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This thesis is an attempt to provide an adequate foundation for 

mathematics along roughly intuitionistic lines. 

I criticise set-theoretic foundations and develop an alternative 

philosophy firmly rooted in constructive mathematical experience. I 

also discuss the role of formal systems In a global account of 

mathematics. 

Intuitionism presupposes a 'theory of constructions' (a 

'protologic') underlying logic and mathematics. Past attempts to supply 

such a theory have failed to clarify Its philosophical nature or role in 

mathematics. I give my own protologic, and use It to interpret 

intuitionistic logic, Heyting Arithmetic, and classical analysis. 
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Errata 
Page 59, line 19: 'The Recursion Theorem' should read, 'The Second Recursion Theorem'. 

Page 59, lines 22-24: Omit the sentence beginning, 'The g so obtained... '. 

Page 68, fines 6-15: Replace the passage from 'A function fxpt to the end of the 
paragraph by 

'From the usual proof of the Second Recursion Theorem it follows that fxpt olo(z) 
does not merely equal 4(fxpt §)(I) : fxpt §(ýK) is evaluated by constructing the term 
§(fxpt 1)(1) and evaluating it. Therefore, if 4 is of the form specified in the Fxpt Rules, 
fxpt § works by applying H to its axgument x repeatedly until it satisfies C, then applying 
R to give the fmal result. This makes fxpt 4 the least fixed point of 4 (for this class of 
4): then fxpt §=U. V(U), where U is a nowhere-defined function [13, Chapter 4]. 

Fxpt Rule (a) may be informally justified as follows. The conclusion, fxpt §(j) 
Y(, K) (omitting the initial variables for brevity), follows from Vn(VU(z) --+ Y(I)). This is 
proved by induction on n. The basis case is U(j) --4 Y(I), which is trivial. The induction 
step is as follows: by applying I to the inductive hypothesis we obtain V+'U(I) --+ IY(; E), 
which --* Y(z) (by the premise), as required. 

Fxpt Ride (b) is proved similarly. X(fxpt f XPt 40k)(Z) is 
X(U. 4ýnU nU)(Z), Which is X(4ýn 

.... 
4ýn 

11* -Un"k Un IU kU)(1) : we need to prove that this 
fxpt T(j). This follows from Vn(X(InU,... InU)(j) --+ f xpt ft)), which is proved by 

Ik 
induction on n. The basis case is trivial. The induction step is X(111+1U ...... 0; +1U)(I) 
*X(4ýnU 1pnU)(A) (by the premise), which -+ Ik(fxpt%)(j) (by applying T to the I '... k 
inductive hypothesis), which is fxpt ft), as required. 

Note that these arguments only work because of the highly restricted form of X and 
4o, T, .... They are intended to justify the Fxpt Rules informally to someone who accepts 
numeric induction; however, I regard the Fxpt Rules as more primitive than numeric 
induction. ' 
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Cbgwter 0: Philosophical Remarks 

SO-0 What's wrow with set theory? 

Classical set theory is an attempt to 'actualise' potential 

infinities. Tbinking of, say, the set of natural numbers IN as if it 

were a heap of physical objects, classical logic assumes that VxEM and 

3xEIN are legitimate sentence constructs: that is, we can insert either 

in front of a well-defined concept t(x, y .... z) to obtain another 

well-defined concept *(y .... Z). Similarly with any other infinity in 

place of IN. 

I think the reason mathematicians believe this (at least, the reason 

I used to believe it) is that since we have a clear idea of the concepts 

that generate the . 'potential Infinity' IN (zero and the successor 

function) this determines uniquely the 'actual' IN. There may be 

philosophical qualms about its 'existence' (whatever that means), but, 

since it Is unambiguously determined, quantified statements about It 

have objective truth-values, and there seems to be no obstacle to 

deducing some of them by predicate calculus, leaving philosophical 

questions to be settled later (or never). 

Of course, the most this argument claims Is that there Is at most 

one actual IN. But it Is questionable whether It even succeeds in that: 

Non-Standard Analysis shows that It is perfectly consistent to Imagine 

two actual IN's each Interpretable as an actuallsation of the progression 

0,1,2,3,... . 

The main problem, however, with set theory Is that it gives rise to 

a new potential infinity (the universe of sets, V), which, although it 

Is usually assumed we can quantify classically over It, Is not a proper 

object In the way that Individual sets are. Hence the basic dogma of 
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set theory: all 'collections' are either sets or non-sets. This 

distinction is based on the ancient view that only collections 'limited 

in size' are permissible (eg Eudoxus' definition of a number as a 

limited plurality): only they form 'organic wholes' or 'consistent 

multiplicities' (which is nonsensical: only theortes can be consistent) 

or 'collections that can be thought of as one' (although in saying 'a 

collection' (a singular noun phrase) we are already thinking of it as 

one). Of course, if you had asked an ancient or medieval logician what 

'limited in size' meant he would have explained that the limitedness 

consisted in the fact that one can obtain a strictly larger collection 

by adding an extra element; he might have added that the limited whole 

is strictly larger than any of its proper parts. These principles have 

to be abandoned when Cantor Interprets limitedness In a broader sense 

than ordinary finiteness, to make IN and R 'limited', so that there Is 

not much left of the original notion. 

Cantor believed In the limitation of size Idea for theological 

reasons: sets are collections directly imaginable by God (whereas we can 

only imagine collections finite in the ordinary sense) while V 

('Absolute Infinity') Is God-sized. We can talk about sets freely 

because they exist as objects In God's mind, but we cannot talk about V. 

This view doesn't work even In its own terms (cf Hallett [7, Chapter I]). 

Modern set theorists maintain the distinction simply to avoid the 

paradoxes. Still, I suspect that quasi- theological Ideas linger, 

accounting for why the Idea feels right to mathematicians. The ordinal 

hierarchy Is the set theorist's Tower of Babel, and if we try to use It 

to climb to Absolute Infinity we must expect to be struck down by 

contradictions. 
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The sole advantage of this approach Is that it treats IN and the 

other collections useful in practical mathematics as limited, so that 

they can be manipulated almost as if they were finite. The 

disadvantages are as follows. 

Because 'limitedness' is obtained from the ordinary notion of 

finiteness, set theory is haunted by the ghost of constructivity: I mean 

the view of V as a cumulative hierarchy obtained from the empty set by 

'iterating' the power set and replacement operations transfinitely. 

This makes me wonder whether the Zermelo-Fraenkel axioms (ZF) are even 

consistent. As far as I know, there are only two arguments f or 

consistency: that the axioms embody coherent infon, 1 ideas (but they 

don't: they are a mixture of generative/quasi-constructive and 

static/impredicative views), and that the whole of mathematics may be 

regarded as an unsuccessful attempt to deduce a contradiction from the 

axioms (but this Is unconvincing: practical mathematics rarely uses the 

full Impredicative strength of the replacement and separation schemata, 

and only quantifies over V In fairly Innocuous ways). 

The fact that only sets can be actual infinities undermines the 

motivation for Introducing actual Infinities In the first place: for any 

argument that justifies going from potential 0 to actual 0 also 

justifies going from potential V to actual V. 

Moreover, It all seems remote from mathematical experience. There 

are transfinite 'constructions' that can only be carried out by God, wW 

a huge multitude of previously unsuspected and apparently useless sets, 

most of them undefinable. whereas we are prevented from defining things 

we need (proper classes). 7be fact that all questions about cardinals 

except the simplest are undec1dable from the axioms has led many set 
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theorists to deny that we are talking about 'the' universe of limited 

multiplicities at all, and speak instead of alternative set theories, 

apparently with no notion of an intended model. The Impression of 

arbitrariness about the properties of V is unsurprising when we consider 

that it is based on a notion of limitedness which has been detached from 

its original context (ordinary finiteness) and left hanging In mid-air; 

and the power set axiom blindly posits the existence of the power set of 

any set without telling us anything about it beyond Its bare existence 

(it is no good saying that the power set is characterised extensionally, 

and hence completely, because the power set operation Itself is used to 

decide what is a set, via the cumulative hierarchy picture). Our 

philosophy of mathematics should be embedded in general philosophy, so 

its concepts should be somehow 'grounded' in our basic experience. It 

is surely Implausible to say: "Mathematics is that branch of our 

knowledge that deals with the irreducible concept of UnUedness". 

While set theorists endlessly dispute how many super-huge cardinals 

can dance on the head of a pin, practical mathematics either sticks to 

the first few levels of the cumulative hierarchy or talks about 

completely arbitrary structures (which could be classes, families of 

classes, or anything at all): It seems to pay no attention to the 

set/non-set distinction. For example, theorems of group theory still 

apply when the group Is class-sized; and the ecategory' of all 

categories satisfies the usual category-theoretic theorems. 

Set theorists sometimes justify their enormous but limited universe 

by pointing to theorems relating large cardinal hypotheses to the highly 

Impredicative properties of the continuum. (In the language of Ramified 

Type Theory, high type concepts are being related to high order ones. ) 
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This is supposed to show that large cardinal problems are 'real' 

questions. What it actually shows Is that the impredicative continuum 

and large cardinals stand or fall together; both seem equally Irrelevant 

to the part of mathematics that relates to physical applications. The 

classical continuum is supposed to be the structure of space-time, at 

least locally, yet can anyone suggest an empirical test for the 

continuum hypothesis, Martin's axiom, the axiom of determinacy, or the 

hypothesis that all Borel subsets of the reals are Lebesgue-measurable? 

This suggests a serious mismatch between the classical continuum and 

physical space-time (which may not be a set of points at all): If the 

continuum hypothesis is either true or false when stated of physical 

space-time but its truth-value is unobservable then we are not talking 

about physics but metaphysics. ZF is misleading in giving the 

impression that whereas large cardinals are exotic the properties of the 

reals are not because they are low down In the cumulative hierarchy. 

ZF set theory has established itself as the orthodox foundational 

system because, unlike its rivals, its inadequacies are such as to allow 

mainstream mathematics to continue as before, at the cost of losing 

touch with the motivating Ideas behind mathematics. My main complaint 

is that, due to Its reliance on the obscure notion of limitedness, It 

bungles the problem of how to talk about the whole universe: It lumbers 

us with unwanted sets and prohibits apparently meaningful definitions 

(the universal set, the set of ordinals). 

SO-1 Criteria for a foundhational system 

(at) An account of the foundations of matbemtlcs should be founded 
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on our immediate experience of mathematical activity (eg counting, 

computations, reasoning about computations); it should not begin by 

simply postulating axioms which 'force themselves upon us as being true' 

about an unexplained universe of mathematical objects. In other words, 

it should not take 'existence' of mathematical 'objects' as an 

unanalysed primitive notion. 

(P) It should explain how, despite (a), mathematical statements are 

not translatable into descriptions of the contents of particular 

mathemat ic tans' minds at particular times, but are necessary, timeless 

and independent of the thinking subject (in the sense that they would 

still be true even if no mathematicians had ever existed). 

(-d) It should justify as much as possible of existing mathematics 

(possibly reinterpreting it, since all mathematicians are implicitly 

applying a naive philosophy of mathematics). 

(6) It should not make stronger ontological assumptions than are 

implicit in 'practical' mathematics (I mean, roughly, mathematics which 

is not motivated by foundational considerations); since the foundational 

system is partly justified by saying that It Is necessary for doing 

mathematics, which seems to be a legitimate activity. Set-theoretic 

concepts seem Incapable of justifying existing arithmetic and analysis 

without Introducing at the same time strong ImpredIcativity and a vast 

cumulative hierarchy which dwarfs what had previously been considered 

the whole of mathematics. These are not added bonuses of the 

set-theoretic approach. they are (possible) defects. A theory which 
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justifies arithmetic and analysis without such a large hierarchy would 

be preferable. 

(a) It should explain how and why mathematics is applicable to 

science. 

SO. 2 Wbat's wrong with set tbeory? (continued) 

In this section I shall continue the criticism of the 'platonist* 

approach to mathematics, but not focusing specifically on ZF, and with a 

view to diagnosing and curing the underlying Ills. 

The key problem is: is the universe of mathematical objects itself a 

mathematical object? For example, take the formalist approach. I have 

no quarrel with the basic fox list thesis that mathematics is the study 

of formal systems: it leaves untouched the real problem, namely what 

formal systems are possible and what we can say about them as a 

totality. 

Foundational systems generally are Inspired by certain modes of 

reasoning or formal expression; they posit a universe of obj*cts (sets, 

formal systems, or whatever) and assume It closed under some 'extension 

principles' for generating new objects from given ones. 

For example, In ZF the power set, pairing, union, separation and 

replacement axioms all have the basic form Vk3y O(x, y) where, given x, 

O(x, y) determines y uniquely (except that for pairing there are two 

variables In place of x and for replacement the basic form Is 

conditional on an antecedent). What these axioms are really doing to 

Justifying a definition ('construction', almost) of y In terms of x. 
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They should not be regarded as asserting the existence somewhere of ay 

for each x but as legitimising certain 'constructions' we think we need. 

The term 'construction' raises questions about the existence of 

mathematical objects, which I shall deal with in SO. 3. My point here is 

that our motivation for, and hence our reason for believing, these 

axioms depends on a quavi-constructive viewpoint. 

The problem is that we need to talk about the whole universe in 

developing the system; moreover the universe Is supposedly a meaningful 

concept (eg, *set' is supposedly meaningful: that is, we claim we know 

what we are talking about) so we ought to be able to talk about it; but 

the universe is (in most systems) not an object within itself. At this 

point the temptation is to forget what we are trying to do and merely 

study the formal system in front of us. If we retain a dim memory of 

our original intention we may defend the system by claiming that it is 

adequate for present-day mathematics and If we ever find It inadequate 

we can enlarge It by Including plausible new extension principles. This 

is probably true, but the questions remain of what extension principles 

are legitimate and whether arguments about 'arbitrary' objects remain 

valid when the universe is enlarged by new extension principles: this Is 

essentially the problem we started with. 

One possible view is that the universe Is not a mathematical object; 

that is, It Is not a legitimate object of mathematical thought; that is, 

we are not entitled to talk or think about it at all as mathematicians. 

This Implies a stratified universe: every object has an Implicit limited 

range of significance (its 'type'). The trouble with this view Is that 

It cannot express Its central dogma, for 'every object' In the preceding 

sentence is meaningless. It is no good invoking type ambiguity: if 
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0 every object has a type' is type-ambiguous then it means 'every object 

of type T has a type' (regardless Of T), which says nothing. The type 

theorist is in the position of an ancient Hebrew theologian, forbidden 

to pronounce the name of his god. The notion of type ambiguity itself 

is unexplainable because we need to understand that T (in the above 

sentence) is Itself of ambiguous type, type ambiguity has to be treated 

as a primitive notion, which is tantamount to assuming a primitive 

ability to assert a formula 0(x) 'for arbitrary x'. 

In practice type theorists do talk about types and objects generally 

In a way that cannot be expressed in the system (which is supposed to be 

all of mathematics): so they call such talk 'meta-mathematics'. But the 

. meta' prefix accomplishes nothing. For the practising mathematician, 

who doesn't want to be bothered with type restrictions, Is liable to 

respond, "Very well, by your terminology I am not a mathematician but a 

meta-mathematician: when I speak of five I mean the metatheoretic five 

(as In 'five types'), not any of the internal fives (there Is one for 

each type) - Now please develop a philosophy of meta-mathematics to 

justify what I do. " 

Such a justification must be meta-meta-mathematics, which must be 

Justif ied In turn. We can spot the obvious pattern, and so def Ine 

meta"-mathematics as a function of n; the function Itself is not in any 

meta'-mathematics, so It must be an element of what we could call 

emeta: '-mathematics'. In this way we can get mete-mathematIcs for any 

constructive ordinal (x, and all of them together make mete'-mathematics 

(where w, Is the least non-constructive ordinal), and so on. Here the 

question arises: do we 'really' believe in non-constructive ordinals, or 

even *all' constructive ordinals (not just as theorems of ZF)? This Is 
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the kind of question we were trying to avoid by setting up a formal 

system in the first place. 

The reason for the difficulty Is that I am seeking an account of the 

kinds of concepts legitimately definable In the course of doing 

mathematics; whereas most people working in foundations seem to regard 

this as hopelessly overambitious and instead want to develop a limited 

system adequate for present-day mathematics (classical or 

Intuitionistic). There is no contradiction between our views; we are 

merely doing different things. I am studying the philosophy of 

mathematics whereas they are doing mathematics. 

I have discussed the Cantorian view of set theory: there Is an 

alternative Frege-Russell approach which sees sets or classes as 

exten tonalised predicates, and explains the paradoxes by the vicious 

circle principle. This seems far more plausible to me, as It explains 

the fundamental objects of the system in terms of predicates which we 

define, and hence from meaningful mathematical activity, Instead of 

postulating a mysterious objective mathematical 'world' of sets. 

The central error of classical mathematics is its view of 

mathematics as a world separate from ourselves which we discover facts 

about. Classical mathematics breaks down for roughly the same reasons 

as classical physics does: the world Is Inextricably mixed up with our 

thoughts about it. As soon as we think we know what the mathematical 

universe Is we can talk about It as an entity, and so transcend It. The 

problem with Infinity is not that it is too large, that we are biting 

off more than we can chew, but that it refers ultimately to what we 

cAxmt up to or define, and hence we are talking about our own possible 

thoughts; so references to the whole universe, or even any Infinite 
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domain, may be circular, and sentences containing unbounded quantifiers 

are not manifestly well-defined. 

We have in fact no automatic right to use unbounded quantifiers at 

all: a formula containing them is devoid of meaning once the classical 

picture of a mathematical world outside ourselves is abandoned. 

(Whether quantification over a smaller, but still infinite, domain means 

anything remains open. ) Yet we have an irresistible urge to use such 

quantifiers anyway, and mathematics would be impossible without them. 

A particularly Innocuous form of unbounded quantification is Vx A(x) 

where A(x) is quantifier-free and Vx A(x) is proved by proving A(x) 

'regardless of x'. (Russell [18, p. 158] singles these propositions out: 

he says that A(x) is proved 'for any x' rather than 'for all x'. ) The 

proof is an argument schema, with schematic variable x, leading to A(x); 

the schema Is recognised as a valid argument without needing to inquire 

into the value of x. Here I am taking an intensional view of arguments: 

an argument is valid, not merely if the conclusion is true whenever the 

premises are true, but Iff the reasoning process the argument describes 

is correct; that reasoning process need not use all the information 

known, In particular It need not use the value of x. Any argument 

obtained by substituting a name N of any object for x in the schema (or 

equivalently adding the Information x=N) will also be valid. The 

preceding sentence seems to quantify over objects, but that does not 

mean that I am now admitting 'for any object, ... ' as a valid sentence 

construct; the sentence is meaningful because It Is a sort of 

prediction, or rather a licence (and so strictly speaking not a 

proposition) to regard arguments of a certain form as valid In future 

without needing to examine them &fresh. Generally, *for all x, A(x)* is 
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not directly meaningful, even if A(x) is understood: It needs to be 

given a 'predictive', experiential meaning. 

Call this very restricted version of quantificational logic 

iprotolomft. 

Yet It is difficult to stop at this point. One wants to say, eg, 

that if a function f maps everything to a natural number then so does 

the function Sof obtained by composition with the successor function. 

This statement is of the form 

Vx A(x) :) Vx B(x), (I) 

with A(x) and B(x) quantifier-free. The obvious argument for (I) 

actually establishes 

Vx (A(x) 3 B(x)), (ii) 

and this is protologically meaningful. The natural way of understanding 

(I) Is as an 'incomplete' version of (ii), where we have abstracted one 

. aspect' of (Ii), namely the fact that it enables us to pass from Vx 

A(x) to Vx B(x) (both of which are protologically meaningful). 

Clearly we could have obtained (1) as an incomplete version of, say, 

Vx (A(gx) 3 B(x)), 

or, more generally, any protological argument allowing us to Infer Vx 

B(x) from Vx A(x) - 

Having admitted Incomplete statements, It Is then easy to Interpret 

Rx A(x) as an incomplete version of A(a), In which we have abstracted 

one 'aspect' of A(&), namely that it asserts that A holds of something. 

Clearly we are talking about Intuitionistic logic, based on a 

protologic of statements true 'regardless' of the values of their 

schematic variables. This suggests a programme for Interpreting 

mathematics, which I shall carry out In subsequent chapters: I define 
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protologic in Chapter 1, apply it to arithmetic in Chapter 2, and apply 

it to analysis in Chapter 3. 

The controversy over intuitionistic logic has always concentrated on 

why we can't use excluded-middle arguments; we should have been asking, 

what makes us think we can quantify at all? General predicate-logic 

formulae cannot be interpreted as propositions. Only 17, statements can 

be given a direct meaning (and then not the full classical one); other 

formulae can be given an indirect meaning which justifies almost all the 

arguments we are used to using in predicate logic. This Is far more 

than we have any right to expect. 

Restricting ourselves to intuitionistic quantifiers gives some hope 

of talking about the universe without presupposing the classical 

picture. But the central problem remains: whenever we have a domain of 

objects we can transcend it by talking about the domain Itself - This 

-open-endedness' Is the central fact of mathematical life: philosophy of 

mathematics should give an account of it, not deny it by confining us to 

a fixed formal system on pain of contradiction. 

SO. 3 Ideallontlam and the woýtrv of tim 

In this section I begin the attempt to formulate an adequate 

foundation for mathematics. Start with Criterion (a) of 90-1. (Pure) 

mathematics is based on Ideallsed arguments about our counting and 

computational experiences. The subject matter Is the manipulation of 

expressions in a finite (te explicitly listed) alphabet; any repeatable 

action which yields a new result after each repetition say be regarded 

as a system of numerals (eg drawing chalk marks on a blackboard), and we 
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are concerned with manipulations of these according to rules expressed 

in a finite alphabet (ultimately codable as numerals). 

This view of mathematics is properly describable as formalist. I 

mean by formalism the interpretation of mathematics as being concerned 

with the manipulation of formal strings of symbols: the strings are 

Intrinsically meaningless, but the fact of being able to obtain a string 

by specified rules has a clear 'finitistic' meaning, and can be used to 

deduce computational statements by 'finitary' rea oning. The fact that 

the manipulation rules are called 'rules of Inference', the starting 

strings are called 'axioms', and the manipulations are reminiscent of 

stylised reasoning processes, is surely inessential since the strings 

are not Interpreted as propositions. (I call mathematics roughly what 

Hilbert calls metamathematics. ) 

It may be objected that symbols are abstractions: all we really have 

are the written tokens on the page, or whatever else we are using to 

record symbols, and these are unsuitable In that there are only finitely 

many of them, they may be imperfectly formed, we may misread an "a" as 

an "a", etc. Cranted, but the fact that we understand what It means to 

misread a token shows that there Is a clear notion of 'a token intended 

to be of type -(x"*. Then we express ourselves In a finite alphabet we 

are chopping our thoughts up Into small sbarply-defined pieces: I take 

these pieces as the building blocks of mathematics. 

Finiteness will be elucidated in terms of Iteration or what we can 

count up to, since counting Is immediately given as an algorithm. 

Having obtained finiteness we can then look back and view iteration as 

having a 'finite' and a stemporal,, aspect (to as repeating a process 

*finitely mww times'); It night then appear that finiteness Is more 
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primitive than iteration and that viewing finiteness via iteration is 

pointless. But the fact remains that, in the way I am doing things, 

iteration comes first, In our ability to execute algorithms (I think 

this is related to Brouwer's primal Intuition), and without It we would 

never get as far as a notion of finiteness from the perspective of which 

we could look down on iteration. 

Now, mathematics only considers certain aspects of this 

token-manipulating activity. Suppose we regard sequences of chalk marks 

drawn on a blackboard as stroke numerals representing numbers. Then It 

Is true to assert: 

(I) We cannot write down an even prime number > 10. 

(it) We cannot write down an odd prime number > 10". 

Informally, there Is a clear difference between the reasons for (I) 

mid (it); (it) is due to the fact that we will run out of chalk, 

blackboard space and patience long before we can write down the number; 

(I) seems to reflect essential 'structural' properties of counting 

processes which would still hold If we represented numbers by counting 

sheep entering a pen or electrons passing one at a time between two 

electrodes (for which (it) might be false). 

Arithmetic seems to we to be an attempt to talk about an unspecified 

process carried out repeatedly, disregarding contingent physical 

limitations (running out of chalk, etc. ) peculiar to particular 

processes. A mumber Is a stage In this anonymous iteration. 

More generally, we want to 'Introduce' (or *construct' or name) 

mathematical objects by giving their computational meaning: a function 

Is given by explaining how to calculate its value for an arbitrary 

argument, a set S by explaining the computation xeS, a formal system by 
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specifying an algorithm for checking proofs, and so on. 

This procedure relies heavily on abstraction and idealisation. 

Mention of 'abstract objects' raises the questions: what exactly are 

abstract objects? what does it mean to argue about their existence? are 

they just figures of speech? do definitions create objects or simply 

name them? does every definition of a function (by explaining how to 

calculate It) define an object? are all abstract objects obtainable (or 

nameable) in this way? does idealisation change the properties of a real 

object to make it Ideal, or create an ideal object alongside the real 

one, or neither? 

The metaphorical view of mathematics as the natural history of an 

inaccessible world of abstract objects is useful, but a little 

preposterous. Suppose I try to define a function f: 1N -* IN by 

fo = 1, 

n>0* fn =nx f(n-1). 

Am I obliged to justify my definition by switching on my Gddellan 

set-theoretic Intuition (assuming I have one) and rummaging through the 

mathematical universe, examining objects one at a time and piling them 

In a heap, In the hope that when I have exhausted the universe I will 

have fouDd one, and only one, object satisfying the defining equations? 

Or should I employ a speciallsed search-and- rescue service such as the 

ZF 'recursion theorem', guaranteed to locate a unique referent for any 

primitive recursive definition? 

I refuse to do anything of the sort. When I talk about the 

existence of a function I want to mean simply that I know how to 

calculate It. The function should be an algorithm; the understanding of 

Its computation should automatically justify It and exhaust Its meaning. 
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To have an independent and prior concept of 'existence' simply falsifies 

the intentions behind mathematics. 

I have said what I want, but how do I get it? In particular, what 

is the idealisation process involved? what do statements about ideal 

objects mean (are they all translatable to statements about real 

objects)? Are such statements literally true? and if not, can they still 

be justified as 'useful'? 

Taking up the last question, there is no doubt of the usefulness, 

even the necessity, of Idealisations in ordinary arguments, inside and 

outside mathematics. All our knowledge about the world consists of 

Idealisations In which inconvenient aspects of a situation are 

neglected, either because we do not know them, or we are confident they 

would make little difference to the answer, or for generality, or to 

simplify argument. Often It Is easiest to approximate a real situation 

by successively 'less Ideal' Idealisations; eg In talking about chalk 

marks on a blackboard it is easier to develop number theory abstractly 

and then say that actually there are only 10'F pieces of chalk In the 

world, than to try to develop chalk-numeral theory directly. Therefore, 

If any of our everyday reasoning is valid, so Is Idealisation in 

mathematics: there is no concrete-abs tract gap to leap. It Is a 

psychological fact that we do meke a distinction between mathematical 

and non-mathematical aspects of computat Ion- experiences; creating an 

autonomous discipline of mathematics, to focus on the necessary, 

. structural' aspects of computations, in, at the very least, a natural 

step in systematising the way we reason. 

But what do mathematical propositions mean, and are they literally 

true? To have a system of (apparent) propositions which are useful but 
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not true would be unsatisfactory; it would suggest that we had not 

interpreted the propositions correctly. Perhaps by analysing their mode 

of usefulness we can attach a meaning to them in such a way that they 

are true (if they really are propositions) or (if they are not) are 

'Justified' in the appropriate sense. 

Turning to the question 'what is the idealisation process? ', I will 

now describe it, without justification. We begin with our repertory of 

arguments, A, about the physical world, W. One statement of A is 'a 

repeatable operation can be repeated an extra time, If physical 

conditions permit' (for example, having written a chalk-numeral we can 

add a chalk stroke to form its successor, if we have not run out of 

chalk). Arguments In A need not use all the Information available (eg, 

an argument about chalk-numerals need not consider the mineralogical 

properties of chalk); so we can remove some of the unused Information 

(abstractigm The discussion of 'for any x, ... , regardless of x' 

statements In the previous section Is an example of this, In which the 

value of x is a removed Information'. We may also drop 

physical-limitations qualifications specific to the *aspects' we wish to 

discard (Idealisation : In the example we delete everything after the 

comma, to get 'the (anonymous) operation can be repeated an extra time'; 

or, In other words, 'any number has a successor'. We do not add any new 

stat eme nts, such as 'the operation can be repeated w times'; eany number 

has a successor' already serves the purposes of what is called potential 

infinity. Call the Ideallsed system of arguments A'. 

It might be supposed that the arguments A' apply to an Ideal world 

V with, eg, an Infinite supply of chalk. In fact, It is Important to 

be clear that Idealimatt mmý ýratlan an arýments: It transforms 

. 
to A'. not W to W. A% at this stage, applies to W (with limited 
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reliability), not to V. 

The next step Is relfication. We would like to replace idealised 

talk about objects by talk about ideal objects. For example, a symbol 

in an alphabet is the common type of certain tokens; a function is the 

comon form of certain compu tat I on-experiences ('computations of the 

function for different arguments at different times'). Mathematical 

objects are 'universals' in the sense of general philosophy. If we 

understand sentences of the form 'f Is a token of type "a"' or *f is 

green' (in general, P(f)), we rephrase them as ' the symbo I "a" Is 

represented by f* or 'green is the colour of f* (in general, fCP). - then 

we treat "a" or greenness (in general, P) as an (abstract) object, that 

Is, usable as a noun In any sentence and substitutable for a variable. 

We also may that It exists, or rather that there exists a unique x with 

all the required properties. 

Justifying this In a serious philosophical problem. Perhaps al I 

talk about abstract objects could be translated Into talk about physical 

objects, so Chat there Is no new ontological commitment: Perhaps 

abstract objects do literally exist, as concepts or objects of thought; 

perhaps even so-called physical objects are abstractions from sense 

perception. I do not Intend to take up a position on this question, for 

the following reasons. 

(1) It Is not a mathematicat problem. I am attempting to reduce the 

problem of mathematical philosophy to special cases of general 

phtlosophical problems. 

(11) 1 study the foundations of mathematics because I seriously doubt 

the sense and truth of classical mathematics. I don' t doub t the 

legitimacy of talking about greenness. 
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(tit) I suspect the problem is insoluble, for lack of any more basic 

notion by which to explicate universals. 

In short, if I understood It, as well as I understand greenness, I would 

consider my problems solved. 

So I simply assume that It is legitimate to talk about 'the object 

P' (including to say that It exists) whenever sentences of the form P(E) 

are meaningful (not necessarily as propositions). (Russell's paradox is 

avoided by being careful about meanings; many sentences P(E) I do not 

regard as propositions, so It is unclear what would be a suitable notion 

of negation. The closest one can get to Russell's paradox is something 

like the semantic paradoxes which I will consider in SO-4. ) Moreover, 

all mathematical objects are to be obtained in this way: it makes no 

Sense from my point of view to have an abstract object which Is not the 

result of any abstraction. We can picture the objects as inhabiting a 

world W', as long as in our arguments we use only A', not considerations 

suggested by treating V an a physical universe. In particular, 

quantifying over W' clearly goes beyond what I have allowed. 

Uncritical use of the V picture would suggest that we could express 

number- theoretic propositions (eg Coldbach's conjecture) as objective 

statements about the Infinite supply of pieces of chalk arranged in 

order. The problem would &rise of justifying W's 'existence' (as 

opposed to the existence of Its Inhabitants), as well as whether It Is 

uniquely determined by A'. Ny procedure allows us to say 'every number 

has a successor' but not 'Coldbach's conjecture has a truth-value*: in 

the usual terminology, potential infinity without actual infinity. 

There Is no possibility of nonstandard models of A' because there are no 

models In the sense that would be required: when I say that I 'grasp the 
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unique number system 0', 1 simply mean that I know how to count. (For 

example, In protologic 'for all neM, A(n)' (for decidable A) is 

represented as a relation between (essentially) the counttng algoritbm 

and A. ) 

Another problem Is: can the -structural' aspects of 

computat Ion- exper lences really be separated cleanly from other aspects, 

and are they logically necessary? To call a proposition necessary Is to 

assert that no circumstances would count as a refutation of It. *All 

black cats are cats', for example, seems necessary because we cannot 

imagine an animal which we would be prepared to call a black cat but not 

a cat. This may just be the fault of our inadequate imaginations 

however: how can we predict how we will arrange our concepts in 

unforeseen future situations? Yet a non-feline 'black cat' would 

Involve such an upheaval In our thinking that there Is nothing we can 

Intelligently say about such a beast now. so we exclude the possibility. 

Likewise In mathematics: we must rely an our most lucid and persuasive 

notions If we are to think at all, and if they are wrong or contain 

concealed confusions the best way of discovering this is to explore 

their consequences, while keeping an open mind about furAmwntalg- 

Note the role of psychological terminology In mathematics: It Is 

used to help deftne mathematical objects, but mathematical Objects are 

not defined as psychological events; eg to define an algorithm one must 

explain how to exmcute It, but the algorithm to not any particular 

COXMtIon event. 

I havenot defined the Ideallsation operation preciselY: I merely 
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indicated it with an example. The easiest way of specifying it is to 

describe A'. The arguments in A' concern successive operations: 

successiveness In geneml, in fact. Thus I need some basic assumptions 

about the geometry of time. Some of these will be purely contingent; 

the others are consequences of the idealisation. 

Assumption (a): Time is a partial order. The order relation is given by 

one mental event involving a memory of another. This has an idealised 

component (assume we never forget anything, which gives transitivity) 

and a contingent component (subjective free will, which gives 

antisymmetry). 

Awmwtlon (0): Linearity. Time Is a linear, or total, order. This is 

purely contingent. 

Assýtlon NJ: Time Is discrete. A computation is completely specified 

If we state how to start it, what states are halting states, what result 

to deliver for a halting state, mid how to continue after a non-halting 

state. In other words, w (the f irst limit ordinal) is not finite 

(cannot be counted up to). This In also purely contingent. 

Aýtlgn (61: Homogeneity. A given computation produces the same 

result regardless of when It starts and how fast It proceeds. This Is 

an unavoidable consequence of the Idealisation. approach. Granted the 

contingent fact that there are at least two events In time, this Implies 

that every event has a later event at which we can continue the present 

computation. (For the given two events could be Interpreted as a 

successful Instance of cAmnting from 0 up to 1; this Implies that all 

such *counting up to 1' processes succeed; hence for any mental event we 

can start a 'counting up to 1' process In parallel with whatever else we 
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are doing, and we are guaranteed a successful outcome, ie a future event 

at which we reach 1. ) There is a genuine philosophical problem of the 

existence of future events, and a physical question of whether we will 

survive long enough to see them: neither Is any concern of mathematics. 

Assumption (i) restricts mathematics to recursive function theory. 

We can easily Inagine it false. Suppose we resolve to test the 

computations A(O), A(l), A(2),... in succession to see if any one 

results In True. Suppose at some stage in the future we notice that we 

have tested A(O), and for each A(n) tested we have also tested A(n+l). 

Then by consulting our memory we can obtain a truth-value for 3nEN A(n). 

This gives an 'Infinitary' version of mathematics in which quantifiers 

over F are directly meaningful because they can be evaluated by 

computation. With the means of expression so obtained we can define a 

universe of mathematical objects; quantification over the universe would 

still be Illegitimate. I shall consider Infinitary mathematics in 

Chapter 3. 

Infinitary mathematics Is reminiscent of ZF set theory In that both 

admit a broader notion of finiteness (to numbers one can count up to, or 

'limitedness') In which w Is finite. In my view, the reason ZF Is not 

ismediately Inconsistent Is that it Is a distorted version of Infinitary 

mathematics (cf 0-2). Quantifying over some such 'fixed' Infinity Is 

free of the problem discussed In SO. 2: so It In not ruled out that the 

fixed Infinity could be coherently regarded as a world external to 

ourselves, and that classical logic could be applied to It. But this 

does not go without saying. It requires an Infinity assumption, that 

for a sequence of events Eo, El, E.?.... there Is an event Eý, after all 

of them. 
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Whereas In finitary mathematics it Is merely assumed that every 

event has an event following it. Finitary mathematics is developed in 

Chapters I and 2. 

Assumption (P) can also be supposed false. In the many-worlds 

interpretation of quantum mechanics the world is continually branching 

Into causally disconnected parallel worlds which could be considered as 

temporally incomparable. Of course this makes no difference to anyone's 

memory, and hence their perception of their experience, as long as every 

Initial segment of time Is linearly ordered. However, in exceptional 

circumstances it Is possible to recombine the Parallel worlds; thus one 

could hope to evaluate RnEIK A(n) by assigning one n to each parallel 

world and collating the results afterwards. In fact, It turns out that 

this can't be done In quantum mechanics: functions computable by quantum 

computers are computable by classical computers and vice versa. 

Nevertheless, this does Illustrate that a dental of Assumption (P) Is 

not absurd or Inherently unacceptable. 

Assumption (6) has Interesting consequences. Consider the question 

of the existence of a number, say 10'": what this means Is that we have 

an algoritbm ('counting up to l0loo") and we want to know whether It 

will halt. Consider a computation-experience A In which we execute this 

algoritbo. Now consider an alternative compu tat ton-experience B In 

which we execute the same algorithm but more slowly. The first step of 

B Is like the first step of A: but In subsequent steps B adopts a 

delaying tactic, perhaps repenting the same step several times before 

admitting It as correct and passing to the next, so that B takes twice 

as long as A to do the second step, four times as long to do the third 

step, and so on. 
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Now by Assumption (6) A must halt eventually Iff B does: we cannot 

allow the existence of numbers to depend on how fast our brains are 

working, or how thoroughly we check our results, or when we stop for 

coffee breaks. 

This may seen wildly unrealistic. Dropping the Idealisation for a 

moment, the time disparity between A and B means that quite early in the 

computation either B Is taking the lifetime of the universe to complete 

a step or A is taking less than 10-43S (about the smallest physically 

meaningful Interval of time, corresponding to the Planck length). One 

might argue that any foundational theory will have to justify existing 

mathematics, and hence eventually physics; and that in physics there is 

a clear concept of time measurement, in terms of which Assumption (6) is 

absurd: and hence this suggests that mathematics should not be founded 

on Assumption (6) after all. But this argument fails an its own terms. 

For In physics time measurements bave no absolute significance but are 

merely an arbitrary assignment of numbers to events. It in true that In 

general relativity there to a well-defined Invariant local 'proper' 

time. But this is just a conspiracy between geodesics; It tells us what 

the Lagrangian In doing In the vicinity (local weather conditions, so to 

speak). 

Pbysics Is constitutionally Incapable of providing a more absolute 

measure of time than this. Two disjoint Intervals of time are 

qualitatively different; and to call one longer than the other is 

meaningless without reference to some arbitrary measure, which we cannot 

allow If mathematics Is to survive as an autonomous discipline focusing 

on the estructural' aspects of computation-experiences. The 

Idealization has thrown away any criteria for cowqxarlng disjoint time 

Intervals. 
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Returning to our processes A and B, introduce a third, C, as 

f ol lows. To execute C we simulate B with our right hand and, in 

parallel, A with our left hand, except that the left hand does not stop 

at 10' but continues as long as the right hand does. 

Now, If the left band of C reaches 10'*0 then surely A halts (why 

should it matter what thý right band of C Is doing at the same time? ). 

Then, a. 9 I said before, B must halt; so the right hand of C halts, by 

which time the left hand of C has successfully counted up to 

1+2*4*... +2 
10100 1. Concentrating simply on C's left hand, then, if 

10100 Is a number so is 1+2+4+... +2 
10100 1. Clearly this argument can 

be generalised to justify any primitive recursion: so all primitive 

recursive number-theoretic functions are total. 

What we have here Is a method for proving general results about 

computations by comparing two computations step by step. Indeed, this 

Is about all we can do with computations. They are specified In a local 

way: how to start, how to continue from an arbitrary step, how to stop, 

plus the abstract notion of Iteration. Iteration is not reducible to 

any more primitive notion: we have no global view of computations, 

except by executing them Individually. All we can do is obtain 

conditional results relating two computations by exploiting the fact 

that the bare concept of Iteration In each In the same. 

This enables us to prove general results: if computation A(x) 

succeeds then so does B(x), rqWdless of x (to without Inquiring into 

the value of x). This Induction an the course of a computation should 

be Included In the protologic of SO. 2, since it to a single judgement 

which looks at the structure of A and B but not x: x to simply a 

schematic variable. Moreover, since this uses fully all our knowledge 
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about computations, I would Insist that this protologic exhausts all our 

raw materials for arguments about computations. 

The above argument for induction and recursion will be 

controversial, and many people would reject It and prefer to talk about 

number theory without any such assumption (Yessenin-Volpin [20], Parikh 

[151). But It seems to me that, without induction and recursion, number 

theory fragments into numeral theories, which become uninteresting. For 

there Is then no reason to believe that the numeral syst 

(0,1,2,3... ), and (I, I. II, 

are Isomorphic: number Is supposed to be what numeral systems have in 

common, but now they haven't anything in common. The sequence of marks 

1,11,111.... Is not very edifying In itself; the only reason for 

studying it is the belief that the 'I' marks can stand for arbitrary 

processes. The basic assumption without which arithmetic is 

unintelligible Is that when we talk about doing something repeatedly we 

can discuss the 'repeatedly* part separately from the 'something': and 

this entails Assumption (6) and my arguments about processes A, B and C. 

Assumptions (a)-(6) are not strictly a pmrt of mathematics but an 

tnput to mathematics. If the contingent assumptions were false or the 

Ideallsed assumptions were outrageously unrealistic (if, egg we were 

drugged and confined In a stmit-jacket so that we were unable to carry 

out any repetitive actions at all) then we would be prevented from doing 

mathematics under Assumptions (a) - (a); mathematics wouldn't be 

falsified. If It seemed worthwhile we could label mathematics under 

W-M 'Brouwerian mathemtIcs, (exactly an one speaks of 'Euclidean 

geametryl. and develop a non-Brouverian mathematics more applicable to 

our experience. 
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Thus mathematical propositions are analytic truths of the form: if 

the geometry of time is such-and-such then so-and-so follows. This is 

pure logic. I mean informal logic: not a particular predicate calculus 

system, but a general theory of (usually unspecified) objects, 

functions, relations, etc., applicable to all kinds of reasoning. There 

is no specifically mathematical primitive notion which has to be added 

to logic. The concept of iteration, for example, is already implicit in 

logic, since It is involved In characterising recursively the logical 

consequences of a set of axioms and inference rules: essentially this is 

because logical reasoning, like computation, has to take place in time. 

Thus my view of mathematics Is logicist as well as formalist and 

Intuitionist. 

SOA Open-andedneson 

I have Identified open-endedness as the main problem In formulating 

a foundation for matbemstics: I will now explain how I propose to handle 

It. 

Notice that under my charact*risation of mathematical objects (SO. 3) 

there can only be countably many of them, since they are all definable. 

Or rather, the mathemetical objects are embedded in a countable 

Infinity, since not all alleged definitions are *valid' (le actually 

define objects). The semantic paradoxes apply here, most Importantly 

Berry's paradox ('the least number not definable in <100 characters') 

since : It doesn't Anvolve Infinite quantification or any objects more 

exotic than numbers. 

For finitary mathematics, 'validity' moms simply 'seeing' that an 

- 28 - 



algorithm always halts and so defines a total function, or that a tree 

Is well-founded, or that a 'finitary' argument is convincing. Taking 

something like well-foundedness as primitive may seem odd: one cannot 

define It In ordinary language without saying 'for all branches ...... so 

It seemm as If I an presupposing the meaningfulness of universal 

function quantif lers. But we are not bound by language usage, which 

simply reflects traditional ways of looking at things. I take 

well-foundedness as primitive, and explicate quantifiers in terms of it 

and other primitive notions. Of course, with any primitive notion we 

cannot define It In terms of anything logically prior; we can only give 

synonyms, suggest informal ways of looking at it, give examples, or 

Indicate the role it is to play In elucidating other concepts. 

The semantic paradoxes are usually considered resolved by 

distinguishing formal languages of different levels: each language is 

such that terms expressed In It are automatically valid, but there Is no 

maximal lanffUiage- But a formal language to just a meaningless system of 

symbols until we give It a meaning, which we do ultimately In an 

Informal lar4page such as mathematical English. When we call a formal 

language, L, acceptable for use in mathematics we mean that every 

Informal definition which begins by describing L and then exhibits the 

defintenebw as a term In L, In valid. Thus acceptability of languages 

Is like validity of definitions except for the extra Infinite 

quantification. The real paradox here in how anyone came to regard 

asserting Infinitely many things valid at once as more secure than 

asserting them valid one at a time. Perhaps the Idea was to choose a 

fixed language and do all mathematics Inside It, so reducing the 

validity problem to a single assertion that the language to acceptable. 
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So as soon as a philosopher justifies the fixed language all of 

mathematics Is justified. But the only reason for believing that the 

language ever can be Justified is the underlying Informal ideas about 

what we are entitled to define, which if they are reliable at all urge 

us not to stop at any fixed formal language. 

The classical picture has a set of (coded) definitions and a 

universe V of objects: the denotation mapping from the former to the 

latter Is called 'vague' or 'Illegitimate' on account of the semantic 

paradoxes. This approach Is not open to me, for I obtain objects from 

their definitions: the denotation mapping Is perfectly clear, where it 

Is defined (it takes a definition D to the object which involves 

. executing' D). Questions can only arise, therefore, over its domain, 

le validity. An accusation of vagueness Is a handy device In 

foundational disputes because, for a fundamental concept which cannot be 

I formally defined In terms of anything more primitive, it is so difficult 

to refute. Nevertheless it seems to me that we do have a clear ability 

to read alleged definitions and decide whether we are convinced that 

they have really 'constructed' or brought to our attention unique 

objects. (I Include In the definition any accompanying weplanation of 

why we should accept It as valid. ) This seems a natural founding 

concept for mathematics, bearing In mind Criterion (a) of SO. I. At any 

rate, If I am deluded in believing that we have this ability we might as 

well give up doing mathematics, let alone justifying It, for nothing we 

ever think we have defined can be relied upon to make sense. 

In finitary mathematics the validity problem arises In the halting 

of algoritbm, le what total functions wdst. The intuitionistic 

moaning given to the quantifiers In 60.2 gives no clue to this question, 
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for the meaning of Vx3y R(x, y) refers to the existence of a function 

producing ay for every x, and vice versa functionality can be expressed 

in V3 form. 

We can construct an open-ended hierarchy of decidable classes of 

total recursive functions as follows. Primitive recursive functions are 

total (by SO. 3); therefore the universal function over primitive 

recursive functions, le F defined by 

F(m, n) a (m'th primitive recursive function)(n), 

Is total (and by coding pairs we can turn It Into a function of one 

variable). So everything primitive recursive in F is total. So the 

universal function V over the functions primitive recursive in F is 

total. Noreover, the operation which obtained V from F always takes 

total fun tions to total functions. So we can iterate It to get F", 

and together they give the 'union' M (n, m) * F"-W(M) (n 

primes) In fact, given any operation taking total functions to total 

functions (eg F V) the result of Iterating It In this way gives a new 

operation (F * r): this given us a mapping from operations to 

operations. And we can continue In this way, defining ever higher-type 

operations, all valid In the sense that they ultimately lead to total 

recursive functions, at each stage generallsing something we did 

earlier. There Is no point trying to replace this kind of argument with 

a formal system for proving functions total because we could always 

transcend such a system by constructing the universal function over the 

provably total functions, which would be obviously total but not 

provably so. We must decide to leave totality arguments unformallsed If 

we are not to obscure the open-endedness. 
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A similar phenomenon occurs in infinitary mathematics. Take for 

example 'w-infinitism': that Is, assume we may evaluate as computations 

quantifiers over P but no higher infinity. Then we can define 

arithmetic subsets of the natural numbers; because these can be 

enumerated we can define a universal function over them, whence a new 

non-arithmetic (but still valid) set of numbers; and so on as bef ore. 

Validity of an alleged definition of a subset of IN will then involve the 

well-foundedness of the tree Implicit In Its definition, which will not 

be expressible in w-infinitism. In general, the validity question 

cannot be removed by any infinity assumptions. However I shall stick to 

finitarY mathematics here for definiteness. 

One can, of course, Oprove' a definition valid by verbal arguments 

in English, as I have just been doing: the argument can then be included 

an part of the definition so as to make It manifestly valid. But the 

problem of validating Informal arguments Is essentially the woe as the 

problem of validating objects. The argument merely 'displays' the way 

In which the object Is arrived at: It needs an Inexpressible act of 

'Intuition* to to see that an argument, which Is merely a string of 

alphabetic cbaracters, makes sense (or rather, one can express the act 

of Intuition, but then the expression Itself has to be validated: so one 

hasn*t really expressed mhU It Is valid). 

Clearly, the levels of recursive functions constructed above can be 

Indexed by constructive ordinals (though the operations cannot): 

validity way be regarded as a question of whether ordinal notations are 

well-founded (te really denote ordinals). Thus validity can be thought 

of In several ways: 

(t) totality of functions; 
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(it) convincingness of 'finitary' arguments; 

(Lit) well-foundedness of ordinal notations (cf the familiar idea of 

measuring the strength of a formal system by a proof-theoretic ordinal); 

- and possibly other ways. 

What Is fundamental here is our ability to formalise our past 

informal arguments. Suppose at a certain time we have a formal system F 

and our repertory I of informal arguments for talking about it. At a 

later time we decide that, because this Is mathematics and not 

mysticism, we should be able to formalise the arguments we were using 

earlier. We cannot formalise all of I, but we don't need to; for we see 

that earlier we only used a decidable subclass Io of I. In fact, we 

only used finitely many arguments from I, but we can now see that the 

reason they convinced us at the time was because they were all of a 

certain form Io: thus In picking out Ic we are generallsing our past 

arguments. We then build a new formal system F+ Io. This 

transcendence step from F to F+ 10 is the key to all that Is 

problematic In the foundations of mathematics; it is illustrated by the 

above arguments constructing levels of total recursive functions. 

Formal system can never replace infor I argument, but only particular 

classes of Informal arguments. 

The fact that we cannot formalise all our arguments meAMS that It Is 

not In gvneral legitimate to use the concept of validity In our 

arguments; for an argument or definition A Involving validity will 

depend for Its meaning on the meaning of validity, which In turn depends 

on the meaning of A; so that A is circularly defined. Notwithstanding 

this, some arguments and definitions using validity are valid; for 

ecuw4ple, If 'validity' only occurs in phrases of the form 'valid for cc' 
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(where aCa well-ordered set) and 'valid for (x' Is defined in terms of 

-valid for P ...... valid for j' where (an example of this is 

validity for a formula, S2.1). An example of where invalid use of 

validity leads to a contradiction is the 'definition': 

Jr(n, u) S (n*th valid (te total) function)(m), 

where possible function definitions are enumerated lexicographically; if 

Ir Is validly defined then (Nn. $r(n, n)+l) is also valid, whence a 

contradiction by the usual diagonal argument. 

In view of the unaxiomatisability of mathematics It may seem 

pointless to give any further global account, since all such an account 

would do would be to split off a formal part F from our informal 

arguments I, leaving the remaining part I\F essentially just as complex 

as I. Howwvrer, recalling Criterion (1) of SO. 1, it is worth explaining 

systematically how mathematics appears to refer to actual Infinities In 

quantifiers, le to formalise predicate calculus and show how It 

justifies arItbmetIc and analysis. The fox I part F will consist of 

the protological sequent calculus (SI. 5) plus the definition of the 

proof predicate (SS2.0 and 3.4). The leftover part I\F will from now on 

be wbat Is meant by 'validity": It will consist of seeing Informally 

that a tree is well-founded, or that a function maps well-founded trees 

to well-founded trees, or some such concept. Particular formal systems 

for aritbmettc and analysis will be justified by the formal part and 

finitely many validity Judgements (cf the usual axiomatic approach of 

splitting mathematics Into a formal part (derivations in an axiom 

system) plus finitely many Judgements that the axioms and rules are 

sound: I cannot proceed like this because I do not regard quantified 

formulas as genuine propositions). 
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I may have given the impression that human minds have the Intuitive 

ability to 'understand' arguments and definitions in a way that 

transcends recursive or 'mechanistic' description: this does not follow 

at all. Whether we are all subject to Church's Thesis depends on the 

fundamental laws of physics and the architecture of the brain; but 

suppose we are. Then a particular mathematician will recognise a 

decidable class C of definitions as valid. If everything in C is valid 

then the universal function Uc over C is also valid, but UG is not in C 

so he will not recognise Uc as valid. Even though he may understand the 

preceding argumnt, and appreciate that it applies to himself, he cannot 

construct Uc because he cannot know C, because he cannot know his own 

code number (as a Turing machine). This is the meaning of the above 

argument that the function 9 Is Invalid: the definition of Ir assu 9 

that we can simulate our own activity, which no Turing machine can (but 

5 Is Invalid regardless of Church's Thesis). The same result also 

follows from GiSdel's incompleteness theorem, for If we knew our own code 

numbers we could construct our own GUdel sentences. Another 

mathematician with a larger C could recognise the first mathematician's 

Uc as valid but not his own Uc. 

Thus there is no reason to posit a non-recursive class of 

objectively valid definitions. Every mathematician ban his own horizon 

which he himself cannot see, although he can see everything up to It. 

This Is a relativistic picture, In which mathematics looks different 

from different viewpoints. 

BY contrast, ZF set theory Is curiously reminiscent of medieval 

cosmology, with Its static, finely graded hierarchy, which is divided 

Into three 'realm' as follows. There Is the 'mundane' realm (the first 
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w*w levels of the cumulative hierarchy, say), which is the proper area 

of human concern: then comes an 'astronomical' realm (large cardinals) 

populated by objects quite unlike anything at the mundane level, which 

we can speculate about forever without hope of certain knowledge. 

Axioms of Infinity are piled on top of one another in an attempt to 

accommodate the Intuition of open-endedness which is as obviously doomed 

as the attempt to describe an elliptical orbit by ever more epicycles 

within epicycles. (The preoccupation with formal consistency at the 

expense of truth In Intended models and clear informal Ideas Is much 

like the pre-Keplerian astronomical concern with *saving the 

appearances' at the expense of physical plausibility. ) Finally there is 

the 'transcendental' or 'theological' realm (proper classes) of things 

which it Is not even proper for us to discuss. Nathematics seems ready 

for a more dynamic and observer- centred world-view-. and It Is this that 

I an aiming to provide. 
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amter 1: Rrotolowic 

51.0 The naive notigm of Intultionistic losic 

In SO. 2 I Introduced the term 'protologic' for the part of 

quantificational logic I consider directly justifiable, and suggested 

that general predicate calculus formulae could be interpreted as 

incomplete statements based on protologic. In this chapter I shall show 

how to do this, this time starting from what is necessary for 

intultionistic logic and working backwards to arrive at what protologic 

must be (it will turn out that it must be what I said it was in SO. 2). 

For simplicity, I shall discuss it first in the context of finttary 

mathematics; Infinitistic mathematics will be considered in Chapter 3. 

Finitary mathematics Is mathematics without any assumptions of 

'actual Infinity' (le subject to Assumption (-j) of SO. 3). The bas Ic 

objects are natural numbers, and all other mathematical objects may be 

regarded as recursive functions on natural numbers. There Is no 

hierarchy of 'higher type' functionals built on top of the recursive 

functions; there are no special variables for 'constructions'. The 

universe of numbers and recursive functions is complete in Itself. All 

objects are codable an numbers because they are either numbers 

themselves or essentially algorithms (which should be thought of 

syntactically as program). The ' open- endedness * of mathematics Is 

expressed by the fact that the concept of total recursive function 

cannot be fully Incorporated In the formal system; for given any 

recursive enumeration of a class of total recursive functions we can 

diagonalize out of it. Proving totality depends essentially on 

well-foundedness (see S1.4), which is a part of the general notion of 

@validity', which is outside the formal system (as explained In SO. 4). 
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The philosophical considerations of SO. 2 compel us to restrict 

ourselves to Intultionistic quantification when talking about the whole 

universe, which in the case of finitary mathematics means quantifying 

over the natural numbers. So we need an account of intuitionistic 

logic. 

We shall be interested In first-order formulae of arithmetic. 

Intuitionism sees the meaning of such formulae as determined by what 

I constructions' count as proofs of them. This Is defined by induction 

on the structure of the formula; the naive definitions, implicit in the 

verbal explanations of Brouwer and Heyting, are as follows, where 'P I- 

F* means 'construction P proves formula F'. 

(a) P I- A Iff A, for atomic A (te A is a term which can be evaluated 

directly, so needs no extra proof); some people would Insist that 

P=0, or perhaps that P be a computation sequence for A, but this 

makes no difference. 

(P) P i- AAB Iff P is a pair (Q, R), where QFA and R ý- B. 

P i- AVB Iff P Is a pair (1, Q), where (1=0 and Q I- A) or (iml and 

QF B); thus P contains a proof either of A or B, plus an Indication 

of which Is proved. 

(6) P ý- 3x A(x) If fP to a pair (n, Q) and Q ý- A(n); thus a proof of 

an existential formula Is an Instance plus a proof that the Instance 

works. 

(a) P I- Vx A(x) If fP to a function such that, for all n, Pn I- A(n): 

le a proof of a universal formula to a general method for obtaining 

a proof of an arbitrary instance. 

(C) PFA :)B If fP in a function such that, whenever QFA, PQ ý- B; 

thus a proof of a conditional is a general method for transforming a 

proof of A to a proof of B. 
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(It is usually convenient to define -, A as A3 False, so negation does 

not need a separate clause. ) 

Thus the logical constants are not truth-functional but 

proof-functtonat; for example, 'being a proof of A3 B' Is a function of 

*being a proof of A' and 'being a proof of B'. 

51.1 Wnt do fenolse neen? 

I have said that the meaning of a formula Is determined by the class 

of Its proof 9. Is this a definition of its meaning or merely a true 

fact about It? To talk about 'proof' at all seems to presuppose a prior 

notion of *truth' for formulae (otherwise what In the proof proving? ), 

In which case surely the meaning of a formula lies In Its 

truth-condi t tons, and the equivalence of truth to provability needs to 

be desionstrated meta-matImmatically. 

In fact, Intuttionists generally regard a forimula. as somehow 

referring to the act of finding a certain cons truction (which Is then 

labelled a 'proof'), or the demand for such a construction, or the 

assertion that we have already found one. The word Oproof ' my be 

misleading: we could Just as well read 'P I- A' as T reatises, 

Justifies, Wien, satisfies the test, or sotven the problem A'. 

But *proves' Is the best w9rd; for, wbatever we call It, It Is intended 

to reptace the classical notion of proving a formula, and to use a 

different irord might suggest that a separate notion of proof survives 

from which I- must be distinguished. 
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Tbus in *P F A' the part 'F A' should be regarded as a single 

symbol: It Is a test for constructions which is applied to P. A has no 

meaning beyond the meaning of 'I- A'. 

This Is all very well, but what literally does a formula say? 

Intuitionists often talk as if the formula A is logically equivalent to 

'I have found a construction P such that P ý- A'. If this is so then 

formulae are contingent psychological propositions about the contents of 

particular mathemsticians' minds which are Initially false and become 

true when P Is f ound - This conflicts with all we have ever assumed 

about the nature of mathematical statements. 

Take for example the formula 3n A(n) where A Is decidable. Suppose 

we discover by computation that A(5) holds. Then we usually conclude 

that 3n A(n) to 'true'. What exactly do we mean? We have two 

unpalatable alternatives: 

(1) We can say that we have dtacovered that 3n A(n) is true, and that It 

always was true, always will be true, and would still be true even If no 

one bad thought of trying n=5, even If no mathematicians bad ever 

evolved, even If the universe had never existed. 

If Ba A(n) bad a truth-value even before we discovered It, that 

suggests that other formulae might have truth-values even If we do not 

know them and cannot determine them. 7his evokes a picture of a 

Platonistic 'actually Infinite' universe about which number-theorettc 

formulae are objectively either true or false. But I argue In Cbapter 0 

that this picture In misleading: we cannot just insert an Infinite 

quantifier In front of a proposition and wcpect the result to be a 

smanivgful proposition. We can only give quantified formulae an 

'Indirect' meanlr4g. 
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(11) The second option is to say that 3n A(n) was false (or undefined) 

and becme true when we verified A(S). Nany Intuitionists would accept 

this view. It Is elaborated In the 'theory of the creative subject'. 

But we still need *met&-quantifiers' to say what the creative subject 

can or wi II ever prove. Moreover, mathematics from this viewpoint 

threatens to lose Its normative character and degenerate into 

descriptive psychology. It is unclear whether two mathematicians can 

ever contradict each other since they are each only reporting on their 

own mental experiences. At any rate, mathematics has been thoroughly 

mixed up with empirical considerations, contrary to Criterion (13) 

(SO. 1). 

- The way out of the dilamma Is to deny that formulas mean 

propositions at all. I prefer to think of a formula as an exetamtion 

rather than an assertion; for example, Sh A(n) means 'An n for which 

A(n) holdsV. It does not assert anything, neither to It meaningless: 

Its meming consists In the fact that It is appropriate to utter it In 

some circumstances (having such an n) and not In others. It is 

Incorrect to trazwlate It an 'I have found an n for which A(n) holdse: 

the two sentences are InequIvalent. (This my be clearer If we consider 

questions Instead of exclamations: "Is it raining? ' to not equivalent to 

'I want to know whether It to raining', because the fox r Is a query 

about the weather and the latter to a report on my state of mind. ) 

The point of making such an exclamation In that If ever In future we 

want an n for which A(n) holds we simply recall whether we have ever 

announced '3n A(n)l*; a proof of (3n. A(u)) 3B to a construction which 

assumes such an evez t. 
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This Interpretation of foroulae is analogous to Kleene9s view that 

they are 'Incomplete communications' [9, S11 (see also my discussion in 

SO-2) and Kolmosorov's view that they are statements of problems [10]. 

In all cases the mýning of a formula consists in the truth-values it 

acquires when additional information (the 'circumstances', 'solution' or 

'proof') is added. 3n A(n) has no truth-value of its own even though 

A(S) is known to be true. 

S1.2 Difficulties with the naive deftnitions 

Having clarified what (cm)-(C) are supposed to be deftntng, there are 

still difficulties with the definitions themselves. In the V and 3 

clauses I said that a proof was a function of a certain kind. But how 

do we know, given just the function, that It has the property stated In 

the definition? The ý- relation should be decidable In some sense: If we 

cannot decide whether P I- A for particular P and A then we have not been 

convinced of anything, so P connot be said to have 'proved' or 

'Justified' A, so In fact P has rwt proved A. 

amw people would say that a proof of Vn A(n) or A3B amt 

consist of a function together with some sort of justification' or 

sevidowe' that the function works. The V and 3 clauses becom: 

(a') (E, f) ý- Vn A(n) Iff E to evidence that, for all n, fn i- A(n); 

(C') (E, f) i- A3B Iff E Is evidence that, 

for all Q, Q ý- A implies fQ I- B. 

This notion of 'evidence' needs to be able to justify statements of 

the form 
(x) D(x) mad (x) Dt(x) --e 

D2(x), 
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or, without real gain in generality, 

(X, Y .... z) DI(x, y .... z), D2(X, Y, ---Z), ... Dk(x, y,... z) --+ Dk., (x, y,... z), 

where D, Dl,... Dk., are decidable. The quantification (x, y .... Z) 

Includes the whole expression In its scope. I am writing (x) Instead of 

Vx, --* Instead of 3, and a comma instead of A, to suggest that these 

simple statements (call them seguents) are different from predicate 

calculus formulae. The 'evidence' predicate cannot be simply i-, since F 

Is defined by recursion on the structure of the formula, and the 

recursion step presupposes that we know how to justify sequents. The 

sequents themselves cannot be further reduced by the F definition so we 

will need a new notion of justification for them, which will probably 

use recursion on the structure of E (so that E Is some sort of 

derivation tree). Recursion on a proof and recursion on the formula 

proved are both legitimate means of defining a notion of proof; but we 

must be clear which we are using at any stage to avoid circularity. 

This necessitates a rigid distinction between proofs and formulae (on 

one hand) and evidence and sequents (an the other). 

We DOW to argue that sequents are more fundamental than predicate 

calculus formulae, and develop a 'protologic" for giving them a direct 

meaning, so that we can then use to give formulae an 

Indirect meaning as exclamations, incomplete cowmmications or problems. 

In the next section we shall review several accounts of 

intultiontstic logic roughly along these lines. 

S1.3 9satma of latultionlatic lairle 

Ina first attaqpt to formiallse the Idea of 'construction' and the 
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role It plays in intultionistic proof sum Kleene's 1945 paper [9] on 

'realisability'. Kleene defines a relation 'n r. A' (*n realises A', ie 

'n proves A*) essentially as in clauses (oe)-(C) above, except that he 

insists that the functions mentioned be recursive functions coded as 

natural numbers. Thus his V and :3 clauses are 

n r. V: x A(x) Iff, for all x, (n)(x) is defined and realises A(x); 

n r. A :)B Iff, for all a such that m r. A, (nj(m) is defined and r. B. 

Kleene points out the lack of any notion of 'evidence' for 

justifying the claim that n does realise the formula. Thus his 

definition Is 'not to be regarded as more than a partial analysis of the 

Intultionistic meaning of the statements' (§2). 

Kleene considers that realisability makes explicit 'certain 

necessary and Intultionistically sufficient conditions that a 

proposition hold from the standpoint of the Intultionists' (§13): this 

statement, of course, Is made from a classical standpoint. 

Later versions of reallsability have had even less to do with 

amlYstng intultionistic logic and have been. of purely proof-theoretic 

Interest. 

Also relevant to GUdel's 'Dialectics' Interpretation of 

Intuttlonistic arithmetic In finite type theory [3]. Gtidel defines a 

tran formation from arithmetic formulae to 2:, -formulas. The comection 

with reallsability Is that if A transforms to 31ft A*(2g, y) (for lists of 

variables g, X) we can regard Vy A"(, X, X ) as 11 r. A, and then A transforms 

to the statement that A is reallsable. 

CUdel shown that If A In derivable in Heyting arithmetic there are 

jJ6 such that Am(bo, t) (with free variables *) Is provable In finite type 
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theory. Thus, the 'proof* of A my be regarded as 4? o together with the 

derivation of A'&b, *). Here the protologic is free variable argument 

In finite type theory. 

The drawback with this as an account of intuitionistic proof is that 

the transforsiation. Gddel defines is weaker than the Intended meaning of 

the logical constants. Wdel's 3 clause is 

A3B transform to 3YZVýM [A*(X, Z(. y r)) 3 B*(Y(y),! )], 
_, L 

where A transforms to NVX A*(. y ., 7, ) and B transforms to %[Yw B*(X, X) 

(ignoring any free variables In A and B). The Informal motivation 

presumably behind this Is that to prove A :)B we must transform an 

arbitrary proof X of A to a proof Y of B, and to justify this we must 

show 

(V7, Ao(. y, 7, )) 3 (VjE B*(Y(. y), iK)); 

for which It suffices to derive B*(. Y(y), X), for an arbitrary M, from a 

single instance A*(X 
., 

7, (x., y)) of the antecedent. 

This diverges from the full meaning of Intultionistic implication in 

that the latter allows us to obtain B*(Y(y-), I) from several (even 

Infinitely sany) Instances of Vy, A*(j, j) or from the presence of a 

general method of proving A*(y., Z) for arbitrary Z. 

Bishop [1] gives a somewhat similar argummt; he advocates replacing 

the Intuitionistic :) by GWel's weaker version since the latter Is 

easier to work with. However, I am trying to understand the full 

Intultionistic notion as it is. 

Of course, GUdel does not claim that his Interpretation Is an 

explication of the Intultionistic logical constants: it is a 

proof-theoret1c device. But surely its success as such Is due to its 

rough correspondo2ce with the Intended meaning. It in ests that 
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Intuttionistic logic can be described in this waY, and we do need a 

separate notion of protologic, but the implication clause will have to 

be broadened. 

Krelsol has developed theories intended to do just this, [111, [12]. 

He assumes we have a decidable notion w(P, Vx V(x)), meaning P is a proof 

(in the sense of protologic) of Vx o(x) - Here P is a 'mathematical 

object' and 0 Is a 'notion' (le a decidable property of MathemELtiCal 

objects). For Krelsel, a *mathematical object' my be something 

'abstract* (such as a function, construction or proof) rather than 

@concrete' (a * spatio- temporal configuration'). If I understand him 

correctly, to say that a proof is not a spatio-temporal configuration 

means that although we can represent it syntactically we cannot 

represent syntactically what distinguishes valid proofs from Invalid 

ones; whereas a proof as an abstract object Is manifestly valid. 

Similarly a function can be represented as a concrete algorithm, but 

because the halting problem is unsolvable we cannot express why It to 

total ly-def Ined: to recognise It as total we have to *grasp' the 

corresponding abstract object. 

Thus Krelsel Imagines a stratified universe with concrete objects at 

the lowest level. functions and constructions over them at the next 

level, functions and constructions over then at the following level, and 

so on. 

Krelsel does not define his v predicate but gives alternative 

systems of axioms and rules for It, which constitute his protologic. He 

assumas that for every formal protological proof P of Vx iD(x) there is 

an abstract proof ap such that w(up, Vx *(x)). One version assumes a 
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reflection principle 

T(P, V3C *(X)) --+ 10(t) (t is a term). 

He then suggests various ways of obtaining logic from protologic; in 

the simplest version the 3 clause Is 

(Q, T) FA3B Iff v(Q, Vx x I- A* Tx i- B), 

where * Is a truth-function. 

N. D. Coodman, E4], [5] and [6], develops these Ideas further. In [4] 

he uses a type-free universe of partial constructive functions (possibly 

the partial recursive functions); in Krelsel's term all his objects are 

spatio-temporal conf Igurations. This brings him much closer to my 

viewpoint. 

Coodý'* :) clause reads 

(YI, Y2) ý, x A :)B Iff Y, proves: for all z, If z i-. A then Y2Z i-. B, 

where x Is an assignsient for the free variables of A and B. He argues 

that I- must be decidable, so that truth functions will work classically 

on It. This allows him to define (if ... then ... ) as a recursive 

function, te something simpler then 3, so the definition of :) escapes 

circularity. In fact, (if z ý-x A then Y2Z i-X B) evaluates z F. A first, 

and only If the result In 'True' goes On to evaluate Y2Z I-x B: this is a 

precaution In case Y2Z In undefined for some non-proofs z. 

If I- Is to be decidable we mist make the protological proof 

predicate (for formulas Vz u(z)mTrue) decidable. But Goodman shows that 

thin laWs to a contradiction by a diagonalination argument. So he 

recovers by stratifying the universe of constructions according to their 

subject-watter: *proofs must be about objects already constructed', he 

insists [4, SIO]. The now protological proof predicate has an extra 
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argument v, which Is a *Zirasped domain' (level of the hierarchy): it is 

now decidable whether w Is a proof of VzCv u(z)=True. 

Goodman finds It necessary to introduce a reducibility operator F: 

for each 'rule' z and domain a, Faz Ca and Faz extends z on axa. Thus 

Fez In a 'representative' of z at level a. Then in proving A3B we 

need only consider proofs of A below a certain level since higher level 

proofs are already *represented' lower down. Thus the Impredicativity 

In the definition of 3 Is shifted to the operator F. Goodman says 

[4, Sll] 'It seems to us essential to the Intuitionistic position that 

given a fixed assertion A about a well-defined domain, there is always 

an a priori upper bound to the complexity of possible proofs of A. ' 

It doesn't seem at all essential to me. I believe constructive 

argumients but don't believe In Goodman's reducibility axiom, even after 

It has boom explained to me how the former supposedly depend on the 

latter; thus reducibility does not seem to be part of my notion of 

constructivity, at least. Weinstein [19] agrees with me. 

In any cwm, notice that F and the protological proof predicate 

don't occur at any level of the hierarcby. This to what Is so 

disconcerting about stratified theories generally. We are told that, on 

general grounds, every well-defined object must have a 'level' or 

*type'-. then we are shown n, that don't We are lef t with the 

Impression that *well-defined object' must have been meant In a narrower 

seam than we thought, but what sense Is never explained. And what In 

to stop us from eKtending the universe by levels of things definable In 

termis of the 'type-free' objects? 

In Goodman's theory (which Is equivalent to Heyting arithmetic) the 

only grmq)ed domiains are the 'basic' domain B and all domains obtainable 
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from B by finitely Iterating the operation E: EX includes X, proofs 

about X, and certain other constructions. We can 'grasp * U. E' (B) 
, 

which we might call E(B), In the Informal sense but not in Coodman's 

technical sense. This indicates that the technical sense is Inadequate: 

It does not encompass the open-endedness of our constructive abilities. 

In [5, §6] he restates his position in explicitly Kreiselian terms, 

argues unconvincingly for reducibility, and explains why he won't allow 

E'(B): the obstacle is that 'The rule which leads from the n'th level to 

the (n+l)'st level Is not a rule which we can understand'. Yet In the 

previous paragraph he explained his hierarchy of levels by introducing 

levels 0,1,2, and saying, 'Continuing in this way, we can construct 

the n'th level for arbitrary n'. Continuing In what way? Why explain 

something that cannot be understood? His truncation of the hierarchy at 

level w Is surely a refusal to face squarely the open-endedness Issue. 

Of course, the whole point about open-endedness Is that we can 

transcend any given f ox I system. But It seem to me (10.4) that a 

theory of constructions (I* mthenoLtical objects) should accommodate the 

open-endedness by leaving a corner of the system undecidable (what I 

call 'validity'). 

A more recent theory of constructions is Nartin-LU's 'type theory' 

[14]. This uses the "proposition = type" Idea. ýA proposition In 

Intuitionism is Identified with the class of Its proofs; this class Is 

then called a *type'. The basic formula of the theory Is a: A , which 

mv be reed as "a Is an object of type A" or "a Is a proof of the 

proposition A". 
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'A proof of (VxCA)B(x) is a function which to an arbitrary object of 

type A assigns a proof of B(x). ' In other words, (Vx'EA)B(x) is simply 

the product type (UxCA)B(x). Similarly, *a proof of A :)B Is a function 

which takes an arbitrary proof of A into a proof of B'. Thus A :)B Is 

the function type A -, - B (ie the type of functions from A to B). An 

existential proposition is a sum type, and so on. 

Using the word *type' in this way involves combining two distinct 

ideas: 

(1) the Intuttiontstic notion that a proposition is defined by reference 

to the class of Its proofs, 

(it) the classical doctrine of type theory that every object must have a 

type because it is illegitimate to talk about the whole mathematical 

universe at once. 

I cannot see what these Ideas have in common to justify this usage. 

Interpreting universal statements as product types, implications as 

function types, etc., Is technically elegant but seems to ignore the 

need for protologic altogether. I say 'seems to' because protologic Is 

actually present in Martin-IM's system, though It Is somewhat obscured. 

Nartin-IM constdors that propositions of the form a: A are decidable, 

because every object carries Its type with It so that we merely need to 

compare a's type with A. Thus, for example, there Is no object '2': but 

we have *the natural number 2' and 'the even number 2". There Is of 

course a mapping f taking even numbers to the corresponding natural 

numbers - This f Is not, as one might hope, a proof that all even 

numbers are natural numbers, but merely that if there Is an even number 

then there Is a natural number. Indeed, It Is difficult to see how an 

even number can possibly be a natural number. 
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Maybe I am misunderstaDding this, or maybe this is all as it should 

be. At any rate, this bears directly on what the concept of proof 

somas. For a proof of A :)B it is not enough to define a function f 

which happens to take every object of type A to an object of type B; f 

must be constructed as a function of type A -o B. 

'Constructing a function' usually means defining it In such a way 

that it can manifestly be calculated: it needs no existence proof to 

justify it. Here we must 'construct' f in such a way that it manifestly 

maps A Into B. Martin-Ldf gives a formal system In which this can be 

done: this Is effectively his protologic. With Sundholm [16], we should 

distinguish the 'process of construction' from the *object constructed'. 

The *process' (the proof of f: A -# B) is self-justifying because we can 

exmine each step and accept it as correct; the resulting 'object' (f 

together with Its type A -+ B) is not because It is not obvious from the 

f ormi of f that I ts type ts A -P B. But this Is just another way of 

saying that the function alone Is Insufficient as a proof: we need a 

justification In som protological system simpler than, and prior to, 

predicate logic. 

Nartin-Lbf's system is, like Goodman's, highly stratified. Objects 

belong to types which belong to 'universes' Vo, VI, V2, ... (which 

satisfy ref lection principles). VO 4ý VI 4ý V2 6 .... and a function 

which takes each nuumber I to an object in Vi cannot belong to any Va, so 

presumably doesn't 'exist'. Thus ay remarks about Goodman's stratified 

system aWly equally to this one. 
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S1.4 Informal amotmt of Drotolosic 

My reasons for dissatisfaction with the systems of the previous 

section are 

(i) They don't take proper account of the essential open-endedness of 

the constructive universe and our valid modes of proof. One cannot of 

course formalise this notion, but one can create a space for it within 

the formal system. Goodman and Martin-Ldf have stratified systems which 

stop at an arbitrary level. My approach (SO. 4) is to have an 

un tratified universe of 'alleged constructions', only some of which are 

evalid', validity itself being unformalised. 

(11) They don't explain how the protologic arises from our basic 

experience of computation (or whatever finitary mathematics is supposed 

to be based on) and how it is philosophically prior to predicate logic. 

(111) They don't define the universe of constructions or the protologic, 

but simply state axions and rules about them (except for Kleene, who has 

the universe equal to the natural numbers and no protologic at all). We 

are not here In the position of a classical set theorist speculating 

about an Inaccessible set universe and looking for statements which 

*force themselves upon us as being true'; we are supposed to be talking 

about our ow. constructions, with which we should be more familiar. 

Thus the axiomatic/model- theoretic approach of classical foundational 

mathematics Is traWropriate. Martin-IM actually produces a model of 

his system, the model of 'closed normal terms', without saying whether 

It Is the Intended model. It seems to me he ought to know: presumably 

the closed normal term are names denoting objects which must be in the 

Intended model, but would he ever accept a proof that wasn't a closed 

normal term? 
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It seems clear that we do need a protologic, to handle 'sequents' 

(in the sense of S1.2); it must be foundationally prior to predicate 

logic and not use the usual Intuitionistic definitions ((z)-(r) of S1.0. 

From the arguments of Chapter 0, the basic propositions of 

mathematics (roughly analogous to experimental data in science) are 

assertions that a certain computation will eventually 'succeed', ie halt 

with a certain kind of result (the result 'True', say, without loss of 

generality). Thus the most general kind of statement we can make is of 

the following 'general-hypothetical' form 

(X) A(X), ... B(x) --+ C(x), 

meaning that whenever we have had the experience of successful 

computations of the form A(x),... B(x), for arbitrary x, then the 

statement predicts that C(x) will also succeed. This Is refutable In 

that C(x) my halt with a non-True result, but even If we try to compute 

C(x) for a long time without the computation halting the statement Is 

still meaningful In that It asserts that It Is worthwhile to continue. 

By contrast, a more complex statement such as 

(x) [(y) A(x, y) --aB(x, y)] -4 C(x) 

has no such clear predictive meaning. 

Clearly we miLy replace x with several variables. This given exactly 

the sequent form required for protologic (SI. 2). 

(x) A(x) .... B(x) --+ C(x) should be read as a single statement 

'A-ness .... B-ness entail C-ness" rather than an infinite conjunction of 

particular statements. It really asserts that computations of C are 

0 connectede with computations of A,... B In such a way that success In 

A,... B entails success In C. This is an Incomplete statement In that It 

does not say what the 'connection* is: that Infoz tion will be Implicit 

In the argument we use to derive the sequent. 
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The major tool we have for connecting' computations Is induction on 

the process of computation. Computations A and B are connected if we 

can relate the 'starting position' of A to that of B, the 'halting 

condition' of A to that of B, the 'next step' operation of A (which 

tells us how to continue from an arbitrary non-halting state) to that of 

B, and the final 'result extraction' part of A to that of B. Other 

similar kinds of connection are possible, all deriving from my idealised 

assumptions about computations In SO. 3. 

This is obviously an Induction argument, yet I have not mentioned 

numbers. Number Induction is simply a special case of this In which one 

computation is a counting process. In fact It is not necessary to 

define a special sequence of objects 0,1,2,...; any sequence generated 

from an object ea' and a function 'S' guaranteed to produce new objects 

each tim It Is applied will do. lberefore induction should be embodied 

In protologic In the above number-free form: I will then Introduce 

objects called 00', '1*, '2' .... and prove the numeric principle of 

Induction In term of them. 

Induction allows us to derive sequents from other sequents, so the 

sequent we are trying to obtain will appear as the root of a derivation 

tree of sequents. However, Induction only allows us to obtain sequents 

with variables x .... y from other sequents with the same variables. The 

ultimate source of quantified assertions must be 'schematic' 

(free-variable) arguments. This is where a sequent (x, y. ) A(x, y), ... 

B(x, y. ) ---t C(x, y. ) (where X to a list of variables) Is derived by treating 

the sequent as a schem and x as denoting an unspecified object, and 

deriving (X) A(x, X --+ C(x, X) 'regardless of x*, le without B(x, y) 

reference to the value of x. As explained in 10.2, this is the sole 
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source of our ability to make general statements. 

Since protologic is Intended to deal with the success of 

computations relative to other computations It Is similar to the 

a calculi for program correctness' developed by theoretical computer 

scientists (cf particularly the Logic for Computable Functions [13, 

Chapter 10]). These systems separate 'partial correctness' (the program 

gives the correct result if it halts) from proof of halting. The former 

Is completely axiomatised; the latter depends on associating with the 

state of the computation an element of a well-ordered set which 

decreases as the computation proceeds, and so it depends on the 

undecidable judgement that a set Is well-ordered. This splitting of the 

theory into a decidable and an undecidable part is in the same spirit as 

my decidable 'derivation tree' predicate and undecidable 'validity', 

below. The usual correctness calculi are not designed with foundational 

questions in mind so they cannot be used as they stand; however I do 

borrow some techniques, notably the notion of a 'least fixed point' 

operator to express recursion. Rules for Induction on computations 

(without mentioning numbers) can be given In an extremely elegant form 

In terms of this operator (see 91.5). 

Thus protologic Is based on schematic arguments and induction. 

Open-endedness Is embodied most clearly in the question of which 

functions are total. Consider the class of sequents 

(x) number(x) --ionumber(ft) 

for functions f. Because we can enumerate derivation trees we can 

ammerate f's for which the above sequent Is derivable, te f's provably 
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total as number- theoretic functions. These will include the primitive 

recursive functions (I prove this in S1.6), and probably no others. Now 

define a recursive 'universal' function F by 
Jýhe x*th provably total function applied to y 

F(x, y) S (if x Is a number) 
efined (otherwise). 

Clearly, (x) number(x) ---4 number(F(x, x)+1) is true (informally) but 

not derivable, for (Xx. F(x, x)+l) is not one of the Vs. 

More generally, given any decidable class of functions which we have 

proved total (in some sense) we can diagonalise out of it: and by 

iterating this 'transcendence' process in various ways (as in SOA) we 

generate the open-ended universe of functions which we would informally 

accept as total. Totality questions are important because in protologic 

everything Is proved relative to the successful halting of some other 

process. 

We can eWbody this In an 'ordinal logic' approach. Call a 

derivation In protologic using just schematic arguments and induction a 

*derivation of loml 9: a derivation of level 1 is one that allows as 

an extra axiom any reflection principle of the form 

(2j) D[ --+ X] --+ 

where X Is a term, D Is a derivation tree of level 0 (both possibly 

containing jj as free variables), and D[ --+ X] means D Is a derivation 

tree of the sequent -* X. A derivation tree of level is def ined 

similarly except that D may now be of level 1. And so on, f or all 

finite levels. A derivation tree of level allows reflection 

principles with D of any finite level. - We can continue In this way to 

define levels for all constructive ordinals. 

Generally I shall allow in derivation trees reflection principles 

for cutU D. This means that some derivations will be unsound (if, say, a 
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tree uses a reflection principle with itself as *D'). A derivation tree 

D with reflection priciples 

(3) Di[ -+ Xi] -e, Xi 

(I =I.... k) Is said to devend go the set of trees fDj jall x, all 1). 

Associate with any derivation tree D the tree consisting of D, the trees 

It depends on, the trees they depend on, etc. (this to a tree with trees 

as nodes); call a tree valid iff its associated tree is well-founded 

(roughly, Iff It has a constructive ordinal as a level). Clearly a 

derivation is Informally sound Iff It Is valid in this sense. Because 

well-fixwAedness Is not recursive this is the undecidable component of 

protologic: the ordinal hierarchy of derivation tree levels represents 

the open-ended universe of valid mathematical arguments. 

Using the definitions of 91.0 and S1.2 we can then 

def Ine the proof relation ý- in terms of protologic. The question of 

validity will &rise for proofs as well: roughly, a object will be a 

valid mrwf Iff the protological derivations referred to In it are valid 

as derivation trees. For example, In the implication clause (C'), a 

valid proof of A3B will contain a mapping from valid proofs of A to 

valid proofs of B, together with valid protological 'evidence' that the 

mapping works - This enables us to define 'valid proof of A3 B' In 

term of 'valid proof of A', 'valid proof of B' and *valid protological 

derivation'. Intultionistic proof is separated into a decidable 

component (I-) and an 'Intuitive' component (validity), the latter being 

due to the undecidability of well-foundedness. 
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SI-5 The xProtoloirical, seauent calculus 

In this section I shall give the formalism for protologic as a 

sequent calculus. First we need to specify precisely the universe of 

mathematical objects we are talking about. 

An object Is either a basic object (True, False, nil, 0, l, 2,3,... 

enumerated in that order), a pair of objects, or a partial recursive 

function from objects to objects. Objects can be coded as numbers: 

object number n Is 

(I) (if n 43 0) basic object no. n/3 (counting True as no. 0), 

-(it) (if n i6 1) the pair (object no. -), object no. v1t(2: - IrL (n3 3 

(111) (if n Ra 2) the function: (object no. m) to (object no. 
fn-21 
I. - -3f (m) 

where vL and va are primitive recursive pair projection functions on 

numbers and (P) is the p'th partial recursive function In a fixed 

coding. 

The purpose of describing the coding was to give a more concrete 

view of the object universe. Anyone who considers my objects too 

abstract or unclear Is welcome to translate all arguments about them 

Into arguments about code numbers. That to to say, in all that follows 

replace 'object' by 'number', regard all variables as ranging over 
ff -21 numbers, translate *function f applied to a' as *, --3f(a)', translate 

'the basic object True' as 0, 'the basic object 2' as 15, etc., 

according to the coding. 

Notice that functions are given Intensionally, as algorithms rather 

then sets of ordered pairs; they should be thought of concretely as 

programs or Turing machines. Two programs my give the same output for 
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all Inputs and yet be different programs (te different objects) if they 

work out the output in different ways: a program is a string of 

characters conforming to the syntax of a programming language, and even 

if two programs differ only in the names they give to variables or the 

presence of a redundant statement (eg 'Set x equal to x*) they are none 

the less distinct. In terms of code numbers, (171 May be extensionally 

equivalent to (25), but however uninterested we may be In the 

distinction between them we are not at liberty to 'Identify' 17 with 25, 

or object number 347+2 with object number 3x25+2. 

Define three objects, =, S and fzpt , as follows: 

= Is equality of objects (te of their code numbers): It maps any 

object of the form (&, a) to True and any other object to False. 

S Is a successor function: it is defined on all objects, is 

Injective, maps nothing to 0,0 to 1,1 to 2, etc. 

fxpt Is a function which takes an object argument f,. if f Is not a 

function the result In nil; otherwise the result is a function g such 

that 

for all x: gx - (fg)x; 

le g Is a fixed-point of f (extensionally speaking). The Recursion 

Theorem guarantees the existence of ag for every f: in fact, the usual 

proof of the theorm yields a function for obtaining g from f, and It Is 

this function that I call "fxpt". The g so obtained will actually be 

the least fixed-point of f; le any other fixed-point Is an extension of 

It. 

The basic object nJLI Is used to Indicate an empty list and as the 

result of a *failed' computation. 
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To define protologic I need a language for systematically referring 

to objects. I shall use letters and other character combinations as 

variables and constants (denoting objects), and as metavartables 

(denoting terms or variables). Examples of constants are '0', *nil' and 

*fxpt'. Only variables will actually appear in the terms of the 

language. I shall never actually write down a term or a variable: 

Instead I shall refer to them by names. When I write an expression that 

looks like a term except that it contains constants or metavariables It 

Is a name for the term obtained by substituting for each constant or 

netavariable the object, term or variable It denotes; for example If X= 

0 .... 0 and Y= are terms then (X, Y) = When 

distinct metavartables denoting variables appear in the same expression 

they denote distinct variables. 

Now define a tM as 

(1) an object (or, strictly, some syntactic representation of an 

object, since term ought to be syntactic entities; for definiteness, 

let us use the code nusieral of the object); 

(11) a variable; 

(111) (X(x1,. --xk). T) where Xl, --Xk are variables and T Is a term; 

for kul this is written (Axi. T); 

(tv) (a, b) where a and b are terms; 

(v) (ab) where a and b are terms; 

(vi) (if a then b else c) where a, b and c are terms. 

As Informl metanotation, Introduce n-tuples: (a, b,... d, e) 9 

(a, (b .... (d, e) ... )); (a) a a. Also introduce substitution notation: 

T 
r" 

.... 
Tk) 

means T with Tl,... Tk substituted simultaneously for free 
X1 Xk 
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occurrences of x, , ... xk respectively (af ter f irst renaming any bound 

variable of T which occurs free In Tl,... Tk). I shall use underlined 

metavartables to indicate lists of distinct variables. 

The semantiC3 Of terms is given by an Interpretation mapping 1, a 

partial function mpping a term without free variables to the object it 

Is intended to denote; it Is defined by the Recursion Theorem, as 

fol laws - 
For T= (the code numeral of) an object, IT Is the object. 

For T= (X(XI, -- -Xk) -U) , IT is the function f def Ined as follows. 

(Let Yl, Y2, --- be an infinite list of variables fixed once and for all; 

Y1 Yk let V=U 
Ix 

1 ... Xk) 
Now, f takes an argument object; If It is not a 

k-tuple It gives the result nil; If It is it splits It Into k 

components, substitutes them for y, .... Yk In V, then applies I to the 

term to give Its result. (Mm purpose of going via yi, -- -Yk 19 to 

ensure that I(X(Xl, 
---Xk)-U) WfM l(X(Zl, 

---Zk)-U 
ZI 

.... 
ZJ) 

for any 
1XZ 

1 Xk 

variables zl,... zk (thus Since *X1 ...... Xk' are metavariables denoting 

variables I sball never need to specify which variables). ) 

For Tm (A, B), IT (tA, IB). 

For T= (AB), IT (IA) (M) 
undefined 

For T= (if A then B else C) 
1B 

IT Ic 
undefined 

If U Is a function 
otherwise 

first evaluates IA: then 

If IA = True 
If IA = False. 
otherwise 

This completes the semantics of terms. Notice how this definition 

Is unusual. The usual way of defining an Interpretation on terms would 

be to define IT in terms of IA,... IB where A .... B are the subterms of T. 
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In my clause for X-terms above, IT depends on the wmU IV is calculated. 

As remarked above, extensionally equivalent functions are not 

necessarily the same object, so i(Xx. X) id i(Xx. Y) even if iX = iY for 

all x, unless X and Y are Identical terms: (Xx. T) denotes a program to 

work T out, and this is a different program for each T. So I (N (2i) . T) 

may be regarded as a *quoted' form of T (where x are the free variables 

In T or any variable If T has no free variables), le a representation of 

T as an object from which T is effectively recoverable. Also, in the 

clause for *if* terms, If IA True then IC is never calculated, so that 

IT my be def Ined even If X (or IB in the case where IA = False) isn't 

(ie if the computation doesn't halt). Thus I must be defined in terms 

of Its intension (code number), not just its values on the subterms: the 

Recursion Theorm permits this. It is clear that my terms are not much 

like the term of X-calculus; they are more like expressions in a 

functional progr amm Ing language. Indeed, my term language could almost 

be regarded as a dialect of LISP. Some definitions and metanotation 

follow. 

If I write something like "define X by X(; 11)(x ST1 . 2) ... 
(LCk 

mean that *X' is short for (Xfi51) 
- 

(X(N2) 
... 

()%(Nk). T) 
... if *X' 

doesn't occur In T, or (fxpt (Xf. (X(jjj) ... 
(X(; Sk). T(l)) 

... If *X' x 

does occur In T. 

Write ((ab)c) as (abc) , ((abc)d) as (abcd) , etc.: omit the 

outside brackets round whole terms of the form (ab ... d); write 

(Xw. (Ax .... (Xz. T) ... )) as (Xvx ... z. T): write 7 for the constant 

function defined by 'Le Et (where x In any variable not occurring In 
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the term t; It makes no difference to which x is chosen); 

for any f and g define (fog)x a f(gx); write =(a, b) as a=b; 

define pair projection functions vo(x, y) S x, iri(x, y) -W y; 

define 'not' by not x rz (x--False). 

Introduce four new objects, varts, *-vbls, const and subst. The 

first three analyse the intension of functions; each is a function that 

gives the result nil If Its argument is not the Interpretation of a term 

of the form (X(1g). T). From the definition of I It is clear that objects 

which are i(X(IS). T) for some T have a characteristic form: they are 

functions which substitute their input in a term and apply I to it. 

Thus It Is decidable whether a given object is i(X(Lc). T) for any T, and 

if so we can effectively extract T (up to renaming of the variables M). 

The function mrts maps I(X(IS). T) to an object which indicates the 

structure of T and Its subterms: eg if T= (A, B) then (parts (X(X). T)) IME 

(3, (A(2j). A), (A(1j). B)), where the 3 indicates that T Is a pair and 

('A(2g). A), (A(z). B) are representations of the subterms, A, B as objects. 

as another example, If T Is a variable, say the I'th In the list X, the 

value Is (1, I), where the I Indicates that T Is a variable. The full 

definition to given below In the conversion rules. 

*vbls maps 10011 
... Xk). T) to k. 

const maps I(X(IS). T) to True If X don't occur free In T, to False 

otherwise; le It determines whether its argument is a constant function. 

The final function subst substitute& a term t (given In 'quoted' 

form as In a X-term (Ax. T) to give T M.; it gives nil for arguments 

not of the right form. 
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A weguent Is an expression of the form 

(2j) T1, T2 
.... 

Tk 
---p To 

where X is a (possibly empty) list of variables and TO, T,,... Tk are 

term with free variables from 1; k may be 0, so that (N) --4 To is a 

possible sequent. The Informal meaning is that, regardless of the 

objects substituted for X. if T, .... Tk denote True so does To. 

Next I want to define 'conversion' between terms; le a relation such 

that *T conv T" means It follows from the forms of T and T' that IT = 

IT' (if either is defined, when arbitrary objects are substituted for 

the free variables). I cannot allow the general X-conversion rule 

(A) - *(Xx. T)A coav Tx for two reasons: 

(I) Suppose A Is undefined (le I doesn't halt on A). Then (Xx. T)A 

will necessarily be undefined because to work out 1((Xx. T)A) one has to 

work out U. But T(A, ) may be defined If x doesn't occur in T, or if T= 

(if B then C else x) (since, If IB = True, IA will never be worked out 

In the calculation of I(T(^M). So for X-conversion to work I Insist 

that A be 'manifestly well-defined' (to It Is clear from its form that 

It to defined) or that x 'occur essentially' In T (meaning that, Ina 

calculation of I(T(A. )), IA must be calculated): both these concepts are 

defined below. 

(11) The second obstacle to X-conversion to that x may occur 

*Intensionally' In T, to within a X-term. Take T rz (Xy. (x, y)) for 

M=MqPle - I(T(-xl)) Is 1(? ky. (A, y)), a function that, when applied to an 

arsummt, will work out IA in the course of Its computation. Whereas 

1((Xx. T)A) Is I(Ay. (a, y)), where by 'a' I mean the object IA, assuming A 

is defined: I(Ay. (&, y)) doesn't calcutate 'IA' when applied to an 
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argument but simply uses the result. Thus when A is undefined so will 
(A) be (Xx. T)A, but Tx is. always defined. Thus for X-conversion I 

stipulate that x doesn't occur within the scope of a *X* in T, or that A 

Is a variable or object (for which case there is no problem). 

A term t is menifestly well-defined (M. W. D. ) iff t is an object, 

variable or term of the form (X(: ý). U) ; or t is (a, b) with a and b 

M. W. D.; or t is (if a then b else c) with a, b and c M. W. D.; or t is ab 

where b is M. W. D. and a Is =, S, fxpt, parts, *vbls, const, subst or 

(X(: F). U) where U is M. W. D.. 

A variable x occurs essentially in a term T Iff T Is x; or T is 

(A, B) or AB where x occurs essentially in A or B; or T is (if X then Y 

else Z) where x occurs essentially In X or both Y and Z. 

Define courersUM of terms as follows. 

X conv X; X conv Y Implies Y conv X; 

T comv V, if T and T' have no free variables and IT = IV: (Rule 

(N(xl .... xk) -T) cAmv (X(zi .... zk). T ZI 
.... 

zk] 
Ix 

1 Xk 
(AXIY, 

2 ... xj,. T)tlt2... tk conv (). (xi .... xk). T)(t, .... 
tk); 

(X(Y-19--Xk). T)(X,,.. Xk) conv T X, 
'... 

Xk 
provided, for 1=1... k, 

1XI 
Xk) 

x, occurs essentially In T or X1 is N. W. D.: and x, must not occur 

free within a X-term in T; 

(Ax. T)y conv T(YX), where y to a variable or object; 

(X(2g). T)t conv (X(x). T')t, If T conv V: 
(A, B) conv (A' B') A conv A' 
(AB) comw (A IB; ) where B conv B'; 
(if A then B else C) comv (if A' then B' else C') 

IIC 

conv C' 
fXPt 40 X CAMV 0(fXpt 40) X; 

- 65 - 



SX=O conv False X; 

SX--SY conv X--Y; 

X=Y conv Y--X. 

X--X conv True X-. 

True=False conv False: 

(if True then X else Y) conv X; 

(if False then X else Y) conv Y; 

R(if Z then X else Y) conv (if Z then RX else RY); 

(if X--Y then A else A) conv X(X, Y); 

parts(X(X). a) conv (0, a), if a Is an object, or variable not in x; 

parts(X(xi .... Xk)-XJ) Cow (1, I) (I ýIý k); 

p&rts(X(x). (X(. y)-U)) conv (2, (X(K, y). U)); 

parts(X(, x)-(A, B)) conv 

parts(X(m). AB) conv 

parts(X(X_). If A then B else C) conv (5, (X(M). A), (X(x). B), (X(Lc). C)); 

*vbls(X(xi .... xk). T) conv k: 

const(X(N). T) conv 
True, if x don't occur free in T 
False, if ; me of x occur free in T 

subst (Xx. T) conv 

This completes the definition of conversion. The sequent calculus 

follows. Let r and A be arbitrary, possibly empty, lists of terms. 

Abdmn 

---p True 

False --a- T 

(A) T --* T=True 

fis) AB (where A conv B) 

v) (x not occurring free within a Xý-term of A) (29) U-V, A(ux) ---* A(X 
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Rules 

Exchange: W r, A, B, AC (X) rC 
Qc) F, B, A, AC q) rc 

(where 7, is a permutation of the variables x) 

Contraction: (x) r, A, A --, % c 
(IC) r, A --* C 

Weakening: (x) rc 
(1c) r, AC 

eu (x) r, A --b B (2g) A --> 
(r. ) r, A --* B 

Redundant variable: (x, y) rc and vice versa 
tro IF C 

(where y doesn't occur free in r or C) 

Instantiation: (xly) Aty,... Aky --+ By (k > 1). 
(IC) Alt,... Akt --+ Bt 

If: (Y, ) r. T, A -b C (x) r. not T, B -+ C 
(ic) r, if T ige-n A el so B -6 C 

Fxpt: (a) jx, zj 4ty (M) -0 YCX) 
(Y--F) fxpt 4p CO --f YOTO 

(b) (Fi.... Fk, X, Z) X(CFj,...! bSFkj(x) *(X(F,,.. 
-Fk))(X) (r-. V X( fxpt 91, --- fxpt 9k ) QF) fxpt # (Y. ) 

(where 40,401 .... 
4k,, # are of the form (XF. (X(; S). if C(X) then R(M) 

else F(H(g)))) , where C, R, H and Y are terms that may contain Z. 
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X Is a term of the form 

POls 
... Yk)- (X(Xý)- F(YlCl, ---YkCk))) 

where F, Cis 
... 

Ck may contain N, Z. ) 

This completes the list of axioms and rules of the sequent calculus. 

The fxpt rules embody induction on the length of the computation In the 

antecedent of the conclusion. A function fxpt (0 , for 4t of the form 

specified In the fxpt rules, works by applying H to its argument x 

repeatedly until It satisfies C, then applying R to give the final 

result. For example, in Fxpt Rule (a) the premise splits (by the If 

Rule) Into two cases, (1j, j, ) C(2j), R(x) -+ Y(2S) and (N, z) not C(N), 

Y(H(z)) --# Y(2j), which Imply that Y(N) holds for the iterate 2j = H5(y) 

of the original argument X at which C(2j) first holds and that the 

property Y Is Inherited up the sequence of iterates from z to x. For 

more about the properties of fxpt and the fxpt rules, see [13], Chapter 

4, particularly Corollary 4.3 (Park's Theorem). 

The axiom and rules are sound in terms of the Informal protologic 

discussed In SIA: to if (2j) A .... B --# C Is derivable and, f or 

particular objects substituted for X, A .... B denote True, then so does 

C. Completeness Is Impossible to establish because It Involves 

comparing the precis* sequent calculus (with reflection principles 

added) with the Informal notion of protologic. From extensive 

experience with the sequent calculus I am convinced that it Is strong 

enough for protologic. Hoinver, I do not Insist on this. In future It 

my prove necessary, say, to strengthen the fxpt rules to allow more 
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elaborate kinds of Induction, or the conversion rules; I do not think 

this will happen, but if it does then all the arguments of the following 

sections will still work. 

SI. 6 Some 6erivatiqla 

First define a truth function & by 

&AB a (if A--True then B else A), 

and write &AB as A&B. It lis trivial to verify 

r, A .... C .. *D and vice versa; r --+ A (x) A --+ C; 
r, A& ... SC --- PD(: 5) F .... A --* A& ... &C 

where the brackets in A& ... &C may occur anywhere. 

Next define a term I describing a non-halting computation, eg 

Ia fxpt 0 0. where fXx a )bc. 

Then (2j) F. L. --P, A is derivable, for any terms F wid A. 

Now I aball derive the protological Induction rule used in S2.6 for 

Rule (6) (Induction) of Heyting Arithmetic. Define 'num x' to mean x 

Is a number; te 

rAm x ME fxpt fýW(X, 0), 

where #ý#X(x, l) a (if x=I then True else X(x, St)). 

Then the Induction rule to be derived Is 

AO (x) Ax ---o A(Sx) 
(X) Dun x --* Ax 

Now, the conclusion can be derived by Cut from 

X) mm x --* B'x (1) 
X) B'x --* Ibc (it) 

1((x) 

Bx --* Ax 

where Bx m fxpt #(x, O), B'x a fxpt #'(x, 0,0), 
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#X(x, i) if x=t then Ai else X(x, St), 

#'X(x, t, j) if x--i then Aj then X(x, Si, Sj). 

(1) may be rewritten 

(X) fxpt 4ý&'O) --+ fxpt #1(X'0'0)' 

which Is derived by Instantiation from 

(X, t) fxpt 4'"(X, t) --f fxpt #'(X, t, O), 

which Is derived by Fxpt Rule (a) from 

fxpt #'(X, 1,0))(X, I) -+ fxpt #'(X, i, O), 

which splits, by the If Rule, into two: 
(x, I) xml, True --# AO, 
(x, t) x3di. fxpt #'(X, SI, O) --# fxpt #'(X, t, O), 

where x0i is short for not(x=I). The first sequent follows from the 

premise --* AO; for the other one the RHS converts to fxpt #'(x, Si, SO) 

(under the hypothesis Ygi), and then the sequent Is derived by 

Instantlation and Weakening from 

(x, k, j) fxpt #'(x, k, j) -# fxpt #'(x, k, Sj), 

which to derived by Fxpt Rule (a) from 

(x, k, j) #'(A(x, k, j). fxpt #'(x, k, Sj))(x, k, j) --# fxpt #'(x, k, Sj). 

This splits into two cases by the If Rule, 
( (x, k, j) x=k. Aj --* A(Sj), 

(x, k, j) xadc, fxpt #'(x, Sk, S(Sj)) --* fxpt #'(x, Sk, S(Sj)); 

the second to trivial and the first follows from the other premise 

(x) Ax --+ A(SX). 

This completes (1); (11) my be rewritten 

(X) fxpt #'(X, 0.0) --o fxpt #(X, O), 

which Is derived by Instantlation frcm 

(X, I) fxpt *'(X, i, i) --4 fxpt #(X, I), 

which Is derived by Fxpt Rule (b) from 

(x, t, F) *'F(x. I, I) --o #(X(x, I). F(x, 1,1)) (x, 1), 
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which splits by the If Rule Into 

(x, i, F) x--i, At -+ At, ý(X, 
i, F) met, F(X, Si, Si) --* F(X, St, Sl), 

both of which are trivial. 

This coWletes (it); (ill) my be rewritten 

(x) fxpt #(x, O) ---# Ax, 

which Is derived by Instantiation from 

(x, i) fxpt #(x, t) --# Ax, 

which Is derived by Fxpt Rule (a) from 

(x, I) #(X(x, t). Ax)(x, t) --+ Ax, 

which splits Into two cases: 
(x, t) x--I, At --* Ax, f(x, 

t) x0t, Ax -# Ax, 

both of which are trivial. 

This completes the derivation of the Induction Rule. 

The f inal derivation needed is (g) num ]S --+ nu (f2i), for primitive 

recursive f. (This should be regarded as a formalisation of the 

argument In SO. 3. ) Here g to a list (XO, ---Xk), and num 2S Is short for 

nun xo &... & num xk. By 'primitive recursive' I mean f is the zero 

function, the identity, S, obtained by substitution from primitive 

recursive functions, or defined from primitive recursive a and g by 

fxpt O(x, Z. O. aZ), 

where #X(X, Z,, I, V) a (if Xmi then v else X(x, z, Si, g(i, -z, v))). 

f so defined will satisfy 
f(O'Z) = az ff(sx; 

3) - gix'z-'f(x'z)) 

We can show that f does satisfy these equations, le we can derive 

(a) P(f(O. a)) -# P(aa), (a) Kam) ---m. P(f (0, x)), 

(X. 10 P(f (Sx, a)) --f P(9(X, Z. f (X, 70)), 

(x, a) P(g(x, a, f(x, &))) --+ W(SX-70), 
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for arbitrary P. in the first two cases use 'f(O, 
-z) conv a-z'; the other 

two follow by derivations similar to, but simpler than, the other 

derivations in this section. ) 

The derivation Is by Induction on the construction of f. For the 

zero and Identity functions It Is trivial. For f---S, we want 

(X) fxpt 4ý'(X. O) --+ fxpt O"(SX, O), 

which is obtained by Instantiation from 

(X, t) fxpt 4ý'(X'I) --* fxpt O-N(SX, i), 

which derives, by Fxpt Rule (a), from 

(X, I) 4'N(X(X. I)-fXPt #N(SX, I))(X, I) --# fXPt #N(SXI'), 

which splits Into two cases: 
(X'I) Sx=I, 4ý, (A(x. I)-fxpt OýN(Sx, I))(x, t) -+True 

((x. 

') SX01, #, N(N(X, I). fxpt 4'N(Sx. i))(x'j) --+ fxpt #N(Sx'si) 

of which the first Is trivial and the second further subdivides Into 
(X. t) SxOt, xnt, True ---* fxpt ON(Sx's'), ((x, 

') SxA'- x3di. fxpt 4ý4(sx'st) --+ fxpt 4ý4(sx'si)- 

In the first case, the condition x=1 can be converted to Sx--SI, so that 

the RHS becomes True, so the sequent is derivable. The second case is 

trivial. This completes the derivation for the case f--S. 

Now suppose f Is obtained by substitution from primitive recursive 

functions: 

where hi, -- -hk need not be functions of al I the variables 2g. Then 
.b 

(M) =m X --* mm (EIS) is derivable by Cut from 
(x) nun x --* mus (bije), 
...................... Wýx --+ ý (hkx) 

1((Ic) 

mm (hile) 
... mm-(hklc) --# mm (g(h&LK, 

. hklc)). 

The last sequent derives by Instantiation from 

US. 
-- -YO wim Y1. -- -utm yk --a. nun Wyl. 

-- -yk)) - 

So (15) ntmm 11 (f1j) Is derivable from the corresponding sequents 

for g and h, 
.... hk, as required. 
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Finally, su; Vose f in defined by primitive recursion from a and g. 

We want to derive 

(Z) nuim z --* MM (n) (I. z. v) num t, nun 4, num v ---+ num (g(i, z, v)),. 
(x, z) nun x. num z --4 num (f(x, z)) 

First some auxiliary definitions: 

#'X(X, Z, I, V) a (if XMI then mm V else X(X'X'S1'g(1'z'V)))' 

v(x, Z, I, v) M (if mum 11 & mum I& nun v then (x, I) else 1). 

Now, (x, jj) mm x. mm 7, ---o muin (f(x, z, )) to derivable by Cut from: 

X'Z) --f mm 0 
(X: I) DUE z --* mumt(ms) 
(X Z) mum ; ---* UP % (X, O) 
(X: I) num E, rium 0, mum (am), fxpt % (x, O) --# fxpt #m(ir(x, Z, O, aj)) 
(X Z) fxpt Ow (ir(x. z. O. az)j --o fxpt 0' (x, z, O, az) (IV) 
(X, i) fxpt V (x. l. 5, az)-ý-4 rAM (fXpt # (1ý, Z, O,; i)) M 

(X. i) nun (fxpt 0 (X'j'-b'a! )) -. 4 num (f N, J) 

Everything above to either esseatially a promise or trivial, except for 

(IV) and M. (tv) my be obtained by Instantiation from 

(X'z' I 'v) 
W39pt OW)Ov)(XOZD I 

SO --# fXpt V (X$Zt I 
OV); 

which follows by Fxpt Rule (b) fros 

(F. X, Z. I. v) ((%F)o1r)(x. Z. t, v) 
114W WWr)*v)(X#A# I v) comorts to (if mum Z& mm I& mum v then 

%F(x. 1) *Is* %Fj. So the aequmt split* into two Cases 
(F nm z& muis I& num V, f"F(X. 1) (ýOv) (xil, 1, V) 

X 
ý-: 

I) no t Tun mum i& mum v), OjeFl --# 0' Fow) x, z, 1, v) 
V X: 

z 
': 

v 

of which the mmond to trivial because of the 1. The first further 

subdivides Into two cases 
(F: x: '*. 1 .0 mal, ý2& mum I& mmis v, True --* numi v ((F 

X Z. I. V) X01. VAM i& mum I& mus v, F(x, sl)--o(Foir)(X, Z, sl, g(lz, v)) 

The first sequent to trivial. The second to derived by Cut from 
F. 39 

X: 
3' I'T) an Z& n"a I 
f9 i'V mium 1 --0 mm [(IF 

K, z, t, v 
i 

mm a.. mm (81). mm F(X, St) --# 
F(ir(x, z, Si, g(1, z, v))). 
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The f trat sequent In eammtially a prmise. The second in derivad above 

(apart from the reduvA&nt variables). The third Is trivial, using the 

definition of W. 

It only remains to derive (Y), which Is obtained by Instantlation 

f raw 
(x. Z. I. v) fxpt V (x, Z, I, v) --* (num(fxpt 

This follows by Fxpt Rule (a) from 

(X. 7. ", V) #O(mmmo(fxpt *))(x. z, '. v) --* (M-MO(fxpt 

which splits Into two cases 
(X, Z, I, V) XMI, =m v --o (MMO(fxpt #))(K, Z, l, V) ((x, 

i. i. v) mot, (MMO(fxpt #))(x, z, Si, g(t, i, v))--O(numo(fxpt #))(X, Z, 1, V) 

both of which are easy: In the first sequent the RHS converts to mm v, 

and In the second sequent the RHS converts to 

num(fxpt 0 

This completes the derivation. 

91.7 Tbw 'Dwrivatt-m Trme aredicate. 

Because I want the sequent calculus to be able to refer to Itself I 

shall am def Ins, a predicate Ur(D, A) as a term In the sequent calculus 

ýIng that D to a derivation tree for the sequent A. 

First ve naW to code sequents and derivation trees as objects. 

Code the Seqtwnt (xs, ... x. ) Ts .... Tit --4 To as the object (n, A, .... A1,46o) 

aliere, for Ia0.... k. A& Is the object denoted by (AxLx2... xm. T, ) If n 

> 0.7-1 otherwise. For camventence identify a sequent with Its code 

object. A derivation tree will be represented an 

(A. (Te. T, j)) or (A. (T, nil)) or (A, ni 1) 
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where A Is the root node (the conclusion sequent), and the subtrees 

descending from A are To and T1, or just T, or nom at all, 

respectively. Define a function Odmac, using vo and wl, naming a tree 

to the number of subtrees descending from Its root. 

A meýmnt ndý Is a term which to like the representation of a 

sequent except that it way contain free variables. A derivatign tree 

jldh= is a derivation made up of sequent schemata Instead of sequents, 

but still conforming to the sequent calculus of S1.5. 

To embody the open-endedness considerations of SIA I will define DT 

to allow as an axiom any reflecti orincliple: 

(g) DT(D. ( --o T)) --o T 

for any term D and T. 

DT Is defined by means of defining equations, as explained In SI. S. 

1BC Define predicates Infj(B, A), lnf2(B, C, A), axiom A, meaning AP A 

are protological Inference stope, and A Is an axiom, respectively 

(allowing reflection principles as axiom). IUf 1, IUf 2 and axiom are 

defined In torus of *wbls, parts, const, mid subst; this Implies that, 

for sequent (wlmmesta) A, B, C Involving free variables, expressed 

explicitly as terms in the above coding, Infl(B, A), lnf2(B, C, A) and 
9 BC 

axiom(A) all convert to True If It -r are correct Inference steps, or A 

Is an axiom. regardless of the free variables; this works since the 

essential properties of *vb1s, etc., are given as conversion rules, and 

we can follow the computation of Infj(B, A), etc.. converting the term 

to True. Now define: 
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deriv Da if Wose D=0 then axiom (voD) *Ise 

If Wese DaI then tuf , (1ro (wo (ir 1 D) 1roD) & der tv (vo (v 1 D) 

else 1nf2(vo(vo(irjD)), vo(vi(v, D)), voD) & 

deriv (vo(v, D)) & deriv (vi(ir, D)); 

DTMA) m (iroDmA) & (deriv D). 

This defines Vr: abbreviate DT(D, A) to DCA] (whenever I use square 
bradests it will always be with this smaning, apart from references). 
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The purpose of this chapter Is to use the protologic of the previous 

chapter to define Intuttiontstic logic (to i-) for finitary mathematics 

explicitly. and use it to justify Heyting krttbmetIc- 

Consider formula* of first-order predicate logic. Formulae must be 

Interpreted somehow as objects It we are goirg to define I- formally as a 

predicat* of objects, and bones an object Itself To accomplish this, 

lot denote distinct objects (say 0,1,2,3,4), and 

consider the following alternative notation for formulae: 

T0 the &toste foruula T (mmenIng T denotes True), 

(A. A. B) EAAB. 

(V. 1.9) 0 AV B. 

(3.1.9) 8A3B. 

(3, (Ax. A)) 8 She At 

(V. (Ax-A)) m Vx A. 

(I oelt nelption as it can be defined from 3. ) Thus, for exmwle. 

(3. (Ax. (3. (V. (), y. Tx-W)). 1; x))) to simply another way of writimg 

ag ((VY fxy) 3 VC) - The point of this to that when formulas are so 

rewritten they become term and so donate objects, as required. (Mott to 

to say, I rqpwd formul" as 41q; u1sed terms. ) It Is convenient to 

allow as a formula smy term of this form, and also ('Ax. F)t wbare F Is a 

formula. I shall use this alternative notation for formulae, or the 

usual notation, or a mixture of both, whichever Is ant convenient In 

the circumstances. 

The reamm for the everlining of term In the 3 and V clauses Is 

tbat I ýt. ag. T3T to be prwweble even It T to undefined: it I mid 
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'T 3T6(: ), T, T)* then It wouldn't even be defined In this case, so It 

couldn*t be provable. Similarly, AVB should be provable oven If B Is 

undef Ined (by proving A), so I sust ensure AVB is always def Ined 

regardless of whether A and B are. 

flow def Ine ý- by 

p I- T0T: 

(p, q) I- (A, x, y) 0p I- x&q I- y: 

(t, p) I- (V, 1.1) a If I then p I- A else p i- B; 

(n, p) i- (3, f) np F- fn. 

(d, h) I- (V. f) a d[ (x) ---* bx I- fx3; 
((g. h), d) 1- (3,1,11) 0 d[(Q) --# SQ[Q FA --# 1hQ F B]]. 

Explanation of notation. p, q, l, n, d, f, g, h, x and y are variables, A, B and 

T are term. Define va a roevo, v3 a vlovo: thM lrl((X2, X3), Xl) M X1 

for Iml. 2,3: 1m using ((xs, xo), xi) as the ordered triple of xl, x2, Ya 

In the context of the "3' clause above, with projection functions 

v&, v2. v3. Abbreviate viT to Ti. 

Inm above clausee define a term In the sequent calculus, by the 

recursion theor4m as mcplalmd In S1.5, and hence an object, 1-. 

11w defining clauses formallso the Informl definitions 

(&*). (C') of S%1.0,1.2. The 'X clause perhaps requires explanation. 

Naively am would writc 

(d, h) I- a d[(Q) Q I- A ---* bQ I- B] M- 

However, this Is not strong amough: with (*) It would be Impossible even 

to justify X3 ((X 3 Y) 3 Y). For it does not allow us to asatime the 

validity of Q In proving that Q ý- A implies hQ ý- B; whereas In the 

clause given abms, the derivation tree SQ can assume the validity of Q 
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in proving that Q I- A Implies bQ I- B. The given *3' clause allows us to 

prove everything provable by (*) and more; further apparent 

strengthening* by a more complicated clause do not yield a stronger 

notion of *3*. 7he '3' clause is intended to encompass att ways in 

which one could use protologic to establish that if Q Is valid and QFA 

thim (a fit tion of Q) I, - B (cf Lemma 7 below). Likewise the *V' cl e 

Is Intended to encompass all ways In which one could use protologic to 

establish that (a function of x) ý- fx for any x (cf Lamma 5 below). 

As remarked In SIA, the fact that DCA] doesn't almys smian that A 

to protologically proved, since D Is allowed to contain reflection 

principles which any not themselves be sound: D Is a valid tree If f the 

n@mjaUjd. Lrw (defined in 11.4) in well-founded. Since proofs Involve 

derivation trees a validity question will also &rise for proofs: a valid 

proof to cow where all the derivation trees ultimstely referred to in it 

are valid trees. Mý an intuttlanistic aroof of a formula A will be a 

val Id P sudh that P I- A. 

Validity of proofs smans, for amople, that If P Is Intended an a 

proof of Vx A than P to valid Iff Po Is a valid derivation tree and Pjx 

Is valid for all x. This cannot serve as part of a def Inition of 

validity as It stands because It Is circular. But In fact the 

circularity Is only apparent: being a valid proof for Vx A to def Ined In 

tenn of being valid for A and beir4g a valid protologtcal derivation. 

So we can define a notion of validity by recursion an the structure of 

the formula being proved, provided the proof does specify the formula. 
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Probably the conceptually clearest way to think of a proof of Vx A 

Is as a fi tion g (is a program), with the formula A and the derivation 

of (x) --o jpc ý- A embedded In the program in comment statemes ts (which do 

not affect the atecution of the program but make its operation more 

transparent). Thinking of protologic as a calculus for program 

correctness, this to like a prograis annotated with a correctness proof 

according to Hoare logic, Is a 'self-documenting' program that says what 

It does and proven that It does I t. 7bIs to also reminiscent of 

Martin-LAVe view (91-3) that a function to mamtfesttU of a certain 

*type', so that the proof of Vx A In just the function; perhaps this is 

also closer to Brouwer's conception. 

However, It Is technically simpler (though conceptually equivalent) 

to separate the derivation d from the function g, so that the proof Is 

(d. g). amd also not to give the formula proved explicitly In the proof 

at all; this meene that I sball bave to may 'P to valid for A' rather 

than *P to valid*. 'Validity for A' to defined as follows. 

(a) An object P to valid LK an atomic formula vacuously: 

(0) P to MW fW AAB if fPa (Q, R) where Q to valid for A and 

R to valid for B; 

(i) F to mjM In AV3 Iff Pn (True, Q) and Q Is valid for A or 

(False, Q) and Q Is valid for B. 

(6) P to MIN IM (3, (Xx. A)) if fP= (n, Q) where Q to valid for A; 

(a) P Is Vall fjm (V, (Ax. A)) Iff Pa (d, g) where d Is a valid 
derivation tree m%d g to valid for 'Obj * A*; 

(C) PIa val t4 IM A3B Iff Pa ((X, h), d) wh*re d In a valid 

dwtvation tree, X to valid for 'A * dt', mid h Is valid for *A * B' -. 

- so - 



wbere Iý writing 'valid for A0 B* to swan Omapping any object valid 

for A to (if defined at all) something valid for B', 'valid for dt' to 

man *valid "as a derivation tree". te the associated tree is 

well-founded'. and 'valid for Obj' to mean 'any object' (ie it is 

vacuously tnw) - The *** symbol, which I Introduce here for this 

purpose. Is not to be confused with Implication *3* or the sequent arrow 

0 --* 0. 

Thus, the above definition of an Intuitionistic proof has to be 

sewsitten: an object P to an Antultionistic oroof of A Iff P to valid 

for A and P I- A. 

Lot *validity for (Ax-F)t* mean the same as 'validity for F'. 

Call a term valid for A Iff, if it Is defined, It denotes a object 

valid for A. 

Note that *validity for A' depends only an the logical structure of 

A. not an what its axosta formulae ar*: In particular, 'validity for A' 

Is the ý as 'validity for A(X ')' for any torn t. 

I take Heytivg Arltbmtic (HA) to be the follow1mg systý. 

(U. V. t are term; A. B, C. F, G are formulas) 

AZIM sclimmats 

A2 (S 3 A) 

(A A B) 3A 

(A A B) 3B 

A3 (B 3 (A A B)) 

A3 (A V B) 
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(VI) B3 (A V B) 

(TI 1) (A V B) 3 ((A Q3 ((B 3Q3 Q) 

(VI 11) (A 3 B) 3 ((A 3 (B 3 Q) 3 (A 3 C)) 

(IX) False 3A 

(Vx A) 3 A(--. ) 

(XI) A(Y. ) 3 2hC A 

(XII) At 3 RK x-t (where At Is an atomic formula) 

(XIII) x-x 

(XIV) U=V 3 (A(. ) 3 A(v)) (where A is an atomic formula with x not 

occurring within a X-term of A) 

(xv) mwo 
(NWI) mum x :1 sum (Sbc) 

(xWII) SxmO :) False 

(XVIII) am 63,3 xMY 

(XIX) num x3 uum (fx). (for primitive recursive f) 

(3M) w, -f (0.1j) :0v- aZ, w= aZ :)wa f(O, Z), 

f(Sx. 1) :)V- g(X. I, f(x, z)), wW g(X, Z, f(x, z)) 3V f(Sx, z), 

(for f defined by primitive recursion from a and g) 

(XXI) A3B. if A conv B (for atomic formulae A, B) 

(XXII) F3C. If F coav C (for any formulas F, C) 

ikiý of weý 

(a) AADBMC3 AM A(Q 3C 
-1 C-3-vi A Ek A 3C 

(where y doesn't occur free In the conclusion of (P) or (-I)) 

FM Va F(; ) 3 ROD 
ft num n3 F(; ) 

(whore x doesn't occur inside a X-term of any atomic part of F) 
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Note that Axiom (xxt) is not a special case of (xxii); because of 

the two notations for formulae there Is an ambiguity with a term A, 

which could represent the atomic formula A (alternatively written 1) or 

a general formula. say (V, (Xx. (A, P, Q))): to resolve the ambiguity I 

shall always say when I Intend a term to represent the atomic formula, 

as in (3mt), (xtv) and (xii). 

Ny version of HA differs from the usual in that I= allowing 

partial functions In term, so that various axioms have to be modified: 

for exmmVl*, I cannot allow (Vx A) 3 A(: ) since It to not sound If t Is 

undefined. Also, (Ax. A)t Is not always equivalent to A(*x) (they do not 

convert, cf S1.5). Eg, t3t is a theorem for undef ined t whereas 

('Ax. x 3 x)t Is not even defined (and therefore cannot be a theorem). 

However, In practice this will not be an obstacle to ordinary number 

theory: from the above axicis system we can derive, by a straightforward 

structural Induction on F, the theorem 

U-V 3 (IF(v,, ) :) F(Ox)). 

and bence 

(Vx F) 3 (Tt 3 F(. )), 

F(*X) 3 (Tt 3 3K F), 

whose U mad V are term, F to a formls. with x not occurring in any 

X-term of any atomic part of F, and Tt to an atomic formula (T to any 

to. ). The condition Tt Implies that t to defined. In nuWber theory 

all the quentifications will be relatIvIsed to =mibars, and the term 

will be built up from primitive r4mmrsIve functions and =; so we will 

almarm be able to peov (nua t) for all term t Intended to be numeric 

and numeric values of variables, and all formlae F will be of the form 

raluired above. This gives us (Vx num x3 F) 3 F(. *) and F(. *) 3 (Ebc num 

xA F). In other words, If we define quantifiers V* and : -I* relativised 
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to *num* and restrict the language to only allow as atomic formulae 

f(g)mg(j) for primitive recursive f and g, the usual Heyting Arithmetic 

axiom and rule* are derivable In my system HA. 

The followirg theorem shown the precise sense In which Heyting 

Aritbmetic Is justified (and home consistent). I am not claiming that 

the argumnt to 'ecomtructive' In any of the recognised sen es; I mrely 

claim that it Is rtght. 

A HA derivation of a formula A (possibly containing free 

variables) can be transformed Into a term P (possibly Involving the free 

variables), valid for A regardless of the objects substituted for the 

free variables, and a valid derivation schems. for --# P F- A. 

Prea 1nw proof will occupy the rest of the cbepter. It vorks by 

IwAzetton on the HA derivation tree. We need to f Ind such aP and 

derivation for smich RA axiom scham, and show that the property is 

inherited under the RA rules of inference. 

I slall p ocas by reducing th* problems (of finding the P's and 

derivations) to successively simpler problem, until obviously soluble 

ans* are obtained. As usml, 'reducing' a problem P to a problem Q 

(written *P Ited. Q*) owns showing how to obtain a solution to P from a 

80lutiOn tO Q- P md Q WO Milvaint (P N Q) Iff P RW. Q ard Q'Red. P. 

I Aall um the following notation for problý: 
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l1w wipreastan 

»F(Itx, -- Y't) (cr', .. Alb) - w-- 

(with variables in place of x,... y, c,... d. azW sequent schemata in place 

of P .... Q, R) denotes the problem 

"Find terms x .... y (which my contain as free variables any variable 

occurring free in P.... Q. R), and a derivation (schemia) In the sequent 

calculus of R from P 

The derivation must not use conversion rule (*). 

The derivation unt be valid, and x,... y must be valid for X,... Y, 

If c,... d ar* valld for C 

(The last mmtence mama, for exmWle, that in the derivation we can use 

(m) DT(co, ( --o T)) --* T 

an an axiom if C is of the form Vx F: for co Is a valid derivation tree 

If c to valid for Vx F. Th* penultimate sentence Is added to make Lmma 

0 (S2.4) work. ) 

Note that I min not trying to set up a forml *Calculus of problý': 

OW 'F*-wqw*m*Icmw are merely abbreviated mathematical English. 

As a notational simplif Ication, If In the &bay* problom-expression 

there are no promises P,... Q then write simply R Instesd of 
P 

Also, If them are no variables x.... y or c .... d omI t the part 

(3e.... yy) or (ca,... do) altogether rather than writirig brackets with 

nothing in between. 

If I omit a superscript X .... Y, C,... or D It mans the variable 

should have the somet superscript as In the previous "F'-expresslon. I 

shall use underlined metavariablon to Indicate list* of variables with 

superscripts where appropriate: In this case I shall speak of 'valid Z', 

meaniqg Z valid for their superscripts. 
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S2.4 Preliminarv rý 

IMEL. Q The problem 

lts for E 

F(Q): 

R theorm 

(w, j) rC 

to equivalent to F(Q): (1) rc 

Proof Suppose we have a solution to (mm), le a derivation of (7, ) r --4 C; 

we want a solution to (*). We can obtain one by simply adding w to the 

list of quantified variables in each sequent schema of the given 

derivation (af ter having renamed any w variable that my occur 

quantified already In the derivation). The result is a valid derivation 

of (M. Z) r --6 C, I* a solut 14M to (*) - 

Conversely, given a solution to (0) we can obtain a solution to 

(imm), since we can derive (7, ) r --o C from (w, z, ) r --* C with the help of 

the Instantiation Rulo. m 

LMMMA The preblý 

IF(P'v)(j): U) Pf, [Xll, PkCXkl --* PZ, [XI 

roduces to 

F(1.1): 
Xis 

... 
Xk 

(00) 
- x 

Here, Xl,... Xk, X are sequent schemata; P1 -Pk are term valid for 

dt, to valid trose, if X, Z are valid: P occurs In (*) only where shown; 

T Is the superscript that Indicates that PZ Is valid for dt If y., Z are 

valid. 

Prmff Suppose we have a solution of (M), to a valid derivation D. We 

need aP and a derivation. Informally, P can be defined by attaching 

the trees P, .... Ph to the prmises Xt,... Xk occurring In D: the result 

to a derivation tree with conclusion X. 
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Formally, it is such easier to divide (*) Into smaller problems. 

For each axiom A used in D we will want a solution to 

(I) F(Plr)(1): (1) --# PZL[A]: 

for each 1-preoilse rule 
!A 

used in D, and term Q, valid for dt If y, Z 

are valid, we will want a solution to 

(11) F(PT)(X): (Z) Q[B] --* PZ[A]; 

and for each 2-preoilse rule 
IAC 

used In D, and terms Q, R, valid for dt 

If y, Z are valid, we will want a solution to 

(111) F(PT)(X): (1) QCB], R[C] --# PZL[A]. 

Using solutions to these problems we can work our way up the tree D from 

axions and promises to conclusion, at each sequent A having a term P and 

a derivation of (Z, ) Pj[Xj], ... Pj[Xj] --4 PZ, [A] where Xj .... Xj are the 

promises used In deriving A. When we get to the conclusion we have a 

solution to (W). 

It resmAns only to solve Problems (t), (tt) and (ttt). (t) to solved 

by putting ft a (A. ull)-. A is a legitimate axiom If X, Z are valid, by 

assumption, so P Is valid for T; and PZ, Is a derivation schem for A, so 

PZ, [A] converts to True; so the sequent In Problem (1) is validly 

derivable. 

Problý (11): define PZ 8 (A, (Q, nil)). Cmaider the following 

derivations: 

1) QCB] --* (deriv Q) & (vOQ a B), 
(z) (deriv Q) & (voQ = B) (deriv (ft)) & (wo(PI) 
(i) (deriv (Fj)) & (vo(PI) A) --* PICI]. 

CAmbIr. *d using Out, they yield the desired sequent. The first end last 

follow immediately from definitions; the second my be derived by 

Instantiation f rom 

(x. 1) (deriv x) & (vox a B) --* doriv(A, (x, nil)) & (vo(A, (x, nIl)) = A). 

But vo(A. (x, nIl)) conv A. so the RHS bec*mes simply deriv(A, (x, nll)), 
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which by the def Ining equation becomes Inf 1 (wax, A) & (deriv x). Hence 

we merely have to derive 

(x, Z) (deriv x) & (wox a B) ---* infl(irox, A) & (deriv x), 

which Is easy since we can replace wax by B In the RHS, and inf I (B, A) 

converts to True. If are valid then Q Is a valid tree, by 

assumption, so PZ Is also, an required. 

Problem (M) Is similar to (it), but with two premises Q[B], R[C] 

Instmd of one. m 

IMM" We can solve F(Plr): (IS) X --# Pg[ 

where X is a term and T Is the superscript that indicates that Px is 

valid for dt for all g. 

Promf Def Ine P by 

ft a the derivation tree X), ((( --* True), nil), ((True -* X), nii))), 

which consists of ---o X Inferred In one stop from -+ True and True -#X. 

To derive (11) X ---* Pjj[ --* X], f Irst replace the antecedent X by X--True; 

then 'evaluate' PIS[ X], to convert It to True by following the 

computation of I(PjS[ X]): the single inference --o True True -4 X 
-+ X 

to validated an an application of Out, --4 True In recognised as an 

axiom, mid True X Is recognised as an axiom with the help of 

Ccinverston Rule and the bypothests XxTrue. And of course X--True 

True Is derIvable. M 

JAINE-3 We cen solve 

F(g): (a. x) A 
W. 

---BW. P[ (a) A .... B --f C] --b C 
NX 

w1wre P Is a term valid for dt for all and valid g. 
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rxva The problem reduces, by Leý 0, to 

F(Qj: A Y. IB 
NX NX 

I P[ (z) A, B C] --+ C 
NX 

which reduces, by Out, to 

F(Ud" 7- ): A 
NX 

U[ A 
NX 

I 

F(Vd" ): B 
NX 

V[ B 
NX 

I 

F(V"" )(9): U[ --& A 
NX 

V[ --+ B P[(3) A .... B C] W[ C 
NX 

x 

F(g): 
x]C 

VI Cm 
NX 

x 

(When I write 'W* In the last problem I mean of course that V Is the 

solution found for the previous problem; likewise U, ---V In the 

penultimte problem mean the solutions found to the previous problem :I 

shall always follow this convention when problems are bracketed together 

like this. ) 

Now, the f trat problems are solved by LAý 2; the last Is a valid 

reflection principle; that only leaves the penultimate problm, which 

redwes, by Lý I to 

F(Q): 
--* AW 

which Is easy. m 

NX 

One difficulty with finding term T such that T I- A :3B is that 

((Tb. Te). Ta) I- A3B does not convert to T. [(Q) --* TbQ[Q F- A --* T. Q I- 

B]]. an am might hope, because of the restrictions an X-conversion 

(SI. 5): the bmwt one can do In 

((Tb. Te). Ta) I- A :0B coav (Xvuv. ((u, v), w) ý- A3 B)T, TbTs 

NX 
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cony (Xwtrv. w[(Q) ---* uQCQ I- A -0 VQ I- BII)T,, TbT, 

cony (Xuv- T. [(Q) --* uQ[Q F- A --* vQ I- B]])TbT,. 

A similar problem arises with universal formulae. The next lemma Is an 

attempt to bmndl* such expressions. 

Imm-1 F(Pr) (19): (Q) r --* (Xu. P« (y. ) A --* C])2J 
i (ýu. c)M (NN) 

Rod. 
FQ) -r Irrue (MU) 

(where P occurs only where shown; 2 do not occur in r or X: y, M occur 

only In C. T is the superscript that indicates that F9 Is valid for dt 

if Q are valid). 

ftea Problm (m) redmes to 
(pT)(1): (!!, g) r, ux --o m (y) i --# ci 

F(l): r ---* TFý (3) to - ('Now) 

(where I Is Xt .... X., M Is ut,... u., M4 to Wwrt for ul=X,,..., U. --X. ). 

For we can convert PM(X) A --* C] to (NU. P! 2[(y) A ---* C])U in (1), then 

Instantiate M to 1. tben convert &4 in the antecedent to Tr-ue Q), then 

apply Out with (tow) (with redundant variables 9 added) to got It 

only rý Ins to reduce (1) to (mm). 

Ikw, defining P by PQ R P'XQ. (1) clearly reduces to 

r. W4 --* P'. Vg[(y) A 

(a Is the superscript that Indicates that P'11! 2 In valid for dt If g are 

valid): and (writing raA,,... A,, ) this reduces, by Cut, to 
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IF(PTj)): (!!, q) A, --o P(I)uQ[ --# All 

..................................... F(PT(lo): Alt --* P(k)UQ[ --#Ak] 
F(T11)): ulax, --# Tc 1)uQ[ --+ ui=Xil 
........................................... F(TT, )): (!!, 2) unux, -* T(, IuQ[ -# us--Xnl 
F(P')(! ): Q!. 9) Ptl)uQ[ --# A, ], --- P(k)UQ[ --+ AkI. Tcl)uQ[ -4 ui=Xil, 

T-j%juQ[ --+ ua=Xn] -Z P'uQ[(y) A -; -C] 

all of which are solved by Iý2 except for the last, which reduces, 

by Leý I, to 

At --qo uI =)( I--. --+ u. ---X.. 

which can be rearranged to 

F(Q, R): (y. ) r, m4, A --* c. 

then convert C to (Xjj. QA. replace that by (XII. QN, and apply Weakening, 

so that our problem reduces to 

Falt): (i) r, A --* (xm. q2j. to (**), as required-M 

The next loomm, my be regarded as justifying the claim made at the 

wA of 92.0 that the '(V, f)' clauso In the defInItion of I- encompasses 

all w7s of using protologic to establish that (a function of x) ý- fx 

for =V x. 

Ion" F(TVx r --* T 1- Vx A (a) 

in aquivaleut to F(VA )(IL): r --o T' ý- A(Z) (Nu) 

wbers y does not occur free in (*). If the condition an y to dropped 

then (am) still Red. (m). 

prag Suppose we b&ve & solution to (ow) and y doesn't occur free In 

(w) - Choose a now variable x, not occurrlmg in (*) or (14*), wid 

substitute It for free occurremem of x in (*). the problem becmes 

F(T Vk A) (], ): r(: ) --# T I- Vx A. 
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Now def Ine TS (T., Tb), where Tb E (Xy. T'(. )), T' being taken from the 

given solution to (me); our problem reduces to 

F(TV)(1&): r(: ) --+ (Au. T. [(x) -4 ux I- A])Tb, 

Red. (LAý 4) F(R): (X) r(l. 1) --f (Nu. ux F A)Tb 4(! 
): r(i) --+ True Tb 

of which the second is trivial since Tb is a X-term, and therefore 

Manifestly Well-Defined; mid the first reduces to 

F(R): (x) )'(, ) --o 
TbX I- A 

Red. (1ýemma 0) F(Ij): r(a. ) --o T'(: )(') I- A; Y 

substituting y for x, then x for z, gives (*'*), as required. 

Conversely, given (*), (NN) reduces, by Cut, to 

ý F(T Vx A) (R) :r -4 T I- Vx A 
F(T' A )(R): T I- Vx A -* T' ý- A(yx) 

the first of which Is simply (*). The other reduces to 

F(T')(11): (u) u=Tl, To[(x) --o ux I- A] --o T' ý- A(Y) x 

(recall that To to waT. T, Is wiT (§2.0)); this Is verified by 

Instantlating u to T1. The problem reduces, by Cut, to 

F(Rj: (u) To[ (x) --* ux ý- A] -4 uy I- A(, Y. ) ýFj 
)(1): (u) u=Tl, uy I- A(f) --* T' I- A(J) 

the first of which Is solved by LANNL 0 and T, emmm 3; the second is 

solved by setting T' N Tly. 0 

IME&I We can solve FQ): (g) U I- A, VFA3B ---# VOU FB 

(where U and V are valid for A and A3B If ]& are valid). 

pnmf By the sequent calculus, the problem reduces to 

F(Ij): (jj, p, q, r) pmU, p I- A, qWV2, r-V*, 

VjC (Q) --* qQ[Q ý- A ---io rQ I- B] ] --# V*U F B, 
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which reduces, by Cut, to 
(R): (ý. p, q. r) V, [(Q) --# qQ[Q I- A -. * rQ ý- B]] qp[p ý- A rp I- B] 

F(l): (E, p, q, r) pzU, qZV2, qp[p FA --+ rp F B] V2U[P FA rp ý- B] 
p ý- A, V2U[P FA --o rp F B] -%% rp FB 

. 
F(! ): (!, p, q, r) p-U, rioV3, rp FB -* V3U FB 

which are all solved either imiediately or by Lema 3-M 

The next lesma justifies the claim made at the end of S2.0 that the 

'A 3 B' clause in the definition of ý- encompisses all ways of 

protologically establishing that If QFA and Q Is valid for A then (a 

function of Q) I- B. 

is equivalent to F(T' B 

r --o Tý-A3B 

r, FA --lo T' FB (*I*) - 

prý Suppose we bays a solution to (*m); using the T' given define Te 

(ý4. V) (which Is valid for A* B). We can solve both of 

ý F(Qk, R): r. A --* (Xv. vQ F- B)T. 
F(R): - r --* T? 

Ule, 
To 

wbance, by Lý 4, we got a solutlon to 

F(TAb*dt)(11): (Q) F ---* (Xv. TbQ[Q I- A ---* vQ I- B])T.. 

Using the Tb so obtained, we can solve both of 
F(R): (Q) r --* (Xtzv. UQ[Q I- A --4 VQ I- B])TbT. ýFfl[): 

r ---* T;; ý (Tb, T, ) 

whom*, by Lý 4 swin. we obtain a solution to 

F(T! ")(11): r --* (Axiv. T. C(Q) --* uQCQ ý- A --* vQ I- B]])TbT.. 

flow, the right-b=W side cav"rts to ((Tb, Ts), T. ) I- A :)B; and no, 

defining Tm ((Tb, T. ), T. ), we got a solution to 

F(TA: *)(11): r --* T ý- A3B, Is (*), as required. 
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Conversely, reduces, defining T' FE T3Q and using Cut, to 

ý F(TA: 56)(R): rT ý- A3B 
F(Q, R): Q ý- A, T I- A3B --* T3Q FB 

the first Is (w), and the second is solved by Lena 6-M 

The problem Is. for each axiom schema. A, to solve F(TA): --+ T ý- A. 

hrlý (11: A: ) (]13 A) 

The problem is F(TA3(B3A)): --# T I- A3 (B 3 A), 

(by LAý 7) F(T' 33A )(OA): Q ý- A -* T' ý- B3 As 

(by Lý 7) F(T A )(e. 0): Q I- A, R ý- B ---o V I- A. 

which Is solved by defining 'r by T" N 

Axim (III: (A A BI 3 

The problý is F(T(AAB))A): --4 T I- (A A B) 3 A. 

M (Lý 7) F(T' A) (CIAAB): Q I- AAB --+ T' ý- A, 

which to solved by defining T' a (6, since Q I- AAB conv Qo i- A&Q, 

I- B, and MY --* X to derivable. 

This Is very similar to th* Case of Axiom (11). 

ham UVI-I 01 (B 3 (A A B)l 

Tlw prc6lm is F(TA'3(EO(AAB))): --o T I- (A 3 (B 3 (A A B)), 

(LAwas 7 tvioe) F(TOAAB)(Qý^- Q I- A, R F- B ---o T' FAAB, 

which to solved by settirg T' W (Q. R), since (Q, R) I- AAB conv Q I- A 

&R F- B, mxd X, Y --o XLY in derivable. 
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Axim (vl: A3 (A V B) 

The problm Is F(TA. 3(AVB) T I- A :) (A V B), 

(Lý 7) F(VAVB)((ý): Q I- A --# T' i- AVB, 

which Is solved by setting T' a (True, Q), since (True, Q) FAVB conv 

I- A. 

This Is viery similar to the caso of Axiom (v). 

Axiam (YIII: (A V B) :3 ((A 3 C) 3 ((B 3 C) 3 C11 

The problem Is 

F(T(AVB): )((A'3C): )((113C)3C))): 
-. 6 TF (A V B) 3 ((A 3 C) 3 ((B 3 C) 3 C)), 

U (IJUSINK 7 dU*O times) 

IF(TOC)(e VB RA: 3C. U'OC): Q F- AVB, R I- A3C, UFB3C --# T" F C. 

lkm, Q I- AVB cogvv (if Q0 then Q, I- A else Q, F B). Def ine T" by 

I" a if CA, dwn R3Q, else U*Qj; also def Ine Xa If Qo then R2Q, else 

U2Q.: theme are valid for C and dt respectively If Q, R and U are valid 

for AVB, A3C and B3C. By the If Rule our problem reduces to the 

tmo problemis 
(Q. R, U): am, Q, I- A, R $- A3C RaQ, I- C, 

F(Q, R, U): not (6, Q, I- B, U I- B3C U*Qj I- C. 
I *ball only solve the first problem: the other In very similar. We 

cannot just apply LAmmm. 6 because Q, to not necessarily valid for A 

(only If In fact Ob = True); but we can argue similarly to the proof of 

lAimma 6. as follows. The problem reduce* to 

F(Q, R, U): (p, q, r) %, r=Qj, r I- A, PUR2, 

R, C(u) --o pu[u ý- A --* qu I- C]] --o, qr I- C, 

- 95 - 



by Instantlating r, p, q to QIPR2tR3- By Cut this reduces to 

(Q. R, U): (p, q, r) R, C(u) --* pu[u I- A --* qu F C]] ---+ pr[r FA -+ qr F C] 
F(Q, R, U): (p, q, r) (10, r=Qj, pmR2, pr[r I- A -+ qr ý- C] -* 

X[r FA -+ qr F C] 
)F(Q, R. U): (p, q, r) r ý- A, X[r ý- A --+ qr F C] -+ qr FC 

the first and third problems are solved by Lemma 3-. the second is easy, 

using the definition of X. 

A3dm (vi I 11: (A 3 BI :) ((A :) (a 3 C) I :) (A :) Cl) 

The problm is 

F(T(A: 3B): )((A'3(BOC)): )(A: 'C))): 
--o T ý- (A 3 B) 3 ((A 3 (B 3 C)) 3 (A 3 C)), 

a (Lmý 7 three tims) F(TC)(QA3B, RP(IB-)C), UA): 

Qý- A3B, R FA: ) (B: )C), UFA -+ T"FC, 

which, defining T' by V" a (R*U)*((6U), reduces to the three problems 
[ (Q. R, U): Q F- A3B, U ý- A --* (6U F B, 

F(Q, R, U): R I- A3 (B 3 Q, U F- A --+ R3U i- B :) Cs 

FF (Q, R, U): Q3U ý- B, R*U F- B3C --f (16U)3(%U) ý' C. 
All three probleas are solved by Laý 6. 

Amium Cizl: Falm :) 

The problein Is F(TFalse: 'A): 
-# TF False 3 A. 

Is (Loomm 7) F(T' A )(Q'False): QF False -* T' F- A. 

But Q I- False com False, and False --+ X Is derivable, for any X. 

So we can choosis T' Ra fixed object valid for A. 

Tbe problm in F(T(Vx A)3*("»: 
--4 T 1- (Vx A) D A(, yx) 9 

a (Lmý 7) F(VA)(le A): Q e- Vx A --+ T' 1- A(yx), 

lMod. (Lý 5) F(T' A) (41 A): Q 1- Vx A --* TN 1- Vx A0 

which Is solved by defining Va 

- 96 - 



Aactam (xj): A(11 :) 3c 

Write the axiam an fy 3 (3, f) , where fa Qx. A), using Axiom 

(xxii). The problem Is F(Tfyo(3'f)): --+ T I- fy 3 (3, f), 

a (Lamma 7) F(T' (3, f)), Qfy): QF fy -* T' 1- (3, f). 

But Q I- fy conv (y, Q) I- (3, f), by the definition of F. so we simply 

define T' a 

kd= fidt) At :) Me icat (At atomic) 

11w problem to F(TAt33X X--t): 
--o TF At 3 3x Y--t, 

(Lý 7) F(T'3x xxt)(QAt): . I- At --# T' ý- Me x=t: 

deflim T' a (t, O), so that our problem Is to derive 

At --8, tmt, 

which Is trivial. 

Axim (xitil: x 

AzIm 

Theso both convert to True, so any object will do as a proof. 

AzIm (m: lyl: OR ý (A(! ) 3 A(! )) (A to atomic with x not occurring 

within a X-term) 

The problem to F(TU'V3(A3A)): --# T t- U=V :) (A(" )3 A(x")), 

(Lammý 7) F(T A )(4POýV. O): Q I- U=V. R t- A(. ) --* T' I- A(. ). 

Of course, Q I" U-V conv U-V ; so, dof Ining T' M R. we merely have to 

dorive 

UmV, R I- A("X) --o R i- A(X), 

which Is an axtom. 
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Axim (xvi): -3ý (SKI 

Azlm (zvt 11: Sm4 :) FaljW 

Axim (xvill): Sbc-8v 3 z!! z 

AxIm (xixl: ý ýx 3ý (fx). for orlattlye recursive f 

Azim (xzl: wmf (0.1) 3 was&, W--oz :3 w=f (0. Z) - 

W-jr(sk. x) :3 V=g(X. Z. f (x. z)) :) 'r--f (Sx, z) 

(for f def lmd by prWtive recuralcm frem aL md g) 

Abdm Cmd): A3 B- for atmlc formlm A. B amh that A cony B 

All these are of the form A3B, with A and B atomic. The problem 

Is F(TAM): --* T I- A :)B, a (Lamm 7) F(T'B)(QA): QFA -* T' F B. 

But of course Q I- A conv A and T' FB conv B, so, defining T' to 

be. my, Q (it will be automatically valid for B), our problem is to 

derive the sequent A --* B. which in such case can be done (see S1.6). 

Azlm (md I]., F :)C. for faýlm F-C awA that F cmv 

The prablm to F(TF3G): --# T I- F3C, which by LAmm 7 reduces to 

F(T'C)((f): Q I- F --* T' I- G, 

which Is solved by defining T' mQ since F conv C. 

.6 The rulas of Ihmm iLtbmtic justif led 

The problem Is, for each rule 
A ... B, 

to reduce F(TC): --+ TFC to -c-- 

F(T A): 
--# T' I- A, ... F(T"B): I- B. 
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bale (a): AaA3B 

F(TB): T i- B Red. (by Cut) 

(T' A ): T' A, 

F(T"A'JB): --* I- A3B, 

.f: 
T' ý- A, T" A3B --- io T"3T' ý- B, 

deflning Ta r*T'-. the first two are given and the third is solved by 

Lý 6. 

Mal* (81: C3 Afful (y not occurring free In the conclusion) 
C -v Vm A 

F(7,1"-ý A)): 
--* T I- C :) Vx A, 

m (Lý 7) F(T' Vk A)f4'): Q I- C --* T' F Vk A, 

" (Lý 5) F(T-A)pf): Q I- C -+ T" i- A(Y. ), 

" (LAý 7) F(TC3A ): --p T" FC :) A(x), as required. 

AM :)C (y not occurring free in the conclusion) Blib"ILIL- (3m A) :1C 

Assme F(P&(-'F')OC): --* P I- A(J) 3C (*) is solved; we need to solve 

F(T(3't A)ýC): 
---* T I- (Rx A) 3 C, 

0 (Lý 7) F(T'C) (Qýk A): Q I- 3K A --# T' i- C, 

Mid. (def laing Va ((Xy. P)Qo)3Q, ) F(Q): (y) ya(6, Qt I- A(Z) --f T' I- C, 

Red. 
ýF: (y) --o P ý, A(4) 3 C, 

(Q): (y) yu(6, Qj I- A(Z), P I- A(4) 3C --* T' I- C; 

the first re&bces by LAmm 0 to (w); the secand reduces to 

F(Q): (y) Q, I- A(f), (Ay-P)Qb I- A(f) 3C --t T' I- C, 

which to solved by LAý 6. 

116. . 
Fcoul Ve F(D 2 F(O. ») la (a)- Va ýa2 F(; ) 

First note that it to sufficient to justify fo Vn fn :) f(Sn) 
Vn mm n: ) fn 

w1wre, fa (Ax. F), *two fO conv F(: ), fn conv F(: ), and F(s: ) 3f (Sn) Is 

- go - 



a theorem of HA\Rule 6 (using the theorem U-V 3 (F("X) 3 F(v, )) of S2.2). 

We are given solutions to 

F(a F ): --* a F- to and F(TVn F3F TF Vn fn 3f (Sn); 

the latter a (by LAmma 5) F(T' F: )F ): --# T' F fm 3f (Sm) ("). 

Note that I can write as superscripts F and Vn F3F instead of fO and Vh 

fn 3 f(Sn), stnice, as remarked at the end of S2.1, validity only depends 

on the logical structure of the formula. 

The problem to be solved Is F(Pyn num n3 F): 
--+ P I- Vn nun n3 fn, 

(LAsom, 5) F(P'ý F): 
--f P, I- num a3 to, 

(Lesom 7) F(p-F ) (CPM 0): QF num a --* P, I- to, 

Red. (Lemma 0) F: (a) num m --* In ý- fm, 

defining rN Sm, where I is the function defined by primitive recursion 

from a amid g. where a is given above and go a T'3, where T' Is given in 

(*). Our problem reduces. using the protological Induction Rule (11.6): 

F: --* 50 1- (0, OF: 
(a) In ý- to --f $(Sm) I- f (SM). 

The first problem to already solved, since 10 conv a. The second can be 

rewritten: (since we can replace $(So) by gm(ft), which conv VD(lu)) 

F: (m) So I- to ---* T'*(In) I- f (Sis), 

Red. 
ý: (a) --* T' I- to 3f (Sis), 

F F: (m) So I- to, T' I- to 31 (Sm) --* T's (In) ý- f (Sm); 

the f trot problem reduce*, by Leema 0, to (*); the second to solved by 

L, sona 6 (go to valtd for F, and hence for fm, since a Is valid for F and 

go to valid for FW). 

Tbls completos Itule (6), and the proof of the min theorm 

jtmtttytvg Heyttag Arttbmttc. 0 
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S3.0 Intradactl 

The question for this chapter is: how Is classical mathematics 

possible? Classical mathematics looks like an 'Infinitised' version of 

finitary reasoning; In developing It mathematicians have extrapolated 

their finite abilities Into the Infinite. How do they got avey with It? 

That is, bow is it that, at the cost of jettisoning a few principles 

like *the whole Is greater then the part' and 'every property defines a 

class'. they are able to develop an apparently consistent theory 

satisfying the remaluder of our Intuitions about quantities and 

collections? This to the problem of meeting Criterion (I) of SO. I. 

One possible answer Is that Infinities are all around us in the 

physical world and so it must be alright for mathematics to talk about 

them. I s1mLll cast doubt an this In S3.1- 

In SO. 3 I suggested that classical mathematics was a distorted 

version of what I call InfInItary mathematics, which In vhat one gets If 

one drops Assumption ('s) of SO. 3 and assumes the ability to complete 

certain Uffinitistic computations. In S3.2 I shall show that 

mathematics under tb4s kind of assumption looks much like finitary 

mathematics and does not prodh anything an strong as analysis; this 

waderwines the classical position further In that It shows that (part 

of) the underlying motivation for Infinitiatic arguments (the feeling 

that our Inability to count up to w to a 'were medical accident', (cf 

Denacerrat and PutnUm EOI P-17)), when developed carefully, does not 

lead to full classical mathematics. 

In S%3-3.4 I sha, 11 approach analysis from a different angle (not 

Involving dowing Assumption (, I)), and show bow It can be given a 

reasonable Interpretation. 
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In S3.5 I indicate how far this approach can be generallsed to the 

rest of miatbmatics. 

13.1 11o abysteal tallattles; adst? 

Criterion (a) of SO. 1 says that a foundational system should explain 

how and why mathematics Is applicable to science. Some people see this 

question as crucial: classical analysis Is essential to physics, it Is 

argued, so there must be something In It, and It Is the Job of 

mathematical philosophy to justify It. There Is even the extreme 

formlist view that mthematIcs consists of formal systems which are 

entirely justified by the docidability of their axiom and rules* and 

their empirical usefulness. Certainly one can define an arbitrary 

forml system by choosing an alphabet, a decidable class of *well-fo. 

formulaie% a decidable, subclass of *axions', and decidable 'rules'; and 

than 'apply' It by defining a mapping from well-formed formulae to 

experimental predictions; and empirically 'confirm* it by generating a 

large number of 'theorems* and testing the corresponding experimental 

predictions. But to t this as a complete account of mathematics in 

to reduce It to a form of divination. Classical mathematics Is an 

Infinitised version of finitary reasoning, developed largely by 

mathematicians who thought they were litemlly reasoning about Infinite 

systems: wkW should forml systems so obtained be wW better at 

prediction than an arbitrary formal system (which may not remotely 

resemble a reasoning process), mid why should formal systems be any 

better than reading tea-leaves? Suppose Peano Arithmetic applies 

successfully to two physical systems, but they disqpve about the 
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truth-value of (the prediction corresponding to) Goldbach's conjecture, 

my: what becomes of the claim that they are both actually Infinite 

systems? 11any branches of mathimiatics were developed In the absence of 

physical applications; some later proved applicable and others remin 

unaMlied, yet mathematicians are still able to distinguish between 

valid and Invalid prooft, and significant and Insignificant concepts. 

Part of the problem to that we do not know why the universe is 

explicable or predictable at all: but It Is a sound heuristic principle 

that amy concept that proven useful In science probably can be made into 

clear and coherent mathsmatics. 

So: are real numbers useful In science? Certainly they are used in 

science, because they are the only mathematical objects most scientists 

know about (apart from vectors, tensors, etc, built up out of reals). 

The view that matlismatics Is 'the science of quantity' has led to an 

assumption that an argument Is only mathematical, and hence only really 

scientific. If It contains a lot of symbols denoting real numbers; this 

attitude has distorted twentleth-cen psychology, particularly, and 

way be beginning to have the sas effect on physics. General 

considerations of quantum gravity riggest that space-time Is not a 

manifold an the smallest scale. yet physicists still think 

perturbatively of a manifold with slace-time fluctuations superimposed, 

I-a more radical approach seemsý required. The real continuum was 

originally Inspired bW the assumption that space-time Is *In principle' 

UdInItely divisible. once this to doubted the motivation for using real 

numbers disappears. 

Vbm Infinities occur In physics they are generally 

Indiatingulaboble from sufficiently large finite quantities; eg It Is 
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difficult to tell whether the universe to Infinite or simply very large. 

In other words, the functions mapping reality to experimental 

observations are continuous at all infinities. If this Is always true 

then perhaps It would be better to model reality with 'sufficiently 

large* finite (or possibly nonstande d) quantities, or 9 other way of 

combining the conventent aspects of finiteness and Infinity. This 

continuity principle to not logically necessary, and It does seem 

suspicious that Infiniteness Is unobservable. Until someone discovers a 

suitable discontinuity, or a representation of space-time not based on 

real numbers. I regard the question of the necessity of classical 

mathematics for science as open. 

The weakest form of infinity assumption to w-InfinitISM, which 

states that flattary Iterations, such as computing (fxpt 0 v), where *Xx 

a if Cx then Rx else X(Hx), can always be completed. (Such a 

computation applies H repeatedly to v until a value x Is obtained 

satisfying (it, then the result Is Rx. ) Thi s Is represented In 

protologic by adding the Iteration operator Its (parametrised. by a), 

defined by 

its 0v fxpt 0 V. if this Is defined, 
a, if not Cv. not C(Hv), not C(H*v), etc; 

In other words, It, # applies B repeatedly to v. and If (not C) holds 

for each Iterate It returns the result a. (*It. * to only defined for 0 

of the form (XXx. If Oc then Rx else X(Hx)); fxpt to defined for all *. ) 

It follows fraim this description that if, say, HIv or C(H'7v) Is 

undefivmW then so are both fxpt #v and it. # Y, since they both have to 
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compute these expressions (assuming the computation doesn't halt before 

that a use) - 'Its' describes a now primitive process of Iterating 

something Infinitely many times. It can therefore be applied to a 40 

where C, R and H contain its. 

All the protolagical axiom and rules still hold; in addition we 

have protological rules Vywerning It.: (where 0 Is of the allowed form) 

Itaft conv If ItTPUO*X M Itralseft then fxpt 0x else a, 

#(it. #)x conv it. *X, for an object a jo True, 

U. 3r) A(xl --*#A(x) 
(x. y) A(1) --* Ityra. O(E)' 

We can =Wee finitary functions (te ones not containing It&) total by 

1'*PlacIrW fxPt bY Its; but this doesn't awn that all functions are now 

total, for the Its function allows us to define more comPlex recursions. 

We are Particularly Interested In recursions for which the fxpt rules 

aPPIY'- these are 0088 In which OU Is a conjunction of term of the form 

Kx and X(Hy). fl'ltlsý this Emmm, withmt loss of generality, #Xx N 

if (ýK then ltx else X(Hx), In w-Infinitim W* also hKVe the general form 

OXX M If CK then RX else If C'x then X(Hx) else 

ltlr, r,, (XYy. If Cwy thm It'y else X(Ay) & Y(H"y))(H'x), 

which Involves searching a tree (rather than merely iterating an 

operation) and calculating the conjunction of Ry or R'y for various 

nodes y visited. 

Clearly we can extend the systea further by adding a now operation 

It's' which completes recursions of the abwe form. am likewise itf, It!, 

1 40 WO ... t4b, It& fl, 
... - FAch We' satisfies rules like the abwe rules for 

its. but with a larger class of allowed C In each case the overall 

shope of the universe of objects Is roughly the ggam; the iteration 

functlaw are 'within" tbO System, like "S' and 'n', and, whatever 
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Infinitistic operations we are allowing ourselves, 'fxpt' enables us to 

define a computation which Iterates them indefinitely; so that functions 

are In gxneral partial, and totality Is not 'decidable' In the system 

(by the usml diagonal arguiment). 

A problism with thmm systems Is that, from a finitary point of view, 

we can my so little about the size of the Infinitistic universes; eg we 

carawt decide whether all objects are finitely definable in terms of the 

Iteration operations. 

It to Informally clear that w-Infinitism allows us to justify Peano 

Arithmetic by treatlvg arithmetic formulae an decidable, since Infinite 

quantifiers WEN, RKM can be simply cow4xtted. However, no Infinity 

assumption of the kind I have discussed will take us as far as classical 

analysis: the most we can eqPect is predicative analysis. I have tried 

hard to form a coberant motion of 'computlug' Vxft A(x), and failed: me 

would used a tism-mcperience In which one tests each A(x) Individually 

and halts If A(x) of True. LAcking a well-ordering of R, this calulot be 

constroad as the completion of mzW simpler computation; and If there are 

several x for whieb A(x) 10 True It Is unclear atwhich x the compu tation 

should bait. 

Thus. althougb the Idea of an Infinite tims-experlence completing a 

given type of computation mains some. and can be used to interpret 

classical arithmetic, It does not sees capable of reaching classical 

analyste. Pwt section I shall try another approach. 
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Analysis (which I shall Identify with socond-order number theory) Is 

motivated by a wish to talk about 'all sets, or predicates, of numbers' 

(Oluivalently. all real rmebers) impredicatively, le without having 

'surveyed* or 'constructed' them all first; and even by such argments 

to define imm predicates of ý"rs which are supposed to be within the 

scope of the origivial quantification. But of course one can never haue 

constructed infinitely many thiq; s: the problemi of Impredicativity 

arlsets evem in ==her theory, when formulae quantifyirg over 0 are taken 

to be propositions and used In the Induction axiom schema. 

In mW account of number theory I escaped the problem by denytrg that 

na"r-theoretic formulao were propositions. First I defined a notion 

of pooving 'for all n. 4qn), regardless of n', le the protological 

predicate Dr; them I used DT to give a maning to formulae (le to def in* 

ý-). then, I justified HA by showing that one can turn an HA derivation 

into a *proof' of the formula derived. This works as an Interpretation 

of arithostic peovIded we accept that protologic ban been clearly 

defined mid is sound. In other words, we need to believe that there is 

an autonosaue action of 'arguing reg"less of n' (not defined as an 

lainite conjunction of arguing for a-0,192 .... 
), and that any 

instmt1ation of amb an argument (I* adding the Infornation that In 

fact a= 27. wW) preserves its validity. My Ybilosophical position 

entitles me to affirm this (ef SSO. 2,3): since all our reesoning about 

mmebere Involves abstraction. It ant be logitivate to abstract from a 

furtbor aspect. samely the value of n In an argument. 

11m same appromah am be taken to analysis. We can think of an 

arbitiazy predloate (of matural numbers) A and prove things about It 
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simply on the assumption that nEA (or An, as I shall write It) Is true 

or false If a to a =mWber. Thus A Is thought of as a 'black box' or 

-oracle* delivering truth-values as output for numieric Input; we know 

nothing of the internal workings of A. which might be an algorithm or a 

physical process or a combination of both. 

As an example of A as a physical process consider AR0 the position 

of a particle an a unit line segimont% with An a True If the n'th digit 

in the binary mqmnslon of the position coordinate Is 1, False If the 

digit to 0: this cm be roMphrased as saying that An is the proposition 

that the particle Iles In a certain Interval of length 2", defined in 

torms of AD .... A(n-1), to as a misasur, m t. The systm to a black boK 

in that oew can cbooso n. measure the position of the particle to 

accuracy 2'*, md the result gives An. If spsce-ttm were infinitely 

divisible Wo would be a esýstble way to introduce the concept of the 

mince-ttm posittail of an evmt. 

This view is very mmh like the orthodoK tntuittontsttc theory of 

choice sequences (CS). 11mover, CS has trouble with the question of 

identity of choice sequences: prewmably AaA to true regardless of A, 

but com AmB ever be true, or what about (Xn. not(An)) = B? The 

tramble to that choice sequences, or my 'predicates', are not purely 

mtensional: they bwo also an intensional aspect, their 'Identity' as 

wbich malmse AmA true. This disrupts the continuity axions 

tatuittentsts wish to assert: the axioun have to be restricted by 

conditions that the bound choice sequence variables appear1mg In the 

axiome are not equal. This deals with problems arleirg from atomic 

formlas of the form Aa 19. but not ones of the form -vA = 5B (where j 

and 6 we mmtlimý fmactlenals). 
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CS ends up distirguishing between 'absolutely lawless' sequences, 

*lawlIk** sequences (given by a rule), and sequences 'in between' (eg. 

-jA. for contl=xas -j and lawless A). 77ils has the Implausible 

con-equenco that If A Is a (boolsom-valued) lawless sequence then (Nn. 

not(An)) Is a Imm-lawless sequence. In the attempt to obtain a notion 

of choice sequence which allow 'restricted' sequences, Is closed under 

continuous functionals. and satisfies useful continuity properties, CS 

has been developed Into ever more elaborate systems [17], until (it 

seems to me) It collapses under its own weight. 

The source of the trouble to that when one sequence to def Ined as 

the loft* of another under a continuous functional It Is no longer an 

entirely 'black' box: part of its intor, I workings Is known (more 

formally, the continuity axioms, which assume complete "blackness', 

fall). Bý the distinction bet lawless seWences and other 

mon-lawlike ones; (partially black boxes): see [17, p. 16] and [2, p. 421] 

for two incompatible accounts of this. 

It @ý more natural to m to allow Aa -#B (or, for that matter, vC 

a aD) to be possibly true, for any choice sequo" variables A, B, C, D, 

without any distinction between lawless, lawlike and other sequences. 

Iliat is. IS cam be regmr%W as a black baK by disregarding our knowledge 

that it to obtained by applying -j to something, and the abstract 

eKtanstemallsed maqwme so obtained my well be what A denotes; bore A 

to lamlike relative to B, but all sequences an their own are equally 

lawless. 

Inm dleadvmtege of this from the point of view of CS Is that It 

vmld diumpt the amt1aulty axime. But this does not bother me as I 

will not need ocutimity arguýtm at all. 
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Thus It seems reasorAble to modify the protologic by allowing two 

sorts of variables, one regarded as ranging over the 'objects' of S1.5 

and the other regarded as numms, for arbitrary predicates of numbers (or, 

more conveniently, of objects), which I shall denote by lower and upper 

case metavariablos respectively. We assume that term like Px are 

meaningful. This gives a vay of proving protological statements of the 

form *for all P, regardless of P', from which we might hope to 

develop analysis. 

Recall the discussion of SO. 2: statements of the form 'for all x, 

... * are not directly meaningful unless they can be given a 

quest -predictive meaning: so we cannot just set up the classical 

truth-definition for analysis, *VP #(P) is true Iff O(P) is true for all 

P'. We con bo @--or my. 'an argument A(P) for f(P) is valid regardless 

of P', and we can Instantiate P to anything with the required kind of 

meaning. 

It to worth pausing to note why this approach does not generalise to 

allow full naive met theory, complete with Russell's paradox. The 

obvious way of getting set theory would be to allow not variables, 

Including wAinary objects within their scope, with all such 

term as oil meaningful. But this doesn't work. Analysis works because 

we con instantiate a predicate variable P to any *suitable' 1: to any I 

for which SK to meaningful for object variable x. But In the case of 

lot timmy a 'suitable' K In one for which SA, SK, and PR are meaningful 

for set variable p. I* one for which IM, IM and W are meaningful for 

all esultable' I. Thus, the definition of 'suitable' Is circular. So 

WO bMW 00 cabareat Idea. of what set variables could legitimately be 

Instmattateil to (roughly 
, we have no grasp of the smaning of 
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'set*); so set theory, unlike analysis, is not really an abstraction of 

anything. 

When I my that Px Is ýIngful I mean that it Is an incomplete 

statement, In the some sense In which an arithmetic formula Is. Thi s 

means that y ý- Px and 'y Is valid for Px' are defined: P consists of two 

black boxes which, If they deliver an answer at all, give truth values 

for the two prqwrties. given as Input x and y. An argument about P 

be instantiated by adding Pn (Ax. F), where F Is a formula, or In any 

other my which will giva values for y I- Px and Oy to valid for Px'. 

The protological "quent calculus for analysis Is just as In Sl. 5, 

ignoring the distinction between the two sorts of variables. Even 

(Ax. T)P coav T('xP) to permitted: the sort distinction really only matters 

for free variables. 

An M&LtUg L2EMd& Is: an atomic formula (a term), AAB, AVB, 

-A, A38, A 00 1B, Vx A, V'P A, Sk A, WP A, where A and B are 

form low - Since I went to interpret classtcal analysis, I need a 

procedure stall" to that used by CW@l to interpret classical number 

tbeory In Intattlentatle number tboory: I will talm A, 3, V and V' as 

primitive and define quasi-classical V, 3 and 3' in term of them. just 

as with flayttzig Arttbmttc, I regard formulas an disguised term; they 

am be rewrttten according to the following rules: 

Every atede formula A Ww an Implicit -" In f rant of It; 

AV Iß to Ober t gor -, (--A A -4) - 

ibt A to abert gor -Afx -, A-. 
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3'P A Is short for -, V'P -, A; 

-A to short for A3 False; 

A 00 B Is short for (A 3 B) A (B 3 A); 

AABN (A A B): 

A3Ba (3 11[)-. 

Vx A9 (V (Ax. A)); 

V"P A0 (V' (XP. A)). 

7bus, all formulaie are rewritten as term built up out of A, 3, V and 

V In HA these my Is were simply arbitrary constants, serving as 

markers. Here, It Is more conventent to define then as the appropriate 

pi f functions so that the definition of F will become p I- F s- Fp; le 

to Identify F with (Ap. p, I- F). This reflects the Intultionistic 

definition of the meaning of a formula as Its test for proofhood. 

Specifically. A. 3. V and V' are defined by 

AAB (p, q) M Ap & l9q, 

3 ((g, h), d) a d[(q) gq[q ý- A --* hq ý- B]], 

V' I (g. d) Vf (g, d) a d[(x) jpc I- fx]. 

An *arttbmttc* atomic formula T (Is not of the form Px) will still be 

represented an T; Px will be represented as Px (both have -" In front). 

Thus, =XV formula to a function for testing possible proofs; 

considering It concretely as a progromi, the validity condition in 

Inserted as a *commmýt statement' In the program, which does not affect 

the onscuttCe of the P1 olp but can be extracted from It wben needed. 

To complete the defftition@ of A, 3, V mid V, we need to specify how 

each logical constant obtains the validity condition of a formula from 

the validity conditions of its components: 

(p, q) to valid for AA 1B Np to valid for A and q to valid for B; 
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((g. h). d) Is valid for 3 1111 ad is valid for dt, g is valid for 

A* dt. and h is valid for A0B; 

(g. d) is valid for Vfad to valid for dt 

and gx Is valid for fx for any x: 

(g. d) Is valid for V' fad Is valid for dt 

and gP Is valid for fP for any P. 

The difference betwmm V and V Is In the validity condition: in arguing 

that gx is valid for fx for any x we can assume that for atomic formulae 

xy validity Is trivial (anything Is valid for them) and also that z i- xy 

conv xy, 41wreas In arguing that gP to valid for fP for any P all we can 

asaxime to that *valid for Py' and the function Py have a definite 

meaning. TbIs Is the only place where the difference between predicates 

and objects makes Itself felt. 

(CA) Ia defined as: 

(1) HA with two sort* of variables, to Axiom (X) splits Into 

(xa) (Vx A) 3 A(Z). (xb) (V'P A) 3 A(J); 

=vd Axiom (xi) and Rules (p) and (, W) split Into (xia), (xib), (Pa), 

(Ob). (ja). (1b) stallarly. 

(it) AV-, A-. 

(111) 3'F Vx (IPX ** F) for any formla, F not containing P. 

IIMý (InterPretation of analysis) Any derivation, of a CA theorý A 

am be trensformied into a solution of F(IFA): --* T I- A. 

Ptea As with the NA theoram, the procedure to to solve F(11A): T i- A 

for as& axiom salwas A and to reduce F(TA): --* T I- A to F(? 3): P I- B 

F(4f) -Q ý- C for each rule of infermace B *C Ir-* 
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For the HA part, note that the V. 3,3' axioms and rules (ie Axioms 

M. (vi). (vit), (xia), (xib) and Rules (-sa), (-Ib)) are redundant: they 

follow from the rest of the predicate calculus, bearing In mind the 

definitions of V. 3 and 3' (to show this, first prove that ----A 3A is a 

theorem of the rest of the predicate calculus, by induction on the 

structure of A). AV-, A is likewise redundant. 

T'he remaining predicate calculus axiom and rules (Axioms (i)-(iv), 

(vtII)-(xb), Rules (a), (Pla), (Pb)) and also Axiom (xxii) are proved 

exactly, word for word, as In the HA theorem; all the things asserted to 

be valid in the HA proof are still valid In this context. 

Ja the cases of AxIome (xIII)-(xxI) and Rule (6) we have to be 

careful because of the Implicit -r, In front of atomic formulae; but we 

can prove versions of them without the -" exactly as In the HA proof and 

then. using AV -A. obtain by predicate calculus the versions with the 

The rmainivg HA axim is (xil): At 3 3r. xmt, which is baMled as 

fol love 

Firstly, (chooeing a now variable y) we can solve 

F(V-Y-t)(RVx -'Oat): It ý- Vx -, (xmt) --* V ý- -, (yat), 

since (Vx -,, (xmt)) 3 -(yut) Is an axiom already proved; secondly, by 

Lossma 6 we can solve 

F(R): 0 ý- Ynt. V I- -, (yet) --# VOO I- False. 

CO&IDIM6 the two sequents with (Ut and applying LAimma 0 solves 

FVW (Y) yot. it ý- VX '(xWt) --# VOO I- False; 

Instantlating y to t and converting tut to TRý t give* the sequent 

T;; -* t' a F- Vx -'(xMt) --+ (AY. V30)t I- False. 

Ilow put P8 (Xy. VaO)t: since Q I- At ---* T; 7w t is derivable this solves 
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F(PFal")(Qýt. 1RVX -*Dot ): Q I- At, R I- Vx -(X-t) --+ P I- False, 

s (by Lý 7 twice) 

F(p, At-')((Vx *mt)3F&1s*)): P' ý- At 3 ((Vx (x=t)) 3 False): 

but At 3 ((Vx (xut)) 3 False) Is just At 3 3x x=t, as required. 

All that remalus to to prove the comprehension axiom, le to solve 

F(T3'pVx( )): 
--* T I- WP Vx (Px 00 F) - 

(Note that Px has an implicit -" In front of It, but since I have 

aI ready pi aw AV-, A the -v, can be removed. ) 

First. I will find a proof of Qu(Ax-F) 3 (Qx 3 F), to solve 

, (jý)u(Ax. F)3(QK3F)): 
--* T I- Q=(Ax. F) 3 (Qr. 3 F), 

n (Lý 7 twice) F(T' F), d)a(Ax, F),, QK): U ý- 0=(Ax-F), V i- Clx --* T' ý- F, 

led. F(T' F)(UQa(A3t*F)'Vbc): Qu(Ax. F), V i- F --* T' I- F; 

this to solved by defining T' a (if Ow(Ax. F) then V else Vo), where VO 

to a constant term trivially valid for F; for T' to clearly valid for F 

it V is valid for QK, and the sequent to easily derivable. 

Similarly, we con prove Qw(Ax. F) 3 (F 3 Qr. ). Mien by predicate 

calculus we cm derive (ým(Ax-F) 3 (Qx 40 F), and hence (by Rule (pa)) 

Qm(Ax. F) 3 V3c((be -00 F), end using Axiom (xtb) we then derive (ým(Xx. F) 3 

3'FVK(ft 00 F). Sim@ we bwm already proved the Theoremi for all of CA 

mompt the com4p 1- - Ito extom this smans we can solve 

F(T(bm(M F)OK): 
--* T I- (ým(Ax. F) 3 X, 

(abbreviating 3'PVx(Px oe, F) to X), which by I. Ammia 7 Is equivalent to 

F(TOX) (UQ. (), x. F) ): U I- Qx('Ax. F) --# T' I- X. 

Using a T' which solves this problem we can also solve (Lmsma 0) 

F(U): (Q) Qw('AX. F) --* T' I- X, 

end bY the 1318t0mittation Rule we derive Inesdiately 
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(Xx. F)=(Ax-F) --& (), 4. T')(Ax. F) ý- X; 

(Ax. F)=(Xx. F) cam True, so, defining T" w (A4. T')('Ax-F), we have solved 

F(V x ): ---0 V ý- X, 

as rapt red. 

This completes the comprehension axiom, and hence the proof of the 

Theorsim justifying Classical Amalysts-0 

lFron the point of view of classical proof theory this theorem Is 

Unsurprisivg: it UMM the concept of validity, which Includes 

well-feumednees of trees (which to VIL in the analytic hierarchy) and I 

functions from well-founded trees to well-founded trees, etc. A 

classical proof theorist would probably want to formalise validity and 

empress the theorem In the form 'analysis to consistent relative to 

formal validity theory'. Flowever, I MIS not & classical proof theorist: 

I Intend the theorea as an * Interpretation* of analysis in the everydgLy 

sense, Is as a systsmatic method of "signing meaning to it. Chapter 0 

was tateniled as an account of matimimatical activity, not as mere 

*mottvatlon* or verbal ornamentation for the formal system I eventually 

Introdwe in 11.5. go I mmentitled to my, not 'analysis Is consistent 

relative to ... *. but *analysis makes some, when looked at in the right 

Way. and to t1wrofore consisteat'. 

mmm, tte tlýrlm 

Clearly the proce&mv of the previous section for obtaining analysis 

cam be Iterated to obtain the theory of functions of real =mbers, 

fumettems of real humettens, and so on; md perhmps even the limit step, 
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to allow us to talk about Oall functions of finite type'. This suggests 

that It way be possible to interpret a form of set theory, defining a 

set as a possible range for a variable. The difficulty here Is with 

r*(*rrtvg to the wbole universe. ZF sot theory, which allows us to 

quentify over the universe of sets but not to treat the range of 

quantification as an object, seeme to me more than ever Implausible an a 

solution to the problem of the 'whole universe'. I still have no 

explanation of 41W V Is apparently consistent, except that few people 

bave loolod very bard for a contredictim wiliere me to most likely to be 

found. in the sixtv" of static and generative ideas In the 

Impredicative use of the replacement and separation axiom schemata. 

I bmve justified arttbmetIc and analysts without being forced by the 

lcigic of sW approach to continue to a vast and useless set hierarchy; 

this to an edunnuiW of oF system (1W Criterion (6), SO. 1). 

So far I bove Ignored general axiomatic theories such as group 

theory or rwmmml topolq1y, In which one deals with an arbitrary domain 

X with now mtra structure. This to easily amenable to my approach. 

One simply Introduces In the protologle variables x, y, z.... regarded as 

ruWvg aver X, mod perhmps variables 8.... rarging over subsets of X, 

and asýs that Ox 0ymV or 'S to open9 to wAmnIngful; this 

protologle to justified by the fact that it can be Instantiated by 

taking for X =W cametructed domain with the required extra structure. 

One definse formiutme as usual, and procoods to prove formulae, of the 

form '(sx4ems of the theory) 3 (theorma of the theory)*. This In closer 

to the spirit of a gxmoral axiomatic theory than to the set-theorettc 

treatment. Atch only prove thoormas for all sets X, whereas surely 

they should bold when X to a proper class or =W collection whatever. 
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