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(i) 

ABSTRACT 

This dissertation details the development and evaluation of 

an HPLC method of analysis for nicotine and the metabolites cotinine, 

nicotine-1'-N-oxide and 3' hydroxycotinine in urine samples. 

The significance of nicotine, its absorption, metabolism and 

excretion in man and other animals have been described in Chapter 1. 

Chapter 2 deals with the development of the HPLC method of analysis 

using both isocratic and gradient elution with W detection. A 

selection of packing materials/mobile phases covering different 

retention mechanisms was investigated. A separation of nicotine, 

cotinine, nicotine- 1'-N-oxide and 3' hydroxycotinine and two chromato- 

graphic standards, N' acetyl nornicotine and 2-methyl-6-(3-pyridyl)- 

tetrahydro-(1,2)-oxazine was achieved on a Resolve C18 5µ radially 

packed cartridge using gradient elution under reverse phase partition 

conditions. N' acetyl nornicotine was later discarded in favour of 

2-methyl-6-(3-pyridyl)-tetrahydro-(1,2)-oxazine which could be used 

as an internal standard. 

The statistical analysis of the instrument response to nicotine 

and its metabolites in standard solutions was examined in Chapter 3- 

A comparison of the measurement parameters peak height and peak area 

was made. Within-run and between-run precision were calculated. 

Calibration curves were constructed with Working-Hotelling 95% 

confidence bands and 95% confidence bounds for 90% of future 

observations. The limit of detection values were also statistically 

calculated. Precision was found to be low for some of the components 

and this was reflected in unacceptably high values of the limit of 

detection. 

The clean-up of urine samples and the extraction of the components 

of interest were investigated in Chapter 4. Clean-up and extraction 

proved to be very difficult and analyses of smokers' urine samples 
underlined the need for an effective clean-up procedure, efficient 
chromatography and a sensitive and selective method of detection. 

It was concluded that the developed HPLC method of analysis was 
inadequate for quantitative analysis of nicotine and its metabolites 
in urine. 
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T temperature 

t time 

tM retention time of an 'unretained' component 

tR retention time 

tR' =tR - tM 

u average mobile phase velocity 

VM retention volume of an 'unretained' component, also known 

as the column 'dead volume' 

VR retention volume 
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RV =VR - VM 

VS volume of the stationary phase 

Wb peak width at the base 

W0 
ý 51W. L peak width at half peak height 

Y obstructive (or tortuosity) factor 

(prefix) symbol for finite charge 

a column packing uniformity; wavelength 

ti approximately 

Statistical analysis 

a the intercept on the y-axis 

a probability level 

b the gradient of the regression line 

F Snedecor's F statistic (Tables) 

n no. of trials or observations 

Q Dixon's Q, used to test for outliers (Tables) 

r correlation coefficient 

S. standard deviation 

s2 variance 

sB standard deviation of the blank 

s standard error 

t student's t statistic (Tables) 

V. injection volume 

x X-X 

X mean value of X=X. /n 

Ex2 E (X-X) 2 

XLD statistical limit of detection based on its calibration 
data (99% confidence) 
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xp a selected value of X 

y Y-Y 

Y mean value of Y= EYi/n 

Y predicted value of the true response for a given value of X 

yB blank signal 

YL the lower limit on that predicted individual X value which 
exceeds the 99% upper prediction limit on the expected 
blank, YUB 

YQ the response calculated from the regression line which 
corresponds to XLD 

YW the 99% upper prediction limit on the expected blank value, a 

zp the normal deviate (Tables) 

V degrees of freedom 

E summation of 

X2 chi-squared statistic (Tables) 
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ABBREVIATIONS 

AFID alkali flame ionization detector 

a. u. f. s absorbance units full scale 

CNS central nervous system 

CO carbon monoxide 

CO2 carbon dioxide 

CoHb carboxyhaemoglobin 

COT cotinine 

ED electrochemical detection 

Et3N triethylamine' 

Et2NH diethylamine 

FID flame ionization detector 

f. s. d. full scale deflection 

FTIR Fourier transform infra-red detection 

GC gas chromatography 

HCN hydrogen cyanide 

HPLC high performance liquid chromatography 

3HC 3' hydroxycotinine 

IC ion chromatography 

ID internal diameter 

IIA ion-interaction agent 

IIC, -IIC ion-interaction chromatography 

IPA ion-pairing agent 

hR infra-red 

IS internal standard 

i. v. intravenous 



LC liquid chromatography 

LOD limit of detection 

MeCN acetonitrile 

MeOH methanol 

MS, -MS mass spectrometry 

mV millivolt(s) 

N. Nicotiana 

NANN N' acetyl nornicotine 

NEN N ethyl nornicotine 

NIC nicotine 

NNO nicotine-1'-N-oxide 

ODS octadecylsilane 

PDFOA pentadecafluoro octanoic acid 

RCM-100 Radial Compression Module - 100 

RI refractive index 

RIA radioimmunoassay 

RP reverse phase 

RSD relative standard deviation 

SD standard deviation 

TLC - thin layer chromatography 

UV ultra-violet detection 

vs. versus 

ti approximately 



CHAPTER 1 

GENERAL INTRODUCTION 
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1.1 History of Smoking 

Tobacco smoking was first introduced to Europe in the form of 

pipe smoking by the Spanish explorers in the early 16th century. 

Explorers of the New World brought it to England and by 1590 sufficient 

quantities were being imported for Queen Elizabeth I to impose the 

first import duty of 2d. a pound. 
1 

Tobacco was initially introduced into several countries for 

its medicinal value. Jean Nicot, French Ambassador to Portugal from 

1559-1561, after whom nicotine was named, informed the Queen of France, 

Catherine de Medici, that tobacco smoke led to "a quiet tranquility 

and great submissiveness of disposition, so that through general 

use of tobacco, Her Majesty's subjects would become easy to govern". 

A number of writers since that time have also characterised tobacco 

as having tranquilizing properties. 
2 

During the Great Plague in London 

in 1665, children were told to smoke in their classrooms and grave- 

diggers who used tobacco as a deodorizer had unwittingly protected 

themselves against infection. 3 

Tobacco has always been the subject of acute controversy which 

continues to the present day. It has not only been praised as a 

preventive against many ills but it has been condemned as a noxious 

vice, in particular by James I in his "Counterblaste to Tobacco". 

The British Medical Journal also took up the fight as early as 1889 

when its editorial stated, "we advise non-smokers not to put their 

trust in pyridine during the prevalence of fevers and to remember 

that their tobacco-loving friends owe their immunity to good health 

and strength, which enables them to stand tobacco, and, at the same 

time, to resist infection". 4 
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Throughout the 17th century, tobacco consumption in England 

rose steadily, mostly in the form of pipe smoking, but it was also 

chewed and snuffed. Snuff-taking became very popular with the 

aristocracy towards the end of the 17th century. Cigarettes were 

first made in Spain in the mid-17th century. This form of smoking 

may have been introduced into England by troops returning from the 

Crimean War. Cigarettes only began to be popular at the beginning 

of the present century, since then they have steadily tended to replace 

other forms of smoking in Britain. 1 

1.2 The Tobacco Plant 

Alkaloids are plant substances of basic reaction containing 

nitrogen and have characteristic effects on animal organisms. Chemical 

similarities between them are limited to their basic structure which 

includes various heterocyclic rings. 

Nicotine is the primary alkaloid in Nicotiana tabacum and 

Nicotiana rustica and although it is by far the most important, it 

is not the only one found. The minor alkaloids most commonly found 

include nor-nicotine, anabasine, anatabine, myosmine and trace amounts 

of some others of the pyridine class (see figure 1.1). 

Tobacco grows like any other plant, but it has an unusally large 

leaf area. The tobacco plant has the ability to synthesize and 

accumulate the alkaloid nicotine, the majority of which (ti 90%) is 

produced in the roots and transported to the leaves for storage. 

Harvesting is concerned only with the composition of the leaves and 
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Figure 1.1: Tobacco Alkaloids 
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perhaps the stalk and a small number of seeds for reproduction. 

There are more than 60 genetic species of plants belonging to 

the genus Nicotiana. Only two of them, N. tabacum and N. rustica, 

are cultivated for use as tobacco. Dawson5 has suggested that their 

survival was due only to man's interference owing to their uniquely 

high proportion of alkaloids (nicotine) and the fact that native 

tobacco use was almost entirely confined to -those species which 

contained nicotine. N. tabacum is grown extensively in many ( ti 100) 

countries throughout the world and constitutes the tobacco of commerce. 

The popular assumption is that inhalation of tobacco smoke is the 

sole source of this alkaloid. However, small quantities of nicotine 

can also be found in tomatoes, peppers and eggplants. 
6 

1.3 Treatment of the Tobacco Plant before use: Curing, Fermentation 

and Additives 

Nicotine may form either neutral or acidic salts. The form 

of occurrence in tobacco is important to the smoking properties. 

In green tobacco it is mainly present as free nicotine, but a varying 

proportion may be in the form of salts in the cured leaf, according 

to the type of curing. 

Most tobaccos are processed by an initial stage called curing. 

The mature green leaf of the tobacco plant after harvesting is subjected 

to particular conditions of humidity and temperature. Curing is 

basically an imperfectly controlled autolysis. There are essentially 

four kinds of curing processes, namely, flue-curing (heat-curing), 
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air-curing (natural curing), fire curing and sun-curing. Strictly 

speaking, each process requires air i. e. none is anaerobic. 

The process of flue-curing concerns the major part of the world's 

tobacco production. It takes place in tightly constructed barns 

that are heated by furnaces, the entire process requiring only 5-7 

days. This produces a tobacco giving an acidic smoke of light aroma 

in contrast to the product of air-curing with its alkaline smoke 

of fuller aroma. Air-curing is a procedure characterized by slow, 

gradual drying of the leaf, requiring 30-40 days for completion. 

Sometimes charcoal fires must be employed to prevent moulding and 

spoilage. Cigar tobacco and also some dark types are air-cured. 

Oriental tobaccos are sun-cured, cured by exposure to sunshine and 

are mostly grown in countries bordering the Aegean, Mediterranean 

and Black Seas. Dark fire-cured tobaccos are hung in closed barns 

and permitted to absorb products from open hardwood fires. Leaves 

cured in this manner are not used in cigarette blends, but are employed 

mostly in the manufacture of snuff (powdered tobacco). 

Little nicotine (0.1%) is lost during curing but in all cigar 

and some oriental tobacco types curing is followed by another operation 

called fermentation. Until the cured leaf of cigar tobacco has been 

fermented, it is totally unfit for cigar manufacture. Fermentation 

(sweating) is a complicated procedure, during which both physical 

and chemical properties of the leaf are drastically altered. 

Considerable nicotine may be converted to partial degradation products 

including nicotine 1'-N-oxide, 3-pyridylmethylketone, 3-pyridylpropyl- 

ketone, N-methylnicotinamide, nicotinamide, myosnine, cotinine and 

nicotinic acid. Although very little nicotine is lost during curing 
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it is not merely a process of drying or desiccation. Many enzymes 

within the leaves produce changes in the organic substances, especially 

the carbohydrates and proteins. Further changes occur during storage 

and fermentation, all of which are intended to improve the taste 

and smell of the product. Pyridine derivatives produced during these 

various processes will volatilize with nicotine and its combustion 

products so contributing, at least qualitatively, to the chemistry 

of the smoke produced. 
8 

The composition of the leaf is not only affected by curing. 

Climatic factors, additives and the paper used all contribute to 

the make up of the smoke. Climatic and mineral-nutrient factors 

modify the physical and chemical characteristics drastically, as 

shown by the fact that leaves of different composition, texture and 

quality are obtained from the same lot of seeds when they are planted 

in different parts of the world. 

"Saucing" materials or "casing" solutions containing licorice, 

sugars, syrups, honey, chocolate, balsams and other flavouring materials 

may be added to the leaf before cutting and alcohol-soluble flavours 

such as fruit extractives, menthol, oil of peppermint, oil of cloves, 

oil of cinnamon or other aromatic substances may be applied after 

cutting. These materials are added to improve the flavour, aroma 

and smoke taste. Characteristics of the smoke components are modified 

by these additives. Some pipe tobaccos may contain up to 30% saucing 

and casing material, a factor that appears to influence the 

concentration of some smoke components. 
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1.4 Cigarette paper 

Cigarette paper is manufactured from flax fibre. To regulate 

its porosity and burning characteristics and to increase its opacity, 

the paper is impregnated with 13-20% calcium carbonate and other 

salts, usually citrates or phosphates. In some parts of the world, 

rice paper, dried young banana leaves, parchment paper, or tobacco 

leaf itself are employed as cigarette wrappers. 

Differences in the make up of tobacco and all the above mentioned 

factors affect the smoke constituents resulting from their combustion. 

Thus, a knowledge of tobacco products obviously contributes to an 

understanding of smoke components which are derived from these 

materials. 

1.5 Tobacco Sooke7'9,10 

Smoke formation in any burning process is due to incomplete 

combustion. Carbon dioxide and water are the main products of complete 

combustion. In tobacco smoking, several factors contribute to the 

formation of smoke, such as poor combustibility of certain leaf 

constituents, insufficient supply of oxygen and the existence of 

a temperature gradient in the hot zone. 

During the combustion process at least three types of reactions 

occur simultaneously: pyrolysis, pyrosynthesis and distillation. 

During tobacco burning, thermal decomposition (pyrolysis) occurs 

where the organic matter is broken up into small fragments. The 

newly formed fragments being partially unstable can recombine to 
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form components not originally present in the tobacco. This step 

is called pyrosynthesis. The third process known to occur is the 

distillation of certain compounds such as nicotine and some terpenes. 

That tobacco smoking is so popular is thought to be due to the fact 

part of the nicotine contained in tobacco is transferred to the smoke 

in unchanged form by this distillation process. 

The smoke is an amalgam effect of the tobacco blend, its rate 

and form of combustion, the paper and the action of the filter. 

The tobacco blend is not merely the sum of its components. Not all 

tobaccos 'marry' together to give a satisfactory blend. 

Over 2,000 components have already been identified in smoke 

and it is expected that many more remain to be discovered. The very 

complex nature of cigarette smoke is studied in two fractions: the 

particulate phase (total particulate matter (TPM) or, erroneously, 

tar) and the gaseous (vapour) phase. The TPM not only contains the 

non-volatile particulates but also the semi-volatiles like nicotine, 

linoleic acid, palmitic acid, cresol, glycerol and phenol. In general 

it is considered to be composed of three main parts: water (ti 10%); 

tobacco alkaloids (ti 10%) and tar (ti 80%). 11 
The gaseous phase, 

although it amounts to less than 2% by weight of the total emission, 

contains many important compounds including the combustion products 

like CO and CO2 and 'also those irritants most noxious to the non- 

smoker such as aldehydes and oxides of nitrogen. Lists of some 

important components in the gas and particulate phases are presented 

in tables 1.1 and 1.2. 
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TABLE 1.1: Cigarette smoke: gas phase components (µg/cigarette) 
182 

Carbon monoxide 13,400 

Carbon dioxide 50,600 

Ammonia 80 

Hydrogen cyanide (hydrocyanic acid) 240 

Isoprene (2-Me-1,3 butadiene) 582 
Acetaldehyde 770 
Acrolein (2-propenal) 84 

Toluene 108 
N-Nitrosodimethylamine 0.08 

N-Nitrosomethylethylamine 0.03 

Hydrazine 0.03 

Nitromethane 0-5 

Nitroethane 1.1 
Nitrobenzene 25 

Acetone 578 
Benzene 67 

182 
TABLE 1.2: Cigarette Smoke: particulate phase components (pg/cigarette) 

Nicotine 1,800 

Phenol 86.4 

o-Cresol 20.4 

m-and_ p-Cresol 49.5 
2,4 Dimethylphenol 9.0 

p-Ethylphenol 18.2 

ß-Naphthylamine 0.028 

N-Nitrosonornicotine 0.14 
Carbazole 1.0 
N-Methylcarbazole 0.23 

Indole 14 
N-Methylindole 0.42 
Benz(a)anthracene 0.044 

Benzo(a)pyrene 0.025 

Fluorene 0.42 
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That part of the cigarette smoke which passes through a 

conventional Cambridge filter is defined as the organic gas phase. 

The TPM is that portion which is retained on the filter pad. 

Tobacco smoke is really a concentrated aerosol containing many 

semi-liquid particles in a gaseous phase. As many as 108-109 particles/ 

cm3 may be present. 
12 

The total range of particle sizes is approx. 

< 0.1 pm to 1 pm in diameter and the Cambridge filter will trap 99.9% 

of those greater than 0.1 pun. 

Cigarette smoke can be classified as: 

(i) mainstream smoke, which is drawn through the cigarette, by the 

smoker, during a puff. It is acidic in nature. 

(ii) sidestream smoke, the portion which leaves the cigarette from 

the area around the coal directly into the air. It gives an alkaline 

reaction13 (see figure 1.2). The chemical composition of the main- 

stream smoke is dependent on the temperature profile during the actual 

puffing, while the yield in the sidestream smoke depends on the 

smouldering and with it the static burning rate during the puff 

intermissions. The mainstream smoke is appreciably less than half 

the smoke volume and both particulate and gaseous phases are derived 

entirely from approximately the outermost 25% of the cigarette radius. 

The periphery burns more strongly than the apex and reaches the maximum 

temperature of 900-1000°C while being puffed whereas the temperature 

in the centre of the coal is approximately 800°C with a temperature 

drop of 100-150°C between puffs. The coal temperature has a significant 

effect on smoke composition. The particulate matter of the sidestream 

smoke comes mainly from the periphery but its gaseous phase, including 

most of the water, originates in the slower burning core, particularly 

between puffs. Although the smoke is formed in an instant of combustion 
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at a very high temperature it passes through a very rapidly falling 

temperature gradient. The majority of the mainstream smoke reaches 

the puff end of the cigarette at ambient temperature but for the 

final puff or two it is likely to be around 50-75°C. The higher 

temperature alters its ability to distil compounds from the remaining 

tobacco rod through which it passes. This has been verified by Ashton 

et al. who showed that less nicotine is available to the smoker in 

the first half of a cigarette. 
14 
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The exact composition and amount of smoke produced are not only 

affected by the amount and type of tobacco used, additives and paper 

but also by a number of physical variables. These variables include 

the pressure drop (draw resistance), volume, duration and frequency 

of puffs, butt length and moisture content and the presence of filters 

and their efficiencies. In a report by Bradford et al. 
'5 

using a 

smoking machine to estimate the amount of nicotine entering the mouth, 

the authors found variations even under constant machine conditions 

due to moisture content and packing differences. 15 Changing smoking 

conditions such as puff frequency or volume caused drastic changes 

in nicotine transfer. 
16 

Attempts have been made in many experimental studies involving 

smokers and in the use of smoking machines which simulate human smoking 

habits, to standardize these parameters. For example, the cigarettes 

are conditioned at constant temperature (21°C) and humidity (60-70%) 

for ' 24 hours prior to use, 
17 then smoked at the rate of 1 puff 

per minute of 2 seconds duration and a puff volume of 35 cm3 leaving 

a butt length of 23 M. 
18 

1.5.1 Nicotine and other alkaloids - transfer to smoke 

The nicotine content of cigarettes has shown a gradual decline 

in recent years. An average cigarette contains ti 10 mg of nicotine. 

The mainstream smoke which is taken into the smoker's mouth contains 

between 1 and 2 mg of nicotine per cigarette (for modern filter 

cigarettes) and of this 1-2 mg it has been found that over 90% is 

absorbed into the bloodstream via the lungs. 19 

The mainstream smoke from cigarette tobacco shows an acidic 
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reaction (pH 4.5-6.0) and it has been found that the nicotine from 

this smoke is best absorbed into the bloodstream if the smoke is 

taken into the lungs. This is partly due to the vast surface area 

for absorption and the pH of the alveolar surface fluids is ti 7.4 as 

opposed to 5.5 in the case of cigarette smoke. The pH of saliva 

is ti 5-5.20 As only ti 20% of the nicotine is present in the mainstream 

smoke, there is therefore a much greater amount of nicotine in the 

sidestream smoke. Like smoke from pipes and cigar tobacco, sidestream 

smoke is alkaline (pH 8-9), which produces a strong irritating effect. 

This is the reason pipe and cigar smoke are rarely inhaled. In alkaline 

smoke nicotine can readily be absorbed in the mouth. This means 

that the body can absorb nicotine without inhalation; 21 hence the 

concept of the "passive" smoker, a person exposed to environmental 

tobacco smoke. A passive smoker can accumulate nicotine by being 

present in a smoky atmosphere. 

There are a large number of alkaloids and other bases in cigarette 

smoke but nicotine is possibly the single most characteristic tobacco 

compound and pharmacologically the most important. 

The distribution of nicotine during the smoking of a cigarette 

was studied by Harlan et al. 
22 Under the standard conditions, one 

puff/minute, 35 cm' puff volume and a butt length of 23 Iran, the following 

percentages were obtained; 

mainstream smoke 20% 

sidestream smoke 40% 

butt 6% 

destroyed (pyrolyzed) 34% 

This transfer rate was established with plain cigarettes (without 
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a filter). The transfer rates have now decreased due to very efficient 

filters and the use of particularly well-burning tobaccos. 

While much work has been done on the quantitative presence 

of nicotine in tobacco smoke, very little is known about the secondary 

(minor) alkaloids. As they make up only ti 5% of the total alkaloid 

content of the cigarette, nicotine being the other 95%, they are 

present in extremely small quantities (microgram and submicrogram 

levels). These alkaloids, although present in only trace amounts 

in one cigarette, over a number of years the smoker will be exposed 

to a considerable quantity. 
23 Kuhn9 has compiled some of the available 

information on the transfer of minor alkaloids present in tobacco 

to the smoke. Transfer by direct distillation depends to a greater 

or lesser extent on thermal stability and volatility. Nornicotine 

is the quantitatively predominating secondary alkaloid: Jeffrey and 

Tso2 09 
reported 1.16% in tobacco. However, nornicotine is pyrolyzed 

by smoking to a much greater extent than nicotine. Only 4-5% of 

nornicotine is transferred to the mainstream smoke, ' 3% to the side- 

stream smoke and 1% of the alkaloid remains in the butt. Myosmine, 

anabasine and anatabine have also been identified in cigarette smoke, 

their presence being due to direct distillation, however myosmine 

is also a pyrolysis product of both nicotine and nornicotine. The 

only other alkaloid found in sizable quantities was cotinine. Nicotine- 

1LN-oxide, also found in tobacco, is unable to pass into smoke itself 

but may decompose to give nicotine and hence pass into the smoke 

in this form. Kuhn9 concluded that secondary alkaloids we re present 

in smoke in approximately the same ratio to nicotine as in tobacco. 
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1.5.2 Pyrolysis and Pyrosynthesis9 

As approximately 30% of the nicotine and perhaps 90% of the 

nornicotine is pyrolyzed during smoking, it is expected that pyrolysis 

products will occur in both mainstream and sidestream smoke. During 

pyrolysis the pyrrolidine ring of both nicotine and nornicotine is 

readily attacked and split, with the result that the major hetero- 

cyclic smoke constituents deriving from the alkaloids are pyridine 

and its derivatives. The many reactions which take place, dehydration, 

dehydrogenation, de-amination and cracking, produce a wide range of 

products. Nicotine produces a series of simple degradation products; 

however, identification is still difficult owing to the extremely 

low concentrations of these compounds formed. Pyrosynthesis will 

also occur producing new compounds not present in tobacco or present 

in only small concentrations. An interesting example of pyrosynthesis 

is the 100-fold increase in the concentrations of harmane and 

norharmane in going from tobacco to tobacco smoke. Although many 

of these products may be of qualitative importance in cigarette smoke, 

in all other respects nicotine is outstanding. 
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1.6 Toxicity 

Nicotine is one of the most toxic of all drugs and acts with 

a rapidity comparable to that of cyanide. The fatal dose for man 

is approximately 60 mg, although 4 mg or less usually produce alarming 

symptoms in non-habitual users. 
24 The nicotine content of one cigar 

may exceed one lethal dose for man, however, as already stated, the 

absorption of nicotine is dependent on the pH of the smoke. The 

alkaline reaction of cigar smoke means the actual absorption of nicotine 

is not strictly related to the quantities of nicotine contained either 

in the tobacco or in the smoke. 

The fact that nicotine output from the body is always less than 

the nicotine input leads to the conclusion that either nicotine is 

stored in the body or that it is broken down in some way. Knowing 

the toxicity of nicotine and the extent of the intake by the smoker 

makes storage unlikely, so to prevent the accumulation of the absorbed 

alkaloid it is possible for the body to degrade the nicotine very 

quickly and to eliminate it. In fact it is for this reason that 

smoking and the inhaling of nicotine can be practised. 
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1.7 Nicotine Absorption 

Nicotine reaches the brain, in a smoker who inhales, more rapidly 

than the heroin addict can get a "buzz" when heroin is injected into 

a vein. 
20 

Nicotine in acidic smoke absorbed through the lungs reaches 

the brain more quickly than after an intravenous injection. It takes 

only 7 seconds for nicotine absorbed through the lungs to reach the 

brain, compared with 14 seconds required for blood to flow from arm 

to brain. 

It is worth noting that nicotine may not be wholly responsible 

for the addiction to cigarette smoking. It is almost certain that 

nicotine is the reason why people smoke, smoking as a habit has never 

been practised in the absence of a pharmacologically active alkaloid. 

Although monkeys and rats will learn to self-inject nicotine for 

its own sake, indicating that it has some action which they find 

rewarding, it has not been shown that intravenous injection of nicotine 

alone would be used as a substitute for tobacco although it is extremely 

difficult to simulate cigarette smoking and the efficiency with which 

nicotine is administered. It is possible that some other constituent 

in the smoke, perhaps in the semi-volatile fraction, acts as a 

reinforcer. Also the 'puff-by-puff' form of inhalation addicts the 

smoker. This method not only provides reinforcement but a minimal 

delay time between response and the reinforcement. Furthermore, 

each inhaled puff produces a 'bolus' of blood containing a high 

concentration of nicotine, many times higher than the levels shown 

after mixing or those obtained by slower absorption of much larger 

quantities of nicotine. A smoker who smokes twenty cigarettes per 

day, taking ti ten puffs per cigarette, will get in excess of 70,000 
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high nicotine boli (shots) to his or her brain in one year. It is 

therefore not so surprising that cigarette smoking is highly addictive. 

In an attempt to simulate this type of intake, investigators have 

used a series of intravenous injections between 1 and 2 ug/kg equating 

it with the inhaling smoker who will receive the nicotine intermittently 

during the 5 or 10 minutes he or she is smoking. 
24 

Modern flue-cured cigarettes have encouraged, if not promoted, 

a switch to this very addictive form of nicotine intake. This milder 

acidic smoke minimizes the slower absorption through the buccal and 

nasal mucosae, forcing the smoker to inhale to achieve a pharmaco- 

logical effect. Once accustomed to the high nicotine peaks obtained 

on inhalation, smokers inhale even the more irritating alkaline smoke 

from which nicotine can be absorbed without intake into the lungs, 

and they are not satisfied by the slower rate of absorption. 

1,8 Self-titration and Tar-nicotine Correlation 

Smokers literally have "fingertip control" over how much nicotine 

or other smoke constituents are taken into the body. 
25 A simple 

change in the smoking puff results in a different composition of 

the smoke. Although nicotine appears to be the major factor controlling 

smoking behaviour, acting as a pharmacological reinforcer, in commercial 

cigarettes tar and nicotine content covary (r = 0.96). 
26 Several 

studies have shown that the smoker compensates for changes in the 

nicotine (tar) yield of the cigarette by changing smoking 

behaviour. 27-31 There is a downward 'titration' when the smoker has 
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made a switch to high-nicotine (high tar) cigarettes and a limited 

upward 'titration' when a change to low nicotine (low tar) cigarettes 

is made. It has been assumed, but not proven, that this self-regulation 

or 'self-titration' is related to nicotine and not some other covarying 

constituent. In fact, Gust et al. 
17 have found that puff volume, 

and hence the intake of smoke, was inversely related to the nicotine 

content of a cigarette even when tar and carbon monoxide levels 

remained constant, but Robinson et al. 
32 

also suggest that compensation 

is almost complete not only for nicotine but also for CO and HCN. 

Although most studies reported 'self-titration when comparing high- 

nicotine yield cigarettes with the smokers' own brand, evidence on 

nicotine regulation with low nicotine cigarettes was not always found. 

The main determinant of whether a cigarette has a low or a high 

nicotine yield in machine testing are the characteristics of its 

ventilation and burning. Tobacco from low-yield cigarettes does 

not contain less nicotine, therefore the nicotine/tar is available 

to the smoker under different smoking conditions. Smokers, in an 

attempt to keep their intake of nicotine constant, may increase their 

exposure to other smoke components by smoking the low nicotine/tar 

cigarettes more intensively or inhaling more deeply, that is, they 

take in more tar and CO per unit of nicotine. This may partially 

explain the limited ability of smokers to 'titrate' upwards when the 

nicotine yield of the cigarette is low. 33 They may have difficulty 

in tolerating the increased smoke intake that would be required to 

compensate for the lower delivery of nicotine. Russell et al. 
34 

speculated that offering ultra-low nicotine cigarettes would make 

up-regulation very difficult and therefore incomplete. In a study 
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by Dunn and Freiesleben35 evidence was found to support the view 

that lung exposure to smoke decreased when smoking the high nicotine 

yield cigarettes and Russell36 went so far as to suggest that tar 

intake is more likely to be reduced by developing low-tar, medium 

nicotine cigarettes. 

1.9 Tissue Distribution 

After absorption through the lungs, nasal mucosa or bronchial 

epithelium, nicotine is rapidly assimilated into the blood stream 

and distributed around the body. The presence of nicotine in various 

organs was first reported by Bonaventura Orfila who detected nicotine 

in the liver, kidney, lungs and blood of animals poisoned by nicotine. 

Schniterlöw et al. 
37,38 followed at short-time intervals the 

distribution of 
14C-labelled 

nicotine after a single dose of nicotine 

using wholebody autoradiography in combination with radioassay. 

These methods visualize the distribution of the radioactive isotope 

present, but as they are based only on the presence or absence of 

the radioactive indicator they give no hint whether it is the parent 

compound or its possible metabolites. 

The picture of the distribution of radioactivity changes rapidly 

with time, hence it is important to note the exact time which has 

elapsed between the administration of nicotine and the tissues being 

autoradiographed. A mouse sacrificed 5 minutes after an i. v. injection 

of 
14C-nicotine 

showed a very high concentration of radioactivity 

in the brain, adrenal gland and kidneys. Some radioactivity was 
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also observed in the liver, heart - muscle and salivary glands. 

However, with animals sacrificed some 30 minutes . after 

i. v. injections, the radioactivity in the brain had decreased 

considerably. As the time between the i. v. administration of 
14C- 

nicotine and the sacrificing of the animal increased, - the brain 

showed less and less radioactivity. This is the reason why Ganz, 

Kelsey and Geiling39 found only traces of nicotine in the brain whereas 

Werle and Meyer40 reported that the brain contained the highest amount 

of nicotine. Ganz et al. 
39 

made their determination 3 and 6 hours 

after i. v. injection of nicotine whereas Werle et al. 
40 did theirs 

almost immediately after the nicotine was administered. In experiments 

with pregnant mice it was clear that nicotine freely passes the 

placental barrier. 37 Considerable amounts of radioactivity remain 

in the excretory organs of the mouse, i. e. the kidney, liver and 

gastric mucosa even 30 mies after nicotine administration. 

Schmiterlöw and Hansson37 also studied the superior cervical 

ganglion of the cat in greater detail. Many of the desired effects 

of nicotine occur in the brain due to nicotine action on the autonomic 

ganglia. They found that initially the radioactivity is localized 

in the ganglion cells and not the connective tissue. However, it 

was also apparent that some ganglion cells contained more radioactivity 

than others. Volle41 found evidence that the ganglion cells are 

"functionally heterogenous" which is in agreement with the hypothesis 

42 
of Shaw et al. of functional differences among synapses. 
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1.10 Metabolism of Nicotine in Various Tissues 

Mammalian metabolism of nicotine has been of interest for many 

years; not solely because of the popularity of cigarettes, where the 

metabolites of nicotine might be responsible for the effects produced 

by smoking, but as a pharmacological tool. Nicotine resembles important 

enzymatic constituents and natural amino acids, proline and hydroxy- 

proline, structurally. 

Corcoran et al. 
43 

observed that only a small fraction of the 

absorbed nicotine is eliminated in the urine. Bennett et al. 
44 from 

studies on dogs reported only 10% approximately of the administered 
14C-nicotine 

excreted unchanged. On the basis of animal experiments 

it can be concluded that this low excretion of nicotine probably 

arises from an active metabolism and does not indicate storage or 

excretion by other pathways. 

Lautenbach45 in 1876 was the first to show that passage of nicotine 

through the liver prevented its toxic effects in the dog. Animals 

with liver damage tolerate much lower levels of nicotine than healthy 

animals. 
46 This also explains why ingestion has never been used 

as a method for the intake of tobacco. 20 Nicotine, after absorption 

through the gut, passes through the liver where it is metabolized, 

so preventing nicotine from getting to the brain in its active form. 

Absorption through the lung, mouth or nose has the advantage, as it 

bypasses the liver initially. 

Miller and Larson47 established in 1953 that tissues other than 

the liver were capable of detoxifying nicotine. Hansson and 

Schmiterlöw48,49 have also investigated the biotransformation of 

nicotine in various tissues. They studied the contribution made 
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by different organs in the metabolism of nicotine. Tissues were 

removed from mice and rats at various times after the injection of 
14C 

-nicotine (in vivo studies) and the tissues extracted with 

chloroform. The radioactive compounds were then separated by paper 

chromatography. Various tissue slices were also incubated with radio- 

actively labelled nicotine (in vitro studies). TLC was used to 

identify some of the breakdown products and measure their quantitative 

significances. These methods were not very selective and not sensitive 

enough to detect small amounts of radioactive compounds. From their 

experiments Hansson and Schmiterlöw showed that as time passes, more 

and more of the nicotine is transformed into metabolites, the main 

one being cotinine. The lungs and kidney, in addition to the liver, 

were found to metabolize nicotine, while the brain, diaphragm, spleen, 

stomach, small intestine and adrenal glands did not. The chloroform 

fraction from the liver extraction gave 5 radioactive compounds in 

addition to nicotine on TLC separation. The kidney produced two 

metabolites and 
14C 02; in the lung only one other metabolite was 

found, cotinine. 

1.11 Proposed Meclumisms of Metabolism 

Cotinine was the first distinctive mammalian metabolite of 

nicotine, identified in the form of its picrate and dipicrate by 

McKennis et al. in 1957.50 This is the major in vivo pathway of 

metabolism in most species. The presence of cotinine has been confirmed 

in animal studies on the rabbit, 
51'52 

rat53 and mouse54 and in urine 
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from human subjects55 after smoking or ingestion of nicotine. 

Conversion of nicotine to cotinine occurs in the lungs, kidney and 

liver, which has been established by in vitro studies involving tissue 

from several species. 
48 

The mechanism for the formation of cotinine is complex. Hucker 

et al. 
51 

and McKennis et al. 
56 have proposed different pathways for 

the formation of cotinine from nicotine. McKennis et al. 
50'57 isolated 

7-(3-pyridyl. )-1r-methylaminobutyric acid from urine after the adminis- 

tration of nicotine and assigned it as an intermediate in the formation 

of cotinine, suggesting that it can be converted to cotinine by ring 

closure. This acid can spontaneously form its lactam, cotinine, 

at physiological pH and temperature. Later Hucker et al. 
52 

showed 

that little if any cotinine is formed in the liver microsomes by 

the mechanism put forward by McKennis et al. Hucker et al. 
52, from 

in vitro experiments, proposed hydroxynicotine as a possible 

intermediate. Initial hydroxylation of nicotine in the alpha (a) 

position of the pyrrolidine ring would give the intermediate hydroxy- 

nicotine which in turn could be oxidized to cotinine. 
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The acid identified by McKennis et al. can also be formed by the 

internal dealkylation of hydroxynicotine to form the aldehyde (as 

shown below) which can then be oxidized to the Y-(3-pyridyl)-Y-methyl- 

aminobutyric acid. 
56 

Hydroxynicotine 

N 

iv 

CH3 

3 
CH 

H NH 

OH CHO 
"Z- 

OQ 
N 

Y-(3-pyridyl)-Y-methyl- 
amino butyraldehyde 

CH3 
NH 

COH 
2 

Y-(3-pyridyl)-Y-methyl- 
amino butyric acid 

Papadopoulos et a1.58 although providing additional evidence for 

the formation of cotinine from nicotine in rabbit tissues in vitro and 

in vivo were not able to detect either of the proposed intermediates. 

Evidence of the formation of 8 major nicotine metabolites was 

presented by Papadopoulos et al. 58 
which suggested more than one 

major pathway in operation for the metabolism of nicotine; an oxidative 

process, that yields cotinine as the major metabolite, and a demethylation 
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process, resulting in the formation of demethylation products of both 

nicotine and cotinine. The four metabolites positively identified 

by Papadopoulos59 include cotinine, nornicotine, demethylcotinine and 

pyridylacetic acid. Nicotine 1'-N-oxide was tentatively named as 

one of the unidentified metabolites. 

In Hansson and Schmiterlöw's48 early experiments on the 

identification of nicotine metabolites using radioactively labelled 

nicotine, the presence or absence of demethylated products of nicotine 

metabolism could not be detected as the 
14C 

label was on the methyl 

group of the pyrrolidine ring. 

Although Hucker et al. reported52 in 1959 that the conversion 

of nicotine to nornicotine by a rabbit liver preparation was negligible, 

McKennis et al. 
60 

presented evidence three years later for demethylation 

in the metabolism of nicotine by the isolation of demethylcotinine 

in the urine of dogs following the administration of nicotine; and 

by the demonstration that the methyl group of nicotine is the precursor 

of expired CO2 in the rat. From in vitro enzymatic studies, 

Papadopoulos58 identified both metabolic nornicotine and demethyl- 

cotinine lending additional support to the findings of McKennis et al. 

for the demethylation pathways. In a later study, Papadopoulos61 

isolated and characterized nornicotine as a metabolite of nicotine. 

Demethylation of nicotine to nornicotine and the conversion of the 

latter to demethylcotinine was also demonstrated. 

The mechanism of nicotine demethylation has not as yet been 

established. In vitro and in vivo studies have shown nornicotine 

formation from nicotine and demethylcotinine formation from nicotine 

and nornicotine. Demethylcotinine was detected after the administration 
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of cotinine to dogs, mice and rats. Even though it was not detected 

in humans after cotinine administration, it was present in the urine 

of smokers. Although McKennis et al. 
62 

favoured the simplest 

explanation for the formation of demethylcotinine, which would involve 

only the participation of cotinine or Y-(3-pyridyl)-Y-methyl-amino- 

butyric acid, Papadopoulos61 considered there was lack of evidence 

for demethylcotinine formation from cotinine, and gave the following 

sequence of reactions in the metabolism of nicotine by the rabbit. 

" ýNý 

CH3 
N 

Nicotine 

\ 
CH3 

N 

IN 

Nornicotine 

+ HCHO 

Cotinine Demethylcotinine 

Werle et al. 
63 

also considered the possibility that nicotine 

was demethylated to give nornicotine. This opened up the possibility 

of additional metabolic pathways to demethylcotinine with nornicotine 
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and possibly 1r-(3-pyridyl)-Y-aminobutyric acid as intermediates and 

no involvement of cotinine. 

NH2 

N 
C02H H 

NN 

Nornicotine Y-(3-pyridyl)-Y-aminobutyric acid 

ý ýN/ ý0 
H 

ýN 

demethylcotinine 

Nicotine-i' -N-oxide has been detected in the urine of smokers, 
64 

cats 
65 

and rabbits 
61 

and it is formed in vitro in hepatic and 

lung preparations from several species. 
66 

The formation of nicotine- 

1' -N-oxide is stereochemically governed. Booth and Boyland64 reported 

that nicotine was enzymically oxidized into both isomers of nicotine- 

1'-N-oxide in vitro. The relative amounts of each isomer formed 

varied with different species and with different tissues. Reduction 

of nicotine-1'-N-oxide back to nicotine in vivo and in vitro has 

also been reported. 
67 

It is thought that reduction is due to metabolism 

by the gut flora or by enzymes of the intestinal wall. Oral 



29 

adninistation of nicotine-1'-N-oxide resulted in urinary excretion 

of both nicotine and cotinine indicating that reduction did occur. 

On intravenous injection of nicotine-1'-N-oxide, it was completely 

recovered in urine, unchanged. An important route for the conversion 

of nitrogenous foreign compounds into water soluble metabolites may 

be by the N-oxidation of ring N-atoms. 
68 

N-oxidation of cotinine 

has also been reported, in this case it is the pyridine nitrogen 

which is oxidized. Cotinine-N-oxide has been detected in vivo in 

the monkey. 
69 

Hydroxycotinine was found in smokers' urine 
55 

and has also been 

detected in urine from dogs, 7° 
rats, 

71 
mice, 

72 
monkeys73 and humans 

after cotinine administration. 74 

isomeric forms of hydroxycotinine, 

OH 

N0 
CH and 

N3 

After synthesizing the most likely 

HO 

CH3 
0 

their optical rotation and melting points were compared with metabolic 

hydroxycotinine and the structure was tentatively described as having 

the C-hydroxyl group in the a position to the carbonyl group in the 

pyrrolidone ring although it was not designated cis or trans. 75 

Other metabolites of nicotine which have been identified are 

thought to arise by cleavage of the pyrrolidone ring of cotinine 
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or demethylcotinine. Hydrolysis of the amide linkage in cotinine 

results in the formation of Y-(3-pyridyl)-Y-methylaminobutyric acid 

and oxidative 1,2 cleavage gives Y-(3-pyridyl)-Y-oxo-N-methylbutyramide. 
23 

The pyrrolidone ring can undergo a number of other changes which 

lead to the formation of 3-pyridylacetic acid in the dog, 70 
the mouse72 

and man. 
76 No evidence exists for further oxidation of 3-pyridyl 

acetic acid to nicotinic acid. 
23 

Many different routes are involved in the detoxification of 

nicotine in the body. It is far more diverse and complex than was 

initially thought. At least eighteen metabolites23 have already 

been identified but still less than 30% of the total urinary metabolites 

can be accounted for (see figure 1.3). 

1.12 Excretion 

Ganz, Kelsey and Geiling39 from studies in rats and mice found 

the main excretory route to be the urine. This has been confirmed 

by many other studies including that of Bennett et al. 
44I McKennis 

et al. 
77, 

using dogs, and Turner78 who reported that urinary excretion 

in the cat accounted for 90% of the total (multiple) dose in 72 hours. 

Ganz et al. 
391 

using randomly labelled 
14C-nicotine, 

stated that 

approximately 50% of the radioactivity of a single dose was excreted 

within 6 hours after injection. The urinary excretion of radioactivity 

in the rat was evident almost immediately after injection and almost 

all the radioactivity was excreted during the course of 16 hours. 

Each of the studies however report a different percentage for the 
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Figure 1.3: Metabolic Routes for the Metabolism of Nicotine 
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excretion of unchanged nicotine. McKennis50 found approximately 

10% of the radioactivity present as nicotine whereas Turner78 reported 

only 2.5% and Ganz et al. 
39 

reported a value of 25%, although it 

should be noted that different species were studied in each case. 

As with absorption, the excretion of nicotine is pH dependent. 

One pKa value for nicotine is 7.9. Under acidic conditions a very 

small percentage of nicotine is present as the undissociated (free) 

base, whereas at more alkaline pH values, a considerable proportion 

of the free base is present. The undissociated base nicotine is 

lipid soluble and it can permeate cell membranes readily. It can 

be absorbed not only through the lungs but also very quickly through 

the bladder and renal tubules. 79 
Therefore, at an acidic pH below 

6.0 (ti 5-5) 79 
the nicotine, in ionized form, cannot be reabsorbed 

through the renal tubules. The excretion of unchanged nicotine is 

therefore enhanced to perhaps as much as 30-40% of an administered 

dose. At alkaline pH values of 7 or greater (, 8)79, the nicotine 

now present mostly as free base can be reabsorbed through the renal 

tubules and also the bladder. This has been verified when the urine 

has been acidified for example by the intake of vitamin C, nicotine 

excretion is enhanced. Intake of sodium bicarbonate switches the 

urine pH to the alkaline side causing a decrease in the urinary 

excretion of nicotine. It seems plausible that as a result of the 

increased reabsorption of nicotine there may be a decrease in the 

number of cigarettes needed to maintain the plasma nicotine level. 

From plasma nicotine profiles in subjects with alkaline urinary pH, 

a "rebound" in the curve was noted after smoking stopped - due to 

reabsorption. Russell and Feyerabend20 found that plasma nicotine 
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levels were affected by changes in the urinary pH. In fact, the 

rate of renal clearance of nicotine can influence the intake of nicotine 

through smoking. Benowitz et al. found that the smoker partially 
8o 

compensated for the increase in the rate of elimination of nicotine 

under acidic urine conditions, by increased nicotine intake. Most 

smokers smoked the same number of cigarettes but may have achieved 

increased intake by changing their puff profile or depth of inhalation. 

However, only half the excess urinary nicotine loss was replaced. 

Unfortunately, Benowitz et al. found that under alkali treatment there 

was only a small decrease in nicotine excretion over a 24 hour period 

compared with the controls, therefore variation in cigarette smoking 

habits are unlikely. Fix et al. 
81 

had proposed urinary alkalization. 

to decrease renal clearance of nicotine which in turn would cause 

a reduction in nicotine consumption. 

Beckett et al. 
82 

concluded that urinary excretion of nicotine 

was unaffected by urine flow but Matsukura et al. 
83 

thought nicotine 

excretion was volume dependent, and Feyerabend and Russel184 found 

it to be proportional to the rate of urine flow, under acidic 

conditions. 

The influence of both pH and urine flow rate on the excretion 

of cotinine is also a source of disagreement in the literature. 

Beckett et al. 
82 

reported cotinine excretion to be slightly pH dependent 

and also volume dependent. This view was supported by Matsukura 

et al. 
83 

who found urinary excretion of cotinine was affected more 

noticeably than nicotine by changes in urine flow. However this 

finding was contradicted in another paper by the same author 
85 

which 

reports 'no correlation between urinary cotinine excretion and pH 
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or urine flow after smoking'. 

Nicotine- 1'-N-oxide, being a highly polar water soluble compound, 

not easily absorbed in the body at any pH, was found to be independent 

of changes in both urinary pH and flow rate. 
82 

From all the observations, pH is undoubtedly the more influential 

factor affecting the excretion rates. Nicotine excretion "is very 

rapid, the peak concentration occurring about 15 mins82 after smoking 

a single cigarette. There is a tendency for the plasma nicotine 

in habitual smokers to increase over the first few hours during which 

smoking takes place, after which it tends to remain fairly constant. 

This "steady state" could be the result of self-titration by the 

smoker. There is no significant accumulation of nicotine in the 

body from one day to the next (t1 nicotine < 30 mins). 
86 

The peak of cotinine excretion could be up to 4 hours66 after 

smoking a single cigarette. Although cotinine (pKa 4.5)87 is 

essentially not ionized in blood at pH 7.4, the free base is not 

soluble in lipids so its rate of distribution into body tissues is 

slow. This could explain why cotinine remains in the blood system 

for much longer than nicotine (t1 cotinine 30 hours). 
80 

The rate 

of urinary excretion of cotinine was much slower than either nicotine 

or nicotine-i' -N-oxide. Nicotine and nicotine- 1'-N-oxide have similar 

excretion profiles under maintained acidic urinary pH. The fraction 

of nicotine- 1'-N-oxide excreted by smokers in 24 hours under normal 

conditions was approximately half that of cotinine excreted. 
82 

Non-anokers may passively inhale other people's cigarette smoke 

(passive smokers). Horning et al. 
88 

reported that when non-smokers 

and smokers shared a laboratory area, nicotine was found to be present 
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in non-smokers' urine to the extent of about 5% of that observed 

for smokers. It is probable that the route of nicotine transfer 

for non-smokers is through room air and in fact nicotine was found 

in the lab air by Horning et al. This finding is in accordance with 

other studies such as that by Feyerabend et al. 
89 

On analysis of 

plasma samples, a peak corresponding to that of nicotine was found 

in non-smokers' samples; they identified this peak as nicotine. 

This was later confirmed by Falkman et al. 
90 

using a mass spectrometric 

method in which all the fragments characteristic of nicotine were 

present. Although the same peak was observed earlier by Isaac and 

Rand, 
86 

it was considered to be an interferant and the levels found 

in non-smokers, the so-called blanks, were subtracted from the values 

of blood nicotine concentrations obtained for smokers. Unfortunately 

the blood nicotine concentrations found in non-smokers are not constant. 

According to Russell et al., 
91 

the difference between those non-smokers 

who have been heavily exposed to tobacco smoke and those who have 

not is highly significant statistically (P < 0.001). In a more recent 

paper, Feyerabend et al. 
92 

showed that the levels of nicotine excreted 

by non-smokers who had been exposed to tobacco smoke in the period 

prior to sampling were similar to those levels found in light smokers, 

who smoked up to three cigarettes before sampling. 
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1.13 How Smoking affects the Metabolism of Nicotine and hence its 

Excretion 

Nicotine is extremely toxic, only small quantities of it can 

be tolerated by man and so it is broken down and eliminated rapidly 

from blood after smoking. Beckett et al. 
93 have suggested that smoking 

induces nicotine metabolism. Smokers certainly develop a tolerance 

for nicotine - at first their bodies tend to reject it and the 

unpleasant effects which it can produce, such as dizziness and nausea, 

however after the first few cigarettes these effects disappear. 

In a study on the effects of smoking on nicotine disposition Kyerematen 

et al-94 found that both plasma nicotine and cotinine concentrations 

decay faster in cigarette smokers than in non-smokers. This is in 

contrast to habituated snuff dippers who were found to have similar 

mean plasma nicotine t, values and habituated pipe smokers where 2 
t, values were only very slightly shorter than in'naive'users. 

2 
From in vitro studies on the effect of nicotine treatment on 

the metabolism of nicotine in the mouse liver, Stalhandske et al. 
95 

found an increase, though not a significant increase, in the formation 

of cotinine. They reported a dual effect of nicotine treatment on 

liver metabolism. Nicotine may both stimulate and inhibit its 

metabolism depending on the dose administered and the duration of 

treatment. 

The chemical(s) in tobacco smoke responsible for the enhancement 

of nicotine and cotinine metabolism are not known although polycyclic 

hydrocarbons have been suspected. Pantuck et al. 
96 investigated 

the effect pf cigarette smoking on phenacetin metabolism in rats 

and humans. They also singled out one of the polycyclic hydrocarbons 
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present in cigarette smoke and examined whether it, in particular, 

had any effect on the phenacetin metabolism in the rat. They found 

that the mean concentrations of phenacetin in the plasmas of smokers 

were considerably lower (' 20%) than in non-smokers, leading to 

the conclusion that cigarette smoking stimulates the metabolism of 

phenacetin in man. In rats, treatment with 3,4-benzpyrene injected 

intraperitoneally in corn oil also enhanced the metabolism of 

phenacetin. Pantuck et al. 
96 

also noted that the plasma concentration 

of the major metabolite of phenacetin was similar in both smokers 

and non-smokers. This may indicate enhanced metabolism of the 

metabolite or promotion of alternative routes of metabolism. 

Results which may appear to contradict the evidence for increased 

metabolism of nicotine in smokers were obtained by Haines et al. 
97 

They found that the mean plasma nicotine concentrations were higher 

for habituated than for'naive'smokers. These results can be explained by 

the fact that habituated smokers are capable of extracting more nicotine 

from inhaled smoke than'naive'smokers, so giving higher concentrations 

of nicotine in the bloodstream. 

As cigarette smoking can affect the metabolism of some drugs 

(e. g. phenacetin), it is also possible that other drugs can cause 

changes in nicotine metabolism. Adir et al. 
98 have investigated 

the effect of ethanol pretreatment on the metabolism of nicotine 

in rats. This is a very interesting and important combination of 

drugs as a statistically significant correlation has already been 

established between high alcohol (ethanol) consumption and heavy 

smoking. 
99,100 

The results showed plasma nicotine levels in rats 

pretreated with ethanol were significantly lower than in the control 
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group. The plasma cotinine concentrations "were higher during its 

formation and reached a maximum in a shorter time than in the control 

group which was pretreated with sucrose solution. The maximum plasma 

cotinine concentration was similar in both groups but the concentrations 

during elimination were always lower in the ethanol pretreated group. 

The lower plasma nicotine levels which resulted from ethanol pre- 

treatment may cause the smoker to increase the number of cigarettes 

smoked which would lead to a positive correlation between alcohol 

consumption and number of cigarettes smoked. 

1.14 Other Factors which affect the Metaboli9n of Nicotine 

In addition to the effects which influence the metabolism of 

nicotine, already discussed, Beckett et al. 
101 

reported evidence 

supporting the existence of sex differences in the metabolism of 

nicotine in humans. Nicotine was administered to groups of male and 

female smokers and non-smokers by i. v. injection, after which Beckett 

et al. found that male smokers fell into two distinct groups, one 

of which showed a lower percentage of both nicotine and cotinine 

excreted as compared with non-smoking males, and another group which 

showed a higher percentage of cotinine excreted but similar amounts 

of nicotine to those in male non-smokers. Female smokers excreted 

more cotinine but less nicotine than female non-smokers. The 

percentage of each excreted was higher than for male smokers. The 

male non-smokers excrete less nicotine but more cotinine than female 

non-smokers showing that the metabolism of nicotine is sex dependent. 

The metabolism of nicotine in smokers is yet more complicated. 

The excretion profile for female smokers showed increased nicotine 
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metabolism favouring the formation of cotinine or where further 

metabolism of cotinine is prevented. In male smokers, where the 

excretion of both nicotine and cotinine is low, it is possible that 

cigarette smoking has enhanced the metabolism, whereas when the 

excretion of cotinine is high, this could be either the result again 

of further metabolism of cotinine or the formation of cotinine being 

emphasised as the metabolic pathway. 

Age may also affect metabolism, although this has not been studied 

in depth. Stalhandske et al. 
102 found that cotinine formation improved 

with age in a study with mice. 

1.15 Correlation between the Numbers of Cigarettes smoked and the 

Blood/Urinary Nicotine Values 

A relationship between the number of cigarettes smoked or the 

nicotine yield of cigarettes and blood or urinary nicotine 

concentrations has been sought. Russell et al. 
103 have reported 

a correlation between blood nicotine concentration and the nicotine 

yield of cigarettes. Although the correlation was significant, it 

was low, accounting for only 4.4% of the variation in blood nicotine 

concentrations. In a later paper, Feyerabend et al. 
92 

suggested 

that the plasma nicotine level just after smoking a cigarette may 

depend more on the smoking profile, the way the cigarette is smoked, 

than on its nicotine yield or the number which have been smoked over 

the previous few hours. Nicotine yields of cigarettes are measured 

by smoking machines but people do not smoke like the smoking machine. 
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The lack of correlation between plasma or urinary nicotine 

concentrations and number or nicotine yield of the cigarettes is 

less surprising when all the factors such as absorption, metabolism 

and excretion are considered. pH Effects, sex differences in metabolism 

and the fact that smoking itself can enhance breakdown have already 

been reported. 
66 Individuals' 

-observed nicotine levels can 

also show variations due to differences in lung efficiency, 

age, and other, perhaps genetic,, factors. Some 

workers 
27,104-107 have switched to using blood cotinine concentrations 

as a measure of nicotine exposure. The long half -life of cotinine 

means that its concentration in blood varies very little over the 

course of a smoking day. It is not a perfect marker as there will 

be individual variations in the conversion of nicotine to cotinine. 

Quantitative measurement of nicotine and more of its metabolites 

might give a clearer picture of the relationship between the number 

of cigarettes or nicotine yield, and the resulting concentration 

levels present in blood or urine after smoking. 

A striking example of the possible use or importance of the 

quantitative determination of nicotine metabolites was cited by Gorrod 

et al. 
i08 Analysis of two groups of subjects, one with confirmed 

urinary cancer and the other a control group of normal subjects, 

showed that there was a significantly higher ratio of cotinine to 

nicotine-1'-N-oxide in cancer patients than in the control group. 

It was not known whether the change in the ratio was a possible cause 

of the disease or as a result of it or its treatment. 
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1.16 Effects of Nicotine: Haw it works 

There is little doubt that people smoke for the nicotine and 

the effects that smoking doses of nicotine produce on the central 

and peripheral nervous system. Continuous cigarette smoking is 

considered an attempt by the smoker to maintain the plasma nicotine 

level. 

Nicotine can have an effect on almost every organ in the body 

either directly or indirectly. Nicotine is a ganglionic-blocking 

agent, that is it can block nerve impulse transmission across synapses 

in the autonomic ganglia. Nerve impulses are transmitted by the 

release of acetylcholine at the synapse. Ganglionic-blocking drugs 

do not interfere with the liberation of acetylcholine or with its 

rate of synthesis or hydrolysis, they mimic the action of acetylcholine. 

There are two main classes of ganglionic-blocking agents. Nicotine 

has been classed as one of the depolarizing drugs. This type of 

drug initially causes stimulation of the postsynaptic receptors, 

the stimulation persists and so results in depolarization and depression 

of the synaptic transmission. Nicotine also causes the release of 

amine transmitters such as noradrenaline, serotonin and possibly 

dopamine which affect the whole nervous system. 
24 

In general small doses of nicotine stimulate the central nervous 

system (CNS), whereas with large doses depression follows stimulation. 

Doses or concentrations of nicotine capable of producing depression 

or paralysis are never involved in normal smoking by habitual smokers. 

Although of interest, the pharmacological effects of nicotine 

should not be confused with those of tobacco smoke. Nicotine is 

a very important factor in tobacco usage but it is clearly not the 
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only one involved. 

In many pharmacological studies, the dosage or concentration 

of nicotine used is very much greater than that which can be extracted 

even by the habitual smoker. Also the route of administration may 

differ, intravenous injection rather than inhalation may be used 

due to the more precise control it gives the experimenter over the 

dose administered. However these changes may not give compatible 

results. 

1.17 Health Consequences of making 

Many investigations have examined links between particular 

factors and diseases and, although links are often found, drawing 

conclusions about causality can still be very 'difficult. It has 

been reported that lung cancer affects smokers more often than non- 

smokers and heavy smokers are most at risk. Other factors such as 

air pollution or occupation may also contribute to the end result 

but smoking is considered to be a primary cause. 
' Investigations 

have also established strong associations between smoking and other 

cancers such as those of the oral cavity, larynx, oesophagus, pancreas, 

bladder and kidney. 109 
Coronary heart disease is a more frequent 

cause of death in smokers, particularly cigarette smokers, than in 

non-smokers. However many other factors such as diet and stress 

are also associated with heart disease and it quite often affects 

non-smokers. 
' In 1957 gimpson110 showed that women who smoke during 

pregnancy tend to give birth to underweight babies. Butler et al. 
ill 
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confirmed the association between cigarette smoking during pregnancy 

and reduced birth weight and added that it also increased late foetal 

and neonatal mortality rates. 

The form of tobacco use is an important factor in the risk of 

developing diseases associated with smoking. Cigarette smokers are 

approximately ten times more likely to get lung cancer than non- 

smokers. In contrast, as most pipe and cigar smokers do not inhale, 

their risk of developing lung cancer is decreased when compared to 

cigarette smokers but it is still higher than for non-smokers. 
109 

Active smoking with inhalation is a very effective method of getting 

smoke into the lungs. It consists of drawing in a small volume of 

smoke (an average of about 35 cm' in the case of cigarettes) into 

the mouth, whereafter it is drawn into the lungs. Whether considering 

gases or particles, this technique draws the inhaled substance further 

into the lungs than if it were distributed throughout the whole volume 

of tidal air. A puff of cigarette smoke is completely washed into 

the depths of the lungs by the following tidal air. 
12 Chewing tobacco 

and snuff dipping 
112 

result in an increased risk of oral cancer and 

cancer of the cheek and gum. 

Several prospective studies on the association between smoking 

and disease and smoking and mortality are listed in table 1.3. The 

report by Hammond 
116 

gave support to the conclusion that for all 

categories of current smokers, risk of death from cancers of the 

lung, larynx, oral cavity, bladder and kidney was significantly higher. 

Coronary heart disease was also found to be higher in cigarette smokers 

than in non-anokers. 
113,116 Death rates of current smokers increased 

with the number of cigarettes smoked per day, the degree of inhalation 
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TABLE 1.3: Prospective Studies 

Ref. Authors Participants Year Male Female 
started participants participants 

113 Doll & Hill British 1951 40,000 6,000 
physicians 

114 Haumond & Horn White males 1952 187,783 - 

115 Dorn US veterans 1954 290,000 < 1% 

116 Hammond Men and 1959/60 1 million 562,671 
women 

and starting the habit at a young age. Death rates of ex-cigarette 

smokers decreased with the length of time since they last smoked. 

However, some unexpected figures were uncovered. Lung cancer death 

rates in Japan, USA and among white male South Africans were much 

lower than predicted from their cigarette consumption. Clearly other 

factors besides smoking are involved in the initiation of lung cancer. 

1.18 Passive Smoking and the Health C aperýces 

Over recent years, concern has grown over the exposure of the 

non-smoker to sidestream cigarette smoke and the health hazards 

associated with inhalation. 117 Nicotine which has been used as a 

tracer for the particulate matter has been identified in the urine 

of non-smokers although the levels excreted were lower than those 

found in smokers. Carbon monoxide levels in blood measured as 

carboxyhaemoglobin (COHb) have also been cited118 as an indication 
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of exposure to tobacco smoke. Elevated levels of COHb have been 

found in non-smokers exposed to a closed atmosphere heavily contaminated 

with tobacco smoke. However smoking is not the only factor which 

can cause raised COHb levels; industrial and domestic pollution and 

leaking motor car exhausts can also contribute. 
119 

Sidestream smoke is much less complex chemically, the minor 

constituents of mainstream smoke being much less prevalent. There 

are some compounds which are present in higher amounts including 

ammonia, nitrogen oxides and total particulate matter (including 

nicotine). The passive smoker inhales the sidestream smoke after 

it has been diluted with air and lost some of the particulate matter 

through retention on walls, floors and other surfaces. Unlike the 

smoker, who inhales a concentrated 35 cm3 of smoke, the passive smoker 

inhales the environmental tobacco smoke distributed throughout the 

tidal air and if nasal breathing is used, many more particles will 

be filtered out in the nose. 
12 Bridge and Corn120 found that the 

levels of CO from tobacco sidestream smoke are not hazardous to non- 

smokers but the concentrations of particulate matter emitted can exceed 

the recommended maximum concentration for suspended particulate matter. 

It is important to note that many studies involve exposure to 

environmental smoke far in excess of any real life situation. 

Many people find smoke irritating, but for people already suffering 

from a heart condition or asthma, exposure may have more serious 

consequences. 
121 Passive smokers with angina need less exercise 

time to bring on pain, even in a well ventilated room. 
122 

Some very interesting epidemiological studies have been carried 

out on the effects of passive smoking on one member of a spouse pair. 
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Correa et al. 
123 found an increased risk of lung cancer among non- 

smoking husbands or wives when the other partner was a heavy smoker. 

The effect of the smoking habits of one partner on the lung cancer 

risk of the other was first reported by Hirayama. 124 
The study was 

carried out in Japan, a traditional society where' 75% of men but only 

15% of women smoke. There was a statistically significant correlation 

between the amount the husband smoked and the mortality of the non- 

smoking wife from lung cancer. 

A similar study in Greece125 again reported a statistically 

significant association beween the husband's smoking habits and the 

wife's lung cancer risk. However Garfinkel126 on comparing non- 

smoking women married to non-smoking husbands with non-smokers married 

to smoking husands in the USA found very little, if any, increased 

risk of lung cancer. 

Exposure of women in Japan and Greece to other people's smoke 

is probably very different from that in the USA. In Greece smoking 

was uncommon among women until about 1960 whereas many men were already 

habitual smokers. Therefore trends in the small effects of passive 

smoking may be much more easily distinguished. Unfortunately, due 

to the small numbers of smoking wives it was impossible for a 

comparison between the lung cancer rates for the active smokers and 

those for the passive smokers to be made. 

In another study by White et al., 
127 

testing the small airways 

function, it was found that not only did non-smokers exposed to a 

smoky environment score less, but also that they fell into the same 

risk category as smokers who do not inhale and light smokers who 

inhale between 1 and 10 cigarettes per day. 
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1.19 Chemicals Associated with the Health Risks 

Many of the thousands of chemicals in smoke are a potential 

health hazard, some are known to be carcinogenic e. g. hydrogen cyanide, 

acrol"einI and nitrosoamines. 
128,129 

However it is not known if any 

of these compounds, most present only in infinitesimal trace amounts, 

are the cause of or even contribute to the cause of diseases associated 

with cigarette smoking. Although they may not be present in sufficient 

quantities to initiate cancer in smokers, they may reinforce one 

another's cancer-causing potential or produce irritation, so making 

the tissue more prone to cancer. 
1 

Nicotine and carbon monoxidel3o have come in for particular 

scrutiny. Nicotine is known to have cardiovascular effects. Changes 

in blood pressure and pulse rate have been recorded. 
131 Nicotine 

causes the release of catecholamines which alter cardiac activity. 

It produces an increase in the amount of free fatty acids and it 

may lead to increased platelet adhesiveness. 

Carbon monoxide has a very high affinity for haemoglobin. The 

formation of carboxyhaemoglobin results in a reduction in the 

availability of oxygen. 

Free radicals are an extremely reactive species and it is known 

that they can cause cell damage. The 'tar' fraction contains free 

radicals but Pryor et al. 
132,133 have now identified their presence 

in the gas-phase. Normally the free radicals are short-lived; they 

are so reactive. However, Pryor et al. 
133 found that they were 

still present in smoke even a few minutes after the smoke had formed. 

This has led to the conclusion that they were forming in the smoke 

and can therefore form in the lungs. Nitric oxide and various alkenes, 

CH: `w 3TRY 
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both present in cigarettes and air, have been suggested as a possible 

combination of chemicals suitable for the production of free radicals 

in cigarette smoke. 

The possibility that the metabolites of nicotine could be carcino- 

genic was of particular interest after the discovery of nicotine-11- 

N-oxide. N-oxide derivatives were suspected in the origin of cancers 

after the discovery that the transformation of purines into their 

N-oxides gave rise to potent oncogenic agents. 
134 Indeed, Booth and 

Boyland135 reported that cotinine induced intestinal tumours in rats: 

1.20 'Safer Smoking'? 

It would obviously be much easier to make smoking safer if 

the harmful constituents were known and could then be removed or 

their concentration reduced to a minimum. 
136 The tar content has 

been singled out as being the most lethal, but, as we have already 

mentioned, the low tar, low nicotine yield filter cigarettes now 

being produced do not necessarily benefit the smoker, who can compensate 

for reduced nicotine/tar levels by 'self titration'. 
29 

The Framingham Heart Study137 reported that smoking low tar, 

low nicotine yield filter cigarettes did not result in a lower risk 

of myocardial infarction than smoking cigarettes containing larger 

amounts of these substances. The explanation put forward was that 

filter cigarettes produce more CO than plain ones, although this 

was not supported by the findings of Kaufman et al. 
138 There has 
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been a reduction in the incidence of lung cancer in smokers but Russell 

et al. 
103 

suggest that it may have more to do with the reduced 

carcinogenicity of tobacco tar over a number of years than switching 

to filter cigarettes with low tar and low nicotine yields. Robinson 

et al. 
32 have reported that when smoking low tar/nicotine yield 

cigarettes, the degree of compensation was not only almost complete 

for nicotine but also for CO and HCN. To counteract this self- 

regulation, 
139 Russell et al. 

34,36 have suggested low tar, low CO 

cigarettes with a medium rather than a low nicotine yield. There 

is no evidence that other components of tobacco smoke such as tar 

and CO are intrinsically rewarding. Gust et al. 
17 lend support to 

this hypothesis as it was found that lung exposure to cigarette smoke 

decreased when high nicotine cigarettes were smoked. However, this 

may not be the answer. Nicotine affects the pulmonary function140 

and the cardiovascular system and may adversely affect the foetus. 

Another possible solution may be the deliberate use of irritants 

e. g. acrolein to help reduce the inhalation of smoke. 
34 That 

compensation is often incomplete is thought to be due to the smoker 

finding the necessary increased smoke exposure too irritating. 

The consequences of these studies and hypotheses are unknown 

and have not yet been tested. 
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1.21 Chemistry of Nicotine and its Metabolites 20,141 

Nicotine, (S)-3-(11-methyl-2'-pyrrolidinyl)-pyridine, has the 

empirical formula C10H14N2 and is a water-clear liquid, one of the 

few liquid alkaloids, boiling under atmospheric pressure at 246°C. 

Upon exposure to air it turns brown emitting the characteristic aroma 

of tobacco. It is miscible with water, alcohol and ether. Natural 

nicotine is laevorotatory, the nicotiana species always yielding the 
20 

optically pure 1-nicotine ([a]D = -1690). 

Nicotine has two dissociation constants, one for the pyrrolidine 

and the other for the pyridine nitrogen, see figure 1.4. In blood 

at pH 7.4,37°C, the pyridine nitrogen of nicotine exists primarily 

as the uncharged form, while the pyrrolidine nitrogen has both ionized 

and unionized species. 
142 Approximately 69% exists as the charged 

form at this pH, so the predaninant form of nicotine is the ionized 

pyrrolidine structure. 
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Figure 1.4: Calculated dissociation curves for (-)-nicotine142 

Cotinine, (S)-5-(3'-pyridyl)-1-methylpyrrolidone-2, (C10H12N20), 

is a white (when pure), hygroscopic, crystalline solid, melting point 

41-43°C, which turns brown on prolonged exposure to the atmosphere. 

Aqueous solutions of cotinine are found to be only mildly basic due 

to conjugation of the pyrrole nitrogen lone pair with the sp2 hybridized 

carbon of the carbonyl group. The pKa values are 2.7 and 4.5 for 

the pyridyl and the pyrrolidyl nitrogens respectively. At pH 7.4 

only 0.1% monoprotonated cotinine exists, the remaining 99.9% being 

unprotonated. Cotinine is much more polar than nicotine due to the 

presence of the carbonyl group, and is soluble in water, dichloromethane 

and hexane but insoluble in ether. 

Nicotine-i'-N-oxide, C10H14N20, is a white crystalline compound, 

soluble in cold water and chloroform but insoluble in ether. Like 

51 
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cotinine, it is hygroscopic and must be stored in a dry atmosphere. 

Above its melting point (ti 170-171°C), it undergoes a transformation 

into an isomeric base which has been proved to be 2-methyl-6-pyridyl- 

(3') tetrahydro-1,2-oxazine. 
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Nicotine- 1'-N-oxide has been resolved into two optically active 

stereoisomers, both of which have been identified in the urine of 
64 

cigarette smokers. As optically pure (-)-nicotine is produced 

by the tobacco plant, the configuration at the asymmetric carbon 

atom of the pyrrolidine ring is fixed. The existence of the two 

stereoisomers is due to different arrangements of the groups at the 

quaternary nitrogen atom of the pyrrolidine ring, where one isomer 

has the pyridyl and methyl groups cis to each other, the other isomer 

having the pyridyl group and the N-oxide oxygen in the cis arrangement, 

as shown below. 
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The two stereoisomers have been labelled cis and trans although 

structures have not been assigned. Steric hindrance would exist 

between the pyridyl and methyl groups when they are cis to each other 

suggesting that this may be the form which is laevorotatory as it 

is the more unstable of the two. As the stereoisomers are not 

enantiomorphs, they do not have equal and opposite optical activities, 

however one is dextrorotatory, [a]D2D 2+ 65.1, and the other laevo- 

rotatory, [a]ZD - 76.0.64 

3' Hydroxycotinine, (C10H12N202), is a cream, hygroscopic, 

crystalline compound, melting point 110-111°C. Again, more than 

one isomer exists, however only trans-3'-hydroxycotinine has been 

identified in smokers' urine. 
185 The structure of the isomer is 

shown below, with the pyridyl and hydroxyl groups in a trans arrangement. 
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1.22 Analytical Techniques which have been applied to the Analysis of 

Nicotine and its Metabolites 

In early studies where the contribution made by different organs 

to the metabolism of nicotine had to be established and the identity 

of the metabolites formed was being sought, the analytical methods 

used were mainly qualitative. Many studies involved the use of 
14C- 

nicotine. The radioactive compounds were separated by paper or thin 

layer chromatography (TLC). 48 TLC is a good qualitative method but 

it has quantitative limitations in general use. 

As the health risks involved in smoking began to emerge, it 

was thought that a quantitative method for the analysis of nicotine 

and its metabolites in body fluids would provide useful information 

on the exposure of the smoker to nicotine and other related compounds. 

The nicotine doses used in many of the early experiments were 

far in excess of the quantities attainable by smoking. The method 

for the determination of nicotine and its metabolites should be capable 

not only of dealing with tobacco smokers who may receive several 

milligrams of nicotine per day, but also the non-smokers who may 

ingest only trace quantities of the alkaloid from a smoky room or 

non-tobacco sources. More sensitive and specific methods were required, 

with the potential for use in routine analysis. 
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1.22.1 GC Methods 

Gas chromatography had been used to "detect and quantitate 

nicotine and other alkaloids in tobacco plants and cigarette 

smoke. 
143-145 Analytical techniques applied to the quantitation 

of nicotine in biological systems also include GC. McNiven 

et al. (1965) 146 
used GC to determine nicotine and its metabolite 

cotinine in smokers' urine. The success of gas chromatography 

is dependent on the extraction/clean up procedure, the component 

separation and the detector characteristics. 
147 

Due to the nature of biological fluids, nicotine must be extracted 

before chromatographic analysis. Several published assays89'90'148 

are in fact very time-consuming, involving a large number of extraction 

steps, in the method of Burrows et al. 
149 

a steam distillation is 

required, or the sequential extraction of nicotine and cotinine. 
150,151 

This renders them unsuitable for routine analysis of large numbers 

of clinical samples. Also, the extraction procedure should be simple 

to avoid sample contamination by extraneous nicotine. Some methods 

incorporate an evaporation step in order to obtain a concentrated 

sample. 
148 This increases preparation time and also results in 

some loss of nicotine due to its volatility. Some form of prior 

concentration may be necessary, otherwise the system may have to 

operate close to its detection limit. Hill et al. 
152 have used a 

solvent extraction method which concentrates the sample without 

evaporation. 

The choice of an internal standard is a very important part 

of the development of an analytical method. Many of the methods 

for the determination of nicotine and its metabolites lack an internal 
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standard. 
89,153,154 

In several others a poor choice of internal 

standard has been included. Feyerabend et al. 
155 

selected quinoline 

but Hengen and Hengen150 were unable to obtain consistent results 

using this method. Jacob et al. 
151 

also found large variation in 

peak height ratios of nicotine to quinoline even for the same ether 

extract. They attributed this to the selective loss of nicotine 

on the glassware or in the GC as nicotine is more basic than quinoline 

(pKatiB and pKati4 respectively). 

Ideally the IS should be added directly to the sample to monitor 

extraction losses. The differences in solvent partitioning and 

chromatographic properties of nicotine and cotinine have led to the 

use of separate internal standards. 
156 

Jacob et al. 
151 

used two 

internal standards, N-(2-methoxyethyl)-norcotinine to monitor cotinine 

and N-ethylnornicotine to monitor nicotine. N-(2-methoxyethyl) 

nornicotine has similar solvent partitioning properties and pKa value 

and is a structural analogue of cotinine, unlike lidocaine used in 

many published methods150'157 which is more lipophilic and more basic 

than cotinine. Structural analogues have the added advantage of 

having retention times and detector responses which are close to 

those of the components of interest and so improve precision of the 

chromatographic analysis. 

Even after the extraction and clean up procedures, a relatively 

complex mixture of compounds remains, giving many peaks in the GC. 

In fact, Gruenke et al. 
158 found GC-FID inadequate when applied to 

the analysis of smokers' and non-smokers. ' plasma. The complexity 

of the GC spectra can be substantially reduced by the introduction 

of a nitrogen sensitive alkali tip detector which minimizes interference 
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as it does not respond to organic compounds containing only carbon, 

hydrogen and oxygen atoms. The nitrogen sensitive alkali tip detector 

is also more sensitive than the FID. Although it is based on the 

FID, the incorporation of the alkali bead or ring enhances the detector 

response to compounds containing a heteratom, the choice of alkali 

metal salt determines which heteratom. The response may be enhanced 

by as much as a factor of 1000. Nitrogen sensitive detectors have 

been criticised for their low long-term stability. Stehlik et al. 
157 

considered this a serious drawback for routine applications. 

The introduction of capillary columns provides a much higher 

separation efficiency than packed columns, narrower peak shapes, 

higher resolution and reproducible retention times. 
159 

The use of 

both capillary GC and nitrogen sensitive detectors allow multistage 

extraction and clean up procedures to be avoided while providing 

good sensitivity and specificity. 
168 Using a small number of steps 

in the extraction process means that the loss in separation must 

be compensated for by more efficient GC and/or higher detector 

sensitivity. 

Capillary GC has also been combined with high resolution mass 

spectrometry 
161 

pectromet ry161 This is a very sensitive, selective and rapid technique 

for the quantitative analysis of nicotine in biological fluids. 

However, the high capital investment required and the complexity 

of the instrument make it an unlikely choice for routine analysis. 
161 

The significant and variable adsorption of nicotine, particularly 

at low concentrations, makes reliable results difficult to obtain. 
162 

A suitable internal standard enables such losses to be accounted 

for. Also adsorption can be suppressed by the addition of NH4OH 
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during sample preparation, as suggested by Grubner et al. 
154 

Hill 

et al. 
152 found it necessary to silanize all glassware with dimethyl- 

dichlorosilane initially. The handling of samples would be simplified 

if adsorption properties could be reduced in a derivatization step. 

Hartvig et al. 
162 ingeniously achieved not only the formation of 

a non-adsorptive derivative of nicotine but one with excellent electron 

capture detection sensitivity (picogram levels), namely the 6-trichloro- 

ethyl carbamate of nicotine. Also once the derivative has been formed, 

the influence from environmental nicotine is unimportant. 

Many methods of analysis quantitate both nicotine and cotinine 
150,147,151 

concurrently, by GC, at different column temperatures. 

Temperature programming can be used for the simultaneous analysis 

of nicotine and cotinine, 
163 however some workers164 thought it 

prevented rapid analysis. On packed columns cotinine requires a 

high elution temperature and, as GC phases are labile, this limits 

the lifetime of the column considerably. Capillary columns are much 

superior in this respect. 

i 
1.22.2 Radioimmunoassays 

Radioimmunoassay is another technique which has been applied 

to analysis. 
97465 The initial development of a satisfactory radio- 

immunoassay may require several months but once developed the technique 

is simple to perform, requiring minimal sample preparation, and can 

be used to analyse large numbers of samples. These methods are very 

sensitive. Langone et al. 
165 developed a method for the estimation 

of nicotine and cotinine at the picomole level in the presence of 

each other and other known metabolites. However, the specific antibodies 
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are not readily available, making chromatographic techniques more 

generally accessible and less expensive. 

1.22.3 HPLC Methods 

The remaining published methods for the analysis of nicotine 

and its metabolites have been carried out using HPLC. Hill et al. 
152. 

considered HPLC had insufficient sensitivity for trace analysis. 

Watson and Maskarinec et al. 
166 have developed methods for the 

estimation of nicotine and cotinine by HPLC with UV detection. Jane16'7 

has described the separation of nicotine from common drugs of abuse, 

again using isocratic HPLC and UV detection. 

Although many different methods of analysis have been proposed 

for the determination of nicotine and its main metabolite cotinine, 

very few methods have attempted to determine any of the other numerous 

metabolites. N-Oxides in general and nicotine-1'-N-oxide, being 

thermally labile, cannot be analysed directly using GC because of 

the high temperatures involved. Analysis has been carried out by 

the extraction/quantitation of unmetabolized nicotine in the sample 

followed by reduction of nicotine- l'-N-oxide to nicotine with TiC13 

and then assayed for nicotine as before. 82 

Direct analysis of nicotine-1'-N-oxide is possible by using 

HPLC. Kyerematen et al. 
168 

successfully determined nicotine and 

its principal metabolites cotinine and nicotine- 1'-N-oxide in plasma 

and urine. Both W detection and radiolabelling plus a liquid 

scintillation counter were used. The use of 
14C-labelled 

nicotine 

is confined to certain research purposes only and does not solve 

the problem of routine analysis of human biological fluids. 
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Thompson et al. 
169 

carried out nicotine-11-N-oxide analysis 

in mouse tissue. Tissues are more complex biological matrices than 

biological fluids. UV detection was possible, but in a pharmaco- 

kinetic study, on the elimination phase of the profile, several tissue 

concentrations were below the detection limit. Again, it was necessary 

to use radiolabelling below ti 30 ng/g, above this level accurate 

W data was obtained. Horstmann's170 HPLC/UV method for the 

determination of nicotine and cotinine allowed differentiation between 

smokers and non-smokers but he found that, in the majority of cases, 

non-smokers had nicotine and cotinine concentrations below the detection 

limit. The detection limit is dependent upon the W extinction co- 

efficient of the compound. 
167 

N-methylated quaternary metabolites of nicotine are water soluble, 

highly polar and non-volatile. 'Without appropriate 

derivatization to a more volatile compound, GC determination is not 

possible. Cundy and Crooksl7l developed a HPLC method using RP-IIC 

and [2'-14C)-nicotine with liquid scintillation counting for the 

detection and quantitation of the small amounts of metabolites present. 

Analysis of N-methylated metabolites has also been reported by Mousa 

et al. 
172 In this case LC coupled with coulometric electrochemical 

detection has been used for the determination of both nicotine and 

N-methy]nicotinium ion. The metabolites"'cotinine and nicotine- 1'-N-oxide 

are not observed in the ED-sensitivity range using the conditions 

employed for the nicotine analysis. 
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1.22.4 Sample Matrices and Other Considerations Prior to Analysis 

Different samples have been used in the reported analytical 

methods; tissue, blood, plasma, saliva and urine. Urine and saliva 

have the advantage that they do not require invasive sampling methods. 

Also nicotine is present in larger amounts in the urine of smokers 

than in venous blood149 and sample volume is not a restriction. 

The concentrations of nicotine and cotinine in most urine samples 

are below 1 ; ig/ml, whereas plasma usually has nicotine of less than 

60 ng/ml and cotinine below 200 ng/ml. 
157 The low concentration 

of the components of interest together with the small volumes of 

blood/plasma available demand a very sensitive method of analysis 

and a single determination of all compounds. Feyerabend et al. 
155 

described a micro method for the analysis of nicotine alone, requiring 

only 100 p1 of sample. At very low concentrations sensitivity was 

increased by using 200 pl sample volumes. 

Automation is also an important consideration when carrying 

out large numbers of routine analysis. Automation has stringent 

requirements; preferably a one step extraction procedure for the 

components of interest, simultaneous determination by the chosen 

analytical technique, high sensitivity and high instrument stability. 

Many workers considered that the determination of cotinine offered 

several advantages over that of nicotine alone. 
173 They considered 

cotinine with its much longer biological half-life as an indicator 

of long-term nicotine exposure. Nicotine which is rapidly metabolized 

can only provide information about recent exposure and its clearance 

from plasma makes determination difficult. 

As already discussed, differences in the intake of nicotine, 
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efficiency of metabolism, pH and flow rate of urine etc. all cause 

variation in the concentrations of nicotine and cotinine, therefore 

measurement of nicotine and its major metabolite cotinine (ti 20% of 

the intake) may not be sufficient to give the researcher the desired 

information on the smoking behaviour or exposure of the individual. 

A flexible method of analysis for nicotine and as many of its 

metabolites as possible is required. A summary of different methods of 

analysis has been included in Table 1.4. 

1.23 Objectives 

This research project aims to develop and evaluate a flexible 

HPLC method for the determination of nicotine and its two 

major metabolites cotinine and nicotine-1'-N-oxide. Another very 

important metabolite, 3' hydroxycotinine, was also included at a later 

stage in the development. The importance of 3' hydroxycotinine has 

perhaps been underestimated, as Neurath174 has reported this metabolite 

to be present in amounts second only to cotinine. UV is the chosen 

method of detection although there has been some doubt about its 

sensitivity at low concentrations. It has high instrumental stability, 

especially important if automation is to be a consideration. In 

an attempt to overcome any doubts about the sensitivity, urine is 

the most suitable sample matrix where the concentrations of the parent 

compound and its metabolites were reported to be highest and sample 

volume is not a constraining factor. From earlier work it appears 

that all metabolites (except CO 
2) are excreted in the urine and sample 

collection has the advantage of being non-invasive. Also, partially 
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63 
MEI1IODS OF ANALYSIS FOR THE DETERMINATION OF NICOTINE, COTININE, NICOTINE-1'-N-OXIDE AND 

3' IIYDROXYCOTININE IN BIOLOGICAL SAMPLES 

WIIpD/DEFECTION SMILE/SENSITIVITY COMPOUNDS ANALYSED INTERNAL STANDARD REF. 

GC-strontium 90/ Urine (5 ml) Nicotine 3-methyl, 3-Phenyl I46 
argon ionization piperidine 
detector (external standard) 

GC-FID Urine (5 ml) -+ 50 µl Nicotine and Nic. IS- chlorphentermine 175 
dichloromethane or ether cotinine separately Cot. IS: - lignocaine 

GC-FID Whole blood (10 ml) Nicotine Quinoline 149 
Detection limit for nicotine: ing 

GLC-AFID Blood (10 ml) Nicotine Modaline 86 
Sensitivity 1 ng ml 

1 
of 

nicotine in a 2.5 ml sample 

Radio- Serum and urine Nicotine and - 165 
inmunoassay 350 pg - detection limit cotinine 

Radio- Serum (smokers') (0.1 ml) Cotinine and - 173 
immunoassay nicotine 

GC-FID Urine (20 ml) Nicotine and no IS 153 
Final volume 0.5 ml chloroform cotinine separately 

(; C-AF. D Plasma (3 ml) 4 n-heptane (50).: l) Nicotine no IS 89 

Radiochemical Blood (10 ml) Nicotine and no IS 131 
cotinine 

IIPLC ---- Nicotine - 167 

IIPLC isocratic Urine (3 ml) Nicotine and desmethylimipramine (111'LC) 164 
Minimum detectable level cotinine Quinoline (GC) 
5 ng on column simultaneously 

GLC-AFID Plasma (1 ml) 1 S iti 1 i 1 
Nicotine and Nic. IS'- modaline 150 

ens v ig ty 0. cotinine separately Cot. IS'- lidocaine 

Cap GC-MS Plasma (3 ml) -s-benzene 100 µl Nicotine Quinoline 148 
(SIM mode) Lower limit of detection 

5 ng ml-1 

11PLC/UV Urine (20 ml), plasma (1-S ml) 
-I 

Nicotine and desmethylimipramine 166 
Cap GC/AFID Detection limit: 2 ng ml urine cotinine 

simultaneously 
(nornicotine) 

CC-MS Not included Nicotine deuterated nicotine 158 
(SIM) 5', 5'-d2 

GC-ECD and Plasma (. 1 ml) 1 Nicotine N-n-propylnornicotine 162 
AFLI) Limit of quantitation: 10 ng mf 

in plasma 

CC-AFID Sample: plasma, urine, saliva Nicotine Quinoline 155 
or breast milk. 3 ml 4 butyl 
acetate (50 µl), 100 µl -+ 
di-isopropyl ether (5 pl) 

of of Isoquinoline 176 

GC-AFID Sample (1.0 ml) 4 Acetone (50P1)1 Cotinine Pheniramine maleate 177 
Lower limit of detection 1 ng ml 

CC-AFID Blood plasma (0.4 ml) Nicotine no IS 154 
Lowest detectable amount 2-5 pg 
(nicotine) 

GC-AFID Plasma (1 ml) Nicotine and Ketamine 163 
(temp. Sensitive to 2 ng nicotine per cotinine 
programming) ml extracted and 5 ng cotinine simultaneously 

per ml extracted 
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METHOD/DETECTION SAMPLE/SE? ITMTY COMPOUNDS ANALYSED INTERNAL STANDARD REF. 

GC-AFiD Blood, plasma or urine (1 ml) Nicotine and Nic. IS: - N-etliylnor- 151 
cotinine separately nicotine 

Cot. ISS- N-(2-methoxy- 
e(hyl)-norcotinine 

IIPLC/lN and Plasma or urine (2 ml) Nicotine, cotinine Acetanilid 168 
Radiometric Sensitivity: 60 dpm for radio- 
IaPLC assay metric assay; 5 ng for 

unlabelled compounds 

GC-AFID Plasma (0.5 ml) -º isoamyl 
alcohol (60 pl) 
Sensitivity: nicotine 1 ng ml_i 

ti i co n ne 5 ng ml 

GC-MS (SIM) Plasma (1 ml) 
Lower limit of detection 5 ng ml 

1 

Cap GC-AFID Tissue (1 g) 
and GC-MS Sensitivity 2-3 ng per g of 

tissue for both compounds 

Cap GC-FID Urine (4 ml), plasma (2 ml) 
Temp. minimum detectable concentration 
programmed 0.03 pg ml-1 nicotine ) 

in 
and cotinine urine 1.0 Vg ml-1, both 
N-oxides 

5 ng ml-1, nicotine 
and cotinine ) in 
15 ng ml-1, both ) plasma 
N-oxides 

Cap GC-AFID Plasma (1.0 ml and 0.1 ml) 
Detection limit: nicotine 5 pg 

cotinine 20 pg 
Minimus detectable amounts per 1 l f l i i l p m o asma: n cot ne 0.1 ng m 1 ti i 1 co n ne 0.4 ng m 

GC Plasma (2.0 ml) 
thermionic Determinftions possible to 
detection 5 ng ml- 

IIPLC/UV Plasma and saliva (1 ml) 
detection, 

A=257rm 

IHPLC- ---- 
electrochemical 
detection 

GC-FID Urine samples (25 ml) 
It is possible to measure 
50 ng ml-1 

IIPLC/UV and Tissue homogenate (1 g) 
radiometric Limit of detection for NNO 
detection UV 20-25 ng 

EC 25-30 ng 

and Nicotine-1'-N- 
oxide 

Nicotine and 
cotinine 
simultaneously 

Nicotine 

Ketamine 178 

(5'5'-2112) nicotine 161 

Nicotine and 
cotinine separately 

Nicotine and 
cotinine 
simultaneously. 
Also Nicotine-1'- 
N-oxide and 
cotinine-1'-N- 
oxide 

Nicotine and 
cotinine 

Nicotine 

Cotinine 

Nicotine and 
N-methyl nicotinium 
ion 

Nicotine and 
cotinine separately 
at two different 
temperatures 

Nicotine-11-N- 
oxide only. 
Separation of 
Nicotine, Cotinine, 
NNO and CNO given 

Cot. d -1'-trideuteromethyl 159 3 noi"cotinine 
Nic. d3 - 1'-trideuteromethyl 

nornicotine 
for mass spec. work; 
Methylanabasine and 1- 
methyl-6-(3-pyridyl)-2- 
piperidone for GC work 

Phendimetrazine-N-oxide 157 
Quinoline 
Lidocaine 
Phendimetrazine 

Nic. IS: - N-methyl- 147 
anabasine 

Cot. IS: - N-ethylnor- 
cotinine 

J noicotinine 
Nic. d3 - 1'-trideuterometlryl 

nornicotine 
for mass spec. work; 
Methylanabasine and 1- 
methyl-6-(3-pyridyl)-2- 
piperidone for GC work 

Phendimetrazine-N-oxide 157 
Quinoline 
Lidocaine 
Phendimetrazine 

Modaline or 
N-ethylnornicotine 

2-phenylimidazole 

no IS 

no IS 

Cap GC-MS Plasma and urine (0.25-1.0 ml Cotinine Tri-deuterated cotinine (SIM) of sample) 
Limit of detection: <1 ng ml 

1 (3-I3H3ýthy1 cotininc) 
cotinine, using plasma (1 ml) 
or urine (0.25 ml) 

147 

152 

179 

172 

180 

169 

160 
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REF. 

IIl'L, C/W Plasma (0.5 ml) Nicotine and no IS 181 
No sensitivity levels quoted cotinine 

simultaneously 

Cap GC-NFJD Urine samples (20 ml) Nicotine and 
Temperature cotinine n-undecane nitrile 182 
programmed 

111'LC/W Urine (4.0 ml) Nicotine and Amphetamine 170 
A= 260 nm Minimum detectable amounts of cotinine 

nicotine and cotinine ' 15 ng 
Quantitation of peaks > 50 ng 
ml-1 of the alkaloid 

GC-AFID 
' ' 

Plasma samples (1.0 ml) 1 Nicotine and Nic. IS: - N-ethylnor- 183 
emperature t Nicotine and cotinine >1 ngml cotinine nicotine 

programmed have been detected simultaneously Cot. IS: - N-ethylnor- 
cotinine 

Cap GC/ Urine, saliva and plasma Nicotine and Nic. IS: - N-methyl- 156 
thermionic N (0.1-1.0 ml) cotinine separately anabasine 
specific Detection limit of 0.1 ng ml at two different Cot. IS: - N-ethylnor- 
detection of body fluid for nicotine column temperatures cotinine 

and cotinine 

GC-MS Plasma (200 µl) Cotinine Methylprylone 184 
Detection limit: 100 rmol 1 (Noludar) 

GC-ECD Plasma or urine (1 ml) Trans 3' Hydroxy- No IS 185 
Limits of quantitation and cotinine 
detectio? are 5 ng ml 

1 
and 

1 ng ml respectively 

1IPLC/W Urine (20-50 }rl) N-methylated No IS 171 
detection, also metabolites, 
radiometric cotinine, nornicotine, 
detection nicotine, nicotine- 

1'-N-oxide 
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or wholly aqueous samples are compatible with HPLC analysis. 

HPLC has the potential to analyse for nicotine, cotinine, nicotine- 

11-N-oxide and 3' hydroxycotinine simultaneously, quantitatively 

and without derivatization, structures shown in figure 1.5. 

Aspects of HPLC relevant to the separation of nicotine and its 

metabolites will be discussed in Chapter 2. 
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CHAPTER 2 

DEVELOPMENT AND OPTIMIZATION OF AN HPLC 

METHOD FOR TIE ANALYSIS OF NICOTINE 

AND ITS METABOLITES 
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2.1 Introduction 

The term chromatography covers a variety of separation methods 

which use two mutually immiscible phases, one stationary and the 

other mobile. The sample to be separated is introduced into the 

mobile phase and as it is carried through the system in the mobile 

phase it undergoes a series of interactions with both the mobile 

and the stationary phases. In order to achieve a separation the 

differences in the physical or chemical properties of the components 

in the sample are exploited. The more interaction with the stationary 

phase the longer the retention time. Separation results when the 

interactions of one component with the stationary phase are such 

that it is eluted without overlap with any other component in the 

sample. The stationary phase can be either a solid or a liquid, 

the mobile phase a liquid or a gas. 

In high performance liquid chromatography, HPLC, the stationary 

phase is held in a rigid column, usually constructed of stainless 

steel, and the liquid mobile phase is forced through under pressure. 

Liquid chromatography may often achieve separations that are impossible 

by gas chromatography, GC, where the mobile phase is a gas. This 

is due to the use of low temperatures in HPLC. GC uses high 

temperatures and therefore is restricted to compounds which are 

sufficiently volatile and thermally stable. Also, there are two 

competing phases (mobile and stationary) in HPLC compared with one 

(the stationary phase) in GC. Furthermore, there is a wide choice 

of detectors available for use in LC, many of which are selective 

so making a complete separation on the column unnecessary, as a detector 

can be chosen to monitor only the species of interest. 
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The choice of a liquid chromatographic system to achieve a 

particular separation must be confirmed experimentally. Although 

the modes or mechanisms of chromatography will be considered 

individually, in practice a combination of mechanisms may be responsible 

for effecting a separation. Despite being desirable and very useful 

in achieving the end result - separation of a mixture - it also makes 

the prediction of retention behaviour more difficult. 

2.2 HPLC Retention Mechanisms 186,187,188 

There are four basic LC mechanisms: liquid-liquid, liquid-solid, 

ion-exchange and size exclusion chromatography. 

2.2.1 Partition Chromatography 

In liquid-liquid or partition chromatography the components 

are partitioned between the immiscible liquids, a liquid mobile phase 

and an organic liquid stationary phase which is either coated onto 

a finely divided inert support or chemically bonded to the support 

material. The support surface should not interact with the sample 

molecules if true partition is desired. A balance between the 

attraction of mobile phase solvent and the stationary liquid phase 

for the sample, i. e. the solubility of sample components in the 

stationary and mobile phases, must be established. The polarity 

of the sample and the stationary phase may be matched and used with 

a mobile phase solvent of different polarity. The partitioning of 

the sample components between the mobile and stationary phases leads 
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to a differential rate of migration and separation of the components 

results. 

The packing materials used in liquid-liquid chromatography can 

be divided into two types: normal phase and reverse phase. Normal 

phase chromatography refers to a system where the stationary phase 

is more polar than the mobile phase, whereas if the stationary phase 

is less polar than the mobile phase the process is termed reverse 

phase chromatography. The reverse phase mode is now the most widely 

used owing to the success of bonded stationary phases. 

Reverse phase chromatography uses a hydrophobic bonded phase 

packing composed of an alkylsilyl bonded silica, e. g. octadecylsilane 

(ODS), (see figure 2.1). The octadecyl, (C18), 
. 
linear hydrocarbon 

chain is the most popular with C8 and C2 functional groups also 

ACETONII RILE/ WATER 

-o. sj_C18 

00 
Figure 2.1: Reverse Phase Packingi89 



71 

available. Typical mobile phases for reverse phase chromatography 

are aqueous buffers, methanol, acetonitrile and mixtures of water 

or buffers with these organic solvents. Polar substances prefer 

the mobile phase and therefore elute first with short retention times. 

As the hydrophobic character of the molecules increases retention 

also increases due to the mobile phase forcing the molecules to the 

hydrocarbonaceous bonded layer. The lower the polarity of the mobile 

phase, the higher is its eluent strength. Methanol and acetonitrile 

are the strongest eluents and water the weakest eluent employed in 

reverse phase chromatography. Intermediate strength eluents are 

obtained by mixing one of these solvents with water or an aqueous 

buffer. 

Bonded phases can also possess functional groups, such as phenyl 

or cyano groups, incorporated on the saturated hydrocarbon chains 

which are chemically bonded to the support surface. Many different 

stationary phases are not necessary as the mobile phase composition 

can be used to alter the selectivity. 

2.2.2 Ion Suppression Chromatography 

The separation of samples which ionize in aqueous solution 

is possible on a reverse phase column by adjusting the pH of the 

eluent to suppress the ionization. Control of the pH usually requires 

a buffer in the mobile phase. Ion suppression is. only applicable 

to weak acids and bases as pH must be kept within the range pH 3.0-8.0. 

Above pH 8 the silica support dissolves and below pH 3 the chemically 

bonded phase is irreversibly hydrolysed from the silica surface. 

When the ionization of a weak acid is suppressed, i. e. at pH 
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values less than its pKa, its retention time is increased. 

AH + H2O "A+ H30+ 

At pH values higher than its pKa, it elutes faster. The ionic form 

of a sample elutes quickly compared to the neutral form because the 

ionic form is more soluble in the aqueous -eluent 
(see figure 2.2). 

Similarly, a basic sample will elute faster at pH values below its 

PKa value and will be retained longer at pH values higher than its 

pKa where its ionization is suppressed. 

B+ H2O +=:: '- BH+ + OH 

BASE 

.Y 

O 
I- 
C-) 

LL 

F- 

U 

CL 

U 

ACID 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

-4 -3 -2 -1 01234 

pH - pKa 
Figure 2.2: Effect of pH upon the retention of weak acids and bases 

on a non-polar stationary phase'90 
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2.2.3 Ion-Interaction (or Ion-Pair) Chromatograph 

Due to the instability of bonded phases, the ion suppression 

method cannot deal with strong acids and bases. In the early 1960s, 

G. Schill et al. 
191,192 

applied ion-pair extractive techniques to 

modern liquid chromatography. The development of ion-interaction 

(or ion-pair) chromatography is generally attributed to them. By 

forming a coulombic association species between two ions of opposite 

charge using a suitable counterion, ionic or ionizable compounds 

can be partitioned into the non-polar stationary phase. The strength 

of the association between the ionized sample and the counterion 

affects the degree to which the retention is increased. There are 

many parameters that may play a significant role in reverse phase 

ion-interaction chromatography and these are summarized in table 2.1. 

The mechanism which best describes reverse phase paired-ion 

chromatography is still being debated. There are three popular models. 

Both the ion-pair and the dynamic ion-exchange model describe the 

extreme situations. However, the third model, the ion-interaction 

model, takes into account the importance of both adsorptive and 

electrostatic attractions in governing retention in reverse phase 

paired-ion systems. 

The ion-pair model states that ion-pairs form in the mobile 

phase prior to partition into the no 

more non-polar the 'ion-pair' complex, 

chain on the counterion, the longer 

affinity for the stationary phase. 

figure 2.3. 

The dynamic ion-exchange model 

n-polar stationary phase. The 

that is, the longer the alkyl 

the retention, due to greater 

This model is illustrated in 

states that the ion-pairing 
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TABLE 2.1: Adjustable Variables in RP-IIC 
210 

Variable Effect 

Type of counterion The better the ability to ion-pair, the 
longer the retention 

Size of counterion An increase in the size of the counterion 

will increase retention 

Concentration of Increasing concentration increases retention 

counterion up to a limit beyond which retention will 
decrease 

pH Effect is dependent upon nature of solute. 

Retention increases as pH maximises 

concentration of ionic form of solute 

Type of organic Retention decreases with increasing lipophilic 

modifier nature 

Concentration of Retention decreases with increasing 

organic modifier concentration 

Temperature Retention decreases as temperature increases 

Stationary phase More lipophilic or higher degree of coverage 

more retention 

reagent, added to the mobile phase, is adsorbed onto the bonded alkyl 

stationary phase where it acts as adsorbed ion-exchange sites. The 

longer the alkyl chain length of the counterion, the greater the 

number of counterions adsorbed and hence the more ionic sites present 

for interaction with the ionic sample molecules, therefore the longer 

their retention. This model is illustrated in figure 2.4. 

The third and final hypothesis, the ion-interaction model, states 

that the lipophilic reagent ions are adsorbed onto the stationary 
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Figure 2.3: The Paired-Ion Model 
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Figure 2.4: The Dynamic Ion-Exchange Model 193 
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Figure 2.5: The Ion-Interaction Model: 193 
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phase creating a charged primary ion layer and, consequently, an 

oppositely charged secondary layer. The retention of an ionized 

sample molecule results from electrostatic attraction to the primary 

layer of charged counterions and lipophilic attraction between the 

bonded hydrocarbon stationary phase and the carbon chain of the sample 

molecule. As an extra positive charge now exists in the primary 

layer, another counterion must also be adsorbed to maintain neutrality. 

Hence a pair of, ions has been adsorbed. This two-stage model is 

illustrated in figures 2.5(a) and (b). 

The exact mechanism may incorporate aspects of all three models 

but, whatever the true mechanism, ion-interaction chromatography 

results in some unique separations, allowing the separation of both 

ionized and unionized components simultaneously. 

2.2.4 Adsorption Chromatography 

In liquid-solid or adsorption chromatography physical surface 

forces are dominant. Components are separated on the basis of their 

polarities. With a polar stationary phase, such as silica gel, a 

relatively non-polar solvent, such as chloroform, will be used. 

Initially the adsorption sites are completely covered by solvent 

molecules. On introduction of the sample, the polar hydroxyl groups 

on the surface of the silica particles (Si-OH) interact with the 

functional groups of the sample (or solvent) molecules and, depending 

on the strength of these interactions, preferentially adsorb one 

molecule relative to another. These interactions are electrostatic, 

involving permanent dipoles or hydrogen bonding. The polarity of 

the mobile phase controls the desorption of the sample molecules 
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from the surface. The most polar molecules are strongly adsorbed 

(retained) on the silica surface (see figure 2.6). However, the 

more polar the mobile phase, the greater is its ability to displace 

the sample molecules from the surface and hence the shorter the 

retention time (or the lower the k' value). 

OH 

N 

HEXANE 

Me OH Me 
Me-C C-Me 

Me Me 

Me 

Figure 2.6: Normal Phase Packing189 

2.2.5 Ion-Exchange Chromatography 

Ion-exchange chromatography is used for compounds with ionic 

or ionizable functional groups. The stationary phase consists of 

two components: the polymer matrix with fixed ionic groups and attached 

counterions of opposite charge. These counterions can be exchanged 

for an equivalent number of other ions of the same sign (in the mobile 

phase). Separation depends on the charge-charge interactions between 



78 

the sample ions and the exchange site. Some ion exchangers bear 

positively charged groups and are used for exchanging anionic species, 

a process known as anion exchange. Exchanging cationic species, 

cation exchange, requires an ion-exchanger with negatively charged 

groups. 

RY++X+ ý- 
ýRX++Y+ 

2.2.6 Size Exclusion (or Gel Permeation) Chromatography 

In size exclusion or gel permeation chromatography, separation 

is determined by the molecular size and shape of the components of 

the sample. It is a non-interactive mode of separation. The packing 

material is porous, with pores of a certain size. Molecules that 

are too large are excluded from all pores and therefore move through 

the column quickly whereas small molecules can penetrate most of 

the pores and so are retained by the packing material. The stationary 

phase can effect a separation according to molecular weight. Size 

exclusion (or gel permeation) chromatography is not applicable to 

the separation of nicotine and its metabolites. 
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2.3 Experimentally Relevant Chromatographic Theory 186,187,188 

2.3.1 Retention Parameters 

The retention time, tR, for a chromatographic peak is the 

time required for the sample to pass through the column, and is 

represented by 

tR = tR I+ tM 

where tM represents the time spent in the void volume or the retention 

time of an 'unretained component' and tR' is the time spent in the 

stationary phase. The unretained cömponent is generally taken to 

be the injected solvent. 

In some instances it is more convenient to work with retention 

volumes than with retention times. The retention volume, VR, of 

any component may be obtained by measuring the retention time of 

the component in seconds and multiplying it by the volumetric flow 

rate in ml- sec-1, F, 

VR = tRF and VM = tMF 

VM is a measure of the total volume of mobile phase contained within 

the column and it is often called the column 'dead' or 'void' volume. 

Retention times or volumes for a set of components should be 

adjusted by subtracting tM or VM, as appropriate, before comparison. 

VR' = VR - VM and tR' = tR - tM 
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2.3.2 Partition Ratio 

The solute partition ratio, k', also called the capacity factor, 

column capacity ratio or the mass distribution ratio, is defined 

as the ratio of the total amount of a solute in the stationary phase 

to the amount in the mobile phase at equilibrium 

CSVS 

CMVM 

For a given system, k' is a measure of the time spent in the 

stationary phase relative to the time spent in the mobile phase, 

or the additional time (or volume) a solute band takes to elute over 

an unretained solute (for which k' = 0) divided by the elution time 

(or volume) of an unretained band: 

k' = 
tR tM 

= 
VR VM 

tM VM 

k' values greater than 8 waste valuable analytical time. Conversely, 

k' values less than unity are prone to interferences from unretained 

peaks and early peaks perhaps of little or no analytical interest. 

2.3.3 Column Efficiency: Plate Number and Plate Height 

The quantity N, the number of theoretical plates, is given 

by the equation 
2 

N= 16 tR' 
w 

b 

where tR' = tR - tM and b is the peak width at the base (the inter- 

sections of tangents to the inflection points with the base line), 

equal to 4a in time units. 
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N is approximately constant for different bands in a chromatogram, 

for a particular set of operating conditions (the column, mobile 

phase, mobile phase velocity and temperature being fixed). N is 

a measure of column efficiency. As N remains constant for different 

bands in the chromatogram, the above equation predicts that the band 

width Wb increases as the band proceeds down the column or as tR 

increases. 

In comparing column efficiencies a more useful parameter is 

the height equivalent to a theoretical plate (HETP) or plate value 

H where 

H_L N 

L is the length of the column and H measures the efficiency of the 

column per unit length. Small H values mean more efficient columns 

and large N values 
2 

HL 
wb 

1ý R 

The column efficiency can also be stated as a dimensionless quantity 

called the effective plate number, Neff: 

2 

L= 
Neff -H5.54 

tR 
wl 

z 
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2.3.4 Band Broadening 

A variety of factors cause broadening of a chromatographic 

peak. In the column, these include transverse and longitudinal diffusion 

in the mobile phase, the rate of equilibration of solute between 

the stationary and mobile phases (mass transfer), diffusion in the 

liquid stationary phase, and flow irregularities leading to convective 

mixing. 

Eddy diffusion results from the inhomogeneity of flow velocities 

and path lengths, around the packing particles. Packing in the column 

is never perfect. Close to the column wall where the density of 

packing is comparatively low, some molecules will travel more rapidly 

(channelling) while other solute molecules will pass through the 

more tightly packed centre of the column at a lower velocity. Hence 

a distribution of solute velocities exists about the average velocity. 

The contribution of eddy diffusion to the total plate height 

is represented by the equation 

A=Ad 
p 

where dp is the particle diameter and A is an unspecified constant 

which is a function of the packing uniformity and the column geometry. 

To minimize eddy diffusion dp should be as small as possible. 

As d decreases, the inlet pressure required to force the mobile 

phase through the column increases. However, as column efficiency 

increases as dp decreases, column length can be decreased, thus 

decreasing the required pressure drop. 

High diffusion rates in the mobile phase cause solute bands 

to disperse axially. The contribution of longitudinal, or axial, 

diffusion to the plate height is given by 
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2 YDM/ü = B/a 

where Y is an obstructive factor, DM is the solute diffusion coefficient 

in the mobile phase and ü is the average mobile phase velocity. 

Longitudinal diffusion is particularly significant at low mobile 

phase velocities. As DM in a gas phase is much larger (0.1-1 cm2/sec) 

than it is in a liquid phase (1 x 10-5 cm2/sec), the contribution 

of longitudinal diffusion to the overall plate height is much greater 

in GC than in LC. 

The lack of instantaneous mass transfer at the solute/stationary 

phase interface makes a significant contribution to band broadening, 

and hence efficiency, and is proportional to 

i u-/ df Ds =C stationary u 

where df is the thickness of the stationary phase and Ds is the 

diffusion coefficient of the solute in the stationary phase. 

The rate of mass transfer can be improved by reducing the film 

thickness of the stationary phase, so reducing the distance that 

a solute molecule must diffuse within the stationary phase, see figure 

2.7. Liquid layers should be as thin as possible without introducing 

adsorption effects on the support material. Also Ds is smaller the 

more viscous the liquid stationary phase, although it increases as 

the temperature rises. 
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MOBILE PHASE FLOW 

11 

Degree of band 
spreading 

Stationary phase 

Figure 2.7: Stationary phase mass transfer187 

In the mobile phase, solute molecules in the same flow path 

do not all have the same velocity, those close to a particle surface 

will move more slowly than those in mid-stream so causing an increase 

in band broadening, see figure 2.8. 

Degree of 
band spreading 

Figure 2.8: 'Moving' mobile phase mass transfer187 
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In LC, stagnant pockets of mobile phase trapped within the 

stationary phase exist. Solute molecules will diffuse through stagnant 

mobile phase to different degrees resulting in band broadening, see 

figure 2.9. 

Degree of 
band spreading 

Figure 2.9: 'Stagnant' mobile phase mass transfer187 

The contribution to the plate height due to the resistance to 

mass transfer in the mobile phase is proportional to 

s/ dp DM - mobile 

In LC, radial mass transfer and eddy diffusion i. e. molecular 

diffusion coupled with uneven path lines, gives rise to a convective 

mixing or coupled term: 
A 

z 1+ Cmobile /u 
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To minimize contributions to plate height due to the resistance 

to mass transfer in the mobile phase, a low viscosity mobile phase 

should be chosen so that diffusion of solutes is rapid. Also the 

mobile phase velocity and particle diameter should be kept to a minimum. 

The undesirable effects of stagnant pools of mobile phase has 

led to the development of LC supports with solid cores or supports 

with very wide pores being chosen so that liquid flows in and out 

easily. 

The overall plate height can be expressed as the sum of the 

individual contributions. 

For GLC, the equation, known as the van Deemter equation, is 

stated below and shown graphically in figure 2.10. 

H=A+ B/d + Cstationary u 

Eddy Longitudinal Resistance to 
diffusion or axial mass transfer 

diffusion in the 
stationary phase 
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Figure 2.10: Typical H/ü (van Deemter) curve for a gas 
chromatographic column 
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The plot of H vs. ü shows a minimum value of H corresponding 

to an optimum average flow velocity for the best separation. Below 

this optimum velocity, H is dependent on the B term of the van Deemter 

equation i. e. longitudinal molecular diffusion is the controlling 

process. At high flow rates the mass transfer terms are the controlling 

features. 

For LC, the equation takes the form: 

H= B/ü + 

Longitudinal 
or axial 
diffusion 

1 

A+ mobile 

1+C 
mobile' 

s 

Convective Resistance to 
mixing mass transfer 

in the 
mobile phase 

+ Cstationary u 

Resistance 
to mass transfer 
in the 
stationary phase 

The relationships are shown graphically in figure 2.11. 
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Figure 2.11: Typical h/ü curve for a liquid chromatographic column 
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In LC where DM is small, the B term is of little significance 

and hence the H vs. U curve rarely shows a minimum. The LC curve 

also shows a more gradual rise in H with increasing velocity than 

the corresponding GC curve. The flat slope of the H vs. ü curve 

in LC means that high mobile phase velocities can be used without 

a serious loss in column efficiency. In all cases, as chromatograms 

must be obtained in a reasonable period of time, a compromise is 

made between column efficiency and flow velocity. 

Taking into consideration all the above contributions to band 

broadening, to minimize H the mobile phase flow rate should be 

optimized, temperature increased, the solvent viscosity reduced and 

a more uniformly packed column with small diameter particles used. 

Band spreading can also be caused by extra-column factors such 

as sample volume, connecting tubing and detector volume. Band spreading 

is proportional to the square of the sample volume, the square of 

the detector volume and also the fourth power of the diameter of 

the connecting tubing. Therefore sample volume and detector volume 

should be as small as possible and small diameter connecting tubing 

is essential. 

For an optimum separation all aspects of the chromatography 

system must be given careful consideration. 
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2.3.5 Resolution 

The usual goal of HPLC is the adequate separation of a given 

sample mixture. The quantitative measure of the separation of two 

peaks is expressed by the resolution RS, 

RS = 
(tR2- tR1=2 

At 

wb+Wb ) Wb + Wb 

1212 

that is, the resolution Rs, of two adjacent bands, 1 and 2, is defined 

as being the distance between the two band centres, divided by the 

average band width. RS can be improved by increasing the peak 

separation and by decreasing peak width. A resolution of about 1.5 

is necessary to achieve baseline separation of two peaks. 

2.3.6 Relative Retention 

The ability of a particular stationary phase (or solvent) 

to produce a separation is expressed by the relative retention, a, 

a_ 
t'RZ 

- 

tR2 - tM 

= 
k'2 

t'R1 tR1- tM k'1 

The degree of separation of two peaks depends on a and the sharpness 

of the peaks (i. e. the number of theoretical plates possessed by 

the column). Two peaks with a large a value can be separated by 

a relatively inefficient column whereas, two components with a small 

value of a will require a highly efficient column, with a large number 

of plates, for separation. 
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2.3.7 Controlling Resolution 

The resolution, RS, can also be related to the capacity factor, 

k', the relative retention, a, and the number of theoretical plates, 

N, by the following equation 

I 
RS =1a -1 k' N2 

4[a 
][1ýk'] 

The relative retention or selectivity, a, is governed by the 

interaction between the solute and the two phases. For a chosen 

stationary phase, the relative retention can be varied by changing 

the mobile phase composition. Temperature can also affect a. Methods 

for changing a are difficult to predict as they may involve changes 

in both mobile and stationary phases and may only result in a re- 

shuffling of the peaks with no real improvement in resolution. 

The capacity factor, k', can have a dramatic effect on the 

resolution. If k' =0 then there will be no separation. As k' values 

increase, there is a marked increase in Rs; the optimum range for 

k' is 1< k' 6 10 and can be controlled by the composition of the 

mobile phase. If k' is increased further, peak heights decrease 

rapidly and hence the peaks become more diffuse and difficult to 

detect and the analysis time increases. 

If k' is within the optimum range and resolution is still poor, 

an increase in N or the column efficiency can improve Rs 

i 
RS a (L/H) 2 

Therefore an increase in column length will result in improved 

resolution, however Rs only increases as the square root of the column 

length. Increased column length also means an increase in analysis 
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time or an increase in the column inlet pressure if the retention 

times are to remain constant. An alternative approach is to increase 

N by lowering the mobile phase flow rate, however this again causes 

longer analysis times and only modest increases in resolution. 

Temperature has only a small effect on retention and resolution 

in HPLC as tH is much smaller in LC than in GC. 

d In k' =DH 
dT RTT 

Temperature control is used to keep k' values constant. Increased 

temperature reduces the viscosity of the mobile phase and also increases 

the solubility of sparing soluble substances in the mobile phase, 

so reducing analysis times. 

2.4 Opti mi 7atlofl of Column Performance 

k' values are controlled by solvent strength. A 'weak solvent' 

may be used to increase k' values and to reduce k' a 'stronger solvent' 

may be used. The mobile phase usually consists of a mixture of solvents 

which can be altered to obtain k' values in the optimum range, for 

the component(s) of interest. In a sample containing components 

of interest with widely differing k' values the early peaks may not 

be resolved adequately and later peaks may be very broad and difficult 

to detect. The analysis time may also be unnecessarily long. No 

single isocratic solvent composition can elute all substances with 

good resolution in a reasonable time. The k' values of the different 

components may be optimized during the separation by changing the 
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composition of the mobile phase. Weakly adsorbed components (early 

peaks) may be eluted using a weak solvent and a change to stronger 

solvent mixtures would also allow strongly adsorbed components (later 

peaks) to elute with k' values in the optimum range. The change 

in mobile phase composition is normally carried out continuously 

and is known as gradient elution. Commercially available gradient 

programmers are used to control the composition of the mobile phase. 

2.4.1 Gradient Elution 

Selection of a particular gradient can only be made by trial 

and error. There are three important considerations: 

(a) the choice of solvents A and B, 

(b) the gradient shape, and 

(c) the gradient steepness. 

The choice of the initial and final solvent compositions is 

important in obtaining the desired separation with adequate resolution 

in a reasonable time. If the initial solvent, solvent A, is too 

weak valuable time will be lost, resolution is not improved and 

sensitivity is decreased, however if solvent A is too strong, the 

components of interest will elute quickly without adequate resolution. 

All peaks of interest should be eluted during the gradient or soon 

after the final composition has been reached. If this is not the 

case then solvent B is too weak and the final components of interest 

may have increased band widths or remain on the column. Ideally 

solvent A must be weak enough to give a good separation of the 

components with low k' values and solvent B must be strong enough 

to elute the components with large k' values in a reasonable time 
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with a k' value closer to the optimum. 

Depending upon which commercial programmer is being used, different 

gradient shapes may be available, as shown below. 

100 

T 
%ß 

0' 
0 

Time > 
Figure 2.12: Gradient Shapes 

A change in gradient shape will cause a change in the k' values of 

the components. In order to illustrate the effect of both convex 

and concave gradients on a particular chromatogram, let a linear 

gradient give an optimum separation with all peaks being resolved 

and of equal width, see fig. 2.13(b). A convex gradient, with an 

initial rapid increase in percentage of B in the mobile phase, leads 

to the elution of early peaks in the chromatogram with lower k' 

values and so they are sharper but less well resolved. For the peaks 

eluting later in the chromatogram there is an increase in resolution 

but also an increase in peak width as the rate of change of percentage 

of B decreases, see fig. 2.13(a). 
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186 
Figure 2.13: Effect of gradient shape on the resulting chromatogram 

A concave gradient has the opposite effects - wider peaks initially 

which are well resolved, but sharper, less resolved peaks towards 

the end of the chromatogram, see fig. 2.13(c). 

In some cases, even the use of the weakest possible solvent 

A results in poor resolution of the initial components in the 

chromatogram. By using the so-called 'gradient delay', an improvement 

is sometimes possible. The gradient delay allows the initial components 

to elute under isocratic conditions. The gradient is then started 

after a time lag of t rains. 

In an isocratic separation, a decrease in k' decreases resolution 

and increases sensitivity so in gradient elution resolution decreases 

and sensitivity increases with increasing gradient steepness. 
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Increasing gradient steepness has the same effect as increasing the 

solvent strength in isocratic elution, the steeper the gradient, 

the shorter the time of analysis. 

The main advantage of gradient elution is that it gives maximum 

resolution per unit time. However, in some cases it may be responsible 

for a lack of reproducibility due to changes in the mobile phase 

composition leading to variation in retention times. 

2.5 LC Instrumentation 

Modern liquid chromatographs basically consist of a high pressure 

solvent delivery system to pump mobile phase through relatively short, 

narrow columns containing the stationary phase and a sensitive detector 

system. Figure 2.14 is a general schematic diagram of the equipment 

used for modern LC systems. 

2.5.1 Solvent Delivery System 

It is important to degas and filter all solvents before they 

pass into the HPLC system. Degassing is required to remove dissolved 

gases (e. g. oxygen) and is carried out by heating under ref lux, 

evacuation coupled with ultrasonic vibration or the use of a helium 

sparge. Solvents which are not degassed tend to produce (air) bubbles 

towards the column outlet and these interfere with the functioning 

of the detector. Solvents which are most prone to dissolved gases 

are water and alcohols in which air is quite soluble. 
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Mobile Phase II Sample II Recorder 

Pump f-->1 Injector f-->1 Column f->1 Detector 

Collect/ Waste 

Figure 2.14: Schematic diagram of a modern HPLC system 

Filtration using a fine mesh filter less than 0.45 µ is also 

desirable, to remove any small particles which can impair the 

functioning of the (non-return) valves in the pump. 

The pump is a very important component of the modern LC system. 

Pumps may be classified into two main types: (i) constant flow pumps 

and (ii) constant pressure pumps. Constant flow/volume pumps are 

considered better than those generating constant pressure. 

The most widely used pumps are reciprocating pumps of which 

there are several different types including single-head and dual-head. 

These pumps have small volume chambers with reciprocating pistons. 

Each piston stroke involves solvent being drawn in from the solvent 
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reservoir through a non-return valve and then being pushed out through 

another valve to the column. Although these pumps usually give a 

constant flow rate, regardless of column back pressure or mobile phase 

viscosity, they produce a pulsating flow which can give rise to base- 

line noise. The use of dual or triple pump heads or other damping 

devices can smooth the flow of solvent delivery to the column. 

Reciprocating pumps are suitable for use with gradient elution and 

because of their small internal volume solvent changes are rapid 

and accurate. 

2.5.2 Pump/Equipment for Gradient Elution 

There are two types of gradient system depending on whether 

the mixing of the solvents takes place at low or high pressure. 

High pressure gradient programmers require two high pressure 

pumps and a gradient programmer, see figure 2.15 . The two solvents 

are pumped at high pressure into a mixing chamber before being pushed 

from the mixing chamber to the top of the column. Many different 

gradients are possible as the output from each pump can be controlled 

by the programmer. However, reciprocating pumps operate with poor 

precision at low flow rates (< 0.1 ml min 
1). At the beginning 

and end of a gradient run small amounts of one or other of the solvents 

may be required so this is a limiting factor. 

There is a trend towards the use of low pressure gradient 

programmers now. In low pressure gradient systems the solvents are 

mixed at atmospheric pressure and then pumped by a single high pressure 

pump to the column, see figure 2.16. Low pressure gradient systems 
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Figure 2.15: High-pressure mixing gradient system 
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Figure 2.16: Low-pressure mixing gradient system 
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have several advantages over high pressure systems. They require 

only one pump therefore they are less expensive. They are capable 

of mixing several different solvents whereas two solvents are normally 

used in high pressure systems. Solvent volume changes which are 

produced as a result of mixing occur at low pressure whereas these 

volume changes may cause a change in the flow rate in the high pressure 

system. Output in the low pressure system depends on the precision 

of only one pump. The overall effectiveness of the gradient system 

depends on the efficient mixing of the liquids. Use of a precise 

valving system for low pressure work ensures delivery of thoroughly 

mixed and degassed solvents to the pump resulting in reproducible 

gradient separations. 

2.5.3 Sample Introduction 

Ideally, the sample should be introduced into the pressurized 

column as a narrow plug onto the top of the column, to minimize peak 

broadening. Sample injection must also be reproducible and convenient 

to use. There are two methods of sample introduction, syringe 

injection, and sampling valves and loops. 

In the syringe-septum method, the sample is injected with a 

high pressure syringe through a self-sealing elastomeric septum. 

At high pressures maintaining a leakproof septum and also inserting 

the needle into a pressurized system is difficult so reproducibility 

is rarely better than 2%. Another method used is the 'stopped flow' 

technique where the mobile phase flow is switched off or diverted 

while the injection is made. This method can be used at very high 

pressures, however it can lead to retention time uncertainty. 
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The most widely used method of sample introduction is the injector 

valve or loop. The small loop (10-500 )xl) is initially filled with 

sample using a syringe. By valve switching the sample in the loop 

is introduced onto the top of the column as the flow of mobile phase 

is diverted through the loop before reaching the column. Although 

increased band spreading may result and the technique is wasteful 

with sample, loop injections are reproducible with valve error < 0.2% 

and the technique is amenable to automation. In addition to external 

loops (10-500 )i1. ) which are interchangeable, very small fixed volume 

internal loops (1-3 µl) are also available. Loop-valve injections 

are now used almost to the exclusion of syringe injections. 

2.5.4 The Column 

The column, the core of the chromatograph, is usually constructed 

of heavy wall glass or stainless steel tubing so as to withstand 

the high pressures. Glass columns are superior to those made from 

steel. Performance is improved if the stainless steel is polished 

to give a smooth internal surface. This reduces the mobile phase 

channelling near the wall/packing material interface. The internal 

diameter of the column is precision bored. 

Flexible walled cartridges (10 cm in length with an 8 mm bore), 

which are compressed radially in a compression module, are also now 

available (from Waters), see figure 2.17. The efficiency of a rigid- 

walled column is less than that which is attainable when flexible 

column walls are used. With rigid-walled packed columns the dispersion 

of the mobile phase near the column wall is greater than that in 

the centre of the column. This is known as the 'wall effect'. Taking 
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Figure 2.17: Waters Radial Compression Module (cross section 
diagram) 188 

Knurled 
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in 

a perpendicular cross-sectional slice through the column, at different 

positions in the flow stream, there are different velocities caused 

by the different local permeabilities through these channels which 

can arise due to wall irregularities and poor packing. The movement 

of the solute band through the column is therefore not uniform in 

conventional packing structures and is a source of band broadening, 

see figure 2.18. Using a flexible walled column hydraulic pressure 

is applied along the radial axis via a fluid, such as glycerol, 

contained within a plastic sleeve. The column wall is able to mould 

around the column packing, see figure 2.19. This gives a more 

homogeneous packed bed. Wall effects, column channelling and voiding 

can be virtually eliminated and this increases column efficiency. 

Columns with an internal diameter of 5 mm provide a good compromise 

between sample capacity, the amount of packing used, solvent required and 

column efficiency. A2 mm bore packed column requires a much higher 
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inlet pressure as the same length of 5 mm column for the same flow 

rate. Large bore columns require considerably more packing material 

for the same length. Extra-column band broadening due to fittings, 

tubing, detector and injector dead volume becomes less important 

with increasing column internal diameter as a larger bore column 

gives broader peaks. 

Guard columns, short protection columns <5 cm in length, may 

precede the analytical/separation column to filter out unwanted 

material. Use of such a column can increase the lifetime of the 

analytical (separation) column. Both analytical and guard columns 

should be packed with similar packing material. Guard columns can 

lead to a slight decrease in efficiency but usually this is not 

critical. 

2.5.5 Detectors 

In liquid chromatography no single detector exists which 

satisfies all the necessary requirements for an ideal detector. 

The detector must be selected for a particular problem and so several 

detectors are available. The most widely used detectors include: 

(i) the UV/visible detector 

(ii) the refractive index (RI) detector 

(iii) the fluorescence detector 

(iv) the electrochemical detector 

(v) the infrared (IR) detector and 

(vi) the mass spectrometer. 

(v) and (vi) are used, but less frequently. 194 
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The detectors are of two basic types. The bulk property detector, 

e. g. RI detector, involves the differential measurement of a physical 

property of the mobile phase with and without the eluting solute. 

The solute property detector, e. g. the W detector and the electro- 

chemical detector, involves measurement of a physical property 

characteristic of the solute which is not exhibited by the mobile 

phase. Some solute property detectors require the removal of the 

mobile phase before detection, e. g. the mass spectrometer. Bulk 

property detectors tend to be relatively insensitive (microgram range), 

although they are universal, responding to practically every solute. 

Solute property detectors only respond to a limited range of solutes 

but sensitivity is high (nanogram levels), and temperature control 

is not essential. 

UV detectors are the most commonly used of all the detectors, 

although they are restricted to solutes which absorb UV radiation. 

The original detectors were single or dual wavelength instruments 

(254 nm and/or 280 nm). Variable wavelength detectors are now available 

covering the range 210-800 nm and these offer several advantages 

over fixed wavelength instruments, such as increased sensitivity, 

since the wavelength of maximum absorption of the component of interest 

can be chosen, and greater selectivity since a wavelength can be 

chosen where the solutes of interest absorb while others do not. 

The mobile phase should not absorb in the W region or absorb only 

weakly. The UV cutoff valve is considered to be the wavelength below 

which the solvent will absorb more than 1.0 absorbance unit in a 

1 cm path cell, e. g. the IN cutoff for methanol is 210 nm. 

Very pure solvents must also be available as the detection limit 
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is dependent on solvent purity. The detector is a solute property 

detector and so sensitivity is high, it has low noise characteristics, 

is relatively insensitive to temperature changes and fluctuations 

in flow rate and ideally suited to gradient elution work. Many of 

the components of interest in LC are UV active. 

2.5.6 Quantitation/Data Handling 

The output from the detector is usually recorded by a chart 

recorder and if an integrator or computerised data handling system 

is used peak retention times and peak area measurements may also 

be recorded. Some systems allow for immediate component identification 

and their concentrations in the sample. 
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2.6 The Separation Problem 

Success in HPLC analysis is the separation of a mixture into 

its individual components. This separation is dependent upon the 

choice of the chromatographic mode and a packing material and eluent 

compatible with this type of separation. Once achieved, the separation 

will require optimization to give the desired resolution. 

The nature of the mixture of components of analytical interest 

and ultimately the nature of the sample matrix in which they are 

present determines how critical the choice of column packing is. 

The analysis of a compound and its associated metabolites, as in 

the case of nicotine and its structurally related breakdown products, 

is a challenging problem in terms of column selection, requiring 

careful attention. It must also be remembered that the separation 

achieved will as an end result be applied to urine samples where 

sensitivity and selectivity will be of critical importance. 

2.7 Choice of Detector 

UV was the chosen method of detection as nicotine and the 

metabolites, cotinine and nicotine- 1'-N-oxide, all absorb UV radiation. 

Most of the HPLC studies carried out previously have also used UV 

detection, 166,168-171,179,181 
even though UV seemed to lack the required 

sensitivity and selectivity for measuring low levels of these substances 

in both urine and plasma. Mousa et al. 
172 

used electrochemical 

detection for the determination of nicotine and N-methylnicotinium 

ion, a minor metabolite. However, cotinine, 3' hydroxycotinine and 
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nicotine-i' -N-oxide were not observed in the sensitivity range employed 

for the analysis. Electrochemical detection proved to be a very 

sensitive and selective method though not applicable to many 

metabolites. Liquid chromatography-mass spectrometry (LC-MS) is 

also now commercially available. LC-MS has not been reported in 

the literature up to the time of writing, however there are many 

examples of MS being used as the detector in GC analysis. 
148,158-161,184 

Mass spectrometry is a very sensitive method of detection, however 

in most cases its initial capital cost is prohibitive and, as it is 

a complex instrument, it is unsuitable and an unlikely choice for 

routine analysis. 

The differential refractometer detector is also used widely 

in LC. This detector monitors the difference in refractive index 

between the pure mobile phase and the mobile phase plus sample as 

it elutes from the column. It has not been used for the detection 

of nicotine and its metabolites due to inferior sensitivity and 

stability as compared to W detection. Refractive index (RI) detectors 

are sensitive to changes in the mobile phase composition and so they 

are not suitable for gradient elution work. 

2.7.1 Selection of the detection wavelength 

Some of the preliminary studies were carried out using a fixed 

wavelength UV detector, X= 254 nm, although a variable wavelength 

W spectrometer was available for all quantitative work. A variable 

wavelength detector is desirable as it enables the wavelength to 

be adjusted for particular sample components so providing optimum 

sensitivity and selectivity. 
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The W spectra of the standards of interest were recorded and 

are shown in figures 2.20. A detection wavelength of 260 nm was 

chosen. 

2.8 Ion Chromatography 

Cundy and Crooks171 applied cation exchange chromatography to 

the analysis of nicotine, three oxidative metabolites, nicotine-1'-N- 

oxide, cotinine and nornicotine, and four potential methylated 

metabolites. A separation was achieved using a Partisil 10 SCX column 

with an eluent of 0.3M sodium acetate-methanol (70: 30) buffer, pH 

4.5 initially, followed by a gradient of triethylamine rising from 

0 to 1.0% over a 10 minute period, to elute the more strongly bound 

standards. In a urine sample from a guinea pig, Cundy and Crooks 

detected cotinine and nicotine- 1'-N-oxide as major urinary metabolites, 

small amounts of nornicotine and unmetabolized nicotine. The guinea 

pig produced only one identifiable methylation product, the N-methyl- 

nicotinium ion. 

The work of Cundy and Crooksl7l was taken as a starting point 

and cation-exchange chromatography was used in an attempt to separate 

the protonated alkaloids at low pH. A Partisil 10 SCX column (30 cm 

x2 mit ID) was used (see table 2.2), with a methanol (70%), sodium 

acetate (30%) (0.3M, pH 4.5) mobile phase. Nicotine, cotinine and 

nicotine- 1'-N-oxide were eluted from the column virtually unretained 

and not separated from one another. A separation of the three standards 

had been achieved by Cundy and Crooks although cotinine had not been 
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completely resolved from the compounds eluting in the void volume, 

those which elute with little or no retention. Variation of the 

available parameters, such as the percentage of methanol, the molarity 

of sodium acetate in the mobile phase and the pH of the buffer, in 

an attempt to achieve a separation of the standards, proved to have 

little effect. This was in agreement with the findings of Cundy 

and Crooks. 
171 

Hence, cation exchange chromatography was abandoned 

as this mode of chromatography showed little flexibility. 

2.9 Reverse Phase Chromatography 

In the reverse phase mode the stationary phase is less polar 

than the mobile phase. Many interfering species present in biological 

systems are ionic in nature, which results in possible interfering 

ions showing little affinity for the column and eluting after the 

void volume without being retained. Most importantly, the reverse 

phase mode is very versatile with additional operational variables 

not available in the normal phase or ion-exchange modes and therefore 

it was hoped that this added flexibility would help effect a separation 

of nicotine and its metabolites. 

2.9.1 Reverse Phase Ion-Interaction Chromatography 

Cundy and Crooks171 also reported an attempt to develop an 

analytical method for the quantitation of nicotine and its methylated 

metabolites using reversed phase columns with an ion-interaction 

agent at a low pH (RP-IIC). However, it was abandoned due to the 
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very high affinity of the methylated nicotine paired ions for the 

reversed phase packing material. As this study was not directly 

concerned with the methylated metabolites, RP-IIC was investigated 

as a possible method for the analysis of nicotine, cotinine and 

nicotine-1'-N-oxide. 

The mobile phase included the ion-interaction agent, pentadecyl- 

fluoro-octanoic acid (PDFOA). Various types of reversed phase (ODS) 

column materials were evaluated to find the most suitable. These 

columns are listed in table 2.3. Initially the mobile phase consisted 

of 0.3M sodium acetate, pH 4.5 : 100 1-1g ml 
1 

PDFOA in McOH (70: 30). 

The available parameters were altered in an attempt to effect a 

separation. Ratios of buffer to methanol other than 70: 30 were 

examined, the concentration of PDFOA was varied from 100-1000 pg 

MI -1 and, pH being an important factor influencing retention in RP-IIC, 

the pH of the acetate buffer was controlled using CH3000H. Triethyl- 

amine (Et3N) and diethylamine (Et2NH) were both used as anti-tailing 

agents, being added as 0.1% of the mobile phase. 

Using the Hypersil ODS column (10 cm x5 mm ID) and a mobile 

phase which initially consisted of CH3000Na 0.3M, pH 4.5 : 200 pg ml 
1 

PDFOA in McOH (70: 30) and 0.1% Et3N, nicotine, cotinine and nicotine-1'- 

N-oxide were chromatographed. Nicotine- 1'-N-oxide and nicotine were 

poorly retained and were not completely resolved from the solvent 

front. On changing the concentration of PDFOA in MeOH from 200 pg ml-1 

to 1000 µg ml, all three were again chromatographed, as shown in 

figure 2.21. Slight variations in the retention times were noted, 

see table 2.4, and in order to ensure an excess of the IIA, 1000 

µg ml-' PDFOA was chosen for all future RP-IIC work. 
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Table 2.4: The relationship between the retention time/capacity factor 

and the concentration of ion-interaction agent in the 

mobile phase for standard components by RP-IIC on a Hypersil 

ODS column 

Concentration of tM Nicotine-1'- Cotinine Nicotine 
IIA in the moyi1e (mins) N-oxide 
phase (µg ml ) tR(mins) k' tR(mins) k' tR(mins) k' 

200 0.8 1.3 0.62 2.4 2.00 1.7 1.12 
1000 0.8 1.8 1.25 2.0 1.50 2.3 1.88 

Variation in the ratio of buffer to MeOH showed that as the 

percentage of MeOH was decreased the retention time increased; 

unfortunately the peak shape also deteriorated, see table 2.5. 

Table 2.5: The relationship between the retention time/capacity factor 

and methanol content of the mobile phase for standard 
components by RP-IIC on a Hypersil ODS column 

% Organic tM Nicotine-1'-N- Cotinine Nicotine 
Modifier (gi ) oxide s tR(mins) k' tR(mins) k' tx(mins) k' 

10 0.8 9.2 10.50 5.1 5.38 8.2 9.25 
20 1.8 8.3 3.61 5.0 1.78 10.5 4.83 
30 0.8 1.8 1.25 2.0 1.50 2.3 1.88 

With CH3000Na 0.3M, pH 4.5 : 1000 jig ml-1 PDFOA in MeOH (90: 10), 

Et2NH was substituted for Et3N resulting in increased retention times 

for the standard components and also peak tailing, hence use of Et3N 

was continued, see figure 2.22. 



1.15 

Figure 2.22: Effect of the Addition of Et3N or Et. 2Ni. 
(0.1%) to the 

Mobile Phase on the Chromatography of a Cotinine Standard 

(100 )ag m. 1-1 ) 

Parameters: see figure 2.21, except for 

Eluent: [ 90% CH3000Na (0.3M): 10% NeOH with PDFOA (1000 ug ml-1) 

added ], pH 4.55) 0.1% Et3N or Et2NH, as stated below. 

C 
ö 
N 

0 III 4 

(a) 0.1% Et3N 
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Again with a mobile phase composition of 90% buffer to 10% MeOH, 

the pH was changed from pH 4.5 to pH 3.6. The retention times of 

the three standards were reduced dramatically with cotinine being 

virtually unretained. Adjustment to an intermediate pH of 4.1 increased 

the retention times of all three components but also caused the peak 

shape to become broad and tailing, as shown in table 2.6 and figure 

2.23. Separation of the three standards was not forthcoming under 

any of the conditions tried and so the Hypersil column was abandoned. 

Table 2.6: The relationship between the retention time/capacity factor 

and pH of the mobile phase for standard components by 

RP-IIC on a Hypersil ODS column 

pH t Nicotine-1' -N- Cotinine Nicotine 
M 

oxide (S) 
tR(mins) k' tR(mins) k' tR(mins) k' 

3.6 0.8 2.0 1.50 1.8 1.25 2.0 1.50 

4.1 1.0 5.1 4.10 4.0 3.00 4.7 3.70 

4.5 0.8 9.2 10.50 5.1 5.38 8.2 9.25 

On a Spherisorb ODS 5µ column (10 cm x5 mm ID) with a mobile 

phase of CH3000Na, 0.3M, pH 4.5 : 1000 }. fig ml-1 PDFOA in MeOH, 70: 30, 

nicotine, cotinine and nicotine-1'-N-oxide were all more strongly 

retained than on the Hypersil ODS column. The chromatography was 

most unsatisfactory and separation of the standards was not possible 

under the conditions employed. Changing only the pH from 4.5 to 

3.5 resulted in a shortening of the retention times of all standards 

as was the case on the Hypersil columns. As the standards were now 
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Figure 2.23: Effect of Mobile Phase pH on the Chromatography of a 

Nicotine-1'-N-oxide standard (100 µg ml-1) 

Parameters: See figure 2.21 except for: 

Eluent: [90% CH3000Na (0.3M): 10% MeOH with PDFOA (1000 )jg m1-1) 

added ], pH as stated below, 0.1% Et3N. 
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(a) PH 4.55 (b) pH 4.1 
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all virtually unretained but the peak shape was satisfactory, increased 

retention was brought about by changing the ratio of buffer to methanol 

from 70: 30 to 80: 20 and finally to 95: 5. Unfortunately the peak 

shape of both nicotine and nicotine-1'-N-oxide deteriorated, especially 

when the 95: 5 ratio was employed, and again no separation of the 

standards was possible. 

A change to a i-Bondapak ODS column (30 cm x 3.9 mm ID) resulted 

in a separation of nicotine and nicotine- 1'-N-oxide from cotinine, 

with nicotine and nicotine-11-N-oxide co-eluting. The separation 

was achieved using an eluent of CH3000Na, 0.3M, pH 4.5 : 1000 µg ml-1 

PDFOA in MeOH 70: 30,0.1% Et3N and is illustrated in figure 2.24 

with retention times/capacity factors reported in table 2.7. 

Table 2.7: The relationship between the retention time/capacity factor 

and methanol content of the mobile phase for standard 

components, by RP-IIC on a p-Bondapak ODS column 

Organic tM Nicotine-1'-N- Cotinine Nicotine 
Modifier (mins) oxide 

tR(mins) k' tR(mins) k' tR(mins) k' 

30 1.4 4.1 1.93 3.4 1.43 4.6 2.29 

In an attempt to resolve nicotine and nicotine- 11 -N-oxide the 

ratio of buffer to methanol was varied from 70: 30 to 85: 15 and finally 

to 80: 20; however, nicotine and nicotine-11-N-oxide co-eluted on 

every occasion and showed no sign of being resolved into two peaks, 

as illustrated by figure 2.25 and table 2.8. 
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Figure 2.24: Reverse Phase Ion-Interaction Chromatography of Individual 

Standards on a p-Bondapak ODS column 

Parameters: 

O 

O 
N 

Colur: : µ-Bondapak ODS (30 cm x 3.9 rinn ID) 

Detection: W at 254 run Flow rate: 2 ml min -1 

Sample: Individual standard solutions in H 20 
(100 

jug ml-1) 

and a standard mixture in H2O (50 ug ml-1 ) 

Sample Size : 20 jil 

Eluent: [70% CH3COONa (0.3M): 30% MeOH with PDFOA (1000 }ig ml-1) 
added], pH 4.5,0.1% Et3N 

n 
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z z 0 
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Figure 2.25: Effect of Mobile Phase Composition on the Reverse Phase 

Ion-Interaction Chromatography of a Standard Mixture on 

a p-Bondapak ODS column 
Parameters: see figure 2.24 except for: Flow Rate: 2.5 ml min 

1 

Eluent : (a) [ 80% CH3000Na (0.3M) : 20% MeOH with PDFOA (1000 }; ml 
1) 

added ], pH 4.5,0.1% Et3N 

(b) [85% CH3000Na (0.3M) : 15% MeOH with PDFOA (1000 pg ml-. ) added], 

pH 4.5,0.1% Et3N 
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Table 2.8: The relationship between the retention time/capacity factor 

and methanol content of the mobile phase for standard 

components by RP-IIC on a p-Bondapak ODS column 

% Organic tM Nicotine-1' -N- Cotinine Nicotine 
Modifier oxide (mom) 

tR(mifs) k' tR(mins) k' tR(mins) k' 

15 1.2 5.5 3.58 3.8 2.17 5.3 3.42 
20 1.3 4.1 2.15 2.8 1.15 4.1 2.15 

The separations attempted, all based on ionic compounds, were 

difficult to control and from these results both the IC and RP-IIC 

modes were presumed unlikely to yield a satisfactory separation, 

therefore attention was focused instead on partition chromatography 

working with neutral alkaloids at a pH of 7 or above, as described 

by Saunders and Blume. 196 

2.9.2 Reverse Phase Partition Chromatography 

In 1981 Saunders and Blume196 published a HPLC method for 

the quantitation of the major alkaloids, anatabine, anabasine, nicotine 

and nornicotine, found in both fresh green leaf and air dried tobacco 

leaf samples. The tobacco alkaloids were separated successfully 

on a reversed-phase µ-Bondapak C 
18 column with an isocratic eluent 

of 0.2% phosphoric acid, pH adjusted to 7.25 with triethylamine: 

methanol (60: 40). 

This same method was used to chromatograph nicotine, nicotine-1'- 

N-oxide and cotinine. Several reversed-phase columns were examined 
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and these are listed in table 2.9. On the µ-Bondapak column (30 cm 

x 3.9 mm ID), a separation of nicotine and its major metabolites 

was achieved with a mobile phase containing 20% McOH. Variation 

of the k' values of all the standards with changes in the methanol 

content of the eluent is shown in table 2.10 and figures 2.26 and 

2.27. In all cases an increase in the percentage of the organic 

solvent MeOH caused a decrease in the k' value of the standard. 

Eluent strength is increased by increasing the solubility of the 

solute in the mobile phase usually brought about by decreasing its 

aqueous content. 

Acetonitrile was substituted for methanol in the mobile phase. 

In both cases the trends in k' values, when the percentage of organic 

modifier was varied, were similar, see table 2.11 and figures 2.28 

and 2.29. To obtain a k' value of 3.0 for cotinine required 20% 

MeOH but only 9% CH3CN. This was in accordance with the general 

rule that the lower the polarity of the mobile phase, the higher 

is its eluent strength, acetonitrile being less polar than methanol. 

On an R-Sil ODS column (25 cm x5 mit ID), the relationships 

between % MeOH or % CH3CN and k' values were similar to those obtained 

on the µ-Bondapak column. However, using 30% CH3CN, although the 

nicotine-1'-N-oxide and cotinine were not resolved, it was noted 

that cotinine eluted before nicotine-1'-N-oxide, see figures 2.30-2.34 

and tables 2.12 and 2.13. 

As the separations obtained on both the p-Bondapak and R-Sil 

columns showed no marked improvement when acetonitrile was employed 

in place of methanol, acetonitrile was no longer considered as an 

alternative for reasons of toxicity and cost. 
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Table 2.10 and Figure 2.26: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a µ-Bondapak OAS column 

Table 2.10 

% Organic tM Nicotine-1'-N- Cotinine Nicotine 
Modifier ( oxide 

(MeOH) S) tR(mins) k' tR(mins) k' tR(mins) k' 

20 1.6 3.7 1.31 6.4 3.0 13.4 7.37 
30 1.6 3.3 1.06 3.7 1.31 7.7 3.81 

40 1.6 2.8 0.75 2.8 0.75 5.3 2.31 

n 
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Figure 2.26 
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Table 2.11 and Figure 2.28: 

The relationship between the retention time/capacity factor and 

acetonitrile content of the mobile phase for standard components 

under reverse phase partition conditions on a-Bondapak ODS column 

Table 2.11 

% Organic tM Nicotine-1'-N- Cotinine Nicotine 
Modifier ( ) oxide i (CH3CN) m ns tR(mi-ns) k' tR(mins) k' tR(mins) k' 

10 1.4 3.3 1.36 5.2 2.71 9.6 5.86 
20 1.4 2.6 0.86 2.6 0.86 5.2 2.71 

6.0 

5.0 

G) 

4.0 

3.0 

2.0 

1.0 

0 

Figure 2.28 
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ºiCure 2.29: The Effect of Mobile Phase Composition (CH3CN Content) 

on the ^. everse Phase artition Chromatography of a 
Standard Mixture on a µ-Bondapak ODS column 
Parameters: see figure 2.27 except for: 

Detection: UV at 260 nm 

Eluent: 0.2% H3P04, pH adjusted to 7.25 with Et3N: CH3CN in 
the ratio (a) 90: 10, and (b) 80: 20 

C 
n 0 H 

(b) 20% CH3CN 
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Table 2.12 and Figure 2.30: 

The relationship between the retention time/capäcity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on an R-Sil ODS column 

Table 2.12 

% Organic tM Nicotine-1'-N- Cotinine Nicotine 
Modifier oxide ( i (MeOH) ne) m tR(mins) k' tR(mins) k' tR(mins) k' 

30 
40 

2.0 
2.3 

4.2 
4.4 

1.10 
0.91 

6.0 

4.6 
2.00 
1.00 

12.6 
10.3 

5.30 
3.48 

Figure 2.30 

Nicotine 

or, 

Cotinine 

-1r- . 
Nicotine-1'-N-oxide 

0 10 20 30 40 

% MeOH 



Figure 2.31: The Effect of Mobile Phase Composition (Me01I content) 
on the Reverse Phase Partition Chromatography of a 
Standard Mixture on an R-Sil ODS column 

Parameters: Column: R-Sil ODS (25 cm x5 nan ID) 

Detection: Standard mixture in H2O (10 µg ml-1) 
Sample Size: 20 dal. Flow Rate: (a) 1.2 ml min 

(b) 1.5 ml min 
1 

Eluent: 0.2% H3P04, pH adjusted to 7.25 with Et3N: MeOH 

in the ratio (a) 60: 40 and (b) 70: 30 

0 
ö 
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Table 2.13 and Figure 2.32: 

The relationship between the retention time/capacity factor and 

acetonitrile content of the mobile phase for standard components 

under reverse phase partition conditions on an R-Sil ODS column 

Table 2.13 

Organic tM Nicotine-1'-N- Cotinine Nicotine 
Modifier oxide 
(CH3CN) 

( S) tR(mins) k' tR(mins) k' tR(mins) k' 

10 2.0 4.9 1.45 10.3 4.15 16.6 7.30 
20 1.8 3.6 1.00 4.4 1.44 7.6 3.22 
30 1.6 3.2 1.00 2.9 0.81 5.4 2.38 
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Figure 2.34: Comparison of the Reverse Phase Partition Chromatography 

on an R-Sil OAS column using (a) CH3CN and (b) MeOH as 

the organic modifier in the Mobile Phase 

Parameters: see figure 2.31, except for: 

Flow Rate: 1.5 ml min-1 

Eluent: (a) 0.2% H3P04, pH adjusted to 7.25 with Et3N: 

CH3CN (70: 30) 

(b) 0.2% H3P04, pH adjusted to 7.25 with Et3N: 

MeOH (70: 30) 
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Other ODS columns examined which gave similar results to those 

already discussed included Spherisorb ODS1 (10 cm x5 mm ID) and 

Spherisorb ODS2 (10 cm x5 min ID), see figures 2.35-2.38 and tables 

2.14 and 2.15. 

The elution order on all the columns mentioned above (using 

methanol as the organic modifier) was: nicotine- i' -N-oxide, followed 

by cotinine and lastly nicotine. The percentage of methanol which 

gave the best resolution between the three standards usually resulted 

in nicotine having a long retention time and so this peak was sometimes 

broad and tailing. An attempt was made to improve the peak shape 

by adding n-heptanol, nitromethane or pelargononitrile etc. 

to the methanol. The mobile phase then consisted of e. g. 1000 pg ml-1 

n-heptanol in methanol, 0.2% phosphoric acid, pH adjusted to 7.25 with 

Et3N in the ratio 30: 70. Two columns were used in this trial, 

µ-Bondapak and Spherisorb ODS1, the k' values are reported in tables 

2.16 and 2.17. See also figures 2.39-2.41. 

Although the peak shape was improved slightly by the use of 

some of these additives, e. g. n-heptanol, the improvement was probably 

mostly due to shortened retention times. Shorter retention times 

of all the standards was accompanied by a deterioration in the 

resolution of nicotine-1'-N-oxide and cotinine in particular. Therefore 

the use of additives was rejected. 
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Table 2.14 and Figure 2.35: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a Spherisorb ODS1 column 

Table 2.14 

Organic tM Nicotine-1'-N- Cotinine Nicotine 
Modifier i oxide 

(MeOH) (m nt) 
tR(mins) k' tR(mins) k' tR(mins) k' 

20 0.4 1.8 3.50 5.2 12.00 14.3 34.75 
30 0.5 1.5 2.00 3.1 5.20 8.0 15.00 

40 0.5 1.2 1.40 1.6 2.20 4.3 7.60 
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Table 2.15 and Figure 2.37: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a Spherisorb ODS2 column 

Table 2.15 

Organic t Nicotine-1'-N- Cotinine Nicotine 
Modifier (mins) oxide 

(MeOH) tR(mins) k' tR(mins) k' tR(mins) k' 

20 0.4 1.0 1.50 3.2 7.00 5.9 13.75 
30 0.6 1.2 1.00 2.0 2.33 5.7 8.50 
40 0.4 0.9 1.25 1.0 1.50 1.9 3.75 

Figure 2.37 
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0 10 20 Zn nn 

MeOH 



137 

Figure 2.38: The Effect of Mobile Phase Composition (MeOH content) 

on the Reverse Phase Partition Chromatography of a 

Standard Mixture on a Spherisorb 0DS2 column 

Parameters: Column: Spherisorb ODS2 (10 cm x5 min ID) 

Flow Rate: 2 ml min-1. Detection: UV at 260 nm 

Sample: Standard mixture in H2O ( 10 µg ml-1) 

Sample Size: 20 µl. Eluent: 0.2% H3P04, pH adjusted to 

7.25 with Et3N: MeOH in the ratio (a) 60: 40, (b) 70: 30 

and (c) 80: 20 
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Table 2.16: The relationship between the retention time/capacity factor 

and a mobile phase containing 30% organic modifier plus 
different additives (1000 )g ml-1) for standard components 

under reverse phase partition conditions on a Spherisorb 

ODS1 column 

Additive tM Nicotine-1'-N- Cotinine Nicotine 

(gis) oxide 
tR(mins) k' tR(mins) k' tR(mins) k' 

none 0.4 1.3 2.25 2.4 5.00 7.4 17.50 

n-heptanol 0.5 1.4 1.80 2.3 3.60 6.5 12.00 

CH3N02 0.5 1.4 1.80 2.5 4.00 6.8 12.60 

pelargono 
nitrile 

0.2 1.1 4.50 1.7 7.50 5.3 25.50 

n-octanol 0.3 1.2 3.0 1.7 4.67 5.3 16.67 

Table 2.17: The relationship between the retention time/capacity factor 

and a mobile phase containing 30% organic modifier plus 
different additives (1000 jig ml-1) for standard components 

under reverse phase partition conditions on a ji-Bondapak 

ODS column 

Additive tß, 1 Nicotine-1'-N- Cotinine Nicotine 
oxide (gis) 

tR(mins) k' tR(mins) k' tR(mins) k' 

none 1.5 3.2 1.13 3.6 1.40 7.7 4.13 

n-heptanol 1.3 2.8 1.15 2.8 1.15 6.6 4.08 

CH3NO2 1.6 3.2 1.00 3.5 1.19 7.6 3.75 
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Figure 2.41: The Effect of Additives (1000 pg ml-1) in the Organic 

Modifier on the Reverse Phase Partition Chromatography of 

a Standard Mixture on a µ-Bondapak ODS column 
Parameters: see figure 2.40 except for: 

Flow Rate: 2 ml min 
1. 

Eluent: 0.2% H3P04, pH adjusted to 7.25 with Et3N: MeOH 

(70: 30). Additives have been included in the MeOH as 

specified below. 
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On a Partisil ODS2 column (25 cm x 4.6 mm ID), nicotine-1'-N-oxide 

is eluted after cotinine when the percentage of methanol in the eluent 

is greater than 30%. Nicotine is retained strongly by this ODS phase 

and requires a methanol content of 50% if the peak is to be visible 

above the baseline, see figure 2.42. Although the separation of 

nicotine from cotinine and nicotine- 1'-N-oxide was easily achieved, 

cotinine and nicotine-1'-N-oxide were more difficult to resolve. 

Changes in the k' values of the standards vs. the percentage of MeOH 

in the mobile phase are illustrated in figure 2.43 and table 2.18. 

3' Hydroxycotinine has been included in figure 2.43 and table 

2.18, the inclusion of this nicotine metabolite will be discussed 

in section 2.11. 

A Polymer Labs PL-RP-S 10 µ column (15 cm x 4.6 mm ID) was also 

examined. Using a mobile phase consisting of 0.2% H3P04, pH adjusted 

to 7.25 with Et3N : methanol (60: 40), the k' values were markedly 

different. Under isocratic conditions a separation of all three 

standards was possible, as shown in figure 2.44, however nicotine-1'- 

N-oxide was virtually unretained by the column when the MeOH content 

of the eluent was as high as 40% but at the same time nicotine was 

very strongly retained by the PL-RP-S phase and was just visible 

above the baseline under the conditions employed. 

As there were no pH restrictions on this resin based column, 

another mobile phase was made up as follows: 0.2% H3P04, pH adjusted 

to 9.25 with Et3N : methanol (60: 40). At the higher pH value the 

retention times and k' values of all three components were shortened 

but in the case of the nicotine, still strongly retained, the peak 

remained broad and with a k' value of 25.4, see table 2.19 and figure 

2.45. 
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Figure 2.43: The relationship between the retention time/capacity 

factor and methanol content of the mobile phase for standard components 

under reverse phase partition conditions on a Partisil 0DS2 column 
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Figure 2.44: Reverse Phase Partition Chromatography of a Standard 

Mixture on a PL-RP-S 10 p, 100 A column 

Parameters: Column: PL-RP-S 10 µ (15 cm x 4.6 nun ID) 

Flow Rate: 2.0 ml min 
1. Detection: UV at 260 nm. 
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Table 2.19 and Figure 2.45: 

The relationship between the retention time/capacity factor and pH 

of the mobile phase for standard component's under reverse phase 

partition conditions on a PL-RP-S 10 ýi 100A column 

Table 2.19 

tM Nicotine-1'-N- Cotinine Nicotine 
pH (mins) 

tR(minsde )) k' tR(mins) k' tR(mins) k' 

7.25 1.5 2.6 0.73 12.4 7.26 44.0 29.33 

9.25 1.4 2.0 0.43 6.3 3.5 37.0 25.40 

Figure 2.45 
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On a Hypersil phenyl column (15 cm x5 mii ID), the elution order 

was found to be different from that reported above for the ODS columns, 

with nicotine-1'-N-oxide being eluted first followed by nicotine 

and finally cotinine. Nicotine and cotinine were never completely 

resolved under any of the conditions employed; this is evident from 

figure 2.46 which shows the best separation of the three standards. 

The variation of k' with % MeOH is presented in table 2.20 and shown 

in graphical form in figure 2.47. 

A Nucleosil NO2 column (10 cm x5 mm ID) gave the usual elution 

order: nicotine-1'-N-oxide, cotinine and nicotine. Unfortunately 

the nicotine- 1'-N-oxide and cotinine peaks were not completely resolved 

regardless of the percentage of MeOH employed. The best separation 

between the three standards was achieved with a mobile phase containing 

only 10% MeOH, which is shown in figure 2.48 and which can be seen 

from the graph of k' value vs. % MeOH, figure 2.49 and table 2.21. 

Several different packing materials have already been investigated; 

in order to choose the most suitable phase for further investigation, 

three criteria were used: (i) resolution, (ii) capacity factor of 

the first peak of interest and (iii) run time. 

Baseline separation of all components of interest was sought, as 

the primary concern. For the sample analysis it was deemed necessary 

to have the first peak of interest with a k' value > 2, so as to 

avoid potential interference from early eluting species, unretained 

by the column and of no analytical interest. It was also considered 

desirable to keep the duration of the chromatographic analysis within 

reasonable limits (e. g. less than 30 minutes). The ultimate aim 

was to develop a method suitable for routine analysis of large numbers 
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Figure 2.46: Reverse Phase Partition Chromatography of a Standard 

Mixture on a Hypersil Phenyl column 

Parameters: Column: Hypersil Phenyl (15 cm x5 rim ID) 

Flow Rate: 1.7 Thl min-1. Detection: UV at 260 nm. 

Sample: Standard mixture in H2O (10 )Ag ml-1). 

Sample Size: 20 pl. 

Eluent: 0.2% H3P04, pH adjusted to 7.25 with Et3N: MeOH 
(80: 20) 
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Table 2.20 and Figure 2.47: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a Hypersil phenyl column 

Table 2.20 

% Organic t Nicotine-1'-N- Cotinine Nicotine 
Modifier M 

i oxide 
(MeOH) 

(m ne) tR(XThlnS) k' tR(mins) k' tR(mins) k' 

20 2.0 4.3 1.15 16.1 7.05 13.4 5.70 

30 2.0 3.5 0.75 8.7 3.35 7.5 2.75 

40 1.9 2.8 0.47 5.3 1.79 5.3 1.79 
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Figure 2.48: Reverse Phase Partition Chromatography of a Standard 

Mixture on a Nucleosil NO2 column 
Parameters: Column: Nucleosil NO2 (10 cm x5 mm ID) 

Flow Rate: 0.5 ml min 
1. 

Detection: UV at 260 nm. 

Sample: Standard mixture in H2O (10 pg ml-1). 

Sample Size: 20 1. 

Eluent: 0.2% H3P04, pH adjusted to 7.25 with Et3N: MeOH 

(90: 10) 
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Table 2.21 and Figure 2.49: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a Nucleosil NO2 column 

Table 2.21 

% Organic 
Modifier 

(MeOH) 

tM 

(mies) 

Nicotine-1'-N- 
oxide 

tR(mins) k' 

Cotinine 

tR(mins) k' 

Nicotine 

tR(mins) k' 

10 3.6 6.5 0.81 8.2 1.28 11.1 2.08 

15 3.6 6.2 0.72 7.2 1.06 10.8 2.00 

20 3.4 5.5 0.61 6.5 0.91 9.8 1.88 
30 3.5 5.2 0.49 6.0 0.71 8.4 1.40 

2.4 
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of biological samples, therefore it is important to emphasize these 

criteria initially. 

Of the columns examined so far, µ-Bondapak gave a reasonable 

separation with the organic modifier at the 20% level in the mobile 

phase. Even with only 20% MeOH in the eluent, the k' value of nicotine- 

11-N-oxide was still rather low at 1.31. Under the conditions employed 

it was not possible to achieve an increased value of k' for nicotine-1'- 

N-oxide and at the same time obtain a nicotine peak which was 

distinguishable from the baseline. 

The R-Sil column, although resulting in similar separations 

to those obtained on the µ-Bondapak column, the best separation of 

the three standards did not give baseline resolution of cotinine 

and nicotine-1'-N-oxide. 

Spherisorb ODS1, Spherisorb ODS2 and the Hypersil phenyl columns 

all showed nicotine- l'-N-oxide poorly retained, which was unfortunate 

as a very promising separation of the standards was evident in all 

these cases with the exception of the Hypersil phenyl column which 

showed a problem with the resolution of nicotine and cotinine. 

The over riding problem on the Nucleosil column was undoubtedly 

the separation of NNO and cotinine, but k' values consistently less 

than 1 for nicotine-1'-N-oxide were also undesirable. 

The PL-RP-S 10 µ column, although giving an excellent separation 

of the three standards, with very different k' values, was not 

considered for isocratic work for this same reason. 

The Partisil ODS2 was also found to be unsuitable as the k' 

value for nicotine was very large unless the percentage of MeOH in 

the mobile phase exceeded 55%. When the percentage of MeOH was in 
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excess of 55%, nicotine- 1'-N-oxide and cotinine did not result in 

a baseline separation and the k' value for cotinine was less than 1.3. 

From the above trials, p-Bondapak was the packing material 

considered most adaptable to the present problems, the main one being 

the low k' value of nicotine-1'-N-oxide. As an "improved" µ-Bondapak 

type packing material became available this was also included in 

the investigation. This packing material, Resolve Ci8 5 p, showed 

an increased retentiveness for all three standards. The relationship 

between k' values of the standards and the percentage of MeOH in 

the mobile phase is illustrated in table 2.22 and graphically in 

figure 2.50. 

Although the Resolve C18 5p packing material was unsuitable for 

isocratic work due to the incompatibility of the k' values which 

would result in a separation of all three standards, it was noted 

that nicotine- 1'-N-oxide was more strongly retained and at the same 

time better separated from both cotinine and nicotine than on any 

other column investigated, see figure 2.51. 

Anabasine, another alkaloid present in tobacco but not necessarily 

absorbed or produced in the body, was chromatographed. On the Resolve 

C18 5p column it was possible to separate anabasine from the other 

standards, as shown in figure 2.52. The retention times and k' values 

were evaluated at different percentages of methanol and the k' values 

of both anabasine and nicotine vs. % methanol in the mobile phase 

are illustrated in table 2.23 and figure 2.53 respectively. 

Anabasine was not included in further investigations. Nevertheless 

in the event of anabasine being present it is now known that in 

any subsequent analysis, it would not interfere with nicotine or 
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Table 2.22 and Figure 2.50: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a Resolve C18 5µ column 

Table 2.22 

% Organic 
Modifier 

(MeOH) 

tM 

(mss) 

Nicotine-1'- 
N-oxide 

tR k' 
(mies) 

Cotinine 

tR k' 
(mies) 

Nicotine 

tR k' 
(mins) 

N-ethyl 
nornicotine 

30 1.6 -- 10.3 5.44 - - -- 
40 1.6 4.7 1.94 - - - - -- 
50 1.2 2.5 1.08 2.8 1.33 15.0 11.50 -- 
60 1.6 2.9 0.81 2.9 0.81 8.9 4.56 10.2 5.38 

70 1.8 2.9 0.61 2.6 0.44 5.1 1.83 6.3 2.50 

Figure 2.50 
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Figure 2.51 (continued) 
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Table 2.23 and Figure 2.53: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a Resolve C18 5p column 

Table 2.23 

% Organic 
Modifier 

(MeOH) 

tM 

(ins) 

Nicotine 

tR(mins) k' 

Anabasine 

tR(mins) k' 

40 1.2 16.4 12.67 10.5 7.75 

45 1.2 12.2 9.17 9.6 7.00 

50 1.2 8.1 5.75 8.1 5.75 

60 1.1 5.4 3.91 6.7 5.09 

70 1.1 4.2 2.82 5.8 4.27 

Figure 2.53 
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the metabolites included in this investigation. 

Investigation of the Resolve C18 5 pZ column (15 cm x5 rim ID), 

which showed the desired increase in the k' value of nicotine-11-N-oxide 

in particular, but also the two other standards, led to the conclusion 

that, in order to achieve any further improvement in the chromatography, 

gradient elution would be necessary. Gradient elution would enable 

the standards to be eluted in a reasonable time and with a peak shape 

suitable for quantitation. 

2.9.3 Gradient Elution 

A high pressure gradient elution system was set up to replace 

the isocratic one in use. Initial problems with the use of the gradient 

system were encountered. The most serious problem occurred on running 

a blank gradient, that is one where no injection of standards or 

sample was made, where fluctuations in the baseline were observed. 

A classical problem in absorbance detection is distinguishing between 

genuine absorbance and a change in energy reaching the detector because 

of refractive index (RI) changes in the sample cell. Refractive 

index effects are significant in gradient elution work and especially 

when high sensitivity is required due, for example, to low sample 

concentration. The UV detector had been operating at the sensitivity 

setting of 0.02 a. u. f. s. into 10 mV f. s. d. To overcome the need 

for such a high sensitivity setting the 20 pl loop injector already 

in use was replaced by a 50 pl loop and the sensitivity lowered to 

0.04 a. u. f. s. 

An injection of 50 }l onto a conventional analytical column, 

with a5 nm internal diameter, may cause column overloading; however 
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fronting of the peaks, which is an indication of overloading, was 

not evident and for the initial gradient trials, this danger was 

overlooked. 

Chromatograms showing nicotine, cotinine, anabasine and nicotine- 

1'-N-oxide standards using the Resolve C18 5p column and gradient 

elution are shown in figure 2.54. The peak shape of nicotine, in 

particular, has shown a dramatic improvement. 

It was reported in the operating manual for the Waters solvent 

programmer197 being used that, whenever possible, it is desirable 

to premix solvents at the initial and final concentration levels, 

that is to premix those end-point concentrations as the pump 'A' 

and pump 'B' solvents respectively. Solvent premixing was considered 

to increase resolution and improve operational performance as the 

programmer could then run from OMB to 100%B. It was found that pre- 

mixing the solvents to correspond with the end-points of a suitable 

programme did not make a significant difference in general. Although 

satisfactory chromatograms were obtained, premixing added an unnecessary 

complication to the method and was therefore not considered further. 

Having established that the Resolve C 18 5p packing material 

offered certain advantages over the µ-Bondapak material, especially 

as gradient elution was now available, the possibility of using Resolve 

C18 *5 ji material in the Waters flexible- walled columns was looked 

on as a further opportunity for improvement. The flexible-walled 

columns, already discussed in Section 2.5.4, have an 8 mm internal 

diameter and so the use of a 100 pl injector loop was also incorporated. 

The separation obtained was excellent, as shown by figure 2.55. 

The gradient programmer in use offered only a single gradient 
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Figure 2.54: Reverse Phase Partition Chromatography of Standard 

Mixtures on a Resolve C 
18 5t column using Gradient 

Elution. 

Parameters: see figure 2.51 except for: 
Flow Rate: 1.1 ml min 

1. Sample Size: 50 pl. 
Eluent: Liquid A: 0.2% H3P04, pH adjusted to 7.25 with Et3N, 

Liquid B: MeOH. Gradient programme #5,32%-1,55% B 

over 10 rains. 
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Figure 2.55: Reverse Phase Partition Chromatography of a Standard 

Mixture on a Resolve C18 5 )1 Radial PAK cartridge in 

the RCM-100 using Gradient Elution. 

Parameters: Column: Radial PAK Resolve C18 5µ cartridge 

(10 cm x8 nm ID)in a Waters Radial Compression Unit RCM-100. 

Detection: UV at 260 nm. 

Sample : Standard mixture in H2O (10 pg ml-1) 

Sample Size: 100 p1. Flow Rate: 1.5 ml min 
1 

Eluent: Liquid A: 0.2% H3P04, pH adjusted to 7.25 with Et3N, 

Liquid B: MeOH. Gradient programme #6 25% 4 58% B, over 

14 mins. 
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profile per run. The two programmes used were numbers 5 and 6 whose 

profiles are shown below. 

On close examination of figure 2.55 it may have been desirable to 

alter the gradient profile after cotinine had been eluted, therefore 

speeding up the total analysis time and at the same time improving 

the chromatography of nicotine still further. 

2.10 The Search for an Internal Standard 

At this point a successful separation of nicotine and two of 

its metabolites had been achieved. Before proceeding to quantitative 

analysis it was considered essential to find a suitable internal 

or chromatographic standard. 

An internal standard is a component added to the sample or mixture 

of standards before extraction. The internal standard has to be 

completely resolved chromatographically from the other components 

of interest, is not already present in the samples to be analyzed, 

prog #6 prog #5 
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and does not have any interference effects. Ideally it should be 

readily available and inexpensive to buy. It is often found that 

the internal standard is similar in structure to the component(s) 

of interest making it more likely that it can be taken through the 

extraction procedure, however similarity of structure is not a pre- 

requisite. If it is not possible to find a suitable internal standard 

then a chromatographic standard can be used. All the criteria listed 

above apply, except that a chromatographic standard is not taken 

through the extraction procedure. The internal or chromatographic 

standard permits the operating conditions to vary from sample to 

sample, but the internal standard is the most desirable as it also 

monitors the efficiency of the extraction procedure. 

Initially, the objective was to find one or more compounds which 

were soluble in the mobile phase and could be completely resolved 

from all other components of interest with little or no modification 

of the gradient profile already in operation. 

N-ethyl nornicotine was the first compound considered as an 

internal standard. Its structure is shown in figure 2.56. As expected, 

nicotine and N-ethyl nornicotine were a most difficult pair to separate. 

Having chosen the Resolve C18 5µ column (20 cm x5 mm ID) as the 

separation column, using the gradient programmer achieved a separation 

of the three standards in a reasonable time. N-ethyl nornicotine 

was added to the mixture of standards and although variations in 

the gradient programme already in use were investigated, nicotine 

and N-ethyl nornicotine were eluted on every occasion with overlapping 

peaks as shown in figure 2.57. It was concluded that N-ethyl 

nornicotine was an unsuitable internal standard as it could not be 
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resolved 100% from all other components. 

One interesting result from the chromatography of N-ethyl 

nornicotine was its behaviour on the Nucleosil NO2 column. Although 

the three standards, nicotine-1'-N-oxide, cotinine and nicotine, 

were not resolved successfully on this column, N-ethyl nornicotine 

and nicotine were separated when the mobile phase contained 20% MeOH, 

as shown in figure 2.58. The percentage of methanol was decreased 

in an attempt to separate the components of interest, nicotine-1'- 

N-oxide, cotinine and nicotine. However, with only 10% MeOH in the 

mobile phase, it was noted that cotinine and N-ethyl nornicotine 

co-eluted. 

Several compounds were selected at random; however, most were 

found to be unsuitable for one of several reasons. The following 

compounds were not soluble enough in the mobile phase: 

(i) diphenyl methyl carbinol 

(ii) N, N-dimethylaniline 

(iii) 1,4 dichlorobenzene 

(iv) diphenyl amine 

(v) p-nitrobenzaldehyde 

(vi) medazepam 

(vii) nitrazepam . 

(viii) 8 hydroxyquinoline, and 

(xi) o-nitrophenol 

both gave a pale yellow coloured solution on standing. 

Failing success with compounds chosen at random, four compounds 

were synthesized by our industrial sponsors, to be tested as possible 

internal or chromatographic standards. The four compounds were: 
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Figure 2.58: The Effect of Mobile Phase Composition (MeOH content) 

on the Reverse Phase Partition Chromatography of 
Standard Mixtures (one including N-ethylnornicotine) 

on a Nucleosil NO2 column. 

Parameters: see figure 2.48 except for: 

Eluent: 0.2% H3P04, pH adjusted to 7.25 with Et3N: MeOH. 
Ratios as specified below. 

(a) 15% MeOH (b) 15% MeOH 
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Figure 2.58 (continued) 
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Figure 2.58 (continued) 
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(a) methyl-4-(3-pyridyl)-4-oxo-butyrate 

(b) 2 methyl-6-(3- pyridyl)-tetrahydro-(1,2)-oxazine 

(c) ß-Nicotyrine and 

(d) N'-Acetyl-S-(-)-nornicotine 

and their structures are also shown in figure 2.56. 

Using the following programmed run: prog #5,3 min initial 

hold at 23% MeOH, 23% 4 58% MeOH over 14 rains, the retention times 

and k' values of all four compounds were noted and compared with 

those of the components of interest, nicotine, cotinine and nicotine- 

1'-N-oxide. 

All four compounds gave satisfactory retention times and k' 

values, as shown in table 2.24; however, methyl-4-(3-pyridyl)-4-oxo- 

butyrate gave two peaks. The peak height ratios observed for methyl- 

4-(3-pyridyl)-4-oxobutyrate changed on repeating the injection of 

a 10 pg ml-1 solution in water over several days, see figure 2.59. 

Methyl-4-(3-pyridyl)-4-oxobutyrate was discarded as a possible internal 

standard'due to its unstable nature in water. 

Chromatograms of the other three compounds are shown in figures 

2.60 and 2.61. 

It was noted that on storage $-nicotyrine solution 1000 pg ml-1 
in water was found to change from a colourless solution to one with 

a yellow tint, over a period of weeks, even though it was stored 

in the refrigerator at 4°C when not in use. For this reason it was 

also discarded. 
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Table 2.24: Retention times and capacity factors for standard 

components and potential internal standards on a 
Resolve C18 5µ Radial PAK cartridge in a Waters 

RCM-100 unit using gradient HPLC 

Component tR(mins) k' 
value 

Nicotine-1'-N-oxide 6.67 1.56 

Cotinine 

N'-acetyl nornicotine 

Methyl-4-(3-pyridyl)-4-oxo- 
butyrate 

2-methyl-6-(3-pyridyl)-tetra- 
hydro-(1,2)-oxazine 

Nicotine 

ß-Nicotyrine 

21.32 7.20 

23.26 7.95 

25.55 8.83 

* tM = 2.6 mins 

2.11 The Inclusion of 3' Hydroxycotinine 

When 3' hydroxycotinine, which had only very recently been 

identified and synthesized, became available it was hoped that the 

method developed was flexible enough to cope with the addition of 

this metabolite. The objective was to fit 3' hydroxycotinine into 

the gradient run already in use, or a slightly modified one, resolved 

from all other components of interest. 

3' Hydroxycotinine was eluted after nicotine- 1'-N-oxide on the 

12.04 3.63 

13.48 4.18 

15.27 4.87 
(small peak at) 
( 5.70 ) (1.19) 

Resolve C 18 5p cartridge; however, a lower percentage of MeOH was 



Figure 2.59: Reverse Phase Partition Chromatography 

of Methyl-4-(3-pyridyl)-4-oxo-butyrate over a one- 

week period. Parameters: see figure 2.55, 

Pxcent for: Flow Rate: 1.1 ml min-' 

Sample: Standard solution in 

H2O (10 pg ml-1) 

Eluent: 3 min initial hold at 
23% B. Gradient prog. #5, 

23% -' 58%B, over 14 mins 

(a) 

14 August 1986 

(b) 
o 

16 August a 

1986 

(c) 

18 August 1986 

(d) 

19 August 1986 
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Figure 2.60: Reverse Phase Partition Chromatography of Three 

Possible Internal Standards on a Resolve C18 Sµ 

Radial PAK Cartridge in the RCM-100 using 
Gradient Elution 

Parameters: see figures 2.59 
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Figure 2.61: Reverse Phase Partition Chromatography of a Standard 

Mixture containing the components of interest and 

possible internal standards on a Resolve C18 5µ 

Radial PAK cartridge in the RCM-100 using 
Gradient Elution 

Parameters: see. figures 2.59 except for : 
Eluent: 4 min initial hold at 23% B 
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required to resolve the two peaks completely. Figure 2.62 and table 

2.25 show the variation of the k' values of both 3' hydroxycotinine 

and nicotine-1'-N-oxide as the percentage of MeOH in the mobile phase 

is changed. Therefore with 3' hydroxycotinine included in the standard 

mixture it was necessary to start the gradient programme at 17% MeOll 

and an initial hold at 17% MeOH for perhaps 3 or 4 minutes was also 

considered desirable, to gain the best separation possible between 

nicotine-1'-N-oxide and 3' hydroxycotinine, as shown in figure 2.63. 

A chromatogram of nicotine and its three metabolites plus the 

three possible internal standards (as already stated, B-Nicotyrine 

was later discarded) is shown in figure 2.64. The programme used 

was linear and was started at 17% MeOH with an initial hold of 4 

rains before rising to 53% MeOH over 19 mins. 

2.12 Experimental Equipment 

The experimental set-up arrived at through the work described 

in this chapter and used exclusively during the remainder of this 

investigation is shown in Plate 1. 

The column system finally considered most appropriate was the 

Resolve C 18 5µ cartridge in the Waters RCM-100 unit and this is 

shown in detail in Plate 2. (Further details are reported in 

Chapter 5. ) 

Plate 1. HPLC equipment arranged for experimental use. 

Plate 2. A Waters RCM-100 unit with a Resolve C18 5p cartridge. 
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Table 2.25 and Figure 2.62: 

The relationship between the retention time/capacity factor and methanol 

content of the mobile phase for standard components under reverse 

phase partition conditions on a Radial PAK Resolve C18 5 }z cartridge 

Table 2.25 

% Organic 
Modifier 

(MeOH) 

tM 
(gis) 

Nicotin 

t (mins 
R 

e-1'-N-oxide 
) k' 

3' Hydroxycotinine 

t (minn) k' R 

17 2.6 9.14 2.52 11.65 3.48 

18 2.6 8.60 2.31 10.57 3.06 
20 2.6 7.85 2.02 9.33 2.59 
22 2.6 7.00 1.69 8.07 2.10 

24 2.6 6.57 1.53 7.36 1.83 

: i. 6 

3.4 

3.0 

q) 
ro 2.6 

4 

2.2 

I. 8 

1.4 

Figure 2.62 

3' Hydroxycotinine 

0 

Nicotine-1'-N-oxide 

17 18 19 20 21 22 23 24 

MeOH 
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Figure 2.63: Reverse Phase Partition Chromatography of a Standard 

Mixture of Nicotine-1'-N-oxide and 3' Hydroxycotinine 

on a Resolve C18 5µ Radial PAK cartridge in the 

RCM-100 using Gradient Elution 

Parameters: see figures 2.59 except for: 

Eluent: 4 min initial hold at 17% B. Gradient 

programme #6,17% 4 58% B over 15 mins 
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CHAPTER 3 

STATISTICAL ANALYSIS OF THE INSTRUMENT RESPONSE 

IN THE ANALYSIS OF NICOTINE AND ITS METABOLITES 

IN STANDARD SOLUTIONS 
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3.1 Quantitative Analysis 198 

The ultimate objective of this development work is to provide 

a quantitative method for the analyses of nicotine and its metabolites. 

As with all quantitative studies, the errors associated with the 

results are very important. Indeed no quantitative results are of 

any value unless they are accompanied by some estimate of the errors 

inherent in them. 

In this chapter the repeatability or within-run precision and 

reproducibility or between-run precision of the method have been 

examined. Calibration curves have been constructed for each of the 

standards and the limit of detection calculated. Having gained some 

information about the experimental errors associated with this 

analytical method it is hoped to give meaning to the quantitative 

data obtained, when the method is applied to samples. The calculation 

of experimental errors also provides a means of comparing the method 

described here with different methods of analysis or with 'improvements' 

in this method. 
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3.2 Repeatability - Within-run Precision of Peak Measurement 
98 

To measure the within-run precision, the repeatability, replicate 

analyses were carried out in succession under exactly the same set 

of conditions. A standard containing nicotine, cotinine, 3' hydroxy- 

cotinine and nicotine-1'-N-oxide, at a concentration of 9 pg ml-1, 

together with the internal standard, 10 fag ml-1, was chromatographed 

ten times consecutively. A typical trace is shown in figure 3.1. 

To carry out the replicate runs, the Waters Gradient System 

was used with a Radial Pak C18 cartridge. Chromatography was carried 

out using the following conditions: Programme # 6,5 min initial 

hold at 18% MeOH, 18% 4 58% B over 19 mins, at a flow rate of 1.2 

ml min 
1. The W detector signal was fed to both a chart recorder 

and an electronic integrator which were connected in parallel. 

Integration parameters were set after preliminary investigations 

and were then programmed into the integrator and remained unchanged 

during the course of the experiment. 

From each standard run, peak areas were obtained from the 

integrator and peak heights were measured manually from the 

chromatograms. Peak area ratios and peak height ratios (standard/IS) 

were calculated. The data for the replicate injections is presented 

in table 3.1. 

The repeatability was determined using each of the different 

measurement parameters for each of the standards. The results have 

been reported as a mean value calculated for the ten replicate analyses 

and the degree of spread about this mean value, the standard deviation, 

s. The relative standard deviation (RSD) given by 100 s/ x is the 

relative error, expressed as a percentage. The RSD was also reported 
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TABLE 3.1: Peak Measurement Data for Replicate Injections of a 9. pg ml-1 standard 

mixture (n = 10) 

Measurement 
Parameter 

Run 
Number 

Nicotine-1'- 
N-oxide 

3' Hydroxy- 
cotinine 

Cotinine Internal 
Standard 

Nicotine 

Peak Height 1 21.5 57.5 61.0 65.0 44.5 

(mn) 2 22.0 60.0 62.5 67.0 45.5 
3 21.0 56.5 65.0 70.0 45.0 
4 20.0 58.0 64.0 69.5 46.0 
5 20.0 55.5 64.0 69.5 44.5. 
6 22.5 54.5 63.0 66.5 45.0 
7 21.0 . 54.0 61.5 66.5 45.5 
8 20.5 57.0 61.0 67.5 45.5 
9 20.0 60.5 64.0 67.5 45.5 

10 19.5 60.5 63.5 66.0 44.5 

Peak Height 1 0.3307 0.8846 0.9384 - 0.6846 
Ratio 2 0.3283 0.8955 0.9328 - 0.6791 

3 0.3000 0.8071 0.9285 - 0.6428 
4 0.2877 0.8345 0.9208 - 0.6618 
5 0.2877 0.7985 0.9208 - 0.6402 
6 0.3383 0.8195 0.9473 - 0.6766 
7 0.3157 0.8120 0.9248 - 0.6842 
8 0.3037 0.8444 0.9037 - 0.6740 
9 0.2962 0.8962 0.9481 - 0,6740 

10 0.2954 0.9166 0.9621 - 0.6742 

Peak Area 1 340800 788900 1079000 1135700 1018300 

(counts) 2 276800 783100 1026200 985000 999100 
3 250800 740500 1021900 929800 969200 

4 347500 797300 1130600 1168000 1020100 
5 362200 797800 1158900 1174900 1020100 

6 365700 817600 1201700 1179100 1026400 

7 343700 792900 1126400 1165600 1019100 
8 340600 785000 1077200 1098700 1013900 
9 382400 827200 1202400 1432300* 1059100 

10 364100 800900 1163400 1176100 1026400 

Peak Area 1 0.3000 0.6946 0.9500 - 0.8966 

Ratio 2 0.2809 0.7950 1.0417 - 1.0142 

3 0.2697 0.7964 1.0990 - 1.0424 
4 0.2975 0.6826 0.9679 - 0.8733 
5 0.3083 0.6790 0.9863 - 0.8682 
6 0.3101 0.6933 1.0191 - 0.8704 
7 0.2948 0.6802 0.9663 - 0.8743 
8 0.3099 0.7145 0.9804 - 0.9228 
9 0.2669 0.5775 0.8394 - 0.7394 

10 0.3095 0.6809 0.9892 - 0.8727 
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as it is very convenient in the comparison of precision estimates 

of results which have different units or magnitudes. All results 

have been presented in table 3.2(a). From table 3.2(a) it can be seen 

that peak height measurement gives the lowest mean RSD for all analyte 

peaks and that both peak height and peak height ratio measurement 

prove to be superior to those of peak area or peak area ratio. It 

was expected that peak area would be a better method of measurement 

than peak height as the standards were chromatographed using a gradient 

system and peak height measurements would be more prone to slight 

variations in the gradient from one run to another and also that 

peak area ratio would be superior to peak area measurements. 

On close examination of table 3.1 which presents the raw data 

obtained from this experiment, an exceptionally high value of peak 

area was recorded for the internal standard peak (Run 9). If this 

value is an 'outlier' then it may contribute to the relatively high 

values of the standard deviation, s, and RSD for both peak area and 

peak area ratio measurements. Since the discussion of the precision 

of the method depends on these final values, it is important to assess 

the suspect measurement and whether it can be rejected. To assess 

the suspect measurement, a statistical test known as Dixon's Q Test 

was applied. It compares the difference between the suspect value 

and the measurement nearest to it in size, with the difference between 

the highest and lowest measurements. The ratio of these differences 

(without regard to sign) is the Q value. 

Q= (suspect value - nearest value(/largest value - smallest value , 

If the calculated value of Q exceeds the critical value, the suspect 

value is rejected. 
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Q= 11432300 - 11791001/1432300 - 929780 

= 253200 / 502520 

= 0.5039 

The critical value of Q, for a sample size of 10, is 0.464 

(P = 0.05), therefore, the suspect value can be rejected. 

Table 3.2(b) shows the re-calculated values of mean, standard 

deviation and RSD for the peak area and peak area ratio measurement 

parameters where the suspect value has been rejected. 

The peak height measurement method still yields the highest 

within-run precision (mean RSD = 2.9%), and both the peak height 

and peak height ratio measurement methods result in higher within-run 

precision than peak area or peak area ratio measurement methods. 

The within - run precision of the two external methods of 

calibration, peak area (RSD = 6.3%) and peak height (RSD = 2.9%) 

were expected to be equivalent. Janik199 found that manually measured 

peak heights and electronically integrated peak areas obtained from 

a GC output were equivalent with respect to precision, even though 

peak height is sensitive to instrumental and operational variations 

whereas peak area suffers less from this disadvantage. McCoy et al. 
00 

have also reported that peak area measurements result in precision 

values equivalent or superior to those obtained for peak height 

measurements only if the peaks were 'well-behaved' or were not subject 

to chromatographic interference. Where peaks were poorly resolved 

from the solvent front or an earlier eluting peak, or if the baseline 

was not well established, peak height measurements appeared to provide 

more precise quantitation. It must be noted that McCoy et al. 
00 

carried out the experiments with isocratic elution and no similar 
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experiments under gradient elution conditions were attempted. However, 

their conclusions are in general agreement with the results of this 

experiment and the superiority of the peak height measurements with 

the exception of those for 3' hydroxycotinine. 

A significant contribution to the much lower precision values 

reported when peak area measurements were used may be attributed 

to erratic integration of the peaks. The integrator parameters were 

optimized before the start of the experiment, however, the use of 

the gradient run, with a changing baseline, made this a difficult 

problem to resolve. 

An internal standard was included with the intention of improving 

the precision of the experiment. The results show that this was 

found to be true only when peak area was the measurement parameter. 

Haefelfinger 201 derived the following formula as an aid to be 

used when inclusion of the internal standard is under consideration. 

RSD1s <2r. RSDanalyte 

where RSDIS = the relative standard deviation of the area (or height) 

of the IS 

RSDanalyte = the relative standard deviation of the area (or 

height) of the analyte 

and r= the correlation coefficient which is in the range 0<r<1 

since a positive correlation must exist between the 

area (or height) of the IS and that of the analyte. 

If the above relationship is true, the inclusion of an IS will result 

in an improvement in the precision of the method. 

Applying this relationship, using the RSD values for the analyte 

and internal standard peaks, quantitated both by height and area, 
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predicted correctly whether inclusion of an IS would result in an 

improvement in the precision of the method, in every case where the 

imposed conditions were satisfied. The overall result, with peak 

height as the measurement parameter, given by the mean RSD for all 

analyte peaks was a decrease in the precision of the method from 

2.9% to 3.8% when the IS. was included, whereas with peak area as 

the measurement parameter there was an improvement in the overall 

precision of the method from 6.3% to 5.9%. 

To summarize, the best precision was a result of quantitation 

by peak height measurement and both peak height measurement parameters 

give better within-run precision than the corresponding peak area 

measurement parameters. The unexpectedly poor precision recorded 

for both peak area measurement parameters may be caused by the 

uncertainty involved in the recognition of the start and end points 

of the peaks. 

3.3 Reproducibility - Between-run Precision of Peak Measuumment 

When the analysis is carried out on different occasions, the 

conditions may be different, and hence a greater spread of the results 

may be found in this case. The data obtained from such an experiment 

would reflect the between-run precision of the method, also known 

as the reproducibility. 

In order to assess the between-run precision a series of standard 

solutions (with concentrations 1,2,4,5,7,9,10 and 20 pg ml-1 

each of nicotine- 1'-N-oxide, 3' hydroxycotinine, cotinine and nicotine 
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plus the internal standard, 10 pg ml-1) were chromatographed over 

a one month period - the series being repeated 12 times in all. 

A typical series of chromatograms are shown in figure 3.2, (a)-(h). 

As in the previous experiment, the detector signal was fed to both 

a chart recorder and an electronic integrator which were connected 

in parallel. Peak heights were measured manually and peak area recorded 

from the integrator for each run and peak height ratios and peak 

area ratios were calculated. All the data are presented in tables 

3.3-3.6. In order to determine the between-run precision and also 

compare the overall precision of each method of quantitation, the 

mean, SD and RSD were determined separately for each standard component 

at each concentration level for the four different methods of 

quantitation. The calculated RSDs were averaged over the entire 

concentration range for each analyte and are reported in table 3.7. 

Also reported in table 3.7 are the RSD values averaged over all 

concentrations and analytes for each quantitation method. 

In terms of reproducibility, the peak height ratio measurement 

parameter was found to give the best overall result (4.9%) and the 

peak area measurement parameter the poorest (7.0%). The between- 

run precision was expected to be inferior to the within-run precision 

and the experimental results for all methods of quantitation show 

this to be true. Having noted the problem, in the measurement of 

peak area, concerning the uncertainty in recognition of the start 

and end-points of the peaks, special attention was paid to the 

integration parameters which were again optimized before the initial 

standard runs and remained constant during the course of the experiment. 

The two external calibration methods, peak area and peak height, 
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TABLE 3.3: Experimental Data for. Nicotine-1'-N-oxide over the 

concentration range 1-20 pg ml -1 (n'= 12) 

X Y IS 

Concn. Peak Peak Peak Peak Peak Peak 

1 
Height Height Area Area Height Area 

jig ml (nun) Ratio (counts) Ratio (mm) (counts) 

20.0 51.5 0.6866 1005900 0.7814 75.0 1287400 
10.0 28.0 0.3684 498400 0.3679 76.0 1354600 
9.0 24.0 0.2944 576400 0.4393 81.5 1312200 
7.0 21.5 0.2514 520500 0.3958 85.5 1315100 
5.0 12.0 0.1548 360800 0.2958 77.5 1220200 
4.0 11.5 0.1256 177100 0.1428 91.5 1240600 
2.0 5.5 0.0705 79900 0.0655 78.0 1221100 
1.0 3.5 0.0406 33500 0.0242 86.0 1382900 

20.0 55.0 0.7236 973500 0.8615 76.0 1130100 
10.0 26.0 0.3058 532500 0.3957 85.0 1345600 

9.0 23.0 0.2721 622800 0.4995 84.5 1246800 
7.0 20.0 0.2453 516300 0.3753 81.5 1376000 
5.0 13.0 0.1575 355400 0.2766 82.5 1284900 
4.0 13.0 0.1382 173900 0.1401 94.0 1241600 
2.0 4.0 0.0506 108500 0.0822 79.0 1320600 
1.0 3.5 0.0374 64100 0.0452 93.5 1419100 

20.0 51.5 0.6688 936100 0.7338 77.0 1275800 
10.0 28.0 0.3146 546500 0.4056 89.0 1347400 
9.0 23.0 0.2721 589000 0.4755 84.5 1238800 
7.0 19.0 0.2209 411400 0.3113 86.0 1321800 
5.0 15.5 0.1684 279200 0.2184 92.0 1278600 
4.0 11.5 0.1210 161500 0.1244 95.0 1298500 
2.0 5.5 0.0643 133200 0.1044 85.5 1275800 
1.0 4.0 0.0414 66700 0.0489 96.5 1365000 

20.0 54.5 0.6812 10116oo 0.7759 80.0 1303700 
10.0 28.5 0.3202 560700 0.4163 89.0 1347100 
9.0 29.0 0.2761 654900 0.5261 105.0 1244900 
7.0 19.0 0.2275 522300 0.4063 83.5 1285600 
5.0 13.0 0.1405 281400 0.2227 92.5 1263900 
4.0 12.0 0.1293 218300 0.1528 93.0 1428600 
2.0 5.. 0 0.0591 1335oo 0.0970 84.5 1375900 
1.0 3.5 0.0366 671o0 0.0508 95.5 1320800 
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Table 3.3: Experimental Data for Nicotine-1'-N-oxide (continued) 

gY IS 

Concn. Peak Peak Peak -Peak Peak Peak 
Height Height Area Area Height Area 

jig nil. -1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 60.5 0.7756 869100 0.6708 78.0 1295800 
10.0 28.5 0.3149 589400 0.4172 90.5 1412900 
9.0 28.5 0.2835 640200 0.5051 100.5 1267600 
7.0 19.0 0.2248 511300 0.3980 84.5 1285000 
5.0 12.5 0.1351 288200 0.2260 92.5 1275400 

4.0 12.0 0.1325 192000 0.1405 90.5 1367200 
2.0 6.0 0.0689 143300 0.1148 87.0 1248800 
1.0 3.5 0.0366 60200 0.0435 95.5 1386300 

20.0 58.5 0.7134 960900 0.7088 82.0 1355700 
10.0 27.0 0.3033 541000 0.3809 89.0 1420500 
9.0 25.0 0.2551 6227.00 0.4868 98.0 1279400 
7.0 18.5 0.2256 496300 0.3843 82.0 1291500 
5.0 13.0 0.1397 323000 0.2462 93.0 1311900 
4.0 11.5 0.1292 225500 0.1600 89.0 1410100 
2.0 5.0 0.0529 105800 0.0865 94.5 1224000 
1.0 3.0 0.0342 38000 0.0268 87.5 1420300 

20.0 54.0 0.7346 919300 0.6991 73.5 1315000 
10.0 28.0 0.3043 494000 0.3611 92.0 1368300 
9.0 25.0 0.2564 648600 0.4764 97.5 1361700 
7.0 19.0 0.2345 517600 0.3918 81.0 1321400 
5.0 13.0 0.1382 334700 0.2535 94.0 1320600 
4.0 10.5 0.1242 227700 0.1618 84.5 1407800 
2.0 5.5 0.0597 102200 0.0796 92.0 1284900 
1.0 - 4.0 0.0412 46800 0.0329 97.0 1422600 

20.0 58.0 0.6946 1065800 0.8062 83.5 1322000 
10.0 28.5 0.3048 541400 0.3987 93.5 1357900 
9.0 26.0 0.2708 616900 0.4639 96.0 1330000 
7.0 16.0 0.2352 448200 0.3623 68.0 1237300 
5.0 14.0 0.1505 336500 0.2555 93.0 1317500 
4.0 10.0 0.1183 197400 0.1517 84.5 1302100 
2.0 5.5 0.0591 122500 0.0908 93.0 1350200 
1.0 3.0 0.0309 50700 0.0346 97.0 1468200 
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Table 3.3: Experimental Data for Nicotine-1'-N-oxide (continued) 

xy Is 

Concn. Peak Peak Peak Peak, Peak Peak 
Height Height Area Area Height Area 

pg ml-1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 58.5 0.6763 1076100 0.8354 86.5 1288200 
10.0 27.5 0.3021 480400 0.3646 91.0 1317700 
9.0 27.5 0.2791 583700 0.4428 98.5 1318200 
7.0 16.0 0.2352 455100 0.3758 68.0 1210900 
5.0 14.0 0.1521 340900 0.2526 92.0 1349700 
4.0 11.5 0.1419 191100 0.1563 81.0 1222900 
2.0 6.5 0.0714 120100 0.0904 91.0 1328900 
1.0 3.5 0.0355 42600 0.0306 98.5 1391200 

20.0 58.0 0.6553 1032700 0.7641 88.5 1351600 
10.0 28.5 0.3202 543400 0.3883 89.0 1399400 
9.0 27.0 0.2812 612400 0.4585 96.0 1335800 
7.0 17.0 0.2165 544400 0.4222 78.5 1289600 
5.0 14.0 0.1513 339600 0.2492 92.5 1363100 
4.0 11.0 0.1208 175900 0.1287 91.0 1366400 
2.0 6.0 0.0794 129100 0.0968 75.5 1334600 
1.0 3.5 0.0357 49400 0.0351 98.0 1409400 

20.0 60.5 0.6685 1198700 0.8670 90.5 1382500 
10.0 28.0 0.3128 560200 0.4098 89.5 1367100 
9.0 26.0 0.2751 631000 0.4729 94.5 1334500 
7.0 18.5 0.2371 457600 0.3658 78.0 1251100 
5.0 14.0 0.1530 340600 0.2624 91.5 1297900 
4.0 12.5 0.1420 159800 0.1316 88.0 1215100 
2.0 5.5 0.0774 82200 0.0683 71.0 1204100 
1.0 3.5 0.0357 50700 0.0374 98.0 1356400 

20.0 60.5 0.6540 1194500 0.8321 92.5 1435600 
10.0 28.0 0.3163 528000 0.3767 88.5 1401800 
9.0 24.5 0.2578 610200 0.4575 95.0 1333700 
7.0 18.5 0.2312 505000 0.3889 80.0 1298600 
5.0 13.0 0.1428 344800 0.2611 91.0 1320900 
4.0 12.0 0.1387 157800 0.1290 86.5 1223200 
2.0 5.0 0.0645 83000 0.0700 77.5 1185300 
1.0 3.5 0.0364 50500 0.0371 96.0 1364900 
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TABLE 3.4: Experimental Data for 3' Hydroxycotinine over the 

concentration range 1-20 µg ml -1 (n=12) 

x y IS 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Area 

pg ml (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 152.5 2.0333 2373100 1.8433 75.0 1287400 
10.0 83.5 1.0986 1093000 0.8069 76.0 1354600 
9.0 83.0 1.0184 1072300 0.8172 81.5 1312200 
7.0 62.5 0.7309 850400 0.6467 85.5 1315100 
5.0 40.0 0.5161 543900 0.4458 77.5 1220200 
4.0 36.0 0.3934 472700 0.3811 91.5 1240600 
2.0 15.5 0.1987 208800 0.1710 78.0 1221100 
1.0 8.0 0.0930 87400 0.0633 86.0 1382900 

20.0 161.0 2.1184 1950800 1.7262 76.0 1130100 
10.0 85.0 1.0000 1140300 0.8474 85.0 1345600 
9.0 77.0 0.9112 1038000 0.8325 84.5 1246800 
7.0 64.5 0.7914 859100 0.6244 81.5 1376000 
5.0 41.0 0.4969 550200 0.4282 82.5 1284900 
4.0 39.5 0.4202 461500, 0.3717 94.0 1241600 
2.0 16.0 0.2025 181500 0.1375 79.0 1320600 
1.0 8.0 0.0855 89700 0.0632 93.5 1419100 

20.0 148.0 1.9220 2306000 1.8075 77.0 1275800 
10.0 86.0 0.9662 1184300 0.8790 89.0 1347400 
9.0 78.0 0.9230 1013700 0.8183 84.5 1238800 
7.0 63.5 0.7383 822100 0.6220 86.0 1321800 
5.0 50.0 0.5434 569500 0.4454 92.0 1278600 
4.0 36.0 0.3789 471700 0.3633 95.0 1298500 
2.0 16.0 0.1871 195900 0.1536 85.5 1275800 
1.0 9.0 0.0932 816oo 0.0598 96.5 1365000 

20.0 162.0 2.0250 2382700 1.8276 80.0 1303700 
10.0 87.6 0.9831 1196800 0.8884 89.0 1347100 
9.0 105.5 1.0047 1001500 0.8045 105.0 1244900 
7.0 64.0 0.7664 875800 0.6813 83.5 1285600 
5.0 45.0 0.4864 609600 0.4824 92.5 1263900 
4.0 34.5 0.3709 483100 0.3382 93.0 1428600 
2.0 14.5 0.1715 213900 0.1555 84.5 1375900 
1.0 8.0 0.0837 105600 0.0800 95.5 1320800 



204 

TABLE 3.4: Experimental Data for 3' Hydroxycotinine (continued) 

xy is 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Area 

pg ml 
1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 166.5 2.1346 2415200 1.8639 78.0 1295800 
10.0 90.0 0.9944 1261700 0.8930 90.5 1412900 

9.0 99.0 0.9850 1022300 0.8065 100.5 1267600 

7.0 64.0 0.7573 864600 0.6728 84.5 1285000 
5.0 46.0 0.4972 605300 0.4746 92.5 1275400 
4.0 35.0 0.3867 455300 0.3331 90.5 1367200 
2.0 16.5 0.1896 158700 0.1271 87.0 1248800 

1.0 8.0 0.0837 93000 0.0671 95.5 1386300 

20.0 168.5 2.0548 2384000 1.7585 82.0 1355700 
10.0 92.5 1.0393 1199500 0.8444 89.0 1420500 
9.0 90.0 0.9183 1o81500 0.8453 98.0 1279400 
7.0 62.0 0.7560 856700 0.6634 82.0 1291500 
5.0 45.0 0.4838 589000 0.4490 93.0 1311900 
4.0 35.0 0.3932 466800 0.3310 89.0 1410100 
2.0 16.5 0.1746 195500 0.1598 94.5 1224000 
1.0 7.5 0.0857 116000 0.0817 87.5 1420300 

20.0 142.5 1.9387 2200300 1.6732 73.5 1315000 
10.0 91.0 0.9891 1131200 0.8267 92.0 1368306 

9.0 85.0 0.8717 1087400 0.7986 97.5 1361700 
7.0 60.0 0.7407 860200 0.6510 81.0 1321400 

5.0 44.0 0.4680 573700 0.4344 94.0 1320600 
4.0 33.0 0.3905 491500 0.3492 84.5 1407800 
2.0 17.0 0.1847 1868oo 0.1454 92.0 1284900 
1.0 - 8.5 0.0876 87900 0.0618 97.0 1422600 

20.0 167.5 2.0059 2285400 1.7287 83.5 1322000 
10.0 93.5 1.0000 1148100 0.8455 93.5 1357900 
9.0 84.0 0.8750 1053500 0.7921 96.0 1330000 
7.0 52.0 0.7647 812500 0.6567 68.0 1237300 
5.0 45.5 0.4892 580300 0.4405 93.0 1317500 
4.0 31.5 0.3727 466600 0.3584 84.5 1302100 
2.0 16.0 0.1720 214500 0.1589 93.0 1350200 

1.0 9.0 0.0927 85500 0.0583 97.0 1468200 
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TABLE 3.4: Experimental Data for 3' Hydroxycotinine (continued) 

XY is 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Height 

pg m1'1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 174.0 2.0115 2366700 1.8372 86.5 1288200 
10.0 92.0 1.0109 1102800 0.8369 91.0 1317700 
9.0 85.0 0.8629 1006300 0.7634 98.5 1318200 
7.0 52.0 0.7647 786200 0.6493 68.0 1210900 
5.0 45.5 0.4945 594100 0.4402 92.0 1349700 
4.0 36.5 0.4506 438500 0.3586 81.0 1222900 
2.. 0 17.5 0.1923 225900 0.1700 91.0 1328900 
1.0 8.5 0.0862 79200 0.0570 98.5 1391200 

20.0 177.0 2.0000 2459400 1.8196 88.5 1351600 
10.0 90.5 1.0168 1202600 0.8594 89.0 1399400 
9.0 86.0 0.8958 1039000 0.7778 96.0 1335800 
7.0 54.5 0.6942 788100 0.6112 78.5 1289600 
5.0 44.0 0.4756 594500 '0.4362 92.5 1363100 
4.0 34.0 0.3736 494200 0.3617 91.0 1366400 
2.0 16.0 0.2119 189400 0.1419 75.5 1334600 
1.0 8.5 0.0867 89300 0.0634 98.0 1409400 

20.0 181.5 2.0055 2607500 1.8861 90.5 1382500 
10.0 90.5 1.0111 1215800 0.8893 89.5 1367100 
9.0 82.5 0.8730 1043900 0.7822 94.5 1334500 
7.0 61.0 0.7820 818900 0.6546 78.0 1251100 
5.0 41.0 0.4480 540900 0.4168 91.5 1297900 
4.0 36.5 0.4147 423400 0.3486 88.0 1215100 
2.0 . 

15.0 0.2112 168300 0.1398 71.0 1204100 
1.0 9.5 0.0969 897.00 0.0662 98.0 1356400 

20.0 179.0 1.9351 2607200 1.8161 92.5 1435600 
10.0 89.5 1.0112 1210100 0.8632 88.5 1401800 
9.0 85.0 0.8947 1055400 0.7913 95.0 1333700 
7.0 58.0 0.7250 835200 0.6432 80.0 1298600 
5.0 45.0 0.4945 611000 0.4626 91.0 1320900 
4.0 37.0 0.4277 447500 0.3659 86.5 1223200 
2.0 13.4 0.1729 168700 0.1424 77.5 1185300 
1.0 9.0 0.0937 113000 0.0828 96.0 1364900 
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TABLE 3.5: Experimental Data for Cotinine over, the concentration 

range 1-20 pg m1-1 (n=12) 

XY Is 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Area 

pg ml-1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 145.5 1.9400 2782500 2.1613 75.0 1287400 
10.0 78.0 1.0263 1446700 1.0680 76.0 1354600 
9.0 79.0 0.9693 1267600 0.9660 81.5 1312200 
7.0 64.0 0.7485 963000 0.7323 85.5 1315100 
5.0 39.5 0.5096 624800 0.5121 77.5 1220200 
4.0 41.0 0.4480 529300 0.4267 91.5 1240600 
2.0 16.0 0.2051 245400 0.2010 78.0 1221100 
1.0 8.0 0.0930 100700 0.0729 86.0 1382900 

20.0 148.0 1.9473 2421200 2.1425 76.0 1130100 
10.0 79.5 0.9352 1439900 1.0701 85. o 1345600 
9.0 76.0 0.8994 1165800 0.9350 84.5 1246800 
7.0 61.0 0.7484 999200 0.7262 81.5 1376000 
5.0 42.0 0.5090 661700 0.5150 82.5 1284900 
4.0 41.5 0.4414 535600 0.4314 94.0 1241600 
2.0 17.5 0.2215 264800 0.2006 79.0 1320600 
1.0 8.0 0.0855 147800 0.1042 93.5 1419100 

20.0 145.5 1.8896 2766300 2.1683 77.0 1275800 
10.0 84.0 0.9438 1458600 1.0825 89.0 1347400 
9.0 76.0 0.8994 1157900 0.9347 84.5 1238800 
7.0 64.0 0.7441 995000 0.7528 86.0 1321800 
5.0 47.0 0.5108 698200 0.5461 92.0 1278600 
4.0 42.5 0.4473 561900 0.4327 95.0 1298500 
2.0 17.0 0.1988 249700 0.1957 85.5 1275800 
1.0 8.5 0.0880 142900 0.1047 96.5 1365000 

20.0 158.0 1.9750 2877900 2.2075 80.0 1303700 
10.0 86.5 0.9719 1455000 1.0801 89.0 1347100 
9.0 101.0 0.9619 1227000 0.9856 105.0 1244900 
7.0 63.0 0.7544 969200 0.7539 83.5 1285600 
5.0 46.5 0.5027 687800 0.5442 92.5 1263900 
4.0 40.5 0.4354 585400 0.4098 93.0 1428600 
2.0 17.5 0.2071 270400 0.1965 84.5 1375900 
1.0 9.0 0.0942 149900 0.1136 95.5 1320800 
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TABLE 3.5: Experimental Data for Cotinine (continued) 

xy Is 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Area 

jug mJ 
1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 151.5 1.9423 2874600 2.2184 78.0 1295800 
10.0 87.5 0.966.8 1519700 1.0756 90.5 1412900 
9.0 93.5 0.9303 1204300 0.9501 100.5 1267600 
7.0 63.0 0.7455 987200 0.7683 84.5 1285000 
5.0 46.5 0.5027 669800 0.5252 92.5 1275400 
4.0 41.0 0.4530 595900 0.4359 90.5 1367200 
2.0 17.0 0.1954 241700 0.1936 87.0 1248800 

1.0 9.5 0.0994 119600 0.0863 95.5 1386300 

20.0 154.5 1.8841 2937200 2.1666 82.0 1355700 
10.0 85.0 0.9550 1520500 1.0704 89.0 1420500 
9.0 88.0 0.8979 12451.00 0.9732 98.0 1279400 
7.0 61.5 0.7500 993700 0.7694 82.0 1291500 
5.0 46.5 0.5000 676700 0.5158 93.0 1311900 
4.0 39.0 0.4382 551300 0.3910 89.0 1410100 
2.0 18.5 0.1957 245200 0.2004 94.5 1224000 
1.0 9.5 0.1085 128600 0.0906 87.5 1420300 

20.0 143.5 1.9523 2873800 2.1854 73.5 1315000 
10.0 89.5 0.9728 1416700 1.0354 92.0 1368300 
9.0 85. o 0.8717 1244400 0.9139 97.5 1361700 
7.0 59.5 0.7345 976900 0.7393 81. o 1321400 
5.0 46.0 0.4893 685700 0.5193 94.0 1320600 
4.0 38.5 0.4556 576600 0.4096 84.5 1407800 
2.0 17.5 0.1902 257100 0.2002 92.0 1284900 
1.0 9.0 0.0927 145500 0.1023 97.0 1422600 

20.0 162.0 1.9401 2891000 2.1869 83.5 1322000 
10.0 90.5 0.9679 1478700 1.0890 93.5 1357900 
9.0 88.0 0.9166 1318700 0.9915 96.0 1330000 
7.0 51.0 0.7500 956400 0.7730 68.0 1237300 
5.0 46.0 0.4946 706000 0.5359 93.0 1317500" 
4.0 33.0 0.3905 572700 0.4399 84.5 1302100 
2.0 18.0 0.1935 279300 0.2069 93.0 1350200 
1.0 9.5 0.0979 115500 0.0787 97.0 1468200 
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TABLE 3.5: Experimental Data for Cotinine (continued) 

xy is 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Area 

pg ml'1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 165.0 1.9075 2851400 2.2135 86.5 1288200 
10.0 90.0 0.9890 1384500 1.0507 91.0 1317700 
9.0 86.5 0.8781 1243000 0.9430 98.5 1318200 
7.0 51.5 0.7573 882600 0.7289 68.0 1210900 
5.0 47.0 0.5108 621500 0.4605 92.0 1349700 
4.0 32.5 0.4012 497300 0.4067 81.0 1222900 
2.0 18.0 0.1978 285100 0.2146 91.0 1328900 

1.0 9.5 0.0964 165900 0.1193 98.5 1391200 

20.0 167.5 1.8926 3008600 2.2260 88.5 1351600 
10.0 88.0 0.9887 1519300 1.0857 89.0 1399400 
9.0 86.0 0.8958 1298600 0.9721 96.0 1335800 
7.0 54.5 0.6942 956500 0.7417 78.5 1289600 
5.0 45.5 0.4918 675400 0.4956 92.5 1363100 
4.0 35.5 0.3901 556700 0.4075 91.0 1366400 
2.0 15.0 0.1986 257500 0.1929 75.5 1334600 
1.0 9.5 0.0969 120700 0.0857 98.0 1409400 

20.0 173.0 1.9116 3082300 2.2295 90.5 1382500 
10.0 88.0 0.9832 1520000 1.1119 89.5 1367100 
9.0 83.5 0.8835 1256200 0.9413 94.5 1334500 
7.0 57.5 0.7371 943900 0.7545 78.0 1251100 
5.0 45.5 0.4972 709200 0.5465 91.5 1297900 
4.0 34.0 0.3863 532700 0.4384 88.0 1215100 
2.0 14.5 0.2042 241300 0.2004 71.0 1204100 
1.0 9.5 0.0969 139700 0.1030 98.0 1356400 

20.0 174.0 1.8810 3173900 2.2108 92.5 1435600 
10.0 87.5 0.9887 1544700 1.1019 . 

88.5 1401800 
9.0 83.5 0.8789 1262700 0.9468 95.0 1333700 
7.0 58.0 0.7250 970200 0.7471 80.0 1298600 
5.0 45.5 0.5000 703000 0.5322 91.0 1320900 
4.0 36.0 0.4161 529000 0.4326 86.5 1223200 
2.0 16.0 0.2064 235100 0.1984 77.5 1185300 
1.0 9.0 0.0937 124800- 0.0914 96.0 1364900 
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TABLE 3.6: Experimental Data for Nicotine over. the concentration 

range 1-20 pg m-1-1 (n=12) 

XY is 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Area 

µg ml 
1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 108.0 1.4400 3026900 2.3512 75.0 1287400 
10.0 58.5 0.7697 1438000 1.0616 76.0 1354600 
9.0 58.5 0.7177 1289700 0.9828 81.5 1312200 
7.0 46.0 0.5380 979300 0.7447 85.5 1315100 
5.0 30.0 0.3870 624800 0.5121 77.5 1220200 
4.0 23.5 0.2568 467600 0.3770 91.5 1240600 
2.0 12.5 0.1602 239800 0.1964 78.0 1221100 
1.0 7.0 0.0813 87500 0.0633 86.0 1382900 

20.0 108.5 1.4276 2572600 2.2764 76.0 1130100 
10.0 67.0 0.7882 1447800 1.0760 85.0 1345600 
9.0 59.5 0.7041 1281000 1.027 84.5 1246800 
7.0 45.5 0.5582 995900 0.7238 81.5 1376000 
5.0 32.0 0.3878 615100 0.4788 82.5 1284900 
4.0 23.0 0.2446 448500 0.3613 94.0 1241600 
2.0 12.0 0.1518 239700 0.1816 79.0 1320600 
1.0 7.0 0.0748 118500 0.0835 93.5 1419100 

20.0 105.0 1.3636 2923600 2.2916 77.0 1275800 
10.0 66.5 0.7471 1429900 1.0612 89.0 1347400 
9.0 58.5 0.6923 1214700 0.9806 84.5 1238800 
7.0 46.5 0.5406 978000 0.7400 86.0 1321800 
5.0 33.0 0.3586 620000 0.4849 92.0 1278600 
4.0 24.5 0.2578 468000 0.3604 95.0 1298500 
2.0 13.0 0.1520 226700 0.1777 85.5 1275800 
1.0 7.5 0.0777 101800 0.0746 96.5 1365000 

20.0 112.5 1.4062 3180100 2.4393 80.0 1303700 
10.0 67.5 0.7584 1441700 1.0702 89.0 1347100 
9.0 64.0 0.6095 1239200 0.9954 105.0 1244900 
7.0 46.0 0.5508 1081900 0.8416 83.5 1285600 
5.0 33.5 0.3621 610900 0.4834 92.5 1263900 
4.0 24.5 0.2634 4391.00 0.3074 93.0 1428600 
2.0 14.0 0.1656 255700 0.1859 84.5 1375900 
1.0 7.0 0.0732 64900 0.0492 95.5 1320800 
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TABLE 3.6: Experimental Data for Nicotine (continued) 

xy is 

Concn. Peak Peak Peak Peak Peak Peak 
Height Height Area Area Height Area 

jig m1-1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 108.0 1.3846 3093900 2.3876 78.0 1295800 
10.0 66.5 0.7348 1441600 1.0203 90.5 1412900 

9.0 66.5 0.6616 1328000 1.0476 100.5 1267600 
7.0 46.5 0.5502 958700 0.7461 84.5 1285000 
5.0 35.0 0.3783 656500 0.5148 92.5 1275400 
4.0 22.0 0.2430 457100 0.3344 90.5 1367200 
2.0 14.0 0.1609 231500 0.1854 87.0 1248800 
1.0 7.5 0.0785 88300 0.0637 95.5 1386300 

20.0 112.0 1.3658 3338500 2.4626 82.0 1355700 
10.0 63.5 0.7134 1435200 1.0104 89.0 1420500 
9,0 65.5 0.6683 1319700 1.0315 98.0 1279400 
7.0 46.0 0.5609 1005000 0.7782 82.0 1291500 
5.0 36.0 0.3870 675400 0.5149 93.0 1311900 
4.0 21.5 0.2415 434700 0.3083 89.0 1410100 
2.0 15.5 0.1640 233800 0.1910 94.5 1224000 
1.0 6.5 0.0742 136900 0.0964 87.5 1420300 

20.0 102.0 1.3877 3417500 2.5989 73.5 1315000 
10.0 65.0 0.7065 1423600 1.0404 92.0 1368300 

9.0 65.0 0.6666 1317000 0.9672 97.5 1361700 
7.0 47.0 0.5802 1002800 0.7589 81.0 1321400 
5.0 36.5 0.3882 665600 0.5040 94.0 1320600 
4.0 21.5 0.2544 425000 0.3019 84.5 1407800 

2.0 14.5 0.1576 256300 0.1995 92.0 1284900 
1.0 7.0 0.0721 106500 0.0749 97.0 1422600 

20.0 112.5 1.3554 33737-00 2.5520 83.5 1322000 
10.0 67.0 0.7165 1441100 1.0613 93.5 1357900 
9.0 67.5 0.7031 1334300 1.0032 96.0 1330000 
-7.0 38.5 0.5661 930300 0.7519 68.0 1237300 
5.0 36.5 0.3924 725700 0.5509 93.0 1317500 
4.0 19.0 0.2248 352200 0.2705 84.5 1302100 
2.0 15.0 0.1612 279200 0.2068 93.0 1350200 
1.0 7.5 0.0773 107700 0.0734 97.0 1468200 
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TABLE 3.6: Experimental Data for Nicotine (continued) 

xy Is 

Concn. Peak Peak Peak Peak Peak Peak 

1 Height Height Area Area Height Area 
µg m1 (mm) Ratio (counts) Ratio (mm) (counts) 

20.0 117.0 1.3526 2972600 2.3076 86.5 1288200 
10.0 65.5 0.7197 1398700 1.0615 91.0 1317700 
9.0 65.0 0.6598 1213100 0.9203 98.5 1318200 
7.0 38.5 0.5661 897800 0.7415 68.0 1210900 
5.0 36.0 0.3913 676600 0.5014 92.0 1349700 
4.0 17.5 0.2160 424700 0.3473 81.0 1222900 
2.0 15.5 0.1703 233500 0.1757 91.0 1328900 
1.0 8.0 0.0812 91000 0.0654 98.5 1391200 

20.0 121.0 1.3672 2998200 2.2183 88.5 1351600 
10.0 65.0 0.7303 1452000 1.0376 89.0 1399400 
9.0 64.5 0.6718 1291200 0.9666 96.0 1335800 
7.0 46.0 0.5859 1004200 0.7787 78.5 1289600 
5.0 36.0 0.3891 678300 0.4976 92.5 1363100 
4.0 20.0 0.2197 429800 0.3146 91.0 1366400 
2.0 13.0 0.1721 252900 0.1895 75.5 1334600 
1.0 7.0 0.0714 79700 0.0566 98.0 1409400 

20.0 125.0 1.3812 3203600 2.3172 90.5 1382500 
10.0 65.0 0.7262 1458400 1.0668 89.5 1367100 
9.0 64.5 0.6825 1351900 1.0130 94.5 1334500 
7.0 42.0 0.5384 889000 0.7106 78.0 1251100 
5.0 35.5 0.3879 6860oo 0.5286 91.5 1297900 
4.0 19.0 0.2159 363100 0.2989 88.0 1215100 
2.0 12.5 0.1760 210800 0.1751 71.0 1204100 
1.0 6.5 0.0663 105800 0.0780 98.0 1356400 

20.0 126.0 1.3621 3436000 2.3934 92.5 1435600 
10.0 63.0 0.7118 1515000 1.0808 88.5 1401800 
9.0 64.5 0.6789 1388300 1.0409 95.0 1333700 
7.0 45.0 0.5625 1006600 0.7751 80.0. 1298600 
5.0 35.5 0.3901 703400 0.5326 91.0 1320900 
4.0 18.5 0.2138 412900 0.3376 86.5 1223200 
2.0 12.0 0.1548 236500 0.1996 77.5 1185300 
1.0 6.5 0.0677 112400 0.0824 96.0 1364900 
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were found to be equivalent in terms of reproducibility with RSDs 

of 6.9% and 7.0% respectively. 

The inclusion of an IS results in an improvement in the RSD 

averaged over the concentration range, for each analyte and in the 

mean RSD averaged over all concentrations and standards for each 

particular method of quantitation. The best method of quantitation, 

in terms of between-run precision, was peak height ratio (RSD = 4.9%), 

followed by peak area ratio (RSD = 6.7%). 

Errors arise in the experiment due to the use of gradient elution 

which causes random changes in the baseline over a particular run, 

and uncertainty in marking start and end-points of the peaks for 

integration. Errors also occur in the preparation of the standard 

solutions and the mobile phase, and as the HPLC system was not 

thermostated, changes in the ambient temperature on the day cause 

variation in the chromatograms obtained; this is more important when 

the experiment is carried out over a period of weeks than when only 

one day is being considered. Over a period of time, the standards 

show some deterioration and also the column performance decreases 

with age. 
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3.4 The Calibration Curve 202 

The analyses to be carried out on urine samples as the conclusion 

of this method development will be based on graphical methods, where 

a calibration curve is constructed from a series of measurements 

on a group of standards of known concentration over the range of 

interest. The' graph takes the form of a highly precise measurement, 

such as concentration, on the x-axis with observed values of a less 

precise measurement such as peak area (peak area ratio, peak height 

or peak height ratio) on the y-axis. 

All measurements are subject to errors and hence it is necessary 

to assess the errors involved in constructing the calibration curve, 

especially as the calibration line will be used to find the x-value 

of a sample when the y-value has been measured. 

Firstly the 'best' straight line through the calibration graph 

points must be calculated. This is done using the method of least 

squares, so called because it minimizes the sum of the squares of 

the residuals. 

The line of regression is given by: 

Y=a+ bX 

where a= the intercept on the y-axis 

and b= the gradient of the regression line. 

An example calculation is given for the nicotine-1'-N-oxide 

with peak height as the measurement parameter at the end of this 

section. 

A confidence region, about the entire line, the Working-Hotelling 

region, first proposed in 1929, is given by: 
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22 

sZ 

1 

Y=a+U 
{2F2 

va 
(n + 

(E 
) 

where F= Snedecor's F statistic 

v= degrees of freedom = n-2 

a= probability level for the desired confidence interval 
100(1-a)% 
e. g. a=0.05 for 95% confidence interval 

n= number of observations 

Zx2 = E(X-X)2 

and s2 = variance 

In 1953, Scheffe showed that the Working-Hotelling confidence 

bands about the calibration line give an estimate of the error inherent 

in the determination which is valid whatever the setting of x. The 

95% confidence region for the entire line is illustrated along with 

the fitted line in figure 3-3(a). A complete calculation is also given, 

at the end of this section, using the data recorded for nicotine-1'-N- 

oxide quantitated by peak height measurements. 

Once a fitted line is obtained, it is often required to be used 

over and over again for all future values of the abscissa variable 

x (concentration) for estimating the associated future observations 

y- (peak height, peak area etc. ). 

The most practical method for producing confidence limits for 

the repeated use of the fitted line for all future observations employs 

the Working-Hotelling confidence region combined with tolerance limits 

for the observations. The tolerance limits give bounds within which 

a certain proportion P of the future observations will be found. 

The tolerance bounds calculated contain P=0.90 or 90% of the future 

observations y with 95% confidence, for any and all values of the 

abscissa variable x. These tolerance bounds are given by: 
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Y=a+bX+ {A+ z B} 

where A=I 2F2, 
v a/2 

(n +B= 

[vs2/X2v, 
1_a/2 

and z= the normal devi, 
P 

(X_X) 
) s2 

12 

1 
2 

ate. 

(For 100(1-a)% overall confidence, the critical values of both F 

and X2 have been set at a/2). The tolerance bounds are also illustrated 

in figure 3.3(a) and a complete example calculation has been included 

using the data recorded for the nicotine-l'-N-oxide standard quantitated 

by peak height measurements. 

For each of the four standard components and each method of 

quantitation, the line of 'best' fit, Working-Hotelling 95% confidence 

bands and 95% confidence bounds for 90% of future observations have 

been calculated and the data summarized in tables 3.9 to 3.12. The 

graphs showing the fitted model with the corresponding Working- 

Hotelling 90% confidence region and the 95% confidence bounds for 

90% of future observations are presented in figures 3.3 to 3.6. 
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Construction of the Calibration Curve of Nicotine-1'-N-oxide from Peak 

Height Measurements with Fitted Regression Line, Working-Hotelling 95% 

Confidence Region and 95% Confidence Bounds for 90% of Future 

Observations 

TABLE 3.8: Calibration Data 

X= concentration in pg ml-1 
Y= peak height in mm. 

Concn. 
X 

Peak Height 
Y 

(X-X)= 
x 

(Y-Y)= 
y x2 Y2 XY 

20.0 56.8 12.75 36.45 162.5625 1328.6025 464.7375 

10.0 27.9 2.75 7.55 7.5625 57.0025 20.7625 

9.0 25.7 1.75 5.35 3.0625 28.6225 9.3625 

7.0 18.5 -0.25 -1.85 0.0625 3.4225 0.4625 

5.0 13.4 -2.25 -6.95 5.0625 48.3025 15.6375 

4,0 11.6 -3.25 -8.75 10.5625 76.5625 28.4375 

2.0 5.4 -5.25 -14.95 27.5625 223.5025 78.4875 

1.0 3.5 -6.25 -16.85 39.0625 283.9225 105.3125 

Ex = 58 EY = 162.8 Ex2 = 255.5 

7.25 1= 20.35 Eye = 2049.94 

Exy = 723.2 
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Y= a+bX 

Gradient, b tg 
=- 

723.2 
=-2.830528376 Ex 255.5 

Intercept, a=Y- bX = 20.35 - (2.830528376 x 7.25) 

= -0.171330723 

Regression line is given by 

Y= 
-0.171330723 + 2.830528376 x 

i xy Variance,. s2 
'Zy 

n_2bE 

= 2049.94 - (2.830528376 x 723.2) 
6 

= 0.483646416 

sYX = 0.695446918 

(Additional decimal places are used in the computations to keep rounding 

errors to a minimum. ) 

Working-Hotelling 95% Confidence Region 

Y= a+bX+I2F2va (n +(X-X)2 )s212 

Since F2, 
v, a = F2,6,0.05 = 5.143 (Tables) 

Then 

Y' _ -0.171330723 + 2.830528376 X' + 
[2x5.143 

(1 + 
(X'- 

57 
25) )o. 483646416 

1 
255. Jý 

s 

= -0.171330723 + 2.830528376 X' 
44.974787035(0.125 

+ 
(x'-7.25)2) 1 

255.5 
.J 
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, 
", For X1 = 20.0, Y1 = 56.44 + 1.95 

= 58.39 or 54.49 

For X2 = 10.0, Y2 = 28.13 + 0.88 

= 29.01 or 27.25 

For X3 = 9.0, Y3 = 25.30 + 0.83 

= 26.13 or 24.47 

For X4 = 7.0, Y4 = 19.64 + 0.79 

= 20.43 or 18.85 

For X5 = 5.0, Y5 = 13.98 + 0.85 

= 14.83 or 13.13 

For X6 = 4.0, Y6 = 11.15 + 0.91 

= 12.06 or 10.24 

For X7 = 2.0, Y7 = 5.49 + 1.08 

6.57 or 4.41 

For X8 = 1.0, Y8 = 2.66 + 1.18 

= 3.84 or 1.48 

95% Confidence Bounds for 90% of Future Observations 

Y= a+bX+(A+zpB) 
I 

22 

where A=[ 2F2 
v aj2 n+ 

(E 
x ss 

- - jX 
v' 1_aj2 

2 Iv 
and gz 

Since zp = 1.29 when P=0.90, 

F2,6,0.025 = 7.260 and 

X26,0.975 = 1.24 (Tables) 
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Then 

Y= -0.171330723 + 2.830528376 x+ 
C[2 

x 7.26 (0.125 + 
(x-7.25)2) 

255.5 

6x0.483646416)2J ) 
0.483646416] 2+ [1.29 (6 1.24 / 

1 

Y= -0.171330723 + 2.830528376 X+7.02254596 (0.125 + 
(X-7'25)2), 2 

255.5 

+ 1.973415249) 

For X1 = 20.0, Y1 = 56.44 + 4.29 

= 60.73 or 52.15 

For X2 = 10.0, Y2 = 28.13 + 3.02 

= 31.15 or 25.11 

For X3 = 9.0, Y3 = 25.30 + 2.95 

= 28.25 or 22.35 

For X4 = 7.0, Y4 = 19.64 + 2.91 

= 22.55 or 16.73 

For X = 5.0, Y = 13.98 + 2.98 
5 5 

= 16.96 or 11.00 

For X6 = 4.0, Y6 = 11.15 + 3.05 

= 14.20 or 8.10 

For X7 = 2.0, Y7 = 5.49 + 3.25 

= 8.74 or 2.24 

For X8 = 1.0, Y8 = 2.66 + 3.37 

= 6.03 or -0.71 
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Figure 3.3(a): Calibration Curve for Nicotine- 1'-N-oxide by Peak Height 
showing the fitted line with its Working-Hotelling 95% 
confidence region plus the confidence bounds for 90% of 
future observations Y 
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TABLE 3.9: Sunmary of Calibration Data for Nicotine- I'-N-oxide 

(X = concentration in jag ml -1, Y- (a) peak height in mm, (b) peak height ratio, 

(c) peak area in counts x 10-6 and (d) peak area ratio) 

(a) Y- 
-0.1713 + 2.8305 X 

X y y Working-Hotelling Confidence Bounds 

20.0 56.8 56.4392 58.39 or 54.49 60.73 or 52.15 

10.0 27.9 28.1339 29.01 or 27.25 31.15 or 25.11 

9.0 25.7 25.3034 26.13 or 24.47 28.25 or 22.35 

7.0 18.5 19.6423 20.43 or 18.85 22.55 or 16.73 

5.0 13.4 13.9813 14.83 or 13.13 16.96 or 11.00 

4.0 11.6 11: 1507 12.06 or 10.24 14.20 or 8.10 

2.0 5"4 5.4897 6.57 or 4.41 8.74 or 2.24 

1.0 3.5 2.6591 3.84 or 1.48 6.03 or -0.71 

(b) s- 
-0.0130 + 0.0344 X 

x y Working-Hotelling Confidence Bounds 

20.0 0.6944 0.6767 0.73 or 0.63 0.78 or 0.58 

10.0 0.3157 0.3318 0.35 or 0.31 0.40 or 0.26 

9.0 0.2729 0.2973 0.32 or 0.28 0.37 or 0.23 

7.0 0.2322 0.2283 0.25 or 0.21 0.30 or 0.16 

5.0 0.1487 0.1593 0.18 or 0.14 0.23 or 0.09 

4,0 0.1302 0.1248 0.14 or 0.10 0.19 or 0.05 

2.0 0.0649 0.0559 0.09 or 0.03 0.14 or -0.02 

1.0 0.0369 0.0214 0.05 or -0.01 0.01 or -0.06 

(c) Y- 44023.9276 + 51579.8375 X 

x y y Working-fiotelling Confidence Bounds 

20.0 1.0203 1.0756 1.28 or 0.88 1.52 or 0.63 

10.0 0.5346 0.5598 0.65 or 0.47 0.87 or 0.25 

9.0 0.6174 0.5082 0.59 or 0.42 0.81 or 0.20 

7.0 0.4922 0.4050 0.49 or 0.32 0.70 or 0.10 

5.0 - 0.3271 0.3019 0.39 or 0.21 0.61 or -0.01 

4.0 0.1882 . 0.2503 0.34 or 0.16 0.56 or -0.06 

2.0 0.1119 0.1471 0.26 or 0.04 0.48 or -0.19 

1.0 0.0517 0.0956 0.22 or -0.03 0.44 or -0.25 

(d) ý 
"0.0341 + 0.0391 X 

X Y Y Working-Hotelling Confidence hounds 

20.0 0.7780 0.8174 0.98 or 0.65 1.18 or 0.46 

10.0 0.3902 0.4257 0.50 or 0.35 0.68 or 0.17 

9.0 0.4754 0.3866 0.46 or 0.32 0.64 or 0.14 

7.0 0.3815 0.3082 0.38 or 0.24 0.55 or 0.06 

S. 0 0.2517 0.2299 0.30 or 0.16 0.48 or -0.02 

4.0 0.1433 0.1907 0.27 or 0.11 0.45 or -0.07 

2.0 0.0872 0.1124 0.20 or 0.02 0.39 or -0.16 

1.0 0.0373 0.0733 0.17 or -0.03 0.36 or -0.21 
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TA13LE 3.10: Swnnary of Calibration Data for 3' Hydroxycotinine 

(X - concentration in pg ml-1, Y. (a) peak height in mm, (b) peak height ratio, 

(c) peak area in counts x 10-6 and (d) peak area ratio) 

(a) 2.5092 + 8.3573 X 

gyy Working-Flotelling Confidence Bounds 

20.0 165.0 169.6560 182.77 or 156.55 198.53 or 140.79 

10.0 89.3 86.0826 91.99 or 80.17 106.39 or 65.77 

9.0 86.7 77.7253 82.40 or 73.04 97.62 or 57.82 

7.0 59.8 61.0106 66.33 or S5.69 80.62 or 41.40 

5.0 44.3 44.2959 50.02 or 38.58 64.38 or 24.22 

4.0 35.4 35.9386 42.07 or 29.81 56.51 or 15.37 

2.0 15.8 19.2239 26.47 or 11.97 41.13 or -2.69 

1.0 8.5 10.8666 18.79 or 2.95 33.57 or -11.83 

(b) Y 
-3.3878 x 10 3+0.1015 x 

g y Y Working-Hotelling Confidence ßcnuids 

20.0 2.0154 2.0277 2.09 or 1.97 2.16 or 1.90 

10.0 1.0101 1.0121 1.04 or 0.98 1.10 or 0.92 

9.0 0.9195 0.9106 0.93 or 0.89 1.00 or 0.82 

7.0 0.7510 0.7075 0.73 or 0.69 0.80 or 0.62 

5.0 0.4912 0.5043 0.52 or 0.48 0.59 or 0.41 

4.0 0.3978 0.4028 0.43 or 0.37 0.49 or 0.31 
2.0 0.1891 0.1997 0.23 or 0.17 0.30 or 0.10 

1.0 0.0891 0.0981 0.14 or 0.06 0.20 or 0.00 

(c) Y -23719.4784 + 119554.3591 X 

x y Y Working-llotelling Confidence 13oiuids 

20.0 2.3615 2.3673 2.41 or 2.33 2.46 or 2.28 
10.0 1.1738 1.1718 1.19 or 1.15 1.24 or 1.11 

9.0 1.0429 1.0522 1.07 or 1.04 1.12 or 0.99 

7.0 0.8358 0.8131 0.83 or 0.80 0.88 or 0.75 
5.0 0.5802 0.5740 0.59 or 0.56 0.64 or 0.51 

4.0 0.4644 0.4544 0.47 or 0.44 0.52 or 0.39 

2.0 0.1923 0.2153 0.24 or 0.19 0.28 or 0.15 

1.0 0.0932 0.0958 0.12 or 0.07 0.17 or 0.02 

(d) Y- 
-0.0168 + 0.0906 x 

x y Working-Ilotelling Confidence üouvids 

20.0 1.7990 1.7968 1.86 or 1.74 1.92 or 1.68 

10.0 0.8567 0.8899 0.92 or 0.86 0.98 or 0.80 

9.0 0.8025 0.7992 0.82 or 0.78 0.89 or 0.71 

7.0 0.6480 0.6179 0.64 or 0.60 0.70 or 0.54 

5.0 0.4463 0.4365 0.46 or 0.42 0.53 or 0.35 

4.0 0.3551 0.3458 0.38 or 0.32 0.44 or 0.26 

2.0 0.1502 0.1645 0.19 or 0.13 0.26 or 0.06 

1.0 0.0670 0.0738 0.10 or 0.04 0.17 or -0.03 
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TABLE 3.11: Swimary of Calibration Data for Cotinine 

(X = concentration in µg ml 
1, Y- (a) peak height in nm, (b) peak height ratio, 

(c) peak area in counts x 1Ö-6 and (d) peak area ratio) 

(a) Ya 5.175 3+7.8568 X 

X y Y Working-Hotelling Confidence üounds 

20.0 157.3 162.3123 176.74 or 147.88 194.08 or 130.54 

10.0 86.2 83.7438 90.24 or 77.24 106.10 or 61.38 

9.0 85.5 75.8869 82.01 or 69.77 97.79 or 53.99 

7.0 59.0 60.1732 66.02 or 54.32 81.75 or 38.59 

5.0 45.3 44.4595 50.75 or 38.17 66.57 or 22.35 

4.0 37.9 36.6027 43.34 or 29.86 59.24 or 13.96 

2.0 16.9 20.8890 28.87 or 12.91 45.00 or -3.22 

1.0 9.0 13.0321 21.75 or 4.31 38.02 or -11.96 

(b) Y" 0.0278 + 0.0955 X 

X y y Working-Hotelling Confidence Bounds 

20.0 1.9220 1.9396 2.01 or 1.87 2.10 or 1.78 

10.0 0.9741 0.9837 1.01 or 0.95 1.09 or 0.87 

9.0 0.9070 0.8881 0.92 or 0.86 1.00 or 0.78 

7.0 0.7405 0.6969 0.73 or 0.67 0.81 or 0.59 

5.0 0.5016 0.5057 0.54 or 0.48 0.62 or 0.40 

4.0 0.4253 0.4102 0.44 or 0.38 0.52 or 0.30 

2.0 0.2012 0.2190 0.26 or 0.18 0.34 or 0.10 

1.0 0.0953 0.1234 0.16 or 0.08 0.24 or 0.00 

(c) -33109.9195 + 145545.7475 X 

X y y Working-Hotelling Confidence Bounds 

20.0 2.8784 2.8778 2.96 or 2.79 3.06 or 2.69 

10.0 1.4753 1.4223 1.46 or 1.38 1.55 or 1.29 

9.0 1.2384 1.2768 1.31 or 1.24 1.40 or 1.15 

7.0 0.9661 0.9857 1.02 or 0.95 1.11 or 0.86 

S. 0 - 0.6766 0.6946 0.73 or 0.66 0.82 or 0.56 

4.0 0.5520 0.5490 0.59 or 0.51 0.68 or 0.42 

2.0 0.2560 0.2579 0.30 or 0.21 0.40 or 0.12 

1.0 0.1335 0.1124 0.16 or 0.06 0.26 or 0.03 

(d) Y- 
-0.0240 + 0.1104 X 

X Y" Y Working-Hotelling Confidence Bounds 

20.0 2.1931 2.1843 2.21 or 2.15 2.24 or 2.12 

10.0 1.0768 1.0801 1.09 or 1.07 1.12 or 1.04 

9.0 0.9544 0.9697 0.98 or 0.96 1.01 or 0.93 

7.0 0.7490 0.7488 0.76 or 0.74 0.79 or 0.71 
5.0 0.5207 0.5280 0.54 or 0.52 0.57 or 0.49 

4.0 0.4218 0.4176 0.43 or 0.41 0.46 or 0.38 

2.0 0.2001 0.1967 0.21 or 0.19 0.24 or 0.16 

1.0 0.0961 0.0863 0.11 or 0.07 0.13 or 0.05 
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TABLE 3.12: Sumnary of Calibration Data for Nicotine 

(X = concentration in pg ml-1, Y= (a) peak height in mn, (b) peak height ratio, 

(c) peak area in counts x 1Ö-6 and (d) peak area ratio) 

(a) Y-3.9536 + 5.7081 x 

X Y Y Working-Hotelling Confidence Bounds 

20.0 113.1 118.1160 132.34 or 103.9 149.44 or 86.80 

10.0 65.0 61.0348 67.45 or 54.63 83.08 or 39.00 

9.0 63.6 55.3267 61.36 or 49.30 76.92 or 33.74 

7.0 44.5 43.9104 49.68 or 38.14 65.19 or 22.63 

5.0 34.6 32.4942 38.69 or 26.29 54.28 or 10.70 

4.0 21.2 26.7861 33.44 or 20.14 49.11 or 4.47 

2.0 13.6 15.3698 23.24 or 7.50 39.14 or -8.40 
1.0 7.1 9.6617 18.25 or 1.07 34.29 or -14.97 

(b) Y= 0.0228 + 0.0694 X 

X Y Y Working-Hotelling Confidence Bounds 

20.0 1.3829 1.4118 1.52 or 1.30 1.65 or 1.17 

10.0 0.7353 0.7173 0.77 or 0.67 0.89 or 0.55 

9.0 0.6764 0.6478 0.70 or 0.60 0.81 or 0.49 

7.0 0.5582 0.5090 0.55 or 0.47 0.67 or 0.35 
5.0 0.3834 0.3701 0.42 or 0.32 0.53 or 0.21 

4.0 0.2377 0.3006 0.35 or 0.25 0.47 or 0.13 
2.0 0.1623 0.1617 0.22 or 0.10 0.34 or -0.02 
1.0 0.0747 0.0923 0.15 or 0.03 0.28 or -0.10 

(c) Y- -131950.2162 + 160899.9609 X 

X Y Y Working-Hotelling Confidence Bounds 

20.0 3.1281 3.0860 3.24 or 2.93 3.43 or 2.74 
10.0 1.4435 1.4770 1.55 or 1.41 1.72 or 1.24 

9.0 1.2973 1.3161 1.38 or 1.25 1.55 or 1.08 
7.0 0.9774 0.9943 1.06 or 0.93 1.23 or 0.76 

5.0 0.6615 0.6725 0.74 or 0.60 0.91 or 0.43 

4.0 0.4269 0.5116 0.58 or 0.44 0.76 or 0.27 
2.0 0.2414 0.1898 0.28 or 0.10 0.45 or -0.07 
1.0 0.1001 0.2894 0.12 or -0.06 0.3 or -0.24 

(d) Y- -0.0990 + 0.1220 X 

X Y Y Working-Ilotelling Confidence Bounds 

20.0 2.3830 2.3426 2.48 or 2.20 2.64 or 2.04 

10.0 1.0540 1.1217 1.18 or 1.06 1.33 or 0.91 

9.0 0.9980 0.9997 1.06 or 0.94 1.21 or 0.79 

7.0 0.7576 0.7555 0.82 or 0.70 0.96 or 0.56 

5.0 0.5087 0.5113 0.57 or 0.45 10.72 or 0.30 

4.0 0.3266 0.3892 0.45 or 0.33 0.61 or 0.17 
2.0 0.1887 0.1450 0.22 or 0.06 0.37 or -0.09 
1.0 0.0718 0.0230 0.10 or -0.06 0.26 or -0.22 
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3.5 Statistical Determination of the Limit of Detection 

A commonly used definition of the limit of detection is the 

analyte concentration giving a signal equal to the blank signal, 

yB, plus two standard deviations of the blank, SB' It is generally 

agreed that the determination of the limit of detection (LOD) is 

statistical in nature. However, since the detector response observed 

on a blank is virtually a horizontal straight line, this precludes 

measurement of background in units of height or area, the units in which 

quantitation is performed. The limit of detection must be calculated 

from other available information, i. e. the calibration data. 

Hubaux and Vos 
203 

have reported a statistical treatment of linear 

calibration curves which allows calculation of the limit of detection. 

In 1978, Bailey et al. 
204 

presented a variation on this approach, 

illustrated below. 

(a) 

Y 

i Regression 
Line 

Upper 
Prediction 
Limit 

Lower 
rediction 

Limit 

(b) 

Y 

Upper 
/ý 

YQ 
- -ý 

/ 
Lower 

ý Iý 
YUB -- 

7I YL 

a/j 

Y 

X 

X 

Figure 3.7: (a) Regression line with prediction limits and a, the 
expected blank value 

(b) Enlarged section of (a) showing the parameters a, YUB, 
YQ, YL and XLD. 
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The regression line, which has been calculated from concentrations 

and corresponding peak response of the calibration data by the method 

of least squares, is solved for a concentration of zero to yield 

a peak area (peak height etc. ) which is the expected blank value, 

denoted by a in figures 3.7. In figure 3.7(b), YUB is the upper 

prediction limit on an expected blank value a. YL is the lower limit 

on that predicted individual concentration which exceeds the 99% 

upper prediction limit on the expected blank, Yom. XLD is the limit 

of detection in concentration for a particular substance based on 

its calibration data, that is, the lowest amount in units of 

concentration that can be measured above the blank. YQ is the area 

calculated from the regression line which corresponds to XLD. This 

value is the peak area response above which quantitation may be 

performed. 

The limit of detection is calculated by comparing two prediction 

limits. The lower prediction limits are compared with the upper 

prediction limit on the blank until a lower prediction limit is found 

which is greater than or equal to the upper prediction limit on the 

blank. A 99% confidence level has been used in this work and YUB , 

a 99% upper prediction limit on the blank, is calculated from: 

s s Yý =a+M+ tvya, s (l +n+( 

where t= student's t statistic (Tables) 

s= standard error of the estimate 

=r EYZ - bExy 12 

L n-2 J 

YL, the 99% lower prediction limit on the expected area at a given 

concentration, is calculated from: 
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r _R)2 YL =a+ bX -L tV, 
a, 

s (1 +n+ 
(X 

Epxý 

Values for Xp are substituted into the above equation. The lowest 

value of Xp which gives a value for YL exceeding or equalling YUB 

is the lower limit of detection, XLD, for a single analysis. 

A specimen calculation of XLD for nicotine-i' -N-oxide, quantitated 

by peak height measurements, has been included at the end of this 

section. The LOD has been calculated for each standard component 

and by each method of quantitation and is reported in table 3.13. 

The peak height ratio measurement appears to give the best LOD values 

over all four standard components. The peak area and peak area ratio 

measurement parameters for nicotine-1'-N-oxide gave unacceptably 

high values for LOD. This may again be explained by the uncertainty 

in the recognition of the start and end-points of this peak in 

particular. The nicotine- i'-N-oxide peak is the smallest peak and 

it is not completely resolved from the next eluting peak, 3'hydroxy- 

cotinine. 

The high LOD values calculated give cause for concern. The 

levels of nicotine and its metabolites in a smoker's urine sample 

are not expected to exceed 3 pg ml- Fortunately sample size is 

not a problem and also during the extraction of the components of 

interest from the sample matrix a concentration step may be included, 

however, it is clear that quantitation of non-smokers' and passive 

smokers' samples may be extremely difficult. 
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Statistical Calculation of the Detection Limit for Nicotine-1'-N-oxide 

Measured by Peak Height 

YUB , the 99% upper prediction limit on the blank, is given by: 

ii 
Yý = a+bX+[tvýa. s. (1 +n+ 

(7X- ) 

Since n=8, V= n-2 = 6, and a=0.01, 

t6,0.01 -- 3.71 (Tables). 

a= -0.171330723 X=7.25 

b=2.830528376 Ex2 = 255.5 

5 YX = 0.695446918 

Then at X=0 1 

Y UB -0.171330723 + 2.830528376 x0+ 
[3.71x 

0.695446918 (1+ $1 . 2) 
+ 

(255552)2 ] 

UB 

YUB = 2.805004902 

YL, the 99% lower prediction limit of the expected response at a given 

concentration, Xp, is given by: 

I 
Yb = a+bX0-1tßa. sß(1 +n+ 

(Xpdý2 

YL = -0.171330723 + 2.830528376 x0 -13.71 x 0.695446918 (1+0.125 + 
(x-7.25)2)'1 

255.5 ,j 

Substituting values for XP, the equation is solved for YL. The lowest 

value of Xp which yields a value of YL >, YUB is denoted by XLD' 

When X=2.00 
P 

YL = 2.624903515 YL < YUB 
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When X=2.05 
P 

YL = 2.768806904 YL < YUB 

When X=2.06 
P 

YL = 2.797585087 YL < YUB 

When Xp = 2.07 

YL = 2.826362438 YL > YUB 

""' 
XLD = 2.07 pg ml-1 

Since Vi = 100 pd then XLD = 0.207 pg or 207 ng injected on-column. 
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CHAPTER 4 

DEVELOPMENT AND OPTIMIZATION OF A CLEAN-UP PROCEDURE 

FOR URINE SAMPLES AND EXTRACTION OF NICOTINE 

AHD ITS METABOLITES PRIOR TO HPLC ANALYSIS 
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¢. 1 Introduction 

Separation, detection and quantitation of a standard mixture 

is a relatively straightforward procedure when compared to the 

analysis of the same mixture of components in a sample, e. g. urine, 

blood or tissue. Analysis of the sample, which also contains numerous 

other substances, can prove extremely difficult. Due to the 

complexity of most samples, direct analysis is not possible and 

the sample must first undergo additional preseparations to reduce 

the number of interfering substances. If sample impurities are 

not removed they can remain on the column, causing blockage or 

a reduction in column efficiency resulting in a deterioration in 

the resolving power of the column. Sample impurities can also 

saturate or contaminate the detector. The less specific the detector 

the more critical it is to remove interfering materials. 

All separation techniques can be considered for the sample 

clean-up: filtration; centrifugation; precipitation; evaporation; 

extraction of solids and liquids by liquids; extraction of liquids 

by adsorption on solids. In most cases, combinations of different 

extraction mechanisms are required. 

The clean-up procedure should separate the analyte(s) from 

interfering matrix elements and leave them in appropriate 

concentrations for detection and quantitation. 

During all clean-up procedures analyte losses can occur. In 

order to monitor and correct for these losses an IS may be added 

to the sample before the preseparation procedures are carried out. 

The IS must be similar to the component(s) of interest as it will 

be taken through the isolation steps. 
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Many separation techniques are available, however only those 

techniques relevant to the clean-up of urine samples will be 

considered further. 

4.2 Filtration/Centrifugation 

Some samples require filtration or centrifugation as part 

of the clean-up, clear, particle-free solutions being a prerequisite 

for HPLC analysis. Although these two techniques are similar, 

centrifugation may be preferred as the sample does not come into 

contact with the filter material which could adsorb the analyte. 

4.3 IproteiniZation 

Biological samples, such as urine, with a high protein content, 

make precipitation of the proteins necessary in order to prevent 

the formation of emulsions during extraction with organic solvents. 

Deproteinization may cause problems due to the possibility of 

irreversible binding of the analyte to the proteins, in particular 

where the analyte is lipophilic. An IS may not allow satisfactory 

adjustment for these losses as this would require the distribution 

ratio and protein binding of the analyte and the IS to be similar. 

Extraction by means of solid phases avoids the formation of emulsions 

and may be used as an alternative so avoiding the need for the 

more problematic protein-precipitation. 
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4.4 Liquid-Liquid Extractions 

Liquid-liquid extraction is probably the most widely used 

technique for cleaning up samples prior to analysis. It is a 

relatively simple and rapid procedure and usually results in high 

purification. 

The solvents chosen should form two immiscible phases after 

equilibration and the components of interest must strongly favour 

distribution into one phase, while the impurities favour distribution 

into the other. 

Although the solvents should be immiscible, water may dissolve 

in the organic phase and hence polar compounds may be transferred 

to the organic phase in the dissolved water, thus the extract should 

be washed several times with small amounts of pure aqueous phase. 

The extraction yield is related to the distribution ratio 

of the component of interest between the two phases. In many cases 

the distribution ratio is pH dependent, and therefore the most 

favourable pH range for extraction must be chosen. Components having 

ionizable groups can be most efficiently extracted into the organic 

phase from the aqueous phase when ionization is suppressed. The 

uncharged species is predominant in the pH region below the pKa 

for acids, above the pKa for bases and at the isoelectric pH 

for amphoteric compounds. Components which remain unionized over a 

wide pH range can be purified by extracting the contaminating compounds 

into the aqueous phase by the same procedure. 

When compounds are hydrophilic and charged, extraction into 

the organic phase will be inefficient as the distribution ratio 

will be small. The extraction efficiency can often be improved 
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if the compound is extracted as a neutral complex that is more 

soluble in the organic phase. This technique has been widely used 

in the extraction of very polar analytes from body fluids. 

4.5 Liquid-Solid Extractions 

Whenever distribution problems exist, solid adsorption methods 

also provide reasonably pure extracts. A wide variety of solid 

adsorbents is now available including silica, alumina and reversed 

phase materials. The extraction procedure involved an adsorbent 

of appropriate activity being packed into a column and the sample 

solution, applied to the inlet, being allowed to flow into the 

adsorbent bed under gravity, positive pressure or vacuum at a 

controlled flow rate. Pre-packed, disposable cartridges are now 

readily available e. g. Sep Pak or Bond Elut. 

The adsorbent and solvent may be chosen so that the components 

of interest are unretained by the column/cartridge and the interfering 

components are adsorbed. This procedure may be preferred when 

the sample component of interest is present in a high concentration. 

When components of widely differing polarities need to be isolated 

or they are present in low levels, then an adsorbent/solvent system 

which allows the matrix interferences to pass through unretained 

but adsorbs the components of interest may be the most effective. 

A series of solvents or solvent mixtures of increasing elution 

strength is then used to desorb selectively the desired components. 

The formation of neutral complexes can again be used in the 
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extraction of very polar components. 

Generally, the recovery of the components of interest from 

liquid-solid extraction procedures is superior to that from liquid- 

liquid extraction, however the number and quantities of co-extracted 

constituents is also greater. Therefore, more isolation steps 

may be necessary after liquid-solid extraction in order to obtain 

a clean extract. 

Although the optimization of liquid-solid extractions might 

be complicated they are advantageous for routine analysis, being 

relatively simple to perform and requiring only small sample volumes; 

they are also amenable to automation. 

4.6 Concentration Steps 

Samples can often be concentrated by extraction into a smaller 

volume of solvent, however in many cases the final volume after 

extraction may exceed the original sample volume due, for example, 

to several washings of the organic phase with an aqueous solution 

in order to improve the extraction yield, requiring the final extract 

to be concentrated prior to HPLC analysis. 

Although evaporation is a simple solution it can result in 

loss of the components of interest through degradation, oxidation 

or volatilization. Evaporation using nitrogen streaming through 

needles over the surface of the solvent lowers the evaporation 

temperature and so may prevent loss of the components of interest. 
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4.7 Calibration and Quantitation 

Once the extraction procedure has been finalized, calibration 

curves over the expected concentration range should be constructed 

for samples with known concentrations of components added and 

processed through the whole extraction procedure. 

4.8 Developnent of a Clean-up Procedure 

4.8.1 Preliminary Experiments 

Initially, a clean-up procedure (see figure 4.1, extraction 

procedure 1), previously used prior to GC analysis of nicotine 

and cotinine, 
182 

was applied to the samples to be analyzed by IIPLC. 

A standard solution was extracted giving the following recovery 

values: nicotine, 86%; cotinine, 90%; anabasine, 80%; and nicotine- 

1' -N-oxide only 48%; see figure 4.2. When the extraction procedure 

was applied to blank (non-smokers') urine samples, it was obvious 

that the clean-up was not sufficiently good when the subsequent 

analysis was to be carried out by IWPLC with UV detection. A 

chromatogram of the extracted blank urine sample is presented in 

figure 4.3. The GC analysis referred to involved the use of a 

capillary column and a nitrogen sensitive alkali tip detector which 

provide efficient chromatography and an enhanced response to compounds 

containing nitrogen, so reducing the importance of the extraction 

and clean-up procedures required. 
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Figure 4.3: Extraction Procedure 1 (figure 4.1) applied to a urine 

sample (female, non-smoker) 
Parameters: see figure 4.2 

Blank urine extract 

0 
0 N 

F 

048 12 16 20 

Time/rains 
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Figure 4.1: Extraction Procedure 1 

Sample (20 ml) : urine or standard mixture in H2O (10 ug ml-1) 

Adjust pH to 7.0 using HC1 or NaOH 

, ̀Pass sample (10 ml) through a Sep Pak 
and discard effluent (ODS) 

Wash Sep Pak with H0 (2 ml) 
and discard 

Elute components of interest from 
Sep Pak with 100% methanol (5 ml) 

I 

Make extract volume 10 ml by adding 
0.2% H3P04' PH 7.25 

Inject 

All extractions carried out in duplicate 

An extraction procedure carried out at pH 7.0 using dichloro- 

methane was tried as an alternative to using a Sep Pak, see figure 

4.4, extraction procedure 2. An experiment on a standard mixture 

revealed that nicotine- 1' -N-oxide was not extracted using dichloro- 

methane and the recovery values for nicotine and cotinine were 
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49% and 68% respectively. Nicotine- 11 -N-oxide being hydrophilic 

remained in the aqueous layer, as illustrated in figure 4.5. 

Figure 4.4: Extraction Procedure 2 

Sample (20 ml) : urine or standard mixture in 1120 (10 Pg ml- 

Adjust 

') 

pH to 7.0 using HC1 or NaOH 

I 

Extract components of interest from sample (10 ml) 
using CH2C12 (2 x 10. n1) 

I 

Evaporate to dryness using N2 stream 

I 

Reconstitute by the addition of McOH (5 ml) and 0.2% 
H3P04, pH 7.25 (5 ml), total volume, 10 ml. 

I 
Inject 

Another extraction procedure using both dichloromethane and 

a Sep Pak was investigated, see figure 4.6, extraction procedure 

3. At pH 3.0, the components of interest were expected to remain 

in the water layer, while some of the impurities favoured distribution 

into the organic solvent, dichloromethane. Readjusting the pH 

to 7.0 allowed further clean-up when the sample was passed through, 

the Sep Pak. The components are retained by the Sep Pak until 

they are removed by a 100% MeOH wash. Although good extraction 

yields for cotinine (76%) and nicotine (85%) were obtained, the 
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Figure 4.5: Extraction Procedure 2 (figure 4.4) applied to a standard 

mixture (10 pg ml-1) in H20. Parameters: see figure 4.2 

except for Gradient programme #5,3 min initial hold at 

25%B, 25%B - 58%B over 15 mins 

n 
O 
H 

z 

Standard mixture 
(10 pg ml-1) 

0 
C 
N 
ý1 

(b) Extract of 

standard mixture 
in 50% Liq. A. 

50% Liq. B. 

) Components lost 

in the H2O layer 

Time/mies 

C\ 
7 
.ýn 

^nÖ O OHN 
oý N 
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Figure 4.6: Extraction Procedure 3 

Sample (20 ml) : urine or standard mixture in H20 (10 jig ml-1) 

I 
Adjust pH to 3.0 using HC1 

Extract sample (10 ml) with CH2C12 (2 x 10 ml) 
discard CH2C12 fraction 

I 
Collect aqueous fraction (10 ml) 

I 
Adjust pH to 7.0 using NaOH 

W 

Pass aqueous fraction (10 ml) through a 
Sep Pak and discard effluent 

I 
Wash Sep Pak with H2O (2 ml) and discard 

I 
Elute components of interest 

from the Sep Pak with MeOH (5 ml) 

I 
Make extract volume 10 ml by adding 

0.2% H3P04, PH 7.25 

1 
Inject 
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recovery value for nicotine-1'-N-oxide (41f) was not satisfactory, 

as shown in figure 4.7. It was hoped that when the extraction 

procedure was applied to urine samples a cleaner extract would 

result, however the use of dichloromethane in the clean-up of urine 

samples caused the formation of emulsions, making deproteinization 

a necessary consideration. 

Extractions by means of a solid phase, such as the use of 

a Sep Pak, avoids the necessity for protein precipitation and the 

associated risk of loss of analyte(s) due to protein binding. 

However, the extraction of a standard mixture at pH 3.0 using a 

Sep Pak, followed by a further isolation step at pH 7.0, again 

using a Sep Pak, resulted in poor extraction yields for all the 

components of interest: nicotine-1'-N-oxide (53%), cotinine (50%) 

and nicotine (58%), see figure 4.8, extraction procedure 4 and 

figure 4.9. 

Inefficient extractions of less than 50% of a component can 

lead to poor reproducibility in its recovery as it is perhaps more 

susceptible to fluctuations in e. g. temperature and sample 

composition. In general, the more efficient an extraction procedure, 

the more reproducible it should be. 

Taking the above results into account, the clean-up of urine 

samples was not investigated by extraction procedures 2,3 or 4. 

The isolation and analysis of N-oxide metabolites of tertiary 

amines have been reported by Thompson et al. 
169 Nicotine-1'-N-oxide 

was isolated as a dodecylsulphate ion pair with C18 extraction 

cartridges. The nicotine- 1'-N-oxide ion pairs were employed in 

extractions because the resulting lipophilic species permitted 
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Figure 4.8: Extraction Procedure 4 

Sample (20 ml) : urine or standard mixture in H2O (10 pg ml-1) 

Adjust pH to 3.0 using HC1 

I 
Pass sample (10 ml) through a Sep Pak 

and collect effluent 

Adjust pH to 7.0 using NaOH 

I 
Pass sample (10 ml) through another Sep Pak 

and discard effluent 

I 
Wash Sep Pak with H2O (2 ml) and discard 

I 
Elute components of interest from the Sep Pak 

with 100% methanol (5 ml) 

I 
Make extract volume 10 ml by adding 

0.2% H3P04, pH 7.25 

Inject 



0 N 
x 

co 
w 
O 

cC 

+W 

ro 

119 

c. 

aý 
w ä 
ý ö c . 

rý a ý- 

C' 

w 

C( 

NIC 

COT (50%) 

0.02 a. u. 

255 

.ý 

.ý H 

v 



256 

washing the Sep Pak cartridges with methanol-water mixtures in 

order to remove unwanted polar substances before nicotine-1'-N-oxide 

was finally eluted using 100% methanol. Thompson et al. reported 

washing the Sep Pak with methanol-water mixtures containing up 

to 50% methanol, in this study it was found that nicotine, cotinine 

and nicotine-l'-N-oxide suffered substantial losses if a 50% methanol: 

50% water wash was used. A 40% methanol: 60% water wash caused 

the loss of 22% cotinine. A 35% methanol: 65% water wash was found 

to be satisfactory for washing the Sep Pak without causing the 

loss of any of the components of interest, see figure 4.10, 

extraction procedure 5 and figure 4.11. 

The optimized extraction procedure, 6, is reported in figure 

4.12. This scheme proved very successful in extracting the components 

from a standard mixture in water, as shown in figure 4.13, and 

resulted in a dramatic improvement in the clean-up of blank urine 

samples, as illustrated in figures 4.14 and 4.15. However, urine 

samples, spiked before extraction (= 10 pg ml-1 nicotine, cotinine 

and nicotine-1'-N-oxide) did not give the expected result. Cotinine 

was not recovered, as shown in figure 4.16. Further investigation 

of each isolation step in extraction procedure 6, figure 4.12, 

revealed that cotinine was lost when the spiked urine sample was 

passed through the Sep Pak initially at pH 2.0 and was not retained 

by the Sep Pak as expected, see figure 4.17. The reasons why cotinine 

did not remain on the Sep Pak are not clear. Extraction procedure 

6 gave a successful outcome when a standard mixture in H20, including 

cotinine, was examined. However, in the extraction of cotinine 

from a spiked urine sample at pH 2, cotinine obviously did not 
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Figure 4.10: Extraction Procedure 5 

Sample (20 ml) : urine or standard mixture in H2O (10 µg ml-1) 

I 
Adjust pH to 2.0 - 2.1 using conc. HC1 

W 
Add IPA, dedecylsodium sulphate 

(40 mg for a 20 ml sample) 

I 
Pass sample (10 ml) through a Sep Pak and discard effluent 

I 
Wash Sep Pak with H2O (5 ml) and discard 

1 

Wash Sep Pak with a 35% MeOH: 65% 1120 mixture (5 ml) - collect 

Wash Sep Pak with a 40% McOH: 60% H2O mixture (5 ml) - collect. 

Wash Sep Pak with a 50% MeOH: 50% H2O mixture (5 ml) - collect 

Wash Sep Pak with 100% MeOH (5 ml) - collect 

Make extract volume 10 ml 
by adding 0.2% H3P04, Of 7.25 

Inject 
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Figure 4.11: Extraction Procedure 5 (figure 4.10) applied to a standard 

mixture (10 pg ml-1) in H2O 

Parameters: see figure 4.5 

n 

0 
N 

00 

ov 

. -. N 

(a) Standard mixture 

(b) Effluent from a 
35% Me011: 65% 11 20 wash 

(c) Effluent from a 
40% Me0E1: 60% H2O wash 

(d) Effluent from a 

50% McO11: 50% 1120 wash 

(e) Extract of a 

standard mixture 

0148 12 16 , 20 Time/mires 

J. 1 
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Figure 4.12: Extraction Procedure 6 

Sample (20 ml) : urine or standard mixture in H2O (10 ml-1) 

Adjust pH to 2.0 - 2.1 using conc. lid 

Add IPA, dodecylsodium sulphate 
(40 mg for a 20 rnl sample) 

Pass sample (10 ml) through a Sep Pak and discard effluent 

Wash Sep Pak with H2O (5 ml) and discard 

Wash Sep Pak with a 35% Me011: 65% H2O mixture (5 ml) 
and discard 

Elute components of interest from the Sep Pak 
with 100% methanol (5 ml) 

Make extract volume 10 ml by adding 
0.2% H3P04, pH 7.25 

1 Inject 
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Figure 4.14: Extraction Procedure 6 (figure 4.12) applied to a urine 

sample (female, non-smoker) 
Parameters: see figure 4.5 
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Figure 4.15: Extraction Procedure 6 (figure 4.12) applied to urine samples 

Parameters: see figure 4.13 

(b) Blank urine extract 
(female, non-smoker) spiked 
(after extraction) with 

components of interest 

(- 10 µg m1 
1) 

C 
C N 

C 
ne/m ris 

(d) Blank urine extract 
(male, non-smoker) spiked 
(after extraction) with 

components of interest 

(= 10 ig ml-1) 

hp 

O 

O 
N 

G 

048 12 16 20 

ö 

ýý 

04S 12 16 20 24 

Time/mins 

(a) Blank urine extract 

(c) Blank urine extract 
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Figure 4.16: Extraction Procedure 6 (figure 4.12) applied to blank and 

spiked urine samples. Parameters: see figure 4.13 

(a) Blank urine extract (b) Spiked urine extract 
(female, non-smoker) The same urine sample 

spiked before extraction 

with the components of 

interest (' 10 pg ml-1) 

o 
ö 
NI 

C 

C 
n 

(d) Spiked urine extract 
The same urine sample 

spiked before extraction 

with cotinine (= 10 pg ml-1) 

)ýC 

I-- ýý^ýýýý 
0148 12 16 20 24 

0 
1mins 

48 12 16 20 
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Figure 4.17: Chromatograms showing an intermediate step in extraction 

procedure 6 (figure 4.12) when applied to a blank and 

spiked urine sample (female, non-smoker). 

Parameters: see figure 4.2 except for Flow Rate: 1.1 ml min 
Gradient programme #5,3 min initial hold at 24%B, 24% 4 
54%B over 14 mins. 

(a) Blank Urine. Effluent when 
the urine sample is initially 

passed through the Sep Pak 

0 
ö 
N 
ß1 

(b) Spiked Urine. Effluent when 
the same urine sample, spiked with 

cotinine (= 10 )jg ml-1) is initially 

048 12 16 048 12 16 

Time/rains 
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form a dedecylsulphate ion pair. 

Simple variations in extraction procedure 6, figure 4.12, 

were examined, such as the use of excess dodecylsodium sulphate, 

the addition of the IPA before the pH was adjusted to 2.0, and 

the substitution of HC1, used to adjust the pH to 2.0, by 113P04. 

Cotinine was not recovered, being lost in all cases, when the urine 

sample was passed through the Sep Pak initially. 

In addition to the extraction at pIi 2.0-2.1 with the IPA added, 

extractions of blank and spiked urine samples and a cotinine standard 

(10 ug ml-1) in water were also carried out where the p11 of the 

sample was adjusted to 1.0-1.1,3.0-3.1 and 5.0-5.1 before the 

IPA was added and the remaining isolation steps in extraction scheme 

6, figure 4.12, followed. Extractions at both pH 1.0 and pH 3.0 

showed that cotinine was again lost when the spiked urine sample 

was passed through the Sep Pak initially. When the p11 of the sample 

was adjusted to 5.0-5.1, cotinine was not lost when the sample 

was passed through the Sep Pak initially but when the Sep Pak was 

washed with a 35% methanol: 65% water mixture. At pH 5.0-5.1 cotinine 

is not protonated and therefore does not form a dodecylsulphate 

ion pair, hence it is not possible to wash the Sep Pak with methanol: 

water mixtures without analyte loss. 

Following extraction procedure 6, figure 4.12, but adjusting 

the pH to 7.0 and not 2.0, it was verified, using a standard mixture 

(10 pg ml-1), that a methanol: water mixture (even in the ratio 

30: 70) could not be used to wash the Sep Pak as it resulted in 

the complete loss of both nicotine- 1'-N-oxide and cotinine. In 

order to include this step in the clean-up scheme, not only must 
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the IPA be present but the pH must be adjusted so that the components 

of interest are protonated and so can form ion pairs. 

Extraction of a standard mixture in water again following 

extraction procedure 6, figure 4.12, but on this occasion without 

the addition of the ion-pairing agent, resulted, as expected, in 

the complete loss of nicotine and nicotine-11-N-oxide when the 

sample was passed through the Sep Pak. 92% of the cotinine present 

originally was unretained by the Sep Pak and therefore lost with 

the nicotine- 1'-N-oxide and nicotine. The retained cotinine was 

lost during later isolation steps when the Sep Pak was washed with 

water and a methanol: water mixture (35: 65). 

Blank and spiked urine samples were also examined in each 

of the above experiments; the same end results as in the experiments 

with the standards were obtained. However, due to the complexity 

of chromatographs showing the effluent from the Sep Pak after each 

stage in the extraction schemes, it was not always possible to 

confirm the exact step(s) at which the components of interest were 

lost. 

From extraction procedure 1, figure 4.1, where the sample 

is adjusted to pH 7.0, it has been shown that cotinine can be 

extracted successfully. Therefore, when extraction scheme 6 is 

applied to a urine sample, the initial loss from the Sep Pak can 

be collected, the pH readjusted to 7.0 (with e. g. NaOH), and then 

the isolation steps reported in extraction scheme 1 applied; this 

is summarised in figure 4.18. It was hoped that by the addition 

of these steps, cotinine could be successfully recovered and this 

is shown to be true, see figure 4.19. 
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Figure 4.18: Extraction Procedure 7 

Sample (20 ml) : urine or standard mixture in 11 20 
(10 pg ml-1) 

I 
Adjust pH to 2.0 - 2.1 using conc. HC1 

Add the IPA dodecylsodium sulphate 
(40 mg for a 20 ml sample) 

I 
Pass sample (10 ml) through a Sep Pak and collect 

I 
Adjust pH to 7.0 with NaOfi 

I 
Pass through another Sep Pak and discard effluent 

I 
Wash Sep Pak with 1120 (5 ml) and discard 

Elute components of interest from Sep Pak 
with 100% methanol (5 ml) 

I 
Make extract volume 10 ml by adding 

0.2% H3P04, pH 7.25 

1 Inject 
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For the analysis of smokers' samples or indeed samples spiked 

with all three components of interest before extraction, the final 

overall scheme would obviously involve the combination of the extract 

containing nicotine and nicotine-1'-N-oxide and that containing 

cotinine, before injection, i. e. a combination of extraction 

procedures 6 and 7 as shown in figure 4.20, extraction procedure 8. 

In order to maximize the effectiveness of extraction procedure 

8, figure 4.20, eluting the components of interest with a p1! 2.0 

solution, in place of neat methanol, was considered. This made 

no significant difference to the cleaned-up sample extracts and was 

abandoned. The pH 2.0 solution, if used, would not be compatible 

with the column and mobile phase used for the analysis, so making 

another pH adjustment necessary. 

It would be possible to substitute a methanol: water, 40: 60, 

Sep Pak wash in place of the 

in figure 4.10, nicotine and 

either case. Again, however, 

water wash did not result in 

the samples. 

Interfering peaks have n< 

35: 65 one already in use; as shown 

nicotine-1'-N-oxide are not lost in 

the inclusion of a 40% methanol: 60% 

any improvement in the clean-up of 

)t so far been examined. Caffeine 

is a substance known to be present in urine, having been identified 

by GC analysis. 
182 HPLC analysis of a caffeine standard (10 pg ml-1) 

in water showed that it co-eluted with cotinine, see figure 4.21. 

Fortunately, when extraction procedure 6 was applied to the caffeine 

standard, examination of the effluent from the Sep Pak after each 

isolation step revealed that caffeine was lost when the Sep Pak 

was washed with a methanol: water (35: 65) mixture. 
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Figure 4.20: Extraction Procedure 8 

Sample (20 ml) : urine or standard mixture in It20 (10 ml- 

Add IS as a 200 pl spike of a 1000 pg ml-1 solution (° 10 pg ml- 

Adjust pH to 2.0 - 2.1 with conc. IIC1 

W 
Add IPA dodecylsodium sulphate (40 mg for a 20 ml sample) 

4 

Pass sample (10 ml) through a Sep Pak 

Wash Sep Pak with Collect effluent (10 ml) 
H2O and discard 

1 
Adjust p1I to 7.0 with NaOl1 

Wash Sep Pak with a 
0 mixture 35% MeOH: 65% 11 2 

and discard Pass through a Sep Pak 
I and discard effluent 

W Elute components of 
interest from Sep Pak Wash Sep Pak with II 0 d 
with 100% McOH (5 ml) 

(5 ml) and discar 

and collect y 
Elute components of 

interest from Sep Pak 
with 100% MeOll (5 ml) 

and collect 

Combine to give a volume of 10 ml 

Evaporate using aN stream to give a 
volume dl 5 ml 

W 
Make extract volume 10 ml by adding 

0.2% H3P04, PH 7.25 

Inject 



Figure 4.21: Chromatograms showing a caffeine standard (10 jig ml-1) and 
its potential interference with cotinine 
Parameters: see figure 4.17 

(a) Standard solution in H2O 

(10 jig ml-1) 

rn 

CD 

0 
0 N 

C 

(b) Standard mixture in 1120 

(10 µg ml-1) 
y 

0 
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Time/mins 
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4.8.2 Extraction procedures applied to the potential internal 

standards 

Before further investigation of the clean-up/extraction 

of blank and spiked urine samples and finally smokers' urine samples, 

extraction procedure 6, figure 4.12, was applied to solutions of 

the potential internal standards selected in the previous chapter, 

section 2.10, on the basis of their stability and retention times. 

Each of the standard solutions (10 pg ml-1) were successfully 

extracted with the following recovery rates: ß-nicotyrine, (87%); 

N'-acetyl-nornicotine (94%); and 2 methyl-6-(3-pyridyl)-tetrahydro- 

(1,2)-oxazine (100%), as shown in figure 4.22. When the internal 

standards were added to a blank urine sample (' 10 pg ml-1) and 

extracted, see figure 4.23, the 2 methyl-6-(3-pyridyl)-tetrahydro- 

(1,2)-oxazine and ß-nicotyrine were extracted with excellent recovery 

rates of 100% and 91% respectively. However, only 40% N'-acetyl 

nornicotine was recovered and on investigation of the effluent 

from the Sep Pak after each stage in the scheme, N' acetyl nornicotine 

was found to have been lost during the initial step when the urine 

sample was first passed through the Sep Pak (ti 41%), as shown in 

figure 4.24, and also when the Sep Pak was washed with water (ti 10%), 

see figure 4.25. N' acetyl nornicotine may also have been lost 

when the Sep Pak was washed with a methanol: water (35: 65) mixture, 

however the complexity of the chromatogram of the effluent made 

identification of the N' acetyl nornicotine peak impossible. 

Therefore the use of extraction procedure 6 eliminated N' acetyl no- 

nicotine as an internal standard and as already reported in section 

2.10, ß-nicotyrine was also discarded due to the instability of 
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Figure 4.22: Extraction Procedure 6 (figure 4.12) applied to potential 

- internal standard solution in H2O (10 pg ml-1) 

Parameters: see figure 4.2 except for Flow Rate; 1.1 ml min- 
and as indicated below. 

(a) N' Acetyl-S-(-) nornicotine. Eluent: gradient programme #5,3 min 
initial hold at 23%B, 23% 4 58%B over 14 mins 

(b) 2 methyl-6-(3-pyridyl)tetrahydro-(1,2) oxazine 
Eluent: isocratic at 60%B 

standard 
solution 

LI 

(e) ß-nicotyrine. Eluent: isocratic at 60%B 

00 

ýa 
3ýi 

048 12 16 048 12 16 

, Time/minn 

I 
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Figure 4.23: Extraction Procedure 6 (figure 4.12) applied to a urine sample 
(female, non-smoker), blank and spiked with the potential 
internal standards. Parameters: see figure 4.2 except for: 

Flow Rate: 1.1 ml min-1. Gradient 
programme#5,4 min initial hold at 23%B, 

(a) Blank urine 

extract 

0 
0 N 

CJ 

(b) Extract of a 

urine sample spikec 

initially with thre 

potential internal 

standards (_' 10 pg 

tC 
N 

04ö 12 16 20 24 28 32 
Time/mins 
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its solution in water. In all the preliminary experiments the 

IS was added as a spike, from a 1000 pg ml-1 solution in H20ý(! -- 10 

pg ml-1) to the sample. If a concentration step is included the 

initial concentration of the IS must be altered accordingly. 

4.8.3 The Extraction of 3' Hydroxycotinine 

A 3' hydroxycotinine standard solution can be extracted, 

again following extraction procedure 6, figure 4.12, with a recovery 

value of 67%, 13% being lost when the solution was passed through 

the Sep Pak, as shown in figure 4.26. Extractions of blank and 

spiked urine (= 10 pg ml-1 3' hydroxycotinine) revealed that 3' 

hydroxycotinine was lost during the extraction process, as shown 

in figure 4.27. Unlike cotinine, it was impossible, on this occasion, 

to confirm at what stage(s) 3' hydroxycotinine was lost. A 

contributory factor was the fact that 3' hydroxycotinine was eluted 

early in the chromatogram, not being strongly retained by the ODS 

column used in the analysis and hence the 3' hydroxycotinine peak 

was usually not resolved from the many other peaks, of no analytical 

interest, present in the effluent. 

Having previously investigated the loss of cotinine from a 

spiked urine sample and achieved its subsequent recovery, accompanied 

by the satisfactory clean-up of the urine sample, using extraction 

procedure 7, figure 4.18, the same scheme was applied to a urine 

sample spiked with 3' hydroxycotinine, under the assumption that 

31 hydroxycotinine would behave as in the case of cotinine. Indeed, 

when the extraction scheme was applied to both blank and spiked 

(= 10 }ig ml 
1 3' hydroxycotinine) urine samples, 3' hydroxycotinine 
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was extracted, however an interfering peak was also present, see 

figure 4.28. On repeating the experiment with other urine samples, 

the unidentified interfering peak was also present, as shown in 

figure 4.29. In all the experiments carried out so far, the urine 

samples have been spiked with = 10 pg ml-1 of the components of 

interest and so interference peaks may not at first be 

noticed. However, the levels of nicotine and its metabolites in 

smokers' samples were expected to be low and therefore any inter- 

ference may impair or devalue the analysis. 

Extraction procedure 8, figure 4.20, must be used if all four 

components of interest are to be successfully recovered from a 

urine sample. The additional steps incorporated in extraction 

procedure 8 unfortunately lead to more components, of no analytical 

interest, also being extracted. Indeed, a component which interfered 

with 3' hydroxycotinine was co-extracted as shown in figures 4.28 

and 29. Since 3' hydroxycotinine had been included in the analysis, 

the gradient programme in use previously, e. g. figure 4.5, had 

to be altered, as a lower percentage methanol was required to resolve 

3' hydroxycotinine and nicotine- 1'-N-oxide and this also resulted 

in increased k' values for other components which had been eluted 

from the column with low k' values of between 0 and 2. 

From figures 4.30 and 4.31 it was evident that there was a 

problem concerning the resolution of both nicotine- I '-N-oxide and 

3' hydroxycotinine from other components which are eluted in the 

void volume and early in the chromatogram. 



E 
F. 

-o 
n, O. 

C) c c c) 

"1 ýs L 
o t7 

O ý" 

ME 

.O 
", -1 .r 

U 
c 

l) 3 
0 

O 

cu 

U 

(n le 

c L. 
. L.. :D 
ý "ri 

iN 

,Z0 

ä +ý 

U 
cp 

O 

0ö 
N 

d' 

. r{ Gr.. 

.ý 

0 
cm 
ti 
M 

T 

U 

a) 

V 

4) 
U 

L 
4) 
K 
C) 

C) 
C 

C) 

., ti G 
U) 

.0 

U 

C. 

k 

Q 

x 
a 

r4 "., r+ c 

c ., ". -4 +) O 
CA 

"- K 
O 

U 

M 
C .C 
L "ri ý3 

2ý1 

0.01 a. u. 



O r 

oc ný 
y 

n 

1U 

WW 

"rl .ý 

"rl L 

U 

7 
Cl. C1 

uý1 
Ö 

rr 

AI 

.0Ü 
X 

Q) :) 

(^� N 

r 

"r"1 
i'. ". i 

ý3 C> 

"4{ 

iL 

0 

QO 

ÜO 

E t7 w 

ä' 
N 

U. 

E 

.4 
L 
O 
O 

M 
tP1 

T 

h 
-4 

r yý 

.. r 

U 

Gß "" 1 
"- "�1 . 

=. 

r/ L. 
V 

.. r 
, 

Wn Vw` V 
Vl V 

V- 
- 7, ' c-) 

U 
rS 

CJ J C7 
xc 

ýýY 3J 
EI -9 
. -17 -- c 

. nýc- 

282 

3HC 

ý. 

N 

0.01 a. u. 

X 

I 



283 

Figure 4.30: Extraction Procedure 8 (figure 4.20) applied to a urine 

sample. 

Parameters: see figure 4.2 except for Flow Rate: 1 ml nun- 

Gradient programme #6,17% 4 57%B over 20 rains. 
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4.8.4 Reassessment of the extraction procedure and further 

investigations 

The modification of the gradient programme in order to include 

3' hydroxycotinine in the analysis and the problems with the clean-up 

procedure, discussed above, necessitated re-examination of the 

'best' clean-up/extraction procedure developed, to date, and its 

comparison with other possible schemes. Two different clean-up 

procedures were compared with extraction procedure 8, figure 

4.20, the same urine sample was used in each experiment, to 

establish whether it was possible to obtain a cleaner extract with 

all components of analytical interest extracted with satisfactory 

recovery rates and without interferences. 

Extraction procedure 9, figure 4.32, did not include the IPA 

dodecylsodium sulphate. The sample was adjusted to pH 2.0 and 

passed through the Sep Pak. At pH 2.0 the components of interest 

were not expected to be retained by the C18 packing material in 

the Sep Pak. Having collected the effluent from the Sep Pak, the 

pH was adjusted to 7.0 and the scheme was completed with the steps 

from extraction procedure 1, figure 4.1. Extraction procedure 9 

was applied to a standard mixture in water, blank and spiked urine 

samples, and the resulting chromatograms are presented in figures 

4.33 and 4.34" The recovery values are reported in table 4.1. 

N' acetyl nornicotine was included in this experiment. The reason 

it had been discarded was due to unsatisfactory extraction by scheme 

6, figure 4.12. 
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Figure 4.32: Extraction Procedure 9 

Sample (20 ml) : urine or standard mixture in H2O (10 Ng ml-1) 

Add IS as a 200 µl spike of a 1000 pg ml 
1 

solution (- 10 pg ml-1) 

I 
Adjust pH to 2.0 - 2.1 with conc. HCl 

y 
Pass sample (10 ml) through a Sep Pak 

and collect 

I 
Adjust pH to 7.0 with NaOH 

I 
Pass through another Sep Pak and discard effluent 

Wash Sep Pak with H 20 
(5 ml) and discard 

1 

Elute components of interest from Sep Pak 
with 100% methanol (5 ml) 

I 
Make extract volume 10 ml by adding 

0.2% H3P04, pH 7.25 

Inject 



287 

Figure 4.33: Extraction Procedure 9 (figure 4.42) applied to a standard 

mixture (= 10 pg ml-1) in H20. 

Parameters: see figure 4.2 except for Flow Rate: 1 ml min-1 
Gradient programme #6,4 min initial hold at 25%B, 25% 
50%B over 20 minn 

(a) 

0 
o_ 
G 

(b) Extract of standard mixture 
(ýD ýt ýe 

i 
ý' ~ 

Time/mins 

Standard mixture in H2O 
CD 

Tý ýý 
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TABLE 4.1: Extraction yields obtained using extraction procedure q 

Extraction yield from Extraction yield from 
a standard solution a spiked urine sample 
in H2O (%) (= 10 jig ml-1 ) (%) 

3' Hydroxycotinine 84 79:: 

Nicotine- 1'-N-oxide 43 26=` 

Cotinine 77 71 

N' Acetyl nornicotine 48 45 

2 methyl-6-(3-pyridyl)- 55 55 tetrahydro-(1,2)-oxazine 

Nicotine 79 83 

on the tail of another peak 

The recovery values obtained using extraction procedure 9, 

figure 4.32, were not very promising and although the clean-up 

of the urine sample was impressive, on extracting other urine samples, 

it was again noted that another component, which interfered with 

the 3' hydroX3'cotinine/nicotine-11-N-oxide peaks, was co-extracted, 

as shown in figure 4.35. 

%hen this extraction procedure was applied to a caffeine 

standard, caffeine was lost during the first step as it was retained 

by the Sep Pak. 

In all previous experiments involving the use of an IPA, 

dodecylsodium sulphate, 8 mg for every 4 ml of sample, had been 

used. Substitution of this IPA with one having a C7 chain resulted 

in the loss of all components %hen extraction procedure 8, figure 

4.20, was applied. 
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In another experiment using one tenth of the IPA previously 

used, i. e. 0.8 mg for every 4 ml of sample, revealed that the 

recovery of cotinine and 3' hydroxycotinine in particular was 

unsatisfactory, as shown in figure 4.36. Therefore, the use of 

dodecylsodium sulphate, 8 mg for every 4 ml of sample, was continued. 

For comparison with extraction procedure 9, figure 4.32, 

extraction procedure 8, figure 4.20, was re-examined using the 

same blank urine sample. Chromatograms showing extracts of a standard 

mixture, blank and spiked urine samples, are presented in figures 

4.37 and 4.38" The recovery values are reported in table 4.2. 

TABLE 4.2: Extraction yields obtained using extraction procedure 8 

Extraction yield from Extraction yield from 
a standard solution a spiked uri e sample in H2O (%) (- 10 Pg ml ) (%) 

3' Hydroxycotinine 78 66* 

Nicotine-1'-N-oxide 75 75;; - 

Cotinine 82 83 

2 methyl-6-(3-PYridyl)- 82 
tetrahydro-(1,2)-oxazine 

83 

Nicotine 89 100 

on the tail of another peak 

One other extraction procedure was investigated, the detail 

is presented in figure 4.39, extraction procedure 10. As in 

extraction procedure 9, figure 4.32, the sample, pH adjusted to 

2.0, was passed through the Sep Pak and the effluent collected. 
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Figure 4.36: Extraction Procedure 6 (figure 4.12) (using 4 mg IPA for 

a 20 ml sample), applied to a standard mixture (' 10 pg ml- 
in H20. Parameters: see figure 4.2 except for 

Flow Rate: 1 ml min-1 and Gradient programme #6,4 min 
initial hold at 25%B, 25% 4 55%B'over 20 rains 

1-1 00 (a) Extract of a standard mixture M 

0 
0 

(b) Standard mixture in H2O 

Time/mins 



Figure 4.37: Extraction Procedure 8 (figure 4.20), applied to a 

standard mixture (= 10 pg ml'1) in 11 20 
Parameters: see figure 4.36 

(a) Standard mixture in H2O 
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Figure 4.39: Extraction Procedure 10 

Sample (20 ml) : urine or standard mixture in H2O (10 jag ml-1) 

Add IS as a 200 jl spike of a 1000 jig ml-1 solution (`= 10 )xg ml-1) 

Adjust pH to 2.0 - 2.1 with conc. HCl 

W 
Pass sample (20 ml) through a Sep Pak and collect effluent 

W 
Add IPA dodecylsodium sulphate (40 mg for a 20 ml sample) 

W 
Pass sample (10 ml) through another Sep Pak 

Wash Sep Pak with Collect effluent (10 ml) 
H2O and discard 

I 
Adjust pH to 7.0 with NaOH 

Wash Sep 
WPak 

with a 
35% Me0H: 65% H0 Pass through a Sep Päk 

mixture and discard and discard effluent 

W I 
Wash Sep Pak with H20 

Elute components of 
(5 ml) and discard- 

interest from Sep Pak 
with 100% MeOH (5 ml) Elute components of 

and collect interest from Sep Pak 
with 100% MeOH (5 ml) 

and collect 

II 
Combine to give a volume of 10 ml 

W 
Evaporate using aN stream to give 

a volume o2? 5 ml 

Make extract volume 10 ml by adding 
0.2% H3P04, pH 7.25 

1 Inject 



296 

The remaining steps in the scheme were the 

in procedure 8, figure 4.20. The chromatogrz 

obtained when extraction procedure 10 was 

mixture in water, blank and spiked urine 

in figures 4.40 and 4.41 and the recovery 

table 4.3. 

same as those followed 

uns, showing the extracts 

applied to a standard 

samples, are presented 

values are reported in 

TABLE 4.3: Extraction yields obtained using extraction procedure 10 

Extraction yield from Extraction yield from 
a standard solution a spiked ur" e sample 
in H2O M (= 10 µg ml ) (a) 

3, Hydroxycotinine 95 60* 

Nicotine-1'-N-oxide 94 29 

Cotinine 98 112 

2 methyl-6-(3-pyridyl)- 78 
tetrahydro-(1,2)-oxazine 43 

Nicotine 90 74 

* on the tail of another peak 

As far as extractions of the components of interest from urine 

were concerned, extraction procedure 8, figure 4.20, was superior 

with respect to the recovery values observed, an important factor 

when the concentrations of the components of interest are low. 

Extraction procedure 10 was abandoned, although the extraction 

yields of the components of interest from a standard mixture in 

water were excellent, those obtained when a spike urine sample 

was examined were disappointing and the clean-up of the urine sample 

did not show any improvement over that achieved by either extraction 



Figure 4.40: Extraction Procedure 10, figure 4.39, applied to a 

standard mixture (= 10 )jg ml- in H2O 

Parameters: see figure 4.36 
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procedures 8 or 9. Both extraction procedures 8 and 9 (figures 

4.20 and 4.32) have shown the co-extraction of a component which 

interferes with 3' hydroxycotinine, or possibly nicotine- i' -N-oxide; 

however, in the absence of any other possible clean-up/extraction 

procedures, procedures 8 and 9 were applied to smokers' urine samples. 

A blank urine sample together with the same urine sample spiked 

with nicotine, cotinine, 3' hydroxycotinine and nicotine- 1'-N-oxide 

(= 7 jig -1,5 } m1-1 and =3 pg the internal standard 

being added in all cases (°- 10 pg ml-1), were extracted using scheme 

8, figure 4.20. Chromatograms of the extracts are shown in figure 

4.42, chromatograms of the standard solutions being included for 

comparison. The sample clean-up was not satisfactory on this 

occasion, and so it was not possible to identify nicotine-1'-N-oxide 

or 3' hydroxycotinine. As the concentrations of the components 

of interest were decreased, it was increasingly difficult to identify 

any of the components of interest. Unfortunately poor column 

resolution contributed to the difficulty in this experiment. The 

need for an excellent clean-up procedure, good column efficiency 

and the highest possible extraction yields was apparent from figure 

4.42. Concentration of the extract is also essential and peak 

identification should be confirmed, as it has been, by spiking 

the extract with the components of interest. 
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Figure 4.42: Extraction Procedure 8, figure 4.20, applied to standard 

mixtures, blank and spiked urine samples (concentrations 

as specified below). 

Parameters: see figure 4.36 

(a) Blank urine extract 
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Figure 4.42 continued 

(b) Extract of a7 Ng ml-1 standard mixture in H20, including 

IS (- 10µg ml-1) 

N 

(= 7 ;g ml-1) 

0 
0 

Time/mins 048 12 16 20 24 28 



s02 

Figure 4.42 continued 

(d) Extract of a 5µg ml-1 standard mixture in H2O including 

IS (= lOug ml 
1) 

H 

(e) Extract of a spiked urine sample 5 µg ml- 

and IS (= 10)ig m1-1) 

C 
0 

w 
C 

Time/mins 

48 12 16 20 24 28 32 36 
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Figure 4.42 continued 

(f) Extract of a3 µg ml-1 standard mixture in H20, including 

IS (= 10 µg ml-1) 

H 
(ID 

W 

CS'ý 
Z nO 

(g) 

C 
0 

w 

Extract of a spiked urine sample 
10 µg ml-1) 

Time/mins 048 12 16 20 24 28 
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4.8.5 Concentration of the extract 

In all the extraction processes employed to date, the 

components of interest have been eluted from the Sep Pak using 

methanol, the extract being made up to its original volume with 

0.2% phosphoric acid, pH adjusted to 7.25 with triethylamine, in 

a 50: 50 ratio. A concentration step would be possible by simply 

injecting the extract in neat methanol or further concentration 

could be achieved by the removal of methanol by evaporation. 

It was noted that when the standard mixtures were injected 

in 100% methanol, the peak shape and peak height seemed to 

deteriorate. This was investigated in detail using standard mixtures 

made up in 100% water, 75% water: 25% methanol, 50% water: 50% methanol, 

25% water: 75% methanol and finally 100% methanol. The resulting 

chromatograms are shown in figure 4.43. The effect is most striking 

for nicotine- 1'-N-oxide and 3' hydroxycotinine, the two most polar 

components which are eluted early in the chromatogram. The peaks 

for the IS and nicotine are relatively unaffected. 

These effects are in agreement with those noted by McCoy et al 
? 00 

They replaced neat isopropanol with an isopropanol: water mixture 

to avoid peak distortion effects. The distortion effects are noted 

when the sample solvent has greater solvent strength than the mobile 

phase, as with methanol, the sample solvent and methanol/water, 

the mobile phase mixture. McCoy et al2.0 
also 

reported that these 

effects were most severe for the earliest eluting components which 

was fopnd to be the case in this investigation with nicotine-1'-N- 

oxide and 3' hydroxycotinine most affected. 

I 



Figure 4.43: 
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Chromatograms of a standard mixture (10 )jg ml-1) injected 
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in different solvent solutions. Parameters: see figure 4.2 
except for: 

yä Flow Rate: 1 ml min-1, 
Gradient programme #6, 

z4 min initial hold at 14%B, 
fD n 14% 4 54%B over 20 mins 

(a) Standard mixture 
in 100% 11 20 

(b) Standard mixture 

in 75% 1120 :2 5% McOH 

(c) Standard mixture in 

25% 1120: 75% McOH 

(d) Standard mixture 
in 100% McOll 
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4.8.6 Extraction of Smokers' Urine Samples 

Extraction procedure 8, figure 4.20, can be used to clean 

up and extract the components of interest from a smoker's urine 

sample prior to HPLC analysis. Scheme 8 is a combination of 

extraction procedures 6 and 7, figures 4.12 and 4.18, where scheme 

6 extracts nicotine, nicotine-1'-N-oxide and the IS and scheme 

7 extracts cotinine and 3' hydroxycotinine. 

In the first experiment to analyze a smoker's urine sample, 

smoker A, extraction procedures 6 and 7 were followed, the extracts 

from each being kept separately and analyzed separately. 

The chromatogram showing the analysis of the extract from 

scheme 7 is presented in figure 4.44. The expected positions of 

3' hydroxycotinine and cotinine have been marked and these positions 

were confirmed by spiking the extract with standard solutions (1000 

pg ml-1 in H20). In the smoker's extract, the peak corresponding 

to cotinine was very small, however that at the same retention 

time as 3' hydroxycotinine indicated a considerable quantity of 

this metabolite. Experiments carried out earlier on blank urine 

samples have shown that an interfering peak with the same retention 

time as 3' hydroxycotinine may be co-extracted, see sections 4.8.3 

and 4.8.4. Therefore, the peak in the smoker's urine extract 

corresponding to the retention time of 3' hydroxycotinine may 

represent not only 3' hydroxycotinine but also the unidentified 

interfering compound. 

A chromatogram showing smoker A's urine extract concentrated 

x 20 is presented in figure 4.45" The peak assigned to cotinine 
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Figure 4.45: Extraction Procedure 7 (figure 4.18) applied to 
Smoker A's urine extract (female) 

Parameters: see figure 4.44 
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was more readily distinguishable above the baseline noise, however 

the peak thought to be 3' hydroxycotinine was not visible owing 

to the many other co-extracted components in the extract. 

Unfortunately the fraction extracted using scheme 7, figure 

4.18, decomposed before analysis was possible, due to instrumental 

problems. Urine samples were usually extracted and analyzed on 

the same day. 

The chromatogram in figure 4.46 shows the extract from smoker 

B's urine sample, extracted using procedure 8, figure 4.20. The 

clean-up was not very effective and due to the many components 

of no analytical interest present at the start of the chromatogram, 

3' hydroxycotinine and nicotine- 1'-N-oxide could not be identified. 

Peaks have been assigned to cotinine, IS and nicotine. Concentration 

of the extract x 2, as shown in figure 4.47, illustrated the 

difficulties already discussed; not only were the components of 

interest concentrated, the many other components present in the 

extract in high concentrations even after extraction were also 

concentrated, so making it impossible to identify nicotine or any 

of its metabolites. 

Smoker B's urine sample was also analyzed using capillary 

GC with nitrogen sensitive detection. 206 The sample was extracted 

by extraction procedure 1, figure 4.1. The chromatogram showing 

the extract (x 8) is presented in figure 4.48. This analysis confirms 

the presence of nicotine and cotinine in the smoker's urine sample. 

The concentration of each of the components of interest in the 

smoker's urine has been quoted in brackets on the chromatogram. 
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Extraction of another smoker's urine sample, smoker C, by 

extraction procedure 8, figure 4.20, gave a similar result to that 

obtained for smoker B. It was possible to assign peaks to cotinine, 

IS and nicotine as shown in figure 4.49. Again peak assignment 

was confirmed by spiking the extract with the corresponding standard 

solutions (1000 pg ml 
1 in H20). The clean-up of the sample was 

not sufficiently good for the earliest eluting components of interest, 

nicotine-1'-N-oxide and 3' hydroxycotinine, to be identified. 

Confirmation of the presence of nicotine and cotinine was available 

from GC analysis of the urine extract, shown in figure 4.50, the 

corresponding concentrations of nicotine and cotinine in the smoker's 

sample being quoted in brackets on the chromatogram. 
206 

One other smoker's urine sample has been included; smoker D's 

sample was extracted by procedure 9, figure 4.32. A relatively clean 

extract was obtained as shown in figure 4.51; however, without 

the use of a concentration step it was very difficult to distinguish 

nicotine or cotinine from the baseline noise. A large peak was 

present at the retention time corresponding to 3' hydroxycotinine/ 

nicotine-1'-N-oxide. As in the case of smoker A, figure 4.44, 

although some 3' hydroxycotinine/nicotine-1'-N-oxide may have been 

present, there was almost certainly another component, also present, 

which caused an interference. 

The identification of nicotine and cotinine is illustrated 

in figure 4.52, where the extract, concentrated x 5, was spiked 

with standard solutions (1000 jig ml-1 in H20). The concentration 

and spiking of the extract, figure 4.52, revealed that the peak, 

originally thought to be cotinine, was in fact made up of more 
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Figure 4,52: 

Extraction Procedure 9 

(figure 4.32) applied to 

smoker D's urine sample 
(female) 

Paramaters: see figure 4.36 

(a) Smoker D: 

urine extract (x 5) 

0 
ö 

(b) Urine extract (x S) 

spiked with cotinine 

and nicotine 

(c) Urine extract (x 5) 

spiked with more 
cotinine and nicotine 

Time/rains 048 12 16 20 24 28 32 36 
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than one component, cotinine being eluted as the first of these. 

The presence of nicotine and cotinine was again verified by GC 

analysis, see figure 4.53.206 

Analyses of the smokers' urine samples has underlined the 

necessity for a concentration step and therefore the need for an 

effective clean-up procedure. The concentration of nicotine and 

its metabolites, cotinine, 3' hydroxycotinine and nicotine-1'-N-oxide, 

in the samples were very low. More efficient chromatography and 

better resolution are also required due to the numerous co-extracted 

components in the extracts. 

It was not possible to make a quantitative determination of 

nicotine and its metabolites present in the smokers' urine samples - 

it was difficult to identify the peaks corresponding to the components 

of interest and in several examples even this was not possible 

for nicotine-1'-N-oxide and 3' hydroxycotinine. 

Confirmation of the presence of nicotine and cotinine was 

available from analyses of the smokers' urine samples by GC. The 

GC analysis referred to employed capillary GC with a nitrogen 

sensitive alkali tip detector which provide efficient GC and an 

enhanced response to compounds containing nitrogen, so reducing 

the importance of the clean-up/extraction procedure required. 

The GC analysis confirmed that nicotine and cotinine were present 

in the smokers' urine samples. The peaks in the extract analyzed 

by HPLC were identified by spiking the extract with the standard 

solutions (1000 jig ml-1 in H20). To verify peak identification 

LC-MS or LC-FTIR would be required. 
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5.1 Instrimnentation 

5.1.1 Isocratic HPLC 

Pump : Shimadzu LC-5A Liquid Chromatograph 

Injection 
valves . Rheodyne Model 7010 

Loop 
capacity : 20 µl 

Detector : Pye Unicam LC-UV variable wavelength detector 

Chart 
Recorders : Servoscribe is and Kipp & Zonen BD8 Multirange 

10 mV f. s. d. 

Chart speed 5 mm min 
1 

Integrator : Hewlett Packard 3390A Integrator 

The preliminary chromatographic trials were carried out under 

isocratic conditions. The operating conditions have been reported 

on the individual chromatograms included. 

5.1.2 Gradient Elution 

Instrumentation as in section 5.1.1, except: 

Pumps : Waters Associates Model 6000A solvent delivery 

system (2) 

Gradient 
programmer . Waters Associates Model 660 Solvent Programmer 

Loop 

capacities : 50 1IL and 100 µl 

Operating conditions have been reported on the individual 

chromatograms included. 
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5.2 Solvents and Reagents 

Nicotine and its metabolites, nicotine-1'-N-oxide, cotinine 

and 3' hydroxycotinine, together with the following compounds which 

were tested as internal/chromatographic standards, ß-nicotyrine, 

N-ethyl nornicotine, methyl-4-(3-pyridyl)-4-oxobutyrate and 2-methyl-6 

-(3-pyridyl)-tetrahydro-(1,2)-oxazine, were kindly donated by Carreras 

Rothmans Research Division. + Anabasine was supplied by the Sigma 

Chemical Co., Poole, Dorset, and caffeine was obtained from BDII 

Biochemicals, Poole, Dorset. 

Methanol (GPR grade) was supplied by Wilcot Industrial, Bristol, 

Avon, and was single distilled into glass before use. Water was 

single distilled into polythene before use. Acetonitrile (HPLC 

grade) was obtained from Fisons, Loughborough, Leicestershire and 

was used as received. Sodium acetate trihydrate (AnalaR grade), 

triethylamine (GPR grade), diethylamine (GPR grade), orthophosphoric 

acid (AnalaR grade), glacial acetic acid (AnalaR grade) and mobile 

phase additives, n-heptanol (GPR grade), n-octanol and nitromethane 

were all supplied by BDH Chemicals Ltd., Poole, Dorset. Pentadeca- 

fluoro-octanoic acid was obtained from the Aldrich Chemical Co. 

Ltd., Gillingham, Dorset. 

Sep Paks (C 
i8 type) were supplied by Waters Associates, 

Northwich, Cheshire. Concentrated hydrochloric acid (AnalaR grade), 

sodium hydroxide (pellets, AnalaR grade) and dichloromethane (AnalaR 

grade) were all supplied by BDH Chemicals Ltd., Poole, Dorset. 

The ion-pairing agents dodecylsodium sulphate and sodium 1-heptane- 

sulphonate anhydrous were obtained from Lancaster Synthesis Ltd., 

Morecambe. 
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Helium gas used for degassing of the mobile phase was supplied 

by BOC (Special Gases), Bristol, Avon. 

Smokers' urine samples were obtained from the Bristol Maternity 

Hospital. 

5.3 Columns 

The packing materials used in the course of this work have 

been listed in tables 2.2,2.3 and 2.9, together with the 

manufacturers' specifications and column dimensions. 

All columns were packed in the laboratory. A slurry of the 

packing material in a supporting balanced-density solvent (ti 1g 

of packing material to 10 ml of solvent) was prepared. Methanol 

containing cyclohexanol (3 drops per 10 ml methanol) was employed 

as the supporting liquid. The mixture was homogenized and degassed 

using ultrasonic vibration for ti 15 rains. The slurry was then 

placed in a reservoir over the column to be packed, which had been 

filled with a suitable solvent, e. g. propan-2-ol, and was pumped 

into the column using a N2-driven constant pressure hydraulic pump 

(Haskel MCP-71) set at 6500 p. s. i. 

The Resolve C18 5µ Radial PAK cartridges were supplied by 

Waters Associates. 
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5.4 Standard Solution Preparation 

Stock solutions (1000 µg ml-1) in distilled water were prepared 

for nicotine, cotinine, nicotine-1'-N-oxide, 3' hydroxycotinine, 

anabasine and the substances tested as internal standards. Working 

standards were obtained by serial dilution with distilled water. 

All stock and standard solutions were stored in the refrigerator 

at ti 4°C until required. 

5.5 Mobile Phase Preparation 

5.5.1 For Ion Chromatography 

Sodium acetate (0.3M) was mixed with methanol in al L container 

to give the desired ratio (70: 30) and the final pH was adjusted 

to 4.5 with glacial acetic acid. 

The molarity of the sodium acetate, the pH of the final solution 

and the percentage of methanol in the mobile phase were varied 

in an attempt to effect a separation. 

5.5.2 For RP-IIC 

The ion-pairing agent PDFOA was added to methanol in the 

desired concentration, 1000 pg m1-1. A sodium acetate solution 

(0.3M) and the solution of PDFOA in methanol were mixed in the 

desired ratio (70: 30) and the pH adjusted to 4.5 with glacial acetic 

acid. Anti-tailing agents, triethylamine or diethylamine, were 

added, in some cases, as 0.1% of the final mixture. The concentration 

of PDFOA, the pH of the buffer solution and the ratio of buffer 
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to methanol solution were varied in the course of the experiments 

and have been reported on the individual chromatograms included. 

5.5.3 For Reverse Phase Partition Chromatography 

Orthophosphoric acid, 0.2% in distilled water, was prepared 

and the pH adjusted to 7.25 with triethylamine. This solution 

was mixed with methanol in the desired ratio, as stated on the 

individual chromatograms included. 

The introduction of the gradient system, which consisted of 

two pumps under the control of a gradient programmer, removed the 

need for premixing the solutions in the desired ratio, as the 

ratio was set by the gradient programmer. 

5.5.4 General Procedure 

All eluents were degassed under a gentle stream of fie for 

approximately 20 minutes before delivery. Degassing was continuous 

throughout the course of the experiments in order to prevent gases 

dissolving in the mobile phase. 

5.6 Internal standard 

As already reported in section 5.4, all possible IS solutions 

were prepared (1000 pg ml-1) in distilled water. In experiments 

to study their retention characteristics under different conditions 

and also their extraction from standard solutions in distilled 

water, working standards were required and these were prepared 
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by serial dilution with distilled water. 

Internal standards were added to urine samples before extraction 

as a concentrated 'spike', e. g. 200 µl volume of IS (1000 pg ml-1 

solution in distilled water) was added to a 20 ml urine sample 

i. e. = 10 pg ml-1. 

If a concentration step was to be included in the extraction 

procedure, the level of IS, added to the sample, was adjusted 

accordingly. 

5.7 Clean-up/Extraction 

In several experiments pre-packed solid-phase extraction 

cartridges (Sep Pak, C18 type) were used in the clean-up/extraction 

procedure. All Sep Pak C18 cartridges were activated, before use, 

by flushing with methanol (2 ml) followed by distilled water (2 

ml) at a flow rate of IN, 2 ml min-1 . 

A minority of urine samples required centrifugation prior 

to clean-up/extraction. This was carried out using the BTL bench 

centrifuge set at 2500 r. p. m. for 10 mins. 

Samples to be cleaned up/extracted by means of a Sep Pak were 

passed through the Sep Pak slowly, flow rates of 2-3 ml min-1 being 

used. 
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5.8 Gradient System - general procedure 

At the start of each working day, a blank gradient run, one 

where no injection of solvent or sample was made, was examined 

to ensure that nothing was eluted from the column as the eluent 

strength increased over the desired programme range. This procedure 

was repeated at intervals over the course of the day's work. 

If any unidentified peaks were encountered the column was 

flushed with the solvent of highest eluent strength for ti 2 hr. 

After a period of equilibration at the desired starting eluent 

composition, a repeat blank gradient was run. This process was 

repeated until any components which had been strongly retained 

by the packing material, and were likely to cause an interference 

in subsequent analysis, had been removed. 

During the analysis of urine samples, blank gradient runs 

were examined more frequently. 

The gradient programmes used for the analyses have been reported 

on the individual chromatograms included. The gradient programmes 

employed were optimized during the lifetime of a particular column/ 

cartridge, to achieve the best possible separation of the components 

of interest. 
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5.9 Maintenance of the HPLC Equipment 

Routine maintenance of equipment included regular cleaning 

of the reservoir filters and the UV flow cell and was achieved 

by ultrasonic vibration in a suitable solvent. 

Solvent delivery systems, especially those pumping buffer 

solutions, were flushed with methanol when not in use for periods 

of 1 week or longer. 



CHAPTER 6 

DISCUSSION, CONCLUSIONS AND 

SUGGESTIONS FOR FURTHER WORK 
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6.1 HPLC and the Analysis of Nicotine and its Metabolites 

GC has been the dominant technique in the determination of 

nicotine and its in vivo metabolites. Using this technique it 

is possible to determine only the volatile, thermally stable 

components. Although quantitative analysis of nicotine and cotinine 

has been accomplished, determination of nicotine-1'-N-oxide, which 

is not thermally stable at the temperatures required for GC analysis, 

is only possible by reducing it to nicotine and noting the increase 

in nicotine present in a subsequent determination. 
82 

HPLC was an obvious alternative choice for the determination 

of nicotine and its metabolites, being carried out at room 

temperature. The analysis of the components of interest by a single 

injection was thought possible, given the two competing phases 

(stationary and mobile) in HPLC which can be used to effect 

separations not possible by GC with just one (stationary phase). 

W detection was the only possible mode of detection readily 

available and although there were doubts about its sensitivity, 

it was thought that this problem could be overcome by concentration 

of the urine extract. 

Several modes of HPLC were investigated: ion-chromatography, 

reverse-phase ion-interaction chromatography and reverse phase 

partition chromatography. 

Using both ion chromatography and RP-IIC, separation of the 

three components of interest, nicotine, cotinine and nicotine-1'-N- 

oxide, proved to be impossible. Alterations in the pH of the mobile 

phase, the percentage of MeOH in the mobile phase, etc., were tried 
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without success and hence these modes of chromatography were 

abandoned. Reverse phase partition chromatography, however, 

immediately looked more promising. A separation of all three 

components of interest was achieved on a µ-Bondapak column with 

a mobile phase of 0.2% H3P04, pH adjusted to 7.25 : MeOH (80: 20). 

6.2 Reverse Phase Partition Chromatography 

In reverse phase chromatography, the stationary phase is 

hydrophobic, hence polar substances are eluted first. The lower 

the polarity of the mobile phase the higher is its eluent strength 

and hence the shorter the retention times of the components. This 

was found to be the case for nicotine, cotinine and nicotine-1'-N- 

oxide. As the percentage of the organic modifier in the mobile 

phase decreased and hence the lower its eluent strength, retention 

increased. For nicotine, which was strongly retained by the ODS 

packing material, retention increased to the point where the nicotine 

peak was broad and tailing. 

Many different ODS phases were investigated together with 

Hypersil phenyl and Nucleosil NO2, in an attempt to effect a 

separation of the three components of interest, in a reasonable 

analysis time (e. g. < 30 mies) and with a k' value for nicotine-1'-N- 

oxide, or the first peak of interest eluted from the column, > 2.0. 

The ODS packing materials, although they all have the C 
18 

functional group bonded to the silica, exhibit differences. 

Hydrophobicity, the carbon loading, surface area, pore size, particle 
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size and end-capping are major factors which differentiate reverse 

phase packing. 

C18 reverse phase packings are produced by chemically bonding 

a C1-8 hydrocarbon to a silica support. Inevitably some of the 

silanol (Si-OH) groups remain unreacted and these can have an effect 

on the separation. Therefore the separation mechanism may not 

be purely partition but adsorption may also play a part. To minimize 

the effect of unreacted silanol groups an 'end-capping' step can 

be included after the C18 hydrocarbon has been chemically bonded 

to the support. The effect of the silanol groups is not necessarily 

related to the number present but to their accessibility. Hence 

there are differences even among packing materials which have been 

'end-capped'. 

Of all the bonded phases investigated the Resolve C18 5µ 

packing material was the most promising when the retention of 

nicotine-1'-N-oxide was considered. However, it was impossible 

to consider the use of this column without the use of gradient 

elution as both cotinine and nicotine were strongly retained by 

this packing material when the eluent strength was such that the 

k' for nicotine-1'-N-oxide was ti 2. 

The Resolve Ci8 5µ packing material was available in the 

Waters flexible walled cartridges. The use of flexible walled 

cartridges and radial compression results in higher efficiency 

due to the uniform packing structure throughout the column and 

hence the elimination of the so called "wall effects". Improved 

chromatography and an 8 mm ID for the Radial'PAK cartridge made 

a switch to a 100 p3. loop possible, so increasing sensitivity without 
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the-need for a high sensitivity setting on the detector. 

The Resolve C18 5µ cartridge proved to be very successful. 

An excellent separation of nicotine- 1'-N-oxide, cotinine and nicotine 

was achieved and, later, 3' hydroxycotinine was also included in 

the analysis and separated from the other components of interest, 

although baseline resolution was generally not achieved. 

Two excellent chromatographic standards were examined, N' 

acetyl nornicotine (k' = 4.18) and 2 methyl-6-(3-pyridyl)-tetrahydro- 

(1,2)-oxazine (k' _ 7.20). 2 methyl-6-(3-pyridyl)-tetrahydro-(1,2)- 

oxaxine was used as an IS as it could be taken through the clean- 

up/extraction procedures chosen for the analysis of smokers' urine 

samples. N' acetyl nornicotine could not be used as an IS and 

hence it was discarded. 

Further improvements in the chromatographic efficiency would 

be possible by reducing all column fittings and connecting tubing 

to a minimum, thermostatting the column and perhaps the use of 

a multi-step gradient system. 

However, the chromatographic method of analysis developed 

was considered sufficiently good to warrant statistical analysis 

of the instrument response and the development of a clean-up/ 

extraction procedure, leading to a trial on smokers' urine samples. 
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6.3 Statistical Analysis 

Statistical analysis of the instrument response in the analysis 

of nicotine and its metabolites in standard solutions was carried 

out. A comparison of the statistical data calculated for each 

analyte peak was made using peak height, peak height ratio, peak 

area and peak area ratio measurement parameters. 

The within-run precision, repeatability, was measured as the 

RSD (%) for each analyte and by the method of quantitation. The 

mean RSD for all analyte peaks by different methods of quantitation 

ranged from 2.9% for the peak height measurement parameter to 6.3% 

for the peak area measurement parameter. 

The between-run precision, reproducibility, expressed as the 

mean RSD for all analyte peaks over all concentrations by different 

methods of quantitation, ranged from 4.9% for the peak height 

ratio measurement parameter to 7.0% for the peak area measurement 

parameter. 

The best within-run precision was a result of quantitation 

by peak height measurement. When between-run precision was measured, 

the inclusion of an IS, which showed an improvement in the mean 

RSD averaged over all concentrations and standards for each method 

of quantitation, resulted in peak height ratio (RSD = 4.9%) followed 

by peak area ratio (RSD = 6.7%) being the best methods of 

quantitation. 

Peak area measurements were expected to be superior to peak 

height measurements especially as gradient elution was involved, 

peak height measurements being more susceptible to variations in 

the chromatographic conditions. However, due to the use of the 
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gradient which gave a fluctuating baseline, the integrator was 

inconsistent in marking the start and end-points of the peaks. 

This erratic integration of peaks contributed to the low precision 

values reported when peak area measurements were used. 

Bakalyar and Henry2o7 reported that in gradient elution if 

flow control is good but solvent composition cannot be maintained 

precisely, peak area measurements yield better quantitative results 

because area is relatively independent of composition. However, 

if flow control is poor but composition can be maintained precisely, 

peak height measurements yield better quantitative results because 

height is relatively independent of flow rate. 

In addition, McCoy et al. 
200 

reported that when peaks are 

poorly resolved from the solvent front or an earlier eluting peak, 

or if the baseline is not well established, peak height measurements 

appear to provide more precise quantitation. This work was carried 

out using isocratic elution. In general high accuracy is sacrificed 

when peaks are fused. Aiken et ai 
208 

stated the need for baseline 

resolution of components, to provide good quantitative analysis. 

Therefore, the higher precision obtained when peak height 

is the measurement parameter may be due to the lack of baseline 

resolution for some components, in particular nicotine-1'-N-oxide 

and 3' hydroxycotinine, and the fact that composition can be 

maintained precisely (common with older liquid chromatography pumping 

systems) but flow control is poor. 

The inclusion of the IS resulted in an improvement in the 

precision of the experiment, when the mean RSDs for all analyte 

peaks over all concentrations by different methods of quantitation 
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were examined, the exception being the within-run precision when 

peak height was the measurement parameter. 

Although the inclusion of an IS/chromatographic standard can 

result in an improvement in the precision of the method, the internal 

standard also monitors analyte losses during the extraction procedure. 

This is extremely important, as the variability in analyte losses 

during extraction can contribute to very low precision values. 

The lack of precision for individual components by particular 

methods of quantitation are apparent from the graphs showing the 

calibration data together with the Working-Hotelling 95% confidence 

region and the 95% confidence bounds for 90% of future observations. 

The high LOD values calculated were higher than expected in some 

instances, again a reflection of the poor precision achieved. 

Although the levels of nicotine and its metabolites in smokers, 

urine samples were expected to be low it was still considered that 

it would be possible to measure the levels provided an effective 

clean-up/extraction was developed, a concentration of the extract 

was incorporated in the clean-up/extraction scheme and analyte 

losses during the scheme were negligible. 

Ideally, calibration curves over the expected concentration 

range should be constructed for urine samples which have known 

concentrations of nicotine and its metabolites and have been 

processed through the whole extraction procedure. The precision 

values obtained for the quantitation of nicotine and its metabolites 

in standard solutions would undoubtedly be better than those possible 

for the components in urine extracts due to the variability in 

analyte loss during extraction. Inclusion of an IS is critical 
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for this reason as it should monitor analyte losses during extraction 

and hence prevent a deterioration in the overall precision of the 

method. 

6.4 Urine Sample Analysis 

The clean-up/extraction of urine samples proved to be extremely 

difficult. The main reason was the wide ranging polarities of 

nicotine and its metabolites, hence attempts to extract them 

resulted in many components of no analytical interest being 

co-extracted. 

From the smokers' urine extracts chromatographed it was obvious 

that the clean-up was not satisfactory. The quantitation of early 

eluting peaks, namely nicotine- 11 -N-oxide and 3' hydroxycotinine, 

was impossible. 

A successful application of the chromatographic method developed 

required a very clean extract. The levels of nicotine and its 

metabolites, expected to be low even in smokers' urine samples, 

made a concentration step necessary, hence a clean extract was 

critical. 

Many GC methods of analysis have employed nitrogen sensitive 

alkali tip detectors, which reduce the requirements for a very 

stringent clean-up process. Unlike AFID, UV detection was not 

very selective or very sensitive. The use of capillary GC also 

made efficient chromatography with high resolution possible. 

Peak identification was aided by spiking the extract with 
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the corresponding standard solution (1000 jig ml-1) in H20. Other 

techniques such as LC-FTIR or LC-MS would confirm the peak identity 

and these techniques may be required if this method is to be used 

for quantitative analysis of nicotine and its metabolites. 

Unfortunately, these modes of detection were not available during 

the course of this work. 

6.5 Conclusions and Suggestions for Further Work 

From the experimental results reported in this study, it must 

be concluded that this HPLC method is not suitable for the 

quantitative analysis of nicotine and its metabolites in smokers' 

urine samples. 

The concentrations of nicotine and the metabolites in smokers' 

urine samples were found to be low (< 3 µg ml-1) and the analyses 

of these samples confirmed the necessity for a concentration step 

and therefore a very effective clean-up procedure. Although many 

of the extraction procedures were successful in extracting the 

components of interest, the clean-up was not always satisfactory. 

Many components of no analytical interest were co-extracted and 

were eluted from the column with k' values in the range 0-3. 

Frequently, the earliest eluting peaks of interest, nicotine-1'-N- 

oxide and 3' hydroxycotinine, could not be identified due to these 

interfering components. 

Taking into consideration the low levels of nicotine and its 

metabolites present in smokers' urine samples and the difficulty 
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in extracting these components with widely different polarities, 

UV detection was not sensitive or selective enough to enable 

quantitative analysis to be carried out. 

Further work, using the method of analysis developed in this 

study, requires a different method of detection, one which is more 

sensitive and more selective, therefore making the extraction 

procedure less critical. The advantages of GC analysis with nitrogen 

sensitive detection have been shown. 

Pre- or post-column derivatization may also make an HPLC 

quantitative method of analysis for nicotine and its metabolites 

viable, as this may also provide the increased sensitivity needed 

and the possibility of only a simple clean-up procedure being 

required. 

I 
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