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ABSTRACT 

This dissertation is concerned with the evaluation, in practice, of 
the technique of Narrow-Bore Liquid Chromatography using a commercial 
instrument. A relevant clinical problem is selected in order to enable 

a practical assessment to be made of the theoretical improvements in mass 

sensitivity attributed to this technique. 

In Chapter 1 the theoretical basis of Narrow-Bore Liquid Chromato- 

graphy is discussed. Particular emphasis is placed on the need for a 

minimal extra-column contribution to peak dispersion. 

Chapter 2 describes the theoretical aspects of electrochemical 
detection and its suitability, in theory, for use in conjunction with 
Narrow-Bore columns. The performance characteristics of three commercial 
detectors are compared and contrasted. 

Chapter 3 is divided into four parts. 
Part I deals with the clinical significance of a series of important 

tryptophan-derived indolic compounds and also describes, in detail, the 

Narrow-Bore Liquid Chromatograph. 

In Part II "a separation by Reverse Phase Ion-Interaction Chromato- 

graphy of five analytes (viz. tryptophan, 5-hydroxytryptophan, 5-hydroxy- 

tryptamine, 5-hydroxyindole-3-acetic acid and indoxyl-3-sulphate) and a 

possible internal standard (bufotenine) is developed. Evaluation of a 

separation on both lmm and 2.1mm ID columns indicates gross discrepancies 

between the observed dispersion 'characteristics of the instrument and those 

necessary to operate columns of either geometry efficiently. The detector 

response time is highly significant in this respect. 
Precision is examined in Part III and is found to be extremely poor. 

This is reflected in the limits of detection and quantitation, which are 

correspondingly high. 

The exploratory experiments with blood samples, reported in Part IV, 

show sample clean-up to be highly problematical. Equipment limitations 

are recognised as the principal factor in determining the minimum sample 

volume which is manageable. 

In Chapter 4 the multitude of practical difficulties experienced 

with the technique are detailed. It is concluded that the commercial 

Narrow-Bore Liquid Chromatograph under assessment is inadequate for 

efficient operation of these columns. Significant advances in instrument 

technology are necessary before this technique will achieve routinely its 

theoretical capabilities. 
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Q, OSSARY OF S iNBOLS 

1. General Terms 

d = Diameter 

L = Length 
Mass of solute 

P = Pressure 

Q = Volumetric floTr rate 

r = Radius 

(t) = (as a subscript) = Quantity in units of time 
(v) = (as a subscript) = Quantity in units of volume 

w = Width 

TI = Viscosity (of the mobile phase) 

p = Density (of the mobile phase) 

a = Standard Deviation 

a2 = Variance 

2. Chro-natoeraahv 

A = van Deemter coefficient for eddy diffusion (= 2ad ) 
p 

B = van Deemter coefficient for longitudinal diffusion (= 2yD ) 
m 

C = van Deemter coefficient for resistance to nass transfer 

/D =a+ bk' + ck'2 d2/D + 8k' df2s 
24 (1 + k') p 'r2 (1 + k') 

a, b, c = Quadratic coefficients in the van Deemter resistance to mass 
transfer in the mobile ohase term 

d = Column internal diameter 
c 

df = Effective film thiciczess of the stationary phase 
d = Mean particle diameter 

p a 

D = Diffusivity of a solute in the mobile phase m 
D = Diffusivity of a solute in the stationary phase s 
ýH = Height equivalent to a theoretical plate 
H = Apparent height equivalent to a theoretical plate 
H = bright equivalent to a theoretical plate in the colun e 
k' = Capacity factor of a solute (_ (tR t )/V ) )/t (V V 

o o o o R 
L = Column length 

c 
L6 = Detector flo: r cell length 

Lt = Tubing length 



mi = Nass injected 

N= Number of theoretical plates 
A 

N= Apparent number of theoretical plates 
sic = Number of theoretical plates in the column 

rc = Column radius 

ra = Detector flora cell radius 

rt = Tubing radius 
R= Resolution 

s 
to = Column dead time = retention time of an unretaired solute 
tR = Retention time of a retained solute 

u= Mobile phase linear velocity 
V= Column volume c 
Va = Detector flmr cell volume 
V. = Injection volume 
Vo = Column dead volume = retention volume of an unretained solute 
VR = Retention volune of a retained solute 

wD = Peak width at baseline between tangents 

w0.5 = Peak width at half peak height 

X0.607 = Peak width at 60.7; of peak height = peak half-width 

XC = Concentration sensitivity of a I-PLC system 

Xs = Concentration sensitivity of a detector 

y= Obstructive factor for molecular diffusio ;a constant for a 
given column , Ihich is dependent upon the column packing 
efficiency 

E= Column porosity = fraction of the column volume occupied by 
mobile phase 

Co = Snyder's solvent strength function 
e2 = Factor representing the percentage contribution to the total 

variance of a system component 
°i = The percentage contribution of 0i to Qtot 

eS =i :e percentage contribution of QS to Qtot 

Q2 = The composite percentage contribution of 62 and Q2 to Q2 0 T, S. tot 
K=A constant dependent upon the height from the baseline at 

which the peak width is measured 
A=A constant for a given column which is dependent upon the 

column packing efficiency 

02 = Total or observed peak variance tot 



a2 = Intra-column peak variance (= Q2 + Q2 + Cy2 + Q2 ) 

Ced = Peak variance due to eddy diffusion 

01 = Peak variance due to longitudinal diffu sion 

a2 = Peak variance due to resistance to mass transfer in the 
mobile phase 

Q = Peak variance due to resistance to mass transfer in the 
rs staticr: ary phase 

2 ac = Extra-column peak variance (= c+ 62 + 
t Q2 + Q2 + ß2) 

1 TP 
a? = Peak variance due to injection 

Qt = Peak variance due to cannectLig tubes 

ßä = Peak variance due to the detector floor cell 

QT = Peak variance due to detector response time 

ßý = Peak variance due to recorder response time 

3. Electrochenist'v 

a = Nozzle diameter 

A = Electrode surface area e 
C = Bulk concentration of the electrcactive species 
D = Diffusivity (or diffusicn coefficient) of the electroactive 

species 

= Potential 

E _ Half -wave potential 

E = Applied potential arop 
Eopt = Optimum operating potential for a given series of electro- 

active species eluted under given chromatographic conditions 
F = Faraday constant (96,487Cnol-1) 

I = Current 

I = Anodic (oxidation) current a 
I = Cathodic (reduction) current c 
Iz = Limiting or diffusion current 
k = Factor dependent upon cell geometry 
1 = Characteristic of electrode length 

L = Electrode length 
e 

n = dumber of electrons transferred in the electrode reaction 

q = Function relating signal-to-noise ratio and electrode dimensions 

r = Electrode radius e 
Re = Modified Reynolds :; umber (= ulv-1) y 
Sc = Schmidt Number (= vD-1) 



tr = 'Electrode width e 
Fbctor dependent upon cell geometry 
Kinematic viscosity (_ n/p) 

cý = Characteristic of electrode width 

k. ' Chenometrics 

a= Intercept of the regression line with the ordinate (Y) axis 
b= Gradient of the regression line 

F= Snedecor's F statistic (Tabulated) 

n= : 'umber of observations 
Correlation coefficient 

sY = Sample standard error (Regression of Y on X) 

s2 = Sample variance 
t= Student's t statistic (Tabulated) 

X= "Controlled" variable (concentration or mass injected) 

X= Mean value of X= EX i/n 
XLD = Statistical detection limit of a substance based on its 

calibration data (99% confidence) 
Xo =A selected value of X 

x= X-1 

Y= Observed response (peak area or peak height) 

Y= : Nan value of Y=ZY. In 
A1 

Y= Predicted value of the true response for a given value of X 
YL = The la"rer limit on that predicted individual X value which 

exceeds the 99% upper prediction limit on the expected 
blank, YUB 

YA = The response calculated from the regression line which 
corresponds to XLD 

YUD = The 99% upper prediction limit on the expected blank response, a 
y= Y-Y 

z= The normal deviate 
p 

a= Probability factor 

v= Number of degrees of freedom 

E= Summation of 
2 X= Chi-squared statistic (Tabulated) 



ABBFEVIATIONS 

ac. = Alternating current 
Ac = Acetate 

AE = Auxiliary electrode, counter electrode 
AFID = Alkali Flame Ionisation Detector 

AN = Aniline 

AT = Adenosine triphosphate 

BF = Bufotenine, : 1, N-dimethyl-5-hvdroxytryptamine 

BMH = Bristol Maternity Hospital 

b. p. = Boiling point 
BRI = Bristol Royal Infirmary 

\1S = Central nervous system 
CPE = Carbon paste electrode 
CS = Chromatographic Standard 

csf = Cerebrospinal fluid 

Ct = Citrate 
DA = Dopamine 

d. c. = Direct current 
DHBA = 3,4-dihydroxybenzoic acid 
DME = Dropping mercury electrode 
DOPAC = 3,4-dihydroxyphenylacetic acid 
DPV = Differential Pulse Voltammetry 

Dir = Single distilled water 
EC, -EC = 'Electrochemistry, electrochemical (detection) 

ECD = Electrochemical Detector 

EDTA = Ethylenediaminetetraacetic acid 
ELCD = Electron Capture Detector 

EP = Epinephrine, adrenaline 
FID = Flame Ionisation Detector 

FL, -FL = Fluorescence Detector, fluorescence detection 
f. s. d. = Full scale deflection 
FTIR, -FTIR = Fourier-transform Infra-red Spectrometry, Fourier- 

transform infra-red detection 
GC = Gas Chromatography 

GCE = Glassy carbon electrode 
5: 2A = 5-hydroxyindole-2-carboxylic acid 
5HIAA = 5-hydroxyindole-3-acetic acid 



I-PLC = High Performance Liquid Chromatograph(y) 

IAA = 1-heptanesulphonic acid 

5111T = 5-hydroxytryptamine, serotonin 
6HT = 6-hydroxytryptamine 

5i: PP = 5-hydroxytryptophan 

HVA = Homovanillic acid, 3-methoxy-4-hydroxyphenylacetic acid 

IAA = Indole-3-acetic acid 

ID = Internal diameter 

IIA = Ian-interaction agent 

-IIC = Ion-Interaction Chromatography 

IPA = Ion-pairing agent 

-IP C = Ian-Pair Chromatography 

IS = Internal standard 

13S = Indoxyl-3-sulphate, indican 

IXC = Ion Exchange Chromatography 

LC = Liquid Chromatography 

LDV = Low dead volume 

LOD = Limit of detection 

LOQ = Limit of quartitation 

Me c = Ace tonitrile 

MeOH = Methanol 

MS, BS = Mass Spectrometry, mass spectrometric detection 

IRT = Molecular weight 

NAD®, 21ADH = Nicotinamide adenine dinucle otide 

Y1ADP®, NADPH = : licotinamide adenine dinucleotide phosphate 

NB = ? arrow-Bore 
Ply = Norepinephrine, noradrenaline 

11 -Me -5 HT -=ethyl- 5-hydr oxytryptamir e =N W 
NPV = : Torwal Pulsed d. c. Voltamüetry 

OD = Outer (external) diameter 

ODS = Octadecylsilane 

PC = Paper Chromatography 

-PC = Partition. Chromatography 

PKU =' Phenylketonuria 

PPP = Platelet-poor plasma 
2-PrOH = Propan-2-ol 

PRP = Platelet-rich plasma 



p. s. i. = Pounds per square inch 
PTFE = Polytetrafluoroethylene 

RCF = Relative centrifugal force 

RE = Reference electrode 

REA = Padioenzymaticassay 

RIA = Pa. dioimmunoassay 

RP = Reverse Phase 

RPV = Reverse Pulsed d. c. Voltammetry 

PSD = Relative standard deviation 

SCOT = Surface coated open tubular 

SD = Standard deviation 

SE, SEP! = Standard error (measurement) 

sf = Solvent front 

S//' = Signal-to-noise (ratio) 

S/S = 316 stainless steel 
SW = Rapid-Scan Square Wave Voltamme try 

T4 = Thyroxine 

TEF = Tetrahydrofuran 

TLC = Thin Layer Chromatography 

7P = Tryptophan 
TSB-: = Thyrotropin, thyroid-stimulating hormone 

T&SH = Taunton & Somerset Hospital 

UV, -UV = Visible/ultra-violet spectrometry, visible/ultra-violet 
detection 

WB = Wide -Bore 
I'7COT =: Tall coated open tubular 

WE = Working electrode 
ZDV = Zero dead volume 
a-Me 7P = a-Me thyltryptophan 

11 (LC) = Micro-column 
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1.1 Nomenclature of Liquid Chromatography Columns 

Since 1976, when Scott and Kuceral used 1mm internal diameter (ID) 

liquid chromatography (LC) columns and introduced the term 'microbore' to 

refer to such columns, there has been growing confusion regarding LC column 

nomenclature. In the ten year period following this publication great 

interest has been aroused, and hence much research effort has been directed 

towards the development of small-diameter LC columns and associated hardware 

(see Section 1.2). The trend has been towards smaller and smaller diameter 

columns, resulting in the evolution and utilisation of both packed and open- 

tubular capillary columns with IDs of as little as 511m. 2 This growth of 

small-diameter column research by a large number of unrelated groups has led 

to a plethora of undefined terms for such columns. Basey and Oliver3 noted 

nine different descriptions of small-diameter LC columns together with the 

range of IDs to which each term referred. The descriptions were found to 

overlap to a large extent and so, recognising that a nomenclature problem 

existed, Basey and Oliver proposed that column descriptions such as 

'microbore' be abandoned. They suggested that such terms simply be 

replaced by specified ID measurements in order to clarify texts and to aid 

electronic literature search processes by reducing the number of keywords 

required to extract relevant references from computer libraries. Unfortun- 

ately this proposal has gone largely unheeded and an abundance of ill-defined 

or undefined terms continues to abound, in the literature. 

The author finds it convenient to rigorously define terms for LC 

columns to be referred to in this dissertation. The selected descriptions 

are presented and defined in Table 1.1. 
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Table 1.1 Proposed Nomenclature of HPLC Columns 

Column Abbreviation For Column ID range Typical IDs 
Description Type (mm) Used (mm) 

Micro-column 11 

Narrow-bore NB 

Conventional 

Wide-bore or 
Preparative WB 

ID < 0.5 _ 
0.5 < ID < 3.0 0.5,1.0,2.1 

3.0 < ID < 5.0 3.9,4.6 

ID > 5.0 7.8 

It should be noted that no such rigid boundaries in the behaviour of 

LC columns exist but, due to the typical IDs employed in general use it is 

convenient to compartmentalise columns in the above manner. . The designation 

of 0.5mm as the lower limit of Narrow-Bore (NB) LC was made on instrumental 

grounds, i. e. down to 0.5mm ID conventional instrumentation may be utilised 

with some success under certain stringent conditions but at diameters smaller 

than this specialist instrumentation is essential. The term 'capillary' 

was rejected in favour'of 'micro-column' because the only rigorous definition 

of capillary to be published4 which refers to gas chromatography (GC) columns 

as: "... column(s) of capillary dimensions generally less than lmm internal 

diameter" was inappropriate for this classification. The prefix 'micro-' 

to refer to columns of less than 0.5mm ID does appear to be coming into 

common usage. The original description 'microbore' coined by Scott and 

Kuceral was not considered suitable for reasons of confusion. The general 

term 'small-diameter' will be used to refer to all columns of smaller 

internal diameter than are used conventionally, i. e. < 3mm. 
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1.2 The Early Development of Small-Diameter Column Liauid Chromatography 

Small-diameter columns are not new to the field of liquid chromatography. 

In the late 1960s Horvath and co-workers S96 employed columns of between 1 and 

3m length and of lmm ID dry-packed with their new pellicular materials. 

Not unexpectedly, due to the inefficient packing method employed and the 

primitive instrumentation these columns only produced 1000 theoretical plates, 

although because of the novel fabrication of the packing material this was a 

300-500% improvement over typical efficiencies observed at that time. The 

potential of small-diameter columns was not recognised immediately, primarily 

because the importance of extra-column dispersion was neither understood nor 

appreciated then. Extra-column dispersion (or extra-column band broadening) 

results primarily from kinetic processes which manifest themselves in the 

finite volume of the instrument external to the column and between the point 

of injection and the point of detection (extra-column volume), processes 

which can seriously degrade the separation performance of the column. This 

phenomenon is discussed in detail in Section 1.4.3. 

With the introduction of micro-particulate silica and the development 

of slurry-packing techniques in the early 1970s, columns of typically 

25cm x ca. 5mm ID became adopted as standard. Columns of small diameter 

fell into general disuse, primarily due to packing difficulties and the 

absence of appropriate low volume HPLC hardware with which to utilise such 

columns effectively. 

It was a paper published in 1976 by Scott and Kuceral that provoked 

the present interest in, and enthusiasm for, small-diameter columns. Novel 

column technology was of secondary importance in this particular publication; 

size exclusion chromatography on silica gel was the primary goal. The 

authors slurry-packed and coupled a series of ten lm x lmm ID columns with 
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2011m diameter particles and produced 250,000 theoretical plates (= 25,000 

plates m-1) which was by then the highest observed LC column efficiency 

ever reported. In order to achieve this, Scott and Kucera utilised a 

modified commercial W flow cell to restrict extra-column band broadening. 

The following year saw the publication of a paper by Machleidt et al. 7 

which described the application to protein sequencing of lm x 1-3mm ID 

columns slurry-packed with an ion exchanger. Also in 1977 a Japanese group 

under Ishii began publishing a series of papersB-12 concerning the preparation 

of short (5-35cm), narrow (0.25-0.5mm ID) slurry-packed columns and the 

design, construction and application of equipment with which to utilise such 

columns. Specialist instrumentation was fabricated for this purpose 

including a syringe micro-feeder solvent delivery system and a novel home- 

built low volume W flow cell. 

In 1978, material appeared in the literature describing the preparation 

and use of columns of even smaller IDs. Tsuda and Novotny13 reported the 

preparation of packed uLC columns of 50-2001im ID drawn from dry-packed 

0.25mm ID glass capillaries. In order to overcome limitations imposed on 

the system with respect to band broadening Tsuda and Novotny introduced a 

split injector system and a post-column pre-detector solvent make-up flow, 

a technique commonly practiced in capillary GC. Even running under 

significant instrument limitations, plate counts of the order of 10,000m-1 

were obtained. 

Open-tubular uLC columns were developed concurrently with packed pLC 

columns and simultaneously by a number of research groups including Ishii 

and co-workers14'15, Novotny and associates16, Dewaele and Verzele17, and 

Tij ssen18, following the earlier pioneering work of Horvath et al. 5 and 

Nota et al. 19 Columns of greatly varying lengths (2.5-100m) and internal 
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diameters (50-800um) were experimented with, some were untreated or simply 

alkaline etched while others were coated to produce SCOT or WCOT columns 

similar in construction to those used in capillary GC work. Some workers 

elected to employ conventional LC hardware with few modifications5'17'1e, 

some used greatly adapted commercial equipment16'19 while the remainder 

utilised home-made precision engineered specialist instrumentation. 1'" 15 

Open tubes offer considerably less resistance to flow than packed tubes 

which enables longer lengths to be utilised at identical pressure drops 

which leads to higher efficiency potential. Furthermore, as theory predicts, 

workers found that the smaller the column diameter then the higher the 

column efficiency. However, gross practical difficulties with the 

fabrication of equipment with which to operate very long, extremely narrow 

columns at the very low flow rates required were encountered in these early 

studies. 

In the meantime, Scott and Kucera had continued their work on lmm ID 

TNB columns and in 1979 published papers describing their general performance 

and characteristics20, their use for extremely rapid analysis21 and their 

application to the separation of substances of biological origin. 22 For 

all this work Scott and Kucera utilised a conventional LC instrument which 

they adapted in several ways in order to reduce extra-column volume and to 

provide accurate pulse-free solvent delivery at required flow rates. Scott 

and Kucera successfully demonstrated the use of NB columns to achieve high 

efficiency separations and high speed separations with solvent economy and 

high mass sensitivity and in so doing showed the potential of LC employing 

NB columns. 

Two distinct schools of thought evolved around this time which led to 

the development of small-diameter column LC in two different directions. 
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These were: (1) moderate reduction in ID of columns and their utilisation 

with conventional or modified conventional LC hardware as advocated by 

Scott and Kucera (i. e. NBLC), and (2) gross miniaturisation of columns and 

the design and construction of specialist analytical instrumentation in 

which to accommodate such columns, the strategy adopted by Ishii's group, 

(i. e. ILC). Severe technological problems posed by the latter approach, 

particularly regarding the engineering and operation of ultra-micro high- 

specification LC equipment, have limited pLC to the research laboratory since 

its inception. The great promise of uLC, particularly in open-tubular 

configuration, has yet to be realised sufficiently to warrant commercial 

interest. It is the former approach advocated by Scott and Kucera that 

has been exploited commercially and is the subject of the research reported 

in this dissertation. 

1.3 Advantages and Disadvantages Claimed for Narrow-Bore Liquid 

Chromatography Columns23-26 

There are three basic advantages to r? B columns, but one particular 

attribute, solvent economy, is probably the main cause of the present 

renaissance in the use of this column geometry. The efficiency realised 

from well-packed NB columns is exactly equivalent to their larger diameter 

counterparts, providing they are operated at the same mobile phase linear 

velocity. Consequently, as the mobile phase volumetric flow rate is 

proportional to the product of the linear velocity and the column cross 

sectional area, solvent consumption will be reduced proportionally to the 

, 
square of the column radius. This situation yields certain economic and 

practical advantages. Operating costs may be drastically reduced2° both in 

terms of the reduced solvent requirement and also the need for a substantially 
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smaller amount of expensive stationary phase in order to pack a column. 

As an alternative to a saving in the solvent costs, the use may be made 

of very high purity or exotic solvents which ordinarily would be discounted 

on ecomonic grounds. 27'28 

The second important benefit of NB columns is their high mass 

sensitivity which, like the concentration sensitivity, is a way 

of defining the overall detection limits of a chromatographic system. For 

a column of given length and efficiency, the smaller the ID of that column 

then the smaller the mass of solute that can be detected, and consequently 

the less sample is required for analysis. The advantage of high mass 

sensitivity becomes particularly apparent when dealing with trace quantities 

of materials in samples of restricted size, as is frequently encountered with 

the separation and determination of substances present in samples of 

biological origin. 

The third attribute of NB columns is less obvious. Such columns have, 

as a result of their geometry, a very low heat capacity which allows them 

to be thermostatted to a precise and constant temperature fairly easily. 

This is because heat generated by viscous flow through a column can be 

dissipated through the column walls more efficiently with NB geometry. 29 

Furthermore, less heat is actually generated in a NB column compared with a 

conventional column at a given linear flour rate. 29 In this way greater 

potential temperature stability is available with NB column technology, which 

is important for provision of improved accuracy and precision of retention 

times in the chromatogram. Thus, improved peak recognition is attainable 

when chromatographing authentic samples. Authentic samples may be defined 

as samples. comprising analytes in a fairly complex matrix and are distinguished 

from synthetic samples which are simply comprised of pure standard compounds 

dissolved in an appropriate solvent. 
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In addition to the aforementioned advantages, a fourth attribute 

of NB columns has been recognised which arises essentially as a consequence 

of the low volumetric flow rates employed, and this is the ability to 

couple a mass spectrometer directly to a HPLC system. This is only 

beneficial if sample size is greatly restricted otherwise conventional 

interfacing with an effluent splitting device provides comparable 

performance. 25 

The disadvantages of NB columns also ironically arise from their 

geometry as, due to their small internal volume, they make certain stringent 

demands on the chromatographic equipment with which they are utilised. 

Similar mobile phase linear velocities are employed with NB columns as with 

conventional columns consequently the required volumetric flow rates are 

much smaller. As a result of this fact, pumps capable of delivering 

solvent at constant volumetric flow rates of the order of microlitres per 

minute are essential. Sample volumes will also be much smaller and thus 

specially designed sample injection valves are necessary. For identical 

reasons, detectors must possess low internal volume flow cells which 

generally, but not exclusively, require specialist design and construction. 

The application of a conventional 0.5p1 volume electrochemical detector (ECD) 

to NB column technology is described in this dissertation (Chapter 3). 

From this it follows that in order to realise the advantages of NBLC 

columns in routine analytical laboratories instrumentation of sufficiently 

high specification must be designed, 'manufactured and marketed by commercial 

companies. At the outset of this project at the beginning of 1984 such 

equipment had only very recently been introduced. The apparatus available 

for NBLC will be discussed in detail in Section 1.5. 

A summary of the advantages and disadvantages of NB columns is 

presented in Table 1.2. 
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Table 1.2 Summary of the Major Advantages and Disadvantages Claimed 

for Narrow-Bore Columns 

Advantages Disadvantages 

1. Solvent economy 

2. High mass sensitivity 

3. High potential temperature 
stability 

1. The need for high specification 
instrumentation (pumps, 
injection valves, detectors) 

1.4 Theoretical Aspects of Narrow-Bore Liquid Chromatography 

1.4.1 Dispersion of a Solute Band - The Principle of the Summation of 

Variances 

In order that the theory and properties of NB columns be appreciated, 

the fundamental importance of the contribution of physical processes to the 

dispersion of a solute band as it passes through a chromatographic system 

must be fully understood. 

The width of the band of an eluted solute relative to its proximity 

to its nearest neighbour determines whether the two solutes are resolved 

or not and thus the band width directly controls the resolving power of 

the chromatographic system. This concept is illustrated diagrammatically 

in Figure 1.1. The ultimate band width of a solute is the result of a 

number of dispersion processes occurring in the chromatographic system, 

some of which take place in the column itself, and some in the sample 

injection valve, connecting tubing and detector. In order to determine 

the ultimate peak dispersion of the solute band as it is sensed by the 

detector, it is necessary to be able to calculate the final peak variance, 
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(a) 
1 

. Peaks selectively retained 
and narrow providing complete A (baseline) resolution. I 

- (b) 1 1 1 1 Peaks equally selectively 
I retained but poorly resolved 

due to broadness resulting 
from poorly controlled band 

k 
spreading. 

j 

Figure 1.1 Illustration of the Dependence of Resolution on Bandwidth 

which is the square of the standard deviation of the peak. This is 

achieved by taking into account the individual dispersion processes 

occurring in the total chromatographic system. It is not possible to sum 

the bandwidths resulting from the individual dispersion processes to 

determine the final bandwidth but it is possible to sum their variances. 

However, the summation of variances is only valid if all the dispersion 

processes are non-interacting and random in nature, i. e. the extent to which 

any one dispersion process progresses is independent of the development and 

progress of any other dispersive process. 

Thus, assuming that there are z non-interacting, random dispersive 

processes occurring in the chromatographic system, then any process, p, 

acting alone will produce a Gaussian elution curve having a variance a, 2 
. 

Hence: 

ß1+ß2+63... +ßZ=atot X1.1) 
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where cltot is the total observed variance of the solute band as displayed 

by the recording device. 

Equation 1.1 is the algebraic enunciation of the principle of the 

summation of variances and is fundamentally important. It enables the 

critical factors controlling the chromatographic process in the column to 

be related to one another as was established by van Deemter et al. 30 (see 

Section 1.4.2). Furthermore, the summation of variances concept allows 

the contributions of the dispersive processes occurring in various parts of 

the chromatographic system to be combined to provide an assessment of the 

degree of the deleterious effect of the HPLC instrument on the chromatography. 

1.4.2 Intra-Column Band Dispersion 24'31'32 

The column is the part of the chromatographic system in which the 

actual separation of solutes takes place. During the development of a 

chromatogram two mutually independent processes occur simultaneously in this 

region. First, the individual solutes are moved apart from one another 

and secondly, the width of each solute band is kept sufficiently narrow such 

that each solute is eluted discretely so preserving the quality of the 

initial separation. 

The moving apart of the peaks is achieved by employing an appropriate 

stationary phase/mobile phase system that retains each solute within the 

column to different extents. This selective retention is achieved by 

exploiting the different molecular forces that can exist between the solute 

and the two phases. Those retention processes (and their operating 

mechanisms) that are relevant to this research project are discussed in 

detail in Section 3.1.4. For the purpose of this discussion it may simply 

be emphasised that the moving apart of the peaks in a column by selective 
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solute retention depends solely on the chemical nature of the phase system 

employed and is independent of the column geometry and the particle size 

of the packing material. Hence, NB columns and conventional columns are 

equivalent in this respect. 

The other process that occurs in the column is the progressive 

dispersion of each solute band. It is important that this band broadening 

action is controlled and minimised, in order to ensure that once the solute 

bands have been moved apart they do not merge again by spreading. In 

contrast to solute selectivity, peak dispersion is strongly dependent on 

the particle size of the packing material and the physical properties of the 

solute and the mobile phase. The theory of band dispersion in a 

chromatographic column has been studied by many workers. 30P33-37 The 

equation that most accurately describes the relationship between peak 

dispersion, the mobile phase velocity and the physical properties of the 

phase system over the linear velocity range employed in HPLC is that of 

van Deemter et al. 30, which wasfirst derived as long ago as 1956. The 

pertinence of the van Deemter equation has been well substantiated recently 

in a very extensive and thorough experimental investigation by Katz, Ogan 

and Scott. 38 Van Deemter postulated that three basic dispersion processes 

took place in the column and theoretically determined the variance 

contribution of each process. The individual variances so calculated were 

then integrated to determine the overall variance of the band using the 

principle of the summation of variances (Equation 1.1). The three basic 

dispersion processes that were postulated were eddy diffusion, longitudinal 

diffusion and resistance to mass transfer of the solute between the mobile 

and stationary phases. Fddy diffusion and resistance to mass transfer 

processes are illustrated in diagrammatic form in Figure 1.2 and are 

explained under their appropriate headings. 
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Figure 1.2 Diagrammatic Representation of some of the Dispersion 

Processes that occur within a Liquid Chromatography Column. 

Figure 1.2 (a) depicts a longitudinal section of the top of a column 

with the individual stationary phase particles numbered 1-10. Solute 

molecules are represented by x's and are shown immediately after injection 

where they form a narrow band at the top of the column as indicated. 
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1.4.2.1 Eddy Diffusion 

Eddy diffusion, otherwise known as the multipath effect, arises from 

the different microscopic flowstreams that the solvent follows between 

different particles within the column. As a result, solute molecules take 

different paths through the interstices of the packed bed, depending on 

which flowstreams they migrate within. Liquid flows faster in wide channels 

and slower in narrow ones, hence in unit time some solute molecules will 

progress further down the column than others. This process is depicted 

in Figure 1.2(b). From this illustration it can be seen that molecules 

that follow the relatively wide flowpath between particles 1 and 2 (or 5 

and 6) migrate further down the column in a given time than do molecules 

progressing through the relatively narrow flowpath between particles 2 and 3. 

Clearly such a process would contribute to band variance and van Deemter 

proposed that the band variance arising from eddy diffusion (Qed) could be 

expressed: 

2=2 XdP 

where A=a constant depending on the quality of the packing of the 

stationary phase, 

and dp = the mean particle diameter. 

1.4.2.2 Resistance to Mass Transfer 

(1.2 ) 

Resistance to mass transfer of the-solute between the, two phases is 

the second effect "that van'. Deemter" considered to 'cause peak 'dispersion and, 

in most instances, especially at high mobile* phase velocities, this effect 

is the major contributor to the overall peak variance. Essentially, three 

processes can be visualised giving rise to resistance to mass transfer, 

viz. mobile phase mass transfer, stagnant mobile phase mass transfer and 
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stationary phase mass transfer, which are illustrated in Figure 1.2, parts 

(c), (d) and (e) respectively. 

Mobile phase mass transfer arises due to the existence of a flow 

profile across a single flcwstream or path between surrounding particles. 

As is exemplified in Figure 1.2(c), where the flowstream between particles 

1 and 2 is shown, the liquid adjacent to a particle moves slowly or is 

stationary, whereas liquid in the centre of the flowstream moves fastest. 

Hence, in unit time, solute molecules near to a particle move a shorter 

distance down the column than do solute molecules in the middle of the 

flowstream. This action necessarily results in a spreading of molecules 

along the column. 

A second mobile phase mass transfer effect is what is termed stagnant 

mobile phase mass transfer, which is presented in Figure 1.2(d). With 

porous particulate stationary phases the mobile phase contained within the 

pores of a particle is stagnant or unmoving. Solute molecules diffuse into 

and out of these pores. Those molecules having a short residence time in 

a pore will spend correspondingly longer in the flowing external mobile 

phase and will migrate further down the column in a given time than molecules 

having a long residence time in a pore. Again an increase in band spreading 

results. 

The effect of stationary phase mass transfer is demonstrated in 

Figure 1.2(e). After solute molecules diffuse into a pore they may 

penetrate the stationary phase (hatched region) or become attached to it in 

some fashion. In a similar way to stagnant mobile phase mass transfer, 

those molecules that penetrate deeper into the stationary phase have a 

greater residence time in the particle and so migrate down the column a 

shorter distance in unit time than do molecules which spend less time in the 

stationary phase. This too provides a band broadening effect. 
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Two functions have been proposed to describe the resistance to mass 

transfer between the two phases, (Q2 
, Q2 ). These are rm rs 

(1) Resistance to mass transfer in the mobile phase, 

Q2 =f W)d2 u m (1.3) 

Dm 

(2) Resistance to mass transfer in the stationary phase, 

a2 = fs (k')d2 u (1.4) 

DS 

where k' = the capacity factor of the solute, 

u= the mean mobile phase linear velocity, 

Dm = the diffusivity of the solute in the mobile phase, 

Ds = the diffusivity of the solute in the stationary phase, 

and df = the effective film thickness of the stationary phase. 

Van Deemter et al. in their original paper30 showed that 

fs(ký) 8k' (1.5) 

72(1 + k')2 

In this work the authors dealt exclusively with the question of gas 

chromatography where resistance to mass transfer in the mobile phase is 

negligible, hence only resistance to mass transfer in the stationary phase 

was considered. When the van Deemte'r equation was generalised to include 

liquid chromatography it was expanded to include the then significant 

resistance to mass transfer in the mobile phase terms. 

The generally accepted form of fm(k') for the resistance to mass 

transfer in the mobile phase is, 

f(k') =a+ bk' + ßk'2 (1.6) 
24(1 + k') 
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where the quadratic coefficients take the values a=1, b=6 and c= 11. 

However, Katz et al. recently conducted an extensive study38, using an 

instrument of known and controlled extra-column dispersion, which generated 

accurate and precise experimental data from which they derived different 

values for the quadratic coefficients, i. e., a=0.37, b=4.69 and c=4.04. 

These latter values are recommended and may be applied with confidence. 

1.4.2.3 Longitudinal Diffusion 

Finally, there is an additional contribution to molecular dispersion, 

known as longitudinal diffusion, which is not illustrated in Figure 1.2. 

tilhether the mobile phase within the column is moving or at rest, normal 

diffusion processes occur and, apart from the aforementioned effects, this 

gives rise to a further spreading of solute molecules along the column. 

Obviously the longer the solute remains in the column, the more the solute 

will diffuse and thus the variance of the band due . to this effect will be 

inversely proportional to the linear mobile phase velocity. Van Deemter 

proposed that the band variance due to longitudinal diffusion (aid) could 

be expressed: 

01d = 2YDn (1.7) 

u 

where y= the obstructive factor for molecular diffusion which is a 

constant and is dependent on how well the column is packed. 

Longitudinal diffusion is often not an important effect, but is 

significant at low eluent flow rates for columns packed with small particles. 
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1.4.2.4 The van Deeiter Eouation 

Van Deemter et al. considered that the total dispersion of a solute 

band eluting fron a column was contributed to by all these individual 

processes. They expressed this dispersion as the variance per unit length 

of the column and assigned it the symbol H. The term H is known as the 

height equivalent to a theoretical plate in the column. 

The van Deemter equation is compiled by utilising the principle of 

the summation of variances (Equation 1.1), i. e., 

2222+2 ý18) 

c ed 
+ aid + Qrm f 

rs 

where 62 = the total peak variance generated in the column. 

Therefore: 

H= 2AdP + 2yDm + fM(k*)d2 u+ fs(k')d2 u (1.9) 

u. Dm DS 

Equation 1.9 is often expressed in the simplified form : 

n=A+B+Cu (1.10) 
ü 

where A, B, and C are all constants for a given solute in a given 

chromatographic column/eluent system. 

Figure 1.3 shows a typical graph of column variance vs. mobile phase 

linear velocity. The points are experimentally determined values and the 

solid curve is that predicted by the van Deemter equation. The individual 

contributions of each dispersion process are also plotted. 
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Figure 1.3 A Typical Plot of Height Equivalent to a Theoretical Plate (H) 

vs. Mobile Phase Linear Velocity (u) Demonstrating the Relative 

Contributions of the A, B and C Terms to the van Deemter 

Equation. 

The linear velocity, u is obtained from, 

Lo (1.11) 

where Lc = column length 

and to = elution time of a fully excluded solute 38 

A 
and the apparent plate height, H, is given by, 

H= LC/N (1.12) 
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A 
where N= the apparent number of theoretical plates in the colutm. 

IN is calculated from one of several equivalent expressions having the 

general formula : 

N= K tR 2 or K VR 2 (1.13) 

w(t) "I (; V) 

where tR = the retention time of the measured peak, 

w(t) = the peak width (in time units), 

VR = the retention volume of the measured peak, 

w(v) = the peak width (in volume units), 

and K=a constant dependent upon the height (from the baseline) at 

which the peak width is measured. 

Equation 1.13 is derived from the statistics of a Gaussian distribution, 

the parameters of which are illustrated in Figure 1.4 and tabulated in 

Table 1.3. 

Table 1.3 Alternatives for the Calculation of Apparent Column Efficiency 

w w in terms 
of SD* 

K Method of calculation 
of NT 

w0.607 2Q If Half-width or inflection 

w 2.356 5.54 Width at half-height 
0.5 

w0.324 30 9 3a 

w0.134 4a 16 4a 

w0.044 56 25 5a 

w 4a 16 Tangential baseline width B 

WB# 66 36 Total baseline width 

SD = standard deviation 
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Figure 1.4 Illustration of the use of the Various Widths of a Gaussian 

Peak Profile for the Calculation of Apparent Column Efficiency 

The 'half-width' t 'width at half-height' and 'tangential baseline' methods 

are most commonly employed by chromatographers. 

The characteristic of the van Deemter equation which is of great 

pertinence to NB columns is that peak dispersion is totally independent of 

column radius. This deduction has been confirmed experimentally. 39 Hence, 

on-column peak dispersion is identical for both NB and conventional columns 

provided that both columns are similarly packed and are employed with the 

same phase system. In fact, NB columns have frequently been found to be 

more difficult to pack in practice 40 so in many instances the plate count, 

and hence the resolution, obtained from these columns is often inferior to 

that obtained from conventional columns of equal length operated under 

identical conditions. 
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From the independence of peak dispersion on column radius it follows 

that any theoretical calculations of the chromatographic properties of a 

separation derived using the van Deemter equation (e. g., analysis time, 

resolving power) will all be independent of column radius. This is 

an extremely important point. Theoretically, any two columns of equivalent 

length packed equally well with the same stationary phase and operated with 

identical mobile phases delivered at identical linear velocities will yield 

exactly the same resolution and analysis time. 41 

1.4.3 Source and Control of Extra-Colurm Band Disnersion25'26.42 

Extra-column band dispersion is that contribution to peak variance 

which takes place outside the column. Because this phenomenon may 

significantly degenerate the separation that has been previously obtained 

in the column itself, it is extremely important to understand the sources 

of extra-column dispersion and, consequently, how to control it. 

1.4.3.1 Origins of Extra-Column Dispersion - Viscous Flow and the 

Parabolic Velocity Profile 

Components of the apparatus such as sample injection loops, connecting 

tubes and detector flow cells can often be treated as open tubes with a 

circular cross-section through which the sample flows. In LC the flow 

nearly always can be considered to be laminar in nature. In a cylindrical 

tube laminar flow is accompanied by a parabolic velocity profile across the 

tube as illustrated schematically in Figure 1.5. Solute molecules 

introduced into a fluid stream where laminar flow exists will spread as a 

consequence of the flow profile, i. e. those molecules towards the centre- 

of the tube will migrate down the tube faster than average whereas those 
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ube 

Figure 1.5 Schematic Representation of the Parabolic Velocity Profile 

Obtained from Laminar Flow in a Cylindrical Tube 

molecules near the walls of the tube will travel down the tube slower than 

average. It follows that such relative velocities lead to a significant 

band dispersion which could probably be controlled if the dispersion can be 

quantitatively described and the inter-relationship between the parameters 

influencing the dispersion can be established. 

The theory of the dispersion of a solute injected into fluid flowing 

through a straight open tube has been developed by Taylor °3'4``, Aris°5 and 

Golay46, and has been applied to chromatography by Sternberg47 and Atwood 

and Golay. 48 By employing the Golay equation derived for solute dispersion 

in a straight tube with no retentive phase, the dispersion characteristics 

of a tube of any given length and radius can be predicted. 

The Golay equation is given by : 

H= 2Dm/u + reu/24DA (1.14) 

Initial Sample Band 
Sample After Flaw 

Band 
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where r= the radius of the tube and all other symbols are as previously 

assigned. 

If u» Dm/r, as is the case for LC generally, then longitudinal diffusion 

is negligible and Equation 1.14 reduces to : 

H= reu/2h. Dm 

From chromatographic theory the peak variance (in volume units) of a 

substance eluted from a tube with no retentive phase is defined as : 

( v) _ (irr2L)2/N 

where L= the length of the tube, 

and N= the number of theoretical plates in the tube. 

(1.15) 

(1.16) 

Hence, as N= L/H (Equation 1.12), Equations 1.15 and 1.16 may be combined 

to yield an expression for band dispersion in a straight open tube in terms 

of the tube dimensions, the solute diffusivity and the mobile phase linear 

velocity26'42 

ß(V) = Tr2r6Lu/24Dm (1.17a) 

or alternatively in terms of the tube dimensions, the solute diffusivity 

and the mobile phase volumetric flow rate, Q(=nr2u)26'49 : 

2 
v) = 'ir4LQ/24Dm (1.17b) 

A further parameter pertinent to the successful operation of an LC 

instrument is the available inlet pressure which ultimately limits the 

performance of the total LC system. The pressure that develops in an LC 

system is determined primarily by the column permeability, but components of 
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the apparatus such as detector flow cells and connecting tubing produce 

additional flow impedence. Consequently, pressure gradients are set up 

within the apparatus and these must be controlled in order to achieve 

maximal performance. The pressure drop across a tube is expressed in 

terms of the physical properties of the mobile phase and the geometry of 

the tube by the Poiseuille equation 

AP = 8nLu/r2 (1.18) 

where n= the viscosity of the mobile phase. 

Equations 1.17 and 1.18 are important in the assessment of 

chromatographic system design since the former expression enables the band 

dispersion arising in the connecting tubing and the detector flow cell to 

be calculated for a given solute in a given mobile phase, and the latter 

establishes the relationship between the physical. properties of the mobile 

phase, the tube geometry and the pressure. 

1.4.3.2 Extra-Column Dispersion - General Remarks 

Dispersion in an LC instrument was discussed first by Scott and 

Kucera49, who developed and experimentally validated equations that can be 

employed in the design of detector flow cells and connecting tubes. 

Aspects of equipment design were also considered with reference to extra- 

column dispersion by Martin et al. 5° The effect of extra-column dispersion 

on the separation performance of a column was determined by Kirkland et al. 51 

Scott and Kucera2° emphasised the necessity of appropriate low dispersion 

apparatus for NBLC while Knox and Gilbert52 have discussed extra-column 

dispersion with regard to optimisation of open-tubular pLC. The overall 
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extra-column dispersion arising in commercially available chromatographs 

and its effect on column performance has been examined by Reese and Scott. 39 

The extra-column dispersion phenomenon, because of its fundamental 

importance has been reviewed extensively in recent years, particularly with 

regard to small-diameter column technology, by several authors (e. g. 23-26, 

42,53-58). 

The observed peak dispersion (ßtot) of a solute chromatographed an an 

LC instrument may be represented by the equation 

i_i+2 a tot Qc 
xc 

(1.19) 

where 02 = the band variance resulting from within the column itself, 

and a2 = the extra-column band variance, i. e. band variance generated 

in the various components of the LC instrument exterior to the 

column bed. 

Depending on the particular LC system, (32 may be significant in which case 

the true performance of the column will be masked. Consequently, 02 must 

be minimised to enable realisation of as great a proportion of the potential 

of the column as possible. The amount of dispersion that might be 

tolerated before the separation is considered to be drastically affected 

ultimately depends upon the separation under investigation but most 

chromatographers adopt the recommendations of Klinkenberg59 and arbitrarily 

take a 5% increase in peak standard deviation, or a 10% increase in peak 

variance, as the limit of acceptability. Applying this criterion, the 

extra-column variance may be written : 

Q2 < O. 1ß2 (1.20a) 
xc -c 
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or alternatively, in terms of band standard deviation, 

xc 
< 0.5ßc (1.20b) 

from plate theory, 

Q2 = VR /N = [V0(1 + k')]2/N (1.21a) 

where VR = the retention volume of a retained solute, 

and V= the column dead volume determined from the retention volume 0 

of an unretained solute. 

The most stringent demands placed on the LC system apply with early eluting 

peaks, i. e. where k' -" 0. Hence, the following expression for ß2 taken 

where k' =0 represents the extreme case for early eluting peaks and will 

be used throughout the remainder of this discussion. 

ßý = V2/N (1.21b) 
0 

Now, the dead volume of a column is given by : 

Vo = cirr2Lc (1.22) 

where c= the column porosity (i. e., the fraction of the column volume 

occupied by the mobile phase = 0.7 for a well packed column), 

rc = the column radius, 

and Lc = the column length. 

Hence, by combining Equations 1.21b and 1.22 a2 may be expressed 

02 = c2Tr 2r4L2/N (1.23) 
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Since N= L/H (Equation 1.12) and for a well packed column H may be taken 

as equivalent to two particle diameters then : 

Q2 = 2c2Tr2r4L d 
cccp 

(1.24) 

From Equation 1.24 the on-column peak -variance of any well packed column 

may be calculated and subsequently, by using Equation 1.20a, the maximum 

tolerable extra-column peak variance may be calculated. An acceptable 

value of 02 for a conventional 25cm x 4.6mm ID column packed with 101im 

particles can be as high as 64p12 but for a 25cm x lmm ID NB column also 

packed with 1011m particles 02 must not exceed 0.15,112.42 Obviously there 

is little tolerance for extra-column dispersion in LC systems containing 

NB columns. 

Extra-column dispersion arises from four main sources : 

(i) the sample injection device (Q2), 

(ii) the injection valve/column and column /detector connecting 

tubes (Qt), 

(iii) the detector flow cell (ßä), 

and (iv) the response times of the detector (on) and the recorder (c ). 

Total extra-column dispersion can be expressed mathematically by utilising 

the principle of the summation of variances (Equation 1.1) thus : 

Qxc-Qi+ßt+Qa+QT+ßý (1.25) 

Dispersion in frits and unions can generally be assumed to be negligible if 

they are properly designed and fitted. 58 If guard columns or post-column 

reaction systems are employed then these components will also contribute 

significantly to the overall peak variance and must be considered in 

addition to the four major sources noted previously. 
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From Equation 1.25 it is clear that in order to fully assess the 

total extra-column variance of an LC system then the variance contributions 

of the individual LC components must be quantitatively determined. Scott 

and Simpson60, and later Hupe et al. 61, addressed this problem and 

experimentally determined the dispersion arising from each component of an 

LC system. For the purposes of this discussion the aforementioned four 

principal sources of extra-column band dispersion will be considered 

further. 

1.4.3.3 Dispersion in the Injection System (Oi) 

Dispersion occurring in the injector may take place due to the design 

of the injection device, due to the sample introduction technique, and due 

to the sample volume injected onto the column. Provided that the injector 

is of suitable, well-constructed design (i. e., with minimal internal volume) 

then transfer of the sample from the injection loop to the valve outlet is 

possible with negligible extra dispersion. Commonly, dispersion in the 

injection system is predominantly influenced by the limiting volume of the 

injection which can be made. 58 It is usually assumed that the contribution 

to the band variance originating from the injector is proportional to the 

injection volume47'62, i. e., 

Qi = V2/K2 (1.2 6) i 

where Vi = the injection volume, 

and `-K=a constant dependent upon the injection technique. For a 

rectangular plug injection (as encountered when' utilising a 

loop), K2 = 12. 
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If the percentage contribution of Qi to Qtot is symbolised 6i then 

Q2 = 92Q2 
i is (1.27) 

Combining Equations 1.21b and 1.26 with Equation 1.27 enables the derivation 

of an expression for the maximum tolerable injection volume, Vi(max)'- i. e., 

Vi (max) = K6IV0 /Ni (1.28) 

From this equation it is clear that the lower is the column dead volume' 

then the smaller is the injection volume that may be tolerated without 

serious loss of resolution. Consequently, NB columns, which possess low 

dead volumes, require sampling devices capable of delivering very small 

injection volumes. 

If the extra-column contribution to band broadening were solely a 

function of the injection volume then, following the recommendations of 

Klinkenberg59 that 02 should contribute no more than 10% to Qtot, i. e., 

6i = 0.1, and for a plug injection profile (K2 = 12), Vi(m) is given by : 

V1(max) = 1.1 Vo/N 

or 

(1.29a) 

VV(max) = 1.1 N"' (1.29b) 

V 
0 

Hence, fora column of 5,000 plates the injection volume should not exceed 

1.5% of the column void volume. Similarly, for columns of 10,000 and 

20,000 plates the injection volume should not exceed 1.1% and 0.8% 

respectively of the column void volumes. Thus, for standard length 

(10-30cm) columns it may be surmised that the absolute maximum injection 

volume applied to any column should be no greater than about 1% of the void 
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volume of that column. However, it should be noted that as other factors 

apart from the injection volume contribute to the extra-column dispersion 

an even smaller volume is required in practice than that predicted by 

Equation 1.29. 

Katz 42 assumed a 30% contribution to c from Qi and followed the 

recommendations of Klinkenberg which together yielded the factor 8i = 0.03. 

For a plug injection profile (K2 = 12), Katz obtained : 

Vi(max) - 0.60 Vo/N' (1.30) 

Guiochon and Colin26 assumed a 50% contribution to 02 from Qi, which 

together with Klinkenbergts criterion indicated 6i = 0.05. These authors 

utilised a practically determined value for K2 of 4 and derived the 

following expression : 

Vi(max) = 0.45 Vo/N' (1.31) 

Guiochon and Colin extended their calculation further and arrived at an 

equivalent equation expressed in more fundamental terms, i. e., 

V1(max) = 0.36 d2 
cLc 

dp (1-32) 

This equation enables the calculation of the maximum tolerable injection 

volume from the basic physical properties of the column, i. e. its dimensions 

and the mean particle size of the stationary phase. 

1.4.3.4 Dispersion in the Connecting Tubin (Qt) 

In the initial work on NB columns by Scott and Kucera20 the problem 

of dispersion in connecting tubing was eliminated by plumbing the column 
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directly into the injection valve and the detector flow cell. Unfortunately, 

this approach is rarely possible in practice because of the variations in 

column end fitting dimensions and the practical difficulties encountered 

with the architecture of most commercial equipment. The majority of 

marketed PISLC systems are supplied with connecting tubing and zero dead 

volume (ZDV) unions for column installation, hence dispersion in connecting 

tubes must be considered. 

As has already been shown earlier in this section, dispersion in a 

straight open tube, at, may be expressed in the following terms 

(Equation 1.17) : 

ßt = ýZr. Ltu/24Dm = 7rr4Lt tQ/24Dm 

where rt = the radius of the tube, 

and Lt = the length of the tube. 

Hence, the extra-column dispersion arising from the connecting tubes can 

be calculated directly from the tube dimensions, the mobile phase linear 

velocity or volumetric flow rate and the diffusivity of the unretained 

solute in the mobile phase. 

Several researchers"' 63-6 5 have described the geometrical deformation 

of connecting tubing in various ways (squeezing, twisting, coiling, bending, 

etc. ) in order to introduce radial convection (or secondary flow) and so 

disrupt the parabolic flow profile. " This phenomenon significantly improves 

radial mass transfer and consequently reduces the longitudinal dispersion 

characteristics of the tube. Katz and Scott65 showed that serpentiform 

(or zigzag) tubes were the most effective configuration for reducing 

variance (they obtained values of only 0.051jl2cm 1) whilst generating 

relatively little back pressure (ca. 5 p. s. i. cm-1 at Q= 3mlmin'1). 



- 33 - 

Equation 1.17 therefore provides a maximum value for dispersion in 

the connecting tubing. Frequently the actual value is less than that 

predicted because of the incidence of increased radial convection resulting 

from the departure from linearity of such tubing used in practice. 

1.4.3.5 Dispersion in the Detector Flow Cell (Qä) 

Dispersion that occurs in detector flow cells often contributes 

greatly to the total extra-column dispersion because detection systems 

frequently require significant volumes in which to achieve satisfactory 

detection sensitivity. Indeed, this is the case for optical detectors 

such as visible/ultra-violet (UV) and fluorescence (FL) monitors which are 

commonly employed with LC. 

Since a detector flow cell can often be considered as a straight 

open tube, the equation derived by Scott and Kucera49 to describe dispersion 

under such circumstances (Equation 1.17) is applicable, i. e., 

ßa = ir2r66 6 Ldu/24Dm = irr4LaQ/24Dm 

where r6 = the radius of the flow cell. 

and L6 = the length of the flow cell. 

It should be noted that this is only a first approximation for a flow cell 

since the behaviour of a solute band eluted through a very short, narrow 

tube is far more complicated4e'66'67 than is discussed here. From the 

above expression, equations have been produced to permit geometrical 

parameters of the flow cell to be calculated in order to ascertain the 

maximum cell volume, V6(max)' that may be tolerated without significant 

loss of column efficiency. 
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If the contribution of a6 to ßtot (as a percentage) is symbolised 

8S then by Equation 1.27 : 

Q2 = e2 Q2 

66c 

Combining Equations 1.17 and 1.27 yields an expression for the maximum 

cell radius, r6(max)' that can be tolerated, i. e., 

UI 0 r6( max) = 24826D 2 

Tr2NL6 u 

1/6 
2+82-D V2 

1ý4 

0mo 
\7rNLQ 

(1.33) 

Alternatively, this equation may be written in terms of maximum cell 

length, L6(max), i. e., 

2 V2 FM V2 LS(max) =2 66DmVo =2 6jo 

7r2r6N u irr4NQ 

The maximum tolerable cell volume may be elucidated from any of these 

(1.34) 

equations by utilisation of the expression for the volume of a cylinder, 

viz. V= nr2L. Practical constraints exist on the range of values of the 

cell length and radius that may be employed, e. g. the smaller is the cell 

radius then the greater is the susceptibility of the cell to physical 

blockage. Furthermore, for optical detectors spectroscopic properties 

must also be considered in selecting suitable cell dimensions (see Section 

1.5). 

Katz 42 again assumed a 30% contribution to 62 from Q2 and that Q2 xc S xc 

should contribute no more than 10% to Q 
ot59' 

i. e. 66 2=0.03, which yielded 

a value of 0.72 for 24e62. Scott67 followed similar guidelines except that 

a 90% contribution to a2 from Qä was assumed, i. e. eä = 0.09, and obtained 
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a factor equivalent to 2462 of 2.21. The difference in numerals in the 

basic equation reported by both researchers is accounted for solely by the 

difference in percentage contribution of Qa to c arbitrarily assigned by 

each author. 

Following the assumptions of Katz and by utilising Equation 1.33 with 

the assignment of typical values for certain parameters (viz. 

Dm =3x 10-5cm2s-1, La = 1.0cm and u=0. lcros-1), the maximum cell radius 

(and consequently the maximum tolerable cell volume) may be calculated for 

any well packed column. Maximum cell volumes for some typical column 

geometries determined in this way are presented in Table 1.4. 

Table 1.4 Maximum Tolerable Detector Flow Cell Volumes for some Typical 

Column Geometries Calculated Using Equation 1.33 and Following 

the Guidelines of Katz. 

Column 
Lc dc dp v0 N L6 rU(max) V6(max) 

(=crr2L) (=L/H=L/2d 
Typ ccp 

(cm) (mm) (um) (ml) (cm) (mm) (u1) 

Conventional 25 4.6 10 2.9 12,500 1.0 0.50 7.7 

NB (2mm) 10 2.1 5 0.24 10,000 1.0 0.22 1.6 

NB (1mm) 25 1.0 10 0.14 12,500 1.0 0.18 1.0 

� 
The figures clearly show that an 8 fold reduction in cell volume 

(from 8u1 to lul) is necessary when simply reducing the column ID from 

4.6mm to 1.0mm in order to realise 90% of the potential column efficiency 

for early eluting peaks. Hence, NB columns require micro-flow cells of 



- 36 - 

< ipi volume for efficient operation. Guiochon and Colin2 6 point out 

that the maximum tolerable detector cell volume is approximately half the 

maximum tolerable sample volume that can be put onto any particular 

column, i. e., 

vo(max) - 0.5 i(max) (1.35) 

All the equations and calculations regarding LC detectors have 

assumed a tubular cell geometry encapsulating a parabolic velocity profile. 

For all flow cells there is a certain degree of turbulence that occurs 

within the cell due to the manner in which the mobile phase enters the cell. 

This turbulence gives rise to increased radial diffusion which in turn 

produces favourable reduced dispersion. However, this effect is often 

accompanied by increased detector noise, especially in optical detectors, 

which can result in poorer detection sensitivity. There are detectors on 

the market in which the turbulence giving rise to reduced band dispersion 

also promotes improved detector sensitivity. Such an instrument is the 

wall-jet amperometric electrochemical detector (ECD) and this type of 

detector is discussed in great detail in Chapter 2. 

1.4.3.6 Dispersion due to the Detector and Recorder Electronics (Q2,02 ) 
'r Q 

It is now well recognised that the response behaviour of the detector 

and recording system can seriously impair the apparent column efficiency 

in addition to volume-related contributions from the sample injection 

system, connecting tubes and detector flow cell. The contributions of the 

detector and recorder tine-related variances to the extra-column variance 

arise due to the finite response time of the detector sensors (e. g. 
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photomultipliers, electrodes, etc. ) and also due to the process of 

amplification and recording of the electrical signal generated in the 

detector. 

Response behaviour of any electrical or electronic instrument is 

described by one of two terms, response time (RT) or time constant (TC). 

The response time of an instrument is defined as the time taken for the 

physical response of that instrument to come to rest at a new value after 

the quantity that the instrument measures is changed abruptly. 6e The time 

constant of an instrument is defined as the time taken for the instrument 

to register a given percentage (usually 63.2%) of its final reading in 

reaction to an abrupt change in input signal. 68 Response time and time 

constant are represented in graphical form in Figure 1.6. 

Instrument 
Response 

100 r--"- -"-"- 

ý 

63.2 % ----- -i------ 
"H H to 

. r4 H 

a! 11 1 1 

0%- 
1 

----- ; ----- I 

TC -ºJ 
Time 

4- RT -ºý 

Figure 1.6 Illustration of the Origin of Response Time (RT) and Time 

Constant (TC) of an Electronic Instrument. 
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Detectors normally exhibit an exponential response (as depicted in 

Figure 1.6) resulting from a capacity resistance network inherent in the 

amplifier circuitry. It is the amplification of the signal, rather than 

its generation, that is the predominant factor which gives rise to detector- 

related band-broadening. This is particularly so when, as frequently 

occurs, an increase in the detector time constant is purposely introduced 

as a filter device in order to reduce short-term noise. 

Potentiometric recorders do not have a response curve of the form 

presented in Figure 1.6. Recorder response is linear with respect to time 

because of the feedback circuitry incorporated in the instrument in order 

to provide output stability. Generally, for modern recorders employed 

with HPLC systems operated at mobile phase linear velocities near optimum, 

the recorder response time is insignificant compared with that of the 

detector. Usually it is only when the HPLC is operated at mobile phase 

linear velocities considerably in excess of optimum, i. e. when conducting 

fast LC, that the recorder contributes significantly to the extra-column 

band broadening. Since only the former case is to be discussed here, the 

contribution of the recorder can be considered to be negligible. 67 

The influence of detector response time on column efficiency has been 

examined by several researchers 50'67'69-71 and has been reviewed by Guiochon 

and Colin26, Katz 42 and Kucera. 54 It is well recognised that because slow 

detector (and/or recorder) response times can significantly distort the 

shape of a peak (particularly for early eluting solutes) by decreasing peak 

height and increasing peak width, it is essential to be able to determine 

the maximum permissible detector and recorder response times that, can be 

tolerated for any given LC column. 
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If the percentage contribution of the dispersion arising from the 

detector (QT) and the recorder (o) is designated 82 then by Equation 1.27 

ýT(t) + t32 -- enac(t) (1.36) 

As was stated previously, when operating at mobile phase linear velocities 

approaching optimum the recorder contribution to band variance can normally 

be considered to be negligible, i. e. a2 » Qß. 67 Hence, by substituting 

Equation 1.21b into Equation 1.36 and correcting for time variance, the 

maximum permissible detector response time approximates to : 

aT(t) = e2v2/NQ2 (1.37) 

or 

, t(t) = Yo/N'Q = eýt0IN' (i. 3$) 

Scott67 assumed the extreme condition of the entire extra-column dispersion 

arising from the detector response time. Hence, a 10% increase in peak 

variance (or 5% increase in peak width) was deemed tolerable59 and values 

of 62 = 0.1 and, consequently, 6¢ = 0.32 were calculated. By utilising 

Equation 1.38 with this value for 6,, the maximum permissible detector 

response time may be determined for columns of different dimensions, operated 

at various mobile phase volumetric flow rates. Typical detector response 

times are calculated and presented in Table 1.5. 

The calculated maximum values of aT(t) in Table 1.5 show that the 

maximum tolerable detector response time is independent of the column ID 

but is proportional to the column length and the particle size of the 

packing (to the first approximation of H= 2dp used here), and is inversely 
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Table 1.5 Maximum Permissible Detector Response Times for some Typical 

Column Geometries Calculated Using Equation 1.38 

Td d Column Lc 
cp 

v0 NuQ OT{max)(t) 
Type (=cirrcLc) (=L/2dp) 

(cm) (mm) (}im) (ml) (cros 1) (mlmin 1) (S) 

Conventional 25 4.6 10 2.9 12,500 0.1 1.0 0.5 

NB (2mm) 25 2.1 10 0.61 12,500 0.1 0.21 0.5 

NB (2mm) 25 2.1 5 0.61 25,000 0.1 0.21 0.35 

NB (2mm) 10 2.1 5 0.24 10,000 0.1 0.21 0.2 

NB (1mm) 25 1.0 10 0.14 12,500 0.1 0.05 0.5 

NB (1mm) 25 1.0 10 0.14 12,500 0.85 0.4 0.06 

proportional to the mobile phase linear velocity; in fact, 

ßT = f(L dpi. uý1) (1.39) 

From this data it may also be surmised that the. contribution of the detector 

response time to the column dispersion is minimal provided that the column 

in use is operated at the optimum linear velocity. It becomes more 

significant when shorter columns or smaller stationary phase particles are 

employed, and especially so if the column is operated at high linear 

velocities. High linear velocities are practical with NB columns because 

they may be generated at moderate volumetric flow rates with acceptable 

back pressure (see Equation 1.18, the Poiseuille Equation). High linear 

velocities are desirable in some instances where it is feasible to sacrifice 

some separation efficiency in favour of reduced analysis time and in this 

way an element of "fast NEC" may be introduced. 
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In order to generate the'figures in Table 1.4 it was assumed that 

the detector response time accounted for the entire permissible extra- 

column contribution to band dispersion. Detector response time ideally 

should be a factor of 10 or more better than calculated here to allow for 

contributions from other sources. In practice, most detectors have 

response times of greater than 0.4 sec which: limits the speed of analysis and 

the resolution that can be attained. Current detector technology lags 

seriously behind column technology. 53 

In addition it should be noted that the contribution to extra-column 

dispersion arising from the recorder response time was considered to be 

negligible for the aforementioned calculations. In many instances this 

approximation is not valid in which case the calculated restrictions in 

response time presented in Table 1.5 should be applied to a combination of 

the detector and the chart recorder. 

1.4.3.7 The Relationship Between Extra-Colurm Dispersion and Column Radius 

The primary disadvantage of the use of NB columns that arises from 

their small dimensions is that specially designed LC equipment having low 

dispersion is required to fully realise all the potential advantages they 

might provide in practical applications. It follows that a function 

defining a relationship between extra-column dispersion and the column dead 

volume, and subsequently the column radius, would be valuable for careful 

column/LC system matching. 

Throughout this theoretical treatment of extra-column dispersion it 

has been shown that the magnitude of a2 that can be tolerated is primarily 

determined by-the column dead volume. Katz42 developed an equation based 
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on this observation which allows rapid determination of permissible extra- 

column dispersion with a well packed column of any dimensions and particle 

size, i. e., 

xc = 0.99 yc2Lc dP (1.40) 

Conversely, this relationship allows the column parameters that may be used 

with a given chromatographic apparatus to be calculated. 

1.4.4 Sample Sensitivity24'2s 

The principal theoretical advantage of NBLC over. conven tional LC of 

particular interest to this project is that of increased mass sensitivity. 

There are two important characteristics of an LC system concerning 

sample sensitivity, viz. mass sensitivity and concentration sensitivity. 

The former is defined as the minimum mass of a solute that can be detected 

when the peak height is equal to twice the background noise level, and the 

latter is the smallest concentration of solute that can be detected whilst 

satisfying the same criterion. The mass sensitivity is crucial when the 

total mass of sample is limited, even when sample concentration methods 

are available. 

1.4.4.1 Mass Sensitivity 

Consider a peak of height equivalent to twice the noise level being 

sensed by a detector having a concentration sensitivity of X6. If m is 

the mass of solute giving rise to the peak, and the peak volume is 4 (V) 

(where °(v) is the volume standard deviation of the peak), then, 

2m/4Q(V) = Xa (1.41) 
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Therefore, 

m= 2Q(v)X6 (1.42) 

Notiz, from plate theory, 

6(v) = vR/rr1 (1.43) 

Hence, 

2VRX6 /N' (1.44) 

Now, 

VR = Vo(1 + k') (1.45) 

and Vo = ETrr2Lc (Ec, uation 1.22) 

Consequently, Equation 1.43 may be written : 

m= 2ETrr2Lc (1 + k') Xd (1.46) 
c 

N' 

Equation 1.46 clearly indicates that the minimum detectable mass is 

directly related to the square of the column radius. Hence, reducing the 

column ID from the conventional 4.6mm to 1.0mm results in a 21 times 

improvement in mass detectability, assuming that both columns are packed 

equally well. This constitutes a very significant improvement in 

performance. 

1.4.4.2 Concentration Sensitivity 

The concentration sensitivity of a chromatographic system, XC, can be 

derived directly from the mass sensitivity. The minimum detectable solute 
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concentration is yielded by the ratio of the minimum detectable mass of 

solute and the maximum permissible sample volume. Assuming that a 10% 

increase in extra-column dispersion (or 5% increase in peak standard 

deviation) is the maximum that can be tolerated without serious loss of 

resolution59, then the absolute maximum sample volume that may be placed 

on a column, Vi(max)' is given by Equation 1.29a : 

V. (max) =1 .1 V0 IN' = 1.1 ac(v) 

The system concentration sensitivity is obtained by combining Equations 

1.42 and 1.29a, i. e., 

Xý = 2oc(v)X6/1.1 ac(v) = 1.8 =1 . 8X (1.47) 

Equation 1.47 shows that concentration sensitivity of a chromatographic 

system is independent of the column dimensions and is solely dependent on 

the detector sensitivity. Furthermore, Scott2'` demonstrated that the 

volume of sample that has to be employed to achieve this sensitivity is 

proportional to the square of the column radius. Thus, NB columns possess 

higher mass sensitivities than conventional columns and, in addition, 

require less sample volume to achieve the same concentration sensitivity. 

These properties are extremely desirable for solving the problem of the 

determination of trace components in a sample of severely restricted size 

such as is frequently encountered in the field of clinical analysis. 

1.5 Instrumental Aspects of Narrow-Bore Liquid Chromatography 

In Section 1.4 the need for small scale apparatus with very low 

extra-column dispersion, in order to achieve the advantages in performance 
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theoretically attainable from NB colunns, was emphasised. The practical 

design characteristics of equipment suitable for the efficient operation 

of NB columns will now be discussed. 

1.5.1 Pumps 

Volume flow rates considerably lower than those applied to 

conventional columns are necessary for NBI, C (viz. 5-500U1min-1 of. 

0.1-lOmlmin-1). A pump employed for NBLC must be accurate, precise and 

pulse-free at these low flow rates which is fairly difficult to achieve in 

practice. Scott and Kucera20, in their pioneering work on NBLC, modified 

a commercial dual piston reciprocating pump to deliver flow rates as low 

as 21ilmin-1. Other researchers since have adopted a similar approach but 

many conventional reciprocating pumps do not function properly at such low 

flow rates. This has primarily been attributed to the occurrence of 

considerable leakage past the check valves during the seating process over 

the lengthy cycle period of piston chamber empty and refill. 

Manufacturers have avoided this -problem in the new generation of LC 

pumps by significantly reducing the piston stroke volume and/or by 

radically modifying or redesigning the pump electronic drive circuits. 

A few pumps capable of delivering low flow rates with precision and accuracy 

began appearing on the market in 1982. By early 1984 several more 

instruments were available, a selection of which are listed in Table 1.6. 

Most common are dual piston reciprocating pumps or single piston rapid- 

refill pumps which generally incorporate a pulse dampener. 

The comparatively large internal volume of many pulse dampeners, 

coupled with the low flow rates employed with NBLC, causes a 

significantly langer delay to the mobile phase change- 
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Table 1.6 Selected Commercial Low Flow Rate Pumps Available in 

January 1984 

Manufacturer Model Flow Rate Range 
(111mßn-1) 

Pump Type 

Beckman 112 10-10,000 Single Piston 

Gilson 302 5-5,000 Single Piston 

Hewlett Packard HP 1090 1-5,000 Piston Diaphragm 

JASCO Familic-100N 5-5,000 Syringe 

LDC-Milton Roy MicroMetric 1-559 Syringe 

LKB-Bromma 2150 10-5,000 Dual Piston 

Perkin Elmer Series 4 10-9,900 Dual Piston ? 

Pye Unicam PU 4010 100-9,900 Dual Piston 

Shimadzu LC-5A 10-9,900 Single Piston 

Varian 5560 10-15,000 Single Piston 

1Taters 590 10-15,000 Dual Piston 

over than is common for conventional LC. However, this minor disadvantage 

is considered to be acceptable for the vast majority of problems where 

isocratic elution is to be employed though is unacceptable where gradient 

elution is required. 

The greatly reduced retention volumes obtained from NB columns make 

syringe pumps more attractive than they are for conventional LC since many 

separations may be completed before the pump reservoir requires replenishing. 

Mobile phase compressibility still remains a problem with syringe pumps but, 

despite this drawback, commercial models are available specifically for NBLC. 
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The JASCO Fa. nilic-100N was developed from an original construction used 

by Ishii and associates (e. g. 8) for their many contributions to NB and 

uLC. 

1.5.2 Injectors 

As was noted in Section 1.4, sample injection is one of the major 

sources of extra-column dispersion. Because of this, design and 

construction of the injector to high specification is particularly crucial 

for NBLC. There are two different sources of dispersion in an injection 

system. First, there is a contribution directly proportional to the 

magnitude of the injection volume (since the greater the volume injected 

then the greater is the width of the band introduced onto the column). 

This contribution is given by Vi/12 for a cylindrical plug injection and, 

it may be noted, is totally independent of flow rate. Typical injection 

volumes employed in NBLC are between 0.05 and 5. OUl. 

The second source of injector dispersion is a consequence of the 

design and construction of the injector itself. The transport of the 

sample plug out of the injection loop and through connecting channels 

results in distortion of the ideal cylindrical shape yielding leading and 

trailing edges to the band. The presence of unswept dead volumes can 

exacerbate this distortion. This second source of dispersion usually 

comprises an insignificant part of the total variance generated in injection 

valves in conventional LC systems. However, as the injection volume is 

reduced commensurate with reduction in column ID, these hardware-originating 

contributions become progressively more significant. Consequently, the 

correct design and construction of the micro-injection system for use-with 
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NB columns, in addition to the actual sample volume introduced, is of 

prime importance. 

S1ais and Kourilovä72 identified these two separate dispersion 

contributions resulting from the injector and demonstrated that the short 

connecting channel in the valve is the dominant contributor to the injector- 

related variance in micro-injection valves. It was observed that the 

variance contribution of the capillary channel is strongly flow dependent 

as is predicted by Equation 1.17. This dispersion source is independent 

of the injection volume and hence represents a limit below which reducing 

the injection volume will not reduce the injection dispersion. 

Certain injection valve manufacturers have addressed the problem of 

designing and producing low dispersion devices suitable for NBLC. By the 

beginning of 1984 a-few small-volume valves had become available, a 

selection of which are presented in Table 1.7, together with the range of 

injection volumes that are obtainable with these models. 

Table 1.7 Selected Commercial Small-Volume Injection Valves Available 

in January 1984 

Manufacturer Model Injection Volumes Available 
(ul) 

Rheodyne 7410 
(Sunnyvale, CA., USA) 

Rheodyne 7413 
(Sunnyvale, CA., USA) 

Valco Instruments C14W 
(Houston, TX., USA) 

0.5,1.0,2.0 

0.5,1.0,5.0 

0.06,0.1,0.2,0.5,1.0,2.0 
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Other specialist valve manufacturers, e. g. Specac (Orpington, Kent, 

UK) and Negretti & Zambra (Southampton, Rants., UK) have since introduced 

comparable products onto the market. 

All these commercial valves possess internal loops, where the loop 

comprises either a groove cut directly into the valve rotor or a short 

capillary tube connected directly to the rotor. Manufacturers have been 

careful to reduce the dimensions of the connecting channel between the loop 

and the valve outlet to a practical minimum and to eliminate unswept dead 

volume in order to reduce dispersion from this source as far as is 

practicable. 

1.5.3 Connecting Tubing andUnions 

Short lengths of tubing are usually used to couple the injection 

valve to the column and the column to the detector. This tubing contributes 

to extra-column dispersion, a contribution that becomes progressively more 

significant as the column ID is reduced. Very occasionally it is possible 

to eliminate connecting tubing altogether by plumbing the column directly 

into the injector and the detector flow cell20 but such opportunities are 

rare because of practical difficulties (e. g. incompatibility of column end- 

fitting dimensions, injection valve mounting restrictions, detector flow 

cell geometry, etc. ). Hence, the use of connecting tubing is still 

widespread. In general, connecting tube dimensions should be minimised 

while ensuring that the probability of tube blockage and the generation of 

back pressure are not unacceptably high. Tubing of 0.254mm (0.0101? ) ID is 

commonly employed for conventional LC but tubing of 0.13-0.18mm (0.005-0.007") 

ID composed of 316 stainless steel (S/S) or PTFE is now readily available 

from many HPLC suppliers and is recommended to fulfill the aforementioned 

criteria for IIBLC. 
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It has been shown that serpentif orm geometry is the most favourable 

in reducing the dispersion contribution of the connecting tubing65 but 

tubing is not generally available in this form. As a compromise straight 

tubing may be bent and/or twisted to achieve reduced dispersion and to 

facilitate coupling with minimum practicable tubing length. 

Unions comprise a further source of extra-column dispersion and 

should be avoided wherever possible. Sometimes a unicn is required in 

order to link the column exit tubing to the detector flow cell inlet 

tubing. It has been shown that such a union can contribute significantly 

to the dispersion. 60 Where a union is necessary, use of a "drilled- 

out" coupling is advisable so that the two tubes make a butt-to-butt 

connection and dead volume is minimised. Optimum placement of ferrules 

is essential to achieve minimum dead volume at all couplings. 

1.5.4 Column End-Fittings 

Column end-fittings are a further potential source of band dispersion 

in the LC system. The end-fittings constitute a part of the hardware of 

the column but their contribution to band dispersion is external to that 

of the packed bed itself and therefore is considered to be extra-column 

dispersion. The function of the inlet end-fitting is to spread the 

incoming mobile phase stream (plus sample) evenly across the top of the 

packed bed. Conversely, the role of, the outlet end-fitting is to collect 

uniformly the eluting mobile phase plus solute bands and funnel them into 

the narrow exit tube. Many types of end-fitting are available, a 

selection of which are illustrated in Figure 1.7. 
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Male Union Male Union Male Union Female Union Female Union 
(Drilled out) 

STANDARD LDV ZDV LDV ZDV 

Figure 1.7 Selected Column End-Fitting Configurations 

The very small peak volumes obtained from NB columns enhance the 

problem associated with dead volumes in these end-fittings and demand that 

the design and construction of column terminals be very precise. The 

contribution to dispersion by column end-fittings can be made very small 

by careful design. Satisfactory end-fittings for PNB columns should have 

minimum dead volumes and wherever possible the connecting tubes should be 

directly in contact with the column end frits. In order to comply with 

this criterion, only zero dead volume (ZDV) fittings are acceptable; neither 

low dead volume (LDV) nor standard fittings permit the connecting tubing to 

butt up against the column end frit. , 

1.5.5 Detectors 

The use of PNB columns with their associated small volume peaks 

requires the use of detectors with comparably small dispersion character- 

istics in order to realise the full potential of such columns. This 
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reduction in dispersion must be accomplished without compromising the 

sensitivity of the detection system. The greatest problem facing 

manufacturers involves reducing the detector dispersion by a factor of 

10 to 100 while maintaining high detector performance, i. e., high 

sensitivity and low noise. Some commercial conventional LC detectors 

could simply be modified to operate with cells of smaller volume and lower 

dispersion without reduction in detector sensitivity (e. g. 20). This 

advantageous situation arises where the signal to noise (S/N) ratio is 

maintained, i. e., where the reduction in detector signal is accompanied 

by an equivalent reduction in detector noise. However, for most commercial 

detectors a complete redesign of the detector optics (where appropriate), 

the flow cell and auxiliary connecting tubing was required before 

compatibility with NB columns was approached. It should be emphasised that 

cell volume is not the sole determinant of detector contribution to 

dispersion. Other contributing factors include cell design, inlet/outlet 

configurations and the existence of incoming-stream thermal equilibration 

volumes. Hence', the chromatographically important parameter to be used 

for comparison of detectors of different manufacture or design is the total 

contribution of the detector system to peak dispersion, and not merely the 

detector cell volume. 

Significant reductions in detector cell volume and consenuen¬ly in 

detector dispersion have been reported in the literature for the three major 

LC detectors, viz. visible/ultra-violet (UV), fluorescence (FL) and 

electrochemical (EC). The W detector has received the most attention for 

NB column work as it has for conventional LC. Manufacturers have been 

obliged to give careful consideration to the means by which the UV detector 

cell volume is reduced because, by Beer's Law, the detector response or 
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signal is directly proportional to the path length of the cell. Hence, 

it is important to reduce the cell radius in preference to the cell length 

(assuming that the cell is illuminated longitudinally) in order to maintain 

signal intensity. However, there are practical limitations to miniatur- 

isation. The radius of the cell must not be reduced so far that the 

probability of cell blockage or the generation of back pressure become 

unacceptably high. The severe restriction on cell volume imposed by NB 

column geometry has generally meant that some path length has had to be 

sacrificed in addition to cell radius and consequently some detector 

response is lost. Reduction of cell radius promotes a further practical 

difficulty, that of lamp/cell/photomultiplier alignment which becomes more 

and more critical with smaller and smaller cell radius because poorly 

aligned optics result in increased light scatter. The effect of miniatur- 

isation on detector noise is largely unpredictable; much depends on the 

cell geometry together with temperature stability, flow stability, and 

characteristics of the electronics. However, in the majority of cases a 

reduction in cell volume gives rise to an increase in noise due to problems 

such as the aforementioned alignment difficulty. 

Several small-volume W detectors have been marketed for NBLC generally 

possessing cell volumes of between 0.5 and 2.5pl. Sagliano et al. 57 

discussed the relative merits of different cell volumes for use with a 

25cm x lmm ID column packed with 101im diameter particles. In their 

experience, the use of a 2.4u1 cell offered a reasonable compromise between 

extra-column dispersion and sensitivity for practical separation problems 

when using a column of these dimensions. 

Fluorescence detectors provide different challenges where miniatur- 

isation is concerned. Fluorescence response is directly proportional to 

I 
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both the incident (or excitation) light intensity and the cell path length, 

hence, reduction in cell volume may be compensated for in part by 

condensation of the incident light beam into the smaller volume by means of 

lenses. This approach has been adopted almost universally by manufacturers 

of NBLC FL detectors. The direct dependence of detector response on 

incident light intensity makes laser excitation very attractive for small 

volume systems. This idea has been exploited in research laboratories but 

at the outset of this project ITB laser FL detectors were not commercially 

available. 

Sources of noise in FL detectors include incident light scattered 

from the cell walls and from suspended particulate matter, stray light and 

dark current (which is strongly influenced by temperature). Noise arising 

from light scatter and dark current would be expected to increase with 

reduction in cell radius, but all these factors can be controlled to a 

substantial degree with careful detector design so providing a detector 

which goes some way towards satisfying the stringent criteria of high 

sensitivity and low dispersion required for IELC. Commercial FL detectors 

with cell volumes of typically ca. 2ul were available for NB work from a 

few manufacturers at the commencement of this work. 

Electrochemical detectors (ECDs) are becoming increasingly popular 

for conventional LC because of their intrinsically high sensitivity and 

selectivity. These properties are also desirable for application to many 

NBLC problems and consequently manufacturers have produced ECDs that are 

suitable for use with this column geometry. In EC detection the detector 

signal is related to the working electrode area, the mobile phase linear 

flow velocity and the cell geometry. The linear dependence of response 

on electrode area would suggest that large electrode systems would be 
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favoured but detector noise has also been found to increase with electrode 

area. In fact, the best S/N ratios (sensitivities) are obtained by 

reducing the electrode area, i. e., by miniaturising the electrode. 

Miniaturisation of the flow cell in its entirity is also beneficial 

because response increases with linear velocity which itself increases 

with reduced cell thickness. Cell miniaturisation exactly matches the 

requirements of tNB columns hence the ECD is ideally suited for use with 

NBLC. 

Cell geometry intrinsically influences detector response. Geometries 

that promote turbulence within the cell serve to promote the detection 

process. That same turbulence also gives rise to reduced dispersion which, 

as has already been shown, is beneficial to NBLC, 

There is one unfavourable consequence that arises from the signal 

dependence on mobile phase linear velocity, namely that the ECD is very 

flow sensitive. Hence, even more stringent specifications are imposed 

upon the pumping system to be pulse free otherwise an increase in noise 

and a consequent decrease in overall sensitivity can be expected. 

Commercial ECDs have apparent flow cell volumes of as little as 

0.5111 and a range of models are available. The ECD is discussed in great 

detail in Section 2.1. 

1.5.6 System Extra-Column Dispersion - General Remarks 

The total instrument dispersion governs the actual diameter of the 

column that can be used effectively with that chromatographic instrument. 

Smaller values of total extra-column dispersion permit the use of smaller 

bore columns. Hence, the extent to which the extra-column dispersion 
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needs to be reduced is motivated by the severity of the limitation of 

sample size or the degree of solvent economy desired. 

A11 sources of extra-column dispersion are detrimental to the 

chromatography, causing additional broadening, and hence dilution,, of the 

solute band. However, increases in the volume injected result in increased 

amounts of eluting solute, in addition to an increased variance contribution. 

Thus, the sensitivity of the method is not degraded although resolution may 

be impaired for closely eluting peaks. From this argument it may be 

concluded that the appropriate analytical strategy is to reduce the 

dispersion contribution from all sources other than the injector to levels 

significantly below that permitted for the total extra-column contribution. 

This allows the largest possible contribution from the injection step that 

is still within the 10% guideline. Hence, the maximum sensitivity is 

achieved by applying the largest possible injection volume. 73P74 

Extra-column variance maxima for efficient use of typical NB columns 

are calculated and presented in Table 1.8. 

Table 1.8 Tolerable Instrument-Related Dispersion for Various P: arrow- 

Bore Columns 

LddvN0620x2 
ccpocc xc c 

(=e, rr2Lc) (=L/H Lc/2dP) (=Vo/Pii) (=0.162) 

(cm) (mm) (um) (ml) (111) (u12) (ul) (u12) 

25 2.1 10 0.61 12,500 5.46 29.8 1.73 2.98 

10 2.1 5 0.24 10,000 2.40 5.76 0.76 0.58 

25 1.0 10 0.14 12,500 1.25 1.57 0.39 0.16 
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In order that the major part of the extra-column variance may be 

accounted for by the injection volume, contributions due to the rest of 

the instrument must be significantly less than these values, say in the 

general region of 10% of a2 (i. e., ca. 0.015-0.3p12, depending upon the 

column dimensions). Measurements of extra-column dispersion have been 

made using both home-made and commercial instrumentation by several workers 

(e. g. 12,39,60,61,72,75-78). Extra-column variances of as little as 

0.8u12 for early eluting peaks have been achieved on commercial equipment 

with extensive adaption60 but many commercial liquid chromatographs yield 

much higher values than this. 39 Even a value of 0.8p12 for C; z is 

unsatisfactory for the efficient operation of many short NB columns (see 

Table 1.8), let alone enabling maximum sample volume to be introduced. 

Many small volume systems have been assembled and have achieved the benefits 

of solvent economy and high mass sensitivity from NB columns with moderate 

success. Not surprisingly however, no system has yet approached 

theoretical limits. 

1.0 Commercial Columns for Narrow-Bore Liquid Chromatography Available 

in January 1984 

Commercial NTB column hardware is generally composed of 316 stainless 

steel (S/S) or glass-lined S/S although occasionally PTFE is the 

construction material of choice. Several types of column end-fitting are 

available from various manufacturers. For the majority of the work 

reported in this dissertation 'Swagelok' female ZDV fittings were employed 

(see Section 1.5.4, Figure 1.7). The other end-fitting design used was 

that of Shandon-Southern (Runcorn, Cheshire, UK). In addition to NB 

columns of conventional format, cartridge-type columns have recently been 
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marketed by manufacturers such as Brownlee Laboratories (Santa Clara, CA., 

USA) and Chrompack (London, UK). This novel column architecture was 

not generally available in NB format at the outset of this project and so 

will not be considered further here. 

When NB columns began to appear in 1981 manufacturers were divided 

between lmm and 2mm ID, some producing the former (e. g., Whatman, Maidstone, 

Kent, UK; the "Micro-B" range) and others producing the latter (e. g., 

Waters, Northwich, Cheshire, UK). lmm and 2mm IDs were the two most 

popular column diameters, a fact directly attributable to the availability 

of suitable S/S tubing of these dimensions. The lmm ID format provides 

a higher theoretical mass sensitivity (21x better than conventional 4.6mm 

ID columns) and better solvent economy but is comparatively difficult to 

pack efficiently and requires higher specification instrumentation with 

which to utilise the column effectively. Although the 2mm ID format 

provides less theoretical mass sensitivity (5x better than conventional 

4.6mm ID columns) and less solvent economy than the lmm columns, they are 

easier to pack efficiently and it is relatively easy to modify existing 

instrument design principles to meet the specifications required. By 

January 1984 some suppliers were offering a choice of column ID to the 

chromatographer. 

Initially, only a limited range of stationary phases were available in 

commercial pre-packed NB columns but by the outset of this project the 

range was expanding rapidly. Table 1.9 provides a comprehensive overview 

of which pre-packed PNB columns were on the market in January 1984. The 

major manufacturer of lmm ID columns is seen to be Whatman whereas 2mm ID 

columns are produced by several companies including Beckman/Altex, Waters 

and : TLC Technology. For the work reported herein all pre-packed columns 
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Table 1. Pre-Packed Narrow-Bore Columns Commercially Available in the UK in January, 1984 

Supplier Manufacturer ID 
(mm) 

OD 
(in) 

Lc 
(cm) 

Construction 
Material 

dp 
(Jim) 

Stationary Phases 

Alltech ? 1 1/16 25.50 Flexible S/S§ 5,10 "u bore series". Micromphere 
(Carnforth, Lanes. ) < 25 to order 5102, Clg, C8 & C2 as 

standard. Custom-made columns 
available with any packing 
material. 

? 2.1 2 10,15,20 S/S 3. 5 "Solvent miser series" 
S1021 C1S, C8 & CN 

m ache  'Ihatman 1 1/6 25 Glass-lined S/S 3. 5,10 Zorbax materials 
(Luton, Beds. ) 

Beckman/Altex 2 1/e 25 S/S ? Ultrasphere CIS only 

&cksan Beckman/Altex 2 1/e 25 S/S 7 Ultrasphere C18 only 
(High Hycosbe. Euck8. ) 

Chreapack Chrompack 
(Landon ) 

Chrompack 

1 1/: 
e 50 (Cý g) Flexible S/S 

50,10 (Si02) 
as standard. 
To order : 
10 " 50 (C18) 
10 ; 100 (Si02) 

1.3 1/e 25 Rigid S/S 

Dyson Shimadzu 1 
(Houghton-Le-Spring, 

0 
Tyne A Wear) 

IPLC Technology Whatman 1 
(laeclesfield, 
Cheshire) 

HPLC Technology 2 

LCC/Ki1taº Roy }batman 
("%tane. Staffs. ) 

Lis/Bromaa Whatman 
(Croydon, Surrey) 

Perkin-Elmer ? 
(Beaconsfield, 
Bucks. ) 

Phase Sep ? 
(Gw. nsfsrry, Clwyd) 

we tors Waters 
(florthwich, Cheshire) 

? 25,50 (ý ) 
50,100 (S1 ) 

1/e 25 

V. 10,25 standard 
Any length to 
order 

1 1/e 25 

1 1/1i 10 

1 1/0 25 

??? 

S/S 

10 CP-Spher-Si (S102) & 
CP-Spher-C18 (ODS) 

10 CP-Spher-Si (SiO2) & 
CP-Spher-C18 (ODS) 

10 MBC-SIL (SiO2) & MBC-ODS (C18) 

Class-lined S/S 10 Partisil SiO2. ODS3, CCS/C8. 
PAC, SAX & SCX 

S/S 5lot Spherisorb S102*t, Al 03*t, 
* * 2 

C18*t, CN*, NH2 hexy1 . 9 Ph* 
* t { 

Partisil Si0Z , CDS2 , t. ODS1 
PACt, SAXt, SCXt, C22 
Other materials to order 
inc. Hypersil, Lichrosorb, 
Nucleosil, Polygosil, Techsil, 
Zorbax & p-Bondapak 

Glass-lined S/S 10 Partisil ODS3 only. 

S/S 3 Spherisorb S102, ODS2. C8. 
CN & NH2 

Glass-lined S/S 10 Ultrapac RP18 (C18) & 
RP8 (C8) 

S/S 10 C18 only. No more details 
available 

1,2 1/y 10,15,20,25 Polished S/S 

2? 30 S/S 

3,5 Spherisorb SiO2, ODS1, ODS2. 
C8, C6. Cl- CM. 11112 & Ph 

5e, 101 Any Waters packing material 
inc u-Porasilt. p-Bondapak 
C18{, C11 , 111'2t. Pht, 
Spherical SiO2 & 
Spherical C18 

¬fýiiatean Whatman 1 1/6 25 Glass-lined S/S 10 Partisil S10z . ODS3. CCS/C8. 
(msldstana, lent) PAC. SAX & SCX 

313 a Stainless steel 
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were supplied by HPLC Technology who deal in both 1-7hatman "Micro-B" lmm 

ID and their own laboratory-packed 2mm ID columns. 

1.7 Annlications of Marrow-Bore Liquid ChroTnatop: raDhy Published to 

January 1984 

Initially, many so-called applications of NBLC were devised primarily 

to illustrate some aspect of the NB technique rather than to solve practical 

analytical problems, consequently many of these "applications" did not 

utilise authentic samples. Relatively few genuine applications were 

published in the period to January 1984 and it is only these papers that 

are reviewed herein. The small number of genuine applications that have 

been reported generally encompass those cases where either the amount of 

sample available was extremely limited, where there was a need for the high 

resolution obtainable from long NB columns, or where the use of detection 

systems intolerant of conventional mobile phase flow rates (e. g., direct 

liquid introduction LC-MS) made the utilisation of NB columns essential. 

The potential for significant economy in solvent consumption was not 

originally a practical concern as the expense of modifying instrumentation 

usually outweighed any solvent savings that might have been achieved. 

All the pioneering work of the application of NB columns was conducted 

an home-made or specially adapted commercially available conventional LC 

hardware. It was not until 1982 that a number of manufacturers began to 

introduce commercial instrumentation and columns designed to provide 

convenient i? BLC systems for the routine analyst. The result has been an 

upsurge in published applications of IIBLC and their more frequent use solely 

for solvent economy in otherwise routine applications. A summary of 



- 61 - 

important publications of NBLC applications reported in the review period 

is presented in Table 1.10. Included in the table is some indication of 

the properties of NB columns that were of greatest interest to the authors 

and which were directly responsible for the employment of the NB format. 

Applications are divided by field of research and are compiled chronologi- 

cally within each such subject group. It may be noted that the majority 

of applications are from the fields of pharmaceutical and natural product 

research and primarily involve the analysis of samples of biological origin. 

Biological samples are, essentially, either quite complex mixtures of small 

and large molecules (e. g., drug metabolites in the presence of blood 

proteins) or they are composed of an abundance of low molecular weight species, 

most of which are present in trace amounts (e. g., urine). In a typical assay 

concentrates from such samples may contain only nanogram or sub-nanogram 

amounts of the analytes to be separated and quantified. The nature of 

biological samples makes them ideal candidates for analysis by NBLC because 

of the high plate numbers available and the enhanced mass sensitivity that 

can be obtained from this technique. The potential of NB column technology 

to solve analytical problems arising from biological samples was recognised 

early in the evolution of the technique (e. g., 22) and it is most probably 

this fact that has led to the large proportion of applications arising 

from this area of research. 

From Table 1.10 it may be seen that little data is available regarding 

the LOD, sensitivity, repeatability and reproducibility of the reported 

methods. Furthermore, there is only one paper in which the question of 

column lifetime (which is an important factor in routine analysis) is 

addressed. 93 Hence, the overall ruggedness and reliability of these 

published analytical methods in which NB column technology has been utilised 
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Table 1.10 Summary of Applications of Narrow-Bore Liquid Chromatography Published to January, 1984 

Field of 
Analysis 

Sample(s) 
(Analytes) 

Instrumentation Column 
Dimensions 

(Lc x dc) 

Reasons for use 
of NB columns 

LODt/ 
Sensitivity 

Repeatability/ 
Reproducibility 

Ref. 

Environmental Incinerator ash Modified conventional 25cm * (tN)** IR n. d. **e 
n. d. 79 

Monitoring extract LC/UV x 2.8mm S 

Surface & tap Modified conventional 50cm x lmm tsensitivity n. d. n. d. 22 
waters gradient LC/UV with 
(organics) pre-column sample 

concentration system 

Diesel Boot Modified conventional (50cm fR (ON) n. d. n. d. 80 
(nitro-PAHs) LC/ECD x lmm) x2 

coupled 

Surface waters Commercial NBLC/MS 20cm Direct detector n. d. n. d. 81 
(organics) (+UV) x 0.5mm coupling 

forensic Petrochemicals, Modified conventional 9cm x lmm, ? sensitivity n. d. n. d. 82 
Science wood, soot LC/FL (cell home-made) 0.5-1.15m 

x 2.15mm 

Petrochemicals Petroleum Modified conventional 50cm x lmm tRs (tN) n. d. n. d. 53 
pumps for gradient 
work. Commercial NBLC/ 
UV otherwise 

Process solvent Conventional LC/ 50cm x lam Direct detector tsensitivity n. d. 
modified RI and FTIR coupling observed. 
detectors Not 

quantitated 

Process solvent Modified conventional (50cm Direct detector LCD (S/N-3: 1) n. d. 
LC/FTIR x lmm) x2 coupling. tRs = lug. 

coupled (tN) & Sensitivity 
(sensitivity t8-lOx 

with NBLC 

General Reagent solution Assembled NBLC/ECD 15cm tsensitivity 
Chemicals (cell home-made) x 0.5mm 

No injection valve 

Pharmaceuticals Human urine, serum Conventional gradient 25+50cm +Rs (tN) 
and Natural whole blood LC/UV and FL. No x 2.2mm 
Products (indoleamines) modifications single and 

coupled 

Lapine and equine Commercial NBLC/UV 13cm +sensitivity 
sera (steroids) with micro-pre- x 0.5mm 

column extractor 

Human urine Conventional gradient 100cm x 2mm ? Rs (tN) 
supernatant LC/UV + FL. No 

modifications 

Fermentation broth. Modified conventional 50cm. 1. +R5 (+N) vs* 
coal extract, LC/UV 10.14m +speed of 
bergamot and x lmm analysis 
cinnamon oils reasonable P 

Citronella oil, Modified conventional 25.50. tRs ON) & 
human serum and gradient LC/UV with 100cm tsensitivity 
whole blood pre-column sample x 0.5-lmm 
extracts concentration system 

Rat brain extract Conventional LC/ECD 20cm +sensitivity? 
(5HT, an No modifications x 2.1mm 
indoleamine) 

Bacterial extract Conventional gradient 25cm x 2mm tsensitivity? 

-(plant hormones) LC/W. No 
modifications 

n. d. n. d. 

n. d. n. d. 

ng/2001i1 n. d. 

n. d. n. d. 

n. d. n. d. 

n. d. n. d. 

20pg/10mg SE§ < 3% 
tissue 80% recovery 

LOD n. d. 
< 5-20ne 

83 

84 

85 

86 

11 

87 

20 

22 

88 

89 

Continued ..... 
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Table 1.10 continued 

field of 
$Analysis 

Sample(a) 
(Analytes) 

Instrumentation Column 
Dimensions 

(Lc x dc) 

Reasons for use 
of NB columns 

LODt/ 
Sensitivity 

Repeatability/ 
Reproducibility 

Ref. 

Pharmaceuticals Sandalwood oil Modified conventional 50cm x 1mm fRs (iN) n. d. n. d. 53 
, and Natural pumps for gradient @ reasonable 

Products work. Commercial speed 
(continued) NBLC/UV otherwise 

Hops extract Conventional gradient (25cm iRs (iN), n. d. n. d. 90 
LC/UV. No x 2mm) x4 ? sensitivity 
modifications coupled observed 

Equine body Conventional LC/MS 15cm x lmm Direct detector n. d. n. d. 91 
fluid extract with modified coupling 
(steroids) interface 

Human urine Commercial NBLC/home- 15cm ? sensitivity n. d. Repeatability: 92 
(catecholamines) made dual ECD with x 0.5mm RSD'' (peak ht) 

on-line micro-pre- = 0.5-5a 
column 

Larval haemolymph Modified conventional 30-50cm Direct detector n. d. Short life-time 93 
extract pump and interface, x lmm coupling & (< 1 month) 
(juvenile commercial NBLC/MS tsensitivity 
hormones) otherwise 

Pharmaceutical Modified conventional 20,25cm isensitivity n. d. Repeatability 94 
preparations pump, commercial x lmm tRs (tN) or of fast LC: 

NBLC/UV otherwise f speed of RSD = 1% 
analysis 

Lichen extract Commercial NBLC with 25cm x lmm tRs ON) & LCD = n. d. 95 
(depsides and modified UV ? sensitivity 23i1ng 
depsidcnes) 

Digitalis leaf Commercial NBLC/UV 16cm tsensitivity? n. d. Reproducibility 96 
extract x 0.5mm RSD = 1-4% 
(cardiac 
glycosides) 

Equine urine and Modified conventional 25cm x lmm Direct detector n. d. n. d. 97 
plasma extracts pump and interface, coupling & 
(corticosteroids) commercial NBLC/MS tsensitivity 

otherwise 

Human serum Commercial NBLC/home- 15cm tsensitivity LCD = 3pg Repeatability 98 
ultrafiltrate made dual ECD with on- x 0.5mm RSD 4-12% 
(catecholamines) line micro-pre-column cathode 

RSD 8-27% N 
anode 

Human urine Commercial NBLC pump, 20cm x lmm tsensitivity LCD n. d. 99 
filtrate (anti- modified valve and FL (t speed of 0.5-2ugm1-1 
cancer drugs) with post-column analysis) 

extractor 

t LCD = Limit of detection (SIN = 2: 1 unless stated otherwise) 

- Resolution *R N= Number of theoretical plates *** n. d. = No data 
8 

4 SE = Standard error' 
w RSD = Relative standard deviation 
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have not been rigorously examined. This practice is an essential 

prerequisite for analytical methods that are to be used routinely so that 

some assessment of confidence in the results produced by such procedures 

can be deduced. 

1.8 Objectives 

The primary objective of this investigation was to develop an 

analytical method for the determination of trace quantities of material in 

a complex matrix using a commercial isocratic NBLC instrument and column 

and, in so doing, to assess the practical advantages and limitations of 

the technique for a specific analytical problem. Particular regard was to 

be given to assessment of the suitability of the technique for routine 

employment in a hospital clinical laboratory. 

The property of NB columns of special relevance to this research 

project is their ability to handle samples of severely restricted volume 

(and consequently limited analyte mass) because of their theoretically 

higher mass sensitivity compared to conventional columns (see Section 1.4.4). 

In addition, NB columns have been shown to exhibit comparable concentration 

sensitivity to conventional columns but a smaller volume of sample is 

required to achieve this. Furthermore, if there is sufficient sample 

available to enable some form of, on-column or, more frequently, pre-column 

concentration technique to be employed then the intrinsic high mass 

sensitivity of a NB column can be used to provide a much higher concentration 

sensitivity. This is particularly important because all common LC detectors 

are concentration sensitive devices. 

The application that was chosen with which to assess the ? TBLC system 

was the separation and ouantitation of a series of important indolic 
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compounds which are present in blood at trace levels. The clinical 

basis for selecting this problem is discussed in detail in Section 3.1.2. 

In essence, it would be beneficial to be able to determine this class of 

endogenous compounds routinely in the blood of neonates* and young children. 

A general screening procedure is envisaged, whereby detection of biochemical 

abnormalities is possible leading to diagnosis and therapy. Sample 

availability in such cases is extremely restricted, particularly with 

regard to neonates where specimens of no greater than lml and usually far 

less are obtainable (normally via a heel prick). From the theoretical 

standpoint it would appear that this problem may well be solved best by the 

introduction of NB column technology to LC. 

The development of the method was to be carried out initially using 

standards and the parameters to be evaluated were limit of detection (LOD), 

limit of quantitation (LOQ), repeatability, reproducibility, and column 

lifetime. Analyte isolation and concentration procedures were then to be 

developed and assessed with respect to recovery efficiency. Penultimately, 

the optimised method was to be applied to a series of samples from healthy 

individuals in order to establish a normal range. Finally, the efficacy 

of the method would be demonstrated by the analysis of blood taken from 

children of appropriate diagnosed disease states. 

The performance of the instrument components and their ease of use 

in practice were to be scrutinised. The overall ruggedness of the NBLC 

instrument was to be considered and a decision with respect to the 

practicability of employing this technique for routine clinical analysis 

was to be made based on the findings of this study. 

* Neonate = "new born", an infant of up to 4 weeks of age. 
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Prior to the evaluation of the ABLC system available to the author, 

a study was proposed in which three commercial electrochemical detectors 

(ECDs) nominally suitable for PIELC were to be evaluated, compared and 

contrasted under a range of experimental conditions. Assessment with 

respect to warm-up characteristics, noise levels, operating characteristics, 

and typical LODs and LOQs for standard compounds was to be made. 

The detector that was deemed to perform the best was then to be utilised 

for the analysis of authentic samples, i. e. for the classical determination 

of catecholamines in brain tissue, in order to demonstrate and evaluate its 

capabilities with respect to "dirty" biological samples. The selected 

detector was then to be incorporated into a commercial T? BLC system and this 

instrument was to be evaluated as previously outlined. 



CHAPTER 2 

The Evaluation and Comparison of Amperometric 

Electrochemical Detectors for High Performance 

Liquid Chromatography 



Contents Page 

2.1 Introduction 67 

2.1.1 The Evolution of Electrochemical Detectors 67 

2.1.2 Advantages and Disadvantages of Electrochemical Detection 68 

2.1.3 Classification of Electrochemical Detectors 71 

2.1.4 Origins and General Theory of Voltammetric Electrochemical 
Detection 78 

2.1.5 Design, Construction and Range of Commercial Amperometric 
Electrochemical Detectors 84 

2.1.6 Theory and Principles of Operation of Wall-Jet 
Amperometric Electrochemical Detectors 89 

2.1.7 Electrodes for Electrochemical Detectors 95 

2.1.8 Objectives 99 

2.2 Experimental 102 

2.2.1 Solvents and Reagents 102 

2.2.2 Mobile Phase Preparation (1 litre) 103 

2.2.2.1 For all Experiments Except Chromatography of Rat Brain 
Homogenates 103 

2.2.2.2 For Chromatography of Rat Brain Homogenates 103 

2.2.2.3 General Procedure 103 

2.2.3 Instrumentation 104 

2.2.4 Columns 104 

2.2.5 Standard Solution Preparation 105 

2.2.6 HPLC Operating Conditions 106 

2.2.6.1 Conditions Employed for Warm-Up Procedures and Baseline 
Noise Comparison Studies 106 

2.2.6.2 Conditions Employed for the Catecholamine Limit of 
Detection and Limit of Quantitation Study 106 

2.2.6.3 Conditions Employed for the Analysis of Rat Brain 
Homogenates for Neurochemicals 106 



2.2.7 Detector Warm-Up Procedure 

2.2.8 Recording of Baselines 

2.2.9 Procedure for the Optimisation of Electrochemical 
Detector Applied Potential 

2.2.10 Procedure for the Determination of Limits of Detection 
and Quantitation of EP, NE and DA 

2.2.11 Preparation of Rat Brain Samples 

2.3 Results and Discussion 

2.3.1 Evaluation and Comparison of Electrochemical Detector 
Warm-Up Characteristics 

2.3.2 Baseline Noise Comparison Studies 

2.3.2.1 Variation of Mobile Phase Flow Rate 

2.3.2.2 Variation of Pump Model 

2.3.2.3 Variation of MeOH Content of the Mobile Phase 

2.3.3.4 Baselines at Higher Sensitivity Settings 

2.3.2.5 Summary 

2.3.3 Operational Evaluation of the Zlectrochemical Detectors 

2.3.4 Evaluation of Electrochemical Detectors with Reference to 
the Determination of Catecholamines 

2.3.4.1 Optimisation of Applied Potential 

2.3.4.2 Limits of Detection and Quantitation for Catecholamines 

2.3.5 Demonstration of the Application of the PU4022 
Electrochemical Detector to the Determination of 
Neurochemicals in Specific Rat Brain Regions 

Pie 

107 

108 

108 

109 

109 

111 

111 

115 

120 

123 

126 

126 

1.29 

132 

134 

137 

140 

145 

2.4 Conclusions 155 



Pam 

2.2.7 Detector Warm-Up Procedure 107 

2.2.8 Recording of Baselines 108 

2.2.9 Procedure for the Optimisation of Electrochemical 
Detector Applied Potential 108 

2.2.10 Procedure for the Determination of Limits of Detection 
and Quantitation of EP, NE and DA 109 

2.2.11 Preparation of Rat Brain Samples 109 

2.3 Results and Discussion in 

2.3.1 Evaluation and Comparison of Electrochemical Detector 
Warm-Up Characteristics 111 

2.3.2 Baseline Noise Comparison Studies 115 

2.3.2.1 Variation of Mobile Phase Flow Rate 120 

2.3.2.2 Variation of Pump Model 123 

2.3.2.3 Variation of MeOH Content of the Mobile Phase 126 

2.3.3.4 Baselines at Higher Sensitivity Settings 126 

2.3.2.5 Summary 129 

2.3.3 Operational Evaluation of the ECDs 132 

2.3.4 Evaluation of Electrochemical Detectors with Reference to 
the Determination of Catecholamines 134 

2.3.4.1 Optimisation of Applied Potential 137 

2.3.4.2 Limits of Detection and Quantitation for Catecholamines 140 

2.3.5 Demonstration of the Application of the PU4022 
Electrochemical Detector to the Determination of 
Neurochemicals in Specific Rat Brain Regions 145 

2.4 Conclusions 155 



- 67 - 

2.1 Introduction 

2.1.1 The Evolution of Electrochemical Detectors 

The first on-line application of EC detection to LC was reported by 

Drake in 1950.100 Drake utilised a crude polarographic detector employing 

a dropping mercury electrode (DNE) as a means of detecting proteins eluting 

from a classical LC column. It was Kemula101 who extensively developed 

the technique of polarographic detection in LC and christened the process 

'chromatopolarography'. Over the next decade several designs and a wide 

range of applications of DINS flow-through cells with fixed applied potential 

were reported (e. g., 102-105) but the technique was not then adopted 

commercially. The general lack of availability, the practical difficulties 

associated with the design, operation and maintenance of such a system and 

the overall inefficiencies of classical LC all contributed to the decline 

of EC detection. 

It was the advent of high performance liquid chromatography (i1PLC), 

which occurred primarily as a result of considerable advances in column 

technology, that brought about a renaissance in EC detection. After 

considerable initial effort was directed (unsuccessfully) towards developing 

a sensitive universal detector for HPLC equivalent to the flame ionisation 

detector for gas chromatography (GC), research became focused on the 

development of more selective detectors. During the early 1970s the 

potential of ECDs as selective LC detectors was recognised and this promoted 

a resurgence of interest in the technique. In recent years enormous 

advances have been made in flow cell design, microelectronics and electrode 

material technology enabling a wide range of detector types (e. g., 

amperometric, coulometric) and operational modes (e. g., d. c., a. c., 
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pulsed, square wavef orm) to be made available to the analyst. In 1974 

the first commercial ECD was marketed by Bioanalytical Systems ([: est 

Lafayette, IN., USA) which was quickly followed by ECDs from other 

companies. This gave rise to a rapid increase in activity in the field 

of EC detection. Many significant advances are still being made in 

research laboratories primarily in the areas of novel electrode materials, 

new applications of classical EC techniques, in flow cell and electronic 

circuitry design (especially for dual-working electrode detectors), and in 

miniaturisation for small-diameter column LC, particularly uLC. 

2.1.2 Advantages and Disadvantages of Electrochemical Detection 

Certain characteristics of an ideal detector for EPLC have been 

identified. 106 These characteristics include high sensitivity, low limit 

of detection (LOD), wide linear dynamic range, continuous operation, small 

internal volume, and independence of column parameters such as flott rate. 

I? awadays, robustness, economy and ease of automation must also be considered, 

particularly with regard to routine operation. Under the proper conditions 

ECDs can satisfy all these criteria to a large extent. To date the three 

types of HPLC detector that have achieved the most widespread popularity 

are ultra-violet/visible light absorption (UV), fluorescence (FL), and 

electrochemical (EC). EC detection has exhibited a number of advantages, 

primarily sensitivity, selectivity, and econony. 107 The advantages of EC 

detection may be summarised as follows : 

(1) Sensitivity. The detection method is generally sensitive down 

to the nanogram level, and in some cases even to the picogran level, 

depending on the compound characteristics, chromatographic retention time, 
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and the applied potential. In applicable systems the LOD is typically 

lower (by as much as a factor of 100) than that of commercially available 

UV detectors. State-of-the-art EC detectors can achieve even lower LODs 

in the region of 100 femtograms. 108 Table 2.1 summarises the typical 

performances of EC, UV and FL detectors with respect to LOD. 

Table 2.1* Typical Performances of MC Detectors 

LC Detector LOD t LOD 
(Commercial detectors) (State-of-the-art) 

Electrochemical 10-9-10-11g 10-13g 

UV Absorbance 10-9-10-1 °g 10-12g 

Fluorescence 10-11-10-12g 10-1''g 

* Table adapted from Yeung and Synovec. l09 

t LOD is calculated as the injected mass that yields a signal-to-noise 

ratio of 5: 1 using a molecular weight of 200gmol-1,10pl injected for 

conventional or 1111 inj ected for NBLC. 

§ 
Same definition as t above, but the injected volume is generally smaller. 

(2) Selectivity. EC detection is selective to species containing an 

electrochemically oxidisable or reducible functional group. While a vast 

number of organic compounds yield absorption spectra in the W or visible 

region, most organic compounds are not electroactive in an easily accessible 

potential range. Fortunately, a large number of important biochemicals, 

pharmaceuticals, food additives, pesticides and other compounds of 

bioanalytical and commercial interest are electroactive and amenable to EC 
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detection. 107 In addition to selectivity arising from the electroactivity 

requirement, the potential applied to the detector can be adjusted to 

discriminate between two or more incompletely separated electroactive 

compounds with different oxidation or reduction potentials. 110 The same 

degree of selectivity is rarely possible with aW detector since the 

absorption bands are broad and usually less sensitive to change in 

substituent than electrochemical response is. 

(3) Wide linear range. Typical linear response ranges cover 4-5 

orders of magnitude of concentration. 

(4) Facility of automation. EC detection is easily adapted to 

automatic operation and data acquisition. 

(5) Small dead volumes. Modern commercial EM flow cells have 

internal volumes of a few nicrolitres or less, giving negligible hydrodynamic 

broadening of chromatographic bands. State-of-the-art ECD flow cell 

internal volumes in the sub-nanolitre range have been reported. 108 

(6) No derivatisation required. In the vast majority of cases 

derivatisation is unnecessary for EC detection, unlike for FL detection where 

reaction is frequently required, either pre-column or post-column, to enable 

detection of snalytes. 

(7) Low cost. Direct conversion of a chemical phenomenon. into an 

electrical signal, using no (expensive) optical components, results in 

inexpensive, simple and reliable electronic instrumentation. 

DO detection in flowing systems is not without its problems however. 

The dependence of current flow per unit concentration on mobile phase flow- 
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rate, solution pH and ionic strength, cell geometry, condition of the 

working electrode (WE) surface, and injection volume requires careful 

control of experimental parameters. Purity of electrolytes and solvents 

is critical because electroactive impurities increase the observed back- 

ground current and hence reduce sensitivity. 
. 

For similar reasons it is 

advisable to minimise contact of the flow-stream with metal surfaces from 

which metal contaminants may be leached. A major drawback of EC detection 

is the need for an electrically conductive mobile phase, so limiting its' 

applications largely to aqueous systems containing inorganic salts or acids 

or to mixtures of water with miscible organic solvents. Non-aqueous 

systems have been utilised (in conjunction with normal phase LC), for 

example by Gunasingham and co-workers111'112 and Schieffer113, but instances 

are rare. A further limitation resulting from the dependence of current 

flow on overall mobile phase composition is the general inapplicability of 

gradient elution to EC detection. 114 Occasional incidences of gradient 

elution with EC detection have been reported115 but large baseline 

perturbations are inherent in the method. 

2.1.3 Classification of Electrochemical Detectors 

Electrochemical detectors, by the widest definition, are detection 

systems that utilise the measurement of an electrical property to monitor 

a solute in an effluent from an LC column. To date capacitance, resistance, 

potential and current have all been used to form the basis of a variety of 

EC detection techniques and these are listed in Table 2.2 

Permittivity detectors have been marketed but are rarely used because 

of their poor sensitivity and poor selectivity (both are comparable with 

refractive index detection), their pronounced temperature dependence 
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Table 2.2 Types of Electrochemical Detection Systems Currently Used in 

HPLC116 

Electrical. Property Monitored Type of Detector 

Capacitance Permittivity (Dielectric Constant) 

Resistance Conductimetric 

Potential Poten ti ome tri c 

Current Voltammetric (e. g., Polarographic, 
Amperometric & Coulometric) 

(stability to 10-3 °C is required) and their limited applicability 

(primarily to the detection of hydrocarbons and to monitor gel permeation 

chromatography effluents). 

Conductivity detectors are also commercially available and have been 

applied very successfully to modern ion chromatography since 1975.117 

Potentiometric detectors have also been utilised for the detection 

of'ions in HPLC eluates. Ion selective electrodes are generally employed 

as liEs, so providing excellent specificity but sensitivity is highly 

dependent on temperature and the quality of the instrumentation. Because 

of their very high specificity this type of potentiometric detector has 

found only limited use. Differential membrane-based118'12° and solid-state 

metal electrode-based121'122 potentiometric detectors have also been 

constructed and studied in research laboratories but detectors of these 

types are not currently available commercially. 

The electrical property most widely utilised for LC-EC is current, 

i. e. the technique of voltamnetry. All voltammetric methods are founded 
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on the same basic principles viz. if the by is maintained at any fixed 

potential (relative to a reference electrode; RE) at or near the limiting- a 

current plateau for the electroactive analyte, then the background current 

will remain constant so long as the solution velocity and the composition 

of the supporting electrolyte remain constant; as the electroactive analyte 

flot": s tust the WE, electrolysis occurs and the resulting current generated 

(additional to the background current) is proportional to the concentration 

of the electroactive species. The theoretical basis of EC detection is 

presented in detail in Section 2.1.4. 

'No different approaches to voltammetry can be applied to the 

detection of electroactive species; viz. 

(1) complete (100%) electrolysis of a solute which is called coulometry, and 

(2) partial electrolysis of a solute which is termed amperometry. If 

amperometry is performed with Hg as the WE material this is known as 

polarography. 

Coulometric detectors operate using a solid WE (composed of glassy 

carbon, carbon gauze or a metal) of large surface area in order to achieve 

complete electrolysis of an eluting electroactive species. In order to 

maximise efficiency, coulometric cells are normally based on a thin-layer 

design, although tubular configurations have also been produced. 123 

Coulometric detectors have been marketed but have not experienced much 

popularity because their sensitivity is often below that of amperometric 

detection107' 123, in spite of the latter rarely achieving greater than 20%, 

and frequently only between 1 and 10%, electrolysis efficiency. 116 The 

reasons for lack of sensitivity are primarily concerned with the difficulty 

in obtaining 100% conversion, the increase in background currents with 
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increased ["1E surface area, the comparatively large cell volume necessary 

to house a large WE, and increased electrode surface contamination. 

Coulometric detectors are also disadvantaged by complicated cell design and 

by decreased detector selectivity for closely eluting peaks arising from 

the difficulty in maintaining strict potential control over the entire 

electrode surface. However, coulometric detection does offer certain 

advantages should 100% efficiency be achieved and maintained. These 

advantages include the lack of effect of flow rate, temperature or electrode 

area on detector response and the superfluousness of calibration standards 

(except to check detector efficiency) due to the absolute nature of the 

detection process. 116 In practice these advantages are rarely attained. 

Detectors that operate in the anperometric mode are far more widely 

available than any other type of ECD. Modern polarographic detection 

systems are commercially available from manufacturers such as EG &G 

Princeton Applied Research (Princeton, P; J., USA). 124 This is in spite of 

the many practical difficulties associated with the technique and its 

limitation primarily to electro-reduction. Not unexpectedly, polarographic 

detectors only account for a very small part of world-wide ECD sales. By 

far the greatest share of the ECD market is cornered by the much more 

versatile solid-state amperometric detector. These instruments will be 

discussed in detail in the following sections (2.1.5-2.1.7). 

So far only relatively simple detector configurations operated at 

discrete and constant d. c. potentials have been discussed. There has been 

considerable interest in recent years in techniques employing more than one 

voltammetric detector in order to try to improve the overall selectivity 

and/or sensitivity of the detector systems. Various approaches have been 

investigated. 
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The operation of two ECDs in series has been studied by a number 

of research groups (e. g., 125-128), a coulometric ECD usually being 

employed prior to one of amperometric operation. Other workers (e. g., 

128-130) have experimented with the concept of differential amperometric 

detection where two identical amperometric ECDs are run in parallel. One 

ECD receives the column effluent (Sample) while the other ECD, which is 

operated at the same potential, receives the unadulterated mobile phase 

(Reference). The signals obtained from the 'Reference' ECD are subtracted 

electronically from those obtained from the 'Sample' ECD by means of a 

differential amplifier yielding a consequent decrease in magnitude of the 

background current. 

Further advances in dual-electrode detection systems have been 

accomplished based on the design and use of a single cell fitted with two 

WEs (e. g., 131-141). Great versatility is possible by variation of the 

configuration and operating potentials of the WEs and the extent of 

electrolytic conversion at each WE. This type of approach is still under 

experimentation from many research groups. 

Increased selectivity, and in some cases sensitivity too, has been 

achieved by many of these dual-detection systems (e. g., 134,136) but their 

routine use has been prohibited by the high complexity and cost of the 

instrumentation. 

Another area that has received extensive research has been the 

application of dynamic potential to detector systems in an effort to 

improve sensitivity and/or selectivity. A variety of pulsed waveforms 

adopted from classical electrochemistry have been utilised to this end and 

these are summarised in Table 2.3. 
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Table 2.3 Some Pulsed Voltage Zlavef orms used in HPLC Voltammetric 

Detection 

Pulsed Waveform Selected Reference(s) 

Normal Pulsed d. c. (NPV) 

Reverse Pulsed d. c. (RPV) 

Differential Pulse (DPV) 

A. c. 

Rapid-Scan Square -Wave (SW) 

142,143 

144 

135,143,145-155 

156,157 

158,159 

All pulsed techniques rely on achieving increased discrimination 

against background effects afforded by the difference in decay rates of 

the charging current (due to the capacitive nature of the WE surface) and 

the Faradaic current (due to electron transfer at the WE surface which is 

proportional to the concentration of the electroactive species). The 

improvement of polarographic sensitivity resulting from the application of 

PNPV waveforms, as well as the enhanced selectivity from SW and DPV waveforms, 

are well documented for Hg electrodes. 150-1529158P160 However, similar 

improvements with constant d. c. operation have not been observed for 

potentiodynamic voltammetry at solid electrodes. As expected from theory, 

analytical sensitivity (current per unit mass of analyte) for P; PV- or DPV-EC 

detection is greater than for constant d. c. detection. 150' 151 However, 

except for one report 142, applications of i? PV or DPV have not yielded 

improved' detectability. 135v 1439145-149 This is because solid-state WEs 

experience considerably greater background currents and noise under pulsed 

waveform operation than do Hg electrodes. 146-149 The increase in back- 
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ground current originates primarily from Faradaic current generated by 

1E surface reactions which concern the formation/reduction of oxygen- 

containing functional groups at carbon, or of oxides at noble 

metals. 107r161'162 These currents decay very slowly, in comparison to 

charging current at Hg electrodes, and the pulsed techniques demonstrate 

significantly lower success in discriminating against these processes. 

In addition, double-layer charging at glassy carbon electrodes (GGEs) decays 

slowly 146, probably because of the existence of micropores in this 

material 163 

The differential pulse voltammetric (DPV) technique, by virtue of its 

differential nature, does offer enhanced selectivity over d. c. potentiostatic 

operation with solid-state W Es. 107v135PI43#145-147P149PI53PI61 The rapid- 

scan square-wave technique can also demonstrate improved selectivity by 

generation of 3-dimensional outputs of current vs. time vs. potential' 58,160 

but this technique is prohibitively expensive due to the complexity of the 

associated instrumentation. 

Another current area of ECD research is that of the development of 

miniature flow cells and electrodes for application to small-diameter colurn 

LC, especially pLC. Theoretically, in some instances conventional ECD flow 

cells are of small enough effective volume (0.5-lul) to be adequate for use 

in the I' BLC format. It is the necessity for extremely small internal 

volumes in order to realise the full potential of very narrow packed and 

open-tubular capillary columns that has prompted this current trend in ECD 

development. Specialist ECD flow cells, including a few of dual WE design, 

have been constructed and evaluated by a number of research groups for 

application to pLC8s, 92, ios. I64916s but as pLC itself is currently only a 

research technique no such flow cells are yet available commercially. In 
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addition to the flow cell itself major advances are also being made in 

electrode design. Nicroelectrodes composed of carbon fibre have been 

developed to fit within the end of an open-tubular uLC column to enable 

on-column detection. 1669168 

However, to reiterate, it is the simple sensitive, selective and 

inexpensive constant d. c. amperometric ECD that is most widespread and it 

is this type of detector that was available for use by the author. 

Specific details of the amperometric detector are discussed in Sections 

2.1.5 and 2.1.6. 

2.1.4 Origins and General Theory of Voltammetric Electrochemical Detection 

Voltamnetric EC detection for } LC is derived from classical 

voltamnetry which essentially is based on the recording of potential-current 

(E-I) curves called voltammograms which are produced by the electrolysis of 

an electroactive substance at the surface of a WE. A pictorial represent- 

ation of three such voltammograms is presented in Figure 2.1. This Figure 

illustrates the voltammogra s obtained from the oxidation of substances X and 

Y and the reduction of substance Z. Qualitative data can be obtained 

because the potential at which the oxidation or reduction wave has reached 

half the total wave height (half-wave potential, Ej, shown only for compound 

X) is characteristic of each solute in a given electrolyte solution with a 

given electrode system. Quantitation is based on the measurement of the 

height of the wave, called the limiting or diffusion current (IQ), which is 

proportional to the bulk concentration of the electroactive solute giving 

rise to the wave. 

- At potentials at which electrolysis of the sample substance occurs, 

the concentration of the substance at the WE surface approaches zero. 
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Figure 2.1 Potential-Current Curves (Voltammograms) for Three Compounds, 

X, Y and Z. 

E(+) and E(-) = applied potential; E= half-wave potential; 

Ia = anodic (oxidation) current; Ic = cathodic (reduction) 

current; and IQ = limiting or diffusion current. 

Current flow is sustained and increased by fresh sample substance being 

transported from the bulk of the solution by some mass-transfer process to 

the WE surface. As the applied potential is increased beyond the half-wave 

potential, the rate of mass-transfer becomes current-limiting. The mass- 

transfer processes include diffusion (movement in response to the 

concentration gradient generated between the WE surface and the bulk of the 

solution when electrolysis is initiated), migration (caused by the influence 

of electrical charge at the WE on charged electroactive species), and 
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convection (caused by solution agitation such as stirring or flowing). 

In a static system containing an excess of charged, non-electroactive (in 

the region of interest) supporting electrolyte, convection and migration 

are negligible, and diffusion alone controls mass transfer. Theory is well 

established to describe this process in the classical quiescent system and 

can be found in many standard texts (e. g., 169). 

However, EC detection for PLC by its very nature, takes place in a 

dynamic system. D. c. voltammetric detection is achieved as follows: a 

fixed potential, at or near the potential which yields the limiting current 

in a static system of similar composition, is applied. After a constant 

background current (resulting from electrolysis of other species in the 

electrolyte solution and other factors relating to the electrode system and 

the instrument) is established, the current generated by the oxidation or 

reduction of the analyte as it flows past the WE is recorded as a function 

of time, i. e. as an I vs. t plot. 

Now, under the forced convection conditions experienced in flowing 

systems, both diffusion and convection contribute to the limiting current. 

This introduces further complications to the theoretical treatment required 

to fully describe the limiting current generated an electrolysis of an 

electroactive species. 

Levich170, by applying solution hydrodynamics utilising the concept 

of a thin hydrodynamic diffusion boundary layer close to the WE surface 171, 

derived equations for convective-diffusive voltammetry. Subsequently, 

other workers 129#172-176 have derived equations for their particular systems 

in a similar manner. Three basic assumptions are made in order to 

calculate the convectional-diffusional flow towards an electrode : 

(1) The flog pattern is laminar, 
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(2) The reaction rate is infinitely large compared to the rate of 

mass transfer, 

and (3) the electrode length and width are significantly larger than the 

thicimess of the hydrodynamic boundary layer. 

: panekatnp and van Tdieuwkerk177 have summarised all the equations for 

convective-diffusive voltammetry at a solid-state electrode derived by 

this method in the general form : 

IQ = knFCD(Sc)1/3w(Rex)a 

where k= dimensionless factor dependent on the cell geometry, 

n= the number of electrons involved in the electrode reaction, 

F= Faraday constant (=96487 Cmol-1), 

C= bulk concentration of the electroactive species (mol 1-1), 

D= diffusivity (or diffusion coefficient) of the electroactive 

species (cn2s-1), 

(2.1) 

Sc = Schmidt number = vD-1 [where v= kinematic viscosity = absolute 

viscosity (n)/density (p), (cn2s'1)], 

u= characteristic of the electrode width (cm), 

Rex = modified Reynolds number =u1 v'1 [where u= average linear 

fluid velocity (cDs-1) and 1= characteristic of electrode 

length (cm)], 

and a= factor dependent on cell geometry. 

This equation applies to flow cells of all geometries. There are four 

basic cell geometries that have been utilised for EC detection and these 

are shown diagrammatically in Figure 2.2. 



- 82 - 

(a) (b) (c) (d) 

Electrode 

Electrode Electrode re 

ý f \r! 
0 

re 
low 

L 
Le e 

e Electrode 
flow 

FYeure 2.2 Solid-State E. ectrode Voltammetric Detector Configurations : 

(a) Tubular Electrode; (b) Thin-Layer Cell-; (c) Disc 

Electrode; (d) Wall-Jet Cell. 

The values of the geometry-related parameters for Equation 2.1 are 

presented in Table 2.4 for each of these configurations. 

In all ECDs the signal (i. e. the output current) increases with the 

Reynolds number. This means that it is advantageous to build a detector 

with a small cross sectional area in order to increase the mean linear 

fluid velocity and to choose a geometry such that the highest value of a 

is obtained. 

Another way to improve the signal would be to increase the electrode 

length but this can cause problems with peak dispersion due to the greater 

cell volume required in which to house a larger electrode. 

A second important parameter is the noise as this is directly related 

to the LOD, which is defined empirically as the amount of compound which 

gives a chosen signal-to-noise (S/N) ratio. The noise in EC detection is 

generally accepted to be proportional to the WE surface areal7e, z79 
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Table 2.4 Geometry-Related Parameters for Equation 2.1 

Detector 
Configuration 

k w* lt a 

Tubular 8.0 
2 

r L 1/3 
e e 

Thin-Layer 0.8 w L 1/2 
e e 

Disc 3.0/3.3 r r 1/2 
e e 

Wall-Jet 1.2 a r 3/4 
e 

ca = Characteristic of electrode width 

= length; w (L = width; r = radius; a = nozzle diameter) 
e e e 

t1= Characteristic of electrode length from =u1 V-1 Re 
x 

(Le = length; re = radius) 

i. e. noise = Ae. Combination of this approximation with Equation 2.1 

allows the S141 ratio to be given as a function of the electrode 

dimensions, q. Table 2.5 indicates the relevant terms. 

It is advantageous to keep q as small as possible. The limit for 

decreasing q is given by the amplification system. For a tubular 

electrode, this means a cell with a small radius and length, for a thin- 

layer cell geometry a short but wide electrode, and for disc and wall-jet 

configuration cells an electrode of small radius. 180'181 

In practice, for amperometric EC detection the thin-layer and wall-jet 

configurations are strongly favoured commercially, although examples of 

tubular geometry do exist, e. g., the LDC/Milton Roy e. c. Monitor. 182 
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Table 2.5 S/NV Ratio as a Function of the LTE Dimensions 

Detector 
Configuration 

Ae S- (S//�)q 

Tubular L 21rr L 
2 

)-1/3 (r L 
e e e e e 

Thin-Layer L w 
/2 

w L Let/2 
e e e e 

Disc Trr2 r 
3/2 

r' 
1/2 

e e e 

Wall-Jet 2 Irr 
3 

r 
/4 5 

r 
/4 

e e e 

2.1.5 DesiM, Construction and Range of Commercial Amperometric 

Electrochemical Detectors 

Many cell designs for solid WE amperometric detectors have been 

devised, and with very few exceptions they are all based on a generally 

accepted three-electrode configuration. Usually the reference electrode 

(RE) and auxiliary electrode (AE) are placed on the downstream side of the 

WE so that either leakage from the RE or the formation of any electro- 

chemical products at the AE do not interfere with the WE. The RE is 

normally placed in close proximity to the WE to ensure that the electrical 

resistance of the cell is kept to a minimum. *These electrodes are fitted 

into the body of a flow cell, which is constructed from a non-conducting 

material (commonly Kel-F, a fluorocarbon). The WE surface can be formed 

from part of a tube, wire, sheet or disc of the desired material. 

Developments with planar surfaces have been the most popular as very small 

(sub-microlitre) cell volumes can be achieved. 
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There are basically two designs that have been adopted commercially, 

namely the thin-layer and wall-jet configurations (see Figure 2.2). Three 

commercial flow cells are illustrated in Figures2.3-2.5. The modern 

thin-layer cell was introduced by Kissinger and co-workers in 1973183 and 

is now marketed worldwide by Bioanalytical Systems (West Lafayette, IN., 

USA). The BAS thin-layer cell (Figure 2.3) is very simple in construction 

and is supplied with a choice of planar WEs. The volume of the cell is 

controlled by the use of an appropriate thickness of PTFE spacer between' 

the two halves of the cell. Volumes typically less than 5il are obtained 

by this method. In the BAS cell the outlet tubing is composed of stainless 

steel which is wired as the AE thereby simplifying the cell design. No 

flow cell of thin-layer format was available for assessment and comparison 

in this study. 

The wall-jet design was devised by Yamada and Matsuda in 1973.184 

Fleet and Little185 were the first of many groups of workers to use this 

popular method for monitoring HPLC eluates. The so-called 'wall-jet' 

system comprises a nozzle of small diameter (typically 10011m) through which 

the mobile phase flowstream enters the cell and impinges perpendicularly 

onto the IE surface, which is commonly constructed of glassy carbon. - The 

cell illustrated in Figure 2.4 is the EDT Research LCA 13 (London, UK) in 

which a stainless steel sleeve surrounding the inlet jet acts as the AE. 

An alternative version is illustrated in Figure 2.5 (the Metrohm 656; 

Metrohm, Herisau, Switzerland), in which a second discrete GCE is mounted 

in the cell to function as the AE. 

Wall-jet amperometric ECDs possess certain practically useful 

characteristics which their thin-layer counterparts do not. Rapid 

convective mass transfer resulting from the perpendicular impact of the 
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Fi'ure 2.3 The Bioanalytical Systems LC4A Amperometric Thin-Layer 

Flow Cell 
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Figure 2.4 The EDT LCA 13 Amperometric Wall-Jet Flow Cell 
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Fieure 2.5 The Metrohm 656 Amperometric Wall-Jet Flow Cell 



- 89 - 

mobile phase on the "WE yields very high sensitivity (picogram LODs are not 

uncommon (e. g., 185)). Also, the problems of surface adsorption are greatly 

reduced by the washing effect of the rapidly incoming solution. 

At the outset of this prof ect in 1984 there was only a small range 

of amperometric ECDs on the market in the UK. Since then many more 

amperometric ECDs have been launched. A list of currently available models 

(December 1986) is presented in Table 2.6. The increasing number of ECDs 

being produced is a reflection of the increasing demand for such instruments 

by liquid chromatographers. 

Three anaeroinetric ECDs, all of wall-jet format, were available to the 

author. These were the Pletrohn 641-VA/656 and the EDT LCA 15 (the flow 

cells of which are illustrated in Figures 2.5 and 2.4 respectively), along 

with a recently marketed ECD from Pye Unicam (Cambridge, UK) viz. the 

PU4022. The PU4022 was identical in construction to the EDT model except 

in the power circuitry employed. Wall-jet configuration ECDs are considered 

in more detail in Section 2.1.6. 

2.1.6 Theory and Princiales of Operation of Wall-Jet Annerometric 

Electrochemical Detectors 

In all modern flow-through apperoinetric detector cells three electrodes 

are required, namely the working (WE), reference (RE) and auxiliary (AE) (as 

previously described). It is possible to produce a detector with only two 

electrodes (i. e. WE and AE) and monitor the current that flows when a 

potential is applied across them but this arrangement produces an undesirable 

intrinsic non-linear response because a voltage drop will occur in the 

eluate as the current flcya changes. The incorporation of a RE enables the 

potential of the WT to be monitored. Current still flows between the WE 
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Table 2.6 Anperone tric Electrochemical Detectors Available in the UK, 

December 1986 

UK Supplier Model(s) Year of Launch 
(if known) 

Anachen BAS LC4A, BAS LC4B 1974 
(Luton, Beds. ) 

Applied Chromatography Systems ACS 350/06 1986 
(Macclesfield, Cheshire) 

Pruker-Spectrospin Bruker LC314 - 
(Coventry, W. Mids. ) 

Cecil Instruments Cecil CE1500 - 
(Cambridge) 

Dionex ECD 1983 
(Famborough, Hants. ) Pulsed Amperometric Detector 

Dyson Instruments Shimadzu L-ECD-6A 1986 
(Houghton-Le-Spring, Tyne & Wear) 

EGG &G Instruments BAS LC4A, BAS LC4B 1974 
(Bracknell, Perks. ) 

EDT Research EDT LCA 15 ca. 1978 
(London) EDT LCA 16 1986 

LDC-!: iltcn Roy LDC e. c.; lonitor 1983/84 
(Stone, Staffs. ) 

LKB-Bromma LKB 2143 1983/84 
(Croydon, Surrey) 

Perkin Elmer PE LC4B (-BAS LC4B) pre 1982 
(Beaconsfield, Bucks. ) 

Pye Unicam PU4022 (-EDT LCA 15) 1982 
(Cambridge) 

Roth Scientific Metrohm 641-VA/656 pre 1982 
(Farnborough, Hants. ) 

Thames Chromatography Thames TC 100 - 
(Maidenhead, Berks. ) 

Waters/Millipore Waters 460 ECD 1985/86 
(Farrow, Middx. ) 
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and AE but, if there is any deviation in the potential of the WTE from the 

pre-set applied potential then current feedback via the AE can be employed 

to restore the balance. To a large extent it is this potentiostatic 

electronic feedback loop which enables amperometric ECDs to exhibit such 

a wide linear dynamic range (typically 104-105 concentration units). The 

current flowing off the Z'TE" is converted to a voltage by appropriate 

electronic circuitry and, after signal amplification and filtering, this 

voltage is channelled to a poten tiometric recording device (chart recorder, 

integrator, computer) for visual presentation and/or data analysis. 

tall-jet flow cells, as stated previously, were developed by Yamada 

and Matsuda. 184 Theseresearchers derived an equation for the limiting 

current, 

IQ = 1.38n FCD2/3v_5/12Q3/4a-1/2r3/4 (2.2) 
e 

where Q= volume flow rate of the solution issuing from the circular 

nozzle, 

and all other symbols are as previously defined (Section 2.1.4). The 

volume flow rate is equal to the mean linear velocity of the fluid in the 

nozzle multiplied by the area of the nozzle outlet : 

A= Ina2u (2.3) 
4 

When substituted into Equation 2.2 this yields an expression for the 

limiting current in terms of the linear flow rate : 

IQ = 1. l5nFCD2/3v-5/l2au3/4 re/4 (2. k)# 

* . T. B. With suitable substitution Equation 2.4 may be presented in the 

general form reported by Hanekamp and van Nieuwkerk'77, i. e, 

Equation 2.1. 
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l"Jith so many variables involved, the deduction of the current-concentration 

relationship from the fundamental parameters is difficult. However, 

Equation 2.4 may be expressed in a more general format, i. e. 

IR =f (n, C, D, v, a, u, re ) (2.5) 

In practical terms, for a given electrode reaction in a given flow cell n, 

a and re are constant. Hence, the expression for the limiting current may 

be simplified under these conditions to : 

IQ =f (C, D, v, u) (2.6) 

Now, at constant flow rate of a uniform mobile phase at a constant 

temperature, u and the two temperature dependent terms D and v are all 

constant so yielding the direct proportionality between the limiting current 

and the bulk concentration of the electroactive compound being determined, 

i. e. : 

IQ«C (2.7) 

It is on this basis that quantitation is possible with an ECD. 

The practical effects on detector signal of certain parameters have 

been investigated. Detector output increases with temperature; a typical 

relationship is illustrated in Figure 2.6.186 

As would be expected, elevation of tenperature increases the energy 

of the system and this in turn improves the rate of diffusion to the 

electrode surface so yielding a signal of increased intensity. Over the 

range 10-30 °C signal increases by about a factor of 1.5% per 
°C. 186 This 

degree of variation, although not marked over one or two °C, does serve to 

stress the advisability of thermostatting the detection system in order to 
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Figure 2.6 Dependence of the Signal from an Amperometric Electrochemical 

Detector on Temperature 

reduce the error introduced in this way. The Metrohn 656 flow cell inlet 

tubing is thermostatted with a water jacket whereas the EDT LCA 15 and Pye 

Unicam PU4022 cells are operated at ambient temperature. There is one 

inherent disadvantage of thermostatting the inlet tubing, however. That 

is that 
.a 

lengthy inlet tube is required to enable temperature uniformity 

to be attained, tubing in which increased chromatographic peak broadening 

will occur so reducing chromatographic efficiency. This situation is 

particularly detrimental where : 1BLC is concerned. 

Detector output is also influenced by the mobile phase volumetric 

flow rate. A typical relationship is illustrated in Figure 2.7.166 
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Figure 2.7 Dependence of the Signal from an Amperometric Electrochemical 

Detector on Mobile phase Volumetric Flow Rate, Q 

This curve represents the resultant effect of two antagonistically acting 

processes. As flow rate increases, greater convection is generated within 

the cell. As a consequence of this, the rate of mass transport towards 

the WE surface is increased leading to an increase in signal. However, 

the magnitude of the convection effect lessens with increasing flow rate 

because of the influence of flow rate on sample turnover at the WE surface 

(i. e. coulometric yield), which is illustrated in Figure 2.8. 

As flow rate increases, the residence time of the electroactive 

species in the cell diminishes resulting in ever increasing amounts of 

analyte being swept out of the cell before it can be transported to the 
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WE surface for reaction. Thus, the coulometric yield falls off with 

increasing flow rate as is depicted in Figure 2.8. The curve shown in 

Figure 2.7 is typical, increasing convection being the dominant factor at 

low to medium flow rates with the coulometric yield factor exerting greater 

influence at high flow rates. 

2.1.7 Electrodes for Electrochemical Detectors 1249163 

While the choice of RE (usually saturated calomel or Ag/AgCl) and, 

where applicable, AE (usually a metal such as Pt or stainless steel) is 

generally not critical to detector performance, the choice of IE material is. 
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Although most of the early work in this technique involved the DME, solid- 

state electrodes (including various forms of carbon, noble metals, and 

metal amalgans) have been extensively studied and successfully applied in 

recent years. Each type of electrode material has both advantages and 

disadvantages. 

The DP"E has an extensive cathodic range of polarisation which leads 

to its application for electro-reductions. However, the usable anodic 

potential range is severely limited by the oxidation of Hg metal itself 

(at +0.2V vs. Ag/AgCl) which precludes its use for most electro-oxidisable 

compounds. The DIE provides a constantly renewed electrode surface, 

effectively eliminating the problem of surface contamination. Considerable 

disadvantages of the DNIE include the need for electronic damping, the need 

to remove oxygen from the supporting electrolyte solution, the problems of 

cell design by virtue of the nature of the WE material, and the effects of 

mobile phase motion on drop-time, limiting current and charging-current 

background. 

Solid-state electrodes do not exhibit the restrictions in applied 

potential that are found with Ms. Solid electrodes can be used to 

analyse easily reducible compounds but they are best suited to the study of 

oxidation processes because of their wide anodic (positive) polarisation 

range and low residual current within this range. Generally, greater 

sensitivity, simpler cell design and lower noise levels are realised with 

solid electrodes compared with DMEs. The major problem with solid electrodes 

is non-reproducibility of the electrode surface, primarily caused by 

adsorption and surface oxide formation. Thus, cleaning of the solid 

electrode, or surface renewal, becomes a major consideration. 

: Metal ifTEs are the least used. Pt106,108,142,187'188, Au142, Ag187, 

Cd189 , idi (as oxide )190 and Cu191 have all been utilised in ECD floor cells 
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to a limited extent but suffer greatly from oxide film formation during 

operation (especially in aqueous media), which yields a large residual 

current and affects electrode reactions. Metallic electrodes are available 

for commercial BCDs but are rarely used in practice. 

The most prevalent electrode material is carbon which has been 

utilised in many forms including carbon paste, glassy carbon, graphite 

impregnated silicone rubber, pyrolytic carbon, reticulated vitreous carbon 

and, more recently, carbon fibre. 

Carbon paste electrodes (CPEs) were the most popular WEs for EC 

detection until the early 1980s and are still widely employed. Made from 

high purity graphite dispersed in a water-immiscible organic solvent, CPEs 

can be prepared quickly. Other advantages of CPEs include very low 

residual current, high stability, rare exhibition of memory effects (unlike 

noble metal electrodes), and ease of surface renewal. The major 

disadvantage of CPEs in flowing systems is the restriction on mobile phase 

composition which must be largely aqueous. Organic solvents tend to cause 

rapid electrode deterioration by dissolution of the graphite dispersion 

medium. Furthermore, CPEs are unsuitable for the detection of most 

reducible compounds due to high cathodic residual currents, they require 

exceptionally long equilibration times to achieve constant background current 

(several hours from start-up at high sensitivity settings"'), and they are 

poorly reproducible on replacement. 

Over the last 5 years CPEs have largely been superseded by glassy 

carbon electrodes (GCE s)192, as was predicted by Fleet and Littleies as long 

ago as 1974. GcEs are now widely available and fitted as standard to most 

commercial ECDs. Glassy carbon is an impermeable, electrically conductive 

material, resistant to chemical effects and can be used directly as an 
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electrode. 193 The material is prepared by the heating of phenol- 

formaldehyde resins in an inert atmosphere. GCEs are more durable than 

CPEs and can be used with non-aqueous solvents. The wider useful potential 

range of glassy carbon compared with carbon paste (from -1.3V to +1.5V vs. 

Ag/AgCl has been reported1B5) enables the electroysis of both oxidisable 

and reducible species. The residual current at GCEs is higher than at 

CPEs. 194 GGEs are more susceptible to surface contamination than CPEs, 

and so require more frequent cleaning but cleaning, in many instances, 

may be accomplished by electrochemical treatments without the need for cell 

disassembly. 195 It is the great versatility and durability of GCEs that 

makes them particularly attractive for LC-EC work. 

Of the other forms of carbon employed, graphite impregnated silicone 

rubber193 and pyrolytic carbon electrodes 196'197 are similar to GCEs in 

ruggedness, applicability to non-aqueous systems, low residual current, 

large anodic as well as cathodic potential ranges and moderate susceptibility 

to surface adsorption. Reticulated vitreous carbon198'199 and carbon 

fibres200'201 have only recently been applied to LC-EC but both of these 

materials have also been found to perform similarly to glassy carbon, 

although carbon fibres have exhibited improved detection limits relative to 

GCEs at high positive potentials. 201 To the knowledge of the author, none 

of these other forms of carbon are currently marketed as V Ms for ECD cells 

in the UK. 

For the work reported herein glassy carbon was the material of choice 

for W Es and was used exclusively. 
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2.1.8 Objectives 

The major objective of the comparison between the three amperometric 

ECDs, the EDT LCA 15, the Pye Unicam PU4022 and the Metrohm 641-VA/656 was 

to select that'one which performed best, primarily with regard to signal- 

to-noise (S//Y) characteristics, so that it may be applied in future work 

with NBLC. It was proposed that warm-up procedure, noise levels at various 

instrument sensitivities, 'user-friendliness' of the units, and limits of 

detection and quantitation of the three ECDs towards standard compounds 

would be evaluated and compared under a range of experimental conditions. 

Secondary objectives included the direct comparison of the EDT and 

Pye Unicam ECDs which differed solely in their power circuits. The power 

packs employed are reported to differ in stability by a factor of three 

which would be expected to be reflected in their comparative LODs. 202 Any 

difference in performance, primarily with regard to SIN, that is directly 

attributable to the different power packs would be of value to the 

manufacturers in improving instrument design. 

A further objective was the comparison of the Metrohrn ECD with the 

EDT and Pye Unicam models primarily to determine to what degree structural 

differences affect overall performance. There are considerable differences 

between the designs of the Netrohm and the EDT and Pye Unicam ECDs, and 

these are summarised in Table 2.7. The Netrohm flow cell, although of 

wall-jet configuration like the other-two, possesses a water-jacket thermostat 

around the inlet pipe, the cell itself is of different construction 

containing a discrete GCE as the AE and the entire cell assembly is housed 

in an enamelled metal cage in order to minimise the influence of external 

electrical fields. The cell design of the EDT and Pye Unicam models is 

much simpler; there is no thermostat or shield and the stainless steel inlet 
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nozzle is utilised as the AE. All three flow cells have a GCE as the WE 

and a Ag/AgC1 RE. The electronic controller units also differ, primarily 

in the output range settings available. The EDT and Pye Unicam models 

offer a less extensive range of instrument sensitivities but a greater 

degree of electronic baseline noise-smoothing control. 

The final objective of these experiments was to enable the operator 

to familiarise himself with the general practices of LC-EC and to gain 

'hands-on' experience of the technique. 
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2.2 Experimental 

2.2.1 Solvents and Reagents 

Methanol (MeOH; GPR grade) was supplied by º7ilcott Industrial, 

Bristol, Avon and Charles Tennants, London and was single distilled into 

glass before use. Water was single distilled into polythene before use. 

Acetone (GPR grade) was supplied by Charles Tennants, London and was used 

as received in the routine cleaning of glassware. All other solvents, 

viz. propan-2-ol (2-PrOH; GPR grade) and cyclohexanol (GPR grade) which 

were used in column packing, were obtained from BDH, Poole, Dorset. 

Buffer components citric acid (HCt; Laboratory reagent grade) and 

sodium hydroxide (NaOH, AnalaR grade) were both supplied by BDH, Poole, 

Dorset, and sodium acetate (NaAc, anhydrous, GPR grade) was supplied by 

Hopkin and Williams, Chadwell Heath, Essex. Other mobile phase components 

ethylenediaminetetraacetic acid (EDTA, disodium salt dihydrate, AnalaR 

grade) and 1-heptanesulphonic acid (HSA), sodium salt monohydrate, 

laboratory reagent grade) were supplied by BDH, Poole, Dorset. 

The catecholamines epinephrine (EP, as free base), n orepinephrin e 

(NE, as hydrochloride salt) and dopamine (DA, as free base) were kindly 

donated by Dr. P. J. Naish of Pye Unicam, Cambridge. The internal standard 

for the rat brain study viz. 3,4-dihydroxybenzoic acid (DHBA) was a gift 

from Dr. I. Kilpatrick, Department of Anatomy, -University of Bristol. 

Helium gas for the degassing of mobile phases was supplied in 

cylinders by BOC (Special Gases), Bristol, Avcri. 
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2.2.2 Mobile Phase Preparation (1 litre) 

2.2.2.1 For all Experiments Except Chromatography of Rat Brain Homogenates 

Measured volumes of MeOH and single distilled water (DW) were 

combined in a1 litre volumetric flask to provide the desired solvent ratio. 

The solvent mixture was transferred to a2 litre-capacity beaker and HCt 

(6.3g), :. aAc (2.27g) and NaOH (2.0g) were dissolved in the solvent mixture 

to provide a mobile phase of pH 4.8. 

2.2.2.2 For Chromato, 7raDhy of Rat Brain Homogenates 

'1e0H (70ml) was placed in a1 litre volumetric flask and to this was 

added an aq. O. 1M solution of i? aAc up to the mark. The solvent mixture 

was transferred to a2 litre-capacity beaker and to the solution were added 

NaHSA. H O (123mg = 100mgl-1 ? SSA) and Pia2EDTA. 2H20 (64.6mg = 50mg1'1. EDTA). 

The pH of the mixture was then adjusted to 4.6 by the addition of HCt. 

2.2.2.3 General Procedure 

Each prepared batch of mobile phase was transferred to a1 litre 

reagent bottle and was then degassed under a gentle stream of He for at 

least 5 minutes prior to delivery. Degassing was continued throughout the 

course of the experiments in order to maintain the exclusion of oxygen from 

the mobile phase. Preferential evaporation of solvent was restricted by 

plugging the reagent bottle neck around the tubing with lint-free paper 

towelling. 
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2.2.3 Instrumentation 

Pumps : Pye Unlearn PU4010, Pye Unicam/Altex LC-XPD Model 100. 

Injection Valves : Rheodyne Model 7010 fitted with a Model 7012 loop 

filler port. 

Loop Capacity : 2Opl except for the rat brain homogenate analysis 

where a 501il loop was employed. 

Columns : Spherisorb S5 ODS1 (25cm x 5mm ID, dp = 5um). 

Detectors : Pye Unicam PU4022 ECD (comprising control unit and 

flow cell), EDT LCA 15 (comprising control unit and 

flora cell), and Metrohm 641-VA ECD with a Metrohm 656 

flow cell. 

All flow cells were equipped with a glassy carbon WE, 

a Ag/AgCl/KC1 RE and an AE. The AE was composed of 

stainless steel in the Pye Unicam and EDT instruments 

and glassy carbon in the Metrohm system. 

Chart Recorders . Servoscribe Model is potentiometric recorders 

(iV f. s. d. ). 

2.2.4 Columns 

The columns used throughout the course of this study were ones 

comprised of Spherisorb S5 ODSJ (25cn x 5mm ID, dm = Sum) which were packed 

in this laboratory using a modification of the high pressure balanced- 

density technique. 208 A slurry of the packing material (Spherisorb S5 ODS1, 

supplied by Phase Sep, Queensferry, Clwyd) was prepared by homogenisation 

and degassing of the racking material in supporting balanced-density solvent 
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(ca. lg of packing to 10ml of solvent) by means of ultrasonic vibration 

for 10 minutes. This slurry was placed in a reservoir over 2-PrOH and 

was pumped into the column using a N2-driven constant pressure hydraulic 

pump (Paskel MCP-71) set at 6500p. s. i. The flow rate during the packing 

was maintained within the range 15-20mlmin-1. McOH containing cyclohelancl 

(3 drops per 10mis MeOH) was employed as the supporting liquid. 

2.2.5 Standard Solution Preparation 

For general purposes standard solutions of the catecholamines EP, 

PNE. HC1 and DA were prepared from methanolic stock solutions (100ugml 1 

active ingredient) by serial dilution using mobile phase. 

For optimisation of the cell polarisation potential for catecholamine 

analysis a working standard containing 0.4igml-1 of each catecholamine was 

prepared by serial dilution. 

For determination of the limits of quantitation and detection of 

different makes of ECD towards EP, NE and DA a working standard containing 

O. Olugml"1 of each catecholamine was prepared by serial dilution. 

For the analysis of rat brain homogenates experiment an aqueous 

standard containing NE (0.2pgm1'1), DA (0.2pgml-1), 3,4-dihydroxyphenyl- 

acetic acid (DOPAC, 0.2pgm1'1) and DBBA (0.65ugm1-1) was provided by 

Dr. I. Kilpatrick (Department of Anatomy, University of Bristol). 

All standards were stored in a refrigerator maintained at ca. 4 °C 

until required. Vessels containing stock solutions were wrapped an Al 

foil in order to exclude light. 
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2.2.6 HPLC Oneratiniz Conditions 

2.2.6.1 Conditions Employed for Warm-Up Procedures and Baseline Noise 

Comparison Studies209 

Column . Spherisorb S5 ODS1 (L = 25cm, ID = 5mm, dp = 5um, 

C Loading = 7% w/w, Surface Area = 22 0m2g-1). 

Mobile Phase 100%, PaeOH : 90% ao. buffer containing HCt (6.3gl-1), 

NaAc (2.27g1-1) and NaOH (2.0g1 1), pH 4.8. 

Flow Pate : l. Omlmin-1. 

Injection Volume : 20p1 (via loop). 

Detection : ECD (Potential : +0.65V vs. Ag/AgCl reference; 

Mode : Oxidation; Instrument Sensitivity : 30nA 

f. s. d.; Time Constant : lsec). 

Chart Speed : 5mm min-1. 

2.2.6.2 Conditions Employed for the Catecholamine Limit of Detection 

and Limit of Quantitation Study 

As in 2.2.6.1 except ECD potential = +0.70V. 

2.2.6.3 Conditions Employed for the Analysis of Rat Brain Homogenates 

for Neurochemicals210 

As in 2.2.6.1 except ECD potential = +0.70V vs. Ag/AgCl and, 

Mobile Phase . 7% MeOH : 93% aq. 0.1M NaAc/HCt buffer containing 

HSA (100ngl'1) and EDTA (50mg1-1), pH 4.6. 
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2.2.7 Detector Warm-Up Procedure 

An HPLC system including the PU4010 pump, and with the first ECD to 

be evaluated on-line, was set up. The standard mobile phase comprising 

10% MeOH : 90% aq. buffer containing HCt (6.3gl-1) 
, INTaAc (2.27gl-1) and 

NaOH (2.0gl-1) was pumped through the apparatus at a flow rate of 1. Omlmin-1. 

Any air bubbles that became trapped in the flow cell were removed by 

holding the cell in a suitable orientation and tapping it vigorously. A 

free flow of solvent through the cell was ensured prior to start up. 

The chart recorder was zeroed and set in motion at a velocity of 

5mm min-'. The ECD controller unit was programmed as follows : 

Power : Off 

Applied Potential : +1.00V 

Mode : Oxidation 

Cell : Off 

Sensitivity . l4A f. s. d. 

Time Constant/Damping : lsec (PU and EDT models), Off 

(Metrohm model) 

The power was engaged then the operating potential was applied to the cell. 

The behaviour of the baseline was observed and recorded. The time taken 

to settle to +10% f. s. d. was noted. A working potential of +0.65V was 

then selected. The instrument sensitivity was increased from 1 VA to 

30nA (EDT and PU ECDs) or 5OnA (Metrohm ECD) in a stepwise manner, allowing 

the baseline to stabilise between increments. The time taken to achieve 

a steady baseline of < 5%0 drift was noted. The instrument sensitivity was 

then further increased to lOnA f. s. d. ' and again the time taken to achieve 

a stable baseline was noted. Further increases in instrument sensitivity 
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were investigated as was deeied appropriate based on previous findings. 

Subsequently, identical warm-up procedures were applied to the 

remaining two detectors so that the instruments could be directly compared. 

2.2.8 Recording of Baselines 

Detector outputs were recorded from the PU4022, EDT LCA 15 and 

Metrohm 641-VA/656 ECDs under a variety of experimental conditions. The 

variables were pump model (PU4010 or Altex LC-XPD), mobile phase organic 

modifier content (10% or 90%), mobile phase flow rate (0.5,1.0,2.0 and 

3. Omlmin-1) and detector sensitivity (30nA (or 50nA for, the Metrohm model) 

or lOnA f. s. d., and 3nA or lnA f. s. d. where appropriate). 

Each required combination of variables was applied in turn and the 

baseline was recorded. Sufficient time was allowed for equilibration of 

the system, i. e. until no discernible change in the recorded baseline over 

a 20 minute period was noted, before a representative section of the trace 

was taken and a new set of conditions was applied. 

2.2.9 Procedure for the Optimisation of Electrochemical Detector 

Avnlied Potential 

An IPLC apparatus comprising the Altex LC-XPD pump, a Rheodyn e 

injection valve fitted with a 20111 loop, a Spherisorb S5 ODS1 column 

(2 5 cm x 5mm ID, dp = 51jm) and 

this apparatus was pumped the 

buffer containing HCt (6.3g1' 

at a, flow rate of 1. Omlmin-1. 

+0.50V was programmed and the 

the EDT LCA 15 ECD was constructed. Through 

standard mobile phase (10% MeOH : 90% aq. 

1) 
, NaAc (2.27g1-1) and NaOH (2.0g11), pH 4.8) 

An initial cell polarising voltage of 

baseline at 30nA f. s. d. sensitivity with a 
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time constant of lsec was allowed to settle. A standard containing EP, 

I ;E and DA (all components at concentrations of 0.4uginl"1) was then 

chromatographed in duplicate. The applied potential was increased in 

0.10V increments (except for +0.65V) to +0.90V and the procedure was 

repeated for each selected potential. Peak heights and baseline noise 

levels of all the chromatograms were measured manually. 

2.2.10 Procedure for the Determination of Limits of Detection and 

Quantitation of EP, NE and DA 

A second HPLC apparatus was assembled of identical format to the 

one used for the optimisation of ECD applied potential (see Section 2.2.9) 

except that the PU401 0 pump and the PU4022 ECD were incorporated. An 

identical Spherisorb S5 ODS1 column (25cm x 5mm ID, dp = 51im) was connected 

into this second system. Through both instruments was pumped the same 

standard mobile phase (see Section 2.2.6) at 1. Omlmin-1. Both ECDs were 

set to an instrument sensitivity of lnA f. s. d. with a time constant of l0sec., 

The baseline was allowed to stabilise in each case. A standard containing 

EP, NE and DA (all at a concentration of O. Olpgml-1) was chromatographed in 

duplicate on each system. Peak heights and baseline noise levels of all 

the chromatograms were measured manually. 

2.2.11 Preparation of Rat Brain Samples 

A laboratory rat was sacrificed by cervical dislocation and its brain 

was removed quickly on to an iced surfaced. The brain was carefully 

dissected and samples of cerebral cortex (2 x ca. 15ng), striatum (2 x ca. 

15ng) and olfactory tubercles (2 x ca. 15mg) were taken and placed in PTFE 
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centrifuge vials. To one sample from each area of the brain was added 

aq. DHBA (9ugml'', 25111) and aq. HC104 (0.4r11,32511l) containing EDTA 

(50ugml-1'). To the other sample from each area of the brain was added 

aq. HC104 (O. 4M, 350111) containing EDTA (50ugm1-1) only. Each tissue 

sample was homogenised then centrifuged to obtain the supernatant. The 

prepared samples were kept on ice until they were chromatographed. 

I 
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2.3 Results and Discussion 

2.3.1 Evaluation and Comparison of Electrochemical Detector Warm-Ua 

Characteristics 

Each ECD to be investigated was incorporated in turn into a standard 

HPLC system and each instrument was then subjected to an identical warm-up 

procedure as outlined in Section 2.2.7. 

Pve Unicam PU4022 

From 'power on' the Pye Unicam PU4022 ECD took 10-20 minutes to return 

to the nominal +10% f. s. d. signal level whereupon the working potential of 

+0.65V was set. Under the influence of this applied potential the arbitrary 

criteria selected to describe a practicable baseline were that the baseline 

obtained should be steady, i. e. not cycling or generally subject to long-term 

(low frequency) noise, and should be subject to a drift of not greater than 

5%. A practicable working baseline was achieved after a further 10 minutes 

at a stepwise selected instrument sensitivity of 30nA f. s. d. Following 

an increase in this parameter to lOnA f. s. d., another 5-10 minutes was 

required to obtain a reasonable baseline, although this suffered short-term 

(high frequency) noise of approximately 200pA (2% f. s. d. ) and exhibited a 

tendency to drift. After overnight flushing of the flow cell, a relatively 

noise-free, drift-free baseline was attained at this sensitivity setting, 

Figure 2.9 shows a typical warm-up for this detector. At even higher 

instrument sensitivities (3nA and 1nA f. s. d. ) the use of a time constant 

of >lsec was essential and the baseline at these levels was only utilisable 

after a considerable settling time of 12 hours (overnight) at the very 

least. 
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EDT LCA 15 

Upon subjection to the same warm-up procedure the EDT LCA 15 behaved 

identically to the PU4022, a practicable baseline at the lOnA f. s. d. 

sensitivity setting being achieved 25-40 minutes after switching on the 

mains supply. A typical warm-up for this detector is illustrated in 

Figure 2.10. At the higher instrument sensitivities of 3nA and lnA f. s. d. 

very similar behaviour to that exhibited by the PU4022 was observed with 

the exception that the LCA 15 appeared to settle a little quicker than did 

the Pye model. This observation was relatively insignificant as 

equilibration time was still very long (>10 hours) and any small differences 

in performance could be attributed to minor differences in the state of the 

electrodes in the two flow cells. 

The experimentally determined warm-up times for the Pye and EDT ECDs 

of 25-40 minutes from the engagement of the power supply to a steady base- 

line at lOnA f. s. d. are better than those claimed by the. manufacturers. 203-205 

It is expected to take between 40 and 60 minutes to achieve' a steady base- 

line at 30nA f. s. d. according to the relevant operator manuals. However, 

these figures quoted by the manufacturers encompass a range of applied 

potentials and chromatographic conditions and criteria for acceptability 

are not stated; therefore direct comparison with literature claims is 

difficult. 

Metrohm 641-VA/656 

Application of the standard warm-up procedure to the Metrohm 641-VA/656 

yielded many problems. From 'power on' exceptionally great noise and drift 

were observed at moderate instrument sensitivities (100nA and 50nA f. s. d. ) 

--for extremely long periods such that use was impossible. The baseline took 
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between 48 and 72 hours to settle to a reasonable state (although still 

not within the arbitrarily defined criteria), the signal continuing. to be 

fairly erratic in nature. Prolonged application of a highly positive 

operating potential (+1.2V) served to stabilise the detection system to a 

small degree, probably by electrolytic cleaning of the WE. Regular 

servicing of the 656 flow cell was carried out. The GCEs were removed, 

polished by mechanical abrasion with a urethan olic slurry of fine alumina 

powder (dp = 0.3um) on a soft, lint-free tissue and were replaced; the RE 

was removed, cleaned, refilled and reinstalled, and any trapped air bubbles 

were carefully excluded from the reassembled flow cell. Unfortunately 

this treatment yielded no significant improvement in performance. Hence, 

due to the instability of the system no relevant data was obtained regarding 

the warm-up characteristics of the Metrohm ECD. 

The performance of the 641-VA/656 was considerably worse than had 

been observed on previous occasions when operating this instrument. 211 

Furthermore, equilibration time was not within the one hour specified by the 

manufacturers. '86 Initially it was thought that the 6 month period of 

inactivity of the 641-VA/656 prior to this study (which was in contrast to 

the other two ECDs which had been in regular operation) may have contributed 

to the poor performance of this detector, although this explanation was not 

considered to be entirely satisfactory. 

2.3.2 Baseline Noise Comparison Studies 

In the following sections, baselines are discussed with respect to 

noise, which is the term given to any perturbation of the detector output 

that is not related to an eluted solute. The origins of noise in ECDs 
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are not completely understood. 212 Van Rooijen and Poppe213 speculated 

that the predominant source of noise in amperometric ECDs is the RE. More 

recently, Morgan and Weber 224 examined, quantified and compared noise 

originating from current-, potential- and impedance-based sources. They 

concluded that noise in the frequency range below 1Hz is dominated by 

impedance noise while for frequencies between 1 and 20Hz the voltage noise 

in the current-to-voltage converter is predominant. Unfortunately, the 

most ubiquitous noises are those at lower frequencies. Baseline noise has 

been arbitrarily divided into three types, known as short-term (high 

frequency) noise, long-term (low frequency) noise and drift. 

Short-Term Noise 

Short-term noise consists of baseline fluctuations that have a 

frequency that is significantly higher than that of an eluted peak, and 

which often appears as "grass" on the output trace. Short-term noise is 

not usually a great problem because it does not seriously obscure the 

presence of a solute peak and further, it can often be eliminated totally. 

If the short-term noise persists at low detector sensitivities the source 

is often in the recorder and can be eliminated by either slightly reducing 

instrument sensitivity or increasing the degree of damping or, failing 

these measures, by repairing or replacing the recording apparatus. If the 

short-term noise is only prevalent at high sensitivity, then this arises 

from the detector amplifier and can be eliminated by interposing an 

electronic filter device between the amplifer output and recorder. 

Another source of short-term noise originates from the pulsations generated 

by the solvent delivery system and can be identified by the fact that the 

frequency of the noise matches the piston stroke frequency. Pump noise is 

often reduced by the incorporation of a pulse dampener in the system. 
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Long-Term Noise 

Long-term noise consists of baseline perturbations having a frequency 

of the same order as eluted peaks. Consequently, this type of noise is 

the most serious as it cannot be differentiated from an eluted peal, of the 

same amplitude. Furthermore, any filter that would eliminate long-term 

noise would virtually remove such a solute peak too and thus is inappropriate. 

It is this type of noise which ultimately limits the sensitivity of the 

detector. 

Long-term noise arises primarily from the sensing system of the 

detector itself and not from the detector electronics and frequently results 

from component instability or small changes in ambient conditions. Noise 

of this type can increase progressively during the lifetime of a column due 

to the irregular elution of column contaminants. Noise originating from 

this source can only be reduced or eliminated by thorough column cleansing 

or replacement. 

Drif t 

Perturbation of the detector output having a frequency significantly 

less than the frequency of the eluted peaks is called drift. Drift does 

not obscure eluted peaks but detectors operating with significant drift 

require frequent adjustment of the baseline level. -- Drift can result from 

slowly changing output from the power, supply to the detector but more often 

originates from two other sources, both due to non-equilibrium conditions 

in the column and detector. If the detector, column and mobile phase are 

not in thermal equilibrium then serious drift can result. Thermostatting 

of the apparatus will eliminate this problem. The second major source of 

drift arises because of incomplete mobile phase equilibrium with the 
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stationary phase or inhomogeneity of the mobile phase. Such drift always 

occurs on changing the composition of the mobile phase and will generally 

decrease until a stable baseline is obtained with coa tinued elution of the 

new mobile phase through the IPLC system. The presence of trace impurities 

in the mobile phase can exacerbate this problem thus again the need for high 

purity solvents and reagents is emphasised. Uhen detectors are operated 

at or near to maximum instrument sensitivity, all three of the aforementioned 

types of noise are usually present. 

Measurement of Detector Noise 

The noise associated with a particular detector is defined as the 

maximum amplitude of the combined short- and long-term noise measured over 

a period of about 10 minutes 67, xghich is illustrated in Figure 2.11. 

iý 

f lip I N 

10 mins 

Figure 2.11 Measurement of Detector Noise Level 

The HPLC system must be fully assembled and mobile phase must be pumped 

through it over the entire monitoring period. It is recommended67 that 

the maximum amplitude of the combined short- and long-term noise be 
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measured in milliVolts (mV) and corrected to an amplification (or 

attenuation) of unity. In addition, the noise level should be determined 

at the highest amplification (or lowest attenuation) which does not include 

noise-filtering devices. 

Total detector noise levels in this study were measured as in 

Figure 2.11 and, in addition, estimates of the magnitude of the individual 

contributions of short-term and long-term noise to the total noise were made. 

However, the recommendations of Scott noted above were not strictly 

followed. First, all noise levels were quantified in terms of the 

current that such voltage perturbations represented and not in units of 

potential as was suggested. Presentation of noise in this form was deemed 

to be more meaningful regarding amperometric ECDs. Secondly, a full 

assessment of the available electronic noise-filtration circuitry 

incorporated in each instrument under examination was sought. To this end 

certain noise measurements were conducted with noise smoothing functions 

engaged. 

Baseline signals were recorded from each ECD. under scrutiny over a 

range of experimental conditions. The variables that were exploited were 

pump model (P'J4010 or LC-XPD), mobile phase flow rate (0.5,1.0,2.0 and 

3.0mlmin"1), mobile phase MeOH : aq. buffer ratio (10: 90 or 90: 10), and 

instrument sensitivity (30nA or 50nA, lOnA and, where appropriate, 3nA and 

1nA f. s. d. with suitable time constant/damping settings). A standard mobile 

phase comprising 10, 'o "Ie0H : 90% aq. buffer containing HCt, ", aAc and NaOH 

was pumped through the system for all measurements except for the experiment 

where high organic modifier content was required vrhen a 90% MeOH : 10% aq. 

buffer mixture was eluted. All experiments were carried out at two 

instrument sensitivity settings, viz. 3OnA (or 50nA for the Netrohm ECD) 
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and lOnA f. s. d. These settings are commonly applied to trace analysis 

and were selected in order to demonstrate fully the noise levels to be 

expected during actual analyses. 

Following initiation of each new set of experimental -conditions 

employed, sufficient equilibration time was allowed (i. e. until, by 

inspection, no significant improvement in the baseline was evident over a 

20 minute period) before a representative section of baseline was sampled 

and evaluated for noise. Ten minute duration lengths of baseline, as 

recommended by Scott67, are assembled in Tables 2.8-2.15 for comparison 

purposes. Signals obtained from the Metrohm ECD are included in these 

tables but these are considered to be unrepresentative of the instrument in 

a properly functioning state. 

2.3.2.1 Variation of Mobile Phase Flow Rate 

Tables 2.8 and 2.9 illustrate the effect of flow rate on the baseline 

noise generated within each LC-EC system. Table 2.8 depicts baselines 

obtained by delivering standard mobile phase at a range of flow rates using 

the PU4010 pump and recorded at ECD sensitivities of 3OnA (or 5OnA) and 

lOnA f. s. d. In a similar fashion Table 2.9 comprises baselines obtained 

using the Altex-manufactured LC-XPD pump. 

By inspection, it is evident that under identical experimental 

conditions the signals from the PU4022 and the EDT LCA 15 are virtually 

identical with respect to short-term noise. No change in short-term noise 

is distinguishable with increase in flow rate from these two ECDs, short- 

term noise being essentially less than 150pA for all traces. Long-term 

noise from the PU4022 is generally a little greater than that from the 
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EDT LCA 15 (ca. 100-175pA cf. ca. 75-125pA) indicating slightly poorer 

stability. 

The Metrohm 61.1-VA/656 noise output is much greater than the outputs 

of the other two ECDs. Both short-term and long-term noise are increased 

by about a factor of four; the former ranges between ca. 75 and 500pA, the 

latter between 200 and 1100pA. Total noise is observed to increase in 

both magnitude and frequency with increasing flow rate. The nature of the 

short-term noise suggests that it originates primarily from pressure 

pulsations which increase in frequency with increase in piston stroke speed. 

Superimposed on top of this is a small amount of high frequency electronic 

noise. 

2.3.2.2 Variation of Pump Model 

A considerable difference between the Metrohm ECD baselines obtained 

when using the Pye Unicam PU4010 pump and those obtained when using the 

Altex LC-XPD pump was noted. In Tables 2.10 and 2.11 are presented 

compilations of baselines recorded from all three ECDs enabling direct 

visual comparison of outputs with respect to pump model over a range of 

experimental conditions. The effect of pump characteristics on noise is 

demonstrated most prominently by the Metrohm ECD traces, particularly those 

obtained at lOnA f. s. d. At this instrument sensitivity, and over the 

range of flow rates investigated, the long-term baseline noise is comparable 

between pumps. However, as Table 2.11 clearly shows, short-term noise 

originating from the PU4010 is markedly greater than that generated by the 

LC-XPD. Both pumps are of dual piston reciprocating-stroke design, and 

possess piston chambers of similar dimensions and internal pulse dampeners. 

However, the Altex LC-XPD exhibits superior performance with respect to 
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pulsing, as exemplified by the-Metrohu 64l-VA/656 output, but this 

superiority is inconsequential with regard to the outputs of -the PU4022 

and the EDT LCA 15. 

2.3.2.3 Variations of MeOH Content of the Mobile Phase 

An experiment was carried out in order to determine to what extent the 

organic modifier content of the mobile phase contributed to baseline noise. 

'two mobile phases comprising MeOH and water containing fixed concentrations 

of HCt, NaAc and NaOH were compared, the first incorporating 10% MeOH and 

the second 90% MeOH. A standard flow rate of 1.0mlmi. n. was employed for 

all recordings. Baselines obtained from all three ECDs are compiled and 

presented in Tables 2.12 and 2.13. 

From these traces it can be deduced that both short-term and long-term 

noise are generally greater at high NeOH content. This is to be expected 

because MeOH is less able to support a current than is water. However, 

the signals recorded from the Metrohm 641-VA/656 do not entirely follow this 

pattern with respect to long-term noise, which is greater at low McOH content. 

This situation may have arisen merely as a result of the unreliable 

performance of the Metrohm ECD and consequently is not considered further. 

2.3.2.4 Baselines at Higher Sensitivity Settings 

Utilising the Pye Unicam system comprising the PU4010 pump (with which 

standard mobile phase was delivered at a flow rate of 1. Omlmin-1) and the 

PU4022 ECD, baselines were recorded at higher instrument sensitivities than 

had previously been examined, viz. 3nA and lnA f. s. d. Time constants of 

1,3 and 10secs were employed at both these instrument sensitivities and the 
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resulting traces are displayed in Table 2.14. This procedure was repeated 

for the Altex LC-XPD pupp/EDT LCA 15 system and the resulting traces are 

presented in Table 2.15. A comparison of these baselines shows that the 

output from the EDT LCA 15 was marginally noisier at the 3nA f. s. d. setting 

but there was no discernible difference at the lnA f. s. d. setting. 

The action of the electronic smoothing function is most clearly 

demonstrated at the 3nA f. s. d. sensitivity setting where noise is reduced 

from ca. 200pA to ca. 40pA (7% to 1.5%% f. s. d. ) with an increase in time 

constant from lsec to l0sec. The baselines obtained at lnA f. s. d. 

sensitivity plainly demonstrate that this setting is wholly unsuitable for 

analytical work with noise extending between ca. 150-25OpA (15-25% f. s. d. ). 

Thus, the highest practicable instrument sensitivity available on the PU4022 

and EDT LCA 15 ECDs under these experimental conditions is 3nA f. s. d., 

ideally with greater than nominal signal smoothing introduced.. 

2.3.2.5 Summary 

Over the range of experimental conditions employed the EDT LCA 15 

fared best with respect to baseline noise. The performance of the PU4022 

was generally very slightly inferior to that of the EDT model, primarily 

regarding long-term noise. The Metrohm 641-VA/656 was found to be far 

noisier in all respects than the other two detectors. Drawing conclusions 

regarding the Metrohm ECD proved to be difficult due to the failure to 

achieve a 'normal' standard of performance from the instrument. 

A few months after the completion of this investigation, the Metrohm 

ECD was dispatched back to the manufacturers for servicing. The controller 

unit was found to contain faulty electronic components which undoubtedly 

were the major contributors to the erratic noisy signal output. For this 
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reason any comparison made between the EDT/Pye ECDs and the Metrohm model 

in this study would be unreliable hence the comparison of ECD performance 

with respect to major design differences was not justifiable in this 

instance. 

A comparison of the PU4022 and the EDT LCA 15 with respect to back- 

ground noise was justifiable however. The. factor of three difference in 

noise levels resulting from the different power packs incorporated in these 

two ECDs202 was not fully realised within the confines of these experiments. 

The overall noise difference between the EDT and Pye Unicam models was only 

of the order of 20-60%, not 300% as might have been expected. From this it 

must be concluded that other factors must contribute to the observed noise 

to a greater extent than does the instrument power system. The findings 

of the baseline noise study lead to the conclusion that the PU4022 and the 

EDT LCA 15 are of similar specification and are virtually interchangeable 

over the range of instrument sensitivities compared. 

Because of the major problems encountered with the performance of the 

Metrohm ECD the instrument was abandoned at this point. Only the PU4022 

and the EDT LCA 15 were assessed further. 

2.3.3 Operational Evaluation of the ECDs 

The three ECDs were assessed regarding their ease of operation and 

the utility of the features available to the operator. 

The PU4022 and the EDT LCA 15 were considered to be superior to the 

Metrohm 641-VA/656 with regard to the facilities offered. The former two 

instruments both contain autozero and event marker features which were very 

useful for output presentation purposes. However, the push buttons 

provided for operation of these features were found to be a little crowded 
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and awkarard to operate and were prone to manipulative error. An earlier 

design of the EDT controller 204 isolated both the autozero and the event 

marker buttons from the other controls on the unit facia. A return to 

this original arrangement of buttons and switches on the EDT controller, 

and adoption of the same by Pye Unicam, would provide an instrument that 

is far more accessible and easy to use. 

The Metrohm ECD offers a more extensive range of operating 

sensitivities (100pA->10mA f. s. d. ) than does either the Pye Unicam or the 

EDT ECD (1nA-Y311A). Unfortunately, because of the uncharacteristically 

poor performance of the Metrohm instrument this greater sensitivity range 

could not be evaluated satisfactorily. However, it is evident from the 

literature that this wide range of instrument sensitivity is unnecessary 

for the vast majority of ECD applications reported to date, the most 

commonly employed sensitivity settings being between 10 and 100nA f. s. d. 

Hence, the Metrohm 641-VA/656 offers little advantage in this respect over 

the Pye Unicam and EDT detectors. 

The flow cell supplied with the Pye Unicam and EDT detectors is both 

simple and readily accessible for cleaning and servicing. In contrast, 

the 656 flow cell provided with the Metrohm ECD is cumbersome. The 

screening cage and the water jacket thermostat themselves, as well as the 

multitude of wires and pipes passing through the rear of the screening cage, 

restrict access to the cell for routine maintenance. Thus, in terms of 

facility of operation the PU4022 and the EDT LCA 15 flow cells are preferred 

to the Hietrohm 656 flow cell. 
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2.3.4 Evaluation of Electrochemical Detectors with Reference to the 

Determination of Catecholamines 

A classical application of the use of the ECD is for the detection 

of the catecholamines epinephrine (EP), norepinetrrine ('E) and dopamine 

(DA). The structure of these compounds are given in Figure 2.12. 

OH 

HO NH(CH3) 

HO 

Epinephrine 

OH 
HO NH2 

HO 

HO N H2 

HO 
Norepinephrine Dopamine 

Figure 2.12 Structures of some Comma- Catecholamines 

EP, IXTE and DA are the final products of a biosynthetic pathway which 

commences with the amino-acid, phenylalanine. These three catecholamines 

are widely occurring and perform extremely important bioregulatory functions. 

EP and ; 1E are hormones secreted from the chromaffin cells in the adrenal 

medulla, and are fundamental in the control of heart rate, blood pressure 

and lipid and carbohydrate metabolisms. All three catecholamines also act 
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as neurotransmitters in both the sympathetic and central nervous systems. 

The great importance of these compounds is admirably demonstrated by the 

abundance of scientific literature pertaining to them., 

The three catecholanines EP, I'iE and DA all possess a 1,2-diol(catechol) 

structure which readily oxidises at moderate positive potentials generating 

the corresponding 1,2-dione(orthoquinone), two protons and two electrons 

as illustrated in Figure 2.13. 

HO R 

HO 

ca. 0.6V 
0R 

0 

+2H®+2e9 

1,2-diol 
(catechol) 

1,2-dione 
(orthoquinone) 

Figure 2.13 I. ectro-oxidation of a 4-substituted 1,2-diol(catechol) 

It is this highly electroactive site which permits the EC detection 

process to take place with such ease. As a direct result of this property, 

and coupled with the great interest in measuring EP, NE and DA expressed by 

clinicians, these materials are commonly used for demonstration of ECD 

performance by manufacturers and researchers alike. The catecholamines 

are utilised herein for this purpose. ' 

The initial objective of this study was to determine the optimum 

applied potential (Eopt) for the simultaneous detection of EP, NE and DA 

under the predetermined experimental conditions. 209 The optimum applied 

potential is defined herein as that potential at which S/11 ratio is 

maximised for all three analytes. Secondly, using this optimum applied 
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potential the two ECDs were to be compared with respect to limit of 

detection (LOD) and limit of quantitation (LOQ) by means of their 

application to the determination of the three catecholamines in standard 

solutions. There is considerable ambiguity surrounding the term LOD in 

the field of chromatography. Foley and Dorsey215 recently defined the LOD 

specifically as the smallest mass of analyte that can be detected with 

reasonable certainty for a given analytical procedure, and they expressed 

this quantity as : 

LOD = arbitrary detector signal level 

analytical sensitivity 

where analytical sensitivity is defined as the signal output per unit mass 

of analyte introduced in a given analytical procedure. Chromatographers 

often define a second empirical parameter, namely the LOQ (sometimes known 

as the 'method sensitivity') which is arbitrarily taken as ten times the 

LCD and it is generally accepted that quantitation below this level is 

"unreliable". There is no consensus regarding which S/N ratio should be 

employed for the determination of the LOD215, and subsequently the LOQ. 

Values of 2: 1 (e. g., 216), 3: 1 (e. g., 217) and 5: 1 (e. g., 62) for LOD are 

commonplace in the chromatography literature. For the purpose of the 

investigations reported in this dissertation S/i/ ratios of 2: 1 for LOD, 

and consequently 20: 1 for LOQ, were selected so that the LOD was identical 

to the mass sensitivity (see Section 1.4). Although this empirical 

approach is generally accepted, it should be noted that neither of the 

aforementioned quantities is in fact statistically valid. However, this 

does not affect the ability to compare detectors using the empirical 

approach. 
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The final objective of these experiments was to demonstrate the 

applicability of a selected ECD to the determination of EP, NE, DA and 

other endogenous electroactive substances in selected rat brain regions. 

2.3.4.1 Optimisation of Applied Potential 

In the literature there is some confusion regarding the optimum cell 

polarising voltage (Eopt) for the detection of EP, NE and-DA. This 

variation is attributable to the individual differences between detectors 

(architecture, electrode materials, etc. ), to the supporting electrolyte- 

composition and to the complete range of analytes under' consideration. 

Typically, potentials between +0.5V and +1.0V vs. Ag/AgCl reference are 

reported. For this investigation Eopt was determined experimentally under 

the predetermined operating parameters. 

An HPLC system was assembled using the Altex LC-XPD pump and the 

EDT LCA 15 detector and incorporating a Spherisorb S5 ODS1 column 

(25cm x 5mm ID, dp = 5pm). The standard mobile phase (Section 2.2.7) was 

pumped through the apparatus at a flow rate of 1. Omlmin-1. The operating 

potential of the ECD was set to +0.5V and the system was allowed to 

equilibrate. A standard containing EP, NE and DA was then chromatographed 

in duplicate. The operating potential was increased stepwise and at each 

selected potential the procedure was repeated. The series of chromatograms 

so obtained are presented in Figure 2.14. Baseline noise and peak heights 

of all three peaks in each chromatogram were measured and S/N ratios were 

calculated. These data are tabulated in Table 2.16. Graphs of S/P/ ratio 

vs. applied potential for all three analytes are compiled in Figure 2.15. 

The data presented in Figure 2.15 reveals that, within the limits of 

the experiment, an applied potential of +0.70V provides the optimum S/N 
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ratio for EP, HE and DA. The deterioratim in-'baseline stability 

experienced at applied potentials of > +0.70V, without equivalent improvement 

in signal for the analytes,, can be identified as the limiting factor. 

Commonly, detector response alone rather than S//Y ratio is considered 

in determining Eopt. Indeed, this method is recommended in the ECD operator 

manuals. 203'205 Strictly, this approach is unsatisfactory because ultimately 

it is S/. 'l ratio that is the important factor in determining LOD and LOQ. 

The fallibility of using ECD response alone for the elucidation of E 
01)t 

is 

ably demonstrated by a comparison of the plot of Mean S/N ratio vs. applied 

potential (Figure 2.15) with a plot of mean detector response (measured as 

peak height) vs. applied potential, which is given in Figure 2.16. From 

the latter graph it may be deduced that, at least for E and NE, Eopt defined 

by ECD response alone lies at a value > +0.90V which is a much more positive 

potential than the value of +0.70V selected by the S/N ratio criterion. 

This increased potential will in fact yield poorer LODs and LOQs than will 

the +0.70V value because of the ultimate dependence of these parameters on 

background noise level. 

An applied potential of +0.70V, based on the more rigorous S/N ratio 

criterion, was programmed into the ECDs for the remainder of this study. 

2.3.4.2 Limits of Detection and Quantitation for Catecholamines 

The PU4022 and MT LCA 15 ECDs were compared and contrasted with respect 

to the LODs and LOQs attainable for the catecholamines EP, PIE and DA. In 

order to do this two parallel P LC systems were assembled. The first one 

was that used for the optimisation of the applied potential which included 

the Altex LC-XPD pump and the EDT LCA 15 ECD. The second set-up was of 

similar composition except that the PU4010 pump and the PU4022 ECD were 
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employed. Identical columns of Spherisorb S5 ODS1 were interposed into 

both systems. 

Each ECD was programmed with an instrument sensitivity of lnA f. s. d. 

(the maximum setting available on each control unit) and a time constant 

of 10sec. Through each system was pumped the standard mobile phase used 

to date for catecholamine chromatography and the baselines obtained were 

allowed to settle as far as was possible. A standard mixture of EP, NE 

and DA (O. Olugml-1 = 200pg injected of each compound) was chromatographed 

in duplicate on each system. Baseline noise and peak heights were measured 

for all chromatograms. 

As stated previously, LOD is defined herein by a S/N ratio of 2: 1 

and LOQ by a S/N ratio of 20: 1, therefore masses of each catecholamine 

required to provide these S/N ratios were calculated and are presented in 

Tables 2.17 and 2.18. 

A comparison of the mean LODs and mean LOQs for each catecholamine 

with respect to detector model points to the conclusion that there is little 

difference between the two ECDs on this basis. The rough calculations 

yield slightly lower values from the PU4022 than from the EDT LCA 15 but 

within the limits of the original measurement error no clear distinction 

may be drawn. 

A more reliable study might be achieved perhaps by applying a more 

rigorous approach and by increasing the number of injections on each system. 

However, within the bounds of this experiment, which was restricted greatly 

by the short time that the EDT LCA 15 was available for assessment, the two 

ECDs were; found to be equivalent. 

As it was known at this point that the EDT LCA 15 would not be 

retainable for future work beyond this comparison study, the PU4022 alone 
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was evaluated regarding its performance in the analysis of samples of 

biological origin. 

2.3.5 Demonstration of the Application of the PU4022 Electrochemical 

Detector to the Determination of Pleurochenicals in Specific at 

Brain Regions 

In order to demonstrate the effectiveness of the Pye Unicam system 

(PU4010 pump and PU4022 ECD), the instrument was used to detect, and in 

some cases identify, a number of electroactive neurochemicals present in 

different regions of the brain of a rat. 

The Pye Unicam apparatus from the previous study, which included the 

Spherisorb S5 ODS1 column, (see Section 2.3.4) was used again except that 

the 20µl injection loop was replaced by one of 50ul capacity. A new solvent 

system comprising 7% MeOH : 93% aq. NaAc/HCt buffer containing BSA as an ion 

interaction agent and EDTA as a metal ion complexing agent (pH 4.6) was 

recommended by Dr. I. Kilpatrick (Department of Anatomy, University of 

Bristol)210 who routinely determines the aforementioned substances using a 

similar HPLC system to that being examined. The mobile phase was pumped 

through the apparatus and a standard provided by Dr. Kilpatrick was 

chromatographed. The resulting chromatogram is presented in Figure 2.17. 

A series of 6 supernatants was obtained by homogenisation and 

centrifugation of small parts of a rat brain. Three brain regions were 

studied, viz. the cerebral cortex, the striatum and the olfactory tubercles. 

Two samples of each region were taken, to only one of which was added 

3,4-dihydroxybenzoic acid (DIBA), the commonly employed internal standard 

for this work. The six supernatants were chromatographed and the resulting 

chromatograms are presented in Figures 2.18 to 2.23. 
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FiEure 2.17 Chromatogram of Catecholamine Standards Obtained Using 
the Pye Unicam Instrumentation 

Parameters :- Column. : Spherisorb S5 ODS1 (25cm x 5mm ID, d= 51jm); 
Mobile phase : 7% MeOH : 93% aq. O. 1M NaAc/HCt buffer containing HSA 
(100mgl-1) and ED TA (50mg1-1), pH 4.6; Flow Rate : 1. Omlmin-1; Pump : 
PUL010; Detector : PU4022 EM (Eapp = +0.7V vs. Ag/AgCl, TC = lsec); 
Sample : 5Op1 via loop of an aq. standard containing NE, DHBA, DOPAC 
and DA 
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Fieure 2.18 Chromatogram of at Cerebral Cortex Homogenate 

Parameters :- For conditions see Figure 2.17 except for Sample : 5(u1 
via loop of a HC104/EDTA homogenate (350u1) of rat cerebral cortex 
(ca. 15mg) 
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Figure 2.19 Chromatogram of Rat Cerebral Cortex Homogenate with 
Added Internal Standard 

Parameters :- For conditions see Figure 2.17 except for Sample : 501.. 11 
via loop of a HC10b/EDTA homogenate (350111) of rat cerebral cortex 
(ca. 15mg) incorporating DHBA as an IS 
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Fig'ure 2.20 Chromatogram of Rat Striatum Homogenate 

Parameters :- For conditions see Figure 2.17 except for Sample : 50u1 
via loop of a HC104/EDTA homogenate (350u1) of rat striatum (ca. 15mg) 

3 

2 

c) 
c 

P4 

0 
4J 0 

a) 

sf 5 

4 

8 

4 

2 

2 

6 a . 1 I 
10 

6 9 

12 11 

0 
08 16 24 32 

Time/rains 



- 150 - 

Figure 2.21 Chromatogram of Rat Striatum Homogenate with Added 
Internal Standard 

Parameters :- For conditions see Figure 2.17 except for Sample : 50u1 

via loop of a HC104/EDTA homogenate (3501.11) of rat striatum (ca. 15mg) 
incorporating DHBA as IS 
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Figure 2.22 Chromatogram of Rat Olfactory Tubercles Homogenate 

Parameters :- For conditions see Figure 2.17 except for Sample : 50P, t1 
via loop of a HC104/EDTA homogenate (350u1) of rat olfactory tubercles 
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Figure 2.23 Chromatogram of Rat Olfactory Tubercles Homogenate with 
Added Internal Standard 

Parameters :- For conditions see Figure 2.17 except for Sample : 501A 

via loop of a HC104/EDTA homogenate (350p1) of rat olfactory tubercles 
(ca. 15mg) incorporating DHBA as IS 
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In conjunction with Dr. Kilpatrick, the peaks obtained were tentatively 

assigned and these assignments are tabulated in Table 2.19. More rigorous 

identification may be made by chromatographing individual standards of known 

neurochenicals but this was not deemed necessary for the purposes of this 

demonstration. 

Table 2.19 Tentative Assignments of Peaks Obtained by Chromatographing 

Rat Brain Region Homogenates 

Peak 

Number 

tR 

. 
(min) 

k' Assignment 

1 5.3 0.77 Unknown 

2 5.7 0.90 Norepinephrine (PEE ) 

3 7.7 1.57 5-hydroxyindole-3-acetic acid (5HIAA) 
& 3,4-dihydroxybenzoic acid (DIVA) 

4 9.7 2.23 3,4-dihydroxyphenylacetic acid (DOPAC) 

5 10.6 2.53 Dopamine, (DA) 

6 13.6 3.53 Unknown 

7 16.6 4.53 

8 18.0 5.00 

9 21.6 6.20 

10 23.8 6.93 

. 
11 25.6 7.53 

12 30.0 9.00 

Artefact associated with DHBA addition 

3-methoxy-4-hydroxyphenylacetic acid 
(Homovanillic acid, HVA) 

Unlm own 

Unlmown 

Unknown 

5-hydroxytryptanine (Serotonin, 5HT) 

These chromatograms illustrate the variation in the general neuro- 

chemical composition between different regions of the rat brain. For 



- 154 - 

example, the striatum contains detectable quantities (at 30nA f. s. d. ) of 

compounds 6 and 11 which are not observed in the chromatograms of the 

cerebral cortex and olfactory tubercles homogenates (with the possible 

exception of compound 6 in the olfactory tubercles, Figure 2.22). Similarly, 

compound 10 is absent in the chromatograms of cerebral cortex extract but is 

detectable in the other two brain regions examined. 

From the chromatograms, information regarding the relative abundances 

of those compounds found in more than one brain region may also be deduced. 

This is best exemplified by peak 5, which is assigned to DA. The amount 

of DA present increases markedly from the cerebral cortex (ca. 2-3ng injected) 

to the olfactory tubercles (ca. 10-20ng injected) and again to the striatum 

region (» 30ng injected). All DA quantities quoted assume linearity of 

response of the ECD over the range examined., i. e. constant analytical 

sensitivity. 

The PU4022 is observed to be able to detect a range of neurochemicals 

in samples of biological origin in low ng quantities. The detectability 

of these compounds would be expected to be enhanced at more sensitive 

instrument settings, and possibly at a higher. operating potential whilst 

using this alternative mobile phase composition. The PU4022 has been 

demonstrated to perform effectively for the analysis of rat brain extracts 

at 30nA f. s. d., with increased capacity for detectability remaining within 

the instrument. 
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2.4 Conclusions 

A comparison of the performances of three wall-jet amperometric 

. CDs has been carried out. 

The Metrohm 641-VA/656 was found to exhibit very poor performance 

with respect to baseline noise. This was uncharacteristic of the instrument 

based on previous experience with this detector. 211 The cause of this 

problem was almost certainly faulty electronic components in the controller 

unit. This was only discovered when the unit was serviced by the 

manufacturer several months after the completion of this study. No 

reliable evaluation of the Metrohm ECD could be made therefore a comparison 

of detector performance related to structural differences in the flow cell 

was not possible. 

The EDT LCA 15 and the PU4022 were compared over a range of 

experimental conditions in order to establish what effect the power circuitry 

of each model (the only difference between the two ECDs) had on overall 

performance. The two ECDs were almost identical regarding warm-up, the 

EDT model perhaps settling a little quicker at high instrument sensitivity 

settings (3nA and lnA f. s. d. ). Over the range of conditions applied to 

the systems the PU4022 was generally slightly noisier in the long term than 

was the EDT LCA 15 but they were practically identical regarding short-term 

interference. 

With respect to S/N ratio (as demonstrated by the detection of 

chromatographically separated catecholamines), the EDT and Pye Unicam 

detectors were shown to be equivalent within experimental error. 

Overall, the slightly poorer performance from the PU4022 was of little 

consequence in practical terms. The, use of a noise smoothing function at 

high instrument sensitivity is recommended. This serves to reduce the 
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baseline noise level but also lessens the difference between the outputs 

of the two ECDs. For small-diameter column LC work operation at high 

sensitivity is envisaged so the two detectors may be considered to be 

practically equivalent. 

The selection of ECD- to be used in conjunction with NNBLC was in fact 

forced upon the author. The EDT LCA 15 was required to be returned to the 

manufacturers immediately following this comparison study but the PU4022 

was made available for use for the duration of the investigations reported 

in this dissertation. 

EC detection was selected for application to PIBLC because of the small 

cell volumes (as little as 0.511l) readily available. The constraints 

imposed on the HPLC system regarding minimisation of extra-column volumes 

in order to achieve maximum practicable mass sensitivity of the detector 

require cell volumes of this order and smaller. At the outset of this 

project W flow cell volumes were typically of the order of 5-101i1 and those 

of FL cells were even greater (commonly 10-30u1). Both detection 

techniques were inferior to EC detection on the grounds of cell volume, 

although in recent years both W and FL flow cells have been miniaturised 

for LC with small-diameter columns. However, because W and FL detection 

are solution phenomena the reduction in cell volume leads to a reduction 

in intrinsic sensitivity with respect to the detection process, although a 

moderate overall gain may be achieved in some instances by the lower 

dispersion of the chromatographic peak. EC detection is a surface 

phenomenon not a solution phenomenon, in contrast to other detection methods, 

and so it does not suffer the aforementioned restriction. Indeed, because 

EC detection is a surface phenomenon it is uniquely well suited to be 

scaled down for pLC. 119 
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NBLC coupled with EC detection was to be assessed, primarily with 

regard to mass sensitivity, for the determination of indolic compounds. 

Special emphasis was to be placed on the problems of limited sample size 

experienced with neonatal and paediatric patients, and to the restrictions 

of routine analysis in a clinical laboratory. 
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3.1 Introduction 

3.1.1 Orrin and Metabolism of Thyptophan in the Human Body218'222 

In 1901, Hopkins and Cole223 first isolated and identified the 

naturally occurring indole-based amino-acid tryptophan (TP), the structure 

of which is given in Figure 3.1. 

NH2 

H CO2H 
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Figure 3.1 The Structure of Tryptophan 

Willcock and Hopkins224 examined the biochemical implications of TP 

in mammalian species and demonstrated the amino-acid to be nutritionally 

indispensable. Today it is known that mammals are unable to synthesise 

TP internally, hence requirements must be supplied entirely from external 

sources, i. e. in the diet primarily in the form of TP-containing proteins. 

TP is one. of ten such substances which are known as essential amino-acids. 

The metabolism of TP has been studied extensively, primarily because 

of the vital role played by several of its metabolites in a wide range of 

bodily processes. The major pathways are presented in Figures 3.2 and 3.3. 

The kynurenine pathway is the primary route by which TP is utilised 

in healthy individuals. In excess of 95% of available TP is metabolised 
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via this pathway under normal circumstances. Amongst the products 

generated are nicotinic acid (which is also Imown as the B vitamin, niacin), 

nicotinamide adenine dinucleotide' (NAD0 or NADH, corresponding to the 

oxidised and reduced forms respectively) and the phosphorylated snalogue 

of HAD, nicotinamide adenine dinucleotide phosphate (1TADP® or NADPH). All 

three of these substances are extremely important coenzymes. 

Ordinarily only 1-3% of dietary TP is metabolised via the secondary 

5-hydroxy pathway. Nevertheless cue vitally important compound is 

generated by this route, viz. 5-hydroxytryptamine (serotonin, 5HT). 5HT 

is synthesised by the following series of reactions. TP liberated from 

dietary proteins by digestive action is absorbed, either actively or 

passively225, through the wall of the small intestine and into the 

circulatory system whereby it is transported around the body. At certain 

specific tryptophan hydroxylase-containing sites within the body the action 

of this enzyme on TP in the presence of a tetrahydrobiopterin cofactor 

yields 5-hydroxytryptophan (5HTP), the immediate precursor of 5HT. 

Transformation of 5HTP to 5HT proceeds rapidly catalysed by the enzyme, 

aromatic-L-amino acid decarboxylase. 

5HT is synthesised primarily in enterochromaffßn (argentaffin) 

cells226 which are widely distributed throughout the intestinal nucosa, 

biliary tract and gall bladder, pancreatic ducts and bronchial tree and are 

also found, in the spleen, thymus, salivary glands, ovaries and uterus. 222 

Additional synthesis of 5HT occurs in serotonergic neurons in the central 

nervous system (Q'TS). 227 Following synthesis, 5HT is thought to be stored 

as a 5HT-adenosine triphbsphate(ATP)-Mg ®micelle228! 229 primarily (i. e.,, 

ca. 9O 230) in the enterochromaffin cells themselves and additionally in 

thrombocytes (platelets) within the blood, in basicytes (specifically mast 
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cells) in connective tissue and within serotonergic neurons. Whilst 

bound to platelets or tissues 5HT is pharmacologically inactive. 222 

Following release into the circulation, the bulk of the free 5HT is 

eliminated in a single passage through the liver or lungs, hence plasma 

levels of free 5HT are low. 231,232 Metabolic destruction occurs 

predominantly by a two stage conversion process proceeding via the 

intermediate 5-hydroxyindole-3-acetaldehyde to 5-hydroxyindole-3-acetic 

acid (5HIAA). These two reactions are catalysed by the enzymes monoamine 

oxidase and aldehyde dehydrogenase respectively. 5HIAA is the principal 

excreted species from the 5-hydroxy pathway although TP, SHTP, 5HT and 

several other minor metabolites are also excreted in healthy individuals. 

In the unbound state, 5HT is the most pharmacologically active amine, 

serving a multitude of functions. 233 5HT is an important 

neurotransmitter 234,235, a powerful target-dependent vasoconstrictor or 

vasodilator of the respiratory tract and vascular system219, and a potent 

smooth muscle stimulator. 219 Furthermore, 5HT has been associated with 

the regulation of sleep236'237, body temperature 238, several neuroendocrine 

functions233 and peristalsis 239,240, and it is implicated in the perception 

of pain. 233,237 5HT is also known to play a minor role in blood clotting 

where it functions as a weak platelet aggregating agent. 241 Because 5HT 

performs such a diverse range of functions there are a correspondingly 

large number of clinical conditions which directly or indirectly affect the 

concentrations of 5HT, its precursors and metabolites in body fluids and 

tissues (see Section 3.1.2). Hence, the ability to quantify the levels 

of the najor (and minor) indole compounds formed by means of the 5-hydroxy 

pathway would be of great value clinically. 
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In addition to the kynurenine and 5-hydroxy pathways other minor 

routes exist for TP metabolism. One of particular interest is that 

leading to the formation of indoxyl-3-sulphate (indican, 13S). Any 

TP-containing protein which is present in the lumen and which reaches the 

distal section of the gastrointestinal tract is frequently subject to 

putrefaction by the anaerobic bacterial population resident in this region. 

These micro-organisms absorb TP and metabolise it, excreting indole as the 

primary waste product. This compound is readily absorbed through the 

colon wall into the circulatory system. On reaching the liver, 

detoxification occurs by hydroxylation at the 3-position to produce indoxyl 

followed by sulphonation of this hydroxyl group to yield 13S which is 

excreted in the urine. The ability to quantify 13S in blood and urine 

is of particular importance in a number of gastrointestinally-related 

problems, especially when assessed in conjunction with the determinati o 

of 5-hydroxy pathway metabolites (see Section 3.1.2). 

Because of the intense interest expressed by clinicians in the 

products of TP metabolism synthesised by the secondary and minor pathways, 

the significance of these particular substances with respect to disease in 

humans is discussed further. 

3.1.2 Clinical Significance of the Tryptophan 5-Hvdroxy Pathway Metabolites 

and Closely Related Indolic Substances 

Abnormalities in the concentrations of TP and its 5-hydroxy pathway 

metabolites in body fluids and tissues may arise due to the influence of 

hormonal or dietary factors on the metabolic pathways. Nevertheless, 

measurement of the levels of these substances in whole blood or blood 
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fractions, urine, cerebrospinal fluid (csf) or tissue, as appropriate affords 

valid biochemical indices for a variety of diseases. 

3.1.2.1 Inborn Errors of Tryptophan'Metabolism242 

In spite of the highly complex nature of TP metabolism (see Figures 3.2 & 

3.3), very few inborn errors of this metabolism have been characterised to date. 

Hypertryptophanaemia and hypertryptophanuria243 are recognised by elevated 

concentrations of TP in the blood or urine respectively, often accompanied 

by elevated levels of the 5-hydroxy metabolites but with no corresponding 

increases in the levels of 13S or indole-3-acetic acid (IAA). The 

condition arises because of a deficiency of tryptophan pyrrolase, the 

enzyme which catalyses the initial step of the principal kynurenine pathway. 

Because the kynurenine pathway is inhibited a higher than normal proportion 

of absorbed TP is metabolised via alternative routes, e. g., the 5-hydroxy 

pathway, whilst much remains unchanged. Hypertryptophanaemia/hypertrypto- 

phanuria invariably exhibits symptoms of pellagra (a disease corresponding 

to niacin deficiency) as a secondary condition because the synthetic 

pathway which yields this vitamin is inhibited so preventing normal metabolic 

supplementation of dietary intake. Approximately 50% of daily niacin 

requirement is synthesised from TP in healthy individuals. 244 

A second inborn error of metabolism gives rise to 

3-hydroxykynureninuria245 and xanthurenicaciduria. 241 A deficiency in the 

enzyme kynurininase, which is essential to catalyse the cleavage of alanine 

from kynurenine and 3-hydroxykynurenine, leads to a breakdown in the 

kynurenine pathway. Because of this inhibitory effect, elevated quantities 

of 3-hydroxykynurenßn e and its alternative metabolite, xanthurenic acid, 
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are excreted in the urine. Again, because the pathway to niacin is 

inhibited, pellagra commonly results as one of the consequences of this 

metabolic disorder. No diversion to the 5-hydroxy pathway occurs 

therefore levels of 5HTP, 5HT and 5HIAA are normal. 

Quantitation of TP and its 5-hydroxy metabolites in blood and urine 

provides supportive diagnostic evidence of the former metabolic defect. 

3.1.2.2 Neurological and Psychological Disorders229,233 

Because 5HT functions as a neurotransmitter in the CNS, a large number 

of neurological and psychiatric diseases have been linked, to greater or 

lesser extents, to this substance, its precursors and metabolites. A 

selection of the most important examples of clinical conditions which fit 

into the above category, together with observed abnormalities in 5-hydroxy 

pathway metabolite concentrations, is presented in Table 3.1. Neurological 

and psychiatric abnormalities also present as secondary effects in many 

other conditions which give rise to disturbances in TP metabolism. 

Stahl, in an excellent review article229, advocated the use of the 

blood platelet as a suitable model of serotonergic neuron function with 

respect to transport, metabolism and release of 5HT. Although a direct 

pharmacological link between blood levels of TP and its 5-hydroxy metabolites 

and CNS function (or malfunction) has not been established for many of the 

ailments listed in Table 3.1, experimental evidence does tend to indicate 

that a close connection exists in many instances. This is in spite of 

the blood-brain barrier which is impervious to 5HT233,246 although TP, 

5HTP and 5HIAA may traverse. 247 
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Table .1 
Selected Central Nervous System-Related Disorders Presenting Abnormalities in Tryptophan 5-Hydroxy 

Metabolite Levels (229 and references therein) 

Clinical Condition Important Pathological Abnormalities in Remarks 
Symptons Indole Levels 

Sample* Indole Statust 

Down syndrome Mental retardation wb TP + Diminished platelet 5HT 
wb 5HT + due to defect in active 
pit 5HT + uptake mechanism 

Other mental retardation 
syndromes 

tafantils autism 

Mental retardation: 
Phenylketonuria (PKU) 
Histidinaemia 
Lange's Syndrome 

Infantile hypothyroidism 
Maternal rubella 
Kernicterus 
Various retardation 

syndromes with and without 
motor impairment 

Inaccessibility, aloneness, 
inability to relate, rage 
reactions and language 
disturbances 

wb 5HT i 
plt 5HT 4 

wb 5HT t 
plt 5HT f 

wb 5HT f 
plt 5HT t 

wb 5HIAA ? 
pit 5HIAA f 
csf 5HIAA 4 

wb 5HT + 

wb 5HT +? 

plt 5HT i? 
cat 5HIAA 4? 

ur 5HIAA f or. i 

pl 5HT normal 
plt 5HT 4 

br 5HT i 
br 5HIAA i 
csf 5HIAA i 
plt 5HT ahnormal 

plt 5HT ? 

Mechanism unknown; 
probably transport-related 
in PKU and histidinaemia 

Nlnt. al brain dystunctian 

Schizophrenia 

Affective disorders 
(ine. despressim and 
sonic-depression) 

Duehenne muscular 
dystrophy 

Psrk1nsmism 

iimtingtm chorea 

Kltrains headaches 

Hyperactivity, short 
attention span, 
aggressiveness 

Delusions, hallucinations, 
thought disturbances, 
impaired daily functions 

Depression, or alternating 
periods of elation and 
depression 

Progressive disease. 
Pseudohypertrophy of shoulder 
and pelvic muscles, weakness 

Movement disorder 

Hereditary brain infection. 
Progressive mental 
deterioration and movement 
disorder 

Head pains, distorted vision. 
gastrointestinal disturbances 

plt 5HT + 
P1 5HT + 
ur 5HIAA t 

Elevated levels in ca. 
30% of cases only 

Elevated in some types. 
Possibly due to low 
monoamine oxidase activity 

No consistent change in 
levels. They nay be reduced 

Enhanced platelet 5HT 
uptake 

vb " whole blood, plt I platelet, pl = plasma, ur - urine, csf - cerebrospinal fluid, br = brain 

f elevated, 4 diminished 
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3.1.2.3 Carcinoidosis and Carcinoid Syndrome 248-250 

Lembeck251, in 1953, first identified 5HT as a pharmacologically 

active constituent of a carcinoid tumour and in the following year 

Thorsen et al. 252 recognised the carcinoid syndrome. Since this time 

concentrations, particularly urinary, of TP 5-hydroxy metabolites have been 

of value in the diagnosis and therapeutic monitoring of metastatic 

carcinoids and carcinoid syndrome. 

Carcinoid tumours are the second most common endocrine tumours 

(after thyroid tumours) but less than one in ten is functional. 

Metastasising carcinoid tumours usually arise in the small intestine 

(duodenum, jejunum and ileum; 10% incidence), appendix (45% incidence) and 

rectum (15% incidence)250, and in very rare cases they are found in the 

colon, stomach, gall bladder, pancreas, bronchi and ovaries. These tumours 

develop from enterochromaffin cells and, not surprisingly, they normally 

secrete large amounts of TP 5-hydroxy metabolites. 253 As much as 60% of 

dietary TP may be metabolised along this pathway within carcinoids (cf. 

1-3% normally utilised 249). The principal indole secreted by a carcinoid 

tumour depends upon the tissue from which the growth originates. Fore-gut 

tumours (bronchial and gastric) secrete 5HTP254, some of which is excreted 

unchanged. Increased quantities of 5HT and SHIAA are also excreted, 

presumably because further transformation of 5HTP occurs in other tissues, 

especially the kidney. Mid-gut tumours (primarily ileal) secrete 5HT 

predominantly, most of which is normally metabolised to 5HIAA by the 

widespread enzyme, monoamine oxidase. Carcinoids derived from the 

hind-gut (colon and rectum) rarely produce excess 5HT or 5HIAA. 

In about 10% of cases this excretion is associated with the carcinoid 

syndrome255 which includes such features as diarrhoea, valvular damage in 
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the heart and flushing attacks of various types. 256 Carcinoid syndrome 

usually occurs only with extensive metastases of a carcinoid tumour. 

Because grossly elevated amounts of 5-hydroxy indoles are produced 

by carcinoids, the determination of these substances and their metabolites 

in blood and/or urine is an invaluable diagnostic aid. 

3.1.2.4 Gastroen terolo7ically-Related Conditions249.2S$ 

There are a series of gastroenterologically-related disorders which 

promote pathological changes affecting TP absorption and/or metabolism. 

The small intestine is affected by a host of diseases which prevent 

normal aboral propagation of intestinal contents. There are two major 

categories of problem. Firstly, there are disorders producing an actual 

physical barrier to the passage of intestinal contents which may be 

classified as 'intestinal obstructions and secondly, there are disorders 

which induce an erratic or paralysed intestinal peristalsis which does not 

support the normal propagation of intestinal contents. This latter group 

of motility disorders give rise to a clinical picture mimicking intestinal 

obstruction and include paralytic ileus and intestinal pseudo-obstruction. 

3.1.2.4.1 Intestinal Obstruction 

Obstructim of the small intestine can be caused by one of three 

types of physical barrier. Blockage can be due to (1) intraluminal objects 

(e. g., gallstones or foreign bodies) which may lodge in a narrow portion of 

the small intestine, especially the ileocaecal valve, or (2) an intramural 

process (e. g., a primary small bowel carcinoma or ileitis) which may 

encroach on the lumen of the small intestine sufficiently to produce 
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an obstruction, or (3) a process extrinsic to the small intestine itself 

(e. g., adhesive fibrous bands, incarcerated hernias, volvulus or compression 

by an adjacent neoplasm) which can cause the small intestine to obstruct. 

This last aetiology is by far the most common accounting for between 70% 

and 90% of all cases in adults. Greater than 50% of all paediatric cases 

also originate from processes extrinsic to the small intestine, particularly 

incarcerated inguinal hernia and intussusception. The latter is the single 

most common cause of obstruction in children aged between 2 months and 

5 years. Furthermore, intussusception occurs predominantly in individuals 

under 2 years of age. 

3.1.2.4.2 Paralytic Ileus and Intestinal Pseudo-Obstruction 257,258 

This group of motility disorders are characterised by a loss of 

propulsive peristalsis for which the underlying cause may be systemic 

illness (e. g., sepsis, uraemia, electrolyte imbalance) but is usually 

idiopathic, i. e. the disturbance arises spontaneously and is of unknown or 

uncertain origin. The most common motility disorder is paralytic ileus. 

This condition is of unknown induction, occurs frequently post-operatively 

and is usually transient. A far more chronic form of disordered bowel 

motility is that known as intestinal pseudo-obstruction. Primary or 

idiopathic pseudo-obstruction may sometimes be characterised by histological 

abnormalities of the ganglion cells in the myenteric plexus (the autonomic 

nervous system concerned with bowel motility control) or of the smooth 

muscle cells of the bowel wall. Secondary pseudo-obstruction has also 

been recognised and its relationship to a number of systemic problems, 

e. g., endocrine or neurological disorders, has been established. 
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3.1.2.4.3 Conseouences of Intestinal obstruction or Pseudo-Obstruction 

on Tryptophan Absorption and Metabolism 

Physical blockage or motility disorders of the small intestine often 

cause a stagnation of the contents of the lumen. Frequently bacterial 

overgrowth occurs in the affected region and this abnormally high 

population of anaerobes metabolises a significantly higher proportion of 

dietary TP than usual. This event leads to elevated blood and urinary 

levels of 13S and, occasionally, of IAA and other indolic species too. As a 

consequence, general malabsorption of TP ensues resulting in diminished 

quantities of the 5-hydroxy (and kynurenine) metabolites in the body fluids. 

one exception to this is where an indole-secreting carcinoma is the causal 

factor of the physical obstruction or where the pseudo-obstruction relates 

to a TP-based endocrinological or neurological disorder. Under these 

circumstances 5-hydroxy metabolite concentrations may be abnormally high 

at the expense of the kynurenine pathway metabolites, with all the attendant 

consequences (e. g., pellagra). 

Any situation like the above, where a combination of bacterial 

overgrowth and a demonstrable metabolic disturbance reversible by 

administration of oral antibiotics occurs., is known by the general term 

'blind loop syndrome'. 

3.1.2.4.4 Mucosal Abnormalities which Impair Absorption 

'' Coeliac disease (synonyms : non-tropical sprue, coeliac sprue)249,259 

is aäcommon ailment with an incidence of 1: 3000 in the U'ß. 2'`9. It is a 

wast3ng, condition which often presents at an early age, frequently within 

the first 6-9 months of life. The exact mechanism is unknown but coeliac 
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disease is induced by a sensitivity to gluten, a protein present in many 

cereal grains, especially wheat, but not in corn or rice. The condition 

is associated with structural abnormalities of the mucosal cells which. 

promote villous atrophy which reduces the internal surface area of the 

small intestine considerably. In addition, enzyme deficiency often appears 

secondary to these architectural abnormalities. 

The primary consequence of the disease is general intestinal 

malabsorption, particularly inhibition of fat uptake which presents as 

steatorrhoea. Protein assimilation is also grossly affected by coeliac 

disease. The absorption rate is reduced, less than the normal amount is 

absorbed, and a significant proportion is lost from the lumen to metabolism 

by colonic bacteria. This last problem is sometimes exacerbated by the 

occurrence of pseudo-obstruction which accompanies coeliac disease in many 

cases. 

Thus, TP absorption and consequently its metabolism, is adversely 

affected. Coeliac disease has been associated with slightly elevated 

excretion of 5HIAA240,260-270 together with increased urinary levels of 

I3S264-266 and in some cases IAA and other indolic compounds produced by 

bacterial degradation of Tp. 240,264-266 Whole blood 262,272 and 

platelet240'262 5HT concentrations are also elevated as a result of this 

disease. The reasons for the high blood 5HT levels, and consequently the 

raised 5HIAA excretion, have not been clearly established. Abnormally 

high tissue 5HT concentrations have been found in the duodenal mucosa of 

coeliac patients. 272 Abnormally high enterochromaffin cell counts in 

similar samples have also been demonstrated by the same group. 273 Hence, 

hyperplasia of the enterochromaffin cells in the small intestine most 

probably accounts for this phenomenon although hyperactivity cannot be 

ruled out as an additional causal factor. 
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In addition to structural abnormalities of the mucosa giving rise to 

protein-derived amino-acid (specifically TP) malabsorption, two biochemical 

abnormalities have also been discovered, viz. Hartpup disease 244,274 and 

'blue diaper' syndrome. 244 Both these diseases are congenital and occur 

due to derangements of absorptive transport mechanisms. 

Hartnup disease was first described in 1956 by Baron and co-workers275 

and was named after the family in which it was first recognised. By 1978 

a total of 53 cases of Hartpup disease had been reported 274, and today an 

incidence of 1: 18,000 is estimated. 222 The illness is characterised by a 

photosensitive pellagra-like skin rash, temporary loss of control of bodily 

functions (cerebellar ataxia) and occasionally by psychiatric changes 

ranging from emotional instability to delerium, but not mental retardation 

or deterioration. Acute renal aminoaciduria which is selective for free 

monoamino-monocarboxylic amino-acids with neutral or aromatic side chains 

is the only constant feature. A characteristic amino-acid pattern in 

urine and faeces from patients suffering from Hartpup disease has been 

demonstrated. 244,276,277 Nemeth and Nachmias278 suggested that the disease 

might originate from a deficiency of TP pyrrolase while Milne et al. 279 

proposed that a selective intestinal and renal transport defect in one 

biochemical system peculiar to the aforementioned group of amino-acids, is 

responsible for the disease. This latter view has since been 

substantiated 280 and is now widely accepted. The source of the flaw is 

still obscure but the synthesis of a protein intrinsic to the defective 

carrier mechanism is suspect. 2'`1 

Although the basic biochemical breakdown involves the intestinal and 

renal-transport of several amino-acids, the symptoms appear to be secondary 

to the malabsorption of only one, viz. TP. Aminoaciduria occurs because 



- 173 - 

of impaired reabsorption, following ultra-filtration, of neutral amino-acids 

in the kidney tubules. Only ca. 50-80% reabsorption efficiency is 

attained in patients with Hartnup disease which may be compared with ca. 

98% for normal subjects. 274 This finding is indicative of the biochemical 

defect blocking only one or possibly a few of several transport mechanisms 

applicable to each neutral amino-acid. 281 Confirmation of this view is 

provided by the discovery that the absorption of TP-containing oligopeptides 

proceeds normally in Hartpup patients. 282,283 The remaining symptoms of 

this complaint pertain to diminished TP absorption in the small intestine 

which is supported by diminished plasma TP levels284 while faecal TP levels 

are significantly raised. 277 Impaired intestinal absorption consequently 

results in correspondingly high plasma and urinary levels of the bacterial 

breakdown products of TIP, 
-i. e. I3S and sometimes IAA. 285,286 It has been 

suggested that the ataxia attacks may be induced by a toxic agent derived 

from bacterial action. Pellagra most probably arises as a consequence of 

restricted TP availability as reflected by diminished levels of kynurenine 

pathway metabolites in the urine of Hartnup sufferers. 2859286 The reported 

mental disturbances may be manifestations of the abnormally low TP 5-hydroxy 

metabolite concentrations in plasma and urine which are often associated 

2 
with this disorder. 85,286 

A second rare biochemical abnormality has been postulated as the cause 

of ' blue diaper' syndrome, a condition first reported in 1964 by Drummond 

et a1.287 Symptoms of this illness include fever, growth retardation, 

irritability and constipation, and of particular note is the blue discolour- 

ation observed on nappies. This colour is due to indigotonin (indigo blue), 

an oxidation product of I3S. Urinary indole excretion is gross in 'blue 

diaper' syndrome. Besides 13S, tyramine, IAA and indole-3-lactic acid are 
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also present in large amounts in the urine. TP is only found in minimal 

quantities in plasma and urine but in high quantities in faeces. All the 

evidence suggests that a selective absorptive defect for TP in the intestine 

is responsible. 

'Blue diaper' syndrome, although of similar aetiology to Hartnup 

Disease, is remarkably different. Although they share indicanuria because 

of colonic bacterial action on unabsorbed TP, there the pathophysiological 

similarity ends. 'Blue diaper' syndrome does not have associated with it 

the acute aminoaciduria (presumably because renal function is normal), the 

pellagra-like skin rash or the neurological defects of Hartnup disease. 

Conversely, Hartnup disease does not present with nappy staining, presumably 

because 13S excretion, although elevated, is not as great as in patients 

with selective TP malabsorption. 

The prominent manifestations of disturbed TP metabolism in coeliac 

disease, Hartnup disease and 'blue diaper' syndrome imply that an analytical 

method capable of quantitating TP, 5HTP, 5HT, 5IUAA and I3S simultaneously 

in blood and in urine would provide a useful diagnostic tool in the clinical 

laboratory. 

3.1.2.5 Miscellaneous Diseases 

A diverse range of other diseases have also been observed to present 

disturbances in TP metabolism as a secondary effect of the complaint. 

Such illnesses include a variety of dermatitic problems 242 
v scurvy 242 

phenylketonuria (PKU)242'288, rheumatoid arthritis 242'289, osteoarthritis2'`2, 

diabe tes242, alcoholism2°2'29° and typhoid fever. 242 

.. ý -ý 
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3.1.2.6 Clinical Problems of Particular Relevance to Neonates, Infants 

and Young Children t 

Those diseases giving rise to disturbances in TP metabolism which 

apply to the title subject group are listed in Table 3.2. 

Table 3.2 Disorders giving rise to Deranged Tryptophan Metabolism 

Suffered by Individuals in Early Life 

Disease Category 

Inborn Errors of Metabolism 

Neurological and 
Psychological Disorders 

Cancer 

Gastrointestinal Problems 
and Malabsorption Syndromes 

Specific Illness 

Tryptophanaemia/Tryptophanuria 

Down Syndrome 
Various Mental Retardation Syndromes 
Infantile Autism 
Minimal Brain Dysfunction 

Carcinoid Tumours 

Intestinal Obstruction 
Pseudo-intestinal Obstruction 
Coeliac Disease 
Hartnup Disease 
Blue Diaper Syndrome 

Those substances deemed to be of greatest interest diagnostically 

are those compounds which constitute the major route of the TP 5-hydroxy 

pathway, viz. TP itself, 5HTP, 5HT and 5BIAA. In addition, for 

gastrointestinal conditions where TP malabsorption occurs the measurement 

Neonate = individual up to 4 weeks of age. 

Infant = individual up to 1 year of age. 

Child = individual of between 1 year of age and puberty, 
i. e. ca. 14 years of age. 
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of I3S would also prove to be of value. Screening biological fluids taken 

from neonates, infants and young children for these five indoles would 

provide supportive diagnostic information for all of the ailments listed 

in Table 3.2. Of special interest to one local hospital (the Taunton and 

Somerset Hospital, T&SH) are the gastrointestinal complaints, particularly 

coeliac disease and other conditions resulting from food allergies. 

Emphasis will be given to this group of disorders in this investigation 

although it should be noted that a general analytical procedure capable of 

yielding diagnostic information for all diseases exhibiting clinical changes 

in levels of the selected analytes in biological fluids is sought. 

Some of the disorders listed in Table 3.2 have the effect of elevating 

TP metabolite levels in biological fluids whereas others give rise to 

diminution of the same as has been intimated previously. It is those 

conditions in which the latter situation prevails which pose the greatest 

challenge to the analyst. Analytical sensitivity must be sufficiently high 

to. facilitate the detection and quantitation of the target compounds at both 

normal-and abnormal levels and to differentiate between such states with 

confidence. The problems involved in achieving this goal are exacerbated 

by the limitation of sample size available from subjects who are very young. 

This constraint is discussed in more detail in Section 3.1.7 of this Chapter. 

3.1.3 Analytical Techniques that have been Applied to the Determination 

of Indoles in Biolooical Samples 

Several techniques have been applied, with varying degrees of success, 

to the determination of indoles in samples of biological origin. These 

techniques include colorimetry, fluorimetry, radioenzymaticassay (REA), 
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radioimmunoassay (RIA), and the chromatographic procedures, viz. classical 

column LC, paper chromatography (PC), TLC, GC and PLC. Most of the 

developed methods comprise a number of extraction stages followed by some 

identification and quantitation technique. 

The chemical methods, i. e. colorimetry and f luorimetry, are laborious, 

often exhibit poor sensitivity and may be subject to gross errors by losses 

in extractions, by simultaneous extraction of interfering compounds and/or 

by low specificity of colorimetric or fluorimetric reagents. In addition 

to the above drawbacks, these chemical methods, by their very nature, do 

not enable simultaneous multi-analyte analysis to be performed, a distinct 

disadvantage where the problem currently under consideration is concerned. 

REA methods (e. g., 291,292) and RIA methods (e. g., 293-295) have 

found occasional application to indole analysis. REA and RIA both combine 

the high degree of sensitivity of radiochemistry with the high specificity 

of enzymatic reactions or immunological reactions, respectively. However, 

these procedures are very time consuming and furthermore each REA or RIA 

method is only capable of the determination of a single species thus 

precluding simultaneous multi-analyte determination. 

It is the chromatographic techniques which provide the means whereby 

several species may be quantified cm currently with discrimination. 

Classical column LC is extremely slow and laborious, one chromatogram often 

taking many hours to complete (e. g., 296). Furthermore, this approach is 

frequently inadequate with respect to selectivity due to the low resolution 

attainable and with respect to sensitivity due to extensive peak dilution. 

1.1ith the'advent of PC the separation of complex mixtures became more 

reliable. `and, in 1962, Sprince and co-workers297 used this technique to 

separate the various indoles present in urine. - More recently, TLC has 
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been utilised for the same purpose (e. g., 298-302). Unfortunately, the 

improvements in chromatographic resolution over classical column LC 

obtained from PC and TLC are still limiting. In addition, the sensitivities 

of the available detection methods, i. e. colorimetry or fluorimetry, are 

poor. Consequently neither of these techniques is suitable for 

quantitation. 302 

GC coupled with flame ionisation detection (FID), alkali flame 

ionisation detection (AFID), electron capture detection (ELCD) or mass 

spectrometric detection (MS) has been applied to the subject determination 

with reasonable success. Greatly improved column efficiency is attainable 

with GC compared with classical LC, PC or TLC, which provides greater 

chromatographic resolution. Further selectivity is possible through 

judicious choice of the detection method (NB. MS is generally considered 

-to be superior in this respect to the other alternatives listed). However, 

complicated extraction and derivatisation procedures are necessary303 

because of the incompatibility of the aqueous-based samples with GC 

stationary phases and the known instability of TP and 5-hydroxyindoles at 

elevated temperatures. 304t3O$ These procedures are time consuming and 

commonly give rise to significant analyte losses. The preferred GC-MS 

technique is further disadvantaged because the apparatus required is complex 

and prohibitively expensive for the majority of clinical laboratories. 303 

Consequently, the reported GC-MS methods (e. g., 306-309) are rarely used 

routinely and are confined primarily to research establishments. 

In recent years IPLC has become the method of choice for the routine 

determination of indoles in biological tissues and fluids. 310 With careful 

selection of the detection system, high sensitivity and selectivity are 

possible. " HPLC can accommodate partially or wholly aqueous samples with 
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ease and in addition, analyte derivatisation is frequently unnecessary 

hence, sample work-up procedures prior to injection are generally faster 

and less complicated than for GC. Aspects of HPLC relevant to the 

separation and quantitation of. the chosen analytes, viz. 'IP, 5HTP, 5HT, 

5HIAA and I3S, are discussed in the following sections. 

3.1.4 Mechanistic Aspects of Solute Retention in Liquid Chromatography 

Pertinent to the Separation of Indolic Tryptophan Metabolites 

Four primary operational modes exist in BPLC, viz. liquid-solid 

adsorption, liquid-liquid partition, size exclusion (or- gel permeation), 

and ion-exchange. This inherent versatility originates from the fact that 

the retention and subsequent separation of two or more solutes on an HPLC 

column occurs as a result of a combination of interactions between each 

sample component and the stationary and mobile phases. Several fundamental 

intermolecular forces may be exploited to achieve selectivity and which 

of these forces predominate depends solely upon the chemical nature of the 

solutes and the phase system employed. Now, the TP-derived analytes are 

all icnisable and are of moderate polarity, consequently the liquid-solid 

adsorption format in which a non-polar mobile phase is eluted over a polar 

stationary phase (commonly silica) is inappropriate. Furthermore, the 

analyte moieties are of low molecular weight (ML1 = 179-220) therefore size 

exclusion chromatography, which is only applicable to the separation of 

high molecular'weight species (M1v1 >2000), is similarly inappropriate to this 

problem. For analytes possessing the aforementioned properties only the 

liquid-liquid partition and ion-exchange modes are suitable hence only these 

two formats will be considered further. 
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3.1.4.1 Partition Chromatooraphy 

Retention in partition chromatography is achieved by means of the 

relative solubility of a sample comparient in the stationary and mobile 

phases. Separation occurs on the basis of differences between the relative 

solubilities of each solute. The reverse phase (RP) mode is applied 

predominantly to partition chromatography, i. e., the stationary phase is 

fairly non-polar (hydrophobic) while the mobile phase is of high polarity 

(hydrophilic). Commonly, the stationary phase is composed of an alkylsilyl- 

bonded silica, e. g., octadecylsilane (ODS), and the mobile phase is either 

partially or wholly aqueous in nature. This is a highly desirable property 

for the majority of clinical applications because the mobile phase and 

sample matrix are invariably compatible. Reverse phase partition 

chromatography (RP-PC) has been utilised extensively for the separation of 

both polar and non-polar materials. In addition, RP-PC has been extended 

to ionic and ionisable substances by the employment of secondary equilibrium 

phenomena. 

3.1.4.2 Ion Suppression Chromatography 

Zflhen ionogenic solutes are required to be separated, the mobile phase 

pH must be controlled by using a buffer system. Adjustment of the pH to 

greater acidity will serve to suppress the dissociation of weak acids, i. e., 

AH + H2O 10 Aý + H300 

hence enabling the acids to be separated by conventional reverse phase 

techniques. Similarly, but conversely, adjustment of the pH to greater 
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basicity will suppress ionisation of weak bases, i. e., 

B+ 
. 
H20 -0 BH® + Ohm 

thus allowing separation of the bases by RP-PC. This general approach 

is termed ion suppression and is useful for the analysis of weak acids or 

bases in the pH 2-8 range. Strong acids and bases cannot be accommodated 

by ordinary HPLC techniques since the ion suppression method is limited by 

the instability of silica-based bonded stationary phases outside the above 

pH limits. However, by employing other, more versatile secondary equilibria 

these highly dissociated species can be separated in conjunction with weak 

acids and bases and non-ionisable solutes. 

3.1.4.3 Ion-Pair (or Ion-Interaction) ChromatoFýraphy 

The development of ion-pair chromatography (IPC) is generally 

attributed to Schill and co-workers311'312 who, in the mid-1970s, were 

first to apply well established ion-pair extraction techniques to modern 

HPLC. The basis of IPC lies in the addition of a suitable organic counter- 

ion, called an ion-pairing agent (IPA), to the chromatographic system which 

encourages the formation of coulombic association species between two ions 

of opposite charge, known as ion-pairs. In this way, ionic or ionisable 

substances can be converted (reversibly) into electrically neutral non-polar 

complexes which exhibit identical behaviour to electrically neutral non-polar 

compounds. Thus, in the RP mode the ion-pairs partiticai between the two 

phases as if they are electrically neutral non-polar compounds. The extent 

to which an ionised solute and counter-ion form an ion-pair complex affects 

the degree to which the retention of the sample species is increased. 
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This RP-IPC approach implies the need for pH control by addition of 

a buffer system to the mobile phase to promote dissociation of the ionisable 

analytes in order that ion-pair association may actually take place. There 

are many other factors which affect a RP-IPC separation and these are 

summarised in Table 3.3. Generally a separation is controlled by first 

selecting a column and an organic modifier. The aqueous: organic solvent 

ratio and the nature and pH of the buffer must then be optimised. Finally 

the type, size and concentration of IPA must be chosen, the last providing 

fine adjustment of the chromatography. 313 

Although the theory of batch extraction of ion-pairs is well understood, 

the exact mechanism of RP-IPC is still obscure. Three hypothetical models 

have been proposed to date, viz. an ion-pairing mechanism, an ion-exchange 

type mechanism, and an ic -interactiai mechanism. 

The first postulate stipulates that the f orraation of an ion-pair 

occurs in the aqueous mobile phase prior to partition into the hydro- 

carbonaceous bonded stationary phase. Retention is governed by the degree 

of non-polarity of the ion-pair complex which determines, its affinity for 

the stationary phase. The longer the alkyl chain on the IPA the less polar 

is the formed im-pair and the retention of the ion-pair increases due to 

its greater affinity for the stationary phase. This concept is illustrated 

in-Figure 3.4. 

The second postulate stipulates that the unpaired lipophilic counter- 

ions. adsorb onto the non-polar surface so modifying the column to behave as 

an ion-exchanger (see Section 3.1.4.4). The longer the alkyl chain length 

of the IPA the greater will be the stationary phase surface coverage, hence 

providing more ionic sites for interaction to take place on and consequently 

the longer will be the retention of the ionic sample. This concept is 

depicted in Figure 3.5. 
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Table 3.3 Adjustable Variables in RP-IPC 

Variable Effect 

Type of counter ion The better the ability to ion pair 
then the greater is the retention 

Size of counter iai 

Concentraticm of counter 
ion 

Type of organic modifier 
in mobile phase 

Concentration of organic 
modifier in mobile phase 

An increase in counter ion size will 
increase retention 

An increase in counter ion 
concentration will increase retention 
to a limit beyond which retention 
will decrease 

Retention decreases with increasing 
lipophilicity 

Retention decreases with increasing 
modifier concentration 

pH Effect is dependent upon the nature 
of the IPA. Retention increases as 
pH changes cause the solutes to become 
more dissociated 

Statirnary phase Retention increases with lipophilicity 
and degree of coverage 

Temperature Retention decreases with increasing 
temperature 
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The third postulate, that of ion-interaction, assumes dynamic 

equilibrium of the lipophilic counter-ion resulting in the formation of 

an electrical double layer on the surface. The retention of an ionised 

solute results from an electrostatic force due to the surface charge density 

provided by the counter ion and from an additional "sorption" effect onto 

the non-polar surface. The two stages of this proposed mechanism are 

presented in Figure 3.6. 

In actuality, the true mechanism most probably encompasses aspects 

of all three processes which undoubtedly will be further complicated by 

adsorption, micelle formation, and complexation of both the solute and the 

IPA. In view of the ambiguity associated with the mechanistic modelling 

of this chromatographic technique the terms 'ion-pairing agent' and 

'reverse phase ion-pair chromatography' are misleading. It would be more 

appropriate to use more general terms such as ion-interaction agent (IIA) 

and reverse phase ion-interaction chromatography (RP-IIC). This latter 

nomenclature is adopted in this dissertation. 

The literature is replete with examples of the application of RP-IIC 

to the separation of ionised and non-ionised solutes. The current status 

of the technique is similarly well documented. 31,313-315 The reader is 

referred to these" sources for a more extensive review of the subject. 

3.1.4.4 Ion-Exchange Chromatogratihy 

Ion-exchange chromatography (IXC) has been utilised traditionally for 

decades for the separation of ions and was the first of the various LC modes 

to be employed widely under HPLC conditions. However, for practical 

reasons, IXC was largely superseded by RP-IIC until 1975 when Small et al. 117 
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developed a procedure called "Ion Chromatography" which overcame many of 

the early problems and enabled IXC to re-establish itself. 

IXC is conducted on a stationary phase comprising a polymer matrix 

(an organic resin or silica) onto the surface of which are permanently 

bonded ionogenic functional groups. There are four types of ion-exchangers 

available and these are classified by the charge of the ions that may be 

exchanged on the ionised stationary phase surface and by the dissociation 

constant of the ionogenic functional group. The four categories of ion- 

exchanger are indicated in Table 3.4 below. 

Table 3.4 Ionogenic Functional Groups on Ion-Exchange Stationary 

Phases 

Class Ionogenic Group 

Strang caticm exchanger (SCX) -SO3H 

Weak cation exchanger (WCX) -CO2H 

Strong anion exchanger (SAX) -NR3 

I-leak anion exchanger (WAX) -! H2 

Strong ion exchangers are fully, dissociated over the entire operating 

pH range (the limits of which depend on the stability of the polymer matrix) 

whereas for weak ion exchangers the degree of dissociations and hence the 

retention properties of the stationary phase, is highly pH dependent. In 

fact, pH is the most influential variable, that may be used to control the 
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separation in this mode. Ion exchangers are operated with a buffered, 

largely aqueous mobile phase in order to support ionisation. The ionised 

exchanger surface has a counter-ion associated with it which may be 

displaced by sample ions of the same charge. Retention is achieved by this 

coulombic association process and separation is obtained due to the 

differences in ability to cause displacement of the associated counter ion. 

The nature of the retention mechanism limits IXC solely to the separation 

of ions or icnisable compounds unlike RP-IIC which will also accommodate 

non-ionised materials. 

3.1.5 High Performance Liquid Chromatographic Methods Reported for the 

Determination of Indoles in Biological Samples 

Separations of indolic compounds of biological origin have been 

accomplished on both ion-exchange and hydrocarbonaceous bonded stationary 

phases. IXC (e. g., 88,316-319) has rarely exhibited high efficiency. 

Furthermore, employment of conventional pellicular ion-exchange resins 

(dp = 30-50um) generally excludes the simultaneous determination of amine, 

amino-acid and acid metabolites320 because of the widely differing 

polarities of these analytes. 305 Only when anion and cation exchangers 

are connected in series (e. g., 86) is it possible to determine these compound 

types concurrently by IXC, but restrictions are imposed upon the mobile phase 

composition and the flow rate which invariably results in significantly 

extended run times. Considerably greater success has been achieved by the 

utilisation of reverse-phase materials, especially ODS, to the extent that 

the versatile RPLC mode, with or without the inclusion of an IIA, is now 

widely accepted as the separation technique of choice for the determination 

of biogenic indolic substances. 
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In addition to the selectivity achievable chromatographically, 

further discrimination can be attained by judicious choice of the detection 

technique. UV, FL and EC detectors have all been applied to indole 

"visualisation" following RPLC. A few methods have employed two detectors 

in series (e. g., 303,321-323) in order to enhance selectivity still 

further and to establish peak purity. The use of two detectors in itself 

adds increased complexity and expense to the analytical method, which is 

compounded by the need for extra recorder and/or integrator facilities. 

This level of instrumentation is considered impractical in many hospital 

clinical laboratories. 

Of the discrete detection techniques, UV monitoring is not sufficiently 

selective at the wavelengths applicable to indoles (e. g. ) 324) and further- 

more, it is fairly insensitive. Consequently, UV detection is deemed to be 

unsuitable for trace analysis of biological samples. 325 Detection of 

indoles by native FL has been widely exploited (e. g., 324,326-331) and has 

been found to be both more sensitive and more selective than UV 

absorption. 324,326 Subsequently other workers have enhanced this 

fluorescence either by pre-column (e. g., 332) or post-column (e. g., 333) 

derivatisation techniques. However, derivatisaticn procedures require a 

chemical transformation stage that not only provides another source of error, 

but also increases analysis time. 334 Furthermore, FL procedures in general 

may be 
. 
compromised by background fluorescence, fluorescence quenching and 

a variable relative response. 335 Hence, FL detection is not without its 

problems but this technique is still used fairly frequently for routine 

indole determinations. 

However, it is amperometric EC detection which is regarded by many 

chromatographers as the technique of choice for the subject' determination. 310 
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Sensitivity is generally equal to or superior to that obtained from FL 

detection. 327,336-338 Detection limits for TP and the 5-hydroxyindoles 

in the low pg region have been reported. 
320,335v339v340 Although some 

problems have been experienced with the operation of ECDs in practice (see 

Chapter 2, Section 2.1.2), these minor difficulties are usually of little 

consequence with modern instruments employed for routine analysis. A 

selection of recently published applications of RPLC-EC to the determination 

of biogenic indolic substances in biological specimens is presented in 

Table 3.5. This compilation is by no means complete, the few references 

cited here represent only a small fraction of the vast literature concerning 

this group of compounds. 

RPLC-EC is capable of high selectivity in addition to high sensitivity. 

Overall method selectivity is influenced by three parameters: (1) the 

efficiency of the chromatographic separation, (2) the discrimination possible 

with the detection technique, and (3) a combination of the nature of the 

sample and the complexity of pre-injection clean-up procedures. A trade-off 

exists between these three parameters and the maximum total analysis time 

deemed to be acceptable. The high discriminating power of the ECD is of 

great advantage here, generally enabling the extent of sample manipulation 

necessary for trouble-free analysis to be curtailed to manageable proportions. 

Lengthy, multi-stage extraction procedures prior to chromatography are 

undesirable with respect to analysis time, analyte losses (sensitivity) and 

method precision. Some early methods for indole determination relied upon 

extensive sample work-up including pre-fractionation of the analytes such 

that each analyte-containing fraction was chromatographed separately. 338 3419343 

This approach is clearly unsatisfactory for routine analytical work. More. 

recent studies have utilised the inherent capabilities of the HPLC system 
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Table 3.5 Selected Applications 

Published to December 

of RPLC-EC 

1984 

to the Determination of Biogenic Indoles in Biological Tissues and Fluids 

Indolos Sample LC Mode LC Operating Remarks Ref. 
Determined Type(s)* Column(s) Potential 

(V) 

IF. SH?. 5HIAA TH. csf, RP-PC ODS +0.50, Indoles chromatographed separately 341 
wb, p1, ur +1.00 (TP) after extractive pre-separation 

2P, SHIAA csf RP-PC ODS +0.80 FL in series 336 

1P. 5HTP. SHT, ur RP-PC ODS +1.20 Gradient elution 334 
5HIAA. 13S 

5HTP. 5HT. 5HIAA TH RP-IIC ODS +0.80 N -Me-SHT as IS 342 

Siff pl RP-PC ODS +0.50 On-line trace enrichment 337 

TP, 5HTP, 5HT, TH, (ser, RP-PC RP resin +0.90 320 
5811* ur, sal)t 

5H?, 51D: AA TH, csf RP-PC ODS +0.50 On-line trace enrichment. indoles 338 
chromatographed separately 

5HT. 5HIAA TH RP-PC ODS +0.50 Indolee chromatographed separately 343 
after extractive pre-separation 

(SHIP). 5HT, 3HIAA TH, (csf) RP-PC 0DS +0.70 339 

5H?. 5HIAA TH RP-IIC Ph. ODS +0.72, Indoles chromatographed separately 344 
+0.78 after extractive pre-separation 

5HTP. 5HT. 5HIAA TH RP-PC ODS +0.45 335 

17,5HT. 5HIAA TH RP-PC 0DS +0.50 FL in series 321 

5HTP. 5HT. 5HIAA TH RP-PC 0DS +0.50 340 

TP. 5HTP, 51sT, TH, csf, RP-IIC ODS +0.60, 345 
5HIAA p1 +0.88 (TP) 

'1Y, 5HT, 5HIAA TH RP-PC ODS +0.70 FL in series 322 

5HTP, 5HT. 5HIAA TH RP-IIC ODS +0.75 N -Me-5HT as IS 346 

51?, 5HIAA TH RP-PC ODS +0.50 347 

5HrAA TH RP-PC ODS +0.70 FL in series 303 

5111?. 5H?. 5HIAA csf, pl. RP-PC ODS +0.50 6-F-5HT and 51II2A as ISs 348 
ur 

TP. 5HT, 51ZAA TH RP-IIC ODS +0.40-0.60, 349 
+0.80-1.20 

(TP) 

5HT. SHIAA TH, csf RP-PC ODS +0.70 350 

? P, 5HT, 5HIAA TH RP-PC ODS +0.60. Amines chromatographed separately 351 
+0.70 from 5HIAA after extractive pre- 

separation 

TP. 5H1?. 5H? TH, csf, RP-II C ODS, C8 +0.90 352 
5HIAA ser 

5HTP, 5HT. 5HIAA TH, csf, RP-PC ODS +0.55, 5HI as IS 353 
PRP, plt +0.65. 

+0.75 

5H?. 5HIAA PPP RP-PC ODS +0.55 354. 
355 

5HIP, 5HT, 5HIAA TH RP-IIC ODS +0.85 Dual ECD 139 
& -1.50 

Continued ..... 
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Table 3.5 continued 

Indoles 
Determined 

Sample 
Type(s)* 

LC Mode LC 
Column(s) 

Operating 
Potential 

(V) 

Remarks Refs. 

SBT. 51ZAA TH RP-IIC ODS +0.72 356 

TP, 5HTP. 5HT, TH, ur RP-IIC Modified +0.80 ODS modified with n-Bu P04, 325 
SMIAA ODS 3 FL also used 

5HIAA csf RP-PC ODS +0.80 357 

SHT. 5HIAA TH RP-IIC CDS +0.70 358 

TP. 5HTP. SHT, csf RP-ITC Ph +0.74 a-Me 5HT as IS 359 
51QAA 

SHIP, 5HT. 5HIAA ur RP-IIC ODS +0.72 Column switching system, FL in series 323 

5HTP, SHT, SHIAA TH, csf RP-PC ODS (x 2), +0.70 Step gradient elution, column 115 
C8 switching system 

TP. SHTP, 5HT, ser RP-PC ODS +1.00 360 
SHIAA 

5H?. SHIAA TH RP-IIC ODS +0.80 361 

TP, 5HTP, 5HT. TH RP-PC ODS +0.55-0.73 Pre-separation of analytes by complex 362 
5HIAA extraction. chromatographed on 4 

HPLC systems 

5HEAA pl RP-PC ODS +0.60 Dual ECD. 51112A as IS 363 
& +0.75 

TP. 5RT, 5HIAA TH, csf RP-IIC ODS (x 3) +0.75 NBLC (2.1mm ID), FL In series 305 

TP. 5HT. 5HIAA TH RP-IIC ODs +0.80 364 

(TP, SHTP. 5HT). Pl RP-PC ODS +0.70 Dual ECD 365 
SHIAA 

5111?. 5HT. 5HIAA TH RP-IIC CDS (x 2) +0.65-0.70, Two HPLC systems. N -Me-5HT as IS 366 
+0.90 

5HT csf. PRP RP-PC ODS +0.65 6HT as IS 367 
PPP. amf 

ma tissue homogenate. csf " cerebrospinal fluid, wb - whole blood, ser - serum, 'p1 - plasma, 

PRP a platelet-rich plasma, PPP - platelet-poor plasma, plt = platelets, ur   urine, sal = saliva, 

ast a amniotic fluid. 

Parentheses indicate author's claims which are not demonstrated in the cited publication. 
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to a much fuller extent and have performed acceptable chromatography with 

very little sample treatment and no pre-injection fractionation of the 

analytes (e. g., 345). A detailed discussion of the need for clean-up of 

biological samples prior to injection and the means by which this task may 

be performed is given in Part IV of this Chapter. 

The majority of studies of TP, 5HTP, 5HT, 5HIAA, 13S and related 

compounds have been carried out on account of the neurochemical significance 

of these substances. Consequently, many applications concern the analysis 

of nervous tissue (especially brain); applications which have been developed 

for, and utilised extensively in, neurological and psychiatric investigations. 

Csf has also been studied in this regard. Methods also exist for the 

analysis of urine, principally for 5HIAA content as an indicator of the 

presence of carcinoid tumours. In addition, analyses of whole blood and 

various blood fractions (i. e., serum, platelet-rich plasma (PRP), platelet- 

poor plasma (PPP) and platelets themselves) have been developed and a few 

investigators have also examined saliva and amniotic fluid for endogenous 

indolic compounds. 

It should be noted that the literature is replete with publications 

describing the separation and quantitation of one or more 5-hydroxyindoles, 

occasionally including TP too, and often in conjunction with endogenous 

catecholamine compounds. However, no applicatian of RPLC-EC in which 13S 

was resolved and quantitated in addition to TP and its three major 

5-hydroxy pathway metabolites was evident from a literature search conducted 

at the outset of this project. In fact, papers describing the HPLC 

determination of 13S in biological samples were very few in number. One 

RPLC-FL method which enables the simultaneous measurement of TP, 5HIAA and 

13S in serum and haemodialysates from uraemic patients was reported 
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recently. 368 US appears to be determined almost exclusively by semi- 

quantitative TLC methods in many clinical laboratories, including those 

in local hospitals. 

3.1.6 Current Practices in Local Hospitals 

In spite of the proclaimed advantages of applying HPLC procedures to 

the determination of TP and its indole metabolites in biological samples 

this technique is not currently employed in local hospitals. The Bristol 

Royal Infirmary (BRT), the Bristol Maternity Hospital (BMH), and the 

Taunton & Somerset Hospital, Musgrove Park Branch (T&SH) use two methods 

to determine urinary constituents of this type. The first is specifically 

for the determination of 5HIAA and is a colorimetric procedure reported in 

1973 by Goldenberg 369, which is itself an adaption of an earlier method 

published by Udenfriend and associates. 370 Secondly, a TLC procedure for 

the determination of TP, 5HTP, 5HT, 5BIAA, 13S and three other indole 

compounds adapted from a paper which appeared in 1968 by Berry et al. 371 is 

also applied. Both methods examine gross elevations of TP indolic 

metabolites in 24 hour urine specimens. The former approach, apart from 

lacking in sensitivity, is suspect regarding its specificity towards 

5HIß. 372,373 The second procedure resolves the analytes adequately but 

sensitivity is a major problem, especially with respect to 5HIP and 5HT 

which are not detectable at their normal levels in urine. In addition, 

the aforementioned problem with TLC regarding accurate quantitation of the 

spots on the plate gives cause for concern. 

Currently only 24 hour urine specimens are analysed by these methods. 

Because of the difficulties in detection neither procedure is sufficiently 
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sensitive to enable detection of diminished levels of analyte species which 

occur in several clinical conditions of importance (see Section 3.1.2). 

Blood samples and fractions thereof (e. g., serum, PRP, PPP, platelets) 

contain considerably lower concentrations of many of these analytes than 

does urine) consequently neither method is satisfactory for the analysis 

of these types of sample either. Where sample volume is highly restricted 

in addition clearly a new method is required. 

There are several reasons why an HPLC procedure has not yet been 

adopted in the aforementioned institutions. First, the limited amount 

of necessary instrumentation is heavily committed to performing other tasks. 

Seccndly, the cost of analysis by HPLC is greater than either colorimetry 

or TLC. Finally, few of the staff have sufficient expertise with HPLC 

equipment to be able to troubleshoot effectively. However, HPLC is now 

being introduced more into these laboratories. In recent years HPLC has 

largely supplanted colorimetry, fluorimetry and TLC for the determination 

of urinary phenolic acids and catecholamines, and has enabled plasma 

catecholamines to be quantitated. 

Ideally, what is required for the determination of urinary or blood 

indole levels is a relatively simple ILC procedure which is sufficiently 

sensitive, discriminatory, rapid, reliable, cost effective and of great 

enough worth to justify the acquisition of more instrumentation and an 

increase in staff training. This requirement is addressed herein. 

3.1.7 Problems Specific to the Determination of Trace Level Constituents 

. of Biological Fluids of Neonates, Infants and Young Children 

The potential utility of a knowledge of in dolic TP metabolite levels 

in biological fluids as an aid to the diagnosis of various debilitating and 
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sometimes life-threatening diseases suffered by the title subject group 

has already been proclaimed (see Section 3.1.2). It is desirable to screen 

individuals in an effective way in order to detect any abnormality at the 

earliest opportunity. This enables prompt action to be taken (i. e., 

chemotherapeutic, surgical, dietary control, etc. ) in order to minimise the 

effects of the abnormality, e. g., mental retardation, or in certain cases 

to prevent infant fatality. 

The principal decision to be taken from the clinical point of view 

is which biological fluids to analyse for TP and its indolic metabolites. 

Csf, urine and blood (or particular blood fracticros) are all pertinent to 

the clinical conditions under investigation to various extents. Csf indole 

levels are useful where mental disturbances are involved but this sample 

medium is not necessarily a satisfactory indicator of other derangements. 

The acquisition of a csf sample requires epidural puncture which has a 

certain risk associated with it, hence csf is not very accessible and is 

deemed to be unsuitable for routine screening purposes. 

Urine and blood are both more readily obtainable and are of greater 

applicability to the detection of TP metabolism abnormalities than is csf. 

However, in very young individuals such as those of particular interest 

here, urine collection is problematical. Generally, it is necessary to 

obtain the complete urine output over a lengthy time period (usually 2h. hours) 

in order to take account of normal diurnal fluctuations of excreted analyte 

levels. Routine collection of the total urinary output over such a time 

span from neonates, infants and young children who are not yet toilet- 

trained is extremely difficult26B, primarily because of the incontinence of 

these "subjects. Complete amassment of this urine output from nappies is 

not feasible and catheterisation (a process whereby a flexible plastic tube 
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is inserted into the urethra in order to drain the accumulating urine into 

an attached plastic collection bag) is undesirable since it may introduce 

infection and is not justifiable on a routine basis. 

Unlike urine acquisition, blood sampling is simple and is already 

performed on all new-borns delivered in the BMH. Blood is obtained by 

making a heel prick with a lancet. This sample is utilised for metabolic 

screening for evidence of two harmful clinical conditions, viz. phenyl- 

ketonuria which is assessed by fluorescence measurement of phenylalanine 

levels, and hypothyroidism which is investigated by RIA techniques for 

thyroxine (T4) and thyrotropin (thyroid-stimulating hormone, TSH). Because 

blood is already sampled routinely from the subject group this medium is 

considered to be the most readily accessible for the determination of 

endogenous indolic compounds. 

The decision to examine blood brings with it two fundamental obstacles 

that must be surmounted. First the question of whether to quantitate 

levels of TP, 5HTP, 5HT, 5HIAA and 13S in whole blood, serum, PRP, PPP or 

platelets alone has to be addressed. Whole blood is not ccnducive to HPLC 

analysis without treatment involving removal of blood cells yielding either 

serum or plasma. The estimation of 5HT in serum has been shown to be 

compromised by variability in the fraction of platelet-bound 5HT reaching 

the serum on clotting 374ýtherefore serum is an inappropriate medium for 

analysis. Controversy exists concerning the physiological significance 

of free 5HT in plasma (determined practically-in PPP). Currently it is 

uncertain whether 5HT concentrations measured in PPP are a genuine 

reflection of freely circulating 5HT levels in the blood stream or merely 

an artefact of platelet lysis during sample collection and preparation. 375 

In view of these comments, the -decision was taken to analyse both PRP and PPP 
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for indolic TP metabolites in order to determine which sample type is of 

greatest worth diagnostically. 

The second point to note is that normal concentrations of the analytes 

are generally very low in whole blood or blood fractions as is demonstrated 

in Table 3.6. It should be noted that available information is both scant 

and variable, most probably as a direct result of unsatisfactory methodology 

(which yields variable and uncompensated for analyte losses by decomposition 

and/or in sample manipulation, analytical interferences, etc. ) and 

insufficient sample numbers for valid statistical evaluation. Furthermore, 

normal reference ranges specific to newborns, neonates, infants and children 

have not been established in many cases. The major changes in blood 

composition which are known to take place over the first few years of life, 

and particularly in the first few days, may have deterred experimenters from 

examining this difficult area in detail. However, the general agreement 

regarding the order of magnitude of concentration of the individual indoles 

in the blood fractions of interest (sub-ugml-1 in most cases) means that a 

highly sensitive analytical method (i. e. with extremely low LODs) is 

required to enable quantitation with differentiation between analyte contents 

which are in these general ranges and values which lie outside these ranges, 

both to higher and lower extremes. The problem of analytical sensitivity 

is further compounded by the sample size impediment associated with neonates, 

infants and young children. Since the total blood volume of a full-term 

new-born baby weighing 3kg is only of the order of 275m1 cf. ca. 5.3 1 for 

a 70kg adult, the amount of blood that may safely be taken for analysis is 

correspondingly small. In paediatric work the acquisition of sufficient 

blood (ca. 1.5ml) to yield 500u1 of serum or plasma is considered to be 

a relatively large volume. 381 Hence, taking into account requirements for 
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We 1.6 Normal Reference Ranges for T yptophan and Selected Metabolites in Biological Fluids 

(All figures are for adults unless stated otherwise. Ranges are given as either extreme values or mean t SD 

except where indicated by an asterisk where mean ± SEM is quoted) 

9ological 
Indole 

Fluid TP 5HTP 5HT 5HIAA 13S 

(hole Mood 186 ± 12*ngm1'1 �5 100-200ngm1'l 249 

168 ± 13 ngml-1 375 

337 t 40ng/109 plts'75 
80-250ngm1-2 '76 

115-440ngml-1 
(Children )377 

Plsssx 4-30ugm1"1 221 213-544ngm1'1 331 

(PRP) 0.43-1.71pgm1-1 37e 127-501ng/10° plts5'5 

0.95 ± 0.031jgm1'1 37e 341 t 27*ng/109 pltse75 

plsea 0-2ngm1-t sal 

ýýPP) 0.9-2.5ngml-l 295 

ýlstslets 570 3 180ng/109 plts"s 

frua 11.0 t 1.3Ugm1 1 e7e 68-161ngm1-1 295 770 1 240ngm1'1 

8.8 2 0.4ugm. 1-1 e7e 46-16Engm1'1 333 Total 379 

14.9 t 2.9ugm1-1 $78 44-247ngm1'1 37s 100 t 20n gm1 1 
79 Free 3 

8.6-21.6pgm1'' e7e 70 ± 20ngm1-1 3� 

1 6.9-9.5tigm1' 210 ± 53ngm1'1 37S 

(Children )370 144 ± 46ngm1-1 318 
3.7 t 2. OVgm1-1 

(Newborns) 378 

14.4 1 1.9ugml-' 
Total°7' 

1.4 t 0.4Ugml 
779 Free 

rin" 10.9 t 3.3mg/g 0-50ig/24 hrs'7e 30-180ug/24 hrs "e 2-8mg/24 hrse7i 4-20mg/24 hra211 

creatinine97e 46-103ug/g 2-9mg/24 hrs2v' 
creatinine331 7-59mg/g creatinine 

(Neonates)a80 

tsf 390 t 73ng/ml_1 378 0.44-0.88ngml-1 35' 0.36-0.72ngml-l 9s9 0.38-0.76ngm1-1 � 

163 t 28Eng/ml-1 
" (Children ) '78 

Va 

P-_A 



- 199 - 

the established screening procedures, as little as 300-500i. il of neonate 

blood is the maximum volume which can be allocated to indole determination. 

Now, the preference for HPLC-EC in order to determine TP indolic metabolites 

in biological fluids has been discussed in depth in this introduction. 

The severe restriction of sample size imposed by the nature of the subject 

group under study suggests that the potential for increased mass sensitivity 

available with NBLC-EC compared with that offered by conventional LC-EC 

would be of considerable value to this application. Hence, the determination 

of plasma indole levels in neonatal and paediatric patients provides a 

genuine and worthwhile clinical problem with which to assess the capabilities 

of the Pye Unicam NBLC-EC system under authentic conditions. 
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3.2 The Isocratic Narrow-Bore Liouid Chromatogravhy Instrument 

The instrument available for this evaluation study was supplied by 

Pye Unicam (Cambridge, UK). The apparatus consisted of a PU4010 dual-piston 

reciprocating pump, a Rheodyne model 7413 injection valve (containing an 

interchangeable internal loop disc of 0.5,1.0 and 5. OU1 capacity loops) 

with a Rheodyne model 7012 loop filler port, and a PU4022 wall-jet 

electrochemical detector comprising a 0.5u1 internal volume flow cell and 

an electronic controller unit. A PU4810 electronic computing integrator 

was also supplied. In addition, a Servoscribe model is potentiometric 

recorder set at 1V f. s. d. was utilised for pictorial presentation of the 

detector output. 

The entire apparatus incorporating a 10cm x 2.1mm ID, 1/8'1 OD column 

is pictured in Plate 1. A close-up of the "business" part of the apparatus, 

i. e., the injector, column and detector flow cell assembly, is pictured in 

Plate 2. 

3.2.1 Connections 

Columns were installed by connection to the injection valve and the 

ECD flow cell with short lengths of 0.15mm (0.006") ID tubing. The 

connection tube linking the injector and the column inlet was composed of 

316 stainless steel . 
(S/S) whereas the connection between the column outlet 

and the ECD flow cell was fabricated from PTFE tubing which was supplied 

with the detector. All connecting tubes were carefully squared-off and 

deburred at both ends and all S/S ferrules were placed at optimum distances 

from the tubing ends for the appropriate fittings (as illustrated in 

Figure 3.7) in order to avoid the creation of unnecessary extra-column 
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plate 1 General View of the Pye Unicam Narrow-Bore Liquid 

Chromatography-Electrochemical Detection Instrument 

1. PU4010 pump, 2. PU4022 ECD controller, 3. PU4810 electronic 

computing integrator, 4. Servoscribe model is poten tiometric recorder,, 
5. Injection system, 6.. 

, 
Column, 7. PU4022 ECD flow cell. 
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Plate 2 The Narrow-Bore Liquid Chromatograph Injector-Column-Detector 

Flow Cell Assembly 

4 

1. Syringe, 2. Rheodyne, 7012, loop filler port,, , 3. 
, 
Rheodyne 7413 

injection valve, 4. Valve-column inlet connection tube, 5. Column, '. 

6. ` Column outlet-detector connection tube, 7. PU4.022 ECD flow cell, 

8. Auxiliary electrode (S/S), 90 Ag/AgC1/KCl reference-electrode,, 

10. Glassy'carbcn working electrode, 11. Flow cell stand. 
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dead volume which would consequently lead to undesirable extra-column 

band broadening. 

---ýI 2.29mm (0.09011) 

SWAGELOK 

4.32 mm (0.170") 

RHE0D3TIE 

Figure 3.7 Optimum Placement of Ferrules for Connections to Swagelok 

and Rheodyne Fittings. 

3.2.2 The PU4O10 Pump382 

The PU4010 pump operates by means of a dual-piston linear reciprocal 

pumping mechanism which is cam-driven from a single motor. The instrument 

is capable of delivering mobile phase at flow rates between O. lmlmin"1 

(= 1001ilmin-1) and 9.9mlmin-1 in O. lmlmin-1 increments. Each piston 

chamber has an internal (displacement) volume of 100wl. Back flow is 

prevented by the presence of check valves stationed in the piston head at 

the inlet and outlet of each piston chamber. All check valves are 

protected from particulate matter by integrated porous S/S frits. Back 

pressure is measured by means of a Bourdon gauge and is displayed in units 

of bar on' the pump facia. A pressure ceiling of ca. 6000p. s. i. (420 bar) is 
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indicated by the manufacturers. Baseline noise originating directly from 

pump pulsations is claimed to be minimal. The pump was tested by the 

manufacturers in their laboratory and was found to be within specificatiari. 

3.2.3 The Rheodyne Model 7413 Micro-Injection Valve (with Model 7012 

Loop Filler Port )383,384 

The Rheodyne model 7413 4-port injection valve is capable of measuring 

and injecting very small volumes in a highly reproducible manner. The 

valve incorporates three tiny sample loops on a removable disc which is 

held within the valve body. These internal sample loops have very narrow 

flow passages (the 0.5ul capacity loop has an ID of only 0.13mm (0.005")) 

in order to reduce injector-related extra-column band dispersion. The 

3-loop disc supplied with the 7413, which is illustrated in Figure 3.8, 

carries capillaries of 0.5,1 and 51il capacities. 

Figure 3.8 The 0.5-1-5u1 3-loop Disc for the Rheodyze Model 7413 

Micro-Injection Valve 

The loop disc is inserted directly into the rear of the valve rotor 

seal which is composed of Vespel, a fluoropolymer, which has been levelled 

and polished to a smooth finish. The rotor butts up against the valve 
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stator block into which are drilled four very short (<lmm), narrow 

(0.4mm, 0.016" ID) micro-flow passages. This design enables injector- 

related extra-column volume, and consequently, extra-column band dispersion 

to be cut to a minimum. Plate 3 depicts the important components of a 

partly disassembled Rheodyne 7413 valve. Also shown is a Rheodyne 7012 

loop filler port. 

The injection valve is claimed to be capable of high volumetric 

precision (ca. 0.05% RSD) because sample measurement occurs by the complete 

loop-filling method. An excess of sample is required to fill the loop. 

The loop is loaded by means of the 7012 loop filler port which, in 

conjunction with the 9cm x 0.3mm (0.012") ID connecting tube, has an internal 

volume of about 7u1. Total sample wastage is generally of the order of 

101ii per injection taking into account both valve internal volume and exit 

tube volume. The manner by which sample is introduced into the HPLC flow 

stream is illustrated with flow diagrams (Figure 3.9). With the valve in 

Sample 
2 

co! Ljmn column 

sample loop 

m 

Xý, 

" 
pump 

4 sample p, 

LOAD (cow) ! 'aJECT Icv. 

Figure 3.9 Flow Diagram for the Rheodyne Model 7413 Micro-Injectical Valve 

the LOAD position, sample solution is forced under pressure into the 

operaticaial sample loop from a suitable syringe via the loop filler port. 
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Plate 3 Exploded View of the Rheodyne 7413/7012 Injection System 

ýo 
ýý 

1. Valve body, 2. Stator block, 3. Valve rotor seal, 4. Loop disc, 

5. Loop filler port. 
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The mobile phase flow from the pump to the column is carried by one of the 

other two capillary tubes not in use as the sample loop. A 60o clockwise 

rotation of the rotor shaft from the LOAD to the INJECT position translocates 

the sample loop into the pump-column mobile phase flow stream. While the 

valve is switched to the INJECT position free flow is possible from the 

sample loading port to waste via the third capillary tube. In order to 

avoid cross-contamination between consecutive samples it is essential to 

flush the sample lines with an appropriate solvent both while the valve is 

in the INJECT position and subsequently when the valve is returned to the 

LOAD position. The manufacturers state that this injector is capable of 

leak-free operation at pressures up to 7000 p. s. i. (500 bar). 

For this work the injection valve was mounted in a vertical 

orientation with the four ports downmost in order to minimise the practicable 

length of the valve-to-column inlet connection tube. 

3.2.4 Syringes385 

The syringe used for sample introduction was a Hamilton # 702 

'microliter' micro-syringe (Reno, NV, USA) of 25p1 capacity. On this model 

the needle is fixed, 51mm (2") in length, 0.46mm (0.028") OD (34 22 gauge), 

and'it possesses a square-ended tip. This syringe is recommended for use 

with the Rheodyne Model 7012 injection port. 

In all manipulations of the syringe good practice was followed and 

care was taken not to handle the syringe barrel. However, because volume 

measurement was by injection loop and not by the syringe directly it was 

unlikely that significant errors would occur through temperature-derived 

sample density changes within the syringe. 
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The syringe was always cleaned prior to injection. Grasping the 

syringe by the flange and plunger button only, clean distilled water was 

drawn into the syringe and then expelled several times. The syringe was 

then pumped dry before use with sample. 

The injection procedure was as follows. The needle was inserted 

into the sample solution and the plunger was pumped a few times to provide 

lubrication within the syringe. The syringe was filled to the required 

point with sample then was inverted and tapped gently to exclude any air. 

bubbles. The needle was blotted dry using a tissue then the sample was 

drawn back into the syringe barrel leaving an air gap of about 5111. The 

needle was inserted into the injection port and the syringe contents were 

discharged into the injection loop until the preceeding air bubble had 

emerged fully from the sample vent port of the valve. This can best be 

observed if a very short S/S tube extended with a transparent plastic tube 

is fitted to the valve sample vent port. The valve was switched to insert 

the sample loop into the flow stream. 

Syringes require regular maintenance to ensure trouble-free operation. 

If the withdrawn plunger was handled or exposed to dust at any time it was 

carefully wiped with tissue prior to reinsertion into the barrel in order 

to avoid problems with the syringe seizing up. Periodically, the syringe 

was disassembled and was cleansed in warm water and detergent. On the rare 

occasions when the needle became plugged, the blockage was removed using 

compressed air or a cleaning wire or by ultrasonication in a suitable 

solvent or by any combination of these procedures. 

3.2.5. The PU4022 Electrochemical Detector 204'205 

The PU4022 E CD has been discussed in some detail in Chapter 2 of this 
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dissertation. The inert Kel-F flow cell body contains three electrodes. 

Supplied with the. instrument were a glassy carbon working electrode (WE) 

and a Ag/AgCl/KC1 gel reference electrode (RE), along with a S/S auxiliary 

electrode (AE) which also serves as the solvent inlet. The various 

components of the PU4022 flow cell are depicted in Plate A.. A diagram 

showing how the cell parts are assembled is presented in Figure 3.10, while 

Flo: Cell Locking Collar 

Stand 
Classy Carbon W. E 

101-Ring Seal 

Ag/AgCl/KC1(gel) RE 

Locking Collar 

Outlet Tubing 

Stainless Steel AE 

Inlet Tubing 

Figure 3.10 The PU4022 Electrochemical Detector Flow Cell (Partially 

Assembled) - External View Showing Component Parts 
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Plate - Exploded View of the PU4022 Electrochemical Detector Flow 

Cell Showing its Compcment Parts 

a CýD. c7. 
1. Glassy carbon WE, 2. Ag/AgCl/KC1 gel RE, 3. Locking collar, 

4.0-Ring, 5. Kel-F cell body, 6. Stainless steel AE and inlet assembly, 

7. Flow cell outlet tube, 8. Flow cell inlet tube. 
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a cross-sectional diagram of an identical flow cell (the EDT LCA 13) may 

be found in Chapter 2 (Figure 2.4). 

Those specifications of the detection system that are of greatest 

relevance to NBLC are the flow cell internal volume, the baseline stability 

and the detector response time. As has been stated previously, the cell 

volume of the PU4022 is 0.5ul which is of the order required from a detector 

for operation with 1-2mm ID columns, (see Section 1.4.3.5). Baseline 

stability is a feature of the electronics, which the manufacturers state 

to be "stable and drift-free" 204, and various physical parameters of the 

system. A practical examination of baseline stability characteristics of 

this PU4022 detector unit is reported in Chapter 2. Detector response time 

varies with detector time constant which is programmed into the PU4022 by 

the operator. A choice of 1,3 or 10secs is available. The longer the time 

constant is then the greater is the degree of baseline noise smoothing 

but also the greater is the degree of peak broadening and consummate peak 

height attenuation. The manufacturers recommend that the time constant 

setting providing the best S/N ratio at the working instrument sensitivity 

is selected for use. The design of the electronic circuitry of the PU4022 

ensures that data point sampling is in phase with the mains period so that 

mains-derived noise pulsations are rejected. 

Further specifications of this instrument may be found in Chapter 2 

(Table 2.7). 

3.2.6 Ancillary Instrumentation 

In addition to the aforementioned Pye Unicam NBLC apparatus other 

instruments were utilised for part of this research project. These included 
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a Pye Unicam/Altex LC-XPD model 100 dual-piston reciprocating pump, a 

Rheodyne model 7010 6-port injection valve (with model 7012 loop filler 

port), a Metrohm 641-VA electrochemical detector controller (with leads 

adapted to allow connection to the PU4022 flow cell), and a Ibwlett Packard 

HP3390A electronic reporting integrator. 
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3.3 Experimental 

3.3.1 Solvents and Reagents 

The following solvents were all obtained in Q'R grade and were single 

distilled into glass before employment as mobile phase modifiers: methanol 

(MeOH; from Wilcott Industrial, Bristol, Avon and Charles Tennants, London), 

propan-2-ol (2-PrOH; from BDH, Poole, Dorset), and tetrahydrofuran (THF, 

from May & Baker, Dagenham, Essex). Acetonitrile (Me('I, HPLC grade) was 

supplied by Fisons, Loughborough, Leics. and was used as received for the 

same purpose. Water was single distilled into polythene before use. 

Solvents employed for column packing and repair, viz. MeOH (as above), 

2-PrOH (as above), cyclohexanol (BDH, Poole, Dorset) and ethanol (EtOH; 

from James Burroughs, London) were all purchased in GPR grade and were 

utilised without further purification. 

Acetone (Charles Tennants,. London) and diluents of concentrated nitric 

acid (c. I1103; from BDH, Poole, Dorset) were used for the cleaning of glass- 

ware and other items of hardware. 

Buffer components citric acid (HCt, GPR grade), acetic acid (HAc, 

glacial, GPR grade) sodium acetate (NaAc, anhydrous, AnalaR grade), 

orthophosphoric acid (H3PO4, CPR grade), potassium dihydrogen orthophosphate 

(KH2PO 
4, anhydrous, CPR grade), sodium hydroxide (NaOH, AnalaR grade) and 

potassium hydroxide (KOH, AnalaR-grade) were all obtained fron EDH, Poole, 

Dorest. Ion interaction agents PIC-B7 reagent (containing 3.84% w/v 

1-heptanesulphonic acid active ingredient in a pH 3.5 aqueous acetate buffer) 

which was purchased from Waters Associates, Northwich, Cheshire, or 

1-heptanesulphonic acid (HSA, sodium salt monohydrate, laboratory reagent 

grade) which was supplied by BDH, Poole, Dorset, were incorporated as 
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required. Ethylenediaminetetra-acetic acid (EDTA, disodium salt dihydrate, 

AnalaR grade), which was also obtained from EDH, Poole, Dorset, was used as 

received for metal ion complexation. 

The indole standard materials, D, L-tryptophan (TP), 5-hydroxy-D, L- 

tryptophan (5HTP), 5-hydroxytryptamine (serotonin, 5HT, creatinine sulphate 

complex), 5-hydroxyindole-3-acetic acid (5HIAA), indoxyl-3-sulphate (urinary 

indican, 13S, potassium salt) and N, N-dimethyl-5-hydroxytryptamine 

(bufotenine, BF, mono-oxalate monohydrate complex) were all purchased from 

Sigma, Poole, Dorset and were of the highest purity available. Indole-3- 

acetic acid (IAA, GPR grade) and indole (GPR grade) were obtained from BDH. 

All substances which were investigated as potential internal standards 

with the exception of BF were selected off the laboratory shelves. These 

materials were from various suppliers and were of laboratory reagent grade 

or better. All compounds were used as received except aniline (AN) which 

was freshly distilled into glass prior to use. 

Helium gas for the deaeration of mobile phases was supplied in 

cylinders by BOC (Special Gases), Bristol, Avon. 

3.3.2 Mobile Phase Preparation (1 litre) 

3.3.2.1 General Method 

Measured volumes of organic modifier and aqueous buffer salt solution 

of the selected concentration were combined in a1 litre volumetric flask 

in the desired proportions. The solvent mixture was transferred to a 

2 litre-capacity beaker. If an IIA was required then an appropriate amount 

of the chosen substance was weighed out and added at this point. The 

mixture was stirred to ensure complete dissolution of the IIA. Mobile phase 
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preparation was completed by adjustment of the solution pH to the required 

value. This was achieved by addition of a buffer acid, with stirring and 

with constant pH monitoring by means of a pre-calibrated hand-held portable 

pH meter (Gallenkamp pH Stick, Model PHK-120-B) which was capable of 

measuring to ± 0.01 pH units. When a mobile phase with a pE greater 

than the natural pH of the solvent mixture was required then buffer acid 

was added as usual until pH 4.00 was reached after which this combination 

was supplemented with aqueous NaOH or KOH as appropriate until the desired 

pH value was attained. 

Each prepared batch of mobile phase was transferred to a1 litre- 

capacity reagent bottle and was then degassed under a gentle stream of He 

for at least 5 minutes prior to delivery. Degassing was continued 

throughout the course of the experiments in order to maintain the exclusion 

of oxygen from the mobile phase. Preferential evaporation of solvent was 

restricted by plugging the reagent bottle neck around the tubing with 

lint-free paper towelling. 

Mobile phases were stored at room temperature and were prepared 

freshly each week or more frequently as necessary. 

3.3.2.2 Preparation of the Optimised Mobile Phase for RP-IIC of the 

Subject Indoles on SDherisorb S5 ODS1 

MeOH (40ml) was placed in a1 litre volumetric flask and the volume 

was made up to the mark with aqueous KH2PO4 (0.1M) to provide a 4: 96 solvent 

ratio. The solvent mixture was transferred to a 2-litre capacity beaker 

and into this solution was dissolved NaHSA. H20 (246mg = 200mg1-1 H A) to 

act as an IIA. The natural pH of the resulting combination was ca. 4.63. 
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The pH was then adjusted to 4.00 by the dropwise addition of aqueous 

H3PO 4 
(ca. 30% v/v) to yield the optimised mobile phase. 

3.3.3 Columns 

3.3.3.1 1mm ID Column 

A 25cm x lmm ID, 1/8" OD glass-lined 316 S/S column commercially packed 

with Partisil 10 ODS3 stationary phase ('micro-B', Whatman, Maidstone, Kent) 

was supplied by Pye Unicam, Cambridge. The column end-fittings were also 

composed of 316 S/S and were of the female ZDV Swagelok type illustrated in 

Figure 1.7 except that these end-fittings contained integral column end 

frits of Zum porosity. 

3.3.3.2 2mm ID Columns 

A series of 2mm ID columns of two basic architectures were utilised. 

Those of conventional design comprised a 10cm x 2.1mm ID, 1/B" OD internally- 

polished 316 S/S tube to which were attached similar end-fittings to those 

of the lmm ID column except that the frits were not integral to the end- 

fitting but consisted of the more usual discrete 2um porosity discs. The 

other 2mm ID column hardware design was that of Shandon-Southern which is 

illustrated in Figure 3.11. Columns consisted of either 15cm or 20cm 

lengths of 2mm ID, 1/811 OD internally-polished 316 S/S tube with ZDV end- 

fittings individually tailored to each column. Leak-free seals were made 

by finger tightening each end-fitting against a teflon '0'-ring. This 

system format necessitated the use of a ZDV union and an additional length 

of' connecting tubing for attachment to the ECD so introducing a small 

additional contribution to extra-column band broadening. 
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Mobile Phase Inlet 
(0.18mm (0.010") ID 
S/S Capillary Tube) 

Valve Carr 

P TFE Seal 

Column Body 
(2mm ID Polished Bore) 

Coupling Nut 

PTFE Seal 

Base Fitting 

ý-- Mobile Phase Outlet 
(0.18mm (0.010") ID 
S/S Capillary Tube) 

To Detector 

figure 3.11 Shandon -Southern Column Architecture 

For initial experiments only with the 2mm ID column geometry the three 

Shandai-Southern style columns were employed. These columns were slurry- 

packed in the laboratory with Hypersil ODS (15cm x 2mm ID), Spherisorb 

S5 ODS1 (15cm x 2mm ID) and u-Bondapak ODS (20cm x 2mm ID) stationary phases. 

Also for initial experiments, a 10cm x 2.1mm ID column of conventional design 

commerically packed with Spherisorb S5 ODS2 (Phase Sep, Queensferry, Clwyd) 

was supplied by Pye Unicam. 

From Injector 
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All other columns utilised in this study were of the conventional 

design, 10cm long x 2.1mm ID, and were either commercially packed with 

Spherisorb S5 ODS1 (Phase Sep, Queensferry, Clwyd) and supplied by Pye 

Unicam or were slurry-packed in the laboratory with fresh stationary phase 

of identical type and using the same column hardware. 

3.3.3.3 Co1u! Packing Procedure 

All columns packed in the laboratory were packed by the high pressure 

balanced-density slurry method outlined in Section 2.2.4. Certain hardware 

modifications were necessary to ensure successful packing of 2mm ID columns. 

First, an adaptor was fabricated to enable the interfacing of the Shandon- 

Southern column design to the N2-driven constant pressure hydraulic pump. 

Secondly, for the packing of all 2mm ID columns a 2mm ID reservoir was 

incorporated immediately before the column in order to avoid problems 

with bed inconsistency resulting from an abrupt change in the ID of the 

tubing. In addition, the amounts of stationary phase utilised in packing 

were scaled dmm accordingly with the column length and ID. 

3.3.3.4 Stationary Phases 

A list of stationary phases employed in this study, together with 

their specifications is compiled in Table 3.7. 

3.3.4 Standard Solution Pretaration 

For all experinen is reported in Part II of Chapter 3 except selection 
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of an internal standard (IS), stock solutions (500ugml-1 in standard 

material) of TP, 5HTP, 5HT creatinine sulphate complex, 5HIAA and I3S, K® 

salt were prepared in a MeOH: water mixture and were acidified with HAc 

(5 drop's) to aid dissolution. 

RRPC was conducted using a working standard mixture (51lgm1-1 of each 

compound) and individual working standards of identical concentration which 

were prepared by serial dilution of the stock solutions with MeOH. For 

RP-IIC, similar standards were produced by serial dilution of the stock 

solutions but a mixture of MeOH: aq. 0.1M KH2PO4 (4: 96) was used for these 

dilutions instead of MeOH. 

To optimise the ECD cell polarisation potential for the 

detection of 1'P, 5HTP, 5HT, 5HIAA and 13S a working standard containing 

1.0ugml-1 (active ingredient) of each analyte was prepared by serial dilution 

of the stock solutions with MeOH: aq. 0.1M KH2PO 4 
(A: 96). 

For investigation of the effect of injection volume on the 

chromatographic separation, a working standard containing 0.4pgm1-1 (active 

ingredient) was prepared similarly. 

In view of the known lability of TP and its 5-hydroxy metabolites 

in solution to light391,393, heat (they degrade slowly at room 

temperature) 304,305, air391 and in an alkaline environment391 careful 

storage of stock and working standard solutions was essential. All stock 

solutions were acidified with HAc on preparation, and were stored in sealed 

flasks wrapped in Al foil in a refrigerator at 4 °C. Working standards 

were also stored in a refrigerator at 4 °C and were removed and brought to 

room temperature only immediately prior to use. Stock solutions were 

freshly prepared at intervals of no longer than 3 months. Working standard 

solutions were replaced every 4 weeks or sooner if deterioration was 

suspected. 
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3.3.5 HPLC Operating Conditions 

3.3.5.1 Conditions Employed for all Development and Optimisation of 

Separation Experiments 

Column : Variable 

Mobile Phase : Variable 

Flow Rate : O. lmlmin-1 (lmm ID columns) or 0.4mlmin-1 (2mm 

ID columns) 

Injection Volume : lV1 (via micro-loop) 

Detection : ECD (Potential : +1.00V vs. Ag/AgC] reference; 

Mode : Oxidation; Instrument Sensitivity : 100nA 

f. s. d.; Time Constant : lsec) 

Chart Speed : 5mm min-1 

3.3.5.2 Optimised Chromatographic Parameters for the Separation of TP, 

5HTP, 5HT, SHIAA and 13S by NBLC 

Column : Spherisorb S5 ODS1 (L = 10cm, ID = 2.1mm, dp = Sum, 

C loading = 7% w/w, Surface Area = 220m2g'1) 

Mobile Phase : 4% MeOH : 96% aq. 0.1M KH2PO4/H3PO4 buffer 

containing IBA (2 00mg1-'), pH 4.00 

Flow Rate : 0.4mlmin-1 (= u=0.19cros-1) 

Injection Volume : lUl (via micro-loop) 

Detection : ECD (Potential : +0.95V vs. Ag/AgCl reference; 

Mode : Oxidation; Instrument Sensitivity : 100nA 

f. s. d.; Time Constant : lsec) 

Chart Speed . 5mm min-' 
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The eoncentratian of the IIA (i. e., HSA) was adjusted to a small 

extent in order to compensate for column deterioration with use. 

3.3.6 Procedure for the Optimisation of Electrochemical Detector Applied 

Potential 

The Pye Unicam NHLC system incorporating a commercially-packed 

Spherisorb S5 ODS1 column (10cm x 2.1mm ID) was eluted with the optimised 

mobile phase (i. e., 4% MeOH : 96% aq. 0.1M KH2PO4/H3P04 buffer containing 

HSA (200mg1-1) which was adjusted to pH 4.00) at the standard flow rate of 

0.4mlmin-1. An initial cell polarising voltage of +0.30V was programmed 

into the ECD controller and the baseline (at 100nA f. s. d. sensitivity with 

a time constant of lsec) was allowed to settle. Once a constant drift-free 

baseline was established then a working standard containing TP, 5HTP, 5HT, 

5HIAA and I3S (1.0igm1'1 active ingredient, each constituent) was 

chromatographed in duplicate. The operating potential was increased 

stepwise in increments of 0.05V to +1.00V and at each selected potential the 

procedure was repeated. Peak heights and baseline noise levels of all the 

chromatograms were measured manually. 

3.3.7 Procedure for the Evaluation of the Effect of Injection Volume on 

the Chromatographic Seraration of Indole Standards 

The NBLC system incorporating the Rheodyne model 7413 injection valve 

was utilised for the first part of the title experiment. With the 0.5u1 

internal loop in the active position, a standard solution containing TP, 

5HTP, 5HT, 5HIAA and 13S (0.4ugml-1 active ingredient, each component) was 

chromatographed on a freshly-packed Spherisorb S5 ODS1 column (10cm x 2.1mm 
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ID) which was operated under optimised conditions. Chromatograms recorded 

at the standard chart speed of 5mm min-1 were obtained at two different 

ECD sensitivity settings, viz. 50nA f. s. d. and the highest sensitivity at 

which all indole peaks were still on-scale (which was 5nA f. s. d. for the 

0.51j1 volume - 0.2ng each indole on-column). A further chromatogram was 

recorded at the latter instrument sensitivity using a chart speed of 

30mm min-' to enable manual measurement of peak parameters to be carried 

out with less error. 

Subsequently, the above procedure was repeated employing the lul and 

5111 injection loops- in the active position. 

For the second part of the experiment a Rheodyne model 7010 external 

loop injector was substituted for the model 7413 micro-valve. The conduit 

between the injector and the column inlet was retained. The above procedure 

was repeated with 1011 and 2 011 capacity loops fitted. 

For each elution band in the generated chromatograms, peak height, 

baseline noise, retention time and peak width at both 60.7% and 50% of peak 

height were measured. 

3.3.8 Procedures Adopted for the Search for an Internal Standard 

3.3.8.1 Non-Indolic Materials 

A total of eighteen compounds of similar molecular weight to the 

analytes which were soluble in the mobile phase at low concentrations 

and which cm tained electrophores (i. e., principally phenol- or aniline- 

based substances) were selected from the laboratory shelf. A solution of 

each compound was prepared qualitatively by dissolving a small amount of 

each material in a pseudo-mobile phase mixture, viz. 4% McOH : 96% a. q. O. lM 
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KE2POL. Each solution was chromatographed in turn on a commercially- 

packed Spherisorb S5 ODS1 column (10cm x 2.1mm ID) under optimised conditions 

and was allowed to run for 1 hour or until. a readily discernible peak eluted, 

whichever was the sooner. Injections of a standard containing TP, 5HTP,. 

5HT, 5HIAA and 13S (1. Oligm1-1 active ingredient, each component) were 

interspersed between the other injections in order to ensure continuity of 

chromatographic behaviour. Repeat injections were performed of any of the 

substances under scrutiny which were observed to elute within an acceptable 

period. Dilution or concentration of the original solutions were made as 

deemed appropriate in order to obtain a peak which was both on-scale and 

of sufficient height with which to ascertain a retention time. Retention 

times of each substance were measured manually and capacity factors were 

calculated. Peak shapes were also noted. 

Those compounds eluting within a chromatographic window or a short 

time after the longest retained analyte were then co-chromatographed with 

the standard indole mixture to establish whether full resolution from the 

analytes was realised in practice. 

3.3.8.2 Indolic Materials 

A little of the BF(COZH)2. H20 complex was dissolved in MeOH and 

was 'chromatographed under optimised ccnditians. The concentration of 

the methanolic BF solution was then adjusted with aqueous KH2PO 4 
(0.1M) 

to produce a peak eluting on-scale. The retention time of this peak 

was then measured and its capacity factor calculated. ' Aliquots of this 

BF solution and the standard indole mixture were combined. Co-chromato- 

grapriy was undertaken to show the complete separatirr of BF from the 

indole analytes. 
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3.4 Development of a Separation of a Series of Indolic Standard Materials 

3.4.1 Chromatography on a 1mm ID Reverse Phase Column 

3.4.1.1 Separation StrateEy - General Remarks 

Reverse phase systems comprising the elution of a largely aqueous 

mobile phase (polar) across a C18 bonded stationary phase (non-polar) were 

chosen in preference to normal phase systems for application to the 

separation of selected indoles. This choice was based upon five major 

considerations. First, because indoles are soluble in polar solvents 

(e. g., water and lower alcohols) but are insoluble in relatively non-polar 

solvents (e. g., alkanes and halocarbons), this dictates that a polar mobile 

phase is required. Secondly, a polar mobile phase would be beneficial 

because the mobile phase and the sample matrix would then be compatible, so 

enabling sample preparation prior to injection to be kept to a minimum. 

A polar mobile phase is also necessary in order to carry an electrolyte 

which will support an electric current hence enabling EC detection to be 

utilised. Furthermore, as most of the potential interfering species 

present in biological systems are ionic in nature, it would be advantageous 

to use a polar mobile phase and a non-polar stationary phase so that these 

ions exhibit little affinity for the column surface and consequently are 

eluted from the column with great rapidity. Finally, the reverse phase 

mode is highly versatile, especially with respect to the employment of 

secondary chemical equilibria, so providing the chromatographer with 

additional operational variables not available in the normal phase mode. 

For these reasons the reverse phase mode was a logical choice and was 

employed exclusively throughout the course of these investigations. 
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3.4.1.2 Selection of Operational Parameters 

The first NB column obtained for incorporation into the Pye Unicam 

NBLC instrument was supplied by Pye Unicam. The 25cm x lmm ID glass-lined 

316 S/S column was of Whatman manufacture from their 'micro-B' range and was 

received pre-packed with Partisil 10 ODS3 stationary phase (dp = 1011m). 

The column end fittings were of the female ZDV Swagelok type illustrated in 

Figure 1.7. All connections between the column and the rest of the LC 

instrument were custom-made from short lengths of 0.15mm (0.00611) ID, 

1/16" OD tubing and all ferrules were positioned carefully according to the 

manufacturers' recommendations (see Figure 3.7) in order to avoid the 

introduction of unnecessary extra-column volume into the system. 

The composition of the mobile phase employed in the first instance 

was based on that used for the separation of catecholamine standards 

reported in Chapter 2, i. e., a modified aqueous acetate/citrate "buffer". 

The buffer served a dual function, viz. control of pH (and consequently of 

solute speciation) and also provision of supporting electrolyte. The initial 

pH was 4.1 which was the natural value for the mobile phase containing citric 

acid (6.3gl-1) and NaAc (2.2 7gl"1) (NaOH was omitted). The organic modifier 

that was selected was MeOH. This choice was made on the grounds of its 

relatively high polarity, water miscibility, protic nature, ready availability 

and low cost. A volumetric flow rate of O. lmlmin-1 (100ptlmin-1; 

u=0.2lcros-1 for a lmm ID column) was adopted, the lowest possible with the 

PU4010 pump. 

The Rheodyne 7413 injection valve was received with the 11il capacity 

loop in the active position. This injection volume was applied for all 

early experiments. 
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For this preliminary work the PU4022 ECD was programmed with an 

operating potential of +1.00V vs. Ag/AgCl, an instrument sensitivity of 

100nA f. s. d. and a time constant of lsec, the fastest available setting. 

The operating potential was selected following the general recommendations 

of the ECD manufacturers for the indole class of compounds. 204.206 Fine 

adjustment of this parameter to an optimum for the particular analytes under 

examination was to be carried out once a satisfactory separation had been 

achieved. The first approach to the separation of the selected indoles 

attempted was that of pure reverse phase partition chromatography (RP-PC). 

3.4.1.3 Reverse Phase Partition Chromatography - Variation of Organic 

Modifier Content 

A methanolic five component standard containing the indolic compounds 

of interest was chromatographed in duplicate on the 25cm x lmm ID Partisil 

10 ODS3 column under the aforementioned conditions using mobile phases with 

MeOH contents ranging from 3-20%. The resulting chromatograms are compiled 

in Figure 3.12. Peaks were identified by matching capacity factors with 

those obtained by chromatographing standards containing single indoles. 

Mean capacity factors for each analyte were calculated and are presented 

in Table 3.8. 

The relationship between indole capacity factor and mobile phase MeOH 

content is expressed graphically in Figure 3.13. From the chromatograms 

and the graph a MeOH content of 4% was considered to be optimal. This 

judgement was made on the basis of three parameters, viz. capacity factor, 

run time and resolution. 

For this separation it was desirable to have the first peak of interest 
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Figure 3.13 The Relationship Between Capacity Factor and MeOH Content 
of the Mobile Phase for a Series of Indoles Chromatographed 
under Reverse Phase Partition Conditions on Partisil 10 ODS3 
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elute at k* >2 for two reasons, i. e., (1) to avoid potential interference 

from early eluting species expected to be present in samples of biological 

origin, and (2) in order to relax to some degree the severity of the demands 

for low extra-column dispersion placed upon the instrument by the operation 

of lmm ID columns since the most stringent restrictions apply to peaks 

eluting close to the solvent front. In order to comply with this criterion 

a mobile phase MeOH content of < 6% is required. 

In addition, it was deemed necessary to keep the duration of the 

chromatographic analysis within reasonable limits (say < 30 minutes if 

possible) in order to provide acceptable throughput for use in the clinical 

laboratory. From Figure 3.13 it is evident that the analysis time parameter 

increases rapidly with decreasing MeOH cczitent, (as would be expected). 

Therefore a moderate organic modifier concentration would be desirable. 

Finally, achievement of baseline resolution of all five analytes was 

sought. Within the range of mobile phase MeOH contents investigated all 

three of these criteria could not be met in full, particularly that of 

resolution. Resolution (Rs) of an LC system depends on the relative 

retention times and tangential baseline peak widths of the two closest 

eluting components (X and Y) and is defined by the expression : 

Rs = tR(Y) tR(X) 

'(WB(Y) 4 WB(X)) 
(3.1) 

where tR(Y) > tR(X), i. e., solute X elutes before solute Y. Values of 

R 
swere 

calculated using Equation 3.1 for the separation obtained with 3,4 

and 5% MeOH in the mobile phase and these data are presented in Table 3.9. 
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Table 3.9 Resolution Obtained on a 25cm x 1mm ID Partisil 10 ODS3 

Column for a Series of Indoles Chromatographed using 

Various Mobile Phase MeOH Contents 

% tR(min) w0.607 (min) wB(min) * Rs 

MeOH X Y X Y X Y 

3 9.6 10.4 0.46 0.51 0.92 1.02 1.03 

4 7.7 8.8 0.39 0.43 0.78 0.86 1.34 

5 7.8 8.7 0.35 0.41 0.71 0.82 1.18 

wB is calculated from w0.607 assuming Gaussian peak shape, 

i. e., wB = 2w0.607 (see Figure 1.4 for explanation). 

Clearly the greatest resolution was achieved with a mobile phase 

MeOH content of 4%. The chromatographic run time using this mobile phase 

was ca. 24 minutes and the capacity factor of the earliest eluting analyte 

was k' = 2.50. Hence, a 4% MeOH-modified mobile phase best satisfied all 

the aforementioned criteria. Furthermore, this small percentage of McOH 

did not appear to disrupt the electrical properties of the largely aqueous 

mobile phase to any significant extent or cause buffer precipitation 

problems. Thus a 4: 96 McOH/aq. buffer ratio was adopted for the next stage 

of the development of the separation. 

3.4.1.4 Reverse Phase Partition Chromatography - Variation of Mobile 

Phase DH 

Mobile phase pH is an important parameter where ionic or ionisable 
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solutes are to be separated because control of solute speciaticn is 

possible. The methanolic five component standard used in the preliminary 

experiments was again chromatographed (in duplicate) on the 25cm x lmm ID 

Partisil 10 ODS3 column under the operational parameters outlined in 

Section 3.4.1.2 but this time using a series of mobile phases containing 

4% MeOH that had been buffered to different pH values. Unfortunately, 

practical problems developed which restricted this investigation to only 

two mobile phases. The resulting chromatograms are displayed in Figure 3.14. 

Again peak identification was by means of the chromatography of individual 

indole standards. Mean capacity factors for each analyte were calculated 

and are tabulated in Table 3.10. These data are presented in graphical 

form in Figure 3.15. 

Little of value could be deduced from this study except that pH has 

a profound effect on the chromatography of indoles. Of greater concern 

were the practical difficulties experienced with the NBLC column. 

3.4.2 Practical Problems Encountered With the Operation of the lmm ID 

Column 

After only 80 injections of standards onto the 1mm ID column the 

column back pressure had risen to such a degree that the automatic pressure 

limiting circuitry of the pump came into operation and cut power to the 

motor so interrupting the solvent flow. The source of the increased 

pressure was traced to the column itself. On inspection, no discolouration 

or physical disruption of the top of the column bed was discernible. One 

problem with small-diameter columns that had been recognised by the column 

supplier in their own laboratory is blockage of the column exit frit by 

"fines" (very small diameter particles of stationary phase), 394 Fence, the 
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Figure 3.15 The Relationship Between Capacity Factor and pH of the Mobile 
Phase for a Series of Indoles Chromatographed under Reverse 
Phase Partition Conditions on Partisil 10 ODS3 
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column end fittings with integral frits were ultrasonicated in HNO 3 
(20%, 

30 mins) in order to dislodge any offending material. 395 Following a 

thorough water wash the column was reassembled and replaced in the NBLC 

instrument in its original orientation. On recommencement of mobile phase 

delivery, the system back pressure stabilised at a more reasonable and 

practicable level of 2250 p. s. i. (155 bar). However, the original problem 

rapidly re-established itself after only a further 8 injections of standards. 

The excessive proneness to physical blockage of this lmm ID column 

constituted a major problem. The probability of blockage occurring was 

expected to increase with decreasing column ID because of the correspondingly 

smaller cross-sectional area presented to the sample. A conventional column 

of 4.6mm ID possesses a cross-sectional area of 16.6mm2 compared with only 

0.8mm2 for a lmm ID NB column constituting a factor of 21 times difference. 

Consequently, the average lifetime of lmm ID columns would be expected to 

be significantly shorter than that of conventional columns operated under 

identical conditions. The high blockage probability, encountered with 

lmm, ID columns is exacerbated by a general inability to apply many of the 

protective measures commonly used in conjunction with conventional 

columnS395-397 to systems incorporating NB columns. Devices such as guard 

columns would introduce considerable additional extra-column volume to the 

system which of course would give rise to additional extra-column dispersion 

resulting in a further degradation of system performance. The necessity 

of taking feasible preventative precautions when employing NB column 

technology is emphasised by P, abel. 58 One such precaution that may help 

prolong column lifetime whilst not increasing extra-column dispersion is the 

use of a scavenger pre-column. 395'396 A scavenger column is incorporated 

in the solvent line between the pump and the injection valve, the purpose 
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of which is to capture particulate material (e. g., piston seal debris, 

dust, precipitated material ) and so to prevent analytical column 

contamination from this source. A 5cm x 4.6mm ID scavenger column was 

packed and interposed as indicated. 

Unfortunately, no replacement column of. lmm ID was immediately 

available to enable completion of these studies and to allow a comparison 

of the lifetimes of such columns to be made. Since it was the column end- 

fittings that were suspected of being the source of the problem, a replace- 

ment pair were ordered with a view to continuing these experiments with the 

present column at a later date. When this investigation was recommenced 

the column performed adequately for only 89 injections of standards before 

the back pressure again exceeded tolerable limits. The problem was deduced 

to be a recurrence of the earlier failure. Such a reproducibly short 

column lifetime under moderate operating conditions was considered to be 

highly unsatisfactory. Should such behaviour be found to be typical from 

lmm ID columns, then this column geometry would not be deemed to be 

acceptable for the rigours of routine application in a clinical laboratory. 

3.4.3 Evaluation of Instrument Performance with Respect to lmm ID Columns 

The best separation of indoles obtained on the lmm ID Partisil 10 ODS3 

column to date was that displayed in Figure 3.12(b). Peak symmetry was 

generally considered to be satisfactory but all band profiles were actually 

non-Gaussian as a result of some peak tailing which most probably originated 

from adsorption-type interactions between the analytes and any accessible 

residual silanol (-Si-OH) groups on the stationary phase surface. Baseline 

peak widths ranged from 1.2 mins for 5HTP to 3.2 rains for 5HIAA which are 
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equivalent to peak volumes of 120 and 320pl, respectively. The indole 

peaks are remarkably broad and this excessive broadness is almost certainly 

the primary factor responsible for the lack of baseline resolution between 

the peaks due to 5HT, 13S and TP. Such a conclusion immediately raises 

questions regarding the level of control exerted over the kinetic processes 

giving rise to extra-column dispersion within the Pye Unicam NBLC system. 

In order to evaluate the NELC system incorporating the 1mm ID column 

in a quantitative manner it is necessary to calculate values for a number 

of parameters. These parameters include the extra-column variance (QXC 

the number of theoretical plates in the column (Nc) and the apparent number 

of theoretical plates observed in the chromatogram (N). The respective 

plate heights (Hc&H) associated with these plate counts may also be 

calculated if desired. 

Several methods have been applied to the calculation of extra-column 

variance. Many workers have determined the value of Cj2 directly by 

measuring the band width of a solute probe peak eluted from a system in 

which the column is replaced by a ZDV union. 60,75,77,78,398,399 This 

approach is Imown as the "no-column" or "zero-length column" method and the 

principle of this technique is illustrated diagrammatically in Figure 3.16. 

2 

z xc 

42 

INSTRUMENT 

Qt+Qa+oT+an 
Time 

Volume 

Figure 3.16 Schematic Representation of Band Broadening in the 

"No-Column" Mode 
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The "no-column" method suffers from the disadvantage that no account is 

taken of the contributions arising from the column hardware exterior to 

the packed bed such as the frits and end-fittings. Furthermore, as there 

is no column to retard the progress of the solute probe, it elutes very 

rapidly and so correspondingly fast-response electronics are required in 

order to allow effective measurement of the generated peak profile. 

The extra-column variance has also been determined by a number of 

indirect methods. If a length of straight, open tubular capillary is 

substituted for the column then o can be obtained by measuring the band 

width of a solute probe peak and correcting for the contribution of the 

capillary77 calculated according to Equation 1.17, which is derived from 

the work of Taylor, Aris and Golay (see Section 1.4.3.1). Alternatively, 

if the probe band is measured for a number of different lengths of otherwise 

identical capillary tubing, then by plotting the observed peak variance 

('tot) against tube length and performing linear regression on these points 

a2 is yielded by extrapolation of the graph to zero tube length. 39,60 A 

diagrammatic representation of the principles behind these two techniques 

is presented in Figure 3.17. Of these two approaches the former depends 

Figure 3.17 Schematic Representation of Band Broadening in the 

"Open Tubular Capillary" Mode 
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on the accuracy with which the values of the parameters in the governing 

equation are known (particularly the ID of the capillary), and the latter 

is time consuming. In addition, both techniques are also subject to the 

primary drawback inherent with the "no-column" method, i. e., that no account 

is taken of the effects of column hardware. 

The most widely applied indirect method for the determination of the 

extra-column variance utilises a column and consequently is designated the 

"column" method. 75-78"00 Figure 3.18 demonstrates in schematic form the 

fundamental band broadening contributions inherent in the "column" method. 

a2 

atot 

INSTRUMENT 
U 

v 
a2 + a2 + a2 + a2 COLUMfd 

tdT f2 ac 
Time + afrits + afittings 
Volume 

Figure 3.18 Schematic Representation of Band Broadening in the "Column" 

" Mode 

This technique relies upon the assumption that the true plate count of a 

column (NC) is independent of k' (and, consequently of tR and VR). This is, 

in fact, a conservative assumption since Nc will generally decrease with k' 

whereas extra-column dispersion will cause the apparent plate count (N) to 

increase with k77, at least over small values of k'. 386 The "column" 

method is based on the relationship (Equation 1.19) :� 
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2_2+2 (1.19) 
tot 

ýc Xc 

where ß2 
V) = Vo(1 + k')2 = V2 (1.21) 

NN 
cc 

or in time units : 

C; 2 = t0(1 + k') 2= tR (1.21) 

NN 
cc 

Hence : 

atot(v) = VR = VR + 6xc(v) 

A N Nc 

or : 

tot(t) tR tR + Cyxc(t) 

NN 
c 

Thus, if the band widths of a series of consecutive peaks are measured and 

tot 
is plotted versus the square of the peak retention times (or volumes), 

then after linear regression, 02 is given by the intercept at zero 

retention time (or volume). Furthermore, the true column efficiency is 

given by the reciprocal of the gradient. This procedure is preferred by 

the author because all the external sources of band broadening are 

incorporated in the assessment. The' "column" method does suffer from two 

(minor) disadvantages. Firstly, deviations in behaviour from the assumed 

independence of Nc with respect to tR, VR and k' do occur as outlined 

previously, and secondly, this technique is substance dependent. The latter 

dependency results in part from the variability in diffusivities between 

I 
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solutes and also, and probably more importantly, due to the influence of 

solute structure an peak shape. The occurrence of certain types of 

(essentially undesirable) physico-chemical interactions between the solute(s) 

and the stationary phase surface can give rise to phenomena such as peak 

fronting and/or tailing. Such departures from Gaussian peak shape will 

necessarily affect the peak width measurement and subsequently the value of 

atot obtained. Consequently the values of QXC and Nc determined using 

atot will ultimately be subject to error. In spite of these minor 

reservations, the "column" method of extra-column variance determination was 

applied to the current problem. 

The preceding point regarding non-Gaussian peak profiles leads to 

another important consideration, namely that of the method of 02 
ot 

determination. There are several alternatives available but all of these 

may be summarised into two categories, viz. graphical methods and statistical 

methods. 

A number of graphical methods of peak variance estimation are available, 

and these have been described in Section 1.4.2.4. Peak width at half- 

height''°°, peak half-widths', 61,75,7 6, and tangential baseline widths' 77,399 

have all been applied by various workers in order to determine Qtot. For 

all these graphical techniques Gaussian or near-Gaussian peak profiles are 

a prerequisite for accurate Qtot estimation. Error in the determination 

of total peak variance by these methods becomes increasingly significant 

with. increasing peak skew and under these circumstances serious under- 

estimation often results. 51,61,75,78 

The second central moments method is a statistical procedure whereby 

the total peak variance is yielded by the calculation of second central 

moments about each peak by point by point summation across each peak profile. 
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This technique requires computing facilities in order that the calculation 

may be performed within an acceptable time span. The second central 

moments method, although currently accepted, can over-estimate the peak 

variance due to excess weighting of the tails of peaks51078, and the heavy 

dependency on peak end-point determinations, leading to errors in the 

variance particularly for skewed peaks. 78 Comparisons of estimation by 

graphical techniques with estimation via second central moments have shown 

the latter technique to be considerably more accurate than the former 51'61'75. 

However, for the experiments reported herein the necessary computing 

facilities were not available to enable second central moments to be 

calculated. Hence, the use of graphical techniques was mandatory and the 

strong possibility of under-estimation of ßtot had to be accepted. 

Tangents were drawn to all peaks in each of four chromatograms obtained 

under optimal conditions (e. g., Figure 3.12(b)). Peak widths were measured 

at three different points, viz. at 60.7% of peak height (= 2cYtot), at 50% 

of peak height (= 2.35atot), and at the baseline between the tangents 

(- 46tot). Retention times of every band were also quantified. Measure- 

ment error was estimated to be ca. ±3secs. Mean values of each parameter 

were determined and values of Qtot(t) and tR were calculated for all three 

peak widths. All data are tabulated in Table 3.11. Graphs were plotted 

of mean total peak variance against square of mean retention time for each 

method of evaluation (Figure 3.19). Linear regression was performed on 

each series of points and values for aXc(t) (and consequently Xc(v)) and 

N. (and consequently Hc) were determined from the intercept and gradient 

respectively. This information is compiled in Table 3.12. 

From Table 3.12 it may be seen that all three peak width parameters 

yield different values for the column plate height, Hc. These values range 
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from 79-100um, the former being generated from peak half-width measurements 

whilst the latter is determined from tangential baseline width data. In 

addition, it may be noted that. quantitatian by the half-width and width at 

half-height methods yield equal values (within experimental error) for 

instrument variance of 232u12 (= a= 15.2ul). However, quantitation via 

the tangential baseline width method produces a significantly higher value 

for c' of 274u12 (= 0= 16.6u1). 

Discrepancies in both the values obtained for He and those obtained 

for QXC determined via the three graphical techniques employed most probably 

arise due to the nm-Gaussian nature of the peaks. Under these 

circumstances the peak SD equivalences used in the estimation of atot and 

consequently Qtot, are not strictly valid. A further source of error is 

inherent in the tangent technique, specifically that of tangent positioning. 

This may account for the significantly different value of 6XC obtained by 

the tangent method compared with those obtained by the other two evaluation 

methods. On this basis, quantitation using the tangential baseline width 

was considered to be less reliable than the half-width and width at half- 

height techniques. Hence the tangential baseline width was rejected for 

further calculations. 

Apparent plate heights were calculated by means of Equations 1.12 and 

1.13 using both half-width and width at half-height measurements and these 

values were compared with the values for plate heights generated in the 

column which are indicated in Table 3.12. These data are compiled in 

Table 3.13. These data reveal that at a linear velocity of 0.2lcros"l, only 

about 28% of available column efficiency is realised for the first peak 

(5HTP, k' = 2.66) and even the last peak (5HIAA, k' = 14.50) falls short 

of realising the acceptable level according to Klinkenberg. 59 A graph of 
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percentage of column-efficiency realised versus indole capacity factor 

(Figure 3.2 0) demonstrates the grossly detrimental effect of the apparatus 

under the operating cnditions employed. The dotted line at 90% represents 

the level of acceptability. 

It is notable that the peak due to 5HT suffers additional peak 

broadening compared with the other solutes; peak broadening which is not 

immediately obvious from the chromatogram (Figure 3.12(b)) due to the close 

proximity of the following 13S peak but is demonstrated in the peak width 

values obtained (Table 3.11). This additional broadening has the effect 

A 
of increasing H and consequently leading to a relative decrease in the 

proportion of column efficiency realised which is observed in Figure 3.20. 

A similar deviation from linearity due to this phenomenon is exhibited by 

5HT in Figure 3.19. The possible origins of additional band broadening 

will be discussed presently. 

For early eluting peaks the maximum tolerable instrument dispersion 

without serious loss of resolution59 may be elucidated for a well-packed 

column of any dimensions using Equation 1.40 (see Section 1.4.3.7), i. e.. 

xc(v) -0 "99 rc 2 LC dp (1.40) 

For the 25cm x 1mm ID Partisil 10 ODS3 column, 6xc(v) must be < 0.39p1 (see 

Table 1.8, Section 1.5.6). The experimentally determined value of a xc(v) 
for the Pye Unicam NBLC system run under the conditions outlined in 

Figure 3.8(b) was 15.2pi1 which is forty fold greater than is permissible 

under the commonly accepted criterion for efficient operation! Equation 1.39 

may also be employed in a converse sense to the above, i. e., to calculate 

column parameters that may be used effectively with a given chromatographic 

apparatus. Hence, for a 25cm lcng column packed with 10pm particles, a 
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Figure 3.20 Plot of Proportion of Available Column Efficiency Realised (Mean 
of Ihro Methods of Assessment) vs. Capacity Factor for a Series 
of Peaks Yielded by Chromatography of a Standard Indole Mixture 
on the Pye Unicam NBLC System with a 25cm x 1mm ID Column 
Installed 

(Dashed line represents Klinkenberg's criterion of tolerability. 

Standard deviation -limits indicated) 
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column radius of 3. lmm (= column ID of 6.2mm) is required for efficient 

operation in the Pye Unicam NBLC system. Thus it may be concluded that 

this instrument is not even capable of running a column of conventional 

dimensions to the commonly accepted standard under these chromatographic 

conditions. 

The instrument variance of 232u12 (= ax 
c= 

15.21iI) determined for the 

Pye Unicam NBLC system used in this experiment was roughly comparable to 

variances reported in 1980 by Reese and Scott39 for three unspecified 

commercial instruments operated at equivalent flow rates. However, by 

the outset of this project, equipment with an external band spreading 

contribution of not more than 3-5u1 expressed as volume SD was on the 

market. 61 Indeed, using a similar instrument to that employed here and 

operating at an identical flow rate, Naish et al. 78 recently demonstrated 

an external band spreading contribution of this order. However, even the 

Cxc of 4.7pl that Naish and co-workers actually obtained, is twelve times 

greater than permissible for effective operation of the 25cm x lmm ID 

Partisil 10 ODS3 column. 

The fundamental difference between the instrument evaluated by rlaish. 

et al. and that evaluated by the author was the detector. Naish et al. 

utilised a UV monitor with lul flow cell whilst an ECD with a 0.51j1 flow 

cell was employed for the study reported herein. The implication of this 

fact is that, all other things being equal, the ECD is very probably largely 

responsible for the three fold difference in extra-column band broadening 

(expressed as volume SD) exhibited by the two systems. 

There are a number of factors that may have contributed to the poor 

performance observed. It is unlikely that connections were at fault as all 

ferrules were carefully positioned and connecting tubing lengths were reduced 
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to a total of ca. 15cm, which was a little in excess of the practicable 

minimum for the instrumentation employed. Straight tubing of circular 

cross-section, 0.15mm (0.006") ID and a solute diffusivity of 3x 10-Scm2s-1 

will yield a maximum variance of 0.023u12cm-1, which is equivalent to a 

volume SD of 0.15ulcm-1 (Equation 1.17). For the total length of tubing 

incorporated in the apparatus, a volume SD of less than 2.3ul would be 

expected, i. e., a contribution of approximately 15, S' to the total instrument- 

related band broadening. Shortening of the connecting tubing to an 

absolute practicable minimum length of ca. 12cm would reduce the connections 

contribution to band broadening by only 0.45u1. However, this would 

not affect the overall extra-column factor significantly. 

An injection volume of lpl was employed in this investigation. Such 

a volume would contribute a variance of 0.083u12, or a volume SD of 0.29pl 

(Equation 1.26). The valve internal connecting channel (< lmm x 0.4mm 

ID) would contribute a maximum variance of 0.12u12 or a volume SD of 0.34u1 

(Equation 1.17). The total theoretical contribution (expressed as volume 

SD) of 0.63111 arising from the injection system comprises only about 4% 

of Xc Hence, a reduction in injection volume would not be expected to 

reduce Xc 
significantly. 

Assuming that the commercial column fittings are of satisfactory design, 

then by elimination, the major cause of poor performance most probably 

originates in the detector system as was first suspected. The wall-jet 

flow cell itself because of its design was unlikely to have generated much 

extra-column band broadening unless the electrodes were not seated properly 

or a leak occurred in this part of the chromatographic system. Both these 

eventualities were minimised or actually eliminated as band broadening sources 
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by careful assembly and maintenance of the flow cell. The primary cause 

of the poor instrument performance is probably the electronic response 

characteristics of the detector which are represented by the time constant 

of the apparatus. A setting of lsec, the fastest response available with 

the PU4022 ECD, was programmed into the unit for these experiments. This 

value, when compared with the maximum theoretical response time (corresponding 

to the entire permitted extra-column dispersion and calculated according 

to Equation 1.37) of 0.24sec, and a maximum practicable response time of 

0.024sec, is seen to be well in excess of requirements for efficient operation 

of this column system at the flow rate employed. 

A critical factor in the determination of maximum permissible resp arise 

time is the mobile phase flow rate. A flow rate of O. lmlmin '1, which is 

equivalent to a linear velocity of 0.21cros-1 in a lmm ID column, was 

employed for this work. Such a linear velocity, in addition to promoting 

the need for fast detector response characteristics, is also well above the 

typical optimum of ca. O. lcros-1 for the operation of well-packed columns. 

Consequently a significant reduction in the inherent efficiency of the 

column will result, and this is reflected in the graphically-determined 

high values of He which are listed in Table 3.13. A plate height of the 

order of 80um is about four times the theoretical minimum for a column well- 

packed with 101im particles. Hence, it is inferred that the minimum solvent 

delivery rate of O. lmlmin-1 is a severely restrictive intrinsic limitation 

of the PU4010 pump, rendering this instrument barely satisfactory for 

operating lmm ID columns except under "fast LC" conditions. 

In addition to the kinetic factors considered above, thermodynamic 

factors can also influence peak symmetry and consequently give rise to 

reduced apparent column efficiency. Column overloading, a phenomenon which 
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occurs if a sufficiently large sample mass is introduced onto the column 

which prevents the attainment of equilibrium within each theoretical plate 

zone, is one thermodynamic phenomenon which causes skewed peaks. Effects 

of this nature are highly undesirable and so were avoided in these 

experiments by restricting the total sample mass applied to the NB column 

to within the loading capacity of that column. Conventionally this is 

taken to be 0.1% (by weight) of stationary phase in the column401 (i. e., ca. 

160ng injected). 

A secamd factor of thermodynamic origin is the occurrence of mixed 

separation mechanisms within the column, e. g., solute adsorption ai 

residual silanol groups in the presence of a dominating partition mechanism; 

a phenomenon which normally gives rise to peak tailing. Tailing is apparent 

in Figure 3.8(b). Such a situation may only be remedied in one of three 

ways. First, by addition of a surface modifier to the mobile phase which 

would be likely to influence the partition chromatography too. Secondly, 

by permanent modification of the stationary phase with a suitable reagent 

to "cap" the remaining silanol groups. This is inappropriate here because 

consistency and continuity of supply are necessary for routine operation 

purposes. Thirdly, by transferring the separation to an alternative 

commercial stationary phase. This possibility will be considered further 

in future exaeriments. 

In summary, the Pye Unicam NBLC system under evaluation was found to 

be of insufficiently high specification to successfully operate lmm ID 

columns by commonly accepted criteria. The major source of extra-column 

dispersion was almost certainly the PU4022 ECD time response characteristics. 

A critical limiting factor was the minimum flow rate obtainable with the. 

PU4010 pump. In conjunction with the instrument inadequacies, the lmm ID 
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column was subject to fairly rapid blockage resulting in short column life- 

time from the exclusive application of standard solutions. Injection of 

extracts from biological samples (e. g., isolates from blood and urine) would 

be expected to shorten the column lifetime even further by a process of 

contamination. Both the inability of the instrumentation to operate lmm ID 

columns combined with the practical problems encountered with the latter 

led to the decision to abandon columns of this geometry. 

A compromise between potential advantages attainable with reduced ID 

columns and practicalities of operating such columns was settled upon. 

2.1mm ID columns possess a cross-sectional area of 3.5mm2 which is only a 

factor of five times smaller than that of conventional 4.6mm ID columns. 

Consequently, compared with lmm ID columns with cross-sectional areas of 

only 0.8mm2,2.1mm ID columns would be expected to exhibit longer column 

lifetimes. Flirthermore, as was shown in Chapter 1, the instrument 

specifications required to operate columns efficiently become less and less 

stringent with increasing column ID. Thus, columns of approximately 2mm ID 

were applied to the analytical problem under investigation. 

3.4.4 Chromatography on 2mm ID Reverse Phase Columns 

3.4.4.1 Stationary Phase Selection 

Previous experiments with Partisil 10 ODS3 had shown this stationary 

phase, when operated in the reverse phase partition mode with a MeOH: water- 

based mobile phase, to exhibit reasonable selectivity towards the indoles 

of interest. However, Partisil 10 ODS3 was not generally available in 

pre-packed columns of ca. 2mm ID in 1984/5 (see Table 1.9). Hence, an 

alternative stationary phase that was currently marketed in the 2mm ID format 
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was sought. Four loose packing materials, viz. Hypersil ODS, Spherisorb 

S5 ODS1, Spherisorb S5 ODS2 and u-Bondapak ODS were to hand in the 

laboratory; all of which were obtainable in pre-packed columns of the desired 

geometry. Specifications of these stationary phases, together with 

Partisil 10 ODS3 are presented in Table 3.7 (see Section 3.3.3.4). Available 

column hardware was of the Shandon-Southern format illustrated in Figure 3.11 

(see Section 3.3.3.2). Three columns were slurry-packed in the laboratory, 

viz. Hypersil ODS (15cm x 2mm ID), Spherisorb S5 ODS1 (15cm x 2mm ID) and 

p-Bandapak ODS (20cm x 2mm ID). In addition, two commercially packed 

columns were supplied by Pye Unicam for assessment, viz. Spherisorb S5 ODS1 

(10cm x 2.1mm ID) and Spherisorb S5 ODS2 (10cm x 2.1mm ID); the former was 

supplied on the basis of preliminary results from this study. 

All five columns were operated under identical conditions to those 

applied in conjunction with the lmm ID Partisil 10 ODS3 column, i. e., with 

a mobile phase composition of 4% MeOH : 96% aq. 20mM NaAc/HCt "buffer" 

(pH 4.00) pumped at a flow rate of 0.4mlmin-1 (= u=0.19-0.21cros-1 

depending upon the exact ID of the column), using an injection volume of 

ipi and ECD settings of +1.00V vs. Ag/AgCl potential and a time constant of 

lsec. A methanolic standard containing TP, 5HTP, 5HT, 51UAA and I3S was 

chromatographed a minimum of twice on each stationary phase and individual 

indole standards were also chromatographed for peak identification and 

subsequent elucidation of elution order. Typical separations obtained on 

each stationary phase are presented in Figure 3.21. Mean capacity factors 

were calculated for each solute and these values are tabulated in Table 3.14, 

",, together with the values obtained previously with the Partisil 10 ODS3 phase. 

From Figure 3.21(b) it is clear that the indoles exhibit very little 

"= affinity for the Ihypersil ODS column. All five solutes elute coincidentally 
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with the solvent front when employing the aforementioned mobile phase. 

Omission of the MeOH modifier from the mobile phase provided very little pro- 

motion of retention. The apparent plate count (N) and subsequently the 

apparent plate height (H) of the Hypersil column were calculated from a 

peak generated by indole-3-acetic acid (IAA, k' = 18.67), which was employed 

as a solute probe, in order to establish the quality of this laboratory- 

packed column. These quantities were calculated too for the remainder of 

the columns under assessment using the 5HIAA peak. Values were determined 

by employing both the width at half-height and the half-width and the results 

were averaged for each stationary phase. These data are compiled in 

Table 3.15. On comparison of the apparent plate counts, it is clear that 

the reason for the poor retention properties of the Hypersil ODS column, 

observed under the aforementioned operating conditions is not the column 

efficiency (which is comparable with other stationary phases), but most 

probably results from the incompatible surface geometry and chemical nature 

of the packing material. For this reason the Hypersil ODS stationary 

phase was rejected. 

Apart from Hypersil ODS all the other stationary phases exhibited 

some retention properties. The Spherisorb S5 ODS2 column provided 

reasonable selectivity and relatively long retention times (Figure 3.21(c)), 

the latter being expected of an ODS phase of high surface coverage. However, 

peak shape was highly unsatisfactory. Gross peak tailing was evident which 

reduced the apparent plate number for the column to only 550, which was 

extremely poor. Excess dead volume in the column system was eliminated as 

the source of this phenomenon. Therefore it was deduced that the tailing 

resulted from thermodynamic mechanisms which was surprising because Spherisorb 

S5 ODS2 is claimed to be fully capped. 389 Tailing to this degree renders 
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Spherisorb S5 ODS2 inappropriate for the separation of these 

indoles with MeOH : aqueous-type mobile phases under these operating 

conditions and so this phase too was rejected. 

From the stationary phase specifications (Table 3.7), surface coverage 

calculations alone suggest that Spherisorb S5. ODS1 (0.32mgm 2) and 

u-Bondapak ODS (0.33mgm-2) most closely resemble Partisil 10 ODS3 (0.30mgm-2). 

Indeed, this is observed to be the case from the chromatograms (Figures 3.21a, 

d, e and f) and is similarly evident when indole capacity factors are 

plotted against stationary phase . 
(Figure 3.22) or, more revealingly, versus 

stationary phase surface coverage (Figure 3.23). It may be noted that 

elution orders vary between stationary phases. This differing behaviour 

is well recognised and results from a congregation of various factors such 

as differences in the base silica (particle shape, pore diameter, etc. ), 

C 18 
loading, surface geometry, and the degree of residual silanol group 

capping. The method of manufacture is instrumental in controlling the 

majority of these factors and this may be responsible for the break in the 

general trend of increasing k' with increasing surface coverage exhibited 

by the p-Bondapak ODS phase (see Figure 3.23). It may be noted too that 

resolution is better on the laboratory-packed Spherisorb S5 ODS1 column 

rather than on the commercially-packed equivalent, in spite of the former 

demonstrating a smaller apparent plate count (see Table 3.15). This minor 

but significant difference in behaviour is probably attributable to batch- 

to-batch variation in stationary phase manufacture. 

From these initial studies the laboratory-packed u-Bondapak and the 

commercially-packed Spherisorb S5 ODSlcolumns were selected for further 

investigation. 
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Figure 3.22 Relative Capacity Factors for a Series of Indoles 
Chromatographed under Identical Conditions on Various 
Stationary Phases 
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Fieure 3.23 The Relationship Between Capacity Factor and Stationary 
Phase Surface Coverage for a Series of Indoles Chromatographed 
under Identical Conditions on Various Stationary Phases 
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3.4.4.2 Optimisation of the Reverse Phase Partiticn Chromatography of 

Indoles on u-Bondapak ODS 

3.4.4.2.1 Variation of Buffer Type 

A pH adjustment buffer is included in the mobile phase for solute 

speciation control. The composition selected originally comprised a 

NaAc/HCt combination which is not a true buffer. A true buffer consists 

of a solution of an acid and its conjugate base (utilised in the form of a 

soluble salt of the acid), in approximately equal concentrations. The 

effect of using a true buffer system, in this case NaAc/HAc, on the 

chromatography of indoles is illustrated in Figure 3.24. The same indole 

standard mixture was chromatographed in duplicate, with identical mobile 

phases except for buffer type and individual indoles were also run for peak 

identification. Mean capacity factors were calculated for each solute 

and are presented in Table 3.16. The relative retentions under the 

influence of each buffer system are illustrated in Figure 3.25. 

The observed difference in separation performance attributable to 

buffer type is remarkable. When an acetate buffer is employed (Figure 

3.24(b)) resolution is much improved over that achieved with the acetate/ 

citrate combination (Figure 3.24(a))ß but concomitantly, solute retention 

is significantly reduced. This effect implies that the citrate moiety in 

some way, directly or indirectly, promotes retention of the indoles in the 

u-&mdapak ODS surface which the acetate moiety either does not do at all 

or does to a lesser extent. One possibility is that the acetate/citrate 

system, because it is not a true buffer, is not veryefficient at maintaining 

control of pH. Perhaps it is changes in the pH of the environment inside the 

column which promote changes in indole speciation with consequent changes 
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Figure 3.24 Reverse Phase Partition Chromatography of a Standard Indole 
Mixture on u-Bondapak ODS Employing Two Different Buffer 
Systems at Identical pHs (4.00) 

Parameters :- Column : U-Bondapak ODS (20cm x 2mm, d= 1011m), Mobile 
Phase : 4% MeOH : 96% aq. 20mM buffer 

(constituents 
as 

specified), pH 4.00; Flow Rate : 0.4mlmin-1; Detection 
ECD (Eapp = +1.00V vs. Ag/AgCl, TC = lsec); Sample : l. il 
via loop of TP, 5HTP, 5HT. creatinine sulphate . ISO, 51UAA 
and 13S (K® salt) in MeOH (All constituents @ 5ugml-1 - 5ng 
injected) 
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Figure 3.25 Relative Capacity Factors for a Series of Indoles 
Chromatographed an u-Bcndapak ODS Employing Two Different 
Buffer Systems at Identical pHs (4.00) 
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in affinity for the stationary phase. A second explanation of this 

behaviour may be that the citrate moiety acts as an ion-interaction agent 

in some fashion and promotes indole retention by ion-pair association. 

This phenomenon has been reported for the acetate moiety 402 but 

the very weak nature of the interaction was also noted. The citrate anion 

would be expected to give rise to a stronger retentive interaction than 

acetate in view of their respective structures. This postulation is 

consistent with the experimental observations. The true reason for the 

marked variation in capacity factor with buffer type was not investigated 

further. 

The acetate buffer system, although favourable because it provides 

improved and acceptable resolution, does suffer one disadvantage, namely 

that the indoles elute over the k' range 0.45-3.00. For reasons of 
C 

minimisation of the effects of extra-column dispersion, it was deemed 

necessary for the first peak of interest to elute at k' > 2. Hence, while 

employing an acetate buffer for selectivity, promotion of solute retention 

by reduction of the mobile phase MeOH content was attempted. 

3.4.4.2.2 Variation of MeOH Content 

The indole standard mixture was chromatographed (in duplicate at 

least) on the u-Bondapak ODS column under the aforementioned conditions., 

using mobile phases incorporating an . acetate buffer with MeOH contents 

ranging from 1-4%. The resulting chromatograms are compiled in Figure 3.26. 

Peaks were identified in the usual manner. Mean capacity factors for each 

analyte were calculated and are displayed in Table 3.17. 

Indole peak shapes were excellent with these phase systems, near- 

Gaussian profiles being observed for all solutes. From the chromatograms 
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(Figure 3.26) and the extracted data (Table 3.17), it was evident that 

decreasing the MeOH content of the mobile phase (i. e., decreasing mobile 

phase polarity) had the desired effect of increasing solute capacity factors. 

However, the degree of increased retention observed was substance dependent 

and led to an unacceptable loss of resolution. Figure 3.27 comprises a 

plot of indole k' values versus percent MeOH modifier which demonstrates 

the resolution problem graphically. It may also be noted. that :: e McOH content 

of the mobile phase must be reduced to < 1%, in order to satisfy the imposed 

condition of the first peak of interest eluting at k' > 2. Such a level 

would be difficult to reproduce accurately in practice. It would also leave 

no possibility for reductions in MeOH content which are frequently required 

to compensate for the gradual but inevitable deterioration of the column 

with extended use. In an effort to increase indole capacity factors 

without loss of resolution, but with sufficient organic modifier in the 

mobile phase to enable minor adjustments to be made, the use of other less 

polar modifiers was investigated. 

3.4.4.2.3 Variation of Organic Modifier 

Propan-2-ol (2-PrOH; E° = 0.824) and acetonitrile (MeCN; e° = 0.65) 

were readily available as less polar alternatives to MeOH (c° = 0.95). 

Mobile phases were prepared comprising 4% v/v modifier in aqueous acetate 

buffer adjusted to pH 4.00. Duplicate chromatograms were obtained of the 

five component indole standard on the u-Bondapak ODS column using each mobile 

phase and these chromatograms are presented in Figure 3.28. Again, peak 

eo = Snyder's solvent strength function. 32 
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Figure 3.27 The Relationship Between Capacity Pactor and MeOH Content of 
the Mobile Phase for a Series of Indoles Chromatographed under 
Reverse Phase Partition Canditi ns on u-Bondapak ODS 
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identification was achieved by chromatography of individual indole standards. 

Mean capacity factors for each solute calculated from these traces are 

given in Table 3.18. The influence of organic modifier polarity on solute 

capacity factor is illustrated in Figure 3.29. 

Great care was taken to isolate the effects of each modifier by 

thorough and prolonged washing of the column between elution of the different 

mobile phases. For similar reasons, a minimum of 1 hour equilibration time 

was allowed for each mobile phase before commencement of chromatography. 

This period was equivalent to greater than 50 column volumes of solvent at 

the flow rate employed. The results obtained indicate no perceptible 

change in selectivity with change in organic modifier at the 4% level and 

excellent near-Gaussian peak shapes were observed in each chromatogram. 

Substitution of MeCN for MeOH resulted in the desired increase in k' values,, 

but bandwidths also increased significantly yielding an unfavourable decrease 

in resolution. Resolution was quantitated using Equation 3.1 and assuming 

Gaussian peak profiles such that wB = 2w0.607. Calculated values of 

resolution are presented in Table 3.19. 

Table 3.19 Resolution Obtained on a p-Bondapak ODS Column for a Series 

of Indoles Chromatographed using Various Organic Modifiers 

(4% v/v) in the Mobile Phase 

Organic tR(min ) w0.607 (min) WB (min) RS 

Modifier X --T Y X Y X Y 

Me CN 5.2 6.3 0.46 0.50 0.92 1.00 1.15 

2-PrOH 4.4 5.16 0.30 0.34 0.60 0.68 1.19 

MeOH 4.3 5.1 0.28 0.30 0.56 0.60 1.38 

WB = 2w0.607 for a Gaussian peak profile 
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Figure 3.29 The Relationship Between Capacity Factor and Organic Modifier 
Polarity (Represented by Snyder's Solvent Strength Parameter, 
so) for a Series of Indoles 'Chromatographed under Reverse 
Phase Partition Conditions on u-Bondapak ODS 
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The (undesirable) decrease in resolution which ensued when MeCN was 

used in place of MeOH is clearly demonstrated. This incidence of poorer 

resolution is entirely due to the disproportionately larger bandwidths 

observed in the presence of MeCN. This difference in chromatographic 

behaviour most probably results from the difference in the solvation 

properties of MeOH and McCN. MeOH is a protic solvent which interacts 

largely by hydrogen bonding whereas McCN is an aprotic solvent which 

solvates predominantly via dipole interactions. This fundamental difference 

in physical"propertiea -would be expected to influence the type and extent 

of any secondary processes occurring in the system and thus could conceivably 

give rise to the discrepancy indicated. 

The utilisation of 2-PrOH as modifier also gave rise to reduced 

resolution compared with MeOH. Moreover, all peaks eluted more rapidly 

with the use of the former alcohol than the latter. This observation was 

surprising because 2-PrOH, the less polar solvent, was expected to 

promote retention on the column. A further hour for eouilibraticn (= 50+ 

column volumes of solvent) was allowed but an identical chromatogram was 

obtained following this period. Hence, the influence of 2-PrOH on the 

partition chromatography of indoles on u-Bondapak ODS was confirmed. Such 

behaviour may possibly be explained by competition for sites on the column 

surface between 2-PrOH and the analytes but this postulation is entirely 

speculative and there is no confirmatory evidence to support this proposal. 

3.4.4.2.4 Summary of the Reverse Phase Partition Chromatograbhy of Indoles 

on u-Bondapak ODS 

The greatest resolution achieved to date for the five indoles TP, 

5HTP, 5HI. 5HIAA and 13S, on ji-Bondapak ODS was obtained employing a mobile 
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phase of 4% MeOH : 96% aqueous acetate buffer adjusted to pH 4.00 (e. g., 

Figure 3.24(b)). Capacity factors of'the first three eluted solutes were 

considered to be too small, in view of the fact that extra-column dispersion 

effects become increasingly dominant as k' tends towards zero. Furthermore, 

interference from poorly retained components frequently present in authentic 

sample extracts could be problematical. The use of lower concentrations 

of MeOH in the mobile phase gave rise to. unacceptably decreased resolution 

as did the employment of MeCN and 2-PrOH as alternative organic modifiers. 

Because of the difficulties encountered with the promotion of retention on 

p-Bondapak ODS, without unacceptable loss of resolution resulting, Spherisorb 

S5 ODS1, the promising alternative stationary phase, was investigated. 

3.4.4.3 Optimisation of the Reverse Phase Partition Chromatography of 

Indoles on Spherisorb S5 ODS1 

3.4.4.3.1 Variation of Buffer Type 

The major problem with the separation on the commercial Spherisorb 

S5 ODS1 column was- not retention but rather selectivity. In the initial 

investigation on this stationary phase, 5HTP and 13S coeluted when a 4% 

MeOH : 96% aqueous NaAc/HCt mobile phase adjusted to pH 4.00 was employed 

(see Figure 3.21(e)). On the 11-Bondapak ODS material., it was found that the 

use of a NaAc/HAc buffer improved selectivity. Hence this approach to 

selectivity modification was examined for Spherisorb S5 ODS1. 

--Chromatograms Chromatograms of the five component indole standard were obtained in 

duplicate using the above mobile phase, in corporatin g the NaAc/HCt "buffer" 

system and one of identical composition except that a NcAc/HAc buffer was 

substituted. Typical examples of these chromatograms are given in 
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Figure 3.30. Peaks were identified by single indole standard injection. 

Mean capacity factors for each solute were calculated and are compiled in 

Table 3.20 and the relative retentions under the influence of each buffer 

system are illustrated in Figure 3.31. 

As was the case on the p-Bondapak ODS column all indole capacity 

factors were reduced when an acetate buffer was employed. As Table 3.20 

shows, the k' value of the first peak was still greater than 2 and thus was 

still acceptable. However, in contrast to the behaviour observed on 

p-Bondapak ODS, no improvement in selectivity was achieved by the utilisation 

of an acetate buffer (5H7P and 13S still coeluted). In fact, a serious loss 

in resolution between the later eluting peaks due to 5HT and 5HIAA resulted. 

A discussion of possible reasons for the variations in retention brought 

about by changes in buffer composition may be found in Section 3.4.4.2.1. 

Hence, from this experiment it is obvious that neither mobile phase 

system investigated herein was satisfactory for the separation of the five 

analytes. Because the capacity factor of the first peak was relatively 

close to the minimum acceptable value, there was little scope for increase in 

mobile phase MeOH content in order to improve selectivity. Reduction in 

MeOH content was very limited also, and based on the experiments with the 

u-Bcndapak ODS material, was deemed unlikely to produce the major changes 

in selectivity required. The effect of organic modifier nature was 

investigated however. 

3.4.4.3.2 Variation of Organic Modifier 

In addition to the modifiers employed with the p-Bondapak ODS column 

(i. e., MeOH, 2-PrOH and McCN) a further solvent was available for trial, 
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Figure 3.30 Reverse Phase Partition Chromatography of a Standard Indole 
Mixture on Spherisorb S5 ODS1 Employing Two Different 
Buffer Systems at Identical pHs (4.00) 

Parameters :- Column : Spherisorb S5 ODS1 (10cm x 2, lmm, dp = 5pm); 
Mobile Phase : 4% McOH : 96% aq. 20mM buffer (constituents as specified), 
pH 4.00; Flow Rate : 0.4mlmin-1; Detection : ECD (Eapp = +1.00V vs. 
Ag/AgCl, TC = lsec); Sample : lul via loop of TP, SHTP, 5HT. creatinine 
sulpha te. H2 0,5HIAA and 13S (K® salt in MeOH (All constituents @ 
511gml-1 - 5ng injected) 
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Fic_-are 3.31 Relative Capacity Factors for a Series of Indoles 
Chromatographed on Spherisorb S5 ODS1 Employing Two Different 
Buffer Systems 
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viz. tetrahydrofuran (THF; Co = 0.45). Mobile phases were prepared 

comprising 4% v/v modifier in aqueous acetate buffer adjusted to pH 4.00. 

The acetate buffer system was selected in preference to the acetate/citrate 

"buffer" (which, with MeOH modifier was slightly superior) in -order to 

enable direct comparison of behaviour on the Spherisorb S5 ODS1 and 

p-Bondapak ODS stationary phases to be made. 

The standard indole mixture was chromatographed in duplicate on the 

Spherisorb S5 ODS1 column with each mobile phase system in turn. As was 

the case when carrying out this experiment with the . t-Bondapak ODS phase, 

sufficient time was allowed for column washing and re-equilibration between 

mobile phases in order to isolate the effects of each organic modifier. 

Typical chromatograms are compiled in Figure 3.32. As usual, peaks were 

identified by chromatography of single indole standards. In Table 3.21 are 

displayed the mean capacity factors calculated for each analyte in each 

phase system. Figure 3.33 illustrates the effect of organic modifier 

polarity on k'.. 

These results show that organic modifier type exerts a profound 

influence on both selectivity and retention. With the use of THE as modifier, 

5HTP and 13S were separated but 13S was observed to coelute with 5HT resulting 

in poor and unsatisfactory resolution. Furthermore, all solutes eluted 

rapidly such that only 5HT and 511IAA satisfied the k' >2 criterion. 

With MeCN in the mobile phase all five components were well separated 

initially (Rs = 2.22). Peak shapes were generally near-Gaussian except for 

that of 5HT which exhibited considerable tailing. In addition, only 5HTP 

failed to satisfy the minimum capacity factor criterion but it was considered 

thata slight reduction in MeCN content may serve to promote retention times 

°, sufficiently to comply with this requirement. Unfortunately, this separation 
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Figure 3.33 The Relationship Between Capacity Factor and Organic Modifier 
Polarity (Represented by Snyder's Solvent Strength Parameter, 
eo) for a Series of Indoles Chromatographed under Reverse Phase 
Partition Conditions on Spherisorb S5 ODS1 
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deteriorated over only a few injections (Rs = 1.29) as illustrated in 

Figure 3.34. 

The utilisation of 2-PrOH as modifier, like THE and McCN, also achieved 

the separation of 5HTP and 13S. In addition, 5HT and 5HIAA were a little 

better resolved than was the case with the MeOH modifier. However, all 

solutes eluted very rapidly resulting in only the two most retarded solutes 

eluting with sufficiently large ký values. A similar situation was 

encountered when 2-PrOH was employed in conjunction with u-Bondapak ODS. 

From the plot of capacity factor versus organic modifier polarity 

(Figure 3.33), it may be noted that there is a general trend to shorter 

retention with reduction in modifier polarity. This trend is opposite to 

expectations; a reduction in mobile phase polarity being predicted to bring 

about an increase of retention. Clearly modifier polarity does not appear to 

be the controlling factor here and, more probably, differences in mechanism 

of solvation are instrumental in influencing the state of the chromatography. 

A similar conclusion was reached to explain the chromatographic behaviour 

on the u-Bondapak ODS column. 

3.4.4.3.3 Summary of the Reverse Phase Partition Chromatography of Indoles 

on Spherisorb S5 ODS1 

The use of MeOH as organic modifier provided sufficient retention of 

all five indoles on Spherisorb S5 ODS1 (k' (min)' 7 2.48) but selectivity 

was unsatisfactory (see Figures 3.30(b) and 3.32(d)). 

The best separation of the five indoles TP, 5HTP, 5HT, 51ZAA and I3S 

achieved to date on Spherisorb S5 ODS1 is illustrated in Figures 

3.32(b) and 3.34(a) for which a mobile phase comprising 4% HeCN : 96% 

aqueous acetate buffer adjusted to pH 4.00 was employed. This degree of 
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Figure 3.34 Chromatograms Illustrating the Deterioration with Time of 
the Reverse Phase Partition Separation of Indoles on 
Spherisorb S5 ODS1 Observed when McCN is used as Organic 
Modifier 

Parameters :- For conditions see Figure 3.30 except for Mobile Phase : 
4% MeCN : 96% aq. 20mM NaAc/HAc buffer, pH 4.00 
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performance was not sustained however and the chromatogram presented in 

Figure 3.34(b), is more representative. The first peak in this chromatogram 

elutes at k" < 2. Ihnce promotion of retention would be advantageous in order 

to relax to some degree the severity of instrument specifications required 

to operate 2mm ID columns efficiently, and to avoid potential interferences 

from early eluting impurities frequently present in authentic samples. 

Slight reduction of mobile phase MeCN content may achieve this goal. However, 

this experiment was not performed due to the manifestation of a major 

practical problem. 

3.4.4.4 Practical Problems Encountered with the Operation of 2mm ID Columns 

Acute instrument problems were experienced during these RP-PC studies 

which resulted in long periods of system downtime. The PU4010 pump developed 

two major faults over a period of only a few weeks. Serious pulsing origin- 

ating from the pump gave rise to intolerable baseline noise. The primary 

cause of this phenomenon was the uneven wearing of a pump cam follower, which 

functions as a part of the mechanism which converts the circular rotation 

produced by the motor into a dual-piston reciprocal action at the pump heads. 

The worn cam follower was replaced. Pulsations emanating from the pump 

were not generally an important factor at the instrument sensitivities 

employed thus far (100nA f. s. d. ), but could present great problems when 

operating at the high sensitivity settings that will be required for clinical 

monitoring purposes. A second difficulty arose with the PU4010 pump, namely 

that the pump rate control mechanism malfunctioned leading to the pump 

'racing away'. This situation was again solved by component replacement. 

In addition to pump breakdowns, the PU4022 ECD suffered many practical 

problems leading to considerable system downtime. The notable symptoms of 
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detector malfunction were gross high frequency noise, considerably reduced 

detector response and, to a certain extent, pulsations on the baseline. 

High frequency noise is generally of electrical or electronic origin. 

Two causes of this type of noise were recognised during the course of these 

experiments. Firstly, poisoning or fouling of the porous frit in the RE 

was noted, even following chromatography solely of standard solutions. 

Such an occurrence impresses the importance of injecting only "clean" samples, 

and of utilising mobile phase components of the highest purity affordable, 

with the consequent necessity of employing efficient solvent clean-up 

techniques. The RE was replaced with a new . one following unsuccessful 

attempts to clean the frit and all standard solutions and mobile phases were 

discarded. Solvent stills were cleaned out thoroughly to eliminate 

contamination from this source. New standard solutions and mobile phases 

were prepared from freshly distilled solvents and newly acquired reagents 

as far as was possible. 

The second major source of high frequency noise originated as a result 

of. corrosion of the S/S inlet locking nipple and washer. The action of, the 

moderately aggressive mobile phase employed caused erosion of the chromium 

oxide protective layer on the S/S surface. Once activated, subsequent 

erosion and reaction of the iron constituent of the construction material 

could,. take plats, as described by Mawery. 403 

:. Conditions in the flow cell inlet were ideal for these processes 

because of the aid to erosion provided by the narrow restricted flow path, 

and. to -corrosion 
by the application of a potential difference and the 

presence of dissolved oxygen (because the degassing is not 100% efficient). 

Metal ions formed by these processes could then be swept into the flow cell 

by the flow stream and electro-oxidised at the WE surface, so generating 

high frequency noise. 



-2 94 - 

Prior to this discovery of ý: ýs source of the noise, the system was 

flushed with aqueous Na2EDTA, a commonly employed metal ion complexing 

agent. Background high frequency noise was reduced but rapidly returned 

to its previous intolerable level when the system was eluted with an 

unadulterated aqueous/organic modifier mobile. phase. Addition of Na2EDTA 

to the mobile phase itself gave rise to reduced solute retention with an 

unacceptable resolution loss. Ince this practice was discontinued. 

On discovery of the corrosion problem, a replacement flow cell for' 

the PU4022 ECD was ordered from the suppliers. On receipt of the new flow 

cell, it was noted that the new inlet locking nipple was composed of PTFE 

(unlike the original S/S component) which eliminated the possibility of 

corrosion problems at this point. However, the washer provided with the 

new flow cell was still composed of S/S. Hence, in order to protect it from 

potential solvent attack, a small ring washer was fabricated from PTFE tape 

and was placed between the S/S washer and the PTFE tube flange. Flirthermore, 

the ability of phosphate buffer to inhibit corrosion of S/S parts has been 

noted, 0 3' "o" Titus, the application of this buffer system to the chromatography 

of indoles was investigated and is des: cribed in the following section. 

A further problem experienced with the PU4022 ECD was the gradual 

decline of detector response, due primarily to adsorption onto the glassy 

carbon WE surface. This event is well lmown and has been discussed in 

Section 2.1.7. Temporary restoration of response may be achieved by 

electrochemical cleaning of the WE (i. e., by increasing the cell operating 

potential for a period), but for longer lasting effect the WE must be 

removed from the flow cell and polished mechanically. It was found that 

frequent delays ensued because of the need for flow cell servicing in this 

way. '-The rapidity of electrode fouling may have been a consequence of the 
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aforementioned buffer precipitation and corrosive action of the mobile 

phases in use. Replacement of the WE provided a brief respite from these 

problems. Yet it was only when the new flow cell was procured and steps were 

taken to avoid buffer precipitation and inhibit corrosion that the need for 

physical cleaning of the WE was reduced to an acceptable frequency (i. e., 

every 4-6 weeks of operation with standards). 

One other performance-restricting factor originating from the PU4022 

ECD was recognised during the course of this study. It was observed that 

pulsations on the baseline were accentuated when the PU4022 flow cell was 

connected. This problem was thought to be caused by the movement of the 

electrodes in the cell body with the pulsating flow produced by the PU4010 

pump. The construction of the flow cell is such that both the WE and the 

RE are held in place by screw-in locking collars bearing down on '0T-ring 

seals (see Figure 3.10 and Plate 4). This system does not anchor the 

electrodes very firmly. A small design modification of the locking collars 

would probably alleviate this problem. If the locking collars were built 

such that they capped the electrodes and in so doing exerted a downward force 

on the electrodes whilstin position then there would be very little 

possibility of movement within the cell body. In practice, little could 

be done at the ECD regarding the accentuated pulsations. The best course 

of action was to tackle these pulsations at source, i. e., the PU4010 pump. 

" The general lack of robustness displayed by the NBLC-EC instrument 

was very disconcerting. Such major operational difficulties could well be 

considered unacceptable in many clinical laboratories, where instrument. 

ruggedness and reliability are of great importance. 

=` Over the course of these RP-PC experiments, system back pressure 

increased steadily until the level became so great that routine operation 
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was impossible. The primary underlying cause of this problem was 

discovered to be the precipitation out of solution of white crystalline 

material (very probably organic buffer constituents) in the pump, connecting 

tubing, injection valve and column. This resulted in the gradual 

blockage of flow passages within the instrument and of the column itself. 

This situation was remedied by disassembling the liquid heads and filters 

of the pump and thoroughly cleaning with distilled water all the parts which 

come into contact with the mobile phase. Similarly, the injection valve 

was dismantled and serviced. Following reassembly of the apparatus, the 

column was thoroughly back-flushed with distilled water in order to wash 

off the offending material. The system was then returned to the mobile 

phase of choice for further experiments to be conducted. 

On the second occasion of this problem arising, it was noted that 

system breakdown related to suspected buffer precipitation correlated with 

the use of MeCN as organic modifier. This observation brings into question 

the solubility of the organic buffer systems under the conditions employed. 

Because of the existence of this buffer precipitation problem and 

suspicion of the role of MeCN in this process, McCN was rejected for use as 

an organic modifier with this type of buffer system. Consequently, it was 

decided at this point to return to the use of MeOH as modifier and to 

investigate the practicalities of a third alternative buffer system, viz. 

K132P04/H3P04. 

_' A mobile phase of the original format, i. e., 4% McOH : 96% aqueous 

buffer adjusted to pH 4.00 was prepared using the KH2P04/H3P04 buffer 

system. This was eluted through the Spherisorb S5 ODS1 column and the 

indole standard mixture was chromatographed in duplicate along with single 

indole standards for peak recognition. The separation so obtained 



-2 97 - 

is illustrated in Figure 3.35 and mean capacity factors for each indole 

are tabulated in Table 3.22. The chromatogram in Figure 3.35 may be 

compared with those obtained with acetate/citrate and pure acetate buffers 

under otherwise identical conditions (see Figure 3.30). A plot of 

indole capacity factor versus buffer composition for all three buffer 

systems is presented for this purpose (Figure 3.36). 

The adoption of a phosphate buffer in a MeOH-modified mobile phase 

resulted in no discernible precipitation and consequent clogging of the 

instrument. Moreover, considerably higher resolution (concomitant with a 

significant change in elution order) than that obtained with either of the 

organic buffer systems under the same conditions was observed. The effective 

removal of ion interactions, by employment of a buffer moiety 

with little or no affinity for the stationary phase provides for uncomplicated 

'pure' RP-PC on the non-polar surface which would be expected to give rise 

to elution in order of decreasing solute polarity. Essentially, such 

behaviour is observed in practice. 

The partial separation of indoles achieved with non-interacting 

buffer components is very promising for future manipulation. However, 

the limitations of pure RP-PC for the separation under investigation are 

amply demonstrated by the experiments conducted thus far. Insufficient 

breadth of retention and selectivity control exists in this mode for this 

particular separation problem. Hence, a decision was made to introduce 

secondary ecuilibria to the system to provide more parameters for variation, 

so enlarging the scope available for management of solute retention. 

In this instance, the ion suppression technique was considered to be 

of little value. The reasons for this lie in the great variation of acid/ 
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Figure 3.35 Reverse Phase Partition Chromatography of a Standard Indole 
Mixture on Spherisorb S5 ODS1 Employing a Phosphate Buffer 
in the Mobile Phase (pH 4.00) 

Parameters :- For conditions see Figure 3.30 except for Mobile Phase 
4% McFH : 96% aq. 0.1M KH2PO4/H3P04 buffer, pH 4.00 
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Figure 3.36 Relative Capacity Factors for a Series of Indoles 
Chromatographed on Spherisorb S5 ODS1 Employing Three Different 
Buffer Systems at Identical pHs (4.00) 
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base properties exhibited by the five analytes. In Table 3.23, pKa values 

for the dissociation of T?, 5HTP, 5HT, 5HIAA and 13S are compiled and the 

dissociation processes to which these pka values refer are presented in 

Figure 3.37. It may be noted that the indole >NH group is never 

protcnated. This is because the lone pair associated with the N atom 

is not discrete and available for donation, but is delocalised within the 

r-electron system, so confer: Lig aromaticity on the molecule. From this 

data it is clear that over the accessible pH range of 2-8 for silica-based 

columns, only the ionisation of 5HIAA may be suppressed. All the other 

analytes possess dissociation constants at the extremes of or outside of 

these limits where the limitations of the column material prevent the 

application of ion suppression. Fence, the introduction of another variable, 

namely an ion-interaction agent (IIA), was considered. This approach to 

the separation of the indole class of compounds and related substances has 

been attempted by many workers with some success (see Section 3.1.5). 

3.4.4.5 Experiments with Reverse Phase Ion Interaction Chromatoý7raDhv for 

the SeiDaration of Indoles 

3.4.4.5.1 Preliminary ExDerimen is 

Reverse phase ion-interaction chromatography was applied to the 

separation of the indoles of interestin order to exert greater chromato- 

graphic flexibility and control via interactions with charged sites on the 

analyte molecules. The choice of IIA was arbitrary since both the amino- 

acid 2 and its 5-hydroxy derivative 5HT? are zwitterionic in nature over 

almost the entire accessible pH range. Yürthernore, 5-.;: -'L harbours a 
t 

positive 
(charge whilst 13S carries a negative charge in this region. An 
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IIA possessing a negatively charged lipophilic moiety was selected initially, 

with a view to promoting the retention of those species presenting a positive 

site to the IIA (i. e., the protonated amine function of TP, 5HTP and 5HT),, 

in an attempt to achieve considerably greater resolution of the three closely 

eluting peaks corresponding to 5HT, I3S and TP in Figure 3.35. 

A preliminary experiment was conducted by chromatographing a five 

indole standard on the Spherisorb S5 ODS1 column. An identical mobile phase 

to that employed for the production of Figure 3.35 was used, except that'an 

aliquot of Waters PIC-B7 reagent (3.84% w/v 1-heptanesuiphonic acid (HSA) 

active ingredient in an aqueous acetate buffer of pH 3.5) was added to the 

solvent mixture prior to pH adjustment, to provide an HSA concentration of 

approximately 100mgl-1. The chromatogram so obtained is presented in 

Figure 3.38(a) along with a chromatogram obtained without IIA addition 

(Figure 3.38(b)) for, comparison. Peak identification was carried out in 

the usual way. Capacity factors for each solute were calculated and are 

compiled in Table 3.24. 

The addition of PIC-B7 reagent to the mobile phase produced an 

excellent near-baseline separation of all five indoles (Rs = 2.11). The 

smallest analyte capacity factor was 2.63 (I3S) and the total run time was 

15 mins. Both of these parameters were of reasonable magnitude, the 

smallest capacity factor just exceeding-the proposed lower limit of 2,, whilst 

the run time allowed a throughput of four samples per hour (standards) which 

was well within acceptability. 

However, difficulties were experienced in alicuoting a suitable volume 

of the PIC-B7 solution, both accurately and reproducibly for incorporation 

into the mobile phase. This problem, compounded by the high cost of PIC-B7 

reagent, prompted substitution of a more economical and easier to manage 
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Firure 3.38 Chromatograms Illustrating the Separation on Spherisorb S5 
ODS1 of a Series of Indoles With and Without the Addition 
of PIC-B7 Reagent to the Mobile Phase 

Parameters :- Column : Spherisorb S5 ODS1 (10cm x 2.1mm, dp = 5um); Mobile 
Phase : 40 MeOH : 96% aq. 0.1M KIPPO /H3P04 buffer (a) containing PIC-B7 

reagent (- HSA @ 100mgl-1), (b) unmodified, pH 4.00; flow Rate : 0.4mlmin-1; 
Detection : lul via loop of TP, 5HTP, 5HT, 5HIAA and 13S in 4% MeOH : 96% 

aq. 0.1M KH2PO4 (All constituents @ 5igml-1 E 5ng injected) 
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alternative. The obvious choice was the sodium salt of the PIC-B7 active 

ingredient, ESA. Chromatography of the indole standard mixture using a 

mobile . phase prepared with NaHSA, nominally containing the same concentration 

of HSA (100ug1-1) as was employed when PIC-B7 was utilised, did not yield 

an identical separation. Only when the HSA concentration was increased to 

200mgl-1 was a similar separation obtained. This situation is depicted in 

Figure 3.39. The observed discrepancy in behaviour may in part be due to 

the inaccuracy in measurement of the BSA concentration of the PIC-B7-prepared 

mobile phase. Another factor may have been column deterioration incurred 

between the acquisition of the representative traces. Ibrthermore, the - small 

amount of acetate moiety present in PIC-B7, which was absent from the NaHSA- 

based mobile phase, probably exerted an influence on the chromatography. 

Since a satisfactory separation of the analytes had been accomplished 

by RP-IIC on Spherisorb S5 ODS1, the fate of the u-Bcndapak ODS column was 

considered. Preference for employment of the Spherisorb phase was expressed 

by our suppliers (Pye Unicam), because they routinely stock and market Phase 

Sep packing materials (e. g., Spherisorb)_, but they do not carry stationary 

phases manufactured by Waters (e. g., p-Bondapak). Hence, for this reason 

utilisation of the u-Bondapak ODS column was discontinued in favour of the 

Spherisorb S5 ODS1 column. 

A: detailed examination of the effects of concentration of HSA, MeOH 

content, and pH of the mobile phase on the elution properties of the indoles 

on Spherisorb S5 ODS1 was undertaken, in order_ to enhance understanding of 

the nature and magnitude of any such effects. These experiments are 

reported in the following sections. 
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3.4.4.5.2 Variation of Mobile Phase MeOH Content 

Chromatography of a standard solution captaining TP, 5HTP, 5HT, 5HIAA 

and 13S was carried out on the Spherisorb S5 ODS1 column, using mobile phases 

of the general composition MeOH/aqueous phosphate buffer containing NaHSA 

(2006g1'I active ingredient) adjusted to pH 4.00. MeOH contents in the 

range 0-20% were employed. Chromatography was conducted in ascending order 

of MeOH percentage. Great care was exercised in ensuring that equilibrium 

had been attained in the HPLC system with each mobile phase before represent- 

ative traces were taken. The establishment of equilibrium was recognised 

by settling of the baseline to drift-free status and confirmation was derived 

from the observation of chromatographic reproducibility. Single indole 

standards were injected at each MeOH percentage. for peak identification. 

Typical traces are compiled in Figure 3.40 and mean capacity factors 

calculated for each solute are given in Table 3.25. Figure 3.41 depicts 

the relationship between indole capacity factor and percent MeOH in the 

mobile phase plotted from these data. 

-Capacity 
factors for all analytes are observed to decrease with 

increasing proportion of MeOH in the mobile phase as was to be expected. 

. Moderation of the mobile phase polarity with MeOH yields a mobile phase for 

which the indoles have a greater affinity and faster elution results as a 

consequence. A change in elution order occurs at a MeOH content of 

approximately 14-15%, which presumably, is due to changes in the relative, 

solubilities of the five analytes in the increasingly 
, 
more methanolic mobile 

phase. From the above data (Table 3.25) and the graphs (Figure 3.41) it is 

clear., that, under the. operating, conditions employed and to satisfy the 

criterion k"in > 2, a MeOH content of < 4% must be utilised. 
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F1 ure 3.41 The Relationship Between Capacity Factor and MeOH Content of 
the Mobile Phase for a Series of Indoles Chromatographed under 
Reverse Phase Icn-Interaction Conditions on Spherisorb S5 ODS1 
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3.4.4.5.3 Variation of Mobile Phase pH 

The five component indole standard was chromatographed on the 

Spherisorb S5 ODS1 column using a series of mobile phases adjusted to 

different pHs between 3.00 and 7.00. The foundation of these mobile phases 

consisted of 4% MeOH : 96% aq. 0.1M KHzP04 containing NaHSA (200mgl i as HSA), 

a mixture which exhibited a natural pH of 4.62. Adjustments of pH to 

greater acidity were made by addition of H3PO4 while adjustments to greater 

basicity were achieved by addition of H3PO4 to ca. pH 4 (to provide buffering 

capacity) followed by appropriate introduction of KOH. Chromatography was 

conducted in ascending order of pH (i. e., acid -1, base).. The establishment 

of equilibrium was ascertained prior to acquisition of representative 

chromatograms. Elution order at each pH was elucidated by individual indole 

standard injection. 

Typical chromatograms obtained at each mobile phase pH are presented 

in Figure 3.42. Table 3.26 indicates the mean capacity factors calculated 

for each analyte run at the various mobile phase pHs while Figure 3.43 

illustrates graphically the relationship between these two parameters. 

The results show that mobile phase pH has a profound effect on the 

elution of TP and 5HIAA, a lesser effect on 5HTP and 'little or no effect on 

5HT and 13S over the range studied. The chromatographic behaviour of these 

materials at different environmental pHs may be explained in terms of their 

pKa values. 

Neither 5HT nor 13S have a pKa value within two pH units of the 

extremes of the region investigated herein, therefore little or no variation 

in retention behaviour is observed. In aqueous solution, 5HT exists in the 

form of a protonated amine at acid pHs whereas 13S is a strong acid and 
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Firure 3.23 The Relationship Between Capacity Pactor and pH of the Mobile 
Phase for a Series of Indoles Chromatographed under Reverse 
Phase Ion-Interaction Conditions on Spherisorb S5 ODS1 
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consequently is fully dissociated over the entire pH range 1-14 (see 

Table 3.23 and Figure 3.37, Section 3.4.4.4). 

TP and 5HTP are amphoteric possessing both weakly acidic and weakly 

basic functional groups. Dissociation of the carboxyl group in these two 

substances occurs at a pKa of ca. 2.5 (see Table 3.23). Horvath and 

co-workers411,412 have demonstrated that weakly acidic (and weakly basic) 

materials show a sigmoidal relationship between pH and capacity factor over 

a range of approximately four pH units with the inflection point occurring 

at the pKa value of the acidic (or basic) functional group. The rapid 

shortening of k' between pHs 3 and 4 followed by a levelling off of the 

curve to higher pH for TP and SHTP is representative of the tail of a 

sigmoidal curve. This almost certainly corresponds to the aforementioned 

equilibrium. 

5HIAA also possesses a carboxyl group which dissociates over the 

examined pH range. The graph of k' against mobile phase pH for this 

substance depicts a sigmoidal curve with an inflection point at ca. pH 4.6 

which, according to Horvath et a1.411s412ý is equivalent to the dissociation 

of a weak acid with a pKa of ca. 4.6. No information regarding the 

dissociation constant(s) of 5HIAA was available but the pKa of the non- 

hydroxylated compound, indole-3-acetic acid (IAA) has been measured 410 and 

was found to be 4.6. Now, as is exemplified by TP and SHTP, substitution 

of a hydroxyl group at the 5-position on the indole ring has negligible 

effect on the pKas of functional groups at the 3-position (see Table 3.23). 

Consequently, very similar pKas would be expected for the dissociation of 

the carboxyl group in both IAA and 5 HIAA. The chromatographic evidence 

confirms this hypothesis; the literature pKa value for IAA being in very 

close agreement with the experimentally derived pKa value for 5HIAA. 
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The observed changes in chromatographic behaviour to smaller k' with 

increasing pH for TP, 5HTP and 5HIAA may be rationalised in fundamental 

terms. As the elution medium becomes less acidic over the region in which 

carboxyl group dissociation occurs, more of the anionic carboxylate species 

is generated. This negatively charged moiety is repelled by the negatively 

charged IIA which may be envisaged as being in dynamic equilibrium with 

the stationary phase surface. As a result of the increased influence of 

the IIA with increased ionic nature of the solutes, TP, 5HTP and 5HIAA all 

elute progressively more rapidly until complete ionisation is attained. 

3.4.4.5.4 Variation of 1-Heotanesulnhonic Acid Concentration 

An indole standard mixture was chromatographed at least twice with 

each mobile phase on a Spherisorb S5 ODS1 column. Mobile phases comprising 

4% MeOH : 96% aq. phosphate buffer containing HSA and adjusted to pH 4.00 

were utilised. The concentration of ESA was increased stepwise from 

0-200mg1-1 active ingredient. Establishment of equilibrium at each IIA 

concentration was ensured prior to recording the chromatograms. These 

chromatograms are compiled in Figure 3.44. Elution order in each instance 

was ascertained by single indole standard injection. Calculated mean 

capacity factors are tabulated in Table 3.27 and a graph of these values 

plotted versus HSA concentration is presented in Figure 3.45. 

The observed changes in elution' behaviour with HSA concentration are 

most easily explained by way of the dynamic ion exchange mechanism outlined 

in Section 3.1.4.3. The indoles largely fit into two groups, one which 

includes TP, 5HTP and 5HT in which promotion of retention with increase in 

H-ZA concentration is predominant, and a second-which includes 5HIAA and 13S 

in which increasing HSA concentration gives rise to an overall reduction 

in retention. 
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Figure 3.45 The Relationship Between Capacity Factor and Concentration of 
1-Heptanesulphonic Acid in the Mobile Phase for a Series of 
Indoles Chromatographed under Reverse Phase Ion-Interaction 
Conditions on Spherisorb S5 ODS1 
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At the operating pH of 4.00 the speciation of all five indoles has 

already been established. TP and 5HTP carry both ammonium (-N H3) and 

carboxylate (-CO20) functions, the former which is very nearly completely 

associated and the latter which is largely dissociated. 5HT possesses only 

the protonated amine group, the proton of which is associated to a similar 

extent to that of TP and 5H1P. Conversely, the carboxyl group pertaining 

to 5HIAA only exhibits a little ionic character (estimated at about 10%). 

13S, however, incorporates the strongly acidic sulphate structure which 

completely dissociates in an aqueous environment to generate the -0S03 

anion. 

As was to be expected the three indoles presenting positive sites 

via which coulombic associative interactions with the negatively charged 

HSA moiety could take place, displayed increased retention. However, the 

degree to which this promotion was effected differed markedly between species 

thought to be similarly associated. Clearly, 5HT exhibits the most 

pronounced change and this is attributable to the free and unhindered 

interactions possible between the-NH3 site on the molecule and the anionic 

HSA moiety. TP and 5HTP are far less affected by increasing HSA concentration 

than; is 5HT, with only slight promotion of retention over the decade of 

concentration investigated. Presumably this is because of the close 

proximity of a -CO2 site to the -NH3 site in TP and 5HTP. Repulsion 

between the carboxylate group and the isocoulombic IIA would be expected to 

limit, the directions from which the HSA moiety may approach the ammonium 

group so moderating any retardation process. 

The mechanism of retention of 5HIAA and 13S may also be-postulated 

from Figure 3.45. Both analytes are most probably retained predominantly 

by parition: into the ODS surface. The general decrease in capacity factor- 
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with increasing HSA concentration is almost certainly due to competition 

with other species, particularly ASA, for the ODS surface and will be 

accentuated by repulsi arcs between the largely negatively charged dynamically 

modified staticmary phase surface and the -CO 2 and -OS03 sites cn 5HIAA 

and I3S respectively. This type of "ion exclusion" interaction obtained 

by introduction of an isocoulombic species to the mobile phase is frequently 

utilised for modification of the chromatography of bases in order to improve 

peak shapes. 390 

3.4.4.5.5 Choice of Mobile Phase for Reverse Phase Ion Interaction 

Chromatography of Indoles on Spherisorb S5 ODS1 

,A 
mobile phase comprising 4% MeOH : 96% aq. 0.1M KH2PO4/H3P04 buffer 

containing HSA (200mg1-1 -1. llmM) adjusted to pH 4.00 was selected as being 

most suitable for the separation of the five indoles TP, 5HTP, 5HT, 5HIAA and 

13S on Spherisorb S5 ODS1. The primary criteria applied in reaching this 

decision were as stated previously, i. e., that the minimum capacity factor 

should be equal to, or should exceed 2, that the total run time should be 

acceptable - preferably within 30 mins, and that all five components should 

be resolved satisfactorily from one another. 

A MeOH content of < 4% was dictated by minimum capacity factor 

considerations. Noting that the total run time increased markedly with 

decreasing MeOH percentage in this region, a value of 4% was preferred 

although a completely aqueous mobile phase yielded a run of only 30 mins 

duration. Low MeOH content also favoured the detection technique because 

current stability is greater in a largely aqueous environment. 

The employment of a pH of 4.00 was arrived at as a compromise between 
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all three criteria together with the added requirement that small variations 

in mobile phase pH should not give rise to large variations in capacity 

factor for the analytes. This additional proviso was entertained so that 

sufficient control over analyte elution could be exerted. At pH 3 5HT and 

5HIAA were unresolved. Between pHs 3 and 4 TP and 5HTP elution was 

drastically affected by small changes in pH. Between pHs 4 and 6 the 

chromatography of 5HIAA was similarly afflicted. At pH values in excess of 

ca. 5.6 the peak due to 5HIAA eluted too rapidly presenting an unacceptably 

low capacity factor. The pH value of 4.00 provided the best separation 

of all five analytes with all capacity factors in excess of 2 while exhibiting 

acceptable tolerance of pH change. 

The choice of IIA concentration to be employed was governed primarily 

by resolution requirements. Figure 3.45 shows that coelution of analytes 

occurs at HSA concentrations of approximately 20,50 and 115mgl-1. The 

maximum concentration tolerable on minimum k' grounds was ca. 220mg1-1 

(determined by extrapolation of the curve relating to I3S). The selected 

level of 200mg1-1 provided baseline resolution of all five indoles (see 

Figure 3.44(h) for example) and allowed for minor modification to compensate 

for column performance deterioration with time. 

3.4.5 Evaluation of Instrument Performance with Respect to 2.1mm ID Columns 

The Pye Unicam NBLC system incorporating the l0cm x 2.1mm ID Spherisorb 

S5 ODSl column was assessed in an identical manner to that described for the 

25cm x lmm ID Partisil 10 ODS3 column in Section 3.4.3. For seven 

chromatograms of the five indoles obtained under identical experimental 

conditions, -, peak widths were measured at 60.7% of peak height (the half-width 
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method) and at 50% of peak height (the width at half-height method). 

Tangential baseline widths were not measured because of the greater error 

involved in this process. All retention times were also quantified. Mean 

values of each quantity were determined and values of Qtot(t) and tR were 

calculated for both peak width measurements This information is compiled 

in tabular form in Table 3.28. Plots of mean total peak variance versus 

square of mean retention time for each method of evaluation are presented in 

Figure 3.46. From these graphs, values for 02 c(t) 
(and consequently xc(v) ) 

and Nc (and consequently Hc) were. obtained from the intercept and gradient 

respectively by linear regression analysis. All these data are compiled 

in Table 3.29. 

Column plate heights (Hc) determined via both peak width measurements 

were in very close agreement, the mean value being 51.8pm. Instrument 

variances too were equivalent within experimental error, the mean value of 

a2 being 236,112 (= Xc = 15.3ul). This was almost identical to the value 

= 15.2,11) obtained for this HPLC system operating with the of 232,112 
xc 

lmm ID Partisil 10 ODS3 column. The insignificant difference in instrument 

variance determined for the system incorporating the lmm ID column and that 

with the 2.1mm ID column is indicative of the minor contribution of the 

connecting tubing which was reduced in length from 15cm to 12cm, i. e., by 

20%, between the former and the latter determinations. 

Apparent plate heights were calculated using both half-width and width 

at half-height measurements by means of Equations 1.12 and 1.13. The values 

so obtained were compared with plate heights generated in the column (Table 

3.29), and these data are given in Table 3.30. These figures show that 

only 55% of available column efficiency is realised for the first eluted 

peak (13S, k' = 1.64) rising to approximately 99% for the last peak (5HT, ' 
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Figure 3.47 Plot of Proportion of Available Column Efficiency Realised (Mean 
of Two Methods of Assessment) Ls. Capacity Factor for a Series 
of Peaks-Yielded by Chromatography of a Standard Indole Mixture 
on the Pye Unicam NBLC System with a 10cm x 2.1mm ID Column 
Installed 

(Dashed line represents Klinkenberg's criterion of tolerability. 

Standard deviation limits indicated) 
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k' = 13.08). Percentage of column efficiency realised was plotted against 

indole capacity factor and this graph is presented in Figure 3.47. The 

dotted line at 90% represents the tolerance level according to Klinkenberg59 

as before (cf. Figure 3.20). The detrimental effect of the instrument 

variance on chromatography with the 10cm x 2.1mm ID column is clearly 

illustrated. Figure 3.47 shows that all peaks eluting prior to a k' of 7.8 

are adversely affected by extra-column band broadening processes beyond the 

acceptable level. This curve may be compared with the curve representing 

the deterimental effect of the instrument variance on chromatography when a 

25cm x lmm ID column is employed (i. e., Figure 3.20). Hereýall peaks in 

the chromatogram suffered unacceptable extra-column band broadening. By 

extrapolation, the minimum capacity factor at which the system operated 

efficiently with the lmm ID column was estimated to be approximately 16.2. 

A comparison of the two values reveals that changing the column dimensions 

from 25cm x lmm ID to 10cm x 2.1mm ID served to reduce the minimum k' at 

which the system could be operated efficiently by about 50%. Thus, the 

10cm x 2.1mm ID column packed with Sum particles was preferred to the 

25cm x lmm ID column packed with l0um particles for this reason. However, 

it should be emphasised that the Pye Unicam NBLC instrument was not of 

satisfactory specification to operate columns of either geometry to commonly 

accepted standards. 

3.4.6 Optimisation of Applied Potential 

"-Having optimised the mobile phase for the separation of TP, 5HTP, 5HT, 

5HIAA"and 13S, the potential applied across the electrodes in the PU4022 flow 

cell was then refined to yield the maximum S/N ratio. A standard containing 
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the five indoles of interest was chromatographed in duplicate on the 

optimised chromatographic system at various applied potentials between 

+0.30V and +1.00V. The series of traces so generated are compiled in 

Figure 3.48. Baseline noise and peak heights of all peaks corresponding 

to indoles were measured and S/N ratios were calculated. These results 

are presented in Table 3.31. Graphs of S/N ratio versus applied potential 

were constructed for all five analytes and are compiled in Figure 3.49. 

Physical difficulty in measuring accurately the low noise levels prevalent 

even at high instrument sensitivity (3nA f. s. d. ) determined the need for 

estimation of the error involved in this process. Error bars representing 

the effect of an estimated measurement error of ± 0. lmm (='1.5pA) in the 

noise level are included in this Figure. Curves of detector response 

(signal) alone plotted against applied potential are presented in Figure 3.50, 

which is included for comparison purposes. 

From Figure 3.50 it may be deduced that there are three distinct 

half-wave potentials associated with the indoles under investigation. The 

half-wave potential of between +0.35 and +0.40V observed for 5HTP, 5HT and 

5HIAA is assigned to oxidation of the 5-hydroxyl group on the phenol ring. 334 

13S alone exhibits a half-wave potential of +0.55V which presumably is due 

to oxidation of the sulphate group on this molecule. All five indoles 

display a further half-wave potential in the region +0.80 to +0.85V which 

is attributable to oxidation of the ring nitrogen atom, possibly to N®. 334 

This last assignment of oxidation site was confirmed by chromatographing a 

solution of indole, the unsubstituted parent molecule from which TP and its 

metabolites are derived, under standardised conditions at various applied 

potentials. By inspection, (Figure 3.49) the lowest utilisable applied 

potential for the examined separation problem was deemed to be ca. +0.75V. 
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Fi Eure 3.48 

(Overleaf) 

Chromatograms Illustrating the Effect of Applied 
Potential on the Response of the Electrochemical 

Detector to the Indoles under Study 

Parameters :- Column : Spherisorb S5 ODS1 (10cm x 2.1mm, 
dp = 5um); Mobile Phase : 4% MeOH : 96% aq. 0.1M KH2P04/ 
H3P04 buffer containing BSA (200mg1-1), pH 4.00; Flow 
Rate : 0.4mlmin-1; Detection : ECD (Eapp vs. Ag/AgCl as 
stated , TC = lsec); Sample : 1111 via loop of TP, SHTP, 
5HT, 5HIAA and I3S in 4% MeOH : 96%. aq. 0.1M KH2P04 (All 

constituents at l. 0ugm1-1 - ing injected) 
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Figure 3.48 continued 
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Figure 3.49 Plots of Signal-to-Noise Ratio vs. Applied Potential for 
the Five Indoles under Study. 

(Error bars represent an estimated measurement error of 
0. lmm - 1.5DA in the determination of the noise level) 
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Figure 3.50 Plots of Electrochemical Detector Response (Expressed as 
Peak Height and Peak Current) vs. Applied Potential for 
the Five Indoles under Study 
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This limit is dictated by TP which possesses only one electrophore, viz. 

the indole ring nitrogen atom which oxidises between +0.70 and +1.00V. 

The other four analytes all possess one additional electrophore which 

oxidises at a lower potential. Based on. signal-to-noise considerations 

(Figure 3.49) the optimum applied potential (E 
opt) 

for this separation of 

standards was taken to be +0.95V. Should interference be prevalent when 

extracts of authentic samples are chromatographed,, then greater selectivity is 

available by reduction of Eopt down as far as +0.75V. Should this strategy 

be unsatisfactory, then attention should be addressed to improvement of the 

isolation procedure and/or the chromatography to reduce this interference 

to a tolerable level. 

For all subsequent chromatography an applied potential of +0.95V was 

selected unless stated otherwise. 

3.4.7 Evaluation of the Effect of Injection Volume on the Chromatography 
r 

of Indoles in a Sample-Limited Situation 

Frequently in the field of biomedical analysis, sample volume is limited 

particularly where neonatal, or paediatric patients are concerned. 

Consequently, for the determination of trace level components in the sample, 

the mass available is highly restricted. Under such circumstances one 

theoretical advantage of NBLC over conventional EPLC would be of value, namely 

that of increased mass sensitivity, the origin of which has been discussed in 

Chapter 1 (Section 1. L. 4). 

The ideal approach to the analysis of a biological fluid specimen 

would consist of the extraction of the analyte substances from all the other 

matrix components (the isolation step) followed by dissolution of the 

analytes in a minimum volume of mobile phase (the concentration step) so that 
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the entire analyte mass could be introduced onto a NBLC column for 

separation and quantitation. Unfortunately, in practice this procedure 

is not entirely feasible and to some extent is extravagant. Complete 

isolation of the analytes from the remainder of the sample components prior 

to chromatography is very nearly impossible to accomplish where complex 

biological matrices are concerned and often is unnecessary anyway. Only 

those species which constitute an interference, either physical or 

chromatographic, need be removed. * Furthermore, there are practical 

limitations which govern the volume of mobile phase that may be employed to 

redissolve the analytes following isolation, which necessarily restrict the 

maximum caicentration of each analyte that may be attained. First, 

sufficient volume must be utilised to ensure that complete dissolution of 

the analytes is possible. Secondly, this volume must be dispensable and 

transferable with acceptable accuracy and precision by means of available 

laboratory hardware (i. e., syringes, centrifuge tubes, sample tubes, etc. ). 

Finally, the injection technique employed is subject to potentially 

significant sample loss, about 10u1 in excess of the loop volume being 

required to enable sample introduction to be executed with the Rheodyne 

model 7413 micro-injection valve at the author's disposal. 

Of the aforementioned three considerations, the controlling factor 

was found to be that of sample manipulability which imposed a practical 

Physical interferences include strong (irreversible) adsorption of, for 

example, proteinaceous material onto the stationary phase surface which 

cause column deterioration. Chromatographic interference from a substance 

arises if that substance both coelutes with an analyte and produces a 

response from the detector in use. 
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minimum volume limit of 5O i1 on the extract. Such a limit is of the order 

of 10-100 times greater than injection volumes commonly employed with NBLC 

which, in practice, represents a highly significant sample mass loss to the 

chromatographic process. Moreover, because of this constraint. $the 

applicability of increased mass sensitivity with NBLC columns is brought 

into question since an increase in injection volume is also accompanied 

by an increase in the proporti m of available analyte mass delivered onto 

the column. Clearly, it would be advantageous to discover what injection 

volume provides the greatest practicable detectability within the bounds of 

satisfactory chromatography. An experiment was conducted with the intention 

of determining this injection volume. 

A standard solution containing a fixed concentration (0.4ijgml-1) of 

each indole under investigation was utilised. Volumes of 0.5,1,5,10 

and 2011 (- 0.2,0.4,2,4 and 8ng of each analyte on-column) were injected 

into the Pye Unicam NBLC system incorporating a freshly-packed Spherisorb 

S5 ODS1 column (10cm x 2.1mm ID, dp = 51im, No = 3280 plates, He = 30.5um) 

which was operated under standardised conditions. The three smallest 

volumes-were introduced via the Rheodyne model 7413 micro-injection valve 

whilst a conventional Rheodyne model 7010 external loop valve was employed 

for transference of the two largest volumes. All chromatograms were 

-recorded at 50nA f. s. d. instrument sensitivity (Figure 3.51) and additionally 

at an appropriate sensitivity setting so that the peaks of interest generated 

at each injection volume were on-scale and of approximately equivalent 

height. Pirthermore, the latter chromatograms were also re-run at elevated 

"'chart speed so that peak width measurements could be made with less error. 

Peak heights were determined together with the baseline noise level 

and from these values LODs and LOQs for each indole at each injection volume, 
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Vi, were calculated. These data are tabulated in Table 3.32 and graphs 

of peak current (and SIN) versus V and LOD (and LOQ) versus Vi are 

presented in Figures 3.52 and 3.53 respectively. 

Retention times and peak widths at both 60.7% and 50% of peak height 
AA 

were measured and., from these parameters, values of N and H were elucidated. 

Results are reported for 13S and 5HT in Tables 3.33 and 3.34 respectively. 

Peaks corresponding to 13S, the fastest eluting analyte, and 5HT, the most 

highly retained analyte, were selected for presentation in order to show 

the extremes of behaviour exhibited. Graphs were constructed of mean N 

and mean H (for the two methods of calculations) against Vi. These plots 

are included as Figures 3.54 and 3.55., In addition, the percentage of 

column efficiency realised with respect to I3S and 5HT at each injection 

volume was determined and this was plotted versus Vi. The computed values 

are compiled in Table 3.35 while their relationship with i is depicted in 

Figure 3.56. 

Table 3.35 Calculated Proportions of Available Column Efficiency Realised 

at Various Injection Volumes for I3S and 5HT 

13S 5E: T 

Vi He H (H. /AH) x 100 (H. /M x 100 
(111) (um) (um) (%) (um) (%) 

0.5 30.5 48.2 63.3 32.2 94.8 

1.0 30.5 50.3 60.7 32.8 93.1 

5.0 30.5 61.5 49.6 33.7 90.5 

10.0 30.5 74.3 41.0 44.3 68.9 

20.0 30.5 100.7 30.3 58.1 52.5 
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Table 3.32 , Signal, Signal-to-Noise Ratio, Limit of Detection and Limit 

of Quantitatian Data for the Indoles at Various Injection 

Volumes 

Indole V m Signal S/N* LOD LOQ i i 
(ui) (ng) (nA) (pg) (pg) 

TP 0.5 0.2 2.1 21 18.8 188 

1.0 0.4 3.4 34 23.9 239 
5.0 2.0 13.0 130 30.8 308 

10.0 4.0 32.0 320 25.0 250 
20.0 8.0 65.0 650 24.6 246 

5HIP 0.5 0.2 3.5 35 11.5 115 
1.0 0.4 7.4 74 10.9 109 

5.0 2.0 30.5 305 13.1 131 

10.0 4.0 60.0 600 13.3 133 

20.0 8.0 113.0 1130 14.2 142 

5HT 0.5 0.2 1.8 18 22.2 222 
1.0 0.4 2.9 29 28.1 281 
5.0 2.0 11.5 115 34.8 348 

10.0 4.0 24.5 245 32.7 327 
20.0 8.0 47.0 470 34.0 340 

5HIAA 0.5 0.2 2.7 27 14.8 148 

1.0 0.4 4.4 44 18.4 184 
5.0 2.0 18.5 185 21.6 216 

10.0 4.0 37.5 375 21.3 213 

20.0 8.0 74.0 740 21.6 216 

13S 0.5 0.2 4.0 40 10.0 100 

1.0- 0.4 8.5 85 9.5 95 
5.0 2.0 35.0 350 11.4 114 

10.0 4.0 72.0 720 11.1 111 

20.0 8.0 135.0 1350 11.9 119 

N (measured at-5nA f. s. d. ) = O. lOnA. N is unaffected by V i 
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Figure 3.52 The Relationship Between Electrochemical Detector Response 
(Expressed as both Peak Current and Signal-to-Noise Ratio) 
and Injection Volume of a Standard Indole Mixture of Fixed 
Ccmcentratim 
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Fi? ure3.53 The Relationship Between Limit of Detection (S/N = 2: 1) or 
Limit of Quantitaticn (SIN = 20: 1) and Injection Volume of 
a Standard Indole Mixture of Fixed Concentration 
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Figure 3.54 The Relationship Between Apparent Plate Count (Mean of Two 
Methods of Assessment) and Injection Volume of a Standard 
Indole Mixture of Fixed Concentration 

(Standard deviation limits indicated) 
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Figure 3.55 The Relationship Between Apparent Plate Height (Mean of Sao 
Methods of Assessment) and Injection Volume of a Standard 
Indole Mixture of Fixed Concentration 

(Standard deviation limits indicated) 
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It should be noted that all quantities measured and calculated from 

the chromatograms obtained by injection of a Sul volume were suspect. These 

chromatograms were recorded first and exhibited significantly narrower peaks 

with lengthened capacity factors which yielded correspondingly higher 

apparent plate counts and smaller apparent plate heights. The freshly- 

packed column most probably had not been "worked-in" sufficiently prior to 

commencing this study. Attempts to repeat this part of the experiment were 

obstructed by instrument malfunction, hence, the values that were obtained 

initially are reported herein and are treated as outliers. 

Now, it is well known that increase in injection volume gives rise to 

increased extra-column dispersion which manifests itself as a broadening 

and flattening of peaks. Consequently, the apparent plate count is reduced 

and the apparent plate height increased. This effect is amply demonstrated 

1n'Figures 3.54 and 3.55. Parameters which depend directly upon 9 such as 

mass sensitivity, (which is synonymous with LOD as defined herein) and 

resolution are correspondingly affected. The relationship between LOD (and 

LOQ) and Vi for each analyte is illustrated in Figure 3.53. The theoretical 

improvement in LOD with decreasing Vi is observed in practice with a 

particularly marked effect at low Vi, i. e. < 2-3u1. However, as was stated 

previously, improvement in LOD by reduction in Vi may not necessarily provide 

the best detectability because of the intrinsic increase in signal obtainable 

when an increase in Vi is accompanied by an increase in injected mass, mi, 

as is the case here (see Figure 3.52). Hence, large Vi provides high signal 

amplitude while small Vi provides low LOD. The critical factor that defines 

which Vi is most appropriate is the degree of resolution which is acceptable. 

Klinkenberg59 arbitrarily defined a 10% loss in resolution as the tolerable 

limit which today is widely accepted. Now, the theoretical maximum injection 
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volume that is acceptable is given by Equation 1.28, i. e., 

Vi(max)-= K6iV0(1 + k**)/N' 

This expression may be written in terms of column parameters thus : 

Vi(max) = K6i 2eß(1 + k')r2 Lj d 

Employing typical values for K and c of -12 and 0.7 respectively and 

(1.28) 

substituting in the column dimensions, the absolute theoretical maximum 

injection volume tolerable (i. e., 'where 6i = 0.1) for a chromatogram in 

which km =2 (as arranged here) is calculated to be 8.0111. It should be 

noted that in a practical situation a volume substantially less than this 

would be considered acceptable due to the contributions to extra-column 

dispersion from other components of the system. 

The imposition of Klinkenberg's criterion brings to the fore the 

: 'problem that the NBLC system, when subjected to al V1 injecticaz volume, had 

previously been found to be operating well below the level of performance 

necessary to conform to this degree of tolerance (see Section 3.4.5). This 

difficulty is further exacerbated at higher Vi as is demonstrated by 

Figure 3.56 which depicts the proportion of available column efficiency 

realised for 13S and 5HT for values of Vi between 0.5 and 2011. These graphs 

indicate that 13S (k' = 2.3) suffers gross extra-column band broadening over 

the entire volume range, only achieving 63% of possible column efficiency 

for nn; applied volume of 0.5u1, while 5HT (k' = 19) is similarly subject to 

this phenomenon over the majority of the volume range examined, the theoretical 

criterion only being satisfied at injection volumes of < 2p1. The other 

three solutes occupy the region between these two extremes. The gross 
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FKrsre 3.56 Plot of Proportion of Available Column Efficiency Realised (Mean 
of Tao Methods of Assessment) vs. Injection Volume of a Standard 
Indole Mixture of Fixed Concentration 

(Dashed line represents Klinkenberg's criterion of tolerability) 
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inadequacy of this system with respect to instrument dispersion, irrespective 

of injection volume, has been demonstrated conclusively. Clearly the 

arbitrary criterion of 10% resolution loss being acceptable is impractical 

where the Pye Unicam NBLC system under examination is concerned. 

In practical terms, the important consideration is maintenance of 

sufficient resolution such that the peaks of interest in the chromatogram 

do not begin to coalesce but elute as discrete entities. For some 

separations 50% loss in resolution may be acceptable whereas for others 5% 

loss may not be. In terms of absolute resolution, a value of 1.5 affords 

baseline separation between two peaks of Gaussian or near-Gaussian shape 

even with a discrepancy in height of 100: 1 (cf. 31). The actual chromato- 

graphic resolution experienced at each injection volume was calculated from 

retention time and peak width data for peaks cprresponding to I3S and 5HTP, 

which exhibited the lowest and consequently the controlling. resolution in 

the chromatogram. These data are compiled in Table 3.36 and are presented 

in graphical form in Figure 3.57. As was expected, resolution decreases 

with increasing Vi because of the former's dependence on the square root 

of N. Even with an injection volume as great as 204i1 resolution was far 

in excess of the aforementioned value of 1.5 and consequently was satisfactory 

for the elution of standards with considerable leeway remaining to allow 

for column deterioration. 

One fundamental point has not been addressed thus far, namely that 

the separation obtained for standards does not necessarily allow for the 

introduction and elution of endogenous electroactive coextracted materials 

from biological samples. Hence, resolution may only be assessed fully in 

conjunction with isolation procedures and authentic samples in order that a 

compromise may be settled upon between stringency of , 
the isolation procedure 
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Table 3.36 Retention Time, Peak Width and Resulting Resolution Data for 

I3S and 5HTP Corresponding to Various Injectiai Volumes 

13S 5HTP RS 

vi tR WO 607 WB* tR w0 607 WB* (13S: 5HTP) 

(ß. t1) (min) . (min) (min) (min) . (min) (min) 

0.5 2.30 0.10 0.20 3.50 0.15 0.29 4.86 

1.0 2.18 0.10 0.19 3.30 0.14 0.27 4.79 

5.0 2.25 0.11 0.22 3.40 0.16 0.32 4.26 

" 10.0 2.27 0.12 0.24 3.33 0.17 0.34 3.68 

'20.0 2.27 0.14 0.29 3.27 0.17 0.35 3.15 

wB estimated as 2x w0.607 

Figure 3.57 Plot of Chromatographic Resolution vs. 
-Injection 

Volume of a 

Standard Indole Mixture of Fixed Concentration 
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and elution characteristics of any detectable coextracted substances in 

relatiaz to those of the analytes. 

An injection volume of Sul was selected as a compromise between 

resoluticzi, LOD and proportion of available sample mass introduced. A 

further consideration was the ability to conduct duplicate and possibly 

triplicate analyses of a single 5Ou1 extract using the Rheodyne 7413 sample 

injection valve. This decision was open to review in view of resolution 

considerations where biological fluid extracts were concerned although the 

clear separation obtained (Rs >4 between each analyte pair) provided 

considerable scope for avoidance of coelution problems. 

The application of a 5u1 volume does not allow realisation of the 

full improved mass sensitivity potential obtainable with small-diameter 

columns. However, this volume was selected on the basis of the limitations 

of the Pye Unicam NBLC system and the practical difficulties associated with 

accessible ancillary laboratory equipment. Improvements should be 

achievable in three ways. First, acquisition. of higher specification. 

laboratory equipment would enable manipulaticr: of sample volumes approximately 

cne order of magnitude smaller than is currently feasible. Should this 

be possible, then a less wasteful but equally precise sample introduction 

method would be advantageous. Within the last three years Rheodyne have 

marketed a new micro-injection valve, the model 7520, which is pictured in 

Figure 3.58. This injector represents a significant step forward in valve 

design. The sample is loaded directly into the sample "loop" via a central 

built-in injection port with a hold-up volume of only 0.3u1 (cf. 7ul for 

the model 7413 valve) so reducing waste substantially. No sample loop as 

such exists; the injection volume (a choice of 0.2,0.5 and lul is available) 
0 
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FiEure 3.58 The Rheodyne Model 7520 Micro-Injection Valve 

is housed in a chamber in the rotor block which is translocated into the 

flowstream in order to execute injection. This process is illustrated by 

means of flow diagrams in Figure 3.59. 

LOAD INJECT 
41 sample needle 

port 

needle seat 
inlet 

stator 
pump in -º 
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4 sample 
vent 
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Figure 3.59 Flow Diagram for the Rheodyne Model 7520 Micro-Injecticm Valve 
. 
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Hence, valve technology today is sufficiently advanced to accommodate 

the low sample wastage requirement. The third improvement of ultimate 

benefit would be gained by use of a NELC system of considerably reduced 

dispersion characteristics. A pump of higher specification capable of 

delivering pulseless flow rates of one order of magnitude lower than the 

PU4010 can and an ECD with a ccnsiderably reduced time constant facility 

would be particularly beneficial. 

3.4.8 The Search for an Internal Standard 

The employment of an internal standard (IS) is desirable in trace 

analysis because some sources of random error inherent in the isolation and 

chromatographic procedures may be compensated for thus yielding improved 

precision. Generally the IS is added to the sample as early in the sample 

preparation procedure as possible and the final quantitative measurement is 

the ratio of either the peak heights or the peak areas of the species of 

interest and the IS. 

Ideally an IS should be both chemically similar (i. e., possessing 

similar structure and functionality) and chromatographically similar (i. e., 

being of similar size and polarity) to the analyte species. 413 The 

importance of the IS being chemically similar to the species to be determined 

is twofold. First, the IS is required to behave similarly to the analyte 

species during the extraction procedure and secondly,,!. 
the IS is required to 

generate a response from the detector in use. In this case the IS must 

undergo electro-oxidation at the selected potential (+0.95V vs. Ag/AgCl) and 

in order to do so it must possess suitable electrophores. Chromatographic 

similarity to the analyte species is necessary so that the IS elutes at a 

suitable point in the chromatogram as near to the analyte peaks as possible 
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whilst being completely resolved from all peaks in the chromatogram. 

Another essential criterion relating to an IS is that it should not be 

indigenous to the sample medium. Clearly this is important so that 

"interference" with the IS peak from (variable) media components does not 

occur and hence the potential for improved precision is preserved. 

Other desirable features of an IS are that it should be chemically 

stable, non-hazardous, readily available and inexpensive. 

In previous work with indoles a number of different substances have 

been applied as IS's for the analysis of whole blood, serum or plasma by 

LC-EC. Recent examples include 6-hydroxytryptamine (6HT) 367,414,41S 

NW methyl-5-hydroxytryptamine (N -Me-5HT)4 
6, N, N-dimethyl-5-hydroxytryptamine 

(= bufotenine; BF)417,5-hydroxyindole-2-carboxylic acid (5HI2A)363 and 

a-methyltryptophan (a-McTP). 418 The choice of IS appears to have been made 

based on which TP derivative was of primary concern to the researchers. 

Regrettably, none of these materials was immediately to hand for trial as 

an IS in conjunction with the current separation although all the afore- 

mentioned compounds are commercially available, for example from Sigma 

Chemical Co. (Poole, Dorset, UK). In the absence of a non-biogenic indole, 

a series of chemicals was selected off the laboratory shelf. Three criteria 

were employed in making this selection i. e., that the molecules be of similar 

molecular weight to the analytes, that small quantities of them be soluble 

in an aqueous MeOH environment, and that they possess at least one suitable 

electrophore. These conditions were most closely satisfied by aromatic 

hydroxy- and amino-compounds, primarily phenol, aniline and derivatives 

thereof. A total of eighteen compounds were assessed as potential ISts for 

the determination of indoles. These compounds were : 

(i) phenol 

(ii) 1,2-dihydr oxybenzene (catechol) 



- 365 - 

(iii) 1,2,3-trihydroxybenzene (pyrogallol) 

(iv) 1,3,5-trihydroxybenzene (phlor oglucinol) 

(v) 3-methylphenol (m-cresol) 

(vi) 3-chlorophenol 

(vii) 4-chlorophenol 

(viii) pentachlorophenol 

(ix) 2-nitrophenol 

(x) 4-nitrophenol 

(xi) 4-hydroxybenzoic acid 

(xii) 4-methoxybenzyl alcohol (anisyl alcohol) 

(xiii) aniline 

(xiv) 4-bromoaniline 

(xv) 4-nitroaniline 

(xvi) 2-aminophenol (2-hydroxyaniline) 

(xvii) 2-methoxyaniline (o-anisidine) 

(xviii) 4-methoxyaniline (p-anisidine) 

Solutions were prepared in a pseudo-mobile phase comprising 4% MeOH : 

96% aq. 0.1M KH2PO4 and were chromatographed sequentially under conditions 

optimised for the separations of TP, 5HTP, 5HT, 51UAA and 13S. These 

injections were interspersed with injections of a five component indole 

standard which were made in order to ensure that the chromatography was 

stable, with time and to enable direct comparison of the retention and peak 

shape of each potential IS with that of the indoles. Retention times were 

measured and capacity factors were calculated for each substance. These 

values are listed in Table 3.37 and may be compared with the typical retention 

times and capacity factors for the five analyte species listed in Table 3.38. 
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Table 3.37 Retention Times and Capacity Factors for Potential Internal 

Standards Chromatographed under Optimised Conditions. 

Compound tR 

(min) 

k' 

phenol 6.9 7.63 

1,2-dihydroxybenzene 3.6 3.50 

1,2,3-trihydroxybenzene 1.8 1.25 

1,3,5-trihydroxybenzene 2.0 1.50 

3-methylphenol 14.4 17.00 

3-chlorophenol 34.6 42.25 

4-chlorophenol 32.4. 39.50 

pentachlorophenol 51.0 62.75 

2-nitronhenol 20.8 25.00 

4-nitrophenol 19.6 23.50 

4-hydroxybenzoic acid 7.3 8.13 

4-methoxybenzyl alcohol 10.8 12.50 

aniline 5.0 5.25 

4-bromoaniline >60.0 >74-00 

4-nitroaniline 15.0 17.75 

2-aminophenol 3.8 3.75 

2-methoxyaniline 11.0 12.75 

4-methoxyaniline 9.2 10.50 
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Table 3.38 Retention Times and Capacity Factors of Indoles Chromatographed 

Under Optimised Conditions 

Indole tR k 
(min) 

13S 2.8 2.50 

SHTP 3.6 3.50 

TP 7.4 8.25 

5HIAA 10.3 11.88 

5HT 14.1 16.63 

"Windows" appear in the chromatogram of the five component indole 

standard between peaks corresponding to SHTP and TP (k' = 5.3-7-3). TP and 

5HIAA. (k' = 9.8-10.8), and 5HIAA and 5HT (k' = 13.3-15.3). In addition, 

the-region following the final peak in the chromatogram (i. e., k' > 18.5) 

is available for IS elution although placement of an IS to greater retention 

than. the most highly retained analyte necessarily increases analysis time. 

. 
0f<the 18 substances evaluated as IS's, the two trihydroxybenzenes 

exhibited very little retention (k' < 2) therefore they were rejected. The 

four halogenated compounds, 3- and 4-chlorophen ol, pentachiorophenol and 

4-bromoaniline, all eluted at unacceptably long retention times and 

consequently, they too were rejected. 1,2-dihydroxybenzene and 2-aminophen of 

were eliminated because peaks corresponding to these substances interfered 

with. the, SHTP peak. For similar reasons, phenol and 4-hydroxybenzoic acid 

(coelution with TP), 2-methoxyaniline (coelution with 5HIAA), and 3-methyl- 

phenol,. 4-methoxybenzyl alcohol and 4-nitroaniline (coelution with 5HT) were 
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also unacceptable. The two nitrophenols eluted with capacity factors of 

23.5 and 25.0-which, if utilised as IS's, would represent an increase in 

analysis time of about 30% which was not ideal. Of these two compounds the 

4-nitrophenol was rejected on peak shape grounds, the band being unacceptably 

broad. Both substances yielded poor response characteristics, most probably 

as a result of the powerful electron-withdrawing nature of the -NO2 group 

on the aromatic ring. 

Only two substances were favoured chromatographically in terms of k', 

viz. aniline and 4-methoxyaniline. The peak shape for aniline was 

satisfactory but that for the 4-methoxy derivative was broad and tailing, 

the tail of which encroached into the regi m in which 5AIAA elutes and 

consequently may cause minor interference if used. Hence, aniline (AN) 

was selected as the substance that was best suited on chromatographic 

grounds to be employed as an IS for indole chromatography. This assumes 

that the region of the chromatogram in which AN elutes is free for any 

electro-oxidisable substances coextracted from samples of biological origin. 

The well known instability of AN to aeriel oxidation was considered not 

to represent a great problem because the analytes are also t own to be 

labile (e. g., 304,305,391-393) thus frequent standard preparation is 

necessitated for quantitative work regardless of the stability of the chosen 

IS. 

Experiments investigating the extraction of indoles and AN from spiked 

-blood samples (reported in Part IVof this Chapter) revealed that AN was not 

well suited chemically to the role of IS. Because of the difficult 

isolation problem, a more closely similar compound to the analytes in 

structural terms was deemed necessary to act as an IS. AN, however, is 

suitable'as a chromatographic standard (CS), i. e., a substance which is added 
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to the sample extract following isolation and prior to chromatography in 

order to compensate for random errors in the chromatographic step alone. 

However, when using a modern high precision- injection. valve, a CS is of 

very limited value. 413 

A sample of N, N-dimethyl-5-hydroxytryptamine (= bufotenine; BF) was 

obtained from Sigma Chemical Co. (Poole, Dorset, UK) for investigation as 

an IS on the recommendation of Dr. E. Gelpi of the Instituto de Quimica Bio- 

Organica, Barcelona, Spain. 4179419 The structure of the BF molecule is 

shown in Figure 3.60. BF closely resembles 51-IT, differing only in the 

CH3 

HO """"CH3 

N 
H 

Figure 3.60 The Structure of Bufotenine 

fact, that the amine group is dimethylated in the former compound. As 

the , two, molecules are so similar, two half-wave (oxidation) potentials 

would be predicted for BF analogous to 5HT, i. e., at ca. +0.4V for the 

5-hydroxyl group and ca. +0.8V for the indole ring nitrogen atom. Since 

the amine 
, 
group is isolated from these electrophores, it would not be expected 

to exert any discernible influence on these oxidations. Thus, an adequate 

response-to EC detection at an applied 
. potential of +0.95V for the BF-, 

molecule would be foreseen. 

( 
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Following initial investigative experiments with a methanolic BF 

solution, a standard containing TP, 5HTP, 5HT, 5HIAA, 13S and BF was freshly 

prepared in pseudo-mobile phase. A typical chromatogram obtained under 

optimised conditions from injection of this six component standard is 

presented in Figure 3.61. BF is observed to be well resolved from the five 

analyte species, eluting with a capacity factor of 44.71 (tR = 32.0 mins). 

This represents an undesirable twofold increase in chromatographic run time 

from ca. 18 reins to ca. 38 rains. In addition, the peak corresponding to BF 

was observed to suffer from tailing to a not insubstantial degree which 

caused concern regarding precision of peak area integration in quantitative 

analysis. Regrettably, gradient elution, which would normally be 

contemplated to reduce the overall run time and improve peak shape under such 

circumstances, has been stated to be extremely difficult to apply with EC 

detection because of problems with maintenance of detector stability. 114 

Furthermore, a gradient elution facility was not available with the Pye 

Unicam NBLC instrument under assessment. As it was considered to be 

prohibitively expensive to acquire and test other closely related substances 

(e. g., 6HT, N-Me-5HT, 5B12A) as potential IS's, the less-than-ideal chromato- 

graphic behaviour demonstrated by BF, under conditions optimised for the 

separation of TP and its 5-hydroxylated metabolites, had to be persevered 

with, especially in view of the expected suitability of BF with respect to 

its chemical properties. The evaluation of BF for use with blood samples 

is reported in Part IVof this chapter. 

The chromatographic behaviour of BF can be rationalised by considering 

its speciaticn at the working pH of 4.00. BF, like 5HT, possesses two pKas 

in an aqueous environment. These pKa values are 9.8 and 11.2409 (cf. 

values for 5HT of 9.98 and 11.26, Table 3.23). The equilibria represented 

by these constants are indicated in Figure 3.62. 
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Figure 3.61 Typical Chromatogram of a Five Indole Standard 
Incorporating Bufotenine as an Internal Standard 

Parameters :- Spherisorb S5 ODS1 (10cm x 2.1mm, dp = 5pm); Mobile Phase 
4% MeOH : 96% aq. 0.1M KH2P04/H3P04 buffer containing BSA (200mg1-1) pH 
4.00; Flaw Rate : 0.4mlmin-1; Detection : ECD (Eapp = +0.95V vs. Ag/AgCl, 
TC = l0sec); Sample : 5111 via loop of a standard containing TP, 5HTP, 
5HT, 5BIAA, 13S and BF in 4% MeOH : 96% aq. 0.1M K} PO4 
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From this scheme., it is clear that in a pH 4.00 environment, BF exists 

almost exclusively as the protonated quaternary ammonion im. This is 

analogous to the behaviour of 5HT. Consequently, BF would be expected to 

be retained on the, reverse phase column in an identical manner to 5HT, 

i. e., by ion-pair association with the lipophilic BSA moiety. BF is retained 

considerably longer than is 5HT under identical conditions (k' = 44.71 

cf. k' = 20.43 for 5HT). This is probably a direct result of the increased 

stability of the positively charged site in BF compared with 5HT which is 

afforded by the inductive effects-of the two methyl groups. The increased 

stability of the cationic site in BF will necessarily lead to stronger 

coulombic association with the anionic HSA species. This in turn would 

result in an increase in the retention of BF compared with 5HT. 
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3.5 Ex-oerimental 

3.5.1 Solvents and Reagents 

All chemicals were obtained from the sources noted in Section 3.3.1 

and were used as received with the exception of solvents which were treated 

prior to use as stipulated previously. 

3.5.2 Mobile Phase Preparation 

The optimised mobile phase was prepared as described in Section 3.3.2.2. 

3.5.3 Columns 

A 10cm x 2.1mm ID column was packed in the laboratory with Spherisorb 

S5 ODS1. The packing procedure employed was that described in Sectiai 2.2.4 

with the equipment modificatiaris noted in Section 3.3.3.3. 

3.5.4' Standard Solution Preparation 

For all experiments reported in Part III of Chapter 3 stock solutions 

(4 00ugm1"1 active ingredient) of ZP, 5HTP, 5HT. creatinine sulphate complex, 

5BIAA and I3S. K® salt were prepared in a MeOH: water mixture and were 

acidified with HAc (5 drops) to aid dissolution. A stock solution of 

BF. ooalate. Uz0 (1.700 ± 0.001mg complex/100mas - ll. lugml-1 as active 

ingredient) was prepared in MeOH. 

Working standards were prepared by combinatim and serial dilutiai 

with "pseudo"-mobile phase (4% MeOH : 96% aq. O. 1M KI P04). A series of 

solutions containing 0.02,0.04,0.06,0.08 and O. lOugml-1 of each of TP, 

5HTP, 5HT, 5HIAA and 13S (as active ingredient) together with BF (0.221jgm1'1 

as active ingredient) were obtained. 
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For determination of within-batch precision the 0.06ugm1-1 standard 

was employed. For determination of between-batch precision and LOD for 

each analyte, all five standards were utilised. 

3.5.5 HPLC Operating Unditions 

Column : Spherisorb S5 ODS1 (L = 10cm, ID = 2.1mm, dp = Sum, 

C Loading = 7% w/w, Surface Area = 220m2g-1) 

Mobile Phase : 4% McOH : 96% aq. 0.1M KH2PO4/H3P04 buffer 

containing HSA (2 00mg1-1), pH 4.00 

Flow Rate : 0.4mlmin -1 (= u=0.19cros-1) 

Injection Volume . 51u1 (via micro-loop) 

Detection . ECD (Potential : +0.95V vs. Ag/AgCl Reference; 

Mode : Oxidation; Instrument Sensitivity : 3nA 

f. s. d.; Time Constant : 10sec) 

Chart Speed : 5mm min-' 

Integrator Parameters : ATT : 210, PK WD : 0.16, THRSH : 11, AR REJ 

(HP3390A) 1x 107 
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3.6 System Evaluation with Respect to Precisicm, Limit of Detection 

and Limit of Quantitation 

3.6.1 General Remarks 

In order to investigate the capabilities of the NBLC-EC system with 

respect to within-batch precision (repeatability), between-batch precision 

(reproducibility), LOD and LOQ, the PU4022 detector was set at the highest 

sensitivity available which yielded an acceptable baseline. This condition 

was satisfied at 3nA f. s. d. with a time constant of 10sec (see Section 

2.3.2.4). A time constant of this order would be expected to be detrimental 

to performance causing broadening and attenuation of the detector output 

to some degree. However, the above settings, provided the greatest S/N 

ratio with baseline noise, at-a tolerable level which is the recommended 

criterion for optimum usage. 205 

An injection volume of 5il was employed and the magnitude of 

concentration of indole standards to be utilised was determined by preliminary 

experiments. 'Solutions ccntaining the five analytes each at concentrations 

of 0.02,0.04,0.06,0.08 and 0.10ugml-1 were applied. All standards 

incorporated BF at 0.22pgm1-1 as an IS. This represented cn-column masses 

of 100,200,300,400 or 500pg for each analyte together with l. lng of BF 

per injection. 

3.6.2 -Within-Batch Precision- of Peak Measurements 

An indole standard containing TP, 5HTP, 5HT, 5HIAA and 13S (all 

constituents at a concentration of 0.06ugml-1 as active ingredient), together 

with BF, the IS (0.22pgml-1 as active ingredient), was chromatographed 
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(Vi = 51j1) ten times ccn secutively. The Pye Unicam NBLC system equipped 

with a freshly-packed Spherisorb S5 ODS1 column (10cm x 2.1mm ID) was 

utilised. Chromatography was performed under the optimised operating 

conditions (see Section 3.5.5). A typical trace is presented in Figure 3.63. 

The detector signal was fed to both a chart recorder and a Hewlett Packard 

EP3390A electronic integrator which were connected in parallel. Integration 

parameters were determined from preliminary investigations and were 

programmed into the HP3390A prior to commencement of this experiment. 

For each standard run peak areas were obtained from the integrator 

and peak heights were measured manually. Peak area ratios and peak height 

ratios (indole/IS) were calculated. All these data are presented in 

Table 3.39. The within-batch precision of each quantitation methodology 

for each analyte was determined and is reported both in absolute terms (as 

mean SD) and in relative terms as a percentage (the relative standard 

deviation, RSD) in Table 3.40. 

These results demonstrate that the peak height ratio method of 

-quantitation yieldsthe highest within-batch precision (mean RSD = 4.7%). 

The two external calibration methods, peak area and peak height were found 

to be: -equivalent in relation to within-batch precision (mean RSDs of 6.6% 

and 6.5%, respectively). This observation is in agreement with the findings 

of Janik420, who demonstrated that manually measured peak heights and 

electronically integrated peak areas obtained from a GC output were 

equivalent with respect to precision. This statement is only true under 

carefully controlled conditions because peak height is sensitive to 

instrumental and operational variations whereas peak area suffers less from 

this disadvantage. 421 More recently, two extensive cooperative studies 

comparing the precision of peak height and peak area measurements in LC have 
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Table 3.39 Peak Measurement Data for Replicate Injections of a Six Component Indole Standard (n = 10) 

Measurement Run 7P 5H7P 5HT 5HIAA I3S BF 
Parameter Number (IS) 

area 11.463 10.408 19.093 12.237 6.2801 27.459 
(counts*. X 10-7) 2 9.561 10.568 18.687 12.212 7.1601 32.404 

3 10.876 11.023 20.968 15.406 7.8887 38.194 

4 10.379 10.331 19.973 14.047 7.1312 35.892 
5 11.592 11.519 21.197 14.544 8.0877 33.681 
6 10.998 11.340 20.491 14.594 7.8110 44.162 

7 10.109 11.526 19.212 13.123 7.7727 42.427 

8 9.918 11.771 22.405 14.101 7.7600 46.277 

9 10.217 11.440 21.921 13.498 7.6767 42.521 

10 11.137 11.231 22.135 15.315 7.4815 47.455 

Area Ratio 1 0.4175 0.3790 0.6953 0.4456 0.2287 - 
2 0.2950 0.3261 0.5767 0.3769 0.2310 - 
3 0.2848 0.2886 0.5490 0.4034 0.2065 - 
4 0.2892 0.2878 0.5565 0.3914 0.1987 - 
5 0.3442 0.3420 0.6293 0.4318 0.2401 - 
6 0.2490 0.2568 0.4640 0.3305 0.1769 - 
7 0.2383 0.2717 0.4528 0.3093 0.1832 - 
8 0.2143 0.2544 0.4841 0.3047 0.1677 - 

9 0.2403 0.2690 0.5155 0.3174 0.1805 - 
10 0.2347 0.2367 0.4664 0.3227 0.1577 - 

Height (mm)' 1 73 143 74 78 124 58.5 

2 74 146 78 76.5 132 56 
3 77 162 80 80.5 144.5 59.5 

4 75 149 76.5 77 130.5 56.5 

5 81.5 164 83.5 87.5 144 59.5 
6 83.5 165 89 88 143 67 

7 84 170 86.5 85.5 146.5 65.5 

8 83 165 90.5 89 144 69 

9 84.5 171 88 95 147 68 

10 82.5 165 88.5 90 145 69 

Height Ratio 1 1.2479 2.4444 1.2650 1.3333 2.1197 - 
2 1.3214 2.6071 1.3929 1.3661 2.3571 - 
3 1.2941 2.7227 1.3445 1.3529 2.4286 - 

4 1.3274 2.6372 1.3540 1.3628 2.3097 - 
5 1.3697 2.7563 1.4034 1.4706 2.4202 - 
6 1.2463 2.4627 1.3284 1.3134 2.1343 - 
7 1.2537 2.5373 1.2910 1.2761 2.1866 - 
8 1.2029 2.3913 1.3116 1.2899 2.0870 - 
9 1.2426 2.5147 1.2941 1.3971 2.1618 - 

10 1.1957 2.3913 1.2826 1.3043 2.1014 - 

1 area count = 0.125PVs (t 10%) 

Y5 
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been cmducted. 422,423 The authors concluded that peak area derived by 

electronic integration was equivalent or superior in terms of precision to 

peak height determined either manually or by electronic means for "well- 

behaved" peaks (i. e., - bands which are not subject to chromatographic 

interference). For "poorly-behaved" peaks (i. e., bands which are subject 

to chromatographic interference) peak height was shown to yield higher 

precisiai than peak area. In the case of the "well-behaved" peaks under 

assessment here the former statement applies. 

By far the most imprecise quantitation technique considered in this 

investigation was that of peak area ratio, with a mean RSD of 16.2%. The 

primary reason for such poor precision was the variability in the integration 

of the IS peak, which occurred due to problems encountered with reproducibility 

in recognition of the start and end points of the IS peak. Variation of 

integration parameters failed to provide improved precision. In previous 

studies difficulties of this nature have been recognised at low SIN levels. 424 

Furthermore, the problem was certainly exacerbated by the considerable 

deviation from Gaussian peak shape exhibited by the BF band. Haefelfinger413 

remarked upon the limitations of the IS technique and using the law of 

propagation of error derived the formula 

RSDis < 22. RSDanalyte (3.2 ) 

where, RSDIS = the relative standard deviation of the area (or height) 

of the IS. 

RSDanalyte = the relative standard deviation of the area (or height) 

of the analyte. 

and' IL = the correlatia coefficient which is in the range 

0<2<1 since a positive correlation must exist 

between the area (or height) of the IS and that of the 

analyte. 
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only if the relationship stated in Equation 3.2 holds true will inclusion 

of an IS improve the precision of a particular method. By following the 

above procedure for the peak areas it was found that the expression was 

not satisfied for any analyte,, therefore no improvement in precision was 

possible by the peak area ratio method using BF as an IS. In fact, an 

impairment of precision was observed in practice between the use of analyte 

peak areas alone (i. e., external calibration) and peak area ratios (see 

Table 3.40). This impairment would be expected to be intensified when 

extraction techniques are considered in addition. 413 In contrast to the 

circumstances encountered with peak areas, employment of peak heights with 

Equation 3.2 yielded valid statements for TP, 5HTP, 5HT and 5HIAA, but 13S 

just failed to achieve acceptability. Consequently, improved precision 

is expected by the use of peak height ratios as compared with peak heights 

alone for all the analytes except 13S where slight impairment is predicted. 

This situation occurs in practice (see Table 3.40). 

Of the four methods considered, quantitation via peak height ratios 

provides the best within-batch precision for standard solutions. The 

limitation of peak area ratios in this application is the irreproducibility 

of the IS peak intregration. In addition, it should be noted that even the 

best RSDs are well in excess of the claimed precision for the injector of 

005%383,38L# The reasons for this occurrence are unclear. There are 

obviously factors present which give rise to short-term (intra-day) 

variability in detector response. ECDs are flow sensitive so perhaps 

in control of flow rate via the PU4010 pump leads to short-term 

instability. Progressive electrode contamination over the analysis period 

albeit only a few hours, would also be expected to contribute to the 

imprecision. 
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3.6.3 Between-Batch Precision of Peak Measurements 

In order to assess between-batch precision with standard solutions, 

a series of indole standards (0.02,0.04,0.06,0.08 and 0.10ugm1-1 each 

analyte + 0.22pgml-'' BF) was chromatographed (1 = 51i1) a total of 5 times 

over a period of 8 months. A typical series of chromatograms so obtained 

is presented in Figure 3.64. The detector signal was processed as described 

for the determination of within-batch precision. Peak area and peak height 

measurements were obtained from each run and peak area and peak height ratios 

:. (indole/IS) were calculated. All values are reported in Tables 3.41-3.45. 

At the instrument sensitivity setting employed for this work (3nA 

-f. s. d. ) early eluting peaks (13S and 5HTP) went off-scale on the chart 

'recorder during the first three experiments on chromatographing the 0.08 

and 0. l0ugml-1 standards. Consequently, peak height measurements could not 

be made for these two analytes, so rendering impossible subsequent 

calculation of peak height ratios. 

Between-batch precision was determined separately with respect to 

', 'each analyte, concentration and method of quantitation investigated. Results 

were expressed in terms of mean ± SD at each concentration and, in order to 

., be able to compare values obtained at different concentrations, the SD in 

= each case was expressed as a percentage of the mean, i. e., as a RSD. The 

, calculated RSDs were averaged over the entire concentration range for each 

"analyte and are reported (± SD thereof) in Table 3.46. In addition, the 

-collective means averaged over all concentrations and substances for each 

particular method of quantitation were determined and these values are also 

included in Table 3.46. 

, RSD values ranged from 18% for 13S quantified by either peak area 

ratio or-peak height ratio to 46% for TP measured directly by peak area. 
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Table 3.41 Experimental Data for Tryptophan 

x ,...... _- Y IS (= BF) 

Cancantration Peak Peak Area Peak Peak Height Peak Peak 

(pß"1) 
Area 

(counts x 10"7) 
Ratio Height 

(mm) 
Ratio Area 

(counts x 10-7) 
Height 

(mm) 

I 

0.02 3.8555 0.1141 28 0.4516 33.802 62 

0,04 7.0800 0.2162 49.5 0.7500 32.746 66 

0.06 9.3328 0.2794 75 1.1905 33.408 63 

0.08 12.395 0.3882 111 1.8049 31.928 61.5 

0.10 15.262 0.4943 123 2.0847 30.876 59 

0.02 4.0538 0.1073 23.5 0.4123 37.785 57 

0.04 6.7251 0.1906 45 0.8182 35.292 55 

0.06 11.463 0.4175 73 1.2479 27.459 58.5 

0.08 14.545 0.4747 107 1.7833 30.640 60 

0.10 17.427 0.5900 123 2.0500 '29.537 60 

III 

0.02 3.5438 0.0868 27 0.4426 40.823 61 

0.04 7.2645 0.1667 59 0.9219 43.568 64 

o. o6 11.137 0.2347 82 1.1884 47.455 69 

0.08 12.448 0.3008 106 1.7377 41.378 61 

0.10 16.935 0.4517 130 2.0968 37.491 62 

0.02 1.1799 0.0572 11 0.2340 20.642 47 

0.04 2.5028 0.1184 24 0.4800 21.132 50 

0,06 3.5853 0.1442 40.5 0.7864 24.862 51.5 

0.08 5.3221 0.2115 52.5 1.0096 25.167 52 

0.10 5.9705 0.2498 62 1.2277 23.897 50.5 

0.02 1.5220 0.0758 14.5 0.2788 20.088 52 

0.04 2.4673 0.1060 26 0.4727 23.287 55 

0,06 3.8734 0.1574 45 0.7563 24.601 59.5 

0.08 5.5402 0.2313 60 1.0000 23.955 60 

0.10 7.1952 0.2861 74.5 1.2957 25.152 57.5 
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Table 3.42 Experimental Data for 5-Hydroxytryptophan 

x Y IS ( = BF) 
Cmcentration Peak Peak Area Peak Peak height Peak Peak 

(ugml"1) 
Area 

(counts x 10-7) 
Ratio Height 

(mm) 
Ratio Area 

(counts x 10-7) 
Height 

(mm) 

I 

0.02 3.9025 0.1155 54 0.8710 33.802 62 

0.04 6.7375 0.2058 104 1.5758 32.746 66 

0.06 10.183 0.3048 151 2.3968 33.408 63 

0.08 12.400 0.3884 o/s no 31.928 61.5 

0.10 13.827 0.4478 0/5 no 30.876 59 

II 

0.02 4.6366 0.1227 50 0.8772 37.785 57 

0.04 7.0666 0.2002 93 1.6909 35.292 55 

0.06 10.408 0.3790 143 2.4444 27.459 58.5 

0.08 14.799 0.4830 0/3 no 30.640 60 

0.10 15.230 0.5156 c/o no 29.537 60 

III 

0. C-2 3.6981 0.0906 46 0.7541 40.823 61 

0.04 6.6770 0.1533 105 1.6406 43.568 64 

0.06 11.231 0.2367 163 2.3623 47.455 69 

0.08 13.430 0.3246 o/s no 41.378 61 

0.10 14.779 0.3942 o/s no 37.491 62 

II 
0.02 1.1666 0.0565 21 0.4468 20.642 47 

0.04 2.8556 0.1351 47 0.9400 21.132 50 

0. o6 4.1009 0.1649 72 1.3981 24.862 51.5 

0.08 5.2695 0.2 094 97 1.8654 25.167 52 

0.10 6.8134 0.2851 123 2.4356 23.897 50.5 

7 
0.02 1.2989 0.0647 21 0.4038 20.088 52 

0.04 2.5927 0.1113 49.5 0.9000 23.287 55 

0,06 4.5162 0.1836 78 1.3109 24.601 59.5 

0.08 5.9405 0.2480 101 1.6833 23.955 60 

0.10 7.1439 0.2840 127 2.2087 25.152 57.5 

o/j . off scale. no - not calculable 
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Table 3.43 Experimental Data for 5-Hydroxytryptamine 

XY IS (- BF) 
Cmcentration Peak Peak Area Peak Peak Height Peak Peak 

Area Ratio Height Ratio Area Height 
(ugml'1) (counts x 10'7) (mm) (counts x 10'7) NO 

0,02 6.9678 0.2061 28 0.4516 33.802 62 

0.04 12.681 0.3873 54 0.8182 32.746 66 

0,06 19.517 0.5842 83 1.3175 33.408 63 

0.08 25.599 0.8018 113 1.8374 31.928 61.5 

0.10 31.929 1.0341 134 2.2712 30.876 59 

0.02 7.3850 0.1954 22 0.3860 37.785 57 

0.04 10.678 0.3026 49 0.8909 35.292 55 

0.06 19.093 0.6953 74 1.2650 27.459 58.5 

0.08 27.595 0.9006 109 1.8167 30.640 60 

0.10 33.438 1.1321 135 2.2500 29.537 60 

III 

0.02 7.3301 0.1796 27 0.4426 40.823 61 

0.04 13.276 0.3047 59 0.9219 43.568 64 

0.06 22.135 0.4664 88 1.2754 47.455 69 

0.08 24.533 0.5929 114 1.8689 41.378 61 

0.10 32.508 0.8671 141.5 2.2823 37.491 62 

0.02 2.3530 0.1140 12 0.2553 20.642 47 

0.04 4.7079 0.2228 23.5 0.4700 21.132 50 

0,06 7.2889 0.2932 45.5 0.8835 24.862 51.5 

0.08 9.1243 0.3626 62 1.1923 25.167 52 

0.10 12.817 0.5363 78.5 1.5545 23.897 50.5 

0.02 3.7349 0.1859 12.5 0.2404 20.088 52 
{ 

0.04 4.4836 0.1925 28 0.5091 23.287 55 

0.06- 8.8983 0.3617 48 0.8067 24.601 59.5 

0.08 10.456 0.4365 65 1.0833 23.955 60 

13.025 0.5179 79.5 1.3826 25.152 . 152 57.5 
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Table 3.44 Experimental Data for 5-Aydroxyindole-3-acetic Acid 

%Y IS (= BF) 
Cancantrati an Peak Peak Area Peak Peak Height Peak Peak 

Area Ratio Height Ratio Area Height 
(ugml'1) (counts x 10-7) NO (counts x 10'7) (mm) 

I 

0.02 4.1379 0.1224 29 0.4677 33.802 62 

0.04 9.4181 0.2876 57 0.8636 32.746 66 

0.06 13.160 0.3939 85 1.3492 33.408 63 

0.08 17.390 0.5447 118 1.9187 31.928 61.5 

0.10 20.115 0.6515 141 2.3898 30.876 59 

II 

0.02 6.1103 0.1617 24.5 0.4298 37.785 57 

0.04 9.8988 0.2805 54 0.9818 35.292 55 

0.06 12.237 0.4456 78 1.3333 27.459 58.5 

0.08 20.306 0.6627 117 1.9500 
. 
30.640 60, 

0.10 22.957 0.7772 134 2.2333 29.537 60 

III 
0.02 4.0620 0.0995 25 0.4098 40.823 61 

0.04 7.9531 0.1825 55 0.8594 43.568 64 

0.06 15.315 0.3227 89.5 1.2971 47.455 69 

0.08 18.809 0.4546 121 1.9836 41.378 61 

0.10 22.810 0.6084 145 2.3387 37.491 62 

IV 

0.02 2.2834 0.1106 15 0.3191 20.642 47 

0.04 4.3790 0.2072 32.5 0.6500 21.132 50 

0.06 6.6091 0.2658 53 1.0291 24.862 51.5 

0.08 8.7523 0.3478 69.5 1.3365 25.167 52 

0.10 10.726 0.4488 88.5 1.7525 23.897 50.5 

Y 

0.02 2.2267 0.1108 16 0.3077 20.088 52 

0.04 3.6013 0.1546 30 0.5455 23.287 55 

0.06 7.3232 0.2977 52.5 0.8824 24.601 59.5 

0.08 8.4134 0.3512 69.5 1.1583 23.955 60 

0.10 10.316 0.4101 91 1.5826 25.152 57.5 
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Table 3.45 Experimental Data for Indoxyl-3-sulphate 

xy IS (- BF) 
Concentration Peak Peak Area Peak Peak Height Peak Peak 

Area Ratio Height Ratio Area Haight 
(pgml"ý) (counts x 10'7) (mm) (counts x 10"7) (mm) 

I 

0.02 

0.04 

0.06 

0.08 

0.10 

2.2696 

4.7519 

6.7889 

8.7879 

9.9319 

0.0671 

0.1451 

0.2032 

0.2752 

0.3217 

48 

99 

135 

0/e 

0/e 

0.7442 

1.5000 

2.1429 

ne 

nc 

33.802 

32.746 

33.408 

31.928 

30.876 

62 

66 

63 

61.5 

59 

II 

0.02 2.0119 0.0532 45 0.7895 37.785 57 

0.04 . 
4.9073 0.1390 89 1.6182 35.292 55 

0.06 6.2801 0.2287 124 . 2.1197 27.459 58.5 

0.08 9.6515 0.3150 0/8 ne 30.640 60 

0.10 10.464 0.3543 0/e nc 29.537 60 

III 
- 
0.02 2.1789 0.0534 40 0.6557 40.823 61 

0.04 4.7781 0.1097 91 1.4219 43.568 64 

0.06 '. ' 7.4815 0.1577 145 2.1014 47.455 69 

0.08 8.9779 0.2170 0/s ne 41.378 61 

0.10 10.399 0.2774 0/8 nc 37.491 62 

IV 

0.02 1.2141 0.0588 25 0.5319 20.642 47 

0.04 2.4286 0.1149 54.5 1.0900 21.132 50 

0.06 3.4306 0.1380 87 1.6893 24.862 51.5 

0.08 4.8280 0.1918 118 2.2692 25.167 52 

0.10 6.0200 0.2519 148 2.9307 23.897 50.5 

V 

0.02 1.1153 0.0555 27.5 0.5288 20.088 52 

0.04 2.0638 0.0886 53.5 0.9727 23.287 55 

o. o6 3.3663 0.1368 90.5 1.5210 24.601 59.5 

0.08 4.6825 0.1955 119 1.9833 23.955 60 

0.10 6.3616 0.2529 151 2.6261 25.152 57.5 

o/a a off scale, nc   not calculable 
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Between-batch variation was generally greatest for peak area quantitaticn 

(average 41% RSD) and least for the peak height ratio method (average 24% 

RSD). 

All the RSD values obtained from this experiment were very high, which 

is"indicative of poor reproducibility by every quantitation method. This 

general imprecision does not include the contribution from variability in 

analyte losses which invariably occur during clean-up of authentic samples, 

and consequently is considered to be a conservative estimate with respect 

-to the analysis of biological fluids. 

The possible origins of such low between-batch precision require 

comment. Variable detector sensitivity, most probably attributable to 

variable degrees of electrode contamination over the evaluation period, is 

highly suspect. Support for this supposition is provided by the observation 

that the reproducibility of the ratioing methods of quantitation was 

considerably superior to that of their respective direct measurement 

alternatives (i. e., 28% cf. 41% with respect to area and 24% 2f- 29% with 

respect to height). The ratio methods compensate to some degree for 

systematic variations in peak response. These systematic variations in 

area and height are evident from inspection of the experimental data 

(Tables 3.41-3.45). General response in Experiments IV and V is considerably 

diminished compared with the typical level of response in Experiments I-III 

for equivalent concentrations. 

In additim to fouling of the TATE, other long-term causes of variability 

are almost certainly present. These will include the errors in preparation 

of standards and the mobile phase, level of standard deterioration, column 

condition (i. e., packing uniformity, age, level of contamination, etc. ) and 

general factors relating to NBI, C system performance (e. g., constancy of flow- 
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rate, cleanliness of injection valve, in-line filters and frits, occurrence 

of leakage). Ambient temperature can also be expected to cause wider 

variations over the course of many weeks than it does within one day. 

It should be noted that major technical difficulties were experienced 

with the Pye Unicam NBLC system over the period in which this investigation 

was conducted. These problems will be discussed in detail in Chapter 4. 

Since chronic instrument failure was prevalent during this period it is 

highly likely that the influence of instrument-related factors on the 

reproducibilities would predominate over other factors. 

The mean RSDs obtained for all analytes over the entire range of 

ccncentration examined follow the trend : 

peak area > peak height = peak area > peak height 
ratio ratio 

Since the greater is the RSD, the lesser is the precision then in terms of 

between-batch precision the reverse trend is evident, i. e., 

peak height > peak area = peak height > peak area 
ratio ratio 

Cansequently the peak height ratio approach is preferred because it exhibits 

the best reproducibility. This is in agreement with the result of the 

within-batch precisi ari determination where peak height ratio provided the 

best repeatability. 

There are problems associated with the use of the peak height ratio 

however. The concentration range that may be retained on-scale in a single 

run is highly constrained compared with the range that may be integrated 

electronically. Where caicentraticros are within this range, peak height 

ratio quantitation is feasible. For samples in which higher ca centrations 
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are, -present three options are possible; (1) Instrument sensitivity may be 

altered with regard to the initial chromatogram and a repeat analysis be 

performed. In view of the extreme limitation of sample size this approach 

is not satisfactory. (2) The applied potential of the detector may be 

reduced prior to chromatography but this would have the effect of raising 

the LODs of all the analytes and would require re-calibration. (3) 

Instrument sensitivity may be changed in situ with respect to a chromatogram. 

This third approach requires prior lclowledge of the sample, which is unavail- 

able in routine screening, and is prone to operator error. Furthermore, it 

is impractical at high sensitivity because of the baseline disrupticm inherent 

with the process (see Section 2.3.1). Cosequently, no totally satisfactory 

peak height-based quantitation method is available. The applicability of 

peak height ratio to the determination of indole compounds in plasma samples 

can only be investigated experimentally. 

Of the area-based methods available, peak area ratio suffers poor 

repeatability whereas analyte peak area is not very reproducible. 

Clearly it is essential to take all possible steps to control and 

reduce the excessive variability exhibited by the NBLC system before 

acceptable performance can be achieved. 

3.6.4 Generation of Calibration Curves 

In order to quantitate measurements made on an authentic sample a 

calibration curve is constructed from standards by plotting true values of 

a precise measurement (concentration or mass injected) on the abscissa 

against observed values of an economical, less precise measurement (peak 

area, peak height, peak area ratio or peak height ratio) on the ordinate 

ýA 
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axis. The line of best fit is yielded by applying least squares regression 

to obtain the fitted model 

Y=a +bX 

where a= the intercept on the ordinate axis, 

and' b= the gradient of the regression line. 

The appropriate procedure required to generate this regression line is given 

in most standard texts (e. g., 425). 

In order to estimate the errors inherent in the determination of this 

line it is possible to construct a confidence region in. which the true line 

will be contained, say, 95% of the time. The 95% confidence region for the 

entire line is given by Working-Hotelling statistics which employ Snedecor's 

F statistic, i. e., 

Y=a+ bX ± 
v, a n+ 

(EX 21 S2] (3.3) [2F2( 
J 

,j 

where F= Snedecorts F statistic (Tables), 

v= degrees of freedom 

a= probability setting for required confidence level (= 0.05 for 95%) 

n= number of observations 

= mean of observed X values from standards 

Ex2 = E(X-X)2 

and s2 = variance 

A full discussion of the application of Working-Hotelling statistics to the 

calibration function is presented in a fundamental paper by iunter. 426 

Calibration curves serve two main functions, i. e., (1) the analytical 

function, and (2) determination of the LOD., 
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3.6.4.1 Calibration Curves Employed as Analytical Aids426 

Once a fitted line is obtained then it is often required to be used 

over and over again for all future values of the abscissa variable X 

(concentration or mass injected) to estimate all associated future observ- 

ations Y* (peak area, peak height, etc. ). When the fitted line is to be 

employed repeatedly in this way, then account is taken of the error involved 

by employing the Working-Hotelling confidence region for the true line 

combined with tolerance limits for the observations. These tolerance limits 

provide bounds within which a certain proportion (say, 90%) of the future 

observations will be found. Commonly a 95% confidence region for 90% of 

future observations is employed. These tolerance bounds are given by : 

Y=a+ bX ± (A + zpB) (3.4) 

where A= (1 + X-2 s2 [2F2/2 
ln Ex2 J 

B= [vs2/X1a/2 ]. 

and z= the normal deviate. 
P 

For 100 (1-a)% overall confidence, the critical values of both F and X2 

are set at a/2, i. e., for 95% overall confidence tabulated values 

corresponding to F2 
\) 0.025 and Xv, 0.975 are appropriate. 

Regression lines, Working-Hotelling 95% confidence regions and 95% 

confidence bounds for 90% of future observations were calculated for each 

indole quantified via each of the four different peak parameters. 

Exceptions were 5HTP and 13S by peak height and peak height ratio because 

since the higher concentration standards employed herein produced peaks 
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which went off-scale at the instrument sensitivity setting used then the 

total data was insufficient for computation in these cases. The calculations 

performed on data from the quantitation of TP by peak area are given by way 

of example. All calculated calibration data is summarised in Tables 3.48- 

.. 
3.52. Plots of the regression lines, with attendant Working-Hotelling 95% 

confidence limits and 95% confidence bounds for 90% of future observations, 

are'compiled in Figures 3.65-3.69. 

The calibration curves presented here were constructed principally 

for quantitation experiments utilising blood samples. 

The broadness of the 95% confidence bounds for 90% of future 

observations reflects the uncertainty with which the estimation of the true 

regression line is held. Thus, a comparative examination of the confidence 

bounds reflects the precision of the technique used to derive the original 

data and the method of measuring that data. In effect, the confidence 

bounds reflect the between-batch precision obtained. The arguments put 

forward regarding the possible origins of such variation and the steps 

required to be taken to reduce it therefore apply (see Section 3.6.3). 
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Construction of the Calibration Curve of Trvptonhan from Peak Area Measurements 

with Fitted Regression Line, Working-Hotelling 95% Confidence Region and 95% 

Confidence Bounds for 90% of Future Observations 

Table 3.47 Calibration Data 

-- (X = concentration in ugml'1, Y= peak area in counts x 10-7) 

x y x 
(= x-x) 

y_ 
(= Y-Y) 

x2 y2 xy 

0.02 2.83100 -0.04 -4.874048 0.0016 23.75634391 0.19496192 

0.04 5.20794 -0.02 -2.497108 0.0004 6.235548364 0.04994216 

0.06' 7.87830 0.00 0.173252 0.0000 0.030016255 0.00000000 

0.08 10.05006 0.02 2.345012 0.0004 5.49908128 0.04690024 

0.10 12.55794 0.04 4.852892 0.0016 23.55056076 0.19411568 

EX = 0.30 ZY = 38.52524 Ex = Zy = 
1=0.06 Y=7.705048 0.0040 59.07155057 

Y= a+ bX 

Gradient, b= Zxv = 0.48 92 = 121.48 
Ex2 0.004 

Intercept, a= Y-If = 7.705048-(121.48 x 0.06) = 0.416248 

. Regressiai Line is given by Y=0.416248 + 121.48X 

Variance, s2 = Eve-bExy '= 59.07155057-(121.48 x 0.48592) 
n-2 3 

s2 = 0.04198897 

Exy = 

0.48592000 

. '. s=0.204912103 
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Working-Hotelling 95% Confidence Region 

Y=a+ bX ± [2F2V, 
a( 

1 +X-X)21 s2(3.3) n Ex2 
)J 

Since F2,3,0.05 = 9.552 (Tables) 

Then 

Y' = 0.416248 + 121.48X' ± r2 x 9.552 (0.2 + (X'-0.06 2 0.04193897] 
Ll0.004 JJ 

= 0.416248 + 121.48X' ± x0.802157282 (0.2 + (X'-0.06)2)] 

L 0.004 JJ 

. '. For X1 = 0.02, Y, = 2.85 ± 0.69 

= 3.54 or 2.15 

For X2 = 0.04, Y2 = 5.28 ± 0.49 

= 5.77 or 4.78 

For X3=0.06, Y3 = 7.71 ± 0.40 

8.11 or 7.30 

For X4 = 0.08, Y4 = 10.13 ± 0.49 

= 10.63 or 9.64 

For X5 = 0.10, Y5 = 12.56 ± 0.69 

= 13.26 or 11.87 
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95% Confidence Bounds for 90% of Future Observations 

Y=a+bX± (A+zpB) (3.4) 

where A=1+ (X-2 s2 [2F2, 
v, a/2 

n Ex2 

and B= [vs2/x.;, 
1_a, I2] 

Since zP = 1.29, F2,3, O. A25 = 16.04, and X3,0.975 - 0.216 (Tables) 

Then 

Y' = 0.416248 + 121.48X' ±2x 16.04 (0.2 + (X"-0.06)2 0.041988971 [l0.004 
J 

+3x0.04198897 11 
[1.29( 0.216 JJ 

= 0.416248 + 121.48X' ± 11.347006158 (0.2 + (X"-O. 
-06) 

2A 
0.004 

+ 0.985124392 

. '. For X1 = 0.02, Y1 = 2.85 ± 1.88 

= 4.73 or 0.96 

For X2 = 0.04, `2 = 5.28 ± 1.62 

= 6.90 or 3.65 

For X3 = 0.06, Y3 = 7.71 ± 1.50 

= 9.21 or 6.20 

For X4 = 0.08,. Y4 = 10.13 ± 1.62 

= 11.76 or 8.51 

For X5 = 0.10, Y5 = 12.56 ± 1.88 

= 14.45 or 10.68 
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? able 3.48 Summary of Calibration Data for Tryptophan 

(X - concentratian in ugml'1. Y* (a) peak area in counts x 10-7. (b) peak area ratio, 
(c) peak height in mm. and (d) peak height ratio) 

(a)0.4162+121.5X 

IYY Working-Hotelling Confidence Bounds 

0.02' = '2.8310 2.8458 3.54 or 2.15 4.73 or 0.96 

0.04 5.2079 5.2754 5.77 or 4.78 6.90 or 3.65 
0.06 7.8783 7.7050 8.11 or 7.30 9.21 or 6.20 

0.08 10.0501 10.1346 10.63 or 9.64 11.76 or 8.51 

0.10 12.5579 12.56142 13.26 or 11.87 14.45 or 10.68 

(b)0.0019+4.069X 

y Working-Hotelling Confidence Bounds 

0.02' 0.0882 0.0832 0.12 or 0.05 0.18 or -0.02 

0.04 0.1596 0.1646 0.19 or 0.14 0.25 or 0.08 

0.06 0.2466 0.2460 0.28 or 0.22 0.33 or 0.17 

0.08 0.3213 0.3274 0.35 or 0.30 0.41 or 0.24 

0.10 0.4142 0.4069 0.44 or 0.37 0.51 or 0.31 

(c) Y= -0.12 + 1050X 

xyi Working-Hotelling Confidence Bounds 

0,02 20.8 20.9 29.4 or 12.4 43.9 or -2.1 

0.04 40.7 41.9 47.9, or 35.9 61.7 or 22.1 

0.06 63.1 62.9 67.8 or 58.0 81.3 or 44.5 

0.08 87.3 83.9 89.9 or 77.9 103.7 or 64.1 

0.10 102.5 104.9 113.4 or 96.4 127.9 or 81.9 

(a) Y- 
-0.0049 + 17.76X 

xy Working-Hotelli. ng Confidence Bounds 

0.02 0.3639 0.3504 0.48 or 0.22 0.70 or 0.01 

0.04 0.6886 0.7056 0.80 or 0.62 1.00 or 0.41 

0.06 1.0339 1.0609 1.13 or 0.99 1.34 or 0.79 

0.08 1.4671 1.4162 1.51 or 1.33 1.71 or 1.12 

0.10 1.7510 1.7714 1.90 or 1.64 2.12 or 1.43 
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3tle 3.49 Summary of Calibration Data for 5-Hydroxytryptophan 

(X - concentration in pgml-l. Y- (a) peak area in counts x 10-7. and (b) peak area ratio) 

(a)T-0.9205+111.2X 

iYy Working-Hotelling Confidence Bounds 

O. Q - "" - 2.9405 3.1445 4.77 or 1.52 7.56 or -1.27 
C. C4 5.1859 5.3685 6.52 or 4.22 9.17 or 1.57 
Q, c6 8.0878 7.5925 8.53 or 6.65 11.12 or 4.07 

B. CB 10.1898 9.8166 10.97 or 8.67 13.61 or 6.02 

C. 1Q 11.5587 12.0406 13.67 or 10.41 16.46 or 7.63 

W1-0.1612 + 3.801X 

IyQ Working-Hotelling Confidence Bounds 

O. C2 " 0.0900 0.0921 0.16 or 0.03 0.27 or -0.09 
0.04 0.1611 0.1682 0.21 or 0.12 0.32 or 0.01 

C. 06 0.2538 0.2442 0.28 or 0.21 0.39 or 0.10 

0. Gs 0.3307 0.3202 0.37 or 0.27 0.47 or 0.17 

0.10 0.3853 0.3962 0.46 or 0.33 0.57 or 0.22 
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Table 3.50 Summary of Calibration Data for 5-flydroxytryptamine 

(x - concentraticn in ugml-1, Ya (a) peak area in counts x 10-', (b) peak area ratio, 
(c) peak height in mm, and (d) peak height ratio) 

(a) 1=0.2598 + 243.4X 

Y Working-Hotellang Confidence Bounds 

0.02 5.5542 5.1272 7.30 or 2.95 11.03 or -0.78 
C. C4 9.1653 9.9947 11.53 or 8.46 15.08 or 4.91 

0. o6 15.3864 14.8622 16.12 or 13.61 19.58 or 10.15 

0.08 19.4615 19.7296 21.27 or 18.19 24.81 or 14.65 

0.10 24.7434 24.5971 26.77 or 22.42 30.50 or 18.69 

(t) 1- 
_0.0109 + 8.098X 

X y y Working-Hotelling Confidence Bounds 

0,02 0.1762 0.1511 0.24 or 0.06 0.41 or -0.10 
O. C4 0.2820 0.3130 0.38 or 0.25 0.53 or 0.09 

0.06 0.4802 0.4750 0.53 or 0.42 0.68 or 0.27 

C. 08 0.6189 0.6369 0.70 or 0.57 0.86 or 0.42 

0.10 0.8175 0.7989 0.89 or 0.71 1.05 or 0.54 

(c) is 
-3.61 + 1184X 

i Y 7C Working-Hotelling Confidence Bounds 

0, C2 20.3 20.1 24.3 or 15.9 31.5 or 8.6 

0,04 42.7 43.7 46.7 or 40.4 53.6 or 33.9 

0.06 67.7 67.4 69.8 or 65.0 76.5 or 58.3 

0.08 92.6 91.1 94.0 or 88.1 100.9 or 81.2 

0.10 113.7 114.7 119.0 or 110.5 126.2 or 103.3 

(6) 7s -0.0681 
+ 20.12X 

I Y Y Working-Hotelling Confidence Bounds 

0,02 0.3552 0.3342 0.42 or 0.25 0.56 or 0.10 

0,04 0.7220 0.7366 0.80 or 0.68 0.93 or 0.54 

0.06 1.1096 1.1389 1.19 or 1.09 1.32 or 0.96 

C. ce 1.5597 1.5413 1.60 or 1.48 1.74 or 1.34 

0.20 1.9481 1.9436 2.03 or 1.86 2.17 or 1.71 
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Teile 3.51 Summary of Calibration Data for 5-Hydroxyind ole -3-ace tic Acid 

(% s concentration in Ugm1'1, Y- (a) peak area in counts x 10'7. (b) peak area ratio. 
(c) peak height in mm, and (d) peak height ratio) 

(a) i-0.2947 + 174.6X 

zyi Working-Hotellang Confidence Bounds 

O, C2 3.7641 3.7873 5.08 or 2.50 7.30 or 0.28 

O,, 44 7.0501 7.2798 8.19 or 6.37 10.30 or 4.26 

0,06 10.9289 10.7724 11.52 or 10.03 13.57 or 7.97 

0.08 14.7341 14.2649 15.18 or 13.35 17.28 or 11.25 

0.10 17.3848 17.7575 19.05 or 16.47 21.27 or 14.25 

(L) S- 
-0.0018 + 5.831X 

Y Working-Hotelling Confidence Bounds 

O C2 0.1210 0 0.1148 0.14 or 0.09 0.19 or 0.04 

0,04 0.2225 0.2314 0.25 or 0.21 0.29 or 0.17 

0.06 0.3451 0.3480 0.36 or 0.33 0.41 or 0.29 

0.08 0.4722 0.4646 0.48 or 0.45 0.53 or 0.40 

0.10 0.5792 0.5812 0.61 or 0.55 0.65 or 0.51 

(: )is-3.17+1247X 

zy j( Working-Hotelling Confidence Bounds 

0. C2 21.9 21.8 27.8 or 15.7 38.1 or 5.4 

0,04 45.7 46.7 51.0 or 42.4 60.7 or 32.6 

0,06 71.6 71.6 75.1 or 68.1 84.7 or 58.6 

0,08 99.0 96.6 100.8 or 92.3 110.6 or 82.5 

0.10 119.9 121.5 127.5 or 115.5 137.8 or 105.1 

(d) 1- 
. 0.0556 + 21.17X 

zY Working-Hote111ng Confidence Bounds 

0. C2 0.3868 0.3679 0.55 or 0.19 0.85 or -0.12 

0.04 0.7801 0.7913 0.92 or 0.66 1.21 or 0.37 

a. 06 1.1782 1.2148 1.32 or 1.11 1.60 or 0.83 

0.08 1.6694 1.6382 1.76 or 1.51 2.06 or 1.22 

0.10 2.0594 2.0617 2.24 or 1.88 2.55 or 1.58 
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Tafle 3.52 Summary of Calibration Data for Indoxyl-3-sulphate 

(X - concentration in ugml-1. Y= (a) peak area in counts x 10-7. and (b) peak area ratio) 

ta)T=0.2005+86.77X 

Iy j[ Working-Hotellang Confidence Bounds 

C. C2 1.7580 1.9360 2.73 or 1.14 4.10 or -0.23 
C. 04 3.7859 3.6714 4.24 or 3.11 5.54 or 1.81 

C. 06 5.4694 5.4068 5.87 or 4.95 7.14 or 3.68 
0.08 7.3856 7.1423 7.71 or 6.58 9.01 or 5.28 

0.10 8.6353 8.8777 9.68 or 8.08 11.04 or 6.71 

(t) 1: 
-0.0001 + 2.937X 

Iyy Working-Hotelling Confidence Bounds 

C. 02 0.0576 0.0586 0.07 or 0.06 0.09 or 0.03 

C. " 0.1195 0.1174 0.13 or 0.11 0.14 or 0.09 

0.06 0.1729 0.1761 0.18 or 0.17 0.20 or 0.15 

0.08 0.2389 0.2348 0.24 or 0.23 0.26 or 0.21 

C. 10 0.2916 0.2936 0.31 or 0.28 0.33 or 0.26 
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Figure 3.65 Calibration Curves for 'yptophan by Peak Area, Peak Area 
Ratio, Peak Height and Peak Height Ratio 
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Figure 3.66 Calibration Curves for 5-Hydroxytrypt, ophan by Peak Area 
and Peak Area Ratio 
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Figure 3.67 Calibration Curves for 5-Hydroxytryptamine by Peak Area, 
Peak Area Ratio, Peak Height and Peak Height Ratio 
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Figure 3.68 Calibration Curves for 5-Hydroxyindole-3-acetic Acid by 
Peak Area, Peak Area Ratio, Peak Height and Peak Height 
Patio 
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Figure 3.69 Calibration Curves for Indoxyl-3-sulphate by Peak Area 
and Peak Area Ratio 
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3.6.4.2 Calibration Curves Employed for Statistical Determination of 

the Limit of Detection 

The second function of a calibration curve is that of elucidation of 

the LOD. It is generally agreed that the LOD is statistical in nature427 

although an arbitrary non-statistical method of determination is commonly 

employed! (see Section 2.3.4 for example). Because the electrochemical 

response observed on a blank is virtually a horizontal straight line, this 

precludes a measurement of the background in units of area, - the units in 

which quantitation is often performed. Hubaux and Vos428 and subsequently 

Bailey' et al. 427 have both advocated calculation of what they term a 

"detection limit" from other available information, i. e., the calibration 

data. 

The regression line equation is solved for a concentration (or mass 

injected) of zero to yield a peak response which is the expected blank 

value (a in Figures 3.7o(a) & (b)). 

(a) (b) 
UPPER A 6! 

PREDICTION LIMIT 

.// 
ecoýaaaoM 

REGRESSION 
LINE 

L -9R 
01- 

z-- 

LOWER ýp "ýý^"ý' // 
ý/ PREDICTION LIMIT 

// AID 

x 

Figure 3.70 (a) Regression Line with Prediction Limits, and Expected Blank 

Value, a. (b) Enlargement of part of (a) showing the Additional 

Parameters YUB, YL, YQ and XLD (see text for details) 
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The LOD is calculated by comparing two predictiai limits. YUB, the 99% 

upper prediction limit on a, the expected blank value, is given by the 

expressiari : 

y_B=a +bX+t"s (1+1+ (X)2 
-f1 

['\n 
Ex2 

where t= Student's t statistic (Tables), 

s= standard error of the estimate = Eye-bExv , 
C 

n-2 
] 

and all other symbols are as previously defined. 

(3.5) 

YL, the 99% lower prediction limit on the expected peak response at a given 

concentration (or mass injected), Xo, is calculated from : 

YL=a+bX - t. six (1+l+ (x _5)2.1 1n Ex2 J1 
(3.6) 

Values for X0 are substituted into Equation 3.6 and the equation is solved 

for YL. The lowest value of X0 which yields a value for YL equalling or 

just exceeding YUB is the LOD for a single analysis (denoted XLD in Figure 

3.70(b)). The peak response corresponding to XLD may be determined using 

the regression line. This peak response (denoted YQ in Figure 3.70(b)) 

represents the peak response above which quantitation may be performed 

(at the 95% confidence level). 

This statistical procedure was employed to determine the LOD for each 

analyte by each method of quantitati ai (except for 5HTP and 13S by peak 

height and peak height ratio for the reasons noted earlier). The 

calculations performed on data from the quantitation of TP by peak area are 

presented as an example. A summary of the statistically derived LOD 

expressed both in terms of concentration and the more relevant quantity, 
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mass injected on-column, is compiled in Table 3.53. LODs (and LOQs) were 

also determined from signal and noise (height) measurements of the 

chromatograms by the more commonly employed empirical method (i. e., 

LOD = SIN ratio of 2: 1, LOQ = SIN ratio of 20: 1). Ranges and means of 

these values for each indole are also reported in Table 3.53 for comparison. 
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Calculation of the Detection Limit for Tryptophan Measured by Peak Area 

(Statistical Method) 

(i) TUB' the 99% upper prediction limit on the blank : 

=a+ bX + (tt, 
a. syx (1 +1+ (X-)2) (3.5) 

Lln Ex2 JJ 

Since n=5, v= n-2 = 3, and a=0.01, t3,0.01 = 5.84 (Tables) 

Then at X=0 

YOB=0.416248+121.48x0+ 5.84 x 0.204912103 1+0.2 + 0.062 [ 
0.004 

)J 

2.150412 

(ii) IL, the 99% lower prediction limit of the expected response at a 

given concentration, X0 : 

=a+ bX - sß(1 +1+ (Xo-X)2) ] (3.6) 
o 

[t. 
v'a ln -TX-2 JJ 

= 0.416248 + 121.48X0 - 5.84 x 0.204912103 
`(1 

+ 0.2 + (X0-0.06)2) 1 C 
0.004 

JJ 

For Xo = 0.02p 

YL = 2.845848 - 1.513702 = 1.332146 i. e., < YUB 

For X0. = 0.025, 

YL = 3.453248 - 1.468686 = 1.985462 i. e., < YUB 

For X0 = 0.026, 

YL = 3.574728 - 1.460252 = 2.114476 i. e., < YUB 

For X0 = 0.027, 

YL = 3.696208 - 1.452015 = 2.244193 i. e., > YUB 

.'. XLD = 0.027iigml"1 

Since Vi = 5u1 then XLD = 135pg injected on-colum 
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Not surprisingly, the statistically derived LODs fall into no readily 

discernible pattern with respect to elution order (i. e., 13S < 5HTP < TP < 

5HIAA < 5HT). In contrast, the empirically calculated quantities do follow 

this general trend, with the notable exception of TP. The lack of obvious 

trend within the statistically derived LODs is almost certainly a reflection 

of the great uncertainty in the calibratim lines ,a direct result of the 

extensive variability of the raw data. 

No single quantitation method can be said to be significantly better 

with regard to LOD than any other because of the large error estimate. 

Only in the case of 5HT do the peak height-based methods appear to yield 

lower LODs than their area-based counterparts. This may be explained 

because of the poorer reproducibility of peak start and end point recognition 

in area determination to longer k'. Regrettably, complete appraisal is not 

possible due to the insufficiency of height data relating to 5HTP and 13S 

to enable calibration and subsequent determination of their LODs by 

statistical calculation. 

The high values obtained for the statistically derived parameter, XLD 

also reflect the uncertainty in the calibration lines. These LODs are 

considerably greater than their empirically-derived supposed-equivalents. 

This observation highlights a fundamental problem which is the source of 

much confusion. Currie429 noted 8 different definitions of LOD appearing 

under various titles and then proceeded to define the parameter another way! 

Currie also remarked upon the widely differing values for "LOD" that these 

various definitions yielded from a single set of data. The empirical 

definition which employs a S/N ratio of 2: 1 was one of these 8 alternatives. 

This quantity represents the smallest amount of a substance which is deemed 

to be detectable. Thus it is essentially a qualitative limit by which it 
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may be deduced whether a peak is actually present or not rather than a 

quantitative limit above which "reliable" quantitation of said peak may 

be preformed. This latter limit is arbitrarily taken herein to be the 

amount of substance which gives rise to a peak of a height of 20 times the 

noise level and is denoted LOQ. No estimate of reliability is incorporated 

in these definitions. In contrast, the statistically-derived limit, XLD, 

represents the minimum amount of substance that produces a signal which can 

be detected and quantified with 95% confidence. Thus, this definition of 

"detection limit" is actually a "quantitation limit" and consequently is 

more akin to the empirical LOQ than the empirical LOD. This is reflected 

in the values obtained for XLD and LOQ which are of the same order of 

magnitude unlike the values of LOD which are one order of magnitude lower 

(see Table 3.53). 

For quantitative work, it is the values of XLD and/or LOQ which are 

important. These limits are generally of the order of 100-400pg. No 

reliable data is available concerning normal levels of indolic TP metabolites 

in plasma but the information compiled in Table 3.6 suggests that 

concentrations of the order of 50ngm1-1 or less may be expected for certain 

analytes. With sample size limited to only ca. 100ul plasma, this 

corresponds to 5ng of material for determination. Now, a maximum of 10% 

of this (i. e., 500pg) will be introduced on-column assuming no losses during 

clean-up (see Section 3.9). Hence, by this argument it may still be possible 

to quantify normal and perhaps diminished levels of indoles in plasma in 

spite of the poor specifications of the Pye Unicam NBLC-EC system under 

appraisal. However, this postulation may only be substantiated in practice. 
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3.7 Introduction 

In order to obtain a plasma sample in a form conducive to analysis 

by BPLC, four specific considerations must be addressed. These are : 

(1) prevention of blood clotting, (2) preservation of the character of the 

sample (i. e., maintenance of the analyte composition), (3) fractionation 

of the sample to yield the part(s) of interest, in this case PRP and PPP, 

and (4) extraction or isolation of the analyte compounds from other 

components in the matrix which may cause either physical or chromatographic 

interference in the analytical process. 

3.7.1 Anticoaeulation222'430 

Plasma constitutes the extra-cellular liquid fraction of the blood 

inclusive of endogenous coagulating agents as distinct from the cellular 

matter (e. g., erythrocytes, leucocytes, granulocytes) suspended 

within it. Consequently, in order to obtain the plasma fraction for 

analysis, clotting of the blood must be prevented in vitro. Because the 

mechanism responsible for coagulation is highly complex and requires many 

components (or factors) to be present in order to function, there are 

several possible ways of achieving disruption of this process. Most 

commonly employed anticoagulants rely on the fact that free Cal® ions are 

essential for coagulation. Ca20 ions may be rendered unavailable very 

effectively either by complexation with EDTA or by precipitatiai as insoluble 

salts with oxalate (C2042e) or, to a lesser extent, with Fe. Thus. Na2EDTA, 

Li2C204, Na2C2Ob, K2C2O4. } O and NaF (at levels of 1-2mg per ml of blood) 

have-all found application as anticoagulants. 

The most widely used anticoagulant, probably because it is known 
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generally to cause the least interference, is heparin. Heparin (MWW = 

6,000-25,000) is a glycosaminoglu cur cnan (acid mucopolysaccharide) that 

occurs in most tissues. This substance is physiologically active in 

relation to haemostasis. It interferes with the coagulation mechanism, 

enhances fibrinolysis (the dissolution of fibrin which forms the basis of 

a blood clot) and it can also inhibit platelet aggregation. A concentration 

of 0.2mg per ml of blood is sufficient to suppress coagulation. 

Other anticoagulants utilised, especially for dcnated blood, include 

citrate, citrate-dextrose, citrate-phosphate-dextrose and citrate-phosphate- 

dextrose-adenine combinations. 

For routine acquisition of blood specimens of ca. lOml, a series of 

, pre-treated, evacuated blood collection tubes ('Vacutainers') is available. 

The marketed product range is indicated in Table 3.54. 

Table 3.54 The Range of Evacuated Blood Collecticn Tubes Currently 

Available222 

Colour Use Additive 
Code 

Lavender Plasma or whole blood 

Grey Plasma or whole blood 
with glycolysis inhibition 

--Green Plasma or whole blood 

-Blue Plasma or whole blood 

Red Serum 

ED TA (Na2 or K2 ) 

Oxalate (Na or K), FG 
(Na) or iodoacetate (Na) 

Heparin (Na, Li or NH4) 

Citrate (Na) 

None 

Yellow Serum None, sterile interior 
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These 'Vacutainers' permit rapid blood collection with appropriate 

treatment and with reduced risk of infection for the staff. For these 

reasons they are employed routinely in many hospitals. 

3.7.2 Preservation 

Since the measurement of indole levels cannot be performed in vivo, 

a sample is taken and analysis is carried out in vitro. The integrity of 

this sample must be maintained in order to enable the attainment of an 

accurate estimation of the status of the chosen analytes as they were at 

the time of sampling. It is important therefore to prevent further 

transformations of the analytes by inducing cessation of enzyme activity 

within the sample as quickly as possible following collection. In the case 

of TP and its indolic metabolites this is achieved principally by cooling 

the specimen. The use of ice-cold reagents in future manipulations is also 

recommended. In addition, the rapid precipitation of enzymatic material 

(predominantly protein) is desirable (see also Section 3.7.4). 

Furthermore, if the compounds of interest are themselves labile with 

respect to external factors such as temperature, aerial oxidation and/or 

exposure to light (as are the indoles) then steps must be taken to prevent, 

or at least minimise, the effects of these factors. As noted above 

temperature is often reduced as a matter of course. Some experimenters 

have advocated the additiai of chemical antioxidants to blood samples in 

order to preserve their readily oxidisable constituents. The two most 

widely used additives applicable to indolic substances are ascorbic 

acid 318,354,377,417 and sodium metabisulphite (Na2S2 05). 363,416 It may 

also be advantageous to exclude bright light in order to prevent photo- 

decomposition in situations where particularly photosensitive compounds 

are under consideration. 
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Blood samples (or fractions thereof) which are not to be analysed 

immediately are generally frozen and stored at low temperature (< -20 
°C). 

3.7.3 Fracticnaticm 

Once the blood sample has been collected the plasma part must be 

separated from the unwanted cellular material. This is usually 

accomplished by centrifugation. Platelet-rich plasma (PRP) is yielded by 

low speed centrifugation of whole blood. Preparation conditions ranging 

from 100 xg for 10 min at 4 OC416 to 500 xg for 30 min at 4 OC3 31 and 

750 xg for 10 min at ambient temperature348 have been utilised to obtain 

PRP for indole determination. Platelet-poor plasma (PPP) is produced by 

centrifugation at higher speed of either previously separated PRP or whole 

blood. Again various conditions have been employed for preparation. 

Martinez and co-workers 354 used 1,000 xg for 10 min at 4 °C, Petruccelli 

et, al. 348 utilised 1,000 xg for 20 min at ambient temperature, whereas 

Morita and associate S431 employed parameters of 1,500 xg for 10 min at 

25 ý°C. Recently, Picard et al. 416 examined various spin speeds for the 

production of PPP for 5HT determination. They demonstrated that 

centrifugation conditions of 6,000 xg for 15 min at 4 °C were optimum for 

deposition of the platelets without causing them to be damaged. Spin rates 

producing relative centrifugal forces (RCFs) of less than 6,000 xg resulted 

in, incomplete platelet separation, hence erroneously high "free" 5HT values 

were', obtained on analysis. At spin-rates producing RCFs in excess of 

6, -000'x g platelet disruption occurred liberating antra-platelet 5HT into 

the-plasma which again produced false "free" 5HT levels on quantitaticn. 

. The employment of refrigeraticn during centrifugation is recommended 

for the reasons of analyte preservation given previously. 
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3.7.4 Extraction 

Direct injection of plasma into the HPLC system is favoured by some 

experimenters because this substantially reduces sample preparation time 

and eliminates errors due to variability in extraction efficiency. 432 

However, most workers consider the attendant problems involved to be 

intolerable. These problems include: (1) physical blockage of the column 

by strongly adsorbed endogenous substances leading to greatly reduced column 

lifetime 432'433 and (2) because normal levels of TP and its indolic 

metabolites are considerably lower in plasma than in nervous tissue, csf 

and urine 36 3, combined with the fact that there are more-potential inter- 

ferents in plasma than in these other samples 363 
, this gives rise to complex 

chromatograms which render peak identification difficult and a consequent 

increase in LOQ (and LOD) inevitable. 362,432 The first of these two 

problems is particularly great for N SLC columns where the cross-sectional 

surface area is substantially less than that of conventional columns. 

Consequently., even shorter column lifetimes would be anticipated especially 

since the use of protective devices is excluded by extra-column dispersion 

considerations. 

Since direct injection is so detrimental to column performance, some 

form of further sample manipulation is normally performed. There are four 

main reasons for further sample work-up, viz. (1) the removal of column 

degrading substances (e. g., proteinaceous materials and lipids), (2) the 

isolation of the subject compounds from other compounds in the matrix which 

are electroactive at the selected operating potential and which would 

otherwise cause interference or elongation of run time in the chromatographic 

step, (3) the replacement of the sample matrix by one better suited to the 

chromatographic conditions, i. e., matched to the mobile phase, and (4) the 
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concentration of the analytes (without corresponding concentration of 

endogenous interferents) in order to improve their detectability. 

To some degree a compromise may be considered between the applied 

potential and the extent of clean-up required. The more selective is the 

detection process then the less pre-chromatographic extraction is necessary. 

Generally a protein elimination step is deemed to be essential for 

the viability of the method. There are several means by which this aim 

may be achieved . 
434,435 Precipitation and subsequent centrifugation is 

the usual method employed. Various precipitating agents have been applied 

including hydrochloric, perchloric, trichloroacetic and 5-sulphosalicylic 

(2-hydroxy-5-sulphobenzoic) acids, alkaline ZnSO4 and the organic solvents, 

MeOH and MeCN. Deproteinisation with any of the strongly acidic precipitants 

is ill-advised where "free" indole levels are required because they will 

necessarily bring about a change in sample pH. Now, both protein and 

platelet binding of indolic substances is pH dependent and such a dramatic 

pH change would be expected to cause imbalances in the "bound" to "free" 

equilibria of the analytes. In addition, highly acidic (and highly 

alkaline) environments have been observed to promote indole 

decomposition. 3389 379 Precipitation by- means of MeOH or McQJ is considered 

preferable in this instance because the pH shift would be minimal. 

Alternatively to precipitation, -proteins may be removed by ultra- 

filtration, active filtration, acid hydrolysis or by enzymatic digestion. 

Ultra-filtration is a very efficient method but'problems have been 

encountered with coincident loss of analytes360, presumably by adsorption 

onto the filtration membrane. Problems have also arisen regarding active 

filtration on commercial solid-phase extraction cartridges, where analyte 

losses have been found to be-high. 360 Acid hydrolysis is rarely employed 
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today because the process is quite severe and can cause decomposition of 

the analytes. 433 The use of proteolytic enzymes has also been 

discontinued. 

For relatively simple samples such as brain tissue homogenates and 

- csf, deproteinisation is often sufficient preparation prior to indole 

determination by HPLC-EC (see Section 2.3.5 for example). However, for 

a sample of the general complexity of plasma further purification is 

frequently necessary in spite of the high discrimination power of the ECD. 

Matrix exchange and/or concentration of the analytes may also be incorporated 

into this clean-up procedure. The two techniques which are particularly 

applicable are liquid-liquid extraction and liquid-solid extraction. Both 

processes are not without their difficulties with respect to the isolation 

of TP and its indolic metabolites. 

One general problem experienced is associated with the wide polarity 

range of the analyte species. 305 Under analytical conditions the various 

indoles exist as cationic, anionic and zwitterionic moieties (see Figure 

3.37) so rendering differentiation of these substances from potential 

interferents by chemical means a formidable task. 

Liquid-liquid separation techniques suffer many disadvantages. 

First,, the analytes are all highly soluble in water hence extraction with 

water-immiscible organic solvents is usually poor. 436 In addition, this 

procedure involves attempting to replace one RP-LC-compatible matrix with 

one which is incompatible, thus dictating the need for back-extraction which 

adds another step in which analyte losses can occur. Liquid-liquid 

extraction is invariably a multi-stage process and generally the more steps 

that are incorporated then the greater are the analyte losses incurred. 

Significant loss of analyte material during clean-up may well be intolerable 



-4,26- 

when trace components in a sample of highly restricted size are to be 

quantified. Furthermore, considerable dilution of the analyte-containing 

solution is inherent with this technique, hence requiring rehoval of 

comparatively large volumes of solvent before chromatographic analysis, 

which is both time consuming and subject to degradation losses. Moreover, 

liquid-liquid extraction is laborious and is not readily automated. 

Liquid-solid separation techniques, although not problem-free, do 

offer several advantages over liquid-liquid separation methods. Liquid- 

solid extraction is more versatile, adsorption-desorption, partition, 

ion-interaction and ion-exchange modes of separation all being accessible 

and allowing improved discrimination. Generally, smaller volumes of 

solvent are required to achieve comparable extractions, hence, little or no 

reduction in volume is necessary. FIequently, extraction efficiencies are 

greater than those realised by liquid-liquid-based methods. Furthermore, 

liquid-solid techniques are more rapid and easier to automate. Consequently., 

the use of small commercial solid-phase extraction cartridges has found 

favour with many experimenters in recent years. 

At various stages during the progress of the investigations reported 

in this dissertation, blood samples were examined. Taking due note of the 

comments contained herein, several procedures for blood collection, 

preservation, fractionation and extraction of the resulting plasma were 

devised and evaluated for effectiveness. 
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3.8 Experimental 

3.8.1 Solvents and Reagents 

All solvents and reagents utilised for production of the mobile phase, 

and as standard materials were obtained from the sources indicated 

previously (Section 3.3.1) and were treated as specified therein. Additional 

chemicals employed in sample preparation procedures included ascorbic acid 

(vitamin C, AnalaR grade) and perchloric acid (HClO4770% w/v solution, 

AnalaR grade). Both substances were purchased from BDH, Poole, Dorset. 

Oxygen-free N2 for solvent evaporation was supplied by BOC, Bristol, Avon. 

3.8.2 Standard Solution Preparation 

`-" Stock solutions (500ugm1-1 in standard material) of TP, 5HTP, 5HT. 

creatinine sulphate complex, 5HIAA and I3S. K+ salt were prepared in a 

MeOH: water mixture and were acidified with HAc (5 drops) to aid dissolution. 

An indole solution (0.5pgml-1 each analyte) for spiking plasma was acquired 

by,. 
- combination and serial dilution with DW of these stock solutions. 

Stock solutions of selected internal standards, AN (333ugm1-1 and 

100ugml-1) and BF. (CO2 H)2 . B2O (ll. lugml-1 as BF) were prepared in MeOH. 

Stock solutions were diluted with P4eOH to provide working solutions (3.33 

and 0.5pgm1 1 AN and O. llugml-1 BF) for addition of IS to the plasma samples. 

HC104 (7% w/v = 0.7M) for protein precipitaticm was prepared by 

aqueous dilution of the concentrated acid. For neutralisation, KOH (3.92g) 

was dissolved in water (100ml)toyield a solution (39.2mgml-1,0.7M). 

For all procedures in which an extract was reduced to a residue, a 

mixture of 4% MeOH : 96% aq. 0.1M KI PO4 ("pseudo"-mobile phase) was made up 

from existing mobile phase precursors for reconstitution purposes. 
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An aqueous solution of ascorbic acid (5mgml-1) was prepared for 

addition to some blood samples to act as an antioxidant. 

3.8.3 Chromatography 

Standard solutions, column, mobile phase, and chromatographic 

conditions which had all been optimised (see Section 3.3) were employed 

throughout. 

3.8.4 Auxiliary Apparatus 

3.8.4.1 Blood Collection Vessels 

A standard blood collection bag (500ml capacity) containing NaCt. 2HZO 

(13.2g), HCt. H2O (1.6g), Na'12PO4.2R2O (1.3g) anhydrous dextrose (11.6g) 

and adenine (0.14g), and green-top (heparinised) 'Vacutainers' were 

provided by the Bristol Royal Infirmary. 

3.8.4.2 Centrifuges 

1) Gallenkamp AM3G fixed speed centrifuge 

speed = 3000rpm; RCF = 1,050 x g). 

2) BTL bench centrifuge Irrotor = 15.0cm; 

RCF = 0-6,040 x g). 

3) MSE Mistral 6L refrigerated centrifuge 

speed : variable, low; head capacity 

pivoted). 

4) MSE ES18 refrigerated ultra-centrifuge 

speed : variable, high; head capacity 

fixed angle). 

Irrotor = 10.5cm; spin 

spin speed = 0-6,000rpm; 

Irrotor = 26.0cm; spin 

12 x 20 tubes; head type 

Irrotor - 30.0cm; spin 

8x 50 tubes; head type 



- 429 - 

3.8.4.3 Platelet Counter 

Ortho Diagnostic Systems ELT 800 cell counter. 

3.8.4.4 Specialised Apparatus for Sample Clean Up 

All attempts at sample filtration were made using Swinnex filtration 

units (Millipore, Harrow, Middlesex) fitted with filter membranes (Type HA, 

dmembrane = 13mm, dpore = O. lum). 

Solid-phase extractici cartridges ('Sep-Pak', C18 type, Waters 

Associates, Northwich, Cheshire) were employed in several procedures. All 

C18 Sep-Paks were activated prior to use by sequential eluticm with MeOH 

(2m1) and DW (2ml) at flow rates of ca. 3-5mlmin-1. 

3.8.5 Blood Collection, Preservation and Fractionation 

3.8.5.1 For Preliminary Qualitative Studies and Initial Experiments 

Incorporating Aniline as an Internal Standard 

Blood was sampled from an outpatient at the Bristol Royal Infirmary 

who suffered from polycythaemia (erythrocytic hyperplasia). These patients 

routinely undergo blood letting and are not known to have any abnormality 

of the plasma constituents. Blood (500m1) was drawn by venepuncture into 

a blood collection bag containing citrate-phosphate-dextrose-adenine. 

The blood was immediately cooled in an ice-water bath. After thorough 

mixing, ca. 100ml of the blood was transferred to centrifuge tubes wherein 

it was 'subjected to centrifugation (BTL bench centrifuge, 2,700 x g, 15 min, 

ambient temperature) in order to spin down' the cells. Aliquots of the 

supernatant (plasma) were transferred by pipette to plastic vials which were 

then stoppered and stored deep-frozen (-20 °C) until required. 
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3.8.5.2 For Further Experiments Incorporating Aniline as an Internal 

Standard 

Blood was sampled from three outpatients at the Bristol Royal Infirmary. 

All three individuals were attending for routine blood testing and were not 

known to exhibit any pertinent abnormalities of the blood plasma. Venous 

blood (ca. lOml) was drawn into heparinised evacuated tubes (Vacutainers) 

which were placed in ice immediately following collection. The three 

samples were pooled arid six aliquots (4ml) were placed in centrifuge tubes 

which were stoppered immediately. Centrifugation (BTL bench centrifuge, 

3,400 x g, 5 min, ambient temperature) was performed within 30 min of 

collection. The resulting plasma samples were pipetted into a series of 

plastic vials which were then stoppered and stored deep-frozen (-20 0C) 

until required. 

3.8.5.3 For Methodological Studies Incorporating Bufotenine as an Internal 

Standard 

Blood (2 x ca. 10ml) was collected from two similar volunteers and in 

an identical manner to that outlined above (see Section 3.8.5.2). 

Immediately after pooling of the samples, aqueous ascorbic acid (5möml-1, 

250il per 1 0ml blood) was added as a preservative. Four aliquots (5ml) 

were centrifuged (MSE Mistral 6L, 350 x g, 10 min, 1-2 °C) to obtain 

ostensibly platelet-rich plasma (PRP). One sub-sample was transferred to 

a plastic vial, stoppered and retained. The other three sub-samples were 

pipetted into centrifuge tubes and were further centrifuged (MSE HS18, 

second sub-sample : 7,300 x, g, third sub-sample : 16,400 x g, fourth sub- 

sample : 29,100 x g, each for 15 min at 3 °C). The supernatants were 
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removed and placed in plastic vials which were then stoppered. All plasma 

samples were kept on ice until a platelet count had been performed (Ortho 

Diagnostic Systems ELT 800 cell counter) after which they were stored deep- 

frozen (-20 °C) until required. 

3.8.6 Investigated Extraction Procedures 

Experiment 1 

Plasma (lml) derived from citrate-phosphate-dextrose-adenine-treated 

blood was transferred onto a pre-activated C18 Sep-Pak cartridge at a flow 

rate of ca. 0.5mlmin-1 by means of a syringe. The effluent was collected 

in a sample tube and stored in a refrigerator (4 °C). The cartridge was 

eluted with MeOH (lml, Q=0.5mlmin-1) applied via a syringe, and the 

washings were collected in a sec and sample tube which was subsequently stored 

in a refrigerator (4 °C). Chromatograms of both fractions were recorded 

(lul injected). This procedure is summarised in Figure 3.71. 

Experiment 2 

Two aliquots (2001i1) of plasma obtained from the citrate-phosphate- 

dextrose-adenine-treated blood were placed into plastic centrifuge tubes 

(3ml capacity). The first portion was spiked with methanolic AN (3.33ugm1-', 

300pl - lug)., whereas to the secaid was added MeOH (300p1). Each sample 

was vortex mixed (15-20sec) then centrifuged (Gallenkamp AM3G, 1,050 x g, 

3 min, ambient temperature) to remove the white gelatinous precipitate which 

is formed. The resulting supernatants were transferred to clean sample 

tubes and were stored in a refrigerator (4 0C) prior to being chr omatographed 

(ipi injected). Figure 3.72 depicts this procedure in schematic form. 



- 432 - 

Figure 3.71 Extraction Scheme 1 
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Experiment 3 

Two further aliquots (200ul) of plasma taken from the same source 

as that used in the first two experiments were transferred into plastic 

centrifuge tubes (3m1 capacity). MeOH (lml) and urethan olic AN (0.5ugml-2, 

2 00p1 = 100ng) were placed in each tube. The mixtures were homogenised 

by vortex mixing (10-15sec) and centrifuged (Gallenkamp AM3G, 1,050 x g, 

3 min, ambient temperature) to separate the precipitated material. The 

supernatants were taken by syringe, the needles were removed and membrane 

filtration units (Millipore Swinnex) were substituted. Membranes (Type HA, 

dpore = O. lum) were pre-wetted with water before sample application. 

Filtration was achieved by applying positive back pressure behind the sample 

by means of the syringe plunger. The filtrate was collected in each case 

and these solutions were evaporated to dryness under a gentle stream of N2. 

The residues were reconstituted in "pseudo"-mobile phase (200111) and were 

vortex mixed (20-30sec). The resulting extract solutions were chromato- 

graphed (11A injected). 

This procedure is presented as a flow diagram in Figure 3.73. 

Experiment 4 

Pooled fresh plasma separated from blood taken into heparin was 

utilised. Two aliquots (200u1) were dispensed into plastic centrifuge 

tubes (3m1 capacity) and one sample was spiked with an aqueous solution 

containing the indoles TP, 5HTP, 5HT, 5HIAA and 13S (0.5ugml-1 as active 

ingredient, 200111 = 100ng each compound). Henceforth, both the spiked 

and the unspiked plasmas were subjected to idential nanipulaticns. MeOH 

(lmi) and methanolic AN (0.5ugm1-1,50u1 - 25ng) were added, the mixture 

was vortex mixed (10-15sec) and the resulting precipitate was spun down 
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Figure 3.73 Extraction Scheme 3 
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(Gallenkamp AM3G, 1,050 x g, 3 min, ambient temperature). The supernatant 

was removed and transferred a to a pre-activated C18 Sep-Pak cartridge 

(Q = 0.5m1min-1) under positive syringe pressure. The effluent was 

collected. The cartridge was washed with MeOH (lul, Q=0.5mlmin-1) and 

the eluant was collected in combination with the original effluent. The 

corporate solution was evaporated to dryness under a gentle stream of N2 

and was subsequently reconstituted in "pseudo"-mobile phase (5(u1) and was 

vortex mixed (15-20sec). NBLC-EC. analysis (11u1 injected) was performed 

of the recaistituted sample. These operations are illustrated schematically 

in Figure 3.74. 

Experiment 5 

Four aliquots (2001i1) of the same plasma pool as was utilised for 

Experiment 4 were placed in plastic centrifuge tubes (3m1 capacity). Two 

of these aliquots were spiked as detailed in the previous experiment. To 

one pair of samples (spiked and unspiked), MeOH (lml) was added and the 

resulting combinaticns were vortex mixed (10-15sec) then centrifuged 

(Gallenkamp AM3G, 1,050 x g, 3 min, ambient temperature). The supernatants 

were transferred into clean centrifuge tubes. 

The remaining pair of plasma, samples (spiked and unspiked) were 

treated with aq. HC104 (7% w/v, 0.7M, 2 00u1).. After vortex mixing (10-15 

sec), the samples were centrifuged (Gallenkamp AM3G, 1,050 x g, 3 min, 

ambient temperature). The supernatants were conveyed to clean centrifuge 

tubes and aq. KOH (0.7M, 20011) was added. The samples were vortex mixed 

(10-15sec) and then allowed to stand for 5 min in a refrigerator (4 °C). 

At this stage all four extracts were spiked with methanolic AN 
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F`i Eure 3.74 Extraction Scheme 4 
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(0.5pgml ', 200p1 - 100ng) and were subjected to centrifugation (Gallenkamp 

AM3G, 1,050 x g, 3 min, ambient temperature). Supernatants were removed 

and processed through an identical concluding work-up procedure to that 

described for the previous experiment, i. e., C18 Sep-Pak extraction, 

evaporation and reconstitution. Each extract was chromatographed (lul 

injected). 

A schematic representation of this experimental approach is given in 

Figure 3.75. 

Experiment 6 

Four plasma fractions obtained from a freshly taken blood sample were 

extracted by the following procedure. All actions prior to the Sep-Pak 

cartridge procedure were ccmducted in a cold room (ca. 4 °C). MeOH (1.5m1) 

and methanolic BF (O. llpgml-1,100pl - ling) were added to an aliquot of 

plasma (500ul) housed in a centrifuge tube (5m1 capacity) which was kept 

on ice. The cmtents of the tube were vortex mixed (15-20sec) and 

subsequently centrifuged (MSE Mistral 6L, 1,700 x g, 15 min, 40 C) in order 

to spin down the precipitate. The supernatant was removed and applied to 

a pre-activated C18 Sep-Pak cartridge. The effluent was collected and 

placed on ice. The extraction cartridge was washed first with DW (lml, 

Q=0.5mlmin-1) then with MeOH (lmi, Q=0.5mlmin-1). The eluates from 

each wash were received in two further identical glass tubes and were also 

placed on ice. All extracts were freeze-dried. On completion of the 

drying process, the residue from each extract was redissolved in "pseudo"- 

mobile phase (5(1.11) and was vortex mixed (20-30sec). Injections (5u1) 

were made into the NBLC system at _various 
instrument sensitivity settings. 

This entire procedure is, depicted, in flow, diagram format in Figure 

3.76. 
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Figure 3.75 Extraction Scheme 5 
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Fi? ure 3.76 Extraction Scheme 6 

Plasma (500µ1) 

PROTEIN I Add MeOH (1.5m1) + HF in MeOH 

PRECIPITATION (O. lligml'l. 100ul = 11ng) 

Centrifuge 

(1,700 x g, 15 min. 4°C) 

Solids to waste 

Supernatant 

ACTIVE 
C18 Sep-Pak 

pre-activated with MeOH (2m1) 
FILTRATION 

and DW (2m1) 

Collect effluent 

Wash with DW 
(lml. Q=0.5mlmin-1) 

I Collect aq. washings I 

Wash with McOH 

(lml, Q=0.5mlmin-1) 

Collect McOHic washings 

MATRIX 
1! f 

EXCHANGE & 

CONCENTRATION Reconatitute in "pseudo"-mobile phase 
(4i MeOH : 96$ eq. 0.1M K} PO4.5()w1) 

Vortex mix I' 

Inject Owl) 
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3.9 Development of a Clean-Up Procedure 

3.9.1 Early Qualitative Experiments 

Using plasma separated from a blood sample taken into citrate- 

phosphate-dextrose-adenine the efficacy of a simple active filtration 

preparation procedure was investigated. The principle applied to the 

elimination of protein was that if the plasma sample was eluted through a 

pre-column, the protein would be irreversibly adsorbed onto the statiaiary 

phase surface so yielding a protein-free sample which poses no threat to 

the analytical-column. There are several brands of small disposdble solid- 

phase extractim cartridge currently on the market which may perform this 

function; examples include Sep-Pak (Waters Associates, Northwich, Cheshire) 

and Bond-Elut (Analytichem International, supplied in the UK by Jones 

Chromatography, Llanbradach, Mid-Glamorgan). These cartridges consist of 

a coarse grade (dp = 20-30um) silica or banded-silica phase retained between 

two sieves and within a moulded plastic case. A wide variety of stationary 

phase chemistries are available in this form. C18 Sep-Paks (ODS-filled) 

were immediately accessible therefore these cartridges were applied to the 

'current problem. 

Plasma was treated according to Extraction Scheme 1 (Figure 3.71). 

Chromatograms were recorded of the plasma effluent (Figure 3.77(a)) and the 

methanolic eluate (Figure 3.77(b)). These traces were compared with a 

chromatogram of a standard indole mixture run under identical conditions 

(Figure 3.77(c)). 

At the moderate instrument sensitivity settings employed for this 

work, two peaks corresponding to -indoles; were observed` in both the 
, plasma 

effluent and the methanolic washings. These peaks were tentatively 
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assigned to TP and 13S. Their occurrence in both media could have been 

the result of insufficient capacity of the extraction cartridge for such 

a large sample or employment of too rapid an elution rate during plasma 

-introduction on to the. Sep-Pak o_r. even low partition ratios under the 

experimental conditions. 

There were no discernible peaks corresponding to the 5-hydroxy indoles. 

This may have been because these substances occur at concentrations too low 

'`to produce a noticable peak at these instrument sensitivities. Alternatively, 

the 5-hydroxy indoles may have reacted or decomposed within the sample prior 

., 
to analysis or they may simply have been retained on the extraction cartridge. 

Considering the noted elution behaviour of these compounds from ODS 

stationary phases employed for HPLC this last possibility is highly unlikely. 

Experimental difficulties were encountered with the attempted 

extraction. On addition of MeOH to the cartridge a white precipitate 

formed, presumably due to precipitation of protein and, perhaps, inorganic 

salts. This precipitate tended to clog the extraction cartridge so 

rendering further elution extremely difficult. Consequently, active 

filtration alone was considered to be ineffective for protein elimination. 

3.9.2 Experiments IncornoratinR Aniline as an Internal Standard 

=-3.9.2.1 Protein Precipitation with MeOH 

Figures 3.78(a) and (b) show chromatograms of supernatants obtained 

from plasma samples which were deproteinised with MeOH and subsequently 

centrifuged, according to Extraction Scheme 2 (Figure 3.72). Figure 3.78(a) 

corresponds to unadulterated plasma while Figure 3.78(b) is representative 

of plasma with the addition of AN at the precipitation, stage. A chromatogram 

t' 
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of a standard indole mixture run under identical conditions is included 

for comparison (Figure 3.78(c)). 

Chromatograms of similar format to Figures 3.77(a) and (b) were 

afforded, peaks tentatively assigned to TP and 13S being observed but no 

peaks corresponding to the 5-hydroxy indoles were detectable at the currently 

selected instrument sensitivity. AN eluted in an otherwise unoccupied 

area of the chromatogram. Instrument problems yielding high background 

noise prevented the utilisation of higher sensitivity settings at this 

time. 

The supernatant obtained from the centrifugation was observed to be 

slightly turbid. The importance of effecting complete removal of suspended 

solids from the sample, especially prior to NBLC analysis, cannot be 

emphasised highly enough. Hence, the need to improve centrifugation or 

introduce a second method for the exclusion of particulate matter was 

recognised. The severe limitations of the only centrifuge for use with 

small samples that was available to the author at this time (i. e., fixed 

rotation speed, manually operated spring-loaded switch) prompted inclusion 

of a filtration step in the procedure. Further refinements were also 

introduced at this juncture. 

3.9.2.2 Experiment Combininlz Protein Precipitation and Membrane Filtration 

Identical plasma samples to those employed to generate Figures 3.78 

(a) and (b) were processed according to Extraction Scheme 3 (Figure 3.73). 

Deproteinisation with 5 
, 
volumes of MeOH (see Blanchard435) was effected. 

This procedure resulted in a chromatogram (Figure 3.79) which is very 

similar to that depicted in Figure 3.78(a), i. e., peaks corresponding to 

TP and 13S were observed but{the expected AN peak was absent. Thus, the IS 
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Figure 3.79 Chromatogram Resulting from Plasma Extraction According 
to Scheme 3 (Figure 3.73) 

Parameters :- For conditions see Figure 3.61 except for Detection.: ECD 
(Eapp = +1.00V vs. Ag/AgCl, TC = lsec) and Sample : lpl via loop of a 
plasma extract containing AN 
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was ajudged to have been "lost" in the filtration step, probably by 

adsorption on to the membrane since AN is not particularly volatile (b. p. _ 

184 °C). Another problem also existed, namely that great difficulty was 

experienced in applying sufficient back pressure to the syringe to force 

the methanolic plasma supernatant through the, filtration membrane. 

Additional experiments employing this method of clean-up were similarly 

afflicted to such a degree that on occasions filtration could not be 

performed successfully. Hence, attempts at filtration using this system 

were discontinued. 

3.9.2.3 Experiment Combining Protein Precipitation and Active Filtrati n 

The clean-up procedure investigated previously (Scheme 3, Figure 3.73) 

was adapted because of the physical difficulties experienced in filtering 

through a membrane. An active filtraticn step similar to that first 

examined was substituted in place of membrane f iltraticn. The adopted 

approach is illustrated in Figure 3.74 (Scheme 4). 

Two important changes were made to previously employed schemes. 

First, the plasma effluent and washings from the extraction cartridge 

were combined prior to evaporation. Seccndly, the final volume of solvent 

utilised to redissolve the resultant residues was restricted to 5Opl. This 

represented a four fold concentration step hence the amount of AN incorporated 

was reduced accordingly. A final volume of 50p1 was the smallest volume 

considered to be feasible within the limitations of available laboratory 

equipment. 

Two aliquots of a recently prepared plasma pool were extracted, one of 

which was first spiked with the five indoles under study (100ng each 

compound). Their respective chromatograms (liii injected) are presented in 
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Figures 3.80(a) and (b), alaig with a typical chromatogram of an indole 

standard mixture (Figure 3.80(c)) for comparison. 

The trace obtained from unspiked plasma contains a very large peak 

corresponding to TP (k' = 11.8) and also one corresponding to I3S (k' = 3.4). 

No peak due to a 5-hydroxy indole was observed. In the chromatogram of 

the spiked plasma sample small peaks due to 5HTP, 5HT and 5HIAA (with 

capacity factors of 5.1,23.0 and 17.3, respectively) were identified and, 

in addition, the peaks corresponding to TP and I3S increased in size. 

Evidently insufficient sensitivity was demonstrated for detection of the 

5 hycoxy indoles at endogenous concentrations under the conditions and 

. '' procedures utilised. Increase of instrument sensitivity is necessary 

(e. g., 3nA f. s. d. ) but noise levels become unacceptable. 

It is evident that AN is poorly extracted by this clean-up method, 

with only a very small peak eluting at the relevant point in the chromato- 

grams. Such behaviour necessarily determines that AN is unsatisfactory 

as an IS where an extraction procedure of this general ilk is employed. 

However, in view of its chromatographic properties it may have limited 

use as a CS. 

During the course of this experiment, instrument troubles continued to 

surface, particularly with regard to background noise level which, of course, 

affected overall sensitivity. A full discussion of these problems is 

presented in Chapter 4. In addition to the NEt C apparatus, the column 

exhibited poor stability- The necessity of frequent column repacking was 

great because of intolerable pressure increases and the creation of voids 

in the stationary phase bed. These effects are characteristic of 

progressive column blockage which, in this instance, was suspected to have 

been caused by residual protein in the injected sample. 
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3.9.2.4 Comparison of Tv o Commonly Employed Protein Precipitants 

In view of the suspicion aroused regarding incomplete depositiai of 

plasma proteins by treatment with MeOH, an experiment was ccnducted in order 

to ascertain whether the use of HC104 would be preferable, in spite of the 

reservations expressed previously regarding its possible detrimental effects 

on analyte levels (see Section 3.7.4). Using identical plasma samples to 

those employed for the previous extractions, two experiments were conducted 

in parallel. Four plasma aliquots were utilised, two of which were spiked 

with TP, 5HTP, 5HT, 5HIAA and I3S. One spiked sample and one unspiked 

sample were taken through the procedure in Scheme 4, Figure 3.74 with the 

exception that the IS was added to the supernatant prior to active filtration. 

The second pair of plasma samples were treated similarly except instead of 

MeOH addition, vortex mixing and subsequent centrifugation, protein was 

eliminated by HC104 treatment, vortex mixing and centrifugation. Where 

HC104 had been utilised, an additional series of steps were included in 

order to neutralise the highly acid environment with KOH. Figure 3.75 

(Scheme 5) depicts these extractions. 

Chromatograms (1111 injected) were recorded of the four extracts and 

are presented in Figures 3.81 and 3.82. The former Figure contains traces 

obtained after protein precipitation with MeOH while the latter shows the 

results of HC104/KOH treatment. 

Figures 3.81(a) and (b) are very similar to Figures 3.80(a) and (b), 

.- as was to be expected since identical samples were prepared for chromato- 

graphy by procedures which differed only in one very minor detail. Peaks 

tentatively assigned to TP and 13S were present and a very small peak 

possibly due to AN was noted in the unspiked extract. In the spiked 

extract the 5-hydroxy indoles were observed in additiv, but any signal due 

, to the IS was masked by electro-oxidised co-extractives. 
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In contrast to the above findings, the HC104/KOH based procedure 

produced very different chromatograms. Unspiked plasma gave rise to 

peaks corresponding to the amino-acids TP and 5HTP and a substantial peak 

due to AN (assigned on the basis of retention compared with standards .` 

chromatographed under identical conditions). No peaks were identified 

as originating from the acids (5HIAA and 13S) or the amine (5HT). In the 

spiked plasma chromatograms (Figure 3.81(b)) the TP and 5HTP signal 

intensities increased and, in addition, a peak of very poor shape (broad 

and fronting) was obtained for 5HT. Neither acid metabolite was 

distinguishable in this trace at the instrument sensitivity employed. 

The use of HC104, with KOH neutralisation, as a protein precipitant 

appears to be very detrimental to the extraction of the indoles generally. 

Although extraction efficiencies of 5HTP and AN were enhanced (assuming 

peak purity), that of TP was greatly inhibited (ef. Figure 3.81(a) and 

3.82(a)). Furthermore, the acidic metabolites were not extracted to any 

discernible degree, even when the plasma sample was spiked. The reascns 

for this behaviour probably lie in part with the lability of some of the 

analytes in the strongly acid conditions and also possibly with the 

variability of speciation of the indoles-under conditions of largely 

unknown and uncontrolled pH. Since "neutralisation" with aqueous KOH was 

only carried out on a very crude equimolar basis without pH monitoring 

(because of the difficulties entailed in being able to measure the pH of a 

small sample without suffering loss of sample), the likelihood of the latter 

possibility was quite high. Comparing the chromatograms obtained via' 

treatment with the two precipitants, the use of MeOH is preferred on current 

evidence although further studies of the HC104/KOH combination with pH 

ccmtrol introduced were called for-to ascertain 
-the latter's full potential. 
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During the course of this experiment practical problems with both 

the column and the instrument continued to occur. In addition, one 

difficulty arose regarding the inability to evaporate to dryness under a 

gentle stream of N2 the substantially aqueous solutions yielded from active 

filtration. The use of a freeze-drying technique could perhaps alleviate 

this problem and also, as a consequence, provide improved sample stability 

through maintenance of low temperature. 

3.9.3 Experiments Incorporating Bufotenine as an Internal Standard 

The difficulty experienced in extracting AN in caijunctiai with TP 

and its indolic metabolites prompted the investigation of another substance 

more chemically similar to the analytes to function as an IS. BF was 

selected in this regard (see Section 3.4.8). The fractionation of blood 

samples was studied concurrently with regard to the preparation of platelet- 

rich and platelet-poor plasma for indole analysis. 

Blood which had been taken into heparin was immediately treated with 

ascorbic acid preservative (125ng per ml of blood). This was Jn accordance 

with the recommendations of Artigas et al. 355 who advocated addition of 

ascorbic acid in the region of 100-250ng per ml of plasma in order to fulfil 

the antioxidant requirement while not producing too gross a sin,. al at the 

solvent front. 

Fractionation of the blood to produce PPP was performed using a POISE 

Mistral ä?, refrigerated centrifuge (BRI). This instrument was not ideal 

for two reasons. First, the smallest capacity tube it could accommodate 

was 5nl, which was far too large for application to neonate blood samples of 

as little as 3001,11. This disadvantage also applied to the MSF F318 

centrifuge (see below). Secondly, the spin rate was not easy to control at 

low speed settings hence precluding the attainment of a RCF of 100 xg 
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recommended by Picard et a1.416 for preparation of PRP. A spin speed 

producing a RCF of 350 xg was used. This yielded ostensibly PRP however 

the platelet count was only 16 x 109l-1 compared with normal counts in 

whole blood of 150-400 x 1091-1. Consequently, over 90% of the platelets 

had been lost from the plasma under these centrifugation conditions. 

Three aliquots of this "PRP" were subjected to further centrifugation 

using a MSE ES18 refrigerated centrifuge (BRI), while a fourth was retained 

for study. Spin rates generating RCFs of 7,300 xg (PPP1), 16,400 x g- 

(PPP2) and 29,100 xg (PPP3) were employed. The resulting specimens 

exhibited platelet counts of 6x 109,5 x 109 and 4x 1091-1 respectively. 

The four plasma samples (PRP, PPP1, PPP2 and PPP3) were all extracted 

following the scheme depicted in Figure 3.76 consisting of protein 

elimination with MeOH, with subsequent active filtration using a C18 Sep-Pak 

cartridge. The plasma effluent, water washings and McOH washings were all 

collected separately and were freeze-dried on a vacuum frame. Following 

reconstitution, chromatograms (511 injected) were recorded of all samples 

at two instrument sensitivities, i. e., 3nA and 30nA f. s. d. 

It was evident from the chromatograms that all four samples, viz. 

PRP, PPP1, PPP2 and PPP3, yielded profiles with no significant differences. 

Typical illustrations are presented in Figures 3.83 and 3.84 (chromatograms 

recorded at 3nA and 30nA f. s. d., respectively). In addition, profiles of 

the deproteinised plasma effluents, the aqueous washings and the methanolic 

washings were all identical except in respect of peak amplitude where a 

progressive and sequential reduction in intensity was observed, as would 

-reasonably be expected. Examples of this occurrence are provided in 

Figures 3.83 and 3.84. 
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A substantial peak corresponding to BF was observed in all 

chromatograms recorded at 3nA f. s. d. instrument sensitivity (Figure 3.83). 

Hence, - BF exhibited similar extraction behaviour to the analyte indoles 

(as was predicted) and, although not ideal chromatographically, these 

observations provide encouragement regarding the potential of BF to act 

as an IS for the subject determination. 

In all the chromatograms recorded at both instrument sensitivities, 

the signal attributed to 13S was almost completely swamped by a gross 

solvent front. In order that this substance may be quantitated the amount 

of interference must be reduced. Greater discrimination is necessary 

either in the extraction procedure or in the detection potential. The 

applied potential was reduced from +0.95V to +0.80V and a further chromato- 

gram of the extract derived from the Sep-Pak effluent of PRP was recorded 

at 30nA f. s. d. (Figure 3.85(a)). A comparison with the equivalent chromato- 

gram obtained at +0.95V (Figure 3.85(b)) indicates that no improvement in 

13S detectability is forthcoming through reduction of the applied potential 

because of the caicomitant reducticai in signal amplitude which results. 

Furthermore, detectabilities of the other analytes are correspondingly 

affected. In view of this finding, it is deemed essential that discrimin- 

ation in extraction be markedly improved. 

In addition to increased discrimination, the maximisation of 

extraction efficiency is also vitally important. The overall sensitivity 

of this method is currently insufficient for the determination of the 

majority of the substances of interest in plasma samples of restricted 

volume. Plasma aliquots of 500pl were applied herein. In a genuine case 

of neonatal or paediatric illness, the volume available may be as little as 

1001A which represents a reduction of 80% in available analyte mass compared 

with that at the analyst's disposal in this experiment. 
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A substantial peak corresponding to BF was observed in all 

chromatograms recorded at 3nA f. s. d. instrument sensitivity (Figure 3.83). 

Hence, - BF exhibited similar extraction behaviour to the analyte indoles 

(as was predicted) and, although not ideal chromatographically, these 

observations provide encouragement regarding the potential of BF to act 

as an IS for the subject determination. 

In all the chromatograms recorded at both instrument sensitivities, 

the signal attributed to 13S was almost completely swamped by a gross 

solvent front. In order that this substance may be quantitated the amount 

of interference must be reduced. Greater discrimination is necessary 

either in the extraction procedure or in the detection potential. The 

applied potential was reduced from +0.95V to +0.80V and a further chromato- 

gram of the extract derived from the Sep-Pak effluent of PRP was recorded 

at 3IJnA f. s. d. (Figure 3.85(a)). A comparison with the equivalent chromato- 

gram obtained at +0.95V (Figure 3.85(b)) indicates that no improvement in 

I3S detectability is forthcoming through reduction of the applied potential 

because of the concomitant reduction in signal amplitude which results. 

Furthermore, detectabilities of the other analytes are correspondingly 

affected. In view of this finding, it is deemed essential that discrimin- 

ation in extraction be markedly improved. 

In addition to increased discriminatio, the maximisation of 

extraction efficiency is also vitally important. The overall sensitivity 

of this method is currently insufficient for the determination of the 

majority of the substances of interest in plasma samples of restricted 

volume. Plasma aliquots of 500ul were applied, herein. In a genuine case 

of neonatal or paediatric illness, the volume available may be as little as 

100111 which represents a reduction of 80% in available analyte mass compared 

with that at the analyst's disposal in this experiment. 
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3.10 Plasma Clean-Up : General Remarks 

All peak assignments herein have been made on the basis of the 

comparison of retention parameters (tR, k") with those of standard materials. 

It is preferable to confirm peak identity by co-chromatography with a known 

standard where possible. The identification of peaks by retention 

parameter alone is far from ideal. No account is taken of the possibility 

of co-incident elution of another extracted substance. In addition, the 

problem of identification was complicated during these experiments by the 

observation of a progressive decrease in retention times of all peaks with 

successive injections of plasma extracts. It may be assumed that 

ccntaminaticm, almost certainly arising from these injected samples, was the 

causal factor. The presence of a concomitant increase in back pressure 

with time supports this opinion. This irreproducibility of chromatographic 

behaviour must be considered prohibitive for application to routine 

analytical work. 

Column stability was generally poor over the course of this study, 

both in terms of contamination and physical disturbance of the stationary 

phase bed. The latter effect was most probably a direct consequence of the 

increase in back pressure generated by the former problem. It may be 

inferred from the experimental observations made that even a small amount 

of residual protein in extractives is intolerable for the successful 

operation of NB columns. 

In addition to column instability, poor instrument performance 

influenced the detectability of the analytes. High background noise 

emanating from both the PU4010 pump and the PU4022 ECD caused a narrowing 

of the range of instrument sensitivities that were utilisable. General 

unreliability stemming from various and frequent equipment malfunctions was 

also unacceptable (see Chapter 4). 
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The upshot of all the attempted methods employed was that insufficient 

sensitivity was obtained for indole determination in volumes of plasma of 

the order of 100U1. This was in part due to lack of discrimination in 

extraction, part probably due to poor extraction efficiencies and part due 

to instrument failings or limitations. Improved discrimination and 

efficiency of extraction may be attainable through optimisatim of solvent 

compositions and flow rates and perhaps by the use of other Sep-Pak 

cartridge chemistries either in place of or in conjunction with the 

currently employed ODS type. Furthermore, the control of pH at all stages 

may prove to be helpful, although ion suppression, IIC and IXC separation 

techniques as such are all considered to be untenable in this instance 

because of the extent of variation in analyte polarity which exists. 

One factor which appears to be crucial to the objective sought is 

improvement of equipment. Fractionation of small blood samples (<500.11) 

requires a micro-centrifuge which is both highly controllable and capable 

of a wide range of spin rates suitable for the purpose intended. It should 

also have a refrigeration facility. The best centrifuges available to the 

author were of too large a scale and were not utilisable at sufficiently 

low speed to yield plasma without very substantial platelet loss. Further- 

more, general laboratory apparatus of a design and specificaticai to allow 

performance of micro-scale manipulations with high precision is important. 

The apparatus at the author's disposal was severely limited in this respect; 

the minimum tenable sample volume was ajudged to be 50ul. Ideally a 

volume in the region of 51jl would be better suited to yield a sensitivity 

increase. Ultimately, the performance characteristics of the NBLC system 

itself may also require caisiderable improvement before succezs is achieved 

with regard to the analytical problem faced. 
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In summary, from these preliminary experiments the need for extensive 

clean-up is apparent. The difficulty of the extractian, because of the 

wide polarity range 6f the five analytes, is exacerbated by the heightened 

demands for sample purity invoked by the use of the NB column format. 

These demands are not readily satisfied thus the development of a rapid and 

simple extraction procedure appears to be very improbable under these 

circumstances. Considerable extra study is necessary before the extraction 

difficulties encountered may be overcome. 
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Overview and General Conclusions 
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A commercial isocratic NBLC-EC instrument comprising a PU4010 pump, 

a Pheodyne model 7413 micro-injection valve and a PU4022 electrochemical 

detector has been evaluated, in conjunction with a variety of column 

geometries, with respect to both performance and practicability. 

4.1 Appraisal of the Pye Unicam PU4022 Electrochemical Detector 

The detector characteristics were assessed in comparison with an 

EDT LCA 15 and a Metrohm 641-VA/656. Regrettably the Metrohm 641-VA/656 

could not be compared satisfactorily due to the occurrence of a major 

malfunction which was later discovered to have arisen principally from 

faulty circuitry in the electronic control unit. Warm-up properties, 

baseline noise (generated under various conditions), ease of operation and 

utility of incorporated features were considered. The PU4022 was 

practically equivalent to the EDT. LCA 15 in all these respects. The former 

instrument exhibited slightly greater long-term baseline instability than 

did the latter. This difference most probably originated from the trans- 

former unit incorporated in the PU4022 to provide dual mains-voltage 

operation capability, a feature which is not included in the EDT model. 

All other structural aspects of these two ECDs were identical, which was to 

be expected since both instruments were manufactured by EDT Research. 

Instrument sensitivity settings of between lnA and 31A f. s. d. were available. 

The highest practicable settings for analytical purposes, within the 

confines of the systems studied, were lOnA f. s. d. with minimum noise 

filtration (time constant = lsec) or 3nA f. s. d. with increased noise 

filtration. The PU4022 and the EDT LCA 15 yielded very similar limits of 

detection (S/N = 2: 1) and limits of. quantitation (S/N = 20: 1) for a series 

of catecholamine compounds chromatographed on a conventional column 
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(25cm x 5mm ID). The PU4022 was demonstrated to be applicable to the 

post-chromatographic detection of several neurochemicals present in discrete 

regions of a rat brain. The PU4022 was considered to be reasonably easy 

to use although slight design changes to the controller facia, notably 

separation and isolation of the auto-zero, event marker and x10 instrument 

sensitivity switches, would greatly decrease the incidence of manipulative 

error on the part of the operator. Access to the flow cell for maintenance 

purposes was relatively unimpeded and, consequently, electrode inspection was 

undemanding. 

Possessing a flow cell volume of only 0.5111, the PU4022 ECD offered 

the possibility of deployment in a NBLC system without modification. The 

property of NELC of particular interest to the author is the ability, in 

theory, to achieve much improved mass sensitivity (i. e., lower LODs) in 

instances where sample size is highly restricted. In clinical chemistry 

this need frequently arises such as in the case of the determination , for 

diagnostic purposes, of trace components in the blood of neonates, infants 

and young children. The Pye Unicam NBLC-EC has been evaluated with respect 

to the determination of a series of indolic metabolites of TP, initially in 

the form of standard solutions and later in blood samples. Separations of 

the five analytes viz. TP, 5HTP, 5HT, 5HIAA and I3S have been developed and 

optimised on columns of lmm and 2.1mm ID. 
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4.2 Appraisal of the Narrow-Bore Instrument with Respect to Extra- 

Column Dispersion 

Extra-column dispersion within the Pye Unicam instrument amounted to 

2321112 (- an effective extra-column volume of 15.2111) when a 25cm x lmm ID 

column with Swagelok end-fittings containing integral frits was coupled. 

When a 10cm x 2.1mm ID column possessing similar Swagelok end-fittings 

(except that discrete disc frits were included) was ccmnected a value of 

23 6u12 axc 15.3u1) was obtained. The systems were run at similar but 

not identical linear velocities and differed only in the above noted respects 

and in the fact that the total length of connecting tube was reduced in the 

latter case by 20% from 15cm to 12cm, the absolute minimum possible within 

the constraints of the system architecture. 

The above values for extra-column dispersion are in accordance with 

the findings of Reese and Scott39 for three unspecified commercial NBLC 

systems. Extra-column dispersions in this region are considerably greater 

than the theoretical maxima (applicable for early eluting peaks) to enable 

efficient operation with the columns under evaluation. For a column of 

25cm length and lmm ID packed with 104im diameter particles the effective 

extra-column volume must not exceed 0.391jl, which the Pye Unicam NBLC-EC 

system does 40 fold! In the case of the 10cm long by 2.1mm ID column 

packed with 51im diameter particles the maximum tolerable value is 2.4iil 

which is exceeded over 6 fold. The Pye Unicam instrument was determined 

to be barely capable of operating short conventional-bore columns to 

accepted standards. 

The efficiency of the system was evaluated in relation to capacity 

factor for both column geometries. The lmm"ID column was only able to achieve 

28% of available column efficiency for the first analyte peak (k' = 2.66) 
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increasing to just short of 90% (representing the 10% loss due to the 

detrimental effect of the instrument which is generally accepted to be 

tolerable) for the fifth analyte peak (k' = 14.50). Clearly, even at 

k' = 15 the Pye Unicam NBLC-EC instrument was woefully inadequate for the 

effective operation of short lmm ID columns. The system was better able 

to handle the 2.1mm ID column, as was to be expected from theory. In this 

case 55% of available column efficiency was realised by the first eluted 

analyte peak (k' = 1.64) up to as much as 99% by the fifth analyte peak 

(k' = 13.08). Acceptable losses in efficiency were only attained at 

k' > 7.8 which represented a significant improvement when compared with the 

lmm ID column. From these findings it must be concluded that in theoretical 

terms the Pye Unicam N ULC-EC system under scrutiny fell considerably short 

of-the specifications required to operate columns of either geometry to 

commonly accepted standards. 

The major source of this gross extra-column dispersion was deduced 

to be the PU4022 detector. The volume and kinetic properties of the flow 

cell were considered to be adequate for application to NB column geometries. 

However, the electronic response time characteristics of the controller unit 

were extremely poor. Time constant settings (which are faster than their 

corresponding response times) of 1,3 and 10sec were available with the 

instrument. These values are well in excess of the theoretical maximum 

tolerable response times of 0.24sec for operation of the 25cm x lmm ID 

column packed with 1011m diameter particles, and 0.12sec for operation of the 

10cm x 2.1mm ID column packed with 5um diameter particles. These calculated 

limits do not allow for extra-column dispersion arising from other sources 

and consequently for practical applications, limits of an order of magnitude 

faster, i. e., 0.024 and 0.012sec respectively, are more appropriate. 
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Evidently, even the fastest time constant available with the PU4022 detector 

is two orders of magnitude too slow for efficient operation of NBLC columns. 

In addition to the contribution, from the response characteristics of 

the detector, calculations from theory predict that only ca. 4% of the 

observed extra-column dispersion originated in the injection valve. A 

further 15% was estimated to have arisen in the connecting tubing of the 

system employing the lmm ID column while the corresponding figure was 12% 

for the 2.1mm ID column-containing system. The only effective way to 

reduce the extra-column dispersion created in the connecting tubing is to 

eliminate these conduits entirely and redesign the apparatus so that the 

column may be plumbed directly into the injection valve and the flow cell. 

This approach has been adopted by LDC/Milton Roy in the design of their 

NBLC system182 but not by Pye Unicam. 

A major practical limitation of the evaluated instrument was the 

capability of the PU4010 pump with respect to flow rate. The minimum 

available setting was O. lmlmin-1 (- 1001ilmin-1) which, for NB columns, 

corresponds to linear velocities far greater than optimum. Consequently, 

since efficiency is directly dependent upon linear velocity, the maximum 

achievable efficiency for any given NB column is reduced considerably. 

However, it was deemed to be necessary to sacrifice some of the attainable 

efficiency when 2.1mm ID columns were employed in order, to operate within 

an acceptable analysis time. 
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4.3 Narrow-Bore Liquid Chromatoerar)hv in Practice 

A vast range of problems were experienced with NBLC in practice, 

resulting in extremely long and frequent periods of system downtime. On 

average, the Pye Unicam system is estimated to have functioned satisfactorily, 

in practical terms, for only cage day in every four or five which is clearly 

unacceptable for research activities let alone routine daily operation. 

All components of the instrumentaticn were affected in some way. 

The PU4010 pump suffered many breakdowns for various reasons and often 

required attention. The most prominent signs of trouble were : (1) unaccept- 

able baseline noise in the form of pulsations following, a cycle corresponding 

to the dual-piston reciprocating pump action, (2) a gradual increase or 

large fluctuations in back pressure under constant operating conditions, 

and (3) leaking joints. Progressive blockage of flow passages with solid 

material was indicated by pressure problems and/or pulsing. On separate 

occasions the cause of the trouble was deduced to be an accumulation of 

either buffer precipitate, debris from scarred or shredded piston seals or 

micro-flora within the pump. Buffer crystallisation was remedied by 

flushing the pump with water until the deposited material had been removed. 

Piston seal damage, which was also recognisable by the appearance of white 

crystalline matter (i. e., buffer constituents) around the piston rods, 

required seal replacement and thorough cleaning of the piston chambers and 

pistons. In addition, check valves were ultrasonicated in a series of 

appropriate solvents to dislodge all debris from the filters and valve 

chambers. The third blockage problem resulted from the growth of micro- 

floral colonies in the mobile phase which subsequently entered the pump. 

The intrusion of this proteinaceous material into the pump necessitated 
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drastic action which included flushing with 30% mo3 followed by copious 

quantities of water. All plastic tubing was then replaced and the inlet 

filter and check valves were thoroughly ultrasonicated as described above. 

To avoid future occurrences of this problem the addition of a small amount 

of NaN3 to the mobile phase to act as a pesticide was contemplated but was 

rejected in favour of more frequent renewal of the mobile phase in the 

interests of simplicity. In order to protect the NB column from solid 

material emanating from the pump, a scavenger column was interposed between 

the pump and the injection valve. 

Two critical malfunctiais of the PU4010 pump occurred over the course 

of this study. The cam followers became worn and seized up thus requiring 

renewal. Secondly, the flow rate control mechanism became defective which 

also necessitated replacement. In view of the seriousness ofý and recurrence 

of, these problems, the entire pump was exchanged for another identical model 

to enable completion of the experiments reported in this dissertation. 

Other practical problems of note concerning the pump were predominantly 

due to structural fatigue. On numerous occasions screw threads had to be 

sealed with PTFE tape, plastic tubing required reflanging and eventual 

substitutim, and plastic nuts broke also necessitating replacement. 

The high incidence of mechanical failure of the PU4010 pump almost 

certainly resulted from the strain put upon the unit in being required to 

operate ca tinually in order to maintain a flow over the glassy carbcn IE 

in the detector flow cell. The general frailty of the PU4010 gave great 

cause for concern in addition to its failings regarding specifications. 

Connecting tubing did on occasion become partially blocked and required 

flushing, back flushing or ultrasonication before becoming serviceable. 

Total replacement of a conduit was carried out if necessary. 
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The Rheodyne model 7413 micro-injection valve required attention 

relatively infrequently compared with the pump and detector. Typical 

problems included leakage and blockage. Leaks occurred around nuts which 

were remedied by the application of PTFE tape and eventually by installation 

of new parts. In addition, leaks were discovered internally, both at the rear 

of the loop disc whichwere repaired by the application of a little silicone 

adhesive ('Silicoset'), and at the rotor itself(resulting from regular wear 

and tear) whichwere remedied initially by tightening the stator screws and 

eventually by insertion of a new rotor. The incidence of blockage was 

largely prevented by regular and frequent flushing of the valve with water 

between injections. On the rare occasions when blockage which was not 

removable by flushing occurred, the offending parts were ultrasonicated in 

appropriate solvents to dislodge the obstruction. 

The PU4022 ECD posed numerous difficulties in its operation throughout 

the duration of this project. The majority of system downtime can be 

attributed to the PU4010 pump and this instrument. 

The flow cell required frequent attention in several ways. The glassy 

carbon WE needed polishing at least every four weeks with introduction of 

standard solutions only, and even more often when extractives were chromato- 

graphed. The lifetime of a pair of electrodes (WE and RE) was approximately 

one year. Some difficulties were experienced with seating of the afore- 

mentioned electrodes giving rise to accentuated baseline pulsation with the 

flow of the mobile phase. Redesign of the locking collars to enclose the 

electrode assembly and so provide a firmer anchorage may prove beneficial in 

this respect. The construction of the cell to enable the rapid passage of 

any incident air bubbles through the detection volume was particularly 

efficacious hence this occurrence was not problematical. With age, leaks 



- 474 - 

were observed to develop around the inlet and outlet conduits. Treatment 

of the screw threads with PTFE tape and/or reflanging tubing ends solved 

the problem an most occasions. Complete replacement of tubing and nuts 

was carried out when leaks developed with regularity. 

One serious problem was encountered with the original flow cell. 

Excessive short-term noise was evident and persistent. The source of this 

noise was found to be corrosion and subsequent erosion of the S/S inlet 

sleeve which liberated metallic species randomly into the mobile phase. 

These ions reacted at the WE surface causing the problem. Clean up was 

unsuccessful, especially since the RE had become poisoned. Consequently, a 

replacement flow cell was obtained with which to continue these 

investigations. 

The PU4022 electronic controller unit did not provide trouble-free 

operation. either. The general short-term (electronic) noise level was 

fairly substantial throughout these experiments. In addition, difficulties 

developed regarding the auto-zero facility. On servicing the instrument 

to find and repair the cause of the latter fault (a worn and malfunctioning 

switch), a general pitting of the circuit boards was discovered. This 

presumably originated from the action of atmospheric acid pollutants and may 

have constituted the source of the general noise problem. 

Little difficulty was encountered with the peripheral recording 

devices. Regular maintenance (cleaning of electrical contacts, and guide 

wire and bar in the case of the potentiometric recorder) ensured efficient 

operation. 

In addition to instrument malfunctions, difficulties were experienced 

with the columns employed. These troubles could be categorised broadly 

into two types; contamination of the column packing and the creation of 
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voids in the same. Certain types of contamination were reversible, 

e. g., buffer precipitation. In these cases column performance could be 

reinstated by back-flushing with water. Other contamination sources were 

irreversible, e. g., the adsorption of protein or blockage with insoluble 

particulates. In order to overcome these problems, columns required either 

removal of the contaminated material and manual repacking of the resulting 

void or complete renewal. These strategies were also appropriate when 

packing homogeneity became unsound particularly under high back pressure. 

The lifetime of a column was considered to be an important parameter 

in this assessment. The lmm ID column failed after only 80 injections of 

standard solutions. The primary reason for this was thought to be 

obstruction of the exit frit by micro-particulate "fines". This problem 

recurred rapidly rendering the column unserviceable. Such a short lifetime, 

if typical of lmm ID columns, is considered to be unacceptable in routine 

work, especially as the useful duration would be expected to be even shorter 

with the application of biological fluid extracts. The physical problems 

experienced with the operation of lmm ID columns together with the extremely 

poor performance exhibited in respect of their employment in the Pye Unicam 

NBLC-EC instrument prompted their abandonment for further study. 

Consequently, on the basis of this evidence the use of the Pye Unicam 

NBLC-EC system with lmm ID columns cannot be recommended. Furthermore, in 

view of the very short lifetimes, columns of this geometry are considered 

to be unacceptable for general use. 

2.1mm ID columns generally exhibited lifetimes of longer duration 

than did the lmn ID column, although these fell short of expectations when 

compared on a pro rata basis with typical conventional columns. This state 

of affairs was predictable since few of the normally employed protective 
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measures could be utilised because of the inevitable creation of more 

detrimental extra-column dispersion. The situation was exacerbated by 

the smaller cross-sectional area of 2.1mm ID columns presented to the flow 

stream, ' providing greater opportunity for obstruction to take place. 

2.1mm ID columns were assessed in greater depth with respect to the 

chosen separation. 
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4.4 Selecticn of Injection Volume 

Some choice was available regarding injection volume introduced 

an-column as a result of practical restrictions, viz. a minimum volume 

limit of 50u1 for the extract and an inherent loss of lOul with each 

injection made using the Rheodyne model 7413 micro-injection valve. It 

has been shown that the greater the volume injected then the greater is 

the signal amplitude because of the increase in mass injected. However, 

increased injection volume gives rise to a concomitant increase in extra- 

column dispersion which is manifested as a reduction in apparent column 

efficiency which, in turn, yields decreases in resolution and mass 

sensitivity. 

In practice, resolution is the critical factor which governs accept- 

ability. The arbitrary theoretical limit of tolerability of 10% resolution 

loss was shown to be impractical with regard to the Pye Unicam N BL C-E C 

system due to the poor inherent extra-column dispersion characteristics of 

this instrument. A limit whereby sufficient resolution remains to enable 

discrete elution of every analyte peak from all other peaks in the chromato- 

gram is most appropriate in practical terms. From the data obtained,, an 

injection volume of 5ul appeared to satisfy this criterion best. Such a 

volume also demonstrated the advantage of allowing duplicate (or possibly 

triplicate) chromatographic analyses to be performed on a single sample. 

The next smallest volume (lul) provided much poorer detectability while the 

next largest volume (l0u1) was considered to leave insufficient room within 

the chromatogram for the elution of co-extractives. The chosen value of 

5u1 is open to review depending upon the severity of interference encountered 

with actual plasma extracts. 
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4.5 Quantitative Aspects of Narrow-Bore Liquid Chromatography 

Gross levels of imprecision were apparent from this study, both by 

calculation and by inspection of the broadness of 95% confidence bounds 

constructed around plotted calibration lines. Mean within-batch precision 

ranged from 4.7% to 16.2% while mean between-batch precision ranged from 

24% to 41%, depending upon the method of quantitation employed. These 

values may be treated as conservative estimates of precision to be expected 

from the chromatography of plasma extracts because no account is taken of 

the inevitable variability in analyte loss during extraction. 

Peak height ratio provided the greatest precision-(smallest RSD), 

both within-batch and between-batch, and consequently was considered to 

represent the quantitation method of choice on these grounds. However, 

peak height (and consequently peak height ratio) is highly restricted in 

practical range at high instrument sensitivity. The area-based alternatives 

both suffer considerably greater imprecision. Peak area ratio is not very 

repeatable, largely because of variability in peak start and end point 

recognition by the integrator. Peak area measurements alone are subject 

to extremely poor reproducibility. 

A major source of this great imprecision was thought to be variability 

in the degree of WE contamination incurred. In addition, other instrument- 

based factors are most probably fundamental to this phenomenon because of 

the chronic equipment malfunctions which occurred during the assessment 

period. The high incidence of breakdown was the sole reason why only five 

calibrations were successfully completed in 8 months. The obvious 

implication of these findings is that all possible steps must be taken to 

improve the reliability of the instrumentation before an acceptable standard 

of performance can possibly be achieved. 
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The poor precision of quantitation is reflected in values for the 

LOD and LOQ determined both in terms of empirical definitions which are 

not accompanied by any estimate of reliability, and in terms of a statistical 

definition which embodies an overall confidence limit of 95%. The 

statistical definition of what is termed a "detection limit" has been 

argued to in effect represent a "quantitation limit". Indeed, the values 

obtained from the statistical calculations for this quantity are in 

reasonable agreement with the empirically-derived LOQs. Values of between 

100 and 400pg cn-column for the five analytes were obtained. Expected 

levels of TP metabolites in small volumes of plasma were deduced to perhaps 

be measurable using the Pye Unicam NBLC system, in spite of its inadequencies, 

so long as losses of analyte material during extraction are insignificant. 
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4.6 Practical Aspects of Narrow-Bore Liquid Chromatography Arising 

from the Analysis of Blood Samples 

Sample preparation for the determination of indoles in plasma fractions 

has been examined. Available equipment was found to be severely restrictive. 

High specification apparatus, providing the capability of handling very small 

volumes with high precisio, is required for both blood fractionation and 

general measurement, dispensation and manipulation of samples and reagents. 

In the absence of such items, the ability to achieve high detectability is 

seriously inhibited. In addition, selectivity of extraction proved to be 

extremely difficult to accomplish because of the wide ranging polarities 

of TP and its indolic metabolites. Furthermore, the need for extreme 

cleanliness of the injected sample is inferred to be crucial to the reliable 

operation of NB columns since even small amounts of residual degradative 

substances lead to rapid contamination, blockage and physical disturbance 

of the packed bed. As a consequence of the progressive action of these 

phenomena, reproducibility of retention becomes very poor thus peak identi- 

fication and subsequent recognition in further chromatograms is seriously 

hampered. 

Problems with the operation of the NHLC instrument, combined with poor 

extra-column dispersion characteristics of said instrument restricted 

greatly the practically attainable detectabilities of the various analytes. 

No satisfactory extraction procedure was developed to enable reliable 

quantitation of endogenous levels of TP, 5ATP, 5HT, 5HIAA and I3S in plasma 

samples of the order of 1001A in volume. 

At high instrument sensitivities the observati ai and quantitation of 

early eluting peaks, especially 13S, is prevented by the presence of a 

gross solvent front. This emphasises the need for far greater discrimination 
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which must be accomplished through the extraction procedure since reduction 

of detection potential failed to provide improved detectability. 

The extraction behaviour of BF was encouraging regarding the possible 

use of this substance as an IS, although its chromatographic behaviour is 

not ideal. Investigation of alternative materials as potential ISs 

(e. g., N-Me5HT, 6HT) may be rewarding. 
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4.7 General Conclusions 

From the evidence amassed and reported in this dissertation it is 

surmised that the Pye Unicam NBLC-EC system is unsuitable for application 

to routine clinical analysis both on the grounds of its extra-column 

dispersion characteristics and its impracticality. The system components 

are neither sufficiently rugged nor of high enough specification to operate 

columns of NB geometry to anywhere near their optimum potential. If the 

Pye Unicam instrument is typical of commerical NBLC equipment then these 

comments will apply to the technique generally. The fact that there are 

still few reports in the literature concerning the routine application of 

NBLC, in spite of the wealth of interest expressed in the technique, may be 

interpreted as implying that other experimenters have perhaps encountered 

similar difficulties to those described herein. Generally, only highly 

customised or entirely custom-built research instruments have yielded some 

of the theoretical benefits pertaining to NBGC. 

Professor John Knox (Edinburgh University), in a presentation at a 

recent conference43 , remarked that so-called specialist commercial 

instruments were not attaining sufficiently low dispersion. Effective 

extra-column volumes of 251j1 were prevalent rather than figures of 0.25ul 

or even 2.51i1 which are required. Furthermore, he noted that commercial 

NBLC equipment from 75% of manufacturers was of insufficiently high quality 

to run columns of this geometry to a standard approaching acceptability. 

The best instruments on the market were claimed to be just suitable for the 

operatics of conventional length 3mm ID columns packed with 31. m diameter 

particles and it was concluded that there is no real value in reducing the 

column ID below 3mm at. present. From the findings of this investigati cn 

of the Pye Unicam system the author. must concur with these remarks. 
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The attitude of the manufacturers towards N BLC has changed markedly 

over the period in which this study was conducted. In 1983 and 1984 

"micro-bore LC", as NBLC was then called, was heavily promoted with respect 

to claims of attainable high mass sensitivity, improved interfacing 

capabilities and low solvent consumption. lmm ID columns were marketed 

but by the end of 1985 most companies had tended towards producing columns 

of around 2mm ID. The problems entailed with the efficient operation of 

the narrower format columns almost certainly became apparent and, rather 

than completely redesign their equipment range to produce dedicated, high 

quality, high specification (and consequently expensive) apparatus many 

manufacturers elected for a compromise by adapting their current instruments 

to accept 2mm ID columns. This policy was adopted by Pye Unicam in the 

production of the instrument under appraisal in this study. In 1987, NBLC 

has generally been relegated in stature within the manufacturers' literature 

and is currently marketed purely on the grounds of solvent economy. This 

retrogression in publicity for the technique was probably initiated by 

technical difficulties, insurmountable within the restrictions of current 

company policy in many cases, associated with the efficient use of even 

2mm ID columns. 

The preceding remarks lend weight to the argument that compromise is 

not good enough in NBLC. Although a general recognitiai of the problems 

inherent with NELC has led to greater awareness and understanding and, 

subsequently, has stimulated the improvement of conventional I TLC system 

design, instrument technology is not yet sufficiently advanced to enable the 

theoretical advantages of NBLC to be realised fully in practice. 

Consequently, when, combined with the severe practical difficulties encount- 

ered, the technique of narrow-bore liquid chromatography cannot presently 

be recommended for routine use in the clinical laboratory. 
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5.1 Routine Maintenance of I LC Thrdware 

5.1.1 Pumps 

Periodically, and routinely after changing over mobile phases, the 

pump was primed to remove any accumulated air bubbles from the system. 

Routine maintenance of the instrument included regular cleaning of the 

reservoir solvent inlet filter and the pump check valves. This was achieved 

by sequentially submerging the aforementioned parts in an appropriate series 

of solvents (usually HNO3 (30%), DW then MeOH) and subjecting the parts to 

ultrasonic vibration for 10-30 minutes in each. 

When using buffer solutions continually it was found to be necessary 

to flush the pump with DW occasionally in order to wash out any precipitated 

buffer material and so prevent residues accumulating on internal mechanical 

parts of the pump. 

On a few occasions the pump was isolated as the source of high detector 

background current and baseline noise. This was thought to arise from Feg® 

ions being stripped from the internal surfaces of the pump, being carried 

to the ECD in the mobile phase and there oxidising to Fei® so producing the 

observed effects. This problem was overcome by flushing the pump first 

with IJO3 (30%) to clean it out then with aq. EDTA (ca. 10-3M) to complex 

any stripped metal is and so passivate the S/S surfaces. The pump was 

returned to mobile phase via DW to ensure that precipitation of salts did 

not occur within the-instrument. 

Over the course of this work certain mechanical parts were replaced 

in the pumps. These parts included plastic piping, piste seals, check 

valves and, m one PU4010 pump, a pair of cam followers. 

1 
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5.1.2 Injection Valves 

As general practice, injection valves were flushed thoroughly with 

copious amounts of DW between sample injections to prevent accumulation of 

residues within the valve. Periodically a more aggressive solvent (e. g., 

HNO3 (30%) or MeOH) was used for this purpose, especially when valve 

blockage was suspected. When this procedure did not manage to free the 

trapped particulate matter, the valve was dismantled and the various attached 

lengths of tubing, injection loop(s) and rotor seal were ultrasmicated 

sequentially in a series of solvents (usually ENO3 (30%), DW then MeOH) as 

were pump parts (see Section 5.1.1). 

Leaks that occurred around the long-bush nuts used to connect the 

various tubes into the rear of the injection valve were repaired temporarily 

with PTFE tape. Eventually, the nuts and ferrules were replaced. 

With general wear and tear rotor seals become scored and leak. At 

such time, or before this point was reached, the rotor seal was renewed. 

A problem was encountered with the Rheodyne 7413 internal-loop micro- 

injection valve, namely that a leak occurred at the rear of the loop disc 

in which the three injection loops were mounted. This was remedied by 

applying a little 'Silicosett silicone adhesive to the base of the loops 

at the rear of the loop disc which sealed the gap. 

5.1.3 Analytical Columns 

With general use, a gradual decline in chromatographic efficiency, 

usually coupled with an increase in system back pressure, is observed. This 

situation is caused partly by contamination and. partly by physical disturb- 

ance of the packed bed leading to a depression in the column top so creating 
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a void in which band broadening occurs. ODS columns were regenerated 

routinely by washing with ca. 20 column volumes each of DW, MeOH, DW, 

HIJ03 (0.1M) and DW again before returning to the mobile phase. 

This procedure rarely re-established maximum column performance, 

particularly on those occasions when disruption of the packed bed had taken 

place. In these instances the inlet fittings were removed from the column 

and the top of the column bed was examined. If the packing was discoloured 

or depressed or cracked then column repair was attempted. The top 1-2mm 

of material was removed with a small spatula and the new top was examined 

again for faults. The procedure was repeated until clean, undisturbed 

packing was seen. The resulting void was then filled manually under 

gravity with an ethanolic slurry of new packing material, preferably from 

the same batch. The column was tapped lightly to allow even setting of 

the packing material. This process was repeated until the column void was 

full. The top of the column was compressed and made flush to the S/S 

using the spatula then the column inlet fittings were replaced. Inlet 

fittings were ultrasonicated to clean them prior to reuse. This procedure 

enabled column lifetime to be prolonged but an efficiency loss of 10-20% 

was commonplace when columns were repaired in this manner. 

When efficiency loss was unacceptable, the whole column was removed 

and replaced with a new one. The old column was emptied, cleaned out and 

repacked with fresh material using a N2-driven constant pressure hydraulic 

packing pump and following an appropriate procedure (see Sections 2.2.4 and 

3.3.3.3). Column end-frits and fittings were examined for damage at all 

stages and were replaced as necessary. 

Analytical columns were flushed thoroughly with DW prior to storage 

or if they were to. be dormant for any lengthy period of time in order to 

displace potentially harmful buffers. 
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5.1.4 Scavenger Columns 

Unacceptable increases in system back pressure commanly resulted from 

particulate contamination of the scavenger column which was incorporated 

between the pump and the injection valve to protect the analytical column 

from such problems. On these occasions the scavenger column was replaced 

with a new one. The contaminated scavenger column was then repaired as 

was the analytical column (see Section 5.1.3 above) or was emptied and 

repacked with fresh material as outlined in Section 5.2.1. If the top 

surface was badly polluted with piston seal debris then the piston seals 

were examined with view to replacement. 

5.1.5 Electrochemical Detector now Cells 

Flow cells were assembled as follows. Solvent was pumped into the 

cell while the outlet tubing was raised above the level of the cell so that 

the cell body gradually filled with solvent. The RE was installed first 

using an '0'-ring seal (composed of rubber in the EDT and PU detectors and 

PTFE in the Metrohm-one) and. was secured in place with a locking collar. 

Care was taken to avoid trapping air bubbles in the cell. The WE was then 

fitted in a similar fashion, again taking care not to trap air bubbles. 

For the Metrohm ECD only, a discrete AE was also fitted as above. '0'-ring 

seals were inspected for damage and were replaced as necessary prior to 

installation. Finally, appropriate electrical connections were made to 

the controller unit and the system was ready for start up. 

The occurrence of air bubble formation in the flow cells themselves 

was discouraged by submerging the effluent pipe in the waste fluid so 

creating a slight back pressure an the cell. This procedure also offered 
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the added benefit of reducing flow-associated noise normally arising from 

drop formation and release at the tube exit. 214 The flow cells were 

designed to encourage the free flow of air bubbles through to waste should 

they form. However, in the event of air becoming trapped in the cell, then 

the cell body was held in an appropriate orientation and was tapped gently 

to dislodge the bubbles. 

Glassy carbon WEs became contaminated with use. In order to 

decontaminate the GCE surface, the cell was depolarised and the electrical 

cable to the WE was disconnected. The GCE was removed and was cleaned 

by mechanical abrasion with a urethan olic slurry of fine alumina powder 

(dp = 31jm) on a lint-free tissue. Gentle circular motions were applied 

to avoid scratching the surface as much as possible. The GCE was thoroughly 

rinsed with DW and the flow cell was reassembled as outlined above. 

Periodically the PU4022 S/S WE was removed and cleaned by ultra- 

sonication and gentle brushing in I 103 (3052) followed by DW. 

All electrical contacts were cleaned routinely to ensure least 

resistance. 

The first PU4022 flow cell used in this study eventually had to be 

replaced due to a gross contamination problem generated by the corrosion 

of the S/S inlet tube locking collar. An identical flow cell was obtained 

except that a PTFE collar was Lncorporated in place of a S/S one. 

Electrodes were replaced occasionally in the PU4022 flow cell. GCEs 

had a lifetime of ca. 1 year whereas Ag/AgCJ REs lasted ca. 2 years in the 

course of this project. 
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5.1.6 Electrochemical Detector Control Units 

Switch contacts c the PU4022 Controller were cleared occasionally 

by technicians. 

Great problems were encountered eventually with the operaticci 

of the PU4022. Faults developed initially in the auto-zero circuitry and 

later in other Darts of the instrument. After various unsuccessful 

attempts to repair the unit it was abandoned and was replaced by the 

Metrohi 641-VA ECD which had been repaired. The PU4022 flow cell was 

retained so that compariscals with previous work could be made. Suitable 

cables to connect the 641-VA to the PU4022 cell were prepared and utilised. 

5.1.7 Potentiometric Recorders 

The guide wire, bar and pen holder were cleaned routinely with MeOH 

or 2-PrO H to ensure snooth, unrestricted rovemen t. Periodically a high 

grade metal polish was also used on S/S parts. Electrical connections were 

polished frequently to reduce resistance and provide good contact. 

Potertiornetric recorders were serviced as required to obtain optimum 

performance . 
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5.2 General O-)eratinR Procedures 

5.2.1 Pre1Da. raticn of a Scavenger Column 

The purpose of this scavenger column was to protect the analytical 

column from particulate matter (e. g., pump piston seal debris, micro-flora) 

and irreversibly adsorbed chemical ccm tamiaants carried in the mobile 

phase. 
397 

An empty column (45mm x 4.6mm ID) possessing 1/16" male 'Swagelok' 

end-fittings was cleaned thoroughly with McOH. A slurry in MeOH of Resolve 

ODS (dp = 10um, Waters Associates, Northwich, Cheshire) recovered from 

radial-Pak cartridges was prepared (ca. 0.9g in 10m1s) by ultraso; iication 

for 10 minutes. The resulting paste was then packed manually under 

gravity into the column. The co1uin to: )-fitting was c=ected and the 

assembly was installed in the solvent line immediately following the pump. 

The scavenger column was flushed, first with DW and then with the mobile 

phase. The coluri was removed and topped up as deemed necessary. Finally, 

the column was connected to the injection valve via the remaining length 

of solvent line. The column was repacked and replaced when system back 

pressure increased to an unacceptable level. 

5.2.2 Determination of Accuracy of Punt) Rate 

All pumps used in this ir_vestigatim were assessed regarding the 

accuracy of their solvent delivery. A suitable mobile phase was degassed 

under a gentle stream of He and was eluted through the system at the desired 

flow rate setting. For a predetermined time a clean, dry measuring 

cylinder of appropriate capacity was introduced into the flaw stream to 
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collect the effluent going to waste. (It was not possible to use a burette 

due to the high surface tensions of the predominently aqueous mobile phase). 

The volume collected in the time was noted and from this the actual flow 

rate was calculated. The procedure was then repeated and an average flow 

rate was determined. Any deviation from the set flow rate was noted. 

Both of the Pye Unicam PU4010 pumps and the Altex LC-XPD used 

throughout the course of this work were found to pump fast consistently 

by about 2-3% at a nominal flow rate of 0.4mlmin-1 (NBLC systems) using a 

4% MeOH : 96% aq. buffer mobile phase. At the 1. Omlmin-1 flow rate setting 

(Conventional LC systems) using a 10% MeOH : 90% aq. buffer mobile phase 

the first PU4010 and the Altex LC-XPD both pumped slightly fast by about 1%. 

None of these deviations from the nominal settings were considered to be 

sufficiently great as to be significant and are within specificatim for 

the individual pumps ccncerned. 438 

5.2.3 Injection Technique 

Grasping only the syringe flange and the plunger button, a quantity 

of standard or sample solution was drawn into a clean, dry glass syringe 

of lml capacity for conventional LC work or 25ul capacity (# 702 

'Microliter', Hamilton, NV, USA) for NBLC work. Air bubbles were excluded 

from the syringe and the needle was wiped gently with a clean tissue to 

remove excess liquid. Care was taken not to draw solution out of the 

syringe needle by capillary action. The needle was then placed in the 

injection valve loop filler port and, with the injection valve in the 'load' 

position, the plunger was depressed steadily in order to transfer the sample 

into the loop. As good practice, handling of the micro-syringe barrel' 
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(used for NBLC injections) was avoided so preventing any volume change 

taking place which would affect absolute concentrations injected. This 

was not important when chromatographic or internal standards were 

incorporated in the sample for quantitation purposes. Injection onto the 

column was carried out by switching the valve. 

After the injection, the syringe was removed and was flushed several 

times with clean DW and finally with acet arse. The syringe was then dried 

by pumping air in and out of the barrel using the plunger or7 alternatively, 

by directing a stream of compressed air over the disassembled syringe parts. 

After the completion of the chromatographic run a lml capacity syringe 

filled with clean DW was placed in the injection port and the valve was 

flushed liberally, first in the 'inject' position then in the 'load' 

position. This procedure served to prevent cross-contamination between 

successive injections should traces of the previous injection have remained 

within the valve after the termination of the previous chromatographic run. 

5.2.4 Overnight Status 

It is recommended that the flow stream passing through an ECD flow 

cell should never be interrupted whilst the cell is subjected to an applied 

voltage because rapid deterioration of the WE due to surface contamination 

can be expected to result. 
439 The excessive length of time required to 

start up each day from reintroduction. of the, working mobile phase and 

polarisati ai of the cell to achieving a practicable baseline, together with 

the time required at the end of each day to wash the, system prior to shut 

down was considered to be prohibitive. Hence, the alternative strategy 

of continual elution was adopted. 
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Initially, mobile phase cycling 20594`0 was carried out overnight; a 

practice whereby the effluent emerging from the flow cell vent is directed 

back into the solvent reservoir, the ca tents of which are sparged 

continually with He. This practice was ceased due to problems encountered 

with contamination and, to a lesser extent, column deterioration. 

Generally, mobile phase was pumped through the system without cycling 

when left overnight. 

ecariomise on solvent. 

the working flow rate 

restrictive. 

Periodically th 

value (ca. +1.2-1.5V) 

of the WE surface. 

Flow rate was reduced to 0.1-0.2mlmin-1 in order to 

Re-equilibration of the baseline on, returning to 

was fairly rapid so this action was not very 

e applied voltage was increased to a high positive 

overnight in order to promote electrochemical cleaning 

5.2.5 Thermostatting of the Apparatus 

The Metrohm 656 E® flow cell inlet tube was thermostatted with a 

water jacket. All other apparatus was operated at ambient conditions, 

although the action of direct sunlight on the instrument was avoided. 

No column thermostat was available for use so, in order to reduce 

short-term temperature fluctuations, the column was wrapped securely in a 

strip of polyurethane foam which was surrounded by a length of PVC pipe 

(120mm x 37mm ID, 45mm OD) which was utilised to house the assembly and to 

provide extra insulation. 

, 
Ideally the entire solvent, injector, column and flow cell should be 

thermostatted in order to gain greater stability and improved precision. 

The use of a Pye Unicam PU104 GC oven system was considered for thermostatting 
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purposes but was rejected because (1) temperature control was poor at 

around 20 °C, (2) installation would have proved difficult - connecting 

tubing would have required elongation hence increasing extra-column volume 

and., cosequently, extra-column dispersion, and (3) clinical laboratories 

would not generally have such facilities available to them. 
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