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Abstract

In this thesis an investigation is made into the feasibility of using the Feynman path
integral formulation to quantize dynamical systems subject to nonholonomic constraints.
For these “nonholonomic systems” the classical path does not obey a variational princi-
ple in that its action is not stationary with respect to neighbouring paths satisfying the
constraints. Consequently, the natural approach of including all paths which satisfy the
constraints leads to stationary paths which do not obey the classical equations of motion.
Quantum mechanics with unconventional classical motion is the result. The alternative
is conventijonal classical mechanics with no clear generalisation to quantum mechanics.
This generalisation is attempted for a simple nonholonomic system. In order to examine
propagation over a finite time interval, a model of the constrained system is proposed and

investigated within the spirit of path integration.

—



Acknowledgements

I would like to thank all those who have made this possible. In particular, 1 would
like to thank Dr. J. H. Hannay for suggesting this project and for supervising the work
on which this report is based. In particular, I would like to acknowledge the importance
of his expertise in the construction of novel optical model systems. Setting up the mathe-
matical framework for such systems and investigating them has occupied me for much of
the duration of this project.

I am grateful to the Engineering and Physical Sciences Research Council for financial

support,.

ii



Author’s Declaration

I declare that no part of this thesis has been submitted for a higher degree in this, or
any other, university. The research reported herein is the result of my own investigation
unless reference is made to the work of others. All rescarch was carried out under the
supervision of Dr. J.H.Hannay, at the University of Bristol, between October 1992 and
March 1996.

Any opinions expressed in this thesis are my own and not those of the University of

Bristol.

iii



Contents

Introduction

1 Constraints

1.1 Introduction. . .. . . .. v v i v i i i i e
1.2 Classification of constraints . . . . . ... ... .. ... ... .. ..
1.3 Examples of constrained systems . . . . . . .. ...
1.4 A geometrical picture . . .. . ... e
1.5 Mechanics of constrained systems . . . . . . ... . 0 0.
1.5.1 Mechanical principles . . .. ... ... ... ... . o .,
1.5.2 Vakonomic mechanics . ... ... ... . .. oL
153 Comparison . . .. ... .. .... .. e e e e e e e e e e
1.54 Holonomiccase . . . . . v v v v v v v vttt e e e
155 Theclassicalfan . ... .. .. ... ... . oo L,
1.6 Constrained Hamiltonian systems . . . . . . .. ... v vi oo
L7 Summary . . ... e e e e e e e e e e e

2 Quantization

21 Introduction. . . . . . . . . . . .. e
2.2 Canonical quantization . . . . . . . ... .. L e
2.3 Pathintegral quantization . . . . ... .. ... ... .. ... ...,
24 Pathintegrals . .. ... ... .. ... . . . e e
24.1 Introduction ... ........ ... ...
242 Construction . .. .. ... ittt e
243 Theconcept. . . . .. .o i i it ittt it e e e
2.4.4 The Schrédinger equation . . . ... .. ..o ..
245 Theclassical limit .. ......... ... ...

iv



25 SUMMATY . . . . o e e e e e e e
Paraxial optics
3.1 Introduction. . . . . . . . 0 i e e e e e e e e
32 Thelimit ... ... ... ... .. ... e
3.3 Mechanicsandoptics. . . . .. .. ... ... e
3.4 Thewaveequation . . ... .. ... ... ...
35 Summary . ... e e e e e e e e
Wave Equations
4.1 Introduction. . . . . . . . . . . @ e e e
4.2 Investigation . .. ... .. .. . . . ... ...
43 Summary . ... .. e e e e e e e e e e e e e
A simple non-holonomic system
5.1 Introduction. . .. . . . . . 0 i i i it i i it e e e e e
5.2 Thesystem . . .. .. v v i i i ittt e e
5.3 The classical mechanics . . . . .. .. . . ittt e e e
9.3.1 Vakonomicsolution .. .............. . . .0
5.3.2 Nonholonomic solution. . . ... .. ... ... .. . ..
5.4 The quantum mechanics . . . . . . . ot v vttt
5.4.1 The vakonomic propagator . .. ... ... ...
5.4.2 The nonholonomic propagator . . . ... .. .............
9.0 SUIMINATY &+ v v v v v v vt e e e e et e e et e e e e et e e e
The model
6.1 Introduction. ... .. ... ... .. . ... e
6.2 Introducing the constraint . . . . ... .. ... ... .. ...,
6.3 Single stage propagation . . . . . .. ... .. e
6.4 Summary . . ... e
Modes
7.1 Introduction. . .. ... .. ... .. ...
7.2 The transition amplitude . .. ..... ... ... . . ... . .. . ...,
7.3 Composition of stages . . . . . .o it e
T4 SUummary .. ... e e e e e e e e

26
26
27
"
28
29

30
30
31
34

39
39
40

43

46
46
46
49

o3



8 Phase screens 55
81 Introduction. . .. .. .. . . . e 59
8.2 Preliminaries . . . . . . . . i e e e e e 50
83 Asimplecase . . . .. v v v ittt e e e e e 57
84 Compositionofstages . .. ... ... . . . o o n e 59

8.4.1 Introduction . ... ... ... .. ... e e 59
8.4.2 Averagingovershifts. . ... ... .. ... ... .0 0oL, 61
8.4.3 Conservation of probability . ... ... ... ... .......... 64
8.4.4 The averaged propagator . .. ... ... ... 65
8.5 Numerical investigation of (K) . . ... ... ... ., 67
86 Theclassicalregime . .......... ... ... 73
8.7 Summary . . . .. oot e e 74

9 Random models 76
9.1 Introduction. . .. .. .. . . . . i it i ittt 76
9.2 Phasescreens . .. .. ... .. v v it it ittt e 76

9.21 Introduction . ..... ... ... ... 76
9.22 Preliminaries . .. ... .. . i e e 78
9.2.3 In\lrestigation of (K) « o v i i 79
9.2.4 Conservation of probability . .. ... ........... e e 81
925 Typesofpath. ... .. ... ... ... ... 82
0926 Summary . .. ... .. e e e e e e 83
93 Mirrorplanes . . . . . .. i it it e e e e e e e 84
9.3.1 Introduction . ....... .. ... .. 84
9.3.2 Preliminaries . . . . . . .. ... e e 84
9.3.3 Single stage propagation . . . . ... ... ... oo oL 81
934 Asimplecase . . . . . . . . e e 87
9.3.5 AsymptotiCs . . . . v it e e e e e e e e e e 83
9.3.6 Further asymptotics . . ... ... .. .. ... ... 91
9.3.7 Computation . . . . . . v v v ittt e e e 92
938 Summary . .. ... e e e e e e 93
9.4 Summary . . . ..t e e e e e e e e 96

vi



10 Nonholonomic propagation 99

10.1 Introduction . . . .« v v v i it e e e e e e e e e e e e e e e e e 99
10.2 Preliminaries . . . . . ¢ v 0 v i e e e e e e e e e e 99
10.3 Random refractiveindex . . . . . . .. .. .. o o o oo o 100
10.4 Random vector potential . . . . .. ... ... ... ... . oo o, 103
10.5 SUMMALY . . . v v v e e e e e e e e e e e e e 105

11 Conclusions 106
11.L1 Theapproach . . . . . .« v i i i i i e e s e e it e e e e e 106
11.2 Future directions . . . . . . .« v v v v i i e i e e e e e e e e e e 107
11.3 Quantumrolling . .. . .. .. L e e 107
11.3.1 Introduction . . .. ... . . .. i e e e 107

11.3.2 Possible extensions . . . .. .. ... ... o 0 o oo o, 108

11.3.3 Physical considerations . . . ... ... ... ... . 108

11.4 Models . . . . . . . i o i e e e e e e e e e e e 109
115 Results. . . . . . . . . o e e e e 109
11.6 Summary . .. .. .. . e e e e 109

A Mechanical principles 110
A.1 d’Alembert’s principle . . . R 110
A.2 Gauss's principle of least constraint . . . . . .. ... oo 111
A3 Quasi-coordinates. . . . . v v v it i e e e e e e e e e e e e e 112
A4 The Gibbs-Appell equations . . . . . . ... o i vttt 113
A5 Example . . . . . . ... e e e 115
AB DISCUSSION .« v v v v et i e e e e e e e 116

B Constrained Hamiltonian systems 118
B.l Introduction. . . ... ... . . . e 118
B.2 Equationsofmotion . ... .. .. ... ... ... ... 118

C A first approach to quantization 124
D Vakonomic solutions for a position independent constraint 125
D1 Introduction. . .. ... .. i i e 125
D.2 Classical . . . . .. . it e e e e 125
D3 Quantum . . . ...ttt e e e e e e e e 126

vii



Evaluation of the integral over a rhombus unit cell 128

The link between sum over images and modes for a single stage in 1D 130

Implementation of “phase screens” (for a single stage) 132
Comparison of “phase screens” and “modes” 136
Hl Modes . . . o v o i e e e e e e e e e e e e 136
H.2 Phasescreens . . . . . . . . . i i i i i i ittt e e e e 139
H.3 Comparison . . . . v v v v i i i i e s et e e e e e e e e 142
Notation 144

viii



List of Figures

0.1

1.1
1.2
1.3
1.4

21

6.1
6.2
6.3

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

Report structure . . . . . . . . 0 e e e e e e e e e e e e 4
A field of “infinitesimal” tangent planes . . . . ... ... .. ... ... .. 8
“Constraint surfaces” for holonomic constraints . . . ... .. ........ 8
“Magnified planelets” for the “ord” and “vak” cases ... .......... 14
“Intersection curves” for holonomic and nonholonomic cases . . . . ... .. 16
Apolygonalpath . . ... ... .. .. ... i e 21
Two “infinitesimal” stages with “interface planes” . .. ... ... .. ... 41
Classical bouncing paths . . . . . .. ... ... i 44
The image charges construction (5 “lanes” only) .. ... .. ... ..... 45
Lowest 3modesina-tplane . . . . . ... .. .. ... oo 47
Phase plate stripsinz-y plane . . . .. .. ... ... . o 0L, 56
Section through a single stage, showing phase screen pair . . . . . .. ... o6
Graphof yagainst £ . . . . . . 0 i vttt it e e e 59
RO,,S(f),|flagainst Z . . . .. o e e e 60
Graph of (€(#4¥98)) against AX . . . . ... 62
Graph of T/|A2/| against AZ/|Ax/| for A" = |AL] ... ... ... 64
Graph of |G(k)] against kwith A=1 ., .. ................. 63
Graph of |G(K)|N against k for N=20with A=1.............. 69
Graph of |G(k)|V against k for N = 20 withA=12............. 69
Graph of |G(k)| against kwith A=§ ... ... ... .. ... .. .... 70
Graph of |G(k)| against kwith A=F ... ................. .70
Graph of |G(k)| against k with A = %% ..................... 71
Graph of |G(k)| against kwith A=3 . . . ... ... .. ... ... .. 71
Graph of |[G(K)| against kwith A=1.2 .. ... ... ... ... ..... 72

ix



8.15 Graph of |G(k)| against kwith A=14 . ... ... ... ... ...... 72

9.1 Phase plate stripsinz-y plane . .. ... .. ... ... . ... . 0. 77
9.2 Section through a single stage, showing the phase screen pair and the “phase
counting planes” (dashed lines) . ... .. ... ...... ... .. ..... 77
9.3 Special cases forasingle IDstage ... .................... 83
9.4 |K,| against A and log p, values of p are from 0.01 to 10 . ... ... ... 91

9.5 Comparison of asymptotic (K,) and computed (K) results for |h,(A = 0)|

asafunctionof p . . .. .. ... L e 95

10.1 Section through a single stage for “generalized phase screens model” . . . . 105



Introduction

Features

This section includes a list of some features of the presentation which may be of inter-

est to the reader and indicates the sections where they are discussed in more detail or

“Nustrated”.

e An account of path integration is given in section 2.4. The reason for using them in

this investigation is also discussed (e.g. section 2.2).

e The problem considered here does not appear in the literature. The standard method
of quantizing “constrained” systems is discussed in section 2.2 and appendix B. Dif-
ferent approaches which have been applied to a certain type of holonomic constraint
are discussed in section 4.3.

e The role of models is discussed in section 11.4. The relationships between the models
are outlined in the introductions to the relevant chapters (i.e. chapters 6-10). The

discussion of approximation is initiated in section 6.1.

e Where mathematical derivations contain lots of simple steps it is considered prefer-
able to describe these in words to avoid unnccessary “clutter” (e.g. equation (10.14)
)- Where some of the steps are not trivial the calculation is broken into several stages

(e.g. equations (10.7)- (10.12) ).

e The types of mechanical principle which are relevant to the investigation is discussed
in section 1.5.1. Those which are relevant have been included in the main text (c.g.

section 1.5.2). Others which are not directly relevant are included in appendix A.

o The significance of paraxial optics is discussed in chapter 3. It is appropriate because

only nonrelativistic quantum mechanics is considered in this work.

o The goal of the research is stated later in this introductory chapter.



e The conclusions are stated in chapter 11.

Preliminaries

The term “nonholonomic system” refers to a dynamical system subject to a class of con-
straint not usually considered in quantum mechanics. However such constraints do occur
in classical mechanics and presumably also in the quasi-classical limit in some form. We
therefore take the most direct approach and attempt to quantize classical systems subject
to nonholonomic constraints. We require the quantized systemn to have the correct classical
limit. This prevents the use of standard methods of quantizing a constrained system such
as Dirac’s procedure [9]. The main aim is to obtain an expression for the propagator using
the Feynman Path integral [10], since this offers a direct route from classical to quantum

mechanics, but Schrédinger type wave equations are also considered.

Overview
Chapter 1: An introduction to constrained mechanical systems
Chapter 2: A discussion of quantization methods

Chapter 3: An explanation of paraxial optics and its relevance

Chapter 4: An investigation of the possibility of obtaining a wave equation for nonholo-

nomic systems

Chapter 5: An introduction to the special nonholonomic system upon which attention is

subsequently focused
Chapter 6: A description of a model for this simple system
Chapter 7: Calculations using the model
Chapter 8: A way to enforce the constraints approximately
Chapter 9: Modifications of the previous approaches
Chapter 10: A version of the model applicable in the nonholonomic limit

Chapter 11: Discussion and Conclusions



Chapters 5-10 deal exclusively with a special case system which is, however, believed
to contain the essence of the problem.

With the exception of the first chapter, the presentation is in the form of an edited
account of an investigation into the possibility of quantizing mechanical systems subject
to nonholonomic constraints. With the possible exception of chapter 4, the chapters follow

a continuous line of development.

The goal

The purpose of this thesis (as mentioned in the abstract) is to investigate the possibility
of quantizing dynamical systems subject to nonholonomic constraints using the Feynman
Path integral formulation. The goal is some form of path integral for a simple nonholonomic
system which is sufficiently general to contain the essence of the problem. In Feynman's
Path integral formulation of quantum mechanics (discussed in section 2.4), the time evolu-
tion of wavefunctions is specified by obtaining the propagator (i.e. the kernel in the integral
equation for the wavefunction) in terms of a path integral. Evaluation of the path integral
provides sufficient information for the time evolution of a wavepacket to be obtained.

It is of fundamental importance that any expression obtained should have the correct
classical limit. If complete success is achieved, a description will have been obtained of the

properties of (a set of) quantum systems whose classical limit is a nonholonomic systens.

Structure

The structure of this report is illustrated in the the “tree” diagram in figure 0.1. The
“axis” down the page represents (roughly) progress towards the goal of the project as
stated above (i.e. in the abstract and the preceding section). The direction of the lines are
used to distinguish different approaches to the problem. It should be noted that the “tree”
in figure 0.1 represents the structure of this “report” rather than the complete history of
the research on which it is based. A tree diagram of the latter would require extensive
“pruning” to remove “branches” before it resembled figure 0.1.

It is difficult to “score” the relative merits of the three main approaches (branches A.
B, C in figure 0.1), they are quite closely related, although the results they provide have

differing advantages and disadvantages.
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Chapter 1

Constraints

1.1 Introduction

Constraints limit the motion of a mechanical system, for example the beads of an abacus are
constrained to one-dimensional motion by the supporting wires. Constraints are imposed
by forces (forces of constraint) but are distinguished from conventional forces in that they

are known, or most easily stated, in terms of their eflect on the motion of the system.

1.2 Classification of constraints

Constraints can be classified in many ways. A fundamental distinction is between equality
constraints and those specified by an inequality, for example a particle confined within a
container. Equality constraints may be geometric or kinematic. Constraints are described

as geometric if they are expressed by equations involving the position (but not the velocity)
filr,t) =0 : (1.1)

(I =1,2,...,m where m =number of constraints)

and as kinematic if the equations contain the velocity
file,2,t) =0 (1.2)

Kinematic constraints are integrable if the corresponding system of differential equations
is integrable.
Integrable kinematic constraints and geometric constraints, to which they may be re-

duced, are known as holonomic constraints. Nonholonomic constraints are sometimes taken



to be any constraints which are not holonomic (including “inequality constraints” for ex-
ample), but, following Hertz (who is generally credited with introducing the term) will be
used here to mean specifically non-integrable kinematic constraints.

Constraints are further classified according to whether the equations of constraint con-
tain the time as an explicit variable (rheonomous) or are not explicitly dependent on time

(scleronomous).

It is believed that all nonholonomic constraints occurring in nature depend only linearly

on the velocity, or equivalently, they may be written as a set of lincar differential constraints
Zalkqu +apdt =0 (1.3)
k

for generalized coordinates ¢, k=1,...,n

such a form of the equations also includes holonomic constraints, i.e.

Z Of’ ‘9f’ it =0 (1.4)

for holonomic constraints fi(g,t) =0
and is known as the Pfaffian form of the constraint equations.

A constraint equation of the form (1.3) is called catastatic when a; = 0 otherwise it is

called acatastatic.

1.3 Examples of constrained systems

An example of a dynamical system with a holonomic constraint is a frictionless bead on a
horizontal circular wire. The two cartesian coordinates which would be required to locate
the bead in the horizontal plane reduce to a single angle coordinate. This system is trivially
quantizable — “the rotor”.

Similarly, a vertical disc of radius r rolling without slipping along a horizontal line is a
dynamical system with a holonomic constraint: the velocity & and the angular velocity 6 of
the disc are linked by & = rf. By integration, therefore, the angle 8 and the contact position
z of the disc are linked, and one can be discarded. This system is also straightforward to
quantize.

In contrast, a similar system with a non-holonomic constraint is a disc whose radius is
a (prescribed) function of time rolling without slipping on a horizontal line. Now & = »(¢)0
which cannot be generally integrated to link the x and 6 coordinates — both are needed,

[The space z,0,t is no longer filled with a stack of sheets f(,0,t) = const. to which the



motion is confined]. This is probably the simplest type of non-holonomic system, and will
be considered later with regard to quantization.

Two better known examples of non-holonomic classical systems are a vertical skate on
ice, and a ball rolling on a perfectly rough surface. In the first case the nonholonomnic
constraint is the requirement that the velocity of the skate in the direction perpendicular
to the plane of its blade is zero. In the second case the velocity of the point of contact must
vanish. The fact that the constraints cannot be integrated to obtain relations between the
coordinates may be illustrated in the second case by rolling the ball from a certain initial
position along two different paths so that the two final positions of the point of contact

coincide. Generally, the final orientation of the ball is found to be different for each path.

1.4 A geometrical picture

If a two-freedom dynamical system is represented as a point in three dimensional space-
time then constraints have a simple geometrical interpretation (this is also true for a three-
freedom system with a time independent “catastatic” constraint represented by a point in
3D space, although such a case is not considered in later chapters within the main text, it
effectively reduces to the two freedom system described if an additional constraint £ =1
is included). A kinematic constraint defines a field of tangent planes or “planclets” in the
three dimensional space-time. The constraint is that the tangent to the path (world-line)
of the particle “lies within” the infinitesimally small plane defined at the particles current
position.

If the constraint is holonomic, then the planclets fit together to form surfaces. Thus
any possible trajectory lies within a surface. So a holonomic constraint restricts the motion
to a 2D subspace of the original 3D space-time. |

By contrast, for a nonholonomic constraint, the planclets do not form a surface. Any
two points may be joined by a path, not obeying any equations of motion, but at least
satisfying the constraints. So the whole space is “geometrically accessible”.

In 3D space the condition for the field of planclets (associated with a “catastatic™

constraint) to be holonomic is that

N(¥xN)=0 (1.9)

where N = (ng(x,y, 2),ny(z,y, 2),n,(z,y,2)) is the normal vector to the planelet at the

specified point.



P

» [

L4

A

Figure 1.1: A field of “infinitesimal” tangent planes

t

/C.-- -~
-h \
7/ So
- 4 -
w” -
7’ b
//‘/
I/ ’
;7

L~/ . .

Figure 1.2: “Constraint surfaces” for holonomic constraints



(for 3D space-time one simply replaces z by ¢ in the formula) This is a special case of the
Frobenius condition [3]
ONdD=0 , (1.6)

for the integrability of a field of hyperplanes

&=0 (1.7)

where @ is a 1-form.

1.5 Mechanics of constrained systems

1.5.1 Mechanical principles

A way of classifying the principles of classical mechanics is to split them into two groups
depending upon whether they can be derived from a principle of stationary action in
all cases. The proviso “in all cases” means cases with nonholonomic constraints must be
included. This is important because in unconstrained mechanics (and also when holonomic
constraints are present) the distinction can largely be removed by suitable manipulation

of the equations. With this proviso the groups are:
class A: equivalent to a principle of stationary action
class B: all other accepted comprehensive mechanical principles

where “action” is taken to mean the integral over time of some well defined quantity (i.e.
sufficiently general to allow constraints to be included) and the use of “stationary” is the
same as in the standard calculus of variations. The reason for making this distinction is
that the Feynman Path integral formulation is based on a principle of stationary action [10,
32]. The standard Feynman path integral formulation can only be applied if there is
a variational principle which gives the correct equations of motion for a classical system
subject to nonholonomic constraints. Otherwise some sort of generalization of the Feynman
formulation must be attempted.

Examples of procedures for obtaining the correct nonholonomic equations of motion
include [2] D’Alembert’s principle, Gauss’s principle and the Gibbs-Appell equations (ap-
pendix A). All of these fall into “class B”. The question is: can a principle found in “class
A” give the correct nonholonomic equations of motion? The answer is no [31, 18, 29)].

When the principle of stationary action is applied to a constrained system the result is



“yakonomic mechanics”. When the constraints are integrable (holonomic) this reduces to

ordinary holonomic mechanics.

1.5.2 Vakonomic mechanics

For holonomic constraints, gi(q,t) = 0, there is a variational principle which gives the
correct equations of motion: the principle of stationary action is applied to the subspace
of the original space defined by the constraints. This may be achieved using multiplicrs
in the standard way: the unconstrained Lagrangian L(q,{,t) is replaced by L(q,q,t) +
Y21 Migi(g,t) (the “modified Lagrangian”) and the multipliers A, are treated as indepen-
dent coordinates. The resulting Euler-Lagrange equations give the equations of motion

(from variations with respect to r(t))

d 0L 6L on
df()q ; —(—9_1- (1.8)

and the constraint equations (from variations with respect to A(t))
a(g,t) =0 (1.9)

allowing the “elimination” of the multipliers (i.e. solving for A so that A = A(q, ¢, 1))

If the holonomic constraint equations are written in the kinematic form
ai(q,t) =0 (1.10)

then the resulting equations of motion are similar but A, is replaced by — M. This difference
can be removed simply by defining new multipliers jy = —J;. The multipliers are obtained
by solving algebraic equations.

Vakonomic “mechanics” consists in applying this variational procedure regardloss of
whether the constraints are holonomic or not, i.e. taking it as an “axiom”™ (hence “vak™
from mechanics of variational axiomatic kind [2]). So the “modified Lagrangian” is taken

to be

=1

where the general constraints f;(¢,q,t) = 0 may be holonomic or nonholonomic. Applying
the principle of stationary action (this is cquivalent in space-time to asking for the “short-

est” path amongst those satisfying the constraints) produces the equations of motion

_doL aL_ af, dofi  Of
aog * ZA’ ; ’[ @oq T og (L.11)

10



There are three cases to consider.

The first case occurs when the constraints are holonomic, with no dependence on ve-

locity, i.e. equations (1.9), so that

In this case equations (1.11) reduce to equations (1.8), exactly as expected.
The second case occurs when the constraints are again holonomic (equations (1.9) )

but are now written in the kinematic (differentiated) form (1.10) so that

' fl(_(z>_(l’t) = gl(qv)

Ogq . Ogq
1.13
2t T49g (1.13)
In this case
_dOf Ok _ _dow 0,
dtd§ dq —  dtog ()q
= 0 (1.14)
so the equations of motion become
d oL dL (9gl
—_—= 1.15
Tdt ()q Zz: l(')q (1.15)
Again, exactly as described (for constraints ( 1.10) ).
The third case is when the constraints are nonholonomic — i.e.
nonintegrable fi(¢,q,t) =0 (1.16)

In this case it is not in general possible to simplify equations (1.11). These equations of
motion are inconsistent with the accepted equations describing nonholonomic mechanical
systems due to the presence of the terms containing the square brackets.

The presence of both A and A in (1.11) means that the equations to determine the
multipliers are differential equations rather than algebraic equations and so constants of
integration associated with the multipliers are now required. These are arbitrary, choosing
them suitably allows any final point to be reached from a given initial point. The name
(from [2]) “vakonomic mechanics” (vak) will be used for the mathematical formalism based
on equations (1.11) and (1.16), derived by comparing paths which satisfy the constraints
and requiring the action to be stationary (using the standard calculus of variations tech-
niques). It does not agree with the experimentally observed [23] nonholonomic classical
mechanics — “ordinary mechanics” (ord). It must, therefore, be rejected as unphysical for

the purposes of classical mechanics.
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1.5.3 Comparison

Before comparing vakonomic and ordinary mechanics, it is worth noting a possible source
of confusion: in some treatments the Euler-Lagrange equations are derived for the un-
constrained system and are then modified to correctly take into account any constraints

present, the resulting equations are

dOL 0L <~ Of
+ ZA, 94 (1.17)

where A; are refered to as “multipliers”.

Solving these together with the constraint equations (1.16) gives the physical motion. It
is important to realise that such equations giving the correct nonholonomic equations of
motion cannot be obtained directly from a principle of stationary action (i.c. they fall
into class B). These correct (ord) equations of motion (equations (1.17) ) do not include
derivatives of the “multipliers”, in contrast to the vak equations.

In vak mechanics constants of integration associated with the multipliers are required
when the constraints are nonholonomic, in ord mechanics this is not the case. So in order
to determine the motion in vak mechanics with nonholonomic constraints, one must supply
more information than is required for conventional (ord) mechanics. In the holonomic case
this problem does not arise (section 1.5.4).

A final point is defined to be “dynamically accessible” from a given initial point if
it may be reached from the initial point by a path satisfying the equations of motion. In
vakonomic mechanics with nonholonomic constraints there is no reduction of the dimension
of space which is dynamically accessible from any given initial point, despite the presence of
constraints. In ordinary nonholonomic (ord) mechanics the dimension of space dynamically
accessible from a given initial point is reduced. For example, in 3D space time with one
constraint this means that the initial position (2 coordinates) and velocity (1 number since
the constraint must be satisfied) are sufficient to determine the motion for ord mechanics
and a curve in the final plane is dynamically accessible (by taking all possible values of
initial velocity) from a point in the initial plane (this is like a contact transformation [20,
36]). Specifying the initial position in vak mechanics still allows any point in the final
plane to be reached, to determine the motion requires two more numbers such as the final
coordinates.

So vak mechanics is not identical to ord mechanics but amongst the vak paths are a
subset which have the same final points as ord mechanical paths. The question is: if these

final points are specified in the vak formalism, are the resulting vak paths the same as the

12



ordinary mechanical paths? i.e. does vak mechanics “contain” ord mechanics? The answer
is no (the “routes” differ), it is not possible to remove the extra term in the vak equations
of motion.

In terms of forces in (potential free) 3D space-time, the difference between the vak and
ord equations of motion (for a single constraint) is that for the ord case the only forces
acting are those required to ensure that the system satisfies the constraint. The force
acts in a direction perpendicular to the relevant planelet. The component of the force
in this direction is determined by taking the time derivative of the constraint equation,
this is a valid equation since the constraint must be satisfied for all values of time. The
ord prescription is to take all other components of the force to be zero. In the vak case
the force has a component parallel to the planelet, causing the path to curve “within the
planelet” (as shown in figure 1.3). The vak prescription is for a path of stationary length
(compared to other paths satisfying the constraints). Consequently, the components of
the force not determined by the constraint take whatever values are needed to meet this
requirement. The greater freedom in the vak case allows any final point to be reached from
the given initial point. Even when the paths go between the same points the vak path
will still “curve within the planelets” and the ord path will not. As noted by Hertz [17]
(for the zero potential case), the vak path is the shortest (“of stationary length” strictly
speaking) and the ordinary mechanical path the straightest, consistent with the constraints,

In general these will not coincide.

1.5.4 Holonomic case

As explained in section 1.4 (for 3D space-time) a kinematic holonomic constraint defines
a “stack of surfaces” within the space. If the kinematic constraint is integrated and the
constant of integration is specified to give a single geometric constraint, then a single
surface is defined.

It is now desired to consider, in addition, the dynamics. For kinematic holonomic
systems the dynamics is defined by the principle of stationary action within the subspaces
(“surfaces”). Specifying the initial position determines which surface within the stack the
motion takes place on (for a gcometric holonomic constraint consistency is required) and
also the initial position on the surface. If the initial velocity is consistent with motion on
the surface then one can “do mechanics” on the subspace. However, when the constraints

are nonholonomic, no such surfaces arc formed.
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Figure 1.3: “Magnified planelets” for the “ord” and “vak™ cases
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1.5.5 The classical fan

An idea introduced in section 1.5.3 will be used again later: in 3D space-time with one
constraint, the initial position is specified and the initial velocity is allowed to take all values
consistent with the constraints (1 parameter). The set of paths in space-time obeying the
correct equations of motion (i.e. the ord equations in the nonholonomic case) with these
initial conditions will be called the “classical fan”. The final time defines a ¢ = constant
plane in space-time. The intersection of the classical fan with this plane produces a curve
(the “intersection curve”). If the constraints are holonomic, then the classical fan always
lies in a space-time surface formed by the constraints, and the “intersection curve” coincides
.with a constraint “surface” at the final time (which is a curve in 2D). In two (space)
dimensions it is always possible to construct a set of curves (in any t = constant plane)
by joining the infinitesimal line segments representing the constraints. This is special to
the case of two (space) dimensions and does not mean that it is possible to construct
constraint surfaces in the 3D space-time (unless the constraints are holonomic, of course).

In the nonholonomic case the “intersection curve” will not, in general, coincide with any

curve constructed in this way (figure 1.4).

1.6 Constrained Hamiltonian systems

There is a method for quantizing “constrained” systems which follows from the work of
Dirac [9]. Consequently the question arises as to whether this can be applied to nonholo-
nomic systems. There are two parts to the process: the first is to obtain the classical
Hamiltonian dynamics of the “constrained” system; the second is to quantize this using
the canonical quantization procedure. The first part of this process is considered here.

In this section the term “constrained” takes a different meaning from the one that it has
in the rest of this chapter. In this section “constrained” takes on the “technical” meaning
that it has in the field of “constrained dynamics”. In “constrained dynamics” a (N degree
of freedom) non-relativistic system with Lagrangian L(q%, ¢*,t) is said to be “constrained®

if the matrix
_ PL
0§ o¢k

has zero determinant i.e. W = detVW;x = 0. The lagrangian is then “singular”. 1If

Wik (1.18)

W # 0 it is “regular”. Systems with W = 0 are called “singular Lagrangian systems”,

« . N . . . .
constrained Hamiltonian systems” or “degenerate systems”. In classical mechanics this
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Figure 1.4: “Intersection curves” for holonomic and nonholonomic cases
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nomenclature is potentially confusing, although constraints in the usual sense (holonomic
and nonholonomic) do make a Lagrangian singular if Lagrange multipliers are considercd
as dynamical variables.

The most basic question to be asked is whether the classical Hamiltonian equations
resulting from applying the techniques of “constrained dynamics” to a nonholonomic sys-
tem agree with the accepted classical mechanical equations of motion for nonholonomic
systems. The answer is that they do not: more details are given in appendix B. The
equations are correct for holonomic constraints but not for nonholonomic constraints, In
fact they agree with the equations of vakonomic “mechanics” (appendix B). This is not
unexpected since in both cases Lagrange multipliers are treated as dynamical variables.,

The conclusion is that the Dirac quantization procedure is not suitable for the quanti-
zation of nonholonomic systems. The requirement that the quantized system should have
the correct classical limit will not be met if the Dirac procedure is used when nonholo-
nomic constraints are present. This is because quantization is applied to the “wrong”

nonholonomic classical system.

1.7 Summary

The main objectives of this chapter were:
1. To provide an introduction to constraints in classical mechanics.

2. To introduce a geometrical picture suitable for some cases of interest, including a

special case that will be important in the following chapters (e.g. section 5.2).

3. To show that the principle of stationary action does not give the correct equations
of motion of classical mechanics when nonholonomic constraints are present. This is
important because it is just this principle which is required for the standard Feynman
path integral quantization. Quantization is discussed in later chapters (i.e. chapter 2

and section 5.4).

4. To indicate that the approach to classical mechanics with constraints based on Dirac’s

method does not give the correct results when the constraints are nonholonomic.
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Chapter 2

Quantization

2.1 Introduction

In this chapter methods of quantization are considered. It is explained why the Feynman

(configuration space) path integral is chosen as the method of quantization. An introduc-

tion to path integrals is included.

2.2 Canonical quantization

Canonical quantization is the longest established method of quantizing a dynamical systemn.
It provides a set of rules for passing from Hamilton’s dynamics to quantum dynamics, by
making the coordinates and momenta into linear operators.

The Dirac method for quantizing “constrained” dynamical systems uses canonical quan-
tization. The first stage of this procedure is to pass from the Lagrangian to the Hamiltonian
description of the classical dynamics. This puts the system in a suitable form to apply
the second stage, which is to pass to quantum dynamics using the canonical quantization
rules.

As explained in section 1.6 there are problems with the first stage of the Dirac proce-
dure when nonholonomic constraints are present. Consequently, it is desirable to avoid the
first stage (passage from Lagrangian to Hamiltonian dynamics). This means abandoning
canonical quantization (which is applied to the Hamiltonian description). The method
used to quantize systems starting directly from the Lagrangian description is Feynman's
path integral quantization procedure. Consequently, this is the method upon which the
main part of his thesis is based. In fact, a type of “path integral” quantization has been

used in developments of the Dirac procedure but this involves phase space functional in-
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tegrals (rather than the position space variety). This is an important distinetion hecase
phase-space functional integrals require canonical momenta to be (well) defined. The prob-
lems described here are not a conscquence of operator ordering ambiguitics in canonical
quantization as such ambiguities also appear in path integral quantization as questions of
where to evaluate functions in the Lagrangian [32].

It is worth mentioning (as an aside) that even for systems whose constraints are not
nonholonomic, things are not straight-forward because there isn't a unique rule for the

canonical quantization of constrained systems {33].

2.3 Path integral quantization

In order to quantize an unconstrained dynamical system using the Feynman path integral
formulation, the classical action for all possible paths between the two end points is required
and the action must be stationary oun the classical Idynamical path [10].

For a system subject to holonomic constraints this prescription should be applied in
the subspace of the original space defined by the constraints, although complications arise
due to curvature of the subspace.

For a system subject to nonholonomic constraints the analogous procedure is to include
all paths satisfying the constraints. As described in appendix C, this is the most obvious
way to proceced, however it is equivalent to the quantization of vakonomic “mechanics”.
From previous study of vakonomic mechanics (section 1.5.2) we know what undesirable
features to expect when the constraints are nonholonomic. The stationary paths do not
obey the nonholonomic classical mechanical equations of motion. The correct classical
path does not obey a variational principle in that its action is not stationary with respect
to neighbouring paths satisfying the constraints so it will not be recovered in the classical

limit. This leaves a choice between:

e Quantum mechanics with unconventional classical (i.c. stationary) motion —- the

vak case

e Classical mechanics (conventional) with no clear gencralization to quantum mechan-

ics — the “ord” case
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2.4 Path integrals

2.4.1 Introduction

It is desired to use the concepts of path integration to explore the quantum mechanics of
a novel class of systems. Consequently, the path integral formulation is introduced first
and then shown to be equivalent to standard Schréodinger quantum mechanics, as in the
original work of Feynman [11], rather than using standard quantum mechanics to justify

the construction of the path integral (e.g. [32] ).

2.4.2 Construction

In quantum mechanics the fundamental quantities are probability amplitudes, @gp. If
P(a,b) is the probability to go from a state a to a state b, then the relation to the corre-

sponding probability amplitude is given by
P(a,b) = |¢as|? (2.1)
The “composition” rule for probability amplitudes depending on two states is

Yab = E‘Pac‘Pcb (22)
c

where the sum is over all possible states c.

This relation may be used in the construction of the of a sum over all paths. Considering
the 1D case, the initial state is x, at time t, and the final state is @ at time #,. Between
to and 5, a set of values of time (t; for ¢ = 1,...,N — 1) is taken, with an interval €
between consecutive values (i.e. € = ;11 — t; and Ne = t, — t,). At each t; a point a; is
selected. A (“polygonal”) path is constructed by connccting all such points with straight
lines (figure 2.1). It is possible to sum over all paths constructed in this way by taking a
multiple integral over all values of z; for ¢ from 1 to N — 1. This yiclds an expression for
the amplitude (“kernel”) for propagation from (zg,t0) = (Ta,ta) to (TN, tn) = (rp,tp) , i.c.

(given that t, > ¢,)

K(zp,tp; Ta,ta) N///d)N[m(t)] drydry -+ deyn_y (2.3)

Making € smaller gives a more representative sample of the complete set of all possible
paths between the fixed end points. Also, sections of the classical orbit could be used
between consecutive points [11] instead of straight lines.

The contribution ¢x[z(t)] from each path may be obtained using
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Figure 2.1: A polygonal path



1. The expression

1 i e s T ot y .
K(zi1,tiv2i,t) = ——exp[EL(ﬂcz+l m,’.r,+1+a,,, z+l+t1)]+()(€2)

A h € 2 2
ase — 0 (2.4)
for the (normalised) kerncl when ¢;4; — t; = € is an infinitesimal time interval.

(L(&, z,t) is the Lagrangian)
2. The rule that amplitudes for events occurring in succession in time multiply.

The result is

N-1
onlz(t)] =[] K(@ir1,tivr;zi,ts)
1=0
1 .
= Zmet ‘ (2.5)
where N1
e Tit1 = Ti Tiy1 +Ti tiy1 +ti)
SN-ZGL( S T e (2.6)

i=0
is (a good approximation to) the action for the path.

Using these results (and noting that N — 0o = € — 0) gives (for ¢, > ta)

. 1 ; diry dr dryn_
Klewtizate) = i 5 [ [ fow (zow) L5252 @

2.4.3 The concept

In certain special cases a particular way of constructing the path may prove disadvan-
tageous: for example the construction described above and illustrated in figure 2.1 gives
discontinuities in the velocity at the points (x;,¢;}. The fact that the acceleration is infi-
nite at these points could cause problems if the Lagrangian depended on the acceleration.

However, in such cases the “substitution”
N 1
&= 5 (@ip = 25 + i) (2.8)

is usually adequate. This is an illustration of the generality of the concept of a sum over

all paths and suggests the use of a notation such as

Ib)tb

K(xp,tp; 0, ta) = / enSd®z(t) (2.9)

Zayta

which is independent of a particular definition. The expression equation (2.9) is valid for
ty > tq. It is conventional to define K (:ry, ty; Za, ts) to be zero for t, < tg. For the remaining
case (i.e. tp = t5), the result K(xp,ty;Ta,ta) — 6(xp — 74) 88 th — te+) may be invoked.

Unless stated otherwise, subsequent results in this thesis will be for the case “ty > t,”.
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2.4.4 The Schrodinger equation

The path integral formulation of quantum mechanics is verified by propagating a wave
function at time t, ¥(x,t), to time ¢ + € using the path integral propagator and showing
that this evolution is the same as that given by the Schridinger equation. This is achieved

by applying the general (1D) equation (for to > t1)
o0
Y(z2,12) =/ K(za, t2; 21, t1 )1, ty)dir (2.10)
—00

to the special case with the time t; differing only by an infinitesimal interval € from #; (so
t1 =t, t2 =t+e¢). In this case the propagator is given by equation (2.4). For the case of
a particle in 1D subject to a scalar potential the Lagrangian is L = %m:’vz - V(xz,t). The

result of making these substitutions in equation (2.10) is (with up = x)
00 1 imp? i€ 7
Y(z,t+e€) = / Ze"l‘h”a'c‘iv("“zl’t)dﬂ(w + 1, t)dn (2.11)
-

The substitution x; = x3+7 used in this equation is suggested by the method of stationary
2

phase: the first exponential oscillates very rapidly unless £ is small. Consequently most

of the integral is contributed by values of n of order % . This suggests making the

expansion

— ah % 12@ ) )
Y(@+mt) =zt + g +on o+ (2.12)

in addition to

Y(z,t +€) = P(z,t) + 6%'1{‘—' + ... ' (2.13)
and
a%Y=1—%V+“. (2.14)

The requirement that both sides of equation (2.11) agree in the limit € — 0 determines A,

i.e.

o0 : !12
A= e'$z¢ dn

—00
. 1
_ (27rzh,f> 2 (2.15)
m
Performing further Gaussian integrals to obtain terms of order € yiclds
oy e Tie 0%y
—_— = )y — — —_ f 2' .
¢+€8t Y hV¢ 2im D22 +o(e) ase—0 (2.16)
So 9 satisfies
712 62¢ . 0(/'
“amoaz VY= (217)
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which is the Schrédinger equation, as required.
The gencralization to three dimensions is straightforward. Also, a magnetic field may
be included provided the vector potential, A(z), is evaluated at the midpoint %(gi +241)

or the quantity 1[A(z;) + A(ziy1)] is used [32].

2.4.5 The classical limit

The classical limit “h — 0” means that & is small compared to a typical action. The
effect of taking this limit in the path integral (sum over paths) can be illustrated by
considering a path and then making a small (on the classical scale) change to it. This
small change will, in general, produce a large change in the phase, %‘:, associated with the
path. The contribution of a path is proportional to e#S which oscillates rapidly as the
path is changed. Consequently, if a path is chosen which makes a paositive contribution (to
the sum over paths) then it is always possible to find another path infinitesimally close (on
a classical scale) which makes an equal negative contribution. So, in the classical limit,
the only paths that will contribute significantly (to the sum over paths) will be those for
which a small change in path produces no change in §'. This is true (to first order) for the
paths which make S stationary (i.e. % = 0). These are just the classical paths. In the
semi-classical approximation the path integral is proportional to ek Sel (where Sy is the

action evaluated on the classical path /(t) ). If there is more than one classical path then

a sum of such terms is required.

2.5 Summary

The main points made in this chapter were:

1. Although Dirac’s method was not really intended for the quantization of classical
mechanical systems, it is gencrally assumed to be widely applicable. In fact it is not

suitable for mechanical systems with nonholonomic constraints.

2. To quantize a constrained system using Dirac’s procedure requires the successful com-
pletion of two stages: the first stage is to put the constrained system in Hamiltonian
form, ready for quantization. The second stage is the quantization. For a mechanical
system with nonholonomic constraints, even the results of the first stage are unsatis-
factory. Quantization using Feynman’s path integral scems much more promising. In

the standard case this provides a direct route from the Lagrangian formulation of the
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classical mechanics to the quantum mechanics. Another advantage is the intuitive

picture provided by Feynman’s formulation.

. The most natural approach to path integral quantization (appendix C) is equivalent
to the quantization of vakonomic mechanics. So the classical limit will not be correct

when the constraints are nonholonomic (the vak motion will be obtained instead).

. A quantum system is required which corresponds to a classical system with nonholo-
nomic constraints. If the classical limit is to be correct then the standard approach
is ruled out and some generalization of the path integr;l quantization must be found.
There is no obvious direct approach to solving the problem, indeed, it is not clear
if a solution exists. An investigation is required. It scems advisable to start with a

simple system.



Chapter 3

Paraxial optics

3.1 Introduction

Faced with the problem of quantizing a system which lies outside the scope of standard
quantization procedures, one approach is to consider what is meant by “quantization™ and
“taking the classical limit”.

Quantum mechanics is a wave theory. The process of “taking the classical limit” is a
reduction of a wave theory to a ray theory in the short wavelength limit [16]. In the case of
quantization, the ray theory (classical mechanics) is known and it is required to find a wave
theory consistent with this. It is well known that classical mechanics is analogous to ray
optics and that quantum mechanics is analogous to wave optics. Consequently, quantiza-
tion is analogous to the extension of gcometrical optics to wave optics. If a specialisation is
made to (2D) non-relativistic mechanics (where gradients of world-lines in space-time are
assumed small) then one can go further. Paraxial optics (sometimes called Fresnel optics)
and (2D) non-relativistic mechanics are mathematically identical provided identification is
made between appropriate quantities in the two theories and the difference between the
metrics of space (for optics) and space-time (for mechanics) is accounted for.

If, given a classical mechanical system, it is possible to construct a class of optical
systems with corresponding ray dynamics, then applying wave optical methods to these
physical systems is equivalent to quantization of the mechanical system [16].

More generally, visualisation of a system is often easicst when it is interpreted in terms

of optics.
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3.2 The limit

Paraxial optics is an approximation to optics for small gradients of rays in the same sensc
that non-relativistic mechanics is an approximation to relativistic mechanics for velocitios
v < c (the speed of light in a vacuum). However, generally a slightly different view is taken:
classical mechanics is a self-consistent description of mechanics aud it is only necessary to
work with relativistic mechanics if relativistic effects are likely to be important. The
situation is exactly the same for paraxiél optics.

An approximation is made in deriving paraxial optics from optics, but once the paraxial
equations are obtained one is entitled to work entirely within the new self-consistent theory.
For this reason the term paraxial “limit” will be preferred over “paraxial approximation”.

Just as the term “classical limit” is used in mechanics even though £ is finite.

3.3 Mechanics and optics

An instructive comparison between paraxial optics and non-relativistic mechanics is pre-

sented in [15]. It is worth summarising its contents here.

e Paraxial ray optics:
a ray in a refracting medium of refractive index n = ¢+ 1 always makes a small angle
with the 2z axis and obeys the paraxial ray equation

d%r
T2 =iy (3.1)

where V|, = —‘%
or, equivalently, Fermat’s principle of stationary optical length, 65 = 0, where
see)= [ [1 3 (5’—)2 Folr(2), z)} dz (3.2
0 2 \dz
o Non-relativistic classical mechanics in 2D:
the world-line of a non-relativistic particle moving in a plane under the influence of

a potential V' always makes a small angle with the ¢t axis and obeys Newton'’s law

1 d?r Vv .
2aE -V (n_aca) (3.3)

or, equivalently, the principle of stationary action, 65 = 0, where

¢ r 2
Sie(e) = [ ' [—1 T (1%) _ —1—.V(£(f),i)] d(ct) (3.4)

2 mc?

Similarly,
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e Paraxial wave optics:

the wave field ¢(r, 2) for a wave with frequency ¢k obeys the paraxial wave equation

N

V24 + 2k (1 + p)p = —2ik

Y(r, z) is generated through Huygen’s principle by the kernel

K@2,1) = / /1  exp («'k /0 ’ [1 + % (g—-:-)z + c,o(z(z),z)] (lz) ez (3.6)

should be compared with

e Non-relativistic quantum mechanics in 2D:

the probability amplitude y/(z, z) for a particle with “Compton wave-number” %€

obeys the Schrédinger equation

V2 42 (%—C)Z’ (1 - —V—) W= —2 (%) -}‘?)—‘j 3.7)

me?
¥(r,t) is generated through Huygen’s principle by the kernel

K(2,1) = / /1  exp (—z‘ (3;;9) /0 CT [—1 + % (%%)2 - ;%V(g(t),t)] d(ct)) (1)
(3.8)

Through out, it is assumed that, “back-tracking” paths are excluded from the path integrals
(in both optical and mechanical cases). Also, the kernels obey the fundamental relations

(with 1,2, 3 referring to an ordered sequence of events)

K1) = 61,17 (3.9)
/ K*Q,1)K(2,1")d%ry = §1",1) (3.10)
/ K(3,2K@2,)dr, = K(3,1) (3.11)

3.4 The wave equation

It is possible to obtain the paraxial wave equation for “frce space” from the Helmholtz

equation for the propagation of light in a vacuum in 3D space i.e.
VA + K20 =0 (3.12)
substituting

Uz,y,2) = (z,y, 2)e* (3.13)

28



gives ) )
) 9 2
[(ax2+d—)¢+2k%£+%—1ﬁ}e =0 (3.14)

I3 ’ 2 ] . . .
for the paraxial case, one takes k%—g— > %ﬁ- so that the 3™ term in equation (3.14) is

negligible in comparison to the second, leading to the required (free space) paraxial wave

2 2
(5‘955+%§)¢+2 ¥ o (3.15)

equation

3.5 Summary

The “physical” idea of quantization based on the analogy with optics is available even

when standard prescriptions for quantization fail.
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Chapter 4

Wave Equations

4.1 Introduction

The objective in this chapter is to investigate the possibility of obtaining a wave equation
for nonholonomic systems. To aid visualisation of the system, paraxial optics is considered:
instead of explicitly dealing with the non-relativistic mechanics of a particle in 2D (the idea
is described in chapter 3). The question to be considered is whether it is possible to make
progress towards a nonholonomic wave equation by considering the holonomic case, writing
the result in a form independent of the surface and then making a formal generalisation to
the nonholonomic case. The resulting equation can be “checked” by interpreting the terms
present and seeking expected features.

In section 3.4, the paraxial wave equation for 3D “free space” was obtained. Now the
corresponding equation for a 2D curved “constraint” surface is required. The first step is
to write the Laplacian operator on this curved surface in terms of a differential operator
which is as close as possible in direction to % but still “within” the surface. Once this has

been done, the “paraxial substitution”
T = gpetk? (4.1)

is made. The next stage is more complicated than in section 3.4 due to the presence of terms
including ;%(spatial quantity) (e.g. g—i) These should be “small” since in the paraxial
case the slope of paths is taken to be small, The “exploration” required to verify the most
plausible “order of smallness” to associate with such terms is not included. Retaining
terms to a consistent order gives the paraxial wave equation (the “Schridinger equation”
in the mechanical interpretation).

As a “check” on the result, the continuity equation corresponding to the “Schrédinger
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equation” is obtained (in the standard way) and the terms are interpreted to check that
they “make sense”. One of the terms in the “Schrodinger equation” cancels out during
the derivation of the continuity equation so a different method of “checking” this term is
required. A simple special case is considered for this purpose. The WKB approximation
scheme is used (there is only one space dimension within the “constraint” surface), in

addition to taking the paraxial limit.

For the general case, the WKB approximation is applied to the “Schrodinger equation”
and the resulting equations checked for plausibility by considering their form in special
cases where the various terms are particularly simple.

Having investigated the holonomic case, a formal generalisation is made to the wave
equation of the nonholonomic case. A simple special case (which will be considered again

later) is used to test the plausibility of the result and an interpretation is attempted.

4.2 Investigation

In 3D space the equation governing the propagation of light in a vacuum is the Helmholtz
equation
V20 4+ k20 =0 (4.2)
The paraxial “limit” is obtained by substituting
U(z,y,2) = ¥(z,y, 2)e'*> (4.3)
. h 9%
with k%% > _6—214'
With one holonomic constraint, light propagates in a 2D curved surface within the 3D
Euclidean space. The Laplacian operator on a curved surface is given by
1o
V9 og'

where gg;x =6, (i=1,2 j=12 k=1,2)

ij O
(00" 55)

and g = det g;; (g;; is the metric tensor)
To remove the explicit dependence on the coordinates (¢!, ¢?), new differential operators

(vector fields @,b ) are defined. Requiring the two basis vectors to be orthonormal gives
V2Y = a(a®) + b(b¥) + (~[ab — bajy)al + ([ab — ba),)b¥ (4.4)

where [ab — ba) = [ab ~ bd),a + [ab — ba)sb is the commutator of @ and b

If it is further required that one of them is in a transverse direction, tangent to curves of
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constant z on the surface, then their form is determined uniquely in terms of the coordinates
on the surface, one of which is chosen to be the z coordinate of the 3D Euclidean space.

These specific operators are

L. Lo

u = \/@Eaa)z (4.5)
- gaa_?_ _ Jaz _?_ .
YT Vg 3z>a \/gaagaa)z (+6)

where gaa, ga, are components of the 2 x 2 metric tensor describing the surface
z = z(0, 2), ¥y = y(a, z), z and its coordinate system.
Working in the paraxial regime and neglecting terms small compared to

k % (spatial quantity) gives

22&—(1;1/)) + a(ay) + zk—-[uv — D)) + k2 1) (1-(p2)%) =0 (4.7)

(v

which is analogous to a time dependent Schrédinger equation. The corresponding conti-
nuity equation is

% / V" /Gaada + / (u< j_u W+ :k[z/)*(w)-(a'w*)z/’])) Vieada =0 (4.8)

This is analogous to the standard result except for the sccond term which accounts for a
bulk flow of probability if the z = constant and a = constant directions are not orthogonal.
This result is independent of the form of the last term in the wave equation, and therefore
does not provide a “check” for this term in the “Schrédinger equation”. However, this
term may be checked for consistency by considering the classical limit. We know what to
expect for the “path length” and substituting this into the equation allows a consistency
check to be made. If a simple special case is considered then one can rederive the equations
with the bencefit of clear geometrical guidance. If the relevant special case of the general
result agrees with this, then confidence in the general result is increased. Choosing an
inclined plane with normal vector in the (0,1, ~y;) direction (y; is the derivative of y with
respect to z), returning to the Helmholtz equation, making the substitution ¥ = Ae'*@

and retaining only the highest order terms in & gives
Q) + (uQ)* =1 (4.9)

then substituting Q = 2+ ¢q and neglecting the (#ig)? term since it is small compared to og
gives

2(vq) + (uq)* = y? (4.10)
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when higher order terms in %(sz)atial quantity) are neglected. Since the expression for
the “path length” ¢ is known, it is possible to verify that this expression is consistent, to
within the approximation used, by substituting for ¢ (on the left side) and comparing the
result with y2. A similar procedure may be followed for the general case by substituting
1 = Ae*9. Considering the real part of the resulting equation, retaining only the highest

order terms in k and dividing through by A gives

(vq) + (ug)* = 1= (o) (4.11)

%z‘;A + (aq)(aA) + -;—ﬂ(ﬂq)A + ——[ub - vi)yA =0 (4.12)

In the holonomic case the first two terms combine to give %é. The third term is associated
with the divergence of rays within the surface , it is zero when the surface is a cone. The
rays are then along generators of the cone. The fourth term is non-zero for the cone but
zero for a flat surface so it may be interpreted as a measure of the “divergence” of the
surface itself.

In the holonomic case the operators 4 and @ are defined in terms of the surface and
coordinate system. To extend the wave equation to the nonholonomic case, a more general
interpretation of these operators is required. Again taking % to have no component in the
z direction and to be normalized, the additional requirement that its component vector
be orthogonal to the local value of the normal vector, n, specifying the planclet field (i.e.

“within the planelet”) gives

=0 _n0 :
Y= T o T oy (4.13)

where T = 1/71,3 +n§

Taking ¥ to be normalized and orthogonal to @ and its component vector to be orthogonal

to n, gives
ngn, 0 ngn; 0 TO

nt dxr = nr Oy | noz (4.14)

where n = ,/n2 +n§ +n?

The wave equation resulting from using these definitions may be checked using a simple
nonholonomic special case.

For the case n = n(z) (only) and n, = 0 the planelets join to form strips of infinite
length but of infinitesimal width in the z direction. These stacks of strips rotate as z

increases. The last term in the wave equation vanishes. The commutator’s component
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vector is in the n direction which contrasts with the holonomic case where the commutator
was always “within the surface”. So the u component which occurs in the wave equation
is zero. Consequently the wave equation takes the simple form.

2ik?—¢ +a(ay) =0 (4.15)

0z

where @ is like a partial derivative with respect to distance along a “planelet strip”. This is
analogous to a Schrodinger equation with a constant potential but in a rotating coordinate
frame. The problem is that a nonholonomic constraint should not reduce the dimension
of the accessible position space, so ¥' = ¥(z,y, 2), but the wave equation does not scem to
specify what ¢ does in the n direction. This is perhaps not surprising when the method of
derivation is considered. The original surface is just one of a “stack” of surfaces filling 3D
space. However simply introducing a variable labelling the surfaces within the stack will

not solve the problem.

4.3 Summary

Although a definitive nonholonomic wave equation has not been obtained, insight has been
gained into some potential difficulties in achieving this goal.

The approach used here is novel, but the problem of obtaining the Schrédinger equation
for a particle on a surface or a curve appears in the literature, including questions of the
dimensionality of the wavefunction. The fundamental distinction is between applying the
constraints before quantization or after quantization. If the constraints are applied to the
classical system (before quantization) then the dimension of the wavefunction obtained
after quantization is reduced. If the constraint is applied by imposing a deep potential
well on the quantum system (i.e. after quantization), then the wavefunction depends on
the full space but the part depending on coordinates within the surface is often treated
separately [19, 24].

The approach presented in this chapter fits into such a classification in so much as the
dimension of the wavefunction is reduced when a holonomic constraint is present, The
“confining potential well” approach is often advocated for systems where the constraint
arises from a real physical system, rather than a mathematical formalism. Since the prob-
lem considered here is based on real (although idealised) mechanical systems, it might seem
that a development of the “confining potential well” approach might be more appropriate.
However, the fact that nonholonomic constraints are necessarily velocity dependent rules

out a direct extension of such a procedure.
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Chapter 5

A simple non-holonomic system

5.1 Introduction

Faced with a potentially difficult investigation, it is advisable to start with a simple system.
If progress is made with this, then a generalisation can be attempted. This is likely to be
easier than beginning with the most general case. This chapter introduces a simple system.

A study of this system is presented in subsequent chapters.

5.2 The system

The system is a point mass in a (horizontal) plane z,y which is subject to a single non-
holonomic constraint f(x,y,,7,t) = 0 of the simple form n,(#).& + ny(t)y = 0 (easily
generalizable to ng(t)E + n,(t)y + n(t) =0 ). A physical realization of this is the variable
radius rolling disc described carlier (in section 1.3). The constraint being independent of
z,y and lincarly dependent on &,y means that the classical mechanics, both vakonomic
and ordinary nonholonomic, can be solved explicitly, as can the quantum mechanics in the
standard path integral (ie vakonomic quantum) formulation. This allows attention to bhe
focused on attempting to find a formulation for quantum ordinary mechanics.

For this special case the planelets join up to form strips of infinitesimal length in the
time direction. Also, the results in this chapter take n to be normalized, i.e. n2 + 113 =1

For this simple system, the space-time version of the “holonomicity condition” (1.5)
reduces to

Ngfly — Nyhy =0 (5.1)



but n may be written in the form
(ne,ny) = (—sin(t),cos ¢(t)) (5.2)

where ¢ is some (unspecified in the general case) function of time.
So that
(g, ty) = (—cos §(t), —dsin @) (5.3)

and

gty — Nyfts = ¢ (5.4)

In other words, the constraint is only holonomic if ny = constant and n, = constant.

When time dependence is present (i.e. ¢ # constant) the constraint is nonholonomic.

5.3 The classical mechanics

5.3.1 Vakonomic solution

The special case for n; = 0 and n normalized, of the result in appendix D is

Ar(t) = [ / ;0(1 —D.ﬂ)ds] [ [ :0(1 - ﬁﬂ)dUJ B Arp (5.5)

where Arp = r(T) —r(0) is the required displacement , 1 is the unit matrix and nn is the
outer product of two n vectors.

If the final displacement is specified (i.e. Arg ) then the vak solution tells us “how to

get there” (i.e. Ar(t)).

5.3.2 Nonholonomic solution

The nonholonomic equations of motion are # = —(.8*)n . The constraint n.&* = 0 ensures
that the velocity is v(ny, —n;). Conscrvation of energy 7.F = 0 means that its magnitude

|v] is constant. Integration of this velocity gives
t
Ax(t) = (0(0) AZ(0)) [ (my(s), ~na(s))d (5.6)

where the factor outside the integral is the signed initial velocity.

Considering a particular initial point but all possible values of v gives a “classical fan”
of rays (scction 1.5.5). At any given time the classical fan defincs a straight line which
is not in general parallel to the “planclet strips”. It is hoped that this “classical fan” will

become an important feature of a correct quantum solution as the classical limit is taken.
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5.4 The quantum mechanics

5.4.1 The vakonomic propagator

The path integral may be evaluated directly or the classical vakonomic solution may be
used to obtain the (vak) “classical” action. The special case for n; = 0 and n normalised,

of the result in appendix D is
r(t)t m . .
K = //-( ) oF f:zo(?z2+z\(2-r))drdoo7.(,r)doo,\(T)
£(0),0 B
2rm e S ATM AL (5.7)

ihy/det(Al)

where M is the matrix [[/_,(1 — nn)d7]

The vakonomic propagator is not expected to give the correct classical limit but it
is worth considering how it does in fact behave. The classical limit (“h — 0") meaus
that h is small compared to a typical classical action. In this limit equation (5.7) shows
that K oscillates rapidly as Ar is changed. This might be acceptable behaviour for a
“nonholonomic propagator” if the oscillation were least rapid on the classical fan. If the
phase = constant curves were ellipses which became increasingly elongated around the
line of the classical fan as “h — 0", for example. The condition ArM~!Ar = constant
does define a set of ellipses, so the required anisotropy is present. However, finding the
eigenvectors of M ~! shows that their axes do not lie along the line of the classical faun.
The vakonomic propagator was not expected to give the correct classical limit, but this
example illustrates the type of test any proposed nonholonomic propagator must pass to
be acceptable.

Having evaluated the path integral for K(rg,t2;1;,%1) it is straightforward to obtain
the corresponding differential equation {10, 32

3 2 2 2 2
zh% = -—% (n.ggm—z - 2nzn,y-£1@ + 113(7!/—2) )

Since n is normalised and depends only on time, this agrees with the result (4.15) with

(5.8)

k = 5£. So in this special case, the wave equation obtained by generalizing the holonomic
result agrees with that derived from the standard path integral (i.e. the vakonomic result).
This wave equation may represent “quantum mechanics within the planclet strip”.

5.4.2 The nonholonomic propagator

The natural approach to incorporating constraints into the standard path integral gives

“vakonomic mechanics” so a new approach is required. The goal is some form of “general-
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ized path integral”, for the simple nonholonomic system, which gives the correct classical
mechanics in the classical limit. An approach to this problem using a model system is

described in the next chapter.

5.5 Summary

The purpose of this chapter is to introduce the simple nonholonomic system which is
considered in the remaining chapters. Also included are the results which may be obtained
for this simple system, and some discussion of these. The results given are the classical
and quantum vakonomic solutions and the classical (correct) nonholonomic solution. The
“set” is not complete because no result is given for the “quantum nonholonomic” solution.
The search for such a solution is the subject of the following chapters.

The results presented in this chapter are not likely to occur in the literature. This
is partly due to the idealised nature of the system considered: its simplicity provides the
opportunity to find explicit solutions. Also, the “quantum vakonomic” result presented
here is equivalent to solution of the differential equation which would result from the

standard “Dirac procedure”. Often the goal is simply to obtain the differential equation.
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Chapter 6

The model

6.1 Introduction

The quantization of a system subject to a nonholonomic constraint using the standard
Feynman path integral formulation gives “quantum vakonomic mechanics”. The correct
classical mechanics is not obtained in the classical limit. The goal is to modify the standard
path integral formulation so that the constraints are incorporated and the classical limit
is correct. The idea is to include the constraints at the most fundamental level in the
construction of the path integral.

The problem of constructing the propagator for a finite time interval is broken into
two “sub-problems”. The first sub-problem is to find a suitable quantity to represent the
propagator for an infinitesimal time interval. The second sub-problem is to “composc”
these quantities into an expression for the propagator for a finite time interval. This is just
the same as in the standard case (section 2.4). A “suitable quantity” is an approximation
to the propagator for a small time interval, ¢, valid to first order in €. This follows because
the expression for the propagator for (finite) time At (i.e. equation (2.7) if At =ty —t,)
effectively contains %9 factors of this type. If an error of order € is made in cach, the
resulting error will not accumulate beyond the order €2 (—‘%—!) (i.c. €At) which vanishes in
the relevant limit (i.e. € — 0).

The proposed approach is to apply the constraint dircctly to the propagator for an
infinitesimal time interval. Of course, if “composition” to form the finite time interval
propagator is to be achieved then one must consider errors to check that the cumulative
error will not be too large. However, in the present chapter, the focus is on the first

sub-problem — to find a plausible way to incorporate the constraint into the infinitesimal
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propagator.

6.2 Introducing the constraint

The constrained system to be considered is the “simple nonholonomic system” introduced
in chapter 5. The “picture” of the constraints appropriate to this case was mentioned in
section 5.2. Now attention is to be focused on an infinitesimal time interval. Over an
infinitesimal time interval, the “constraint normal vector” n may be taken to be constant.
This vector defines a direction normal to each “planelet” (i.e. “(n,0)” in 3D space-time,
where “(n,0)” is defined to mean (n,,n,,0) ). For the simple system, it is independent
of position, so the planelets all have the same orientation and “join up” to form strips
of infinitesimal length in the time direction of 3D space-time. So for this case of an
infinitesimal time interval, the constraints may be represented by a stack of strips (parallel
to each other) infinitely densely packed within this section of space-time. In fact, to follow
the standard path integral construction, it is necessary to “go back a step” and consider a
small time interval €, the infinitesimal case can be obtained later by taking the limit € — 0.

With the “infinitesimal” time interval extended to length € # 0 the stack of “constraint
strips” is no longer infinitely densely packed — there is a small separation, a, between each
adjacent pair of planes in the stack. This means that when the limit € — 0 is taken, there

is a choice to be made between:

1. £2—50ase—0

2. £>00ase—0
3. a~€ease—0

any of these could be chosen provided that the requirement that @ — 0 as € — 0 is met
(so that the stack of strips is infinitely dense in the limit). It is possible that this apparent
extra “freedom” in fact has no effect on the limiting case. It is also possible that only one
case can give the correct behaviour and that another case is associated with vakonomic
type behaviour.

There remains the task of proposing a “mechanisin” by which the constraints are en-
forced. The constraint is that there should be no motion in a direction perpendicular to the
“constraint (planelet) strips”. This need only be rigidly enforced in the limit (i.c. € — 0).
A way to realise the constraint is to treat the constraint strips as rigid barriers. Moving to

the terminology of optics as described in chapter 3, one might consider that the rays are

40



guided between pairs of strips acting as “wave-guides”. In this case it is clear how waves
will behave — so a possible “quantizati(.)n” has been found (chapter 3 and [16]). So, in this
scheme, the constraints are incorporated as a requirement that the wave-function must be
zero on the “constraint strips” (described as “mirror plane strips” in the optical terminol-
ogy). Between these strips are lanes of “free space”. The stacks of constraint strips for two
separate times are illustrated in figure 6.1, although the strips are of infinite length, they
have been truncated in the diagram. The spacing of the strips within the stack, a, is not
a function of time.

Before returning (in section 6.3) to the first sub-problem, it is worth considering the sce-
ond sub-problem, i.e. the question of “composition”. For the next time interval (“stage™)
the entire stack of strips (“Venctian blind”) is rotated slightly (by an angle A#, with
Af ~ € as € — 0 since the rate of rotation is finite). At the interface between stages (ie. a
t = constant “interface plane” — examples are included in figure 6.1) the “leading edges”
of the first sct of constraint strips intersect with the “trailing edges” of the sccond set to
form rhombus shaped (2D) “boxes” or “unit cells” (on the interface planc). A Feynman
path may be labelled by a set of numbers: its coordinates at cach “time-slice”. Since
the presence of constraints yiclds a grid of rhombuses, it is natural to use a list of the

rhombuses through which a path passes to provide such a specification.

6.3 Single stage propagation

The single stage propagator will be obtained for a time interval (€) of gencral length.
Eventually, the limit ¢ — 0 will be taken (as in the standard case), since a single stage is
of infinitesimal duration. An advantage of working with finite € is that one can use all the
techniques of path integration to aid derivation of the desired formula.

During a stage the particle is confined between a pair of “planes™ (the constraing strips)
which have (n,0) as their normal vector. It is in a potential which is translationally
invariant in the direction perpendicular to n and gives an infinite square well (with wall
separation a) in the n direction.

The (2D) propagator for a single “stage” lasting for a time interval € may be factorised
into the 1D propagator for motion parallel to p and the 1D propagator for motion in the
(orthogonal) direction between the planes (i.e. free space propagation). For the propagator
for motion parallel to n (with initial and final points between the same pair of planes) the

path integral reduces to a sum over straight classical paths for a particle bouncing between
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the walls, since there is free space between the walls. The (type of) path segments to be
summed over are illustrated in figure 6.2. If the initial and final points are separated by a
“constraint plane” then the propagator is zero.

When the initial and final points are in the same “lane” (i.e. there is no “constraint
plane” between them), an alternative way to obtain the expression for the 1D propagator
(for motion parallel to n) is to remove the constraining “planes” (boundaries) of the “lane”
- in which the particle is moving and add “images”. Specifically, a charged particle between
parallel conducting planes may be considered: the planes are replaced by image charges,

and a contribution from each image charge included to give the 1D single stage propagator

K(Az,p) = \/% Z piV(Az+2an)? _ Z Jiv(Brt2342aN)? o)

n=—0oo N=—c0

where Az = Zfinal — Tinitial

m
= — ics 6.2
V= o (mechanics) (6.2)
or
v= L2 (optics) (6.3)
2ce

€ = duration of stage in time

m = mass of particle

B = Tinitiat if the initial and final points within the same “lane”, otherwise K = 0.

Figure 6.3 shows how the first few image charges are constructed from a positive charge in
the central “lane”, the pattern in fact extends to infinity in both directions -— in the same
way that an object placed between parallel mirrors has an infinite number of images in both
directions. The horizontal lines in the diagram are for construction purposes, they can be
ignored as far as the “paths of the image charges” are concerned. Applying clementary
geometry to the diagram is sufficient to deterinine the displacements, which are required
for the “free space” exp (z x constant x M’%}"ﬁ"—tﬁ) terms in equation (6.1).

The sums in equation (6.1) do not give a finite result. Generally, this is true even
when they are combined. Truncated versions are related to curlicues [6] and thus have
complicated parameter dependence. Some insight can be gained by considering the Wigner
function for the 1D wavefunction composed of positive and negative “delta combs”. Free

space is a case when its time evolution is given simply by a shear of phase space.
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6.4 Summary

This chapter has initiated the investigation of the simple system introduced in chapter 5. In
particular, a “physical” realisation of the constraints has been suggested, which is consistent
with the geometrical picture of this simple system. The advantage of basing a model on
a physical system (a charged particle between parallel conducting planes in this case) is
that it can be investigated using standard techniques from physics. However, it is not
guaranteed that the model will exhibit the behaviour desired for a nonholonomic system.
If investigation of the model suggests that its behaviour is unsuitable, then it is necessary
to modify the model or possibly to reject it altogether. This is just standard modelling
procedure. In this work it is also advisable to consider whether the correct question is
being asked of the model.

From the investigation of a single stage in this chapter, it seems that a re-assessment

is indeed required.
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Figure 4.1: Two “infinitesimal” stages with “interface planes”
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Figure 4.2: Classical bouncing paths
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Figure 4.3: The image charges construction (5 “lanes” only)
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Chapter 7

Modes

7.1 Introduction

This chapter introduces a way of performing calculations based on thie model in chapter 6.
The focus of the calculations is different but the model is the same. The “singular” nature of
the propagator (6.1) suggests considering a transition amplitude [10] instead. Specifically,
problems résulting from propagating from a specified point to another point should be
avoided by considering instead the transition from a specified mode to another mode.
During a stage the constraint is realised by a wave-guide, so mode analysis can be applied
(the form of the propagator in the modes scheme is given in appendix F). Figure 7.1 gives
a schematic representation of some modes on a section through the stack of constraint
strips. At the intersections between stages the wavefunction overlaps are considered on the
rhombus “unit cells”. Since “composition” is considered in more detail in this chapter, the
full 2D formulae will be given: with the (“free space”) direction parallel to the “constraint

strips” included.

7.2 The transition amplitude

Whereas the propagator provides an expression to go “from point to point”, the transition

amplitude is “from mode to mode”. The process:
e start with a given mode at an interface between stages
e calculate the overlap with the modes in the next stage

e propagate a distance Az(> 0) in the direction of the z-axis
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Figure 5.1: Lowest 3 modes in z-t plane
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e at the interface calculate the overlap with a specified mode in the next stage

is represented by the transition amplitude

T(n3, kya'v N1, kyl) = (X(TL:;, kya)‘d’(nla ky:))
= / / X" n3, kye ) K (2", 2510, 2 (2! may ey, Y2 P (7.1)

where
00 o0 .
K252, = 3 [ e k) (s, Ryl
o0

no=1v"

for 2! —2'=Az>0

(K2, + k3,
ky = 1(1 - ——-27”2.—”— (7.2)

in the paraxial case considered here

P(ring, ky,) = (\/gcos E;—ﬂ(zi - mc,-)> (\/—12__; e"ky.-y;) (7.3)

(with similar expressions for for x and ¢)

and

Zei is the value of the x; coordinate for the centre of a lane (of width a)

The z; coordinate axes are in the direction of the normal vector of stage “” and
the y; coordinate axes are perpendicular to the corresponding x; axes (i.e. parallel to
the constraint planes of stage “i”). Consequently, the coordinate system of each stage is
rotated by an angle A# relative to that of the previous stage. The number of dashes label
the interface at which the overlap is evaluated. Upon adding an extra propagation stage

and interface the transition amplitude becomes

T(n4, kys 1, ky,)

= /// X*(_’C’”; n4, ky'l)l\’(lzlll’ ZI/I;EII, Z”)I\’(ﬂ”, Z”; .7_',, zl),d‘(l:l; 7)1,&'1“ )(IQEI(I‘_)LH([)L_IH
(7.4)

For a continuously varying normal vector, both Az and A# are infinitesimal, so this pro-
cedure must be repeated an infinite number of times to achieve a finite displacement in
the z direction. By definition, if the angular frequency of rotation of the stack of strips
(é) is finite then A9 ~ Az as Az — 0. However, there is also the limiting behaviour
of a to be considered. If @ ~ A#P (where p > 0) then the freedom to choose p allows
a range of systems to be generated, ideally including models for both quantum ordinary

nonholonomic and vakonomic cases (section 6.2). Since the wavefunction is zero on the
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planelet strips it is necessary to divide by a power of a to prevent a zero result in the limit
a — 0. Otherwise this limit might suggest that the wavefunction is zcro everywhere.
There is no reason why a particular position in space (configuration) of the stacks of
strips should be preferred, so an average should be taken over shifts of cach stack in the
direction of its normal vector. Only shifts in the range 0 to a nced be considered since
each stack is periodic with period a under such shifts. If the lanes arc labelled by integer
variables (j;) then a particular rhombus is specified by the values of j in the stages on either
side of the interface. The integral over the whole interface plane may be broken down into
an integral over a single general rhombus and a sum over all rhombuses. The position in
space of a given rhombus is changed by a shift but if the formula for the overlap at an
interface is written in terms of the lane labels then it is shift independent. Specifically,

integrating over a rhombus unit cell at the first interface gives

I('I’L2, yza]Zynl, V1 ,.71)

Ly(Ax)) nam (
= cos Azl ) cos (LA, )ex i ky i)y d(AL
,/Azl____ LI_L (Aml) ( a 2) a 1 p( ( .UIJZ lel)) Y1 ( 1)

_ T cilitaA+i2aB)
SinAG [(Aa)? — (ny7)?][(Ba)? — (ngm)?]

2
dm miny cos é(l cos B—; (—1)%(n‘+n2—2)

for nq1,n9 odd

where

Li(Ax)) = yiy £ §csc AG — Ax cot A8
Az) =z -z

xl; = jia

A = ky, cot A — ky, csc Af

B = ky, cot Af — ky, csc A

In the derivation of this result (appendix E) unnecessary complication is avoided by taking

shifts to be zero from the beginning.

7.3 Composition of stages

The combination of a rhombus overlap integral at an interface followed by a single stage

of propagation within a lane is, for example

. . A 2m 2
J(n2,k92,.72;n1’ky1).71) 1(7127 p.]%nla,‘yv]l)e‘(p (MAZ - IZAZ I:(nf,n) + ng])
(7.6)
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Two such steps are composed using

J(TLS, 'ya’j3;nl, 'ylajl)
= Z E / J(n3,ky3,j3;n2, ky2$j2)'](n2,ky2aj2;n], ky“jl)‘”‘7y2

]2——00 ng=-—00

(7.7)

In order to compare this with the original transition amplitude it is necessary to note that
the j; variables were introduced to label rhombuses at interfaces, so each is really two
separate labels. When both are summed over, as they are in the middle of a multiple stage
expression, they may be combined but at the ends one member of the pair is missing. If
it is taken as implicit that the mecaning of a sum over j; is slightly different for the “end

sums” then the comparison may be written

. iAz [ fnom\? .
T(ng,kya;nl,kyl)exp (zkAz ~or [(—a—) + k;{')

Z Z Jn3’ ya’JB,"l, yu.]l) (78)

j1=—00 jg=—00

So an approach to composing steps based on evaluating the rhombus overlap integrals first
allows some progress to be made but leaves summation over n; and integration over ky,
still to be done. It is difficult to evaluate analytically the integral over &y, in equation (7.7).
Going back to equation (7.1), the integral over ky, is straightforward to evaluate:

o iAz 2k
o exp (<S50 + a0 = 03)) b =y % o (5o~ ) (79

—00

However, doing such integrals first makes the rhombus overlap integrals difficult to evaluate
exactly. For a single interface the expression for the overlap is similar to that given in

equation (7.5) but the exponent is now

5% 10 - )2+ (0 - )
The dependence on k,, and Ay, having been “Fourier transformed” into dependence on
y1 and y5. If limiting cases are cousidered, then some progress is possible. Specifically, if
a ~ A6P as A — 0 with p > 2, then using 4 and A as the variables of integration (as
defined in appendix E) and taking the limit A8 — 0 allows the exponential to be brought
outside the integrals, which then separate to give a product. Each integrand is a cosine,

The result for 2 stages, 1 interface is:

J(n2,2, J2; n1,y1, 1)

2singnym [2sininmgw ik
= FF b 3 _ N2
(9)( nam )( mm )ex (2A (4% = vea)* + ez = 1) ])
(7.10)




where :
2 2
e 2nk \/5 1 \*
- 1Az a vVor
Az

E = exp |ik(2A —) % +n?

exp [1 z) — - (a) (nf + n3)
It is believed that this limit is likely to correspond to the vakonomniic case.

Conversely, if —éaﬁ — 0 as Af — 0, then using 4 and A as variables of integration and
taking the limit A§ — 0 allows the integral over 4 to be evaluated to a (lowest order)
stationary phase approximation. The integrand of the remaining integral (over A) is then
a product of two cosines.

The result for 2 stages, 1 interface is:

- ) . fa?\ 1 ik
J(n2, ¥4, j2in1,y1,51) = F E (*9-) 50ning exp (2(2A )( - 1) ) (7.11)

where F and E are the same as in equation (7.10) and 6y, 5, is @ Kronecker delta function.
It is believed that this limit is likely to correspond to the ordinary nonholonomic case.

Extending the calculations to 3 stages (2 interfaces) suggests that the N-stage (N-1
interface) results will take the form

“Vakonomic”

= N . .
Tn, ", insma, y1ad1)

i Z P ( )(N D /9sin %nmr) <2sin %nnr)
= .o N
ja==00  jN-1=—00 6 nNT mm
ik (N)  (N-1) 2
X exp (—-——2A [( ~ Ye(N- 1)) + (Yer — 1)

[H exp (22 (UU) J&[ 1;))2)
x[exp(ik(NAz))] [OXP <_32A_E (%)2 (nf + 0} )J

— 1 iAz /1\2 \ (N-2)
x[n;) -1 P ('"217 (5) en-v )} (7.12)

“Nonholonomic”

+ N) . .
J(“N,ysv ),JN;‘nl,yl,Jl)

= i Z FN(G)(N ”(_;_)(N—l)

Ja=—00  jy_1=—00
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ik V) _ (N-D) N yO =D 4
XQXP(Q_(—J\TA_;) [(JN ~ YeN )+ z=2< 1~ Ye I)+(ycl_yl)

Z ¥4 2
x [exp(ik NAz))] [exp( 2 ( (n %+"N))]

x[exp( i QA?)A z( ) )} Snynn | (7.13)

in both expressions

“\ N 2(N-1) N
- (V2) () () 10

and
ygl) = $£l()l+1) csc A§ —~ :Bgl)l cot A@ (7.15)
ygl—l)l = mg’l)z cot Af — wﬁl’l), csc Af (7.16)
xgt)l = ja (7.17)
20D, = ja (7.18)

The expression (7.12) has the sum of the squares of the infinitesimal displacements in
the exponent. This is like the path length, which is what would be expected in a vakonomic
expression. The “opposite” limiting case (7.13) (%Q — 0) is expected to be nonholonomic
. It has the square of the sum of the infinitesimal displacements in its exponent. There
are intermediate cases in addition to these extremes.

Although the expressions have been written for the general n-stage case, it is not certain
that they will give the correct limit for a finite propagation. Terms have been neglected
which are small for a single stage but which might combine to become significant in such
a limit. It is therefore desirable to perform some numerical calculations using a general
formula, with the hope of checking these special cases in the appropriate limits.

For the calculations, the continuous variable is discretised and a “matrix” based upon
formula (7.5) used to perform multiple stage evolution of an initial wavefunction (Typically
a gaussian in k, and specified n and j). Quantities such as the overlap with a final
wavefunction or the distribution of probability between lanes (j) can then be calenlated. An
important check on the computations is that probability is conserved when all “channels”
are considered. The computer resources required to perform the calculations increase
rapidly with the rangés of the indices of the matrix, so (fairly drastic) truncation of the

sums is inevitable. This means that probability is “lost” into the neglected “channels”.
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To model the continuously rotating case the value of A8 should be chosen to be small.
However, taking A8 = 7 offers the possibility that only a “unit cell” of a small number
of squares (i.e. rhombuses with § = 7) need be considered if the initial wavefunction is
chosen suitably. After two stages the constraint planes return to their initial orientation, so
this is the natural interval to consider in the z-direction. Reducing the sum over the “lane
index” (j) allows the range of the others to be increascd, for the same “computational
load”. Also, the symmetry of the A8 = 7 case means that it is possible to construct initial
wavefunctions which should be invariant under propagation. Some of these contain only low
modes. These simple eigenvectors of the finite matrix have eigenvalues of modulus unity
even when the “truncated” matrix is considered. Numerical calculation of the eigenvectors
confirms the presence of these and also shows further, more complicated, eigenvectors with
eigenvalues of modulus approximately unity.

This (Af = J) example shows that, even in an artificially simple situation, the re-
strictions on the number of modes required to make the calculations practical are a severe
limitation. Consequently a meaningful numerical comparison with the limiting case results

is excessively ambitious. A new method which is calculationally more straightforward is

required. An approach to this problem is presented in the next chapter.

7.4 Summary

The idea of the approach in this chapter is to start with a mode of the “wave guide”,
propagate it through the model constrained system, and then calculate the (transition)
amplitude to end up “scattered” into a given final mode. The last step is achieved by
taking the “overlap integral” with the specified final mode. In fact, one can begin with
a general (periodic period 2¢) function and carry out the process on cach of its Fourier
components (the Fourier coefficients can be found by performing “overlap integrals”).

The single stage case is considered first. This takes a simple form, once evaluated,
because there is no opportunity for “scattering” into other modes, so the result is zero
unless the specified final mode is the same as the initial mode. It is at the interface
between two stages that “scattering” takes place (provided there is a non-zero angle of
rotation between them).

Building on the result for the single stage, the two stage case is given, to indicate the
principle behind “composition” of stages. The expressions are now more complicated. The

“overlap integral” on the interface plane between two stages rotated relative to cach other,
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is now required. This may be written as a sum of integrals over the individual rhombus
cells. The edges of the cells are defined by the constraint strips in the two stages meeting
at the interface.

The only purpose of the stacks of strips is to enforce the constraint, so it is the average
over all suitable stacks that should really be used. Introducing “shifts” allows such an
“average over shifts” to be performed when convenient.

In order to make the composition of stages more systematic, it is desirable to define a
quantity “J” (equation (7.6) ). The simplest form (of “J”) is just the smallest repeating
unit in a many stage propagation. For composition of stages, it is desirable to evaluate
analytically as many of the sums and integrals as possible. If the final formula is to be used
for numerical work, then evaluating the integrals (i.e. the “rhombus integral” and the inte-
gral over ky,) analytically would be particularly beneficial, as “discretization” errors would
be avoided. It turns out that the option of performing both types of integrals exactly is not
available. The method pursued is to do the integral over ky; exactly and then approximate
the “rhombus integral” in the conjectured vakonomic and nonholonomic limiting cases.
Since this is the “systematic quantity”, “J” (equation (7.6) ), it is straightforward to make
a formal generalisation to an arbitrary number of stages. To go further and demonstrate
that the errors do indeed remain small under “composition” is quite an involved process.
Even if this were completed, some sort of check on the result would still be required. It
seems sensible to verify that a suitable method of checking the result is available first. A
numerical (computational) investigation using a fundamental form of the equation scems
to be a possibility, until one attempts to obtain results of quality sufficient for verification
purposes.

If a different approach gave results consistent with those obtained in this chapter, then
confidence in the results would be increased. A different approach is introduced in the next

chapter.
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Chapter 8

Phase screens

8.1 Introduction

This chapter introduces a new model and provides an investigation of its behaviour, In the
general case the constraint is only applied approximately. However, scope for violation of
the constraints is restricted when the limit conjectured to correspond to the nonholonomic
case is taken. It is worth considering this model because it is the nonholonomic case which
is of particular interest. It is hoped that an advantage of this model will be that the “com-
position” of stages and formulation of a path integral will be more straightforward than
for the “mirror planes” model introduced and studied in chapter 6 (and also investigated

in chapter 7).

8.2 Preliminaries

A “phase screen”, composed of (parallel) strips of phase plate which introduce a phase
shift of 7 (i.e. a sign change) alternating with strips which give no phase shift (figure 8.1),
modifies an incident wavefunction so that directly after passing through the screen it is
zero along the boundaries between the two types of strip. If the strips are of equal width
(and infinite length) and the incident wavefunction is uniform (constant across the screen)
then this pattern of zeros persists indefinitely. This is not true for a general incident
wavefunction but will continue to hold to a good approximation for Az <« ka2. The
paraxial approximation is used: Az is the distance along the “axial direction” (“axis of
propagation”). The width of the strips is a and k is the magnitude of the wave-vector for
the incident plane-wave. If two identical phase screens of this type are placed next to each

other with their strips aligned, then the net effect is zero. However, if they are separated
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Figure 6.1: Phase plate strips in z-y plane
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Figure 6.2: Section through a single stage, showing phase screen pair
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by a small (compared to ka?) distance in the direction of propagation (figure 8.2), then, for
a — 0, the resulting system (appendix G) may be compared to a single stage of the “mirror
planes” model (chapter 5) in the “nonholonomic” ( %‘3 — 0) limit. The mirror planes ensure
that the wavefunction is zero throughout the stage whereas the phase screens enforce the
constraint at the ends of the stage only. Between the phase screens is “free space”, but
the restriction on the length of the stage means that the wavefunction has no chance to
violate the constraints significantly.

The comparison between “modes” (i.e. an implementation of the “mirror-planes” model
relevant for this comparison) and “phase screens” is made more quantitative in appendix 1.
An incident wavefunction sinusoidally varying in the transverse direction (i.c. transverse
to the direction of propagation) will be “scattered” by passage through a stage into similar
wavefunctions of a range of frequencies. The long wavelengths (ﬁ > 1) are of most interest,
as it is hoped that the general large scale features will be the same. The short wavelengths
are “noise” in the sense that they are likely to reflect the particular way in which the
constraint is applied. So, in appendix H, the overlap integral for initial and final “long
sinusoids” is calculated for both modes and phase screens. The result is that agreement is

best for long wave-lengths, just as one would hope.

8.3 A simple case

For phase screens it is natural to consider what happens to a uniform plane-wave when it
is incident upon a single stage. After propagation through the stage, the overlap integral
with another constant amplitude wavefunction is calculated. For “modes” this is not such

an obvious thing to consider, but in this simple case both results are the same, i.e.

174N ks o= 1 _ids(nxy?
3(3) @ L e ¥

nogdl
The function
— 1 iZn2
f(Z2) = Z n2 (8.1)
nogdl

appearing in this expression is a fractal function since its derivative,

4y {2 e Zn (8.2)
dZ odd .
n=1

is a divergent sum [6] (whilst the original sum converges). The real and imaginary parts

of the function (i.e. R(f) and I(f)) are periodic with period 27 (the function is periodic,
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period 27, since each term in the sum is periodic, period 27). To determine the period of

the modulus |f(Z)| it is required to find the smallest & such that

i 1 ei(z‘+9)n2 — i 1 ei:cn2 (8 3)
oidl nz noidl n2
Equivalently the condition is
= 1 iatom? o2
Z ;2_6:(2:4— me . 2mig Z (84)
oddl ) odd
where ¢ may be chosen in the range 0 < ¢ < 1.
This will be true if
(%0 _ 2mid (8.5)

for all odd (positive) n

This condition is expected to be necessary as well as sufficient. If ¢ is defined by t = 2—"
then the graphical interpretation of the condition (8.5) is that (on a graph of y against ¢
figure 8.3) there must be a value of ¢ such that plotting y = {n?t} (where {x} denotes the
fractional part of x) yields intersections with the line y = ¢ (for some ¢ to be chosen in
the interval [0,1) ) for all odd n, i.c. there is a multiple intersection at the point (¢, ¢).
Plotting just the n = 1 and n = 3 cases (figure 8.3) shows that this intersection cannot be
at a smaller value of ¢ than the intersection between the lines y =t and y = 9t — 1, i.c.

t = 1. Evaluating f(Zo + %) shows that |f(Z)| is indeed periodic with period §

[ o]
T ei(Zot+3)(2 1)2
f<Z°+Z) - Z(2m+1)2 e a)ams

- 0 1 2 fm(mtl)
iz iZo(2m+1) ,27r1( 3 )
642((2m+1)e )L

= €' f(Z) (8.6)

. (m+1) . . .
since ﬂ"f;l) is an integer (either m or m + 1 must be even)

7 (20+5)| = 1520 (8.7

as required.

The maximum value of | f(Z)] may be obtained by substituting Z = 0, i.c.

J0) = Y=Y



Figure 8.3: Graph of y against ¢

The result {(2) = 162 for the Riemann zeta function of 2, gives f(0) = %2. Using this result

to evaluate the overlap integral at Z = 0 gives 1 as expected.
Evaluating f(Z) at Z = , i.e. half the period of the modulus of the function, gives

e n s (-l)k
£(5) =< 2 @kr? (89)
s0 |(5)] ~ 0.87 |
The graph 8.4 (the solid line is R(f)) shows that this does not in fact give the minimum
value for |f(Z)|, but that the true minimum value is close to this. The conclusion is

that, for a plane-wave entering a single stage, most of the energy remains in the constant

component. Only about 30% of the total is ever in the other components.

8.4 Composition of stages

8.4.1 Introduction

The propagator for phase screens is (for 23 > z;)

T2%2 4 [*2(B 42 z
K(ry,z9;11,21) = / e f=1 (§£2+e(r,2)d d*r(z2) (8.10)

T1:21

w=Fk (optics) (8.11)
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Figure 6.4: R(f),S(f),|f| against Z
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or

= (mechanics) (8.12)

The “phase function” &(r, z) acts only at the interfaces (labelled by n) between stages (of

length Az) i.e.
O(r,2) =) ¢a(r)é(2z — nA2) (8.13)
n
where the function ¢(r) is obtained by adding the phases of two adjacent phase screens
with the second rotated slightly relative to the first. This gives a grid of rhombuses with
values “modulo 277 of either 0 or 7. Rhombuses with an edge in common have different
values.

Each stage (scparated parallel phase screen pair) is invariant under translation parallel
to the strips forming the phase screens but not under “shifts” in the orthogonal direction. If
the shift associated with the i" stage is a; then the propagator depends upon all such shifts,
i.e. a; for all . This is undesirable since the values of the shifts are arbitrary. It is natural
to average over all the shifts but the averaged propagator (K), may reduce to something
“trivial”. The quantity K*(r%, z2;71, 21) K(r3, 22; 1, 21) (abbreviated to K*(2'; 1) K(2";1")
) should be less dependent upon the values of the shifts. Its average (K*(2';1')K(2";1"))q
will be more physically meaningful. The intensity (from a “point source”) is obtained when
the initial points coincide (1” = 1’) and the final points are the same as well (2" = 2').

Evaluation of the path integrals will be simplified if averaging is carried out first,

8.4.2 Averaging over shifts

The propagator is proportional to

J

3 [ 5]
N : _ 2 I n
lim /dzL‘l .../dzzN_l Hew(ij Li1)e e e e
Jj=1

N—oo

where v = § (Qﬁﬂ)—l, x; = rjn; (i.e. each stage has a “local” set of coordinates, x;
being the notation used to represent the coordinate in the n direction for “stage j") and
[] means “integer part of” (largest integer not greater than)

So averaging over shifts involves evaluating expressions of the form

. fza—a . fzy—a 1 2a
(e’”[‘A:‘]e’”["BZ“]) = 55/& Ofsign(a:A — ;) fsign{Tp — a;a)da (8.14)

since the quantity to be averaged is periodic and foign(z;a) = exp (in [£])

If fsign(x;a) is represented by its Fourier series as in appendix G. Then performing the
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Figure 8.5: Graph of (e¥(#41#8)) against AX

integration gives
‘ 8 &1 nm
i(dat+dp)y = = — = - .
(e ) = ogdd — cos( ~ (zB xA)) ' (8.15)
n=1

Alternatively, proceeding directly from the graphs of the functions gives
: 1 1 1
(ei(0a+ea)y — 1 _ 4 |§(AX —1)- {—2-(AX _ 1)] - 5] (8.16)

where AX = 55;—1-*

It is straightforward to verify that the Fourier series representation of this function is indeed
given by equation (8.15). Averaging over shifts has removed dependence on the average
position %(a:A + zg), leaving only dependence on the difference £4 — rp. The graph is
shown in figure 8.5.

Taking the limit ‘16—2 — 00 should allow the factors (e*(?4+98)) to be approximated by
1—2|AX]| inside the path integral (since, under these circumstances, it is anticipated that
AX = -Af is small, i.e. AX <« 1). The explanation for this assertion is that, inside
the path integral, the path segments are expected to satisfy |Az| ~ €2 as e — 0 (10].
Consequently “?2 — 00 means that —A;f — 0 as € — 0 since —‘}I—I = é‘/—%’/\/—g In the limit

% — oo (which is expected to ensure that the system is in the nonholonomic regime). The

constraint is applied to a good approximation, as required (section 8.2).
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Making the further approximation 1 — §|A.1:| ~ e~ 2!3% inside the path integral (using
the same justification), leads to a simple expression for the averaged propagator in the

. el a2 .
limit &~ — oo, i.e.

L2022 [*2(i42_ 214 5(2)|)dz
(Kegmimyz) = [ el EERERONE oy ) (8.17)
1
where Az has been replaced by Zdz in the “continuum limit”
(¢ = £.n in this section, which makes it similar to a “quasi-coordinate velocity” - - sec-

tion A.3)

For (K*K) the expressions are similar except that there are now four “phase factors” (two

from each path) instead of two. So the single stage “sign average” is

R AR GRS AN [] e =] el 4] e [] ) (8.18)

It is possible to write these as Fourier series again but (after averaging removes one)
there are still three independent variables, so the answer will be complicated, c.g. if
= 3y + ), T = (= + xp), A = 2 — 2y, Ax" = 27, — 2’} then averaging
removes dependence on %(I’ + 2") giving a function of AT = ¥ — ¥, A2’ and Ax”. 1t
is therefore preferable to consider the limiting case from the beginning. In fact, once this
specialisation has been made, the “averaged sign” for a single stage can be written (inside
the path integral) in a form similar to that used for (K). It is necessary to replace |Ar| by
the “total non-overlapping length”, T, which is a function of AF, Az’ and Az”. Projecting
the path segments of a single stage onto the direction defined by the normal vector n gives
two intervals. The paths are said to “overlap” if these intervals coincide over part or all
of their length. There are three cases to consider: zero overlap; partial overlap; complete
overlap. This is summarized in table 8.1. A graph of T/|Az/| against ATr/|Ax!| for fixed
Az’ and Az” = 1|AZ/| is shown in figure 8.6. Neglecting the nonzero-overlap cases as a

first approach to evaluating (K*K') means taking the single stage “sign average” to be

o~ 2(A2'|+{Az"))

This leads to the double path integral

"o, ’ . . . . N
T2,22 15,22 ef:f(12£(£’l2_£’2)—%(Iz”'ﬂ|+,r-"£l))dz(100£’(Z) (I‘JOEU(Z)

N N
J(£2,Z_2,22,Z1,7_1,31) =
E’]’vzl levzl

(8.19)

which factorizes
J(ry,1h, 22:1%, 71, 1) = (K (v, 20517, 20) (K (15, 223 7, 21))* (8.20)
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Figure 8.6: Graph of T/|Az’| against AZ/|AZ| for Az” = 1|AL|

Overlap | Non-overlapping length
Zero |AL| + |Az"|
partial 2|Az|
complete [|[AZ| — |Az"||

Table 8.1: T as a function of “overlap”

This is as expected, since the paths were assumed never to interact (i.e. to be independent).

In view of this relation, it is interesting to investigate the averaged propagator. First, it is

worth checking that probability is conserved under propagation by (K*K).

8.4.3 Conservation of probability

For a single stage (of length 25 — z4 > 0)

K(r's,zB;74, 24) K* (5, 28,74, 24)

1 "
/v ot o2 o [ TA T IB—O‘)
= —exp({w(irg —r 4T -+
i P( (rs — a) [ a } [ a

/ /
v , . [dy—a]l | [og—a
X exp (—w(g'B—z’AF—m‘[ 4 ]—m[ B ])
Q

(1)
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setting 1y = r’p and integrating over this final position gives
* " * ! 2
/ I((l:BazB;EAvZA)I( (EB’ZB;EA’ZA)d EB
-0
2

v . 2 2
= (—) exp (iv(h” - 14%))

s

"o o
X exp (z"rr [IA a] +im [$A a])
a [
OO
X / exp (2iv(r)y ~ r'4)-rp) d’rp
—00

= F(h,1h, @)% () — 4 (8.22)

(where 62 is the standard 2D delta function and the function F is defined by this equation.)

Using this in the expression for the final probability gives

[o ¢]
/ V(rg, 28)¢" (rp, 28)d*rp
—00

o o ” " " 2 N
= / / K(rp,zB;14,24)¢ (1), 24)d 1)
o0 J —00

(o o]
X / K*(rp, 283 T4 22) " (s, 24)d2 Ty d?r
(X)_oom 2
= / / F(2, 7', )83 (s — £ v (s, 2a)¥* (g, 24) 22l d?ry
o0 J-co 2
= / V(ra,2a)0" (L4, 24)d°T 4 (8.23)
—0OC
since F(r4,r4,0) =1

So probability is conserved for a single stage. This process may be iterated to show that

probability is conserved for finite propagation.

8.4.4 The averaged propagator

Although the path integral for the averaged propagator (equation (8.17)) scems fairly
simple, it is difficult to evaluate. There is, however, an alternative approach which involves
obtaining a differential equation. In the standard case [10, 32] the Schrodinger equation
is deduced by using the propagator to propagate a wavefunction for a infinitesimal time
interval. A similar approach can be applied in this case but, due to averaging, the quantity
“Y” in the calculation should not be interpreted as a wavefunction in the conventional

sense. With this proviso (and using time, ¢, rather than 2)
o0 o0 2
vt+o)= [ [ (K@t +etg,)vlg g (8.24)
=00 J—00

leads to
2 [2i ,,
oy = - ;ﬁ PVt +0(6t) as 6t —0 (8.25)
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In the standard case the leading order term is of order ét, leading to a differential equation,
in this case it is of order 6t3 (there is still a term of order 6t). The term of order St3 s
a consequence of the modulus sign in the expression for (/). It suggests that ¢ is non-
differentiable (a fractal function). The factor has a negative real part suggesting that ¢
will decrease with time.

If the presence of the modulus is the most important feature, then the “1D” (i.e. 1D if
the z-direction is not counted) version (which is holonomic since at least 2 space dimensions
are required for nonholonomy) should display a similar general behaviour i.e. considering

the expression for changing from the fixed end point path integral to the free end point

version
T2,22 22(ip .2 21 z2 oo 22(ip 52 2|4l 4ibd )
/ el ( I alzl)dzdool_(z) — / / ele ( 3 T a|$|+1 Z)dzc_’bAzdb d°°j;(z) (8.26)
1,21 21 -0

(where g is defined after equation (8.10) but & now represents %f—, the derivative of a position
coordinate, rather than the component of the velocity in the non-constant n-direction)
The path integral on the right hand side of equation (8.26) may be factorized to give a

product of N ordinary integrals (N — 00) of the type

I /’Z /oo e(iqu_flyHiby)dy (8.27)
T Jy==—00

— u 22—2 : 3 inte
where v 2(20) and #3% — ( to obtain the path integral

Evaluating this integral by splitting the range of integration gives

[ = erbz(2-a%) [es-:: (; _ %E) te (; _ J_E_)] (8.28)

where
b i
Ey=F (:t—-—- + --—V-) ~ (8.29)

and
E(z) = /0 et (8.30)

Expanding this in small quantities when ¥ — oo and taking the N** power for finite

N
1_2 /1
ay v

which tends to zero as N — oo (v ~ N as N — o0). To evaluate the path integral it would

propagation, the dominant factor is

be necessary to perform an infinite integration over b. The expansion will not be valid over
the whole of the range of integration, but the result will hold qualitatively provided the

contribution to the integral from large values of b is a small fraction of the total.
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8.5 Numerical investigation of (K)

A numerical approach provides an opportunity to investigate single and multiple stage

propagation using the exact (periodic) expression for the single stage average. The 1D
single-stage averaged propagator (“())1”) depends on the difference betwoen the initial
and final coordinates (Ax) only. There is no time dependence because n(t) does not appear

in the formula. So the composition of three stages takes the form

/_C: f(xz — x9) (/_C: flxe — 1) f(zy - aro)(l;tl) dry

making the substitutions A; = z; — x;-1, ¢ = 1,2, 3, this becomes
o0 oo
[ r@a=m0) ([T f8a - A0f0AA ) dba = F4(f 1) (83D
—o0o —00

where * means “convolution” (i.e. f*g= [ f(v—u)g(u)du which is only equivalent to
the definition of convolution with limits of integration 0 and v when all functions involved
are zcro for negative values of their arguments)
The Fourier transform of this is F where F' is the Fourier transform of f. The N stage
version of this result allows the path integral to be built up by repeated convolution or
by taking the N** power of the Fourier transform, F, and then using an inverse Fourier
transform on the result (similar to equation (8.27) and equation (8.26) ).

For a single stage propagator with the Fourier series representation of the phase average
(equation (8.15)) it is possible to compose two stages analytically using both methods, for
a large number of stages a numerical approach is required. The Fourier transform method

is most suitable for this. For a single stage the Fourier transform is

Gk) = —%e'zizk", 3 L 5% cos mak (8.32)

Of most interest are |G(k)| and |G(K)|N (for N stages). The modulus of G(k) is even and
periodic in k. Its graph shows a series of peaks (figure 8.7). These sharpen into spikes
(figures 8.8, 8.9) as higher powers of |G(k)| are taken. However, the spikes need not have
a single pcak. Whether they do or not depends upon the form of |G(A)], which in turn
depends rather sensitively on the value of the parameter (e.g. A = 4—1‘; (f)z if a scaled
variable K = 2k is used). Graphs of |G(k)| for several values of the parameter are shown
in figures 8.10-8.15. This means that further averaging is desirable. This is introduced in

the next chapter.
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Figure 6.7: Graph of |G (k)] against k with A =1

63



.6e-02

.4e-02

.2e-02

[ )

.0e-02

.0e-03

.0e-03

.0e-03

.0e-03

.8e-03

.6e-03

.4e-03

.2e-03

.0e-03

.0e-04

.0e-04

.0e-04

.0e-04

T T J T
- i 54
Y !
L ]
- -
‘\ f \
N ' £ \; 2
0 200 400 600 800 1000

Figure 6.8: Graph of |G(k)|" against k for N = 20 with A =1

L 4 T T ¥
. -
]
i )
- -y
N A ] L/
0 200 400 600 800 1000

Figure 6.9: Graph of |G(k)|" against k for N = 20 with 4 = 1.2
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Figure 6.11: Graph of |G(k)| against k with A =
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Figure 6.12: Graph of |G(k)| against k with A = &
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Figure 6.13: Graph of |G (k)| against k with 4 = ¥
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Figure 6.15: Graph of [G(k)| against £ with A =14
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8.6 The classical regime

Phase screens is developed as a way of applying the constraint to the standard path integral.
In fact, the standard free space action can be modified to include the “phase function™
&(r, z) (defined by equation (8.13) ). This is just a change in interpretation and it is not
really a natural change to make unless the “continuum limit” Az — 0 has been taken. so

that equation (8.13) becomes
Pe(r,2) = lim ; én(r)6(z — nAz) (8.33)

The fact that ¢,(r) depends upon a and a — 0 as Az — 0 is part of the reason why this
is difficult to evaluate in detail, however, it is fairly clear what the general picture shoukl
be. Consequently it should be possible to use this reinterpretation to get some idea of the

behaviour of the classical system. So, starting with the modified action
’ te m .o .
S = [ (Ez + chde(r, ct) ) dt (8.31)
)}

.. . . . d
(where mechanics is specifically considered, so 7 means %—% rather than 25 )
and considering 65’ = 0 gives
0%,
or

(8.35)

mi = ~h

The discontinuities in the phase function “potential” mean that a particle will be subject
to a 6 function force if it “hits” the edge of a rhombus.

Moving across the grid of rhombuses, the sign (direction) of the force swaps for alter-
nate boundary lines. A similar pattern occurs when moving over the grid in the other
(independent) direction (in 2D space). So a particle will have its motion “out of” a rhom-
bus reversed. However, this potential is only applied at the ends of the stages. There may
still (even after taking the limit Az — 0) be scope for a particle to move more freely than
in the mirror planes model (chapter 6). Exactly how the motion is restricted will depend
upon the way that a — 0 as Az — 0 (section 6.2).

It is only the discontinuous nature of the boundary between the phase-changing and
non phase-changing parts of the phase screens which allows their influence to extend to
the classical regime. If these discontinuities were “smoothed” then the effect of the phase
screens on the classical (i.e. ray) paths would be lost as “h — 0",

It is not clear, just from these gencral considerations, whether phase screens meet
the requircment of enforcing the constraint correctly in the classical limit and detailed

calculations are not straightforward (section 8.4).
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8.7 Summary

The phase screens model is introduced. It is noted that the relation between “phase
screens” calculations and the “modes” method of calculation for the “mirror planes™ model
is considered in appendix H. The result is that agreement improves as the “transverse”
wave-length (i.e. the wave-length for the n direction — shown in figure 8.1 ) of the wave-
functions becomes long compared to a. In the “mirror planes” model, @ is the spacing
between adjacent “mirror plancs”. In the phase screens model the corresponding dimension
is the width (i.e. in the n direction) of the phase changing strips making up a phase screen,

The agreement between “phase screens” and “modes” is exact for “infinitely long wave-
lengths” (the constant amplitude wavefunctions case). This simple case is considered ex-
plicitly (i.e. rather than as the limit of the more gencral case in appendix I). The overlap
integral is found to be a fractal function of the length of the stage, Az. This may he a
signal of problems with the Az — 0 limit which must be taken in order to pass to the
continuum.

It is possible to write down an expression for a path integral. In fact, although the
phase screens are constructed separately, it is possible to formally include them in the
Lagrangian as a “potential”. However, this interpretation should be treated with care as
the “potential” will depend upon velocity and will have other non-standard features. Thix
does show that phase screens fit naturally into the structure of path integration.

Although the phase screens can be included in the path integral as it is being “con-
structed” (section 8.4.2), a suitable interpretation for the “continuum limit™, ¢ — 0, (or
alternatively Az — 0) is elusive. In the hope of improving the chance of finding a “con-
tinuum form” for the influence the phase screens have in the path integral, “the average
over shifts” is carried out: each phase screen pair is shifted through a “periodic distance™
(i.e. 2a) in the n direction (i.e. vertically in figure 8.2). This is carried ont “inside”™ (i.c.
before) the path integral, so cach path segment (also shown in figure 8.2) is considered to
be fixed in space.

The result for a single phase screen pair is given but it is still not straight forward to
interpret this for the “continuum limit” (i.e. € — 0). Fortunately, taking the limit helieved
to correspond to the nonholonomic case allows approximations to be made. These lead to
a simple expression for the averaged propagator, (K} (and also for the averaged version of
K*K,ie. (K*K)), in the “nonholonomic case”. It is desirable to investigate the behavionr

of the averaged propagator in order to check its suitability. If its behaviour is suitable then
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it will be necessary to check the effect of the approximation in detail, otherwise it will he
more profitable to go back and modify the model. From the investigations (seetions 8.4.4
and 8.5), the indications are that (K) decreases in size as the (time) interval over which
propagation takes place becomes finite. The calculations are based on the explicit form
obtained for the “nonholonomic limit”. In fact, there are gencral considerations which
suggest that the result is not restricted to this case. If (K) is evaluated by carrying out
the path integral first, then the contribution from each path is a complex number with
modulus=1. The path integral is a “sum” of such contributions with different “phases™
(arguments). The result depends upon the values of the shifts which are then averaged over.
If the average over shifts is carried out first, then the paths with no segments inclined in the
n direction give a contribution with modulus unity. Most other paths give contributions
with modulus smaller than unity — the more steeply the path segments are inclined in the
n direction (but with allowance for periodicity), and the more segments are so inclined,
the smaller the modulus of the contribution. So, if the path integral is now performed, it
is a sum of contributions with different phases and different moduli. From this point of
view, it is quite plausible that (K) might decrease in size in general. At this point it is
prudent to consider whether the measure used for the path integration might need to he
modified. The fact that probability is conserved (whether averaging is carried out or not

— section 8.4.3) suggests that modification is unnecessary.
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Chapter 9

Random models

9.1 Introduction

The periodicity of the structures constructed to apply the constraint causes problems in
the mirror planes (section 6.3) and the phase screens (section 8.5) models, In this chapter
randomness is introduced into both models. In section 9.2 modifications are made to the

phase screens model of chapter 8. In section 9.3 analogous changes are introduced into the

mirror planes model of chapter 6.

9.2 Phase screens

9.2.1 Introduction

Considering phase screens with equally spaced strips of equal width and then averaging
over shifts perpendicular to the strips, causes problems (section 8.5) due to the periodicity
of the screens. To avoid such problems, another type of averaging may be introduced. The
phase strips and the gaps between them are taken to be of random width (figure 9.1) and
averaging is over all possible screens. In fact, the lines marking the edges of the phase
strips are of most interest. If these are extended in the direction perpendicular to the
phase screens (i.e. in the z direction) to form “planes”, then the munber of such planes a
path segment passes through gives, when multiplied by 7, a phase change with the same
effect as that due to the phase screen pair. These (scgments of) planes will be referred to

as “phase counting planes ”.
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9.2.2 Preliminaries

Considering a single stage and taking the x-axis in the direction of the “normal vector”
(i.e. perpendicular to both the phase strips and the z-axis), the (“phase counting™) planes
project onto lines in the z-z plane (figure 9.2). To calculate the single stage “sign average”
(i.e. the sign change aquired on a path segment between “A” and “B” averaged over the

ensemble of all possible phase screens)

(040p) = (e'Paten)y (9.1)

it is necessary to know the probability that a path segment starting with . = 4 and fin-
ishing with £ = zg passes through an odd number of these lines (producing a sign change).
The lines are randomly distributed with mean spacing @. A Poisson distribution [7] with

an average of % lines per unit interval of x is appropriate, so the probability P(n) that

there are n lines in an interval of length |Ax] = |xp — x 4] is
A .
Py = 1200 02)
where A = =£
S0
2i41
(o NG < ST\ kel
P(n is odd) Z @
= eMGmMA| (9.3)
]
P(niseven) = e 14l Z 'ézl
= fMMmMA| (9.4)
(caop) = (+1) x P(niseven) + (=1) x P(nis odd)
= ¢ 1®l(cosh |A] - sinh]A])
= ¢4l (9.5)

So whereas for the periodic model the exponential form was an approximation, it is an
exact result for the random phase screens model. Similarly, the result for the averaged

sign for K*K is now exact, i.e.

" / / 2
(1Pat+Pu—ba=0p)) = e=aT (9.6)

where T is the “total non-overlapping length” (T > 0).

Since a line in the region where two path segments “overlap” produces a 7 phase change
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for both paths (which has no net effect), this region may be treated in the same way as a

region where there are no paths.

9.2.3 Investigation of (K)

Having an exact result means that there are no neglected terms, which in turn allows
a slightly more detailed investigation to be attempted. From the previous chapter it is
expected that (K) will be 0 for finite propagation when {g408) = e=22, It is of interest
to build (K) for a finite z-interval (or time interval) by composition of infinitesimal steps

(in the z-direction). The result for multiple steps is obtained by repeated convolution of

K, = E_eiuAmQ—%lA;tl
V i
[P ipa2-2)A
E{_ﬁe“’ 1Al (97)

p = va? (9.8)

the function

where

The Fourier transform of the exponential is:
Ik, p) = I, +1_ (9.9)
where £k is the “Fourier variable” (in this section) and
© .o, .
I = / eliy*~2uiky) g, (9.10)
y=0

The complex conjugate I} can be written in terms of an integral of the type considered

in [5] i.e.

IL=ivie 8y (9.11)

with
wo 2
J=/ e dw (9.12)

w=—-100
where

- i _ k

wo = Vi <__ < _) 9.13)
P 2p

This is useful because p is proportional to N and is therefore a large paramcter when

many steps are composed. Specifically, this is true when considering a finite interval in

the z-direction which is divided into a large number, N, of subintervals. For a given finite
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interval of z, the length of a subinterval (which is written as ce in the definition (6.3) for 1)
is inversely proportional to N (N — oo being the “continuum limit” of infinitesimal step
size). So v and hence p (equation (9.8) ) are proportional to N. Using the result for the

leading terms in the asymptotic expansion from 5]

1
3
7 ~ (2puo) ™ expl(puf) + iS(wo. ) (2 as p— 0o (9.14)

where S(wy, p) is the Stokes multiplier (5]

gives, for the limiting form of the Fourier transform:

i . i k 2__
IN—Z——-—'J%GP((Z) l)e_l%l as p— oo (9.15)
1

(5)"+

for |k| > 2
In fact this result does not hold for |k| < ,/p (hence the |k] < 2 case is not given)

For |k| < ,/p the standard result

(e o]
/ e dt = ‘/7-7—( —e? (z + g;:3 +.. ) (9.10)
t=z

may be used in the expression
y o0
o = \/Zezz / et dt (9.17)
P t=2
where 2z = \/% (1 F %)

to obtain the behaviour of Iy in the p — oo limit. Substituting this into equation (9.9) and
expanding the exponentials in power series (permissible since the parameter p 3> 1) allows
a factor (1 - C'\/_,i:) to be extracted, as in section 8.4.4 (where C is a positive constant
independent of the “Fourier variable”, k). Composition of IV stages is achieved by taking
the N** power (of K;) and then the inverse Fourier transform. So the contribution for

|k| < /P tends to zero as N becomes large, as before. Specifically, one expects

N
(1—\/—%) ~e BN as N = oo (9.18)

(for a quantity B which is not a function of N and satisfies R(B) > 0)

whereas in the usual case one has the standard result
B\"
I—N —e as N — 00 (9.19)

For |k[ > /p the final term in the expression (9.15) for I will be dominant, so the

function of k to be integrated is
iN (kY2 _ T
fk)y=e” ((2) l)e_ﬁ’-’l’ﬂe_zkY (9.20)
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where Y is proportional to the total displacement for N stages, 2 rina — Tinitial

The function f(k) is independent of N and p because i:— is a (positive) constant (R say).

The expression to be evaluated is
o0 /] 00
k)dk k)dk = k ~(k)) dk 0.2
[ s [ 7w = [0 + 16k 0-21)

where .
fe(k) = é’R((E) -1)-(Rene (9.22)

(and R = %)

calculation (i.e. developing an asymptotic series by repeated integration by parts in the

standard way [4]) shows that
L R/P as p— oo (9.23)

/ﬁ Fa(R)ak| ~ 7=

so these contributions are indeed negligible as p — oco. Having verified that in general (R)

is zero for propagation over a finite time interval, it is desirable to check that probability

is conserved under “propagation” by (K*K).

9.2.4 Conservation of probability

This calculation differs from that performed for periodic phase screens (section 8.4.3) be-

cause it is now necessary to introduce averaging. This requires the result (for z;3 > z4)

(V*(r's, 2)¢(r's, 2B))
00 00 o .
- /oo./ (K* (T, 283 7', 20) K (', 23174, 24))0* (P45 24)0 (24, 24) Prp d* 1)
- —00

(9.21)

which holds because the choice of initial wavefunction is not affected by averaging. Setting

r'h = r' and integrating over this final position:

[~ @ esi2000(e5, 28))Pes

= o0 o 0 " ’ " [ " »4 ) 2]
= /_ . /_ - /_ w(K (B, 28 T4, 24) K (v, 28; 7%, 24) )0 (24, 24) 0 (4, 24) P24 dP Py

(9.25)

The “averaged sign” for K*K in the special case r}; = rf; is required. The general result
ise‘%T When 7, = r', the total lapping 1 hTis |z —a
§ . r'’p = r'p the total non-overlapping length T is |2y — a’4]. The dependence

on rp is the same as before (scction 8.4.3), so the integral over 1; is the same, giving

o0
/_ (K (rp,2mir'a, 2) K (15, 23300, 2))d°rp = Fr (K, 2407 (ta ~ 1'3) (9.26)
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The function F used in the periodic case (defined by equation (8.22) ) is replaced by a new

function F, in the random case which has
1 /
L | Ty . |Th —«a
exp(lﬂ'[ A J+z7r[ A ])
a a

2
exp (—2 14 - 24)

However, the only property (of F;) required for the conservation of probability is that

replaced by

Fr(rp,ra) =1

and this is indeed true, so that
/ (W*(rp,28)Y(rp,28))dTE = /oow*(zA,zA)uv(zA,zA)d ra (9.27)
00 _

Again, this process may be itcrated to show that probability is conserved for finite time

intervals.

9.2.5 Types of path

It is instructive to consider the types of path (pairs) which are likely to make an important
contribution to (K*K). The presence of the factors exp (—%T) means that such paths are
those for which the non-overlapping length T is small compared to @ (the mean width of
a phase strip) for the majority of the stages from which the path is composed. There are

three types of stage for which T is zero, they are:

Type 1 Coincident path segments (of any slope)

Type 2 Crossing path segments with slopes of equal magnitude
Type 3 Parallel zero slope path segments

These are shown in figure 9.3. In order to apply the constraint successfully, it is expected
that paths with low slope, i.e. %ﬂﬂ < 1 (for all stages) should be “preferred” compared to
those of large slope (l?—:-l > 1). Consequently, it is reasonable that path pairs constructed
predominantly from “type 3” segments should contribute strongly to (A*K). However,
the slope of the path segments in “type 1”7 and “type 2" stages can be of any size. The fact
that these types of stage are likely to contribute strongly to (K*K) is an artefact of the
phase screens model. Consequently, it seems advisable to return to the “mirror planes”

method of applying the constraint.
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typed type2 type 3
Figure 9.3: Special cases for a single 1D stage

9.2.6 Summary

In chapter 8 some results are obtained for a version of the Phase screens model by making
heuristic approximations. In this section (i.e. section 9.2) similar expressions are obtained
as exact results for a modified version of the same model. This increases confidence in the
results. From a different point of view, it suggests that the modification made to the mode]
is a beneficial one.

In this section, use has been made of the “phase counting planes ” construction. This
is merely a change of emphasis which is beneficial for the type of calculation performed
in this section. The same idea could have been used in chapter 8 but was omitted as an
unnecessary distraction from the “physical” aspects of the model.

The behaviour of (K) and (K*K) is the same as in chapter 8. Although the general
behaviour of (K*K) is correct, consideration of the details reveals undesirable features of
the phase screens model. These undesirable features are a consequence of the way the
constraint is (approximately) enforced in the phase screens model. It seems sensible to
apply the “beneficial modification” of this section (i.e. the introduction of “randomness”)
to the “mirror planes” model, which, as an exact way of enforcing the constraints, shouldn't

suffer from the undesirable features noticed in the phase screens case.
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9.3 Mirror planes

9.3.1 Introduction

Returning to the original (“direct”) approach to the “mirror planes” model (i.e. equa-
tion (6.1) ), it is hoped that replacing the regularly spaced stack of strips (“mirror planes™)

with a randomly spaced version will alleviate some of the problems previously encountered

(in section 6.3).

9.3.2 Preliminaries

It is expected that the behaviour of the expression for the (single stage) one-dimensional
propagator (equation (6.1) ) can be improved if it is averaged over the “shifts” ;3 and the
separation between mirror planes (“lane width”). Averaging over 3 alone is not sufficient
because the first sum is independent of the position of the planes — provided that there are
no planes between the specified initial and final points (in which case K = 0). Averaging
over “shifts” (only) was introduced in section 8.4 for the Phase screens model. Tt is desired
to go further and include “randomness” — as carried out for Phase screens in section 9.2,

The introduction of “randomness” will give a “weighted” average over “lanc width”,

9.3.3 Single stage propagation

To formulate an expression for the averaged single stage propagator, it is necessary to
consider the consequences of having a randomly spaced stack of constraint strips (referred
to as “planes” here).

If “planes” are distributed at random, then the probability distribution for the sepa-
ration, a, of the “planes” (with average pair spacing @) is proportional to exp (=2). The
initial position of the particle is a point (the “initial point”) which lics in the gap between a
pair of planes. This pair of planes is then (rigidly) shifted relative to the particle in snch a
way that all shifts consistent with the “initial point” remaining inside the lane are applied
(i.e. a total distance of a between extreme shifts). If the specified final point lies outside
the lane defined by the pair of planes then K is zero, otherwise it may be caleulated using
image charges . This means that there is no contribution when the (1D) separation hetween
the initial and final points is greater than the “lane width”, i.e. |Ax| > a. Applying this
prescription for the calculation of the averaged single stage one-dimensional propagator,
(Ky) :

00 B ]
(K1) = / g dor@ [ K(aa,80)d3 (9.28)

B=p @
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where

p(a)da is the probability of finding two adjacent planes a distance a apart when the average
spacing is @ and the planes are randomly distributed [14]. The probability distribution for
the shifts B is uniform. The “shift” 3 is defined to be the (initial) distance from the particle
to the mirror plane “below” it, i.e. the nearest plane in the direction of 2 decreasing. The

cases Az > 0 and Az < 0 must be considered separately:
o for Az>0: 5 =0, f2=a—|Ax|
e for Az <0: ) =|Azx|, f2=a

So substituting for K(Axz, 3,a) from equation (6.1) gives

(K1(Az;a,v))
/ / io: a—|Az] giv(Az+2an)? _ 1 /32 eiU(Ar+2ﬁ+2un)2(w
—lA‘Tl n=—o0o a a ﬂ=ﬂl
(9.29)
It is possible to use the formula
Z / i w(y+2[3+2an)2dﬂ _ Z /(a Az iu(-y+213+2aN)2dB (9.30)
¥ H

n=-—00 N=—00
where N = —(n+1)
to rewrite equation (9.29) for Az < 0 (ie. set y = Az) so that there is no explicit

dependence on the sign of Az, i.e.

(K (Az;a,v))

\/ / —dae a
a=|Az| @

o a—-|A .
x |:(1 _ IA'Tl) E w(lAz|+2an)2 Z /( |Az]) 'u(]Aar|+2ﬂ+2aN)2d}’
(I

a
n=-oc
(9.31)

where
N =n,n=n for Az >0,
=—-(n+1),n=—nfor Az <0.
The distinction between the two cases is not important for the infinite summations but is
noted here because the way corresponding terms are “paired” if the sums are combined

may be significant for numerical evaluation of a truncated version.



Introducing dimensionless parameters and dimensionless variables of integration A = ¢

@’

b= -‘;%;[ (and writing the average of K; as K; when dimensionless quantities are used)

equation (9.31) becomes

Rl = %”_p_/w dAe_A(l-—l—i—l-)
ay Tt JA=|A|

oQ
| 32 ewtiaraame _ $ /10eip(|A1+2¢(A—|A|)+2AN)’2(1¢ (9.32)

n=-—00 N=-

where p = va?, |A| = L%-l
Another version of the result (9.32) may be obtained by using (a special case of ) the Poisson
summation formula [28] (also appendix F)

i.e.
S ofmy= Y / - fa)etFmme gy, (9.33)

n=—00 m=-o00Y "

to rewrite the sum

i.e.

° intm rm e 1 min xm
x[ $ Lesmangm) - ”}Z/ dp e S (1B1200A-18D+ 52)
m $=0

=—00 m=-00

(9.31)
The notation “K,” is introduced to distinguish the “Poisson transformed” version of the
result from the “original”. When the formula is written in this “I(',,” form, the integral
over ¢ may be evaluated explicitly in terms of elementary functions, i.e.
1
g9(g) = / e %d

$=0

g (e—"'l - 1) (9.35)

]

where ¢ =2mm (1 - 1%1)

Similar approaches are useful for the evaluation of sums in problems from solid state
physics.

For the “Poisson transformed” expression (i.e. for Kp) there is one term in cach sum
which has zero exponent, these terms should be matched (this correspondence is enougl
to determine all pairings). In fact, these terms are the same and hence cancel out when

the sums are combined (i.e. g(0) =1 so the m = 0 term in equation (9.34) vanishes).
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9.3.4 A simple case

When A = 0 the result (9.32) simplifies to
o0
K (0) = é, /£ dAe " [ 3 etien®a Z / clin(d+N)? A2 1¢] (9.306)
ay mi Ja=o s N

where K;(0) denotes K evaluated at A = 0.

This statement may be justified by considering the limit of K as |A| tends to zero through

positive values. For the n = 0 term this involves verifying that

. )
lim i,/-‘i.ewml2 / e (1 'A‘) da=1/2 (9.37)
[A]—0+ @ V mi A=|A| A aymi
This is indeed true since (from the definition of Ej(z) (1, 21])

oo
A ——dA AlEy(|A 9.38
181 [,y 04 = 18IE 8 (9:39)

and the standard result [1, 21]

1—-e™
Evz) = —y—Inz+ / du (9.39)
(where v is Euler’s constant)
for the Exponential integral Ej(x) shows that
. - _ }
A IAIE (18] = 0 (9.40)

since zlnz — 0 as £ — 0+.

For the other terms in the sum over n, the only difference is the presence of an “oscillat-
ing factor” exp(ip(4|A|An + 4A%n?)) in the integral over A. This factor has unit modulns
so it is expected that

o (e--A) (Cip({AHZAn)’)
Nu- A=|A| A
holds for n # 0 as well as n = 0.

Similarily, for the terms in the sum over N, the introduction of ¢ into the exponent of

dA=0 (9.41)

the “oscillating factor” is not expected to cause problems. Indeed, none of these results is
surprising if the integrands are sketched over the integral of integration.

Perhaps the simplest way to obtain the |A] = 0 case of the Poisson transformed formula,
Kp, is to apply the Poisson transformation to the |A] = 0 expression (9.36), the result is

R(0) = Z " a4 e AsCR) (9.42)
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where K,(0) denotes K, evaluated at A =0
However, it is also possible to deduce that taking the limit |A] — 0+ in the general
expression (9.34) gives the same result. The parts of the terms in the sums of the form

/°° dAeA (I_A_I) 1 -z (jal+28(A-1aD0+ 22
A=|A] A/ A

(where ¢ may be zero)
will be smaller in magnitude than E3(|A[) due to the oscillating (unit modulus) exponential
factor and hence will tend to zero as |A| — 0+4. This is plausible since the smaller (in

magnitude) the values of A, the more rapid the oscillation and applying integration by

parts to
00 e——zt
Eyz) = / dt Rz >0
1
e 9.43
= z/z pwalll (9.43)
gives
Ex(2) =e7* - 2E;(2) (9.44)
and hence (using equation (9.40) )
li 2(|AD) =1 9.45
A E(|A)) (9.45)

i.e. the “marginal” case.

9.3.5 Asymptotics

The asymptotic expansions to be considered are those for p — oo and p — 0. The
parameter p is va? (v is defined by equation (6.2) or equation (6.3) ) so these limits are
related to those considered carlier (in section 6.2 and section 7.2) and discussed in terms
of vakonomic and nonholonomic regimes.

Beginning with the special case A = 0 and taking the limit p — oo in the expres-

sion (9.36) for Kj (the limit p — 0 for this form of the infinitesimal propagator is not

_mi - L fInp .
aW—K1=1+40{—| asp— 00 9.40
P 1 (\//—,) P ( )

(where use has been made of the “order symbol” O [35])

instructive) gives,

The leading term comes from the n = 0 term of the first sum (the “zero bounce term”).
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For this term the integration over A is particularly straightforward,

i.e.

o0
dAe 4 =1 (9.47)
A=0

The other terms in the first sum are of order —ﬁ as p — oo. This is shown by the asymptotic

expansion of the relevant integral, i.e.

-~ —
~Attipn® A2y 1 [T (_1_) as ¢
./A.—:O e 1 p7l2e +0 o2 as p — 00 (9.48)

To avoid divergence of the individual sums in equation (9.36) they are combined into a
single summation. It should be noted that if the integral in equation (9.43) is written in
terms of a standard error function, then its argument depends upon 7:;; which tends to
Zero as p — 0o,

The terms of the second sum in equation (9.36), excluding N = 0 and N = —1, are also of
order 71—7, as p — 0o, each term taking the form

00 1 . 1 \/7?2' i 1
dAe4 / elir(@+N?A% g / d¢ | ez e TN 11 +0(—————T)
A=0 $=0 ’ ¢=0 ¢ 4/p(N + ¢)? PN + ¢)?

as p — 00 (9.19)

The N =0 and N = —1 terms require scparate consideration since N +¢ =0 for N = (),
¢=0and N = -1, ¢ = 1. It is convenicnt to write these terms in a slightly different
form, obtained by substituting A =  and B = ‘g in equation (9.31), and setting A = 0.

The resulting expression is, for the N = 0 term

o0 1 A .
To = dA e / etiel 4 (9.50)
A=0 A B=0
In fact, the N = —1 term can also be written in this form if B is replaced by B’ using

DB’ = A — B. The substitutions A = —\'/’-5 and B = %) give

1 [ 1 e [ 402
o, = — da—e VP eV du
ﬁ a=0 v u=0
where
1 1 1 . .9
Ta = —-—/ doy —¢ Ve e du (9.52)
\/ﬁ a:o (Y u=0
1 00 .
T,= ﬁ / ld(t %e Vi et du (9.53)
a= u=
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In expression (9.53) rapid oscillation of the integrand means that it is a reasonable approx-

imation to replace the upper limit of integration by oo, for the integral over u. So

00 0o .
T, = —1— dA—l-e_A/ etiv’ gy
VP A= A u=0

1 [#ni 1
- =, /2 _— 9.5
= 7 ’ E; (ﬁ) (9.54)

So, using the standard [1, 21] expansion (obtained from (9.39) by expanding the integral

as a power series) for the exponential integral Ey(:r)

vri (1lnp el
T = —— | ==L — + = +O as p — oo 9.55
’ 4 2\/? \/—p P (b ) >P (8.55)

where v is Euler’s constant.

Considering now expression (9.52)

1 1 1 . { a .
R(TL) = % 0_0‘101 5(3 75-/;:0cos(4u2)du (9.56)
3(Ta) = L (I(Y-1-€~_‘}; : sin(du?)du (9.57)
e \/'5 a=0 u=0 :
SO
1
T. —/ I \/_/ ldu 9.5
R < 5z [ aase [ 0.9
3 - lote % [* 14
(T _/ (l-— IR an 9.59
| ( a)l \/— - [¢ [ 5 - ( [ )
hence

T < Vit [ dele ¥ [7 1
< —_— dix —e VP du
T \,p/azo

= —+0 (%) as p — 00 (9.60)

so Tp is the dominant contribution as p — oo, which gives the required result (9.46).

In order to take the limit p — 0, the “transformed” version of the infinitesimal propaga-
tor, Kp, is required, i.e. (for the A = 0 case) expression (9.42). There is a large parameter
A= Q_%!)f (s0 A — 00 as p — 0). Standard saddle point methods [26]) may be applied. A
substitution A = e® may be made to clarify the situation. It is expeeted that, of the three

saddle points, only the one nearest the path of integration will contribute, hence

o0 D) \ _3 in3m? é
(A 0) ~ %ZV——((;’:’)S(’ ("’) asp— 0 (9.61)
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So, as well as decreasing as p tends to zero, the terms of the series decrease as mn? increases

in size.

9.3.6 Further asymptotics

Having considered the A = 0 case in both the limits p — oo and p — 0 it is desirable to
investigate the general case by considering how things differ when A is non-zero.

For A # 0 the functional forms of the expressions are more complicated. However, for
p — 00, A # 0 means that N + ¢ = 0 is no longer a problem. Such cases no longer need

to be treated separately. It is expected that the “zero bounce” term again dominates and

S-

that the magnitudes of the other terms relative to this now tend to zero like —= or faster

as p — 00, l.e.

[mi a2 [ IA] 1
Gy | — Ky = ePlAl / e4 (1 ) dA+ 0O asp — 00 9.62
P ! A=A A \/p P (9.62)

upon evaluating the integral this becomes
e~ IAIHRIAR _ gl AL (|A))

the first term is the random phase screens result which is recovered in the limit |A] — 0+,
For the limit p — 0, making the substitution A = % in the formula (9.34) for 11',,
produces an expression in which A appears only in the combination \/plA|. Consequently,

the A dependence is expected to become less prominent as p — 0 since its “scale length”

is ﬁ.

To interpret the limiting expressions it is necessary to use the fact that the parameter p
is proportional to %;. As p tends to infinity (which requires 62 — 0 since it is desired that
a — 0), the mean spacing of the mirror planes strips (i.e. @) becomes large compared 10
the “length” of a single stage (62) in the z-direction (“wide lanes”). Similarly, as p tends to
zero, the average spacing between “mirror planes” becomes comparatively small (“narrow
lanes”). The result that the “zero bounce” path dominates as p — oo is reasonable sinee
in this case the “bouncing path segments” have, on average, gradients much larger in size
than l——l (the magnitude of the gradient of the direct path).

For path segments of given gradient (i.e. L5;1 = constant), p — oo (with @ — 0) means
that A — 0 (i.e. (1%1/%;) — 0 which is LAaﬂ — 0+) and in this limit the random phase
screens result is recovered. It is more relevant for quantum mechanics that this result

holds for path segments with [Ax| ~ 623 as 6z — 0. In this case 1—!-‘ ~ las bz —0
A
50 j—?/\/— — 0 as p — oo and hence |A| — 0+ as p — oo which means that the phase
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screens result is again recovered. These results are for the “path segments” form of the
single stage propagator. For the transformed version Kjp, in the special case A = 0, the
result (9.42) is similar to a sum over modes, with a type of averaging over the lane widths.
When p — 0 it is clear that the largest contribution to the sum comes from the lowest
modes: these correspond to paths with large numbers of bounces in the “direct™ version
of the propagator. This is expected when @ — 0 (i.e. p — 0 since p ~ %‘f and 8z never

becomes large) since having narrow lanes is likely to result in paths with many bounces.

9.3.7 Computation

It is desirable to evaluate the infinitesimal propagator numerically. If the calculations ean
be performed for sufficiently large and small values of p then the asymptotic predictions
may be tested. The “direct” version, K1, has a complicated functional form. Rather than
considering the whole of the expression for A7, only part of it (J)) is considered as a first
approach. The formula for J; is obtained by replacing the factor (1 - L%J) by 1. The
reason for this choice is that this part is very much easier to calculate numerically, since it

may be written in terms of the standard function

w(z) = e‘zaerfc(—iz) (9.63)

* et .
erfe(2) = \/_ dt (9.61)

for which there is a NAG library routine (for complex z). Specifically,

J) = é_ [ﬁ: —lAl+ipla? E ( (1,n) + g(=1,n) 2/ g9(1=2¢,(n-1) +¢/>)d(/>>]

n=1
(9.65)

where
1 : 2| A f2
— 1 o~lAl+ip(C+2N)?|A| 1 _t "
g(C,N) e w (\ﬂ [(c +2N)/pN + 7 ND (9.66)

This should mean that each term in the suni is “quick” to calculate, Also the convergence
of the sum in J} is not expected to be significantly different, for munerical purposes, from
that for the full expression. It is the ratio of the term to the partial sum that is important
for truncation purposes. So calculating just the simplest part of Ay should be much quicker
than considering the full expression. If this is computationally intensive then it is likely
that calculation of K; is not worthwhile.

Also, the formulae are the same when A = 0 so the results should be numerically correct

for this special case. The form of J) for large p is e~181+#187 which is different from that
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for K, but the feature that the “zero bounce” term dominates is the same, This is shown
by storing the number of terms before truncation in the computation of the sum for a
specified precision. Some sample results for the modulus of A7 are shown in figure 9.4.
In fact, when p is not large the number of terms required increases considerably. For
p < 102 this method is not practical. The “transformed” version J, (i.c. equation (9.31)
with the factor (1 - L%l) replaced by 1) is more suitable for siall values of p but this no
longer has the advantage of being easy to calculate compared to the corresponding full
expression Kp. However, it is desirable to check the values calculated using the expression
Ji. This is indeed possible over a range of values of p from 1072 to 10. The problem with
the calculation of J, is the nature of the integration required. The integrand oscillates
(at non-constant frequency) and its envelope changes in magnitude within the interval of
integration. The way that this occurs makes it difficult to obtain reliable results when p is
small (< 1072) for a range of values of A. However, it is possible to confirm that the |A]
dependence does become less apparent as p decreases.

The case A = 0 is simpler. It is possible to compute values of I,(A = 0) using
a modified form of equation (9.42), for values of p as small as 107, It is necessary to
scale the values by a large factor during the calculation in order to avoid computational
problems with small numbers. The logarithm of the result is calculated and the factor
removed by subtraction. These results can then be compared with the asymptotic values
obtained using equation (9.61), i.e. figure 9.5. The graph shows good agreement bhetween
the numerical and asymptotic results for small values of p. The agreement improves as p
decreases (as would be expected for an asymptotic formula) until log p = =15. For smaller
valueé of p the numerical result becomes unreliable.

Apart from the comparisons with asymptotic results, the computational investigation
shows that the averaging necessary to produce a well behaved function makes the 1D prop-
agator challenging to (ltalculate. It seems that numerical composition of the 21 propagator

is not a practical proposition.

9.3.8 Summary

Reviewing progress in this part of the chapter (i.e. the introduction of randomness into the
mirror planes model), it is noted that attention has been restricted to a one=dimensional
single stage propagator. It is straightforward to extend this to a 2D single stage propagator
since the motion in the direction parallel to the mirror plane strips is unconstrained and

so may be included using a factor based on the free space propagator,
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Figure 7.5: Comparison of asymptotic (K,) and computed (K.) results for |K,(A = 0)] as

a function of p
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Apart from removing sensitive dependence on initial conditions, averaging over a ran-
dom distribution of lane widths improves the convergence of the sums. The magnitude
of the contribution from paths with large gradients is decreased. This is desirable sinee
large “gradients” correspond to the component of the velocity iu the n direction (i.c. the
“constraint direction”) being large (i.e. the constraint being violated to a large extent).
Unfortunately, the formulae become considerably more complicated when averaging is in-

cluded.

The composition of stages to give a finite propagator is not achieved. The analytical
formulae are too complicated for this to be feasible for the genceral case. Conscquently.
limiting cases are considered (section 9.3.5) in the hope that these will be simple enough to
perform composition at least for some special cases. Unfortunately, the resulting cxpres-
sions are still complicated except when the displacement for the (infinitesimal) stage (i.c.
Axz) is taken to be zero. Whilst the Az = 0 case does provide an idea of the behaviour to
expect, composition would require an expression with the full Az dependence.

As far as the numerical investigation is concerned, it scems that it is not really practical
to calculate the full propagator (i.e. even for a single stage). Although, as a check of (self)

consistency, the numerical results do lend support to the asymptotic calculations.

9.4 Summary

This chapter provides an investigation of the effect of “randommness” on models introduced
previously. The first part of the chapter (section 9.2) follows on from chapter 8 by modifying
the phase screens model. The second part of the chapter (section 9.3) modifies the mirror
planes model (of chapter 6).

The investigations in this chapter suggest that using a random, rather than a regular,
distribution of “lane widths” (a “lane” is the space between an adjacent pair of mirror
plancs or the corresponding region in the phase screens model) is a sensible approach in
principle — although it can make the formulae more complicated in some cases,

A definite connection can be made between the two parts of the chapter. There is a
limit in which the “random phase screcns” and the “random mirror planes” results for the
averaged single stage propagator coincide (section 9.3.6). Specifically, it is found that as
A — 0 the mirror planes (single stage) result tends to the corresponding phase screens
result (which is calculated for general p). For the types of path segment likely to be of

interest, taking the limit p — 0o (expected to be the nonholonomic limit) is sufficient to

96



ensure that A — 0 (section 9.3.6). So for the “random” versions of “mirror planes” and
“phase screens” there is explicit agreement under the conditions given in chapter 8 as the
requirements for the original (i.e. “non random”) version of “phase screens” to enforce
the constraints to a good approximation. This demonstrates that (as expected) the same
criteria are relevant for the random version. The fact that “phase screens™ does not (in
the general casc) enforce the constraints exactly can be illustrated by considering a “test”
section of Feynman path (i.e. with a phase associated with it) : if such a path scction
crosses a lane boundary it simply “picks up” an extra phase of #. For “phase screens”, the
single stage propagator from a given initial point to a final point in a different lane is not
zero as it would be in an (exact) implementation of the mirror planes model.

In previous chapters (section 6.2 for example) it was anticipated that the parameter

£ (or £) would be important. This was based solely on consideration of the structures
introduced to enforce the constraint. In this chapter, the parameter p has arisen naturally:
it contains quantities associated not just with the constraints but also with the “kinetic”
part of the problem. If the other factors in p are considered constant, then p ~ 2% If
the “regime” is to be characterised according to whether the parameter tends to infinity
or tends to zero, then there are some cases which will be classified differently depending,
upon whether 3‘-’; or %:— is used as the parameter. Specifically, if @ ~ 827 as 2 — 0 (where
p > 0) then the “extreme cases” i.e. p < % and p > 1 are unaffected by the choice of
parameter but for “intermediate” cases % < p < 1 there will be a difference. The reason
for this is that using p as the parameter takes into account the characteristics of the path
as well as the constraint structure. In fact p is really the product of two parameters fe. the
“geometric” paramecter % (which describes the “constraint structure”) and a parameter
determining the classical (i.e. “ray like” in optics) or quantum (i.e. “wave like”) nature of
the path segments. Provided the “classical limit” is not being taken, for example, then it
is appropriate to use 2‘—:— as an “overall” parameter (i.c. for the “interaction” of the path
segments with the constraint structure)

Choosing optics to investigate the nature of p, it is expected that diffraction (i.c, wave)
effects will be important when the wavelength is of the same order as (or larger than)
the typical length scale. Taking @ to be the “typical length scale” suggests using § as
parameter to distinguish between the wave and fay limits (i.c. % — 0o for the ray limit).

Inspection of the formula

T
[

a
O
P= 55 (9.67)
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reveals that p does indeed appear to be the product of a “wave/ray” parameter () and

o= (49) () 4 o

If p is indeed a parameter distinguishing between the “ord ” regime and the *vak * regime,

a “geometric” parameter (33) i.e.

where k = 2—;’-

then taking the ray (classical) limit (k@ — 00) scems to “favour” the ordinary nonholo-
nomic (i.e. p — oo) case (and indeed no vakonomic classical mechanical systems have
been observed experimentally). Similarly, the wave (quantum) limit scems to “favour”
the vakonomic case (it is relatively straighfforward to implement a “vakonomic quantum
mechanics” in appendix C). From considering examples of nonholonomic constraints in
classical mechanics it seems likely that there will indeed be a “constraint length scale”,
Perhaps the simple model system studied here has the same qualitative hehaviour as
real mechanical systems. In order to find out if this is true, it is necessary to obtain some
sort of propagator for a finite time interval in a tractable form. The next chapter presents

a new approach to this problem.
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Chapter 10

Nonholonomic propagation

10.1 Introduction

The approach to the investigation of propagation over a finite time interval (i.e. “finite
propagation”) used in previous chapters has generally been to separate the problem into
two parts: the consideration of infinitesimal stages (i.e. the time interval of the stage is
infinitesimally small); the combination of infinitesimal stages to give a finite time interval,
Often attention has been confined to the first part of the process, i.c. exploration of an
infinitesimal stage. In this chapter, the aim is to take a more direct approach to the problem
of obtaining the “finite propagation” versions of quantities of interest (which avoids the
difficulties associated with explicitly combining an infinite number of infinitesimal stages).
It will still be beneficial to imagine the continuous case as a limit of many infinitesimal
stages, but the transition to a finite interval of the continuous case will be made at the
conceptual level and formulae will be written directly for finite propagation. As explained
in the following section (i.e. section 10.2) it is the “nonholonomic limit” which is most

amenable to this treatment.

10.2 Preliminaries

The idea of the mirror planes model as a method of enforcing the exact constraints (rather
than an approximate version) was introduced in chapter 6. This provides the starting poiut
from which the model to be used in this chapter is developed.

As the “nonholonomic limit” %; — 00 (the “nonholonomic limit” is discussed in see-
tion 9.4 ) is approached, the length of a single stage in the z-direction (i.c. 82) becomes

small compared to the (average) “lane width” (i.e. @), it is easy to imagine the mirror
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planes (of chapter 6 and section 9.3 ) becoming like “wires”. Conversely, as the “vako-
nomic limit” is approached, 6z becomes large compared to @ (although both 6z and a tend
to zero) and it is more tempting to think of "strips” in this casc. If attention is restricted
to the “nonholonomic limit” (which is of particular interest) and the “image planes™ (i.c.
reflections of the mirror planes in each other) are included, each stage produces a sct of
wires. These are like diffraction gratings. A way of modelling the qualitative effect of a
diffraction grating (i.e. spreading light perpendicular to the “grating lines™) is to have a
“phase screen” with a refractive index which is very rapidly varying in the direction per-
pendicular to the grating rules (the n direction) and not varying in the direction parallel
to them (the u direction). Previous difficulties caused by periodicity suggest that the re-
fractive index should be (rapidly) randomly varying. A varying refractive index produces
an “acceleration” (curvature of the path), so this configuration gives acceleration in the
n direction (where n is the constraint normal vector) but none in the u direction (i.c.
perpendicular to n), just as in classical (ordinary) nonholonomic mechanics.

This use of phase screens (to be implemented in section 10.3) differs from the way
that they were applied in previous chapters. Previously there were a pair of phase screens
associated with each stage: one at the beginning and one at the end of the stage (this
approach will also be used in scction 10.4). In the new approach there is only a single
phase screen associated with cach stage. Also, the refractive index is now a continuous,
smooth function of transverse (i.e. perpendicular to the z-direction) position (specifically
in the n direction) whereas previously there were “jumps”: the phase change was cither 0

or m.

10.3 Random refractive index

Qualitatively, the idea of using a random refractive index scems promising, In order to
begin a more guantitative investigation, it is necessary to make some choices about the
properties of the refractive index (n). In fact, it is convenient to work in terms of the

refractivity, ¢, which is related to the refractive index by
p=n-1 (10.1)

Taking ¢ to be a zero-mean Gaussian random function {13] of (transverse) position is a
suitable choice since its statistics are then fully defined once its covariance function is

specified: it would be difficult to justify the individual specification of higher moments at
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this level of modelling. There is no reason to think that ¢ should depend upon absolute,
rather than relative, ("transverse” ) positions, so it is expedient to take ¢ to be statistically
stationary. A “Markov model” is commonly adopted since it simplifies the mathematics
considerably, it is natural to employ one here: it corresponds to the assumption that any
two phase screens (“diffraction gratings”) are statistically independent, which introduces
a delta function (i.e. (22 — 2z1) ) into the covariance function.

With these assumptions, the covariance function may be written

(p(r!, 2)p(r", 2 + A2)) = v(2)0(€, 2)6(Az) (10.2)
where
Az=29—2
6 — Z._II — L.I
- 2 {o(r, 2)p(r + €, 2 + u))du ,
olg, ) = Lt bt ) (103)
is a dimensionless autocorrelation function
and
o) = [ (plz. 2ol 2 +w)dy (10.4)
00

is a factor which ensures dimensional consistency

Equation (10.2) is to be interpreted as the “continuous analogue” of
(i) i (")) = vioi(€)6i; (10.5)

where 6;; , the Kronecker delta, is 1 when ¢ = j and zero otherwise
and the indices 7 and j label the phase screens within the “composition”. (The "compo-
sition” for a finite time interval has an infinite number of phase screens with an infinitely
small separation between adjacent phase screens.)

In fact, in the current model, the autocorrelation function g only depends upon one
component of §, specifically n.§ (where n is the “constraint ™ normal vector)
e.g.

_ ALS)”
p(€,2)=c ( ¢ (10.6)

It is not instructive to consider (K). This is a consequence of the way in which the
phase depends upon the random medium. For a zcro mean Gaussian random medinum,
the effect of the medium (on K) after averaging is trivial. It is thus preferable to consider
KK* (the “propagator for intensity” in the optical analogy) since this lacks the phase

dependence present in K. The average of K K™* over realisations of the random medimn
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(ie. the random medium is the continuum limit of sets of phase screens) is denoted by

(KK*).
So,
(K(r], L;1g,0)K*(r, Ly 15,0))
II’L —I ,L ) " ,
— /‘,1;1,0 /"rl(') <ezk(S& (z)]—-S[z‘_(z)]))doozl(z)doo:’__ll(z)
-;,L’I‘ bzb’L 'ka[z'é+ (r+1€.2)—p(r-1€,2))dz
— /0 40 (ez o EE+e(r+58.2 p(r—5£,2)] ~)doo§(z)dooz_.(z)
Lo 0
(10.7)
where
1 0 /
() = 30() +2/(2)
&) = r"(z)-r(2)
(10.8)

Typical values of ¢ are taken to be small compared to 1
and use has been made of the result 1(#)? — (#) = 7.

It is desired that the functional in the r(z) path integral is highly pcaked on the
classical ord nonholonomic path (i.e. the path satisfying # = —(.8)n where n is the
constraint normal vector). It is particularly important that this is true in the ray limit
“k — 00” (corresponding to the classical limit “h — 0” of mechanics). In which limit the
peak should become very “sharp” (like a é functional on the classical ord nonholonomic
path). Considering the possibility of performing the £(2) path integral in equation (10.7)
shows that this requirement is not satisfied: a suitable velocity (i.c. ) dependent term is
absent. In particular, it is possible to evaluate the path integrals in equation (10.7) using
the assumption of small £ : which is likely to be valid when A can be considered to he
“large” (i.e. the wavelength is very much smaller than characteristic length scales in the
problem).

i.e. (following [15])

(K(ry, Lirg, 0)K* (v, L; 1, 0))

f )L ._,vl‘ . P . 4 -
= /-L /” et Jy Bz (o [y £T0le(a) )y o) g () (10.9)
§,0 Jrp0 -

(where V is (—% a 2D vector operator in the plane perpendicular to the z-direction)
which follows from the last expression in equation (10.7) by taking factors independent of

¢ outside the average and also using the assumption of “small £”.
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The next step requires the standard result

(eF) = etF)ea{F—(F)?) (10.10)

for F proportional to a Gaussian probability distribution. In fact, only the special case of
the result for a distribution with zero mean is required at this stage. Also, the fact that
the left side of equation (10.2) is independent of r is used.

The result is

(K(Ellln L; d)l’ O)K*(f’ln L; d), O))

Loprpl oL 2 (L
_ [ gk e I e ey o
5 ¢

Ki] 70,0

(10.11)

This can be evaluated by integrating by parts in the first exponent so that the path integral

over r(z) gives a “delta functional” on § . Hence the path integral over £(z) can be evaluated

to give

(K(r7, L;rg,0)K*(r, L; 79, 0))
k
L

= (5) oo [ik(rL ~ ). (éL - §°) e [Me (1-2) +6.2] wavre z)«fz]
(10.12)

10.4 Random vector potential

It seems that the limitations of the model described in the previous section (10.3) might
be removed if velacity dependence could be introduced into the action. Using a (random)
vector potential rather than a scalar potential will introduce a velocity dependent term
into the action. Justification for this comes from a generalisation of the phase sereens
model (chapter 8). So each infinitesimal stage is again considered to have a pair of phase
changing screens associated with it (one at the beginning of the stage and one at the end),
The “phase screen pair” to be considered in this section differs from those considered in
earlier chapters (chapter 8 and section 9.2). Specifically, the configuration to be considerad
in this section consists of an arbitrary, smoothly varying, phase changing screen followed
by a “complementary” screen (figure 10.1). The second screen is complementary to the
first in the sense that, in the n direction, zero gradient paths (i.e. non-sloping on a graph
of component of displacement in the » direction against z) have a phase change of 27,

which may be referred to as “zero” phase change.
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Previous versions of “phase screens” employed averaging over “shifts” for each infini-
tesimal stage (with the relative position of the members of the phase screen pair “locked”).
In the current model a similar effect can be achieved by averaging over realisations of the
arbitrary phase screens, provided that the pair is always “complementary”. A consequence
of averaging is that the magnitude of (KK*) for a given infinitesimal path segment is
largest if the phase change associated with the path segment is “zero” (or 2m). The mag-
nitude of (K K*) for “sloping” path segments decreases as the slope of the path segment
is increased.

It seems that A.7 could provide the basis for a specification of the phase change for
this model, if a suitable “vector potential”, A, can be found. It is not difficult to choose
A such that the requirement for A.7 to be zcro for “non-sloping” paths is satisfied, for
example. However, there are other conditions to be satisfied. In particular, investigation
shows that it is not possible to use a vector potential with non-zero mean to give an
expression consistent with the classical (ordinary) nonholonomic equations of motion. As
an alternative, a vector potential with zero mean and random magnitude in the n-direction

is chosen. The covariance is specified by
(Ai(r!,2)Aj(r", 2 + Az)) = wb(Az)nin; f(§.n) (10.13)

where

A; are the components of the vector potential

n; are the components of the constraint normal vector n

i=1,2,j=1,2

f is a function decaying from 1 (when its argument is 0) to 0 (at infinity)

and w is the product of a factor which ensures dimensional consistency and a large dimen-
sionless number (it is desired that the fluctuations are large since it is expected that this
will be required in order to enforce the constraint).

So

(K(tllt ) (7La 9—0,0»
_ /TL‘L/‘E ka 1(1,112 I2)dz( 1kf (A( u) 7‘" A(r’)r)dz> l°°1 ( )(lwﬂ’,(z)

rg,0 0

i
\

- /5”" ik [ £ 4dz o~ w fOL[2(1"-2)2(l—f(n-g))+%(§-n)2(l+f(2-_£_))]dz(po£(z)doo,,.(z)
0 Je = =

=0 _0)0

(10.11)
which is obtained by: using result (10.10) in the special case when the mean is zero (i
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Figure 10.1: Section through a single stage for “generalized phase screens model”

(A) = 0; writing the squared quantity this introduces into the exponent i.e.

2

[/OL(A(fﬂ)-i” —_A_(L")_T‘;')dz

as a double integral; expanding the brackets inside the double integral to give four terms;
evaluating the “ensemble average” by substituting for the components of the tensors using
equation (10.13); reducing the double integral to a single integral using the delta functions
introduced in the previous step; transforming to mean and difference coordinates r and ¢
defined in equation (10.8); simplifying the resulting expression by collecting terms together.

It still remains to evaluate the path integrals in equation (10.14). Investigation of this
step has not ruled out completely the possibility that a useful result might be obtained.
However, it seems to be difficult to obtain a result which satisfies the criteria for success

relating to ord nonholonomic mechanical paths becoming important in the classical limit.

10.5 Summary

In this chapter, the scope of the investigation was reduced by excluding consideration of the
“vakonomic limit”. The objective was to set up a model which allowed the direct calculation
of quantities associated with finite propagation. It was found that the requirement that in
the classical limit the results should be consistent with the ord nonholonomic (i.e. classical)
equations of motion could be used at quite an early stage in the calculations to identify
unpromising approaches. Hence the approach based on refractive index was abandoned. It
wasn’t necessary to perform the calculation described by equations (10.9)-(10.12) although
it was included for completeness. An approach based on a vector potential (section 10.4)

was attempted instead.



Chapter 11

Conclusions

11.1 The approach

In this thesis an approach has been made to the quantization of mechanical systems subject
to nonholonomic constraints. Mostly a special case, with a single nonholonomic constraint
in 3D space-time, has been considered. The rcason being that this is probably the simplest
system which retains the essential features of the problem.

The foremost requirement has been that the classical limit should be correct. This
means that the established methods of “constrained dynamics” [33] are not applicable.
Although it is artificial to consider classical mechanical systems as “constrained dynamical”
systems, it is possible to do so by introducing Lagrange multiplicrs as extra variables [33].
However, in the case of nonholonomic constraints this leads to a forimilation equivalent to
vakonomic mechanics. Consequently, quantization based on “constrained dynamics” will
have an unphysical (vakonomic) classical liiit.

The main focus has been on path integral formulations, although wave equations were
also considered to demonstrate that the problems involved are fundamental and not an
artefact of the method of quantization. Most of the problems fall into two related groups.
The first set of problems are concerned with constraining a quantum mechanical system.
Such problems will occur irrespective of the type of constraint. This is excruplified by the
calculations for a single infinitesimal stage. For the simple system considered here it is trie
that until the time dependence (or z dependence in the optical analogy) is included there
is no distinction between holonomic and nonholonomic systems. When one dimensional
propagators are composed this is also a holonomic case. At least two (space) dimensions are

required for nonholonomy. Difficulties associated with the propagator having unphysical
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dependence on its parameters can be removed from the model by introducing appropriate
averaging. Unfortunately, this tends to make computations very involved, even for the
simplest of cases. The way the phase of the infinitesimal propagator depends upon position
is expected to be responsible for the averaged propagator tending to zero as the propagation
interval becomes finite. Intensity may be considered to avoid this problem but, again, this
makes calculations more difficult (i.e. (K*K) compared to (K)).

The second group of problems are specific to nonholonomic (as opposed to holonomic)
constraints. For example, the way that infinitesimal stages are composed to produce “non-
holonomic propagation”. The use, within the model, of a parameter which gives nonholo-
nomic and vakonomic as limiting cases seems promising. This may reflect a separation
between the “constraint scale” and the “quantum scale”. However, here again, it has

proven difficult to produce tangible results.

11.2 Future directions

In chapter 10 the nonholonomic case is considered specifically (and the time dependence
of the constraints is included explicitly). Anisotropy is introduced through the statistical
properties of a continuous random medium or magnetic field (specifically its associated
vector potential). This would be worth further investigation to find out if the anisotropy
introduced in this way will in fact favour the “classical fan” (section 1.5.5) as required.
Although attention has been restricted to a simple special case, it is belioved that the
approach is general enough to allow the extension of any results obtained using it. Another
approach would be to explicitly specialize to a particular system, if, for example, it was
believed that a given system might be realized experimentally. Alternatively, a particular
type of constraint may be considered, indeed, this approach has been taken for “Quantum

rolling” [25].

11.3 Quantum rolling

11.3.1 Introduction

This section provides a summary of the ideas behind “ quantum rolling”. The ohjective in
the work “Quantum rolling” [25] is to study some examples of discrete systems subjoect to a
map representing a single step of a “rolling” process. The matrix of transition *amplitudes”

between states is obtained. The system studied which is of most interest from the current
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perspective is a cube “rolling” on an infinite plane (or square grid). Each step of the
“rolling” process involves a “flip” of the cube — pivoting about one of its edges in contact
with the plane. If the cube is subjected to a series of “flips” which returns it to its starting
position, then its orientation will not in general be the same as the initial orientation.
This system is non-integrable. A ball rolling without slipping on a plane, as described in
section 1.3 shows this effect as well. An example of an integrable system is a tetrahedron

“rolling” on a triangular grid (its orientation can be expressed as a function of its position).

11.3.2 Possible extensions

It is tempting to try and find a series of polyhedra with high symmetry and increasing
numbers of sides, which roll in a non-integrable way. As the number of sides increases they
become more like a rolling sphere — at least in the sense that the area of a typical side
forms a smaller fraction of the total surface area. As an example, consider an icosahedron
(20 triangular sides) rolling on a triangular grid. That this is a non-integrable system may
be shown by rolling around any point (i.e. the shortest possible circuit). The number
of sides of a polygon can always be increased by slicing off the vertices. If this is done
to the icosahedron then a truncated icosahedron is formed with 20 hexagonal and 12
pentagonal faces. This will “roll” on a hexagonal grid and taking a path round any given
hexagon on the grid will show that the system is non-integrable. This system is like
buckminsterfullerene rolling on a graphite plane — although it is not clear whether sucl a
rolling motion would take place in the real physical system. Things could become rather
complicated if a pentagonal face came into contact with the plane during rolling. This

does not scem to be a promising way to take a limit.

11.3.3 Physical considerations

Considering instead the classical sphere rolling on a rough plane, the nonholonomic con-
straint is the no-slip condition. This depends upon microscopic irregularities on the surface
of the sphere and the plane “inter-locking” to prevent relative motion. Although these ir-
regularities are small on the “classical scale”, they are large on the “quantum seale™, Tt
seems that it may not be possible to take this classical nonholonomic constraint to the
quantum level without changing its meaning. It is possible that similar problems may in

fact occur for all classical nonholonomic systems.
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11.4 Models

In the quest to quantize “nonholonomic systems” it has been found that the most direct
mathematical approaches to the problem of applying the constraints (e.g. appendix C) do

not give expressions with the correct classical limit.

A “modelling approach” is taken to the search for a mechanism for enforcing the con-
straints. A model system is set up with features which will hopefully enforce the constraints
(to a greater or lesser extent). This model is then investigated to find out if its properties
are suitable. The model is modified as a result of this investigation and the investigation
stage repeated (alternatively it may be rejected as unsuitable). Iteration of this process
gives the opportunity to deduce the important features of the way nonholonomic constraints

should be enforced.

11.5 Results

Investigation of “the quantization of nonholonomic systems” has led to a number of possible
lines of attack by which the problem might be solved being closed. Insight has been gained
into the nature of the problem which turns out to be more subtle than might first be

imagined.

11.6 Summary

Despite the current interest in the classical mechanics of nonholonomie systems, questions
of quantization (for ordinary mechanical nonholonomic systems) have been largely ignoread,
The path integral based approach to the quantization of nonholonomic systems investigated

in this thesis is believed to be unique.
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Appendix A

Mechanical principles

\A.l d’Alembert’s principle

A mechanical system subject to constraints can be described by Newton’s law of motion
d, .
"'i'i(mﬂ) =F +F, (A.1)

where

F, is the “external” force,

F, is the “force of constraint”

and the corresponding multiple particle equation is obtained by introducing an index i
throughout and summing over i.

The “forces of constraint” are gencrally unknown a priori, as the constraints are stated in

terms of constraint equations such as
frt)=0 (A.2)

Consequently, it is desirable to find a formulation of mechanics which does not require
explicit knowledge of the constraint forces. D’Alemberts principle, which is a generalization
of the principle of virtual work from statics to dynamics, achieves this goal. A “virtual
displacement” is made by changing the configuration of the system by an infinitesimal
amount ér at the instant ¢. For a system in equilibrium the “virtual work” done in such
a displacement is guaranteed to be zero by the principle of virtual work, so (for m =
constant)

(Ee + E. —mi).ér =0 (A3)

If the virtual displacements are restricted to those satisfying the constraints, then the

virtual work done by the forces of constraint (i.e. F,.6r) will vanish. For kinematic
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constraints
n(r,t).7 + n(r,t) =0 (A.4)

the condition on the virtual displacements is
n(r,t).6r + n(r, )6t =0 (A.5)

with 6t = 0 since the virtual displacement is made at a given time t.
So if
n(r,t).6r =0 (A.6)
then equation (A.3) becomes
(E, — mi).ér =0 (A.7)
This equation is in the form most commonly used to express d’Alembert’s principle. How-
ever, since

F . ér=0 (A.8)

for ér arbitrary except for the requirement that condition (A.6) is satisfied, the equation

of motion can be written as

mit=F,+An (A.9)

where A is undetermined.
Equation (A.9) can be considered to be a direct consequence of d’Alembert’s principle,
This equation and the constraint equations taken together can be used to determine

the motion without explicit reference to the forces of constraint

A.2 Gauss’s principle of least constraint

At a certain time, ¢, a system has a prescribed configuration and velocity. The objective
is to find equations to determine the acceleration.

For a motion with acceleration #, differentiating the equation of constraint
nr+mn =0 (A.10)

provides a condition on #, i.e.
ni+nr+n=0 (A.11)

Considering another possible motion with thie same configuration and the same velocity at

time ¢, but with acceleration # + A#, the equation corresponding to (A.11) is
n.(f+ AF) + 0. + 1y =0 (A.12)
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Equations (A.11) and (A.12) together give

nAF =0 (A.13)

Taking the components of equation (A.9) (“d’Alembert’s principle”) in the direction of Af

and using equation (A.13) gives
(Fe —mi).AF =0 (A.11)
Since the configuration and velocity are considered as constants, this may he written
(Ee — mit).8(E, — mi) =0 (A.15)

In equation (A.15) attention has been restricted from the finite changes in equation (A.14)
to the special case of infinitesimal variations.

Equation (A.15) means that

§Z =0 (A.16)
for
o o
Z = T (Fe — mi) (A.17)

where Z is considered as a function of §.
Gauss called the quantity Z the “constraint” of the motion and expressed equation (A.16)
as the “principle of least constraint”: the actual motion occuring in nature is such that
under the given kinematic conditions (i.e. equation (A.10) in this case) the “constraint™
becomes as small as possible.
The position and velocity components are constants (they were specified initially) so Z
is a quadratic function (with constant cocfficients) of the acceleration components,
Hertz’s geometrical interpretation (“principle of straightest path”) of Gauss's principle

of least constraint for the special case of no external forces is given in section 1.5.3.

A.3 Quasi-coordinates

There is an explicit functional relationship between generalized coordinates (¢;) and phys-
ical coordinates. It is convenient, especially when dealing with nonholonomic systems, to
use a more general type of coordinates, ;. Such a quantity 4 is defined by integrating the

differential

dy =73 a;j(g,t)dg; + ay(g, 1)t (A.18)
J
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along the trajectory of the system from the point (g,,fo) to an arbitrary point (g, t). If the
differential (A.18) is an exact differential, then the quantity y will be a function of ¢q and
t only: it will not depend on the path taken to reach this point. In this case 4 could be
used as a coordinate for the system. If the differential (A.18) is not an exact differential
then this will not be possible: the quantity 4 will depend upon the path (as well as g and
t). A quantity, v, obtained by integrating a differential along a trajectory in this way is
called a quasi-coordinate and the quantity  is called a quasi-coordinate velocity. Clearly
the coordinate system used should be able to specify the configuration of the system. It is
for this reason that a sufficient number of the original coordinates are usually retained in

practical examples.

A.4 The Gibbs-Appell equations

The Gibbs-Appell equations are closely related to Gauss’s principle. They are usually
stated in terms of quasi-coordinates. The flexibility provided by quasi-coordinates means
that the Gibbs-Appell equations are prefered over the explicit use of Gauss’s principle for
the solution of all but the simplest of problems (although recently a method for applying
Gauss’s principle without the explicit use of quasi-coordinates has been expounded [34}).

To show the relationship between the Gibbs-Appell equations and Gauss’s principle,
it is desirable to express Gauss’s “constraint”, Z, in terms of quasi-coordinates, The first

step is to write Z in index notation (since quasi-coordinates are to be used) i.c,

F 2
Z=3 Z’"J (‘EJ mJ) (A.19)

where N is the dimension of coordinate space
and m; = mVj is possible for simple systems.
The accelerations Z; in equation (A.19) now need to be considered as a function of the ;.

This can be achieved by using the equation

b d
Zaﬂm + Z St s, 4 6 "" (A.20)

j=1...,N

where k = N —1 (I is the number of constraints)

Equation (A.20) is obtained from the relation between the velocity systems
k

Tj = Z(Yj,;ﬁ’,‘ + « (A'Zl)

=1
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j=1...,N

by differentiation with respect to time. In fact, the quasi-coordinates are usually introdnced
using equations of the form (A.18) or the “velocity version” of this. It is then neccessary
to solve for the &; in order to obtain equations (A.21). The reason for this is that some
of the quasi-coordinate velocities are usnally defined to be constraints. So, for example, a
constraint such as

NeT +nyy +ng =0 (A.22)

could be included by defining a quasi-coordinate velocity as
Y = na 4+ nyy + ne (A.23)

Applying the result (A.20) to equation (A.19) gives
N k
Z =G~ E (Z ajﬁ,-) F; (A.29)
i=1 \i=1

where G = % Egvzl mj:ijz is considered as a function of 4.
In fact Z’ differs from Z, but only by terms not containing accelerations (which are unim-
portant).

It is neccessary to change from the phiysical components of the force (i.e. Fj) appearing
in equation (A.24) to the generalized components of the force (I;) corresponding to the
quasi-coordinates. These are defined by the equation for the virtual work

k
6W =Y Tiby (A.25)
i=1
Considering also the equation for virtual work in terms of the physical components of the

force, i.e.

N
§W =" Fjbx; (A.26)
J=1

and substituting for the §z; using the equation
k
brj = by j=1,...,N (A.27)
i=1

which is the relation between virtual displacements corresponding to the relation (A.21)
between velocitics,

The result is

k N
oW = Z Z a;; Fy | & (A.28)
i=1 \j=1
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Comparing this with the defining equation (A.25) gives
N
I; = Z“ﬁFi (AZQ)
J=l1
which allows equation (A.24) to be written
k
Z'=G-)Y T (A.30)
i=1

So Gauss’s principle is equivalent to the requirement that G — Z:-“___ 1 Ti%i is a minimum for

the actual motion. The first order conditions for a stationary value are sufficient, i.c.

0G _

- =13 '=1,...,7 "
5, r i k (A.31)

These are the Gibbs-Appell equations. It is clear that terms in G which do not contain a
4; can be omitted, as far as the equations of motion are concerned.
A.5 Example

If a simple example is considered, then it is possible to compare the form of the Gibbs-
Appell equations with the standard result. Considering, for example, a single particle

(m; = mVi) in 3D space, subject to the single constraint
ng(t)E + ny(t)y =0 (A.32)

with n2 + n;‘j =1

and no external forces, suggests defining the quasi-coordinate velocities

Y1 = ngb+nyy (A.33)
Yo = nyE —ngy (A.34)
".)/3 = Z. (A.SS)

although these choices for 49 and 43 are arbitrary.
The next stage is to write

1 w2
= 5m(E +§* + £%) (A.36)

in terms of 41, 42 and 43. Then the Gibbs-Appell equations give

J2 = 0 (A.37)
43 = 0 (A.38)



and we have
=0 (A.39)
since the derivative of the constraint with respect to time is zero (the constraint holds for

all values of time).

So the solution is just as expected from conservation of energy and the constraint equation.

ie.
url = v (A.40)
nr = 0 (A.41)
z =k (A.42)
where
n = (ng,ny,0) (A.43)
u = (ny,—ng,0) (A.44)
(v and & are constants)
so the kinetic energy = mi? = ymo?,

A.6 Discussion

As discussed in the main text (section 1.5.1), a principle of stationary action is required
for the path integral quantization which is the main topic of this thesis. Consequently,
other mechanical principles (such as Gauss’s principle and the Gibbs-Appell equations)
are of no direct significance. They are included only for completeness and are placed in
an appendix to keep unneccessary diversions out of the main text., Further details ean bo
found in (30, 8, 22, 12]).

Discussion of the principles of classical mechanics is often complicated by the fact that
the same name may mean different things to different people. A good example of this is
“Hamilton’s principle” this is sometimes taken to be the same as the principle of stationary
action, but sometimes it is used in a “gencralized” sense ([18, 29) for example). This has
caused confusion in the past. It is for this rcason that the use of the term “Hamilton's
principle” has been avoided in the main text. The main focus of this work is mechanics with

constraints and the most important methods have been included: d’Alembert’s principle,
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Gauss’s principle and the Gibbs-Appell equations in this appendix; Dirac's method in
section 1.6 (and appendix B); variational principles (in the conventional sense i.e. using the
calculus of variations) are represented by the principle of stationary action in section 1.5.2.
The basic result is unsurprising: a given principle gives the correct equations of motion if it
can be “derived” from (shown to be equivalent to) the fundamental principle of mechanics
(d’Alembert’s principle). In the case of the principle of stationary action this is not possible

if the constraints are nonholonomic.
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Appendix B

Constrained Hamiltonian systems

B.1 Introduction

The purpose of this appendix is to show that applying Dirac’s procedure for passing from
the Lagrangian to the Hamiltonian description of classical (constrained) dynamics does not
yield the correct equations of motion when the constraints are nonholonomic. Evidence is
presented to support the suggestion that the “Dirac” equations of motion are consistent
with vakonomic “mechanics”. In the holonomic case the equations do correctly deseribe

the observed motion, in the nonholonomic case they do not.

B.2 Equations of motion
The system to be considered is a particle in three space dimensions subject to the constraint
RN(R)=0 (B.1)

where R = (2,y,2) and N2 =1

This is more general than the special case considered in chapters 5-11. The reason for
considering this generalization is that it inchides non-trivial holononiie cases (the holonomic
case of the simple system considered in chapters 5-11 had a constant normal vector n).
The Lagrangian is

L= 3;-"1'»";;:.,- - AN (B3.2)

where the 4* (i = 1,2,3) are the components of R (and summation over identical indices
is implied)

this is a “singular” Lagrangian only if the multiplier A is considered to be an additional
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coordinate. Making this assumption in order to apply Dirac’s procedure and obtaining the

generalized momenta gives

oL, .
I),' = '5;; =mI; — AN; (BJ)
OL
y = o3 (B.4)

since Px(= x1) is a primary constraint.

Following the standard procedure [27] , the total Hamiltonian is .
1 .
I?T ==§;ﬁ(1% +—Aﬁﬁ)2-+'u1k ([l5)

where u is a multiplier,

The time evolution for x; is obtained from

dx
- {x1,Hr}

= NP+ A\N;) (B.6)

I

using the definition of the Poisson bracket of the system

0AOB 0OBOA A 0AOB 0B 0A

{4 B} = 52 0F, " oo oF; T 9% 0, ~ 0) 0P, (B.7)
The consistency condition x; = 0 gives rise to the secondary constraint
X2 = NY(D+AN)
= NP+ (B.8)
This process terminates upon obtaining
X2 =0 (B.9)
The constraints x; and y, are second-class since
{x1,x2} = -1 (B.10)
but it is possible to use the weak equations
x1 = 0 (B.11)
x2 = 0 (B.12)

as strong equations provided that the Poisson bracket is replaced by the Dirac bracket

2
[A’B] = {Aa B} - Z {A, ,\‘r}crs{\"mB} (B~13)

rs=1
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where ¢,s is the inverse of the matrix

{xi,x1} {x1,x2}

(B.14)
{x2x1} {x2x2}
then the Hamiltonian equation (B.5) may be written as
1 . .
—_ — ] ] J . "
H 2ml"’,(é N*N?)P; (B.15)
leading to Hamiltonian equations of motion
it = (89 - N'NI)P (B.16)
. NN I
P = (NP5 (N*Py)
; ONk
= IP; -y B.
(N Pj) Pe—— (B.17)

2)1:3) *

So considering a particular surface f(z!,z%,23) (specified by the initial conditions), the

In the holonomic case the constraint may be integrated i.e. N;i' = _f (2!, 2

identity , \
it = B (B.18)
may be written
%—% = g% (B.19)
Substituting this relation into equation (B.17) gives
p= (Nij)Pk%:‘ (BB.20)

So this equation and equation (B.16) are the equations of motion in the holonomic case,
they reduce [27] to
4 n"nj,k:icj:l’;k =0 (B3.21)

which is the standard equation of motion for a holonomic system [27]. So the Dirac pro-
cedure gives the correct classical equations of motion when thie constraints are holonomie.
The question is, what do the equations of motion that the Dirac procedure gives for non-

holonomic constraints represent, i.c.

R = (1-NN)P(R)=0 (B.22)
P = (NP)Y(N.P)
= (N.P)(P.Y)N + (N.D)(P x (¥ x N)) (13.23)
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Lagrange multipliers are used as extra coodinates in the Dirac procedure. The same is
true in vakonomic “mechanics”. This suggests that the equations (B.22) and (B.23) may
be related to the vakonomic equations of motion. The method in [2] for passing from L
to H in vakonomic mechanics may be used to investigate this conjecture. Thus, to put

equations (1.11) and (B.1) in Hamiltonian form, introduce the canonical momenta

oL 9. .
P = —4+2X—(N.R
E = 2T or D

= mR+ AN (B.24)

Considering both R and )\ to be “solved for” in terms of I and R , the Hamiltonian is

obtained using

H = RP-L
1 2
= 51—71'(_2 — AN)*+ AN.(D - AN)
£2 /\2 .
Equation (B.24) and the constraint, equation (B.1), give
A=PN (13.206)
So the equations of motion are
. oH
&= %
1 OA
)
1
= —(B-(N.D)N) (3.27)
. OH
L= g
_ A
T moR
1
= —(2N)V(L.N) (B.28)

which are the same as equations (B.16) and (B.17). This agreement between the cqua-
tions of motion resulting from the Dirac method and those from the Hamiltonian form of
vakonomic mechanics supports the conjectured link between the two approaches

To make the connection more explicit the vakonomic equations will be solved in the
original Lagrangian form and the solution shown to be the saume as that obtained by

integrating Dirac’s Hamiltonian equations of motion. This procedure will be earried out
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for a simple special case with N = N(z) only and N, =0 ,i.e. N = (n(2), 0). Similarily.

R is written R = (r,2) . In this notation the Dirac equations of motion (B.16) and (13.17)

become
. 1
£ = —(l-nnp
PR
= b
. 1
P = —~@pVinp)
= 0
. 1 3
p: = —(np)gz-(np)
Integrating equation (B.31) gives
P=¢

where ¢; is a constant vector.

Substituting (B.33) and (B.30) into (B.32) gives

,dz

zZ =

or

and substituting (B.33) into (B.29) gives

1
2

dz

1

ft=—(1-nn)y

n

(B.29)

(B.30)

(B.31)
(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

Integrating equations (B.35) and (B.36) provides the solution of the equations of motion.

For comparison, the Lagrangian form of the vakonomic equations

d .
;E(m[g + AN

for this special casc may be written

d
dt

Mmz — A

) = AV(N.L)

[

—(mi+in) = 0

({ﬂ 3 —
(@.L) =0

nt = 0
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(B.37)
(13.38)

(13.39)
(B.10)
(B.41)



Integrating (B.39) gives
mi+An = ¢, (B.42)

where ¢, is a constant vector.

Taking the n component of equation (B.42) and using the constraint condition (B.41) gives
A=1ey (B.43)

substituting this into equation (B.42) gives

!
P o= —(o-(2a)n)
1
= —(l-nn, (B.44)

Taking the 3—7;" component of equation (B.42) gives
dn
m-(—l,-;.z =, — (B.45)

where use has been made of
dn
no— =0 (B.46)
z
(since n? = 1)

substituting equations (B.43) and (B.45) into equation (B.40) gives

dz 1 dn
mé = —(nc) (R—;'gv) (B.47)
or
1 (l 22y 1 1 (l 2
2dz"* )= m22dz (n.cy) (B.48)

Integrating equations (B.44) and (B.48) provides the solution of the vakonomic equations
of motion.
Comparing equations (B.44) and (B.48) with equations (B.35) and (B.36) shows that

they are identical if ¢, = ¢;. This will indeed be the case since
p=mi+in (13.49)

from the definition of the canonical momentum. Thus there is agreement. betwoeen the
solutions of the equations of motion for Dirac’s method and vakonomic “mechanices® for
this special case where an explicit solution is attainable.

The simple system considered here is similar to the one considered in the bulk of the
thesis except that the z coordinate has not been identified with time, ¢, This could he
achieved, without employing the more complicated explicitly time dependent theory, by

including a constraint such as 2 = 1.
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Appendix C

A first approach to quantization

A natural approach to the problem of quantizing a system subject to nonholonomic con-
straints using Feynman’s path integral formulation, would be to take the unconstrained
path integral and then impose the constraint upon it using a “delta functional” i.c.

Tyl i £l mo
K(ry 5 Tas ta) = / " i B (7, 1) A0 (t) (C.1)

_ayta
if the constraint is f(r,7,t) =0 (and t, > t,).
The “delta functional” §[f] is an infinite product of delta functions — one for each “time-

slice”. If the integral representation

§(z) = -2-1; /_ ey (C.2)

is used for these delta functions, then it is found that the analogous representation for the

“delta functional” involves a functional integral, i.e.

ty . rty dt
6lf] = [ e e ¥ oy (1) (C.3)
Using this form in the expression for the propagator, I, gives (for t, > t,)
Tooto fto & [o(m2 gt
Kt tiiate) = [ [ e Do BEEE oy g)aop) (C4)
Ia»ta lg

From the standard result for the classical limit (section 2.4.5), the paths which make the
action stationary become dominant. In fact, this prescription for obtaining the classical
motion is easy to follow: once it is realised that the expression (C.4) for the propagator is
exactly what would be obtained if one imposed the constraint on the classical system using
Lagrange multipliers and considered these multipliers as additional coordinates, This is
exactly what one does in vakonomic “mechanics” before applying the principle of stationary

action. In other words the classical limit is vakonomic “mechanics”.
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Appendix D

Vakonomic solutions for a position

independent constraint

D.1 Introduction

This appendix contains analytical results for the 2D (space) vakonomic system in the
case when the components of the normal vector to the planclets (in 3D space-time) are
independent of position r ,i.e. n=mn(t), n, = n(t) where ¢ and n are 2D vectors. When

ng # 0 the planelets are inclined to the t direction.

D.2 Classical

The constraint, n.;* + n; = 0, is applied using a multiplier A

t
5 / (%1,_2 +A\wi + m)) dr=0 (D.1)
0
from variations with respect to r(r)
d, .
;E(ml: +An) =0 (D.2)

whilst variations with respect to A(7) give the constraint equation. Integrating (D.2) gives
mr+in=c (D.3)

where ¢ is a constant (vector)
Taking the component of this equation in the n direction and substituting for 2.7* from the
constraint equation gives

__nc+mny

A=2ET T (D.4)



where n = |n|

substituting this expression for A(7) into (D.3) and integrating provides Ar(t) in terms of

Ar(t) = [7}1 / (1 - 1;2__) dT:l (‘——/——n dr (D.5)
0

If the displacement is known at some time, the final displacement Arp = 1(T) — 2(0) for

c

example, then this equation determincs ¢

1 7
nn
c= [-—/(1—15—')(17
m n
0
so that Ar(t) is now determined in terms of Aryp
t
0/

consider 72, Substituting for one of the 7 from (D.3) gives

-1

T
., nyg ' .
(A'I_T + / 7-)—22 dT) (D())
0

To obtain the “classical action”

m|3

ldT (D?)

mi? = f.(=An + c) (D.8)

substituting for A and for n.¢* from the constraint

o (nedmm)n

mre = 2 + 7. (D.9)
SO
_ l g m 71,
Sa = 2(/ ndT+Ar>c+2 ~5dr
m . m l
= —Q—(Ar+A10) MY Ar + Arg) + 0 (T (D.10)
where
Ary = /——ndr (D.11)

and M is the matrix
t
/( 7_)(17 (D.12)
0

D.3 Quantum

In order to evaluate the path integral
t
O 4 [ (meea@itn))r
[ [ e dr(r) d®A(r)

I(O),O
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to obtain the propagator K(r,,t;1,0), an integral is introduced to change the fixed end

point path integral into one with free end points.

t

b & [ (BEPA@itn)+hbE)dr
K=///e =0 e AL P (T) d®N(T) (D.13)

the r*(7) path integral is performed first

t
~gim [ (A2n242A(hbn—mn)+R262)dr
K= / / e o e EAL () dPN(T) (D.11)

and then the A(7) path integral.

_ ik 2 (b '7) - " " i n2
K= [ (-2 )ronorn Sy o (D.15)
where n = |n|
and finally the ordinary integral
2 L2
m™m im [n
Ar+ Arg) AN Ar + A —t ;
= ihydera) P (2h( o+ Arg) MTHAL+ Arg) + 2 J ‘“) (D.16)

with the same definitions of Ary and M as in the preceeding section. Since the exponent
of the original path integral is a quadratic form, the exponent in the result for K can bhe

checked by verifying that it is %;Sd.
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Appendix E

Evaluation of the integral over a

rhombus unit cell

3 Ly(Az")

I =

Az'=-2 y'=L_(Az')

cos (iva—”Au’) cos (%A:c') expli(hot! — kyy))dy'd(AY)  (E.1)

where Ly (A2') =y, &+ Scsc Af — Az’ cot A8

A =2 — 2,

Au' = -,

taking 6;,:tia = 0 so that A§ =6

using

W = a'cos@+y'sind
! !

v\ = Yy cosf— ' sinf
] .

u, = zlcosf+ylsinb

v, = ylcosf — x,sind

and defining v and A by:

gives

where

Y = yl+aycscd—(a’ —zl)cot0 (I.2)
o o
A = 7% oK
: (E.3)
1
2
cos(nmA) cos(Nry)e (Atd+Bar+d) (-—a—a) dyadA (E.4)
sin
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A=kycotd — k,csch

B =kycotf — kycsch

A = ky(x), cot § — ul. csc 8) + ky(ul. cot 6 — x/, csc 8)
after substituting for ¥/ in terms of u} and z..

So the double integral separates

1 1
2 2 2
I= / cos(nwA)e 9B A / cos(Ny)e By | o> ( a 0) (E.5)
sin
A=—1 q=1
Using the result
3
e .
ik sin(3(k+m)) = (sinz(k—m)) i
dr = ;
/ os(mz) e™* dxr = T + g (E.G)

nh-

gives

(l2 ) ’
I = ez(ch+ucB) X
sin @

(sm 5(Aa +nm) N sin%(Aa-mr)) (sin%(B(H-Nn) sin%(Ba—Nn’))

Aa +nw Aa —nm Ba+ N7 Ba -~ Nn

for n,N both odd this is

2 2
— % i(j1aA+jaB) 4r“nN ( A(z Ba) _dmeN-2)
sinA0° [(Aa)? = rm)A(Bay — (N \ 7 g ) 5

> .'l?' . u'
where j; = 3%, j; = e,
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Appendix F

The link between sum over images

and modes for a single stage in 1D

To compare the 1D sum over images expression for the propagator with a 1D modes
cxpression it is probably simplest to set the origin midway between the pair of planes (at
the beginning of the calculation).
The expression for the propagator based on a sum over images is
o0 o0
K= \/—_IZ 3 iv(Ba+2an)? _ )5 ciu(A.x:+‘2,H+‘2aN)2) (F.1)
T \n="o0 N=-o0

where AZ = Zingl — Tinitial
v = g (mechanics)
or v = & (optics)
€ = duration of stage in time
m = mass of particle
a is the “lane width”
B is the initial distance to the plane “below” the particle, i.e. the nearest plane in the
direction of x decreasing.

So, with the current choice of origin for x, 8 = Finitia + 3. This means that Ar + 23 =

zft+xit+a.
Applying the Poisson summation formula to sums like those appearing in F.1
o0 00 .
Z V(X +an)? _ ;1; Z - TR X ~L(mm) (F.2)
n=-=-00 m=-00
so, with a = 2a
- 1 = i (®y2,,2 imm imE
K = -é;l-mz e~ w(3)m [c“T(W‘J:’) - (,'T(Iﬁzi"*")] (F.3)
=00
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the m = 0 term is zero so this may be re-written as

1 i L (rN2, 2 T im imn
K = o Z e~ (E)ym [e———"" :1:;( R _ p—im -1y, )
imn i . . i .
4o er (e — g (F4)

2 & 2, 2 mn mm
Kmodes = -(; Z (a) ™ cos (—;—.’1‘]‘) Cos ('—a—ﬂfl)
+ - Z e~ (3Pm? gip (77[17) sin (-n—:—r-a:i) (F.5)

which is invariant under the interchange of zy and z;. For brevity modes calculations
are generally carried out using the first half of this result only, i.c. only the part with
cosines and m = odd integer is considered explicitly (the presence of the second part being
“understood”).

The fact that the m = 0 term in the “sum over modes” is zero accords with expecta-
tions since this term represents the “constant mode” which does not satisfy the constraint
requirement to be zero on the “constraint planes”.

The version of the Poisson summation formula [28] (which links a sum of a function
with the sum of its Fouricr transform) required to obtain equation (F.2) is nore general
than the version given in the main text (equation (9.33) ) i.c

Z f(an):-(-l; Z /f ARy (F.6)

n=—-o0 T om=-o0_"

This reduces to equation (9.33) when «« = 1. There are various ways to obtain the re-
sult (F.6): for example, a possible starting point is to consider the convolution of a function

with a “delta comb”,
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Appendix G

Implementation of “phase screens”

(for a single stage)

Before comparing “phase screens” with “modes” (appendix H), it is useful to introduce
a modified method of implementing “phase screens” (method B). It is necessary to show

that this is equivalent to the “direct” approach (method A) which may be summarised as:
A1l — take an incident “long sine” wave

A2 — “alternate” it

A3 — evaluate the diffraction (i.e. integrate over sources)

A5 — “unalternate”

Step Al refers to a wavefunction with transverse dependence sin }—?‘1";(3: +a1),p>1

Step A2 is passage through the phase screen at the beginning of the stage.
“Alternate” means multiply by the (odd) square-wave fyign (2, @) with Fourier series
7 Looda 7y 5in (%Xa)

Step A3 is propagation through the “free space” between the phase screens,
Step A5 is passage through the phase screen at the end of the stage.
“Unalternate” means multiply by fuign(r,a).

Method B is:
B1 — take an incident long sine (same as A1)
B2 — “alternate” it (same as A2)
B3 — express the resulting function as a Fourier series
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B4 — propagate the Fourier components
B5 — “unalternate” (same as A5)

The final steps are the same in both cases so need not be considered for a comparison.
Since method B uses a Fourier series it is advantageous to introduce a step similar to B3

into method A, i.e.
A4 — express the resulting function as a Fourier series

To compare the methods it is sufficient to compare the “propagated Fourier components”

of step B4 (B, B;) with the Fourier components of step A4 (A, 4,).

where
{Ac}=_2_ %70 {COS}QW 7 Fsign(pe) sin (2—W(/L+“)) ek dude (G.1)
A plazz_%pla sin| pia ot stan pia ! fLEE AL
B, p _(om cos) [2mn oriz -5 (22)’
{Bs} = wa / fsign(y) sin (;}—;—(—L(y+al)) {Sill} (1—)1(—Ly> dy - 2k pro |
y=—}pa

In fact the Fourier sum for the fyign function can be “factored out” from these expressions

and the comparison made between

%Pla 0o k
ac cos . [(m% . e
= 117 S — S I\f —— ?:—.(J—[t) .
{aa} / {sin}( 1) _/ sm( a “) sin (ky (¢ + 1)) mia e’ dpdr
z=—}pia p=—00
(G.3)
b %Pla i
¢ m Cos iz 12

= si —_— sin (ki (: 1 | OF ! c—;;(km) -

(- T () smon o] e
y =‘%P1a
L 2
where k| = -51%
Using the identity
00 00 %Pla-lea
/ fldp = Z / JOodp
=—00 l="°°,4=—%p1a+lpla
o 3P
= Z / f(w +Ipa)dw
l=—oow_ 1
=—zmMma
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where w = p — Ip1a

with

f(p) =sin (%?/L) sin (k1 (g + aq)) e: (@-n)’

gives

2]’1(1

/ f(p)dp = E / sin (—Ww> sin (ky (w+(v1))(2z("’ zHpa)? g,

— l=—00
H=—00 w——§p1a

where use has been made of

sin (—T%I (w+ lpla)) sin (k1(w + Ip1a + ay))

. (mz o . 2m .
= (sm (Tw) cos (mlpnr)) (sm (I-);l-(a—}—(n)) cos (27rl))

sin (—"gw) sin (A1 (w + ay))

since I,m, p; are all integers and p; is taken to be even.

Using the Poisson summation formula on the sum over ! gives

2
iz [ 2N~m
Z e”‘(w—z+lpla)2 Z 27”2 e IA(pla) c

oo Pla Ne—
So
1 %Pla
a . [(mrm .
V= — / sin (-——-'w) sin (ky(w + o))
w=-1pia
00 %Pla
« 3 et
N=~o00 1
T=-3p1a

1
3p10
{gc}('w, n,N) / {ws}(l\m r)e"FN(W-3)
s sin

IT=- 2pla

(e

2N~®
oa (w

_,))

cos ”
) }(klm:)e""'lN(“"m) drdw
S

(G.5)

(G.6)

—~

G.7)

(G.8)

- I’T ~iky Nw [{t:}sinc((N +n)7) + {::}sinc((N - vz)ﬁ)]

N and n are integers, so

Z e BNy { }(w,n,N)=pla.{('f)s}(I\'mw)c‘ﬁ(kl")a
N=-00 s sin
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Consequently

1
zp1a
a . mm . cos _iz
{a:}= / sin (-a—w) Sm(kl(w"‘al)){gin}(kl'rlw) dw | =&k (G.11)

w=—%p1a
So {gc} = {s°}, as required for methods A and B to be equivalent. For sake of completencss,
the integral can be evaluated to give

%Pla

. mr
sin { —w
a

C
sin
w=— %pla

sin (k1 (w + ) { OS}(kmw) dw

(’*’101)] (G.12)



Appendix H

Comparison of “phase screens”

and “modes”

H.1 Modes

Consider the long sine wave
sin (ky (z + 1))

2m
pia

p1 > 1, p; is an even integer

where k) =

Define T(x;a) to be a “Top-hat function” height 1, width «,

ie. T(y;a)=1for |y| < §, T(y;a) =0 for |y| > §

So the function g(z;j,a) = T(z - (j + %)a;a) sin (k1(z + a)) is the “chunk™ of the sine
between x = ja and z = (j + 1)a, it is zero outside this interval,

Take this function and shift it by ja to move its non-zero part into the first “lane™ (i.e.
substitute z = y + ja)

Define a new function to be identical to this for y > 0 and odd i.e. f(-y) = =f(y)

Find the Fourier series for this function on the interval [-a,q] i.c.

= , . [nT
Fi(y) = ;b,,(;,pl,al)sm (—(;—_/) (11.1)
a
: 2 : . . [nTm
bu(d, 1, 011) = - / sin (k (Y + ja + «ap)) sin (—(;—Y) dYy (11.2)
Y=0 4

Shift this back again by the same amount, i.c. substitute y = x - jain Fy(y)
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The resulting Fourier series may be written

ks . . fnT .
@) = X Balip ) sin () (1)
where
Bn(j’phal) = (_1)njbn(jvpl,”1) (114)

iz (nT

Propagate the modes by multiplying each by exp (—ﬁ (™ )2)
Multiply by T'(z — (j + 3)a;a) to remove everything outside the interval x € [ja, (j + 1)a]

Then sum over j to include contributions from all “chunks” of the original sine wave, i.c.

— .1 > , . NI iz (nm\?
fp(z) = z T (1' - (] + 5) a;a) Z B,(j,p1,1) sin ——oxp | —or (-;1—) (H.5)
Jj=-o00 n=1 ‘ '
Consider the overlap with another long sine-wave
1 La
Tor = 57 / sin (ko(z + a2)) f,(z) dz (H.6)
z=-La
where k = %’%
p2 > 1, p2 is an even integer
Defining v = —% (£)?
1 La
Io = - / sin (k2(z + @2))
z=—La
ad .1 = . . ML oo
x| Y Tlz—{j+ ) sa > Bu(j,p1, ) sin — e | dy
j:—w n=1 a
1 A !
= il E T<x— (]+§)a;a)
j=-L
0o (j+1)a nmr
X Z - / sin (k2(x + a2)) sin —F(L;'(l.c B,,(j,pl,(yl)e"'vm (IL7)
n=1 z=ja
the substitution u = z — ja shows that
(+1)a ,
. . NTT .
- / sin (ko(z + ) sin Tdr. = B, (j, P2, 2) (11.8)
T=ja
and since
Bn(j, 1, 1) Bu(j, p2, ) = ba(J, 1, 1 )bu (s P2y v2) (1L.9)
Equation (H.7) becomes
= ] 0o -
for=y7 ¥ T(e- (5 5)ai0) 3 bz cabulip o)™ (1110)
j=~L n=1
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where

4 n —cos| /2@ sin | 7
b (i —_ z 1.
n(J, P, @) "ni’—( )2{ G }(p( <]a+a+ 2)) {Cos}p (H.11)

for n {$57)

so the j dependent part of b, (4, p1,1)b, (4, P2, 2) is

{ }(Au +Bl){ }(Azj +DBy) = 5 (( 1)" cos[(Ay + A2)j + (B + B2))
+cos[(A; — A2)j + (B — B2)])  (1.12)

= 2r B 2n(,. 1 @
where A; = i B; = p,-a(az + 2)
So, to perform the sum over j first, it is necessary to evaluate sums of the form

Zf_ !, cos(aj + b). This may be achieved using the standard result

sin(2ta) cos(Za +b)

n
Z cos(ka +b) = — (H.13)
k=0 Sin 5
to show that L1
~ sin(La) cos(b — &
S cos(aj +b) = ( “Z.m;( 2) (H.14)
o’ sin 4
So
L-1

> % ((=1)" cos[(A1 + A2)j + (B + Ba2)] + cos[(Ay — A2)j + (By — By)))

j=—L
% ((_l)nsin (QL( 1)12) )cos(ﬂl + ) N sin (2L (171' - 172) )(-os(ﬁl +[32))

(& 2] (G -2))

(11.15)

where §; = ———a,

So
2 & 2 Fw(n iz (nm 2 .
OL= 7L Z_:l 2 — (2)2][n z]{ Fou } exp ("27 (T) ) (11.16)
n= P1

where
{Fem_,n} _ [sin (ZL( m) )( w(3 + 13)
Faut [ sin (3 = 7%) 7)
oL (L + 1L (B + B,
(o1 sm( E:: f?:_?_ 07: M+ z))
m pz

x({:::},,l)({:::‘}-"—) )

for n {&57

where 2L = py, i.e. the wavelength of the overlap sine-wave in units of a.
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H.2 Phase screens

Consider the long sine wave

sin (ki1 (z + ay))

2n

where k; = o

p1 > 1, py is an even integer
“Alternate” it by multiplying by the periodic antisymmetric step function fsign(x), which

has the Fourier series

4 &1, (mnm
fsign(x) = - Z — sin (—:r) (H.18)
Find the Fourier series of this “composite” function i.e.

1 e )
—2'A0 + Z (An cos(kinzx) + By sin(kynzx))

n=1
where
A 9 %Pla
{B:} = e [ Foign(v) sin(k1(v + 1)) {:?;}(klnv) dv
v=—5pla

. 2
“Propagate” the Fourier components by multiplying each by exp (_%7? (i’:—;’) )
“Unalternate” by re-multiplying by fsign(x), to give the phase screens propagated function.

Consider the overlap with another long sine wave i.e.

Tor = 2a0Ao + 1 3 (@nAn + buBy) ex L(Q—”)2 (H.19
OL—4(lO 2,,_:1 nn nDn PlYY P, . )

where
iPe

an 9 . cos
{b,,} =2 [ fan@sinliate+ ag)){ Sin}(klm) dr  (H20)
.‘l:=—,%,p20

(ie. L=1p,) )
z (7
y= (—> (H.21)

and p2 > 1 (pz is even)
Using the result

L
/ sin(Az + ) sin(ux) {:i?}(u:c) dx
z=-L

1 (sin((l/ +A—p)L) {cos}ﬂ + sin((v - A+ p)L) { cos }[3

2 v+A-p sin v—A+pu —sin
_sin((v+ A+ p)L) [cos g sin((v — A —p)L) | cos 3
v+t sin V=A— [t —sin

(H.22)
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it may be shown that

p2 D2 . P2 P2
= - —cos sinc n+1-— m——) 7r) + sinc ((—n -14n ——) 7r)
on % P [ ((Px 2 ) »m "2
— sinc ((p?n +14+ mp2) ) — sine ((pzn -1- m“) w)] (H.23)
41 2 D1 2
w 0
b, = 2 Z 1 sin 3y [sinc ((&n +1- m@) 7r) — sinc ((&n -1+ mI—)-z-) 7r>
T £ m i 2 D1 2
m=1
— sinc ((&n +14 m@) 7r) + sinc ((Pzn -1- m“) w)] (H.24)
m 2 P 2
o0
A, -72; Z Hco‘;ﬂl [smc ((n +1-a2 ) 7r) + sinc ((n—— 1 +1\[%‘-) 7r)
M
— sinc n+1+M£21> 7r) —sinc ((n—l—A[%) w)] (H.25)
o0
B, = % z Al sin (3 [SInc((n-i-l—]\Ipl) ) — sine ((n—l+1\[%l—) ﬂ')
Yoo
n P .
-—smc( n+1+1\[7) 7r> + sinc ((n— 1 ——M—é—> w)] (H.26)

where §; = ,?—l”‘;ai

(So Ap =0 and By = 0)

Since n,M and % are integers, the sinc functions in the expressions for A,, and B, have
arguments which are an integer multiple of 7 and so they may be written as delta functions.
The restrictionsn > 1, Af > 1 and % > 2 ensure that only two of the four functions provide

contributions. These contributions are for n = m%‘- +1. So

| o . 22 - A
IoL. = - 2 cos 3 apreL_q €Xp (z‘y (]\I— E> ) = QppBly €XP (W (]l[+ 1)—1)

A
1 & 92\ 2 2\2
+ = Z sinBy |by es _jexp | iy (M————) —byp€xp |1y (M+—)
L 2 D 2 P
M=
(H.27)

To obtain apreL ) and bMZ,_;l:tl substitute n = AfEL £ 1 in the expressions for a, and by,.
Simplification may be achieved by considering the sin x and —;- parts of sincx separatcly
and using sin(N7 + 6) = (-1)Vsinf for N € integers. The remaining sinc factors are

common to all four terms. Hence they may be factored out and the -xl- terms collected in
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pairs. Since m is always odd (=1)% = (-1)%.
2
Qppyy = —cosﬂgsm ip ) (- 1)“"2( 1)
ad 4 1
x Y —— 5 - 5 (H.28)
o) P2 A[:!:2~— ~m? (}\I:t’—i-+%) —m?
b}\ﬂ,}il = —-smﬁy_ sin (ﬂ:I:w) (- 1)“'2( 1) 2
1
> 4 1
X Z - + 5 (H.29)

2
odd p2 AI:I:———p—2 — m? (A[:i:}%+%) —m?2

m=
The standard result
S(x) = i ! l(ot(m,) - L
- P 2 —k2° 2z 2x2

may be used to obtain

Also tan( %M T+ @) = —cot ¢ for M an odd integer.

Using these results gives

1 . 2
appy; = ——cosfsin :i:I—)—ﬂ
2 mp2 D1

ﬁ\_/

x(-)MF (-1)% [

1
byreryy = ——sinfysin (:i:;;—fﬂ')

2 Yy
B [cot Sl(ﬁ:pll - %) 7r) cot ((:i:pl1 + ’)1_21) 71')] (H.31)

+
1 M1 1
2T m 2 ipl P2
Substituting from (H.30) and (H.31) into the expression (H.27) for the overlap and using
(—1)“222 = (—1)22*2 for odd integers Al
Then collecting together t i 1,1 din cot ({L = L) ), combining
g together terms in cot o + - and In co T P , g

those containing 8; and 3, to form double angle cosines and then rewriting the exponential

parts in terms of cos and sin gives

in (22 "7(;,1_4,?) 5~ _L g H.32
sm(mn)e OZM 172¢ M (H.32)
A%

IoL = —
yloxs
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1 cos L= — 45 (= + = ) sin
Gm = cot ((— + —‘) 7r) cos(Br — B2) L 1 (P; pz) >
"o L= (5 +7)
cosXM i (2 2\ g aM
n((B 2 ety [EE R
) o
n D2 1— Ly (p_1 _ E)

H.3 Comparison

Define
T
¢; = COS —
Di
. 7
s; = sin —
pi
Ci = cos f3;
Si =sinf;
2
ﬁi = —(y
pia

Then removing all factors which modes and phase screen expressions have in common
leaves a comparison between:

For n odd

Modes:

1 ( GO =58  _CGt8S CIQ)
e | s | (P M (e

Phase screens:

(crc2 — 8182)(C1C2 + 5152) csc ((i + i) 7r) ~m M
o P2

cos
—(c1c2 — 5182)(C1C; — 5153) csc ((—l — —1-) 7r) il
P op2

So modes and phase screens agree until terms of order (’—,1;;) for n odd (and odd AJ)

i

For n even

Modes:
1. 1 (_ CiCy =515 G102+ 515 )3132
LG ] V(o)) o (Gea))

__1 25152
P2 (s162)% = (s2c1)

5 (C1Cas102 + 5152326‘1)
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Phase screens:
0 (M odd)

So modes and phase screens agree until terms of order (ﬁ)—) for even n also.
1y

143



Appendix 1

Notation

The type of notation listed here consists of those symbols which may appear without
introduction because they are used throughout the report. Other quantities are explicitly
defined when they are used and are not included in this list.

The notation is given, followed by an explanation or reference to its definition.

e ng, ny, n; functions defining the constraint for a system with 2 space dimensions (in
the optical analogy time, ¢, becomes the coordinate in the“paraxial direction” i.e.
2). In the simple simple nonholonomic system considered from chapter 5 onwards

ny = 0. They are the components of a vector normal to the constraint planclet in 31

space-time (section 1.4).

e n a vector function of time (or z in the optical analogy) which defines the constraint
in the simple nonholonomic system considered from chapter 5 onwards. It is often
referred to as the “constraint normal vector” because n; = 0 and n is normal to the

projection of the constraint planelet in the z-y planc.
e a the width of a “lane” as introduced in section 6.2.

e a the “average” width of a “lane” (used when a distribution of “lanc widths” are

considered) as introduced in section 9.2.2.

h takes its conventional definition as Plank’s constant divided by 27

c the speed of light in a vacuum (it is used in section 6.3 for example).

e ¢ = duration of a single stage (i.e. its length on the time axis)
e 6z = ce length of a single stage in the z-direction.
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¢ AT = Tfinal — Tinitial displacement in the z-direction.
e m = mass of particle (e.g. section 6.3)

 is defined in equation (8.12) for mechanics and equation (8.11) for optics

e v is defined in equation (6.2) for mechanics and equation (6.3) for optics

T position vector

g' i™* component of generalised coordinate vector
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