined to 

small laboratory samples; moreover, for a given test geometry, different materials will show a different, 

characteristic, material attenuation. The presence of attenuation as a factor in test designed to measure 

elastic properties is a reminder, if needed, of the limited scope of the elastic idealisation. 

There are two different aspects of these limitation; the first is related with the assumption of 
homogeneity. At some scale or another, all materials are inhomogeneous. Inhomogeneity results in 

scattering of elastic waves i. e. partial reflection and deviation of energy. Wave scattering is heavily 

dependent on the relation between the wavelength of the impending wave and the size of the obstacle or 
inhomogeneity. This introduces a frequency dependence on attenuation and imposes a practical higher 

limit to the movement frequency. 

The frequency applied should be low enough to make the corresponding wavelength, a., bigger enough 

than a characteristic length, d., which represents the size of typical inhomogeneities within the material. 
At this respect, Krautkramer & Krautkramer (1990), summarises the experience obtained in ultrasonic 

testing of materials. He suggests the following relation for scattering related attenuation, a,, 

A>100ds, ->as, =0 

'1 

) 

100ds, > A> 10ds, -> a3 oc 
d=` 3 

C (39) 

R<1Ods, ->as,,: e oo 

Hence, for X> 100 d,, scattering is negligible, whereas for X< 10 d. scattering is high enough to make 

ultrasonic testing almost impossible. Between them attenuation by scattering grows quickly, with the 

third power of the frequency. For soils d., the characteristic size of inhomogeneities, might well be 

identified with grain size. Figure 2-5 its obtained when Krautkramer & Krautkramer limits are applied 

with this criteria. It shows clearly that for granular soft materials the operating frequency range has a 

pretty low ceiling - frequencies above 20 kHz will pose serious attenuation problems even for fine sands. 

Finally, the factor a, represents the true material absorption, the energy loss due to the material anelastic 

properties. In soils two major mechanisms of material attenuation are present. The first is fluid coupling; 

the second hysteretic or frictional "dry" losses that appear on soils even within the "elastic", very low 

strain amplitude range. This hysteretic losses represent, therefore, the minimum material attenuation to be 

expected when testing soils. A value of 0,16 dB per wavelength is typical for most soils and rocks 
(Teldorf et al. 1990). For laboratory pulse tests this will correspond to values of circa 16 dB/m. The loss 

due to fluid coupling depends on a number of parameters (frequency, granulometry ... ), but values above 

50 dB/m are common in the range of interest (Stoll & Brian 1969). 
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2.2 PULSE TESTING PRACTICE 

2.2.1 Overview 

Pulse transit tests are perhaps the most popular dynamic procedure in use today. One main reason for 

this is their relative conceptual simplicity. Pulse tests are conceptually simpler than echo or resonance 

tests as they are idealised as an experiment on wave propagation in a boundless homogeneous medium 
(see Figure 2-6). A mechanical disturbance is created at some point (source) and its arrival is measured at 

a different point (receiver). Measuring the distance between source and receiver and the time of travel of 

the disturbance between them, a velocity of propagation, V, could be assessed. 

As we have said, this idealisation is applied to very different configurations. In the field to cross-hole 

tests where sources and receivers are placed in boreholes, to down-hole or up-hole tests where one of 

them is placed in the surface and to Rayleigh wave-based tests", where all receivers are placed on the 

surface.... But this research focuses on laboratory tests and there also pulse tests have been performed on 

a variety of set-ups. Some have been performed on calibration chambers, (Lee, 1993; Bellotti et al., 1996) 

with sources and receivers buried within the sample. Nevertheless in most cases laboratory pulse testing 

has been achieved by placing source and receiver on the surface of a sample that is being simultaneously 

tested on some static apparatus. 

Bigger set-ups, like those provided by calibration chambers, permit a variation on the scheme shown in 

Figure 2-6. In it, various receivers are placed along the same direction and the time measured refers to the 

disturbance travel time between aligned receivers. This modified scheme has also been applied in field 

tests, although there cost considerations may sometimes impose the basic scheme. When measuring on 

static apparatus, this aligned multiple receiver scheme has not been yet employed. 

2.2.2 Instrumentation 

Between the years 1940 to 1960 ultrasonic testing of materials took off both as a scientific and an 

industrial tool for testing materials (Mason, 1958). The publication of "Physical acoustics" (Mason, 

1964) offered and overview of an already well established technique that had been by then extensively 

applied to metals, crystals, ceramics and, within the geological materials, rocks (Anderson & 

Liebermann, 1968). A variety of methods were already developed: those based on resonance but also, 

and perhaps even more, those based on elastic pulses, under various forms: through transmission, echo 

and interferometry. The elastic constants of all those materials were being measured with infinitesimal 

precision under a variety of conditions of pressure and temperature. For soils, nevertheless, the story was 

rather less successful. 

In 1963 Hardin & Richart published the first systematic work on soils with a resonant column apparatus 

of modem design. Whitman and Lawrence (1963) made a contribution in written discussion, describing 

13 Of course, in the case of Rayleigh waves the boundless media is a surface. 
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an application of the pulse transmission technique to soils". The apparatus presented was able to measure 
both compressional and shear waves, although the results there shown related only to compressional 

waves and compared poorly with those presented by Hardin & Richart. 

The general scheme of the apparatus employed by Lawrence was similar to that shown in Figure 2-7. A 

pulse generator sends simultaneously one electrical signal to the sample and another to the oscilloscope. 
The signal sent to the sample is transduced to a mechanical input, and, after traversing the sample, is 

picked up by another transducer whose output is also plugged into the oscilloscope, possibly after some 

amplification and filtering. 

This scheme was devised more than 50 years ago (Mason , 1958) and has remained almost unchanged 

since. The only major modification, systematic in the last 10 years, has been the incorporation of 

computers for storage and analysis of the digital records of output and input signals. The instrumentation 

scheme is valid also for cases where multiple receivers are used, with the only difference that each 

receiver will provide a new signal to be plugged into the oscilloscope, which, of course, will need more 

channels". 

By the mid 70's (Hampton, 1974, Richart, 1978) there was general agreement on the limitations of pulse 

tests in soils. Compressional wave measurements were numerous, but, as Biot theory explained, they 

were strongly affected by porewater and of little use to characterise the stiffness of soils. For the same 

reason, shear wave measurements were recognised as most interesting, but remained elusive. The 

problem, as it happened, was related to transducer design. 

The transducers used so far (e. g. Withman & Lawrence, 1963) were similar to those used for other 

ultrasonic measurements, i. e. piezoelectric displacement transducers. For shear wave measurement they 

took the form of shear plates -Figure 2-8. In them, (Mason, 1958) the displacement of the transducer (D) 

and its resonant frequency (fT) are related to the transducer material (k; ) and dimensions (L, length, T, 

thickness) and the input voltage (V) by 

D=Ltan(T V) 
(40) 

fr =L 

This resulted in high frequencies and small displacements, which, combined with the high attenuation 

typical of soils made the shear waves almost undetectable -Stephenson, 1978, provides an example of 

these problems- 

"Hardin & Richart (1963) quote some earlier work of Matsukawa & Hunter (1956) on pulse transmission through soils. They were 
not controlling the pressure on the specimen. Interestingly, in their apparatus sand was contained within a cylinder lined with sponge 
rubber, an absorbing material. The pulse frequency was 20 kHz. 
" Alternatively, (Lee, 1993), the oscilloscope might be suppressed and the signals directly plugged in to the computer via some 
ADC. 
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The introduction of bender elements (Shirley, 1977; Shirley and Hampton, 1977) represented a major 
breakthrough. Within bender elements the piezoelectric transducers were arranged as a deflecting beam16 

-see Figure 2-9- thus increasing substantially their flexibility, and allowing a much bigger mechanical 

output for a given voltage and a much lower resonant frequency, namely: 

r 
D= 

() 
V 

(41) 

fr = kZ 
L 

Working with the same piezoelectric material they achieved a ten fold increase in displacement 

magnitude and a twenty fold decrease in resonant frequency. This arrangement effectively overcome the 

limitations posed by high attenuation as they proved installing the transducers in and oedometer-like box 

and measuring shear velocities as low as 3.6 m/s. 

Shirley and Hampton developed the bender elements as logging instruments, to be mounted on drilling 

rigs for off-shore exploration of soft marine sediments. Their laboratory tests, employing variously 

shaped calibration chambers, were designed to prove the viability of the concept and not as an standalone 

objective. It was Schultheiss -1983- who first installed bender elements as transducers on standard soil 

testing equipment, namely an oedometer and two different triaxial apparatuses. The elements were built 

in into the end and top platens and cantilevered into the sample in a design illustrated in Figure 2-9. With 

minor modifications', this design became a model for most subsequent work. Table 2-1 resumes the 

information available on various bender element transducers employed to date. A tendency to reduce the 

size of the instruments is noticeable. 

The use of shear plates for stiff soils was advocated by Brignoli et al. (1996), but the idea does not seem 

to have had many followers. The system employed by Nakagawa et al. (1996) is an interesting exception, 

showing the problems associated with this design. Testing medium stiff soils (v, 100 to 300 m/s) they 

experienced highly attenuated reception. That required using four transducers in parallel, high voltage 
inputs (500 V against 10 V in many bender based tests), strong amplification, signal averaging and 

filtering, to produce more or less interpretable traces. 

Test in calibration chambers have used different transducer types. For example, Lee (1993), uses 

accelerometers and geophones (velocity transducers), whereas Bellotti et al. (1997) used geophones both 

as sources and receivers. 

16 Sometimes called a bimorph 
" Mostly concerning aspects related with the achievement of a satisfactory electrical insulation of the transducers: resin coating 
procedures, cable choice ... Pennington (1999) gives more details about bender element fabrication. 
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Their mounting procedure separates bender elements tests from most usual arrangements of ultrasonic 

tests. The hardness of most materials tested in shear was enough for the ultrasonic probe to be placed 

completely outside the sample, on its surface. As Schultheiss -1983- reports, the initial arrangement of 
bender elements respected this approach, and the newly developed beam-like piezoelectric transducers 

were placed within the container walls of the testing chamber. This soon proved unpractical, due to the 

imperfect isolation of transducers and container. As the elements bent they rang against the wall, thus 

transmitting a good deal of energy via the box itself. This being metallic, a fast, high frequency 

disturbance manifested itself on the trace of the received signal. On the short term problems were solved 

(? ) filtering out the high frequencies from the trace. But on the long term a simpler solution was devised 

and the transducers were installed inside the sample, first as a pinned beam on a platform and then 

cantilevered. 

For most external transducers the relevant basic model for transducer operation was and still is the 

radiating piston or baffle -Mason, 1958. In this model the transducer radiates plane waves through an 

aperture on a rigid wall. This aperture has a size corresponding to the contact face within the transducer 

and the sample. The radiated field is diffracted into the sample and a wave beam results. The 

characteristics of the radiated field have been thoroughly explored. Coupling problems made this model 

only approximate but transducers are now tailored to radiate much closely to its specification -Hutchins 
& Hayward, 1990. 

The situation with bender elements is far less satisfactory and little is known about their detailed 

behaviour. Usually bender probes are specified by their resonant frequency. This is obtained -e. g. 

Morgan Matroc 1999- as the first resonant frequency for a free cantilever beam. Of course a free 

cantilevered beam has other, higher, resonant frequencies. They correspond to modes where the curvature 

of the beam changes sign along its length. In operation, bender probes are surrounded to a higher or 

lesser degree18 by soil. This will change their dynamic response. Qualitatively, it will add damping to the 

system thus lowering somehow the resonant frequencies. 

Huot -1999- has investigated this problem. He modelled the soil constraint as a viscoelastic support 

distributed along the beam. For the case of a relatively rigid soil (E = 900 MPa) he observed that when 

the higher modes were excited the signal was richer in vp travelling energy. 

It is not known how this relates to the' overshooting" described by Jovicic et al. (1996). Using the self- 

monitoring technique proposed by Schultheiss they observed that the input signal was not followed by 

the transducer when the frequency was increased. A self-monitoring piezoelectric transducer has an input 

band and an output band on its surface, mechanically joined but electrically isolated. This allows to 

measure the output from the source bender, thus determining its response to the electrical input when 

mounted within the sample. Although this technique seems very well suited to establish the transfer 
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function FB it does not seem to have been systematically exploited. Recent laser observations by 

Greening (2001) indicate however that their performance is poor. 

2.2.4 Arrival time identification 

Two measurements are needed to obtain a velocity value from a pulse test: distance between source and 

receiver and travel time. Distance is by far the less problematic: the only uncertainty is related with the 
finite size of source and receiver. The usual approach to this has been to obtain travel times at varying 
distances and then extrapolate the results to zero travel time. By so doing, a number of investigations 

(e. g. Schultheiss, 1983) have shown that the best distance estimate for bender elements is given by the 

tip-to-tip distance between instruments. 

The scheme shown in Figure 2-6 is an obvious idealisation. One particular aspect of it may be strongly 

misleading: the propagating mechanical disturbance is represented as a line, therefore suggesting an 

unequivocal, easily identifiable, arrival. That might be the case for materials with good acoustic 

properties i. e. materials transmitting fast, with low attenuation or distortion. An example of the kind of 

result there available is shown in Figure 2-4. For soils this is not at all the case. 

The input signals employed in pulse testing might be more or less controlled in shape. For instance, in 

field tests impact sources are common, thus producing a rather uncontrolled input. An example of this 

practice, as presented by Mancuso et al. (1989), is shown in Figure 2-11. In the laboratory, on the other 
hand, the general practice is to specify more tightly the input signal. As can be checked in Table 2-2 the 

pulse shapes favoured by most researchers have been either square -e. g. Jamiolkowski et al. (1995) 

Figure 2-12- or sinusoidal -e. g. Shirley (1978) Figure 2-13-. Occasionally, there have been more 
imaginative proposals, such as the distorted half-sine postulated by Jovicic (1997) and reproduced in 

Figure 2-14 as applied by Pennington (1999). Nevertheless, what is clear from this figures and from all 

the similar ones published to date is that what appears on the output is not very similar to what has been 

used as input. Even for aligned multiple-receiver set-ups, as in Figure 2-11, the comparison between their 

respective outputs still shows appreciable differences. 

Therefore it seems that pulse test in soils should cope not just with a slow, highly attenuated 

transmission, but also with an important distortion of the transmitted signal. This, of course, creates 

problems of interpretation. If a signal, however complicated, travels undistorted between two points, any 

particularity of its shape might well be taken as reference of its arrival. But when this is not the case some 

other criteria needs to be applied. 

As the output pulses, even distorted, are finite in extent, one possible approach would be to ignore the 

problem and select any point in the pulse as indicating the arrival. If the pulse is short enough compared 

with the theoretical travel time the error will be small. Consider the distorted transmission represented in 

Is They have to go also through the end porous stones employed in triaxial testing. 
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Figure 2-15. If there is complete uncertainty about which point to select within the arrival signal". the 

maximum possible error will be 

Tap(l+n) 
ý, ý, ax = (42) 

Here T1 represents the duration -or apparent period- of the input. The arriving signal is not only 
distorted, but longer than the input -something which is observed on all the traces registered in soils- 
This extra length is represented by a factor n. Finally T; represents the ideal arrival time for an 

undistorted signal. This ideal arrival time will be given by the characteristic velocity of the medium, V 

and d, the distance between source and receiver. Introducing those values in (34) the following 

expression results 

V(1+n) 
_a (l+n) _ 

(1+n) 
"AX= dfdn ap ap 

(43) 

where an apparent frequency and wavelength of the pulse have been introduced with obvious meaning. 
The resulting adimensional apparent normalised distance, n,,, is an important parameter of pulse tests. It 

represents the number of apparent wavelengths between source and receiver. In soils, its value is strongly 
limited by their characteristically high attenuation. A value of 10 is a reasonable upper limit, 

representative of most current practice. In fact, for reasons that will be explained below, most researchers 
try to obtain a value of n,, between 2 and 4. The value of n, on the other hand, is more difficult to 

establish on a general basis, but, judging from reported cases like the one shown in Figure 2-13 a value of 

n=0.5 would seem a reasonable lower bound. Figure 2-16 is a plot of equation (2) using these values. In 

soils the problem posed by signal distortion is potentially very important. 

Note that this problem is closely related to the limited range of n,, in soils. In materials with better 

acoustic properties, such as rocks, pulse transmission tests are inherently more precise. For instance, the 

shear wave measurements by Simmons (1964) were made with an apparent normalised distance of 

around 40. For the case represented in Figure 2-16 this will bound the error to a few percentage points. If 

the signal distortion is less intense the improvement will be even higher. In fact, with an experience 

mostly based in rocks, Schreiber et al. (1973) gave a value of 1% as the expected precision of pulse 

transmission tests when the arrival time was directly established by inspection of the trace on the 

oscilloscope". The arrival was identified as the first arrival point i. e. the point where the trace of the 

received signal first departs from zero. 

The same method was applied by Shirley (1978), and, as Table 2-3 shows, this has been and remains the 

most popular method of time arrival identification in soil mechanics. Although conceptually simple, this 

method requires a fair amount of interpretative skill -e. g. Figure 2-17 Thomann & Hryciw 1990-, and 

19 To simplify the discussion we assume here that there is no uncertainty on the input signal. 
20 And one order of magnitude more if some visual reference was introduced on the oscilloscope, for instance by means of a mercury 
delay line. 
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perhaps the most extended agreement among practitioners is about the important role that subjectivity 

and expertise plays on it (e. g. Viggianni, 1992, Brignoli et al., 1996, Pennington, 1999, Lo Presti, 1999, 

Kuwano, 1999). 

Another possible approach is to establish the arrival selecting comparable, easily identifiable points, on 

two traces. This is most easily applied to aligned receiver set-ups and thus was used first in the context of 
field cross-hole testing (Sanchez-Salinero et al. 1986, Mancuso et al. 1989). First peak, first crossing and 
first through have been proposed as candidates for an easy identification. 

In source to receiver set-ups this approach has also been used. Sinusoidal or sinusoidal-like input pulses 

offer peaks and throughs so they seem suitable for this criteria. But even when, for instance because of 
being square, the first signal has not any characteristic point, there may be advantages in establishing as 

arrival a characteristic point (first peak, first crossing,... ) of the second signal. A major one is that 

easiness of identification might ensure a more repeatable procedure. If pulse testing is used as a change- 

tracking tool during a different test this is the essential requirement. Even if a systematic error is present, 
it would be the same in all the measurements. Therefore change trends will be more reliable than isolated 

measurements. This is a common sense argument and, in the context of pulse testing has been put 
forward a number of times (e. g. Weidner, 1987, Viggianni, 1992, Kuwano, 1999). 

Of course, the problem is that different researchers might use different characteristic points and 

comparison between their respective results will be then subject to the uncomfortable background of 
Figure 2-16. Some researchers have indeed measured the differences arising from assigning the arrival 

time to one or another point in the trace. Bodare & Massarsch -1984- in a series of cross-hole essays in 

clay with an impact source registered differences of 50% between measurements based on different 

characteristic points. Viggiani and Atkinson -1995- using bender elements in clay showed differences of 

30% for the case of a low frequency square wave. 

Another easily repeatable criteria to identify arrival times is given by the cross-correlation' maxim of the 

first and second signal. Again this was applied first to cross-hole testing with multiple receiver set-ups. 

(Sanchez-Salinero et al. 1987, Mancuso et al. 1989) Then Viggianni & Atkinson (1995) applied it to 

bender element tests. In all those works arrival times obtained by cross-correlation are shown to be 

different than those obtained from characteristic points. Viggianni & Atkinson (1995) proclaimed it "the 

most accurate", but curiously, in subsequent work by the same group (Jovicic et al. 1996) this method 

was deemed too complicated and abandoned. Maybe because of that it has not had many followersu, and 

only Arulnathan and co-workers have made systematic use of it (Arulnathan et al. 1998, Boulanger et al. 

1998). 

21 A brief reminder of this and other signal treatment concepts is given in Appendix I 
u Cross-correlation and other FFT based signal treatment procedures are now built-in most common laboratory equipment like 
oscilloscopes, and they are also heavily used in many fields, either very close (e. g. geophysics) or unrelated but pervasive (e. g. 
image analysis). This can hardly be seen as "complex numerical analysis" (Jovicic et al. 1996). 
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Another interesting variation has been proposed by Boulanger et al. (1998). They used also visual 
identification of characteristic points and cross-correlation, but comparing the first and second arrival of 
the signal. In fact, this is an echo-based method. Echo methods are known since long (e. g. Schreiber et al. 
1973) to require samples with higher acoustic quality than through transmission methods. One reason is 

that attenuation makes hard to detect the echo. Another is that if the signal is distorted and the path is 

relatively short (low rap) first and second arrivals may overlap. Those problems were also recognised by 

Arulnathan et al. (1998). 

All the arrival identification methods described so far have one point in common: they work on the time 

record of the signal. An alternative procedure is to work on the frequency domain and obtain a velocity 

value examining the phase of the cross-spectrum. Details of how this is actually done are left for later. 

Here it is enough to say that again this was first proposed to interpret field tests either with a single 
(Bodare & Massarsch, 1984), or multiple aligned receivers (Mancuso et al. 1989). Again it was applied to 

bender element testing by Viggiani and Atkinson (1995) and later discarded as being too complicated by 

Jovicic et al (1996). This frequency domain approach has had even less followers than cross-correlation: 
Arulnathan et al. (1998) did not use it on grounds that it produced almost the same results as cross- 

correlation. This was based on a single test by Viggiani and Atkinson (1995) showing indeed a close 

result. On the other hand, results by Mancuso et al. (1989) showed far more disagreement between this 

cross-spectrum value and the cross-correlation one. 

2.2.5 Interpretation models 

As pointed out by Jovicic (1997) the dominant model for pulse test interpretation is that of a shear bulk 

plane wave travelling between source and receiver. Hence the test result is simply related to the shear 

modulus by equation (32). This is straightforward, but has an important disadvantage. As explained in 

chapter 1, this model offers no cue whatsoever about why there is any signal distortion at all and hence it 

is unhelpful to rank the various results obtained with different arrival time identification methods. 

A new perspective was introduced by Sanchez-Salinero working at the University of Texas, Austin 

(Sanchez-Salinero et al. 1986). As his work has permeated most of later approaches to this problem it is 

worth considering it in some detail. With a multiple aligned receiver, field cross-hole set-up in mind, he 

performed a systematic sensibility analysis of the propagation of a single sinusoidal pulse in isotropic 

elastic media. His attention was focused on the peculiarities of the movement near its source. For reasons 

that will be made clear in chapter 4, plane bulk waves are a good approximation to this problem only 

when the normalised distance between source and receiver is above some limit value. This value marks 

the end of what is known as the "near field" of the movement. 

Salinero produced clear graphic evidence of how near field effects could affect the recorded shear 

movement, taking also into account hysteretic damping. He did that by numerically generating and 
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analysing synthetic wave records, and compared methods of time arrival selection based on direct 

inspection of the simulated signals, methods based on their time cross correlation, and methods based on 
frequency spectra analysis. 

One of his main results was that if the receiver is placed within the near field range of the test the precise 

measurement of velocity could be very problematic, particularly in time domain. Having thus established 

the importance of proper receiver placement, he gave recommendations for it, proposing the following 

limits: 

2< r 
=nap <4 %ap (44) 

%aa = VsTea 

where T1 is the apparent period of the single sinusoidal pulse he was employing. The upper limit was 

introduced to make allowance of signal attenuation via damping, the lower limit for near field effects. 

It is important to note that Salinero was working with a multi-receiver set-up in mind. The signals he was 

comparing, correlating, etc were theoretical records from two receivers, placed at different distances. 

This has not discouraged other researchers from applying its results in source to receiver experiments 

and, in fact, they have been extensively used, almost to the point of becoming standard (e. g. Viggiani, 

1992; Brignoli et al., 1996; Jovicic, 1997; Pennington, 1999; Lo Presti et al, 1999; Kuwano, 1999). 

A good corroboration was seemingly obtained by Brignoli et al (1996). They made source to receiver 

experiments with simultaneous measurement of compressive and shear motion. Results showed the 

simultaneous appearance of movement in both traces and also how an increased n,, resulted in a more 

clear arrival in the shear trace -Figure 2-18-, in accordance with Salinero's results. 

Following Salinero's recommendations has not been a recipe for unalloyed success. Gajo et al. (1997), 

Moncaster (1997), -Pennington (1999) and Kuwano (1999), amongst others have reported difficulties in 

obtaining clear arrivals even when abiding by these rules. The fact that Salinero's work was made within 

an isotropic single-phase elastic theory might point to the origin of some discrepancies when his work is 

used within different assumptions, like anisotropy (e. g. Pennington, 1999) or fluid-solid interaction (Gajo 

et al. 1997). Moreover, Salinero only used one input waveform shape, a sinusoidal single cycle. It is not 

clear to what point his recommendations extend to different waveshapes, like those recommended by 

Jovicic (1997) or to the -still in use- square signal. 

There are other intriguing aspects. Sometimes -Table 2-3- signal polarity inversions are used to help 

interpretation in shear movement traces. The idea is that shear waves change polarity while compressive 

waves do not. Salinero et al. (1987) showed that this technique was useless while working in the near 

23 This is an usage taken from geophysics (Aki & Richards, 1980, Udias, 2000). Note that "near fields" with different characteristics 
appear also in the proximity of a diffracting obstacle. This is the main usage of the term in ultrasonics literature (Mason, 1958, 
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field. This was, nevertheless, the technique used by Dyvik and Madshus (1985) at the NGI to interpret 

the arrival of a low-frequency square signal -Figure 2-19. 

Dyvik and Madshus results are important, because they installed bender elements in a resonant column, 
thus obtaining a direct comparison of the shear modulus obtained with both systems. Their results for 

Drammen clay are shown in Figure 2-20. This almost perfect agreement was reproduced, -with slightly 
less impressive neatness-, by Thomann and Hryciw (1990) working with sand. In apparent contradiction 

with them, Jamiolkowski et al. (1995) reported an average difference of circa 25% between bender and 
RC shear modulus for clay. Later, Nakagawa et al. (1996) obtained similar differences, albeit their 

transducers were of the shear plate type. Disagreements between RC and bender element results have also 
been found in recent work at Imperial College: moderate while benders were installed in solid samples - 
Kuwano, 1999, Figure 2-21- they became much more impressive (up to 300% of shear modulus 

estimates) when using hollow cylinder samples -Conolly & Kuwano, 1999. 

It is difficult to tell what lies beneath these discrepancies. As we have seen, the detailed interpretation 

procedure of pulse test in soils is far from settled. Different researchers develop different recipes for the 

task with a pick and mix approach. Even where an apparently optimal tradition should exist it is changed 
if need comes. An example is provided by work at the NGI-Figure 2-22, BRE, 1997. In the figure 1" and 
2nd choice refer to pulse test with bender elements. The In choice corresponds to arrival points selected 

with the criteria established by Dyvik and Madshus. The 21 choice to a new criteria developed -again- 
with the help of resonant column testing. Overall, it is difficult to disagree with Arulnathan et al. (1998) 

when they ended their study of the subject claiming for more "experimental and analytical research". 

2.3 SUMMARY 

Although conceptually more complicated than static methods, dynamic procedures offer powerful tools 

to measure Do. There are a variety of methods available, but in later times pulse tests have become very 

popular in geotechnics because of their versatility. In soils, pulse tests, like any other dynamical methods, 
have to cope with a slow and highly attenuated transmission. Shear waves are of higher interest, because 

they are less affected by pore fluids. Their measurement in the laboratory required the development of 
low-frequency highly compliant transducers: piezoelectric bender elements. Then transmission was 

possible, but this revealed another problem: the transmitted pulse was substantially distorted on 

reception. This affects the interpretation procedure, introducing considerably uncertainty in the process. 
A number of suggestions have been introduced to ease the problem, but their following its not unanimous 

and their results sometimes contradictory. 

Krautkramer, 1990). 
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2.4 TABLES 

Reference Material Fixity Set-up L (mm) W(mm) T (mm) 
Shirley & Hampton (1978) Ceramic Pinned C. chamber 25.4 12.7 
Schultheiss (1983) PZT Cantilevered Oedometer 10 5 3 
Schultheiss (1983) PZT Cantilevered Small TX 15 15 13 
Schultheiss (1983) PZT Cantilevered Big TX 18 18 3 
Dyvik & Madhus (1985) Ceramic Cantilevered 14.5 12 1 
Brignoli et al (1996) PZT 5HN Cantilevered TX 20 10 1.1 
Jovicic (1997) PZT 5B Cantilevered TX 13 10 3 
Arulnathan et al. (1998) Ceramic Cantilevered TX 15 15 1 
Pennington (1999) PZT 5B Cantilevered TX (belt) 3.5 5 0.5 

Table 2-1 Some characteristics of bender-type transducers employed in previous research 

Reference Te Apparatus Signal shape fa kHz 

Shirley & Hampton (1978) BE Calibration 
Sine 0,338 

chamber 

Shirley (1978) BE Calibration Sine 4 Chamber 
Schultheiss (1983) BE Oedometer Square 
Schultheiss (1983) BE Triaxial Square <40 Hz 

Dyvik & Madshus (1985) BE Resonant Square < 0.1 
column 
Oedometer 

Thomann & Hryciw (1990) BE Resonant Square ? 
column 

Viggiani (1992) BE Triaxial Sine 1-10 
Jamiolkowski et al. (1995) BE Oedometer Square 0.1 

Brignoli et al. (1996) BE Triaxial Sine 1-20 

Nakagawa et al. (1996) SP Triaxial Sine/Sawtooth 3-5 

Jovicic (1997) BE Triaxial Distorted half- 
<20 

sine/Sine burst 
Boulanger et al. (1998) BE Triaxial Sine 1.1 
Zen 1999 BE Oedometer Square 1) 

Pennington (1999) BE Triaxial Sine/Distorted 3-20 half-sine 
Kuwano (2000) BE Triaxial Sine 4-10 
BE = Bender element SP = Shear Plate 

Table 2-2 Laboratory shear pulse tests: transducer and input signal in previous research 

Reference Method Point Auxiliary criteria 
Shirley & Hampton (1978) Visual identification First arrival 
Shirley (1978) Visual identification First arrival 
Schultheiss (1983) Visual identification First arrival 
Dyvik & Madshus (1985) Visual identification First arrival Polarity inversion 
Thomann & Hryciw (1990) Visual identification First arrival 
Viggiani (1992) Visual identification First peak 
Lee (1993) Visual identification First arrival Polarity inversion 

Jamiolkowski et al. (1995) Visual identification First arrival 

Brignoli et al. (1996) Visual identification First arrival P measurements 
Salinero's NFL 

Nakagawa et al. (1996) Visual identification First arrival P measurements 
Jovicic (1997) Visual identification First arrival Salinero's NFL 
Boulanger et al. (1998) Visual identification Characteristic First and second 
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Reference Method Point Auxiliary criteria 
points arrival 

Boulanger et al. (1998) Cross-correlation Maximum 
value 

First and second 
arrival 

Zen 1999) Visual identification First arrival Polarity inversion 
Pennington (1999) Visual identification First arrival Salinero's NFL 
Kuwano (2000) Visual identification First arrival Salinero's NFL 
NFL = Near Field Limit ; 
P measurements = simultaneous measurement of compressive waves available 

Table 2-3 Laboratory shear pulse tests: arrival identification in previous research 
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Figure 2-1 Dynamic testing procedures (after Pollard 1977) 
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Figure 2-2 Typical range of characteristic wave velocities for isotropic soils 
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Figure 2-3 Comparative ranges of pulse tests in geotechnics and some related fields 
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Scattering limits for dynamic test frequencies 

i 

i iay 

` `. and 

i 

"I 

1,00E-07 1,00E-06 1,00E-05 1,00E-04 1,00E-07 1,00E-02 1,00E-01 

Particle diameter (m) 

vs = 100m/s -- vs = 500 m/s -vs = 100m/s -vs = 500 m/s 

1,00E+09 

7,00E+08 

1,00E+07 

1,00E+06 
N 

1,00E+05 T 

V 
C 

1,00E+04 
a. 

1,00E+03 

1,00E+02 

1,00E+01 

-1 1,00E+00 
1,00E+00 

Figure 2-5 Scattering frequency limits for soils. Above the continuous line total scattering is 

expected; below the discontinuous line scattering should be negligible. 
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Figure 2-4 Pulse-echo test in a single cystal of NaCl (after Pollard, 1977) 
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Figure 2-8 A shear-plate piezoelectric transducer (Shirley & Hampton, 1978) 
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Figure 2-10 Cantilevered bender probe (after Dyvyk & Madshus, 1985) 
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Figure 2-13 Sinusoidal source. Oscilloscope images of a pulse test in sand (Shirley, 1978). 
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Figure 2-14 Distorted sine as input to pulse test in clay (Pennington, 1999). The receiver signal has 
been truncated. 
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Figure 2-16 Possible error in travel time when the output signal is distorted and enlarged 50% 
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Figure 2-15 Pulse transmission with and without distortion 



5 

` 

01 
r 

V0 E 

d -t a c 
d -3 m 

_" 

_. 

Beginning 
of Trace 

AAAN. 

P- Wave S- Wave 
Arrival Arrival 

0 50 100 1SO 200 250 300 35o e00 
Time (microseconds) 

Figure 2-17 Visu al identification of arrival time in pulse tests (Thomann & Hryciw, 1990) 

8£NOER TRANSDUCER 

100 P-WAVE 
ARRIVAL 

i1N 
= 2.5 kHZ 

0 
_- ---T- ------- ----- 

1 

/ 

/ 

S-WAYE 
E 

100 ARRIVAL 
v . 

u fig 
=5 kH2 : 

--- ------- -- 
H 11 

-100 b 
c 

100 $ 
1 

f 10 kHz 
0 

-100 . 

CCwoatSSI0M t NSOUCER _ 

o 
, p0 P-WAFT ARR- AL 14 

0 200 400 600 8C0 
t TIME (us) 

Figure 2-18 Simultaneous measurement of shear and compressive movements in Pontida clay 
(Brignoli et a). 1996) 

44 



B 

i m1 E 

TRACE I 

Shear wave triggered 
! zero r-rr, e) 

TRACE 2 

75ýxt0"ý seconds 

A 

Figure 2-19 Polarity inversion as an aide to identify arrival times in pulse tests 
(after Dyvik & Madshus, 1985) 
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(Kuwano, 1999) 
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3A BENCH TEST SERIES ON GAULT CLAY 

3.1 INTRODUCTION 

The previous chapter made clear that there is ample room for improvement in the interpretation of 
laboratory pulse tests in soils. This has been noticed before, and works by Brignoli et al (1996), Viggiani 

& Atkinson (1995), Jovicic et al. (1997), Arulnatham et al. (1998) and Blewett et al. (1999) have been 

specifically devoted to this subject. It is nevertheless a curious feature of this literature the paucity of 

published data on the comparative performance of the proposed methods. Viggiani & Atkinson, for 

instance, base their arguments on the results of two tests. Arulnatham et al. include more results, but most 

of them correspond to simulated rather than measured traces. More data is available on related work by 

Bodare & Massarsch (1984) and Mancuso et al. (1989), although those results correspond to field tests 

and, therefore, they are not directly comparable with laboratory tests. 

It was felt necessary to generate a more ample database with a double objective in mind: 

0 To have a statistically more sound estimate of the actual uncertainty associated with the current 

practice of pulse test interpretation 

0 To have a background against which explore current and alternative interpretative hypotheses 

What follows is a description of how this database was generated and what responses did it offer to the 
first item above. 

3.2 TEST DESCRIPTION 

3.2.1 Material 

The material employed in this test series was Gault clay. Gault clay was selected because of its ready 

availability, but had the extra advantage of being a material already employed by previous researchers at 

the University of Bristol, particularly Ng (1992) and Pennington (1999). Pennington work is particularly 

relevant as he has obtained already a substantial amount of data on the elastic EO properties of Gault clay. 

Relevant basic data from this previous work is summarised in Table 3-1. 

3.2.2 Sample preparation 

A reconstituted sample was formed out of slurry in a consolidometer of internal diameter 98.5 mm. The 

procedure has been described by Pennington (1999). It involves a Ka consolidation up to a vertical 

nominal stress of 150 kPa, equivalent, because of wall friction, to 100 kPa effective vertical stress. 

Suction measurements by Pennington indicate an isotropic confining stress after extrusion from the 

consolidometer tube of 25 kPa. He measured also a void ratio of 1.38, or equivalently a porosity, n, of 

0.58. 
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3.2.3.1 Bender elements 

The piezoelectric bender probes employed in this test series were made at Bristol University by Dr. P. 

Greening, following a procedure detailed by Pennington (1999). Their main characteristics are resumed 
in Table 3-2 and illustrated in Figure 3-1. The compliance, free deflection and free resonant frequency 

quoted there are based on information provided by the bimorph producer (Morgan Matroc). 

3.2.3.2 Data acquisition and treatment 

The equipment used for data acquisition included an oscilloscope -Textronik TDS 3014. The apparatus 
has an upper limit sampling rate of 1 MHz. During the tests this variable was adjusted with the purpose 

of having a sampled time history of no more than 10000 data points. Each reading was repeated a number 

of times for averaging or stacking purposes. The total number of readings thus stacked varied between 

128 and 512, with 256 being the most common setting. 

In some cases the oscilloscope was substituted by a function analyser -Advantest R9211C- who, apart 
from sampling, displaying and averaging had also the possibility of computing the coherence of the 

averaged signal". 

The averaged signal record was then transferred to a computer. The initial 10000 data record was deemed 

too long for the subsequent analysis and it was then reduced by sampling to 2500 data points. The 

sampling interval was varied between 4e-3 and 4e-4 ms. These values, as well as the total sampling time, 

resultant frequency step and Nyquist frequency" for each test are collected in Table 3-5. 

3.2.3.3 Others 

A programmable function generator TG 1010 was employed to produce the input signal on the 

transmitter bender. In some cases a charge amplifier (Kistler 5011) was introduced in the connection 
between receiver and oscilloscope. This device induced a 90 degree phase shift in the received signal. 

More worryingly, it did also introduce a substantial amount of low-frequency noise in the received signal. 

As explained below this made necessary to filter the output, thus affecting the uniformity of the test 

series. Partly because of that and partly because the non-amplified received signal was clear enough, its 

use was restricted to a fraction of the tests -see Table 3-5. 

3.2.4 Testing procedure 

A total of 96 bender traces were initially recorded. The main factors identifying each test are the source 

to receiver configuration and the characteristics of the input signal. Table 3-6 collects these data for each 

test in the series. Some explanations are given below. 

2' See Appendix I for a definition of coherence. 
u See Appendix I 
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3.2.4.1 Source to receiver configuration 

After consolidation the sample was isolated with wax and placed on a laboratory bench, simply supported 

on its larger side. Then six bender probes were installed in the sample following again a procedure 
described by Pennington. This sample had initial length of circa 18 cm and a diameter of approximately 
9 cm. Two probes were installed on the opposite ends of the sample and the other four on the lateral 

surface. All of them were installed in the same meridian plane, their disposition being illustrated in 

Figure 3-2. 

After a number of tests with this initial configuration, the sample was modified, slicing out one end, 

waxing it again and reinstalling the instrument in the same position. This process was repeated four times 
in total as indicated in Figure 3-2. The tip to tip distances between instruments were calculated by 

subtracting the total length of the probe pair from the distance measured across the back of the probes. 
These distances are collected in Table 3-3. This table also shows how only two transducers -A and C, 

Figure 3-2- were used as sources. The rest were used as receivers. 

From the dimensions given in Figure 3-1 and the measured distances an azimuth can be computed for 

each source-receiver pair. These azimuths are collected in Table 3-4. Note that angles are measured from 

the consolidation axis of the sample. 

3.2.4.2 Input signals 

A variety of input signals were employed. They can be classified within two different categories on the 

basis of their spectral characteristics: 

0 Wide-band single cycle signals. Mostly two different shapes were used: a sine cycle or an square 

pulse. A few tests employed the distorted half-sine cycle proposed by Jovicic (1997). 

0 Narrow-band multiple sine cycle signals. Two shapes were employed, one including four successive 

cycles, the other ten. 

The wide-band square, single sinusoidal pulses or distorted sinusoidal pulses were selected because of 

their traditional use within the soil-testing community. Narrow-band burst signals have had less success 
in soil mechanics, although they have been favoured in other areas of ultrasonic testing -Schreiber et al. 

1973. 

The time domain shape of these signals is represented in Figure 3-3 for a nominal unit amplitude and 

apparent period. Note that the apparent period corresponds to the total duration of the signal in single- 

cycle cases and to the duration of one cycle in the multiple cycle cases. The input amplitude to the source 

was fixed at 10 V. 

21 There is some uncertainty about the exact dimensions of the sample, as it was covered with wax. This, nevertheless, does not 
apply to the distance between instruments which is the relevant one for test interpretation and well known. 
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The spectra of these signals are shown in Figure 3-4, again for a unit nominal apparent frequency, f1,. In 

the test series here described f, was varied between 2.7 and 9 kHz. Table 3-6 includes all the data 

3.2.4.3 Other factors 

The whole testing took place in eight different sessions. The sample remained in the bench laboratory for 

26 days. The bench-time days for each test are also indicated in Table 3-6. 

The quality of the traces was generally good, although some high frequency noise was generally present. 
A typical result is shown in Figure 3-5. Note that in this and all the subsequent figures both input and 

output traces normalised to a nominal peak amplitude of 1. The inverse of the normalising factor gives 

the amplification applied to the output signal, it was recorded and its shown in Table 3-7. 

Rather more inconvenient was the presence of low frequency noise in 18 traces, causing an apparent drift 

on the signal -Figure 3-6. This noise was always present when using the amplifier, but appeared also on 

other occasions. These traces were subjected to a low pass filter with a pass frequency of 1kHz. This is 

also indicated in Table 3-7. 

3.3 ARRIVAL TIME IDENTIFICATION PROCEDURES 

3.3.1 Time domain 

All the test traces were first examined in time domain to obtain arrival times. A variety of methods were 

employed to select the arrival time: visual identification, automatic identification and cross-correlation. 
These methods are described below. 

3.3.1.1 Visual identification 

The operator selected the arrival time by inspection of the trace, looking for the first "significant" 

deviation from zero. The operator was aware of possible near field effects, and those were approximately 

taken in account, disregarding minor initial deviations in the trace. The inspected trace was recorded and 

closely examined with the help of MATLAB. This permits a more leisurely identification than what is 

possible with a direct inspection on the oscilloscope. This procedure corresponds fairly well with that 

described by Pennington (1999) or Kuwano (1999). These times are believed to represent the current 

research practice of bender element testing. In what follows this arrival time is identified as TE27. 

3.3.1.2 Automatic identification 

A program was written to select the following characteristic points on the trace: 

0 Time were the trace first deviates from zero or To. Deviations from zero of less than 10% of the 

maximum value were discarded 

" Time were the trace reaches its first peak or T, 

" Time were the trace has its second zero i. e. the first crossing after the first peak. In what follows this 

time is called T2 

27 In this as well as in all subsequent methods the corresponding velocity is identified with the same subindex as the arrival time. 
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0 Time were the trace reaches its first through or Ts 

The automatic procedure involved some extra steps. The original trace was too irregular so it was 

necessary to smooth it out. This was achieved substituting the original trace by a moving average of 
between 10 and 30 data points, depending on how noisy the signal appeared to be -the actual value for 

each test is collected in Table 3-7- In Figure 3-7 one original trace is shown along the corresponding 
filtered trace: it is clear that the alteration of the time-domain signal is minor. Figure 3-8 does show an 

example of the automatically identified arrival points T; as well as the visually identified TE. This 

example is representative of the generally good-looking performance of the automatic procedure. 

3.3.1.3 Cross-correlation. 

The input trace was cross-correlated with the output trace. The cross correlation function was normalised 

and the maximum value identified. This gave another arrival time Tcc. An example of the cross- 

correlation result is plotted along the corresponding input and output signals in Figure 3-9. 

The cross-correlation was performed on the frequency domain through a FFT-based algorithm. More 

details about the characteristics and implementation of this and other signal treatment procedures can be 

found in Appendix I. 

3.3.2 Frequency domain: Cross-spectrum phase 
As it is shown in Appendix I, the cross-correlation of two signals in the frequency domain receives the 

name of cross-spectrum. Within the context of pulse test in soils, Mancuso et al. (1989) for cross-hole 

and Viggiani and Atkinson (1995) for bender element test have applied this method to establish the 

arrival time using the cross-spectrum between the input and output signals of source and receiver29. 

To obtain an arrival time they fitted a line to the unwrapped plot of the cross-spectrum phase against 
frequency -Figure 3-10. If the slope of this line is called a then a travel time is obtained as 

a TES 
IT 

(45) 

Note that a is a ratio of phase (adimensional) and frequency, and has therefore the proper time dimension. 

The arrival time Tcs is called a group travel time by Mancuso et al and Viggiani and Atkinson. The 

rationale for this name will be made clear in the next chapter, the important thing here is to note that 

however this arrival time was called, it was used exactly as any of the time domain values presented 

before. 

This procedure was again implemented by means of an Excel-VBA program and applied to the bench- 

test records. The cross spectrum of input and output is obtained from the FFT of both signals. To fully 

2' A moving average is equivalent to a rather rustic high pass filter. Note that this modified signal was used only for methods based 
on identification of characteristics points on the trace. Cross-correlation and cross-spectra used the original trace in all cases except 
the low-filtered ones indicated in Table 3-7. 
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automatise the procedure a couple of extra criteria need to be specified: how to select the range of 
frequencies where the linear fit is applied and how to unwrap the phase of the cross-spectrum. 

Some indication regarding the first criteria was given in the literature. Mancuso et al. suggested that the 
fitting interval should be established by reference to the cross-spectrum module, selecting only the 
frequency range where this is significant -i. e. high enough. They also suggested employing the coherence 
function of repeated measurements as a complementary tool. Viggiani and Atkinson employed only the 

cross-spectrum module. No particular indication was given by any of them about the procedure employed 

to unwrap the phase. 

Coherence was measured a number of times but not systematically recorded. A typical result, 

nevertheless, is that shown in Figure 3-11. It was very high (i. e. above 90%) for frequencies between 0.5 

and 10 kHz and very low (i. e. below 20%) for frequencies outside this range. The figure also shows a 

recurrent feature of the observed coherence: an isolated zone of low values (around 5,25 kHz in this 

case). This is a typical manifestation of high peaks in the spectra. 

It was hence the module criteria the one employed to establish the range of frequencies available for the 

linear fit, establishing the significative level at 10% of the maximum cross spectrum power. The unwrap 

procedure assumed that the phase was always increasing and that each apparent reversal on the 

unwrapped phase corresponded to a single missing cycle. A round-off of n/100 was also included in the 

algorithm, which may be synthetically expressed as 

9= oiw +2 7rE 
(O 

-ems 2I 
j-2 

(46) 

Where the superindex indicate the wrapped or unwrapped angle and the subindex i goes throughout the 

values of the discrete spectra. Figure 3-12 exemplifies the performance of the unwrapping procedure, 

Figure 3-13 the fitting criteria and in Figure 3-8 the arrival time thus obtained is displayed along the other 

estimates. 

3.4 AN ESTIMATE OF UNCERTAINTY IN CURRENT PRACTICE 

3.4.1 Preliminaries 

The systematic application of the methods described above produced seven different estimates of arrival 

time for each of the 92 tests available30. The estimates were represented on the trace and all of them were 

inspected to pick any obvious errors. Some 13 cases were discarded as unsuitable for analysis, most of 

them because of substantial low frequency noise was present even after filtering". These cases are 

indicated in Table 3-7 and included all those were the amplifier was used which, unfortunately, 

corresponded also to all the shots for the A-D source to receiver configuration. Results from these tests 

29 Two receivers in the case of Mancuso et al. (1989) 
70 Except the visually identified VE who was only available for the 49 tests along the sample axis. 
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are included in Table 3-8, where all the velocity estimates are collected, but they will not be considered 
further. 

Even after this purge there are more than 500 different estimates of velocity available for the same 

sample. Displaying all this data together, like in Figure 3-14 offers a rather daunting picture. The 

apparent variability is enormous: there is a factor of five between the lowest and highest measurements. 

3.4.2 Anisotropy and time effects 

To account for this spread there are, in principle, five different factors to be considered -azimuth, 
distance, frequency, signal type and bench time- Of all them only two come within the usual 
interpretative framework of pulse tests in soils: azimuth and bench time. 

Stiffness variations ascribed to the source to receiver azimuth are best explained in terms of anisotropy. 

Indeed, Pennington clearly showed both that the elastic behaviour of remoulded Gault clay is anisotropic 

and that pulse tests were able to detect it. The measured velocities seem to support this view. Figure 3-15 

portrays the influence of azimuth in measured velocities. Even through the blurred lens of this greatly 

dispersed data some influence seems visible. A more technical assessment might be obtained using the 

statistical package SPSS -George & Mallery, 2000- to perform Analysis of Variance (ANOVA). The 

results -see Table 3-9- show variable but relatively high -83% to 100%- support for anisotropy for all 

methods employed32. To explore this issue further some familiarity with anisotropic effects in wave 

propagation is needed. As this is the subject of later chapters we postpone any further consideration of 

anisotropy until then. 

Once recognised the anisotropy, it is best to concentrate now on a simpler case, that of tests made along 

the axis of the sample i. e. tests with zero azimuth or, briefly, vertical tests33. There are near 50 tests under 

this condition, more than 300 arrival time estimates and some statistical analysis is still warranted. From 

now onwards, all the results presented in this chapter will be based on them. 

The second factor who may explain the variability of the results is time. As we mentioned before testing 

took place during a period of 26 days. There are two possible ways in which time might have affected the 

results: sample creep or drying. Creep (i. e. direct time effect on stiffness) is known to affect pulse tests in 

clay (Nash, 2000). But this creep effect is known to depend on the stress level applied to the sample, 

which is pretty low on these tests. The effect, if present, should be one of stiffening. 

Consider now dissication: although protected with wax, the sample might have dried while in the bench. 

The cutting operations were regarded as particularly tricky on this respect, as the new face of the sample 

was then unprotected for a while. Mechanically, drying will results on increased suction. Although there 

" Raising the filter low pass setting above 1kHz would have dented too much in spectral regions of high coherence and magnitude. 
1= Bare the expert visual appreciation who was only available for vertical tests. 
" This "vertical" makes reference to axis position during sample forming. While testing the sample lied on its side and the axis was 
horizontal. 
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is lack of experience on its particular effects on pulse tests, suction is known to affect the stiffness of soils 
in general and Gault in particular (Pennington, 1999). At the low levels of dissication expected it can be 

treated simply as an increased confining pressure. The effect, if present, will again be a stiffening one. 

Again, simply plotting all the results against benchtime does not offer a very clear picture -Figure 3-16. 

Statistical analysis, -Table 3-10-, would seem to preclude any discernible time effect on velocity for most 

methods involved, with the notable exception of the hand-picked expert times, who strongly support 

some effect. But, if we explore this presumed effect by plotting the means of VE against time -Figure 
3-17 a pattern inconsistent with an increasing tendency appears. We conclude then that some other 

spurious effect must be acting and that no proper time effect should be considered in further analyses. 

3.4.3 Variability in axial measurements 

The first thing to note then are the solid differences between methods. Table 3-11 presents some 

summary results for each method: the mean, the standard deviation, the coefficient of variation. A few 

things are noticeable: 

There are substantial differences in mean value between the methods. This is not surprising for the Vo to 

V3 time domain values: after all we tried to select different arrival points in the trace. It is more 

interesting to see that Vcc is below V3 and Vcs is even below Vcc. It is interesting also to notice that the 

expert estimate of first arrival VE is quite close in mean to VO. In fact, this is the only non-significant 

mean difference, the rest being pretty consistent as shown in Table 3-12. Using the difference between 

the two extreme values (i. e. Vo and Vcs) this result may be interpreted as follows: the velocities obtained 
by two researchers making one measurement with their favourite method in Gault might well differ on 

more than 60m/s. This represents 50% of the global average value. In other words, the global uncertainty 

in moduli determination approaches 100% 

When adhering firmly to one method the uncertainty is substantially reduced. The coefficient of variation 

might be used as an estimate and lies between 10% and 20% Still, this represents an uncertainty in 

moduli between 20% and 40% From this point of view the velocities given by the first peak (VI), first 

crossing (V2) or first through (V3) seem to be the more consistent. First arrival is somewhat less so, with 

no difference between the manual (VE) or automatic procedure (V0). Cross-correlation and cross-spectra 

perform notably worst. 

Mean and variance do not exhaust the observed differences between methods. Figure 3-18 presents the 

corresponding histograms of measured velocities. The distributions are fairly varied: only V3 and Vcs 

approach consistently a normal distribution, whereas VO and V, look bimodal, V2 nearly uniform and the 

others are skewed in opposite directions. From the statistical viewpoint a normal centred distribution is 

attractive and therefore this is an argument in favour of Vcs" 
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It is appropriate to wonder about the robustness of the methods employed. The visually picked times are 

subjectively satisfactory and this is the end of the affair: there is no adjustment parameter to play with. 
The automatically picked characteristic times will depend on the threshold value used to determine 

meaningful departures from zero and more importantly on the moving average setting. This being true, 

we have already stated that posterior inspection of the traces offered intuitive satisfaction about the 

performance of the method: peaks, crossings and throughs were indeed selected. There is no adjustment 

parameter available for the cross-correlation method. Cross-spectrum estimates, on the other hand, are 

affected by the criteria employed to select the fitting range for the phase. Table 3-13 shows how as the 

limit for significative modulus increases so does the performance of the method. To explain this 

phenomena will need a more in depth look at the basis of the method, something that is left for next 

chapter. 

3.4.4 Distance and signal effects 

Discarded time and postponed anisotropy only source-to-receiver distance and signal characteristics -type 

and apparent frequency- are left to explain the results. Considering first signal type, there is again a 

method-dependent effect -Figure 3-19. For characteristic-point methods there is a noticeable difference 

between shorthand and broadband results, the latter giving higher readings than the former, with square 

signals coming on top. But this difference wanes out as the arrival times are selected deep into the trace, 

becoming non-significant from V3 onwards -Table 3-14. 

This difference between methods persist when we look at the effect of the other variables. Figure 3-20 

represents the mean velocity values as a function of measurement distance. An intriguing and robust - 
Table 3-15- oscillatory pattern, which is apparent in the faster34 methods, fades away in the slowest. The 

effect of apparent signal frequency seems to be an slight increase in velocity -Figure 3-21-, but again 

cross-correlation and cross-spectra offer a different image's 

3.4,5 Discussion 

The uncertainty suggested by the results just described seems really high. It is then comforting to find 

that Bodare & Massarch results36 do not stray far away from ours -ratio range/mean between 30% and 
50% Figure 3-22-. Viggianni & Atkinson present two results: if it is true that they found 64% uncertainty 
for a low frequency square wave" they also obtained a much lesser value namely 7% for a sinusoidal 

wave of moderately high frequency. Looking at the distribution of values here obtained -Figure 3-23- this 

last value seems far less probable than the first. 

Closer examination of other reported data also supports this view. The NGI results shown in the last 

figure of Chapter 2 show an spread -range over mean- of up to 73% in bender-based shear module 

estimates. Resonant column values fall always near the lower bound. Figure 3-24 taken from Arulnatham 

3' I. e. those methods giving higher velocities 
35 As the figure represent mean values only frequencies at which more than two tests were available are included 
M It is true that they are isolated i. e. they are probing each time a different site or they are made at different heights in a borehole. 
This may add to their uncertainty; on the other hand they are made at fixed distances and with a fixed source. 
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et al. (1998) shows various arrival times picked on the same trace by various methods, characteristics 

point selection -points A to C-, direct cross-correlation -point D- and output autocorrelation -point E. 

They span a range of circa Ims for a medium arrival time which is also close to that value. 

It is also interesting to note that the results obtained fit well with the distortion argument given in the 

previous chapter - Figure 2-15- If we consider again the traces presented for instance in Figure 3-8: it is 

clear that the output trace is many times larger than the input one. Establishing an equal weight criteria to 

identify arrival in the trace will produce even bigger uncertainty. Cold comfort, anyway, as this still 

leaves us with a very imprecise tool. 

It may be argued, quite reasonably, that no self-respecting researcher will ever use a single, unspecified 

method to measure velocity. Or else, that if only agreement was reached about what method to use the 

uncertainty amongst researchers will be greatly reduced. Or even better, if this agreement were to be 

extended at the kind of signal to be employed and the distance between source and receiver then the 

measured velocity would be much reliable.... These arguments are certainly valid and they may offer a 

normative way forward to extend the use of pulse tests to routine geotechnical work as recently suggested 

by Atkinson (2000). 

However, this approach is hardly satisfactory from a broader viewpoint. The need to deal with a 

complicated and/or strict testing procedure is really a hindrance for the sort of systematic use that pulse 

test do potentially have. Laboratory pulse testing cannot be contrived without losing versatility, one of its 

main appeals. For instance, a hidden distance dependency on the results does not bode well to 

comparisons between results from instrumented oedometer and triaxial apparatus, neither does for the 

extrapolation of triaxial procedures to true triaxial or hollow cylinder apparatuses. But this practical 

arguments again beg the main question. Why there is such a big uncertainty? Why the output signals are 

so heavily distorted? Why factors such as pulse type or source-to receiver distance affect the results? 

What is obviously needed is a more deep understanding of the factors affecting the performance of pulse 

tests in soils. An explanatory attempt begins in the following chapter. 

37 And that only with To, T, and T2. 
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3.5 SUMMARY 

A series of pulse tests were performed in an unconfined sample of remoulded Gault clay. Three aspects 

were investigated: the influence of the arrival time selection method, the influence of source to receiver 

configuration -azimuth and distance- and the influence of input signal characteristics -type and apparent 
frequency- As expected, anisotropy was revealed. More of a surprise was the very high variation 

registered in axial measurements. The main variance factor relates to differences between methods, but 

even for a fixed method there is substantial uncertainty -between 20% and 40% in moduli- Both distance 

and signal characteristics seem to affect the recorded time. 
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3.6 TABLES 

Property Value Source 

Void ratio (e) / porosity (n) 1.25/0.54 Pennigton (1999) 

Plastic limit 26 - 32 % Pennington (1999) 

Liquid limit 75 - 80 % Pennington (1999) 

Ev / p' 550 Pennington (1999) 

EH / p' 2186 Pennington (1999) 

vVH 0 Pennington (1999) 

VHH -0.041 Pennington (1999) 

GHV / P' 507 Pennington (1999) 

At rest earth pressure (KO) 0.6 Ng (1992) 

Engineering permeability (k) 3x10'10 m/s Ng (1992) 

Table 3-1 Properties of reconstituted samples of Gault clay 

Property Value 

Length (mm) 10 

Thickness (mm) 2.5 

Width (mm) 12 

Piezoelectric material PZT 5A 

Free resonant frequency (Hz) 2300 

Compliance (m/Nw) 4,3E-5 

The dimensions quoted include the epoxy cover 
Table 3-2 Properties of the piezoelectric bender probes used in this study 
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Sou rce 
Receiver A C 

B 0,17524 - 
D 0,094 0,06912 

E 0,0435 - 
F 0,151 - 
G 0,1494 - 
H 0,1209 - 

0,09696 - 
J 0,07276 - 

Table 3-3 Distanc es (m) bet ween trans ducers 

Sou rce 
Receiver A C 

A - 
B 0 - 
C - 
D 21.57 90 

E 52.6 - 
F 13.23 - 
G 0 - 
H 0 - 

0 - 
J 0 - 

Table 3-4 Azimuthal angle of pr opagation in degrees 

60 



TEST 
Time step 

(s) 
Duration 

s 
Nyquist f 

kHz 
Iraq step 

Hz Am lifter TEST 
Time step 

(s) 
Duration 

s 
Nyquist f 

(kHz) 
freq step 

Hz Amplifier 
1 4E-06 0.01 125 50 out 52 4E-06 0.01 125 50 out 
2 4E-06 0.01 125 50 out 53 4E-06 0.01 125 50 out 
3 4E-06 0.01 125 50 out 54 4E-06 0.01 125 50 out 
4 4E-06 0.01 125 50 out 55 4E-06 0.01 625 250 out 
5 8E-07 0.002 625 250 out 56 4.00E-07 0.001 625 250 out 
6 8E-07 0 002 625 250 out 57 1.6E-06 0.004 625 250 out 
7 8E-07 0.002 625 250 out 58 1.6E-06 0.004 625 250 out 
8 8E-07 0.002 625 250 out 59 1.6E-06 0.004 625 250 out 
9 8E-07 0.002 625 250 out 60 1.6E-06 0.004 625 250 out 
10 8E-07 0.002 625 250 out 61 1.6E-06 0.004 625 250 out 
11 8E-07 0.002 625 250 out 62 1.6E-06 0.004 625 250 out 
12 8E-07 0.002 625 250 out 63 1.6E-06 0.004 625 250 out 
13 8E-07 0.002 625 250 out 64 1.6E-06 0.004 625 250 out 
14 8E-07 0.002 625 250 out 65 1.6E-06 0.004 312.5 125 out 
15 1.6E-06 0.004 312.5 125 out 66 4E-06 0 01 312.5 125 out 
16 1.6E-06 0.004 312.5 125 out 67 4E-06 0.01 312.5 125 out 
17 1.6E-06 0.004 312.5 125 out 68 4E-06 0.01 125 50 out 
18 4E-06 0.01 125 50 out 69 4E-06 0.01 125 50 out 
19 4E-06 0.01 125 50 out 73 1.6E-06 0.004 125 50 out 
20 4E-06 0.01 125 50 out 74 1.6E-06 0.004 125 50 out 
21 4E-06 0.01 125 50 out 75 1.6E-06 0.004 312.5 125 out 
22 1.6E-06 0.004 312.5 125 out 76 1.6E-06 0.004 625 250 out 
24 8E-07 0.002 625 250 out 77 1.6E-06 0.004 625 250 out 
25 8E-07 0.002 625 250 out 78 1.6E-06 0.004 625 250 out 
26 8E-07 0.002 625 250 out 79 1.6E-06 0.004 625 250 out 
27 8E-07 0.002 625 250 out 80 4E-06 0.01 625 250 out 
28 8E-07 0.002 625 250 out 81 4E-06 0.01 625 250 out 
29 8E-07 0.002 625 250 out 82 4E-06 0.01 625 250 out 
31 8E-07 0.002 625 250 out 83 1.6E-06 0.004 625 250 out 
32 8E-07 0.002 625 250 in 84 1.6E-06 0.004 625 250 out 
33 8E-07 0.002 625 250 in 85 1.6E-06 0.004 625 250 out 
34 8E-07 0.002 625 250 in 86 1.6E-06 0.004 625 250 out 
35 8E-07 0.002 625 250 in 87 1.6E-06 0.004 625 250 out 
36 8E-07 0.002 625 250 in 88 4E-06 0.01 625 250 out 
39 8E-07 0.002 625 250 in 89 4E-06 0.01 625 250 out 
40 8E-07 0 002 625 250 in 90 4E-06 0.01 625 250 out 
41 8E-07 0.002 625 250 in 91 4E-06 0.01 312.5 125 out 
42 1.6E-06 0.004 312.5 125 out 92 4E-06 0.01 312.5 125 out 
43 1.6E-06 0.004 312.5 125 out 93 4E-06 0.01 312.5 125 out 
44 1.6E-06 0.004 312.5 125 out 94 4E-06 0.01 312.5 125 out 
45 1.6E-06 0.004 312.5 225 out 95 1.6E-06 0.004 312.5 125 out 
46 1.6E-06 0.004 312.5 125 out 96 1.6E-06 0.004 312.5 125 out 
47 1.6E-06 0.004 312.5 125 out 97 1.6E-06 0.004 312.5 125 out 
48 1.6E-06 0.004 312.5 125 out 98 4E-06 0.01 312.5 125 out 
49 1.6E-06 0.004 312.5 125 out 99 4E-06 0.01 312.5 125 out 
50 1.6E-06 0.004 312.5 125 out 100 4E-06 0.01 125 50 out 
51 4E-06 0.01 125 50 out 101 4E-06 0.01 125 50 out 

Table 3-5 Signal processing settings for each test 
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TEST 

bench 
time 
das 

Angle 
(degrees) 

Distance 
(cm) Signal tap (Hz) TEST 

bench 
time 

(days) 
Angle 

(degrees) 
Distance 

cm Signal fap (Hz) 
1 0 90 6.912 10"sine 4000 52 21 52.6 4.35 sine 4000 
2 0 90 6.912 10'sine 3000 53 21 52.6 4.35 sine 6000 
3 0 90 6.912 10'sine 5000 54 21 52.6 4.35 square 4000 
4 0 90 6.912 10'sine 6000 55 21 52.6 4.35 square 6000 
5 0 90 6.912 sine 5000 56 21 52.6 4.35 square 9000 
6 0 90 6.912 sine 3000 57 21 13.23 15.1 sine 4000 
7 0 90 6.912 sine 4000 58 21 13.23 15.1 _ sine 6000 
8 0 90 6.912 sine 6000 59 21 13.23 15.1 Square 4000 
9 0 90 6.912 Jovicic 8000 60 21 13.23 15.1 square 6000 
10 0 90 6.912 Jovicic 6000 61 21 13.23 15.1 square 9000 
11 0 90 6.912 Jovicic 4000 62 21 0 14.94 square 4000 
12 0 90 6.912 square 1050 63 21 0 14.94 square 6000 
13 0 90 6.912 square 3000 64 21 0 14.94 square 9000 
14 90 6.912 square 4000 65 21 0 14.94 sine 4000 
15 90 6.912 4*sine 5000 66 21 0 14.94 4*sine 4000 
16 90 6.912 4*sine 4000 67 21 0 14.94 41sine 6000 
17 90 6.912 4*sine 4000 68 21 0 14.94 10*sine 6000 
18 0 17.524 4*sine 3000 69 21 0 14.94 10'sme 4000 
19 0 17.524 4*sine 4000 73 26 0 12.09 square 4000 
20 1 0 17.524 10'sine 4000 74 26 0 12.09 square 6000 
21 4 0 17.524 10"sine 4000 75 26 0 12.09 square 9000 
22 4 0 17.524 sine 2700 76 26 0 12.09 sine 4000 
24 5 90 6.912 4*sine 5000 77 26 0 12.09 sine 6000 
25 5 90 6.912 4*sine 5000 78 26 0 12.09 4*sine 6000 
26 5 90 6.912 4*sine 5000 79 26 0 12.09 4*sine 4000 
27 5 90 6.912 4"sine 5000 80 26 0 12.09 10*sine 4000 
28 5 90 6.912 4*sine 5000 81 26 0 12.09 10'sine 6000 
29 5 90 6.912 4*sine 5000 82 26 0 9.696 square 4000 
31 5 90 6.912 4'sine 5000 83 26 0 9.696 5 uare 6000 
32 5 21.57 9.4 square 6000 84 26 0 9.696 square 9000 
33 5 21.57 9.4 square 9000 85 26 0 9.696 sine 5000 
34 5 21.57 9.4 square 9000 86 26 0 9.696 sine 4000 
35 5 21.57 9.4 square 9000 87 26 0 9.696 sine 6000 
36 5 21.57 9.4 square 9000 88 26 0 9.696 4*sine 4000 
39 5 21.57 9.4 square 4000 89 26 0 9.696 4'sine 6000 
40 5 21.57 9.4 sine 6000 90 26 0 9.696 10"sme 4000 
41 5 21.57 9.4 sine 4000 91 26 0 9.696 10'sine 6300 
42 18 0 17.524 4'sine 3000 92 26 0 9.696 10"sine 6000 
43 18 0 17.524 4*sine 4000 93 26 0 7.276 square 4000 
44 18 0 17.524 4*sine 5000 94 26 0 7.276 square 6000 
45 18 0 17.524 4*sine 6000 95 26 0 7.276 square 9000 
46 18 0 17.524 4'sme 7000 96 26 0 7.276 sine 4000 
47 18 0 17.524 4*sine 8000 97 26 0 7.276 sine 6000 
48 18 0 17.524 4*sine 9000 98 26 0 7.276 41sine 4000 
49 18 0 17.524 4"s2e 10000 99 T 26 0 7.276 4*sine 6000 
50 18 0 17.524 4"sme 3000 100 26 0 7.276 10"sine 4000 
51 21 52.6 4.35 sine 5000 101 26 0 7.276 10'sine 6000 

Table 3-6 Test variables 
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TEST Amplif. 
Low Pass 

(Hz) 
n moving 
average Errors TEST Amplif. 

Low Pass 
(Hz) 

n moving 
average Errors 

1 179 10 no 52 745 30 no 
2 357 10 no 53 908 20 no 
3 301 10 no 54 594 20 no 
4 297 10 no 55 607 20 no 
5 479 10 no 56 477 50 yes 
6 449 10 no 57 2654 30 no 
7 431 10 no 58 3550 1000 30 no 
8 565 10 no 59 1538 30 no 
9 537 10 no 60 1597 30 yes 
10 449 10 no 61 991 30 no 
11 404 10 no 62 975 30 no 
12 389 10 no 63 887 30 no 
13 351 10 no 64 1179 30 no 
14 297 10 no 65 1073 30 no 
15 301 10 no 66 858 30 no 
16 186 10 no 67 1293 1000 30 no 
17 659 10 yes 68 1189 10 no 
18 912 10 no 69 660 10 no 
19 1915 30 no 73 651 10 no 
20 1305 10 no 74 804 10 no 
21 1369 10 no 75 1110 20 no 
22 2268 20 no 76 870 20 no 
24 9 10 no 77 1285 20 no 
25 294 10 no 78 945 20 no 
26 11 10 no 79 592 20 no 
27 19 10 no 80 597 20 no 
28 18 10 no 81 938 20 no 
29 11 10 no 82 513 20 es 
31 2 10 no 83 563 20 no 
32 71 1000 30 yes 84 638 20 no 
33 4 1000 30 yes 85 1427 20 no 
34 3 1000 30 yes 86 819 10 no 
35 56 1000 30 yes 87 1967 1000 30 no 
36 1000 30 yes 88 797 10 no 
39 25 1000 30 yes 89 1566 10 no 
40 22 1000 30 yes 90 827 10 no 
41 17 1000 30 yes 91 1919 30 no 
42 1006 10 no 92 1630 10 no 
43 86 1000 30 no 93 297 10 no 
44 36 1000 30 no 94 320 10 no 
45 8235 1000 30 no 95 414 10 no 
46 156 1000 30 no 96 406 10 no 
47 219 1000 30 no 97 647 10 no 
48 318 1000 30 yes 98 195 10 no 
49 3178 1000 30 yes 99 758 10 no 
50 16 10 no 100 178 10 no 
51 729 10 no 101 600 10 no 

Table 3-7 Output signal treatment settings 
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TEST 
VE 
mis 

VO 
rtJs 

VI 

m/s 

V2 
Ms 

V3 
m/s 

VCC 
Ms 

VCS 

M/s TEST 
VE 
mis 

VO 
Ms 

V1 
rtVS 

V2 
m/s 

V3 
m/s 

VCC 
mis 

VCS 
mis 

1 81 141 125 117 106 81 81 52 0 130 113 100 89 81 46 
2 0 138 124 114 102 80 79 53 0 200 155 136 118 83 42 
3 0 145 129 120 109 64 59 54 0 182 154 130 115 81 37 
4 0 145 130 122 112 76 91 55 0 189 156 132 119 82 38 
5 0 142 128 120 109 79 73 56 0 194 149 136 123 83 108 
6 0 138 125 115 103 119 68 57 0 164 158 129 121 102 107 
7 0 141 126 117 106 80 69 58 0 172 160 132 124 102 106 
8 0 147 131 121 111 118 74 59 0 161 146 127 120 102 81 
9 0 131 118 112 103 119 74 60 0 294 179 165 160 102 88 
10 0 151 133 127 114 118 71 61 0 169 138 131 123 102 98 
11 0 143 128 122 109 119 67 62 149 158 137 126 110 84 79 
12 0 148 132 120 110 58 64 63 152 164 137 130 111 85 87 
13 0 145 130 120 109 61 67 64 152 158 139 132 122 85 88 
14 0 144 130 121 107 119 68 65 105 115 109 105 100 85 87 
15 0 144 128 120 109 64 63 66 104 105 100 94 90 86 61 
16 0 139 126 118 105 82 81 67 108 118 114 108 106 108 61 
17 0 -9095 1160 525 108 81 80 68 124 124 121 116 112 97 104 
18 102 114 106 101 97 85 92 69 104 126 110 104 100 67 74 
19 133 150 140 133 127 88 69 73 149 149 137 126 122 75 74 
20 133 134 127 120 107 88 79 74 153 151 137 130 125 75 77 
21 136 138 131 125 116 73 77 75 153 156 139 131 126 75 81 
22 143 144 131 118 111 89 91 76 150 148 136 128 121 75 78 
24 0 152 133 125 114 75 71 77 158 151 137 132 125 75 87 
25 0 150 134 127 114 85 71 78 159 131 125 120 115 118 95 
26 0 153 134 125 114 75 71 79 153 152 137 128 121 76 75 
27 0 152 134 125 114 75 71 80 151 128 122 114 103 76 62 
28 0 156 134 125 114 75 71 81 158 133 126 120 116 118 118 

29 0 154 134 125 114 75 71 82 38 38 36 34 32 30 27 
31 0 154 134 126 114 75 71 83 141 129 122 115 108 89 72 
32 0 810 500 299 244 125 100 84 150 149 138 131 122 88 78 
33 0 742 590 353 340 124 97 85 142 130 120 114 107 89 82 
34 0 649 588 356 340 124 97 86 143 127 118 111 105 89 90 
35 0 3431 1331 348 341 124 100 87 138 128 121 115 109 89 81 
36 0 616 449 362 340 58 57 88 116 113 106 100 94 89 100 
39 0 298 249 202 185 58 56 89 114 129 122 115 109 66 54 
40 0 594 425 364 317 125 99 90 113 113 106 100 94 90 113 
41 0 545 403 318 236 125 102 91 116 120 112 105 100 113 42 
42 129 129 121 113 108 94 95 92 143 127 121 115 109 66 68 
43 144 129 121 116 111 105 107 93 155 158 136 123 111 74 67 
44 146 133 122 117 113 104 83 94 153 167 137 125 116 75 61 
45 146 147 142 136 133 103 71 95 163 161 137 128 118 74 69 
46 152 155 145 138 136 103 73 96 149 156 132 122 111 75 72 
47 
48 

120 
150 

163 
107 

144 
103 

138 
100 

136 
98 

103 
53 

94 
55 

97 
98 

153 
157 

160 
123 

135 
111 

127 
102 

116 
93 

100 
75 

68 
84 

49 0 63 57 55 50 53 55 99 148 151 135 127 117 60 47 
50 149 158 137 126 119 86 96 100 152 123 111 102 93 75 82 
51 0 174 142 124 111 81 66 101 159 155 135 127 117 60 64 

Table 3-8 Measured velocities (discarded tests in italics) 
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ANOVA 

Sum of 
Squares df Mean Square F Sig. 

VO Between Groups 8096.831 3 2698.944 12.110 . 000 
Within Groups 16938.558 76 222.876 
Total 25035.389 79 

V1 Between Groups 3182.335 3 1060.778 9.141 . 000 
Within Groups 8819.074 76 116.040 
Total 12001.408 79 

V2 Between Groups 480.364 3 160.121 1.708 . 172 
Within Groups 7124.706 76 93.746 
Total 7605.070 79 

V3 Between Groups 548.358 3 182.786 2.041 . 115 
Within Groups 6806.611 76 89.561 
Total 7354.969 79 

VCC Between Groups 1365.023 3 455.008 1.811 . 152 

Within Groups 19346.189 77 251.249 
Total 20711.212 80 

VCS Between Groups 7542.509 3 2514.170 14.155 . 000 
Within Groups 13676.795 77 177.621 
Total 21219.304 80 

Table 3-9 Statistical test (ANOVA) for anisotropic effects 
ANOVA 

Sum of 
Squares df Mean Square F Sig. 

VEXPERT Between Groups 3785.407 4 946.352 3.863 , 009 
Within Groups 10535.006 43 245.000 
Total 14320.413 47 

VO Between Groups 644.530 4 161.132 . 557 . 695 
Within Groups 12444.163 43 289.399 
Total 13088.692 47 

V1 Between Groups 623.942 4 155.986 1.090 . 374 
Within Groups 6155.347 43 143.148 
Total 6779.289 47 

V2 Between Groups 544.650 4 136.162 1.090 . 373 
Within Groups 5371.014 43 124.907 
Total 5915.663 47 

V3 Between Groups 991.349 4 247.837 2.208 . 084 
Within Groups 4825.874 43 112.230 
Total 5817.223 47 

VCC Between Groups 1775.634 4 443.908 2.455 . 060 
Within Groups 7775.702 43 180.830 
Total 9551.336 47 

VCS Between Groups 860.349 4 215.087 . 859 
. 496 

Within Groups 10765.225 43 250.354 
Total 11625.574 47 

Table 3-10 Statistical test (ANOVA) for time effects on vertical shots 
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VE VO V1 V2 V3 VCC VCS 
N 48 48 48 48 48 48 48 

Mean 140.1 139.1 126.8 119.4 112.3 85.9 79.4 
Stdv 17.5 16.7 12.0 11.2 11.1 14.3 15.7 
Cv 0.12 0.12 0.09 0.09 0.10 0.17 0.20 

Table 3-11 Basic statistics of measurements along the sample axis 

Paired Differences Mean Std. Dev. LL 95%CI UL 95%Cl t df Sig. (2-tailed) 

VEXPERT - VO 0.9 14.0 2.0 5.0 0.5 47 0.64 

VO - VI 12.3 6.7 1.0 14.3 IT 47 0.00 

VI - V2 7.4 2.1 0.3 8.0 24.2 47 0.00 

V2-V3 7.1 3.5 0.5 8.1 14.0 47 0.00 

V3 - VCC 26.4 17.4 2.5 31.4 10.5 47 0.00 

V3-VCS 32.9 19.7 2.8 38.6 11.6 47 0.00 

VCC -VCS 6.5 16.5 2.4 11.3 2.7 47 0.01 

VO VCS 59.7 24.8 3.6 66.9 16.7 47 0.00 

Table 3-12 Mean difference between various methods of arrival time selection (i test 

Limit 5% 10% 20% 
Mean 76.72 79.40 83.19 
Stdv 16.21 15.56 14.94 
Cv 0.21 0.20 0.18 

Table 3-13 Influence of module criteria on cross-spectrum method performance 
ANOVA 

Sum of 
S uares df Mean Square F Si q. 

VEXPERT Between Groups 2380.011 3 793.337 2.923 . 044 
Within Groups 11940.403 44 271.373 
Total 14320.413 47 

VO Between Groups 3935.078 3 1311.693 6.305 . 001 
Within Groups 9153.615 44 208.037 
Total 13088.692 47 

V1 Between Groups 1461.051 3 487.017 4.029 . 013 
Within Groups 5318.237 44 120.869 
Total 6779.289 47 

V2 Between Groups 1060.168 3 353.389 3.202 . 032 
Within Groups 4855.495 44 110.352 
Total 5915.663 47 

V3 Between Groups 738.228 3 246.076 2.132 . 110 
Within Groups 5078.995 44 115.432 
Total 5817.223 47 

VCC Between Groups 897.714 3 299.238 1.521 . 222 
Within Groups 8653.622 44 196.673 
Total 9551.336 47 

VCS Between Groups 203.183 3 67.728 . 261 . 853 
Within Groups 11422.391 44 259.600 
Total 11625.574 47 

Table 3-14 Statistical test (ANOVA) for signal type effects on vertical velocities 
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ANOVA 

Sum of 
Squares df Mean Square F Sig. 

VEXPERT Between Groups 6269.246 4 1567.312 8.371 . 000 
Within Groups 8051.167 43 187.236 
Total 14320.413 47 

VO Between Groups 3202.308 4 800.577 3.482 . 015 
Within Groups 9886.385 43 229.916 
Total 13088.692 47 

V1 Between Groups 1597.668 4 399.417 3.315 . 019 
Within Groups 5181.620 43 120.503 
Total 6779.289 47 

V2 Between Groups 1259.623 4 314.906 2.908 . 032 
Within Groups 4656.040 43 108.280 
Total 5915.663 47 

V3 Between Groups 1554.641 4 388.660 3.921 . 008 
Within Groups 4262.582 43 99.130 
Total 5817223 47 

VCC Between Groups 1953.908 4 488.477 2.765 . 039 
Within Groups 7597.428 43 176.684 
Total 9551.336 47 

VCS Between Groups 1714.474 4 428.618 1.860 . 135 
Within Groups 9911.101 43 230.491 
Total 11625.574 47 

Table 3-15 Statistical test (ANOVA) for distance effects on vertical velocities 
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3.7 FIGURES 
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Figure 3-1 Bender probe used in this study (drawing by P. Greening) 
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Figure 3-2 Sample instrumentation plan 
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Figure 3-3 Nominal driving signals employed in bench pulse tests 
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Figure 3-4 Amplitude spectra of the precedent 
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Figure 3-5 Typical test result showing moderate high frequency noise 
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Figure 3-6 Low frequency noise in receiver trace 
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Figure 3-7 Original and smoothed output traces 
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Figure 3-8 An example of arrival point selection 
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Figure 3-9 Arrival time by cross-correlation 
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Figure 3-10 Viggiani & Atkinson illustration of the cross-spectrum method 
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Figure 3-12 Phase unwrapping example 
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Figure 3-14 Arrival time estimates for all tests 
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Measured Vs vs azimut 

E 
N 

i 1 

90.00- 

70.00- 
I 

50.00 

30.00 

sq 
10.00 

w x 

90.00 

70.00 " 
T 

50.00 

190.00 

170.00 

150.00 

130.00 

110.00 

90.00 

70.00 

50.00 4 
0 

0 10 20 30 40 50 60 70 80 90 100 
Measurement azimuth (degrees) 

" Expert + First peak x First crossing   TCC TCS 

Figure 3-15 Anisotropy in measured velocities 
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Figure 3-16 Time effect on measured vertical velocities 
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Figure 3-22 Cross-hole measurements by Bodare & Massarsch 
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Figure 3-23 Uncertainty (range/mean) distribution for all tests 
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Figure 3-24 Alternative arrival points in a bender trace as indicated by Arulnatham et al. (1998) 
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4 ISOTROPIC DISPERSION AND NEAR FIELD EFFECTS 

4.1 WAVE DISPERSION 

4.1.1 General concept 

Dispersion is one of the key concepts in wave propagation. Waves are dispersive when the frequency has 

a non-linear relationship with the wave vector. This can be written generally Whitham, 1974- as: 

w=w(k) 
det 

a2w 
0 

(47) 
ak; ak1 

Using the relation between the wave vector and frequency above, the wavenumber k might be expressed 

as a function of frequency and phase velocity as a function of either wavenumber or frequency. 

c= kkpv(w)=k(w) 
(48) 

All these relations are different, equally valid, expressions of dispersion, but the one with perhaps most 
intuitive appeal for our problem is that linking phase velocity and frequency. In a pulse or signal each 
frequency component will travel with different phase velocity. Therefore the pulse or signal will spread 

out or change shape as it travels; in a word: it will disperse. The converse statement also holds: if 

distortion is observed in a travelling pulse the propagation is necessarily dispersive. 

4.1.2 Group velocity 

Whenever dispersion occurs the concept of signal velocity becomes problematic. On the one hand a 

monotone single frequency signal would have a clearly defined phase velocity, but neither beginning nor 

end, thus no proper "arrival". On the other hand any finite signal would necessarily have components at 

multiple frequencies and a number of differing phase velocities will be involved. It is nevertheless almost 

intuitive that the problem should be more substantial for shapes that contain many frequencies than for 

shapes whose frequency content is very limited; in other words, dispersion would distort more wide-band 

signals than narrow-band signals. Looking at results from our bench test series there is certainly more 

distortion in wide band pulses -Figure 3-8- than in narrow band pulses -Figure 4-1- performed in the 

same conditions. 

It can be proved analytically -e. g. Graff, 1975- that narrow band pulses centred at wo will travel almost 

undistorted but with a velocity, vs((Do) called group velocity which is generally different from the 

corresponding phase velocity v((oo) . This is a somehow counterintuitive result that, nevertheless, has had 

extensive confirmation in many circumstances where dispersive waves appear: light -Brillouin, 1960-, 

the sea - Lighthill, 1978-, the earth's surface -Udias, 2000. Wide band pulses will cover an ample range 

of group velocities and their frequencies will order themselves in time domain according to their 
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respective va values. In general, (Whitham, 1974), group velocity is defined as the gradient of the 

dispersion relation, i. e: 

Cg = Vkw (49) 

For one-dimensional problems direction is not an issue and wave vector, phase velocity and group 

velocity might be represented by their moduli. The corresponding definitions of phase and group velocity 

are then 

w 
v=- k (50) 

dw 
vg =- A 

And both might be expressed as functions of either the wavenumber or the frequency by means of the 

dispersion relation. When this relation is plotted as in Figure 4-2 it is possible to identify phase and group 

velocity as the secant and tangent to the dispersion relation, respectively38. It is convenient to have an 

explicit relation between both quantities and a straightforward development of (50) leads to 

vg =v+k dk 
v 

v8 = 
1-w 

dv 

v dw 

(51) 

The expression to choose will depend on either wavenumber or frequency being considered the 

independent variable. It is clear also from these expressions that the slope of the phase velocity function 

will control the relative size of phase and group velocity at any given frequency or wavenumber -Figure 

4-3. Phase and group velocity will be only equivalent when the change in phase velocity is very small, 

that is, when dispersion is negligible or, locally, at extrema of the phase velocity function. 

4.1.3 Dispersion measurements 

A dispersion curve relates, for instance, wavenumber and frequency. Such a curve can be obtained 

experimentally from time records of a travelling pulse. Recall that, in Chapter 1, it was shown that an 

experimental wavenumber field might be obtained from a transfer function field as 

k(w, x)=v '(w, x) (52) 

where yr is the measured phase of the transfer function, coincident with the cross-spectrum phase of the 

input and the output at x. This, as shown in Appendix I, may be obtained numerically from the cross- 

correlated time records by means of a discrete Fourier transform. In practice the measurements are only 

taken at discrete locations and that introduces one further approximation. Assume, for argument's sake, a 

78 This offers a cue to understand why narrow-band pulses travel at the group velocity. Within a narrow range, the tangent is a good 
linear approximation to the curved dispersion relation, whereas, generally, the secant is not. A linear k- co relation involves no 
dispersion. 
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one-dimensional problem where measurements are available at two different locations, say x, and x2. We 

can then obtain a lineal approximation to the x-dependent dispersion curve as 

'l'(w, x2)-`P(w, xl) 
x2 -XI 

(53) 

Moreover, if x, is taken as the coordinate origin and the time record there is defined as the input, the 

preceding expression simplifies39 to 

(W, 
x2 k(cv, x) 

xl 
(54) 

And from this estimated dispersion curve other relevant quantities like phase or group velocity might be 

deduced, for instance using (50). Obviously if the spatial dependency of the wavenumber field is lineal 

equations (53) and (54) involve no approximation. This is the case when the registered motion is due to a 

plane wave. 

Apparently this FFT based technique was employed first for seismological applications (Bolt 1974) and 

then adopted for ultrasonic testing of dispersive materials, like composites (Sachse & Pao, 1978). It may 

also be applied to a single location record of a pulse and its reflection, provided that the reflections are 

distinguishable and the reflector distance is known (Pialucha et al. 1989). In geotechnics it is commonly 

applied to obtain the experimental dispersion curve in the SASW method (Foti, 2000) and it has been 

applied to laboratory tests by Fratta & Santamarina (1996). 

Go velocity. phase velocity and elastic moduli 41 
.4 rn 

From what has just been said it is apparent that the dispersion concept is extremely relevant to our 

problem40. All the time records of pulse tests in soils shown in Chapters 2 and 3 show dispersion to a 

minor or major degree. We know also that a non-dispersive elastodynamic model -plane bulk wave 

propagation- performed very poorly when confronted with real data. This now seems perfectly 

reasonable. Moreover, using the unwrapped cross-spectrum phase we can tentatively compute phase and 

group velocity for each test using (50) above. An example of the results thus obtained is shown in Figure 

4-4. 

The phase velocity values seem to be low and that can be explained because of the sensitivity of the 

chosen unwrapping algorithm to trace noise. Phase velocity is based on the whole unwrapped curve -is 

the secant of the dispersion relation- and therefore is affected by all the accumulated unwrapping errors. 

A low value implies excessive unwrapping by the chosen algorithm. Other algorithms are available in the 

literature, but no one seems to offer complete guarantee (Shatilo, 1992). The group velocity values are 

less affected by errors in the unwrapping algorithm, as they are based on local values -the tangent of the 

79 The frequency domain autocorrelation or autospectrum of a signal has zero phase (Lynn, 1989). 
40 This has been recognised for a long time in the field of ultrasonic testing of materials -Elices & Garcia-Moliner, 1968- although 
with the high frequency techniques and low dissipation materials initially employed researchers avoided the problem in most cases - 
Schreiber et al. 1973 
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dispersion relation. Its values within the range of significative spectral energy -indicated by the cross- 

spectrum moduli in Figure 4-4- are well within the range of velocities estimated in chapter 3 and, 

therefore, are more reliable. The variations in group velocity are important. We can see now that the 

cross-spectrum method proposed by Viggiani & Atkinson and applied in Chapter 3 was actually 

averaging those values -i. e. it was fitting a single line where local tangents show an ample range of 

variation". This procedure seems now to be unnecessarily opaque. 

Although these results are interesting they are just another way of presenting what was already evident at 

the end of the previous chapter, namely, that the bulk wave model is perfectly inadequate to make sense 

of pulse tests in soil samples. The final objective of laboratory pulse tests is to measure Do, not to obtain a 

dispersion curve. What is now clear is that some other model is needed than that provided by bulk waves: 

a different elastodynamic transfer function, and a dispersive one at that. That function should provide a 

better alternative to the now tenuous link between Do and the measured propagation properties. 

When a wave traverses a solid, dispersion can arise for a variety of causes (Sachse & Pao, 1978): 

frequency dependent material properties, inhomogeneity, boundary effects, non-linearity ... Rayleigh 

waves are perhaps the best known example of dispersive elastic waves with geotechnical relevance, and 

for them dispersion appears as a consequence of layering on the testing sites (Foti, 2000). In this and 

following chapters we will examine a variety of possible dispersion-inducing mechanisms relevant to 

pulse tests in soil samples. 

4.2 NEAR FIELD EFFECTS 

As explained in chapter 2 near field effects have been prominent in the discussion about pulse test 

interpretation in soils since the issue was introduced by Sanchez-Salinero and co-workers (1986). This 

tradition alone justifies a detailed consideration of near field effects in our search for possible causes of 

uncertainty in pulse test interpretation. It is less traditional to discuss this problem as an example of 

dispersion42. From our point of view this has two distinct advantages: it brings the discussion in line with 

other problems to be next investigated and offers a relatively simple ground to put to work the concepts 

just introduced. There are some additional benefits from this approach. It was also noted in Chapter 2 that 

even if Salinero's work contains copious insight into the problem it lacks some generality, as it was based 

on numerical analyses of a transmitted single sinusoidal pulse. Although that particular pulse shape is not 

central to the argument, this point seems to have been lost in later research. The general viewpoint here 

adopted permits us to clarify this. We shall then begin with some theoretical background. 

4.2.1 Source near field: theoretical aspects 

In the geophysical literature that inspired Salinero's work, near field is a shorthand for the peculiarities of 

the movement field near its source. The discussion then goes beyond the propagation of some assumed 

41 The value obtained in this case was 68 m/s, fitting a line between 2 and 8 kHz 
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wavefront shape -planar, say- to its generation, hence its starting point will always be the inhomogeneous 

equilibrium equation, that is, for the isotropic case, 

pü =b +(A +p)V (V . u)+pV2u (55) 

As we know, the possibilities offered by superposition make the solution for the case of a single isolated 

impulsive force extremely important. Stokes obtained the solution describing the movements generated 
by a unit impulsive force isolated in an infinite elastic medium in 1849 -Aki & Richards, 1980. 

According to the terminology introduced in chapter 1 this will be a "fundamental solution". Stokes proof 

of the fundamental solution is reproduced and explained in many books, for instance Dominguez (1993), 

and there is no need to reproduce it again here. It is nevertheless interesting to appreciate one aspect of it: 

as the elastic space is assumed infinite and the load isolated the problem is naturally posed in spherical 

coordinates centred at the load. 

Stoke's fundamental solution is indeed fundamental. Analytically it has been used to obtain solutions to 

more complicated source problems, implying moment or distributed sources (Achenbach, 1973, Aki & 

Richards, 1980). Numerically it lies at the heart of boundary element solutions to general elastic wave 

propagation problems (Dominguez, 1993). A rather less ambitious use of the fundamental solution, 

albeit still an interesting one, is as transfer function for arbitrarily oriented dynamic load histories within 

an infinite elastic body. That is a transfer function43 linking the "output" -displacement vector u(t)- to the 

"input" -the source force vector b(t). That was the use made by Salinero and co-workers and that is also 

the use here investigated. 

As this transfer function relates two vectors matricial notation is convenient. The relation linking an 

isolated force and the generated displacement field is then expressed as 

u=GR*b (56) 

Where the * symbol indicates convolution in time. GR its known as the Green tensor. It is a matrix, 

GR;;, where each element is the unit displacement along the axis i corresponding to a unit impulsive force 

acting along the axis j. We will first inspect its general structure before going into more detail. 

Emphasising then its structure, the Green tensor could be written as follows, 

GR = N(r, t)[3A-1]+FP(r, t)A-FS(r, t)A-1] 
A= Vr ®Vr ='r ®r (57) 

IIri=1 

42 The use of the concept by Salinero et at. is rather subdued. Later contributions -e. g. Brignoli et al. 1996, Jovicic et at. 1996, 
Arulnathan et at. 1998- tend to ignore it altogether. 
I We will be referring to it as a transfer function all along even if, strictly speaking, when used in time domain it is a unit response 
function. In the terminology of structural modal testing (Ewins, 2000) this particular transfer function will be called receptance or 
admittance. 
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Vector r indicates position relative to the source, and, formed by its director cosines, makes A only 
dependent on the angular coordinates. Figure 4-5 presents a scheme, identifying this vector, as well as b 

and u. The tensorial coefficients, depending only on time and distance from the source, are the far field 

term (Fr) travelling at velocity VP, the far field term, (F, ), travelling at velocity v, and the near field term 

(N) travelling at some intermediate velocity. These affirmations will be justified later, it is first desirable 

to obtain some consequences out of the fundamental solution structure. The first thing to note is that the 

character of the movement -what is propagated- depends only on the angular coordinates i. e. on the 

propagation direction. On the other hand, propagation takes place in the same form in all directions, as 

the propagation characteristics depend only on the radius. 

An important question is to establish when and where is the movement parallel to the propagation 

direction, and when and where is it perpendicular to the propagation direction. As we know, the first type 

of movement is that associated with a compressive plane wave travelling at vp the second with a shear 

plane wave travelling at v, Some algebraic manipulation of the fundamental solution offers a clear 

answer to this question. The general expressions of movement parallel (up) and perpendicular (u) to the 

propagation direction are given by: 

up =(u"r-)r=(r"b)*12N+Fpj'r 
(5s) 

u, =uAF=(FAb)*[F, -N] 

Important consequences of these expressions are: 

When the propagation direction is chosen parallel to the source, there is no s-like movement as (rAb) 

=0 

. When the propagation direction is contained in a plane perpendicular to the source there is no p-like 

movement as (rb) = 0. 

0 In general, it will be only when far field coefficients -F; - are much bigger than the near field one, i. e. 

, only when N/ Fi -> 0, that p-like movement will be associated with vp, and s-like movement will be 

associated with v. 

The last point above can also be understood as stating under which conditions plane wave propagation 

will be a good model for the movement'. As this condition depends on the coefficients of equation (57) 

it is now desirable to take a closer look at them. The expression of these coefficients in the time domain, 

using H for the Heaviside step function and 8 for the Dirac delta function, is given by -Dominguez, 
1993- 

" At least with respect to its velocity, attenuation due to geometrical spreading is a peculiarity that cannot be modelled by plane 
waves. 
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N=k2 H-r -H t- r 
r vp vs 

krkr Fp =2 

4t-- 

Fs =2 t-- (59) 

10 
VP VP Vý Vs 

k= 1 
r=llrO 4 ,pr 

From those time domain expressions it can be appreciated that, as stated above, Fp and F, correspond to 

an instantaneous disturbance passing through r at times given by r/vp and r/v, respectively, whereas N 

corresponds to a disturbance acting at r between those two times. Also the presence of r2 in N indicates 

that the attenuation of this factor with distance is two orders of magnitude higher than FP and F,, which 

attenuate with r. 

It seems that we have already found a good justification for the terminology "far field" and "near field". 

Far will mean simply distances from the source where 1/r2 is small enough. This is quite reasonable in 

itself -we would expect that at large radius spherical wavefronts might well be approximated by their 

tangent planes- but, nevertheless, it is not the end of the story. Our radius criterion is blatantly 

dimensional, surprisingly suggesting that it would be possible for a single limit distance to be equally 

valid for all kinds of loading and all isotropic elastic materials. In fact, our reasoning has conveniently 

forgotten that squared velocities divide the far field factors, and has also forgot that a time factor 

multiplies the whole near field coefficient, suggesting that for large times this coefficient would also 

become large. On the other hand, as time passes, the disturbance will travel further and the radius will 

increase... surely some compensation might occur between those two phenomena, but at what rate? To 

obtain an answer to all these questions it is necessary to turn now to the frequency domain expression of 

the fundamental solution. 

In the frequency domain the structure of the Green tensor given by equation (57) does not change, only 

the time-dependent coefficients have a new, frequency-dependent, expression. This expression might be 

obtained, for instance, applying a Fourier transform to (59). After some rearrangements we can write an 

expression equivalent -albeit more compact- to one given by Aki & Richards (1981): 
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N=NS-Np 

Ns 
k1+ ns 

=sz 
vs n: 

l+np _a[", -a, csa"(". )l NP= kZze 
vP np 

Fp =v e-'"° Fp =ve -In, 
VP 2 

k= 
4. cp r 

(60) 

where we have emphasised the symmetry between the terms where each respective bulk velocity -v, or 

vP intervenes, expressing the near field coefficient as a difference of two components, Ns and Np, one of 

each kind. All the coefficients are expressed using two dimensionless ratios, whose definitions are given 
by 

np 
-r=2, 

r r =2irn P VP AP P 

(61) 

wr 
nss 

Vs ýs s 

As we see these ratios are proportional -with scaling factor 27ß- to the normalised distances that measure 

the distance between source and evaluation point against the corresponding characteristic wavelengths. 
Looking at expression (60) it is clear that the difference between corresponding near and far field terms - 
NP and FP, say- is exclusively dependent on the corresponding dimensionless ratio. The exponential form 

chosen makes it very simple to separately compare modulus and phase for paired terms. 

Looking first at the modulus it can be appreciated that the quotient of corresponding Near and Far field 

terms has the general form 

N; 
_ 

l+n? 
F; n? 

(62) 

In Figure 4-6 this quotient is plotted against the normalised distance. The ratio is only higher than 0.25 

within the first wavelength of the source. At distances bigger than two wavelengths the near field 

modulus is less than 10% of the corresponding far field term. This gives a more precise meaning to the 

terminology: the term "far field" refers to big distances measured against the corresponding wavelength. 

Considering now the phase it can quickly be appreciated that near field terms have a more complicated 
form than corresponding far field terms. Figure 4-7 represents their phase as a function of normalised 

distance. The difference between them is also represented and quickly stabilises as arctan(n) -+ 7r/2. 
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Velocity information is contained in the phase. As the only spatial coordinate is r, we can obtain the 

wavenumber as the phase derivative with respect to r. The phase velocity for corresponding near and far 

field terms is then given by 

FF, 
- 'PH -Vf 

1 
VN' =v; 1+ v. 

z 
=v; 1+ 2 wr nt 

(63) 

As expected, the phase velocity of the far field term is constant and equals the corresponding bulk 

velocity. On the other hand, the phase velocity of the near field term is not constant but frequency and 
distance dependent. This is bad news, as it means that near field terms are dispersive and, for given 

distance between source and receiver, every frequency will propagate with a different velocity. But there 

is also good news: as the normalised distance increases dispersion fades and the phase velocity of near 

field terms quickly approaches the corresponding bulk velocity. 

4.2.2 Near field limit and shear-like movement 

Although the term-by-term comparison just made is illustrative it does not address directly our concern. 

This is mostly related to shear tests, where there is a certain possibility of the near field term travelling at 

v, causing premature detection. Considering now the complete expression for u, -equation (58)- it could 

be seen that the relevant transfer function is given by the difference between the far field term, Fs, and the 

whole near field term. Using (60) this can be written explicitly as: 

S=F, -N5+Np 

S(o), r)=k 
e_n, 

- 
l+ns 

e'°1 + 
l+np 

e 
i[,,, -crcian(n, 

)] 
(64) 
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This expression is equivalent to one used by Salinero et al. (1984) and quoted by Jovicic et al (1997). We 

will refer to it as the S transfer function. There are two different dimensionless ratios in it, nP and n� as 

well as two bulk velocities, vp and v,. Some insight is gained if the p-related quantities are expressed in 

terms of the s-related quantities, using the Poisson-ratio dependent speed ratio VR 

j 

Swr=ke 
;n-1+ ns e r(,,, -arcton(n, )] +1+v; na e t(v, ns-antan(v, ns )] ( 

ýý iiizs Vs V. ns Vs ns 
(65) 

L, 1-2v 
Vr --_ 

vp 
f2-2v 

To interpret this expression, apart from the already examined quotient between Ns and Fs it is interesting 

to consider also the moduli quotient between Np and F. This shows a slight dependence on Poisson ratio, 
-Figure 4-8- but also declines quickly as n, increases. It is already clear that the relative magnitude of the 
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whole near field and the far field term would be very small at some wavelengths from the source. To be 

more precise both near field terms should be combined taking account of their respective phases. This has 

been done and the corresponding result is plotted in Figure 4-9. It shows a different pattern, remaining 
below 10% after 3 normalised distances. 

Still, our main interest lies elsewhere, as the time delay between input and output and, consequently, the 

wave velocity, are not controlled directly by the modulus but by the phase of the transfer function. It is 

possible to obtain an exact expression for the phase of (64) but it is cumbersome and the resultant phase 

and group velocity are expressed in terms of trigonometric functions and need unwrapping. Numerical 

evaluation is possible and that was the road followed by Salinero et al. (1986). But it is now relatively 

simple and perhaps more interesting to obtain directly an upper bound for phase and group velocity. 

Figure 4-10 represents the effect of the near field term in the phase of the S transfer function as a 

correction on that given by the Fs term. This term has a phase directly related to the bulk shear velocity 

by (63). The actual near field would generally form a variable angle with FS, depending on their relative 

phases. The n/2 angle assumed in the figure gives the highest delay45 for given moduli and therefore 

bounds the phase correction dO and, consequently, the corresponding phase velocity, v. We have then 

that 

vs BFS V OF, -d& 

dB <_ 
I NI I 
F 

(66) 
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s_ FS Fs 

Figure 4-11 represents this last ratio against normalised distance. As the slope is always negative this also 

represents an upper bound for the S group velocity. It appears that if phase or group velocity is measured 

at more than about 1.6 normalised distances from the source the possible excess over the. shear bulk 

velocity, vs, will stay below 5% 

In general, given a constant wave speed, there are two possible methods of achieving far-field conditions: 

either by separating source and receiver, thus increasing r, and/or by specifying a high frequency. 

Whereas in field applications like cross-hole it may be possible -attenuation permitting- to place source 

and receiver as far apart as needed, in laboratory conditions this is not the case. The dimensions of the 

sample being tested limit the distance between source and receiver, and those dimensions are machine- 

dependent, with little scope for change once the apparatus has been built. Therefore, the adjustment has 

to be made via frequency and the near field influence limit just suggested will translate into 

" Note that with our Fourier transform conventions a phase delay signifies a time advance. 
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-X16d (67) 

This minimum frequency has been plotted in Figure 4-12 for a range of shear stiffness typical of sands 
(Jovicic & Coop, 1999) and for several distances typical of usual laboratory configurations. As we know, 

testing with bender probes usually proceeds between 2 and 20kHz; it can be appreciated how, for the 

smaller distances, corresponding, for instance to hollow cylinder walls or small triaxial diameters tests 

might proceed well within the near field. On the other hand, bigger distances, corresponding for instance 

to the height of samples in big triaxial cells, will give some allowance to test even relatively stiff 

materials. 

4.2.3 Near field limit and pulse test interpretation procedures 

The question now is how to apply the frequency limit just established when interpreting pulse tests in 

soils. This has two different answers, depending on whether this interpretation proceeds in frequency or 

in time domain. In the former case the answer is pretty simple and direct, as a frequency limit is directly 

enforceable there. For instance, if we measure velocity fitting a line to the cross-spectrum phase it is only 

necessary to take care and begin the fitting range beyond an appropriately selected fm,,,. This selection 

taking account of the measurement distance and estimating the soil stiffness can be performed with the 

help of diagrams such as Figure 4-12. This idea is also valid if more elaborated use of the spectral 

information is needed; an example is given by its application to dispersion curve inversion in the nearby 

technique of SASW -Foti, 2000. 

In time domain the answer is less clear cut. This is natural as time domain procedures do not deal directly 

with the transfer function but with the recorded output, i. e. a convolution of the transfer function and 

input signal. It is then to be expected that the character of the input signal will also play an important 

role. There are a number of features, nevertheless, that are valid for any input signal: 

" The near field term attenuates faster than the far field term. 

" First arrival of the near field term happens at d/vv that of the far field term at d/vf 

In time domain the far field term translates the input without distortion whereas the near field term 

produces a transposed and distorted replica of the input. 

All these aspects are illustrated in Figure 4-13 where the effect of both terms has been computed46 

separately for a distorted sine -or "Jovicic"- input. The amplitudes have been scaled and its clear that, for 

this particular case the near field term has a very mild effect on the total output. To be more precise, the 

initial bump due to the near field term represents just 5% of the output peak. Hence, in this particular 

case, the automatic procedure employed in chapter 3, which ignored peaks below 10%, will have 

successfully identified the first arrival of the signal as that corresponding to the bulk shear velocity47. 

" Using a FFT with 2048 samples at 0.002 ms 
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But this very same procedure will have failed with other input shapes. Figure 4-14 compares four signals 

propagated under the same conditions. The figure is represented for an apparent normalised distance, n,,, 

of 2. It is important to note that the normalising factor here is taken to be the apparent frequency of the 
input signal, f p, 

i. e. the inverse of its apparent period. This is only a convenient shorthand to characterise 

signals that, as Figure 3-4 illustrated, may have quite wide spectra. Of course, for a given signal, the 

higher the apparent frequency the smaller the energy it would have below a particular frequency and, 

consequently, the lower its proportion of near field energy. But this argument is not helpful to rank signal 

shapes when time domain output is considered. 

Back to Figure 4-14 it can be seen how the near field term causes again initial bumps in all the 

transmitted signals. But, while it attains a height of 5% in the Jovicic shape, it is 10% in the single 

sinusoidal and the sine burst and almost 30% in the square signal. At least in the latter case, the automatic 

procedure of Chapter 3 will have picked an arrival time corresponding to the compressive bulk velocity. 
Evidently, such a minor program setting might be modified to cater for the signal in use. But the key 

point here is that no single criterion is valid for all kinds of input. Figure 4-15 represents how the near 
field induced bump height falls as normalised distance increases for various signal shapes. 

This figure suggests that the choice of input signal might be important if time domain procedures are 

used to select the arrival time. It is apparent that the square-shaped signal is the least favourable shape 

and the distorted sine the most favourable, as suggested by Jovicic°B. Also, the sine and sine-burst signals 

behave very similarly in this respect, although the burst has a much narrower spectrum than the single 

sine. This result extends what Salinero found for the single sine shape. We can see now that his limit of 

n, P 2 for the single sine corresponds roughly to a policy of ignoring bumps of 10% maximum height. 

Remembering that the values of TE obtained in chapter 3 were very similar to the automatically obtained 

To this seems to be what a trained "expert" eye will do for any kind of input shape. 

Salinero also introduced the effect of hysteretic damping in his simulations and, for reasonable values, 

observed that his criteria still held. Although it will be simple now to do the same for other shapes, we 

will not follow this route here for various reasons. First, it would seem more sensible for future research 

to employ the unequivocal frequency domain criteria established above. Second, the introduction of 

damping modifies the material model, something that has some extra consequences and for our purposes 
is best addressed separately -Chapter S. Finally, it may turn out to be that near field effects are only of 

secondary importance. It is time now to check our bench test results. 

4,2.4 Application to bench test results 

So far we have obtained clear rules that may be used to avoid and/or estimate near field influence in pulse 

tests. However, the question remains about the possible relevance of this problem in actual soil test 

configurations. Recall that, for sine pulses, we have recovered very similar limits to those proposed by 

47 In the figure the time is scaled so as to make the theoretical arrival time equal to 1. 
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Salinero et al. Recall also that, even when using sine pulses and abiding by those limits, various 

researchers have signalled problems in arrival time identification -e. g. Moncaster, 1997, Pennington, 

1999, Kuwano, 1999. We have also seen -Chapter 3- that these problems are indeed substantial. We are 

now able to explore how much of the uncertainty there discovered can be attributed to this near field 

problem. 

Beginning with the time domain estimates it is clear that near field effects will be most visible in first 

arrival-based velocity estimates. In Figure 4-16 we represent this estimate against the apparent 

normalised distance of each test. This last value is computed assuming that vertical shear velocity for our 

sample is -say- 120 m/s49. In the figure we represent separately results corresponding to square signals 

and to sinusoidal signals - as according to Figure 4-15 there is no need to distinguish single-cycle and 

bursts. The results are interesting, as the square signals systematically show higher values than the 

sinusoidal ones. That was already observed in Chapter 3 and near field effects might explain this bias, as 

most normalised distances are below the value needed for the 10% limit to be effective for square signals 

-around 9- but above that working for sinusoidal shapes -around 2.5. Still, the substantial dispersion of 

results within both categories remains unexplained. This want is even more apparent if we consider 

cross-spectrum results. 

In the frequency domain our search for near field influence is simpler as it is not affected by signal shape. 

On one hand, we have obtained, as subproduct of the algorithm estimating the cross-spectrum velocities, 

the frequency interval -say fm;, to f,,,,, where the normalised cross-spectrum modulus was over 10% On 

the other hand using (2) and again assuming an v, of 120 m/s we can obtain fijm for each source to 

receiver distance. It is then possible to define a near field spectral ratio as 

�mac -�(im 

NFSR=. 
fý-. fmm 

(68) 

And this ratio represents the near field influence in the cross spectrum velocity estimate. Negative values 

mean that all the testing frequencies were in the near field, for values between 0 and 1 the near field 

overlap progressively decreases, values above 1 correspond to tests performed well within the far field. 

Plotting this ratio against vas we will expect a clear relation to appear, namely an increase in the 

measured velocity with the ratio, as opposed to time domain results. This increase should be expected 

because we know now that the cross-spectrum method measures an average group velocity, and, 

considering the negative slope of phase velocity in Figure 4-11, group velocity should approach v, 

asymptotically from below. Figure 4-17 supports this view. If some effect is there at all, it is a decrease 

of the estimated velocity as NFSR increases: that is, tests that are within the near field, show lower v, than 

those well out of it. But the figure also shows that measurements outside the near field do not quietly 

approach any asymptote, but instead show a much higher variation than those inside the near field. 

" However, this result is strongly dependent on the amount of distortion introduced. This signal is given by I=A (sin(a(2tfw + 
di/2)) - sin(ndi/2)). The results correspond to a distortion factor, di, of 1/3. 
49 Were the normalised distance to be computed using the estimated velocity for each test the effect looked for would be introduced 
twice in the graph. 
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It seems then that source near field effects are not able to explain on their own the disparate results 
described in Chapter 3. Also, the complaints of previous researchers about the inability of Salinero's 

criteria to deliver clear non-ambiguous results seem now perfectly reasonable. Neither these criteria, nor 

the more comprehensive analysis developed above will be of much help if near field effects are not the 

culprits of the observed dispersion. Of course, this does not means that all efforts should not be made to 

work outside the near field, and the criteria given above might help in this respect. It means rather that 

working in the far field, desirable as it may be, would not be generally enough. 

Other dispersive phenomena should then be taken into account and this -relative- failure might point us 
in the right direction. Remember that Salinero's work was prompted by concerns about field pulse tests, 

particularly cross-hole, and only later, and after apparent success, was applied to laboratory tests. This 

suggests the model of field pulse tests should not be directly translated to the laboratory and that some 

major element is lost in the intent. One obvious difference is that in the field source and receivers are 

minute elements placed in the middle of a rather large extent, whereas in the laboratory -with the 

possible exception of tests within calibration chambers- source and receiver are smaller than those in the 

field, but much more so is the sample in whose surface they are placed. 

4.3 SUMMARY 

Dispersive waves spread out and change shape as they travel. The dispersion relation is a non-linear 

functional dependence between the wave vector and frequency. Phase velocity is then frequency 

dependent and not directly related with time-domain signal propagation. A new quantity, the gradient of 

the dispersion relation, called group velocity, is more relevant. Dispersion characteristics can be 

measured in pulse tests analysing the results in frequency domain. An elastodynamic dispersive model is 

needed to interpret pulse tests. There are a variety of mechanisms that may cause dispersion. In this 

chapter we have explored near field effects, that is, dispersion caused by proximity to the source of 

movement. Clear criteria have been obtained to evaluate the influence of this effect in time and in 

frequency domain. However, using the Gault bench test results we have shown that near field effects 

cannot account for the major part of the observed dispersion. 
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4.4 FIGURES 
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Figure 4-1 Distorted narrow band signal from bench test 
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Figure 4-2 Phase and group velocity on a frequency-wavenumber plot 
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Figure 4-4 Pulse test in Gault clay: numerical evaluation of phase and group velocities 

Figure 4-5 Fundamental solution: vector nomenclature 

Figure 4-3 Dispersion relation and relative size of group and phase velocities 
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Figure 4-6 Moduli ratio of corresponding near and far field terms vs normalised distance 
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Figure 4-7 Phase and phase difference(dashed) of corresponding near and far field terms against 
normalised distance 
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Figure 4-8 Moduli ratio NFp/FFs for Poisson ratio 0,0.2,0.4 
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Figure 4-9 Moduli ratio N/FFs. Poisson ratio 0,0.2,0.4 
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Figure 4-10 Phase delay due to the near field in S-like movement 

1.5 

1.4 

1.3 

1.2 

vlvs 
1.1 

1 

0.9 

0.8 

Figure 4.11 Upper limit of S phase velocity versus normalised distance. Poisson ratio 0,0.2,0.4 
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Figure 4-12 Near field frequency limit vs sand stiffness for varying source to receiver distances 
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Figure 4-13 Stokes propagation of a distorted sine pulse 
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Figure 4-14 Input shape and near field effect in time domain 
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Figure 4-15 Effect of input signal type on the percentage height of the near field 
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Figure 4-16 Bench tests on Gault clay. Influence of near field on first-arrival estimate of Vs 
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5 MATERIAL ISOTROPIC DISPERSION 

Continuing our search for dispersive elastodynamic models for shear pulse tests in soils we address in 

this chapter two different possibilities. First we will consider a modification to the elastic material model 

we have been employing so far. Then we will consider the dispersive effects induced by the 

heterogeneous bi-phasic nature of soils. Following a terminology suggested by Sachse & Pao (1979) 

these effects will belong in the category of material dispersion. 

5.1 VISCOSITY AND DISPERSION 

Without leaving the linear realm an obvious possibility to introduce dispersion is to employ a viscoelastic 

material model. Viscoelastic constitutive relations can be written in a differential form relating the time 

derivatives of the stress and strain tensors (Christensen, 1971) 

as a2a aka aE a2E a'E aoa+a1-+a2 2 +... +ak k =boE+b, -+b2 Z +... +b, i (69) 
at at at at at ar 

All the ak and b; coefficients have tensorial nature, and therefore each term included in the equation may 
increase considerably the complexity of the material description. Notwithstanding this complexity the 

relationship is still linear and the superposition principle still applies. One of the simplest viscoelastic 

material models is the Kelvin-Voigt material, whose constitutive relationship may be written as 

a=Dos+D'o 
at 

(70) 

where D', is the tensor of viscous coefficients. For an isotropic material the elastodynamic equilibrium 

equation will now be written" 

+(2+G)uk, k. +Gum,, k +(2'+G')ük, k. +G'üm (71) 

Wave propagation in such a material is generally dispersive, as can be seen in the simple one- 

dimensional example of a plane harmonic shear wave. Disregarding source terms, naming x the direction 

of propagation and u the y-directed single non-zero movement component, elastodynamic equilibrium 

takes the form 

pun =Gu. +G'u, (72) 

where G is the shear modulus and G' is the viscous counterpart. Substituting the general expression of 
harmonic plane wave a dispersion equation results 

pcw2 =Gk2+iG'wk2 (73) 

This is often written using a complex modulus notation, to emphasise the formal analogy with the elastic 

case 

30 We write here G instead of the usual Lamb symbol µ to avoid confusion with fluid viscosity appearing later on this chapter. 
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pw2 =G'k2 
(74) 

G"=G(i+iws) 
where 8 symbolises the ratio G'/G and is handy to express the wavenumber solutions of (72). This 

solutions are complex, with the real part belonging to the wave phase and the imaginary part to the wave 

magnitude. 
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k; = 2G 
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The phase velocity v is given by the ratio w/k,. Rearranging the first equation above, its ratio to the elastic 

shear velocity may be expressed as 

v_ 2(1+ 52C92 
y 

vs 
[(1+o2w2Y 

+1 
(76) 

where the dispersive nature of the model is patent. Only for low frequencies and small moduli ratio (8) 

would the phase velocity be equal to the elastic one. Figure 5-1 plots the resulting dispersion relations for 

two moduli ratios: an almost negligible 0.1% and 5%. Even for the lower value, the range of phase 

velocities implied for typical pulse test frequencies seems excessive. Moreover, the phase velocity is 

unbounded and its slope implies an even higher group velocity. That would be enough to dismiss the 

model, but it is nevertheless instructive to consider also the predicted damping ratio. 

The damping ratio D is a basic dynamic concept used to measure the ratio of energy loss per cycle DE to 

the maximum cycle energy E. It is defined (Kramer, 1996) by 

D= 
LE 

4, rE 
(77) 

For the case of a propagating plane wave it can be shown -e. g. Udias, 2000- that the damping ratio is 

given by the ratio between the imaginary and real parts of the wavenumber. Using (75) above this leads 

to 

k; 
k, (1+82týZ)+1 (78) 

which has been plotted in Figure 5-2, for the same moduli ratios as above. It can be appreciated that the 

predicted damping ratio is sigmoidal, and hence approximately linear within a certain frequency range. It 

is this characteristic that gives the model some appeal when the problem at hand is restricted to a narrow 
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frequency ranges' and the main concern is with movement amplitude. But this is not generally the case 
for pulse tests on soils. 

Damping ratio is, precisely, one of the basic parameters measured and commonly employed by "soil 

dynamics" practitioners (Kramer, 1996). Most of these data have been obtained either measuring the 
hysteresis loop in static cyclic apparatus -like triaxial, direct simple shear or hollow torsional cylinders- 

or the resonance bandwidth of resonant column tests. Consequently, these results relate to relatively low 

frequencies (below 100 Hz). Figure 5-3 reproduced from Kim, Stokoe & Roesset, (1991), presents results 

that may be considered typical ( see for instance Toki et al. 1995). 

The results for dry sand are frequency independent over the range explored. This is usually introduced in 

models assuming that S -or equivalently G'- is inversely proportional to frequency. This is what is usually 

known as hysteretic or structural damping -Kramer, 1996; Ewins, 2000. A quick perusal of expressions 
(75) and (76) confirms that the resulting damping ratio is indeed constant but so also is the phase 

velocity, thus precluding any dispersion. 

Hysteretic damping does not involve dispersion and it is therefore useless for our purposes. It may be 

argued, however, that the frequency range of interest in pulse tests is rather higher than that explored by 

Kim et al. Directly relevant data are scarce. For reasons that will be explored later on, the usual 

arrangement of shear pulse tests employing bender elements is not generally used to measure attenuation. 

An exception is offered by Brocanelli & Rinaldi (1998), who, employing benders in a somewhat different 

arrangement, have obtained attenuation data at 2.5 kHz for dry sand. The measured D values are similar 

to those depicted in Figure 5-3. Even more strong support for the hysteretic approach for dry sand is 

offered by Prasad & Meissner (1992) who again obtained very similar shear damping values testing at 

100 kHz. 

At this juncture, it may be worth noting that although hysteretic damping may be favoured in dynamic 

models -e. g. Salinero et al. 1984- it has an intrinsic "ad hoc" character that fits badly within the linear 

theory. For vibration problems, Crandall (1970) shows how this results in non-causal model behaviour 

i. e. in output preceding the input. Within a wave propagation context Aki & Richards (1980) also show 

that the introduction of attenuation without dispersion results in instantaneous wave arrivals. The model 

performs quite well for small amounts of damping and when used for a restricted frequency range, but 

this characteristic has prompted the search for more elaborate viscoelastic models. Although there are 

proposals in the seismic literature (see Aki & Richards 1980) that might be applied to soil mechanics this 

issue will not be considered further here. It will be only pointed out that recognition of direct time effects 
in the mechanical response of dry sands is very recent and that these are usually interpreted within a non- 
linear viscoplastic framework (Imposimato, 1998; Di Benedetto, 2001). 

s' Crandall, 1970, gives a thorough discussion of this issue within the closely related context of vibration theory. 
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The previous discussion has dealt only with dry sands. Looking again at Figure 5-3 it may be noticed that 

clay does indeed show some damping increase in the higher frequency range. This should not be taken 

as a vindication of the Kelvin-Voigt model. Clays are never tested dry but with a rather high degree of 

saturation. For all kinds of soils, the presence of water introduces a different mechanism of viscous 
dissipation and a new source of dispersion. This mechanism does again involve a modification in the 

material model, albeit a different one: the soil is still treated as elastic but is not anymore supposed to be 

homogeneous. 

5.2 FLUID COUPLING: BIOT'S THEORY 

5.2.1 General 

The interaction between solids and pore fluid in saturated soils is commonly described within the 

framework proposed by Biot. He addressed the problem of elastic wave propagation in porous solids in a 

series of classical papers (1956a, 1956b, 1992). There he predicted that three different modes of plane 

wave propagation were to be found in them: one shear mode and two compressive, one fast P-wave and a 

slower one which is now usually referred to as the Biot wave. 

His results (1956a, 1956b) indicated that for soils" the fast P-wave would travel between two and five 

times faster than the compressive velocity that would be predicted from static moduli disregarding 

interaction; the slow mode will show less difference (between one and two) but will be strongly 

attenuated and thus very hard to measure. The shear velocity was less affected, its increase remaining 

below 30% of the elastic value. Biot shows that the wavenumbers obtained from the dispersion equation 

are complex, with both real and imaginary parts showing frequency dependence. 

These predictions have had extensive confirmation. Saturation produced a substantial increase in the 

measured compressive velocity of soils ( Whitman & Lawrence, 1963). Attenuation showed a pattern in 

good correspondence with the prediction (Stoll & Brian, 1969). Acoustic measurements in marine 

sediments (Hampton, 1974) repeatedly showed the fast arrivals that Biot predicted for the first wave. The 

measurement of the second compressive wave in soilss' has proved more elusive, but during the last 

decade enough experimental evidence has finally appeared, both in field tests (Chotiros, 1995) and in the 

laboratory (Nakagawa et al. 1997). 

Biot theory has another important consequence: the relation between the wave velocities and the elastic 

moduli of the soil skeleton ceases to be a simple one. Apart from the elastic moduli of the soil skeleton, a 

number of different material parameters appear in the relation: porosity, viscosity and compressibility of 

the fluid, compressibility of the soil grains, permeability plus some extra parameters measuring the 

geometrical characteristics of the pore network. Recently, Gajo and coworkers (Gajo & Mongiovi, 1994; 

Gajo, 1995; Gajo, 1996; Gajo, Fedel & Mongiovi, 1997) made an extensive study of this problem. They 

52 An assumption about the relative magnitude of fluid and frame bulk moduli is necessary to interpret Biot adimensional results. 
s' The first measurements (e. g. Johnson & Plona, 1982) took place in artificial materials -sintered glass beads- 
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showed how sensitive is the relation between Do and velocity measurements to incorrect assumptions 

about other parameters. The problem is extreme for measurements based on compressive velocities, and 
less so for measurements based on shear velocities. 

Gajo's work being comprehensive in aim, devotes more space to the more peculiar and important effects 

of Biot's theory: those affecting the transmission of compressive waves54. Our aim here is more specific: 

we are only interested in the dispersive characteristics of shear propagation within Biot's theory. This is 

obviously motivated by the restricted character of our Gault clay database, where only shear results are 

present. But certain disagreements in recent experimental work provide some extra interest. Jovicic 

(1997) or Kuwano (1999) working with granular materials -various sands, glass ballotini- decided after 

some consideration of Gajo's results not to take into account fluid interaction effects in the interpretation 

of their measurements. On the contrary, Blewett et al. (2000) pointed to these as a major cause of 

dispersion in their own measurements in Levenseat sand and advocated for their systematic 

consideration. 

5.2.2 Biot shear wave 

Biot presented a theory that considered the interacting movement of an elastic solid skeleton and the pore 

fluid filling its pores. The basic field variables are then two movements, that of the fluid, U and that of 

the solid skeleton, u. They are coupled through two field equations that express dynamic equilibrium. 

These equations can be written in a number of ways"; we use here the emphatically symmetric form 

presented by Gajo et al. (1997) 

putt +p, 2U1, +bu, -bU1= c�u, +c12U, 
pl2UU +022U,, - bu, +bU, = c12u, +c22Uxx 

(79) 

These equations contain no source term and rule 1-D movements such as those produced by plane waves. 

The p;; are density-like coefficients affecting the inertia terms, the cu are moduli-like coefficients 

affecting the stiffness terms and b is a coefficient affecting viscous terms. There are three kinds of 

coupling between fluid and solid movements: mechanical, inertial and viscous, given respectively by c12, 

P12andb. 

The stiffness coefficients are very simple for the shear case: there is no mechanical coupling and all are 

zero except for c� that is equal to G, the usual shear modulus of the soil. The inertia coefficients can be 

rewritten (Biot, 1956a) in terms of the soil solid and fluid densities -p, and pt- the porosity n and a new 

parameter, the added mass, p,. 

54 This emphasis on compressive waves is also a quasi-unanimous feature of most geophysical and material research on the subject, 
even in recent times (e. g. Moussatov et al. 1998, Hickey & Sabatier, 1997, Chotiros, 1995). 
ss The main difference between formulations has to do with the choice of stress variables (total stress, effective stress, solid 
stresses... ). There is no unanimity in this particular. Biot himself presented his equations in a number of ways and all have had some 
following. Also the material parameters appearing in the stiffiess and inertia terms are rather freely combined by different authors. 
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P>> =(1-n)Ps+Pa 
P22 = nPf +Pa (80) 

P« -Po 

The viscous coupling coefficient can be written as 

b=boF(co)= Kz (F, +iF) (81) 
0 

Where the symbol p. denotes the viscosity"' of the pore fluid, KO the absolute permeability"' and F(co) is a 

dynamic correction factor, generally complex. 

Substitution of a harmonic plane wave expression for the solid and fluid movements in (79) leads to a 

dispersion equation, that is, to an equation relating wavenumber and frequency. This development is 

presented for instance in Biot (1956a, 1956b); here we just write the resulting wavenumber solution 

k, =v=om2{(E; +E, )+2E, }y 

k; = 
vs 

{(E, + E? )- 2E, } 

The real and imaginary part are expressed in terms of 

G 
vs __npf +(1-n)p$ 

_ 
(rýK+PXr2K+F)+F, 2 

Er 
(rlK+F)2+F, 2 

_ 
Fxnpf 

Ei (rjx+F, )2+F, 2 

(82) 

(83) 

By vs we denote the base shear velocity; this is the one usually employed in pulse test interpretation when 

fluid interaction is disregarded (e. g. Jovicic 1997, Pennington, 1999, Kuwano, 1999). Three adimensional 

ratios have been employed to shorten the notation; the first two are mass -or density- ratios 

P22 
r 

P22+O12 
(84) 

_ 
P, IP22-Pi r2 (PI 

I+ P22 + 2P12 XP22 + P12 ) 

and the third one is a normalised frequency 

56 We adhere here to a fluid mechanics convention, no confusion should arise with the equally named Lamb coefficient which does 

not appear in this section. Viscosity has dimensions M/LT and it is related to the kinematic viscosity through il - plp f 
57 Which has dimensions of L2 and is related to the engineering permeability or hydraulic conductivity km by KK(µ/y,, )kx with 7. 
being the specific weight of water. 
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K=- 

(85) 

w= 
bo 

= -7 
p22 +P12 nKo 

Careful consideration of the previous expressions will reveal that only two unfamiliar material properties 

have been introduced: the added mass density, p� responsible for inertial coupling and the dynamic 

correction factor F(co) appearing in the viscous coupling coefficient. These properties need to be further 

specified before the theory can be applied. 

Research by Johnson and co-workers (1982,1987,1994) has shown that both properties are related to the 

same physical phenomena: the frequency-dependent characteristics of the fluid flow through the pore 

network. This frequency dependency is expressed in F(w), given by 

4z2K2 
Y 

F(w)= 1-i 
qnaA0 

cj (86) 

This expression guarantees that the low-frequency quasi-static interaction is ruled by the viscous term -a 

term where the permeability KO is the fundamental parameter- whereas the high-frequency interaction is 

ruled by the inertial term -and hence p,. The added mass appears slightly disguised in the previous 

expression, as it is related to the newly introduced tortuosity t� by 

1°° + 
npf 

(87) 

Tortuosity can be measured using electrical conductivity measurements or deduced from acoustic high 

frequency measurements -see below. An empirical alternative was proposed by Gajo (1997): 

1 
T. = (88) 

This relation with porosity was based on measurements on a range of granular materials, most of them 

artificial; it was shown to give a reasonable fit for the intermediate range of porosity -0.2 to 0.6- usually 

relevant in geotechnical problems. It is plotted in Figure 5-4, where some new results for sand have been 

added. These results were either directly measured (Moussatov et al. 1998) or obtained by back-analysis 

of field and laboratory measurements. It seems that Gajo's relation will offer a fair estimate of tortuosity 

for any soil modelling exercise. 

An extra parameter, A, appears in (6). It has length dimension and it measures the average size of the 

dynamically connected pore network (Johnson et al, 1987). Its direct measurement is possible although 
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rather involved58. A common alternative (e. g. Gajo 1997) is to assume M equal to 1, where M is defined 

by the relation 

M_8r, 0Ko 
nAZ 

(89) 

M equal to 1 is the exact result for a cylindrical non-intersecting pore network and seems to hold within 

an order of magnitude for real materials (Smeulders et al. 1992). As an alternative one might use an 

empirical relation suggested by Johnson et al. (1994) 

2nd 
n-9(1-n) (90) 

This relation was shown to offer good results for sandstone and fused glass beads; a result for sand by 

Moussatov et al. (1998) would suggest that this relation underestimates A. 

5.2.3 Shear dispersion characteristics 

Although the Biot model looks complex its shear dispersion characteristics are relatively simple. Figure 

5-5 represents the dispersion curves that correspond to some typical permeable soils, Gault clay and 

Levenseat sand. These curves represent the normalised phase velocity as a function of frequency, that is 

v_w X91) 
Vs k. (w G7 

The parameters employed are collected in Table 5-1. The permeability of typical soils has been taken 

from Mitchell (1991); data for Levenseat sand are given by Blewett et al (2000), Gault data are repeated 

here for ease of reference. Tortuosity is estimated using (88); M is assumed 1 in all cases; no G value is 

quoted as the normalised values are independent of its value. The dispersion curves are all similar: they 

have two plateaux at low and high frequencies and a transition zone in between, where the dispersion 

proper takes place. This zone is frequently known as the crossover range (e. g. Johnson & Plona 1982). 

Regarding this shape two important questions related to our problem arise. 

The first question is about the magnitude of the velocity variation. How far from one another are the two 

plateaux? The low frequency velocity is just v, the high frequency limit is given by (Biot, 1956b; Gajo, 

1996) 

vH =G2=1G (92) 

Pl 1- I- z npf+(l-n)ps 
1011 P22 

Using again (88) and assuming some standard values for fluid and grain density59 we can plot the ratio 

vH/v, as a function of n -Figure 5-6. As we have said the common practice in soil mechanics is to use the 

56 Johnson et al. (1994) use acoustical measurements with superfluid Hell as saturant. Tizianel et al. (1999) use regular He but they 
need to consider the coupled thermal losses. 
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low frequency formula to obtain G; if the high frequency value is measured instead the induced error in 

G might lie above 25% for loose materials60. This error will overestimate the stiffness, something that 

would be unsafe for foundation design purposes. 

The second question relevant to our problem asks about the frequency range where the dispersion takes 

place; this range is sometimes known as the crossover zone (Johnson et al. 1994). As can easily be 

inferred from Figure 5-5, and is more emphatically shown in Figure 5-7, permeability has a fundamental 

role in this respect. As the permeability decreases the crossover zone is pushed into higher frequencies. 

For low permeability materials the high frequency limit may be unattainable because of scattering. The 

presence of a scattering upper limit to wave propagation was commented upon in the second chapter. 

This limit was explicitly stated by Biot when the theory was proposed (1956a) and was later recognised 

experimentally by Johnson & Plona (1982) -testing at 500 kHz no low velocity arrivals, i. e. shear or 

Biot, were obtained in immersed refraction testsb' of fused glass beads. 

The controlling role of permeability in the position of the crossover zone was noted by Gajo (1996,1997) 

who stated the problem in terms of the relation between the viscous and inertial coupling terms. That this 

approach is equivalent to the one here adopted stems from the fact that in the frequency domain time 

derivatives on the ruling equations translate into powers of frequency. High frequency behaviour is 

dominated by inertial terms - or w2 terms-, low frequency by viscous terms - or co terms. 

It is useful to normalise the frequency scale using the crossover frequency co, defined above (17); the 

effect of permeability is accounted by the normalisation -Figure 5-8- and a simple criterion for the limits 

of the crossover zone then becomes available. 

O. ifý f<_10f 
f`-2; 

rK 0 

(93) 

However, this neat result has a flaw. The size and shape of the crossover zone is not controlled only by 

the parameters within the crossover frequency. M has also some influence on it as Figure 5-9 illustrates. 

As equation (2) shows M is directly related to the dynamic pore size parameter A; the hardest one to 

measure. We have already commented that M=1 is a common assumption; M=4 is close to the value 

measured by Tizianel et al. (1999) on quarry sand; M=0 is equivalent to ignoring the effect of the 

dynamic correction factor F((o) and was also the value adopted by Gajo (1997) for his time domain 

analysis of transmitted pulses. It is apparent that the crossover range size is somehow dependent on M; an 

increasing M extends its span into higher frequencies but leaves its low frequency onset almost 

"Namely pi-1000 kg/m3 and p, -2650 kg/m3. The first value is that of water and it is relevant for fully saturated materials; Gajo & 
Mongiovi (1994) have explored the possible variability of this parameter and its influence on the high frequency limit shear 
velocity. It is rather minor, and the same happens with grain density. 
60 Corresponding to a 12.5% error on V, 
61 A technique commonly employed in ultrasonic testing. The sample is immersed in water and source and receiver are placed in the 
water tank away from the sample. See Krautkramer (1993) for details. 
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unchanged. This result is also supported by a similar sensitivity analysis of Biot's equations carried out 

by Huot (1999) with a different dynamic correction formulation. 

5.2.4 Consequences for shear pulse tests 

From the preceding exploration of Biot shear dispersion characteristics we can infer some consequences 

for bender based pulse tests. In general, the influence of Biot dispersion will depend on the relative 

position of the frequency testing range and the crossover range, where dispersion takes place. This 

overlap may be quantified through the following ratio 

R=(fý'-f) -(fh-fH) -(. fL-f) 

4/; - fl) 
(94) 

where fh and f, are the high and low frequency limits of the testing range and fH and fL those of the 

crossover range. R is 1 when the overlap is complete and negative when there is no overlap at all'. Using 

(93) above, assuming water as saturating pore fluid and M=1 it is easy to plot this ratio as a function of 

porosity and permeability for any testing frequency range. Figure 5-10 does just that for the range 1- 

10kHz, relevant for the bench tests described in chapter 3, and also for the tests described by Blewett et al 

(2000) and Kuwano (1999). There are three distinct zones: 

Low permeability materials are tested in the low frequency range. This is, for instance, the case of 

Gault clay, with n =0.44 and kH =3e-9 m/s. This justifies the approach adopted by Pennington (1999) 

and leaves us with no insight into the observed dispersion in our bench tests. 

High permeability materials are tested in the high frequency range. This may have been the case of 

the materials tested by Kuwano63. 

Intermediate, medium permeability materials, are affected by Biot shear dispersion. This is the case 

of the Levenseat sand -n =0.44, kH =1e-4 m/s- tests described by Blewett et al. (2000). 

When the objective is the evaluation of the shear modulus the ideal testing situation is that in the low 

frequency range because there the relation between the measured velocity and the modulus is only 

dependent on rather well-known parameters` -n, pf, p;. Measurement in the high frequency range is a 

second best, because the relation between modulus and velocity (92) is also mediated by the tortuosity. 

Direct tortuosity measurement is not easy, but figures such as Figure 5-6 may be used to correct the 

excess velocity. Finally, when measurements are made in the crossover range the inversion depends on 

an extra, poorly known, parameter, M -or A-; still, figures such as Figure 5-8 may be of some help in this 

case. 

There is an optimistic counterpoint to this panorama of intrusive unknown parameters, and that is the 

possibility of obtaining extra information from shear tests. It is obvious, for instance, that if shear 

62 Recall the meaning of the Macaulay brackets <x> -0 for x<0 and <x> -x for x>O. 
63 No direct permeability measurement is available, but with a medium grain size above 0.2 mm and no fines one might expect a 
conductivity above le-3 m/s 
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measurements are available in both the high and low frequency range tortuosity may be inferred from the 

difference. If not only the limit values are established but the whole dispersion curve over the crossover 

range, the situation is even better. Not only M, but the crossover frequency and hence the permeability 

might be estimated from dynamic shear measurements. 

From the preceding discussion it is clear that a precise knowledge of the frequency range of velocity 

measurement is highly desirable. We have described in the preceding chapter how it is possible to obtain 

experimental dispersion curves from bender measurements. It is worth noticing that in this case of Biot 

shear dispersion the group velocity goes rather close to the phase velocity -Figure 5-11. This will help to 

establish the dispersion curve even if unwrapping problems affect the phase velocity measurements. It is 

nevertheless true that the crossover range extends over at least two orders of magnitude of the frequency. 

Current bender equipment might have problems to cover such an extension with adequate definition. The 

low frequency range may be affected by noise and other dispersive phenomena -e. g. near field". On the 

other hand the higher frequency range may be affected by excessive scattering attenuation. 

As in the case of near field effects, time domain interpretation of pulse measurements is less direct and 

powerful. If the whole spectrum of the input signal is located in the low or high frequency range, then 

any arrival selection criterion is equally valid to obtain the velocity. If, however, it is located over the 

crossover range then any time domain method will be similarly uncertain. This is illustrated in Figure 

5-12 where a sine input has been propagated" through three increasingly permeable materials. The time 

scale has been normalised by the arrival time corresponding to the low frequency range velocity. The low 

frequency test arrives undistorted at its time. The high frequency test arrives earlier, with the 7% increase 

in velocity that will correspond to n=0.4 in Figure 5-6. The test on the crossover range has a more 

imprecise arrival. 

One extra possibility should be mentioned. To obtain the crossover frequency and hence to measure 

permeability, it may be simpler to measure attenuation. This is based on the fact that the crossover 

frequency approximately coincides with a maximum of the damping ratio vs frequency relationship. 

Turgut (2000) has recently explored this idea with compressive waves in mind, but this also applies to 

shear waves -Figure 5-13 illustrates this aspect, although the considerable effects of tortuosity are not 

shown. The problem with this approach is that attenuation measurements using bender elements are still 

poorly understood -see next chapter. Note also that the study of attenuation usually includes also 

hysteretic damping within the solid frame (e. g. Stoll & Bryan, 1971); we have not considered this here 

because, as shown previously, hysteretic damping is immaterial for dispersion. 

The analysis just presented is based on the transmission of plane waves. It is then a far-field analysis, 

where mode separation is assumed from the outset. The results of chapter 4 indicated that this assumption 

64 See Gajo & Mongiovi (1994). 
65 One possibility of extending the low frequency range will be to use field pulse tests or laboratory resonant column tests 
66 Using the Biot wavenumber to construct a plane wave transfer function and using the same FFT algorithm as in the previous 
chapter. This method has been applied a number of times to simulate Biot signals -e. g. Van der Grinten & Van Dongen (1987). 
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might not be appropriate in all cases relevant for bender testing. Like Stokes for the elastic case there is 

also a fundamental solution available for the poroelastic problem, obtained by analogy with 
thermoelasticity (Dominguez, 1993). This solution describes the coupled movement of the three modes - 
shear, P, Biot- and its study is beyond the scope of this dissertation. However, the results of chapter 4 are 

still likely to be relevant, at least while testing on the low and high frequency range. This is based on the 
fact that the Biot wave is often disregarded in such cases -e. g. Morochnick & Bardet, 1996. Left with just 

one fast compressive velocity an analogy with the elastic case might be done, with the only caution of 
including a very high Poisson ratio, but, as shown in Chapter 4, Poisson ratio was scarcely relevant to the 

near field limit. 

5.3 SUMMARY 

Material dispersion can be introduced in soils while keeping the linear description of their behaviour. 

One possibility is through viscoelastic models but simple viscous models in use produce either too much 
dispersion -Kelvin-Voigt- or none -hysteretic. A more fertile possibility is offered by the consideration 

of fluid interaction through Biot theory. The amount of shear dispersion in pulse tests predicted by the 

model may be considerable for permeable materials. If not properly taken into account this will introduce 

a systematic shear stiffness overestimation; some guidance to avoid this problem is here included. On the 

other hand, if correctly interpreted, bender measurements may be used to evaluate permeability, which 

may be practical in medium permeability materials. For impermeable materials, like Gault clay, Biot 

dispersion takes place in a frequency range above that tested with bender elements. Therefore this 

phenomena is not directly relevant for the interpretation of the bench test results included in Chapter 3. 
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5.4 TABLES 

Material KO M porosity rhof rhos viscosity 
m2 kg/m3 kg/m3 kg/ms 

Gault 3. E-16 1 0.58 1000 2650 1. E-03 
loose sand 1. E-09 1 0.5 1000 2650 1. E-03 

dense 

sand 

1. E-11 1 0.25 1000 2650 1. E-03 

soft clay 1. E-15 1 0.5 1000 2650 1. E-03 

compact 

clay 

1. E-16 1 0.25 1000 2650 1. E-03 

Levenseat 1. E-11 1 0.44 1000 2650 1. E-03 
Table 5-1 Base parameters for Biot computations 
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5.5 FIGURES 

Kelvin-Voigt dispersion for various GIG 
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Figure 5-1 Effect of moduli ratio on the normalised phase velocity of a Kelvin-Voigt material 
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Figure 5-2 Effect of moduli ratio on the damping ratio of a Kelvin-Voigt material 
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Tortuosity and porosity 
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Figure 5-4 Gajo's relation between tortuosity and porosity and some sand results 

Shear dispersion in Blot-Johnson model 
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Figure 5-5 Normalised Biot shear dispersion curves of typical permeable soils, Levenseat sand and 
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Shear velocity span in Biot-Jhonson model 
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Figure 5-6 Ratio of high to low frequency Biot shear velocities as a function of porosity 
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Figure 5-7 Influence of permeability in Biot shear dispersion. Ko in m2. 
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Normalised shear dispersion in Blot-Johnson model 
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Figure 5-8 Normalised Biot shear dispersion curve 
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Figure 5-9 Influence of dynamically connected pore size in Biot shear dispersion 
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Test range / Crossover range 
TEST RANGE 1000 -10000 Hz 

Conductivity (m/s) 
1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 

0 
.. 

ýo 
a 
ß 
I- (5 

0 

-411-- n=0.2-*-n=0.4--n=0.6 

Figure 5-10 Overlap of bender frequency range and Biot crossover frequency range 
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Figure 5-11 Normalised phase and group shear velocity 
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6 ISOTROPIC GEOMETRIC DISPERSION 

Up to this moment we have been faithful to a boundless interpretation of pulse testing. We have explored 

the consequences of being near the source and we have also considered alternative, richer, descriptions of 

soil elastic behaviour. But in both cases we have just considered the elastodynamic equilibrium equation 

without any reference to boundary conditions. We have remained in an agreeable, undefined, presumably 

vast, elastic body where the signal introduced by the source goes directly to the receiver. Looking again 

at Figure 2-6, chapter 2, we see that, although we don't accept anymore that the wavefront propagates as 

a neat, clearly defined line, the ideal, direct source-to-receiver path depicted there still lingers on. 

The inadequacy of this free-space idealisation was already suggested in Chapter 2, when we compared 

the expected wavelength range of laboratory pulse tests with usual sample sizes. A considerable overlap 

was expected and, for instance, this is indeed the case for the Gault sample described in Chapter 3. An 

assumed vertical velocity of 120 m/s implies a wavelength range between 1.2 and 12 cm for the 

frequencies of interest -between say 1 and 10 kHz. This compares with a diameter of nearly 10 cm and 

length67 varying between 9 and 19 cm. General principles of wave motion -Lighthill, 1978- would 

suggest already an important influence of sample size and shape on the motion. To study those effects 

further it is necessary to be more specific. 

We will focus here on the particular sample shape used for the bench test series described in Chapter 3, 

that is a cylindrical unconfined sample whose slenderness -diameter to length ratio- varies between 1.9 

and 0.9. This is less restrictive than it may first seem. Table 2-2collects information about sample size 

and shape in previous research. It is apparent that the cylinder has been the most common shape, which is 

logical considering the obvious benefits of using pre-existing equipment for pulse testing68. Excluding the 

"waveguide device" developed by Fratta & Santamarina, slenderness spans a range from 0.25 

(Schultheiss, 1983) to nearly 6 (Jamiolkowski, 1995), with 2 being the most popular value. 

We will first address end effects as those may still be treated within a 1-D propagation model, then we 

will move on to the more complicated models needed to take account of section shape effects. 

6.1 END REBOUNDS AND INTERFERENCE 

The most common arrangement for pulse tests in soil samples has the transducers embedded on the top 

and bottom caps of a triaxial apparatus. Less frequent but -at least, in this respect- conceptually similar 

arrangements have benders placed vertically at the top and bottom ends of a hollow cylinder (e. g. Di 

Benedetto et al. 1999) or an oedometer (e. g. Zeng, 1999). In our bench test sample the situation is 

6' Note that this amount includes 1 cm at each side of bender length on top of the tip-to-tip distances quoted in chapter 3. This 1 cm 
is an estimate as probe penetration inside the sample was not controlled systematically on the experiments. At the time it did not 
appear to be important, as long as the tip-to-tip distance was known. 
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similar, the only difference being that the end walls are not confined but free. A simple modelling 

approach to these situations, introducing two end walls at the place of source -S- and receiver -R- is 

represented in Figure 6-1. 

When an elastic wave arrives at a boundary between two elastic media part of the energy it carries is 

transmitted and part is reflected back. In the confined media depicted in Figure 6-1 this will happen at 

both ends, and therefore part of the signal from the source will reach the receiver again after being 

reflected twice. In the figure we have named the first arrival as A, and indicated front and back 

reflections through asterisks and apostrophes, respectively. Bouncing will happen again and again, and at 

the receiver we will have a sum of all successive reflections, or 

0=A+ A*' + A*'*' + A*'*'*'..... (95) 

Explicit mention of reflections in soil pulse test traces can be traced back to Schultheiss (1983) who, 

called them "multiples", in analogy with similar phenomena in geophysical reflection surveys. 

Subsequently the problem did not seem to cause much concern until Arulnathan et al. (1998) made it 

central in their analytical study of bender element tests. This long lapse may be explained by a general 

proclivity to forget the dispersive character of the propagation. 

When dispersion is not present the potential problem caused by reflections is relatively m' or. A 

qualitative explanation of this is given in Figure 6-2. The upper diagram shows the first and second 

arrivals of a pulse in the non-dispersive case. T, is the apparent period -or duration- of the pulse and T, 

the time elapsed between the first and second arrival, or round-trip time. A non-overlap condition for 

those two arrivals can be written as 

Tap 
<1 Tn 

(96) 

For a plane shear wave in the ideal conditions of Figure 6-1 this is easily translated as a relationship 

between the apparent wavelength and sample length 

V, 
=L°P <1 

2Hfap 2H 
(97) 

As illustrated in Figure 6-3 this relation is not very exigent. H =10 cm and f, P 5kHz will be enough 

except for the stiffer soils; for the case of our Gault sample all the single pulse tests described in Chapter 

3 are above the 100 ni/s line. With the notable exception of those who use square slow pulses -the "step" 

loading- most practitioners have abided by this rule -see Table 2-2- even if unconsciously. Besides, if 

dispersion is excluded then there is no need to worry excessively about any possible overlap, as the first 

arrival will never be affected. 

' Interesting exceptions are the "oedometers" used by Jamiolkowski et al. (1995), whose only similitude with the conventional 
apparatus is the presence of rigid side walls. 
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Add in dispersion and the overlap problem becomes not only more acute but also more important. Back 

to Figure 6-2 and the lower diagram shows why overlap is increasingly possible. To a first approximation 

each frequency in a pulse will travel at a different group velocity, spreading the pulse in the time axis as 

the travel distance increases. There is a clear possibility for the fastest travelling frequencies in the second 

arrival to overtake the slowest in the direct signal. Within the frequency range spanned by the pulse 

group velocity will itself range between, say, V,,.. and Vmj fl, and the overlap condition can now be written 

as 

T,; 
p +H< 

3H 
(98) Vmin V. 

this can be rearranged to write 

Vm' 

- 

Am' 
<3 

rmý 
(99) 

Hfap H V. 
in 

As it should, when V,,,, x = Vm; n we recover the non-dispersive case (97). It is clear that as the span in 

group velocity increases overlap becomes more possible. As an illustration Figure 6-4 represents (5) for a 

group velocity ratio of 2.5 and a range of V, o. similar to that in Figure 6-3; now the non-overlap testing 

limit looks distinctly less comfortable than before. In fact, when the ratio of maximum to minimum group 

velocity is 3 or more, overlap will happen whatever the apparent frequency or sample height. 

A consequence of the previous argument is that the Biot shear dispersion explored in Chapter 5 is 

generally not enough to produce interference. Considering Figure 5-6 there it appears that the ratio of 

maximum to minimum group velocity will remain below 1.2. This will leave room enough for most 

current tests to proceed in the non-overlap range. Another dispersion cause is needed for interference to 

be a problem. 

In the dispersive case the possibility of overlap is also more worrying. When dispersion takes place the 

first absolute arrival is not anymore the only important result; instead, the complete dispersion curve will 

generally be sought after. The cross-spectrum technique described in chapter 4 will not work as intended, 

as the distance travelled by the mixed signal cannot be assigned with certainty -see equation (54). 

As we mentioned before most geotechnical research has ignored the possibility of overlap interference. 

Arulnathan et al (1998) did not ignore it although they did ignore the extra problem caused by dispersion. 

Hence they insisted on time domain methods and used cross-correlation between first and second 

arrivals. To distinguish both in the trace some arbitrary limit was specified as end of the first arrival. That 

may well be applied to the cross-spectrum procedure, but the rationale for doing that is dubious as the 

transform of the arbitrarily selected arrival will be different from that of the assumed non-interfered 

signal. Although other factors come into play, this limitation partly explains the ambiguous results 

obtained by Arulnathan et al. 
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Fortunately, reflection interference is not a problem exclusive to geotechnical testing. It is prominent in 

exploration seismology, and has since long received considerable attention -Silvia & Robinson, 1979. 

More recently -Pialucha et al. 1989-it has also been studied in ultrasonic testing as it affects tests in thin 
layers, like adhesives. Inspired by this work we propose a new approach in the following section. 

6.1.2 End reflections and transfer functions 

It is interesting to recast the reflection interference phenomenon using the language of linear systems. 
Figure 6-5 does this, relating the input signal at the source, 1, with the first arrival, A, the first rebound, A' 

and the second arrival, A'*. The subsystems indicated are of two kinds. Wave propagation trough the 

sample, forwards and backwards, is represented by W' and 91, respectively. Rebound is represented by 

B' and Be at the receiver and source wall, respectively. Using those symbols now to represent the unit 

response of each subsystem we can, for instance, rewrite the first three terms as 

A=I*W+ 

A'*=I*W+*B'*W-*B'*W+ 

A'*'*=I*W+*B'*W-*B'*W*B'*W-*B'*W+ 
(100) 

Substituting convolution for multiplication and unit response for transfer function the same equations 

would hold in the frequency domain. But the frequency domain representation has here one important 

advantage, appreciable when considering the total output 

O=A+ A'* +A'*'*+ 

= A+ AB'W -B*W+ + A(B'W-B'W+ý +..... 

= A(1+B'W-B'W++(B'W-B'W`Y +.... 
) 

(101) 

Transfer functions are just frequency-dependent complex numbers. Using the shortcut S=B'WB*W the 

output might be written -and summed- as a geometrical series 

O=A (1+S+SZ+S3+... )= A 
=I 

W+ 
1-S 1-S 

(102) 

And a rather simple expression has been obtained for the complete system transfer function. It is well- 

known -e. g. Needham, 1997- that the sum is only valid when the modulus of S is less than 1. To see that 

this is true in our case it is necessary to specify more the subsystem transfer functions that form S. 

Elastic rebound of plane waves at plane boundaries is usually dealt with using the so called transmission 

and reflection coefficients. These generally depend on the type of incident wave and angle of incidence - 

see, for instance, Udias, 2000. For the case of plane shear waves at normal incidence Miklowitz (1978) 

gives the following transmission and reflection coefficients 

R=Z, -ZZ T= 
2Z, 

Z, +Z2 Z, +Z2 (103) 
ZI = Plv1 Z2 = Pzv2 
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The quantities Z; are the characteristic impedances of the two media. Impedance is a common concept in 

wave problems, representing a ratio between forcing and flow variables -Blackstock, 2000. For the case 

of shear waves those variables may be identified with the shear stress and particle velocity. With this in 

mind, the expression given by Miklowitz for elastic media may be easily generalised to other material 
descriptions -Biot poroelastic, for instance- using as impedance 

Zt=+k-G; (104) 

Where k; represents the wavenumber of the medium and the sign depends on the forward or backward 

propagating character of the incident wave. This will make the impedance complex and frequency 

dependent. 

To write the propagation transfer functions W+ and W' we need now to recall that plane wave solutions of 

wave propagation always come in pairs, forward and backward travelling69. Then, in general, we will 

write the x-dependent transfer function for waves originating at xo as 

W+ (x, x0) = e-' 
' 
(X-xo) 

W- (x, 
xo) = e'k(x-xo 

) (105) 

The wavenumber k in these expressions might be linear or non-linear in frequency, in other words non- 

dispersive or dispersive. In general it may be also complex or real, that is the propagation might be 

attenuating or not. The latter case is not realistic but might be adequate when most losses are due to 

transmission at the ends. When the ends are free or completely rigid there is no transmission and 

attenuating propagation is necessary for the series in (102) to converge. 

6,1. Sample length effect 

As a first example of this approach we address now the case depicted in Figure 6-1 where source and 

receiver are located at the sample ends. We also assume that both ends are similar and both either free or 

completely rigid. In that case the reflection coefficient is obtained from (103) with Z2 either zero or 

infinite, resulting in R of either 1 or -1. We can then write the transfer function of the first arrival A and 

that of the rebound cycle S as follows 

A=IW'(H, O)=Ie-i'`" 
"+ ik -H) -ikH i2kN 

(106) 

S=B W-(O, H)B'W (H, O)=e e =e" 

The sum in equation (102) is then given by 

O=IFH =I 
e-`er 

1-e-e 12kH (107) 

69 This may be appreciated for instance in the Kelvin-Christoffel equation we employed in chapter 1, where the eigenvalues were 
identified with the squared phase velocity, v2. Also in the previous chapter we expressed the plane wave solution for a Kelvin-Voigt 
material in terms of a squared wavenumber. In both cases the positive root corresponds to a forward propagating wave, the negative 
to a backward propagating one. 
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Substituting the appropriate wavenumber in the second term we have a transfer function FH that directly 

includes the effect of all end rebounds. It is interesting to explore it for the simple case of hysteretic -i. e. 

frequency independent- damping. In that case we can write the modulus, MH, and phase, AH, of the 

transfer function above as follows 

MN =Q 1-2Q2 cos(4znH)+Q4 
(108) 

6H = arctan 
Q3+Qtan(2; 

rnH) 

where we have introduced the normalised sample length nH and the attenuation factor Q, related to the 

wavenumber real and imaginary parts through 

Q= e'xk' =e 2xDn� 

_Hk, _H_Hf nX 2; t Av 
. (109) 

We have plotted M. against the normalised sample length in Figure 6-6 for a damping coefficient D of 

2%, typical, as we know, of soils below the Biot cross-over range. In the logarithmic scale employed the 

hysteretic damping of the first arrival plots as a straight line. The reflection series shows a clear 

interference pattern, where maxima and minima are given by 

max (M. ) pnf0,2 919 
2 

...... 
135 

ýl l oý 

min (M. ) q n,, = 4,49 4...... 

This is the key to the amplitude spectrum method of phase velocity measurement proposed by Pialucha et 

al. (1989). When a series of reflections cannot be separated in time domain the frequency spectra of the 

complete record can still be employed to measure the phase velocity. For a known sample height, 

identifying the frequency and order of the extrema gives discrete measurements of phase velocity. In the 

normalised scale of Figure 6-6 the extrema of the transfer function are equally spaced. Phase velocity can 

be seen as a transformation from this axis to that of frequency. If the propagation is non-dispersive the 

extrema will also be equally spaced on the frequency axis, if dispersion is present, their spacing will 

reveal its character. 

Interference makes the amplitude spectra meaningful, as not only attenuation, but also phase velocity can 

be read on it; on the other hand it makes the phase almost unintelligible. Figure 6-7 represents the 

wrapped phase of the first arrival along with 9H. The added curvature between phase jumps at low nH is 

due to the Q-dependent factor in 6H. If the cross-spectrum method described in Chapter 4 is applied to an 

interfered signal as if it was a first arrival -that is, obtaining the wavenumber as the ratio between phase 

and H- this curvature will introduce a spurious fluctuation around the theoretical phase velocity. It will 
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also make very hard any numerical attempt to unwrap it, as contiguous samples on the very steep 

segments will be taken for jumps. 

Is interesting to look now again at some bench test traces. End interference will be most clearly observed 
for the shortest samples; wide-band single-cycle signals are also interesting as they explore a larger range 

of the spectra. Figure 6-8 corresponds to a test -96- with a single sine with f, 4000 Hz travelling on a 

sample of circa 9 cm. The first arrival occurs near 0.5 ms, and by itself this suggest that, at least, part of 

what arrives after 1.5 ms has been already through a round-trip of the sample. In fact the record goes up 

to 3 ms, enough to add another reflection. Interestingly, the arrival time estimated by cross-correlation or 

cross-spectrum, circa 1 ms, will exclude any significant interference. 

The amplitude ratio of the input signal and the whole output record is an estimate7° of the soil transfer 

function. For test 96 the result of this operation appears on Figure 6-9. There are indeed a number of 

extrema, quite irregularly distributed on the frequency axis, which is an indication -another- of dispersive 

propagation. It is clear, however, that the gradual attenuation predicted in Figure 6-6 is not present. It is 

true that above 10 kHz the magnitude of the extrema may be dominated by noise in the signal; but even 
below that range there is no clear attenuation pattern in the spectra. This impression is reinforced by 

Figure 6-10 where we have plotted together the spectral ratios of tests 93 and 96. Test 93 was performed 

under similar conditions -H, fo- as test 96, only the input signal was square. Instead of some gentle 
decline of the spectral extrema, they show rather some kind of mean undulation spiked with local 

extrema. We are fortunate to have a possible explanation for this characteristic. 

6.1.4 Bender leneth effect 

We have commented in previous chapters that a commonly accepted criterion in bender element testing 

interpretation is to take as the distance of wave travel that between source and receiver tips. In a triaxial 

sample tested along the vertical axis this will place the ideal source and receiver at a certain distance from 

the top and bottom ends -see Figure 6-11. 

Arulnathan et al. (1998) were quick to indicate that if the tip is taken as the source one should expect that 

both forward and backward plane waves would be generated within the soil sample. This is interesting 

but it is even more so when the effect of the end walls is introduced in the model. As indicated in Figure 

6-12, four different kinds of path between source and receiver are now possible. Their degree of overlap 

would not be anymore a simple function of the sample length, but also of the distance between the bender 

tip and the wall, lb 

As shown in Appendix III, this problem is easily framed in the same scheme as before. The sum that 

includes the effect of rebounds and bender length is there shown to be 

70 This assumes that instrumental effects at source and receiver cancel out. 
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O=I1 ee' {cos(2k16)+1} 
=I FHFLB (111) 

Where is clear that the joint transfer function is now the product of a sample length dependent term, FH 

and a bender length dependent term, FLB. For the simple case of hysteretically damped propagation the 

modulus and phase of the newly introduced term can be written as 

cos(4irnHnß)+sinh(4fDn, fnLB Mý =2 

sin(42rn, fnLB)sinh(4, rD n J, nLB) 
(112) 

B,, = arctan 1+ cos(4; tn�n,, )cosh(42rDnHn ) 

where a new adimensional ratio has been introduced, nLB, defined as the ratio of bender length, 1H to 

sample height H. The new term does add some extra complications to the phase, in the form of more 

spurious jumps. However it is the modifications on the amplitude spectra that are of more practical 
interest. Figure 6-13 represents the product MHMFBfor a damping ratio of 2% and various nLB ratios. The 

effect is quite considerable. It can be seen that the term MFB introduces a longer oscillation, modulating 

the interference pattern given by MH. Global extrema correspond to extrema of MF9 and they happen at 

greater nH as the nLB ratio decreases. 

This may be confirmed by the results shown in Figure 6-14, where the spectral ratio has been plotted for 

test 96 and test 22. We do not know the nH scale, as the phase velocity is not known, but assuming that it 

remains the same for both tests, we have used the product height per frequency as substitute. Test 22 was 

performed on the largest sample, and nLB was about a half that of test 96. It can be seen that, as 

predicted, the global extrema of the spectral ratio -indicated with arrows- are shifted backwards as the 

sample shortens. This phenomena is less clear at low nH but at low frequencies the signals are masked by 

noise. 

One conclusion is firm at this stage. End rebounds can disguise themselves as dispersion in the phase, 
but, for non dispersive propagation they offer a regular magnitude pattern. In our bench test the pattern is 

completely irregular, indicating, again, the presence of dispersive propagation. We have still to find the 

source of these irregularities and this is the subject of the next section. 

6.2 WAVEGUIDE EFFECTS 

The term waveguide is used to describe situations where a wave is propagated in structures, like rods, 

plates or geological strata, whose shape directs the motion along a favoured dimension of the structure - 
for instance the length of a rod or the plane of the strata. When this dimension is assumed infinite the 

situation is amenable to mathematical analysis and constitutes a good model of how the propagation is 

affected by the sectional characteristics of the structure. We will use this approach to explore the effects 

of the radial dimension when propagating along the axis of cylindrical soil samples. 
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In our bench test series the fact that the propagated wave interacts with the sample lateral boundaries was 

rather obvious. As we were able to register the movement originating from an axially placed probe with 

receivers placed on the lateral perimeter of the sample -see Figure 3-2-, the radiated wave should indeed 

reach these boundaries. This issue is often dealt with in the ultrasonics testing literature under the heading 

of probe directionality (e. g. Krautkramer & Krautkramer, 1990). Although, as we have already 

remarked, bender probes are not very similar in their operation to the radiating piston model commonly 

used for external probes, we can still gain some insight considering the directional characteristics of the 

latter. 

For the plane piston model the aperture of the radiating sound beam is directly related to the ratio 

between wavelength and a characteristic dimension of the transducer face (Krautkramer & Krautkramer, 

1990). For the simple but important case of circular transducer and isotropic medium Mason (1958) gives 

the following relation for the beam angle: 

sinfi=1.22 
A 

(113) 

which shows that for wavelengths bigger than 0.82 D there is no beam effect whatsoever and the 

transducer radiates a hemispherical field into the sample. 

If we consider now bender probes and their movement it is perhaps reasonable to identify either the 

element thickness, t, or its width, w, as the characteristic dimension of the diffracting aperture. The 

original bender elements were more sturdy, but they have grow thinner. Looking at Table 2-1, it will 

appear that for most designs employed all the energy contained in wavelengths above a few mm will not 

be beamed at all. As we have seen, this wavelength is below what is currently used in most soil pulse 

testing -Figure 2-3- and even below what, on account of scattering, would be possible to transmit in 

granular soils". 

6.2.2 Guided waves in cylinders: modes and modal decomposition 

Cylindrical structures are one of the most important cases of waveguide -think of rods and bars for the 

mechanical case, circular ducts for fluids or optic fibre cables- and they have received considerable 

attention -Graff, 1975, Miklowitz, 1978- partly prompted by their use as delay lines in communication 

systems -Thurston, 1978,1992- but also for their implications regarding ultrasonic test procedures - 
Meeker and Meitzler, 1963. 

Adopting a system of cylindrical coordinates, guided waves in this case can be synthetically expressed as 

motions given by 

u(r, 9, z, t) = A(r, 9cos[av-kz] (114) 

" Huot (1999) discusses this problem for P-waves and triaxial samples and arrives at a similar conclusion. Note that his arrangement 
for P-waves is more favourable, as the frequencies are two orders of magnitude higher than for benders (100 - 400 kHz) but the 
measured velocity is only about one order of magnitude higher than shear velocity. 
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where the first term describes the shape of the movement within the circular section of the cylinder and 

the second term how this shape propagates along the cylinder axis with a phase velocity given by 

V(W) =kip) (115) 

Generally, the phase velocity is frequency dependent and, therefore, propagation is dispersive. For given 

sectional characteristics and boundary conditions there are infinite motions like (114) satisfying the 

elastodynamic homogeneous equilibrium equation in a rod. Each of these motions is usually termed a 

gig M., and is characterised by its modal shape A,. and modal dispersion curve k�m(w). In general 

the modal shape might also be wavenumber dependent and therefore we have 

Mmn(r, eýzýt)-Anmýr, 0, knm)cos{tU knmZJ (116) 

Again, the assumed linearity of the problem is here very useful. The modal functions of a waveguide 

form an orthogonal functional base for the problem. This means -Lighthill, 1978- that a propagating 

solution corresponding to some loading f can be expressed as a linear combination of all modes 

u(r, B, z, t)=C.,, M,,,,, (r, B, z, t) (117) 

and the weighting coefficient for each mode, C,,,,,, is formally given by 

Cmn = 

MM 
mit / 

/ 
ý11öý 

mnv mn/ 

Where the brackets indicate a suitably defined functional inner product. The definition of this inner 

product is based on elastic reciprocity (Auld, 1973; McKenna & Simpkins, 1985) and is best written in 

the frequency domain 

ýMmn Mmn} 
- lumntsmn - umntzmn dS 

ýMn�ý, f}= IlmnfdS 
(119) 

The bars indicate a transformed variable and the asterisks conjugation, ta,,,, is the traction vector in a 

section induced by mode mit and S indicates the section of the waveguide. For any given frequency the 

modal coefficient is proportional to the spatial correlation along the cylinder section of the applied load 

and the modal shape. In other words, at any given frequency the propagating modes induced by some 

loading will be those whose shape is more akin to the load shape'. 

623 Guided waves in cylinders: mode typology 

We need then to examine the modal characteristics relevant to our problem. Even for the simplest case of 

a homogeneous isotropic bar in free space the process of obtaining the modal characteristics -dispersion 

curve and modal shape- is rather involved, as the relevant functional base is expressed in terms of 

n The loading considered here is applied within the guide, not at the boundaries, where other relations hold. Also, the loading is 

assumed to be concentrated at some fixed z, i. e. its variations along the guide are ignored. 
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transcendental Bessel functions. Its evaluation for a given problem -known material constants and bar 

diameter- necessarily resorts to numerical procedures. This has prompted the development of dedicated 

programs and here we will use Disperse, a program developed at Imperial College -Pavlakovic & Lowe, 

2000- with ultrasonic testing applications in mind. Although some results for a cylindrical waveguide are 

available in the literature -e. g. Thurston 1978,1992- and might have been applied directly, using 
Disperse offers a much wider range of results. 

Disperse was then used to explore the modal characteristics of a problem tailored to approximate the 

Gault clay sample employed in chapter 3, that is a cylinder of an isotropic elastic material whose shear 

velocity is set to 120 m/s and whose Poisson ratio to" 0.1. To suit the usual range of operation of the 

program and avoid numerical problems lengths and frequencies were scaled by a factor of 100, hence a 

cylinder of radius 0.5 mm represented the 5 cm sample radius and 0.1MHz in the program output is 

equivalent to 1kHz in the sample; velocities being the product of length and frequency, they are not 

affected by the scaling". This ideal Gault cylinder will produce all the results shown in this and next 

section. 

The indexes n and m appearing in (6) serve to classify the modes according to general features of the 

movement they describe. For solid cylinders there are three mode categories: longitudinal, torsional, and 

flexural. This nomenclature is best understood if we write the mode solutions as follows 

u. =Sl(r, knm)einB e 
l,, rnB -i("-k,,,,, 2) ue = Si 

ýrº knm Jý e (120) 

Uz 93 
( 
lr, 

k,,,, ýmB 
e-'("-k,, " ') = 

Torsional modes, T(0, m), are modes where n=g, = g3 =0, so the movement is independent of the angle 

and only its angular component is non-zero. They have the simple feature of a frequency-independent 

modal shape, where the m index indicates the number of counter-rotating sections found along a radius. 

This feature is illustrated in Figure 6-15 where the angular displacement is plotted as a function of radius. 

In the fundamental mode T(0,1) the whole section rotates in the same direction. As it happens, this is the 

basic assumption of the elementary theory of torsional vibration in a rod. A well-known consequence of 

that theory -e. g. Kramer, 1996- is that torsional waves propagate without dispersion at the shear bulk 

velocity. This is indeed the case of the first torsional mode, T(0,1), which is the only non-dispersive 

mode. 

Higher order modes are dispersive and do not propagate at all frequencies. Figure 6-16 presents the 

dispersion curves of torsional modes obtained by Disperse. The phase velocity has an asymptote at a 
frequency characteristic of each mode, the cut-off frequency L. It is apparent that their shape is 

n Although Pennington (1999) measured 0 this value caused numerical problems. The effect of this change is the modal 
characteristics is minor. 
74 Phase velocity is not scaled, but for some reason the group velocity plots are also scaled 
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relatively simple and that some scaling looks possible. This is indeed the case and Thurston -1978,1992- 
shows that these curves can be written as hyperbolae in v-f space 

(. J2 

+ 
(f)2 

=1 
v 

(121) 

Longitudinal modes, L(O, m), are motions where n =g2= 0 and, therefore, have no angular displacement 

and radial and axial displacements are 0-independent or axisymmetric. Figure 6-17 illustrates the r-z 

section of the modal shapes for L(0,1) and L(0,2) at low and high frequencies. There is no available 

explicit form for their dispersion curve but Figure 6-18 show those computed by Disperse for our Gault 

bar. 

-The lowest order or fundamental mode L(0,1) is the only one covering the whole frequency range. At 

low frequencies it has an almost constant velocity that is called bar velocity, vb, dropping at high 

frequencies to the Rayleigh velocity, vR. These two velocities can be computed through 

E 
VB __ 

'0 (122) 

VR 0.9 vs 

The bar velocity is indeed familiar, as is the wave velocity of compressional pulses obtained for the 

elementary thin rod model -Graff, 1975. This is reasonable as in the low frequency range, where L(0,1) 

has the bar velocity, the axial displacement is almost uniform in the section and the radial displacement 

almost null, a situation well described by the elementary model. The Rayleigh velocity is also familiar as 

the velocity of surface waves. Its appearance here is related to the fact that at high frequencies the modal 

shape of L(0,1) reveals a motion constrained to the cylinder surface. 

At high frequencies the phase velocity of all higher longitudinal modes tends to vs; in between their 

dispersion curves are not monotonic, but have a ladder shape, with a marked echelon at v.. 

In flexural modes, F(n, m), all the movement components are non-zero. The first index, n, controls the 

angular variation of the modal shape: it represents the number of wavelengths round the circumference or 

circumferential order. The first order circumferential modes F(1, m) are the best known and Figure 6-19 

represents the corresponding dispersion curves for our basic case. 

Again the lowest order or fundamental mode F(1,1) has some important peculiarities. It is the only one 

which extends to zero frequency. Its dispersion curve is asymptotic to the Rayleigh velocity, approaching 
from below. It can be shown -Thurston, 1992- that this dispersion curve is coincident with that predicted 
by simpler theories of beam flexure -Bemouilli-Euler for the low frequency range and Timoshenko for 

the'whole frequency range. Like in the L(0,1) case these propagation characteristics are best understood 

looking at the modal shape at different frequencies -Figure 6-20. At low frequencies flexure is almost 
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homogeneous and plane sections perpendicular to the axis remain almost plane, at high frequencies the 

movement migrates to the cylinder surface. 

The dispersion curve of higher order modes is asymptotic to the bulk shear velocity. Some of them have 

plateaux near vp like longitudinal modes, whereas others do fall more steadily to v,. The modal shape is 

increasingly complicated as the modal order increases -Figure 6-20- but, contrary to what happens with 
the first mode, the movement does not migrate towards the surface at higher frequencies. 

6.2.4 Guided waves in cylinders: pulse propagation 
As we have remarked except for the fundamental torsional mode, T(0,1), all modes are dispersive. Figure 

6-21 shows the group velocity curves of some flexural modes. Torsional modes -not shown- increase 

steadily up to the asymptotic v, value. Flexural and longitudinal modes have more varied features. Before 

reaching the asymptote -at vs or vR- they go through various local extrema. The plateaux appearing near 

v., correspond to the same feature in the phase velocity curves. In general, at any given frequency there 

will be modes whose group velocity is close to vp, others whose group velocity is close to vs, a number in 

between and some below vs. 

In principle then, if a pulse is propagated along a cylinder and the mode of propagation is not specified 

the only certainty about its velocity is that it would remain below v,. This may be illustrated with the help 

of a pulse propagation feature built-in in Disperse. With the numerically computed modal dispersion 

curves the program can propagate pulses using a FFT in much the same way as we have done in previous 

chapters, building a modal transfer function like 

T. 
�(w, x) =e 'k-(°')" (123) 

and applying it to any specified input shape -see Pavlakovic & Lowe, 2000, for details. 

Any computed mode can be used as propagator and -for reasons that will be soon clear- we have used 

several of the flexural modes computed for the Gault cylinder. Figure 6-22 shows the result of 

propagating a relatively narrow band pulse similar to those used in our bench test -10 cycles sineburst 

with f,, 4 kHz. The time scale is normalised by the travel time of a shear bulk wave. It is apparent that the 

signal will travel at substantially different velocities in different modes. The arrival ordering might be 

helpfully interpreted with the aid of the group velocity curves shown in Figure 6-21. The fastest arrival 

corresponds to mode F(1,6) which at 0.75 is slightly below the time that will correspond to a vP travelling 

signal -0.67 for the specified v=0.1. The second arrival corresponds to F(1,2) and its closeness to 1 

might be explained by the dispersion curve being near the vs asymptote at the central frequency of the 

pulse. Similarly, the belated arrivals of modes 3,1 and 4 correspond to the increasingly low crossing of 

their group velocity curves with the 4kHz abscissa. Note that the arrival of the fundamental F(1,1) mode 

corresponds well to that of Rayleigh waves -1.12 for the specified v=0.1. 
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The previous computation is illustrative but not very representative of the situations that may be 

encountered in soil pulse testing. To begin with the propagating distance was chosen long enough -12 
m- to allow clear mode separation. A shortened distance will expand the relative time interval spanned by 

each mode and they will overlap. This is illustrated in Figure 6-23 where the same pulse is looked at just 

12 cm from the input. The mode arrival ordering is the same as before, but now the overlap is substantial 

and the modes are indistinguishable in the total trace. The situation will be even more confused for a 

wide band input signal -Figure 6-24. As the input frequency range broadens, we cannot easily assign a 

single group velocity for each mode. All the modes are more heavily distorted and so is their sum, where 

the theoretical arrival time of a bulk shear wave is completely obscured. 

Multimode propagation causes also problems for simple frequency domain approaches. For the case of 

two simultaneously propagating modes their combined transfer function can be written as 

T(w, x)=Cie''klx+Cie'k'x =Ce ; ks (124) 

Cross-spectra or amplitude-spectra methods will measure the frequency dependence of the combined 

wavenumber, k. Simple complex algebra shows that this has a non-linear relation to k1, k2, C, and C2. The 

phase and group velocity obtained from k(w) will not correspond to any single mode's. 

6.2.5 Bender loading and modal selectivity 
Now that the modal panorama is clear we will consider what modes might be excited by bender based 

pulse tests in soils. Two different aspects need to be considered: the frequency range of the forcing and 
its spatial distribution. We have seen in Chapter 3 that for our bench tests the frequency range of interest 

lies between 1 and 10 kHz and this is why the Disperse results presented so far have been computed in 

that range. The spatial distribution of bender loading is not known, although the results by Huot (1999) 

and others commented upon in Chapter 2 offer some clues. 

A rigorous approach will proceed to compute the modal coefficients corresponding to a particular test 

arrangement using (118). This being basically a product will need two terms: a precise description of the 

mechanical excitation applied by the test and of the modal shape. Even if the first term would have been 

available the format of Diperse is not favourable to this approach, as it offers no easy numerical access to 

the modal shapes76. However, some insight may still be offered by an approximate computation. 

For the usual bender arrangement we might then assume a simplified distribution of loading on the 

section such as that illustrated in Figure 6-25. The forcing there indicated is zero outside the face of the 

bender and -ignoring bender thickness- this is reduced to a segment of length wB centred on the sample 

axis. On this segment the motion is directed along the angular coordinate, that is, only fe is assumed non- 

zero. The transition is abrupt, with fe being uniform along the whole length of the segment and zero 

outside. 

's In fact, the near field problem discussed in Chapter 4 may be seen as a relatively simple instance of this problem. 
76 At least to those -longitudinal, transversal- which are frequency dependent. 
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The product (5) of such a forcing distribution and modal shapes it is relatively simple to compute. Is zero 
for all the longitudinal L(0, m) modes, as these are motions with no angular component. It is also null for 

all the torsional T(O, m) modes, as the angular component of these motions is odd about the cylinder axis 

whereas the assumed forcing distribution is even. This leaves only the flexural modes F(n, m). 

The angular component of the F(n, m) modes is even along any diameter. Disperse offers graphical access 

to the motion components for any mode at any frequency. Figure 6-26 and Figure 6-27 represent the ua 

component of the F(l, m) modes present at 2 and 4 kHz in our ideal Gault cylinder. It is apparent that the 

motion varies with frequency and, for instance, that of the fundamental mode F(1,1) becomes more 

concentrated near the surface, as might be expected of its Rayleigh like behaviour at high frequencies. It 

is also clear that the inner product of the forcing represented in Figure 6-25 and these modal ue 

distributions is proportional to the integral of ue below wB/2 or 

IYZ N/ 

ýMmn f °c f feue dr = 
fug dr 

00 

(125) 

With a 14 mm effective bender width WB, and a 10 cm diameter we have computed the previous integral 

for all the F(l, m) modes present at 2kHz, 4kHz and 6 kHz. We have then normalised the result so as to 

make the coefficient sum for all modes equal to 1. The normalised coefficients are shown in Figure 6-28. 

As the frequency increases the number of modes to consider also increases and the modal contributions 

seem to be more evenly distributed. An exception is the fundamental mode, whose contribution declines 

as frequency increases; a consequence of its progressive confinement to the sample surface. 

We have then shown that flexural modes are those which count". It is tempting at this stage to go a little 

bit further and use the coefficients just obtained to weight Disperse computed signals such as those in 

Figure 6-23 and use equation (117). Two problems appear. First the weighting modal coefficients are 

frequency dependent, second we have only obtained the numerator, but not the denominator in equation 

(118). Selecting a narrow band signal the first problem is minimised; the second is at this stage 

unavoidable. Still, in one of our bench tests -test 80- the input was a 4kHz 10 cycle sine burst, and the 

output was registered at a distance of 12 cm. Figure 6-29 shows these traces as well as a Disperse 

simulated signal where the first eight L(l, m) modes were weighted with the values shown in Figure 6-28 

for 4 kHz. There are substantial differences between the simulated and measured trace, however the 

result is encouraging: at least qualitatively, the similitude now achieved is far higher than what was 

obtained in previous chapters with other dispersion models like near field or Biot. 

More experimental support from the multimodal propagation hypothesis is offered from cross-spectral 

group velocity estimates such as those described in Chapter 3. The irregular nature of the observed 

pattern may well be interpreted as the varying influence of different modes. Support for the presence of 
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waveguide effects can also be gathered from the experiments presented by Blewett et al. (2000). They 

performed bender-based pulse tests in Levenseat sand. The sand was deposited in a large container (0.5 

mx1 m) and source and receiver were closely placed - at less than 8 cm distance- near the middle of the 

sample. Tests were performed in that configuration and then repeated after a cylindrical metallic casing 

of 10 cm diameter was placed surrounding the installed probes. Figure 6-30 shows how this change 

affects the measured amplitude spectrum. The unique peak first apparent splits into various peaks, a 

known feature in other instances of multimodal transmission (Alleyne & Cawley, 1992). 

6 . 2.6 Consequences for soil pule to s 

It seems then that for our sample of unconsolidated Gault clay pulse tests with bender probes produce a 

multimodal excitation. We have also shown above that in such circumstances time domain interpretation 

of pulse traces is inherently uncertain and that simple frequency domain approaches are not useful either. 

As our tests were representative of the current practice described in Chapter 2 in terms of bender 

characteristics, input signals and sample shape we might suspect that this problem is rather general. The 

question now is what strategies might be more successful in dealing with this problem. Two approaches 

are possible, either alone or in combination: the first is to tinker with the forcing so as to make the 

propagation problem simpler; the second is to admit some degree of complication and use more suitable 

test interpretation procedures. 

6.2.6.1 Transducer arrangement 

Keeping in use bender elements as sources and receivers modal selectivity can only be achieved via 

frequency. Only the extreme frequency ranges are attractive. At frequencies low enough only the 

fundamental F(l, 1) mode will be excited. Although this mode is still dispersive it is well described by the 

Timoshenko beam flexure theory" and, therefore, a relatively simple interpretation is possible. Brocanelli 

& Rinaldi (1998) used this approach in their modified triaxial apparatus. However, they preferred to 

interpret their bender tests as a steady state resonance problem and, to limit the extra resonances induced 

by reflections, they had to shorten their sample. 

The critical parameter here is the cut-off frequency of the lowest non-fundamental flexural mode. 

According to Thurston -1992- that mode is F(1,2) and the cut-off frequency is independent of Poisson 

ratio and given by the relation between shear velocity and cylinder diameter 

fL(I 2) = 0.5681 D (126) 
ad 

Testing at higher frequencies fits well with conventional ultrasonic wisdom. At very high frequencies 

ultrasonic shear pulses travel at the bulk shear velocity (Mason, 1958; Thurston, 1992). This may be 

explained as follows: many modes are excited with almost equal intensity, only a few are still undergoing 

T' Higher order flexural modes will also be excited. Their motion is like that of F(lm) scaled by a cos nO factor. As our ideal loading 
is concentrated at 0-0 it will excite all flexural modes equally. 
n For a description of this theory see, for instance, Graff -1975. 
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the transition to their asymptotic behaviour, most of them are already travelling at v, and their 

contribution dominates. Our previous computation -Figure 6-28- showed that, with our simplified bender 
loading scheme, modal contributions tend to equalise at high frequencies. This bodes well for this 

approach but, as we have remarked many times attenuation and bender response do limit closely the 

practical upper-frequency range. A limit for this quasi-bulk behaviour may be expressed as 

D> Kqb (127) 

In a classic study of this problem McSkimin (1956) proved experimentally that high frequency conditions 

were attained with D/XS ratios over 66. Thurston (1982) showed an example of how quasi-bulk 

propagation was achieved for Kqb over 53. These values are probably too high. The cut-off frequencies 

for flexural modes not only depend on vs and D, but also on the Poisson ratio. However Sittig & Coquin 

(1970) explored that dependency for modes L(n, m) with n<10, m<10, and from their tables one can 

conclude that for Wks above 10 there will be more than 15 active L(l, m) modes. Until further study we 

might suggest then a value of 15 Kqb as a practical compromise. 

For a given shear velocity equations (126) and (127) might be used to obtain a frequency-diameter band 
where multimodal propagation will take place. This is shown in Figure 6-31, where for each velocity the 

zone contained between the continuous and dashed line will be that of multimodal propagation. Taking 

account of the usual range of diameters in triaxial apparatus the chart seems to indicate that only very soft 

materials are accessible to quasi-bulk testing with current bender probes. For stiff materials the low 

frequency limit seems more accessible. Still, it seems that a large number of tests to date and, particularly 
our bench test, have proceeded in the intermediate, hard to handle, range. 

A more radical alternative will involve a different arrangement of the piezoelectric sources, able to 

produce a different, simpler excitation. Torsional modes are substantially simpler than flexural modes; 

amongst other favourable properties their group velocity is always below vs, their dispersion relation is 

explicitly known and their modal shapes are frequency independent. Moreover, they include the only 

completely non-dispersive mode, T(0,1). This is the mode excited by resonant column-type tests and, was 

also excited by piezoelectric driven pulses by Fratta & Santamarina (1996). These authors did not gave 

any detail of the type of transducer they were using, however an arrangement of shear plates like the one 

employed by Nakagawa et al. (1996) -Figure 6-32- seems a good candidate for that purpose, as its 

symmetry suggests that input energy will be almost exclusively channelled into torsional modes7. 

6.2.6.2 Test analysis 

As the previous paragraph suggests multimode transmission may be hardly avoidable. If this is known or 

suspected from the outset the analysis of test results should proceed accordingly. We have suggested 
before -Chapter 5- that when dispersion takes place the measurement of material properties requires 

some inverse analysis: for instance adjustment of Biot parameters to a measured dispersion curve. Facing 

This has been also observed by Huot (1999) 
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a multimodal transmission problem this is even more so, simulation and numerical analysis of the 

experiments are both necessary and the key is where to place the matching point. 

Here we cannot develop any such scheme, but just make some observations inspired by analogous 

situations in nearby fields. Perhaps the nearest case is that of SASW -see Foti, 2000 and references 

therein- where multimode propagation is common when the strata stiffness does not increase 

monotonically with depth. But similar problems also arise in ultrasonic techniques developed to inspect 

adhesive joints, laminates or tendons -Alleyne & Cawley, 1992. 

Let us consider first the backward or data analysis part of the problem. In the trace time record all modes 

are mixed. The same applies, as we have seen, to its frequency domain counterpart. Cross-spectra with 

the input will produce a local dispersion curve, which will not correspond to any particular mode. For 

inversion it will be very helpful to separate the different mode contributions to the trace. The only 

seemingly reasonable alternative80 will be to do some kind of time-frequency analysis of the trace. These 

techniques were developed by seismologists -Dziewonski & Hales, 1972- to separate Rayleigh earth 

wave modes on earthquake traces. Basically, they looked at how the varying frequency content within 

the trace by doing a Fourier transform of successive trace portions. That worked well for recordings at 

long distances from the source, where the modes were well separated, but did not prove that useful for 

Al-Hunaidi -1994- who tried to apply the same methods for typical, short-range, SASW configurations. 

Similar problems have recently prompted ultrasonic practitioners to use a different kind of transform, the 

wavelet transform. Results by Veroy et al. -1999- and others seem encouraging in this respect. 

The interest in obtaining separated dispersion curves for the modes is clear when we turn to the forward 

or predictive part of the problem. We have seen above that current possibilities to reach this stage are 
relatively good. It is much harder, though, to go further and simulate the forced problem to obtain a trace 

that might be adjusted to the recorded one. A mode expansion approach seems attractive, but, as our 

previous work may have clarified two major obstacles appear. The first is to model accurately the modal 

excitation by bender elements. The second is to take into account end effects. 

Soil samples are not infinite cylinders. A previous section has shown how end effects have important 

consequences for simpler, single-mode propagation. In the case of waveguide propagation the same 

reasoning might be applied but the building blocks of the transfer function will be far more involved. For 

any given mode the propagator block in Figure 6-5 will be given by its own dispersion characteristics, 

but reflection will be more complicated as other modes will be generated. For instance, at a free end the 

torsional family is uncoupled -Thurston, 1978- but longitudinal and flexural modes are cross-coupled. 

Moreover, near the ends non-propagating modes -that is modes with complex wavenumbers, attenuating 

IA much favoured alternative is based on a 2D Fourier transform. For ultrasonic applications Alleyne & Cawley -1991- have 
successfully applied it to resolve the different modal dispersion curves. Foti -2000- has done the same for SASW results. A 2D 
transform swaps time for frequency and distance along the guide for wavenumber. In the transformed W-k domain the modes 
separate. However, this is a technique that can only be applied if the movement has been registered at different x locations. The 
number of registered traces is crucial for the success of the technique and is commonly over 20. With current pulse test 
configurations the movement is registered at just one location and this approach becomes impossible. 
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along the waveguide- will also be present. Although some theoretical work has been done -McKenna & 

Simpkins, 1985- practical problems involving reflection of flexural modes are not routinely solved - 
Aime & Brissaud, 2001. 

Detailed finite element or discrete element models may be used with advantage to clarify these two 

problems. For the somewhat simpler case of Lamb waves in plates Moulin et al. (2000) have used with 

success a finite element model to clarify mode generation by an embedded bimorph, source of obvious 

similarity to bender elements. The use of finite elements to obtain modal reflection coefficients is 

exemplified by Lowe et al. -2000- again for Lamb waves and Pavlakovic et al. -1999- who have looked 

at longitudinal modes in embedded bars -L(0,1) and L(0,4), to be precise. 

Discrete models may also be employed for the whole problem, but this is a very exacting approach and 

might lead astray. Usually, some simplifications will be introduced and if they are not guided by some 

higher level model -like waveguide theory- they may be rather misleading. Two examples of this are 

provided by Jovicic et al. (1997) and Arulnathan et al. (1998), who both used FEM to model a triaxial 

bender test. Arulnathan et al. decided to model the problem in 2-D to achieve a manageable model, this, 

in fact, transforms the cylinder in a slab. Slabs also guide waves, but the relevant modes -antisymmetric 
Lamb modes- are different from the Flexural cylindrical modes and the observed dispersion will be 

consequently affected. Jovicic et al. also used 2D and 3D FEM models. The model details are not very 

clear, the result was: the received waveshapes were equal to those predicted by Stokes fundamental 

solution for the unconfined space. This, as we have seen, is against all experimental and theoretical 

expectations. 

6.3 SUMMARY 

Soil samples have dimensions commensurate with the wavelengths typically employed in shear pulse 

tests. As a result sample size effects plague test interpretation and obscure the effects of material 

properties. We have explored here that problem for axis-directed tests with geometries typical of triaxial 

samples. The flat end boundaries provoke interference and signal overlap. The cylindrical perimeter acts 

as a waveguide inducing dispersion. Both problems reinforce one another, as dispersion facilitates end 

interference and end interference complicates the phase signature of dispersion. Details of transducer 

arrangement have an important bearing on the characteristics of the interference pattern and the induced 

dispersion. In this respect, current arrangements of cantilevered bender elements are far from optimum, if 

precise elastic measurements are sought after. 
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6.4 TABLES 

Reference Apparatus Section B (mm )l H (mm) 1 (mm) 
Schultheiss (1983) Oedometer Circular 75 19 2 
Schultheiss (1983) Triaxial Circular 50 101 10 
Dyvik & Madshus (1985) Resonant column Circular 50 100 4 
Thomann & Hryciw (1990) Oedometer Circular 177 76 4 
Jamiolkowski et al. (1995) Oedometer A Square 44 300 4 
Jamiolkowski et al. (1995) Oedometer B Square 67 400 4 
Brignoli et al. (1996) Triaxial Circular 50 100 1.5 
Nakagawa et al. (1996) Triaxial Circular 50 100 0' 
Fratta & Santamarina (1996) Wave guide Circular 100 1600 
Boulanger et al. (1998) Triaxial Circular 71 170 5 
Brocanelli & Rinaldi 1998 Triaxial Circular 63 28 4.5 
Zen 1999 Oedometer Circular 152 102 15 -18 
Pennington (1999) Triaxial Circular 100 200 2 
Kuwano (1999) Triaxial Circular 100 200 3 
Huot (1999) Triaxial Circular 50 100 5 
Chapter 3 Bench test Circular 98 195 10 
Chapter 3 Bench test Circular 98 169 10 
Chapter 3 Bench test Circular 98 140 10 
Chapter 3 Bench test Circular 98 116 10 
Chapter 3 Bench test Circular 98 92 10 
'Characteristic dimension of the section: diameter -circle- or side -square- Numbers in italic are dimensions only indicated by the authors (i. e. referred to previous work) 
rest performed with shear plates 

Table 6-1 Laboratory shear pulse tests: sample geometry in previous research and this dissertation 

6.5 FIGURES 

Cn 
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Figure 6-1 1-D wave propagation in a confined space 
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Figure 6-2 First and second arrival in a non-dispersive and dispersive situation 
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Figure 6-3 Minimum sample height for non-overlap in a non-dispersive case 
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Figure 6-4 Minimum sample height for non-overlap in a dispersive case 
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Figure 6-5 Linear system representation of reflected signals 
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Figure 6-6 Moduli of first arrival (A) and complete reflection series (MH). Damping D= 2% 
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Figure 6-7 Wrapped phase of the first arrival transfer function -straight lines- and of the rebound 

series -curved lines. 
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Figure 6-8 Bender trace for bench test 96 H=9.27cm fop= 4kHz 
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Figure 6-9 Spectral ratio for bench test 96 
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Figure 6-10 Spectral ratio for bench test 96 and 93 
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Figure 6-12 First arrival paths between off-wall source and receiver. Different paths are separately 
drawn for clarity in the figure. 
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Figure 6-13 Moduli of a complete reflection series when bender length effects are included. 
Plots for varying nLB 
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Figure 6-11 Bender elements as off-wall source and receiver 

Cr 

Legend 
0.1 

--- 0.05 
--- 0.01 



0 
1. E+01 + 

1. E+00 

c 

ß 

1. E-01 

1. E-02 

0 
1.0 + 

Cc d E 
d V 

ß c. 
N 

A 
0.0 

0) 
C 
!a 

0 
m 
N 

!0 

E 
I- 
0 

Z 

-1.0 

SPECTRAL RATIO 

frequency x Heigth 
100 200 300 400 500 600 700 800 900 1000 

Modal shape: angular component 

Normalised radius (r/D) 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

-T(0,1) -T(0,2) -T(0,3) -T(0,4) -T(0,5) 

Figure 6-15 Torsional modes: normalised angular displacement 
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Figure 6-14 Spectral ratio dependence on H*f for bench test 22 and 96. 
Estimated nLB = 0.05 -test 22- and nLB = 0.11 -test 96- 
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Figure 6-16 Torsional modes for a Gault clay cylinder. Scaled frequency 1MHz=10Khz 
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Figure 6-17 Modal shapes: lateral view of L(0,1) -left- and L(0,2) -right. Low frequencies -above- 
and high frequencies -below. 
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Figure 6-18 Longitudinal modes for a Gault clay cylinder. Scaled frequency 1MHz=10 kHz 
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Figure 6-19 Flexural modes in a Gault clay cylinder. Scaled frequency 1MHz =10 kHz 
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Figure 6-20 Modal shapes: lateral view of F(1,1) -left- and F(1,2) -right. Low frequencies -above- 
and high frequencies -below. 
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Figure 6-21 Group velocity curves in first order flexural modes. 
Scaled frequency 1Mhz =10kHz and velocity 0.1 = 100 m/s 
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Guided pulse propagation: 4 kHz 10 sine burst 
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Figure 6-22 Pulse propagation on a Gault cylinder. Narrow band signal. 
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Figure 6-23 Pulse propagation on a Gault cylinder. Narrow band signal. 
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Guided pulse propagation Single 4kHz sinusoidal cycle 
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Figure 6-24 Pulse propagation in a Gault cylinder. Wide band signal. 
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Figure 6-25 Schematic representation of bender loading on a cylinder section 
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Modal shape: angular component 
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Figure 6-26 Gault cylinder: no at 0=0 for flexural F(1, m) modes at 2kHz 
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Figure 6-28 Gault cylinder: frequency effect on flexural mode weighting by bender elements 
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7 ELASTIC ANISOTROPY 

"Having different properties in different directions". This is how an introductory text on materials science 
(Askeland, 1996) defines anisotropy. The bench test measurements on Gault presented in Chapter 3 were 
directionally dependent and the sample behaviour was then suspect of anisotropy. That was hardly 

surprising since Pennington (1999) had obtained the same result for Gault clay under a much wider 

variety of conditions in the triaxial cell. In fact, as we did mention in the introduction, the small strain 

stiffness of soils is now generally admitted to be anisotropic. 

In soil mechanics literature, anisotropy or isotropy are usually predicated of different things. Depending 

of the context, researchers could refer to 

A. The physical structure of the material being described 

B. The models describing some aspect of the material behaviour 

C. The stress or other tensorial variables entering the formulations 

Oda (1972) gives an example of the first use, describing the symmetry of contact orientations between 

sand grains in triaxial samples. Pennington (1999) employs a cross-anisotropic elastic model to interpret 

stiffness measurements on Gault clay, and thus offers a nice example of the second use. The third use 

might be exemplified by Hansen & Gibson (1948), who studied the undrained strength of anisotropically 

consolidated clays, i. e. of clays whose stress states before undrained shearing were non isotropic. 

Of course, one should expect those three aspects to be closely related. A material whose physical 

structure is anisotropic would be described with anisotropic state variables, interrelated through an 

anisotropic model. This might well be the case but some caution is guaranteed, because this relationship, 

based on how different symmetries interact, is not always immediate. 

Symmetry is a subject where geometric intuition is greatly enhanced by algebra$'. The symmetry of any 

geometrical figure is characterised by the rotations and reflections that may undergo without changing its 

appearance. The set of all rotations and reflections has group structure. More restricted types of 

symmetry are qualified by subgroups i. e. specific parts of this group retaining the group structure. Groups 

may be used to describe the symmetry of materials, equations and tensorial variables as follows. 

The symmetry group G., of a tensor A is formed by those transformations that do not change its 

components -tensor transformations are recalled in Appendix 1183 
. To define material and physical 

In fact Stewart & Golubistsky (1992) explain convincingly how dealing with symmetries geometry -almost- became algebra. 
uA group is a set where one operation has been defined that composes two elements of the set to obtain another -i. e. is closed. For 
other properties see Jordan & Jordan (1994). 
83 Whilst simple material properties, as density, are well catered by single numbers, complex properties, (strength, stiffness), need 
multidimensional quantities. Furthermore, anisotropy deals with directional variations of properties, and directions in the plane or 
the space are also specified by multidimensional quantities. The usual way of dealing with multidimensional quantities requires 
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symmetry using groups we follow Zheng & Boehler -1994. Material symmetries are the symmetries of 

the material element. Physical symmetries are the symmetries of the physical laws describing the 

behaviour of the material. 

The material element is the basic unit of a material model. To be observed, the material element should 

be defined by a characteristic size (e. g. radius of a small ball). Inside the material element, different 

physical features (atoms, crystals, dislocations, sand grains) might be observed. Their disposition must be 

described geometrically, and this is called the material structure. The symmetries of this structure are the 

material symmetries. This subgroup might be called the material group, and denoted by GM. 

While material symmetries are properties of figures representing the material structure, physical 

symmetries are properties of the mathematical expressions describing the material behaviour. The basic 

mechanical variables like stress and deformation being tensors, the mathematical expressions employed 

in soil mechanics take the form of tensorial functions. As explained in Appendix II, the symmetries of 

tensorial functions are described also by groups, called symmetry groups this symmetry group would be 

generically denoted by GF. 

The problem of how the three uses of anisotropy relate to one another can then be restated as one of 

establishing the relations between GA, GM and GF. This approach to soil anisotropy is relatively new and 

will be explained in the last section of the chapter. Of course mathematical neatness is not here an 

objective in itself. In the first section we will describe a more classical approach to elastic anisotropy, 

developed for linear elastic materials. We will then move on to describe the current status of anisotropic 

elastic measurements in soil. We will finally show that the new approach advocated here makes easier 

both to interpret previous results and to plan new experiments. 

7.1 ELASTIC ANISOTROPY: CLASSICAL APPROACH 

Elastic anisotropy has been subject of study since long (Love, 1927; Lekhnitskii 1963). It is the classical 

framework of crystal mechanics and plays also of fundamental role on the study of composites, both 

artificial and natural -like wood or bones. In soil mechanics elastic anisotropy was a relatively 

fashionable idea circa 1970 -e. g. Uriei & Caflizo, 1971. Then it was somehow eclipsed by the emphasis 

on the plastic side of elasto-plastic models84. This, of course, was guided by a commendable effort to 

reduce model parameters and by the relatively minor role that lineal soil behaviour was supposed to play 

in static problems. 

7.1.1 Elastic moauu and tnermoaynamics 

In Chapter 1 we did put forward three basic hypotheses that underlie all developments presented so far: a 

pair of linearity assumptions -strain-displacement and stress-strain- and a set of constitutive symmetries. 

tensors. It might be thus expected that the language employed to describe anisotropy uses intensively the concepts of tensor algebra. 
An Appendix is provided to remind those concepts, and reference to it is made when needed. 
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The constitutive symmetries are directly involved in any discussion of anisotropy and is therefore 

appropriate to take now a closer look at them. Let us then recall the two basic assumptions of interest 

GM = DOHyE 

D0 klji =DOMU = D0Ikij = D0Ukl (128) 

Once the linear stress strain relationship is postulated the two first symmetries follow from the symmetry 

of the stress and strain tensors. Therefore only the third symmetry -sometimes called the major 

symmetry- and material linearity need some justification and this is classically provided by 

thermodynamics. 

The basic thermodynamical assumption of elasticity is that materials are conservative i. e. they do not 

dissipate energy. Disregarding thermal effects" this means that the internal energy is given by an scalar 

function depending only on strain, say F. It follows from this condition - e. g. Nemat-Nasser & Hori 

1999- that 

G(a)+F(E)=a: E (129) 

where G stands for a complementary energy function, dependent only on stress. In that case stress, strain 

and their rates are interrelated through 

6y = 
aF(E) 

ae 
ä= 

a2F(£) 
E 

aGýaý 
Eu _ ate,, 

E= 
a2G(a) 

ä to 
auuaa, ý pq 

(130) 

The first pair of equations state that F is a potential function for the stress and G is a potential function for 

the strain. The second row serves as definition of the elastic stiffness and compliance tensors. 

a2F(E) D_, =_ 
a2G(a) ) °ýupq - acyac" 0 Up acuaa, q 

cý3ý 

One being inverse of the other guarantees the uniqueness of the incremental relation between stress and 

strain. It is clear that the third constitutive symmetry follows directly from the symmetry of the 

derivatives. 

Linear elasticity goes one step further and assumes that all stiffness coefficients are constant -i. e. 

independent of strain. In that case is possible to integrate directly the energy expressions to obtain 

F=r Dojpq cG= auDo, ßpq (132) 

µ Lade & Nelson (1987), for instance, argue very convincingly against any anisotropy in elastic soil behaviour. 
u Schreiber et al. (1973) point out that whilst static tests are isothermal dynamic measurements are adiabatic. They also point that 
the distinction is irrelevant for shear tests. 
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As the energy is meant to be positive stating the previous expression in matrix-vector form makes clear 

that both elastic stiffness and compliance are positive definite. Being positive definite is of some 

consequence as all the principal minors of the matrix shall be positive 

D� 
ID�I >0 

Dfl Dt2 
>o D12 

DZ, Du 
D� 

D� ... D, 4 D� ... D, s 
..... .. >0.. ... .. >0 

D14 ... D44 D� ... D5s 

D12 D� 

Du D23 >0 
D23 D33 

D� ... D. 6 

D16 ... D. 

(133) 

This of course constraints the values of the moduli or compliance constants". It is more restrictive than 

invertibility -which would only require the whole determinant of the matrix to be non zero. It also 

guarantees that the Kelvin-Christoffel tensor I' is definite positive8'. This, in turn, guarantees that the 

squared phase velocities of harmonic plane wave propagation are real and positive. All this makes the 

positive definite character of the elastic matrix very convenient and it is generally assumed to hold also 

for the more general case of non-constant moduli". 

7.1.2 Physical symmetries in linear elastic materials 

As we said in chapter 1 the index symmetries of both elastic stiffness and compliance reduce the number 

of independent components to 21. Further reduction is possible if some extra symmetries are imposed. 

Lekhnitskii (1963) does that for the case of lineal elasticity using the integral expression of the 

complementary energy function (129) . The procedure is always the same, he applies the symmetry- 

defining transformation to the stress tensor and forces the equality of the original and transformed energy 

expressions, thus constraining the compliance matrix. We can rephrase this procedure saying that he was 

enforcing various symmetry groups GF on the energy equation, something that can be written as 

G(a)= G(QaQT) VQ E GF (134) 

With this technique he explores the effects of various kinds of symmetry: reflections on a plane, 

reflections on three perpendicular planes and axysymmetry of various orders89. Figure 7-1 *reproduces 

some of the reduced elastic compliance he thus obtains. An exactly similar procedure will apply to 

stiffness. 

Immediately after obtaining these reduced matrices, Lekhnitskii explains that they are only valid on 

certain reference frames. In a general reference frame the simplifications are lost and the matrices are 

'6 Pickering (1970), Uriel & Cadizo (1971) and more recently Lings (2001) have explored the consequences of this condition for the 
case of transverse isotropy. 
87 Technically this condition is known as strong ellipticity 
u See for instance Bigoni & Loret (1999) who consider this issue from a very different perspective. 
"9 The number of equivalent directions found in a plane orthogonal to a symmetry axis gives the order n of the axis. Axysymmetry 
of order 6 or superior implies isotropy in the plane perpendicular to the symmetry axis. 

160 



full". However, for frames that respect the symmetries in GF the matrices retain their simplified form. 

These frames define what he sometimes call principal directions of elasticity. They are fundamental: to 

fully specify any elastic symmetry we need then to specify both the elastic moduli and these principal 

directions. 

7.1.3 Material and physical symmetries: Neumann's principle 

Anisotropic elasticity was not developed for its own sake but as a model of material behaviour. The 

choice of one type or another of elastic symmetry should be guided by the material at hand. This is 

expressed classically by Neumann's principle. Neumann's principle was proposed as an axiom of 

crystallography: physical properties of crystals shall have the same kind of symmetry as the 

crystallographic form . It is now generally believed to apply to non-crystalline materials as well - 

Lekhnitskii 1963, Zheng and Boehler 1994. It can be stated more precisely using group terminology: the 

symmetry group of any constitutive law of the material must include its material group, that is 

GM c G. (135) 

The symmetry of the material structure must then be present in the symmetries of the formulations 

employed to describe its behaviour, although these formulations might have greater symmetries91. This is 

an important result, for it suggests the following programme to obtain meaningful formulations: 

a) Identify the material element 

b) Measure its symmetries i. e. identify its material group 

c) Enforce this symmetries on the formulations 

This was easily done with crystals. At least since 1848 the complete catalogue of the 32 crystalline G. 

was known -Stewart & Golubitsky, 1992. It turn out to be that a lesser number of elastic GF were 

necessary, only nine. Figure 7-2 collects the elastic compliance in principal axis of four crystal systems. 

As we said Lekhnitskii and others extended this approach to non-crystalline materials. The material 

structure was rather obvious in some cases. A wooden log has cylindrical symmetry at first 

approximation. Is also easy to see three perpendicular planes of symmetry on a fibre reinforced laminate. 

These material symmetries lead to elastic symmetries who were equal to those obtained for some crystal 

classes but where distinctly named. Figure 7-3 collects the elastic compliance for the symmetries most 

often discussed when non-crystalline materials are considered. 

In our figures we have adhered to a rather self-explanatory naming convention for moduli and 

compliance constants -DÜ and d% respectively. There are other possibilities, of course, the most common 

being a generalisation of the {E, v, G} notation of isotropic elasticity. In soil mechanics the case of 

90 Is not always that bad, but it is quite bad: for instance rotation around one axis leaves an originally hexagonal-form matrix in 

monoclinic form. A second rotation around a different axis and the whole matrix is full. 
91 The greatest symmetry of all being isotropy, this will mean that for any material Neumann's principle is compatible with an 
isotropic model. The model would not be very precise, however. 
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transverse isotropy has received much attention and two usual forms of the compliance matrix in this 

notation are written in Figure 7-4 for ease of reference. Note that the asymmetric form is that only on 

writing, as one Poisson ratio is redundant. The relation of this engineering moduli to those appearing in 

the matricial notation is given in Appendix III. 

7.1.4 Measurement: test symmetries and elastic symmetries 

Static test designs are poorly adapted to obtain anisotropic elastic constants. Element testing is the 

principle behind static test interpretation. In available soil mechanics configurations only some elements 

of the strain and stress vectors are directly controlled and measured. Two in triaxial tests, three in true 

triaxial apparatuses, four in some hollow cylinder designs and the plane strain directional shear cell. This 

is a well known limitation but there is another, more insidious. Each one of these test designs has its own 
in-built symmetry and it needs to be compatible with that subject to test. 

When this is not the case, anisotropy may lead to inhomogeneous deformation fields within the sample, 

turning the presumed element test into a complex boundary value problem, where the dimensions of the 

sample might play a decisive role. Pagano & Halpin (1968) beautifully illustrated this issue in a classic 

paper. Figure 7-6 is taken from that paper and shows the response of a reinforced rubber to plane stress 

traction when the orientation of the reinforcement varies with respect to the loading. Inhomogeneous 

deformation appears on the specimen to the right where the specimen material axis were misaligned with 

those of the testing system. In that case, a naive interpretation of axial stress and strain measurements will 

produce an incorrect estimate of the deformation modulus. This problem is known as off-axis testing and 

reduces considerably the testing scope of existing apparatuses. 

Consider, for instance, the case of the triaxial test. The testing procedure has cylindrical symmetry around 

the axis of the apparatus and the sample being tested should have the same symmetry. This is achieved, 
for instance, if cylindrical samples are taken from a transverse isotropic material with the sample axis 

perpendicular to the plane of isotropy. If the sampling axis is oblique to that plane the symmetry is lost. 

The cylindrical sample may still be placed on the apparatus but with respect to the testing axis its elastic 

matrix has monoclinic92 form even if is still dependent on just five moduli. A brief consideration of 
Figure 7-2 shows that the relevant relation between stress and strain will be 

6� d, 
1 

d, 
2 

d13 0 0 d, 
b o� 

622 d12 du d23 0 0 d26 0-22 
633 d13 d23 d33 0 0 d36 0.33 

(136) 

eu 0 0 0 d44 d45 0 a23 
631 0 0 0 dos dss 0 0-s1 
biz Ld16 d26 d36 0 0 d6s 012 

n As we mentioned before this follows from applying a rotation to the elastic tensor. It can also be appreciated directly noting that 
the off-axis cylindrical sample is left with just one plane of symmetry -that formed by the material symmetry axis and the sampling 
axis. One plane of symmetry is also the only material symmetry of a monoclinic crystal. 
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Shear and volumetric deformation are not anymore independent, an axial load will induce shear strain 

and the response in a plane perpendicular to the loading ram is not anymore isotropic. Moreover, in most 
triaxial testing implementations shear deformation is constrained by the top and end platens, resulting on 

shear stress under axial loading that will not be equilibrated on the lateral sides. The consequence is, that 
deformation ceases to be homogeneous. This was observed long ago by Boehler and Sawczuk (1977) 

working with stratified rock -Figure 7-7. 

For a true triaxial apparatus the situation is similar. The apparatus has three axis of symmetry and, 
therefore, is suitable to "study samples with orthotropic or higher symmetry. An orthotropic or transverse 

isotropic material sampled off-axis will be subject to shear stress on the end platens. If these are not 

measured a systematic error will affect the measured moduli. 

The symmetries of a hollow cylinder apparatus are more subtle. When inner and outer pressure are equal 

and no torque is applied the situation is very similar to that in a triaxial apparatus, and the test is 

axysimmetric. When the torsional torque is applied global axial symmetry is lost -the wall shear stress is 

antimmetric and the radial stress symmetric- but locally there is still symmetry about the plane dO-dz. If 

this is coincident with the symmetry of the sample, a monoclinic cylindrical matrix can be measured. 
This may correspond, for instance, to a transverse isotropic material whose axis is contained in that plane. 
Finally if the inner and outer pressures are different even that symmetry is lost. The test is not anymore a 

single element test -radial stress varies along the wall- and some homogenisation assumption is needed. 
It is not known how this issue affects the measured elastic moduli. 

It is then apparent that for static tests some knowledge of the kind of elastic anisotropy to be measured 

shall precede the measurement phase. It is also apparent that the most anisotropic cases pose formidable 

problems of test design. As we will see in next chapter dynamic tests allow more latitude in the first 

respect and -under certain conditions- pulse tests might be employed to measure all kinds of anisotropy. 
It is not strange then to find that dynamic tests have been since long the tool of choice for elastic 

measurements on fully anisotropic materials such as crystals -Schreiber et al. 1973. But our concern here 

is with soil and we need now to consider what has been discovered as yet from its elastic anisotropy. 

7.2 ELASTIC ANISOTROPY IN SOILS 

7.2.1 Testing conditions 
Both static and dynamic procedures have been employed in studies of soil elastic anisotropy. Table 7-1 

contains a selection of references describing static determination of Do elements. Of course, the old cases 

used external measurements and, by today's criteria it is clear that they were not measuring within the 

elastic range. But even if the measurements were off-limit the interpretative framework employed was 
the same. The design of triaxial and true triaxial apparatus only allows investigation of the submatrix Do 

relating normal stresses and strains. The elastic anisotropy investigated with these apparatus was 

transverse isotropy so the off-axis testing problem was not an issue. In the triaxial case only three values 

can be recovered and, as Graham & Houlsby (1982) carefully explained, only two of them correspond 
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directly to single moduli -D33 and D13 in our notation- the third being a combination of D12 and D,,. From 

a pragmatic point of view if triaxial is the only measurement available there are some advantages in using 
differently defined moduli and various proposals in that sense have been put forward -Graham & 
Houlsby, 1982, Lings et al. 2000. 

Small strain testing in hollow cylinders has, in principle, greater potential that in triaxial apparatus. 
Figure 7-5 taken from Di Benedetto et al. (1997) shows that up to four independent components of the 

stress and strain tensors may be measured. The results presented to this date have been more limited. The 

applied elastic loading has been always either strictly axial - where da= is the only non zero component- 

or strictly torsional - only d; is non zero. Di Benedetto et al. (1999) measured the four strain 

components and therefore the eight compliances in the last two columns in the matrix. Yamashita & 

Suzuki (1999) measured just the two diagonal terms. None of them made very clear statements about the 

type of elastic anisotropy being measured. 

Fully dynamic procedures remain scarce, mostly because they do require the measurement of 

compressive velocities and fluid interaction effects are then hard to handle. Some available data sets have 

nevertheless been obtained with dry granular materials -Table 7-2. This data has been mostly obtained in 

calibration chambers, of triaxial -Bellotti et al. 1996- and true triaxial design -Lee 1993, Stokoe et al. 
1995. Both teams have presented results in terms of a transverse isotropic model, although Stokoe et al. 

pointed that an orthotropic model was more adequate for the true triaxial case. Argawal (1992) thought 

the same while using a true triaxial apparatus but was half successful and only recovered diagonal terms 

of the stiffness matrix . All this researchers tested in-axis and off-axis, but the consequences of this 

condition are different for dynamic tests as next chapter will explain. 

A more common approach restricts the dynamic exploration of elastic anisotropy to shear waves. 
Velocities can be measured in different directions using various transducers in one sample (e. g. 
Jamiolkowski et al. 1995) or using similar but rotated samples in one apparatus (Jovicic & Coop, 1998). 

The first approach has numerous advantages and has taken new impetus with the advent of horizontally 

mounted bender elements, developed by Pennington (1999) and also employed by Kuwano (2000). Shear 

elastic anisotropy so measured is interesting in itself but is even more potent when combined with static 

strain measurements. Pennington (1999) and Kuwano (1999) have thus obtained five different elastic 

moduli of a transverse isotropic model. Their dynamic tests were in-axis, although dynamic off-axis tests 
is equally possible in samples -Jamiolkowski et al. 1995, Zeng, 1999. 

7.2.2 Observed dependencies 

Ever since it has been measured -e. g. Hardin & Richart 1963- the small-strain stiffness of soils has 

shown stress-dependency. Independently of the varied elastic symmetry assumptions and the increasing 

number of moduli, stress-dependency always appears. As we have just explained the stress space thus far 

explored remains overwhelmingly dominated by triaxial and true triaxial conditions. For this conditions 

the observed stress dependency has been generally summarised through exponential expressions like 
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X� = C,, &, i =1,2,3 
,yý,,, ý 

(137) 
Z, k = C; 

k&; aZ j#k 
. 
1=1,2,3, k =1,2,3 

where repeated indexes do not imply sum. X;; is a placeholder for axial loading properties like Young 

modulus -e. g. Hoque & Tatsuoka, 1998- or P-wave velocities -Stokoe et al. 1996, Bellotti et al. 1996- 

and Z; k for shear properties, be it velocity -Kuwano, 1999- or shear modulus -Pennington, 1999- Stresses 

are normalised and the varying factor C contains other influences that will be examined later. 

Two main observations distil from this research. The first is that shear properties are affected only by 

stresses on the plane of shear and axial loading properties only by stresses along their axis. The second is 

that the regressions usually find exponents implying a near square root stress-dependency of moduli. 

The scope of this correlations is, however, limited. Even in the very limited stress space explored by the 

triaxial apparatus they seem unable to summarise all the data. Belloti et al. -1996-, for instance, note that 

their shear exponents depend on the stress ratio93 for K<0.5. Hoque & Tatsuoka -1998- also observe the 
failure of isotropic correlations when K<0.5, but now for the case of Young modulus. The clearest result 
in that respect is due to Kuwano, who obtained her correlations with data from isotropic and anisotropic 

compression test stages and then noticed how the obtained correlations fared rather poorly on shear 

stages -Figure 7-8. 

It is also generally accepted that void ratio affects small stiffness measurements. This is generally 

accounted for including a single94 void ratio function in all the C factors of (137). Pennington (1999) is 

an exception as he proposed a different void ratio function for every direction, something tantamount to 

an anisotropic void ratio function. 

There is more contention about the effects of the overconsolidation ratio on unload-reload consolidation 

paths. A common view is that tests on sand show almost no effect, but those on clay generally do -see 
Pennington 1999, for a resigned view on that issue. A single exponential dependency on OCR is then 

included on the C factors. Creep under the static applied load might affect measurements as Moncaster 

(1997) has shown recently. No account of this effect is generally introduced in the correlations and it 

might be avoided if enough waiting time is left for the creep period to end. 

Finally there are effects which remain unexplained after account is taken of stress state, void ratio and 
OCR. These are included in the C factor and have to be directionally dependent to account for the general 

observation that even under isotropic stress states stiffness remains anisotropic. This are generally known 

as structure or fabric dependent factors. Pennington (1999) has shown that they are different in intact and 

reconstituted samples of Gault clay, and therefore they are not explainable only by composition. 

's Ratio of horizontal to vertical stress in a triaxial apparatus. 
Single but not unique, there have been quite a few proposals and Kuwano (1999) offers an interesting review of them. 
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How did those researchers establish the type of elastic symmetry that they were measuring? A recurrent 

argument favouring transverse isotropy mentions the geological features of deposition basins. Horizontal 

stratification under a vertical force seems to be a good argument for transverse isotropy of samples from 

vertical borings. But, as any practising engineer knows too well this is most often than not a pious desire. 

The symmetry of the forming process for reconstituted samples offers a more sound argument, 

particularly for clay, where awkward processes like tamping or lateral vibration never enter into play. 

All this considerations are really educated guesses about material symmetries. Based on Neumann 

principle we suggested above a three-step approach to anisotropic formulations: identify the material 

element, measure its symmetries, enforce them. The fabric factors introduced in the correlations may well 
be a measure of the material symmetries. This is, however, hard to tell, as in soils direct measurement of 

material symmetries is rather problematic. 

The geometrical richness of soil microstructure is well described by Mitchell (1991, Cap. 8). In soils 

there is no equivalent to the repetitive unit cells of crystallography, nor there is to the unambiguous 

choice of atoms as basic units. Physical units of very different scales are identifiable e. g. clay aggregates, 

sand grains, laminations, even strata9S ... There might be then different choices of material elements, 

employing different characteristic sizes and thus producing different material structures, possibly with 

different symmetries96. 

In granular soils like sands the elementary unit seemed obviously identifiable with the sand grain and a 

number of researchers since Oda (1972) have proposed different measures of grain arrangements -e. g. 

spatial distribution of contact unit normals. Measurement however requires inspection of thin sections of 

the sample, a rather daunting task even for medium sized materials. 

Oda's patience was rewarded with the discovery of a different problem. The material symmetry thus 

measured was not fixed during a test but varying. This obviously meant that to keep track of the material 

symmetry a new measurement was needed at each test point. Even if automated image analysis of 

sections is now available (e. g. Muhunthan et al. 2000) the procedure is destructive and still requires a 

new sample -and a new test- at every measurement point. Apart from this practical difficulty Oda's 

discovery left one question open. The material symmetry was affected by the external load, but this had a 

symmetry of its own. What was the relationship between both? How do they affect measured response 

symmetries? This is directly relevant to the question of how many different elastic moduli might be 

measured or, in other words, what types of elastic anisotropy are possible in soils. The question is of 

96 Indeed. For instance Kirkgaard & Lade -1991- discovered that the San Francisco bay mud test samples taken from a trial pit were 
traversed by thin lenses of silt whose plane was at an angle with the sample axis. 
% This, of course, leaves room to many important questions: what should be the relation between two different models of the same 
material and how coarse models might be related to finer ones? Are all macro-properties -e. g. permeability, stiffness- related to the 
same set of micro-structural features? What is the relation between externally imposed length scales -e. g. elementary test sample 
dimensions- and the appropriate level of material structure definition? This is a vast subject whose bearing extends well beyond soil 
mechanics and will not be addressed here -see e. g. Krajcinovic 1998. 
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some interest, both from a general viewpoint and -as next chapter will make clear- from the more 

restricted of pulse test interpretation. 

For the case of elastic measurements this multiplicity of influences is generally framed within a 
dichotomy between inherent and induced anisotropy. This terminology has been used in geotechnical 

research since Casagrande & Carrillo (1944). However this long tradition does not mean that there is 

general agreement about its meaning. Quite the contrary, almost every researcher involved in the field 

feels compelled to propose a definition of its own. It is worth quoting some of them. 

Lee (1993) defines inherent anisotropy as that "due to the material itself' and "not affected by imposed 

stress", a "result of deposition processes and grain characteristics". This is opposed to "stress-induced 

anisotropy" which includes that caused by "strain associated with stress" and is "a function of strain 
history" but "not an intrinsic property of sand". Three years later Belloti et al (1996) define "strain 

induced anisotropy" as "changes on the inherent anisotropy", which they describe operationally as that 

measured under isotropic stress; both are different from "stress-induced anisotropy", now redefined as 

that "due to anisotropic stress states". Two years later Hoque & Tatsuoka (1998) define "inherent 

anisotropy" as that "produced when deposited in air or water, or when compacted" which is similar to 

Lee, but there the similitude ends as they make the distinction between "stress state-induced anisotropy" 

and "strain history-induced anisotropy". This seems to agree with Belloti et al. but for them the first is 

that "developed as the stress state becomes anisotropic" and the second that "produced by dominant shear 

strain in a certain direction". 

All these researchers were studying sand -but similar examples might be quoted from clay research. All 

of them were using apparatus with similar loading capabilities". All of them described a transverse 

isotropic elastic stiffness. The paragraph above suggests that the abilities of natural language to deal with 

this issue quickly become exhausted. A more formal approach might offer some advantages, amongst 

them that of answering the question posed above about which types of elastic anisotropy might be 

measured in soils. 

Numerical simulations have been employed. The elastic behaviour of an assembly of elastic balls has 

been subject of research since long ago-see Santamarina & Cascante, 1996, for a review. But analytical 

solutions were necessarily limited to simple cases, with very regular geometry, the typical model being 

that of identical spheres homogeneously packed. Numerical simulation via discrete element codes - 
Serrano & Rodriguez-Ortiz, 1973- had open the way to analyse more realistic granular assemblies -more 

numerous, multiple sized, with richer packing descriptions and non-elementary contact laws. 

In discrete element simulations elastic loading is equivalent to fixed contact loading -Thornton, 2001. 

That is, for a given assembly the contacts between particles are frozen artificially, not allowing any 

slippage, and hence not allowing any contact to disappear or to be formed anew. This is then a fixed 
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fabric stress probe. One can argue then that, if discrete element models are able to recover reasonable 

soil-like elastic stiffness under this conditions, then the experimental values will also correspond to a 

substantially constant-fabric situation. 

Actually, achieving soil-like stiffness has not been easy. Goddard (1990) pointed out how one main 

problem was that simulations of granular assemblies recovered a stress dependency close to that of Hertz 

spherical contacts -an exponent of 1/3. Meanwhile, in real granular materials the stress dependency 

showed exponents much closer to %z. Recently -2000- Yimsiri & Soga have shown that a realistic stress- 
dependency is possible if the contact laws are reformulated to account for particle roughness. 

This is an important success but should not obscure the big picture. What has been achieved is to prove 

that an adequately specified fixed particle network may have realistic soil-like stiffness. In the case 

studied the network had a transverse isotropic structure and it was loaded on-axis. Quite a different 

problem is that of how material anisotropy evolves and how it can be related to the load evolution. This 

question remains fully open. In fact to this date discrete element simulations have failed even to 

reproduce the quantitative behaviour of soil samples tested in conventional apparatus -Thornton, 2001. 

7,2.4 Coaxiality 

In geotechnics the off-axis testing problem does not seem to have stinted much concern. There are 

probably two main reasons for this indifference. The first one is that most testing of soils has been 

performed in conditions where the axes of material anisotropy are coincident with the test axes98. The 

second one is that, unlike composites, soils do not have a fixed anisotropy, but a changing one. When this 

is due to features not immediately apparent as strata -e. g. sand grains- it is therefore hard to tell, in any 

particular configuration, if they are being tested off-axis or not. 

Indeed, an interesting possibility is that material anisotropy and stress are always coaxial. Material 

anisotropy is often described by second order tensors as well as stress. Being coaxial means that they 

share principal axes. In a sense to be precised later second order tensors might be isotropic, transverse or 

orthotropic and this offers a seemingly good reason to expect the same kind of stiffness anisotropy. 

Plane strain devices and hollow cylinders can be used to test this hypothesis. Saada (1970) was an 

honourable exception, who pointed to this effect as a primary cause of error when testing non-vertically 

formed clay samples in the triaxial apparatus. He went further and proposed hollow cylinder testing as a 

way out of this problem. In them, he reasoned, the stress can be aligned with the inclined material axis. 

Hollow cylinders may be employed to test the coaxiality hypothesis for sand. As discrete element result 

suggest elastic probing should leave the material unaltered. Yamashita & Suzuki (1999) measured the 

vertical modulus of Toyoura sand in a hollow cylinder apparatus, under different orientations of the 

97 The calibration chamber used by Lee (1993) had the possibility of true triaxial loading, but most of his tests were in fact biaxial. 
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principal stress axis. They kept inner and outer pressures equal thus ensuring that radial and 

circumferential stress were the same. Hoque & Tatsuoka (1998) and Shibuya et al. (1991) had previously 

given enough information from coaxial apparatus to estimate four moduli of a transverse isotropic D. for 

given principal stresses". Figure 7-9 represents the measured vertical modulus (Ev), the estimated 

modulus along the principal stress directions (El, E3) and the vertical modulus consistent with a rotated 

transverse isotropic material (Ev'). The results seem to disprove the hypothesis of perfect stress-induced 

anisotropy. The comparison is somehow flawed in that the stress state in the hollow cylinder was not 

strictly transverse, and three principal stresses were different. However the difference between the radial 

principal stress and the closest in-wall principal stress was always below 14% 

7.3 ALGEBRAIC APPROACH TO SOIL ELASTIC ANISOTROPY 

7-3-1 Isotropy of space and anisotropic materials 

Adding to the practical difficulties just outlined, a theoretical inconsistency haunted for long the research 

in anisotropic materials. It is related to a basic principle of continuum mechanics, known as the principle 

of material frame-indifference or isotropy of space. This principle simply states that the properties of 

materials described by constitutive equations must be equally valid on any reference frame, i. e. 

constitutive equations must be objective10° (see Malvern (1969) or Spencer (1980) for details). 

Considering the particular case of changes of reference given by rotations, it follows that any material 

property expressed as a tensorial equation must be defined by an isotropic tensorial function of all it's 

arguments. This condition may be written as 

VQ e Orth (138) 

where the bar over a symbol indicates a tensorial transformation through the generic rotation Q. 

Is straightforward to apply the principle of space isotropy for isotropic materials. Classically this will be 

done as a check in objectivity. In a formulation whatsoever, a general reference transformation is applied 

to its variables, and, after some manipulation, the original form should be recovered in the new reference. 

The traditional approach to anisotropic formulations apparently precludes this. Why this is so is 

illustrated in some detail in Appendix III using the Mises failure criteria. But the same reasoning 

employed there affects the classical approach to anisotropic elasticity. 

Recall that Lekhnitskii (1963) obtained anisotropic formulations enforcing on the energy function a 

symmetry condition. The complementary statement of (2) is given by 

F(S) # Fr) VQ 0 GF (139) 

's Or rotated 90° as in Atkinson 1975. It can be proved that for a transverse isotropic material this rotation does not result in off-axis 
testing. 
" The correlations given by Hoque & Tatsuoka were claimed valid for K>0.5 or q/p < 0.75. Yamashita & Suzuki were always 
below that limit. 
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Employing the terminology of Appendix II, it could be said that the function F is in a class characterised 

by the argument T and the symmetry group GF, Fe3 {T, GF }. This seems to stand in contradiction with 

the general principle of space isotropy (5). 

Objectivity and anisotropy are then left as uneasy companions. The application of the principle of 

material indifference to anisotropic formulations has often proved difficult and misleading. Explicit 

testimony of that, within the soil mechanics literature, could be found in Gutierrez and Lacasse (1991) or 

in Roy and Campanella (1997). The talent of Boehler was to find a response to this problem. 

7.3.2 Structural tensors 

The key proposal of Boehler to get out of the muddle consists in adding explicit "structural tensors", 

characterising the anisotropy of GF, to any anisotropic formulation. A structural tensor of GF, 4, is a 

tensor whose components are left unchanged by all the transformations included in GF. 

The extended set of variables thus obtained complies with the requirements of space isotropy. This idea 

receives the rather unattractive name of "Isotropicization theorem" and, as explained in Appendix II, 

could be formally written as 

F(L4, G, )a F(tL4,4c, 1, Orth) (140) 

Where LA for the list of arguments of the function F. The theorem could be interpreted as establishing a 

trade-off between the number of tensorial variables appearing in the formulation and the range of its 

symmetry group. 

Another important result (Zheng & Boehler 1994) is that the number of possible types of symmetry is 

limited. Zheng (1994) gives a classification of all possible symmetry groups in two and three dimensions, 

list that is completed with single structural tensors characterising each symmetry group. This single 

structural tensor represents the most compact way in which a symmetry group may be characterised. 

Other tensors might be used for the task, but they will be more or less simple. It is important to note that 

these single structural tensors are not always second order symmetric tensors. 

In fact, the abilities of a structural second order symmetric tensors are rather limited. This can be seen by 

a simple argument. Is known from algebra (e. g. Landesman & Hestenes, 1992) that the eigenvectors of 

second order symmetric tensors define an orthonormal reference frame. Furthermore, the eigenvalues 

define a geometrical figure attached to this frame, an ellipsoid or hyperboloid, depending on their sign. 

Those figures, with respect to the eigenvector frame, have: 

orthotropic symmetry if they have three distinct eigenvalues 

axial symmetry if they have two distinct eigenvalues 

10° As most engineering students know well, stresses and strains are not needed to deal with rigid-body movements. As changes of 

reference frame describe rigid-body movements, rigid-body motions must not alter the stress state of a body. 
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0 isotropy if they have a single eigenvalue 

These are exactly the types of symmetry that may be characterised by a second order symmetric tensor. 

Zheng (1995) explains that a single second order non-symmetric tensor is able to characterise 

monoclinic, triclinic and conic symmetry. To characterise cubic symmetry with a single tensor it has to 

be fourth order. 

7.3.3 Induced & inherent anisotropy revisited 

The structural tensor approach is directly related to the question of what may be the relationship between 

the symmetry group of the equation and the different symmetry groups of the tensorial variables 
involved, GF and GA in our terminology. This, in tam, gives a new, more precise, meaning to the 

expressions "induced" and "inherent". 

If a constitutive equation F relates various tensorial variables the observed character of its symmetry 

group GF will change according to which variables are fixed by the experimental procedure. Imagine a 

constitutive relationship of the form 

X=F(A, B, C) (141) 

where the variable X is a function of three tensors whose symmetry groups are respectively GA, GB and 

Gc. If all three variables are under control we can observe different symmetries in F by fixing any of 

them. For instance 

X=F(A, B, Co)=GF =Gco 
X=F(A, Bo, C)= Gf =G80 (142) 
X =F(A, Bo, Co)=>G, °G30r Gco 

where a suffix 0 is employed to indicate which variables are fixed during a certain experimental program. 

Of course this reasoning works the other way round: if an experimental program is meant to leave a 

variable fixed, say C= C0, the observed physical symmetry with respect the other variables will be also 

fixed. Any observed change will be an indication that C* C0, a proof that C has been affected by the 

changes in the other variables. 

Note also that in the third case shown above the physical symmetry is given by the intersection of the two 

tensorial symmetry groups. If the two groups GBO and Gco are the same then in the three cases shown 

above GF is identical. This is not such an strange event as it may seem: it is exactly what would happen if 

the two variables are coaxial. 

We see then that from the algebraic viewpoint all anisotropy is, strictly speaking, induced. Induced 

through the presence of tensors in the formulation. The only meaningful difference is that between fixed 

or evolving anisotropy, that is between fixed or variable tensors. The anisotropy induced by fixed tensors 

might well be called inherent. Elastic theory may serve as an example of the usefulness of this approach. 
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7.3.4 Elastic anisotropy revisited 
Consider again the stress-strain relations of elasticity given by (130). Indicating the derivatives of the 

energy function with suffixes to reduce clutter we will write 

G. (a) 

G.. (a): ä 
(143) 

From the algebraic viewpoint the first equation ensures that stress and strain are collinear. The 

incremental stress-strain relation has stress-induced anisotropy1°'. Stress is a second order symmetric 

tensor and, therefore, incremental elastic anisotropy will be orthotropic at most. 

Introduce now a material-based fixed structural tensor, m. We will have instead 

E=G. (a, m) 
E=G�(a, m): 6 

(144) 

Even for the strictly linear case, where compliance does not depend on stress, every type of anisotropy is 

possible in both relations, depending on the characteristics of m. Let us assume that this m is also a 

second order symmetric tensor -like so many fabric measures so far introduced- and, to fix ideas, that 

this m has transverse isotropy. 

The principal axes of this transverse isotropy will be termed {m1, m2, m3}, with m, being the axis of 

symmetry. The incremental stress-strain relation will be generally anisotropic, of type depending on the 

principal values and directions of the stress tensor. If the principal directions are also {v,, v2, v3} and the 

principal stresses associated with {v2, v3} are equal, then the stress tensor a will be in the same symmetry 

group as m -coaxial-, the incremental relation will be transversely isotropic. If this is not the case but, 

nonetheless, they share some symmetry (reflection on the v3 axis, for instance), this shared symmetry 

will characterise the anisotropy of the incremental relation. In a more general case, the symmetries of a 

and m would be completely different, and a fully anisotropic relation might be expected. 

Hence full coaxiality between the fabric and stress tensor reduces again the possible elastic symmetries to 

just three types: orthotropy, transverse isotropy and isotropy. When this is not the case all kinds of elastic 

anisotropy become possible. We seem to have here an answer to the question about the possible kinds of 

elastic anisotropy in soils. 

7.3.5 Elasto-plastic coupling 

So far, so good, but the precedent approach has some moot points. To begin with, we are still left with all 

the half answers that micromechanical analysis might provide about what this inherent m might be. 

101 Houlsby (1985) observed that this was indeed a consequence of his elastic "isotropic" models, where stress-dependent elastic 
shear and bulk moduli were introduced through a potential based formulation. 
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Second and more importantly, the experimental evidence reviewed before seems to point in a different 
direction. 

Quite apart from their modest performance in general stress paths the stress dependency in (137) is 
incompatible with the elastic theory presented above. As shown in equation (131) the elastic compliance 
is the second order derivative of the complementary energy function G. With expressions like (137) we 
will have 

a2G 1 
a20-, , c1, olI a'G a'G 
a2V 1 a2r12a2ý11 82ulja2r12 

(145) 

ar 
12 

c12 
11 

Thus any model based on exponential expressions such as these seems incompatible with elastic 

potentials depending only on stress, or in stress plus some other constant tensor. In fact the most serious 

attempt to formalise this expressions into a fully fledged elastic model for soils is that due to Hardin & 

Blandford -1989. Their model is unashamedly incompatible with potential-derived elasticity as they 

propose an elastic stiffness where the major symmetry is lost. The consequences of such approach are, 
however, far-fetching. For instance, symmetry of the Kelvin-Christoffel tensor is no longer guaranteed 

and wave velocities might become complex. This is characteristic of plastic behaviour -see Bigoni & 

Loret, 1999- and is a somewhat odd consequence of a model underpinned by wave propagation data. 

This difficulties may be solved by a broadening of perspective. Up to this point we have been somewhat 

cavalier about and important fact mentioned in the opening chapter of this thesis: that soil behaviour is 

not elastic. That means that any "elastic" behaviour shall be considered within a more general framework 

of soil behaviour. Obviously various approaches are possible here as there is no such a thing as a 

generally accepted comprehensive model of soil behaviour. The one that seems more illuminating from 

the viewpoint here adopted is the thermodynamical elasto-plastic approach described by Collins & 

Houlsby (1997). The framework they describe has soils as time-independent non-conservative materials, 

and although much broader it has been shown to encompass models as popular as those of the Cam-clay 

family. 

When compared with that of elastic materials the formalism for elasto-plastic materials has two new 
features. Apart from the externally measurable stress and strain new hidden state variables are needed and 
they are specified by two functions instead of one. To the energy potential, F or G, is necessary to add a 
dissipation function D. The basic energy relation states that the work input is shared between a variation 

of internal free energy and energy dissipation. It can be written in two complementary forms 

D(E, a, &)+P(E, a)= tit 
(146) 

D(c, a, ä)+G(a, a)= as 
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where a represents the internal variables. These are strain-like variables and have a conjugate set of stress 
like variables x such that dissipation can be expressed as their product with the rate of a. Strain and stress 

are still related through the internal energy functions 

aF(s, a) 
£_ 

aG(a, a) 147 

but now their rates have two terms, for the case of strain 

E_ äg+ cG(a'a)ä (148) 
äaß äa, 

ß 

The first term is called reversible strain rate and the second irreversible strain rate. The coefficient of the 

reversible strain rate is a compliance tensor and it will be measured with any loading that leaves the 

internal variables fixed. The important point, however, is that this internal variables are not particularly 

chimerical, Collins & Houlsby show that they can be identified with plastic strains, a rather familiar 

feature of soil models. When the reversible1' compliance depends on them the model has elasto-plastic 

coupling. Critical state models incorporate this feature through the dependency of modulus in void ratio. 

The important aspect, however, is that two tensorial variables appear in the incremental reversible 

relation. The modelling framework does not impose coaxiality of stress and plastic strain, a feature which 

will be at odds with experimental observations -e. g. Joer et al. 1998. Hence, in principle, all types of 

reversible stiffness anisotropy are possible. 

7.3.6 Invariant formulation and representations 
It is clear that the framework just presented opens new possibilities. The inclusion of void ratio effects 

fits perfectly well in this framework. The problems (145) that the observed stress dependency poses for 

the classical elastic models seem less strict, as new terms depending on plastic strain will appear on the 

derivatives. Any elasto-plastic model might be tested against is prediction of elastic stiffness evolution. 

The formulation of general elasto-plastic coupled models is not an objective of this thesis. However it is 

worth mentioning that the algebraic approach to anisotropic formulations offers a second advantage at 

this respect. It enables the techniques employed to obtain representations of isotropic functions to be 

applied to anisotropic materials. As described in Appendix II, a representation, i. e. a general expression 

in invariant form, might be obtained for all the isotropic functions sharing the same list of arguments. For 

the most common types of arguments (vectors, second order tensors) those representations are already 
known, and some of them are summarised there. 

Representations such as those are too general to be of immediate use in constitutive modelling. 

Nonetheless, they might provide a starting point for more concrete formulations, and this is the approach 
followed, or at least proposed, by many researchers. For linear elasticity Boehler (1979), Cowin (1985) 
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and Zysset & Currier (1995) have presented results directly relevant for the case of stress induced 

anisotropy. Also isotropic representations are at the starting point of Truesdell's hypoelasticity or 
Kolymbas' hypoplasticity. Appendix IV presents a succinct account of sand mechanics applications of 
both theories, alongside with an application of one particular hypoplastic model. 

'Ö= To achieve the identification of the internal variables with plastic strains the "elastic" strains include a irreversible part. 
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7.4 SUMMARY 

Elastic anisotropy is a physical symmetry. It has to contain the material symmetries. In most soils direct 

measurement of material symmetries is problematic as they are not fixed, but evolving during loading 

processes. The observed elastic anisotropy is strongly dependent on the stress state, but other 
dependencies are also present. An algebraic approach is able to make clear what elastic symmetries are 

then possible. Full anisotropy may be expected for non coaxial loading. These various dependencies are 

still compatible with linear behaviour and acoustic tensor symmetry within the context of elasto-plastic 

coupled theories. 
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7.5 TABLES 

Reference Material Apparatus Material axis Anisotro Strain level 
Graham & Lightly Triaxial Vertical *Transverse 2-4 

Houlsby (1983) overconsolidated isotropy 
clay 

Kirkgaard & Normally True triaxial Vertical & *Transverse 1-3 
Lade 1991 consolidated clay horizontal isotropy 

Hoque & Toyoura sand Biaxial Vertical *Transverse 0.002 
Tatsuoka (1998) isotropy 
Di Benedetto et Sand Hollow Cylinder Initially *General 0.0001 

al. (1999) vertical anisotropy 
Yamashita & Toyoura sand Hollow cylinder Initially Not specified 0.0001 
Suzuki (1999) vertical 

*Incom lete set of stiffness constants 
Table 7-1 Experimental investigations on anisotropic elasticity: static procedures 

Reference Material Apparatus Material axis Anisotropy 
Roesler (1979) Sand Triaxial cube Varied Not specified 
Argawal (1992) Glass beads True triaxial Vertical *Orthotro 

Lee (1993) Dry Sand True Triaxial Vertical Transverse 
(calibration isotropy 
chamber) 

Jamiolkowski et Six Italian clays Oedometer Vertical *Transverse 
al. (1995) isotropy 

Belloti et al. Dry Ticino sand Triaxial Vertical Transverse 
(1996) (calibration isotropy 

chamber) 
Jovicic & Coop NC & OC Triaxial Vertical & *Transverse 

(1998) intact/reconstituted Horizontal isotropy 
clay 
*Incomplete set of stiffness constants 

Table 7-2 Experimental investigations on anisotropic elasticity: dynamic procedures 

Reference Material Apparatus Material axis Anisotropy Strain level (%) 

Pennington OC clay Triaxial Vertical Transverse 0.001 
(1999) isotropy 

Kuwano Sand Triaxial Vertical Transverse 0.001 
(1999) isotropy 

Table 7-3 Experimental investigations on anisotropic elasticity: mixed procedures 
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7.6 FIGURES 
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Figure 7-1 Basic linear elastic symmetries (after Lekhnitskii 1963) 
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Figure 7-2 Four cases of elastic crystal symmetry (after Lekhnitskii 1963) 
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Figure 7-3 Common elastic symmetries for non-crystalline materials 
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Figure 7-7 Off-axis testing in a cylindrical sample of stratified rock 
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8 ANISOTROPIC ELASTIC WAVE PROPAGATION 

8.1 THEORETICAL ASPECTS 

8.1.1 Phase velocities and phase velocity surfaces. 

As it was explained in Chapter 1 the Kelvin-Christoffel equation rules the propagation of plane waves 
within elastic solids. We recall here that it has the form of an eigenvalue problem relating wave 
polarization (a), its propagation direction (p) and its phase velocity (v). 

I'ii = DO 
kP, Pk 

[r-pv21]d=0 (149) 

and r was the Kelvin-Christoffel or acoustic tensor. In a generally anisotropic elastic material it is a 
function of direction but always positive definite. Henceforth the characteristic equation 

det[ I'; j - pv2ö1 ]=0 (150) 

has three real solutions (eigenvalues), possibly different from each other, each one associated with a 
different direction (eigenvector). The three eigenvectors form an orthogonal set. This means that for any 

given elastic tensor C and any given propagation direction p there are, in general, three possible plane 

waves, with phase velocities v; and polarizations a,. Or, using the typical names of angular spherical 

coordinates to emphasise this directional dependence, 

P4 =fm(P)=fm(8, q) 

aa) =acn(P)=am(B, ý) (151) 
I =1,2,3 

In general, and unlike the isotropic case, wave polarizations are not parallel or perpendicular to the 

propagation direction, i. e. the propagating plane waves cannot be classified simply as compressive or 

shear waves103. Nevertheless it is a common104 feature in most cases to have the faster velocity (i. e. the 
bigger eigenvalue) associated with movement polarised in a direction closer to the propagation direction 

than those associated with the slower velocities. This justifies the common use of terms such as quasi-P 

or qP and quasi-S or qS (those are two, so qS 1 and qS2 are employed). 

This nomenclature also applies to the surfaces obtained by plotting the roots of the characteristic equation 
for every possible direction, p. Three surfaces are obtained, one for each solution. Those surfaces are 
known as phase-velocity surfaces (Crampin, 1981). This is reasonable, because, with an adequate scale 
factor, those plots represent the phase-velocity vectors, c, 

c= v(p)p (152) 

103 As we will see later, this only happens for the so called "pure mode directions", which are material-dependent. 10' But not universal, see Auld (1973) for counterexamples. 
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Slowness surfaces can also be defined, by plotting the inverse of the phase velocity for each direction, 

and thus representing the slowness vectors. As we will see, this is more than a caprice, as these surfaces 

play a major role in the theory. 

Classical texts on crystal acoustics such as Auld (1973) or Musgrave (1970) devote a good deal of effort 

and space to obtain analytical expressions and plane sections of both types of surfaces for any kind of 

elastic anisotropy. Today, with the aid of a mathematical program such as Maple, it is relatively easy to 

write a small program capable of doing exactly the same. The analytical expressions obtained are quite 

lengthy, and, for our purposes now, it's more interesting to include here some graphical results. 

Figure 8.1, for instance, represents the complete qP surface corresponding to a particular measurement of 

transverse anisotropic moduli of Ham River Sand by Kuwano105 (1999). It has a nice peanut-like shape, 

with the cylindrical symmetry that might be expected in a transverse anisotropic material. This shape 

illustrates beautifully a recurrent feature of phase-velocity surfaces (Crampin, 1981): they are not convex 

in general. This proviso also applies to the slowness surfaces and, as we will see later, has some 

interesting implications. 

Figure 8-2 represents, for the same set of parameters, the two shear mode surfaces, qS1 and qS2. Lack of 

convexity is also evident. A back view of the first quadrant is shown, to make clear another recurrent 

feature of these surfaces also noted by Crampin: they intersect each other. Note that polarization changes 

from one surface to the other. For instance, in this case of transverse isotropy, symmetry considerations 

to be explained later imply that one of the shear modes is always pure, i. e. the movement is always 

orthogonal to the propagation direction, whereas the other is mixed, having a component also in the 

propagation direction. The somehow surprising implication of surface intersection is that, depending on 

the direction, the pure mode (the darker surface in the image) is either faster or slower than the mixed 

mode. 

8.1.2 Ray velocities, group velocities and directional dispersion. 

Up to now we have discussed plane wave propagation. But the wavefront propagating from a finite 

source is rather some kind of closed surface. The pulse test scheme shown in Figure 8-4 points to this. 

What is measured in pulse tests is the velocity of the wavefront between two points, either source and 

receiver or two aligned receivers. A straight line, a ray, can be traced from the source to the measuring 

point. The velocity is measured along this ray. What is the relation between plane wave velocities and the 

measured ray velocities? 

It is quite tempting to assume that both are the same. That would mean that the ray direction is directly 

identifiable with p, the normalised slowness, and, recalling equation (152), that the wavefront surface is, 

but for a time factor, the same as the phase-velocity surface. That would simplify matters a great deal, 

pos The values correspond to test H60 1: E� - 520MPa, Eh - 2SOMPa, Vvti= 0.27, Vhh - . 07, G, h -154MPa 
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but, unfortunately, is not correct. This seems to be a fact that has been recognised long since in 

crystallography -e. g. Musgrave (1956)- maybe because it has close analogies with some optic 

phenomena. Seismologists, pioneered by Crampin (1977), followed suit. In soil mechanics literature the 

situation is mixed, while some researchers -e. g. Lee (1993), Stokoe et al. (1997)- seem to have an acute 

perception of it, others still fail to make the distinction -Argawal (1992) or Pan & Dong (1999). For this 

reason, and although various formal proofs can be found in the literature -for instance in Musgrave 

(1970) or Nayfeh (1995)- it seems necessary to restate here the argument in some albeit more informal 

detail. 

A curved wavefront is locally identifiable with a plane wave. This local plane wave has a wave vector 
directed along the wavefront normal and is moving at the local phase velocity106. To see that look now at 
Figure 8-3. There To and T, are two successive two-dimensional wavefronts, respectively corresponding 

to instants to and t, = to+dt. At point Po the local wavefront normal is dx . In general, this direction will 

not be coincident with the ray direction dx'. 

Therefore the local plane wave velocity coincides with the local ray velocity when the ray direction -a 
straight line traced from the source- coincides with the normal to the wavefront. The only wavefront 

geometry where this happens at every point is an sphere centred at the source -or the circle in our 2D 

sketch. In isotropic elastic solids, spherical are the phase-velocity surfaces -there is no dependency on 
direction- and spherical indeed are the wavefronts, both surfaces being homothetical. But in anisotropic 

cases we have just shown that shapes of phase-velocity surfaces, c(p) are quite unspherical. The phase- 

velocity surface and the wavefront cannot coincide then because at every point there will be two 

contradictory definitions of phase velocity: one given by the local normal and the other by the ray 
direction. 

Ray velocities measured along some direction are different of plane phase velocities corresponding to 

that direction. This, of course, leaves unanswered the question of what is their relationship. One first 

answer can be obtained looking again at Figure 8-3. The unit vector normal to the wavefront has 

therefore the direction of the normalised slowness, p, so we can write 

dx'p=dx 

dx = Ildxll (153) 

And dividing both sides by the time interval, we have in the limit 

CRP=V 
(154) 

Where, as before, c represents the phase-velocity vector, v the phase velocity magnitude, and a new 

symbol, cR, has been introduced to represent the ray velocity vector. Still, it is clear that this relationship 

106 Recall the definition of this concepts in Chapter 1. 
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is not enough to define it completely, as only one projection or component is specified. There is need for 

another relationship and this is given by the concept of dispersion and group velocity. 

The propagation of elastic waves in anisotropic solids is dispersive. To see that it is necessary to just look 

again at the Kelvin-Christoffel equation (150) and note that it has the characteristics of a dispersion 

relationship. To make it obvious, instead of the normalised slowness p, the wave vector k should be 

employed to form the acoustic tensor, thus obtaining: 

r=k"c"k 
det[ r-p cv21] =0 cv; = Z; (k) 

i =1,2,3 

(155) 

For each of the three propagation modes (qP, qS1, qS2) a different dispersion relation is therefore 

obtained. It is crucial to note that equation (155) is homogeneous in the wavenumber. Therefore the 

dispersion relation can be rearranged to show the frequency as the product of a constant wavenumber, k, 

and the direction-dependent phase velocity, v (p). The dispersion function is thus independent of the 

wave vector modulus. This is why it makes sense to talk about directional dispersion10'. We can write this 

fact as follows: 

w=Z(k)=kv(p) (156) 

As we know group velocity is defined as the gradient of frequency with respect to the wavenumber. For 

this case of directional dispersion group velocity is a vector, c`, and it is shown in Appendix III that is 

given by the following relationships 

dZ 
__ 

dv(p) 
_ 

VS 
_ c` dk dp qVS - 

ý`ýnýn 
(157) 

ýnll=1 

Where S stands for the slowness surface and q for the slowness vector. The final identity means that 

group velocities are directed along the normal, n, of the corresponding slowness surfaces. Also note that 

plotting ve(n) three group-velocity surfaces will be obtained. 

Apparently we have now three velocities, the phase velocity, the geometrically defined ray velocity cR, 

and this vectorial group velocity c` brought about by dispersion. Happily enough, it turns out that the last 

two are the same. To see this we should differentiate equation (154), and remember that the normalised 

slowness, p, is orthogonal to the tangent plane of the ray velocity surface, obtaining 

c1edp + dc1ep = dv f=CRdP=dV > dcJep =0 
(158) 

107 In other words: an hypothetical one-dimensional pulse travelling along some fixed direction of an anisotropic elastic media will 
not suffer any dispersion but any sort of two-dimensional or three-dimensional signal will spread and disperse. 
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And, looking at the first identity in equation (157) we see that is correct to identify ray and group 

velocity. It must be noted, finally, that as ray and group velocities are now proven to be equal1°8, group 

velocity surfaces are directly identifiable with wavefronts, but for a time scale factor. 

In Figure 8-5 the geometrical relations between the ray, phase-velocity and slowness surfaces have been 

illustrated109, namely: 

0 There are corresponding points in each of the surfaces, in the figure are named PW -on the ray 

surface-, P� -on the phase-velocity surface- and Ps -on the slowness surface. 

0 The normal at PW to the ray velocity surface, p, is parallel to the slowness vector q at Ps and to the 

phase velocity vector c at P, 

" The normal at Ps to the slowness surface, n, is parallel to the ray velocity vector, c` at PW 

" The phase velocity vector c at Pv is the projection of the ray velocity vector at PW, cg on the direction 

of it's normal, p. 

These relationships are technically resumed by Musgrave (1970), using terminology from projective 

geometry: slowness and ray surfaces are polar reciprocals of each other; the ray surface is the envelope of 

the phase velocity surface and the phase velocity surface is the pedal of the ray surface. This has some 

implications that he explores at great length. One that is worth mentioning here is that non convexity of 

slowness surfaces produces, in turn, group velocity surfaces -and, consequently, wavefronts- that are 

multivalued or folded. 

Figure 8-6 tries to illustrate this concept. In the slowness surface sketched (S) there are two points where 

the tangent planes are horizontal, as indicated. Vectors through them will obtain the corresponding points 

(A and B) on the phase velocity surface (V). Both these points will have corresponding points in the 

group velocity surface, say A' and B. But these two points will lie on the same (vertical) ray. It is clear 

that along this ray there are two different values of the group velocity and the wavefront is therefore 

multivalued. 

The consequence of a multivalued wavefront this is that two separate arrivals of the same wavefront -for 
instance qSH- will be expected along rays crossing the folded region. This perhaps surprising 

characteristic of wave propagation in anisotropic materials has been already observed in anisotropic 

solids. For instance, Kim et al. (1995) present measurements of this phenomena in a transverse isotropic 

crystal of zinc. 

106 From now onwards we will use freely both terms, as there is no convention established in soil mechanics, and preferences vary in 
other nearby fields. 
109 This representation of the surfaces assumes a convenient normalisation, by the phase (and group) value on the y axis. Slowness is 
multiplied by this factor, so it has similar dimensions to the others. 

187 



8.1.3 Elastic moduli and group velocities: direct and inverse problems. 
Wang (1995) emphasizes the distinction between the direct and inverse problems in anisotropic elastic 

wave propagation. The direct problem has the elastic moduli of the material as data and then tries to build 

up a picture of the wavefronts. The inverse problem is posed by the experimentalist who wants to recover 

the elastic moduli of the material from some measured data -ray or phase velocities-. As is usually the 

case, the inverse problem is far harder than the direct one. 

It is natural to express group and phase velocity as functions of direction with respect to the privileged 

material frame. Therefore we will write: 

v= v(O, (0) 
V= V( , p) 

(159) 

Where v is one of the phase velocities, V the corresponding group velocity, and the angle nomenclature is 

illustrated in Figure 8-9. This is equivalent to employ a different set of spherical coordinates to represent 

each vector. 

The direct problem for phase velocities is straightforward indeed: for any kind of elastic anisotropy the 

functions giving the directional dependence of phase velocity are obtained solving the Kelvin-Christoffel 

equation (150) for a general unit vector. As we mentioned before this has been done a number of times 

since Christoffel -for instance, Auld (1974)- The resulting formulae are rather lengthy, and the general 

disagreement on the nomenclature of anisotropic moduli contribute to a very unappealing body of 

literature that we are reticent to increase. 

This is even more so now that thanks to symbolic manipulation programs such as Maple, the Christoffel 

equation can be solved almost instantaneously for every nomenclature and every case. It is interesting, 

though, to have an example, and therefore we can include here the formulae obtained for the common 

and relatively simple case of transverse isotropy. The formulae are arranged as in Thomsem (1987) for 

future reference. 

P vQr ýcoý 
=2 

[D33 + D,. + (Di, 
- D33 P in 2 io +R (io)] 

PvQsv2[D33+Dý+(D�-D33Yin2io-R(cD)] 

vQsv(9)= DDsin2co+D, 
q cos2 9 (160) 

R2(S9) = (D33 -D, ay +2{2013+D�)2 - 
(D33 

-D4., XD11 + D33 -2D�)fsin29 
+, 

I+D33-2D44Y - 4(D13 + D4 J }sin49 

The symmetry axis is assumed vertical and, therefore, the formulae are independent of the azimuth. 
formulae such as this were used to produce the plots in Figure 8-1 and Figure 8-2. 
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It is now time to go back to equation (159) and consider group velocity. It is shown in Appendix III how 

the dispersion equation (157) might be used to obtain a set of formal relations between the components of 
the group velocity vector, Cg, and those of the corresponding phase velocity, c. Using the nomenclature 
described in Figure 8-9, this formal relations read as follows: 

2 
V2 =v2+v 

2+ yi 

B sin' 0 

sin 91 
cosh= 

V [vcosg-vfl 

sin9 
(162) 

tanp= 
v sin Osin 9O+ vg cos 0+ v0 cos 9 

vcosOsin9p-v9sin0+v0 cos9Otan 0 

Where the subscripts indicate a derivative with respect to the corresponding coordinate. These 

expressions offer a way to obtain ray surfaces, -and therefore wavefronts- from any given set of 

anisotropic moduli. Any expression of phase velocity, such as those given in equation (160) might be 

suitably derived and combined according to (162). Then a high enough number of group velocity vectors 

might be obtained and the ray velocity surface plotted along the corresponding phase velocity surface. 

We have done that using a Maple-based program for the case of transverse isotropy. Due to the azimuthal 

symmetry of the surfaces a meridian section conveys all the information needed. An example of the 

results obtained is shown in Figure 8-7. The example illustrates the case of folded wavefronts that we 

mentioned before. 

The same program might be used also to obtain the angle between any phase velocity vector and the 

corresponding ray velocity vector. This is illustrated in Figure 8-8 for the same example as before. It 

might be appreciated that even for a case of strong anisotropy such as this, the deviations are rather small. 

It should be noted, of course, that what we do not have written are explicit formulae for group velocity as 

a function of its direction like those postulated in (159). That would involve, for instance, inverting 

equations (162) after substitution of a phase-velocity expression like those given in (160). The problem 
is that even if phase velocity expressions alone are already complicated, the expressions obtained by their 

substitution on equations (162) are much more so, and their inversion poses a generally horrendous 

problem. Already in 1970, Musgrave, based in the projective relation between slowness and ray surfaces, 
indicated that group velocity surfaces might be surfaces of a degree10 as high as 150. This, in his own 

words "dashes any hopes of obtaining [their] equation in a general and convenient explicit form". To our 
knowledge, this prophecy seems to have stood the test of time. 

Therefore, when the need arises to solve the inverse problem, i. e. that of recovering the set of elastic 

moduli from wave velocity measurements, two options are available. The first and more recent (Aristegui 
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& Baste, 1997) is to perform a fully numerical inversion where ray velocity surfaces numerically 

generated from a guess of elastic properties are matched to a set of ray velocity measurements. The 

second and more classical is to proceed in a step by step basis, taking profit of all known symmetries of 

the material under study. To understand those procedures it is first necessary to appreciate some 

simplifying consequences of symmetry. 

8 1.4 Simpli ing: consequences of symmetry. 

It might be clear by now that pulse test interpretation under anisotropic elastic conditions is far more 

complicated than under isotropic conditions, when there are just two possible modes or phase velocities 

in every direction, polarizations are simply parallel or transverse to the movement, and there is no need to 

distinguish ray and phase velocities. It is obvious also that symmetries of the elastic tensor play a major 

role in establishing how complicated the problem is. 

It is relatively simple to prove (see Appendix III) that two directions of propagation will have the same 

phase velocities if one can be transformed into the other through a rotation belonging to the symmetry 

group of the elastic tensor"'. That means, basically that the phase-velocity surfaces will have the same 

symmetries as the elastic tensor. A transverse isotropic material will have phase-velocity surfaces with 

cylindrical symmetry -see Figure 8-1-. An orthotropic material will have phase-velocity surfaces with 

three orthogonal planes of symmetry. A monoclinic material will have phase-velocity surfaces with one 

plane of symmetry. A triclinic material will have phase-velocity surfaces with no symmetry whatsoever. 

The same reasoning given in Appendix III is also valid for the slowness surfaces. Therefore they will 

have also the same symmetries as the elastic tensor. Finally, and considering its geometrical relation with 

the slowness surface, the same can be said about the group velocity surfaces. 

An important consequence of this concerns propagation in material symmetry planes -e. g. for the 

common case of transverse isotropy, all planes containing the axis. They are, as we have just seen, also 

symmetry planes of the phase velocity and slowness surfaces. This implies that at any point on them the 

normal vector must also lie in the symmetry plane. In other words, the derivative of the phase-velocity 

function with respect the out of plane coordinate is null. 

Using the same spherical coordinates of equation (162), we can choose the plane of symmetry to be a 

plane of constant azimuth, for instance 0= n/2 and, imposing the condition that ve is null, it is shown in 

Appendix III that the following simplified expressions are obtained: 

1°The degree of a surface is roughly equivalent to the degree of the polynomial that might describe it in Cartesian coordinates. 
"I As the symmetry group defining isotropy includes all rotations this correctly implies the equivalence of all directions in the 
isotropic case. 
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V2(P) = v2(q)+v9(9) 
Vm/V+tänco 

co 
(164) tang= 

1_(V9/V) tan 

2 

It is thus evident that in symmetry planes all the points in the phase velocity surface map into points of 

the ray surface lying on the same symmetry plane "Z. Further manipulation of equation (164) conduces to 

an oft-quoted and very compact equation, relating the plane polar coordinates of the phase and group 

velocity vectors: 

v= Vcos(p-co) (165) 

Symmetry also has interesting consequences regarding the possible polarisation of plane waves. We have 

mentioned before the existence of "pure mode directions", being those where the wave movement is 

either transverse or longitudinal. Considering also the symmetries of the elastic tensor, Auld (1973) 

proves some important results about pure mode directions, namely, 

0 If the propagation direction coincides with an axis of rotational symmetry all modes are pure, i. e. the 

propagating waves are either purely compressive or pure shear. Moreover, if the rotational symmetry 

is equal or bigger than threefold1', the shear modes are degenerate i. e. there is only one shear 

velocity and the situation is the same as in the isotropic case. This is the case of propagation along 

the axis of symmetry in transverse anisotropy. 

" If the propagation direction is contained in a plane of mirror symmetry there is always a pure shear 

wave polarised perpendicular to the plane, the other two modes being therefore contained in the 

symmetry plane. 

" The precedent case is also valid when the propagation direction is contained in a plane orthogonal to 

a rotational symmetry axis 

" Finally, and apart from those general cases, each anisotropic material has a set of pure mode 

directions depending on the relative values of the anisotropic elastic constants. 

As might be expected, researchers using ultrasonic methods have made a systematic use of these 

symmetry-induced simplifications when measuring the elastic moduli of anisotropic materials (for a 

review, see Every, 1994). The basic idea is to increase the difficulties gradually: obtain first the 

maximum of information from measurements along axes of symmetry, then proceed to other directions 

112 Kim (1994) points out that the converse is not true, as there might be points on the ray surface section that correspond to out of 
plane slowness vector 

The symmetric points around the axis being spaced at 120° intervals or less 
191 



on symmetry planes, etc... We will see later on how this procedure may be applied in soil mechanics, 
before is convenient to look for other avenues of simplification. 

8.1.5 Simnli 
, 

'ng: weak anisotronv 
The anisotropy of any elastic material could be more or less accused. Its almost intuitive that any material 

whose elastic properties are close to isotropy will have simpler wave propagation characteristics. This 

idea has been exploited mostly by geophysicists -e. g. Backus (1965), Crampin (1981) or Thomsem 

(1987). This is natural because, as we will see later on, crustal rocks have, generally, a much lesser 

degree of anisotropy than crystals or sedimentary deposits -i. e. soils. Also, as the main anisotropic 

system of interest for geophysicists is transverse anisotropy, most developments have focused on it. 

For instance then, Thomsem (1987) examined the possible simplifications that a weak degree of 

anisotropy will have for the important case of transverse isotropic materials. To do that he first 

introduced a new set of parameters to describe a transverse isotropic material. These parameters are three 

adimensional ratios (E, y, S) and two velocities (ao, ßo) defined as follows: 

D., -D33 
2D33 

D66 -D� 
2D44 (166) 

8= 
(D" + D«y -(D33-D. 

Y 

2D33 (D� _D44) 
ao = 4D33 /P Qo = 4D, 

4 
1, D 

For an isotropic material the ratios become null and the velocities become the two usual bulk plane 

velocities. The adimensional ratios then measure the deviation from isotropy' 14 
. Thomsem rewrites the 

phase velocity equations (164) in terms of this set of parameters. Then proceeds to linearise them in 

terms of the three adimensional ratios (c, yy, S) obtaining the following simplified expressions: 

vQp(gyp) = ao[1+8sinz 9COS2 cp+Esin4 co] 

z 
vQsv(9O) =, 0 1+ (s-6)sin2 9COS2 (167) 

V QSH 
(7) 

- 
/I0 (1 +, y sing ') 

These simplified expressions make apparent the correspondence between the two velocities (ao, ßo) and 

the P and S-wave velocity of an isotropic media. Anisotropy -transverse isotropy in this case- manifests 
itself as dip-dependent corrective terms on the isotropic velocities. Finally, Thomsem, substitutes these 

simplified equations in the group velocity expressions for propagation on a symmetry plane -(11)- and, 

again discarding higher order terms on anisotropy, obtains a much simpler set of relations. 
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The basic idea used by Thomsem is to linearise the quantities of interest on parameters representing 
deviation from isotropy. This may be restated in a more general context, for all types of anisotropy as a 

perturbation on an eigenvalue problem (Backus, 1965). 

8.1.6 Complications: near field. fluid interaction. boundary effects 

All the preceding considerations relate to plane waves propagating on the far field of a source in a purely 

elastic medium whose lateral boundaries are far away from the propagation direction. Anisotropic 

directional dispersion can, of course, combine with all the sources of isotropic dispersion mentioned in 

previous Chapters. Here we cannot enter in any detail about them. We would like nevertheless to mention 

that semi-analytical fundamental solutions for the case of transverse isotropy have been recently 

presented by Siez & Dominguez (2000) using a more general technique to obtain fundamental solutions 

for general anisotropic materials proposed by Wang & Achenbach (1995). The generalisation of Biot 

theory for anisotropic materials is simpler"', and plane wave anisotropic solutions were developed by 

Biot himself (see Biot 1992). We are not aware of any treatment of anisotropic cylindrical waveguides, 

which, for instance, are not contemplated by Disperse (Pavlakovic & Lowe, 2000). 

8.2 IMPLICATIONS FOR SOIL PULSE TESTING 

8.2.1 Measurable elastic anisotropy ypes 

The first aspect that needs to be considered is what kind of elastic anisotropy might be necessary to 

measure and under which conditions. According to what was said in the precedent Chapter, all kinds of 

elastic symmetry seem possible in soils. Those compatible with testing on currently designed sample- 

testing apparatus are more restricted: isotropy and transverse isotropy in triaxial apparatus, to which true 

triaxial apparatus add orthotropy, and hollow cylinders monoclinic symmetry. 

In calibration chambers and other equally big devices -shear stack for instance- more general kinds of 

anisotropy may be locally generated during testing or by design. Of course self-supporting homogeneous 

samples of soil -clay, frozen sand- may be used for the only purpose of dynamical testing outside any 

apparatus. In that case general anisotropy may be again expected. 

8.2.2 Measured elastic anisotropy: magnitudes 

We have seen already that a substantial reduction on the complexity of the inverse problem could be 

achieved when the anisotropy being measured is small. It is therefore important to have an appreciation 

of the magnitude of the elastic anisotropy that must be dealt with in soil experiments. Our aim here is to 

present some data already available about this and put them in the context of other materials. Most of the 

data available refers to the situation of transverse anisotropy, and the comparison will therefore 

concentrate on this system. 

Amongst the many measures of "anisotropy" that have been proposed for this case these are perhaps the most systematic. 
As long as the dynamic permeability remains isotropic. 
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Crampin and co-workers have used extensively the following ratio to quantify the shear-wave anisotropy 
(SWA) of rocks as measured by phase velocities: 

SWA = 
niax(vsl) 

x 100 
(vsi ) 

(168) 

Where vs, refers to the faster shear wave and vu to the slower. Crampin (1994) summarises observations 
in rocks and concludes that values above 10% are very rare. Moreover, this limit has been related to a 

postulated cracking mechanism behind anisotropy and shown to be compatible with it through numerical 

modelling (Crampin, 1999). For comparative purposes with soil data is necessary to express the SWA in 

terms of the anisotropic elastic constants 

SWA = 
max(DD,, )-min(D,,, Dj 

max(D1� D. 
(169) 

Figure 8-10 presents then SWA data for various granular materials as published in the geotechnical 

literature. It is obvious that the values recorded are substantially higher than the 10% limit postulated for 

rocks. It is interesting to note here that a consistent exception to this limit has been also observed in near- 

surface seismic surveys (e. g. Bates & Philips, 2000) i. e. in surveys involving soils or unconfined rocks. 

For the case of transverse anisotropy Thomsem parameters offer a more systematic approach to quantify 

anisotropy magnitude. Figure 8-11 to Figure 8-13 present histograms of the three adimensional ratios (c, 

y, 8) -obtained from measurements in a number of granular materials. For comparison purposes a series 

corresponding to measurements in rock (Thomsem, 1987) is also included in the graphs. 

Again, it is apparent that granular materials in the lab have higher degrees of anisotropy than those 

usually observed in seismic surveys of rock. It is noteworthy that Thomsem himself pointed to a value 

below 0.2 as a reasonable limit for the assumption of small anisotropy. It is clear that most rock values 

were well within this limit. It is clear also that this is not the case with soils. 

Figure 8-14 presents again the data against the criteria c=S which, as can be seen from equations (167) 

corresponds to the assumption of an elliptical QP wavefront and to an isotropic QSV wavefront16. This 

assumption is commonly employed in seismic surveys and Thomsem observed that it was not particularly 

accurate for rocks. We can add that it is even much less so for soils. This is annoying as most data from 

calibration chambers has usually been interpreted under this assumption -Lee, 1993, Stokoe, 1996. 

Finally, it is worth mentioning that a point representing the zinc parameters beyond Figure 8-7 is also 

included in the graph. It has the higher degree of anisotropy of those included in the figure. 

116 Note that this simplified equations correspond to the phase-velocity surfaces, but if these are elliptic the geometrical relationship 
they have with the wavefront implies that this is also elliptic. 
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It is also interesting to check if the reported transverse anisotropic moduli of soils are compatible with the 

existence of cusps near the axis of symmetry. Musgrave (1970) shows that the condition for the existence 

of cusps in that location is given by 

(D� +D44)2 > D�(D� -D«) (170) 

For the data reported by Belloti et al. (1996) this condition is not fulfilled once. For the data reported by 

Kuwano (1999) it is fulfilled in several occasions, for all the materials studied. The significance of this 

difference is still unclear, although the data reported by Kuwano are more likely to have suffered from all 

the parasite effects of sample size explored in Chapter 6. 

8.2.3 Measuring elastic anisotropy: recommendations 

Kim (1994) describes a step-by-step procedure for the determination of elastic constants in materials with 

orthotropic or higher elastic symmetry"'. For orthotropic stiffness the diagonal terms D,,, DS,, and D6, 

are directly related to pure shear modes propagating along the axis of the material. The other diagonal 

terms are generally obtained with P measurements. Those may generally be unavailable in soils. 

In that case a fitting procedure should take place using the shear modes in the symmetry planes. One of 

them is polarised in the symmetry plane, -although not necessarily orthogonal to the propagation 

direction- the other is pure transversal shear. The wavefront of both modes for, say, the 1-3 plane 

depends on D55, D,,, D33 and D13 thus three more constants can be measured by fitting the measured 

wavefronts to a computed one. Of the three remaining constants D12 and Du might be obtained using the 

same procedure in the plane 1-2 but the last one, D23, will require measurements in the plane 2-3. Kim 

gives semi-explicit formulas for the wavefront that may be advantageously used for these fitting 

procedures. 

The non-linearity of the fitting equations and the eventual presence of cusps near the axis of symmetry 

are problems that will generally require careful study of measurement direction and a certain degree of 

redundancy in the measurements (see e. g. Degtyar & Rokhlin, 1997). These are problems that are only 

more prominent in the general inversion problem for generally anisotropic materials or for materials with 

unknown symmetry. The kind of fixed transducers now used in soil pulse tests are ill suited for the 

purpose of obtaining many measurement points. 

Finally it should be noted that the previous indications are based in one fundamental assumption: that it is 

possible to obtain measurements whose characteristics relate only to one direction in the material. The 

kind of sample size effects seemingly possible in current laboratory pulse testing techniques make us 

uncomfortable about the prospects of anisotropic measurements. 

Higher here means with less independent constants, i. e. transverse isotropic, cubic, isotropic. 
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8.3 SUMMARY 

Anisotropic elastic plane wave propagation adds some complexities of its own to the measurement 

problem. There is directional dispersion and wavefronts spread out from a source in complex, sometimes 

folded, forms. These forms, nevertheless, retain the symmetry of the elastic tensor. Measurement along 

favoured axis and planes of symmetry is highly recommendable. Helpful simplifications are possible for 

small amounts of anisotropy, but measured soil data do not generally show small anisotropy. 

Measurement of orthotropic and less symmetric elastic moduli with only shear waves is theoretically 

possible and has been done for crystals and composites. Current testing systems for soil samples seem ill 

suited for the task, particularly for their inability to guarantee an accurate pulse direction. 
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8.4 FIGURES 
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Figure 8-1 A phase-velocity surface (QP sheet) for Ham River Sand. Symmetry axis is vertical. 
Scale in m/s. 
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Figure 8-2 Example of phase velocity surface for Ham River Sand. qSH sheet and qSV sheet. 
First quadrant represented only. Scale in m/s. 
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Figure 8-4 Pulse tests: conceptual scheme 
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Figure 8-3 Wavefront movement and rays 
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Figure 8-5 Geometrical relations between ray velocity surface (W), phase velocity surface (V) and 
slowness surface (S) 
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Figure 8-6 Possibility of multiple-valued wavefronts 



Figure 8-7 Meridian sections of phase -clear- and ray -dark- velocity surfaces for a transverse 
anisotropic cristal of Zinc. Data from Kim et al. (1995). Scale in km/s 

Figure 8-8 Angular deviation of corresponding ray and phase velocities from the previous figure. 
Horizontal axis: phase velocity dip angle. Vertical axis: ray velocity dip angle 
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Figure 8-10 Histogram of Crampin's degree of elastic anisotropy for granular materials: Ham 
River Sand (HS), Dunkerque Sand (DS), Glass Ballotini (GB), Ticino Sand (TS). Data from 

Kuwano (1999) and Belloti et al. (1996) 
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Figure 8-9 Spherical coordinates for phase velocity (v) and ray velocity (V) 
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Figure 8-11 Thomsem's c for rock and granular materials: Ham River Sand (HS), Dunkerque 
Sand (DS), Glass Ballotini (GB), Ticino Sand (TS). Data from Thomsem (1986), Kuwano (1999) 

and Belloti et al. (1996) 
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Figure 8-12 Thomsem's 6 for rock and granular materials: Ham River Sand (HS), Dunkerque 
Sand (DS), Glass Ballotini (GB), Ticino Sand (TS). Data from Thomsem (1986), Kuwano (1999) 

and Belloti et al. (1996) 
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Figure 8-13 Thomsem's y for rock and granular materials: Ham River Sand (HS), Dunkerque 
Sand (DS), Glass Ballotini (GB), Ticino Sand (TS). Data from Thomsem (1986), Kuwano (1999) 

and Belloti et al. (1996) 
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9 SUMMARY AND CONCLUSIONS 

This thesis set out to explore the current practice of pulse testing in soil samples, with particular emphasis 

on the most popular technique now in use: bender element shear testing. Our approach was mainly 
theoretical as it was felt that there was a gap between the increasing demands placed on the technique and 
its basic understanding. This gap seemed particularly relevant when anisotropic measurements were 
involved. Elastodynamics was the natural tool of choice as it had been used with apparent success in the 

nearby fields of geophysics and ultrasonic testing. This chapter summarises what has been learned on the 

way, comments on its relevance for geotechnics at large and offers some directions for future research. 

9.1 LESSONS LEARNED 

We began by reviewing the background and current practice of laboratory pulse testing in soils. Bender 

elements were developed to overcome the limitations posed by the typically high attenuation of soils to 

ultrasonic transmission. A review of current pulse testing practice revealed that arrival time selection was 

the most controversial aspect of the technique. The dominant interpretative framework had a plane shear 

wave travelling between source and receiver. Concern about near field effects had prompted various 

alternative suggestions for arrival selection. The effects of input signal shape on the measured arrival 

were not properly understood, neither was the obvious difference between input and output signals. 
Comparison of results with other, better understood, techniques -e. g. resonant column- was not always 

reassuring. 

A relatively simple bench test was set up to clarify the perceived obscurities. A cylindrical sample of 

reconstituted Gault clay was instrumented with six bender probes, four on the side and two at each end. 
To explore near field effects the sample length was varied, slicing one end and reinstalling the 

corresponding probe five times. To explore the effects of the input signal its shape and apparent 
frequency were varied, employing narrow-band bursts along with more traditional wide-band signals. A 

total of 92 different traces were recorded. An automatic arrival time selection procedure was applied to 

all the traces. Six possible arrivals were selected in each trace following various previously suggested 

criteria, four based on characteristic points on the trace, two on signal treatment procedures of input and 

output: cross-correlation maxima and linear fit of cross-spectrum phase. For comparison one trained 

expert was asked to select the arrival points by inspection. 

A statistical analysis of the results was performed. Anisotropic effects were indeed present but exclusive 

consideration of axially directed tests revealed much higher uncertainty than it had been previously 

suspected. The global variability -between different arrival selection methods- amounted to 92% of the 

mean shear modulus estimate. The in-method variability was also high with modulus uncertainty between 

20% and 40% There were also method-dependent effects of testing distance, signal shape and apparent 
frequency. Close inspection of a few comparable results previously reported revealed similar orders of 

magnitude. 
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Such disparaging results further stimulated the need for deeper understanding of wave propagation in soil 

samples. A key concept in that respect was that of dispersion, that is of frequency-dependent propagation 

velocity. It was obvious that the observed propagation was dispersive and that caused problems to a 

naively non-dispersive model such as plane wave propagation. It was less obvious what exactly was 

causing that dispersion. Consideration was first made of source near field effects, as those had been 

previously shown to affect test results. Analytical and numerical considerations showed that near field 

effects can be easily discounted in pulse test interpretation. Refraining the problem as one of dispersive 

propagation had the advantage of obtaining results valid for all kinds of input signal. They also showed 

that this phenomenon was unable to explain the observed amount of dispersion both in general and in the 

particular case of the previously obtained bench test results. 

We then moved on to consider material dispersion, that is dispersion due to properties of the material 

being tested. On the linear range the most important cause of that phenomenon in soils is fluid 

interaction. This is well described by Biot theory and we set out to examine how Biot dispersion might 

affect shear wave propagation. Analytical and numerical considerations showed that the problem is again 

relatively easy to handle and by itself unable to explain the amount of observed dispersion. Guidelines 

were given as to how to take it into account. For the case of impermeable materials like Gault clay Biot 

dispersion happens in a frequency range well above that of usual bender testing. No explanation was then 

forthcoming from this viewpoint either. 

Finally, and still strictly within an isotropic framework, consideration was given to sample size effects. 

Study was restricted to the cylindrical geometry typical of triaxial tests and employed in the bench tests. 

Two effects were considered successively, those introduced by end rebounds and those due to the 

cylindrical boundary. The end rebounds were shown to introduce important interference in the received 

signals. With the usual rigid ends employed in triaxial samples or with the free ends employed in the 

bench tests end rebounds, however, are not, by themselves, a source of dispersion. They obscure the 

phase signature of dispersive propagation and they translate the experimental emphasis to the amplitude 

spectra. This is particularly so when bender length effects are taken into account. A linear system 

approach was employed to obtain transfer functions accounting for all rebounds and bender length 

effects. Results from the bench test series showed good agreement with the overall predicted shape of the 

amplitude spectra. 

Those results, where end effects can be discounted, showed again all the features of a highly dispersive 

propagation still unexplained. Interaction with the cylindrical boundaries offered at last one seemingly 

good answer. This interaction may be treated with the tools of waveguide theory, which accounts for 

propagation in infinitely long cylinders. The basic tenet of this theory is that when wavelengths are 

comparable with the size of the propagating structure, lateral rebounds produce an interfered signal where 

each frequency travels at a different velocity i. e. dispersion occurs. Considering the frequency and 

velocity range typical of bender-based pulse tests in soils wavelengths are indeed comparable to sample 
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sizes. Using Disperse, a program developed for ultrasonic testing purposes, we obtained a set of 
dispersion curves for a Gault clay cylinder in the frequency range of testing. There were many possible 
dispersion curves and some geometrical considerations showed that those more likely to be excited by 

bender elements corresponded to flexural modes. In the frequency range of interest signals propagated 

with flexural modes showed an amount of dispersion compatible with the observations. For narrow-band 

pulses the range of likely arrival velocities varies between that of bulk compressive waves and Rayleigh 

waves. For wide band pulses the range is even greater. No simple recipes are available to deal with this 

problem, that can fool equally all the arrival selection methods currently in use. Some consideration was 

given to the likely range of diameter sizes and frequencies where this problem might be more intense. It 

shows a substantial overlap with the usual testing range. 

These results made the consequent foray into anisotropic problems a more abstract endeavour than 

initially intended. It is obvious that, if propagation along a single direction in samples is so poorly 

understood and controlled, adding in the extra complications of anisotropy is somehow premature. 

Detailed consideration was nevertheless given to the types of elastic anisotropy that have been measured 
in soils and those that might be reasonably expected. This last endeavour was much helped by an 

algebraic approach to anisotropy that has not been given previously enough consideration in soil 

mechanics. The conclusion was that a much richer family of elastic anisotropies can appear in soil 

samples, even if current triaxial apparatuses can only cope with transverse isotropy. Some data from 

hollow cylinder tests were gathered to support this view. 

The final chapter then went on to consider the complications that may arise when elastic anisotropic 

solids are tested with pulses that sample a single direction at a time. A new type of dispersion appears, 
directional dispersion. Symmetry plays a great simplifying role and previous knowledge of the elastic 

symmetry of the tested material is very helpful in designing the tests. A moderate amount of anisotropy 

also helps, as many simplifications are then possible. This was explored for transverse isotropy but the 

available data for soil show that the amount of anisotropy may be substantially higher than that 

guaranteed by the simplifications. However convenient, those simplifications are not always necessary, 

as recent research on composites and crystals shows. But research on these materials proceeds with the 

comfortable knowledge that each pulse traversing a sample is only affected by the traversed direction. 

This does not seem to be the case for current pulse testing practice in soils. 

9.2 RELEVANCE OF THE RESEARCH 

9.2.1 Bender testing and engineering practice 

Correct estimates of structural performance are heavily dependent on soil stiffness estimates. Atkinson 

(2000) statement "Direct measurements of shear wave velocity using laboratory bender element tests 

[.... ] are relatively simple to perform and interpret" can be seen now as being more correct in its first part 

than in the second. Many results available on bender test performance have been obtained under research 

conditions. That is, the materials were generally well known and heavily tested. Bender measured 

206 



stiffness fitted into a big picture that many times also involved other means of stiffness estimation: 

resonant columns, local deformation measurements, p-wave measurements... A well informed and trained 

eye can see many things in the wobbly traces recorded by output benders. Many researchers happily 

confess to play with signal shape and frequency until "visual satisfaction" has been achieved. Then the 

whole set of trials is discarded and another data point is added to a well known trend. 

This does not means that bender testing as it stands is useless for engineering practice. Something is 

better than nothing and with appropriate guidelines bender measurements might offer an adequate 

estimate of the small strain stiffness of soils. Much more poorly understood tests like SPT have served 

well the engineering profession. But this usefulness is based on a clear appreciation of the test limitations. 

It is reasonable for this aspect to take a second place when a new technique is developed. But design 

engineers need reliable tools and a level playground. Launching an uncertain technique into the realm of 

commercial competition without strict interpretative guidelines would be not only dangerous but 

unsound. 

9.2.2 Laboratory pulse testing and geotechnical research 
We still believe that sonic or ultrasonic testing of soils will play a fundamental role in many future 

research programs, in fact we give some recommendations for that in next section. Pulse tests have the 

potential to add some extra knowledge and not merely confirm or contrast with other measurements. But 

again uncertainty might ruin the purpose if it is not strictly taken into account. 

Consider for instance the results presented by Jardine et al. (1999) here reproduced in Figure 1-3. They 

show that horizontally polarised bender inputs propagated along the vertical axis arrived systematically 

earlier than vertically polarised bender inputs propagated -in the sample median plane. Within an 

assumption of elastic transverse isotropy, reasonable for triaxial tests, this result is unexplainable and 

they ventured a micromechanical explanation with help of some discrete element results. They may be 

right. But they may as well be wrong. One may argue for instance that vertical propagation is subject to 

guide effects to an extent that transversal propagation is not. These effects could well explain the 

observed difference. Also one may argue that near field effects in anisotropic samples are very poorly 

understood and the transversal shorter distance might be affected by them more than the larger vertical 
distance. Or that testing in the high frequency Biot range and using a low frequency formula to obtain the 

moduli may not produce the same error in all directions. More research is needed. 

9.3 RECOMMENDATIONS FOR FUTURE WORK 

Two different, although interacting, areas of work are now easily perceived. The first concentrates on 

what is likely to remain the most important test configuration for the geotechnical community: that of 

sonic testing along the vertical axis of a triaxial apparatus. The second should explore different testing 
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configurations present or foreseeable where the possibilities of sonic or ultrasonic testing of soil may be 

exploited. 

With respect to the first area the following avenues of research are suggested 

" As their consequences are so dire, there is need to confirm and explore further the extent of 

waveguide effects when bender elements are used along the vertical sample axis. Experimental 

research may proceed simply by bench-testing similar samples with different diameters. 

" Numerical research should be directed to refine the location of the frequency range where 

multimodal transmission affects bender element operation. Account should be taken of how the 

confined nature of triaxial samples might affect modal characteristics. The problem would likely 

require a combination of various modelling levels -space discretization and modal decomposition. 

" The same applies to the problem of end rebound and bender length effects or recorded modal 

signature. The transfer function approach developed here might be applied with numerically 

obtained modal reflection coefficients. 

" Careful consideration should be given to the relative advantages of torsional shear-plate-based 

configurations for vertical testing in the triaxial apparatus. A relatively simpler interpretation might 

overcome the disadvantages of poorer signal quality and drainage path obstruction. 

" Attention should also be paid to signal treatment procedures to obtain reliable dispersion 

information. The limits and relative potentials of cross-spectrum phase and amplitude techniques 

need to be more systematically explored. If, as it now seems, multimodal transmission is inescapable 

more refined techniques like time-frequency analysis or wavelet decomposition should be 

considered. 

" Basic understanding of bender probe response while installed in the sample is lacking. Experimental 

research -using the self-monitoring technique or others- and numerical analysis of piezoelectric soil- 

embedded cantilever dynamics may be used for this purpose. A more accurate definition of 

installation techniques and operating frequency range should be the likely outcome of this research. 

The interest of the last two items in the precedent list is not restricted to the triaxial sample-vertical 

testing configuration. Other ideas for research that have more general bearing or are related to different 

configurations are the following 

" Vertical testing along oedometer axis is likely to be more affected by end rebounds than guide 

effects. The transfer function approach developed in this thesis should be particularly useful in these 
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circumstances. Attenuation measurements should also be possible from this approach if care is taken 

to select an adequate bender length. 

" Size-induced effects need to be considered also for vertical tests along hollow cylinder walls and 

rectangular biaxial apparatus. Waveguide theory may be useful to explore these cases. These 

apparatus are likely to remain in the research realm. If, as it seems possible, guide effects are 
important for embedded transducers, it may be worth considering the adaptation of different 

ultrasonic testing techniques, particularly the refraction-based ones in use with immersed samples. 

" Sample size effects for tests using lateral probes in triaxial samples have not been considered in this 

thesis. The same applies to cubical samples like those in use in true triaxial apparatus. Waveguide 

theory is unlikely to offer much insight in these cases. 

" Size and near field effects have been considered in this thesis under the assumption of isotropy, it is 

not known how the notable anisotropy of soil samples may modify the effects described. A first step 
in that direction should explore systematically the extension of near field effects under various 

assumptions of anisotropy. This work shall be also relevant for calibration chamber and field testing. 

" The possibility of obtaining permeability measurements using shear wave dispersion also deserves 

some consideration. To obtain only material dispersion measurements calibration chambers or field 

test should be considered first. 

Stepping now beyond the realm of dynamic testing, other ideas spring from this research that may be 

interesting to follow. They are mostly related to our study of elastic anisotropy: 

" Some arguments have been advanced here suggesting that elastic anisotropy in soils may have quite 

general forms. A more systematic combination of true triaxial and hollow cylinder testing may be 

employed to confirm or discard this idea. 

" Elasto-plastic coupled models have the potential to predict the evolution of elastic anisotropy. The 

use of tensorial representation techniques seems advisable in their formulation. The apparent 

similitude of this approach with damage mechanics needs to be systematically examined. 

The previous is a rather long list. This is mostly justified by the increasing interest in sample pulse 

testing. During the time employed in this research we have seen how more and more research teams have 

become interested in the subject. Teams from Taiwan, Portugal, Belgium, Switzerland and Spain have 
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started working on the subject. Closer to where these words are written, work has started already in 

several of the items enumerated above, both in Bristol and University College London by our research 

colleague Dr. Paul Greening. We hope that the work here presented will be useful for all of them. 
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10 APPENDIX I: SIGNAL TREATMENT CONCEPTS 

Some use is made in this thesis of signal treatment techniques, particularly of those based on the Fast 

Fourier Transform. These techniques are widespread, used in almost every work related with dynamics 

and have generated an extensive literature (e. g. Brigham, 1988, Balmer, 1991, Lynn & Fuerst, 1994). The 

first purpose of this Appendix is to recall the most important concepts for ease of reference. On the other 
hand, due to graphing convenience and familiarity with the Visual Basic language, many programs 

written for this thesis were Excel-based. This required a translation of a particular FFT Fortran-based 

algorithm (Press et al. 1992) whose conventions are also given here. 

The Fourier transform relates the representation of one function in time domain and in frequency domain. 

The definition implemented is that given -but for a sign change on the exponential- by Press et al. (1992) 

Go 
H(f) =f h(t)e_12i1 idt 

-CO (171) 

'h(t)= 
JH(f) e12, ftdf 

Even when the time domain function h(t) is real-valued, the frequency domain representation, H(f), is 

generally complex. Therefore it might generally be expressed as sum of real and imaginary parts or, more 

conveniently, in terms of its amplitude and phase, 

H(f)=A(f)e"(t) (172) 

The real part of H(f) is even and the imaginary part is odd; also the amplitude spectra and phase spectra 

are, respectively, even and odd functions of frequency. 

For notational convenience in most theoretical developments throughout the thesis the frequency domain 

functions are expressed in terms of the angular frequency, w= 2nf. The equivalent definition for this case 
is 

go 
H(w) = 

fh(t)eioJtdt 

(173) 

h(t)=-' fH(w)e" dw 
IT 

_. 

One important property of Fourier transforms is that a time shift in the signal produces an identical phase 

change in its transformed counterpart. Suppose that a signal h(t) is delayed A to give f(t) then 
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f(t)=h(t+i) . 
OD m 

F(w) = Jh(t+0)e " dt = fh(t')e"dt = H(w)e' 

--Go _Q0 

(174) 

Note that with the transform definition here adopted a time delay results in a phase increase. 

10.1.3 Convolution and correlation 

Convolution and correlation are important signal treatment operations. The time domain convolution of 

two functions is expressed as 

00 
y(t) = x(t) * h(t) = 

Jx(s)h(t 
- s) ds 

-CO 

(175) 

If h(t) is taken as the impulse response of a linear system and x(t) as some input signal, then the 

convolution y(t) gives the corresponding output of the system. The Fourier transform of the convolution 

produces a simpler expression in frequency domain 

Y(f) = X(. f)H(f (176) 

i. e. the transformed convolution is obtained just by multiplying the transformed functions. 

The correlation of two signals x (t) and h(t) is a measure of their similitude for any given time shift s. The 

time domain correlation or of two functions is defined as 

y(t) = Corr[x(t), h(r)]= f x(s+t)h(s)ds 
0" 

-CO 

(177) 

More specifically, when x (t) and h(t) are different the operation is called crosscorrelation and 

autocorrelation when they are identical. Again, the Fourier transform of the correlation produces a much 

simpler expression in frequency domain, involving the product of one transformed function and the 

complex conjugate of the other 

cs. (l)= X(f)Y'(f) (178) 

The symbol employed acknowledges that the frequency domain cross-correlation function is also known 

as the cross-spectrum 

10.1.4 Spectral power: Parseval's theorem and coherence 

The modulus of the cross spectrum of two signals its known as their cross power. Also, the modulus of 

the autocorrelation function of a signal is known as the spectral power of the signal. 

In physical applications the spectral power is shown to be directly related with the energy content of the 

signal. Parseval's theorem states then that the total energy content of the signal is the same in frequency 

and time domains. It is generally expressed equating the integral of the signal modulus in time and 
frequency domains 
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wm jih(t)12 dt =f H(f)12 df 

-00 -00 
(179) 

A common measure of randomness in a series of measurements is given by the coherence function. This 
is defined as 

IcszyI 
Sx sy (180) 

The numerator is the cross power spectrum of the averaged input and averaged output. The denominator 

is the product of their respective spectral powers. When all measurements are completely free of random 

noise coherence is one, when there is some uncorrelated noise in either input, output or both coherence 
falls below one. 

10.1.5 Discrete Fourier transform 

Any continuous function of time h(t) may be digitally represented by its evaluation hk at a finite set of N 

equally spaced values tk. The spacing between these values gives the sapling rate, 0, and, considering 

the number of samples, the total sampling length, T, 

tk =kL k=O... N-1 
nisi) T=(N-1)0 

The sampled representation of h(t) is then given by a sum of equally spaced impulse functions 

k: N-1 

h(t)= ýhk6(t-kA) (182) 
k=0 

whose Fourier transform is given by 

k-N-I 

H(f) = hk exp(-i2nf kA) (183) 
k=0 

This series can represent exactly any frequency domain function whose frequency range is within a 

certain origin centred interval. The extremes of this interval are given by the Nyciuist frequency, fNy This 

is related to the sampling rate through 

fN' 
20 

(184) 

For computing convenience H(f) is evaluated at the same number of points in the frequency domain as 
h(t) in time domain. This gives the discrete Fourier transform as 

k-N-1 

H (fn) = J: hk exp(- i 2t� kA) 
k-0 

(185) 

The discrete evaluation frequencies, f� are also equally spaced, with a frequency resolution given by 
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df1 - N TAT 

fR=ndf=NQ (186) 

n =-N.... NAA 

Substituting this values in (185) and taking account of the periodicity of the complex exponential 
function a more symmetric expression of the discrete transform and its inverse is obtained 

k-N-1 

H�= J: hkexp -i2TkN n=O.. N-1 
k-O (187) 

n-N-1 
hk = Hexp i22rkN k=O.. N-1 

n=o 

Computing these equations involves the evaluation of the n*k exponential terms. When the number of 

data points is a power of 2 there are a number of symmetries that are systematically exploited in a class of 

algorithms known as Fast Fourier Transforms. As stated before, the one used in this thesis is that given 

by Press et al. (1992). 

10.1.6 Aliasing. leakage and truncation 

It is clear from (186) that there is a trade-off between time and frequency resolution for a fixed number of 
data points. Two problems are recurrent on this respect, leakage and aliasing. The first is due to poor 
frequency domain resolution, the second to poor time domain resolution. The only way out of the 

dilemma is to increase the number of data points. 

Truncation errors are introduced when the time length record is too short and a truncated signal 
introduces an spurious periodicity in the signal. Artificial prolongation of the signal by zero-padding is 

one means out of this problem and was used here. Windowing with end-attenuating signals -gaussian, 

etc- is another mean. 

10.1.7 Phase resolution problems 

A correct estimate of phase is essential in cross-spectrum based methods of velocity estimation. This is 

beset with a number of problems. Usually we will compute the phase of a given complex number as 

B= tan"1 
Im(z) 
Re(z) 

taking the principal value of tan-', which is here assumed to lay between -rr and n. 

The first problem is one of numerical resolution. Whenever the complex modulus is very small the 

quotient giving the tangent is subject to spurious numerical fluctuations. This is illustrated in Figure 10-1 

where the phase and modulus of the Fourier transform of a single sinusoidal pulse are shown. 
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10.2 FIGURES 
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Figure 10-1 Poor numerical resolution of phase in low magnitude regions 
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11 APPENDIX II: CONCEPTS OF TENSORIAL FUNCTION 

ALGEBRA 

11.1 INTRODUCTION 

11.1.1 Basic definitions. 

The underlying space of reference is the common three-dimensional one and Cartesian reference frames 

{e, } are always assumed. Changes of reference frame, e. g. from {e, } to { ei }, are defined by a 

transformation of unit vectors e, = Qjej, which can be represented simply by a 3x3 matrix Q. Tensors 

are indexed collections of numbers that follow changes of reference in a very specific way, namely 

Aýý-J. = A1ý-ý, Q 
1... 

Q,, ß, (188) 

All the indexes span the dimension of the space of reference, 1 to 3 in our case. The order of some tensor 

is given by the number of indexes necessary for its complete specification -p in the definition above. 
This definition allows scalars to be considered as zero order tensors and common vectors as first order 

tensors. Particularly important are second order tensors; they can be represented by a 3x3 matrix and their 

definition is written in matricial form as 

A= QAQT (189) 

As matrices and second order tensors are identifiable, changes of reference can also be considered as a 

peculiar set of second order tensors, the orthogonal second order tensors, characterised by Q'' = QT This 

set has the algebraic structure of a group, is denoted by Orth, and includes two important subgroups: 
Rotations, Orth', reference changes defined by detQ =1 
Reflections, Orth, reference changes defined by detQ = -1 

11.1.2 Tensorial functions 

Tensorial functions are functions whose arguments include tensors. These functions could be scalar- 

valued or tensor-valued. In general that could be written: 

c= H(A,, A2,... An) 
T =F(A,, A2,... A,, ) 

(190) 

Where the A, stand for the arguments of the function. Examples of geotechnical relevance are provided 
by the yield surface in elasto-plastic models - scalar-valued function of a single tensorial argument, the 

stress tensor- or hypoelasticity -where the stress rate tensor is a tensorial function of the deformation rate 

tensor. This Appendix recalls some algebraic properties of tensorial functions like these; cases with just 

one or two arguments (n =1 or n= 2) are particularly important and will deserve special attention. 

Tensorial arguments can be as simple as a vector or as complex as a fourth order tensor. As the number 

and tensorial order of arguments increase tensorial functions become more complicated. It is then 
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reasonable to classify them specifying their list of arguments, L, that is the number and tensorial order of 

their arguments. However, for some developments the important characteristic of the arguments is their 

tensorial nature and not so much the particular order of each one. In these cases we will shortly write a 

generic list, LA, as follows 

LA = {A,, A2,... An} (19ý) 

11.2 CLASSIFYING SYMMETRY 

11.2.1 Symmetry transformations 

If a particular reference change, characterised by Q, leaves a tensorial function unchanged"', it's called a 

symmetry transformation of the function. More specifically, 

c= H(A,, A2,... An) = H(Ä�f12,... Än) 
(192) 

A) T= F(A1, A2pT=F(;!,,; 121... 

0 If the function is scalar-valued this scalar would not change 

0 If the function is tensor-valued, the tensor itself will transform, and this transformed tensor must 

coincide with the one given by the transformed arguments 

11.2.2 Symmetry groups 
Groups are the mathematical entities employed to formalise and quantify the concept of symmetry. 

Jordan & Jordan (1994) give an introductory account of their properties. All the symmetry 

transformations of a tensorial function form a group (Zheng, 1994) called its symmetry group. A tensor 

function, f, could then be classified specifying its symmetry group, Gf. For instance: 

a) An isotropic tensor function has the entire orthogonal group as its symmetry group 

b) An hemitropic tensor function has the proper orthogonal group (rotations, but not reflections) as its 

symmetry group 

c) An anisotropic tensor function has a symmetry group different from the precedents. 

The number of possible simmetry groups is not infinite. There is a limited number of possible 

anisotropies, and therefore of tensor function types. Zheng & Boehler -1994- prove this extreme and give 

a list of just 41 different symmetry groups in 3D -for 2D the number is just 12, Zheng (1994). That list of 

41 includes all the 32 crystalline classes -orthotropy being one of them- and 5 types of cylindrical 

symmetry including transverse isotropy. 

All the transformations included in any particular symmetry group might be expressed as product of 

some elements within that group. These are the group generators. For instance, the generators of the 

symmetry group characterising cross anisotropy of axis lei) are 

Invariant is surely a nicer term, but this has here a more restricted sense explained below. 
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-1 0 0 1 0 0 
0 -1 0 0 cos0 sing (193) 
0 0 -1 0 -sing cosO 

Where the first matrix characterises central inversion -a symmetry of all non piezoelectric materials- and 

the second rotations of axis {e, } and angle 0 

11.2.3 Structural tensors 

A structural tensor, 4, is a tensor whose components are left unchanged by a particular symmetry group. 

So, if 4 is an structural tensor of G, 

VQ eG (194) 

Zheng -1994- shows that it is always possible to find a single structural tensor for each symmetry group. 

As suggested by the previous equation this single structural tensor need not be of any particular order ; 

for instance there are symmetry groups whose structural tensor is of order two, three, four, six.... The 

structural tensor may not be unique but even if various choices are possible they unambiguously 

characterise an unique symmetry group. Some examples follow. 

The second order unit tensor, 1, is the only tensor whose components are unchanged by the whole set of 

orthogonal transformations. It therefore characterises the isotropy group. 

Cross-anisotropy of axis vector e, is characterised by the following structural tensor 

100 

el®e, = 000 
000 

Orthotropy is characterised by any one of the following structural tensors 

1 0 0 

e, ®el -e2 ®e2 =0 -1 0 
0 0 0 

0 0 0 

e2 ®e2 - e3 ®e3 =0 1 0 
0 0 -1 

-1 0 0 

e3 ®e, - e, ®e, =0 0 0 
0 0 1 

(195) 

(196) 

Summarising: tensorial functions have symmetries, the types of possible symmetries are limited and 

described by symmetry groups. All symmetry groups might be identified by their generators and/or 
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structural tensor. Zheng (1994) gives a complete list of all symmetry groups, indicating their generators 

and structural tensors. 

11.3 REPRESENTATION OF TENSORIAL FUNCTIONS 

11.3.1 General 

As stated in precedent sections tensorial functions could be classified using two different criteria: their 

argument list, LA, and their symmetry group, GF. If these two are specified we can then talk about a 

particular class of tensorial functions, say C(L.,, GF). The basic result of the algebraic theory of tensorial 

functions is that as long as the number of arguments in LA is fmite it is possible to generate all functions 

in the class using just a small subset of them. 

For scalar valued functions in 41(LA, GF) the elements of this subset are called invariants and the subset, 

say {I,... Ik }, is called a functional basis. We can then write a representation for any function in the 

class as 

c= H(A� A2,... A. ) = h(I� 12,.. Jk) (197) 

For tensor-valued functions in c(LA, GF) an extra subset of tensor-valued functions is needed, and we 

will symbolise them by {S,... S, }. They are called form-invariants. Any function in the class O(LA, GF) 

may then be represented as a linear combination of this form-invariants 

T =F(A,, A2,... A. )=al(II. 1k)sI +... +a,, (II. J )S, (198) 

where, as indicated, the coefficients are themselves scalar-valued functions of the functional basis. 

Representations could be complete, meaning that they are valid for each and every function in the class 

C(LA, GF). Representations could also be irreducible, meaning that the form-invariants entering in it 

could not be expressed as lineal function of the others and that none of the invariants in the functional 

basis can be expressed as a function of the others. Irreducible and complete representations are quite 

interesting, because they are the most simplified general expression for a certain class of functions. 

To end this paragraph it's worth mentioning that representations were first developed within the narrower 

scope of polynomial tensorial functions, -that is cb(LA, GF) were classes including only polynomials of the 

arguments on LA-, being later extended to cover any kind of functions. When reading the literature, (e. g. 

Kolymbas 1989) this might cause some confusion because in the polynomial case the functional bases are 

called integrity bases. In general, for a given list L, its functional basis contains less elements than the 

corresponding integrity basis, and the number of generators is also inferior, then, the representations for 

general functions will differ slightly from the ones for polynomial functions19. 

"' So to say, the price to pay for dealing only with polynomials is to have lengthier representations. 
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11.3.2 Isotropic functions of symmetric second order tensors 

So, for any given tensorial function class it is possible in principle to find a functional basis and an 
irreducible representation. The problem is then solvable, but is not an easy one, being generally easier to 

obtain complete representations than proving those irreducible. As explained by Zheng (1994) there is a 

substantial increase in difficulty as the order of the arguments grows. Hence results for second order 

tensorial arguments are pretty much complete, but those including fourth order tensors are still being 

explored. 

Representations of isotropic tensorial functions were the first to be explored and are also the starting 

point for representations of anisotropic tensorial functions. In Table 11-1, following Zheng -1994-, we 

collect the invariants and generators needed when the argument list is formed exclusively by second 

order tensors. The symbols A, B, C in the table stand for any argument in the list; that is, every argument 

taken in isolation introduces the three invariants and generators of the first row; every pair of arguments 
introduces those in the second row and every trio that in the third row. No new invariants or generators 

are obtained considering more than three arguments together. 

Invariants are not unique. All the isotropic invariants included in the precedent basis are polynomials, 

defined in terms of the arguments traces. This is just a matter of convenience, partly prompted by the 

method employed to check the irreducible character of the base -Zheng, 1994. Any combination amongst 

them is also an invariant and might be substituted for any of those featuring in the list. For instance, as 

invariants of a single argument -those in the first row of Table 11-1- we may use instead p, q and 0 

defined by 

p=3trA 

z 
q= 

F2 
trA2 -t3 (199) 

trA'-9(trAy-3orA)trA2 
cos 30 = 2, f3- 

3 J(trA2 
-3 

(trA)2 

As the choice of names suggest when A is identified with the stress tensor the invariants in this set are 

very popular: the isotropic stress, generalised deviatoric stress and Lode angle. Note that the equivalence 

between the definition given above and the more usual based on deviatoric stress -e. g. Jeremic & Sture, 

1997- is a matter of simple algebra. 

11.3.3 Isotropicization of anisotropic functions 

Boehler (1979), found a simple way to develop representations for anisotropic functions starting with 

those corresponding to anisotropic functions. The key result is known as the "Isotropicization theorem", 
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(Zheng, 1994). This theorem states that any anisotropic function, F, with arguments LA and symmetry 

group GF, could be treated as an isotropic function if the characteristic structural tensor of its symmetry 

group is added to its argument list. Formally 

F(LA, G, ) F`t A, GF Orth) (200) 

This theorem provides therefore a link between the two aspects characterising any tensorial function, its 

argument list and its symmetry group. The function F is isotropic with respect all its arguments and 

anisotropic -with symmetry characterised by GF- with respect the original argument list LA. 

Functional bases and representations for anisotropic functions can be then obtained in a two step 

approach. First the isotropic representation is applied to the list including the structural tensor. Then this 

list is simplified taking in account the simple expressions of structural tensors, -for instance in the 

orthotropic case -(196) above- they have zero trace, in the transverse isotropic case -(195) above- they 

have trace unity, etc... The resulting representations are then reduced from the equivalent isotropic case - 
that is, from the case of one of the arguments not being a structural tensor. For instance, in Table 11-2 we 

collect the functional basis and generators for transverse isotropic and orthotropic functions of a single 

second order symmetric tensor. 

11.3.4 General vs representation-based approach to tensorial functions 

Tensorial functions can be defined directly without any resource to representations. For instance, it is 

well known that a symmetric second order tensor has only six independent components and, 

consequently, the set of all them, Symm, corresponds exactly with a six-dimensional vector space. An 

obvious base for this space is given by the six following matrices {M;, i=I.. 6} 

100000000010 0' 01000 
{M, }0 o00010000100000001 (201) 

000000001000100010 

In this base any symmetric second order tensor, To can be expressed as follows 

T=T�M, +T22M2+T33M3+T, 2M4+T�MS+T M6 (202) 

or, briefly, 

T=t, M, (203) 

Considering now this tensor as function of arguments given by the list LA, the following expression is 

then the most general one may think of 

T=T (A, 
... AA) = t, (A, 

... AA )M, (204) 

If the list contains only one symmetric argument we will have, for instance, 

T= T(A) = t, 
(A,, )M, (205) 
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and this express the obvious fact that each component of T depends on each component of A, so that we 
need to specify six functions of six variables. For two symmetric arguments, we will instead specify six 
functions of twelve variables and so on... 

It is interesting to compare how the problem size changes when, faced with the task of specifying a 

particular isotropic tensor function, we use its representation instead of the general approach above. 
Table 11-3 does this for the cases of one, two and three symmetric tensorial arguments. It is obvious that 

using a representation, does not diminish per se the size of the problem, although this is the case for a 

single argument. As Boehler (1979) remarks the main advantage of employing representations are then 

others: no hidden symmetries will appear in the formulations. Besides, their form makes easy to impose 

other assumptions, (e. g. linearity on one argument), realising clearly their consequences, which, of 

course, are mainly to prune otherwise untractable expressions. 
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11.4 TABLES 

List 
elements 

Functional basis Generators 

A trA, trA2, trA3 I, A, A2 

A, B trAB, trA2B, trAB2, trA2B2 AB + BA, AZB + BA2, AB2 + B2A 

A, B, C trABC 

Table 11-1 Functional basis and generators for isotropic functions of symmetric second order 
tensors 

Symmetry Functional basis Generators 

Isotropy trA, trA2, trA3 I, A, A2 

Transverse 
isotropy trA, trA2, trA3, trMA, trMA2 

I, A, A2, M, AM + MA, 
A2M + MA2 

Orthotropy py 
trAZ, trA3, trMA, trMA2, 

trM2A, trM2A2 
I, A, A2, M, M2, AM + MA, 

AZM + MA2 

Table 11-2 Functional basis and generators for isotropic and anisotropic functions of a single 
symmetric second order tensor 

Arguments General approach Isotropic Representation 

1 6 functions of 6 components 3 functions of 3 invariants 

2 6 functions of 12 components 8 functions of 10 invariants 

3 6 functions of 18 components 18 functions of 21 
invariants 

Table 11-3 Complexity of tensorial function specification 
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12 APPENDIX III: MISCELLANEA 

The purpose of this appendix is to gather some developments that either underpin or extend results 
presented in the thesis and for which no appropriate reference has been found. 

12.1.1 Small-strain hypothesis in bender-based pulse tests 

The small strain assumption might be justified if we compare the size of the maximum bender deflection 

and that of typical wavelengths. We have seen in Chapter 5 that there is substantial uncertainty about the 

actual behaviour of a soil-embedded bender element. Nevertheless a rough estimate can still be made. 
The static tip displacement for a free-deflecting bender of the cantilever type is given by (Schultheiss, 

1983) 

D= 3d31Vs2 (206) 

Where d31 is a piezoelectric constant of the transducer material, V is the applied voltage and s is the 

slenderness of the transducer. Substituting values typical of geotechnical testing practice -see Chapter 2, 

3 and 6- we obtain a maximum displacement of circa 10-1 cm. Even assuming a dynamic gain at 

resonance of 100 over this free-air value, that will still be three orders of magnitude beneath a typical 

wavelength of 1cm. Of course, as the pulse propagates through the soil, attenuation will make this ratio 

even smaller. 

12.1.2 A direct check on pulse superposition 
We have seen thus that there are some theoretical grounds to believe that linear behaviour might be 

possible in soils and, furthermore, that such a linear behaviour is what pulse tests do explore. It is then 

interesting to try and check this linear behaviour assumption. Of course, all the results exposed in 

precedent chapters offer ample confirmation about the possibilities and advantages of such an approach. 

Nevertheless, it was thought that a direct check on linearity would also be interesting and taking 

advantage of ongoing research on bender element probes at Bristol such a check was performed. 

A sample of Gault clay for bench testing was prepared' along the lines described in Chapter 3. As 

illustrated in Figure 12-1, the number and disposition of bender element probes in it were nevertheless 
different. Single sinusoidal shots of f,, 5 kHz were fired from probes A and F and recorded at probe B 

and G. Each source probe was first activated on isolation, then, by means of a parallel connection to the 

function generator, they were fired simultaneously. 

Perfect linearity would imply that the simultaneous shot will be an exact copy of the result obtained by 

adding the two single shots. Figure 12-2 and Figure 12-3 display the recorded simultaneous trace along 

with the sum of equivalent consecutive shots. The level of superposition, although not perfect, seems 

adequate. 
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12.1.3 Rebound transfer function accounting for bender length 

The total output can be computed as the average of those corresponding to each path between source and 

receiver. These in turn are computed in two steps: first separate transfer functions are obtained for the 

first arrival, A;, and the rebound cycle, Si, then these are combined to obtain O; according to the general 

scheme. We have then for the first path -i. e. forward wave, front arrival- 

AQ =I W+(H-21B. 0) =Ie 
ik(H-21d) 

Sa =W+(H-IB, H-21B)B*W-(-'B'H)B'W+(H-'B, IB)=e`kr, eik(H+IB)e ikH =e-'2kH (207) 
e ik(H-218) 

0° -I 1-e'2kr' 

for the second path -i. e. forward wave, back arrival- 

Ab =I W -(-IB, o)B'W+(H - ere' la)= Ie '1B e 'k(H-r") =1e-; W 

Sb=S. = e- 1 2kH (208) 

Ob =11- e-12kH 

for the third path -i. e. backward wave, front arrival- 

A, =IW+(H-21B, o)B*W-(H-21B, x-Iß) Ie ik(X-le)eik', 
_e ikx 

Se =W-(-IB, H-zv5)B'W+(H-'B, la)B'W-(H-21ßIH-le) =e ik(X-l, )e ikxe-rkr, =e-12klr (209) 

-ikH 
Oc=I1_e! 2kH 

and for the fourth path -i. e. backward wave, back arrival- 

Ad =IW-(-zB, o)B'W+(x-iB; IB)B'W-(H-21B, N-rB)=Ie-""e-'e ''=Ie-'(f1+21, ) 

Sd _ Sc -e i2rdx (210) 

e it(x+2i. ) 

Now the total output is given by 

p=4 {OQ +Ob +O, +Od } 

II e-k(H-21s) e -w e ikH e ik(H+21e) 

=4 
1-e i2kH 

+1_e 
i2kH 

+ 
1-e i2kH 

+1- 
eilk" 

(211) 
2kle } 

-1 
eH ¬i2/e 

I-e-i2kH - 

-Iek {cos(2klB )+ 1} 
21-e 
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12.1.4 Moduli equivalence for transverse isotropic material 

The equivalence between the moduli in the symmetric engineering notation and the matrix notation is 

given by 

Ei, =Jz D, 21 -D, 2 
J EN = Di1D33-Di 

VVH = 
DQ 

(212) 
Dig +D12 

z Di2D33 -Dis Vim 
2 Di1D33 -Dis 

G,, y = D� 

And J represents the determinant of the principal minor of order three of Do. When the asymmetric 

engineering notation is employed the following Poisson ratio should be added 

_EH 
Dl3(DI1-D12) 

VHV --VVH _'2 
Er DI1D33 

-D13 
(213) 

12.1.5 Objectivity checks and anisotropy: an example 
Is straightforward to apply the principle of space isotropy for isotropic materials. Classically this will be 

done as a check in objectivity. In a formulation whatsoever, a general reference transformation is applied 

to its variables, and, after some manipulation, the original form should be recovered in the new reference. 
As an illustration, consider the Von Mises yield criteria for plane stress 

Y=2SX+2SY 2(SX-SYýZ+3SX,. 
=r2 (214) 

where the S;; represent the components of the 2-D stress tensor. Now apply a general plane rotation of 

angle 0, given by 

cos0 sing Q 
[sinO 

cos 9QE 
Orth (215) 

to the stress tensor S, obtaining a transformed stress tensor. The Mises criterion could now be written as 

Y= 
23Ix+232 

r1 Sx-Sry+3Sxr =r2 

Stf =r 
. 

QpjQgl 

(216) 

Substituting the values of the transformed stresses a somehow intricate trigonometric expression is 

obtained -Figure 12-4. After careful consideration of the trigonometric coefficients this expression could 
be simplified to recover (214), thus proving the objectivity of Mises criteria. 

The traditional approach to anisotropic formulations apparently precludes the application of such a check 

on their objectivity. Hill (1950) generalised the Mises yield criteria for anisotropic materials. The 
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expression proposed, for a material with general anisotropy, takes the following form in the case of plane 
stress 

Y=aSX+bSY+c(SX-Sy) +dSX, =r2 (217) 

where the coefficients a, b, c, d characterise the anisotropy. If a general transformation is applied to this 
formula, an intricate trigonometric expression is again obtained -Figure 12-5. But now the presence of the 

anisotropic coefficients, {a, b, c, d}, prevents any simplification, and, in fact, the formulation remains 
dependent on the angle 0, or, in other words, in the orientation of the reference system. In fact, to obtain 
formulations corresponding to more symmetric materials, the technique employed by Hill is to identify 

expressions corresponding to the rotation angles 0 characterising the material symmetry. This imposes 

conditions on the anisotropic coefficients, reducing their number; for example, a square symmetry - 

symmetries given by 0= rt/2 and its integer multiples-, gives a=b, therefore reducing (217) to 

Y=a(SX+SY)+c(SX-S,. )Z+d S,. =r2 (218) 

12.1.6 Collinearity 

In constitutive parlance the term collinearity -or coaxiality- is frequently used to express the coincidence 

of principal axes of stress and strain or, in general, of an agent and a response. The theory of tensorial 

function representations is useful to clarify the implications of this property. 

In the case of a second order tensorial function of just one tensorial second-order argument (and perhaps 

many scalar arguments) its representation theorem states 

T= F(A) = q0I+co, A+c'2A2 (219) 

With (pi functions of (trA, trAZ, trA3). If the equation is expressed in the principal axes of A, then all the 

matrix are diagonal and T has the same principal axes as A i. e. T is collinear with A. 

In we add any other argument to the list of F, be it a vector or another tensor, the representation will 

include more terms, (generators), that will not be diagonal, in the general case, when expressed in A 

principal axes. So T would not have, in general, the same principal axes as any of the arguments in F. 

Consequently, it can be stated that for any material property that expresses one tensor as a function of just 

another tensor (and plenty of scalars) coincidence of principal axes is a physical requirement. Otherwise, 

if non-coincidence of principal axes is soughed, there is a need to include in the relation at least another 

argument, either a vector or a tensor. 

1 2.1.7 Casagrande & Carrillo on induced and inherent anisotropy 

A pervading feature in soil literature dealing with anisotropy is the distinction between induced and 

inherent anisotropy. The idea could be traced back to Casagrande & Carrillo who proposed it in 1944. 
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Casagrande & Carrillo dealt with strength anisotropy. It is worth to quote them exactly: ".... If the 

anisotropic distribution of strength, exhibited by the material at failure, is due exclusively to the strain 

associated with the applied stresses, the material will be said to possess induced anisotropy. If, in the 

other hand, the non-isotropic behaviour observed in a test is a physical characteristic inherent in the 

material, and entirely independent of the applied strains, the material will be said to possess inherent 

anisotropy. " 

This definition looks deceptively simple. In what follows it would be shown that their proponents failed to 

give it a precise meaning and that this purpose could be best served within the framework presented in the 

text. 

After making this definition, they proceed to generalise the Mohr-Coulomb criteria for purely cohesive and 

purely frictional materials. Here we shall take a closer look to their proposal for an anisotropic cohesive 

material, within a plane stress context, which is simpler and good enough for our purpose. 

A purely cohesive strength criterion is usually known by the name of Tresca. For an isotropic material it could 
be written as: 

max (2) n(2). T" t(2) Sc 

Where T is the stress tensor, n the generic unit normal to a plane (identified by %) and ta generic unit vector 

orthogonal to n. What is written means that the maximum tangential stress in any plane is limited by a 

constant value, c. A straightforward development shows that this maximum corresponds to a plane at 45° with 

the principal axis of T. 

Casagrande & Carrillo arguments are expressed in graphical form, but they could nevertheless be interpreted 

as follows. A "cohesion tensor", C, is proposed120, such that cohesion in any plane, c,, will be obtained as: 

CA =n(ý2)"C"n(. 2) 

When this equation is expressed in the principal axes of C the strength distribution function employed by 

Casagrande & Carrillo is recovered: 

Ca = C2 + (Cl 
- Cl) sin2 

(a) (220) 

And here a denotes the offset angle of a generic vector from the principal axes of C. Now, the generalised 

Tresca criteria proposed compares at each plane, its shear strength or cohesion, ca, with the tangential stress 

acting on that plane. This could be written as: 

max(2) n(2)-T. (2)-n(2). C"n(A)<_0 (221) 

It is at this point Where the distinction between inherent and induced anisotropy is introduced. According to 

Casagrande & Carrillo in a material with induced anisotropy "... the principal strengths develop in the planes 

10 Although the term tensor is never used, an explicit parallel is traced with the small deformation tensor in elasticity theory. 
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ofprincipal stress" We can rephrase that saying that for induced anisotropy C and T share principal axes -i. e. 
they are coaxial- whereas for inherent anisotropy C and T do not share principal axes -i. e. they're non-coaxial. 

After maximisation of (221) some results are obtained in the paper for the coaxial or "induced" case: 

"a critical value of a, angle between the failure plane and C principal axes 

"a value ca of cohesion in that plane 

"a limit to the Mohr circle radius, r 

tan2ac=cz 
cl 

2c, c2 ca = (222) 
Cl +c2 

re, = c, c2 

Note that the principal values of C will be obtained by measuring ra and a, in any test re aching failure. The 

initial orientation of the sample with respect to any fixed reference is immaterial. If the theory is employed to 

interpret the undrained strength of a clay deposit it would predict the same strength for all sample orientations. 
The effect of the so called "induced anisotropy" is to modify the failure angle plane and the value of the 

deviatoric failure stress, with respect to the case where c, =c2 but, perhaps surprisingly, the resulting failure 

criteria is isotropic! 

12.1.8 Elastic tensor symmetries and plane wave pmpagation directions. 

For any given elastic tensor C with symmetry group given by GE, then if QE GE 

C= QTQTCQQ =C (223) 

Consider now two different propagation directions, and form the corresponding Kelvin-Christoffel 

tensors 

r =pTCp (224) 
I' = pTCp 

Those two directions will be related through a particular rotation, QP 

P= Qpp (225) 

and this rotation could be applied to transform any tensor. In particular we can write 

QpfQp = PTQpQpCQpQpP =PTCP (226) 

Now if Qp belongs to the symmetry group of C, i. e. if Qp e GE 

r= pTcp = PTcp =r (227) 
r= QrQT (228) 
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Thus making similar the two Kelvin-Christoffel tensors associated with both directions. This implies 

(Landeman & Hestenes, 1980) that they have the same eigenvalues (phase velocities) and that their 

associated eigenvectors (polarizations) are related through 

ä= Qpa (229) 

12.1.9 General expressions for group velocity in anisotropic elastic solids 
It is convenient to work in wave vector space (k-space) using spherical coordinates. Therefore we have: 

k=r(sincOcosB sinBsincO cosq) (230) 

Note that the radial coordinate, r, corresponds to the wavenumber, usually denoted by k. The dispersion 

relationship can be seen as describing a family of surfaces, level curves of frequency, in k-space. 

D- w-kv(6,9) = w-rv(B, sp) =0 (231) 

The gradient of this surfaces of constant frequency is the group velocity vector. Using the gradient 

expression for spherical coordinates (e. g. Bourne & Kendall, 1992) we have 

C= VD = ve+rv- eB + 
ruf' 

e =ve`+v e+ 
v' 

e (232) 
9`rr sin 0cee sin 0 

Where (e, , ee , e@ } are the unit base vectors associated with the spherical coordinate system. A number 

of consequences follow from this expression. First, if this vector is now expressed in Cartesian 

coordinates we have: 

c81= v sin(g) cos(6) -vg sin() + cos(q) cos(o) vý 
sin(O) 

cg2 =v sin(O) sin(p) +v g cos(6) + v., cos(co) (233) 
( 

9, - cg3- v cos(fo)-sin(® v 

Manipulation of this equations leads to expressions for the modulus, azimuth and dip angle of group 

velocity: 

2 
V2 = V2 +V2 + 

V/ 

B sin2 0 

sin 
cosh= y vcosc, -v9 

sin9 
(234) 

V sin Osin q+v,, cos 0+ v0 cos p 
tanp = 

vcosOsin9 -v9sin0+v4 cos cctan0 

Now is interesting to see the relation of the group velocity vector with the slowness surface. The phase 

velocity (V) and slowness (S) surfaces can be written as 
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V-r-v(O, o7)=0 

S=r-1_0 (235) 

v(O, 97) 
It is readily appreciated that the slowness surface belong to the dispersion family for unit value of the 

parameter frequency. The gradient vector of this surface would be therefore parallel to the group velocity 

vector. In fact, the proportionality factor coincides with the phase velocity, as can be seen by writing: 

VS = eý + 
ZB 

ee +2 
VW? 

eý = eý +-e Be+ v" 
e9 =v ce (236) 

vrv rsinO v vsinB 

Noting that the slowness vector can also be written as 

1 
q=-er 

V 
(237) 

an expression for group velocity can be obtained in terms of the slowness vector, q, and the slowness 

surface (S) 

vs eg=qvs (238) 

12.1.10 Group and phase velocity on a plane of symmetry 

In a system with planes of symmetry we can choose the plane to be one of the coordinate planes, say x, 

=0 or, equivalently, 0= rd2. Noting also that ve=0 equations (17) are reduced to: 

c91 =0 

Cg2 =v sin(d) +vc cos(go) 
Cg3 =v cos(co) - sin(co)v9 

Which, in turn, are equivalent to: 

V2(p) = V2(9)+V, 
(g) 

vc/v+tanqý 
tang=1_(v9/)tan 

2 

(239) 

(240) 
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12.2 FIGURES 

Figure 12-1 Bender set-up for linearity check 
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13 APPENDIX IV: AN EXERCISE IN HYPOPLASTIC 

MODELLING 

13.1 INTRODUCTION 

Between the years 1955 and 1970 the elasto-plastic approach to soil modelling was developed in 

Cambridge by Roscoe and co-workers (Wood 1990). They successfully used a particular constitutive 
theory, whose initial developments were guided by observations on metals, to model the behaviour of 

remoulded clays. Such was the success obtained that elasto-plasticity remains the standard approach of 

most material modelling in soils. 

Nearly at the same period, a general theory of constitutive equations was being developed by Noll, 

Truesdell, and many others (Malvern, 1969). Their aim was to propose a two-step framework for 

constitutive formulations. First the basic principles of mechanics, equally relevant to all kind of materials, 

should be applied to obtain very general expressions. Then particular assumptions, suitable for the 

materials under study, would be applied, specialising step by step the general expressions 

The echo of this rationalistic approach in soil mechanics was rather scarce during a long period. This has 

changed now. In the last fifteen years, Kolymbas, Gudehus & co-workers have used it to develop what 

they have called hypoplasticity. Due to their nonyielding efforts, hypoplasticity has been developed to 

reach the status of a sensible alternative to the more traditional elasto-plastic approach. Their very 
difference being strikingly present in the whole mathematical formulation from the onset, hypoplastic 

models look uncomfortable for the newcomer. Nevertheless the success so far obtained on modelling 

various different aspects of soil behaviour make worthwhile it's careful study. 

The objective of this work is to obtain some familiarity with the hypoplastic approach and its 

possibilities. To do so we will first review the general characteristics of hypoplastic formulations, with 

particular emphasis on sand-related developments. Then we will explore one particular hypoplastic 

formulation, testing it against some features of soil behaviour recorded by Sture et al (1988) while 

applying complex stress paths to sand on a true triaxial apparatus. 

The development of hypoplastic formulations has been frequently described by its proponents (e. g. Wu & 

Niemunis, 1996) as "algebraic" as opposed to the "geometric" approach which is emphasised on elasto- 

plastic models (with their yield surfaces, plastic potentials, bounding surfaces, etc). It is then necessary to 

have an understanding of the algebraic methods involved. Appendix 2 in this thesis reviews the relevant 

aspects of the algebra of tensorial functions. 
. 
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13.2 A REVIEW OF HYPOPLASTICAL SOIL MODELLING 

13.2.1 Hypoelasticity 

Hypoplastic formulations are usually presented (Kolymbas 1989) as generalisations of hypoelasticity, 

whose applications to soil mechanics preceded those of hypoplasticity. From the rationalistic point of 

view they are indeed very close cousins. It is convenient then to take a look at the older to appreciate the 

specificity of the younger. 

The concept of hypoelasticity was proposed by Truesdell (1955), as a particular class of constitutive 

equations where the stress rate depends only on the stress and strain rate tensors 

6= F(a, E) (241) 

the latter is defined as the symmetric part of the velocity gradient, 

1 (Ov+VVT) (242) 

and, within the small deformation hypothesis, it can be approximated by the rate of small-deformation 

tensor (Spencer, 1980). Mathematically (241) can be described as a tensorial function of two second- 

order symmetric tensors. Following Appendix 2, the principle of objectivity implies that the most general 

constitutive equations derived from it has the form 

90I+91a+c2a2 +f73E+f74E2 +Ps(aE+Ea) 
+A(aZE+Ea2)+97(aC2 +E2a) (243) 

s/Jt =Spy 
{tra, 

trat, tra3, trE, trt2, trE3, trat, tra2E, traE2I 

Where the (pi are, as indicated, general functions of the nine isotropic invariants listed. 

According to Truesdell, hypoelastic materials are those where (241) is linear on the strain rate. This is 

one way, -but, as we shall see, not the only one-, of achieving rate or time-independence, a condition well 

adapted to sand behaviour. Such a linear relationship reduces the general expression (243) to 

90I+VIC; +92x2 +573E+5ý5((IE+Ea) +96(a2E+Ea2 

Sp, = Spt 
{tra, trat, tra3 }i=3,5,6 (244) 

qýt=9jýra, tra2, tra3, trE, trat, tra2E} i=0,1,2 

On the functional coefficients above the dependence on the strain rate invariants must be linear. 

Further simplifications might be obtained by establishing some conditions on the stress dependency. For 

instance, it may be postulated that the dependency on a is also lineal, and in that case the hypoelastic 

general equation reduces to 
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a= g'oI+go1a+ýO3E+9p5(aE+Ea) 

Po= 9O tra+PobtrE+Spo, traE+Ad 
91 = 91btrt + c'1d (245) 

93 = O3btra + 93d 

95 = 95d 

And only nine independent coefficients define each material. 

Note that (245) will include the following equation 

6= go (tra, trr)I + cp, (tra)t (246) 

which may be cast in a more familiar form like 

_ 
E(p) vE(p) (247) a 2(1 + v)""I 

+ (1- 2 vXl + v) 
E 

which is the formulation of isotropic elasticity with Young modulus dependent on mean stress. This 

corresponds to a widely used -e. g. pavement design, interpretation of dynamic tests- proposal by Duncan 

& Chang (1970). Zytynski et al. (1978) famously noted that this formulation was incompatible with a 

strain-energy potential. But that was precisely in Truesdell mind; the existence of a strain energy 

potential was a restriction that hypoelastic models need not follow. If that was imposed a more restricted 

range of models appeared, and those were called hyperelastic to emphasise the difference. 

Nevertheless, those were rather unconscious applications. Collins & Bachus (1989), while presenting 

their own model, made a thorough survey of conscious hypoelastic models finding that no more than two 

or three teams had followed that path. As stated before, in soil mechanics the elasto-plastic approach was 
dominating. They also weighted the pros and cons of the hypoelastic and elasto-plastic approaches to soil 

modelling. Their observations embrace two different aspects: implementation and modelling capabilities. 

Relating to implementation they signalled that hypoelastic formulations are easier to fit into finite 

element codes, as they are directly written in incremental form and integration can proceed directly 

without extra checks on yield conditions, etc. On the wrong side they noted that parameters on 
hypoelastic models were quite distant from soil mechanics practice, they escaped any meaningful 
interpretation and there was no easy way to measure them. 

They addressed themselves to solve this last problem, establishing a thorough mathematical optimisation 

procedure to obtain values of the parameters. The problem of interpretation, nevertheless, remained 
intact, and, at least in their 16-parameter model, -linear in strain and quadratic in stress-, big. 
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From modelling viewpoint, they noted the following interesting features of these models: nonlinearity of 

stress-strain response, stress-path dependence, non-coincidence of principal axes of stress and strain 
increment and stress-induced anisotropy. 

The first two features, which might be explained just by nonlinearity, are obtained even with the simpler 
formulations, like (247). Non-coincidence of principal axes of increments of stress and strain requires the 

inclusion of at least two generators -see Appendix 2- in the formulation. For example, a formulation like 

(245) will be enough to provide this effect, because the increment of stress would not be, in general, 

collinear with either the stress or the strain increment. 

These capabilities made the response thus described more similar to the one obtained with elasto-plastic 

models than with elastic models. In fact, hypoelastic models were even shown (Mullenger & Davis, 

1981) to provide "yield points", an aspect to where we'll return later while commenting the hypoplastic 

results. The main limitation of the hypoelastic formulation is the linear relationship between stress and 

strain rates, which implies that if we apply and then retire the same strain increment no stress change is 

induced, 

ä=F(c): t+F(a): (-E)=F(a): [t-E]=O (248) 

There is no unloading direction in stress space, which is a main feature of elastoplastic response. An 

unloading path will trace back exactly the loading path, in Figure 13-1 OAB will be followed by BAO 

instead of BC, and a complete unloading will not leave any trace of deformation in the material: this is 

why talking about hypoelasticity makes sense. 

This feature makes hypoelastic formulations quite unsuitable to model soil behaviour in non-monotonic 

stress paths. Collins & Bachus (1989), tried to get round this difficulty adding a definition of elastic 

behaviour and a loading criteria to choose between elastic and hypoelastic response. The loading criteria 

was based on the sign of the stress power and, to smooth the transition from one behaviour to the other it 

was complemented with an interpolation rule based on the mobilised stress-ratio. 

These modifications seemed to work pretty well, but on one hand they added six more parameters to the 

model, arriving to a total of 22, and on the other the conceptual clarity of the model suffered. The next 

formulations presented took a different approach to solve the linearity problem. 

13.2.2 Incremental nonlinea_rity and hypoplasticity. 

Incremental nonlinearity and hypoplasticity are concepts that have been introduced almost independently 

by several researchers -Dafalias (1986),. Kolymbas (1989), Darve (1989). Their approaches to 

constitutive modelling are, nevertheless, different; it is thus not surprising that they use similar words to 

denote slightly varying concepts. We are here interested in the formulations by Kolymbas et al. 

Kolymbas departure point is the same general constitutive equation proposed by Truesdell, 
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6= F(ß, t) (249) 

But he observes, quite accurately, that time or rate-independence could be accomplished just by making 

the equation homogeneous of the first degree on the strain rate, as then 

äOt = F(a, tät) = F(a, E)&t (250) 

And there is no need to keep the other condition of linearity, i. e. superposition (248), which, as seen 
before, is very unrealistic. 

All the tensor generators are homogeneous in strain rate. Hence, this condition does not involve any term 

reduction in the general representation given by the application of objectivity upon (250). Only the form 

of the invariant functions cp; is restricted. Kolymbas applied another general condition for sands: the 

equation must be homogeneous of n-degree in the stress. This (Kolymbas, 1998) was suggested by the 

true triaxial database accumulated in Karslruhe by Goldscheider, where a prominent feature was the 

observation that, for virgin loading of reconstituted samples, any maintained proportional loading 

resulted in a similarly maintained proportional deformation. This can be stated as 

6= F(xa, t) = x"-'F((Y, t) (251) 

Like its strain rate counterpart, this homogeneity condition does restrict the form of the equation, but 

does not reduce the number of generators or invariants. All the generators and invariants might be present 

in the formulation; an equation such as 

a= cltra5 
(at 

+ ta)+ c2 
tra3trEa2 

2 

(aE2 
+ EZa) 

trE 
(252) 

thoroughly non-linear, with c; being constants, is perfectly admissible. At first sight then hypoplastic 

formulations encompass a fairly wider territory than hypoelastic ones. Nevertheless, the area of that 

territory so far explored by it's proponents has been rather reduced. The main feature of all the 

hypoplastic formulations reviewed here is that all the strain rate nonlinearity concentrates on a 

dependence on its norm, 

II tl= t2 (253) 

excluding for instance, the previous example. Moreover, the general tensorial form of the hypoplastic 

equations so far proposed can be written as 

ä=L(a): E+N(a)IEQ (254) 

Indicating that the hypoplastic relationship can be decomposed in a hypoelastic term given by L 

underlined to emphasise its character of fourth order tensor- and a term multiplying the strain rate trace. 

Perhaps the main advantage of equation (254) is that could be easily inverted to give the strain increment 

as a function of stress and stress increment tensor. To do so its necessary to employ a two step procedure. 

First, the inverse of L is applied to both sides, and rearranging, 
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E=L': a+L'': NIEH (255) 

and then the norm is taken, obtaining a quadratic equation, 

x2(BB-1)-2xAB+AA=O 
x= ýEý 

(256) 
A=L-' :ä 

B=L-`: N 

Taking the positive root and substituting above the inversion equation is complete 

(AB)2 
-AA(BB-1) AB 

E =A-B (BB-1) - 1- BB 
(257) 

Where again there is a linear term on the stress rate -the first- and a non-linear -the second. 

13.2.3 Applications of hvpoplastic formulations in sand modelling. 

Even within the self-imposed strictures of (254), there is ample room for many different hypoplastic 

formulations. In this section we bring together some of the proposals made so far for sands, commenting 

also on their calibration methods and, of course, on the results so far obtained. 

13.2.3.1 First proposals 

Kolymbas (1989) used the following equation in the Cleveland workshop 

x 
a= Cl 

1(ßE+Ea)+c2tr(at)1+ 
c3i 1 C4 

t 
Via) + I£ý (258) 

The main feature here is simplicity. Kolymbas only uses four generators and three invariants and the 

number of model parameters -c; is four. Compared with other participants, the simulation results were 

well on the (good) average for proportional paths on cubes and hollow cylinders, somehow over the 

(really poor) average for non-proportional paths and quite bad for cyclic tests. 

Wu & Bauer (1994) employed a slightly modified version of (258) 

ä= citr(a)t+c2tr((Yt) 
a+ [Cl a2 + C4 

ad + 
]II 

t 11 
tr(a) tr(a) tr(a) (259) 

ad =a-tr(a)t 

This equation has the same number of parameters, invariants and generators as the precedent. Moreover, 

it also shares the same invariants and three generators. It was used to reproduce various test results of 
drained and undrained triaxial, oedometer and simple shear in different sands, showing good results in 

monotonic and single cycle cases, but -perhaps unsurprisingly- being less good in truly cyclic cases. 
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Calibration of these equations was rather simple. The four parameters may be determined using a 
conventional compressive triaxial test. In those tests all the tensors involved have their principal axes 
fixed and coincident during the whole test. When expressed on those axes the tensor equalities provide 
just two different equations due to the axial symmetry of the test. Henceforth, if stress, strain increment 

and stress increments are measured at any stage during a triaxial test, two linear equations in four 

unknowns (the parameters) are obtained. 

Two such systems are enough to obtain a complete solution. Kolymbas did choose two very particular 
test stages: the beginning of axial load application and the end of test, when the stress deviator reaches a 
"limit state". It's important to appreciate here that Kolymbas "limit state" it's not the same as the more 
familiar critical state, because he admits eagerly that at the end of test, in the "limit state", the sand may 

still be dilating or contracting. 

While quite straightforward, this calibration procedure has also some inconveniences. First, one may 

wonder what happens if, instead of the final and initial points of the triaxial test another one is chosen 
(the peak deviator may be an obvious candidate). It's even more puzzling to imagine what could happen 

if such a procedure is attempted with a true asymmetric triaxial database, where each point of a test will 

provide three and not just two equations, or, even worst, with a plane strain test, where each point might 

provide five equations... 

13.2.3.2 Stress boundaries. 

The surfaces pervading in elasto-plastic models convey two different types of information. They help 

define the incremental stress-strain relationship through their geometric characteristics and relations. But 

they also trace a distinction between accessible and inaccessible states -of stress, if stress is the only state 

variable. 

In the algebraic approach of hypoplasticity, the first role is well covered by the specification of a 

particular form of the equation, like (259) before. The question arises about the second role, because the 

distinction between accessible and inaccessible states has clear physical meaning and cannot be 

neglected. 

In hypoelasticity the problem was addressed as follows. The hypoelastic relation, 

=F(a): E (260) 

could be viewed as a linear transformation between the (six dimensional) vectors of stress and strain 
increment. While the relationship is invertible, each stress increment determines uniquely an strain 
increment; when non-invertibility occurs the strain increment is undetermined. This provided a suitable 

definition of limit states; i. e. as the stress values, a, where 

det F(a) =0 (261) 
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Note that this is something that hyperelastic equations exclude, as there F is positive definite. Mullenger 

& Davis (1981) explored this approach. Their hypoelastic formulation was a seven-parameter one; 

application of (261) to define "yield" or "critical states" permitted the identification of those parameters. 
The method employed was geometrical: critical states had known traces on specific subsets of the stress 

space. This approach conduced to a closed smooth surface in the three-dimensional stress space very 

similar to the two-surface models of Lade or Matsuoka. An interesting by-product were expressions for 

the algebraic hypoelastic coefficients in terms of more identifiable soil-mechanics parameters, like 

critical friction angle in compression and extension and yield value in isotropic compression. 

In the hypoplastic literature, two papers by Wu and Niemunis, (1996,1997), are particularly concerned 

with this question. The exploration of this surfaces made by Wu & Niemunis is based on algebraic 

manipulation of equation (254) or its inverse (255) and numerical probing using (259). They looked at 

three different surfaces in stress space, the bounding surface b(a), the failure surface, f(v), and the 

stability surface, s(6). These are defined as follows, 

aE b(a) de Ob(aý5 U Vt 

aE f(a) def 
, 
t; 60} (262) 

aESýaý def 
, 
EEO} 

The bounding surface limits the accessible states of stress and is the outermost by definition; it has 

conical shape with the vertex on the origin of stress space, the axis coincident with the isotropic axis and 

circular section. This is, apparently121, a consequence of (254) being homogeneous of the first degree on 

stress. 

The failure surface coincides with the limit locus of invertibility of the incremental constitutive 

relationship (259). Looking at the inverse form this corresponds obviously to BB a 1. It is, thus, the same 

concept, as the "yield locus" of hypoelasticity. Its shape may be analytically obtained by applying 

condition (261) on equation (259), results on a rounded triangular shape on the deviatoric plane, and a 

pair of frictional straight lines as trace on triaxial (and similar) planes. The process, unlike on the 

Mullenger & Davis hypoelastic case, is not detailed. One may wonder if the achievement of a nice shape 

imposes constraints on the equation parameters or not, being just four in this particular equation 

The stability surface, defined using Hill's stability criteria, was found to be the innermost, similar in 

deviatoric shape to the preceding ones, its isotropic trace being not quoted. The deviatoric shape was 

obtained by numerical testing, with a somehow restricted set of stress paths: radial excursions from the 

isotropic axis accepting coaxiality between stresses and strain increment. The meaning of this energetic 

condition in hypoplastic models was not clear even for the authors, they suggested that might be a 

boundary for the onset of strain softening. 

121 There's a somewhat obscure point in the proof. 
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13.2.3.3 Developments: void ratio role and critical state. 

In sands, initial density is determinant of the initial and limit response in a triaxial compression test. If the 

calibration procedure proposed by Kolymbas is used, two sands formed at different densities will have 

then different parameters, and, thus, will be considered as different materials. This was to be expected, 
because in the basic hypoplastic equation, (258), the incremental relationship between strain and stress 

rates is fixed" for any known stress state. In other terms, there is no other state variable apart from stress 

and density plays no role. 

As emphasised by Wood (1990) "Critical state soil mechanics is... [about] models of soil behaviour 

[where].. the link between volume change and effective stress history is a fundamental ingredient" and, 
thus, its not just another name for the Cam-clay model. The work on hypoplasticity by Bauer and 
Gudehus (1996,1997), aimed at solving the preceding problem of hypoplastic formulations, it's a perfect 

corroboration of such idea. 

To incorporate this basic idea of critical state soil mechanics, the constitutive relationship used by 

Truesdell and Kolymbas is modified, writing instead, 

it = F(a, E, e) (263) 

this new state variable must be introduced along it's own evolution equation, 

6= (1 + e)trr (264) 

where it's implicitly stated that sand grains are considered incompressible, and therefore no new material 

constants are introduced. Critical states are then defined as follows 

{a, e)ES ){e=0,6 =0, E9,0} (265) 

This set forms a surface S in state space and this surface must be reached by any monotonically 
increasing shearing path. 

Void ratio being a scalar variable, the general representation of (263) uses the same generators and 
functional basis as (249). This, as we have mentioned, may lead to very different formulations, 

nonetheless Bauer adhered to the restricted form proposed by Kolymbas, writing 

ä=L(Q, e): t+N(a, e)jE j (266) 

As Gudehus (e. g. 1996) has repeatedly advocated, the influence of density on the stress-strain response of 

sands may be concisely renamed picnotropy; the influence of stress level, barotropy. One basic tenet of 

critical state soil mechanics is that picnotropy and barotropy are linked together. This interaction manifest 
itself in the precedent formulation: L and N are postulated as functions both of the stress and the void 

ratio. Particularising, Bauer proposed the following equation, 

122 At least within the "failure surface" which, as seen before, bounds the region of invertibility. 
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At first glance this equation appear very similar to that presented by Wu & Bauer (259). From the 

algebraic viewpoint contains even less generators, dispensing with a2, and the invariants explicitly 

written are just the same {tra, tr c 2, trv 6'J. One slight difference is that the degree of homogeneity on 

stress is not anymore easily appreciated from that expression. 

Of course, the main difference is that instead of the four constant parameters affecting the coefficients of 

equation (267) we have now three functions of the void ratio and the stress. The parameters of the model 

are provided now by the specification of these functions. The process leading to that specification is 

detailed by Gudehus (1996) and Bauer (1996,1997); it is worth to consider its main ideas in some detail. 

They first consider how the critical surface should look on some well explored sections of the state space. 

In stress space -i. e. for fixed e- the critical surface is included within the failure surface previously 

defined. 

se(a)t f(a) (268) 

This trace is then identified with the Matsuoka-Nakai failure surface, a successful empirical surface 

commonly employed in soil mechanics -e. g. Gajo & Wood, 2000. This is a one-parameter surface and 

this parameter could be identified with a critical state angle of friction, cp,. 

They secondly consider the critical surface trace on the p-e plane -where the second and third stress 

invariants are null- for which they propose an empirical expression, 

tr(a) n 
ec = eco exp h 

s 

(269) 

where three more parameters appear, the -so called- granular hardness, h,, the critical void ratio at zero 

mean pressure, e., the exponent n. 

Still in the same plane, they specify on physical and empirical grounds the attainable range of states. 

Those limits are curves also given by expression (269), but with different values at zero mean pressure, 

e, o and edo, maximum and minimum void ratios respectively. This adds two more parameters to the 

model. 

These limits act as kind of bounding surface, and the distance of the actual void ratio to the critical one 

and to its (pressure dependent) bounds enters the equation through exponential laws, thus providing the 

final two parameters of the model, a and P. 
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A further condition is imposed. In many circumstances, -e. g. dense sands under triaxial compression- soil 
tests reveal a fragile behaviour with a peak on the load-response graph. Some of these peaks would also 
fall within the formal definition of critical state (265), however, tests do not end at peaks and it should be 

possible to distinguish peak states from critical states. Jefferies (1993) got rid of this problem by adding 

the condition 

e=0 (270) 

to the critical state definition. This is not the path followed by Bauer and Gudehus, who prefer to specify 

. 
fa (eC, aC) =0 (271) 

The enforcement of these conditions produces the following set of expressions for the functions a, f= and 
fd. 

a(a) =1 
Cl +c2 trail(l+cos30) 

fe=rd - (eC 
- ed) 

16 
f, 

ý 
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The precedent equations lead to a different calibration procedure. In previous hypoplastic models all 

parameters were adjustment parameters, with no clear meaning. Now, of eight parameters employed in 

the model, 

{q,,, k, eo, n, e1o , eao, a, R} 

there are just three recognised as adjustment parameters, namely the exponents n, a, ß. Within the rest, 

four correspond to some basic soil property, 

{q , h,, eco, edo} 

The last two correspond approximately to the conventional minimum and maximum density. The case of 

the minimum void ratio e; o is different, because there's no standard procedure of identification already 

available, but could be perhaps readily devised. This ease of parameter identification was hailed as a 

major achievement by Gudehus (1996) and indeed it looked so. 
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13.2.3.4 Developments: adding more internal variables. 

Hypoplastic soil modelling has grown to be a major subspecialty of its own. Different proposals aimed at 

exploring or improving some particular aspects of the precedent models appear now on the literature at 

regular pace. Without being exhaustive we want to recall here a few united by a feature particularly 
interesting from our point of view: the inclusion of more state variables in the model. 

In 1995 Kolymbas et al. pointed two modelling limitations of the first hypoplastic equations, like (258) or 

(259): lack of picnotropic-barotropic effects and lack of memory effects. The first issue is that addressed 

by Bauer and Gudehus critical-state models. The second issue may be also described as path-dependency. 

Experimental results have shown repeatedly that soil samples subject to the same incremental loading 

under equal stress and void ratio conditions behave differently, depending on how they have arrived at 

that state. This memory effect is particularly apparent under cyclic load programs but not only on them as 

will be shown below. 

Kolymbas et al. realised that an incremental equation where stress is the only state parameter would 

provide an incremental response dependent only on stress: there is no way to identify how an stress state 

was arrived at. Their suggestion to get out of this problem was centred on the concept of back-stress, 

introduced as a new tensorial state variable, S, who corrected the Cauchy stress, a. Their difference, 

called corrected stress, enters the general equation (241), now written as 

ä=F(a-s, t)=F(a�t) (273) 

As before with the void ratio, a new back-stress evolution equation is needed. In general, that equation 

shall be written like 

s= F(a, s, E) (274) 

While the concept is clear, its implementation proved much harder. As Kolymbas et al wrote "... the back 

stress being an internal variable is not directly accessible to measurement... " and, without any 

measurement to rely on, is hard to figure out what form (274) should take. This did not stop Kolymbas et 

al. who proceeded to simplify the problem. The first simplification suggested was quite an important one: 

a hydrostatic back stress was postulated. Then, 

s= sl (276) 

From the algebraic viewpoint, this is just a scalar variable, and now the stress rate in (273) depends again 

on two tensorial variables and a scalar, having the same general representation as the previous 

hypoplastic equations. From this viewpoint it is just the same equation as that proposed by Bauer and 

Gudehus, but with a stress-dimensioned variable instead of the void ratio. 

It is then not very surprising to find that the second simplifying assumption is to impose a zero back 

stress at the newly introduced "residual state", when the stress rate is zero. This is rather close to the 

critical state concept employed by Bauer and Gudehus. This careful naming is perhaps due to the author's 
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awareness of difficulties associated with achieving simultaneously critical state and homogeneous 
deformation in standard tests. 

The third simplifying assumption is to substitute the (tensorial) evolution equation (274) for an (scalar) 

state equation (or fmite equation in their terms) of the form 

s= G(tr(a), tr(E)) = g(p, e) (277) 

The particular development of (273) chosen is a modified eq. (259) 
, 

including now six terms "... to, 
improve performance in non axysimmetric paths... " 

C12 
233 
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tr apt) CC + C3 

a 
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ad 
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aZ 
-1' C6 

ad2 4 (278) 

tr(ay) tr(a) tr(a) tr(a) tr(adý 

From an algebraic standpoint again it is interesting to note that the same number of generators are 

employed as in the antecedent equation'2, and the only significant modification is the use of another 

invariant of the functional basis, tr(&). Would the back stress be generalised as a tensor, then the 

equation will depend on three tensorial variables, and its general representation will be a quite more 

complicated one. 

The specification of (277) adds four parameters to the six appearing in (278), for a total of ten. In contrast 

with the Bauer-Gudehus proposal none of them corresponds with any basic soil property. The simulation 

results presented (triaxial, oedometer, simple shear) are similar in scope. 

A recent paper by Niemunis and Herle (1997) addressed the problem of memory effects, but now 
building upon Bauer's treatment of picnotropic/barotropic features. Their proposal does not fit easily 
into the frame of hypoplasticity, because of its inclusion of loading/unloading criteria. The interesting 

point here is to note that they propose the inclusion of a tensorial variable, the intergranular strain, to deal 

with those pesky memory effects. 

New tensorial variables were also introduced to deal with the localization problem -i. e. to reproduce the 

appearance and evolution of shear zones in sand. Tejchman (1994) has presented a Cosserat development 

of hypoplastic equations. The Cosserat approach implies the inclusion of new internal variables: 

microrotations and couple stresses. 

13.3 HYPOPLASTIC MODELLING OF COMPLEX ELEMENT TESTS. 

13.3.1 Database description 

The experimental database here employed was formed at the University of Colorado at Boulder during 

the years 1985 to 1988. It's results have been partially presented by Alawaji et al. (1991). Full details are 

presented in Sture, Alawi & Ko (1988), Alawaji (1986) and Alawi (1985). 

123 By virtue of Cailey-Hamilton theorem. 
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The database comprises results from experiments on dry sand. The sand employed is Silver Leighton 

Buzzard, (SLB). It has a specific gravity of 2.66. It's sub-rounded and close-graded, with an uniformity 

coefficient of 1.48. It's maximum and minimum void ratios are e,,... = 0.815 and emir = 0.516. Samples 

were formed by dry pluviation from a height of 61 cm. They were cubical, with 17.8 cm side size. 
Specimens had 72% relative density i. e. an initial void ratio of 0.599 

Two different apparatus were employed in the testing programme: the multiaxial cubical apparatus 
(MCA) and the directional shear cell (DSC). The MCA applies a stress-controlled true triaxial loading, 

applying pressure in the sample sides through flexible membranes. The DSC has mixed boundary 

conditions: two rigid walls ensure a null out of plane deformation i. e. a plane strain condition; the in- 

plane movements are stress-controlled, with normal pressure applied through flexible membranes and 

shear stress by pulling four textured shear pads placed between the membranes and the sample. 

In the MCA, the stress paths of all"' experiments comprised two different stages: initial isotropic loading 

and deviatoric loading at constant isotropic pressure. This last stage would generally include various sub- 

stages, varying the stress increment direction from one to another. The sub-stages ended when the 

accumulated deviatoric strain within them reached a previously established ceiling. Figure 13-2 is an 

example of how this type of loading path looks like. 

The accumulated deviatoric strain ceiling was specified to be 1 or 2% in most cases. This limited 

deformation successfully prevented specimen failure. In some other tests, the final loading was taken up 

to 15% deformation, resulting in failed specimens with apparent shear bands. All throughout the 

experimental set the mean pressures were relatively low, between 13.8 and 69.5 kPa, to work within the 

range of the DSC. 

The observed behaviour was interpreted within the framework of elastoplasticity. The most significant 

results (Alawi, 1988, Alajawi et at., 1990) are now briefly recalled. 

There are grounds to propose an initial elastic response: the stiffness on unloading is very high and 

similar to the stiffness on initial loading. Here, unloading must be interpreted in a wide sense as any 

stress path comer. A nice example of this feature is given by test ACH4 on the MCA, whose deviatoric 

path -ACH4H- is illustrated on Figure 13-3. The deviatoric stress path has then three corners and four 

sections, being the last one the only proper reversal. If we graph the stress path against the accumulated 

strain work we obtain Figure 13-4. 

There are three evident steps, indicating very small deformation, appearing after each of the stress path 

comers. It's nevertheless also apparent that after each plateau the deformation increases quite gradually. 

124 Save one isotropic test 
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The selection of a yield point is then a matter of convention, and the convention followed by Alawi et al 
used as criteria an accumulated strain after a turning point of 0.05% 

From the observation of yield points thus defined (Alajawi et al., 1990) were able to establish rules for 

yield locus evolution. This was kinematic rather than isotropic, i. e. the yield locus did not change 

absolute size when dragged along the deviatoric plane. This is a result that only makes sense within the 

elastoplastic framework; however, other observations had wider scope. 

Initial anisotropy of response was observed only on dense samples. A more general feature was 

volumetric densification as the stress path wandered on the deviatoric plane (Figure 13-5). This result is 

directly comparable to more conventional cyclic triaxial tests (Figure 13-6). 

Strain increments were not simply related to either stress, stress-increment or both. This is seen very 

clearly in Figure 13-7, corresponding to test ACH!. The stress path goes to and fro three times on the 

same line and the direction of strain increments -in three different colours in the figure- are different each 

time. Within the elastoplastic framework this will indicate the need for a complex flow rule. 

13 3.2 Hypoplastic model: description. 

The hypoplastic equation here employed for the simulation was proposed by von Wolffersdorff (1996). 

It is written as follows 

2 
fs 

[tr(a2 [F2+a2 
tr(aE) 

a2+ fda F+ ad ]ltO] (279) 
tr(a) [tr(a)} tr(a) tr(a) 

whose coefficients are given by 
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This model is very similar to that proposed by Bauer and Gudehus (272). The equation has the same 

structure -in terms of generators and invariants employed-, was developed using the same principles and 

void ratio dependency -picnotropy- is addressed in exactly the same way through factors fe & fd. The 

main changes affect the stress-dependent multiplicative factors, here named F and a, whose expressions 

were changed to obtain a critical surface shape more adjusted to the Matsuoka-Nakai criterion. 

The parameters employed had the same name. Parameters who correspond to independently specified 

granular material properties should be exactly the same. Adjustment parameters may vary according to 

the equations shape i. e. according to their position within the equation. In this case of the adjustment 

parameters only a has a different position and thus it's value may change slightly. 

13.3.3 Simulation procedure. 
A program written by Herle (Herle, 1997) was available to solve the selected equation in some load cases 

. The cases included are isotropic compression, oedometric compression, triaxial compression with 

constant volume or constant radial pressure and, finally, biaxial compression at constant volume. The 

Colorado database does not fit into those categories. Therefore a new program was specifically written to 

simulate the tests. It's principal features will be now described. 

MCA tests are among the most complex laboratory tests available. Their results could and should be 

displayed in a number of different ways to obtain a proper understanding of what's happening with the 

sample. This made attractive the idea of working within the Excel environment and writing the 

programme in Visual Basic. 
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The hypoplastic equations are formulated with the strain rate as a function of the stress and strain rate. 
The usual way of solving them for any element test (e. g. Kolymbas 1989) takes into account the 
boundary conditions of the element test, which imply constraints to either it's stress or strain path, to 

obtain a reduced set of equations (from the six implicit in the tensorial formulation). When constraints 

were enforced in the stress path the non-linearity of the hypoplastic expressions required some iteration 

to obtain the corresponding strain rate. 

The nature of the Colorado database, (stress-controlled, but following complicated stress paths) made this 

approach unappealing. Instead, profit was taken of the formal inverted expression for the hypoplastic 

equation. This expression (257) leads in the case of Wolffersdorff formulation to 

AB (as)Z-AA(BB- )+ AB 
KK (BB-`F)2 BB-`i' 

(281) 
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For any particular experimental step the stress-rate is fixed. Due to rate-independence the inverted 

hypoplastic equation is formally equivalent to a first order ordinary, non-linear differential equation, like 

,Y=h 
(x, y) (282) 

where the stress length plays the role of the independent variable, x, and the strain vector the role of the 

dependent variable, y. Void ratio dependency explains the appearance of y on the right hand side of this 

equation. 

Numerical integration is necessary. Roddemann (1998) has shown for a similar case that good results are 

obtained with an explicit Euler integration formula if the stepsize is carefully controlled. A similar 

approach is followed here. To do so a procedure by Press et al. (1992) was translated. The procedure uses 

a fifth order Runge-Kutta integration formula with adaptive stepsize control. 

The inverted equation fails whenever the condition BB - IF =0 is fulfilled. This means that the built in 

Matsuoka-Nakai failure surface is crossed. It has to be emphasised that the model is built in a way that 

makes this surface dependent on void ratio. In other words, the Matsuoka-Nakai criterion gives the 

surface shape, but its size is controlled by the void ratio. The deviatoric dependence is illustrated in 

Figure 13-8. Using an elastoplastic concept we would say that the model has built-in isotropic hardening. 

The strenght of this hardening is controlled by all the parameters involved in the condition BB - `F - 0. 

For the set of parameters125 given in Herle & Tejchman (1997) for SLB this implicit "hardening law" is 

pictured in Figure 13-9. Is apparent that the effect is substantial. 

12$ See below for comments on this and other parameter sets. 
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Herle (1997) describes a simplified procedure to estimate the parameters needed by this equation: 

a) The critical friction angle, 9, is the angle of repose of a heap of sand 
b) The two usual limit void ratios could be employed as values of eo and edO. The correspondence is e, n,,, 

eo, em; p sw edo. Alternatively, they can be estimated from the coefficient of uniformity and the grain 

shape. 

c) The granular hardness, h,, is obtained from an isotropic compression test. 

d) An isotropic compression test provides also the parameter n, although this could also be estimated 
from granulometric data. 

e) The exponent a is obtained through the peak friction angle of a dense sample of sand. Although not 

explicitly mentioned, analogy with the calibration procedure suggested by Bauer implies that this 

peak friction angle is to be obtained through a conventional compressive drained triaxial test. 

f) Finally, two simplifications are introduced: the exponent 0 could be taken as 1 and the parameter e; o 
could be approximated as 1.15 e; o. 

The studied database does not permit to follow exactly this calibration procedure, nonetheless some 

results are readily available. There are maximum and minimum density measurements, resulting on void 

ratios of 0.516 and 0.815; this gives edo and eO. Looking at the granulometric curve for SLB -e. g. Alawi, 

1988- d10 0.55, d50- dam= 0.8. Thus U =1.454 and using the regression line by Herle a value n=0.32 is 

obtained. 

There is one isotropic compression test done with the MCA with mean stress ranging from 13 to 173 kPa, 

see Figure 13-10. Following the procedure suggested by Herle (1997) and Bauer (1996) the noval 

compression branch is fitted very accurately with parameters h, = 283 MPa and n=0.741, as could be 

appreciated in Figure 13-11 . Is interesting to mention that extrapolating this curve to p=0a void ratio of 
0.60 is obtained, obviously different from the ideal absolute maximum void ratio e, 0 obtained above. 

There is no standard triaxial test in the database. Moreover, the small level of deformation attained in 

most tests hindered the attainment of critical state. Still, there are two series, one corresponding to 

extension, the other to compression, of three p constant tests which were carried on to large deformations. 

The MCA being stress controlled there are reasonable doubts about any post-peak measurement, indeed, 

localization was observed in some specimens (Alawi, 1988). The data corresponding to the last register 

of each test of those series are collected in Table 13-1, together with the friction angle that could be 

estimated from them. The bigger value given by extension tests corresponds to some type of peak angle 

and illustrates the difficulties of recording post-peak behaviour associated with such tests. 

A set of hypoplastic parameters for SLB has been produced in the literature a couple of times. 
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" Herle (1997), gives values for SLB sand to the parameters of the Wolffersdorff model. These 

parameters are estimated from a paper of Kolbuszewski (1963), who provides data on the minimum 
and maximum density of LBS, it's oedometric compressibility, and triaxial friction angles. 

" Herle & Tejchman (1997) produced a set of parameters for SLB sand based on data by Tatsuoka. 

They were considering a Cosserat extension of the Bauer model. This extension introduces more 

parameters, while keeping the original set from Bauer (1996). 

Table 13-2 collects the data from all the different sources examined. In the Colorado column there are 
two values for n: one from the isotropic test and another from the granulometry. Lacking conventional 

triaxial test data the alpha value in that column is missing. The beta value is assumed in all cases. 

The calibrated values are within the (ample) range of those quoted in the literature for other granular 

materials. The only notable exception corresponds to the high n value, fitted to the isotropic test. This 

value is almost double of all the values quoted by Herle (1997) for 12 different granular materials. If this 

value is not accepted , and the value derived from the granulometric curve is taken instead the set of 

parameters from calibration are not very different from those quoted in Herle (1997). 

If we look now at the two sets of literature values, although there are other differences, it is apparent that 

the main one corresponds to the granular hardness parameter, hs. The consequences of that are explored 
below. 

13.3.5 Simulation results 

13.3.5.1 A triaxial check 

As explained above the newly written program differed substantially -stress driven vs strain driven 

integration- from that previously written by Herle. This offered an obvious opportunity to check the 

performance of the chosen numerical approach. 

Due to the limited scope of Herle's program the Colorado database was excluded as source of 

comparison. Henceforth a triaxial test on Hostun sand was selected from another well-known database 

(Saada & Puccini, 1989). This test, named HH1, was conducted in a hollow cylinder apparatus, but the 

stress path imposed was exactly that of a conventional, constant a3, triaxial experiment. A set of 

hypoplastic parameters for Hostun sand was provided by Herle (Herle, 1997) and is here reproduced as 
Table 13-3. 

The results of both simulations are displayed in Figure 13-12 -volumetric behaviour- and Figure 13-13 

deviatoric behaviour. It is apparent that both programs produce the same results in the main part of the 

test. With the set of parameters employed the initial contraction of the sample and its stiffness are both 

overestimated. 
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Herle's strain driven program keeps integrating well beyond the actual failure of the sample until a pre- 
established limit of 0.1axial strain. The inverse, stress-driven solution, cannot go beyond the stress data. 

Both solutions diverge after the hypoplastic inversion condition, BB - yr =0 is attained. This can be 

appreciated also in Figure 13-14, where this value is plotted against the stress path. It can also be 

appreciated how the original data go beyond the inversion condition. 

13.3.5.2 Volumetric behaviour and granular hardness 

We have seen how the parameter values obtained by calibration against the Colorado database were, with 

one exception aligned with those quoted by Herle. On the other hand, the two sets of parameters values 

quoted in the literature for SLB differed substantially, particularly in the "granular hardness" value, hs. 

For this parameter we have two wildly differing values: a "small" value of 300Mpa and a "big" value of 

almost 9.000 MPa. This is a rather confusing result as Gudehus (1996) stated that hs was "proportional to 

the strenght of the grain material" and therefore, must not vary 30 times for the same sand, whatever the 

variability of it's batches. Moreover, this won't be a problem if this parameter was more or less irrelevant 

i. e. if the repercussions of the choice were minor. In fact they are quite spectacular, as we will see. 

Figure 13-16 represents the effect of parameter choice on isotropic test simulation. Surprisingly, the 

"big" hardness set fits the results much more precisely126 than the "small" one. This is a clear indication 

that the exponent n has bigger repercussions over isotropic paths than "hardness". 

Figure 13-17 shows the effects of parameter choice on the deviatoric response of test ACH3, a typical 

database result (Figure 13-15) It is clear that here the "big" set provides too stiff a response. Yielding on 

stress reversal is almost obviated. The "small" set is clearly more adequate. This contradiction is already 

annoying, but there are more inconveniences. Figure 13-18 represents the volumetric behaviour measured 

and predicted for the precedent test. It's clear that whereas the measured response is always contracting, 

the predicted response shows dilatancy a short while after each stress reversal. This effect is dramatically 

increased if the "small" set is employed, which is bad, as that was the parameter set that best fitted the 

deviatoric behaviour. 

It's clear that the model has an excessive built-in dilatancy. Moreover, as dilation has as result 

contraction of the failure surface, the possibilities of numerical failure for stress paths close but parallel to 

the Matsuoka-Nakai surface are apparent. This was the case for instance of test ACH3, Figure 13-7 and 

this numerical failure made flow comparisons difficult. 

One conclusion of this work is that the so-called "granular hardness" is an adjustment parameter. This 

was later confirmed by Herle (1999) who recognised that it was a bit of a misnomer. It is possible that 

parameter optimisation of the model along the lines described by Rouainia and Wood (2000) would have 

produced better adjustment to the database. However, that was not the purpose of this exercise. 
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13.3.6 Final comments: hvpoplastici and soil modelling 

It is perhaps vain and misleading to oppose the hypoplastic and elasto-plastic approaches to soil 

modelling. Behind their very apparent differences there are some underlying fundamental ideas (and 

problems). We would like to point out some of them: 

" To deal with increasingly complicated problems, (cyclic versus monotonic loading, failure) models 

are increasingly complicated. More variables are needed to describe soil behaviour. And, along any 

new variable, new equations must appear. 

" Whatever the model employed, there seems to be an alternative in formulations between obscure 

equations with clear parameters and transparent equations with opaque parameters. 

" Algebraic considerations are useful to tackle some particular problems of soil modelling. An 

example is how to model anisotropic behaviour while attending to space isotropy requirements. 

Another is to explore compactly issues related with uniqueness and existence of solution for the 

mechanical system described by a particular formulation. These problems are, by no means, 

restricted to hypoplasticity and, as a consequence, hypoplasticity is not more "algebraic" than elasto- 

plasticity. Boehler (1987) is a good example for the first case; Imposimato & Nova, (1998) provide a 

nice example related with the second issue. 

" Geometrical reasoning is not specific either to any model; the idea of reconstructing 

multidimensional figures from some specific hints of them could provide very convenient shortcuts 

within hypoplastic models. 

" Critical states and incremental nonlinearity are very powerful ingredients in any sand model. 

116 It's noticeable, nevertheless, the poor fit to the unload-reload cycle 
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13.4 TABLES 

TEST TYPE p (kPa) q (kPa) Friction 

angle 
02 COMP. 13.79 20.68 

A**2 COMP. 55.16 70.33 31.63 
A*2 COMP. 68.95 86.87 
08 EXT. 13.79 18.62 

A**8 EXT. 55.16 62.05 42.53 

A*8 EXT. 68.95 74.46 

Table 13-1 Data on peak friction angle from the Colorado database 

Parameter Herle 97 
Herle & 

Tejchman 97 

Colorado 

database 

Fi critical 30 29 31.6 

edO 0.49 0.51 0.516 

ecO 0.79 0.79 0.815 

eiO 0.9 0.86 0.937 

hs 8,900,000 300,000 283,000 

n 0.33 0.4 (0.741) 0.32 

alpha 0.14 0.16 

beta 1 1 1 

Table 13-2 Data available on hypoplastic parameters for SLB sand 

Parameter Value 

Fi critical 31 

edO 0.61 

ecO 0.91 

eiO 1.09 

hs 1,000,000 

n 0.29 

alpha 0.13 

beta 2 

Table 13-3 Hostun sand hypoplastic parameters (Herle, 1997) 

13.5 FIGURES 
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Figure 13-1 Hypoelastic vs elasto-plastic behaviour 
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Figure 13-2 Colorado database. Deviatoric MCA paths. 
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Figure 13-4 Successive yielding along MCA stress paths 
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Figure 13-7 Deviatoric strain increments and repeated stress path 

Figure 13-8 Failure surface: deviatoric dependence on void ratio 
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