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ABSTRACT 

Almost all the current commercial OCR machines employ matrix matching, 

resulting in high speed and accuracy, but a severely restrictive range of recognized 
fonts. Published algorithms conversely, concentrate on feature extraction for font 

independence, yet they have previously been too slow for commercial use. 
Current algorithms also fail to distinguish between text and non-text images. This 

thesis presents a new approach to the automatic extraction of text from 

multimedia printed documents. 

An edge detection algorithm, which is capable of extracting the outlines of 

text from a grey level image, is used to obtain a high level of discrimination 

between text and non-text. An additional benefit is that text of any colour can be 

read from almost any background, provided that the contrast is reasonable. The 

outlines are approximated by polygons using a fast two-stage algorithm. 

A feature extraction approach to font independent character recognition is 
described, which uses these outline polygons. It is shown that highly accurate and 
fast recognition can be achieved using a remarkably small number of carefully 
chosen features. The results show that after training on only seven quite similar 
fonts, the recognition algorithm provides greater than 95% accuracy on fonts 
different to the training set. 

A more complex edge extraction algorithm is also described. This is capable 
of extracting text and line graphics from an arbitrary page. Although not essential 
for character recognition, this algorithm is useful for the interpretation of 
engineering drawings. As a further contribution to this problem, a thinning 

algorithm is defined, which is non-iterative and uses the polygonal approximated 
outlines from the edge extractor. 
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1. INTRODUCTION 

The use of a machine to read text from a printed page has been a subject of 

research for many years. Optical Character Recognition (OCR) is the term most 
frequently used to describe this process. This introduction will first discuss some 

of the important applications of OCR and will then examine two of the main 

methods as described by early papers on the subject. Subsequently, there will be a 

description of the state of the art in terms of recently published research and also 

some currently available machines. The remainder of the introduction will focus 

on the current problems in OCR. 

1.1. APPLICATIONS 

The applications of OCR are presently limited by the state of the art. When 

OCR machines are capable of reading almost any print style, the range of 

applications will increase significantly. 

The most common application is in office automation. Many large 

commercial organisations now have extensive electronic document processing and 

mail facilities, yet the majority of incoming mail is still in paper form. OCR 

could be used at several different levels to assist with the processing of these 

documents. 

Desktop publishing is a relatively new application. With recent reductions 
in the cost of high quality laser printers, complete publishing systems are now 

widespread. These systems provide the facility to lay out text and pictures on a 

page and re-set the text in a selection of possibly 1000 fonts. Text from common 

word processors can be used in the document, but text that exists only in printed 
form has to be re-typed. OCR could be used to overcome this problem. 

If all the printed material in a library could be scanned and the images 

stored on-line, it would be possible to read or borrow items using only a remote 
terminal. Presently, this idea is totally unrealistic, since the storage capacity 

required for even well compressed images is so enormous that holding all the 

material in just a small library would be astronomically expensive. Even the 

physical space required is likely to be larger than that required by the original 
paper. 

The compression ratios possible by using OCR reduce the necessary storage 
capacity sufficiently to make on-line libraries more likely. The other advantage is 



that once the material at the library is in machine-usable form and on-line, the 

terminal used to access it need not be a display screen. It may be a speech 

synthesis unit or a Braille terminal enabling blind people to borrow and read books 

without even having to leave their home. 

Stand-alone reading machines for the blind have already been built and 

sold. Existing reading machines however, have the same font limitations as other 
OCR machines. 

1.2. THE TWO MAIN OCR METHODS 

There were several attempts at OCR by mechanical means, before the 
invention of the digital computer. The approaches to character recognition are 

generally split into two very different methods. These are matrix matching, in 

which the bit mapped image of a character is matched directly with a set of 
templates; and feature extraction, where some higher level structure of the 

character is found and compared with a standard. 

Feature extraction techniques can be sub-classified in many ways since the 

term covers several radically different approaches. This section will concentrate 
on illustrating the two main approaches to OCR as described by early papers 

published around 1959. 

1.2.1. MATRIX MATCHING 

Wada et. al. 
(1) describe an electronic reading machine which is based on a 

diode matrix. This machine and others like it form the basic principle used in the 

majority of current commercial OCR systems. (See section 1.4.1. ) The principle 
is to fix a character cell to contain an array of (in this case) 10 by 12 square 

pixels. A sample of each character is presented to the machine and each pixel is 

digitized using simple thresholding to black or white. The pixels positioned on a 

boundary between white and black regions are set to grey. Grey pixels are used 

to provide flexibility by regarding them as matching both black and white pixels. 

These samples form templates against which all unknown characters are tested. 

When the machine is presented with an unknown character, each pixel is 

thresholded to black or white. Corresponding pixels are then compared in every 
template. The number of pixels matching black for black or white for white are 
counted. Pixels that are grey in the template are ignored. The unknown character 
is then recognized as being the one with the highest match value. 



Certain pixel positions in the templates help to distinguish between 

characters better than others. For instance, some pixel positions may be white in 

all templates. In order to reduce the complexity of the machine, a large 

proportion of pixels in the templates are changed to grey. Once all the templates 

have been created, each is compared against all the others. Those pixels which 

have the greatest discriminating power are called "Important" pixels. As many as 

possible of the least important pixels, i. e. those with least discriminating power, 

are set to grey in all templates subject to the constraint that all the templates 

remain different. 

In this way, only those points that are capable of distinguishing between 

characters are retained. This reduction results in an average of only 11.3 pixels 
being tested for each character. An example of this process is shown in Fig. I. I. 

p°°, ý-. ý °, ý., };; -, ý�ý,.,,, s ý ti; ý 
- 

Fig. 1.1. (a) The original template for J. (b) The reduced template. 

Using state of the art hardware technology in 1959, this machine achieved a 

recognition time of about 15 milliseconds per character. This is well beyond the 

capabilities of the programmed computers of the time and shows the outstanding 

advantage of matrix matching - it is extremely simple to implement in hardware 

or software and fast at recognition. 

The outstanding disadvantage of matrix matching is evident in Fig. 1.2. 

This figure is reproduced from the paper by Wada et. al. 
(1) 

and shows the effect 

of horizontal and vertical deviation of the position of characters within the cell on 
the recognition rate. Clearly different fonts have different aspect ratios, thickness 

of lines, sizes of serifs etc. All these characteristics contribute to a movement of 
different parts of each character relative to one another and thus to a severe 
reduction in the recognition rate. 



A slight change in the size of the character would cause a similar effect. 
There are many different type sizes in common use and matrix matching is 

incapable of managing a drastic change in pattern size without multiplying the 

number of templates by the number of sizes to be accepted. 

Furthermore, the majority of printed text, as opposed to typewritten text, is 

proportionally spaced. Not only does this make it difficult to locate the character 

cell on the page, but also, the character cell is no longer of a fixed size. All the 

above problems together constrain the application of matrix matching to 

recognition of a small range of fonts in a fixed size. 

(a) ,.... i..... ,. ý. i.,., T (b) 
0,2 -0.1 0 0.1 02 -0,2 -0.1 0 0,1 02 0.3 

mm mm 

Fig. 1.2. The effect of (a) horizontal and (b) vertical position on the recognition 
rate. 

1.2.2. FEATURE EXTRACTION 

Matrix matching attempts to recognize characters by using the lowest 

possible level of information. Feature extraction is a general term which covers 

many different techniques for extracting higher level information about a 

character, in an effort to achieve font independence. 

Grimsdale et. al. (2) describe an OCR system which analyses the strokes 
comprising each character. A line finding algorithm segments the character into 

straight and curved line sections. An example of the segmentation of a character 
in shown in Fig. 1.3. The length, slope and curvature of each segment are 
combined with information on the connectivity with other segments into a 40 bit 

representation. The set of these 40 bit representations which make each character 
is called the "statement" for the character. 

The statement of the unknown character is compared with the statements 
for the standard characters on which the system was trained. The character is 

recognized as being the one corresponding to the statement which best matches the 

statement of the unknown. 



I 

I 

I 

s 
I 

Fig. 1.3. An example of a letter "R" segmented into straight and curved sections. 

The interesting attribute of this particular approach is that characters may 
be recognized in any orientation. As long as the slope for all sections deviate 

from the standard by the same amount, the character can still be recognized. 

Using a Manchester Mark I computer, with 4000 machine instructions, this 

system recognized characters at an average rate of one per 60 seconds. 
Understandably, there are no detailed test results in the paper. The system was 
trained and tested with carefully hand painted figures in white drawn on a black 

background. Consequently the figures used had no adornments or serifs and it is 

difficult to tell what effect they would have had on the recognition rate. 

The principal advantage of feature extraction is that if the features are 
chosen well enough, recognition is independent of position, size, orientation and 
font. In this particular example the independence of size and orientation are 
there, although independence of font is unlikely. 

The main disadvantage is also dramatically shown when the recognition time 
is compared with that of Wada et. al. ( l) from section 1.2.1. The authors anticipate 
at least a thousandfold reduction in the recognition time with advances in 

computer technology. Nevertheless, the steps involved in recognition by feature 

extraction are so complex that the process has to be software based, whereas 
matrix matching can be performed in hardware. Even when performed by 

software, matrix matching is still an order of magnitude faster than feature 

extraction. 



1.3. RECENTLY PUBLISHED OCR RESEARCH 

There have been several surveys of character recognition. 
(3-6) A detailed 

survey is not attempted here; this section will instead concentrate on describing 

two recent but highly contrasting approaches. They differ not only in the features 

that are used in recognition, but also in the way in which the features are 

obtained from the bit-mapped image. 

(a) (b) 

Fig. 1.4. (a) A typical binary image of a character. 
(b) The outline of (a). (c) A thinned version of (a). 

(c) 

Fig. 1.4(a) shows a typical example of a binary image of a character. All 

previous work on OCR, except the work by Brady et. al. 
(25-27), has operated on a 

binary image, i. e. each pixel is taken to be either white or black. From the binary 

image, the features have to be extracted in some way. Two possible approaches 

are as follows: 

(1) Find the outline of the character as in Fig. 1.4(b). The result is still a 
bit-map, but the outline may be approximated by a polygon to make it easier 

to manipulate. 

(2) Thin the lines to produce a skeleton as in Fig. 1.4(c). As in (1), the result is 

still a bit-map, but the features may be easier to find. The skeleton may be 

converted to vectors and stored in a graph representation. 

The above alternatives will now be considered in more detail. 

1.3.1. EXTRACTION OF FEATURES FROM OUTLINES 

Yamamoto and Mori(7) describe a method by which outermost points on the 
outline of a character are found and used to extract convex and concave sections 
of the outline. An outermost point is defined as follows: 



Let the outline consist of n points with coordinate vectors Ei where i ranges 

from 1 to n. The vectors may have an arbitrary origin, for instance the bottom 

left corner of the character cell. The outermost point in the direction of vector A 

is then Ei such that A. Ei is a maximum over i from 1 to n. 

The outermost point on the object is found in each of a fixed set of 16 

directions. The outermost points on the outer edge of the "Q" in Fig. 1.4(b) are 

shown in Fig. 1.5(a). These points are used to segment the outline into convex 

and concave sections. An example of this segmentation is shown in Fig. 1.5(b). A 

set of features is then derived for each character: 

A The number of separate outline pieces. An "0" will have 2, one for the 

outer edge and one for the inner edge. An "i" will also have 2, one for the 

line and one for the dot. 

B The number of holes in the object. 

C The number of convex/concave sections on the outline. 

(Fi) Each section has its own set of features, Fi (1<=i<=C): 

(1) Whether the section is convex, concave, or a hole. 

(2) The "centre point" of the line section. There is no definition of the 

centre point in the paper. 

(3) The length of the section along the original outline. 
(4) The straight line distance between the ends of the section. 
(5) The perpendicular distance of the centre point from the straight line 

joining the ends of the section. 
(6) The orientation of the straight line joining the ends of the section. 

(7) The ratio of (4) to (3). 

(8) The difference between (4) and (3). 

(9) The angular distribution of edge elements in the section. 

Outermost 
Points " 

Other 
Outline 
Points 

Convex 
Segments 

Concave 
Segments 

Fig. 1.5. (a) The outermost points on the outline of Fig. 1.4(b). 
(b) The segmentation of the outline into convex and concave regions. 



Let the jth feature in the set Fi be denoted by Fi, j (1<=j<=9). Thus each 

character will have the values A, B, C, and a set Fi containing the values Fi, 1 to 

Fi 9 for each different section of the outline. Rather than compare these values 

against the entire known character set, the set is split into groups according to the 

values A, B, C and the values Fi 6, the direction of each section. Within each 

group, the features are then matched against every character in the group. 

By splitting the templates into groups in this way, recognition time is 

reduced. Also, the matching process is simplified by having C the same for all 

the templates in each group. There can then be a direct comparison of the 
features Fij with those of the corresponding Fij in the template. 

In the templates, each feature has associated with it an allowed range, given 
by an upper limit Ui, J and a lower limit Li, J. The range is expanded by an 

allowed deviation dUi,. l and dLij. The match value for the feature Fij in the 
test character is given by: 

Wi, J(Li, J-Fi, J) If Li, J-dLi, J<=Fi, J<Li, J 
Mi,. l 0 If Li, J<=Fi, J<=Ui, J 

Wi, J(Fi, J-Ui, J) If Ui, J<Fi, J<-Ui, J+dUi, J 
Infinity If Fi, J<Li, J-dLi, j or Fi, J>Ui, J+dUi, J 

Wi,. i is a weight for that particular feature. The match rating of the test 

character against the template is thus the summation of Mi,. l over the 9 features in 

each of the C line sections. The best match is given by the lowest match value. 

The character is accepted and recognized if the match rating meets the 
following conditions: 
(a) The best match value is below a fixed limit. This ensures that the character 

is reasonably close to the ideal shape. 
(b) The difference between the best match value and the second best must be 

greater than a constant. This is a test of ambiguity; if the best match is well 
clear of the other possibilities then it is likely to be correct. 

If the above conditions are not both met, the character is rejected. 

The results given in the paper state that recognition takes about 0.7 seconds 
per character. Reading a mixture of hand printed upper case alphanumerics and 
Japanese Katakana symbols, a 99% recognition rate is reported over a training 
sample of 12300 characters and a test sample of 4100 characters. 



In a recent US patent application, Yamamoto and Saito(8 present a 

hardware implementation of a modified version of the outermost point algorithm. 

The modification causes generation of a polygonal approximation to the outline, 

instead of the rather inaccurate convex hull produced before. Unfortunately, the 

patent application describes only the polygonal approximation/outermost point 

algorithm and contains no information on the recognition method. 

1.3.2. EXTRACTION OF FEATURES FROM SKELETONS 

Kahan, Pavlidis and Baird(9) describe an OCR system designed to recognize 

printed text of any font and size. Processing starts with the run-length encoded 
binary image of the entire document. (Run-length coding simply replaces each 

run of black or white pixels with a number indicating the length of the run. ) 

Firstly, the Line Adjacency Graph(10) (LAG) is constructed. The LAG is a 

representation of dark run lengths in the image and indicates their connectivity 

with other dark run lengths on adjacent lines. Each connected component of the 
LAG is thus a single character, except in the case of a deliberately broken 

character such as "! ". 

Thin, straight line segments are extracted directly from the LAG(11) 

Thinning by this route has a considerable speed advantage over the conventional 
pixel-based iterative thinning methods. The features used in the recognition 
process are generated from the output of the LAG based thinning step. They are: 
strokes, holes, concavities, crossings of strokes and endpoints in the vertical 
direction. 

Kahan Pavlidis and Baird give an example of how the strokes are used in 

recognition. The size, position and orientation of the strokes are normalized with 

respect to the rectangular bounding box of the character. These variables are then 

transformed into a 4-dimensional feature space, <x, y, r, i>. <x, y> gives the 

normalized position of the centre of the stroke. <r, i> is a representation of the 

orientation and length of the stroke. <r, i> is a complex number such that the 

modulus is equal to the normalized length of the stroke and the argument twice 
the angle with the x-axis. 

Analysis of a large number of samples of the same character reveals that the 
transformed strokes form clusters in the feature space. An example of strokes and 
the corresponding clusters from the letter "P" is shown in Fig. 1.6. 



Counting the individual stroke clusters for all the character set gives about 

500, but many of these are very similar. By merging clusters the number can be 

reduced to 100 with a negligible effect on ambiguity. The number of clusters for 

all the features can be likewise reduced from 1500 to 300. The 300 different 

clusters are used as the binary features in a Bayesian classifier(12). 

:...... T ........: 

. 
4k: 

::, 
:.... ý ............ .................: 

strokes < x, y><r, r> 

Fig. 1.6. Strokes from samples of the letter "P" illustrating clustering in the feature 
space. 

The features listed above are inadequate to distinguish all characters, so 

contour analysis is used to resolve the ambiguities. The groups of ambiguous 

characters are quite revealing: 

(1) a, e, s, g, 8, B. 

(2) 0, o, 0, D, Q. 

(3) 6, b. 

(4) b, h. 
(5) f, t. 

In group (1), a, e and s are only confused in the case of a small boldface 

type where the concave region is fully closed. Such closure is due to a 

combination of the scanner resolution and the light threshold used to prevent 
broken characters. 

One would expect the left vertical stroke of the B to distinguish it from the 
8 but this is not so since the LAG traversal manages to find a similar line in the 
8. A similar comment applies to O/D in group (2) and 6/b in group (3). 

In group (4), b and h are confused when the h has large serifs. Confusion 

of f/t in group (5) is understandable due to the small physical difference. 

After contour analysis for ambiguous characters, words are tested with a 
spelling checker. Where the word is rejected, alternatives are tried according to 



decreasing probability, until the word is accepted, or the probability falls below a 

set level. 

Test results are given for a large data set of 196000 characters. The 

published results only cover tests conducted using the same fonts as the training 

set. Thus font independence is not shown convincingly. One test covers training 

on six dissimilar fonts and the recognition rate varies from 97% or better for 14 

point or bigger print, down to below 90% for 8 point. The real test of using 
different fonts from the training set is not published. 

Recognition speed is approximately 5 characters per second, running on a 

VAX 11/750. The authors agree that this is a factor of 10 short of a practical 
figure. An important feature of this work is the use of the LAG for thinning. It 

is now accepted that pixel based iterative thinning is far too slow for use in OCR 

on a single conventional processor system(13). This result is confirmed by Kahan 

et. al. who state that their LAG based thinning takes under 3 minutes per page of 

text versus over 20 minutes for pixel based thinning. For a detailed description of 

one of the iterative thinning algorithms see chapter 7. 

1.4. CURRENTLY AVAILABLE MACHINES 

The applications of section 1.1 are not at present feasible, because of the 

profuse variety of type fonts used in modern printing. Most publishers now offer 

several hundred styles in a wide range of sizes. The majority of currently 

available OCR machines use matrix matching and are consequently incapable of 

reading this abundance of fonts. Only a small fraction of current machines use 
feature extraction and these tend to be much more expensive than the matrix 

matching machines. 

1.4.1. LOW-END MATRIX MATCHING MACHINES 

Most present day OCR machines can read only a small fixed set of fonts. 
Consider for example, the DEST Workless Station(Ml). This machine can cope 
with 8 popular monospace typestyles plus 4 proportionally spaced typestyles. 
Obviously, this represents only a very small fraction of all printed matter. 

The Workless Station can process an A4 page in as little as 30 seconds with 
a substitution error rate of 1 in 300000. A substitution error occurs when the 

machine claims to recognize a character correctly, but is in fact incorrect. The 

rejection ratio is rather higher than the substitution error rate; it is of the order of 
1 in 500. Rejected characters are those which did not match any single character 



particularly well. Rather than make a substitution error, they are rejected and 
highlighted for the operator to correct. 

A problem with this type of OCR device is that it cannot cope with any 

document containing non-text. Even a simple coloured box can confuse it 

completely. The Workless Station is thus extremely limited in its application, but 

within those limits it has excellent performance. A survey of some similar 

machines is given in Ref. (14). 

1.4.2. FEATURE EXTRACTION SYSTEMS 

The Kurzweil reading machine(M2) is a good example of a machine 
designed to recognize a reasonable range of fonts. The cost in manual 
intervention however, is extremely large. For each new font encountered it is 

necessary to train the machine, either confirming its choice of character as correct, 

or supplying the appropriate correction. This process is many times slower than 

retyping the section on which training takes place. 

The training process is also unreliable, since some area of the document 

must be used as a sample and very few documents print the entire character set in 

a separate box especially for training! Thus those characters not present in the 

sample may be recognized incorrectly when they are encountered later in the 

document. 

Once the Kurzweil reader is trained for a font, the problems are not solved 
because the machine must be told which training set to use to read the various 

portions of a document. A digitizing pad is used to indicate regions containing 

each different font. Hence it is necessary for the operator to be able to recognize 

fonts by sight and know the name of each. 

The difficulty with processing documents containing non-text also occurs 

with the Kurzweil reader. When using the digitizing pad to indicate regions of 

each font, areas of non-text must be avoided. In common with the matrix 

matching machines, the Kurzweil reader is limited to reading black text on light 

coloured paper. 



1.5. UNSOLVED PROBLEMS IN OCR 

The OCR market is presently poised for a dramatic change. Currently, 

almost every commercial machine is based on matrix matching, yet for nearly 
thirty years, the emphasis in the literature has been on feature extraction. Kahan, 

et. al. 
(9) 

state in their introduction that to the best of their knowledge, there is no 

commercial implementation of feature based OCR that is capable of reading a 

wide range of print styles. The only possible exceptions to this statement 
according to Kahan et. al. are the PRODATA TO-3000(M3) which uses the 
Yamamoto-Mori(7) method, and the Palantir Compound Document Processor 

which became available in the UK in 1987 through FormScan(M4) 

The Compound Document Processor in fact employs an advanced matrix 

matching algorithm(15), which scales each character before matching, enabling the 

recognition of a range of sizes with only one set of templates for each font. The 

marketing literature from Kurzweil(M2) seems to indicate a feature extraction 
approach, but the machine still needs to be trained for each new font encountered. 

The probable reasons for this discrepancy between commercial machines and 
the published algorithms are: 

(1) Published feature based OCR methods have insufficient accuracy. 
(2) Feature extraction cannot yet compete with the speed of matrix matching. 

The market demands an accuracy of at least 99.9% correct with all errors 
being rejections rather than substitution errors. (See section 1.4.1. ) An acceptable 
recognition speed is 50-100 characters per second for a machine costing under 
(US)$5000. 

Some of the currently unsolved problems in OCR by feature extraction will 
now be explained. The remainder of this thesis will concentrate on a description 

of some new solutions to these problems. 

1.5.1. RECOGNITION SPEED 

Working backwards from an acceptable speed of 100 characters per second 
gives 10 milliseconds per character. Divide this by the number of pixels in a 
typical character cell (1200 for a 30 by 40 pixel cell) and there are only 8 

microseconds per pixel. Clearly, to process an image at that rate in software needs 
some extremely fast algorithms for extracting the features. 



The most time consuming step is usually the pre-processing needed to assist 
the extraction of the features. For example, in thinning based feature extraction, 

thinning itself is the rate determining step. Times of 250 milliseconds per 

character are typical. Even the LAG based thinning algorithm(II) is slow at 

around 40 milliseconds. Either a new faster thinning algorithm must be found, or 
the step must be eliminated completely. 

1.5.2. RECOGNITION ACCURACY 

The principle of feature extraction is that it is fundamentally more general 
than matrix matching and hence better able to read many different fonts. In 

reality, even the most recent methods(9) have a recognition rate which tails off as 
the number of fonts increases. The problem lies with the features themselves and 
the way they are chosen. In the majority of papers on OCR by feature extraction, 
there is no reason given at all for the choice of features. 

This lack of methodology is reflected in the number of papers that have 
been published on feature selection(16,17) and the elimination of redundant 
features(18). Psychological tests have been performed(34-41) to determine those 
features responsible for distinguishing a range of ambiguities and perhaps this is 

the way in which better font independence and accuracy can be achieved. 

1.5.3. BINARY AND GREY LEVEL IMAGES 

Fig. 1.7 shows a portion of a typical document which would be impossible 
for any existing OCR machine to read. The Workless Station would struggle with 
even the black text, since it is proportionally spaced and unlikely to be in one of 
its standard fonts. The white text would be lost completely and the photograph 

may cause rejection of the entire page. 

The Kurzweil reader would be able to read the black text, after training, 
but is incapable of reading the white text. Neither machine can automatically 
distinguish between the text and the picture. 
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Fig. 1.7. A difficult document for any OCR machine. 

The common reason for all these failings is that both machines will 

threshold the image before they look for text. Fig. 1.7 was scanned with 16 

shades of grey (level 0 is black, level 15 is white) and printed using error 

diffusion. (19) Error diffusion preserves some of the grey level information on a 

printer capable of printing only dots of uniform size and colour. The use of grey 

levels provides better quality pictures. More importantly, grey levels provide a 

clear distinction between text and non-text. 

As an example of the power of grey levels over binary images, Fig. 1.8 

shows the same image of Fig. 1.7 after applying an adaptive thresholding 

algorithm. Adaptive thresholding adds a fraction of the local average to the 

threshold. The main effect of the adaptive algorithm is to enhance edges in the 

images by pushing the threshold nearer to white in a light region and nearer to 

black in a dark region. Hence grey pixels in a white region are more likely to be 

mapped to black and show up than they are to be mapped to white and disappear. 

Fig 1.8 shows the result of thresholding at 5.5, plus a quarter of the local 3 by 3 

average. Fig. 1.9 shows the result of thresholding at 10.5, again plus by a quarter 

of the local average. 



For almost two decades, optical 
character recognition systems have 
been widely used to provide automated 
text entry into computerised systems. 
Yet in all this time, conventional OCR 
systems have never overcome their in- 
ability to read more than a handful of 
type fonts and page formats. Propor- 
tionally spaced type (which includes vir- 
tually all typeset copy), laser printer 
fonts, and even many non-proportional 
typewriter fonts, have remained beyond 
the reach of these systems. And as a 
result, conventional OCR has never 
achieved more than a marginal impact 
on the total number of documents 
needing conversion into digital form. 

Fig. 1.8 The image of Fig. 1.7 thresholded at 5.5. 

Both the Kurzweil reader and the Workless Station will have images 

something like either Fig. 1.8 or Fig. 1.9. Looking at the thresholded images, it 

becomes immediately obvious why neither machine could read both the black and 

the white text, even if they had the capability to look for white marks on a black 

background. It also gives a good idea as to why they would both struggle with the 

picture; it has little to distinguish it, other than size, from the rest of the text. 

Fig. 1.9 The image of Fig. 1.7 thresholded at 10.5. 

Consider now Fig. 1.10. This shows the image from Fig. 1.7 after applying 

a simple edge detection operator, as described in section 3.1. The pixels printed 



in black in Fig. 1.10 are those with an edge strength greater than 2. See section 
3.1 for a definition of the edge strength. 

This example shows clearly that starting with shades of grey, rather than a 

binary image, would provide an OCR system with tremendous benefits in terms of 

greater power to extract the interesting parts from an image. It would also make 

it much simpler to ignore the parts which do not contain text. 
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Fig. 1.10. The result of applying an edge detector to Fig. 1.7. 

The problem that must be overcome before grey scale can be used is that at 
16 grey levels for instance, four times as much data is generated per page. It is 

highly likely that almost any algorithm will take about four times as long to 

process a page under these circumstances. Therefore, there needs to be an 

extremely fast first step which reduces the volume of data greatly. Otherwise, the 

problem of the speed of feature extraction will be aggravated. 



2. A NEW APPROACH TO CHARACTER RECOGNITION 

The approach to character recognition taken in this thesis is different to any 

that has been used before. This chapter gives an overview of the complete system 

of which Fig. 2.1 is a block diagram. All the components of Fig. 2.1 are 

described in outline, while edge extraction, polygonal approximation and feature 

extraction will be described in detail in chapters 3 to 6. 
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2.1. THE SCANNER 

Font coded text 

Fig. 2.1. A system block diagram. 

The scanner is an HP9190A Scanjet; a flat-bed scanner capable of producing 

an image at a resolution of 300 pixels per inch in 16 grey levels. At this 

resolution, each A4 page can be read in approximately 30 seconds. The resulting 
image occupies over 4 Megabytes. 



The mechanism is now becoming commonplace. It operates on the same 

principle as the scanning half of a photocopier. A linear Charge Coupled Device 

(CCD) array is the light sensing element. In the ScanJet, both the paper and the 

CCD array remain stationary, while a system of mirrors is moved vertically down 

the page. Fig. 2.2 shows the grey level image of a letter "a" both in image form 

and as hexadecimal digits, with 0 and F representing black and white respectively. 

FFFFFFFFFFFFFFFFFFFF 
FFFFFFECA89BDFFFFFFF 
FFFFFA42211236DFFFFF 
FFFD63689831115EFFFF 
FFF52BFFFFD61019FFFF 
FFF45FFFFFFF5003FFFF 
FFFBEFFFFFFFB102EFFF 
FFFFFFFFFFFFD201EFFF 
FFFFFFFFFFED7101EFFF 
FFFFFFDA84442002EFFF 
FFFF952259BEA102FFFF 
FFF6116CFFFFD203FFFF 
FF8105FFFFFFD102FFFF 
FE301CFFFFFFD103FFFF 
F9102EFFFFFFC102FFFF 
F8002EFFFFFF7102FFFF 
F91019FFFFE72003FFFF 
FC20029BB957A202EFFF 
FF82011124AED2017DFF 
FFFA42126EFFF53335BF 
FFFFFEDEFFFFFFFFEFFF 
FFFFFFFFFFFFFFFFFFFF 

Fig. 2.2 A grey level image of an "a" and its hexadecimal values. 

2.2. HALFTONE PROCESSING 

All printed pictures, as opposed to photographs, use hal jtoning - ink printed 

in dots of different size in order to produce the illusion of a continuous grey 

scale. The spacing of the dots determines the print quality and resolution. The 

resolution of the HP ScanJet is such that a picture scanned from a glossy magazine 

will produce an image where the probability of two adjacent pixels having the 

same grey shade is very low, i. e. the halftone dots are clearly visible. 

Halftones consequently cause problems in document image processing, 

mainly when an attempt is made to compress images. The halftone processing step 

performs two separate functions. Firstly, halftones which would normally make 

an image difficult to compress are smoothed by local averaging. The smoothed 
image can then be compressed much more easily by relatively simple methods. 

Text is occasionally printed on a halftoned or shaded background. Where 

the contrast is high, the edge extractor can still find the outlines. When the 

contrast is low however, the edge breaks up and disappears completely. It would 
be desirable to be able read such text, even though the situation occurs rarely. 
The second task of the halftone processing step is thus to enhance the appearance 



of text when printed on a halftoned background. Fig. 2.3 shows a particularly 
difficult example. 

Fig. 2.3. The word "Both" printed on a halftoned background. 

2.3. EDGE EXTRACTION 

An edge detector is applied to the grey level image in a raster scan. When 

an edge is found, it is followed all the way around until a closed loop is formed. 

If the edge does not form a closed loop, it is ignored. This operation provides a 

powerful discrimination between text and non-text. The use of a grey level image 

and an edge extractor is the major difference between this approach to OCR and 

any previous method. The important advantages are: 

(a) Looking for edges rather than black regions provides the ability to read any 

colour of text on a background of any colour, provided that the contrast is 

sufficiently great. This is simply impossible to do by thresholding without 

manually selecting for positive or negative print. 

(b) When an image is thresholded, non-text portions of the image form the same 

kind of black regions on a white background as text. This causes the 

character cell location algorithm to be confused. With a grey level image, the 

vast majority of edges in the non-text region do not form closed loops and 

are therefore rejected. Any edges which do form closed loops will either not 

look like any known character, or will fail to form a reasonable text line. 

Hence, grey level images provide discrimination between text and non-text. 

(c) Apart from a simple raster scan of the entire image, the edge extractor 

examines only the edges of characters. The number of pixels in the image 

that are analysed in detail is thus reduced by about 90%, making it possible 

to process a page in a reasonable time. 



2.4. POLYGONAL APPROXIMATION 

The edge extractor follows edges from pixel to pixel around the outline. 
The output is simply a long sequence of steps between neighbouring pixels. 
Polygonal approximation is a process whereby outlines are approximated by 

sequences of straight line segments, i. e. polygons. 

There are two reasons why it is better to approximate the outlines before 

passing them on to feature extraction: 

(a) Both polygonal approximation and the processes used in feature extraction 

consume linear time with respect to the number of points on the input 

polygon. The constant of proportionality however, is much larger in the case 

of feature extraction. Consequently, polygonal approximation results in a 

considerable time saving. 

(b) One of the most important features used in recognition is the presence of 
concave regions in the outline. Polygonal approximation straightens out the 

zig-zags in the outline which would otherwise produce false concavities and 
confuse the recognition process. 

The edge extractor reduces the volume of data in an image by about 90%. 
The quantity remaining however, is still extremely large and the polygonal 
approximation algorithm must be chosen carefully to suit the available processing 
time. 

(a) ý' " (b) 

Fig. 2.4. (a) The edge path of the image in Fig. 2.2. 
(b) A polygonal approximation of the outline in (a). 



Fig. 2.4(a) shows the outline path traced by the edge extractor for the image 

of Fig. 2.2. Fig. 2.4(b) shows the result of polygonal approximation when applied 
to Fig. 2.4(a). The number of points on the outline is thus reduced from 98 to 26. 

2.5. FEATURE EXTRACTION 

From the outlines of characters, fundamental features are extracted. There 
is some psychological evidence(34-41) that the particular features used are 
important to humans in the recognition of text. The features used are: 

(a) Concavities. A concavity is more complex to define than a set of adjacent 

concave points; it is an area that can be filled, which may include some 
convex points. This difference is illustrated by Fig. 2.5, which contains three 
concavities shown as dot filled discs. 

(b) Closure. A closure is a region of the background which is completely 

enclosed by the character. In certain fonts, characters such as "P" and "e" are 

printed with an incomplete closure. It is the presence of functional closure 

rather than physical closure which must be detected. These terms are defined 

in section 5.1.1. 

(c) Lines. A line is a straight part of the outline. Line detection is complicated 
by the polygonal approximation, since curves are converted into a small 

number of straight lines. They are thus rendered less distinct from actual 

straight lines. 

(d) Axes. An axis is used for objects which have no concavity or closure. The 
axis feature measures the ratio of the lengths of the major and minor axes of 
a convex object. It is used to distinguish between characters such as dot and 
a straight comma. 

(d) Symmetry. Symmetry is measured by comparing parts of the character on 
either side of an axis. Measurement of symmetry is difficult in the case of 
italicised text, where the axis of symmetry is not perpendicular to the 
direction of measurement. 

In Fig. 2.5, the outline of Fig. 2.4(b) is repeated with the closure and three 
concavities shown by discs. The closure is illustrated by a dashed disc centred on 
the centroid of the closed polygon. Its area is equal to the area of the polygon. 
The dotted discs are similarly centred on the centroids of the concavities with 
their areas being equal to those of the respective regions. Note that the position 



of the centroid is shown only to the nearest integer and that that it is unclear 

where the ends of the uppermost concave region may be. 

� 

ý 

Fig. 2.5. The outline of Fig. 2.4(b) with a closure and 3 concavities identified. 

Using these features, an unknown character is matched with a generic 

character class. The mapping of generic character classes to ASCII characters is 

not one to one. A small number of characters appear in more than one 

fundamental shape, for example "g". Such characters must have more than one 

class which map to the same ASCII character. 

A more common case is a single class which can map to one of several 

characters. In certain fonts for instance, the characters 1(digit one), l(letter ell) 

and I(capital i) are identical. The only way to distinguish them is by context. At 

the feature extraction stage, there will be several generic classes to cover the 

various physical shapes of these three characters. Most of these classes will map 

to one of two or three ASCII characters, depending on the particular shape. 

2.6. TEXT ORDERING 

The edge extractor locates individual connected regions of the image. 

Certain characters are deliberately printed in 2 or more pieces, such as "! ". These 

are considered separate entities by the edge extractor, but are re-associated by the 

text ordering stage, so that the dot can be used to distinguish the exclamation 

mark from "I". 

In the previous section, it was stated that some generic classes can map to 
"1", "1" and "I". In fact, until broken characters are re-associated, the same class 

can also map to "! ", "i" and occasionally ""'. 



Another problem caused by the edge extraction process is that the raster 

scan will not find characters in an ideal order. Tall characters on a line such as "1" 

and "t" will all be found first. The smaller characters such as "e" and "o" will be 

found several scan lines down the page. A logical text line will thus be broken 

into several sorted partitions. The text ordering phase uses a bucket sort to 

quickly put the characters in a logical sequence. This apparently trivial task is 

complicated by the possibility of multiple text columns in different font sizes on 

the same page. 

2.7. FINAL CLASSIFICATION 

Since the system aims at reading almost any printed font of any size, all 

characters are scaled. Capital and small versions of some letters are thus rendered 
indistinguishable. The final classification step discriminates upper and lower case 
by using contextual information. Neighbouring characters of known case provide 
the expected size and relative position of the unknown character. The final 

classification step also uses context to resolve more difficult ambiguities such as 
1 /1/I which, as stated in section 2.6, will map to the same class in certain 

variations. 

Contextual resolution of ambiguities can be assisted by a spelling dictionary. 

If one or more characters in a word have two or more possibilities each, 
combinations of these choices can be given to the spelling checker, in order of 
decreasing probability, until it accepts one of the alternatives. 

2.8. TEXT REMOVAL 

When text has been recognized it can be removed from the image. Any 
interesting non-text images on the document can then be compressed and stored 
for use in later documents. This facility will be of use not only for office 

automation applications, but also for on-line libraries, where the main aim is to 

achieve maximal compression of any kind of document. 

In the trivial case of black text on a white background, removal of the text 

can be achieved by simply writing white to the rectangular bounding box of each 
character. This can be extended to removal of text on any plain background by 
filling with the grey level surrounding the rectangular bounding box. 

When the text is printed on top of a patterned or halftoned background, the 
task becomes very much more difficult. When text is printed over a picture, text 
removal is virtually impossible without leaving some visible mark. 



2.9. IMAGE COMPRESSION 

Many techniques have been developed for image compression 
(20) A 

significant proportion of them rely on some knowledge of the image to be 

compressed. The algorithm required here is not expected to deal with text; the 

main requirement is to compress a blank image and continuous grey levels. 

Simple run-length coding, replacing runs of the same grey level with a level 

and a length, would perform adequately for documents with very few or simple 
images, and could be executed in software. More complex algorithms which make 

use of the 2-dimensional nature of the data(20) would yield higher compression 

ratios for use with large images. 

2.10. MATRIX MATCHING 

Once a character has been recognized as an "A" for instance, the bit map of 
that letter can be compared with bit maps of other versions of the same letter. If 

the bit map matches a character in the font table, then a font code could be 

output with the ASCII value of the character, which would enable the document 

to be reproduced exactly. If no match is found, then the new character could be 

added to the font table. 

This approach is useful for document storage, but if it is necessary to edit 
the document and print a new copy, a difficulty arises. If a section of the 
document contained a previously unknown font, there is likely to be only a 
limited portion of the full character set stored in the font table. The editing 

process could introduce characters of the same font for which there was no sample 
in the original document. 

In order to satisfy the request for characters which have no defined bit 

map, it is necessary to be able to construct realistic predictions based on a small 
set of examples. Automatic font generation of this nature is possible, but the 
discussion is beyond the scope of this thesis. 



3. EDGE EXTRACTION 

Edge detection is a term generally applied to the process of finding steep 

changes of intensity in a grey level image. Because OCR systems operate with 
binary images, edge detection has not previously been applied to character 

recognition, except by Brady et. al (25-27) In their work, edge detection was used 

to construct a set of disjoint, straight edges quantized in 8 directions. Further 

processing then used the individual lines. 

This chapter will describe an algorithm for the extraction of closed loop 

edge paths from grey level images. Closed loops are more useful than disjoint 

straight lines, since they indicate the shape of the entire object and do not obscure 

curves. Firstly, some typical edge operators will be examined. 

3.1. SOME EDGE DETECTION OPERATORS 

There are many different approaches to edge detection. Levialdi(21) gives a 

comprehensive survey of the field. The most common technique is to apply a 

window operator to a neighbourhood of each pixel in the image. The operator 

calculates a weighted difference of the grey levels in the neighbourhood. 

Several such window operators have been suggested. Most of them are 
derived by considering the image to be the values of a function of two variables. 

Discrete approximations to the gradient operator on the function provide the 

window operators. Rather than use function notation however, the operators are 

clearer if they are presented as windows. A simple example is the Roberts(22) 

operator in Fig. 3.1. There are two windows, and each is applied to all positions 

in the image. The grey value at each pixel is multiplied by the number in the 

corresponding window cell. The results are summed, with each window giving the 

strength of the edge in a particular direction. 

0 
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1 
Fig. 3.1. The Roberts edge operators in window notation. 

In order to derive a single positive number which represents the strength of 
the edge at each window position, it is necessary to combine the results of the two 



windows. Ideally, they should be squared and added but, in reality, this operation 

is too time consuming. In practice, the choice is between adding the absolute 

values and taking the maximum of the absolute values. In either case, the 

resulting edge strength is dependent on the orientation of the edge. 
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Fig. 3.2. A pair of edge operators defined by Prewitt. 

A similar pair of operators shown in Fig. 3.2 are due to Prewitt(23) and use 

a larger window. The difficulty with the larger window is that edges at the limit 

of resolution of the image are blurred or lost completely by the operator. 
Depending on the situation, this may be regarded as elimination of noise. In some 
fonts however, a full stop ". " may be only two pixels square and faint. The large 

size of the operator would spread and weaken the edges to an intolerable degree. 

Chaudhuri and Chanda(24) suggest a 4-neighbour gradient operator shown 
in Fig. 3.3 which overcomes some of these losses by considering fewer points. 
This is the operator which was used to produce the example edge map in Fig. 
1.10, since it is similar to the tracking operator described in section 3.2.1. 
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0 0 0 
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Fig. 3.3. The 4-neighbour operators of Chaudhuri and Chanda. 

The usual application of edge detectors is in the field of computer vision. 
An image would typically contain a face, or some boxes, or an industrial 

component. The images concerned are usually from a TV camera and are 
consequently small, (256 by 256 pixels) with as many as 256 grey levels and the 
objects are large with wide edges. Furthermore, the output edges are not 
generally expected to be continuous or form closed loops, and they are left in the 



form of a bit map. In contrast, an A4 document produces images of 

approximately 2400 by 3300 pixels, in which objects may be a single pixel in 

width. It is required to find continuous closed loops on the image, representing 
the outlines of the text characters, while rejecting edges associated with non-text 
images. 

3.2. A DESCRIPTION OF THE NEW EDGE EXTRACTOR 

The edge extractor uses a simple new edge operator to follow edges around 

outlines until they form a closed loop. The version described in this chapter has 

not yet been implemented. It is however, a reasonable simplification of the edge 
extractor described in chapter 6 which has been implemented and tested 

extensively. 

3.2.1. DEFINITION OF THE EDGE OPERATOR 

The edge operator is designed to find the edge strength perpendicular to the 
direction of travel between neighbouring pixels. Fig. 3.4(a) shows the 3 by 3 

neighbourhood of X. The chain code of a point in the neighbourhood relative to X 
is given by the number in the box corresponding to the point. If X is the present 
position then the edge value at a candidate next point with chain code n is the 
difference between the grey levels at points with chain codes (n+l) (modulo 8) and 
(n- i) (modulo 8). Thus the edge value at the point with chain code 0 is found by 

subtracting the grey level at 7 from the grey level at 1. The subtraction is 
illustrated in Fig. 3.4(b) in the style of the previous window operators. A similar 
representation of the operator for chain code 7 is shown in Fig. 3.4(c). Note that 
there is only a single operator for each direction, and that the result is signed. 
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Fig. 3.4 (a) The 3 by 3 neighbourhood of X. (b) The edge operator for chain code 
0. (c) The edge operator for chain code 7. 

The edge operator was derived experimentally from real images. Any larger 

operator would get confused at very sharp corners and any smaller operator would 
be less symmetric. This operator is difficult to apply in the sense of the window 



operators of section 3.1, i. e. to produce a bit map of the edge strengths, but for 

chain codes 0,2,4 and 6 it is equivalent to the 4-neighbour operator of 
Chaudhuri and Chanda. (24) 

3.2.2. THE EDGE FOLLOWING ALGORITHM 

The main process is to apply the edge operator corresponding to chain code 
4, in a raster scan of the image. The raster scan thereby locates the top edge of a 
new object. When a point is found with an edge value which is greater than a 

specific starting threshold and of either sign, the raster scan repeats the check one 
pixel lower in the image. If the edge value there is of the same sign and also 
greater than the starting threshold, raster scanning is suspended and the line 

tracking process is started from the point with the higher edge value. The double 

check is to ensure that the edge is significant and that tracking starts at the 

strongest point. 

The line tracking process commences by tracking left from the starting 
point, i. e. with chain code 4, aiming to complete an anticlockwise traversal of the 
outline. Given the chain code n of the last direction taken, edge values are found 

at each of the 5 points with chain codes n-2, n-1, n, n+l and n+2 (modulo 8) 
from the current position. Call the 5 or less points which have the correct sign 
and are above the threshold, the edge set corresponding to this position and 
direction. From the edge set, the point with the strongest edge value is found. 
The choice of next point is non-trivial, but in most cases it will be the point with 
the strongest edge value. 
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Fig. 3.5. (a) A part of the "a" in Fig. 2.2. (b) Edge values at the circled point. 
(c) Edge values at the rounded square. (d) Edge values at the diamond. 

An example of the tracking process is illustrated in Fig. 3.5. The values in 
the pixels in Fig. 3.5(a) are the actual grey level values for part of the "a" in Fig. 
2.2. Assuming that the current point is circled, and the last move was in direction 
4, then Fig. 3.5(b) shows the edge values which would be calculated at the circle. 



The next step would be to the rounded square, corresponding to edge value 13. 

The edge values of Fig. 3.5(c) would be calculated at the square. Fig. 3.5(d) 

demonstrates how the calculated edge values change with the last chain code and 

represents the edge values at the diamond. 

It can be seen in Fig. 3.5, that at each step there are several useful edge 

values. While edge following proceeds, points on the edge path are marked current 
to indicate that they form part of the latest outline to be processed. Clearly if 

only one point is marked at each step, the raster scan will later find unused points 

on the same edge and attempt to follow the outline again. Therefore, as many 

points as possible, (up to a limit of three) points are marked, subject to the 
following constraints: 

(a) The strongest edge point is always marked. (Equal strongest edge values are 
discussed in section 3.2.3. ) 

(b) All points to be marked must be in the edge set and have edge values over 
the tracking threshold. 

(c) All the marked points must be adjacent. 

Thus the points marked in Fig. 3.5 will be 13,10 in (b), 11,12 in (c), and 
12 in (d), assuming a threshold of 4. 

If at any time no points are found over the tracking threshold, then the 

edge is considered to have faded, the object is discarded and the whole edge is 

re-marked as deleted. The tracking process continues until the edge fades, a 
closed loop is completed, or the edge coincides with a previously completed 
outline. When an edge closes a satisfactory loop, all the points on the loop are 
re-marked used. The reason for changing all the marks when an edge is complete 
is to enable the discrimination between collisions with other lines and closing of 
the loop. 

3.2,3. THE CHOICE OF EDGE PATH 

In the example of Fig. 3.5 it is clear that at each step there is not 
necessarily an obvious choice of edge path. For instance, at the rounded square in 
Fig. 3.5(c) the highest edge values are 12 and 11. In the majority of 
circumstances, the choice has an insignificant impact on the result, except perhaps 
to make the outline more or less jagged. There are several cases however, where 
it is important to select a specific direction: 



(a) In many fonts, lines are of variable width. At the thinnest part of a line, it 

may be possible to follow an edge path across the line and thus incorrectly 

break up the character. 

(b) Some characters may be printed in very close juxtaposition. At the point 

where the two characters almost touch, there is a two-way decision to be 

made when traversing either character. Both decisions must be correct, 

otherwise the outline of one will collide with the other, resulting in the loss 

of one or both characters. 

(c) Where an edge is blurred, it can be necessary to take a path corresponding to 

a weaker edge value in order to avoid the edge fading at a subsequent step. 

Fig. 3.6 exemplifies problem (a). Fig 3.6(a) is a portion of the "a" in Fig. 

2.2 at the point where the top of the loop meets the stem. The darkest pixels are 

shaded. Fig. 3.6(b) gives the edge values at the circled point, showing two points 

with edge value 11. The edge sets from each of these points are shown in Fig. 

3.6(c) and (d), with the possible destinations indicated by a rounded square and a 
diamond in Fig. 3.6(a). The rounded square represents the correct path and the 

diamond is on the wrong side of the loop. 
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Fig. 3.6. (a) Part of the "a" of Fig. 2.2. (b) Edge values at the circled point. 
(c), (d) Edge values from the alternatives in (b). 

Problem (b) is illustrated by Fig. 3.7. Fig 3.7(a) shows the correct outlines 

of a pair of closely spaced characters. The starting point on each outline is 

marked "+". In Fig. 3.7(b), a different choice was made while tracing the "t", 

resulting in merging of the characters. The same path was taken in Fig. 3.7(c), 

but with a different decision on the second pass through the difficult region. The 

result is that the "i" is completed, but the edge did not close at the start of the 
loop, therefore both characters are lost. Finally, in Fig. 3.7(d), the "t" was 

negotiated correctly, but the same route was taken for the "i" as in Fig. 3.7(b), so 
it collided with the completed "t" and was deleted. 
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Fig. 3.7. (a) A correctly extracted "ti" pair. (b) Merging by incorrect path choice. 
(c) Both characters lost by the loop closing incorrectly. (d) The "i" collides with 

the correct "t". 

The most comprehensive single solution to the above problems is to look 

ahead several steps to edge values beyond the current point. By comparing the 

position resulting from taking the leftmost choice at each step, with the position 
resulting from taking the rightmost choice at each step and measuring the distance 
between, possible forks in the edge path can be detected. Tracing the edge in the 

reverse direction from each of these points solves problems (a) and (b) by 
determining the viability of each alternative. If only one path can be traced 
backwards successfully then that path is selected. 

Look ahead also enables the detection of fading edges and those paths which 
collide with a completed line. Alternative paths can be chosen in order to avoid 
(c) above. The only difficulty with this approach is that the amount of time 
consumed by searching a tree of possible paths to a reasonable depth is 

unacceptably expensive. 

There are many different algorithms for selecting the most appropriate edge 
path in a reasonable time. A rather complex solution is discussed in section 6.3. 
The next section describes a simple alternative, which is based on the failure 

modes described above. 

3.2.4. A SIMPLE EDGE PATH ALGORITHM 

The algorithm for selecting between several alternative edge paths needs to 
be fast, since there is some choice at almost every point on most outlines. The 

number of cases where the choice is vital however, is only a small fraction of the 
total. The most important consideration is to avoid losing characters as in Fig. 
3.7(c) and (d). Merging adjacent characters is a relatively insignificant problem, 
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since the range of print quality which an OCR system is expected to handle 

includes both merged and disintegrated characters. 

In Fig. 2.2, it is clear that there is a good dark line where the loop meets 

the stem, but it is a single pixel wide. The problem characterized by Fig. 3.6 is 

due to a failing of the edge operator. A simple addition to the edge operator will 

solve this particular problem, illustrated in Fig. 3.8. The extra operator is applied 

only in the event of a 900 bend and acts as a qualifier to exclude the possibility of 

crossing a unit width line. An example of the diagonal case is given in Fig. 3.8(a) 

and the upright version in Fig. 3.8(b). Any edge value associated with a right 

angle bend is replaced by the minimum of the usual edge value and the value 

obtained from the additional operator in Fig. 3.8. 
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Fig. 3.8. An extra edge operator for 900 bends. (a) Diagonal bends. (b) Upright 
bends. 

The requirement of a reasonable level of look-ahead, (3 steps) is inevitable 

to prevent edges fading and collisions of the type in Fig. 3.7(d). In order to save 
time however, the simple edge path algorithm looks ahead down the strongest edge 

path only. Alternatives are considered whenever the strongest edge path fades, or 

collides with another edge. 

If an edge collides with itself, away from the start of the line, as in Fig. 
3.7(c), the line is not discarded. The closed part is accepted and the rest of the 
line is continued, after backtracking to a point where there is an alternative edge 
path. This approach will solve many of the present failure modes of the complex 
edge path algorithm described in section 6.3. It will also act as a backup for when 
the extra edge operator in Fig. 3.8 fails to resolve the problem of Fig. 3.6. 

3.2.5. ASSOCIATION OF RELATED EDGES 

All edge lines are detected and traced independently, yet some edges are 

related. Consider for instance the inside and outside edges of a letter "0". The 

edges are both part of the "0" and need to be related in the output structure in 



order for the features to be extracted correctly. It is necessary to record that the 
inner edge is enclosed entirely by the outer edge. 

In the edge extractor of chapter 6, a nesting tree is described as a suitable 

representation of the relationship between the edges. Construction of the nesting 
tree is however, a complex process. Given that the edge extractor is only required 
to locate text, the requirement of the nesting tree can be eliminated. 

Consider the minimal upright rectangular bounding box of a closed loop Cl. 

Let the coordinates of the bottom left hand corner of the box be (xmin l , ymin 1). 
Similarly, let the coordinates of the top right hand corner of the box be 
(xmaxl, ymaxl). If the coordinates of the points on Cl are given by (xi, yi), i=1, n, 
then: 

xminl = min(xi), xmaxl - max(xi) over i=l, n. 

yminl - min(yi), ymaxl = max(yi) over i=l, n. 

Clearly, given a second closed loop C2, which lies entirely within Cl, the 

rectangular bounding box of C2 lies within the bounding box of Cl, i. e. 

xminl < xmin2, xmaxl > xmax2, yminl < ymin2, and ymaxl > ymax2. 

Given that only text is to be processed, the bounding boxes of all objects in 

the page are sorted using a 2-dimensional bucket sort. The bucket size is set to 
the minimum acceptable character size so that the number of buckets in a page is 

considerably less than the number of pixels. As each outline is completed, it is 
inserted into the relevant bucket, according to the top-left corner of the bounding 
box. When the page is completed, a simple linear search of the buckets is used to 
locate all completed outlines. For each outline, the small local area of buckets 

covered by the bounding box is searched. Any other outlines found which are 
enclosed are recovered and recorded as holes in the character. 

The processing time consumed by this bucket sorting procedure is minimal, 
since the ratio of buckets to pixels is very small, (around 1 in 256 would be 

adequate) yet it guarantees to find the nesting relations for all characters is the 
ASCII character set. There is however, one character in the ASCII set for which 
the bucket sort can produce incorrect results. It is possible, although highly 

unlikely, for the percent symbol "%" to be printed such that the circles appear to 
be enclosed by the stroke. 



This situation is illustrated in Fig 3.9(a). Since this is a single exception, 
there is a simple solution. If the (x, y) space is transformed to the (x+y, x-y) space, 
and bounding boxes are also calculated for the rotated space, then testing the 

enclosure condition for both spaces ensures a correct result. The result of this 

simple rotation transformation is illustrated in Fig. 3.9(b). 
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Fig. 3.9. (a) An example of the failure of bucket sorting. (b) A simple rotation 
transformation solves the problem. 

Note that the sole objective of the bucket sort is to obtain the nesting 
information of characters with holes such as "0". As a side-effect, for a wide 
range of page layouts, the operation provides a successful sort of the characters 
into logical text order. 



4. POLYGONAL APPROXIMATION 

The edge extractor of chapter 3 produces chain coded closed loops. This 

chapter describes how these chain coded loops are replaced by polygons made up 

of straight line segments. Firstly, the state of the art will be reviewed. This will 
be followed by descriptions of a faster version of one of the reviewed methods 

and a new polygonal approximation algorithm. 

4.1. THE STATE OF THE ART IN POLYGONAL APPROXIMATION 

Several algorithms for polygonal approximation(28-32) have been proposed. 
Many of these have been too slow to be considered in this particular application. 

Two algorithms have recently been published which are worthy of consideration. 
These will now be described. 

4.1.1. APPROXIMATION USING WEDGES 

Sklansky and Gonzalez(31) describe a polygonal approximation algorithm 
which has a precisely controlled error margin. The input points need not be 

regularly spaced and the processing time is linear in the number of input points. 

Suppose the required approximation error distance is d, (typically taken to 
be I pixel unit) i. e. every source point must lie within distance d from the final 
line. In Fig. 4.1(a), P is the start of the line and Q, R, S etc. are the subsequent 
points. The circles are of radius d, therefore any approximating line must lie 

within all the circles. The algorithm steps along the line to find the next 
approximation point. In Fig. 4.1(a) R is already accepted and S is under 
consideration. A wedge is drawn from P forming tangents to the circle around R. 
For S to be accepted, a similar wedge drawn to S must overlap the current wedge. 
The wedge of intersection is used in the next step. 

In Fig. 4.1(b) a wedge is drawn to T and this is found to overlap the current 
wedge. The wedge for U however, does not overlap the updated current wedge, 
so there the process stops. 

Note that when T was processed, its wedge overlapped the current wedge 
but T itself was not within the current wedge. If the approximating line were to 
be drawn to T, the maximum approximation error would be greater than d. If a 
point subsequent to T is found which does lie within the updated wedge, then that 
can be used and the result will be correct. 



Wedge for T 

Current Wedge 

Wedge for T 

Current Wedge 

Fig. 4.1. Sklansky and Gonzalez polygonal approximation. 
(a) Processing point S. (b) Processing point T. 

Therefore, when there is no overlap of the new wedge and the current 

wedge, as with U in Fig. 4.1(b), the last point to fall within the wedge when it 

was tested will be used in the approximation, in this case S. The approximation 

process will then restart at S. 

In the paper by Sklansky and Gonzalez, (31) 
all the testing of wedges is done 

using angles from the positive x-axis. This approach requires floating point 

arithmetic and inverse trigonometric functions to calculate the angles. Finding the 

tangents also requires trigonometric functions. Such use of floating point 

arithmetic makes this algorithm too slow. A fast integer version has been designed 

however, which increases the speed to a point where it is almost viable. For a 
discussion of this new algorithm, see section 4.2. 

4.1.2. APPROXIMATION USING CHAIN CODES 

Hung and Kasvand(32) describe an algorithm which uses chain codes to 

obtain an approximation. Differences between adjacent chain codes are calculated. 
Non-zero difference codes indicate a local change of direction of the line. 
Sequences of pixels with non-zero difference codes are called non-zero segments 
(NZS). Seven rules for generating output points are then applied to each NZS. 
Some of these rules are extremely complex and are thus not repeated here. 

The important aspect of this algorithm is that no floating point arithmetic is 

required. This makes it extremely fast and probably faster than the integer 

version of the Sklansky and Gonzalez algorithm described in section 4.2. 

The complex rules governing the generation of output points are explained 
by example, but there is little indication of their derivation, nor of how they will 
perform given any input line. The main discussion is centred around the fact that 



if a straight line is digitized on a square raster, it produces either a sequence of 

one repeated chain code, or regular zig-zags. If these straight lines can be 

detected, then the remaining changes of direction are true bends in the line. 

The use of difference codes assists this process. Where the difference codes 

are non-zero, adjacent pairs are summed. Zero pair sums represent a cancellation 

of two local changes in direction, exactly the case of a straight line being digitized 

into regular zig-zags. This idea has been used by Chaudhuri and Kundu(33) for 

exact compression of chain codes, and leads on to the simple polygonal 

approximation algorithm described in section 4.3. 

4.2. IMPROVING THE SKLANSKY AND GONZALEZ ALGORITHM 

The algorithm of section 4.1.1 is linear with respect to the number of source 

points, but the operations at each point are complex. Square root and inverse 

trigonometric functions are required to find the tangents and the angles from the 

x-axis. All these functions and the need for floating point arithmetic can be 

eliminated completely with an integer approximation to the tangents and finding 

the wedge intersections by using cross products of vectors. 

The most complex function remaining is integer multiplication. This 

reduction in complexity is obtained at the cost of changing the statement about the 

approximation error from: 

"The maximum approximation error is d" to: 
"The maximum approximation error is no more than d. " 

In other words, there may be a slight increase in the number of output 
approximation points, due to a variable but small reduction in d, the error circle 

radius. 

4.2.1. USING CROSS PRODUCTS TO FIND THE WEDGE INTERSECTIONS 

The cross product is normally defined for 3-dimensional vectors, where the 

result is perpendicular to the other two. In this thesis, the vector product of 
2-dimensional vectors is considered to be a scalar value. 

If a and b are 2-dimensional vectors with respective components (xl, yl) and 
(x2, y2), then the cross product of a and b is denoted by: 



axb=xly2-x2y1-absinA, 

where a, b are the Euclidean lengths of a, b respectively and A is the angle 
between the vectors taken anti-clockwise from a to b. 

In Fig. 4.2(a), let the directions of the tangents to Q be given by the vectors 
Qa for the left (anticlockwise) side and Qb for the right (clockwise) side. 
Similarly, let the current wedge be the area between the vectors a and b. The 

wedges do not overlap and a new output point needs to be generated if: 

bxQa<=0 or Qbxa<=0 

Otherwise, the new wedge is given by: 

a= Qa ifQaxa>0 

a otherwise. 

(1) 

(2) 

bý Qb ifQbxb<0 

b otherwise. 

(3) 

Also, if the vector from P to Q is v, then Q is within the resulting wedge if. 

vxa>-0 and vxb<-O 

(a) 

(4) 

Fig. 4.2. (a) A current wedge with a new wedge under test. 
(b) The allowed ranges of Qa and Qb. 

Tests (1) to (3) are guaranteed to work assuming that no wedge can subtend 
an angle of more than 90 degrees. If the approximation to the tangents examined 
in section 4.2.2 is used, then this is a valid assumption. 

In Fig. 4.2(b) a and b are the current wedge. A new wedge will be rejected 
by test (1) unless Qa lies somewhere within the dot filled semicircle and Qb lies 



within the plain semicircle. Clearly, no valid overlapping wedge could be rejected 
by test (1) unless it subtends an angle of more than 90 degrees. 

Similarly no non-overlapping wedge that subtends an angle of 90 degrees or 
less can be constructed such that Qa lies in the dot filled semicircle and Qb lies in 

the plain semicircle. 

Test (2) simply updates a if Qa lies in the region between a and b. 

Likewise, test (3) updates b if Qb lies in the region between a and b. Test (4) 

checks that v lies within the intersection of the semicircles. 

These simple tests replace the angles from the x-axis used by Sklansky and 
Gonzalez(31). It is important to note that the tests are independent of the lengths 

of the vectors, The next section will describe a simple way of finding the 
tangents using only integer arithmetic. Since all source coordinates are integers, 

and the tangents are expressed as integer vectors, the cross products used above 

require only integer multiplication for their calculation. 

4.2.2. A FAST APPROXIMATION FOR THE TANGENTS 

The floating point arithmetic can be eliminated completely by 

approximating the tangents. In Fig. 4.3 there is a circle of radius d and centre 
Q(x, y) with a point P. The tangents will be replaced by an appropriate choice of 
2 out of the 4 points (x+d, y), (x-d, y), (x, y+d), (x, y-d). The choice is made on the 
basis of least angular error. 

Actual tangent 
Approximation (x, y+d) 

Approximation (x, y-d) 
Actual tangent 

Fig. 4.3. An example of approximating the tangents. 



An example of approximating the tangents is shown in Fig. 4.3. Tangents 

are drawn from P to the circle and there are also lines passing through the points 
(x, y+d) and (x, y-d). It can be seen that in all cases, the approximations to the 

tangents will result in a slight reduction in the size of the wedge, and thus a slight 
decrease in the approximation error. 

The approximations to the tangents can be calculated without even any 
multiplication. The choice of vectors depends on the position of the point relative 
to the current starting point. In the graph in Fig. 4.4, the current starting point, 
P, is taken to be the origin. The location (x, y) on the graph of the point under 
test, Q, defines the wedge vectors Qa and Qb by the quadrant in which it lies. 
The 4 quadrants are defined by the lines y=x and y=-x. There are 8 different 

pairs of values of the wedge vectors, one for each quadrant and one each for Q 

situated on the dividing line. 

Fig. 4.4. Calculating the approximations to the tangents. 

Any rational value of d can be used, say p/q, as the radius of error, without 
having to abandon integer arithmetic. In this case p is used as the value of d and 
all coordinates are multiplied by q on input. The only constraint on the value of 
d is that no wedge may subtend an angle of more than 90 degrees. Clearly, if 
d>l, some extra treatment is needed for the case of points that are less than 
distance d from the origin point, since even with the original definition of the 
Sklansky and Gonzalez algorithm, it is impossible to construct tangents in the way 
intended. 



4.3. A SIMPLE POLYGONAL APPROXIMATION ALGORITHM 

This algorithm is based on the way that straight lines are represented on a 

square raster. Any straight line can be constructed using pixels joined by at most 
2 chain codes. In the case where 2 chain codes are used, say A and B, the line 

will consist of repeated units of nA+B where n is a fixed integer. 

Some examples of digitized lines are shown in Fig. 4.5. Each box represents 

a single pixel. The number contained within the box is the chain code to the next 
pixel. All lines are considered to start at the top of the figure. On the upper 

right hand line for example, A=O, B=1 and n-2. 

2 
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I 
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I 

0 

oi 

I 
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1 

1 

OT-1 

91 

01 
Fig. 4.5. Some examples of digitized straight lines, showing repeated patterns of 

chain codes. 

Given a sequence of chain codes representing an outline, the algorithm 
assigns the first two distinct chain codes to A and B. A and B are exchanged if 

necessary when one of them occurs twice in succession to ensure that the repeated 
code is A. An approximation point is output when any of the following 

conditions is met: 

(a) A and B do not differ by 1 (modulo 8). 
(b) B occurs twice in succession. 
(c) A consecutive sequence of A has a length different to the previous sequence. 
(d) A third distinct chain code is encountered. 

The above rules are illustrated in the corresponding parts of Fig. 4.6. In 
Fig. 4.6, the output approximation point is shown by a dot filled pixel. All lines 

start at the left hand end of the figure. 

These rules are very simple, yet they produce an output point at the end of 
each line of the form nA+B. The approximation is thus guaranteed to be accurate 



to within one pixel everywhere, and most importantly, it is extremely fast. The 

only disadvantage is that the number of output points is rather greater than would 
be produced by the algorithm of section 4.1.1, although similar to the output of 

section 4.1.2. 

(c) (d) 

Fig. 4.6. Examples of the simple polygonal approximation algorithm. 
(a) A and B differ by more than 1. (b) B is repeated. (c) The run-length of A 

changes. (d) A third chain code is encountered. 

4.4. A COMBINATION OF POLYGONAL APPROXIMATIONS 

The edge extractor of chapter 3 poses a particularly difficult problem to the 

polygonal approximation algorithm; the variability of edge strengths around the 

outline can result in a rather jagged edge. Feature extraction depends on reliably 
locating concave regions on the outlines and would be confused by the presence of 
spurious concavities. Therefore, the kinks must be removed by polygonal 
approximation. The simple algorithm of section 4.3 is by far the fastest polygonal 
approximation algorithm available. Unfortunately, due to its high accuracy it does 

not remove many of the kinks in the outline. 

The speed of the algorithm of section 4.3 is such that it can be used as a 
first step in approximation, the result being reapproximated by a more complex 
algorithm. One possibility is to use the integer version of the Sklansky and 
Gonzalez algorithm described in section 4.2. This is unsatisfactory however, since 
most of the arc curvature information is lost. 

An example of a noisy outline is shown in Fig. 4.7(a) with the result of the 
fast approximation in Fig. 4.7(b) and the reapproximation in Fig. 4.7(c). It can be 

seen that the kinks have been eliminated. The arc curvature problem is clearly 
visible however, in that it is difficult to tell whether the lines should be regarded 
as straight or curved. Such a loss of information can result in unneccessary 
ambiguities at a later stage, for instance between the pairs O/D and (/[. 



Fig. 4.7. An example of two stage approximation. (a) An original noisy outline. 
(b) The result of the simple approximation of section 4.3. (c) Reapproximation by 

the algorithm of section 4.2. 

In order to specifically iron out kinks, while not applying a further 

approximation to smooth arcs, the reapproximation algorithm is only applied to 

certain parts of the polygon, Points that are already smooth remain unchanged, 

and reapproximation is applied to the remainder. 

A smooth point is defined as being a point which is at the centre of three 

consecutive convex or concave points. Points satisfying this definition are 
illustrated in Fig. 4.8(a). Any concavity which contains three consecutive concave 

points is almost certain to be of significance to the feature extraction process, 

therefore it should remain. Similarly, any consecutive set of three or more convex 

points will remain. If a line which was originally straight has not already been 

reduced to a single line, then the points in the approximation would, in all 
probability, be alternately convex and concave. Such points would be subject to 

reapproximation. Smooth convex points therefore, are likely to be on arcs, and it 
is beneficial to retain them all to maintain the difference between straight lines 

and curves. The result of the selective reapproximation is in Fig. 4.8(b). 

Fig. 4.8. (a) The polygon of Fig. 4.7(b) with fixed points marked 
(b) The final result of selective reapproximation. 



5. FEATURE EXTRACTION 

This chapter describes the features that are used in character recognition 
and explains how they are extracted from the outline polygons. The chapter 

commences by describing some fundamental work from which the present features 

were derived. 

5.1. THE WORK OF SHILLMAN et. aI. 

In section 1.5.2, it was stated that OCR by feature extraction is not 
sufficiently accurate to satisfy the demands of the market. The reason given is 

that there is a lack of methodology in the way in which the features are chosen. 
Between 1974 and 1977, a PhD. thesis(34) and several papers(35-41) were 
published by members of a group working on the psychological basis of character 
recognition. That work forms the foundation of the feature extraction method 
described in this chapter. This section presents a concise description of the key 

aspects of this work. 

Shillman considers the recognition of isolated handprinted characters and 
asserts that this is a fundamentally different problem to the recognition of 

machine printed characters. This is reasonable in the sense that matrix matching 
algorithms will fail in the recognition of handprint, as they fail with multiple 
fonts. Conversely however, any algorithm which attempts to recognize handprint 

must also cope with machine printed characters, since the variations in 
handprinting are far greater than between machine fonts. 

5.1.1. AMBIGUITY IS THE KEY TO RECOGNITION 

The fundamental theme is that ambiguity is the key to recognition. Given 
that there exists an ideal set of features which can be derived from a physical 
character shape, there is a feature space into which physical shapes can be 
transformed. In the feature space, different physical versions of the same 
character form tight clusters. An ambiguous character is one that does not lie 

close to the centre of one of the clusters; because it is near to two or more cluster 
centres, it could be either character. It is argued that this is how humans 

recognize isolated handwritten characters, and that if machines had the same 
features, then they could be similarly accurate. 

An intensive study was made of a collection of deliberately created 
ambiguous capital letters. As a result of this study, three different levels of 



feature were identified. These are: physical, perceptual and functional. Because 

of these different levels, the term attribute is used by Shillman, where others use 

the term feature. This enables use of the word feature to describe physical 
features without confusion. 

Fig. 5.1 defines the difference between these levels for the attribute leg. A 

physical leg will be found at pixel level by an OCR machine, but will be missed 
by the human observer. A perceptual leg is large enough to be seen, but too small 

to be considered significant in changing the character. A functional leg is clear 

enough to tell the difference between a "Y" and a "V"; it is the presence or lack of 

the functional leg that must be determined in order to recognize the character 

correctly. The state of transition between the functional leg being present and 

absent gives a clue as to the rule needed to test its presence. 

LETTER 
SHAPE 

v v v y 

PHYSICAL LEG NO YES YES YES YES 

PERCEPTUAL LEG NO NO YES YES YES 

FUNCTIONAL LEG NO NO NO ? YES 

LETTER LABEL V V V Y 

Fig. 5.1. The levels of the attribute leg. 

Twelve functional attributes were derived by studying the collection of 

ambiguous characters and concentrating on the attribute in transition. The 

functional attributes themselves are useless without rules for determining their 

presence from physical measurements which can be made on the character. Much 

of the published work(34,36-39) describes various psychological tests that were 

used to find some of these rules. Details of the tests will not be repeated here, 

since it is the results that are most important to the present discussion. The set of 
functional attributes will be described in section 5.1.2. 

The only functional attributes for which there are published physical to 
functional rules are closure and leg. A later paper(40) discusses results for a 
specific ambiguity between "U" and "V". As stated by Shillman(34), the given set 
of attributes is not necessarily complete, unique or minimal. Another problem 



with the functional attributes is that the physical to functional rules are extremely 

complex because they change according to context. 

Fig. 5.2(a) is an ambiguous shape that could be either a "V" or a "Y". Fig. 

5.2(b) and (c) show the same shape in two different situations that tend to bias the 

decision in opposite directions. In Fig. 5.2(b) the shape is more like a "Y" because 

the adjacent "P" has a similar compression of the bottom half. The bottom is 

extended in Fig. 5.2(c) making the shape more like a "V". 

(b) 

J 

(c) 

Fig. 5.2. (a) An ambiguous shape. (b) The shape of the "P" makes a "Y" more 
likely. (c) The shape of the "P" makes a "V" more likely. (d) Lexical context has 

a strong effect on the ambiguity threshold. 

Word level context in demonstrated in Fig. 5.2(d). Since the word "VERY" 
is more likely than "YERY" or "VERY", the shape is read as a "V" at the 
beginning of the word and as a "Y" at the end. Hence there are at least two 
different levels of context operating: physical, where the shape of surrounding 

characters can change the rules, and lexical, where impossible characters can be 

ruled out. 

The inevitable conclusion is that if ambiguity is the key to recognition, 
context provides the resolution of ambiguities. Consequently, the physical to 
functional rules cannot be regarded as exact. 

5.1.2. SHILLMAN'S FUNCTIONAL ATTRIBUTES 

The functional attributes are each given a set of modifiers, i. e. 
sub-attributes, which indicate their location, orientation, segmentation and 
concatenation. Different attributes have different sets of permitted modifiers. 
For example, the functional attribute leg may be located at the left, right or 



middle of the character and be ascending, descending or horizontal. The 

modifiers are also functional and therefore have no exact physical rules to test 

them. For this reason the modifiers will not be detailed for any of the attributes. 

Physical examples of the twelve functional attributes are shown in Figs. 5.3 

to 5.6 and are described below. Note that these are only physical examples and 
that exact physical to functional rules are specified only for leg and closure. 

D 
(a) (b) (c) 

Fig. 5.3. Line-like attributes. (a) Shaft. (b) Leg. (c) Arm. 

Three line-like features are shown in Fig. 5.3. A shaft, in Fig. 5.3(a), is a 
straight line segment which covers the entire height or width of the character, 
depending on its orientation. A leg, in Fig. 5.3(b), is a line with one end 

connected to the lower part of a character, and the other end unconnected. An 

arm, in Fig. 5.3(c), is the same as a leg except that it is connected to the upper 
part of a character. Clearly, arm and leg could be combined into a single 
attribute. 

(a) (b) (c) (d) 

Fig. 5.4. Concave attributes. (a) Bay. (b) Inlet. (c) Notch. (d) Hook. 

Bay, inlet, notch and hook are all attributes associated with concave parts of 
the character. Bay, inlet and notch, shown shaded in Fig. 5.4(a), (b) and (c) 

respectively, are differentiated by the number of connected ends. A bay is a 
concavity with both ends unconnected. It may be attached somewhere along the 
inside however. An inlet has one end attached to the rest of the character, and a 



notch has both ends connected. A hook is a small inlet in that it is connected at 

one end only and occupies less than one half of the height of the character. The 

main purpose of a hook is to distinguish the pairs I/J and C/G. 

(a) (b) 

Fig. 5.5 Miscellaneous features. (a) Closure. (b) Symmetry. 

Fig. 5.5(a) illustrates a closure. A closure is a region of the background that 

is, functionally speaking, completely surrounded by the character. As with the 

other attributes, the figure is a physical example only, and in some cases, a 

character may be deliberately printed without physical closure where a functional 

closure is intended. 

Fig. 5.5(b) gives an example of symmetry. This is a feature that is used in 

only a small fraction of the upper case alphabet, mainly to distinguish "O" and "D". 

n 

(a) (b) (c) 

Fig. 5.6. Junction type features. (a) Weld. (b) Crossing. (c) Marker. 

Fig. 5.6(a) shows an example of a weld. This is best thought of as the end 
of one straight line joining onto another. A crossing, as in Fig. 5.6(b), is simply 
two strokes which cross one another. A marker, illustrated in Fig. 5.6(c) is used 
only to distinguish "O" and "Q". There is little reason why crossing and/or weld 
could not be used for the purpose, except that the variability of the markers used 
on "Q" is extraordinary. 



5.1.3. THE PHYSICAL TO FUNCTIONAL RULES 

As stated in section 5.1.1, exact physical to functional rules have been 

published for only two functional attributes. These will now be given. The rule 
for leg of the type illustrated in Fig. 5.7(a) is given by: 

A leg is present if m/l > 0.20, otherwise, no leg is present. 

This value is useful only if the angle at the "V" is between 420 and 900. 
For values below 420, the threshold value for m/1 increases, due to the fact that it 
becomes difficult to visually locate the exact location of the intersection. 

Fig. 5.7. Physical to functional rules. (a) An example of a leg. (b) An example of 
a closure open at the top. (c) An example of a closure open at the right. 

The rule for closure is more complex, since it depends on the orientation of 
the opening and the shape of the closure. For a circular character with a gap at 
the top, as in Fig. 5.7(b), the rule is given by: 

The gap is functionally closed if g/w < 0.56 

This rule could be used in the case of an ambiguity between "O" and "U". 
If the ambiguity is between "0" and "C", i. e. the gap is centred at the right, as in 
Fig. 5.7(c), the rule becomes: 

The gap is functionally closed if g/w < 0.23. 

No result is given for a gap centred on the left, but presumably, since there 
is no valid character with such a shape, the threshold is lower still. 

In conclusion, the physical to functional rules are, in reality, far more 
complex than might at first be imagined. This complexity provides a good 
explanation for the failure of past attempts at feature extraction to attain high 
accuracy. 



5.2. A MODIFIED SET OF FUNCTIONAL ATTRIBUTES 

The functional attributes of section 5.1.2 are defined in terms of the strokes 

that make up each character. The thinning process required to extract such 

strokes from digitized character images is computationally demanding however, 

and should be avoided if at all possible. On closer inspection of the attributes, it 

can be seen that most of them can be determined from the outline of a character 

with equal accuracy. The attributes were derived in consideration of the 26 upper 

case letters only. In order to extend the character set to say, the ASCII standard, 

additional attributes may be necessary. 

5.2.1. SHILLMAN'S ATTRIBUTES APPLIED TO OUTLINES 

A straight line in the skeleton cannot be detected by simply locating a 

straight part of the outline, because in certain circumstances a line may be 

duplicated by the outline, and in others it may not. In any given character 

however, the number and type of straight segments will be almost constant. Fig. 

5.8 illustrates the lines which may be detected on outlines of the example 

characters from Fig. 5.3. 

(a) 

I 

L 

(b) (c) 

Fig. 5.8. Straight segments on the outlines of the characters in Fig. 5.3. 

Since the polygon is constructed from straight line segments, there needs to 
be some condition which can distinguish a straight line from an arc. One 

possibility is to specify a minimum length relative to the size of the character. 
Another is to assume that lines must end in a significant bend. In any case, the 

attributes shaft, arm and leg are not simple to locate, but it is possible to detect 

less specific instances of line-like objects. 

Bay, inlet, notch and hook can all be detected on an outline polygon, except 
that they can no longer be distinguished. This is because the concept of the end 
of a line is difficult to define sufficiently well to make it easily detected. The 

problem is aggravated by the presence of serifs on line endings. Fig. 5.9 



demonstrates the similarity between the concavities of Fig. 5.4 when applied to 

outlines. 

(a) (b) (C) (d) 

Fig. 5.9. Concave regions on the outlines of the characters from Fig. 5.4. 

The detection of physical closure on outlines is trivial, since each closure is 

indicated by the presence of an additional polygon. Each concavity must be tested 
for functional closure using a physical to functional rule similar to those defined 

in section 5.1.3. 

Symmetry is no more difficult to detect on outlines than it is on stick 
figures. In both cases, the difficulty is provided by italicised characters where the 

axis of symmetry is sheared in the horizontal direction. 

The attributes weld, crossing and marker are extremely difficult to locate on 
outlines, since they are features of the interior, rather than the outlines 
themselves. It is apparent however, that these attributes all result in small 
concavities in the outline. If the concept of a bay is extended to include such 
concavities, weld, crossing and marker become redundant. Fig. 5.10 illustrates 
how the examples in Fig. 5.6 produce bays in the outline. 

(a) (b) (c) 

Fig. 5.10. Replacing junction attributes with bays. (a) Weld. (b) Crossing. 

(c) Marker. 



5.2.2. A REDUCED SET OF ATTRIBUTES 

The original set of twelve functional attributes can be reduced to only four 

generic attributes when processing character outlines rather than stick figures. 

Consideration of the remaining 70 characters in the ASCII set requires the addition 

of one more attribute. The reduced set of five functional attributes will now be 

described in order of decreasing importance for recognition: 

(a) CONCAVITY. A concavity is defined to be any concave part of the outline. 

This definition includes bay, inlet, notch and hook described by Shillman, 

plus the small concavities which result from crossing, weld and marker. All 

the shaded concave regions in Fig. 5.9 and Fig. 5.10 are concavities by this 

definition. 

(b) CLOSURE. Functional closure retains the definition used by Shillman. 

(c) LINE. A line is a straight part of the outline which results from a shaft, arm 

or leg. 

(d) AXIS. An axis is defined only for characters which do not have a concavity 

or a closure. The axis indicates the direction of the major axis of the object 

and measures the ratio of the lengths of the major and minor axes. It 

resolves ambiguities within the ASCII character set which are not covered by 

Shillman's attributes, for instance between a dot and a straight quote or 

comma. 

(e) SYMMETRY. Symmetry can be measured in either a vertical or a horizontal 

axis. 

5.3. EXTRACTION OF THE FEATURES FROM OUTLINES 

This section describes in detail how the features are extracted from a 

polygonal outline approximation and the numerical representation of each. Before 

going into detail, a concise notation for points and vectors on the outline will be 

described. This notation is also used throughout chapter 7. 

The object to be thinned consists of one or more closed loops, formed by a 
total of n points with integer coordinates. If the n points are connected in 

sequence by straight line segments, and the last point is joined back to the first, 

then a left oriented closed loop is formed; i. e. the interior of the character is 

always on the left when moving from a point to its successor. Thus, the outside 



loop is stored in anticlockwise sequence and holes are stored in clockwise 
sequence. 

Pi is the coordinate pair (xi, yi) of the ith point. 
Pi+1 represents the coordinate of the successor point to Pi. Note that this is 

the next point around the closed loop containing Pi and not necessarily 
the (i+l)th point. 

Pi_ I similarly is the predecessor point to Pi. 

PiPj is a vector from the point Pi to the point Pj. Pi and Pi may be on 
different closed loops. 

Pi+ is an abbreviation for PiPi+1" 

Pi- is an abbreviation for PiPi-1 

a. b= ax bx + ay by is a scalar product of two vectors. 

axb= ax by - ay bx is a cross product of two vectors, as defined in section 
4.2.1. The result is a scalar value. 

Pi Is convex if Pi+ x Pi_ >= 0, otherwise it is concave. 
lP1Pj12 = P1Pj . P1Pj _ (xj - xi)2 + (yj - yi)2 is the squared Euclidean length 

of the vector P1Pj, i. e. the distance between Pi and Pj P. In the remainder 
of this thesis, the terms distance2, length2 etc. will refer to this measure. 

IP1P is the square root of IP1Pil2. This value cannot be expressed exactly 

using integer arithmetic and is therefore used less frequently than the 
distance2. 

5.3.1. CONCAVITIES 

A concavity must contain at least one concave point. Extraction of a 
concavity therefore commences with locating one or more consecutive concave 
points. Fig. 5.11(a) shows such a sequence of points. Pi and Pj represent the ends 
of the concavity. The concavity in Fig. 5.11(a) is expanded, i. e. Pi is advanced, to 
include some of the convex points while 

Pj+ x PiPj >0 

which is true while Pi Pi passes entirely outside the object. Expansion stops if at 
any step the ratio 

A 

(pipi'2 



is reduced when compared with the current value, where A is the area enclosed by 

the concavity and the line PiPj. Pi may also be moved in a similar way. Fig. 

5.11(b) shows the final position of Pi and Pj. 

Fig. 5.11. (a) An example of a concavity. (b) The position of the ends after the 
concavity is expanded. 

An additional constraint is placed on the ends of the concavity for when the 

anticlockwise angle between PiPj and Pi+ or between Pj_ and PjPi is more than 

1800. The opposite end to the one with the large angle is moved inwards, while 
the contraction does not reduce the angle below 1800. Thus the concavity in Fig. 
5.12(a) will be contracted to Fig. 5.12(b). 

Fig. 5.12. (a) A concavity with a large angle at Pj. (b) Contracting the concavity 
to reduce the angle. 

Once the ends of the concavity have been found, a numerical representation 
is calculated, which will be used in the recognition process. Firstly, if the total 
turn angle in the concavity is more than 1800, one of the ends may be moved 
slightly to obtain an accurate representation of the concavity direction. 

If the perpendicular from Pj to the line PiPi+1 intersects between Pi and 
Pi+l, then Pi is moved to the point of intersection. Similarly, if the perpendicular 



from Pi to the line PjPj_1 intersects between Pi and Pj_1, then Pj is moved to the 

point of intersection. This slight adjustment of the ends ensures that the vector 
PiPj gives a true indication of the concavity direction and is not confused by long 
lines in the the polygonal approximation. An example of a situation where this 

adjustment is beneficial is given in Fig. 5.13. 

Fig. 5.13. An example of the final concavity end adjustment. 

The numerical representation of a concavity contains the following 

components: 

(a) The normalised relative coordinates of the centroid of the concavity. The 
(x, y) coordinates of the centroid are calculated relative to the bottom left 

corner of the minimal upright rectangular bounding box of the character. 
The relative coordinates are then normalised independently to the range [0,63) 

such that (63,63) is the top right corner of the bounding box. 

(b) Let c be the vector from the midpoint of PiP3 to the centroid of the 

concavity. If ici2 < jPiPj, 2, then the direction of PiPj is quantized to the 

range [0,63]. Otherwise the direction of the concavity is given by the 
direction of c rotated clockwise through 900. Direction is quantized by 
dividing a circle into 64 equal sectors which are numbered 0 to 63. The 

number of the sector into which a vector falls gives the quantized direction, 

(c) The depth of a concavity is defined to be the maximum perpendicular 
distance of any point in the concavity between Pi and Pj- from the line PiPj, 
A measure of the size of the concavity is given by the ratio of the depth to 
the longest side of the rectangular bounding box of the character. This 

measure is also scaled to the range [0,63]. 



(d) A measure of the shape of the concavity is given by the ratio of the 

perpendicular distance of the centroid from the line PiPi to the depth of the 

concavity. The shape ratio is normalised to the usual (0,631 range. 

Values (a) and (b) above are adequate for discrimination of the majority of 
the ASCII character set. The measures of depth and shape are necessary to 
distinguish characters such as ( C, <, (, [ }. 

5.3.2. CLOSURES 

A closure is generated for each physical closure. As each concavity is 

generated, it is tested for functional closure. The test depends on the direction. 

For a right-facing concavity, experimentation has revealed that the threshold value 

stated by Shillman, given in section 5.1.3, is too large. In order to prevent certain 

occurrences of "G" from being functionally closed, the threshold has been reduced 
from g/w = 0.23 to g/w - 0.17, where g- IPiPjI and w is the maximum width of 

the concavity in the same direction as PiPj. 

Different values are used for other directions. For a downward or left 
facing concavity, the threshold is currently set at 0.29. For an upward facing 

concavity, the threshold is set at 0.38. For all directions, an additional constraint 
has been added: 

jd2 < 0.45, 
wA 

where d is the depth of the concavity as described above, and A is the area of the 

concavity. This constraint effectively reduces the g/w threshold for deep 

concavities, making it less likely that characters such as "e" are closed. 

The following values form the numerical representation of a closure: 

(a) The normalised relative coordinates of the centroid of the closed region. The 

calculation of the coordinates of the centroid is identical to the method used 
for concavities and is described in section 5.3.6. 

(b) The scaled area of the closure as a fraction of the area of the rectangular 
bounding box of the character. The fraction is scaled to the usual [0,63] 

range. 



5.3.3 AXES 

The axis feature is generated only if the character has no concavity or 

closure. Rather than perform a squared order calculation to find the greatest 
distance between any pair of outline points, a linear algorithm is used. 

Firstly, the centroid C of the object is calculated. The point Pi on the 

outline is found such that IP; CI2 is a maximum. The maximum perpendicular 
distance of any point on the outline from the line PiC is calculated independently 
for each side of the line. The results are summed to give the width of the object. 
Fig. 5.14(a) illustrates how the width of the object is calculated. 

The direction of the major axis of the object is given by the vector PiC, 

unless a smaller width result is obtained by moving Pi to the midpoint of Pi+ or 
the midpoint of Pi_. Moving Pi to one of the adjacent midpoints provides an 
adjustment of the direction in the case of the object in Fig. 5.14(b), where the 

new position of Pi is shown as Pi'. 

P 

`. P' 

Fig. 5.14. (a) Calculating the minor axis. (b) Adjusting the major axis. 

Having established the direction of the major axis, the length is obtained by 

applying the same width calculation to a vector perpendicular to PiC. 

The numerical representation of an axis consists of the following items: 

(a) The ratio of the area of the object to the length2 of the major axis. The 

width to length ratio is thus calculated without requiring a square root, with 
the additional advantage that the result is less subject to any inaccuracy 

which could be caused by the polygonal approximation. The ratio is scaled to 
the usual [0,63] range. 



(b) The direction of the major axis is quantized to the [0,63] range. Unlike the 

other features which include a direction, the axis has no sense. Therefore it 

may differ by 32 units (modulo 64) from another in the same direction. 

The direction is clearly meaningless when the width to length ratio is high, 

(i. e. close to l, ) since a dot, for instance, can have no direction. 

5.3.4. LINES 

Lines are presently used only when an unknown character closely matches 
two of the standard templates, as measured with concavities, closures and axes. In 

the detection of lines there exists a trade-off between reliably locating all useful 
lines and finding false lines in approximations to curves. The present approach is 

by no means perfect, but it is reasonably successful. 

A line is currently defined to consist of one or more segments of the 

polygonal approximation which satisfy a minimum length condition. If the line 

consists of more than one segment, the maximum perpendicular deviation of any 
point along the line, from the straight line joining the ends, must be below a 

certain limit. A long and sufficiently straight line must also have a significant 
bend near both ends before it is regarded as a line feature. 

The conditions serve to reject lines which are part of a curve. Fig. 5.15(a) 
illustrates some examples of possible lines which do not meet all the criteria. The 

bold parts of the outline in Fig. 5.15(b) indicate accepted lines. 

Excessive 
Perpendicular 
Deviation 

Too Short and 
Insufficient 
End Angle 

Fig. 5.15. (a) Unacceptable lines. (b) Accepted lines. 

A line is identified by the following numerical values: 

(a) The normalised relative position of the centre of the line. 

(b) The quantized direction of the line. 



(c) The scaled length of the line as a fraction of the size of the rectangular 
bounding box in the same direction as the line. 

5.3.5. SYMMETRY 

Symmetry is not at present used. It is a useful measure however, for 

discrimination of the following pairs of characters: C/G, j/), j/], T/l, ]/7, B/8, 

O/D. The main difficulty is to locate the axis of symmetry. For vertical text, the 

axis is simply a vertical line through the centre of the upright bounding box of 
the character. For italic text however, the axis is rotated slightly and the exact 

position is difficult to locate, especially with characters such as "O". 

Both vertical and horizontal symmetry will be used in the recognition 

process. Vertical symmetry is measured by consideration of each point Pi on the 

outline. If the axis is not vertical, the coordinates of Pi are transformed back 

from the sheared coordinates to rectangular coordinates. The least distance2 

between the reflection of Pi in the axis and the transformed outline is measured. 
A measure of the vertical symmetry is given by the maximum such distance for all 

points on the outline. 

Horizontal symmetry is measured similarly using a horizontal axis. The 

same transformed outline as was constructed for measurement of vertical 
symmetry is used. Fig. 5.16(a) illustrates the outermost outline of an italic "B". In 
Fig. 5.16(b), the outline has been inverse sheared back to the vertical, and the 

reflected points are shown as "+" joined by dotted lines. Some of the "+" marks 

are clearly a significant distance from any part of the solid outline. 

Fig. 5.16. (a) An italic "B". (b) The inverse sheared "B" with its reflection. 



Location of the nearest outline point corresponding to all reflected points 

could conceivably consume squared order time. This can be avoided by 

commencing at a point where the axis intersects the outline and working in 

opposite directions simultaneously. If the object is to be at all symmetric, then 

the point nearest a reflected point must be in the locality of the current point on 

the opposite side of the object. Such an approach arguably reduces the time to 

being linear in the number of source outline points. 

Measurement of symmetry will be applied only in the case of an unknown 
character matching a particular pair of templates. Only a single direction will be 

measured in most cases, according to the pair in question. The result is a 
distance2 which must be scaled to a fraction of some measure of the size of the 

object, for instance, the area of the rectangular bounding box. 

5.3.6. CALCULATION OF AREA AND CENTROIDS 

A simple procedure is used to simultaneously calculate the area and centroid 
of a closed region. In Fig. 5.17, there is a closed region bounded by a polygonal 
approximation of n points, P0, P1, ... Pn_l. The closed region is divided into n-2 
triangles, T1, T2, ... Tn_2. Let the triangle Ti be bounded by the points POPiPi+1" 
Then the area Ai of triangle Ti is given by: 

Ai ` (POPi+I x POPi)/2 

Let the vector From PO to the centroid of Ti be ci. Then 

ci - (POPi + POPi+l )/3. 

Fig. 5.17. Calculation of the centroid of a closed region. 



The vector from PO to the centroid of the entire region is given by: 

Aici 

i -I 
n-2 
7- Ai 

i=1 

It can be shown that the above formulae for the total area and centroid are 
not affected by the object being concave, since the cross product yields negative 

results where necessary. 

5.3.7. ORDERING OF FEATURES 

The different types of features are regarded as being totally separate and 
therefore adjacency relations between a concavity and a line, for instance, are not 
recorded. This separation simplifies the recognition process and has been 

experimentally determined to actually improve recognition accuracy. There are 
two reasons why complex adjacency information reduces rather than increases the 

recognition rate: 

(a) Simple positional information is adequate for uniqueness in the ASCII 

character set. As an example, it is difficult to construct an outline which 
contains a closure at the top, a downwards facing concavity at the bottom and 
oblique strokes at the right and left without producing an "A". Removal of 
the adjacency information therefore does not reduce accuracy. 

(b) A line may be located within a concavity. Occasionally, one end of the line 

may extend beyond the limits of the concavity, thus changing the apparent 
ordering of the features. Using the adjacency information can therefore 

reduce accuracy. 

Multiple occurrences of the same type of feature however, are ordered, 
since this also simplifies comparison. The features of each individual type are 
recorded in the order in which they are located on the outline. This necessitates a 
reliable definition of origin. 

An obvious solution is to maximise a function of the coordinates of a point 
taken over all the outline. The function must be reasonably simple to calculate, 
and yet the contours must be such that no character has two distant points on the 
maximum contour. As a simple example, consider the function f(x, y)"y-x, which 



selects the top left corner of the object. The character "+" however, has two 
distant points which lie on the maximal contour of f. Slight variations in size or 

aspect ratio may result in a dramatic shift in the location of the origin, which 
would cause different representations of the same character. 

The problem is exemplified by Fig. 5.18. The dotted line indicates the 

maximum value of f(x, y)-y-x in each case. The "+" in Fig. 5.18(a) has its origin 
at the top, whereas the "+" in Fig. 5.18(b) has its origin at the left. The present 
function for selecting the origin is f(x, y)=4y-x. This function was chosen to allow 
a reasonable skew of the page, whilst selecting a reliable point on every ASCII 

character with the possible exception of "*". 

Fig. 5.18. (a) A "+" with the origin at the top. (b) A "+" with the origin at the left. 

5.4. GENERATION OF THE STANDARD TEMPLATES 

The system requires a set of standard templates with which to compare an 
unknown character. The most appropriate way to generate the templates is by 

analysis of samples covering a wide range of fonts. It is intended that the 

completed system will recognize a very wide range of printed fonts without any 
training or intervention from the user. The learning process must therefore, 
provide a sufficiently wide range of fonts such that no further training is 

required. 

Publishing companies provide books containing extensive selections of fonts. 
Another possible approach is to manually construct widely varying samples of each 
character to be recognized, by combining the possible variations. Examples of the 
possible extreme variations of a letter "E" are given in Fig. 5.19. Note that the 
variations shown must be combined to give a full range. 



E(b) 

Fig. 5.19. Some of the possible variations in an "E". (a) Shape. (b) Line width. 
(c) Angle. (d) Embellishments. 

5.4.1. RATIONALE 

The learning process involves generating the features for a set of character 

outlines with known ASCII codes. Several samples of each character in as wide a 
range of fonts as possible must be supplied, so as to learn the expected variation 
in the numerical representation of each feature. 

The result of the learning process is a set of character classes. A character 

class represents a set of one or more characters which have an indistinguishable set 

of features. An example of a pair of characters which occupy the same class is 

C/c, where the only difference is one of size relative to neighbouring characters. 

Conversely, one ASCII character may appear in several different guises, 

such as a/a. A more subtle variation occurs in punctuation marks. The comma, 

which appears as the same shape in a semi-colon, quote and double quote, has two 
fundamentally different shapes: straight as in " and curly as in '. Two different 

classes will result, each of which contains all the aforenamed characters. 

In order to construct the standard templates automatically, it is necessary to 
detect the differences between two versions of the same character, and similarities 
between different characters. The process therefore includes the following steps: 

(a) Clustering. All the similar features from different samples of the same 
character are grouped together into clusters. The extreme feature values 
within each cluster give the limits on the acceptance range. The number of 
samples which contribute to a cluster indicates the importance of the 
corresponding feature in recognition. 



(b) Partitioning of classes. Those classes which do not have a minimum number 

of consistent features, i. e. those for which a cluster is generated by all 

samples, are partitioned. 

(c) Merging of ambiguities. Ambiguous classes are merged where there is some 

physical distinction between the characters which can be used at a later stage 
to distinguish them. 

5.4.2. CLUSTERING 

A standard clustering algorithm(43,44) could be used to detect similar 
features in different samples of the same character. The nature of the data 
however, simplifies the clustering problem. 

A sample character may have several features of the same type, each of 
which must lie in a separate cluster. If most samples of the same character 
contain largely the same features, as is the case if the class is not to be 

partitioned, then it is reasonably simple to match corresponding features and 
create new clusters for those which do not match. 

The clustering algorithm copies the first sample character to the standard 
template. Each subsequent sample of the same character is compared with the 
standard template using a laxer version of the flexible matching algorithm 
described in section 5.5.1. In the comparison, only the most important numerical 
values are considered, for instance the position and direction of a concavity. A 

much greater tolerance of error is also included. For features which match a 
feature in the standard template, the acceptance limits are expanded. Those 
features which do not have a match in the standard template are inserted in the 
relevant position, using the order from the origin. 

Fig. 5.20(a) shows an example of the first sample of a letter "H". The 

square indicates the limits of the standard [0,63] range on the (x, y) coordinates of 
the centroid of the concavities. The "+" marks indicate the positions of the two 
concavities in the first sample. Fig. 5.20(b) shows the final template for the 
concavities after a total of 7 samples have been analysed. The clusters on the left 

and right of the square are caused by serifs on the top and bottom of the "H". A 
dotted "H" is superimposed on Fig. 5.20(b) to show the relation between the 
character and the concavities. 



+ 

+ 

Fig. 5.20. (a) The concavities of an "H". (b) The final template for the class "H". 

5.4.3. PARTITIONING CLASSES 

A consistent feature is one which exists in all the sample characters which 
were used to construct a template. When all the samples of a character have been 

read and compacted by the clustering algorithm, a count is made of the consistent 
features. If the number is below a set limit, the class is partitioned. The limit is 

set individually for each character in a database to either one or two. 

Partitioning is based on the modal feature. All samples which possess the 

modal feature are placed in one partition, and the remainder go in another. If the 

minimum number of consistent features for the character is two, then only those 

samples which possess the two most common features are placed in the first 

partition. 

If the second partition does not contain the required number of consistent 
features, then that is sub-divided until all partitions satisfy the minimum 
consistent feature criterion. A partition can fail to satisfy the minimum consistent 
feature criterion if it contains a sample with less features than the minimum. 
There must clearly be an exception to the rule, to allow a partition to contain too 
few consistent features if there is no feature which is not consistent. 

5.4.4. MERGING AMBIGUOUS CLASSES 

The less ambiguity that exists between the final templates, the higher the 
accuracy of the final classification. In order to obtain a low ambiguity level, it is 
inevitable that some classes must contain more than one ASCII character. Merging 
is acceptable only if the characters can be distinguished by some physical measure 
which is unavailable at the feature extraction stage. Examples of such 
measurements are: 



(a) Relative height. Used to distinguish capital and lower case letters. 

(b) Position on the text line. Pairs such as , /' and -/_ can only be discriminated 

by position on the line. 

(c) Neighbouring marks. The set ( !, ", 96, _, ;,:, ?, i, j) are all distinguished 

from other characters by the presence of neighbouring marks. These 

characters result in several classes, each containing a different set of 

characters. 

(d) Context. Certain characters appear identical in some fonts. The usual 

problem sets are (0,0) and (1,1, I). The only guaranteed way to determine 

the correct character is by context. The classes can therefore be merged. 
Certain other pairs such as (S, 5) are difficult but not impossible to 
distinguish. Context will be helpful in making the correct decision in these 

cases, but it is not acceptable to merge the classes. 

In order to automatically merge the correct characters into a reasonable set 
of standard templates, use is made of a knowledge base. The knowledge base 

consists of a sparse m by m array, where m is the number of characters in the 
known character set, 94 for ASCII. Entries are made where the system detects an 

ambiguity between a pair of character templates. 

Each entry in the array indicates how an ambiguity between the pair of 
characters may be resolved. It may indicate that one of the physical measurements 
above may be used and that therefore the classes may be merged. Alternatively, 

an entry may nominate a specific test which may be performed to resolve an 
ambiguity. No such specific tests have yet been implemented, but a possibility is 

to investigate a particular feature such as a straight line or a corner for (5, S), or a 
concavity for (f, t). 

5.4.5. ASSIGNING WEIGHTS TO FEATURES 

When the final classes have been determined, a weight is assigned to each 
feature within each class. The weight determines the matching error which will 
be generated if the feature is absent in an unknown character. 

The ideal way to generate the weights would be to try all reasonable 
combinations of values to minimise the ambiguity across the entire character set. 
This is obviously impractical, due to the enormous number of combinations of 
reasonable values. It would be possible however, to use an iterative evolutionary 



process(45) to refine the weights randomly and maximise the distance between 

different classes. Such a process would identify those features which are 

important in distinguishing almost ambiguous characters, such as the closure in the 

pair (*, #). 

The present algorithm for assigning weights to features is simple but 

effective. For consistent features, the weight is inversely proportional to the 

number of consistent features in the class. A "C" therefore, with a single 

consistent feature, will have a high weight for the concavity. Conversely, "#" will 
have a low weight for each feature, since loss of any one, apart from the closure, 
is relatively insignificant and common. Features which occur in more than 75% of 
the samples have weights assigned similarly, but with a lower constant of 

proportionality. All remaining features are considered embellishments and are 

assigned zero weight. 

5.5. RECOGNITION OF FEATURES 

Once the features have been extracted from an unknown character, an 

attempt is made to match the features against one of the standard class templates. 

One of the most important aspects of the recognition process is that it must be 

flexible. Different fonts cause variations in the features that are detected. It 

must be possible therefore to recognize a character which has one or two 

additional features or missing features. 

Simultaneously, it is desirable to test the unknown character against as few 

templates as possible, in order to increase the recognition speed. Speed and 
flexibility are, to some extent, mutually exclusive. 

5.5.1. FLEXIBLE COMPARISON 

As discussed in section 5.3.7, each individual type of feature is considered 
separately. For each type however, the features are ordered in the sequence in 

which they occur from the origin. The comparison task therefore is to match two 

ordered lists, each of which may contain elements which do not occur in the 

other. Fig. 5.21 illustrates the result of the flexible matching process. A list of 
test features <T1, T2, T3, T4> is to be matched against the list of standard 
features <S1, S2, S3, S4>. Arrows indicate matches between individual features. 

A match error is generated for the entire list, which is the sum of 
individual match errors between the features connected by arrows, and errors 
generated for the missing and additional features. 
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Fig. 5.21. The result of the flexible matching process. 

5.5.1.1. Matching Individual Features 

T4 

S4 

A direct comparison between two single features involves testing all the 

elements of the numerical representation of the feature. Consider for example, a 

closure. Let the limits on the x-coordinate of the centroid of the closure be Xmin 

and Xmax. If the x-coordinate of the centroid of the closure in the test feature is 

X, then a match error, e, is generated as follows: 

e= (X- (Xmin + Xmax)/2 1 

K (Xmin - X) 

K (X - Xmax) 

Kd 

If Xmin <- X <= Xmax, 

If Xmin -d<X< Xmin, 

If Xmax <X< Xmax + d, 

If X >s Xmax +d or X <' Xmin - d. 

where d is a maximum allowed deviation from the acceptance range, and K is a 
large constant. K is used to make out of range errors significantly greater than 

any possible within range error. 

The match errors for all the elements of the feature are summed, with 

weights on each element. If the total is greater than Mmax, it is set to Mmax" 

This ensures that all failed matches have the same value, whatever the type of the 

feature. Let the match error between a test feature Ti and a standard feature Si 

be denoted by M(Ti, Si). 

This approach to matching features is similar to the one used by Yamamoto 

and Mori(7), with the important difference that values which are well outside the 

acceptance range produce a fixed maximum error, rather than an infinite error. 
The fixed maximum provides flexibility by still allowing a match when small parts 

of a limited number of features are out of range. 



If the value is within the acceptance range, then a small match error is 

generated, rather than zero, indicating the distance from the centre of the range. 
This small error is to provide some difference between intrinsically ambiguous 

characters such as "u" and "v", where otherwise a character may have a match 

error of zero for both classes. The large value of K, presently 256, ensures that 

any out of range errors are significant in comparison. 

5.5.1.2. Matching Lists of Similar Features 

A recursive procedure finds the best match between two ordered lists of 
features by performing a depth-first search of the tree of all possible ordered 

matches. The first operation is illustrated in Fig. 5.22(a). If 

M(T1, S1) < Mmax, 

then the match rating for the entire string is equal to M(TI, Sl) plus the best 

match rating for the remainder of the lists, generated by recursion. 

Ti 

Si 

T2 

S2 

(a) 

T3 

S3 

T4 

S4 

T3 
EXTRA 

FEATURE 

(b) 

T4 

S4 

(c) (d) 

T4 

S4 

Fig. 5.22. (a) Having matched the first pair of features, recursion evaluates the 
remainder. (b), (c) When testing against subsequent standard features, skipped 

features are regarded as missing. (d) The first test feature is skipped and assumed 
extra. 

The first test feature is then matched against each of the remaining standard 
features in turn, summing the errors for each skipped standard feature. This 

process is illustrated at the second level of recursion by Fig. 5.22(b), where S2 has 



been skipped and T2 is matched against S3, and in Fig. 5.22(c) where both S2 and 
S3 have been skipped. The error generated for skipping S2 is governed by its 

weight. Note that recursion only occurs when there is a match less than Mmax. 

The final operation is to assume that the first test feature is an extra 
feature. This is skipped, generating a fixed level of error, and recursion is used 
to evaluate the match rating of the rest of the list. Fig. 5.22(d) illustrates skipping 
the first test feature at the third level of recursion. 

The match rating for the list is defined to be the lowest result obtained 
from the depth-first search. An obvious reduction in match time is obtained by 

truncating the search where the accumulated error exceeds the lowest full depth 

error so far. 

5.5.2. REDUCING THE SEARCH SIZE 

Section 5.5.1 described the algorithm for matching an unknown character 
against a standard template. Testing each character against the entire set of 
templates would guarantee that all possible matches are detected. The time 
involved however, is unacceptably great. It is therefore necessary to reduce the 

number of standard templates tested, while ensuring that the correct match will be 

obtained. 

The method adopted is to use a look-up table to select a small subset of the 
full character set. Each feature of a test character is used to locate those standard 
classes which include the same features. 

For every possible x-coordinate in the usual [0,631 range, a bit array is 

constructed, with one bit per character class. The bit for a class is set if the class 
has one or more concavities which include the x-coordinate in their acceptance 
ranges. The acceptance range in this respect includes the maximum error 
allowance, d, made during comparison of two features in section 5.5.1.1. 

A similar array of bit arrays is constructed for the possible y-coordinates 
and directions of a concavity. The concavities of an unknown character will be 

used to look-up bit arrays corresponding to the position and direction of the 

concavity. The three arrays are then logically ANDed, resulting in an array of 
bits indicating all the classes which will accept the concavity. 

A similar operation on all the other features of the unknown character 
results in a set of bit arrays, one for each feature. The arrays are used to 



construct a single array, which gives the number of ones in each bit position. If 

the unknown character has n features, and it is a perfect match with one of the 

standard templates, then the highest bit count will be n, in the position of the 

matching class. Comparison of the unknown character against all the classes 

which have a bit count of n will guarantee to find the correct class. 

If the unknown character is not a perfect match to the relevant template, 

then it may have one or more extra features and/or missing features. Missing 
features will still result in a perfect response with the correct class, but an 
increased number of other classes will also give a perfect response, resulting in an 
increased search time. 

If sufficient extra features are present, then it is possible that the correct 
template will not even be tested, since some other class may have more matching 
features, yielding a higher bit count. In this case, the correct class can still be 
found by reducing the target bit count when no classes are found with a 
sufficiently low match error. 

In conclusion, the look-up tables can be used to obtain a significant 
reduction in the number of templates which need to be compared with an 
unknown character, without any danger of missing the correct class. The typical 

reduction obtained in practice is of the order of 80-85%. This figure would be 

considerably higher if there were fewer classes which have only one significant 
feature, i. e. when symmetry is added. 

5.6. SUMMARY 

The twelve features or attributes of Shillman(34) are, to some extent, 
psychologically tested, but they are based on stick figures. Consideration of how 

the attributes may be detected in character outlines reduces the number of 
different attributes. Those attributes which cannot be extracted directly from 

outlines may be inferred by the presence of other attributes. 

A reduced set of five features is adequate for recognition of the entire 
ASCII character set. These features are: concavity, closure, line, axis and 
symmetry. Each of the above features can be detected in a time linearly related 
to the number of outline points in a character. The need to perform any kind of 
thinning operation is thus completely eliminated. 

A training set of characters is used to produce the standard templates by a 
split and merge procedure. Firstly, classes are split where the same character has 



disjoint sets of features, such as with "a" and "a". Ambiguous characters are then 

merged into single classes where a simple operation may be used to distinguish 

them at a later stage of processing. 

A flexible matching process is used to match unknown characters to class 

templates even when one or more features are absent, additional or out of the 

allowable acceptance range. A look-up table is used to reduce the number of 

templates against which an unknown character is tested. 



6. A MORE GENERAL EDGE EXTRACTOR 

The edge extractor described in chapter 3 is adequate for extracting text 

from documents which may contain any other kind of object, such as photographs 

and line graphics. For some applications however, a more general edge extractor 

may be required. For instance, there presently exist many thousands of 

engineering drawings which were produced before the invention of CAD 

(computer aided design). It would be highly beneficial to be able to convert these 
drawings to a form readable by current CAD systems. This chapter describes a 

more general edge extractor which is capable of extracting both text and arbitrary 
line or block graphics from a grey level image. 

6.1. THE DEFICIENCIES OF THE SIMPLE EDGE EXTRACTOR 

The edge extractor of chapter 3 makes some simplifying assumptions which 

enable it to be considerably faster than the edge extractor described here. These 

are all originated from the knowledge that only the text is required: 

(a) Nesting information can be obtained by applying a simple bucket sorting 

procedure to the rectangular bounding boxes of edges. This simplification is 

not applicable to line drawings. 

(b) An arbitrary maximum character size can be set, to reduce the amount of 
image which needs to be stored in memory during the extraction of any one 

outline. Clearly a continuous line can cover the entire page, whereas a 

character could be limited to occupying an area of say, one inch square. 

In order to explain the problem of nesting more clearly, a nesting tree will 
now be defined. 

6.1.1. NESTING TREES 

The output from the edge extractor is a tree structure, the shape of which 
corresponds directly to the nesting of edges within each other in the image. This 

representation as a tree is standard for this kind of problem. (46) 

In Fig. 6.1(a) there is a document containing two characters, and a third 

within an outlined box. Fig. 6.1(b) illustrates the outlines which would be 

extracted from the page. Each outline has a numeric label. 



AB 
(a) 

6 

Fig. 6.1. (a) A simple page. (b) The outlines of (a). 

9 

Table 6.1 shows the nesting relation between the outlines in Fig. 6.1(b). For 

example, outline I is the outline of the letter A, it is inside outline 9 and contains 

outline 2. 

OUTLINE DESCRIPTION 
I Outside of letter A 
2 Inside of letter A 
3 Outside of letter B 
4 Top hole in letter B 
5 Bottom hole in letter B 
6 Outside of outline of box 
7 Inside of outline of box 
8 Outline of letter X 
9 Outline of page 

OUTER EDGE INNER EDGE 
92 
1 
9 
3 
3 

(b) 

4,5 

97 
68 
7 

1,3,6 

Table 6.1. The nesting relation between the edges in Fig. 6.1(b). 

Fig. 6.2. The nesting tree of the page in Fig. 6.1(a). 

The tree structure in Fig. 6.2 is derived from the table, commencing with 

the outline of the page. This becomes the root of the tree i. e. the top. All objects 

contained inside the root are its children and are placed immediately below it in 

0 



the tree. Each of the children is then taken in turn. The objects within each 

child are placed immediately below that child in the tree. The tree is thus built 

downwards until all the objects are recorded. 

6.1.2. MEMORY LIMITATIONS 

On an A4 page there are approximately 2400 X 3400 pixels at 300 pixels per 
inch. In order to construct the nesting tree, it is necessary to mark each pixel 

with a label unique to the associated tree node. It is possible to construct a page 

with more than 216 different individual objects and therefore each label will 
occupy more than 16 bits. Adding this to the 4 bits required to store the grey 
level of each pixel, and 4 more bits for the other necessary flags at each pixel, 
gives a result of more than 24 bits per image pixel. Thus, the total requirement 
for the image alone exceeds 24 Megabytes. Consequently, the image must be split 
into sections to be processed. The problem then becomes one of how to follow the 

edges of objects which are too large to fit into memory. 

The image is split into buffers consisting of the full width of the page and a 
small number of scan lines. If the line tracker follows an object out of the buffer 

when the raster scan is more than half way through the buffer, the contents of the 
buffer from the start to the current raster scan position are discarded, the 

remainder is moved to the start of the buffer, and a new section is read in. If the 

raster scan was in the first half of the buffer, then the line tracker saves all the 
information about the line and puts it in a list of lines which ran out of the 
buffer. It then restarts at the beginning of the line and tracks in the opposite 
direction, i. e. beginning with chain code 0. 

The new line is marked with the same label, because it is part of the same 
object, but an extra flag, the direction, marks all pixels as being part of a line 
followed anticlockwise or a line followed clockwise. Whenever a new buffer is 

read, tracing of the lines in the list of unfinished lines is continued before the 
raster scan restarts. 

The introduction of buffering causes complications in relation to creating 
the nesting tree. Also, when a line now collides with pixels which form part of 
another line, it may have legitimately hit either the other end of the same edge or 
the end of a line belonging to another object. 



6.2. CREATING THE NESTING TREE 

The use of a unique label for each line obviates the need to mark a line 

current while it is being traced and re-mark all points on the line when it is 

complete. The pixels are still marked, but the two states are now applied to 

creating the nesting tree. Each pixel is instead marked as leading or trailing, 

defined as follows: 

Any point (x, y) on an edge line such that the point (x+l, y) is outside the closed 

loop and is not on the same edge is marked trailing. All other used points are 

marked leading. Fig. 6.3 shows the edge points on the "a" of Fig. 2.2, with 
leading edge pixels shown chequered and trailing edge pixels solid. The edge path 
is shown superimposed in thick lines. 

ýý.. ý 

Fig. 6.3. The outline of an "a" with chequered leading edge points and solid 
trailing edge points. The edge path is also shown. 

When the raster scanner passes over a point which is marked as a leading 

edge, it recognizes that any new objects encountered will be inside the closed loop 

and are thus children of the current object in the tree. When it passes over a 

point marked as a trailing edge, the raster scanner deduces that it is now inside 

the parent of that object in the tree. The current object in the tree is given by 

the label of a leading or trailing pixel. 

By restricting the size of the image buffer, it can be guaranteed that no 

more than 216-1 nodes can be active at once, so the labels can be 16 bits in 

length. When a new buffer is read, any completed loops which are wholly above 
the current position of the raster scanner are moved out of the working tree into a 



separate output tree. Their associated labels and tree nodes are freed and made 

available for new objects. The output tree uses longer pointers, giving it the 

capacity for any possible number of objects on a single page. 

6.2.1 MARKING LEADING/TRAILING EDGE POINTS 

Section 6.2 defined leading/trailing edge points in terms of whether the 

point (x+l, y) falls inside or outside the completed loop. This information must be 

generated before the loop is actually closed. 

Let the current point be (oldx, oldy) and let the subset of the edge set at 
(oldx, oldy) which is selected for marking be given by ((xi, yi), i=l, n) where 

1<=n<=3. The chain code of (xi, yi) relative to (oldx, oldy) is Ci. Each edge point 
(xi, yi) is marked as leading, unless it satisfies one of the following conditions: 

(a) The line direction is anticlockwise and (Ci =5 or Ci = 6). 

(b) The line direction is clockwise and (Ci =2 or Ci = 3). 

Condition (a) with Ci =5 is exemplified by Fig. 6.4(a). The bold arrows 

represent the edge path, with the thickest arrow showing the chain code 5 to the 

point in question. Fine arrows represent other edge points which are to be 

marked. Clearly, if the line is an anticlockwise traversal of the outline, then the 

point marked "*" will be outside the loop, so the point at the head of the thickest 

arrow must be trailing. 

Fig. 6.4(b) shows all the possible edge paths passing through (oldx, oldy) such 

that the set of marked points includes a point (xi, yi), with Ci = 5, (in bold) and 
does not include a point at the asterisk, (xi+l, yi). Clearly, if there is a point on 

the same line at (xi+l, yi), then the mark at (xi, yi) is irrelevant. 

(newx, newy) 

X- 
\i 

(oidx, oldy) ý, 
\i 

(a) (b) 
fr 

Fig. 6.4. (a) An example of the rule for Ci = 5. (b) All possible 2-step paths 
which include Ci =5 in the first step. 



If Ci is 0,1 or 7 then no decision can be made until the next step. 

Retaining the previous notation, for the original set of points, let the second step 

from (oldx, oldy) be to the point (newx, newy). The test depends on Ci and 

whether the line direction is anticlockwise or clockwise: 

Ci =0 Anticlockwise: yi <= newy 

Clockwise: yi > newy 

Ci =1 Anticlockwise: xi+yi > newx + newy 

Clockwise: xi+yi <= newx + newy 

Ci =7 Anticlockwise: 

Clockwise: 

yi-xi <= newy - newx 

yi-xi > newy - newx 

If the relevant condition above is satisfied then the point is marked trailing, 

otherwise it is left as leading. The condition for Ci =7 is demonstrated by Fig. 

6.5(a) and (b), where bold arrows represent the edge path and the head of the 

thickest arrow is at the point in question. In Fig. 6.5(a), the point marked "*" is 

clearly inside the loop assuming that the arrows represent an anticlockwise 

traversal of the edge. The situation is reversed if the direction is clockwise. 

Fig. 6.5(b) shows the effect of (newx, newy) being in a different position. 

The asterisk is here outside an anticlockwise trace of the outline. 

(a) 

Fig. 6.5. (a), (b) Examples of an edge path containing a step with chain code 7. 
(c) Derivation of the rule for chain code 7. 

The derivation of the rule for chain code 7 is illustrated in Fig. 6.5(c), 

which shows all possible combinations of edge path around the chain code 7. 
Arrow heads on the fine arrows indicate the final position on the second step. 
Those paths which would pass through the asterisk or the head of the thick arrow, 
resulting in no decision being necessary, are not shown. 



6.2.2. ORIENTATION OF EDGES 

Due to the buffering of the image, a single object may cause several 
independent tree nodes to be started in one buffer. These objects will have to be 

coalesced when the edge lines connect further down the page and the tree will 

need to be modified. Fig. 6.6(a) shows a large object which is spread over three 
buffers and three small objects marked D, E and F. The raster scan locates edge 
A first, the edge is followed and is found to run out of the buffer. Edge B is 

then found, followed and likewise runs out of the buffer. Finally, edge C is 
found and that also runs out of the buffer. 

............... .......................... _...... . 

C... 
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Fig. 6.6. (a) Edges found in one buffer. (b) The nesting tree for (a). 

At this stage it is assumed that all these objects, when completed, will 
enclose the area below the arcs. Thus C is a hole inside B, which is itself a hole 
inside A. Objects D, E and F are all located and completed, they are placed 
respectively inside A, B and C. Fig. 6.6(b) shows the corresponding nesting tree. 

(b) 

Fig. 6.7. (a) The amount of object visible in the second buffer. (b) The 
corresponding nesting tree. 



In the second image buffer, illustrated by Fig. 6.7(a), edges B and C connect 

such that the area below C is in fact the area outside B. This deduction is obvious 
by following the edge line between B and C. Hence, at this stage it is not possible 
to deduce how the objects will close into a loop or loops, but it is certain that the 

section C is oriented inversely with respect to B. Therefore, the new object, G, 

being discovered after the leading edge of C, is assumed to be outside B. The tree 
is modified to reflect this new information, resulting in Fig. 6.7(b) 

The third buffer, in Fig. 6.8(a), completes the large object. A and B 

coalesce such that B is inversely oriented with respect to A. This change causes 
the tree to be modified to the form shown in Fig. 6.8(b). 

(b) 

Fig. 6.8. (a) The completed object. (b) The final nesting tree. 

Define the orientation of an object to be true if the area it encloses is below 
the start point, and to be inverse if the area enclosed is above the start point. 
When an object is first located by the raster scan, it is assumed that following the 

edge in chain code direction 4, i. e. left, will result in an anticlockwise traversal. 
This is equivalent to assuming that the point immediately below the starting point 
is enclosed by the edge. The orientation indicates whether this assumption is true 
or inverted. Thus when the large object in Fig. 6.8(a) is complete, A and C are 
true, while B is inverse. When the orientation of an object changes, all its 

children in the tree are moved to be its siblings. 

As each object is found, its orientation flag is set to true. When a line 

coalesces with another, both orientation flags remain unchanged unless one of the 
following conditions is true: 



(a) The directions and orientations of the lines are both the same. 

(b) The directions and orientations of the lines are both different. 

If one of the conditions is true, the orientation of one of the objects must 

be changed. The object to be changed is the one which is at the lowest level in 

the tree. The flag is changed from true to inverse or vice versa. Clearly, any 

other objects already connected to the changed object must also have their 

orientation changed. 

6.3. THE CHOICE OF EDGE PATH 

Section 3.2.3 discussed the problems in choosing between several possible 

edge points. This section presents a more complex solution which was derived 

experimentally from the failure cases on a varied set of test images. 

6.3.1. AVOIDING COLLISIONS 

The only way to prevent collisions with existing edges is to look forward on 

the edge path and change course if the edge is about to collide with another edge 
in an undesirable fashion. Let those points in the edge set which have an edge 

value within a certain range of the strongest edge value, be known as the set of 

useful points. For each of the useful points, the successor edge set is considered. 

The result is a tree of possible edge paths similar to Fig. 6.9, where the strongest 

edge in each set is denoted by a bold arrow. 

x 
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Fig. 6.9. A tree of possible edge paths. 

To reduce the number of points tested, only the strongest point in each 

successor set is considered. For each first level useful point and its strongest 
successor, the two points are checked to see if they are on any used or deleted 



edge. If any point tested is on another edge such that a legitimate connection is 

made, then the associated path is chosen immediately. Otherwise, a count is 

generated according to the number of points from the pair which are on another 

edge. 

Those useful points at the first level of the tree which have more than the 

minimum count value are now discarded. In Fig. 6.9, the chequered pixel belongs 

to another edge, so the path to that point is rejected. The remaining set will be 

referred to as the set of good points. If there is only 1 such point then that is 

chosen immediately as the next step. 

6.3.2. LOCATING FORK POINTS 

There are now two or more good points, each with an edge set of up to five 

useful points. The leftmost useful point in the successor edge set to the leftmost 

good point and the rightmost useful point in the successor edge set to the 

rightmost good point are now considered. If the maximum modulus distance 
between these two points is more than 2 pixel units, then the present point is 

considered to be a fork point. The root point of Fig. 6.9 is a fork point as 
indicated by the distance between the circles. 

A fork point is a pixel where the edge path appears to split into two distinct 
directions at the point. For non-fork points, which is the majority case, the point 
chosen is the one with the highest sum of present and strongest successor edge 
values. 

6.3.2.1. Fork Analysis: Intersection of Edge Sets 

Fig. 6.9 illustrates a common case with forks; taking either direction at the 
fork, it is possible to arrive at a common pixel. The steps to the common point 
however, do not necessarily have the strongest edge values. 

The successor edge set corresponding to each good point is compared with 
the set for the adjacent good point. Any intersections between these pairs of sets 
are counted. If there is a single intersection then this is considered a majority 
vote to go to that pixel. The direction chosen for the next step is one of the pair 
involved in the intersection such that it has fewest useful points outside the 

overlap region. If they are equal on that basis then the point with the strongest 
edge value for the second step is taken. In Fig. 6.9 the step chosen is indicated by 

the rounded square. 



6.3.2.2. Fork Analysis: Backtracking 

If the intersection test failed to produce a decision, a backtracking operation 
takes place. Fig. 6.10 illustrates the principle of backtracking. The solid arrows 
indicate the most extreme fork choices of Fig. 6.9. The dotted curves in Fig. 

6.10(a) show one possible location of the actual edges, Fig. 6.10(b) shows another. 

From the extreme fork points, the edge follower attempts to trace edges in 

the opposite direction. It takes the leftmost useful point of the edge set from the 
left fork and the rightmost from the right fork. A second step from each of these 
is taken, with the same left and right extremes. The results of backtracking are 
shown by the dashed arrows in Fig. 6.10 (a) and (b). The sum of modulus 
distance is then measured between each of the resulting positions and the fork 

point. If the distances differ by at least 2 then the direction corresponding to the 

point nearest the fork point is taken as the next step. The selected step is circled 
in Fig. 6.10(a) and (b). 
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Fig. 6.10 Backtracking to resolve forks and the result with two different positions 
of the real edges. 

If no result is obtained, then the second backtracking step is repeated using 
the strongest edge point, rather than the leftmost/rightmost. If there is still no 
decision, a reverse edge operator is used. 

6.3.2.3. Fork Analysis: Reverse Edge Operator 

At the fork point, a different edge operator is applied in the direction of 
the leftmost and rightmost good points. The difference is taken between pixels 
with chain codes n-2 (modulo 8) and n+2 (modulo 8). This new operator is shown 



in Fig. 6.11(a) for chain code 0 and in Fig. 6.11(b) for chain code 7. It is 

intended to test the strength of the edge in the reverse direction. 

The edge value resulting from the new operator is added to the original 

edge value for the two points. If this makes one much greater than the other, 

then the greatest is used, otherwise the new operator is applied at each of the 

leftmost and rightmost good points. These results are added to the previous values 

and the greatest is now chosen as the next point with an arbitrary choice if they 

are still equal. 
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Fig. 6.11. The reverse edge operator. (a) For chain code 0. (b) For chain code 7. 

6.3.3. RE-TRACING FAILED EDGES 

The algorithm of section 6.3.2 reliably locates fork points. The described 

methods for choosing the path however, are by no means perfect. As an 

alternative to the acceptance of any closure of a loop, suggested at the end of 

section 3.2.4, bad collisions can be re-traced. 

When a fork point is detected, its location and the path chosen are stored. 
If the edge subsequently collides with itself or another edge in a way which is 

regarded as unsatisfactory, the edge is retracted to the fork point and the 

alternative path taken. 

This approach could be extended to a process of searching a tree of several 
levels of fork point, with a consequential increase in processing time. For 

processing text images, the increase would be negligible, since the number of 

incorrectly interpreted fork points is minimal. For halftoned images however, the 

number of fork points and collisions is extremely large, so any modification to the 

anaylsis of fork points has to take halftones into account. 



6.4. SOME PROBLEMS CAUSED BY HALFTONED IMAGES 

Text and line drawings are generally of very high contrast, being either 
black on white or white on black. A halftoned image however, can contain many 

different forms of randomly changing grey levels. The algorithm of section 6.2.1 

for setting the flags to leading or trailing works correctly for text and line 

drawings. There are some cases however, in which it can fail. These are caused 

by some peculiarities of halftoned images. 

6.4.1 FAINT EDGES 

It is possible that a faint dot could have insufficient contrast at the top to 

be considered a good edge by failing the stringent raster scan test described in 

section 3.2.2. At the bottom of the dot, the contrast could be much greater. If 

the contrast at the top were high enough to satisfy the lower tracking threshold, 

the edge follower could start at the bottom of the dot and track in the usual 
direction. The line would go over the top of the starting point and complete a 

clockwise loop. The resulting object would have its leading/trailing flags totally 
incorrect. 

An example of a correctly traced dot is given in Fig. 6.12(a). Fig. 6.12(b) 

shows the result of starting a dot at the bottom. Leading edge points are shown 

chequered and trailing edges solid. The traced edge path is superimposed in thick 

lines with the starting point marked "+". 

(a) (b) 

Fig. 6.12. (a) A correctly traced dot. (b) A dot started at the bottom. 



As long as the leading/trailing flags are correct, the raster scanner can use 
the leading/trailing and orientation flags to determine whether it is entering or 
leaving an object. Entry to an object which is inverse is interpreted as exit from 

its parent and exit from an inverse object means entry to its parent. If the flags 

can be set incorrectly then the entire tree structure can become badly corrupted. 

There is a simple test which can be applied to the completed loop to detect 

a clockwise traversal. Having obtained a polygonal approximation of the 

completed outline, the point P with the greatest y-coordinate is found. P cannot 
be concave since, if it were, there would be a point with a greater y coordinate, 
illustrated by Fig. 6.13(a). However many points there are at the maximum 

y-coordinate, at least one must be convex, otherwise the object would be a 

straight line. 

Fig. 6.13. (a) The top point must be convex. (b) An anticlockwise convex point. 

Let P be a convex point at the maximum y coordinate of the loop. Let the 

vector into P be a, and the vector out be b. By the definition of clockwise, the 
interior of the loop is to the left of the edge path when following an anticlockwise 
direction. Therefore, the directions of a and b are as shown in Fig. 6.13(b). If 
the loop had been followed in a clockwise direction, the arrows would be reversed. 
The outline was correctly traced in an anticlockwise direction if: 

axb>0. 

Otherwise, the arrows must be reversed and the outline direction is 

clockwise. 



6.4.2. SELF-INTERSECTING EDGE PATHS 

In Fig. 6.14 there is an edge path which crosses itself. Although the lines 

cross, they actually have no points in common. The edge follower cannot detect 

this kind of collision without searching non-edge points, leading to a large 

increase in processing time. 

mm Anticlockwise points 

Clockwise points 

End of buffer 

Fig. 6.14. A self-intersecting object. 

The fastest solution is for the raster scanner to double check its position in 

the tree and delete objects which cause a discrepancy between the two tests. The 

second test is based on a stack. At the start of a raster line, the stack is empty. 

On entering each new object the label for that object is pushed onto the stack. 
On exit from the object, the stack is popped. If everything is correct, the new 

stack top will be the parent of the object just popped. If this is not the case, then 

the parent should be somewhere down the stack and all entries between are 
invalid. This simple algorithm is complicated by the existence of inversely 

oriented objects. 

6.4.3. A FULL STACK-BASED SOLUTION 

The following algorithm describes a full solution to the problem of detecting 

errors due to undetected self-intersecting edge lines. The algorithm starts with the 

raster scanner having encountered a PIXEL marked used i. e. leading or trailing, 

with a label NODE indicating to which tree node the pixel belongs. 



If NODE=stack top 
If PIXEL is trailing 

Pop stack. 
Else 

Search down the stack, checking all entries and anything they are connected 
to for NODE and the parent of NODE. 

If anything was found in the stack 
Delete all items above the successful item in the stack. 
If PIXEL is leading 

If NODE is connected to but not equal to stack top 
If NODE is same orientation as stack top 

Change stack top to NODE. 

Else 

Pop stack. 
Else (NODE is equal to stack top or NODE's parent is 

equal to or connected to stack top) 
If NODE's parent is equal to or connected to stack top 

Push NODE on stack. 
Else (PIXEL is trailing) 

If NODE is equal to stack top 
Or NODE is connected to & same orientation as stack top 

Pop stack. 
Else (Nothing found in stack) 

If PIXEL is trailing 
Push NODE's parent on stack. 

Any new edges found will be placed in the tree as children of the current stack 
top. Any objects remaining in the stack at the end of each scan line are deleted. 

6.5. SUMMARY 

Construction of a full nesting tree is essential for the recognition of 
engineering drawings. The additional data required to construct the tree is so 
large that it could not be held in the memory of a single processor at a reasonable 
cost. It is therefore essential to operate on small sections of the image. Following 
the edges of objects which may be spread over several sections, causes a large 
increase in the complexity of the edge extraction algorithm when compared to the 
description in chapter 3. 



In order to place new objects correctly in the tree, each edge pixel is 

marked leading or trailing, so that the raster scan can detect entry to and exit 
from objects. These marks must remain correct even when an object is split 

across several sections of the image. The tree is modified as parts of a single edge 

combine in a later section of the image. 

Halftoned images pose difficult problems in maintaining the accuracy of the 
leading or trailing marks, with a consequential severe impact on the integrity of 
the nesting tree. A stack is used to confirm or contradict the evidence of the 

marks, enabling deletion of incorrectly traced outlines. 

Chapter 3 discussed the problem of making an accurate choice of edge path. 
Possible collisions and fork points are detected using look-ahead. When a fork 

point is located, a series of tests are used to ascertain the best choice. These tests 

are: intersection of edge sets, backtracking and applying a reverse edge operator. 
As a final attempt, the opposite choice is taken at a fork point when a line has 

been found to collide inappropriately. 



7. THINNING 

Several algorithms for OCR by feature extraction(47-50) locate features in a 
thinned binary image. The principle of thinning is to reduce an image of a 

character or line from several pixels wide to unit width. For character recognition 

purposes, some of the font information is eliminated, thus providing a degree of 
font independence. 

The functional attributes described by Shillman(34) are defined in terms of 

vector representations of characters, implying some form of thinning. The 

thinning algorithm described in this chapter, was designed with the aim of 
extracting these functional attributes before it was discovered that a subset, which 

can be extracted from outlines, is adequate for recognition. Thinning is not 
therefore, a necessary part of the OCR system described in chapter 2. It is 

however, essential for the recognition of engineering drawings and other line 

graphics. 

7.1. PREVIOUS THINNING ALGORITHMS 

The result of thinning is usually referred to as a skeleton. Montanari(51) 

defines a skeleton as being the result of propagating wavefronts from the inside of 
the outline of the figure. The intersection points of wavefronts from opposite 
sides of the figure form the skeleton. Although this definition is in terms of the 

outline of the object, it is closest to the intuitive definition assumed by the largest 

group of thinning algorithms, the iterative methods. 

Rosenfeld and Pfaltz(52) define a skeleton to be formed by the centres of 
maximal discs placed within the object. The definition does not guarantee that 
the skeleton will be connected. Davies and Plummer(53) extend this definition to 

retain sufficient additional points to maintain connectivity. 

7.1.1. THE ITERATIVE THINNING ALGORITHMS 

Many(53-66) iterative thinning algorithms have been suggested. The general 
principle is to iteratively remove the outside layer of pixels from an object until 
only a unit width skeleton remains. A3 by 3 window operator is passed over the 
image in a raster scan to mark pixels for deletion, according to rules applied 
within the window. A second pass of the raster scan is then used to delete 
marked pixels. The two passes are applied repeatedly until no points are deleted. 



There are several possible variations to this theme: 

(a) The second pass of the raster scan may include additional tests to prevent 
excessive erosion. 

(b) There may be no second pass of the raster scan; all the tests and deletion may 
occur in a single pass. 

(c) The window operator may be applied simultaneously on a large array of 
parallel processors. The operator must be modified to cope accurately with 

parallel deletion without excessive inter-processor communication. 

(d) A different size or shape of window operator may be used. 

(e) To reduce the processing time, the image may be split into many rectangular 

regions, with the terminating condition of no pixels being deleted applied 
individually to each region. This optimization is essential when processing a 
large page of text. 

Since there is such a great deal of similarity between the algorithms, only 
one will be described here. The algorithm presented is that of Hilditch(54) as 
described by Naccache and Shinghal(55) 

Fig. 7.1 shows a pixel P, with its 8-neighbours numbered from 0 to 7. The 
4-neighbours of P are the pixels numbered 0,2,4 and 6. Let the crossing number 
at P be the number of white 4-neighbours of P which satisfy the following 

condition: 

If n is the number of the white 4-neighbour of P, at least one of n+1 and 
n+2 (modulo 8) must be black. 

5 6 7 
4 P 0 

3 2 1 

Fig. 7.1 The 8-neighbours of P. 



Table 7.1 describes six tests which are applied to black pixels in the usual 
left to right and top to bottom raster scan order. Pixels which satisfy all of the 

tests are marked for deletion. 

TEST 

(1) P has at least I white 
4-neighbour. 

REASON FOR TEST 

Ensures that P is an 
edge point. 

(2) P has at least 2 black 
8-neighbours. 

(3) At least one of the black 
8-neighbours of P must not 
be marked. 

(4) The crossing number at P must be 1. 

(5) If point 6 is currently black and 
marked, setting it to white must 
leave the crossing number at P as 1. 

(6) If point 4 is currently black and 
marked, setting it to white must 
leave the crossing number at P as 1. 

Ensures that P is not 
an end point. 

Prevents black points at 
the end of thin lines from 
being iteratively deleted. 

P must not be a break point. 

Tests (5) and (6) prevent 
excessive erosion. 

Table 7.1. The conditions for deleting a black pixel. 

Fig. 7.2(a) shows a binary image of a "Q" with the result of applying the 

above algorithm in Fig. 7.2(b). Deleted points are shown chequered, with skeletal 

points solid. 

(ýl (b) 

Fig. 7.2. (a) A binary image of a "Q". (b) The thinned version of (a). 

Naccache and Shinghal(56) have implemented a wide selection of iterative 

thinning algorithms and give a useful indication of the processing time required on 



a CDC 170-825. The times quoted range from 184 to 513 ms per character, with 

an average size of 17 by 23 pixels. The fastest of these yields a rate of almost 5.5 

characters per second, which is clearly impractical for commercial character 

recognition. 

The average size is also smaller than would be obtained from typical print at 
300 pixels per inch. 25 by 30 pixels would be more realistic for a page of only 
5000 characters. Because the time is a product of the area and the maximum 
width of any part of the character, the 184 ms would scale to approximately 520 

ms, yielding only 1.9 characters per second. The only possible conclusion is that 
iterative thinning is too slow to be of any practical use, without using an array 
processor. 

7.1.2. FASTER THINNING ALGORITHMS 

Shapiro, Pisa and Sklansky(67) describe an algorithm for finding the 

skeleton of nucleic acid molecules. The utility of the algorithm is severely 
restricted by the fact that it can only be applied to objects with a central axis and 
protruding branches. No sub-branches or closed loops are permitted. The 

algorithm cannot therefore be applied to most text characters. The restriction is 
due to a lack of capability to locate line endings and junctions. An example of a 
typical outline shape and the resulting skeleton is shown in Fig. 7.3. 

Fig. 7.3. An example of a nucleic acid molecule and its skeleton. 

A non-approximated chain of outline pixels is used in thinning. The 

skeleton is formed from the midpoints of lines drawn between pixels on opposite 
sides of the object. Given that the starting point of a line has been located, the 
algorithm steps one pixel forwards along either side of the line to be thinned. In 
Fig. 7.4, the algorithm is at points A and B. If the condition 

JAC-Bq <- d 

is satisfied, then the next pair of points will be D, C. Otherwise the next pair of 
points will be either A and C, or D and B, chosen for the minimum diagonal 



length. In the above test, d is a fraction of the average inter-pixel spacing. Once 

line endings are located, the algorithm is linear in the number of outline points. 
D 

Fig. 7.4. The equal diagonal algorithm of Shapiro, Pisa and Sklansky. 

Jimenez and Navalon(30) suggest a method which operates on a polygonal 

approximation of the outline. In Fig. 7.5, segment 2-3 has been chosen as the 

starting segment. The rest of the object is searched for a segment which is 

crossed by the perpendicular a from the midpoint of 2-3. Segment 24-23 is the 

nearest such segment and this is chosen as the starting segment on the opposite 
side of the object. The algorithm then shoots vectors in the opposite direction to 

a from vertices 24,23,22 etc. while they intersect segment 2-3. The midpoints of 
these lines are used as points on the skeleton, as indicated by the dotted line. 

When the vector from vertex 21 is found not to intersect segment 2-3, a 
perpendicular is dropped from 3 and this is found to intersect segment 22-21. 
The process now continues with a perpendicular to segment 3-4. 

20 
Fig. 7.5. An example of the failure to detect a junction. 

Jimenez and Navalon(30) claim that their algorithm is linear in the number 
of source points in the outline. The test applied to the perpendicular from 

segment 3-4 however, must either make the algorithm squared order, or fail with 
the example in Fig. 7.5. The perpendicular to segment 3-4 intersects segment 
22-21. There is no sudden increase in line width or any other indicator that there 



is a junction. Therefore, without a linear search of all available outline segments 
it is difficult to guard against the situation illustrated, where segment 12-II is in 

fact the nearer line. The same search must be conducted for each segment on the 

outline, therefore the algorithm must be squared order. 

This squared order searching problem is a direct consequence of reducing 

the 2-dimensional bit map representation of the image to a simple I -dimensional 
circular list of vectors. A simple way around the problem is to maintain a 
bit-map representation. The shooting of perpendiculars involves actually drawing 

the lines on the bit-map, and then the first line crossed actually is the nearest line. 

Without specialized hardware however, this approach may be even slower, 
depending on the width of lines and the number of vertices in the outline, since 

the time taken to draw a vector may exceed that to search the circular list. 

7.2. A NEW THINNING ALGORITHM 

The concept of thinning is difficult to apply to an object such as a dot. 

With the algorithm described in this chapter, a skeleton can be produced for any 

object which has either at least two line endings or a hole. A dot may have 

neither, in which case, the suggested skeleton is a line connecting the two most 
distant points on the outline. 

The new thinning algorithm, described in the subsequent sections, was 
originally designed to operate on text outlines. It is also suitable for arbitrary line 

graphics, and is therefore applicable to the recognition of engineering drawings. 
The only problem in adapting the algorithm to line drawings, is determining which 
part of the nesting tree forms one object to be thinned. 

Fig. 7.6 gives an example of why this is a non-trivial problem, as long as 
the system aims at coping with both black lines on a white background and the 

reverse sense on the same page. Fig. 7.6(a) shows a simple example of black lines 

on a white page, with the corresponding nesting tree in Fig. 7.6(b). The nodes 
joined by bold lines in the nesting tree indicate the different units which must be 
thinned to obtain the correct representation. 
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Fig. 7.6. (a) A simple page. (b) The nesting tree of (a). 

The nesting tree of Fig. 7.6(b) is also produced by the page in Fig. 7.7. If 

the page is interpreted as white lines on a black page, then the units for thinning 

remain the same. If the same page were interpreted as black lines on a white 

page, the units for thinning would be those which are joined by the thin lines in 

the tree. The difficulty can be eliminated easily if the system can assume that all 
lines are in the opposite colour to the root of the tree. This simplification 
however, would restrict the recognition of grey shaded or inverse boxes within the 

page. 

I 
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Fig. 7.7. An alternative page to produce the nesting tree of Fig. 7.6(b). 

A better solution would be to measure the width of objects between 

adjacent levels in the nesting tree. Those edges which are close together are likely 
to be opposite edges of the same line. 

This is a problem which does not occur when extracting only the text from 

a page, since no character may contain any significant mark inside a hole, nor 
may any character possess more than two holes. These conditions restrict the 
position which a character may occupy in the tree sufficiently to reliably extract 
text. 



7.3. NEAREST POINTS 

The remainder of this chapter make use of the notation which was defined 

in section 5.3. The first step of the thinning process is to find the nearest point, 
Ni-nearest(Pi), to each point Pi on the outline, conceptually defined to be the 

nearest point which is on the opposite side of the object. In practice, it is the 

nearest in terms of distance2 which also satisfies both of the following conditions: 

(a) A line drawn from Pi to Ni must pass wholly within the object, holes within 
the object being regarded as outside it. Thus in Fig. 7.8(a), P6 cannot be the 

nearest point to P2, since the line passes through part of the outside, as 

shown by the dotted part of the line. 

(b) At least one of the following must be true: 
(bl) Pi+ . Ni_ >0 and Pi+ x PiNi >0 and Ni_ x PiNi > 0. 

(b2) Pi_ . Ni+ >0 and PiNi x Pi_ >0 and PiNi x Ni+ > 0. 

Thus the sides must be nearer anti-parallel than parallel, determined by the 

scalar product. The cross product tests are applicable only in the case of 

concave points, where the angle subtended by Pi and/or Ni may be more 
than 1800. The tests guard against cases such as Fig. 7.8(b). P23 cannot be 

the nearest to P21, since P21+ " P23- ,0 and P21P23 x P21_ <- 0. The 

nearest point to P21 is thus P17. 

16 
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Fig. 7.8. (a) An example of nearest point test (a). (b) An example of nearest point 
test (b) 

It is possible that there is no nearest to a particular point, because no point 
can be found which satisfies (a) and (b) above. The neardistance2 of a point is 
defined to be the distance2 to its nearest point. If there is no nearest point then 
the neardistance2 is defined to be a known constant value which is larger that any 
possible distance2 in the image. Fig. 7.9 shows some actual outlines with the 
nearest point relations indicated by arrows drawn from each point to its nearest 
point. 



ý 

Fig. 7.9 Some actual outlines with nearest points marked by arrows. 

Section 7.8 discusses how the nearest point algorithm can be optimized to 

prevent cubed order behaviour and to minimise the squared order component. 

7.4. ENDPOINTS 

After the nearest point relations have been ascertained, ends of lines on the 

object are located. Throughout the endpoint tests, a value MAXWIDTH is used. 
MAXWIDTH gives a measure of the maximum width2 that a line is allowed to 
have, and is a fixed multiple of the average neardistance2 calculated in section 
7.3, (excluding points with no nearest, ) or a fraction of the square of the longest 

side of the minimum upright bounding box of the object, whichever is smaller. 

7.4.1. TESTING FOR ENDPOINTS 

Each point Pi, on the object, undergoes the following tests to detect 

endpoints. Note that a line ending may include several endpoints. 

(a) If Pi is convex, and the bend at Pi is more than 900, then Pi is an endpoint 

if Ni does not exist, or nearest(Ni) is not the same as Pi. The points marked 
Al on Fig. 7.11 are endpoints with no nearest. A2 in the same figure is a 

point with nearest(Ni) different to Pi. Fig. 7.10(a) shows two sharp points 
labelled AB, on the corners of the "N" which are not endpoints because 

nearest(Ni) = Pi. 

(b) If Pi is convex and the bend at Pi is more than 600, and the points on either 

side are concave, then Pi is an endpoint if it meets one of these 

sub-conditions: 
(b1) Ni_1 = Pi+1 or Ni+1 - Pi-1, i. e. there is a nearest point line joining 

Pi-1 and Pi+1, in either direction. 



(b2) IP1_1Pi+112 < MAXWIDTH and the perpendicular distance2 from Pi to 
the line joining Pi- I and Pi+l is more than a fixed fraction of 
MAXWIDTH and less than the neardistance2 of P. 

An example of condition (b 1) is shown in Fig. 7.10(b) at the point marked 
B1. The point B2 illustrates condition (b2). The corners AB, of the "N" in 
Fig. 7.10(a) are also examples of points which would be rejected by test (b). 

AB 

AB 

Fig. 7.10. (a) An example of sharply convex points which are not endpoints. 
(b) Sharply convex points which are endpoints under test (b). 

(c) If Pi and Pi+l are convex and iPi+I2 < MAXWIDTH and the total angle of 
bend is more than 600, then the radius of curvature is tested. The test is 
defined in section 7.4.2. If the radius of curvature is sufficiently small, then 
Pi and Pi+l are marked as an endpoint pair. 

Fig. 7.11 repeats the outlines of Fig. 7.9 with single endpoints resulting from 
tests (a) and (b) marked by asterisks. Endpoint pairs produced by test (c) are 
shown connected by thick lines. 

Fig. 7.11. Outlines with single endpoints marked by asterisks and endpoint pairs 
joined by thick lines. 



7.4.2. THE RADIUS OF CURVATURE TEST 

The radius of curvature test uses a discrete approximation to the radius of 
curvature function for a continuous curve. In Fig. 7.12(a) the arc length d, the 

angle A and the radius r of an arc of a circle are related by the equation r-'d/A 

when A is measured in radians. 

Fig. 7.12(b) shows a pair of points Pi and Pi+1 under consideration, with 
their predecessor and successor points Pi-1 and Pi+2. The total turn angle at Pi 

and Pi+1 is shown as o. If 0> 1800, then d is taken to be jPi4. Otherwise, the 

vectors Pi-1 Pi and Pi+1 Pi+2 are scaled such that their lengths are both equal to 
the larger of JPi+l and the smaller of IPi-1 Pi( and (Pi+l Pi+21" Let the scaled vectors 
be denoted by a and b respectively. A scaled version of Fig. 7.12(b) is shown in 
Fig. 7.13(a). 

P+2 

P+ý 

cb) P ---, Pý 

Fig. 7.12. (a) Radius of a circular arc. (b) A discrete arc. 

If 0< 1800, d is measured between the new positions of P1_ 1 and pi+2" 
The reason for this complicated measurement is to prevent a false response to a 
pair of very short edge lines with a small angle. 

To avoid floating point arithmetic and trigonometric functions, the angle A 
is approximated from o, using a simple property of scalar products: 

a. b -abcoso 

where a and b are the lengths of a and b respectively. This relation can be 
used to find cos e. Rather than calculate coil, a non-decreasing sinusoidal 
approximation of o is used as follows: 



A-1-a. b2 If a. b>-0 

a2b2 

1+ (a. b)2 If a. b<0 

a2b2 

3- a. b2 If a. b<0 

a2b2 

3+ (a. b)2 If a. b>'0 

a2b2 

and axb>-0 i. e. 0°<-o<-90° 

and a xb >- 0 i. e. 90° <o <" 1800 

and axb<0i. e. 180° <0< 2700 

and axb<0 i. e. 270°<"m<360° 

The graph of this function is shown in Fig. 7.13(b). Of the various possible 

ways of approximating the radius of curvature, the method described above has 
been experimentally determined to be the most useful. The radius approximation 
calculated from d/A is compared with the smallest neardistance from Pi or Pi+1 
The neardistance from Pi is not used if Ni is Pi-2 Or Pi+2" Similarly, the value 
for Pi+l is not used if Ni+l is Pi-1 or Pi+3. 

A 

(a) (b) 

- -1 90 180 270 360 
0/ Degrees 

Fig. 7.13. (a) A scaled version of Fig. 7.12(b). (b) The angular approximation. 

If there is a neardistance N, which can be used, then Pi and Pi+l make a 
good endpoint pair if d/A < 0.8N. If d/A > 1.2N then the points are not good 
endpoints. For text, the number of ends falling between these values is small. 
For those which do, the points can be made an endpoint pair if 
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d2 < MAXWIDTH. If there is no neardistance value which can be used, then the 

points Pi and Pi+l automatically become ends. 

7.4.3. COALESCING ENDPOINTS INTO LINE ENDINGS 

A line ending may consist of several endpoints or endpoint pairs. Two 

endpoints belong to the same line ending if they meet all of the following 

conditions: 

(a) There is no concave point between them of bend angle more than 300. 

(b) The total distance2 between the two ends must be less than MAXWIDTH. 

(c) The total bend angle over the two ends must be between 1800 and 3600. 

After the line endings have been found, they are checked for concave points 
on either side of the end region. Where there are concave points, the distance2 
between these is calculated. If the result is less than twice the previous distance2 

across the end, then the end is moved to the concave point or points. This process 
helps to generate straight medial axes at serifs, thus eliminating some differences 
between fonts. It may be an undesirable operation for engineering drawings. 

This operation is illustrated by Fig. 7.14. Fig. 7.14(a) shows a line ending 
with a serif. Pi and Pj represent the limits of the line ending and the dotted line 
indicates the resulting skeleton. Clearly, IPi_ 1 pj+112 < IP1P j12 and Fig. 7.14(b) 
indicates that Pi and Pj have been moved to the concave points. 

F 

Fig. 7.14. Constructing the skeletal line at a line ending. 

Where a line ending consists of more than two endpoints, part of the 
skeleton is constructed immediately. On the line ending in Fig. 7.14(b), Pi and Pj, 



represent the new limits of the line ending. Let a be the vector (Pi_)+(Pj+), or 

-(Pi+)-(Pj_), depending on which pair is most anti-parallel. A skeletal line is 

constructed between the midpoint of Pi and Pj and the edge point or midpoint of 

an edge line between Pi and Pj, such that the skeletal line is most parallel to a. 
The skeletal line is shown dotted in Fig. 7.14(b). 

Fig. 7.15 shows the outlines of Fig. 7.11 with the resulting skeletal lines 

shown dotted. Nearest point arrows associated with line endings have been deleted 

to reduce clutter. Line endings which do not contain more than 2 edge points are 

shown as thick lines as in Fig. 7.11. 

Fig. 7.15. The result after completing line endings. 

When the line endings are complete, all non-endpoints are tested to see if 

the line to their nearest point crosses any other nearest point line. If there is any 
crossover, then it must be removed before processing can continue. If the two 

points which have crossing nearest lines are adjacent, then they are converted to 

endpoints. Otherwise, the points exchange their nearests. This simple procedure 
removes the vast majority of crossovers. If any remain after these changes, then 
the object cannot be thinned and is rejected. 



7.5. CONSTRUCTING THE SKELETON 

Skeletal lines are constructed starting from line endings. When each line has 
been traced to a junction, other lines which do not have a free end are processed. 
Finally, lines are connected at junctions. 

7.5.1. TRACKING LINES FROM ENDPOINTS 

Starting at each line ending, a skeletal line is constructed while the nearest 
points are continuous. The concept of continuity is illustrated in Fig. 7.16. In 

each of Fig. 7.16(a), (b) and (c), Ni = Pi and Nj - Pi. In Fig. 7.16(a), 

Ni+1 - P_1 and N_1 = Pi+1. Fig. 7.16(b) is also continuous since Nj 
_1= 

Pi. 

Fig. 7.16(c) shows a discontinuity, since there is no nearest relation anywhere 
between Pi+1 and Pi or Pj_1 or between Pj_1 and Pi or Pi+1. 

Fig. 7.16. (a), (b) Examples of continuity. (c) An example of discontinuity. 

The skeleton is constructed by connecting midpoints of the lines which join 

points to their nearests. Generation of skeletal lines continues until a discontinuity 
is found. Discontinuities occur at junctions and ends of lines. The process is also 
terminated if one of the side points is an endpoint or it has already been used. 
This prevents the situation where lines could cross without being detected. 

7.5.2. OTHER CONTINUOUS REGIONS 

Once all line endings have been followed to junctions, skeletal lines are 
generated for the remaining regions of continuity. The "O" in Fig. 7.15 has no 



line endings. Some other characters which have continuous regions that are not 

connected to line endings include "e", "a" and "P". 

For all unused points remaining in the object, continuity of nearests is 

tested. Where there is continuity, the line is followed in both directions until a 
junction is found. 

After processing continuous regions, there may still remain some points on 

the outline which have not been used. This will happen mainly in the case of a 

very short line between 2 junctions, as with the "E" in Fig. 7.17. An attempt is 

made to construct skeletal lines from these points. The resulting line may be as 

short as a single point, but the step produces an important partitioning of 
junctions. Partitioning junctions in this way simplifies the closure operation 
described in section 7.6.2. 

The amount of skeleton present after this stage of processing, is shown in 
Fig. 7.17 as dotted lines. The next step is to isolate line junctions. 

Fig. 7.17. The skeleton present after processing regions of continuity. 

7.6. LINE JUNCTIONS 

Each junction maps to a node in the output graph structure. Consequently, 
during construction of the graph, when each line ends at a junction, it must be 
attached to the same node as all the other lines ending at the same junction. This 
function is performed partly during creation of the skeletal lines. After all 
skeletal lines have been created, additional phases close junctions and partition 
them into manageable pieces. 



7.6.1. CREATION OF JUNCTIONS 

When each line ends in a discontinuity or it hits another junction, the last 

pair of points used are recorded in a structure called a junction pair. A junction 

pair contains information about one line entering a junction: 

(a) The last pair of points used on the line are the sides of the junction pair. 
The left side is the left point as seen from the line looking towards the 
junction 

(b) The midpoint of the sides is also stored since it gives the coordinates of the 

end of the line as well as a link to the rest of the line. 

(c) The junction pair also contains links to the junction pairs on the left and 

right. (If any. ) 

A completed junction (i. e. a node in the output graph) is thus a circular list 

of junction pairs. Fig. 7.18 shows the information stored in a junction pair. The 

junction pair in Fig. 7.18 has a link from the right side to the left side of the 

other junction pair. When these links form a circular list, the junction is closed. 

Fig. 7.18. The components of a junction pair. 

When the first line to be constructed arrives at a junction, a junction pair is 

created for it. Whenever a new junction pair is created, its left side is checked 
against the right sides of all existing junction pairs. If any is found to contain 
exactly the same point, then it is possible, but not necessarily certain, that the 
junction pairs belong to the same junction. Similarly, the right side of the new 
junction pair is checked against the left sides of all existing ones. 

In the simple case, at most one match will be found, and that will not 
previously have been connected to anything else. Fig. 7.19 illustrates the simplest 



possible junction. In Fig. 7.19(a), there is a junction of 3 lines, one of which has 

been followed to the junction. In Fig. 7.19(b), the second line has ended at the 
junction and has a right side in common with the left side of the first line. In 

Fig. 7.19(c), the final line closes the loop and the junction is complete. 

Fig. 7.19. (a) The first line ends at a junction. (b) The second line ends at the 
junction. (c) The junction is complete. 

7.6.2. CLOSING JUNCTIONS 

Fig. 7.19 was a slightly contrived junction. Since skeletal lines are 
constructed using midpoints of nearest lines, a junction pair will occur at the last 

nearest line of a continuous section. Fig. 7.20 shows a more realistic 
configuration; there is no nearest line at the junction for the third leg. 
Consequently, the junction pairs, (shown as thin arrows) do not form a closed 
loop. 

In order to close the junction, it is necessary to connect all line endings that 

are separated by only a single edge line. Ensuring that all outline points are used, 
as in section 7.5.2, guarantees that there will be only one edge segment separating 
adjacent junction points within a junction. 

Fig. 7.20. A non-closed junction. 



7.6.3. ADJACENT JUNCTIONS 

When a new junction pair is created, it is possible for there to be more than 

one other junction pair sharing one of the sides. In Fig. 7.21, four junction pairs 
share the same edge point. Visually, it is clear which junction pairs belong to 

each junction. 

Fig. 7.21. Two adjacent junctions 

Depending on the order in which the junction pairs are encountered, it is 

possible for confusion to arise over which pair belongs to which junction. In 
order to resolve any uncertainty, a new junction pair is connected such that it has 
least angle, and in the correct sense, with the connected pair. 

Fig. 7.22 shows the example of Fig. 7.17 after this stage of processing. The 
midpoint of each junction pair is shown as an asterisk, with adjacent junction 

pairs connected by dashed lines. 

Fig. 7.22 Closed junctions are shown dashed. 



7.7. CONNECTING JUNCTIONS 

The skeletal lines entering each junction must be connected. The treatment 
depends on the number of lines meeting at the junction; three lines are easier to 

connect than four or five. Before any attempt is made to connect a junction of 
four or more lines, it is first partitioned, if possible, into simpler junctions. 

7.7.1. PARTITIONING JUNCTIONS 

During the thinning process, junctions of three or four lines which lie close 

together may be merged, i. e. the line segment between the junctions can be 

regarded as part of the junction. By detecting parts of junctions which resemble 
lines, they can be partitioned into more manageable fragments. 

The first test is performed for junctions of four or more lines. An example 

of a junction with a suitable partition is shown in Fig. 7.23. Let Pi and Pj be two 

points on the outline, such that neither is shared by two junction pairs, Pi is the 
left side of a junction pair only and Pj is the right side of a different junction 

pair. If two such points exist, and they satisfy 

1Pi- x pj < 1PiPj12 and 2lP1Pjj2 < max(lPiPj+1I2+JPjPi_112), 

then the junction is split along PiP j. If there is more than one such pair of points 
then the pair is chosen such that JPiPj12 is a minimum. If there is no pair of 
points which satisfy the condition, then there is no partition. 

............... 

Fig. 7.23. A 5-line junction with a partition. 

The test produces a pair of points at a narrow part of the object, at the end 
of a long line. The result of the partition is shown in Fig. 7.23 by connecting 
each new junction with dashed lines. 



A further attempt is made at partitioning the junction if it contains exactly 
four lines. Fig. 7.24(a) shows a 4-line junction where the partition can be made. 
Since the junction has 4 lines there are only two fundamentally different ways in 

which it can be partitioned into two 3-line junctions. All the thin dotted lines in 

Fig. 7.24(a) represent possible splits which result in the same pair of lines being in 

each partition. The thin dashed lines represent the other possible split lines, 

which would result in the opposite pairs of lines being together. 

Fig. 7.24. (a) A 4-line junction with the possible partitions. (b) The resulting pair 
of 3-line junctions. 

Let the points at either end of the shortest dotted split line in Fig. 7.24(a) 
be Pi and Pj. Pi' and Pj' are at opposite ends of the shortest dashed split line. If 

31pipj12 < 1pi, pj, 12, 

then the junction is split along PiPj. This is the case for Fig. 7.24(a) with 
the partitioned junctions shown in Fig. 7.24(b). The test is also made with the 
pairs reversed and if satisfied, the split is made along Pi'Pj'. 

Fig. 7.25 indicates how the 4-line junction in the "k" of Fig. 7.22 is 

partititioned into two 3-line junctions. 

Fig. 7.25. Partitioning the 4-point junction in Fig. 7.22. 



7.7.2. CONNECTING 4-LINE JUNCTIONS 

If the diagonals which join opposite midpoints of junction pairs of a 4-line 
junction are within 300 of being perpendicular, and their point of intersection is 

sufficiently near the centre of one of them, then the diagonals are used to connect 
the junction. 

Fig. 7.26 illustrates a typical 4-line junction which was not partitioned by 

the tests of section 7.7.1. The diagonals between the midpoints of opposite 
junction pairs are shown as thin dotted lines. The long diagonal intersects the 

short diagonal, PR, at the point Q, such that 

41PQI2 > IQRI2 and IPQI2 < 41QRI2. 

Therefore, the dotted diagonals will become the skeletal lines used to 

connect the junction. 

Fig. 7.26. A 4-line junction with perpendicular diagonals. 

7.7.3. EXTRAPOLATION VECTORS 

Those junctions for which the test of Section 7.7.2 in not applicable or fails, 

are connected using the extrapolation vector, v, for each junction pair in the 
junction. The extrapolation vector is an estimate of the line direction if it were to 
continue through the junction. The length of the vector is irrelevant. Let the left 
and right sides of the junction pair be Pi and Pj respectively. The following tests 
calculate the extrapolation vector for a junction pair. 

(a) If the angle between Pi_ and Pj+ is less than 30°, and Pi_ . PiPj+l >0 and 
Pj+ " PjPi_1 >0 then v- Pi_ + Pj+. 



(b) If the angle between Pi+ and Pj_ is less than 30°, and Pi+ " PiPj-1 >0 and 
Pj_ . PjPi+l >0 and Pi is not the same point as Pj or Pj+l, then 

v= -(Pi+ + Pj_). If the junction pair also satisfies (a), then the extrapolation 

vector is the sum of the results in (a) and (b). 

(c) If Pi = Pj, as may be the case with a single point line ending, then 

v= Pi_ + Pj+ regardless of the result of (a). 

(d) If the junction pair does not satisfy (a), (b) or (c), then the extrapolation 

vector is Pi Pi rotated anticlockwise through 900. 

Fig. 7.27 shows the extrapolation vectors as dotted arrows. The scalar 
product tests in (a) and (b) guard against the situation of the uppermost line in the 
junction, where P4_ and P10+ are almost parallel, but do not give a good 
indication of the line direction. 
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Fig. 7.27. The extrapolation vectors of a junction. 

One final test is made on the extrapolation vector before it is used to 

connect the junction. In Fig. 7.28, Pi and Pi are a junction pair, and Q is the 

midpoint of PiPj. The extrapolation vector calculated above is v. The following 

simple tests detect the case shown where v may cross the edge and be 

unrepresentative of the line direction. 

(a) If Pi is not shared by two junction pairs, and vx (QPi + Pi_) <- 0 then 
change v to Pi_. 

(b) If Pj is not shared by two junction pairs, and vx (QPj + Pj+) >" 0 then 

change v to Pj+. 



Fig. 7.28. A case of an extrapolation vector which crosses the outline. 

7.7.4. CONNECTING JUNCTIONS WITH EXTRAPOLATION VECTORS 

The extrapolation vectors are compared pairwise in order to find the pair 
which are closest to anti-parallel. The pair of line endings with the angle nearest 
to 1800 are joined by a line between their midpoints. All the remaining lines are 
extended in the direction of their extrapolation vectors until they intersect this 
same line segment. Those which do not cross the line anywhere along its length 

are defined to intersect at the end nearest to which they pass. All the lines in the 
junction are then connected to the mean point of intersection. 

Fig. 7.29 illustrates the completion of the junctions in Fig. 7.22. 

Fig. 7.29. The final result of thinning. 

7.8. A NOTE ON OPTIMIZATION 

By the foregoing description, the thinning algorithm is heavily squared 
order, i. e. the processing time is a large multiple of n2, where n is the number of 
points on the outline. Depending on the implementation, test (a) in section 7.3, 
for finding nearest points, may result in cubic behaviour. There are however, 



several optimizations which can be used to eliminate any possiblity of n3 order 

time and to reduce the multiple of n2 significantly. 

7.8.1. OPTIMIZING THE NEAREST POINT TESTS 

Given that Ni = Pj, a good first guess at Ni+1 is Pj_i. Using Pj_1 as an 
initial estimate of Ni+1, if it passes the other tests, the majority of points can be 

rejected simply by measuring the distance2, without performing tests (a) and (b) 

of section 7.3. This reduces the factor of n2 considerably. 

Test (a) of section 7.3 implies that for each candidate nearest point, it is 

necessary to search the entire outline list to test for intersections of the line PiNi 

with an edge. A simple test which uses the same cross products as test (b) will 

check that the line PiNi lies within the object at points Pi and Pj: 

(a) If Pi is convex it is required that Pi+ x PiNi >0 and PiNi x Pi- >0 
If Pi is concave it is required that Pi+ x PiNi >0 or PiNi x Pi- >0 

(b) If Ni is convex it is required that PiNi x Ni+ >0 and Ni_ x PiNi >0 
If Ni is concave it is required that PiNi x Ni+ >0 or Ni_ x PiNi >0 

In the vast majority of cases, if both (a) and (b) above are true, either the 

nearest point will be correct, or Pi has no nearest. When the final selection has 
been made, a single pass over all the points on the outline will verify the 

correctness of Ni. If Ni then fails test (a) of section 7.3, a new nearest point is 

generated and that is tested. Cubed order behaviour is thus eliminated. 

Experimentation has shown that where the line PiNi does intersect one of 
the outlines, Pi is likely to be an endpoint. In such cases, the position of Ni is 
irrelevant. The test to check for intersections with outlines can therefore be 

eliminated completely. If an important nearest point is calculated incorrectly, then 
the junction closure process will fail. This situation can be detected, and the 

entire process restarted with the checks active. 

One further optimization of the nearest point calculations is possible. The 

nearest point is found only for all concave points on the object. Where a nearest 
point is convex, the concave point is recorded as being the nearest point to the 
convex point, if the neardistance2 is less than any other previous nearest at that 
point. All convex points which thereby obtain a nearest point are then excluded 
from the subsequent location of nearest points for the remaining convex points. 
This heuristic optimization does not guarantee to obtain the correct result for 



convex points, but any changes are insigniifcant. In the case of curved objects, 
such as the "O" in Fig. 7.11, a reduction of almost 50% in the squared order factor 

can be achieved. 

7.8.2. INTERSECTING NEAREST LINES 

The test at the end of section 7.4.3 for intersecting nearest lines also fails 

only in extreme cases. Since it requires squared order time, it can be eliminated 
and used only in case of a failure of the subsequent processes. 

7.9. SUMMARY 

Thinning is an extremely useful step in the capture of engineering drawings. 
The iterative thinning algorithms operate on a binary image bit map and consume 
an impractically large amount of time. Some faster thinning algorithms have been 

suggested, but the problem of accurately detecting line endings and junctions has 

not yet been solved. 

The new thinning algorithm operates on a polygonal outline approximation. 
It commences by locating the nearest point, on the opposite side of the object to 
each point on the outline. The overall principle of the new algorithm is that 
discontinuities in the nearest point relations provide accurate detection of line 

endings and junctions. 

Location of the nearest points consumes time proportional to the square of 
the number of points in the outline, but all the remaining operations are linear. 
The squared order factor is minimised by several optimizations applied to nearest 
point generation. 

The skeleton is constructed by connecting the midpoints of the lines which 
join each point to its nearest point, where the nearest point relation is continuous. 
Junctions are closed and parititioned into convenient parts. Partitioned junctions 
are then connected by extrapolating each line as it enters the junction. 



8. RESULTS AND CONCLUSIONS 

8.1. EDGE EXTRACTION AND POLYGONAL APPROXIMATION 

The edge extractor described in chapters 3 and 6, provides a powerful tool 

for the automatic extraction of text from any kind of document. Fig. 8.1 shows 

an error diffused reproduction of a portion of a document containing text and 

pictures. 

Bath and Bristol to 
small cottages 
located in attractive 
rural areas, including 
the Mendip and 
Cotswold Hills. Major 
housing schemes are 
currently in progress 
and accommodation 
in the area is not a 
problem. The supply 
of rented 
accommodation in 
Bristol and Bath 
compares favourably 
with other parts of the 
country, for many of 
the larger properties 
in these cities have 
been converted into 
small units. 

Fig. 8.1. A document containing text and pictures. 

In this particular example, the contrast between the text and background 

is excellent. The edge extractor consequently locates the outlines of the text 

without a single loss. Conversely, the pictures contain very little with high 

contrast and the edge extractor therefore ignores them almost completely. The 

output from the edge extractor, after polygonal approximation, is shown in Fig. 

8.2. Note that only an extremely small portion of the pictures have been retained 

and that the objects do not form logical lines of text. They can therefore be 

rejected at a later stage. 

The full edge extractor of chapter 6 took 37 seconds to produce the result in 

Fig. 8.2 running on an HP9000/350, a 25MHz MC68020 based machine. The page 



contains 338 characters, giving a speed of 9 characters per second. This is around 

twice as fast as the iterative thinning algorithms; a comparable pre-processing step 

for character recognition. 

I Bath and Bristol to 
small cottages 
located in attractive 
rural areas, including 
the Mendip and 
Cotswold Hills. Major 
housing schemes are 
currently in progress 
and accommodation 
in the area is not a 
problem. The supply 
of rented 
accommodation in 
Bristol and Bath 
compares favourably 
with other parts of the 
country, for many of 
the larger properties 
in these cities have 
been converted into 
small units. 

Fig. 8.2. The output of the edge extractor when applied to Fig. 8.1. 

The reason why the edge extractor appears so slow is that the text occupies 

only 25% of the total page area. A page of the same area consisting purely of text 

would consume only slightly more time, yielding a speed of 25-30 characters per 

second. The time taken to process the picture is explained by the fact that the 

edge extractor will find edges which fail after some distance. 

The edge extractor is also currently doing far more work than necessary to 

extract text. It is anticipated that an implementation of the simplified edge 

extractor as described in chapter 3 will yield at least 100 characters per second on 

pages of pure text, with a degradation in the presence of pictures, but a reduction 

in overall page time. 

Fig. 1.7 shows a page which contains both black and white text on a grey 

background. Conventional OCR techniques based on thresholding may be able to 

locate the black text but the white text is impossible. Fig. 8.3 shows the output of 

the edge extractor when applied to this page. 



Note that three characters and three "i" dots are missing. These losses are 
due to poor edge path decisions caused by the low contrast on the page. The 

white text however, has been extracted as easily as the black. The new simple 

edge path algorithm discussed in chapter 3 is likely to increase the accuracy 
further with its use of greater look ahead. 
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Fig. 8.3. The outlines produced from the page in Fig. 1.7. 

8.2. FEATURE EXTRACTION 

The feature extraction step requires a widely varying training set in order to 

learn the possible variations in the numerical feature values for each character. 

The present training set consists of seven different fonts printed on an lIP2680 

laser printer. The fonts are: Helvetica (Normal, Italic and Bold), Roman (Normal, 

Italic and Bold) and Courier. The training set is reproduced in Fig. 8.4. 

! "tF$96&'()'t, -. /0123456789:; <=>? «bABCDEFGHIJKLMNO 
PQR STUV WX YZ[\j"__'abcdef ghiJklmnopgrstuvwxyz( }" 
! "#$%e'()#'+, -, /0123456789:; <=>? EDABCDEFGH/JKLMNO 
PQRSTUVWXYZ[\j"_'abcdefghijklmnopgrstuvwxyz(" 
1"#$%JI, '()'+, -. /0123456789:; <->? dPABCDEFGHIJKLMNO 
PQRSTUVWXYZ[\]', 

_'abcdefghljklmnopgrstuvwxyz(" ! "#S%8: '0*+, -. /012345 678 9 :; <=>? @ABCDEFGI IIJKLMNO 
PQRSTUV WXYZ[\j^_'abcdefghijklmnopgrstuvwxyz(}- 
! "#$%&'(j*+, -. /0123456789: ; <->? IeABCDEFCH1JtiL. MN0 
PQRSTUVWXYZ[\J^_abcdeJghljklmnopgrstuvwxyzl j- 

! "#$%&'()*+, -, /0123456789:; <">? (7a ABCDEFGIIIJKLMNO 
PQRSTUV WXYZ[\}^_'abcdefghi jklmnopgrstuvwxyz() "' 
1"j! $%&'()*+, -. /0123456789:; « >? @ABCDEFGHIJKLMNO 

PQRSTUVWXYZ[\]^ 'abcdefghijklmnopqrstuvwxyz()- 

Fig. 8.4. The training set. 



Fig. 8.5 illustrates the result of applying feature extraction to the outlines of 

Fig. 8.2, using the above training set. Each character is the first choice from the 

list of characters in the recognized class, and is shown regardless of the success of 

the match. Each object in Fig. 8.5 was plotted to the rectangular bounding box of 

the original character image. The result is a somewhat uneven character position 

and height, caused by the graphics library choosing where in a text box a 

character should be drawn, and the use of capitals in inappropriate places. 

11 
Bath and Bristol to 
Small Cottages 
IOCated in attraCtlve 
rural areas, InClUding 
the Mendip and 
Cotswold Hills. Major 
hOUSIn SChemeS are 
CUrrentTy in prOg reSS 
and aCCOmmOd atIOn 
in the area is not a 
problem. The Supply 
Of rented 
aCCOmmOd ation in 
Bristol and Bath 

Comp areS f avoUr ably 
wth other parts of the 
Country. for manyOf 
the larger prOpertleS 
In these CItieS have 
been Converted Into 
Small UnitS. 

Fig. 8.5. The recognized characters from Fig. 8.2. 

There are no errors in the letters on this page. Closer inspection reveals an 

error in punctuation, the first 'i" dot in the word "cities" is shown as a single 

quote. This error will have no effect, since the mark above the "i" will be taken 

to be the dot. Several characters were rejected however, due to either a high 

match error, or a low match error on the second choice. Those characters which 

were rejected are shown in outline in Fig. 8.6. Note that on comparison with Fig. 

8.5, none of the rejected characters are incorrect. This situation indicates that the 

number of rejects could be reduced significantly, without losing accuracy. 

The time taken to produce the result in Fig. 8.5 is 4.9 seconds. This 

represents a speed of approximately 70 characters per second, with a mean of 17 
templates tested per unknown character. There is therefore reasonable scope for 



increasing the speed further by reducing the number of templates tested for each 

unknown character. 

The reason why there are so many rejected characters in Fig. 8.6, is that 

there are some ambiguities in the standard templates and that the training set is 

insufficiently varied. Features with numerical values widely outside the 

acceptance range are regarded as not matching, resulting in large match errors. 
The main rejects in Fig. 5.6 arise as follows: 

S Ambiguity with 5. 
C Ambiguity with G. 
M Different to the training set. 
p Ambiguous with P, since they are in different classes. 
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Fig. 8.6. The rejected characters from Fig. 8.5. 

The ambiguity of the standard templates which result from the training set 
in Fig. 8.4 is extremely low for most character pairs. This indicates that the 

acceptance ranges could be extended considerably without increasing ambiguity. 
There are some ambiguities however, which pose a definite problem. The current 
ambiguities are shown in Table B. I. The grade of the ambiguity gives an 
indication of the difference between the two templates at the closest point. Grade 



I indicates a negligible difference and grade 4 represents values just below the 

present ambiguity limit. 

Some character pairs include special conditions for an ambiguity to be 

present. For instance, dot is only confused with the straight kind of comma, 
rather than the curly version. Each entry in the table also includes an obvious 

solution to the ambiguity. Clearly, context is useful for nearly all ambiguities, 

particularly between letters and non-letters, or between two letters. Context is 

therefore, only included where it is the only solution. 

Where "concavity shape" is specified as the solution to an ambiguity, the 
assertion is that there should exist a measure of shape which is adequate, but the 
current measure is unsatisfactory for some cases. "Special test" indicates that some 
test of a specific feature is required, such as the straightness of the line at the top 
of a 5. 

PAIR GRADE CONDITIONS SOLUTION 
11 Symmetry, concavity shape. 

j11 Symmetry, concavity shape. 
Jj1 Symmetry, concavity shape. 
J11 "I" shaped 1 Concavity shape. 
5SI Special test. 
9g1 "9" shaped g Positioning on line. 
[12 Symmetry, concavity shape. 
gq2 Concavity shape. 
712 "1" shaped 1 Concavity shape. 
UV2 Special test. 
T13 "1" shaped I Symmetry, concavity shape. 
CG3 Symmetry, special test. 
/13 Simple line I Neighbouring character angle. 

3 Straight versions only Special test. 
ft3 Special test. 
)J4 Symmetry, concavity shape. 
B84 Symmetry, concavity shape. 
EF4 Serifed F, plain E Concavity shape. 
Z14 Heavily serifed I Concavity shape. 
hn4 Concavity shape. 
(f4 Symmetry, special test. 
`4 Small straight comma Positioning on line. 

4 Small straight comma Grammatical context. 

Table 8.1. The present ambiguities, their grade and solution. 

It can be seen in Table 8.1, that the number of ambiguities remaining after 
the introduction of a measure of symmetry and an improved measure of concavity 
shape will be very small. This success is indicated by the results from the feature 

extraction stage. 



Fig. 8.7 indicates the result of applying feature extraction to the outlines in 

Fig. 8.3. Note that where two or more character outlines were joined, the first 

choice character is generally totally unrepresentative of any of the original 

characters. Merged characters have extremely large match errors and are therefore 

rejected reliably. This makes it simple to apply further processing to locate the 

join and split the composite object without any danger of attempting to split 

single characters. 
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Fig. 8.7. The characters recognized from the outlines in Fig. 8.3. 

There are several other errors in Fig. 8.7. These are due to the ambiguities 

given in Table 8.1. It can be seen in Fig. 8.8 that the multiple characters and 

most of the errors are rejected. 
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Fig. 8.8. The rejected characters from Fig. 8.7. 
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8.3. CONCLUSION: THE CURRENT PROBLEMS RESOLVED 

Section 1.5 listed some of the current problems in OCR. The extent to 

which the results presented here represent a solution to these problems will now be 

examined. 

8.3.1. RECOGNITION SPEED 

The use of an edge extractor to find outlines in the grey level image 

provides a considerable reduction in time over thinning - by a factor of 

approximately 40. Attempting to extract features from non-approximated outlines 

would still consume a great deal of time, as it does with the Yamamoto-Mori(7) 

method. The fast two-stage polygonal approximation algorithm is of considerable 

advantage in reducing the quantity of data passed to the feature extraction step. 
As a result, the time consumed in extracting the features is negligible compared 
to the recognition time. 

The feature extraction and recognition process currently runs at around 70 

characters per second. This figure is likely to increase to around 150 characters 
per second with the introduction of symmetry, which could be used to reduce 
further the number of templates tested for each unknown character. 

Edge extraction would then be the slowest process, since it currently runs at 
around 30 characters per second on dense text. The simplified version described 
in chapter 3 should increase the speed to around 100-120 characters per second. 

The text ordering and final classification steps will consume a small amount 

of time when compared with the earlier phases. It is therefore reasonable to 

assume that the completed system will operate at approximately 50 characters per 
second overall. This is comparable with state of the art pattern matching 
machines, which represents a considerable achievement for a system which 
operates on grey level images and uses feature extraction to obtain font 
independence. 

8.3.2. ACCURACY 

It is difficult to give an exact figure for the accuracy of the system at the 
present stage, since the feature extractor outputs generic character classes, each of 
which may contain several distinct characters. It should be possible to uniquely 
identify each character from the generic class and the physical surroundings. The 



discussion in this section therefore concentrates on the accuracy of edge and 
feature extraction. 

The accuracy of the edge extractor is at present dependent on the contrast 

and quality of the source image. Black and white print poses no significant 

problem, when the print size is 6 point or larger. Under such circumstances the 

edge extractor correctly locates at least 99.5% of text characters. 

Some degradation in performance is inevitable when processing low contrast 
images, as was demonstrated in Fig. 8.3, where three important objects were lost 

out of around 600 characters. It is possible however, to prevent most of the losses 

by the application of a simple edge enhancement operation, before edge 
extraction. 

The accuracy of the feature extractor is demonstrated by Figs. 8.5 and 8.7. 
Apart from a small number of insignificant punctuation errors, the text in Fig. 8.5 
is recognized perfectly; yet the font is unlike any in the training set. 

Fig. 8.7 shows around 30 errors in a page of around 600 characters, a 5% 

error rate. Comparing the errors with the rejected characters in Fig. 8.8 reveals 
that all except three of the errors are rejected. Apart from the merged characters, 
which are all rejected, all errors are due to ambiguities listed in Table 8.1, mainly 
5/s and are therefore correctable. The three non-rejected errors should also be 

correctable with a simple context check on the two best matching classes. 

It is therefore difficult to put an exact figure on the accuracy, other than 
somewhere between 95 and 100 percent, with improvement to over 99.5% 

relatively simple. 

8.3.3. SEPARATION OF TEXT AND PICTURES 

It has been shown that applying the edge extractor to a grey level image 
increases the quantity of text that can be read while providing a powerful 
discriminator between text and non-text. This represents an important solution to 
the problem of reading multi-media documents, without requiring an operator to 
mark out the different areas on the page, as is necessary with the Kurzweil 

reader. (M2) 



8.4. FURTHER WORK 

This thesis has described in detail only a small but important subset of the 

components of the system block diagram in Fig. 2.1. The remaining units need to 
be constructed before the OCR system is complete, and some of the existing 
components need further development. 

Most of these remaining units are trivial implementation tasks rather than 

research topics. It is for this reason that at present these components have not yet 
been implemented. 

8.4.1. HALFTONE PROCESSING 

The edge extractor presently has difficulty extracting text from halftoned 

backgrounds with low constrast. It would be useful, although by no means 

essential to be able to process images to improve the constrast of the text against 
the background. There are various possible approaches, such as edge 
enhancement, texture detection, or combined smoothing and edge enhancement. 

8.4.2. EDGE EXTRACTION 

The simplified edge extractor described in chapter 3 must be implemented 

before the system will achieve a competitive speed. Further experimentation with 
different levels of look-ahead and edge path algorithms may also lead to a further 
improvement in performance. 

8.4.3. FEATURE EXTRACTION. 

An extra feature, symmetry, must be added to improve accuracy. A 
different concavity shape measure would also be useful, such as the radius of 
curvature, or a measurement of the average angle of turn at each point in the 

concavity. 

Other, more specific tests need to be developed for resolving certain 
ambiguities, such as S/S. These tests will be applied to discriminate between 
specific pairs of characters. 

8.4.4. TEXT ORDERING 

The text ordering process operates at two different levels. 



(a) A typical page contains blocks of text in different fonts and sizes. It is 

necessary to identify individual text blocks so that ASCII codes can be 

generated in the correct sequence within each block. Arranging the blocks in 

logical reading order is difficult and can be left to the user. It is important 

to identify the blocks however, so that, for instance, text from different 

columns is not intermixed. 

The feature extractor will attempt to classify any spurious objects which may 
be caused by a picture. The text ordering stage will determine that such 

objects do not form logical lines of text and can therefore be ignored. 

(b) Once individual blocks have been identitfied, the characters must be placed 
into the correct order for reading and the relevant white space characters 

must be inserted. Characters which are normally formed from several 

components, such as (!, %, i, j, ;,:, ") must be identified so that the final 

classification step can use the components to correctly determine the 

character. 

The text ordering phase will also control two other important functions. 
Knowledge of the character cell size within a block can be used to identify broken 

characters and reconstruct them. Reconstructed characters can then be passed 
back to the feature extractor for re-classification. One of the most difficult 

problems of OCR by feature extraction, broken characters, can thus be overcome. 

Current results indicate a high level of rejection of joined characters. This 
information can be used by the text ordering stage to segment such objects in an 
attempt to locate the individual characters. As with broken characters, results 
must be passed back to the feature extractor for re-classification. The result can 
be used to determine whether other segmentations need to be tested. 

8.4.5. FINAL ASCII CLASSIFICATION 

The final ASCII classification step uses the spatial information from the text 
ordering step to choose a specific character from a generic classification. Where 
the two best matching classifications are close in match rating, a dictionary 
look-up and other context checks will be used to resolve the ambiguity. 

The simple context checks involve operations such as testing the adjacent 
characters to see if they are letters or digits. This will obtain the correct solution 
to ambiguities such as 5/S and 1/1, except in rare circumstances such as 



"BRISTOL". If no clear distinction can be made, then the character must be 

rejected in order to avoid a substitution error. 

The final classification step bears close resemblance to an expert system. 
Rules in a knowledge base indicate how each character is expected to lie on a page 

within the guidelines. The expert system uses the rules to choose the correct 

character from each class, given the local physical and lexical context. 

8.4.6. TEXT REMOVAL 

When text is recognized, the location of the rectangle surrounding each 
character in known. This information could be used to blank out the text from 

the original image. The whole of the remaining image could then be stored more 

easily since blank image is easy to compress by a large factor. The 

implementation of text removal is trivial. 

Text removal has an application in the user correction of rejected 
characters. By showing the recognized text superimposed in a different colour on 
the image with the text removed, characters which have been lost by the edge 
extractor or rejected will be very easy to see and correct. 

8.4.7. FONT STORAGE/MATCHING 

Having recognized a letter "A" for instance, it would be useful to go back to 
the bit map and compare this with other occurences of "A" to see if the font is the 

same. If not, the new A could be stored in the font table as a new font. This 

would enable reproduction of the text in the same font if required. The matching 
process would be almost identical to most current matrix matching OCR 

algorithms, except that it would be useful to regard characters which are the same 
shape but a different colour as the same font. 

An interesting problem arises when a new font is read from a small 
document, since a small piece of text is unlikely to contain the entire character 
set. Any editing of the document which inserts a new character will require 
construction of a bit map for the new character which appears to be in the same 
font. Such automatic font generation would require the ability to infer line 

thickness, aspect ratios and embellishments from other characters in the font. 



8.4.8. CONSTRUCTION OF COMPREHENSIVE TEST DATA 

In order to thoroughly test the performance of the system, it will be 

necessary to gather together a large set of as many different fonts as can be found. 

These all need to be scanned, stored and re-keyed in ASCII. An easy way to 

obtain such a set would be to use a large set of fonts obtainable from most 
desktop publishing companies. 

8.4.9. IMAGE COMPRESSION 

Images which remain after the text has been removed could be compressed. 
All that is required is the selection of an appropriate algorithm for the type of 
image to be compressed: grey levels, containing mainly halftone pictures and no 

text. The haltone dots can be removed by a simultaneous application of smoothing 

and edge enhancement(68-69), which would leave an image of mainly smoothly 

changing grey levels. 

S. S. LONGER TERM RESEARCH 

The topics in section 8.4 are mainly implementation and small research 
projects. There are however, two interesting further developments, which would 

require considerably more research effort. 

8.5.1. PARALLEL PROCESSORS FOR HIGHER SPEED 

Linear speed-up should be possible using parallel processors of any type, up 
to a factor of 100 and beyond if necessary. The type of architecture required 
would be a rectangular array of processors of minimum power equal to the 
MC68000, not sharing memory, with 4-neighbour communication and perhaps a 
master processor to control the distribution of data. 

Rectangular portions of the image would be shared between the processors 
for edge extraction, using 4-neighbour communication and some degree of image 

overlap to deal with objects which lie across the partitions. Each processor could 
then extract features independently in their own image partition, without any need 
for inter-processor communication. 

The text ordering step would require a little more communication, but at 
that stage of processing, the volume of data to pass around is reduced 
considerably. The Inmos Transputer would be an ideal engine for this purpose, 
though not essential because of the low degree of inter-processor communication 



required. A much faster scanner would be required in order to make use of such 

a large speed-up in processing the images. 

8.5.2. CAPTURE OF ENGINEERING DRAWINGS 

Another possible long term research project would be the capture of 

engineering drawings. CAD systems are now in common use but there remain 

thousands of drawings which were made manually The conversion of these 

drawings back to CAD database form is still a major research topic. The main 

problem is one of interpretation. For instance, the system would need to 

determine when a series of small straight lines or dots constitutes a dotted line, 

and when they are independent. 

The edge extractor and thinner described respectively in chapters 6 and 7 

were originally developed for use in character recognition. They are however, 

equally useful for the capture of engineering drawings. 

Fig. 8.9 illustrates the result of the thinning algorithm when applied to the 

outlines in Fig. 8.3. Compared with text documents, engineering drawings 

generally contain thinner, longer lines. Thinning is therefore likely to be more 

accurate than with text. There is also the advantage that compared with text 

documents, engineering drawings tend to be sparse. Both the edge extractor and 

thinner could therefore, possibly run in software on a single processor, even on an 
AO drawing. 

For documents 
conventional OCR can't handle, Kutzwell offers a better approach% \CR. 
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For almost two decados, optic, il 
character recognition systems have 
been widely used to provide automated 
text entry into computerised systems, 
Yet in all this time, conventional OCR 
systems have never overcome their in- 
ability to read more than a handful of 
type fonts and page formats, Propor- 
tionally spaced type (w ich Includes vir- 
tually all typeset copy), laser printer 
fonts, and even many non-proportiona 
typewriter fonts, have remained beyond 
the leach of these systems And as a 
resu t, conventional OCR has never 
achieved more than a marginal Impact 
on the total number of documents 
needing conversion Into digital form. 

Fig. 8.9. The result of thinning the outlines in Fig. 8.3. 



8.6. SUMMARY 

Almost every state-of-the-art commercial OCR machine uses some form of 

matrix matching, resulting in high speed and accuracy, but a severely restrictive 
range of recognized fonts. Published algorithms contradict the state of the market, 
by concentrating on feature extraction. Feature extraction should be able to 

provide font independence, yet the published algorithms have previously been too 

slow and inaccurate for commercial use. 

Both the commercial machines and published algorithms also fail to 
distinguish between text and non-text images. The usual solution is to indicate to 

the machine areas of text, so that it can avoid the rest of the page. Documents 

usually have to be scanned a second time to specifically store the figures. 

Using an edge detection algorithm, which scans a grey level image of a page 
for connected closed edge loops, it is possible to extract the outlines of text in a 

reasonable time. The majority of non-text objects in a page contain very little of 

consistently high contrast, so the edge extractor fails to find many useful outlines 
of anything other than text. An additional capability is gained over all other OCR 

systems, in that text of any colour can be read from almost any background. In 

particular, text can be read from shaded boxes and light text can be read as well 

as dark. The only proviso is that the contrast must be reasonably high. 

The edge extractor produces rather jagged outlines, due to the varying edge 
strength around each character. The chain coded outlines are approximated by 

polygons using a fast two-stage algorithm, in order to smooth these jagged edges. 
An extremely fast first stage reduces the number of outline points dramatically for 

straight lines and produces a good approximation for smooth curves. The second 

stage is applied selectively to smooth the jagged edges. 

The features used in recognition are based on the psychophysical tests 

carried out by Shillman et. al. (34-41) Shiliman's twelve functional attributes, 
which are defined in terms of stick figures, are replaced by five features which 
can be detected on outline polygons. A large proportion of the ASCII character 
set can be recognized using only two of the features: concavities and closure. 
Rather than making use of the character archetypes defined by Shillman, (34) 

which were only given for the upper case letters, the system can be trained on 
sample characters. It is intended that this process should be used only initially, 

and that once it has a defined standard character set, the system will not require 
training on any new font that it will encounter. 



The current results show that after training on only seven quite similar 
fonts, which is not an ideal training set, the recognition algorithm provides greater 
than 95% accuracy on fonts different to the training set. On fonts similar to the 
training set, recognition accuracy exceeds 99%. The system currently only 
produces a generic character class for each character read. The final ASCII 

classification step however, is a relatively simple operation to utilize the size and 
positional information from neighbouring characters to determine the exact 
character. 

A more complex edge extraction algorithm may be used to extract arbitrary 
text and line graphics from a page. This edge extractor is a useful first step for 

the interpretation of engineering drawings. The nesting tree produced by the edge 

extractor provides sufficient information to enable conversion of the outlines to a 
graph structure of the original lines on the page. Conversion is performed by a 
non-iterative thinning algorithm, which produces such a graph structure from the 

output of the edge extractor. 
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REFERENCED MACHINES 

M1 DEST Corporation 

The Dest Workless Station 

DEST Corporation, 1201 Cadillac Court, Milpitas, CA 95035. (408) 946-7100 

M2 Kurzweil Computer Products 

The Kurzweil 4000 Page Reader 

Kurzweil Computer Products Ltd. Unit 8, Suttons Industrial Park, 

READING RG6 l AZ. (0734) 668421 

M3 TOTEC 

PRODATA TO-3000 

TOTEC USA, Northridge, CA USA. 

M4 FORMSCAN 
The Formscan Pagereader (Palantir Compound Document Processor) 

FormScan Ltd., Apex House, West End, Frome, Somerset. BAII 3AS. (0373) 
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