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Abstract

The loss of gas from magma (degassing) is a fundamental control on the physics of volcanic
eruptions. This thesis contains three studies in which the dynamics of different aspects of
magmatic degassing are investigated in detail.

Chapter 2 is an investigation of the generation of bubble size distributions (BSDs) in
volcanic rocks. Results from numerical modelling, laboratory analogue experiments and
textural observations of volcanic tephra are presented. It is shown that power law and
exponential BSDs, both commonly observed in volcanic rocks, can form as a result of con-
tinuous nucleation of bubbles as magma ascends through the conduit. This contrasts with
the commonly-employed assumption that nucleation occurs as a single event in response
to decompression.

A numerical model of bubble growth is developed and applied in chapter 3. The study
focuses on the consequences of incorporating the dependence of melt viscosity and volatile
diffusivity on the concentration of water. A coupling between the effects of viscosity and
diffusivity is revealed. A high diffusivity leads to fast mass transfer of volatiles into the
bubbles, promoting growth and rapidly dehydrating the melt shell around the bubble.
This leads to a rapid increase in the viscosity of the melt, inhibiting growth. The net rate
of bubble growth is the result of a competition between these effects. With concentration-
dependent diffusivity bubble growth rates are enhanced compared with those resulting
from constant diffusivities of similar magnitude. This is due to the form of the profile
of water concentration in the melt; in the case of concentration-dependent diffusivity the
profile is such that the effective viscosity of the melt is reduced.

The development of permeability in magma may be the cause of transitions between
explosive and effusive activity. Chapter 4 describes the formulation of a model which
is used to elucidate the factors which control the permeability of magma. Power law
relationships between permeability and porosity are revealed, in agreement with previous
experimental and theoretical studies. These relationships are independent of the bubble
size and insensitive to the form of the bubble size distribution. Permeability—porosity
relationships are particularly sensitive to the ease of bubble coalescence in the magma; if
bubble coalescence is difficult due to, for example, a high melt viscosity, permeability is
significantly reduced.
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Chapter 1

Introduction

Volcanoes are among the world’s greatest natural hazards. It is estimated that over five
hundred million people are currently at risk from their effects. The explosive power of
volcanoes can be immense; the energy of the May 1980 eruption of Mount St. Helens
was around a hundred times that of an atomic bomb. The 1815 eruption of Tambora,
Indonesia, is the largest known historical eruption and was a further hundred times more
energetic than the Mount St. Helens blast. Large explosive eruptions such as these produce
immense mushroom clouds of gas and ash which can rise several tens of kilometers into
the stratosphere. The effects of these eruption clouds can be global. Large amounts of
sulphur dioxide are carried with the cloud into the upper atmosphere forming aerosols of
sulphuric acid which scatter the sun’s rays and cause a cooling of the earth’s surface. The
aerosols resulting from the 1991 eruption of Mount Pinatubo caused a temporary global
cooling of around 0.5°C. In the aftermath of the 1815 eruption of Tambora, global cooling
was so marked as to cause widespread crop failure in the following two years; 1816 became

4

known throughout Europe as the “year without a summer”.

Each volcano is unique and presents its own hazards. Eruptions do not have to be highly

explosive to cause widespread devastation and loss of life. Many volcanoes are topped by
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glaciers and an eruption can cause the ice to melt, generating a flood. These floods, or
jokulhlaups, are a particular hazard in Iceland, where subglacial eruptions occur frequently.
In 1996 a volcano (Loki) erupted under the Vatnajokull glacier in southern Iceland, the
largest glacier in Europe. Three billion cubic metres of water were released, causing
widespread destruction of property and the island’s infrastructure. In 1985 over twenty
thousand lives were lost at Nevada del Ruiz, Colombia, when glacial meltwater formed
a lahar, or volcanic mudflow, which flowed for 100 km along river valleys. Lahars are
produced when rain or meltwater erodes the loose soil and ash on the steep slopes of a
volcano, creating a fast-moving, highly-destructive river of dense mud. The recent activity
at the Soufriere Hills volcano on Montserrat in the West Indies has drawn attention to a
particularly deadly variety of volcanic hazard; the pyroclastic flow. Pyroclastic flows are
essentially hot avalanches of rock, dust and gas which can attain speeds of hundreds of

miles per hour, devastating anything in their path.

In the last three hundred years a quarter of a million people have lost their lives as a result
of volcanic activity. There is clearly a need to be able to predict accurately the future
behaviour of a volcano. It is important to be able to forecast not only when a volcano will
erupt but also what will happen when it does. To this end, most of the world’s largest
and most dangerous volcanoes are constantly monitored in order to be able to anticipate
any future activity. Valuable information can also be gleaned from field observations of
the deposits of past eruptions. Up until the middle of the twentieth century, the bulk of

our knowledge about volcanoes was obtained by these methods.

Predictions of volcanic hazards are reliant on an understanding of exactly how and why
volcanoes erupt. The relative infrequency of large eruptions, together with the huge variety
of volcanoes and eruption types, means that it can be very difficult to extract general
principles of the behaviour of volcanoes by direct observation of eruptions or their deposits
alone. In the past few decades, a great deal of research has focused on the detailed

investigation of the fundamental physical processes which control volcanic eruptions. This
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discipline has come to be known as physical volcanology.

1.1 Physical volcanology

In general, the aim of the physical volcanologist is to use an understanding of physics to
develop models of volcanic eruptive behaviour. This approach is not intended by any means
to replace the vital exercise of collecting primary data on past and present eruptions; on
the contrary, theoretical models must always be tested against concrete evidence from the
natural system. Physical volcanology is therefore a multi-disciplinary science, attracting
physicists, chemists and mathematicians to join volcanologists in directing their energies
towards the understanding of volcanic processes. The attraction does not lie only in the
important and practical nature of the subject; volcanoes present very many fascinating
and unique problems to the researcher which are of great interest in themselves. The
relative youth of the discipline means that very many important questions are still to be

answered.

It is instructive at this point to discuss the basic anatomy of a volcanic eruption. Figure 1.1
depicts a cross-section through a volcano during an explosive eruption. Magma is initially
stored in a chamber underneath or within the volcano. The magma contains dissolved
gases; in the case of most explosive eruptions the dominant gas is H,O, but in some
eruptions, particularly those involving basaltic magma, other gases such as CO2 may be

prevalent.

If the pressure on the magma chamber drops due to, for example, the breaking of a blockage
in the system or the collapse of the volcanic edifice, the dissolved gas can no longer be held
in solution. Bubbles form and grow rapidly, driving the magma up through the conduit.
At a certain point the magma may spontaneously disrupt or fragment into a spray of ash

and gas, giving an explosive eruption. If fragmentation does not occur then the magma
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Figure 1.1: The ‘classic’ model of an explosive volcanic eruption (e.g. McBirney 1973;
Wilson et al. 1980). Magma, containing dissolved volatile compounds such as HsO, is
held in a chamber under the pressure of the overlying rocks. If this pressure is released,
water comes out of solution and forms bubbles at the saturation depth. These bubbles
grow, driving a flow of bubbly liquid up through the conduit towards the surface. At a
certain depth in the conduit, the bubbly magma fragments to form a gas flow containing
droplets of bubble-rich liquid which solidify to form pumice and ash. This particulate gas
flow rapidly expands to form a vigorously-convecting eruption column.
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erupts as a bubbly liquid (lava) in an effusive eruption.

Verhoogen (1951) published one of the first studies which attempted to explain volcanic
phenomena in a quantitative, physical context. He considered a question which remains
unanswered even today, that of what causes magma inside a volcano to disrupt, forming an
ash cloud. He proposed that magma fragments when bubbles grow more quickly than they
can escape from the magma due to their buoyancy. Bubbles can therefore join together,
transforming the magma from a bubbly foam into a gas-rich spray. However, McBirney
(1963) showed that bubbles cannot easily escape from magma due to the high viscosity
of the liquid and so Verhoogen’s analysis is probably not valid in most cases. McBirney
and Murase (1970) developed an alternative theory, proposing that fragmentation occurs
when the pressure within the gas bubbles exceeds the tensile strength of the magma.
McBirney (1973) was one of the first to propose that explosive activity is favoured by
a high viscosity of the melt which retards bubble growth and allows bubble pressure to
build. This explained why eruptions of andesitic magma are more likely to be explosive
than their basaltic counterparts; previously it had been thought that this was due to the

presence of a higher concentration of dissolved gases in andesitic melt.

Although these studies have been largely superseded, they have highlighted several im-
portant points. In particular, they have demonstrated the potential of theoretical investi-
gation to explain the diversity of volcanic eruption types. Volcanoes are clearly extremely
complicated systems, and the style of an eruption is the product of very many different
factors. This complexity has restricted the development of mathematical models of erup-
tions; the governing equations cannot be solved exactly except in highly simplified cases.
It is no coincidence that the recent acceleration in progress in physical volcanology is
contemporaneous with the rapid development of computer technology; many studies use
computer-based models to solve complex problems in volcanology. Progress in physical
volcanology is dependent on an accurate knowledge of the physical properties of magma

(such as its density, viscosity and heat capacity), a need recognized by McBirney and
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Murase (1970). In response to this need, valuable data has been supplied by the studies of
Shaw (1972), Murase and McBirney (1973), Zhang (1991) and Hess and Dingwell (1996),

to name but a small selection of works from this important and ongoing area of research.

Despite these advances, our understanding of the details of the processes sketched out in

figure 1.1 remains incomplete. Significant gaps in our knowledge include:

e A paucity of data concerning the geometry of the magmatic plumbing system. It
is very unlikely that the volcanic conduit is perfectly straight and parallel-sided as
figure 1.1 implies. The magma chamber is likely to be similarly irregular in shape.
Ryan (1988) used seismic data to reconstruct the large-scale plumbing system under
Kilauea volcano, Hawaii and discovered a complex and tortuous network of chambers
and passages. This remains, however, a rare example of the study of the shape of

magma chambers and volcanic conduits.

e A limited understanding of the rheology of multiple-phase mixtures of liquid, parti-
cles and bubbles. Rheology is the science of how liquids deform under stress and is
a major control on how magma flows both underground through the volcanic sys-
tem and, once erupted, over ground. The viscosity (resistance to flow) of magma is
strongly affected by the presence of bubbles and crystals. Theoretical studies (e.g.
Einstein 1906, 1911; Taylor 1932; Frankel and Acrivos 1970) of these effects are only
applicable if the volumetric concentration of bubbles or crystals is very low (the
dilute limit) or very high (the dry limit), but magma is commonly observed to con-
tain crystals and bubbles in intermediate concentrations. Experimental studies have
proven to be the most fruitful source of information in this field. The effect of crys-
tals on magma rheology is comparatively well-understood (Pinkerton and Stevenson
1992; Lejeune and Richet 1995); crystals increase the magnitude of the magma vis-
cosity and also introduce complex non-Newtonian behaviour. The effect of bubbles

on magma rheology is less clear. Some theoretical and experimental studies reveal



CHAPTER 1. INTRODUCTION 7

an increase in magma viscosity with the volume fraction of bubbles (Einstein 1911;
Taylor 1932; Stein and Spera 1992). In the experiments of Bagdassarov and Ding-
well (1992) and Lejeune et al. (1999), however, the opposite effect was noted; magma
viscosity decreased with increasing gas content. These contradictory findings may
be explained by the study of Llewellin, Mader and Wilson ( The rheology of a bubbly
liquid, manuscript submitted to Proceedings of the Royal Society A) in which it is
shown that the presence of bubbles may either increase or decrease the viscosity of

a bubbly liquid depending on the exact conditions of shear.

e A lack of consensus about the mechanism by which magma fragments into ash and
pumice. This process is fundamental to the understanding of the conditions under
which an explosive eruption might occur. Despite being one of the oldest problems
in physical volcanology (Verhoogen 1951) this issue remains unresolved. Many the-
ories have been proposed to explain the fragmentation process. Early models (e.g.
Wilson et al. 1980) proposed that magma disrupts when the volume fraction of bub-
bles reaches the close packing limit of identical spheres (74.1%). This is clearly an
oversimplification as volcanic rocks such as pumices contain bubbles of a wide range
of sizes and bubbles shapes are often far from spherical. Alidibirov (1994) developed
a model of the dynamics of volcanic blasts in which highly viscous magma frag-
ments due to the pressure in the bubbles exceeding the tensile strength of magma
(cf. McBirney and Murase 1970). Papale (1999) proposed that fragmentation occurs
when the elongation strain rate of magma exceeds some critical value, a condition
which turns out to be mathematically the same as the bubble overpressure condi-
tion (Melnik 1999). Current theories concerning the mechanics of fragmentation
(reviewed by Sahagian 1999) are complex and combine many previous ideas. It is
proposed that magma, if it is stretched rapidly enough, can behave as a brittle solid
and break apart. Under slow strains, magma behaves as a viscous liquid and will

deform in a ductile fashion. However, if bubbles grow rapidly and the overpressure
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inside them is high then the bubble walls are put under great stress. If this stress
exceeds the tensile strength of the magma then brittle fragmentation occurs (Zhang
1999a). Marti et al. (1999) found that the textures observed in highly-deformed
pumices were consistent with a fragmentation mechanism based on the transition
from ductile to brittle behaviour. Zhang’s (1999a) theory is a persuasive one but it

is very new and not yet universally accepted.

All the above processes are very important topics of current research and must be inves-
tigated further in order to develop a more complete understanding of the physics behind
volcanic eruptions. The studies in this thesis, however, focus on a different, but equally
important, aspect of volcanic eruption dynamics, that of magmatic degassing. The remain-
der of this introduction is devoted to a general overview of the principal issues related to
the degassing of magma. More comprehensive discussions of these problems can be found

at the start of the subsequent chapters in this thesis, as outlined in section 1.4.

1.2 Degassing processes

Volcanic eruptions are driven by the expansion of gas (figure 1.1). Magma can contain up
to a few weight percent of dissolved volatile compounds such as HyO, CO4, SO4, Cl; and
H5S. In most cases of highly explosive eruptions, the most abundant volatile species is HyO;
figure 1.2 describes the origin of this water. In the following discussion, and indeed the
remainder of this thesis, it shall be assumed that H5O is the only gas present in the magma.
Most of the principles and results discussed herein can, however, be readily extended to
other gas species. The mechanisms by which volatile species such as water are lost from
magma, are collectively known as degassing processes. They include the nucleation and
growth of bubbles and the loss of gas by permeable flow through the magma. Degassing

processes provide fundamental controls on the behaviour of volcanic eruptions and have



CHAPTER 1. INTRODUCTION 9

hydrous melt
percolates OCEANIC CRUST hydrothermal
circulation

CONTINENTAL . "}-;

containing hydrous
CRUST through mantle

minerals

LITHOSPHERE mid-ocean

ridge

magma
chamber

dehydration of slab
causes melting of ASTHENOSPHERE
mantle peridotite

Figure 1.2: The origin of dissolved water in the majority of highly explosive volcanic
systems. Water is incorporated into the oceanic crust in hydrothermal systems. This
water, in the form of hydrous minerals such as serpentinite, is carried with the plate into
subduction zones, where it is released into the mantle wedge above the subducting plate.
Upon hydration, the melting point of the mantle peridotite is lowered. Small quantities of
water-rich melt form and slowly percolate through the mantle into the crust. Here the melt
accumulates and its chemical composition is altered by a combination of differentiation
(fractional crystallization) and crustal assimilation.

thus become the subject of intense research.

Degassing commences when bubbles start to nucleate in magma, usually in response to a
decompression which reduces the pressure of the magma to below the saturation pressure
of water. This saturation pressure depends on the water content of the magma,; the higher
the water content the higher the pressure required to keep the water in solution. Henry’s
law gives a simple, and reasonably accurate, expression for the saturation pressure Ps as

a function of the mass fraction of water c:

P, = (3)2 (1.1)

where « is the Henry constant which is usually taken to be around 4.11 x 106 Pa—1/2 (e.g.
Jaupart and Allegre 1991). Experimental and theoretical studies show that the pressure
must, in fact, fall somewhat below this saturation pressure in order to induce nucleation.
This supersaturation, AP, depends on many factors, especially the presence or absence

of crystals in the melt and the composition of the crystal phases (Navon and Lyakhovsky
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1998). It is energetically more favourable for bubbles to nucleate on the surface of certain
crystals, particularly biotite and magnetite (heterogeneous nucleation) than for bubbles to
nucleate in crystal-free melt (homogeneous nucleation). Typical estimated values for AP
are < 10 MPa for heterogeneous nucleation and > 80 MPa for homogeneous nucleation
(Navon and Lyakhovsky 1998; Mourtada-Bonnefoi and Laporte 1999). A great puzzle,
which is beyond the scope of this thesis, is that the process of bubble nucleation is still

not at all well-understood at the molecular level (Sahagian 1999).

Once bubbles have nucleated they will grow as long as the pressure inside them (pg)
exceeds the sum of the ambient pressure (p,) and the surface tension pressure (i.e. if
Dg > Pa+20/R where o is the interfacial surface tension between the melt and the vapour
and R is the bubble radius). Bubbles grow by a combination of decompression and the
input of water molecules which diffuse towards the bubble through the magma. Growth
is resisted primarily by the viscosity of the melt (Sparks 1978). A large melt viscosity can
retard bubble expansion to such an extent that the pressure inside the bubble remains
high during an eruption. This high pressure can cause the magma to fragment and lead to
dangerous, explosive behaviour. The dynamics of bubble growth are highly complex and
not yet fully understood. The viscosity of the melt, and the diffusivity of water molecules
through the melt are both dependent on the concentration of water in the melt. Since the
water concentration in the melt around a bubble varies in both time and space, calculating
the rates at which bubbles can grow is very complicated. Determination of bubble growth
rates is very important as it is the growth of bubbles which drives the expansion of magma

up the volcanic conduit.

Once bubbles have grown to a certain size, they may begin to join up and create open
pathways for gas flow through the magma. If the walls of the conduit are also permeable,
and the pressure inside the magma is greater than that of its surroundings, then gas may
be driven out of the volcano. We see abundant evidence of this gas loss in fumaroles

(steam vents) and solfataras (sulphur fields) in volcanic areas. In this way a volcano can
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quite literally ‘let off steam’, relieving the pressure inside the volcano and reducing the

possibility of the occurrence of explosive activity (Jaupart and Allegre 1991).

Degassing processes are therefore fundamental to the behaviour of volcanoes. Despite
decades of intense research there are still many important questions which remain unan-

swered. These include:

Does degassing proceed in equilibrium with falling pressure?

Many models of volcanic eruptions assume that the loss of gas from magma is a function
only of the reduction in pressure (e.g. Melnik 2000). The concentration of water in the
magma is therefore given by simple relationships such as Henry’s law (equation 1.1).
However, detailed studies of degassing (e.g. Proussevitch and Sahagian 1996) show that,
under the conditions of an explosive volcanic eruption, the kinetics of degassing are too
slow to keep pace with the falling pressure. The precise conditions under which equilibrium
degassing can occur are not yet known. This problem is important as the rate of degassing

controls the rate of expansion of magma.

How important is the loss of gas from magma by permeable flow?

The models of Jaupart and Allegre (1991), Woods and Koyaguchi (1994) and Melnik and
Sparks (1999) show that, if gas can be lost from magma as it ascends through the conduit,
then complex cycles between explosive and effusive eruptions are expected. Accurate
modelling of this requires a knowledge of how rapidly gas is lost from magma. If it is lost
by permeable flow through the magma itself then it is important to know at what stage
open pathways through the magma can exist and to be able to calculate values of magma

permeability. No model currently exists to do this.
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What are the mechanisms controlling bubble nucleation?

In many simple models of explosive volcanism (e.g. figure 1.1), it is assumed that all
bubbles nucleate at the saturation depth in a single ‘burst’ of nucleation. I have mentioned
that a significant supersaturation is necessary to induce nucleation. If the supersaturation
is large then bubbles may not form until late in an eruption when the magma is near
the surface (Mangan and Sisson 2000). In this case the growth of bubbles is likely to
be extremely rapid (Sparks 1978; Proussevitch et al. 1993a), and the eruption may be
explosive. Furthermore, the assertion that no more bubbles form after the initial nucleation
event is unlikely to be true. Textural studies of volcanic rocks reveal the presence of
bubbles which very likely nucleated late in an eruption (e.g. Navon et al. 1998) There
are currently no predictive models which adequately describe the mechanics of bubble

nucleation (Sahagian 1999).

What are the effects of concentration-dependent viscosity and diffusivity on

bubble growth?

The dynamics of bubble growth in magmas have been investigated by several authors (e.g.
Sparks 1978; Lyakhovsky et al. 1996; Proussevitch and Sahagian 1996). These studies
provided valuable insights into the process but were limited by assumptions of constant
viscosity and diffusivity. As bubbles grow, a volatile-depleted, highly viscous shell forms
around the bubble. This viscous shell will restrict bubble growth and allow high internal
pressures to be maintained, but the extent to which this can occur is not known. The
presence of this viscous shell is also likely to affect the dynamics of bubble coalescence
and the rheology of the magma. More recent studies (Navon et al. 1998; Proussevitch and
Sahagian 1998) have incorporated the effects of volatile-dependent viscosity and diffusivity,

but the implications of this were not discussed.



CHAPTER 1. INTRODUCTION 13

What can the textures of volcanic rocks tell us about eruption processes?

The physical processes which operate during a volcanic eruption can rarely be observed
in situ. Many studies have therefore attempted to infer the nature of these processes
through the examination of the products of an eruption such as pumice, scoria and lava.
Typically, evidence is gleaned from the examination of the sizes, shapes and distributions
of bubbles and crystals. Most of these studies are semi-quantitative or qualitative in
nature (e.g. Gardner et al. 1998) but have led to the development of many interesting and
important theories about the physics of volcanic eruptions. For example, Stasiuk et al.
(1996) noted that bubbles in the magma inside a fossil conduit had become aligned by
shear, allowing the bubbles to join together to form an open pathway for gas escape to the
conduit walls. Tt is notoriously difficult to develop rigorous, quantitative models which can
explain the production of pumice textures in terms of real physical processes. However,
the examination of one textural parameter, the bubble size distribution (BSD), has proved
to be a fruitful line of research in this area. The studies of Toramaru (1989, 1990), Mangan
and Cashman (1996) and Gaonac’h et al. (1996a) have drawn links between the BSDs of
volcanic rocks and eruption parameters such as the ascent rate of magma and the rates of

growth and nucleation of bubbles.

1.3 Modelling volcanic eruptions

The studies in this thesis each focus on an individual aspect of the volcanic degassing pro-
cess. The studies of, for example, Wilson et al. (1980), Jaupart and Allegre (1991), Woods
and Koyaguchi (1994), Papale et al. (1998), Melnik and Sparks (1999) and Melnik (2000)
take a contrasting approach. In these investigations, the focus is on large-scale processes
such as the expansion, flow and fragmentation of magma. These so-called ‘conduit flow

models’ have provided extremely valuable insights about volcanic phenomena and eruptive



CHAPTER 1. INTRODUCTION 14

behaviour. They are, however, limited by many simplifying assumptions. Many of these
assumptions pertain to the degassing of magma; very often the details of the degassing
process are overlooked. Conversely, the investigations in this thesis do not incorporate the
dynamics of magma flow and expansion. In a volcanic eruption the processes of degassing
and large-scale flow are highly coupled and must be investigated simultaneously in order
to gain deeper insights into the factors which control eruptive behaviour. To this end, each
chapter in this thesis concludes with a section describing how its findings might influence

our understanding of large-scale volcanic processes.

Although theoretical models of volcanic eruptions will continue to increase in sophistication
and complexity, it is unlikely that every single aspect of the physics of volcanic processes
will be captured in a single model. It is therefore vital to isolate those processes which are
most important in controlling the dynamics of eruptions. Certain parameters may have a
very strong influence on the eruption dynamics whereas others may have little effect and
only serve to complicate the model. I have followed this philosophy by including tests of
sensitivity in the models described in this thesis. For example, in chapter 4 I shall show
that it is not necessary to know the exact form of the bubble size distribution to be able
to calculate the permeability of magma. In contrast, in order to model bubble growth
accurately (chapter 3) parameters such as the melt viscosity and volatile diffusivity must

be tightly constrained.

1.4 The structure of this thesis

This thesis contains descriptions of three main areas of study. Chapter 2 is an investi-
gation of the generation of the distribution of bubble sizes in volcanic rocks, combining
evidence from numerical modelling, laboratory experiments and the examination of natu-
ral samples. These lines of evidence are used to draw inferences about the nucleation of

bubbles during explosive eruptions. Chapter 3 describes the formulation of, and results
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from, a numerical model of the dynamics of bubble growth, focusing particularly on the
effects of the dependence of melt viscosity and volatile diffusivity on water concentration.
In chapter 4 a model is developed and used to calculate the permeability of magma as a
function of its porosity, the size distribution of bubbles and other parameters. The per-
meability of magma is a very important factor in the calculation of how rapidly gas can

be lost from the volcanic system.

Each chapter opens with a brief summary of its main findings. This is followed by a sub-
stantial introductory section which collates the findings of previous studies and describes
the importance of, and motivation behind, each piece of work. Each chapter closes with
a summary of its results and a discussion outlining how these results contribute to the

wider picture of modelling large-scale volcanic processes.

The chapters may be read as separate, self-contained entities, but their results are mutually
linked. The thesis concludes (chapter 5) with a synthesis of the results of the previous

chapters and a discussion of the implications of the findings of the thesis as a whole.

Four appendices provide supporting data and calculations for the main chapters. Ap-
pendix A gives the derivation of a key equation which is used in the measurement of
bubble size distributions in chapter 2. Appendix B describes the physical properties of
solutions of gum rosin and acetone; this liquid is used in analogue experiments of magma
degassing in chapter 2. The bubble growth model of chapter 3 incorporates an equation
describing the motion of fluid around a growing bubble in the case of a radially-varying
viscosity; the derivation of this equation is given in appendix C. Appendix D also pertains

to this bubble growth model and describes how the diffusion equation is solved numerically.



Chapter 2

The evolution of bubble size
distributions in volcanic eruptions

2.1 Summary

Both power law and exponential bubble size distributions (BSDs) have been observed in
many different types of volcanic rocks. These two forms of BSD have previously been
attributed to two distinct mechanisms; a process of cascading coalescence gives power law
BSDs and exponential BSDs are interpreted as the result of steady-state bubble nucleation
and growth. In this chapter I shall discuss results of computer simulations and laboratory
analogue experiments and show that both distributions can be interpreted as the product
of continuous bubble nucleation resulting from non-equilibrium degassing. This ongoing
nucleation causes the bubbles to evolve through an exponential size distribution into a
power law size distribution as nucleation and growth progress; thus a single mechanism

can explain both forms of BSD.

Many present models of the expansion and flow of magma in explosive volcanic erup-
tions make the simplifying assumption that degassing occurs in perfect equilibrium with
pressure. By contrast, models of bubble growth show that, for high melt viscosity, rapid

depressurization, low volatile diffusivity or low initial nucleation density the rate of de-

16
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gassing is unlikely to be fast enough to keep pace with the falling pressure. This apparent
contradiction may be resolved by the findings of this study; the efficiency of degassing

may be increased by the nucleation of new bubbles.

2.2 Introduction

The inaccessibility of the volcanic interior means that the dynamics of degassing cannot
be directly observed in situ. Processes of bubble nucleation and growth must be inferred
from secondary sources such as theoretical studies, laboratory investigations and textural
examination of volcanic deposits. Over the last two decades the detailed analysis of the
structure of volcanic rocks such as pumice, scoria and lava has become a standard tool
in the deduction of eruption parameters. One of the most common textural parameters

which has been measured is the bubble size distribution (BSD) of the rock.

Sparks and Brazier (1982) published some of the first measurements of bubble size dis-
tributions in pumice. BSDs from five different pumice samples from different eruptions
were reported and although quantitatively different, the five BSDs had very similar over-
all characteristics, showing three pronounced peaks at different bubble sizes. The authors
interpreted the coarsest peak as originating from slow vesiculation in the magma chamber
prior to eruption. The peak at intermediate bubble size was attributed to vesiculation in
the conduit during an eruption and the fine population was interpreted as forming during
or after fragmentation as the pressure rapidly fell. In the study, BSDs were measured
using mercury porosimetry in which liquid mercury is forced into the pore spaces of a
pumice. The pressure needed to drive the liquid into a pore space is related to the size
of the pore. This method is, however, no longer widely used as it is suspected that the
the measurements which arise from it are misleading; technically, the procedure measures
the characteristic size of the apertures between pores, rather than the size of the pores

themselves (Whitham and Sparks 1986). Furthermore, only pores which have an open
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pathway to the surface of the sample are included in the analysis. Nevertheless, this study

highlighted the potential ability of BSDs to reveal the mechanics of degassing.

Many theoretical methods have since been developed which link the BSD with eruption
parameters such as the nucleation and growth rates of bubbles, the extent of bubble
coalescence, magma ascent rate and volatile supersaturation. These methods, however,
remain controversial due to the large number of physical processes which can act to modify
the BSD; so far no theoretical model satisfactorily accounts for all these processes. In this
chapter I shall begin by summarizing these studies and then describe the results of a
new study which incorporates laboratory analogue experiments, numerical modelling and
observations of volcanic rocks. This new study reveals that exponential and power law
BSDs, both commonly observed in volcanic rocks, may be generated by the same process

of continuous bubble nucleation and growth.

2.2.1 Theoretical models of BSD evolution

A sound theoretical basis is required to link eruption parameters quantitatively to BSDs.
In response to this need, four distinct models describing the evolution of the BSD during
an eruption have been generated. I shall now describe these models in turn, together with
examples of studies which have applied them. The symbol F(R) is used to represent the
probability density function of the BSD; F'(R) dR is then the number of bubbles whose

radius lies between R and R+dR.

Technically, the term ‘bubble’ refers to a void in liquid magma; a void in a solid vol-
canic rock is known as a wvesicle. Since this chapter deals with the dynamic processes of
magma vesiculation which occur in the liquid state I shall consistently refer only to ‘bub-
ble size distributions’, even though observations of volcanic rocks strictly yield ‘vesicle size

distributions’.
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Marsh (1988)

Although this model was originally developed to investigate the evolution of crystal size
distributions, it has been applied on several occasions to studies of BSDs (Sarda and
Graham 1990; Mangan et al. 1993; Klug and Cashman 1994; Burnard 1999). Considering
a bubble population in which all bubbles are growing at a constant rate G, the assumption
of a steady-state system was made. Under these conditions, the number of bubbles growing
into a given size class balances the number of bubbles growing out of that class and the
bubble size distribution does not change with time:

OF(R)
ot

=0 (2.1)
The resulting form of F(R) is:

F(R) = Ny exp (—%) (2.2)

where Ny is the nucleation density (F(R) = Ny for R = 0) and 7 is the timescale avail-
able for bubble growth. The model therefore predicts an exponential form for the BSD
(figure 2.1). The strength of the model lies largely in its convenience; eruption parameters
may be calculated very simply. If equation 2.2 holds, a plot of In(F(R)) against R will be
linear with a slope of —(G7)~!; the growth rate G may therefore be calculated if 7 can be
estimated. The intercept of the plot on the y-axis is In(/Ny). The average nucleation rate
J = NoG. The greatest uncertainty associated with this method lies in the estimation of
7, the time available for bubble growth, upon which all other calculations depend. This
value is often calculated using models of conduit flow; for example, Klug and Cashman
(1994) use the model of Wilson et al. (1980) to derive values of 7 between 960 and 4120 s

for the May 1980 eruption of Mount St. Helens.

The Marsh (1988) model has been applied in several studies. Sarda and Graham (1990)
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Figure 2.1: Bubble size distributions predicted by the model of Marsh (1988), after Mangan
and Cashman (1996). If steady-state nucleation and growth applies (solid line) then a plot
of In(F(R)) vs R is linear with a slope of —(G7) ! and intercept of In(Ny). Coalescence
(dotted line) acts to increase the proportion of bubbles in the large size fractions, whereas
Ostwald ripening reduces the number of small bubbles (dashed line). Such BSDs were
measured in samples of basaltic scoria and reticulite by Mangan and Cashman (1996).
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and Burnard (1999) used it to calculate bubble growth rates from BSDs of popping rocks
from the Mid-Atlantic Ridge. Mangan et al. (1993) inferred bubble growth rates of 3.2 x
10~% ems~! and nucleation rates of 35.9 cm™3s~! for lavas from Kilauea, Hawai’i. Much
lower growth rates (1.2 — 5.7 x 1077 cms™!) were estimated by Klug and Cashman (1994)
for the May 1980 eruption of Mount St. Helens, consistent with the higher viscosity and
slower volatile diffusivity of this dacitic magma compared with typical basalts. Mangan
and Cashman (1996) examined samples of basaltic scoria from fire-fountaining episodes of

3571, much greater than those

Kilauea. They calculated nucleation rates of ~ 2 x 10* cm™
estimated for effusive lava-flow activity (Mangan et al. 1993). This ‘runaway’ nucleation
was interpreted to have been due to the development of a high supersaturation before
nucleation, consistent with the more explosive behaviour of the eruption. Calculated

bubble growth rates were also enhanced threefold (~ 9 x 10=% cms~!) compared with the

effusive estimates.

The main limitation of Marsh’s model lies in the assumption of constant bubble nucleation
and growth rates. Numerical models of bubble growth due to diffusion and decompression
(Sparks 1978; Proussevitch and Sahagian 1996 and chapter 3) reveal that growth rates
may be far from constant. Although exponential BSDs of the form of equation 2.2 are
commonly observed, many measurements reveal BSDs which deviate strongly from the
model. Mangan and Cashman (1996) investigate two processes which cause deviation of
the BSD from the form of equation 2.2, namely bubble coalescence and Ostwald ripening.
Coalescence increases the proportion of large bubbles and manifests itself as an inflexion
in the plot of In(F(R)) vs R. Ostwald ripening reduces the number of small bubbles in

the population, giving a unimodal distribution (figure 2.1).
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Toramaru (1989, 1990)

Toramaru’s model, first published in 1989 and refined in 1990, takes a very different ap-
proach to that of Marsh (1988). The model considers an initial population of bubbles,
generated in accordance with classical nucleation theory, which grow through a combina-
tion of diffusive mass transfer and expansion in response to a pressure drop. Nucleation is
assumed to be homogeneous and to occur in a single event. The pressure drop is assumed
to be linear, approximating a constant ascent rate of magma. The bubble growth law
is simplified by assuming that the distribution of water concentration around a growing
bubble is in steady state. Since bubbles are not created or destroyed after the initial

nucleation event, we have:

dF(R,t) 9 B
T + @ (URF(R,t)) =0 (23)

(cf. equation 2.1) where vg is the growth rate of a single bubble and is the sum of the

contributions from diffusive and decompressive growth.

Unlike the model of Marsh (1988), Toramaru’s model relates the properties of the BSD to
tangible physical parameters. He identifies three key parameters: the interfacial surface
tension «y which controls the nucleation process, the initial saturation pressure Py and the
‘effective diffusivity’ of water D/U where D is diffusivity and U is the ascent velocity.

D/U is a measure of the time available for diffusive growth.

In order to use the model, it is necessary to measure the BSD and calculate its moments.

The ith moment M; of the BSD is given by:
M; = / R'F(R)dR (2.4)

The first four moments of the BSD are simply related to the total number of bubbles IV,

the average bubble radius R, the total surface area per unit volume S and the total bubble
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volume per unit volume (i.e. the porosity ¢):

My = = My =32 (2.5)

Toramaru fits the moments of the BSDs to the empirical form
. [ D\
M; x fyalPé” <ﬁ> (2.6)

where a;, b; and ¢; are constants, given in Toramaru (1989) and modified in Toramaru
(1990). These constants are calculated from experimental or theoretical studies (for exam-
ple, the value of ¢ is the exponent in the bubble growth law R oc ¢°!). If three moments are
measured, therefore, it appears that the parameters v, Py and D/U could be estimated.
However, Toramaru (1990) found that moments M; and M, are not independent of each
other (M o< v/Mj) and the third moment Mj varies little between samples. Hence only

two of the three unknown parameters may be calculated.

Toramaru (1990) presents some interesting correlations between the moments of the BSD,
the SiOy content of the melt and the height of the eruption column. Clearly this study
represents the basis of a useful, quantitative method of calculating eruption parameters
from BSDs. The method, however, is limited by its assumptions of a simplified bubble
growth rate, a single nucleation event and a constant ascent velocity. Nevertheless, certain
predictions of the model are fulfilled by observations, and Toramaru (1990) claims that
this success validates his assumptions regarding nucleation and growth, in particular that
bubble coalescence does not appear to modify the observed BSDs significantly. Later in

this chapter (section 2.3) I shall present a re-analysis of the data in Toramaru (1990).
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Gaonac’h et al. (1996a)

Yet another framework for interpreting BSDs of volcanic rocks was proposed by Gaonac’h
et al. (1996a). This work focused on the effects of bubble coalescence, a factor not con-
sidered in the analyses of Marsh (1988) and Toramaru (1989, 1990). The BSD evolves
by a mechanism of cascading coalescence (figure 2.2). This process is assumed to be

scale-invariant and in quasi-steady-state (equation 2.1), giving the relationship

F(V) x V=B (2.7)

where V' is the bubble volume and B is an exponent. (Note that in this study, the BSD is
expressed in terms of bubble volume, not radius.) The two forms are simply related; since
V o« R?, then F(R) < R~*B~1) ) The model predicts two regimes; for small bubbles which
have not yet been affected by coalescence B ~ 0 whereas for medium to large bubbles (the
‘coalescence regime’) B &~ 1. Small bubbles are imagined to grow by diffusion, whereas
large bubbles grow by coalescence. Note that whereas the model of Marsh (1988) predicts
an exponential form of the BSD, equation 2.7 is a power law distribution; this is an

important distinction which will form a major part of the discussion in this chapter.

Gaonac’h et al. (1996b) measured BSDs of basaltic lavas from Mount Etna and found that
they were in the form of equation 2.7. For small vesicles (with areas less than ~ 0.25 mm?
in thin section) they obtain B =~ 0, in agreement with the model prediction. For larger

vesicles B = 0.85, close to the predicted value of 1.

Herd and Pinkerton (1997)

In this study, BSDs are interpreted in terms of readily measurable textural parameters:
porosity ¢, surface area per unit volume S,, number density N, and mean bubble radius R.

Note that ¢, S,, N, and R are simply related to the moments of the BSD (equation 2.5).
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Figure 2.2: A coalescence cascade; V; is the volume of bubble 7. In the model of Gaonac’h
et al. (1996a) BSDs evolve by the collision and coalescence of pairs of bubbles.

As with Toramaru (1989, 1990) the exact form of the BSD is not considered. The effects on
these factors of vesiculation processes such as bubble nucleation and growth, coalescence
and Ostwald ripening are examined. For example, coalescence decreases S, and N, but
leaves ¢ unchanged. Bubble growth alone increases R but the factor N, /(1 — ¢) remains
constant. They plotted S,, N, and R versus ¢ for several samples of basaltic lava to reveal
trajectories which were characteristic of the individual vesiculation processes. Their main

conclusion was that extensive coalescence occurred in samples with ¢ > 35%.

2.2.2 Experimental studies

Experimental studies of degassing of natural or artificial silicate melts have revealed many
important features of the dynamics of bubble nucleation and growth (e.g. Lyakhovsky
et al. 1996; Mourtada-Bonnefoi and Laporte 1999; Gardner et al. 1999; Liu and Zhang

2000; Mangan and Sisson 2000). Generally speaking, however, these experiments do not
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reproduce the bubble size distributions of natural samples. Usually, a single nucleation
event occurs in the experiments and interactions between bubbles are limited, leading to

a monodisperse or unimodal BSD (e.g. Lyakhovsky et al. 1996, Gardner et al. 1999).

One exception, however, is the study of Simakin et al. (1999). In their experiments,
water-saturated granitic melts were decompressed, causing simultaneous vesiculation and
crystallization. BSDs of the experimental samples were compared with those of basaltic
scoria from Mount Etna and pumice from Vulcano. Power law BSDs were measured; on
combining all the data, the relationship F(R) oc R~1® was revealed. It was noted that
coalescence took place in only two of the experimental runs. Some mechanism other than
that of Gaonac’h et al. (1996a) must have led to the formation of power law BSDs. The
answer lies in the nucleation behaviour in the experiments. Whereas most previous labora-
tory experiments generate a single episode of nucleation in response to decompression (e.g.
Lyakhovsky et al. 1996), Simakin et al. report that nucleation proceeded in a continuous
fashion in their experiments. The presence of crystals probably promoted heterogeneous
nucleation; previous studies were performed with crystal-free melt and so nucleation would
have been more difficult. This mechanism of generating power law BSDs via continuous

nucleation will form the crux of the arguments in this chapter.

2.2.3 Stereology

Currently, the most widely-used method for measuring the BSD of a volcanic rock is
image analysis (Toramaru 1990; Mangan and Cashman 1993; Klug and Cashman 1994;
Mangan and Cashman 1996; Gaonac’h et al. 1996b; Simakin et al. 1999). A thin section (or
equivalent) of the rock is made and the resulting slices through the bubbles are analyzed. It
is common to measure the apparent area A of each bubble on the image and convert this to
an equivalent circular radius r (= \/A—/’]T) The task is to deduce the true size distribution

F(R) of three-dimensional bubbles from the measured two-dimensional distribution f(r)
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of apparent circle radii; this is the problem of stereology.

Appendix A describes a method by which the expected distribution of two-dimensional
slices may be calculated from a known three-dimensional distribution. Of course, this is
the reverse of the problem faced by those who wish to measure BSDs. We shall see in this

chapter, however, that the forward-modelling approach in appendix A is still useful.

If the BSD is monodisperse (i.e. all the bubbles are of the same size) then the problem is
trivial. The average radius of the circular slices in thin section is 7 = (7/4)R ~ 0.785R
where R is the true radius of the bubbles (appendix A). (Note that the expression 7 =
0.85R = R = 1.187 in Mangan et al. 1993 is incorrect and probably a typographical error;

the result in Cashman and Marsh, 1988 is correct.)

For the general case of a polydisperse BSD the problem is very much more complex. To
illustrate this, imagine that we have measured a bubble whose apparent radius in thin
section is 1 mm. This could have arisen by slicing through any bubble whose radius is
greater than or equal to 1 mm. Sahagian and Proussevitch (1998) have, in my opinion,
developed the clearest and most flexible stereological method. They consider the general
polydisperse BSD to be the sum of many monodisperse distributions. Their figure 3 clearly
summarizes the formulation. They also extend their method to deal with non-spherical
objects such as ellipsoids, cubes and parallelepipeds. Although the approach of Sahagian
and Proussevitch (1998) is general and powerful, it is rather unwieldy; unfortunately this

is a characteristic problem of all stereological methods.

In this chapter, the problem is circumvented; most of the BSDs I shall measure are in
the form of a power law. This greatly simplifies the stereological method. Appendix A
shows that if bubbles are spherical and the true BSD is in the form of a power law of
the form F(R) oc R~ then the two-dimensional distribution of circle slices is of the form
f(r) o< 7=(@=1)_ Therefore the exponent « of the three-dimensional distribution is simply

one greater than the exponent of the measured two-dimensional distribution (this result
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was also found by Gaonac’h et al., 1996b).

2.2.4 Power law BSDs and their properties

Power law size distributions are described by the relationship

N(R) x R~ = N(> R) « R™¢ (2.8)

where N(R) is the number of objects of a size (radius) R, N(> R) is the number of
objects with a radius greater than R, and d is the power law exponent. In this chapter
the cumulative form of equation 2.8, i.e. N(> R) versus R, is used to express power law
BSDs. This gives a more accurate estimate of d as it does not require the data to be

binned, which can cause large uncertainties in the calculation of the exponent.

Power law distributions, unlike unimodal or exponential BSDs (equations 2.9 and 2.10),
have no characteristic length scale and so no average bubble size in the population. If
the exponent d is between 2 and 3 (typical for volcanic rocks as we shall see) then the
total volume of the bubbles is controlled mostly by the large bubbles, but the total surface
area is controlled by the smallest size fractions (Turcotte 1992). It is therefore impossible
to approximate successfully both diffusive bubble growth (surface area controlled) and

decompressive growth (volume controlled) by assuming a monodisperse distribution.

Note that for everything except mathematical fractals, the power law form is only valid
for a range of bubble sizes; for the largest and smallest bubbles in a population the power

law fit does not in general apply.
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2.2.5 Exponential and power law BSDs

The studies so far have mainly reported BSDs in two forms: exponential (as predicted
by the Marsh 1988 model) and power law (as predicted by Gaonac’h et al. 1996a). The
different distributions have been explained by two distinct mechanisms, namely steady-
state nucleation and growth and cascading coalescence. It is often practically difficult to
distinguish reliably the two forms of BSD with real data— the BSD may be fitted well by
either model (section 2.4.3). The manner in which the data are separated into size classes

to produce a histogram can also have a large influence on the apparent form of the BSD.

In this chapter, I shall describe the formulation of a new model which relates BSDs to
eruption processes. This model is distinct from all those so far discussed, and has the
important feature that it can explain the generation of both exponential and power law
BSDs with the same physical mechanism, that of continuous bubble nucleation. The
reader is also referred to Blower et al. (2001), in which the main findings of this chapter

are published.

2.3 BSDs of volcanic rocks

We have seen that Gaonac’h et al. (1996b) have measured power law BSDs in basaltic lavas
and that Simakin et al. (1999) investigated scoria from Etna and pumice from Vulcano
and also discovered power law distributions. A re-analysis of the images in figure 1b of
Toramaru (1990) reveals power law BSDs in scoria samples from a basaltic sub-Plinian
eruption of Izu-Oshima, Japan (table 2.1). The BSDs of pumices from the same figure

were found to be generally better described by an exponential distribution.

Recent, unpublished data (kindly supplied by Dr Ian Wright of the National Institute
of Water and Atmospheric Research, Wellington, New Zealand) reveal power law BSDs

in samples of pumice from the Healy submarine volcano, Southern Kermadec arc, SW
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Image | rock type | R? (power law) | R? (exponential) form of BSD
a pumice 0.87 0.92 exponential
¢ pumice 0.84 0.97 exponential
d pumice 0.81 0.98 exponential
e pumice 0.85 0.75 inconclusive
f pumice 0.91 0.89 inconclusive
g pumice 0.66 0.90 exponential
h scoria 0.94 0.68 power law (d ~ 2.5)
i scoria 0.67 0.95 exponential
j scoria 0.92 0.67 power law (d ~ 2.5)
k scoria 0.94 0.65 power law (d ~ 2.5)

Table 2.1: BSD analysis of images from figure 1b of Toramaru (1990). Pumice samples
came from Towada volcano and scoria samples originated from a basaltic sub-Plinian
eruption of Izu-Oshima. The fit of the BSDs to both an exponential and power law form
was investigated; the correlation coefficient R? is given in each case. If the values of R?
are similar (within 0.03) or if they are both less than 0.90 then the analysis was deemed
to give an inconclusive result. The scoria samples generally displayed power law BSDs,
all with exponents close to 2.5, with one exception (sample i). The pumice samples gave
exponential BSDs except for two (e and f) for which the BSD was well-fitted by neither
an exponential nor a power law form. It is important to note that both exponential and
power law BSDs have originated from the same eruption.

Pacific (figure 2.3). The data in fact show two power laws, one for small bubbles and
one for larger ones. These data are of very high quality, representing the largest number
(2242) of bubbles analyzed in a single sample that I have seen so far. This allows the
form of the BSD to be tightly constrained, at least for the smaller bubbles. Note that the
form of this graph shows the reverse trend of that predicted by Gaonac’h et al. (1996a).

They also predict two power laws, but in their model, the power law describing the small

bubbles has an exponent smaller than that describing the large bubbles.

2.4 BSDs of foam from analogue experiments

I have discussed (section 2.2.2) that experimental studies of the degassing of silicate melts
(natural or synthetic) rarely reproduce the bubble size distributions of volcanic tephra.

An avenue which has yet to be explored is the examination of BSDs generated in analogue
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Figure 2.3: BSD of pumice from the Healy submarine volcano, SW Pacific (I.C. Wright,
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unpublished data). This is a histogram (N.B. not a cumulative histogram) of apparent
bubble diameters in a thin section. The data are described by two power laws, one for
bubbles with diameters less than ~ 1 mm (d = 2.5), and one for bubbles with diameters
greater than ~ 3 mm (d = 0.8) (Regression lines provided by I.C. Wright.) The data are
widely scattered near the intersection of the two regression lines. It is not clear how the
data in this region can be interpreted as they lie below both regression lines. Perhaps the
power law describing the large bubbles should have a shallower slope.
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experiments. Many laboratory analogue systems have been devised to investigate the
dynamics of explosive two-phase flows. These include the explosive boiling of freon liquids
(Hill and Sturtevant 1989; Hill 1991), the rapid exsolution of COy from aqueous solution
(Mader et al. 1994, 1997; Zhang et al. 1997) and the reaction of concentrated acid and
carbonate solutions (Mader et al. 1994; Mader et al. 1996). Although these experiments
have revealed valuable information about the dynamics of vapour-driven flows, none of
these systems are suitable for the study of foam textures as they do not produce a solid

end-product.

2.4.1 The gum rosin/acetone analogue system

The only current analogue system capable of generating solid foam through explosive
degassing is the gum rosin and acetone (GRA) system. First presented by Phillips et al.
(1995), this system has many important features which ensure its suitability for modelling

volcanic degassing processes:

e In common with the above analogue systems, GRA solutions are workable under
laboratory temperatures and pressures; experiments can therefore be conducted in
glass tubes and the rapidly-evolving flows which are generated can be recorded and
analyzed using high-speed video cameras. The physical properties of GRA solutions

are detailed in appendix B.

e Solutions of gum rosin in acetone are Newtonian viscous liquids whose viscosity
is strongly dependent on their acetone content (figure 2.4 and appendix B), mim-
icking the analogous dependence of magma viscosity on its water content. During
degassing, therefore, the liquid viscosity increases through several orders of mag-
nitude: at 30 wt.% acetone the viscosity of the liquid is 0.04 Pas (appendix B);
pure, degassed gum rosin has a viscosity of ~ 10'3 Pas (Phillips et al. 1995). This

large viscosity increase exerts a strong control on the flow dynamics during degassing
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(Mourtada-Bonnefoi and Mader 2001). In contrast, the analogue systems mentioned
above mostly employ aqueous liquids of very low viscosity (the viscosity of water is
1073 Pas). Zhang et al. (1997) used solutions of carbonated water in which they dis-
solved various polymers to increase their viscosity. Liquids with viscosities of 0.005
to 0.7 Pas were created in this way. The viscosity of the liquid was not dependent

on the volatile (CO2) content.

e The diffusivity of acetone in GRA solutions is of the order 10~'" m?s~!, similar
to measured diffusivities of water in hydrated magmas (Watson 1994; Zhang and
Behrens 2000) and is dependent on the concentration of acetone (appendix B), just
as the diffusivity of water in magma is concentration-dependent (Zhang and Behrens

2000).

e In terms of the study described in this chapter, the most important property of the
GRA system is that, once degassing is complete, a solid gum rosin foam is produced.
Figure 2.5 illustrates that, to casual inspection at least, the gum rosin foam appears
texturally very similar to pumices derived from explosive volcanic eruptions. I shall
show in this chapter that the BSDs of the artificial foam are also very similar to

those of volcanic tephra.

2.4.2 Experimental procedure

Experiments are performed in a standard shock-tube apparatus (figure 2.6). GRA so-
lutions are made by dissolving a known mass of gum rosin powder in a known mass of
acetone. The GRA solution is poured into a cylindrical Pyrex test cell of internal diameter
38 mm and length 300 mm. The test cell is bolted to a Pyrex shock tube of length 1 m
and the same internal diameter, and the two tubes are separated by a diaphragm which
is made of thick plastic tape (Sellotape® all-weather tape of width 50 mm). The shock

tube is bolted to a cylindrical vacuum chamber of height 1 m and diameter 0.5 m.
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Figure 2.4: The viscosity of GRA solution as a function of its acetone concentration at
20°C. Further details of the measurement of these data are given in appendix B.

The experiments are controlled by two parameters; the initial acetone content of the
GRA solution and the pressure in the vacuum chamber. Chamber pressures lower than
200 mbar are required to cause violent degassing on decompression. The initial acetone
content controls both the viscosity of the solution and the amount of volatiles available
for expansion. The explosivity of the ‘eruption’ can be increased by increasing the initial

acetone content or by decreasing the chamber pressure.

The diaphragm is burst by passing 10 A of current through a length of NiChrome wire
attached to the diaphragm around its circumference. The wire heats up rapidly, the
plastic tape melts and the pressure differential ruptures the diaphragm all around its
circumference. Typically the diaphragm itself is projected up the shock tube and into the

vacuum chamber. In this way the GRA solution sample is decompressed in less than 1 ms.

Upon decompression to less than 200 mbar the acetone boils explosively and drives a
two-phase flow up the shock-tube. Boiling proceeds as an evaporation wave (Hill and

Sturtevant 1989; Hill 1991); bubbles nucleate only on the surface of the solution and this
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Figure 2.5: SEM images of (a) pumice sample from the Minoan Phase One Plinian eruption
of Santorini, Greece and (b) gum rosin foam. Despite the difference in scales, the images
are very similar, depicting highly disordered foams with some spherical and some strained
bubbles.
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Figure 2.6: Schematic diagram of the apparatus used in the GRA decompression ex-
periments. The boiling of the acetone in the GRA solution is initiated by bursting the
diaphragm, decompressing the solution beneath its boiling pressure (~ 200 mbar).
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Figure 2.7: The test cell (a) before and (b) during an experiment. Note that nucleation
occurs only on the surface of the liquid as an evaporation wave.
nucleation surface propagates downward with time (figure 2.7). The bubbly liquid may

fragment, depending on the experimental conditions (figure 2.8).

After the foam has ceased to expand it is left in the shock tube under vacuum until all the
acetone has been removed. The bulk vesicularity of the foam is estimated by measuring
the final length L; of the foam from the base of the test cell to the flow front. The
vesicularity of the foam is (L — Lg)/Lo where Lo is the initial depth of solution in the test
cell. Cores of dry foam are recovered from the shock tube using a stiff wire (figure 2.9).
Not all experiments succeed in producing dry foam. If the initial acetone content is less
than 20 wt.% then the foam does not become permeable enough to lose all its acetone.

For textural analysis the foam must be completely dry.

In order to extract textural data from the cores the following procedure is followed. The
gum rosin foam cores are cut into slices around 5 mm thick and 30 mm in diameter

using a razor blade and affixed to stiff, white cardboard using PVA glue. The slices
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spatters of
gum rosin foam

coherent foam

Figure 2.8: The shock tube apparatus after an experiment (initial acetone con-
tent=25 wt.%, chamber pressure=1.5 mbar). The test cell and the lower ~ 40 cm of
the shock tube are filled with coherent (unfragmented) foam. Above this height the foam
has fragmented into spatters which extend to around 20 cm from the top of the shock
tube. Different fragmentation styles are observed with different experimental conditions
(table 2.2)
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Figure 2.9: Cores of gum rosin foam produced in the GRA decompression experiments.

are then placed in a gold sputter coater (normally used for coating samples for scanning
electron microscopy) for 30 seconds. This coats the surface of the slice with a thin layer
of gold powder which is dark and contrasts visually with the pale, straw-coloured foam,
bringing out the shapes of the bubbles. Photographs are taken of the coated slices using
monochrome 35 mm film and printed onto A4-sized pieces of high-contrast (grade 4)
photographic paper. In this way, images of the slices at a magnification factor of ~ 6
may be generated (figure 2.10). The bubbles in the photographs are traced onto acetate
sheets using a thin, black, permanent marker. These hand tracings are scanned into a
computer at 150 dots per inch to create binary images suitable for computerized image
analysis. The software package Visilog® is used to measure the cross-sectional area A of

each bubble in the binary images. The equivalent circular radius r of each bubble is then

calculated (r = \/A/7).

Note that it was not found to be possible to impregnate the foam to increase its strength
and allow the production of a thin section. The foam is highly soluble in all organic solvents

(including alcohols) and therefore standard low-viscosity resins could not be used. Water-
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Figure 2.10: A slice of gum rosin foam, taken from an experiment in which the initial
acetone content was 25 wt.% and the chamber pressure was 1 mbar. (a) Image of the slice
after partial coating using a gold sputter coater for 30 seconds; (b) Hand tracing of the
image. Width of each image is 3 cm. Note that due to the extreme fragility of the foam
many bubble walls have broken during the sectioning process and could not be traced.
The hand tracing (b) is scanned into a computer for image analysis.

based resins were found to be too viscous, and the surface tension of water too high, to

impregnate the foams successfully; furthermore the drying time of these water-based resins

was found to be extremely long (several days to weeks).

2.4.3 Results

In order to generate foam from a wide range of experimental conditions, a series of GRA
decompression experiments were performed with a range of initial acetone contents (20, 25
and 30 wt.%) and chamber pressures (1 and 50 mbar). Foam from six of these experiments
was successfully recovered and analyzed. The experimental conditions, foam vesicularities

and fragmentation behaviour are summarized in table 2.2.

A total of 18 foam slices were made from the foam produced in these experiments; 6 for
each set of experimental conditions. The binary images of the foam slices and their bubble

size distributions are shown in figures 2.11, 2.12 and 2.13. In the calculation of the BSD,
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Run # | Initial acetone Chamber Foam Fragmentation
content / wt.% | pressure / mbar | vesicularity (%) style
1 30 1.2 89 fragments/spatters
2 30 1.0 89 fragments/spatters
3 25 1.2 91 spatters
4 25 1.0 92 spatters
b} 20 50 93 no fragmentation
6 20 50 93 no fragmentation

Table 2.2: Summary of experimental conditions results from the GRA explosive degassing
experiments. No fragmentation was observed in experiments 5 and 6. In experiments 3
and 4 the liquid fragmented into ‘spatters’— small elongate droplets of bubbly liquid which
adhered to the tube walls. Experiments 1 and 2 generated both spatters and fragments;
‘fragments’ are lapilli-sized (1-2 cm in diameter) sub-equant sections of foam which have
separated from the main flow.

2 were used; bubbles smaller than this

only bubbles with an area greater than 0.1 mm
could not be resolved accurately on the images. Only values of N(> A) greater than 5

were included to ensure that each size class in the analysis was adequately represented.

In figures 2.11, 2.12 and 2.13 the power law distributions are expressed in terms of bubble
area, N(> A) o« A=*. Since A « 72, the distribution of equivalent circle radii is N (>

2A. We have seen that the exponent of the three-dimensional distribution of

r) o< T
bubbles is one greater than that of the two-dimensional distribution of equivalent circle
radii (section 2.2.3). Therefore N (> R) ox R j.e. the power law exponent d = 2)\+1.
The error on d is difficult to constrain accurately. Some indication of the error can be
gained by a bootstrapping method, in which random points from the BSD plot are removed

to see how the best fit curve is affected. By this method, the error on the exponent A was

found to be around £0.1, giving an error on d of ~ £0.2.

The results of the analysis are summarized in table 2.3.
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Figure 2.11: Bubble size distributions of 6 samples from experiments with an initial acetone
content of 20 wt.% and a chamber pressure of 50 mbar. Samples (a), (b) and (c) are from
run 5 (table 2.2) and samples (d), (e) and (f) are from run 6. The binary images of the
samples are also shown. All 6 BSDs are well fit by a power law distribution. Circled points
were not included in the calculation of the best fit power law distribution.
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Figure 2.12: Bubble size distributions of 6 samples from experiments with an initial acetone
content of 25 wt.% and a chamber pressure of 1 mbar. Samples (a), (b) and (c) are from
run 3 (table 2.2) and samples (d), (e) and (f) are from run 4. The binary images of the
samples are also shown. All 6 BSDs are well fit by a power law distribution, but the fit of
the BSDs of samples (c) and (e) to an exponential distribution is also reasonable.
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Figure 2.13: Bubble size distributions of 6 samples from experiments with an initial acetone
content of 30 wt.% and a chamber pressure of 1 mbar. Samples (a) and (b) are from run
1 (table 2.2) and samples (c), (d), (e) and (f) are from run 2. The binary images of
the samples are also shown. The BSDs of samples (c) and (e) are well fit by a power
law distribution. The BSD of sample (d) was better fit by an exponential distribution.
The images of samples (a), (b) and (f) were judged to be inadequate for the reliable
determination of a BSD. The highly explosive nature of the experiments appears to have
led to the production of an extremely fragile foam and many bubble walls were broken on
sectioning.
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Figure | Sample R? R? form of power law

(power law) | (exponential) | distribution | exponent d
2.11 (a) 0.99 0.83 power law 2.3
2.11 (b) 0.98 0.83 power law 2.3
2.11 (c) 0.98 0.90 power law 2.5
2.11 (d) 0.97 0.87 power law 2.5
2.11 (e) 0.98 0.90 power law 2.3
2.11 () 0.97 0.87 power law 2.8
2.12 (a) 0.98 0.80 power law 2.6
212 | (b) 0.97 0.88 power law 2.5
2.12 (c) 0.94 0.93 (power law) (2.4)
212 | (d) 0.98 0.76 power law 2.6
2.12 (e) 0.94 0.92 (power law) (2.5)
2.12 (f) 0.96 0.89 power law 2.4
2.13 (c) 0.96 0.92 power law 2.7
2.13 (d) 0.93 0.96 (exponential) N/A
2.13 (f) 0.98 0.83 power law 3.0

45

Table 2.3: Summary of results of the BSD analysis of the gum rosin foam. For each sample
the correlation coefficients (R?) are shown for both a power law and an exponential fit.
For distributions which are well fit by a power law distribution the power law exponent
d is calculated, with an estimated error of +0.2. There is no systematic variation of d
with experimental conditions; the differences between the exponents are comparable to
the error on the exponent. It can be seen that in most cases a power law distribution gives
a much better fit to the data than does an exponential distribution. Brackets denote that
the form of the distribution is uncertain, i.e. that the correlation coefficients for power law
and exponential fits are similar (within 0.03).
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2.5 Modelling the generation of power law BSDs

We have seen that bubble size distributions of experimentally-generated foam and volcanic
rocks of many different types are often in the form of a power law. The work of Gaonac’h
et al. (1996a) suggested that a mechanism of cascading coalescence could account for the
form of these BSDs. However, in the experiments of Simakin et al. (1999) power law BSDs

were generated in the absence of bubble coalescence.

The subject of the remainder of this chapter is the development of a model which at-
tributes the formation of power law BSDs to nucleation behaviour, not coalescence. The
basis of the model is that nucleation is imagined to proceed in a continuous fashion (as
in the experiments of Simakin et al., 1999), simultaneous with growth. Bubbles nucleate
and grow in response to decompression. As magma ascends through the conduit it is
decompressed still further and bubbles continue to nucleate in the pockets of melt be-
tween existing bubbles. I shall demonstrate that this simple mechanism can generate both

exponential and power law BSDs.

2.5.1 The Apollonian packing

The mechanism of continuous nucleation and growth may be taken to its logical extreme
to generate a geometric figure known as the Apollonian packing. This is constructed by
drawing three equal, mutually tangential circles and then filling the curved triangular
space in between them with ever-smaller circles (figure 2.14a). The circle size distribution
is in the form of a power law with a well-constrained exponent d of 1.312 (figure 2.14b).
The analogous three-dimensional figure (a packing of spheres) has d ~ 2.45 (Anishchik
and Medvedev 1995). One can imagine readily that these spheres might be bubbles which
have nucleated between pre-existing bubbles; in this way the bubbles pack efficiently and

fill space.
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Figure 2.14: The Apollonian packing. (a) Starting with three large, touching circles, space
is progressively filled with ever-smaller circles. If this procedure is continued ad infinitum
then a space-filling fractal is created with no overlap between circles. (b) The distribution
of circle sizes in the packing.

The Apollonian packing has found application particularly in the science of granular ma-
terials; it is by definition the densest possible packing of circles/spheres. In volcanological
terms, the three-dimensional packing represents a hypothetical pumice with 100% porosity

and zero permeability— this highlights the important control of the spatial arrangement

of bubbles on magma permeability (chapter 4).

2.5.2 Developing the model

Although the Apollonian packing represents a useful paradigm, it cannot in itself reveal
information about degassing processes. The numerical model which will now be developed
investigates the process of space-filling nucleation and growth in a more volcanologically
realistic context. The model contains many simplifications, but serves to highlight the
potential of the mechanism for generating the observed BSDs. It will be shown that some
of these assumptions (such as a simplified bubble growth law) have little effect on the
major conclusions of the study. Like the permeability model in chapter 4 the basis of the

model is geometric. It does not, for example, consider the dynamics of bubble nucleation
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or growth, and is not constrained by timescales. The geometric nature of the model is
not necessarily a weakness. On the contrary the formulation allows results to be revealed

which are independent of the detailed dynamics of the degassing process.

The model works as follows: A small number of bubble nuclei are placed at random
positions within a three dimensional domain. These bubbles are allowed to grow according
to a parabolic (diffusional) growth law, R = St'/2 (Scriven, 1959). The growth constant /3
is proportional to the size of the ‘zone of influence’ of the bubble, i.e. the set of points which
are closer to the bubble in question than to any other bubble (the Voronoi volume). Thus,
bubbles which are relatively isolated grow more rapidly than those which must compete
with near neighbours for volatile resources. This growth law is clearly a simplification; in
the early stages of growth bubbles feel no influence from their neighbours and so would
probably be expected to grow at the same rate. We shall see later, however, that the form
of the growth law has little effect on the results. Each successive generation of bubbles
nucleates as far as possible from the existing bubbles, at the vertices between Voronoi
volumes. These are the locations where the volatile resources are least depleted and hence
represent the most favourable locations for nucleation (Lyakhovsky et al. 1996). This
behaviour is summarized in figure 2.15. Each addition of a new generation of bubbles is
termed a nucleation ‘event’. The model uses discrete nucleation events as an approximation

to continuous nucleation.

If two bubbles touch, they cease to grow. This highly artificial condition was employed
to avoid problems of bubble overlap and to prevent bubble coalescence. This constraint is
not as unrealistic as it first appears. Since the bubbles are constrained to nucleate as far
from each other as possible, they do not begin to touch until late in their evolution, when

they would be expected to be approaching their final radius anyway.
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Figure 2.15: The construction of the numerical model. For illustrative purposes this
diagram shows the results of a two-dimensional version of the model. (a) The initial
nucleation event. The bubbles have been allowed to grow by a small amount. The shades
of grey represent the Voronoi volumes of each bubble. (b) The second generation of
bubbles have nucleated at the vertices between the Voronoi volumes in the first picture.
The Voronoi volumes have been recalculated. (c) and (d) Two more stages in the evolution
of the bubble distribution.
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2.6 Results of the numerical model

The main result of the model is that the form of the BSD depends most strongly on the
number of nucleation events which occur during growth. If there is only one nucleation
event a unimodal BSD results (figure 2.16). Because of the dependence of the growth
rate 8 on the Voronoi volume, the size of each bubble depends on the proximity of its
neighbours. Under the simplifying assumption that the final bubble size is proportional

to the distance to the nearest bubble, a Poisson distribution is expected (Tuckwell 1988):

N(R)  R? exp(—AR?) = N(> R) x exp(—AR?) (2.9)

where ) is a constant related to the number density of bubble nuclei. A Poisson distribution
is a near-symmetric unimodal distribution which is close in appearance to a Gaussian

(normal) distribution.

After a small number (around 3) nucleation events have occurred, an exponential BSD

emerges (figure 2.16):

N(R) x exp(—R/Ry) = N(> R) x exp(—R/Ry) (2.10)

(cf. equation 2.2) where Ry is a characteristic bubble size. Note that the model predicts
exponential BSDs without the assumptions of a steady-state BSD or a constant bubble
growth rate (cf. Marsh 1988). In the model exponential BSDs always evolve into power
law distributions (equation 2.8) with further nucleation events. After a total of 5 events
the distribution is consistently power law (figure 2.16). As more nucleation events occur,
the distribution remains in the form of a power law, but the exponent d increases with

the number of events (figure 2.17).
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Figure 2.16: Results of a typical model run. Note that the number of bubbles with a
radius greater than R are plotted against R on double-logarithmic axes and so some of the
BSDs appear unfamiliar. A single nucleation event gives a unimodal BSD. After 3 events
the BSD has taken an exponential form (with correlation coefficient 0.97). 5 events give
a power law BSD with exponent d = 1.80 (with correlation coefficient 0.99) and after 8
events the BSD is still in the form of a power law but the exponent has increased to 2.24
(with correlation coefficient 0.99) . The BSD is evolving throughout the model run and is
therefore not in steady state (cf. Marsh, 1988).
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Figure 2.17: The evolution of the power law exponent d with successive nucleation events
in a typical model run. After 4 nucleation events the BSD is intermediate between an
exponential and power law form. For 5 events and greater the BSD is power law in form;
the exponent increases with the number of nucleation events.

2.6.1 The effect of the bubble growth law

So far we have used a parabolic (diffusional) growth law for bubbles. This growth law has
been shown (Proussevitch and Sahagian 1993a; Lyakhovsky et al. 1996; chapter 3, this
thesis) to be an oversimplification, particularly for high-viscosity melts. Other growth laws
may be used in the model, and the major results are unaffected. Figure 2.18 shows the
results of a model run in which the bubbles grew according to a linear growth law, r o< . A
single nucleation event gives a unimodal distribution as before. After 4 nucleation events
the BSD is exponential in form. A power law distribution is generated after 7 events.
Between these times the distribution is intermediate between an exponential and a power
law form and the BSD may be equally well fit by either form. This insensitivity of the
results to the bubble growth law is due to the fact that the BSD is constrained mainly
by the geometry of the system; the details of the vesiculation process do not affect this

fundamental property.
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Figure 2.18: The results of a model run in which bubbles grew according to a linear
growth law, r oc £. An exponential BSD is produced after 4 nucleation events; a power law
distribution is observed after 7 events. The initial unimodal distribution has been omitted
from this diagram for clarity.

2.6.2 The effect of the nucleation rate

In the model described so far, each nucleation event populates all Voronoi vertices with
new bubble nuclei. The ‘nucleation rate’ may be altered by only populating a certain
fraction of the vertices in each event. Again this has very little effect on the main results
of the study. Figure 2.19 shows the results of a model run in which only half of the
Voronoi vertices were populated with new nuclei in each time step. A progression through
an exponential BSD (4 nucleation events) to a power law BSD (7 events) is once more

produced.
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Figure 2.19: The results of a model run in which only half of the Voronoi vertices were
populated with new nuclei in each time step, simulating a slower nucleation rate. Once
more, an exponential BSD is produced after 4 nucleation events; a power law distribution
is observed after 7 events.

2.7 Textural evidence for space-filling behaviour

The numerical model provides strong evidence that a mechanism of continuous nucleation
in which the bubbles tend to pack efficiently and fill space can account for the presence
of power law BSDs. If this is the case in nature we expect to see a characteristic pattern
in textures of natural and experimentally-produced foams. Figure 2.20 shows six such

images which illustrate this.

2.8 Interpretation and discussion

The simple numerical model has shown that it is possible to generate exponential and
power law BSDs by the mechanism of continuous nucleation, in the absence of bubble

coalescence. Analogue experiments (section 2.4) have also succeeded in generating power
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Figure 2.20: Illustration of space-filling behaviour in different systems. In each picture
several bubble generations are visible with smaller bubbles filling the spaces between larger
ones. (a) SEM image of a sample of scoria from the Kokkino cinder cone, Santorini. Image
is 7 mm across. (b) Thin section of scoria from a basaltic sub-Plinian eruption of of Tzu-
Oshima, Japan (reproduced from Toramaru, 1990). Image is 6 mm across. (¢) Sample of
experimentally-produced andesitic foam from figure 8 of Proussevitch et al. (1993b). The
similarity between this sample and the Apollonian packing (figure 2.14a) is striking. Image
is 4 mm across. (d) Sample of experimentally-produced foam from figure 3 of Simakin et
al. (1999). Image is 4 mm across. (e) Sample of gum rosin foam. The foam vesicularity is
very high (~ 90%) and so the bubbles are in the form of polyhedral cells. Image is 1.2 mm
across. (f) Image of a slice through the ‘foam’ produced in the numerical model described
in the text.
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law BSDs. One characteristic of the analogue experiments is that degassing is a highly
non-equilibrium process. In the experiments the pressure drop is extremely rapid and
the volatile (acetone) content of the solution is high; it is therefore impossible for all the
acetone to be lost from the solution on the timescale of decompression. This is borne
out by observation; the residual acetone content of the foam immediately after expansion
ceases is significant (Mourtada-Bonnefoi and Mader 2001). The foam becomes sufficiently

permeable to allow these residual volatiles to escape without any further expansion.

2.8.1 Non-equilibrium degassing and continuous nucleation

The combined results of the analogue experiments and numerical modelling suggest that
the presence of a power law or exponential BSD is indicative of a degassing system that
cannot maintain equilibrium with its environment. If the diffusive mass transfer of volatile
molecules into the first bubble population nucleated is not rapid enough to allow the sys-
tem to maintain a volatile concentration in the melt which is in equilibrium with the
ambient pressure then further bubbles may nucleate in the volatile-rich melt pockets be-
tween bubbles (Lyakhovsky et al, 1996). Such nucleation behaviour has been reported in
experiments simulating the degassing of silicate melts (Navon et al. 1998; Simakin et al.
1999). As a result of this non-equilibrium degassing continuous bubble nucleation occurs
and a power law BSD is generated. Power law or exponential BSDs are to be expected
whenever a system is forced far from equilibrium and physical parameters do not favour
efficient degassing, i.e. for rapid depressurization, low initial nucleation density, and slow
volatile diffusion. The exponent d is a measure of the number of nucleation events, or the

length of the nucleation period relative to the timescale of growth.
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2.8.2 Coalescence versus continuous nucleation

The mechanism of producing power law BSDs by means of continuous nucleation does
not incorporate the effects of coalescence. In an effusive eruption involving low viscosity
magma, we might expect that degassing will be close to equilibrium, and so the likelihood
of the occurrence of several nucleation events is much reduced. The mechanism of cascad-
ing coalescence (Gaonac’h et al. 1996a) may therefore be dominant in generating power

law BSDs in basaltic lavas (Gaonac’h et al. 1996b).

By contrast, in the case of explosive eruptions, especially involving acidic, highly viscous
magma and rapid magma ascent rates, bubble growth models (Proussevitch and Sahagian
1996; chapter 3, this thesis) predict non-equilibrium degassing and so continuous nucle-
ation may occur. Simakin et al. (1999) observed power law BSDs in samples produced
during controlled experiments in which continuous nucleation occurred, but little or no
coalescence took place. Toramaru’s (1990) analysis led him to conclude that “bubble
coalescence does not predominate in sub-Plinian to Plinian explosive eruptions”. In our
re-analysis of data from Toramaru (1990), we used his ‘decoalesced’ images (his figure 2)
and discovered power law BSDs. We interpret these pre-coalescence power law BSDs to

be the result of multiple nucleation events.

Gaonac’h et al. (1996a) predict that cascading coalescence will generate a BSD of the
form N (V) oc V2. In terms of a cumulative histogram, this gives N(> V) oc V™!, Since
V o R3, we have N(> R) o< R73. In other words, we expect d = 3 for a process of
cascading coalescence. The above analysis has shown that the mechanism of continuous
nucleation gives exponents close to 2.5; the re-analysis of Toramaru’s (1990) images gave
d = 2.5 for his scoria samples; the Healy data give d = 2.5 for most of the bubble
population, the three-dimensional Apollonian packing has d ~ 2.45 and the foam generated
in the analogue experiments gave values of d between 2 and 2.5. Furthermore, Gaonac’h et

al. (1996b) report that B ~ 0.85 for bubbles in the ‘coalescence regime’. This translates to
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d = 2.55 (since d = 3B), closer to the values obtained from continuous nucleation than to
the predicted value of 3 for cascading coalescence. It appears that an exponent of around
2.5 is indicative of a mechanism of continuous nucleation. This must be treated with

caution, however; the accurate measurement of d is notoriously difficult (section 2.4.3)

In the samples of pumice from Healy volcano (figure 2.3) two power laws were observed.
I would suggest that the power law describing the smaller bubbles is due to the mecha-
nism of continuous nucleation described above. The BSD of the larger bubbles may be a
coalescence signature (cf. figure 2.1); coalescence increases the number of large bubbles in

the population.

2.9 Conclusions

This analysis implies that, for conditions of non-equilibrium degassing, bubble nucleation
may proceed in a continuous fashion, leading to the evolution of an exponential or power
law BSD. A point which is yet to be resolved is the problem of why laboratory exper-
iments concerning the degassing of silicate melts do not in general produce continuous
nucleation (e.g. Lyakhovsky et al. 1996; Gardner et al. 1999). This is probably due to a
difficulty in nucleation; most laboratory systems investigate crystal-free melt. However,
Simakin et al. (1999) allowed crystallization to occur in their experiments and did indeed
observe continuous nucleation. The presence of crystals appears to have facilitated bubble
nucleation. The experiments of Proussevitch et al. (1993b) are particularly instructive.
They investigated the degassing of andesitic and rhyolitic melt. The rhyolitic samples were
crystal-free and did not produce a characteristic space-filling pattern of bubbles. How-
ever, the andesitic samples contained around 7% quartz particles; the texture of the foam

produced (figure 2.20c) strongly implies that continuous nucleation occurred in this case.

The presence of power law BSDs in volcanic rocks has important implications for models
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of lava rheology and magmatic degassing, most of which assume that the BSD is monodis-

perse.

2.9.1 Implications for modelling volcanic processes

These findings may resolve an apparent contradiction in current numerical models of explo-
sive volcanic eruptions. Conduit flow models (Papale et al. 1998; Melnik and Sparks 1999)
are usually based on the assumption that degassing is an equilibrium process. By contrast,
bubble growth models (Proussevitch and Sahagian 1996) assume a single nucleation event
and a monodisperse BSD and predict non-equilibrium degassing under the conditions of an
explosive eruption, in agreement with our observations. However, highly non-equilibrium
conditions would be expected to lead to continuous nucleation. This would tend to increase
the efficiency of the degassing process and allow the system to remain close to equilibrium.
The process of continuous nucleation can explain why the assumptions behind conduit flow

models can also be consistent with non-equilibrium degassing.



Chapter 3

A numerical model of bubble
growth in magma, incorporating
volatile-dependent viscosity and
diffusivity

3.1 Summary

A numerical model of bubble growth in rhyolitic melts is described and developed. The
model incorporates the latest parameterizations of melt viscosity, water diffusivity, solubil-
ity and equation of state. The model is used to investigate the sensitivity of the dynamics
of bubble growth to factors such as viscosity, diffusivity, temperature and pressure. We
focus on the effect of allowing melt viscosity and water diffusivity to vary with water
content, and find that this has a profound effect on the growth dynamics. The effects of
viscosity and diffusivity are seen to be highly coupled. A high diffusivity causes the melt
to dehydrate quickly. The melt viscosity therefore increases rapidly, counteracting the fast
mass transfer of volatiles. This leads to the important result that, with concentration-
dependent diffusivity, the bubble growth rate is significantly increased compared with
constant diffusivities of similar magnitude. The dynamics of bubble growth are insensitive

to the choice of the equation of state of water vapour. The choice of the solubility law

60
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is important; slight changes in the water content at the bubble wall lead to significant
changes in the effective viscosity of the melt. The viscous resistance to bubble growth is
controlled by the bubble radius and the viscosity of the dehydrated melt near the bubble
wall; the lower far-field viscosity has little influence. In general, many important features
of the dynamics of bubble growth cannot be captured if either viscosity or diffusivity is

assumed constant.

3.2 Introduction

The growth of bubbles is the primary driving force behind volcanic eruptions. When a
batch of magma containing dissolved volatiles (e.g. HoO) is decompressed to a pressure
below the saturation pressure of the volatiles, bubbles may nucleate and grow. The ex-

pansion of these bubbles drives a rapidly-evolving, two-phase flow up the volcanic conduit.

In general, bubble growth is driven by two factors; the diffusion of volatile molecules into
the bubble and reduction of the ambient pressure. Growth is resisted by the interfacial
surface tension and by the viscous resistance and inertia of the melt. (viscous resistance
is by far the most important factor in restricting bubble growth in volcanic eruptions;
Sparks 1978) Two main equations, therefore, describe the dynamics of bubble growth. The
hydrodynamic equation considers the balance of pressures around a bubble and accounts
for the motion of the surrounding fluid (e.g. Proussevitch et al. 1993a):

d2R  [dR\?
RFJr(E)

20 4ndR
Pg=Pat 5 +—F5—7t0p

R R dt (3:-1)

This states that the pressure (py) inside a bubble of radius R is balanced by the sum of the
ambient pressure (p,), the surface tension pressure (o is the surface tension), the viscous
pressure (7 is the Newtonian dynamic viscosity of the liquid) and the inertial pressure

(p is the liquid density). The diffusion equation describes the mass transfer of volatiles
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through the melt into the bubble:

% + i—fg—; = %% <I<:R288—;> (3.2)
The second term on the left hand side accounts for the advective flux of volatiles toward
the bubble wall as the bubble grows. All existing theoretical models of bubble growth
are based, to some extent, around equations 3.1 and 3.2. The two major assumptions
behind these two equations are that the system is spherically symmetric and that the
melt viscosity is constant. In this chapter a model is developed which allows viscosity
to vary with volatile concentration; in this case the viscosity coefficient 7 in equation 3.1
is replaced with an effective viscosity. No model has yet been developed to describe the

growth of bubbles if the system is not spherically symmetric.

The results of studies of bubble growth have fundamental implications for several aspects
of volcanology. The growth rate of a population of bubbles can be used to calculate the
rate of expansion of a batch of magma. Magma may fragment if the overpressure inside
the bubbles (= py — p,, equation 3.1) exceeds the tensile stress of the melt (McBirney and
Murase 1970; Alidibirov 1994; Melnik 2000). An overpressure in the bubbles in a lava
dome may lead to spontaneous disruption of the dome and the formation of pyroclastic
flows (Navon et al. 1998). The distribution of dissolved water in the melt (equation 3.2)
controls the melt viscosity, which in turn controls how rapidly the magma flows through
the volcanic plumbing system. If the rate of magma ascent is high, or diffusivity is low,
then the degassing of volatiles may not be sufficiently rapid to keep pace with the falling
pressure. This non-equilibrium degassing leads to the build-up of a supersaturation in the
magma which can lead to violent explosive activity near the surface (Mangan and Sisson

2000).

The dynamics of bubble growth are therefore highly coupled to the dynamics of large-scale

volcanic conduit flow. So far no study has investigated the two processes together; models



CHAPTER 3. BUBBLE GROWTH IN VOLCANIC ERUPTIONS 63

of conduit flow typically assume equilibrium degassing (Papale et al. 1998; Melnik and
Sparks 1999) whereas models of bubble growth either assume instantaneous depressur-
ization or some highly simplified rate of decompression (e.g. Proussevitch and Sahagian
1996). The two types of model are, theoretically, easily linked— the value of the ambient
pressure in equation 3.1 could be taken from a conduit flow model. In turn, the resulting
growth rate of the bubble could be used by the conduit flow model to calculate the ex-
pansion rate of magma. Such a study will surely be performed in the near future and will

represent a significant advance in the field of the modelling of volcanic processes.

The growth of bubbles during an eruption cannot be directly observed. The process has,
however, been the subject of both experimental and theoretical investigation. I shall now

summarize the principal findings of these studies.

3.2.1 Theoretical studies

The problem of bubble growth is not only of interest to volcanologists. Scriven (1959)
investigated the dynamics of phase growth in many different situations, with particular
application to nucleate boiling and heat transfer. He considered the growth of a bubble
in an infinite liquid, neglecting the effects of surface tension, viscosity and inertia. A
parabolic growth law was derived: R = 23v/kt, where k is the diffusivity (of heat or mass)
and [ is a growth constant which depends on the superheat (the difference between the
ambient pressure and the vapour pressure of the liquid) and the physical properties of the
liquid and gas phases. In magmas, however, bubbles do not grow in an infinite liquid;
moreover viscous resistance plays a significant role in controlling the growth dynamics.
The parabolic growth law is, however, a good approximation for diffusion-driven growth

in low-viscosity magmas.

The first model to consider in detail the dynamics of bubble growth in volcanic eruptions

was that of Sparks (1978). He considered the dynamics of bubble growth by both diffusion
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and decompression. The parabolic growth law of Scriven (1959) was used to model the
diffusional component of growth; Sparks selected values of 3 appropriate to the conditions
of a volcanic eruption. The major results of the study are as follows: In basaltic magmas,
bubble growth is initially controlled by diffusion, giving decelerating growth. Near the
surface, however, decompression begins to dominate, giving accelerating growth. The
faster the ascent rate, the smaller the final bubble radius due to the reduced time available
for mass transfer. The final radius is very insensitive to the depth of nucleation (i.e. the
supersaturation at nucleation); late-nucleating bubbles have fast initial growth rates and
nearly catch up with bubbles which nucleated early. For the case of rhyolitic magmas,
Sparks discovered the important result that the final size of bubbles is expected to be
smaller than for basaltic magmas, a prediction which is confirmed by observations of
pyroclasts. This is due to the lower diffusivity of water in rhyolitic melts and the faster
ascent rates, not the higher viscous resistance. The overpressure in bubbles is predicted
to be significant only for magmas with viscosities greater than ~ 107 Pas. The major
limitations of Sparks’ model are: (i) the bubble is assumed to grow in an infinite liquid;
(ii) the diffusion equation is not solved fully but approximated by Scriven’s law; (iii) the
advective flux of volatiles towards the bubble wall as the bubble grows is neglected; (iv)

both volatile diffusivity and viscosity are assumed to be independent of water content.

For many years Sparks’ model represented the state of the art in terms of the under-
standing of the dynamics of bubble growth. The complexity of the governing equations
of bubble growth and their analytical intractability meant that little progress was made
in the subject until Proussevitch et al. published the first version of their model in 1993.
This model described the isothermal growth of bubbles in magmas by diffusion only. The
diffusion equation (equation 3.2) was solved fully (including the advective flux of volatile
molecules) and the bubble was conceived to grow in a finite melt shell (figure 3.1), sim-
ulating the presence of other bubbles in the system. The hydrodynamic equation for the

flow of melt around a bubble (equation 3.1) was also solved, although the inertial term
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Figure 3.1: In the model of Proussevitch et al. (1993a) bubbles are envisaged to grow in
a finite, concentric shell of melt. This gives a reasonable approximation to a multi-bubble
system in which the bubbles are close-packed. The deviation between the spheres and
close-packed polyhedra is less than 5%.

was neglected (inertia is only likely to be important for very large bubbles in low-viscosity

magma, Sparks 1978). The formulation of Proussevitch et al. (1993a) has been used as

the basis for many subsequent bubble growth models, discussed below.

The full system of equations solved by Proussevitch et al. (1993a) include equations 3.1
and 3.2, plus the boundary conditions of gas saturation (Henry’s law) at the bubble/melt
interface and zero volatile flux through the outer boundary of the shell. The system
simulates the growth of a bubble in a melt which has become supersaturated due to
instantaneous decompression. Their results indicate that the strongest control on bubble
growth is the ambient pressure and the resulting volatile supersaturation. A high initial
volatile content actually reduces the time required for complete bubble growth due to steep
concentration gradients at the bubble wall; the steep gradients give fast initial growth
and hence a rapid advective flux of volatiles towards the bubble wall. Diffusivity is also
important, particularly for basaltic melts. Viscosity limits bubble growth above ~ 10 Pas,

i.e. for most cases of eruptions of acidic magma. Both diffusivity and viscosity are assumed
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constant.

One of the most interesting features of the model is the discovery of an initial period of
slow growth in high viscosity melts. This transient effect has been referred to as a “time-
lag” or “period of accelerating growth” and was attributed to surface tension effects by
Proussevitch et al. (1993a). In a comment to this paper, Sparks (1994) showed that this
explanation was unlikely and proposed that the time-lag was due to viscous resistance of a
small bubble, coupled with a reduction in diffusive mass transfer due to the small surface
area of the bubble. In their reply, Sahagian et al. (1994) conceded that surface tension
was not important in creating this time-lag, but also showed that the surface area effect
was not a factor. The time-lag was observed in the experiments of Bagdassarov et al.
(1996) and so cannot be a numerical artefact. A persuasive explanation of the time-lag
was provided by Navon et al. (1998), in which it was shown that the time-lag is indeed a

viscous effect. This will be discussed later in this section.

In Proussevitch and Sahagian (1996) the model of Proussevitch et al. (1993a) was extended
to deal with coupled diffusive and decompressive growth. They specified fixed ascent rates
in order to obtain a constant decompression rate; in volcanic systems the rate of magma
ascent is coupled to the growth of bubbles and the expansion of the magma, and so the
decompression rate is unlikely to be constant. This study revealed several important
results about the processes of equilibrium and non-equilibrium degassing. Basaltic melts
are expected to degas in equilibrium for all reasonable magma ascent rates. Rhyolitic melts

can degas in equilibrium for ascent rates less than 1 ms™'.

For velocities greater than
this, high supersaturations are expected near the surface, which may lead to explosive
activity. Typical ascent velocities for magma in explosive eruptions have been estimated
from field measurements at a few metres per second (see examples in Proussevitch and
Sahagian 1996). For slow ascent rates, bubble growth is limited by decompression; faster

ascent rates lead to diffusion-limited (non-equilibrium) degassing. Magma viscosity and

volatile diffusivity are still assumed constant in this study.
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The same formulation was further extended in Proussevitch and Sahagian (1998), in which
the effects of volatile-dependent viscosity and diffusivity, as well as the energetics of volatile
degassing, are incorporated. It was calculated that the parabolic growth law R ~ /¢ is not
appropriate for high supersaturations or low pressures and they proposed a logarithmic
law R ~ logt to describe growth under these conditions. It was also calculated that non-
equilibrium degassing is expected for ascent rates greater than 1 — 5 ms~!. Their model
is extremely complex and the effects of many parameters are examined. One important
factor which was not discussed is the effect on the growth dynamics of incorporating
concentration-dependent viscosity and volatile diffusivity. This will form the major part of
the discussion in this chapter, in which it shall be shown that the concentration-dependent
nature of viscosity and diffusivity is a very important factor in controlling the dynamics

of bubble growth.

The model of Toramaru (1995) is one of the only studies to consider a population of bubbles
(see chapter 2 for discussion of his predictions concerning the size distribution of bubbles).
Compared with the analyses of Proussevitch and co-workers, Toramaru’s consideration
of the dynamics of bubble growth is rather simplified and will not be discussed here in
detail (for example, he does not solve fully the diffusion equation). However, in common
with the studies discussed so far, Toramaru’s analysis reveals that bubble growth may
be controlled by viscosity or diffusivity, depending on the decompression rate, the initial

saturation pressure and the melt viscosity.

In general, the results of complicated numerical models such as those described above
can be hard to interpret due to the large number of parameters involved and the coupling
between them. Many workers feel that a greater understanding and intuition can be gained
by deriving simplified analytical descriptions of bubble growth dynamics. Barclay et al.
(1995) derived analytical solutions for bubble growth due to instantaneous decompression
in the absence of diffusion. T'wo cases were examined: bubble growth in an infinite melt

and growth in a thin shell of melt. It was calculated that viscosities greater than 10° Pas
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(cf. 10" Pas in Sparks 1978) are required to preserve a significant overpressure in the
bubble, a result also derived by Thomas et al. (1994). This was used as the basis of a
proposal that the typical observed vesicularities of pumice (70%-80%) are the result of the
degassing magma reaching a viscosity of 10° Pas. The model developed in this chapter,
however, reveals that the effective viscosity of magma at these vesicularities is likely to be

much lower than 10° Pas.

3.2.2 Experimental studies

It is clear that the dynamics of bubble growth are extremely complex; the models de-
scribed above are potentially powerful, but their validity must be tested by comparing
their predictions with the results of experimental studies. Although laboratory investiga-
tions into the degassing of silicate melts have their restrictions, the data they generate
are the result of real physical processes, and are subject to fewer simplifying assumptions

than most numerical models.

One of the first studies of bubble growth was that of Murase and McBirney (1973). They
investigated the nucleation and growth of bubbles in samples of obsidian initially contain-
ing 0.2 wt.% water. The obsidian was heated to 1050°C and the growth rates of bubbles
were measured. Average growth rates covered a range from zero to 7 x 107° mms—!. The
authors did not propose a reason for observing such a range of growth rates, but it was
probably due to an inhomogeneous distribution of water content (Liu and Zhang 2000). In
any case, the data illustrate that the bubbles in a population do not grow under identical

conditions.

Bagdassarov et al. (1996) performed a more systematic study of bubble growth in rhyolitic
melt with an initial water content of 0.14 wt.%. They found that in the temperature range
650-790° C the growth dynamics were controlled by viscosity and for higher temperatures

(790-925°C) diffusion becomes the limiting factor, due to the reduction in viscosity at
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this increased temperature. The study also suggested that the dynamics of nucleation
may also be controlled by melt viscosity, a finding which cannot be addressed by classical

nucleation theory.

Lyakhovsky et al. (1996) investigated the dynamics of bubble growth through experimen-
tal, numerical and analytical studies. They observed the growth of bubbles in rhyolites
with high initial water content (5.3-5.5 wt.%) and fitted the data using existing models of
bubble growth. The simple model of Scriven (1959) was only found to be valid for isolated
bubbles in the early stages of growth; in most cases the more sophisticated analysis of
Proussevitch et al. (1993a) was required to explain their data. Under the conditions of
their experiments they found that bubble growth was controlled by diffusion with viscous
effects only being important in the very initial stages (¢ < 1 s) of growth. One of the
major strengths of the study was that the authors developed analytical solutions for bub-
ble growth at small Peclet numbers (Pe = AP R?/nk where AP is the supersaturation

pressure, R is the bubble radius, 7 is the melt viscosity and k is the volatile diffusivity).

This multi-faceted approach was continued by Navon et al. (1998). They examined the
early stages of bubble growth in highly viscous melts, a regime which they showed to
be controlled by the melt viscosity. In these early stages of growth in the case of Pe
< 1, diffusion is rapid and a steady-state concentration profile can be maintained. This
allows an analytical approximation for bubble growth in this regime to be derived. This
was shown to be an exponential solution with a characteristic timescale of 4n9/AP and
was verified experimentally. This is the “period of accelerating growth” or “time-lag”
recorded by Proussevitch et al. (1993a) and later debated by Sparks (1994) and Sahagian
et al. (1994), as discussed above. In the same study, the authors modified the model of
Lyakhovsky et al. (1996) to incorporate the effects of concentration-dependent viscosity

and diffusivity, but did not discuss this in detail.

Gardner et al. (1999) investigated bubble growth in rhyolitic melts under conditions of a
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continuous pressure drop. Their melts were saturated in water at 200 MPa and 850°C,
giving a much higher initial water content (~ 5.5 wt.%) than in the experiments of Murase
and McBirney (1973) or Bagdassarov et al. (1996). Their main finding was that at de-
compression rates of 0.025 MPas™!, degassing proceeded in equilibrium with the pressure
drop. For decompression rates of 0.25, 0.5 and 1.0 MPas™! (roughly speaking, magma
ascent rates of 10, 20 and 40 ms ') non-equilibrium degassing was observed, largely in
agreement with the predictions of Proussevitch and Sahagian (1996). Furthermore, bub-
bles which nucleated at high supersaturations were observed to grow more rapidly than
those which formed at low supersaturations, in agreement with the models of Sparks (1978)

and Proussevitch et al. (1993a).

The effect of high melt viscosities on bubble growth under continuous pressure drop was
investigated by Gardner et al. (2000). They used lower temperatures and water contents
than did Gardner et al. (1999) in order to raise the viscosity of the liquid. They found
that melts ceased to degas efficiently for melt viscosities greater than 10~® Pas, but
interpreted this to be a result of a lower volatile diffusivity at the low temperatures they
used to create melts of this viscosity. For decompression rates of 0.125 and 0.25 MPas !
(roughly, ascent rates of 5 and 10 ms '), they find that a viscosity of ~ 10? Pas is required
to arrest bubble expansion, in agreement with the predictions of Thomas et al. (1994) and

Barclay et al. (1995).

Liu and Zhang (2000) observed the growth of bubbles in a natural rhyolitic melt at at-
mospheric pressure and 500-600°C, from initial water contents of 1.4-2.0 wt.%. They
compared their results with the predictions of the numerical model of Proussevitch et al.
(1998) and claimed that theirs was “the first experimental verification of a bubble growth
model in a silicate melt” (the study of Navon et al. 1998 involved fitting parameters for
viscosity and diffusivity). As in the study of Murase and McBirney (1973) it was found
that bubbles in the same experimental sample grew at different rates. Liu and Zhang

attributed this to an initial inhomogeneous distribution of volatiles. Proussevitch and
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Sahagian’s (1998) model gives an excellent fit to Liu and Zhang’s data. To produce these
good fits, however, the authors were forced to allow viscosity to vary within a factor of 5 of
the predicted value from the study of Hess and Dingwell (1996). This factor is within the
error of the Hess and Dingwell’s parameterization (equation 3.17), but serves to highlight
the fact that the dynamics of bubble growth can be very sensitive to viscosity, even within
the bounds of error of the most sophisticated current models. This represents a major
limitation in our ability to predict accurately bubble growth rates in eruptions of rhyolitic

magma.

3.2.3 Motivation behind this study

Although numerical models of bubble growth now incorporate the dependence of melt
viscosity on its volatile content (e.g. Proussevitch and Sahagian 1998, Navon et al. 1998),
the details of this effect have not been discussed. During bubble growth, the viscosity of
the melt will vary both temporally and spatially due to the diffusion of volatile molecules
down concentration gradients. The model developed in this chapter will investigate the
phenomena of concentration-dependent viscosity and diffusivity and their effects on the

dynamics of bubble growth.

A second reason for performing this study was to investigate the sensitivity of the bubble
growth dynamics to the parameters of the model (e.g. water solubility, equation of state
of water vapour). Knowledge of this sensitivity is important when applying the results
of bubble growth models to practical situations. Liu and Zhang (2000) have already
demonstrated that the dynamics of bubble growth are very sensitive to viscosity, even when

viscosity is varied within the range of error of the most sophisticated parameterizations.

The bulk of the material in this chapter has been submitted for publication in Earth
and Planetary Science Letters (J.D. Blower, H.M. Mader and S.D.R. Wilson, Coupling of

viscous and diffusive controls on bubble growth during explosive volcanic eruptions).
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3.2.4 Limitations of bubble growth models

Despite the complexity and sophistication of current models of bubble growth in magmas,
they are still limited by several major assumptions; (i) spherical symmetry of the system;
(ii) no gas is lost from the system; (iii) the rate of decompression is either instantaneous or
highly simplified; and (iv) the initial volatile concentration in the melt is uniform. These

limitations also apply to the model developed in this chapter.

3.3 Model formulation

Following the treatment of Proussevitch et al. (1993a), we envisage the bubble to grow in
a concentric shell of melt (figure 3.1); this simulates the influence of other bubbles in the

system. The initial radius of the shell is Sy, and is related to the nucleation density n by

So = <i>1/3 (3.3)

4dmn

the following expression:

The model contains equations which describe the diffusion of water into the growing
bubble, the hydrodynamics of the motion of fluid around the bubble, mass balance of
volatile (water) molecules, the internal bubble pressure, the solubility of water and the
variation of viscosity and diffusivity with water content. The solution is cast in Lagrangian
coordinates. All equations are ultimately cast in the form of time derivatives, and these are
integrated simultaneously using well-established, professional library routines. Table 3.1
summarizes the symbols used in the following derivations. Bubble growth is assumed to
be isothermal; the validity of this assumption is discussed in Proussevitch and Sahagian

(1998), in which the energetics of bubble growth are investigated.
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(@) (b)

melt shell

Figure 3.2: The coordinate system used in the model. (a) Initial conditions. The water
concentration is uniform throughout the melt shell. (b) Conditions after time ¢. The
shading schematically illustrates the increase in viscosity near the bubble wall due to
volatile depletion. The bubble has grown from an initial radius Ry to a radius R. The
melt shell initially between Ry and X is now contained in the region from R to A. Not to
scale.

3.3.1 The coordinate system

The system is radially symmetrical and the Lagrangian coordinate X is employed as the
radial coordinate. X is a label for a given shell of fluid; its value is the radius of the shell
at ¢ = 0. If at time ¢ the radius of that shell is A, and the initial and final bubble radii

are Ry and R respectively then we have, by conservation of volume (figure 3.2):

A3~ R= X% R} (3.4)

3.3.2 The system of equations
The diffusion equation

In this coordinate system, the radial diffusion equation is (Braithwaite et al. 1999):

oc 1 0 A* dc
5" X70X <k(C)Fa—X> (3:5)
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ZEQR2 HNTIEZ I =S =+ mo 3 0Nk X

radial Lagrangian coordinate (m)

radial Eulerian coordinate (m)

bubble radius (m)

shell radius (m)

nucleation density (m~3)

volatile (water) concentration (mass fraction)
volatile (water) concentration (mole fraction)
time (s)

diffusion coefficient (m?s~!)

pressure (Pa)

mass of vapour in bubble (kg)

molar volume of vapour in bubble (m? mol~!)
water fugacity (Pa)

dynamic viscosity (Pas)

effective dynamic viscosity (Pas)

density (kgm™3)

rate of pressure drop (Pas ')

temperature (K)

Henry constant (Pa~!/?)

molar gas constant (JK 'mol 1)

molar mass (kgmol™!)

number of grid points

Subscripts

9

m
1
0

00

gas / vapour

melt

condition at grid point ¢

condition at t=0or 7 =0
condition in far-field (at shell wall)

Table 3.1: Explanation of symbols used in the text
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where ¢ = ¢(X,t) is the volatile concentration (mass fraction) at time ¢ and k is the
concentration-dependent diffusion coefficient. Due to the Lagrangian reference frame this
automatically incorporates the advective flux of water molecules toward the bubble wall
as the bubble grows. The boundary condition at the bubble-melt interface is a solubility

condition:

cx=ry = f(pg, T) (3.6)

i.e. the concentration of water at the bubble wall is saturated at temperature 7' and

pressure pg. At the shell wall:
Jc

ge =0 (3.7)
0X | g,

which is to say that there is no diffusive mass flux of volatiles through the outer boundary

of the shell.

The hydrodynamics of the melt

The equation describing the motion of the fluid around the growing bubble is (see ap-

pendix C):

dR [%  p(X)X?
= 12R?* — dXx 3.8
Py = oo+ 12R° S /R TR (3.8)

where ps is the ambient pressure and 7n(X) is the spatially-dependent melt viscosity

(n = n(c) and ¢ = ¢(X), equation 3.17). The effects of surface tension and inertia are

neglected.

Mass balance

The mass m of water vapour in the bubble is given by:

SO SO
m = mo + 47 pm < / c(X,0)X%2dX — c(X, 1) X? dX) (3.9)
Ro RO



CHAPTER 3. BUBBLE GROWTH IN VOLCANIC ERUPTIONS 76

Since the initial water concentration c¢g in the melt is assumed to be uniform, the first

term in the brackets may be simplified to mco(S§ — R3)/3.

Bubble pressure

In this model, the equation of state for water of Pitzer and Sterner (1994) is used:

az + 2a4p + 3asp?® + 4agp®
as + adp + asp? + asp® + agp*)?

Py
106GT

=ptmp’—p' =
+ arp® exp(—agp) + agp® exp(—aiop) (3.10)
where p is the gas density in molem™ and a1 to ayg are temperature-dependent param-

eters, given in Pitzer and Sterner (1994). This equation is valid from zero pressure to

10 GPa and from the critical temperature of water (647 K) to 2000 K.

We compare the results using equation 3.10 with results from model runs in which we

make the assumption that the water vapour in the bubble behaves as an ideal gas:

pgR3 _ poRg
m mo

(3.11)

where pq is the initial pressure inside the bubble.

Ambient pressure

In most model runs we assume that the confining pressure outside the melt shell is in-
stantaneously reduced to atmospheric pressure. This is unlikely to happen in a natural
system. As magma rises through the conduit the pressure will fall due to the progressive
removal of overlying magma. The rate of depressurization is often taken to be a proxy
for the ascent rate of magma (Proussevitch and Sahagian 1996). Furthermore, even if a

batch of magma containing a large number of bubbles is instantaneously decompressed
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(due to the sudden failure of the volcanic edifice, for example), the internal liquid pressure
within this magma batch will not fall instantaneously to the ambient pressure because of

the internal viscous stresses created by the overall expansion.

We can specify arbitrary rates of change of ambient pressure. For simplicity we choose a

linear pressure drop:

Poc =Ppo — Bt (3.12)

where [ is the rate of pressure drop. The ambient pressure ceases to fall once the final

pressure (usually atmospheric) pressure is reached.

The solubility of water in rhyolitic melt

We use the solubility law of Zhang (1999b) as this is valid over a very wide pressure and
temperature range: it is calibrated from 500 — 1350°C up to 800 MPa and verified by
preliminary experimental data (Liu and Zhang 2000) at 0.1 MPa. The mole fraction F' of

water soluble in rhyolite at a pressure of P bars at T' K, with a water fugacity f is:

n KKy f(1 - Kif)
K1 Kof +/(K1Kof)? +4K 1Ko f (1 — K; f)
3890.3 — 0.3948P
T

F = Kif

with InK; = —13.869 + 0.0002474P +

—3100
Ky = 6.53exp

(3.13)

f is calculated using the equation of state of Pitzer and Sterner (1994) (equation 3.10)

and the relationship (Sterner and Pitzer 1994):

res

+ P +1n(GT) — 1 (3.14)

Inf=1
nf=lptom T oaT

p is the gas density (in molem™3) at pressure P. Expressions for A™/GT and P/pGT

are given in Pitzer and Sterner (1994) and in this case, G = 8314510 Pacm?® K~! mol.
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The mass fraction of soluble water ceq is calculated from the mole fraction F:

MF
- 1
“AT WA _F)+ MF (3:15)

W is the mass of dry rhyolite per mole of oxygen and is taken to be 32.6 gmol~! (Zhang

1999b). M = 18.015 and is the molar mass of water in gmol !

For comparison (section 3.4.2) we also employ the more widely-used and less complex

Henry law of solubility:

Ceq = Oy/Pg (3.16)

where p, is the internal bubble pressure and « is the temperature-dependent Henry con-
stant. A comparison between Henry’s law and Zhang’s (1999b) model of solubility is

shown in figure 3.4a.

Variation of viscosity with water content

We use Hess and Dingwell’s (1996) model for the variation of viscosity with temperature
and water content in hydrous leucogranitic melts. They proposed the following parame-

terization:
[9601 — 2368 In(w)]
T — [195.7 + 32.25 In(w)]

log,0 1 = —3.545 + 0.833 In(w) + (3.17)

where 7 is in Pas, w is the water concentration in weight percent (= 100c) and 7T is in K.

Variation of diffusivity with water content

There are now several expressions for water diffusivity in the literature (e.g. Zhang et
al. 1991; Nowak and Behrens 1997; Zhang and Behrens 2000). We prefer the model of

Zhang and Behrens (2000) as it is calibrated against a wide range of experimental data
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for rhyolitic compositions (0.1-7.7 wt.% H9O, 400-1200°C, 0.1-810 MPa):

4462 3P
k=102 Fexp(m) {1 + exp [56 +m+F <—34.1 + % + 57T3)

—VF <0.091 + M)] } (3.18)

T2

where m = —20.79 — 5030/T — 1.4P/T, k is in m?s~!, P is in MPa and T is in K. F is

the mole fraction of total water (HyO;) on a single oxygen basis (equation 3.15).

Initial conditions

The initial volatile concentration c¢g is assumed to be uniform throughout the melt shell.
We assume that the initial pressure in the bubble is the saturation pressure. The initial

mass of water vapour in the bubble is then given by:

W =~

M
mR} (3.19)

mqo =

where V is the molar volume in m?® mol~! which is calculated using the equation of state

of water vapour (equation 3.10).

3.3.3 Nwumerical Formulation
The grid

In order to ensure an accurate representation of the concentration profile throughout the
melt shell, we construct the formulation so that grid points are closely spaced near the

bubble wall, which is where the properties of the system change most rapidly. We achieve
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this by performing a transformation on the Lagrangian coordinate X:

dc  _y Oc

Y=InX = a—X—e 8_Y

(3.20)

where &(Y) = ¢(X (Y)) = ¢(e¥). The melt region is divided into N shells of thickness JY:

_ InSp—1InRq

Y
0 N

(3.21)

The melt region therefore contains IV + 1 nodes. The value of Y at the 4 th node is given
by:

Y; =InRy+idY (3.22)

and, from 3.4:

A; = (¥ — R} + R?)'/3 (3.23)

Numerical solution of the diffusion equation

In the transformed coordinate system (section 3.3.3) the diffusion equation (3.5) becomes:

o 1 9 < At ae) (3.24)

o~ av oy \FOaray

The diffusion equation is solved by the method of lines. In this method, the transformed
space variable Y is discretized but the time ¢ is not. This transforms the partial differential

equation (equation 3.24) into a set of coupled ordinary differential equations.

At a general node 4, an appropriate finite-difference approximation of equation 3.24 is
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(appendix D):

d¢; 1 Al /2

dt 263 5y2 {(km +E) i = G) v

A?A /2

— (ki +kiq)(& — 5z‘—1)63yl,7_1/2

} (2<i<N-1) (3.25)

Note that the right hand side is simply a number giving the rate of change of concentration

at each grid point.

At the edge of the outer shell (X = Sj), ¢ = N and the concentration ¢; ;1 is not de-
fined. We may obtain this from the boundary condition in equation 3.7; the concentration

gradient at this point is zero and so, by symmetry, ¢y+1 = ¢n_1:

dén  (kn—1+kn)(En—1 —¢nN) A§v+1/2 A§1V—1/2 (3.26)
dt 2e3YN §Y? eSYN+1/2 - 3YN-1/2 :
Numerical solution of the hydrodynamic equation
Equation 3.8 may be rearranged to give the rate of bubble growth:
dR - S0 X) X2 -
4t _ Py — P / ( 3) dx (3.27)
dt 12R? R, (R3—Rj+ X3)?

The integral factor is evaluated numerically (after transforming the grid back in terms
of X; X; = e7) using the NAG (Numerical Algorithms Group) library routine DOIGAF

which employs the Gill-Miller method of integration.
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Numerical evaluation of the mass flux into the bubble

Differentiating equation 3.9 with respect to time gives:

dm S0 Je
—— =4 —X?%dx 3.28

The value of dc/0t at each grid point is given by equations 3.25 and 3.26. (Note that
dc/0t will be everywhere negative and so the mass flux will be positive.) The integral is
evaluated numerically in X-space using the NAG routine DOIGAF. This approach has the
advantage that it does not require evaluation of the concentration gradient at the bubble
wall (cf. Proussevitch and Sahagian 1998), which we discovered to be prone to numerical

error.

Numerical evaluation of the ambient pressure drop

If we choose a non-instantaneous decompression, equation 3.12 gives:

dpeo - (poo > pﬁnal)a

- (3.29)

0 (poo = pﬁnal)-

where pgpna1 is usually taken to be atmospheric pressure.

3.3.4 The solution algorithm

Equations 3.25 to 3.29 are a set of N 4 3 coupled first-order ordinary differential equa-
tions (ODEs). Since this is a so-called stiff system (Press et al. 1992), ODE integration
routines such as predictor—corrector algorithms (as used by Lyakhovsky et al. 1996) are
inefficient. We integrate all N + 3 equations simultaneously using the NAG stiff ODE

solver routine DO2EJF which uses a variable-order, variable-step method implementing
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backward differentiation.

Convergence and stability

Since the NAG ODE integration routine ensures that the time-step in the solution is always
sufficiently small to ensure convergence, the user needs only to adjust two parameters:
the number of grid points N and the fractional tolerance of the ODE solver. (Roughly
speaking, the tolerance controls the accuracy of the numerical solution.) We find that
a tolerance of 107 is more than adequate, and, in the vast majority of cases, taking
N =400 is appropriate. No change in the results is observed by using greater values of NV
and so we can be confident that this grid spacing is adequately close. Counterintuitively,
it is not necessarily true that a smaller value of N will lead to a shorter run time. Faster
convergence may be achieved by increasing N as this gives a more accurate representation

of the concentration profile in the melt.

3.3.5 Effective viscosity

Before we discuss the results of the model it is appropriate to introduce a quantity which
we shall refer to as the effective viscosity, neg. 1f we were to imagine the viscosity in
the melt shell to be spatially constant, then 7neg is that viscosity which would give the
observed bubble growth rate at a particular time. From Proussevitch et al. (1993a), the
hydrodynamic equation in the case of constant viscosity (ignoring surface tension and
inertia) is:

drR (1 R
Pg = Poo + 40 (E - g) (3.30)
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Melt density | 2300 kgm—3
Temperature | 800°C
Initial bubble radius | 107° m
Initial shell radius | 107 m
Initial water content in melt | 5 wt.%
Final pressure | 10° Pa
Viscosity model | Hess and Dingwell (1996) (eq. 3.17)
Diffusivity model | Zhang and Behrens (2000) (eq. 3.18)
Equation of state | Pitzer and Sterner (1994) (eq. 3.10)
Solubility model | Zhang (1999b) (eq. 3.13)

Table 3.2: The base model. Parameter space is explored by varying just one or two
parameters at a time around these values. These parameters were chosen to represent the
typical conditions of an explosive volcanic eruption with rhyolitic melt.

Comparing equations 3.30 and 3.8 we obtain:

= 3 /50 n(X)X2
¢ R3-573 |, (R — R+ X0

3R3*(S3 — R} + R?) /50 n(X)X?
S3 — R3 re (R? — R} + X3)2

dx (3.31)

using S% = 53 — R3 + R? (equation 3.4).

3.4 Results

In all model runs, we allow bubble growth to proceed to a vesicularity (= R*/S®) of 99%—
in an explosive volcanic eruption we expect that magma will usually have fragmented at
between 60 and 80% vesicularity (e.g. Thomas et al. 1994; Gardner et al. 1996). Model
runs are based around the set of parameters in table 3.2. Initially, we choose a large,
instantaneous decompression from the saturation pressure of 5 wt.% water (140 MPa) to
atmospheric pressure. This is unlikely to occur in nature; however, such extreme conditions
highlight the important effects which we shall be discussing. We shall show later that these

effects are also important for more realistic situations.
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Figure 3.3: Bubble radius as a function of time using the parameters in table 3.2. The
system reaches 99% vesicularity after 18.1s. The solid line represents bubble growth
using the Pitzer—Sterner (1994) equation of state. The dashed line represents bubble
growth assuming that water vapour behaves as an ideal gas. The two lines are very nearly
coincident, and so the bubble growth dynamics are insensitive to the choice of equation of
state.

Figure 3.3 shows the bubble radius as a function of time with the base parameters of
table 3.2. The bubble reaches only 58.5% of its equilibrium radius at 99% vesicularity.

We shall now investigate the sensitivity of the bubble growth dynamics to variation in the

base parameters.

3.4.1 The influence of the equation of state of water

In the base model, we use the equation of state for water of Pitzer and Sterner (1994).
Most previous bubble growth models assume that water behaves as an ideal gas. At high
gas densities the ideal gas assumption may be a poor approximation. At a water vapour
density of 1.57 x 10* molm™3 at 800°C the ideal gas law predicts that the vapour will exert
a pressure of 140 MPa (the saturation pressure of 5 wt.% water), whereas equation 3.10

gives a vapour pressure of 117 MPa. Figure 3.3 reveals that, in fact, the model is very
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insensitive to the chosen equation of state.

3.4.2 The influence of the solubility law

We investigate two laws governing the solubility of water in rhyolitic melt. In most model
runs we use the Zhang (1999b) model (equation 3.13). Many previous models have used
Henry’s square-root law (equation 3.16). Indeed the model of Zhang (1999b) gives rela-
tionships between solubility and pressure which are very close to a square-root relationship
with a temperature-dependent Henry’s constant . For example, at 800°C, equation 3.16
with a value of @ = 4.08 x 10~¢ Pa~'/2 approximates very well Zhang’s model from 0.1 to
140 MPa (figure 3.4a); this is very close to the value of 4.1 x 10~% Pa~1'/2 which is often

used in numerical models (e.g. Jaupart and Allegre 1991; Melnik and Sparks 1999).

Figure 3.4b compares results from runs using equation 3.13 and Henry’s law with various
values of the Henry constant «. Despite the good fit of the Zhang (1999b) model to
a Henry’s law curve with o = 4.08 x 1075 Pa~1/2 there is a significant and systematic
difference between the bubble growth curves using the two models. The reason for this
lies in the difference between the solubilities predicted by the two models at low pressures.
At 0.1 MPa and 800°C, equation 3.13 predicts that 0.10 wt.% water is soluble in the melt.
Henry’s law (equation 3.16) with a = 4.08 x 10~% Pa—1/2 gives a solubility of 0.13 wt.%.
This small difference has a relatively large effect on the melt viscosity near the bubble wall.
Zhang’s model gives n = 2.3 x 10'? Pass at the bubble wall compared with 1.1 x 10'° Pa s for
the Henry’s law model— a difference of a factor of two. We shall see later (section 3.4.3)
that the viscous resistance to bubble growth is strongly controlled by the viscosity near the
bubble. Decreasing « decreases the water concentration, and hence raises the viscosity, at

the bubble wall, retarding bubble growth.

From figure 3.4 we see that Zhang’s model gives a bubble growth rate somewhere between

those given by o = 3 x 107 and 3.75 x 107 Pa~!/2. These values, however, are rather
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Figure 3.4: (a) Comparison of Zhang’s (1999b) model of the solubility of water in rhyolitic
melts with Henry’s law at 800°C. With a Henry constant of 4.08 x 10~% Pa~1/2 the fit
to Zhang’s model over the pressure range 0-140 MPa is good. However, at low pressures
(inset) the two models deviate: at atmospheric pressure the solubility of water according
to Zhang’s model is 0.10 wt.%, a value given by Henry’s law with oo = 3.21 x 107 Pa~1/2,
This low value of the Henry constant gives a poor fit over the rest of the pressure range.
(b) The effect of the solubility law on the bubble growth dynamics. Henry’s law with
o = 4.08 x 1076 Pa—'/2 gives a gives a faster growth rate than Zhang’s model, however,
due to the slight increase in solubility at low pressure, giving a lower melt viscosity near
the bubble wall. As « decreases, the bubble growth rate decreases due to the lower water
concentration and higher viscosity near the bubble wall.
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lower than typical measured values of « reported in the literature (e.g. 4 x 107° Pa~1/2

in Proussevitch and Sahagian 1998; ~ 4.4 x 10~6 Pal/2 in Lyakhovsky et al. 1996). This
illustrates the importance of using the correct solubility law. It is very important to

constrain accurately the solubility of water in rhyolitic melt at low pressures.

3.4.3 The control of viscosity

Previous studies of bubble growth in highly viscous melts (Lyakhovsky et al. 1996; Navon
et al. 1998) predict that, during an explosive eruption, viscosity controls the bubble
growth dynamics in the initial stages of growth, when diffusion is efficient. This viscosity-
controlled period is characterized by accelerating, exponential growth (Navon et al. 1998).
After this stage, the pressure in the bubble falls to near-ambient and growth is limited
by the diffusive flux of volatile molecules into the bubble. These studies, however, neglect
the effect of volatile-dependent viscosity; as volatiles diffuse into the bubble, the viscosity
of the dehydrated melt shell around the bubble increases. We might expect, therefore,
that the control of viscosity will extend for longer times than is predicted by models which

ignore this viscosity increase (Proussevitch and Sahagian 1998).

Figure 3.5 plots the bubble radius as a function of time for various constant viscosities.
Above a viscosity of ~ 10% Pas the bubble growth rate is significantly retarded with
increasing viscosity. Figure 3.5 also illustrates the effect of taking volatile-dependent
viscosity into account. Although the starting viscosity in this case is 6.5 x 10* Pas, the
bubble growth rate in the case of variable viscosity is between those given by constant
viscosities of 10° and 10 Pas. This is due to the rapid dehydration and stiffening of the
melt near the bubble wall. Clearly viscosity exerts a strong control over the bubble growth
dynamics, as changing the viscosity law affects not only the rate of bubble growth, but
also the overall form of the growth curve. When viscosity is assumed constant, the model

reveals a period of accelerating (diffusion-driven, viscosity-limited) growth, followed by
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Figure 3.5: Bubble radius as a function of time with variable viscosity and various values of
constant viscosity 7. If n > 10° Pas viscosity plays a major role in controlling the bubble
growth dynamics. If viscosity is allowed to vary with water concentration (equation 3.17)
the bubble growth rate is somewhere between those given by constant viscosities of 105

and 10% Pas, despite the fact that the starting viscosity is 6.5 x 10* Pas.
decelerating (diffusion-limited) growth (cf. Proussevitch et al. 1993a, Navon et al. 1998).
The effect of introducing volatile-dependent viscosity is to smooth out these inflexions in

the curve to give a growth law which is closer to linear in form.

The evolution of effective viscosity

Figure 3.6 plots the evolution of the effective viscosity (section 3.3.5) as a function of time
and bubble radius for the base parameters in table 3.2. It can be seen that, from an
initial uniform viscosity of 6.5 x 10* Pas, the effective viscosity rises rapidly to a viscosity
of ~ 3 x 10° Pas and remains close to this value for several seconds. This agrees with

figure 3.5 which shows that the growth rate under concentration-dependent viscosity is

between those given by constant viscosities of 10% and 10 Pas.

The form of the curve in figure 3.6 is consistent over a wide range of conditions (e.g
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Figure 3.6: The evolution of the effective viscosity 7eg (solid line) as a function of time
up to 99% vesicularity for the base parameters in table 3.2. The shape of this curve
is discussed in section 3.4.3. Generally, n.g increases with time as the melt dehydrates
and stiffens. This increase is partially compensated by the increase of the bubble radius
R which tends to decrease 7. (equation 3.31). Note the temporary decrease in 7 at
t ~ 2 s. The viscosities at the bubble wall (dashed line) and the shell wall (dotted line)

are also shown.
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figure 3.9) and merits more explanation. The effective viscosity increases sharply in the
initial stages (¢ < 1 s) of growth. At intermediate times, the effective viscosity is near-
constant. Finally the effective viscosity steadily increases. This curve owes its shape
to a competition between the dehydration of the melt, which tends to increase 7.s (see
section 3.4.3), and the increase in bubble radius R, which tends to decrease neg. The
pre-integral factor of equation 3.31 increases strongly with time due to the factor of RS
in the numerator. The integral factor decreases with time— the increase in n(X) is more
than compensated for by the factor of RS in the denominator. The net result depends
on the conditions of bubble growth, leading to the unexpected result that the effective

viscosity can actually decrease slightly at certain times in the evolution (figure 3.6).

The influence of the dehydration zone around the bubble

We now examine whether the viscous resistance to bubble growth is caused by the condi-

tions near to or far from the bubble. We define

B X ( )X2
g(X)—/RO G R3+X3 dX/ R3+X3) dx (3.32)

This is the fractional contribution to the integral term of the effective viscosity from
X = Ry to X. In figure 3.7a we plot g(X) versus X for bubble growth using the base
parameters at R = 1 mm. (See the solid line on figure 3.10b for the corresponding
viscosity profile.) Tt is clear that the dehydrated, highly viscous (7 = 4.6 x 10° Pas) melt
near the bubble exerts the major control on the integral term. The melt in the far field
has a viscosity of 6.5 x 10* Pas and makes little contribution. By contrast, in the case
of constant viscosity at the same bubble radius (figure 3.7b), the melt near the bubble
contributes little to the integral factor. (This will depend on the bubble radius. If X is
larger than R and 7 is constant then the integrand will decrease with increasing X due to

the X° term in the denominator.)
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Figure 3.7: The contribution of parts of the melt shell to the integral term in the case
of (a) variable viscosity and (b) constant viscosity. g(X) (equation 3.32) is the fractional
contribution to the integral term of the effective viscosity (equation 3.31). The integrand

(%) of g(X) is also plotted. With variable viscosity the viscous melt near the
0

bubble dominates the integral term. This shows that, in the case of variable viscosity, the
largest contribution to the integral term comes from the melt near to, but not directly
adjacent to the bubble (at X ~ 0.03 x 10~2 m in this case).

The thin, dehydrated melt shell around the bubble therefore has a large influence on the
viscous resistance experienced by the bubble. This is compensated for by the increase in

the bubble radius— the larger the bubble, the smaller the effect of the viscous resistance

related to the dehydrated region.

3.4.4 The control of diffusivity

Figure 3.8 shows bubble growth curves for different values of (constant) diffusivity. As
expected, choosing a high value of diffusivity leads to faster bubble growth. We must
conclude from figures 3.5 and 3.8 that bubble growth dynamics are controlled by both

viscosity and diffusivity in the parameter regime given in table 3.2.

This dependence of the growth rates on both viscosity and diffusivity leads to an un-
expected and hitherto undocumented feature of the growth dynamics. When variable
diffusivity according to equation 3.18 is specified (figure 3.8), the bubble growth rate is

somewhere between those given by constant diffusivities of 1 x 10~ and 3 x 10~ m?s~!.



CHAPTER 3. BUBBLE GROWTH IN VOLCANIC ERUPTIONS 93

5 T T T T T
b4 )
/ ! -
/ 7 -
4 r /I / -7 1
! ! ' 7
g / ’
< i /
9 / I s
37 ll ! e 1
g I I./. /,,/
ks [ ; e
s / ; -
; 2+ ! / s i
= / / S0 . 10
i / ) 1x10
3 II K T 3% 1011
M A - Ix10M
1 r /l AT 3% 10-12 T
L 1% 1012
o ——— variable
0 1 1 1 1 1
0 10 20 30 40 50 60
time /s

Figure 3.8: The effect of diffusivity on the dynamics of bubble growth. All other param-
eters and models are those given in table 3.2. Concentration-dependent diffusivity (solid
line) gives a bubble growth rate somewhere between those given by constant diffusivities
of 1107 and 3x 10~ m?s~!, despite the fact that the actual diffusivity during the run
varied from 2.4 x 10713 to 7.4 x 1072 m?s~!. This apparently anomalously high bubble
growth rate is due to a lower effective viscosity in the case of concentration-dependent

diffusivity (figure 3.9).
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We might, on first inspection, define an ‘apparent diffusivity’ of, say, 2 x 107" m?s~!.

This apparent diffusivity, however, bears no relation to the actual diffusivity of water in

2.1

the melt which is much lower, ranging between 7.4 x 10712 and 2.4 x 10713 m?s~ 1.,

The explanation of this counterintuitive result lies in the interplay between diffusivity and
viscosity. The higher the value of diffusivity, the faster the dehydration of the melt shell.
In terms of bubble growth rates, therefore, slow diffusion rates tend to be compensated
by a low melt viscosity. In the case of constant diffusivity (figure 3.8) choosing a lower
diffusivity leads to a decrease in bubble growth rate; the decrease in mass transfer rate
‘wins’ over the decrease in melt viscosity. With variable diffusivity, however, low values of
diffusivity are more than compensated by the low melt viscosity and the bubble growth

rate is unexpectedly high.

We may investigate this further by examining the effective viscosity (equation 3.31) during
the model runs in figure 3.8. Figure 3.9a plots the effective viscosity as a function of time
and shows that, indeed, the effective viscosity of the melt shell is relatively low in the model
run using the variable diffusivity law of equation 3.18. The effective viscosity depends not
only on the concentration profile in the melt, but also on the bubble radius. A plot of 7eg
versus bubble radius (figure 3.9b) is more instructive for comparison of the conditions at
a particular stage of growth. With variable diffusivity, the effective viscosity at a given
bubble radius is reduced by between half and one order of magnitude compared with all
investigated values of constant diffusivity. We see that all values of constant diffusivity
give very similar curves, but this is a coincidence and only occurs with an initial water

content of 5 wt.%— at lower initial water concentrations these curves become distinct.

Figure 3.10 plots the concentration and viscosity profiles in the melt with variable diffu-
sivity, and various values of constant diffusivity, at a bubble radius of 1 mm. In the case
of variable diffusivity, the water concentration (figure 3.10a) near the bubble wall is higher

than for any of the plotted values of constant diffusivity. Since viscosity is very sensitive
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Figure 3.10: Profiles of (a) water concentration and (b) viscosity in the melt shell with
variable diffusivity and various values of constant diffusivity. The bubble radius is the
same (1 mm) for all curves, giving a vesicularity of 50%.

to water content, especially at low water contents (Hess and Dingwell 1996), the viscosity

near the bubble is significantly reduced (figure 3.10b), leading to an overall reduction in

Teft -

3.4.5 The effect of temperature

Many parameters of the model — solubility (equation 3.13), diffusivity (equation 3.18)

and viscosity (equation 3.17) — are temperature-dependent. We have seen how varying
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Figure 3.11: The effect of temperature on the bubble growth dynamics. Labels are the
temperature in Celsius. The sensitivity to temperature of the melt viscosity leads to a
significant variation in the bubble growth rate over a relatively narrow temperature range.
each of these parameters individually affects the results of the model. It is instructive
to investigate to what extent the model as a whole is sensitive to temperature. Figure
figure 3.11 shows results from runs performed at temperatures from 750 to 850°C. At
750°C, the system reaches 99% vesicularity after 59.9 seconds. Growth at 850°C is nearly
an order of magnitude more rapid, with the system reaching 99% vesicularity after 6.9

seconds.

3.4.6 The effect of the initial pressure

So far we have simulated an instantaneous decompression from the saturation pressure of
5 wt.% water (~ 140 MPa) to atmospheric. This is an unrealistically rapid and extreme

depressurization. We investigate the effects of smaller, yet still instantaneous, pressure
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Figure 3.12: The effect of the initial water content on bubble growth dynamics. The curves
are labelled with the initial water content in weight percent. Note the logarithmic time

axis. All other parameters are given in table 3.2.
drops by varying the initial water concentration in the melt. We investigate initial water

contents of 3 wt.% (saturation pressure ~ 53 MPa) and 1 wt.% (saturation pressure

~ 7.6 MPa).
The analysis of Proussevitch et al. (1993a) revealed the counterintuitive result that the

higher the initial water concentration in the melt, the shorter the time required to reach

the equilibrium bubble radius. This was attributed to steep concentration gradients near
the bubble wall — and hence fast mass transfer — in the case of high volatile contents.
This general result is also revealed by our model (figure 3.12), but the effect is even more
marked due to the incorporation of concentration-dependent viscosity. High water contents

not only give steep concentration gradients but also lower melt viscosity and hence faster

growth.
The initial water content has a large influence on the magnitude of the anomalous diffusiv-

ity effect discussed in section 3.4.4. The value of the ‘apparent diffusivity’ decreases with
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Figure 3.13: Bubble growth curves using concentration-dependent diffusivity and various
values of constant diffusivity with initial water contents of (a) 3 wt.% and (b) 1 wt.%.
The value of the ‘apparent diffusivity’ (section 3.4.4) using variable diffusivity decreases
with decreasing initial water content.

decreasing initial water content. At 5 wt.% water the apparent diffusivity is just less than
3x107 1 m?s~! (figure 3.8). If the initial water content is 3 wt.% the apparent diffusivity
is just under 10~ m2s~! (figure 3.13). An initial water content of 1 wt.% gives an appar-
ent diffusivity of just greater than 107'2 m?s~!. Examination of the effective viscosity in
these cases reveals that the lower the initial water content, the smaller the contrast in 7.g

between model runs using constant and variable diffusivity. For instantaneous pressure

drops of a few megapascals, therefore, the ‘anomalous diffusivity’ effect is very slight.

3.5 The effect of a finite rate of pressure drop

So far we have assumed that depressurization is instantaneous. We now investigate the
effects of a linear pressure drop from the saturation pressure to atmospheric pressure.
Several studies (summarized in Proussevitch and Sahagian 1996) suggest that magma
ascent velocities can reach several metres per second before fragmentation. Figure 3.14
shows the bubble growth dynamics in the case of a constant ascent rate of 10 ms™!

(= 0.2 MPas™!). For much of its ascent, the growth of the bubble is controlled by

the decompression. When the bubble nears the surface, however, its growth accelerates
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Figure 3.14: Bubble growth due to a linear pressure drop (equivalent ascent rate of
10 ms™!), comparing growth with various values of constant diffusivity with growth un-
der concentration-dependent (variable) diffusivity. Pressure drops linearly to atmospheric
pressure where it remains constant. (a) Bubble radius and ambient pressure as a function
of time. Growth rates increase rapidly at low pressures. (b) Closer view of the range
600 <t < 650 s. In the case of concentration-dependent diffusivity bubble growth rates
are enhanced. This is due to the lower effective viscosity in the case of concentration-
dependent diffusivity (c). (d) shows a closer view of the effective viscosity in the range
500 < ¢ <700 s. Note that neg undergoes a slight decrease at ¢ ~ 600 s.

rapidly and the control of diffusion starts to take effect. We now see the same ‘anomalous
diffusivity’ effect as described in section 3.4.4. With concentration-dependent diffusivity
bubble growth rates are enhanced compared with values of constant diffusivity of similar

magnitude. Figure 3.14 (¢ and d) shows that this is again due to a lower effective viscosity

in the case of concentration-dependent diffusivity.

The same effects of reduced effective viscosity and enhanced bubble growth rates are
also observed for an ascent velocity of 1 ms~! (0.02 MPas~!) but the magnitude of the
effects is much reduced. A slow depressurization means that degassing can remain close to
equilibrium with the ambient pressure and so volatile diffusivity exerts a smaller control

on the growth dynamics.
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3.6 Conclusions

A numerical model has been developed and applied to investigate the dynamics of bubble
growth in rhyolitic magmas under the conditions of an explosive eruption. The model has
been used to investigate the sensitivity of the dynamics of bubble growth to many model
parameters. We have particularly focused on the effects of incorporating concentration-

dependent viscosity and diffusivity into the model. The main results of the study are:

e The dynamics of bubble growth are strongly controlled by both viscosity and diffu-

sivity.

e A high value of diffusivity causes a rapid dehydration and stiffening of the melt
shell. The resulting high viscosity partially counteracts the high rate of diffusive

mass transfer.

e For constant diffusivity, high diffusivities lead to fast growth rates. In the case
of concentration-dependent diffusivity, bubble growth rates are enhanced compared
with rates given by constant diffusivities of similar magnitude, due to a reduction in
effective viscosity. This effect is most pronounced for conditions which favour non-
equilibrium degassing, i.e. high initial water contents (high initial pressures) and

rapid magma ascent rates.

e The viscous resistance of the melt is dominated by the viscous, dehydrated region

near the bubble. As the bubble grows the effect of this viscous resistance decreases.

e The model is sensitive to the boundary condition at the bubble/melt interface (the
solubility law condition). Small variations in this boundary condition lead to rela-
tively large changes in the bubble growth rates. This is due to the sensitivity of the

melt viscosity to water concentration at low concentrations.

e The dynamics of bubble growth are insensitive to the choice of equation of state for
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water vapour.

The model assumes that there are no crystals in the melt and that the melt has zero
yield strength (Newtonian viscosity). Another major assumption is that the initial water
concentration in the melt is uniform; this is unlikely to be the case in a natural system. Liu
and Zhang (2000) investigated bubble growth experimentally and found marked variations

in bubble growth rate, which they attributed to an inhomogeneous distribution of volatiles.

3.6.1 Implications for modelling volcanic processes

The most important conclusion of this study is that concentration-dependent viscosity and
diffusivity play a major role in the dynamics of bubble growth. The effects of viscosity
and diffusivity are highly coupled and many important features of the dynamics of bubble
growth in explosive volcanic eruptions cannot be captured if either of these factors is
assumed constant. Most models of volcanic conduit flow incorporate a temporally-varying
viscosity (e.g. Papale et al. 1998; Melnik and Sparks 1999); they assume that degassing
proceeds in equilibrium with the falling pressure and calculate the viscosity of the melt
based on the equilibrium volatile concentration and the vesicularity. This progressive
increase in viscosity on degassing has a profound effect on the large-scale conduit flow;
Wilson (1998) showed that the viscosity increase can lead to dynamical instabilities in
the flow, causing large-scale overturning of the melt in the conduit. Wylie et al. (1999)

discovered an oscillatory regime of magma flow due to volatile-dependent viscosity.

All current conduit flow models, however, neglect the fact that the viscosity will vary
spatially within the melt due to the dehydration zones around bubbles. In this chapter,
an effective viscosity was defined to provide a convenient single parameter which describes
the viscous resistance felt by the bubbles in a liquid whose viscosity decreases with distance

from each bubble. This cannot, however, be used directly as an effective resistance to large-
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scale shear flow in a volcanic conduit. To my knowledge, there has been no examination
of the rheology of a bubbly liquid whose viscosity varies with the spatial distribution of
volatile molecules around each bubble. The relatively rigid, viscous skins around each
bubble might cause the bubbles to behave as hard spheres in the flow, rather than void

spaces.

The effects of concentration-dependent viscosity and diffusivity are most marked under
conditions of highly non-equilibrium degassing. If decompression rates are slow and the
volatile concentration in the liquid is everywhere in equilibrium with the ambient pressure
then the viscosity is also uniform and the value of the volatile diffusivity is, by definition,
irrelevant. However, there is no way of determining whether degassing can proceed in
equilibrium with the falling pressure without implementing a full solution of the diffusion

of volatiles through the melt— in other words, a bubble growth model is required.

In a model of large-scale eruption dynamics, therefore, the nature of degassing (equilibrium
or non-equilibrium) should not be assumed but calculated. Furthermore, in models of
bubble growth, the rate of depressurization should be calculated, not specified a priori.
Both these goals could be achieved by linking models of conduit flow with a model of bubble
growth. The formulation of the bubble growth model in this chapter provides an easy way
to join the two models; the ambient pressure (currently specified by equation 3.29) could
be the output of a conduit flow model. The bubble growth model could then feed values

of the bubble radius and the melt viscosity back to the conduit flow model.

The sensitivity of the dynamics of bubble growth to the melt viscosity leads to a potentially
serious obstacle to accurate modelling of volcanic processes. Liu and Zhang (2000) showed
that bubble growth rates observed in laboratory experiments could only be reproduced
by the numerical model of Proussevitch and Sahagian (1998) if they multiplied the value
of the melt viscosity as calculated by the model of Hess and Dingwell (1996) by some

arbitrary factor, within the error of the parameterization. This factor was found by fitting
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the experimental data; it could not be calculated a priori. Furthermore, the ‘viscosity
factor’ was different for each bubble in a given experiment. This illustrates that even the
apparently small errors in the best parameterizations of melt properties can lead to large

uncertainties in the growth rates of bubbles, and hence the expansion rates of magma.



Chapter 4

Permeability—porosity
relationships in volcanic rocks and
magma

4.1 Summary

A model has been developed to calculate the permeability k£ of magma and to test its
sensitivity to various parameters. Power-law relationships between k£ and porosity ¢ are
revealed, in agreement with previous experimental and theoretical studies. These rela-
tionships take the form k = k/r2 = a(¢ — ¢er)® where r is the mean bubble radius, ¢
is the percolation threshold below which permeability is zero, and a and b are constants.
It is discovered that k — ¢ relationships are independent of bubble size. The percolation
threshold was found to lie at about 30% porosity. Polydisperse bubble size distributions
give permeabilities about an order of magnitude greater than monodisperse distributions
at the same porosity. If bubbles are elongate in a preferred direction then permeability in
this direction is increased but, perpendicular to this direction, permeability is unaffected.
In crystal-free melts the greatest control on permeability is the ease of bubble coalescence.
In viscous magmas, or when the cooling timescale is short, bubble coalescence is impeded

and permeability is much reduced. This last effect can cause variations in permeability of

104
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several orders of magnitude.

4.2 Introduction

A common feature of many volcanic eruptions is that they exhibit diverse eruptive styles.
The eruption of Mount St. Helens, for example, commenced with a highly explosive phase
of Plinian and pyroclastic flow activity on May 18 1980, triggered by a landslide which
decapitated the volcanic edifice. This explosive phase was followed by a period of effusive
dome growth; the dome was destroyed by another explosive phase and a new dome grew
in its place which was also removed by explosive activity. A third phase of dome growth
followed which continued until the eruption ceased in 1986. The ongoing eruption of

Montserrat has also seen several phases of alternating explosive and effusive activity.

It is clearly of paramount importance for the prediction and mitigation of volcanic hazards
to understand the mechanisms which cause these transitions between explosive and effusive
activity. An early proposal was that the changes in eruptive style reflect the progressive
emptying of a magma chamber which is stratified with respect to volatile content (e.g. Fink
1983). Explosive activity occurs when volatile-rich magma is sampled from the chamber;

the eruption of volatile-poor magma leads to effusive activity.

The explanation of volatile stratification is not, however, supported by petrological evi-
dence. It is commonly discovered that the products of explosive and effusive phases of
the same eruption are petrologically identical, even if they are texturally different. For
example, Barclay et al. (1996) measured the volatile contents of melt inclusions within
quartz and feldspar phenocrysts in rhyolites from Mayor Island, New Zealand. Despite
the fact that the samples represented a wide variety of eruptive styles, the water content
of all the inclusions was ~ 4.4 wt.%. Samples from both explosive and effusive phases of

the Mount St. Helens (1980-1986) eruption contain phenocrysts of amphibole (Ruther-
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ford and Hill 1993); amphibole is only stable in magmas with high water contents (greater
than ~ 4 wt.% for Mount St. Helens dacite, Rutherford and Hill 1993). Amphibole is also
present as phenocrysts in samples of both explosion-derived pumice and dome lava from
the ongoing eruption of Montserrat (Barclay et al. 1998) and is indicative of initial water
pressures of > 115 MPa, in agreement with measured water contents of ~ 4.4 wt.% in

melt inclusions.

There is therefore very strong evidence that the changes in the eruptive style in these
eruptions were not controlled by variations in the pre-eruptive volatile content of the
magma. It is now widely accepted that gas can escape from the volcanic system during an
eruption (Jaupart 1998), thus reducing the volume fraction of gas in the ascending magma
and preventing fragmentation. This is open-system behaviour and contrasts with many
numerical models of conduit flow (e.g. Papale et al. 1998; Melnik 2000) which assume that

no gas is lost from the magma during an eruption (closed-system behaviour).

A simple calculation reveals that closed-system degassing is unlikely to result in effusive
activity. We shall estimate the maximum amount of dissolved water which is expected to
result in an effusive eruption with closed-system degassing. Let us assume that magma is
initially saturated in water at pressure P;. The magma reaches the surface at atmospheric
pressure Py, vesiculating as it ascends. Assuming that degassing proceeds in equilibrium
with the falling pressure according to Henry’s law, the mass fraction of water ¢ in the melt
at pressure P is given by ¢ = a/ P where « is the Henry constant. The mass fraction of
water released on depressurization is therefore a(v/P; — /Patm). Assuming that the water
vapour behaves as an ideal gas, the volume V' of water vapour released per cubic metre of

melt is:

_ paRT (\/Py — \/Patm)
MgPatm

v (4.1)

where p is the melt density, R is the gas constant, T is the temperature in Kelvin and M,

is the molar mass of water. The vesicularity ¢ of the melt is V/(1+V'). Let us assume that
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the magma fragments and explosive activity occurs if magma reaches the surface with a
vesicularity greater than 75%. This gives V = ¢/(1 — ¢) = 3. We may then calculate the
initial saturation pressure (P;) required to lead to explosive activity:

b <VMgPatm

2
= Pt 4.2
paRT + a ) (42)

For V. = 3, M, = 0.018 kgmol™!, Py, = 0.1 MPa, p = 2300 kgm 3, o = 4.1 x
1076 Pa~/2, R = 8.31 JK'mol~! and T = 1073 K, we obtain P, = 0.14 MPa, cor-
responding to an initial water content of 0.16 wt.%. This result was also calculated by
Jaupart and Allegre (1991). Under closed-system degassing, therefore, explosive activity
is expected even for relatively low initial water contents. It is observed, however, that
effusive activity can arise from magma with much larger pre-eruptive water contents (e.g.
4.4 wt.% for the Mayor Island rhyolites, Barclay et al. 1996; 4.4 wt.% for Montserrat
magma, Barclay et al. 1998). The most likely explanation of this discrepancy is that some

gas is lost from the magma between the onset of vesiculation and eruption.

The above calculation is clearly over-simplified; there is no consideration of the fragmenta-
tion mechanism, for example, a key control on the transition between effusive and explosive
activity. However, there are many other lines of evidence which support the existence of

open-system behaviour in effusive volcanic eruptions:

e Field observations of volcanic activity often reveal that periods of effusive activity
are associated with episodes of gas venting from the volcanic edifice (e.g. Casadevall

et al. 1983).

e The systematics of deuterium (D) and hydrogen degassing are such that D and H
are fractionated to different degrees under closed-system and open-system conditions.
D:H ratios have been measured in samples from Little Glass Mountain, California

by Taylor et al. (1983). Samples from pyroclastic deposits exhibited trajectories of



CHAPTER 4. THE PERMEABILITY OF MAGMA 108

D:H versus HoO which were consistent with closed-system degassing. By contrast,
samples from effusive, dome-building phases were characterized by D:H data which

indicated open-system degassing.

e Rutherford and Hill (1993) studied reaction rims in phenocrysts of amphibole in
dacites from the 1980-1986 eruption of Mount St. Helens. These reaction rims
were present in dome lavas, indicating that they had spent significant amounts of
time outside their stability field before cooling. The presence of amphiboles is an
indication of high (> 4 wt.%) initial water contents. As exsolution occurred and the
water content of the melt dropped, the crystals partially redissolved. Since these
exsolved volatiles were not present in the erupted magma, they must have escaped
during ascent. Amphibole phenocrysts from pumices from Plinian phases show no

reaction rims; the magma ascent rate was too rapid for amphibole to be resorbed.

e A rare and important exposure of a fossil conduit and vent at Mule Creek, New
Mexico was described by Stasiuk et al. (1996). The rhyolite magma preserved in
this conduit had an initial water content of ~ 2.5 — 3.0 wt.%, as evidenced by melt
inclusions. The depth of conduit exposed was 300 m and simple closed-system models
of degassing (such as equation 4.1) imply that the vesicularity of the magma should
have been greater than 70% over the whole exposure. However, observed values
of vesicularity were ~ 20% at 300 m depth and ~ 40% at depths shallower than
200 m. Vesicularities also decreased from the interior of the rhyolite to the edge,
reaching zero at the conduit walls. The country rock was fractured and it appears
very likely that gas was lost from the magma to the permeable walls of the conduit
during the eruption. Bubbles near the conduit walls were observed to be aligned
and connected, providing a path for gas flow from the interior of the magma to the
conduit walls. The exposure at Mule Creek also preserves pumice fall deposits from
an explosive phase which preceded the effusive eruption of lava. These pumices were

petrographically similar to the samples of obsidian lava.
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4.2.1 Models of gas loss during conduit flow

There are many lines of evidence to suggest that the style of an eruption (explosive or
effusive) is largely controlled by whether degassing is an open- or closed-system process.
This has been investigated in a more quantitative fashion by several authors, who have
performed numerical simulations of conduit flow, incorporating syn-eruptive gas loss. This
contrasts with many other numerical models of conduit flow in which degassing is assumed
to be a closed-system phenomenon (e.g. Melnik 2000). I shall now discuss the main features

and results of three of these models.

Jaupart and Allegre (1991)

The study of Jaupart and Allegre (1991) was the first to investigate the effects of gas loss
on large-scale conduit flow dynamics and the eruptive style. They developed a numerical
model in which the erupted mass flux of magma is calculated under the condition that the
conduit wall is permeable. The main assumptions of the model are that the amount of
volatiles degassed is given by a solubility condition (equilibrium degassing)— no attempt
is made to model the kinetics of degassing (chapter 3); that the conduit is cylindrical
and that fragmentation occurs at a vesicularity of 75%. The model is one-dimensional,
considering only vertical variation in all parameters, and so quantities such as ascent
velocity are horizontally averaged. The key equations of the model are now described

briefly.

The mass flux of liquid G| is given by:

G = pu(1 = d)w (4.3)

where p; is the liquid density, ¢ is the volume fraction of gas in the bubbly liquid and w is

the ascent velocity. The magma rises through a cylindrical conduit of radius @ and, as it
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rises, loses gas to the conduit walls at a rate (mass flux) g. Considering mass conservation

of gas molecules:

na? <%[pgw¢] + %[m(l - ¢)w]) _ _9raq (4.4)
where 7 is the vertical coordinate, p, is the gas density and x is the mass fraction of volatiles
dissolved in the melt. The left hand side of equation 4.4 is the change in the total volatile
content of the magma, accounting for both dissolved and exsolved gas. Equations 4.3
and 4.4 give:

dg opi ([ dP ¢ dpg  dz 2q
a1 a(m i o) (4.5)

where P is the pressure of the gas in the magma. This states that, as magma rises,
the volume fraction ¢ of gas is increased by the exsolution of gas from the melt and the
expansion due to decompression, and decreased due to gas loss to the conduit walls. The

rate of gas loss is given by a form of Darcy’s law of permeable flow:

q = py¢k(P — Pr) (4.6)

where Py, is the far-field pressure, taken to be lithostatic. The factor of ¢ in equation 4.6
accounts for the fact that the rate of gas loss will be proportional to the fraction of the
conduit wall which is in contact with the gas phase. The effective permeability & of the
conduit walls is a key factor in this equation— this was calculated based on estimates
of the size and density of fractures in the conduit walls. Gas loss to the conduit wall
can only occur if the conduit is overpressured with respect to the surrounding country
rock. The existence of this overpressure is calculated by the model, not assumed a priori.
The model also includes equations which describe momentum conservation in the cases of
laminar flow (pre-fragmentation) and turbulent flow (post-fragmentation). The viscosity
of the magma is calculated as simple functions of the dissolved water content and the

volume fraction of bubbles.
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The most important result of the model is that the eruptive behaviour at the vent is
extremely sensitive to small changes in the initial pressure in the magma chamber. This
is due to a strong positive feedback between ascent velocity and the rate of gas loss: If the
ascent rate of magma slows slightly due to, perhaps, a small decrease in chamber pressure,
there is more time for gas loss to the conduit walls. This leads to slower expansion of
the magma and hence slower ascent rates. Therefore, the transition between explosive
and effusive activity may be due to a gradual decrease in chamber pressure as the magma
chamber is emptied. Replenishment of the magma chamber from depth may lead to a

sudden transition from effusive to explosive activity.

Woods and Koyaguchi (1994)

Woods and Koyaguchi (1994) develop a model which is in many respects similar to that of
Jaupart and Allegre (1991). The main differences between the two models are that Woods
and Koyaguchi assume that the far-field pressure is hydrostatic and that the conduit
permeability & is not constant but decreases with depth. An assumption of hydrostatic
pressure in the far field tends to lead to higher gas fluxes than with lithostatic values; for

the same depth, hydrostatic pressures are lower than lithostatic pressures.

Like Jaupart and Allegre (1991), Woods and Koyaguchi search for flow solutions for a
given chamber pressure. Valid solutions are those which reach either atmospheric pressure
(effusive solutions) or the speed of sound (explosive solutions) at the vent. A major feature
of the results of this study is that multiple flow solutions are found for a given chamber
pressure. In general, there are two distinct solutions which lead to effusive flow and one
solution which leads to explosive activity. Above a chamber overpressure of 1.4 MPa
only explosive solutions are possible. These multiple solutions are a result of the inherent
non-linearity of the governing equations, but were not reported by Jaupart and Allegre

(1991).
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The model was used to investigate the expected eruption sequence if the magma cham-
ber was supplied from depth from an unspecified source. (The ongoing eruption of the
Soufriere Hills volcano, Montserrat is thought to have been triggered by an input of mafic
magma from depth; Sparks et al. 1998; Murphy et al. 1998.) The pressure in the magma
chamber is due to a competition between the input of magma from depth and the output
to the conduit. Initially, the magma chamber is replenished from depth and magma is
removed slowly, giving an effusive eruption. If the rate of input of magma to the chamber
is greater than the rate of removal then the chamber pressure will slowly increase. When
a certain overpressure is reached, a sudden transition to explosive activity takes place,
rapidly draining the chamber and reducing the overpressure. Effusive activity then re-
sumes. Hence complex cycles of effusive and eruptive activity are predicted, qualitatively

similar to those observed at Mount St. Helens in the 1980-1986 eruption.

Melnik and Sparks (1999)

The model of Melnik and Sparks (1999) was developed to investigate the processes of
lava dome formation, with particular application to the ongoing eruption of the Soufriere
Hills volcano, Montserrat. They considered the dynamics of ascent of viscous magma,
incorporating the effects of microlite crystallization and gas loss by permeable flow. The
crystallization of anhydrous microlites (e.g. plagioclase) not only significantly increases
the viscosity of the melt (Lejeune and Richet 1995) but also increases the concentration
of dissolved gas in the residual melt causing further exsolution and increasing gas pres-
sures (Sparks 1997). In contrast to the two models discussed above, Melnik and Sparks
considered gas loss in a wertical direction only, based on the observation that, at the
Soufriere Hills volcano, a vigorous gas plume was observed issuing from the summit of the
dome. In their model, therefore, they included an equation describing the permeability of
the magma to gas, based on measurements of the permeability of rock samples from the

eruption.
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The model predicted that the largest pressure in the system is not to be found in the
magma chamber (at 5 km depth), but in the conduit at a depth of a few hundred me-
tres. This was in agreement with calculations from ground deformation measurement at
the Soufriere Hills volcano (Voight et al. 1998; Shepherd et al. 1998). The depth and
magnitude of this conduit overpressure were only slightly dependent on the permeability
of the magma. Once more, multiple solutions for discharge rate were discovered for a
given chamber pressure which allows for complex switching between explosive and effusive

activity.

4.2.2 How is gas transported to the conduit walls?

The above models have demonstrated the great importance of gas loss on the flow dynamics
and style of an eruption. The mechanism by which gas is transported from the interior of
the rising magma to the conduit walls, however, remains unclear. In the models of Jaupart
and Allegre (1991) and Woods and Koyaguchi (1994), the details of the process were not
considered. Melnik and Sparks (1999) considered only vertical gas flux by permeable flow

through the magma itself.

There are two possible ways in which gas can be transported from the interior of a rising

column of melt to the conduit walls. Gas can either be transported as bubbles which

migrate laterally, or by permeable flow through interconnected bubbles. The diffusivity

D of water in magma is far too low to allow significant lateral diffusive gas transport on
9

the timescale of an eruption; taking D = 10~ m?s~! with a conduit radius » of 10 m, a

characteristic timescale for diffusion is 10'3 s (=r?/D).
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Migration of gas bubbles

It is very unlikely that small gas bubbles could move relative to a high-viscosity (dacitic
or rhyolitic) melt. To illustrate this, let us calculate the Stokes velocity v of a bubble of

radius r rising through a fluid of dynamic viscosity #:

17r2g(p —
o — L779(p = py)

3 (4.7)

where g is the acceleration due to gravity and p; and p, are the liquid and gas densities
respectively. Taking r = 1 mm, g=9.81 ms 2, p; = 2300 kgm 3, p, = 0 and 1 = 10" Pas,
we obtain v = 7.5 x 10~7 ms™!. This value must be considered an upper bound as I have
deliberately chosen low values of p, and 7 and a high value of r in order to maximize v.
Even this unrealistically high Stokes velocity is extremely slow compared with the ascent
velocity of magma; for example, Rutherford and Hill (1993) estimated magma ascent
velocities of 15-50 metres per hour (4.2 — 14 x 1073 ms™') for the dome growth phases of
the 1980-1986 eruption of Mount St. Helens. Motion of gas bubbles relative to the melt

phase must therefore be ruled out.

A recent study by Wilson (1998) showed that gas could be transported laterally with
the melt, carried along by the motion of fluid perpendicular to the main (upward) flow
direction. The mechanism for generating this lateral flow is as follows. Wilson considered
the upward motion of bubbly, compressible magma in a parallel-sided conduit or dyke.
The key behind the analysis is that the viscosity of the melt is very sensitive to its water
content (e.g. Hess and Dingwell 1996) and the water content of the melt is dependent on
the pressure (Henry’s law, ¢ = av/P). This leads to the result that the melt viscosity is
essentially a function of pressure— a high pressure gives a high water concentration in
the melt and a low melt viscosity. As the melt rises through the conduit and degasses,
the liquid viscosity increases and a horizontal pressure gradient is created such that the

pressure in the centre of the conduit is greater than that at the walls, a result which
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arises from a solution of the relevant equations of motion. Hence the melt viscosity at
the centre of the conduit is less than that at the walls. Similar vertical stratifications
of viscosity were shown to be unstable by Renardy (1987). This instability leads to a
large-scale overturning and mixing of the magma, transporting bubbles from the centre of

the conduit to the walls.

Gas transport by permeable flow

The second mechanism by which gas can be transported from the interior of the magma to
the conduit walls is by permeable flow through interconnected bubbles within the magma.
This was first proposed by Eichelberger et al. (1986), based on data obtained from drilling
into Obsidian Dome, eastern California. At this locality, both tephra from an explosive
eruption and rhyolitic lava were recovered; no petrological difference between these de-
posits was reported. The dome consists of both vesicle-poor and pumiceous material and
the porosity of the lava increases towards the vent. Eichelberger et al. (1986) interpreted
this to indicate that the lava had erupted as a highly-porous foam; gas then escaped from
this permeable foam as it flowed away from the vent, reducing its porosity and causing
it to collapse into vesicle-poor obsidian. Westrich and Eichelberger (1994) showed ex-
perimentally that pumices could collapse under pressure to form obsidian with no relict
bubble textures. Eichelberger et al. (1986) measured the permeability of six samples from
Obsidian Dome and remarked that the permeability of the samples became significant
for porosities greater than 60%. Westrich and Eichelberger (1994) reported that their
artificially-produced rhyolite foams also became permeable at 60% porosity. Whitham
and Sparks (1986) observed that immersed pumices can absorb water and sink, requiring

that their vesicles are interconnected.

The permeable foam model of Eichelberger et al. (1986) initially met with opposition from

some workers (e.g. Friedman 1989; Fink 1992) who preferred an explanation for effusive
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volcanism based on a low initial water content. However, current evidence (discussed
above) is now overwhelmingly in favour of the hypothesis that effusive silicic volcanism
arises, in many cases at least, from a high initial water content and must therefore be
due to open-system degassing. Many studies (Eichelberger et al. 1986; Klug and Cashman
1996; Saar and Manga 1999) have shown that volcanic rocks are permeable to gas. For gas
loss by permeable flow to occur, the conduit must become overpressured with respect to its
surroundings; models of conduit flow (e.g. Jaupart and Allegre 1991) and field observations
of ground deformation (e.g. Voight et al. 1998) reveal that this overpressure does indeed
occur. Field observations (Stasiuk et al. 1996) and drilling projects (Eichelberger et al.
1996) reveal that the fractured nature of the conduit walls allows gas to be released into

the volcanic edifice.

We can be confident, therefore, that gas can be lost by permeable flow from magma as
it rises through the conduit. It is very important to calculate the rate at which this can
occur, as we have seen that gas loss to the conduit walls can have a profound effect on
large-scale flow dynamics and the style of eruption (effusive versus explosive). The rate of

gas flow (at low Reynolds number) through a permeable medium is given by Darcy’s law:

_kpAAP

G=-"0

(4.8)

where G is the mass flux of gas, AP is the driving pressure differential, [ is the downstream
length of the domain, A is the cross-sectional area of the domain, u is the dynamic viscosity
of the permeating gas and k is the permeability of the medium. For a volcanic system, [,
A and p can all be estimated with reasonable accuracy, and AP can be calculated from a
solution of the equations of motion (e.g. Wilson 1998). At present, the greatest unknown

in equation 4.8 is the permeability k.

Accurate estimation of k is crucial to the calculation of the rate of gas loss from a volcanic

system. It is to be expected that k& will depend on the porosity of the rock ¢; the greater
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the volume fraction of bubbles, the more likely they are to become interconnected to form
a permeable network. In this chapter, I shall develop and apply a new model to elucidate
the relationship between k and ¢ and examine the factors which control this relationship.
The bulk of the material in this chapter is reproduced in two papers. In Blower (2001)
the formulation of the model is described in detail. The results and implications of the
model are discussed in a manuscript (J.D. Blower, Factors controlling permeability—porosity
relationships in volcanic rocks) which has been submitted for publication in the Bulletin

of Volcanology.

I shall now discuss previous studies concerning the evaluation of magma permeability.

4.2.3 Measurements of permeability

Currently, experimental data concerning permeability—porosity relationships in volcanic
rocks are scarce, particularly at low porosities. The only published datasets known to
the author are those of Eichelberger et al. (1986), Klug and Cashman (1996) and Saar
and Manga (1999). The data of Klug and Cashman show very different permeability—
porosity relationships to those of Eichelberger et al. (figure 4.1). The difference is most
clearly marked at low porosities. The statement of Eichelberger et al. (1986) that magma
permeability only becomes significant for ¢ > 60% is not supported by the data of Klug
and Cashman. If these measurements are reliable then it is clear that £ depends on
more than porosity alone. Dingwell (1998) suggested that the difference between the two
datasets might be due to samples suffering mechanical damage on cooling. In this chapter

an alternative hypothesis will be developed.

In Saar and Manga (1999) the importance of the control of the rock microstructure on the
permeability is highlighted (figure 4.2). A k — ¢ trend of the form observed in the data of
Klug and Cashman (1996) was only reproduced for samples of scoria with sub-spherical

bubbles. Samples which had undergone significant strain and distortion of their vesicles
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Figure 4.1: Laboratory measurements of permeability-porosity relationships by Eichel-
berger (1986, open circles and thin trendline) and Klug and Cashman (1996, all other
symbols, thick trendline and best fit equation), adapted from Klug and Cashman (1996).
Note the very different trends in the two datasets and the large degree of scatter in the
data. It should be noted that to make a proper comparison, the permeability values should
be normalized to the square of the bubble radius in each sample.

showed very different k£ — ¢ relationships.

Permeability data for granular rocks such as sandstones are much more plentiful (e.g.
Bourbie and Zinszner 1985) than for volcanic rocks; the accurate measurement of the
permeability of reservoir rocks (commonly sandstones or fractured limestones) is very
important for the extraction of underground oil and water. Many theoretical models have
been developed to interpret these data (e.g. Bosl et al. 1998; Manwart et al. 2000). These
models cannot, however, be directly applied to volcanic rocks as they are based on a very
different microstructure. In these models permeability develops through the connection of
interstices between grains (Feng et al. 1987; Manwart et al. 2000) or through the connection
of fractures (Cravero and Fidelibus 1999). It is usually imagined (Saar and Manga 1999)

that permeability in volcanic rocks is due to the interconnection of bubbles (figure 4.3).

Percolation theory (Sahimi 1994) is a powerful tool for investigating fluid permeability in

idealized cases. Often, this theory is concerned with regular arrangements of objects
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Figure 4.2: Permeability—porosity relationships in vesicular basalts from Saar and Manga
(1999). The permeability £ has been normalized against the median cross-sectional bubble
area A.. Measurements of permeability are shown for three different rock types; scoria
with sub-spherical bubbles and samples whose bubbles have been elongated by flow to
different extents. The arrows indicate the evolution of permeability as magma becomes
sheared and its bubbles become deformed.

Figure 4.3: (a) Permeability of granular rocks develops through connection of intergran-
ular pore spaces. (b) In volcanic rocks, permeability arises through connections between
bubbles. The width of the aperture (r,,) controls the resistance to flow of the bubble-
bubble bond. r,, may be calculated given the radius of both bubbles r; and 7, and the
bubble separation d (equation 4.10).
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(e.g. bubbles or grains) on a lattice. The closest analogue of a volcanic rock within
percolation theory is the fully-penetrating sphere (FPS) model (Lee 1990). In the FPS
model, permeability develops through interconnection of randomly-placed spherical void
spaces which are not confined to a regular lattice. However, the ‘bubbles’ are spherical and
are imagined to be all of the same radius; in volcanic rocks, bubbles are often ellipsoidal

or cylindrical and the bubble size distribution is rarely monodisperse.

The above treatments, both theoretical and experimental, give power-law relationships
between permeability k& and porosity ¢ (Klug and Cashman 1996; Saar and Manga 1999;
Sahimi 1994):

k=ad® or k=a(¢—da) (¢ dur) (4.9)

where a and b are constants and ¢, is a critical porosity below which permeability is
zero (the percolation threshold, section 4.4.1). Another consistent result is that values of
permeability span five or six orders of magnitude over the porosity range of volcanic rocks,
further emphasizing the importance of understanding k& — ¢ relationships. Eichelberger
et al. (1986) implied that ¢¢p ~ 60% whereas Saar and Manga (1999) inferred that the
critical porosity was much lower, lying at around 30% porosity. The critical porosity
defines the onset of permeability and is therefore a very important parameter to constrain;
if permeability develops early in the vesiculation process then the potential for gas loss is

much greater than if the magma remains impermeable for most of its evolution.

4.3 Development of the model

The simulation of the three-dimensional flow of a liquid or gas in a vesicular material such
as volcanic pumice or scoria is, in the general case, an enormously complicated task. In
such media, the permeability is developed by interconnection of bubbles, which may be

spherical, ellipsoidal, tubular or very much more complicated in form. The path which a
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(a)

(b)

Figure 4.4: (a) A general network of bubbles. The permeability of the network between
bubbles 1 and 7 is calculated by drawing an analogy with a network of resistors in an
electrical circuit (b).

fluid might take through the material will be very complex and tortuous. In this model,
the problem of solving for the fluid flow through a complex pathway in a volcanic rock
is simplified by treating the pathway as a network of discrete resistances to fluid flow
(figure 4.4). The total resistance to flow is calculated using circuit theory, adapted from

Fidler (1988).

In this model, it is assumed that permeability develops through the interconnection of
bubbles, and that permeability is limited by the circular apertures connecting pairs of

bubbles (figure 4.3b). Each connection between two bubbles is termed a ‘bond’.
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4.3.1 Bond conductance

The fluid conductance of each bond is controlled by the radius of the aperture r,, con-

necting the bubble-bubble pair (figure 4.3b). In general, Pythagoras’ theorem gives:

d=\[r2 =12 +\/r} —r2 (4.10)

In the case 1y = ro = r, we have r,, = \/r? —d?/4. If | # ry there is no analytical

solution but r,, may be found numerically.

Feng et al. (1987) state that the permeability of this hole is approximately the same as
that of a circular tube of equal radius and of length equal to the diameter of the hole
(274p). Assuming Poiseuille flow in this tube:

TpAPr

G =
8ul

(4.11)

(G is the mass flux of permeating fluid, p is its density, y is its viscosity, AP is the driving
pressure, 7 is the radius of the tube and [ is its length) we may define the conductance of
the bond as:

G ™ 3

_ G _m 4.12
AP 16y (4.12)

(cf. conductance = current / voltage for electricity).
A more rigorous fluid dynamical treatment may be required, but is not necessarily justified

given that, in the real case, the fluid flow is far from simple and so the boundary conditions

for flow entering such an aperture will not be known.
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4.3.2 Methodology

To calculate the total permeability of a network of bubbles, a computer program was
written. The program is divided into 3 routines: (1) generation of the bubble distribution
and calculation of porosity; (2) investigation of the connections between the bubbles; and

(3) calculation of the total permeability of the virtual foam.

Bubble generation and calculation of porosity

The user specifies the size of the domain in which the bubbles are to be placed. The domain
is cuboidal, with three dimensions z, y and z, measured in pixels: usually z =y =2 =X

pixels.

The number of bubbles m and their radii are then provided (the bubble size distribution
or BSD). To ensure a statistically valid population distribution the radius of the bubbles
is always significantly smaller (by a factor of 10) than the size (X) of the domain. The
bubble centres are placed at random over the X3 nucleation sites. The porosity ¢ is
calculated by counting the fraction of the X3 volume elements (voxels) which fall within
a bubble. An image of a slice through the foam may be generated— see figure 4.5 for an

example.

Bubble connections

This routine tests each bubble pair in the distribution to see if they intersect (i.e. if the
distance between their centres is less than the sum of their radii, d < 7 + 79). Each
bond is ascribed a conductance according to equation (4.12) and the bond conductance

information is stored in a square matrix of rank m.

Bubbles are then separated into clusters according to their connections: two bubbles are
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Figure 4.5: A picture of a slice through the virtual foam. Bubbles in black form part of a
percolating cluster connecting all six sides of the domain. Bubbles in outline are not part of
this cluster. Note that this is a section of a three-dimensional domain and some apparently
separate bubbles are connected in the third dimension. The bubbles are all of the same
radius and the porosity of the foam ¢ is 38%. (Domain size X = 1000 x 1000 x 1000 pixel
units, using 1000 bubbles of radius 50 pixels.)
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Figure 4.6: A general node in the network of bubbles. The squares represent cross-sections
of the tubes used to calculate the conductance of the bond (see equation (4.12)).

deemed to be in the same cluster if they are connected either directly or indirectly (via

other bubbles).

Total permeability calculation

This routine is performed if it is found that a cluster of bubbles touches two opposing
faces of the domain. There is then a pathway for fluid flow across the domain. The total
permeability of the cluster is calculated by nodal analysis, adapted from Fidler (1988).
Only bubbles which are part of the percolating cluster are included in this part of the

analysis and each of these bubbles is a node in the network.

There are two more nodes (node 1 and node n)— one representing each opposing, con-
nected face of the domain. Therefore, if the percolating cluster contains N bubbles, the
number of nodes in the analysis is n = N 4 2. If a bubble touches the edge of the domain
then the radius of the circle described by the intersection of the bubble and the (flat)

surface of the domain is used to calculate the conductivity of the bond.

The mass fluid flux through the upstream face (node 1) is G; and the flux through the
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downstream face (node n) is —G;. The algebraic sum of the fluxes entering and leaving

each bubble is zero. By inspection of Fig. 4.6, we have, at a general node j:

Gj = (Pj — Pl)Kjl + (Pj — PQ)KJ‘Q + ...+ (Pj — Pn)an
7Tp n n
= 16,17 Yookt Y Bi(-rd) (4.13)
=1 =1
i£] i£]
with:
0 : 2<53<n—-1
Gj = G1 : _] =1
-G j=n

where rj; is the radius of the aperture connecting bubbles 7 and j. If there is no bond

between these nodes, rj; = 0.

Letting
n
3
Yij = Z T'ji
i=1
1#]
and

Equation (4.13) becomes:

n
_ "N p
G, = @;yﬂ P (4.15)

Writing equation (4.15) for each node in the percolating cluster, we obtain:
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Gy Yir Y12 .- Yin Py
0 Y21 Y22 ... Y2 Py
_ T ] (4.16)
164 : :
_Gl Ynl Yn2 --- Ynn Pn

The set of n equations represented by this matrix equation cannot be solved as they are
dependent. However, since node n represents the downstream face of the domain, we
may conveniently define the pressure here to be zero (P, = 0, analogous to ground in
an electrical circuit). We may now remove the nth row and column of the above square

matrix to obtain n — 1 independent equations. If we define:

Y11 Y12 e Yin—1
Y21 Y22 e Y2,n—1
Y=| . " (4.17)
Yn—-11 Yn—-12 --- Yn—-1n-1

and let Z be the inverse of Y then we have:

Py Z11 Z12 ... Zipoa G
Py 16p | 221 Zy ... Zap 0
: o | : : :
P,y Zn-11 Zp-12 -+ Zp_ip-1 0
[ Zn
_ 16 Z91 a
o :
| Zn-1,1

The matrix inversion is performed by standard Gauss-Jordan elimination with full pivoting
(adapted from Press et al. 1992). (Note that Y is sparse and symmetric and so this
algorithm is inefficient. However, the routine is extremely reliable and well-tested and

computation speed is not an important issue.) The total conductance of the network
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between the two opposing sides of the domain (nodes 1 and n) is then:

_G_m 1

K, =21 _ TP
TP T 16p 7

(4.19)

Applying Darcy’s law (equation 4.8) we obtain the total permeability of the domain:

pl w1

ktot = Kip— = ———
tot lnpA 16AZ11

(4.20)

A is the cross-sectional area of the domain (perpendicular to the flow direction) and [ is
the length of the domain (parallel to the flow direction). It is usual to specify a cubic

domain in the model, giving I = X and A = X2 and:

— T 1
YT 16X 71y

(4.21)
The permeability in each of the three directions X, § and Z is calculated by changing which
pair of opposing faces we choose to be nodes 1 and n. If the bubbles are spherical the
problem is isotropic so the three permeabilities k;, k, and k, are found to be equal over
a number of analyses. If there exists more than one cluster which connects the same two
opposing sides of the domain then the conductance of each is calculated and summed (cf.

electrical conductors in parallel) to obtain the total conductance in this direction.

The model allows for variation of the bubble size, the form of the bubble size distribution,
the bubble shape and the ease of bubble coalescence. The effects of these factors are now

discussed.



CHAPTER 4. THE PERMEABILITY OF MAGMA 129

10! b k/r2=8.27x 106 (¢ - 30)2-10
107
Nk
iy
=~
103
10
]0-5 - L L L 1 1
20 30 40 50 60 70 80

porosity (%)

Figure 4.7: The effect of bubble size on the normalized permeability. The results of three
experiments are shown here, all using a domain size of X = 1000. Black dots: m = 1000
bubbles, 55 < r < 75. Open squares: r = 50, 400 < m < 2000. Open diamonds: r = 100,
50 < m < 1000. The line represents the best fit of equation 4.9 (second equation) over
the porosity range 35% < ¢ < 80%.

4.4 Results

4.4.1 Percolation threshold

Percolation theory (Lee 1990; Sahimi 1994; Grimmett 1999) predicts that percolating
clusters of bubbles should only exist above a certain critical porosity, ¢.,. Figure 4.7 shows
the results of a large number of numerical experiments and reveals that the percolation
threshold lies close to 30% porosity, a result also found by Saar and Manga (1999). The
data of Klug and Cashman (1996) contain no measurements of permeability below 30%
porosity (figure 4.1). The value of the percolation threshold is slightly affected by the
bubble size distribution (section 4.4.3) and bubble shape (section 4.4.4). The threshold

may be greatly increased by imposing a barrier to bubble coalescence (section 4.4.5).
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4.4.2 Effect of bubble size

The normalized permeability % is independent of the bubble size (figure 4.7). This is only
violated if the bubble radius r (for a monodisperse distribution) is greater than 0.1X, where
X is the domain side length. The relationship between k and ¢ is well-approximated by

the following expression:

k=827 x10"%(¢ —30)%10 (30% < ¢ < 80%) (4.22)

This represents the best fit of equation 4.9 to the numerical results in figure 4.7 over
the porosity range 35% < ¢ < 80% with ¢, = 30%. Porosities less than 35% were not
included in the best fit calculation due to the large amount of scatter near the percolation
threshold— near ¢, small variations in the position of the bubbles cause large variations

in permeability.

4.4.3 Effect of the bubble size distribution

Any bubble size distribution may be used in the model. Here monodisperse, gaussian,
exponential and power law distributions are investigated. The results are summarized in
figure 4.8. Polydisperse BSDs lead to a permeability that is approximately one order of
magnitude greater than that of a monodisperse distribution at the same porosity. There is
very little difference between the k— ¢ relationships for the different forms of polydisperse

BSD. The percolation threshold is reduced slightly to a porosity of ~ 27%.

4.4.4 Effect of the bubble shape

It is common to observe non-spherical bubbles in volcanic rocks. In many cases, vesicles

are found to be elongate in a certain direction (figure 4.9). The model demonstrates the
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Figure 4.8: The effect of the bubble size distribution on permeability. Polydisperse distri-
butions give a permeability approximately one order of magnitude greater than monodis-
perse. The differences between k — ¢ trends of different forms of polydisperse BSD are
relatively small.

effect of this anisotropy on permeability, assuming that bubbles take the form of prolate
rotational ellipsoids with aspect ratio « (figure 4.10). When two bubbles overlap, the
aperture connecting them is an ellipse. If the long and short axes of this ellipse are a and

b respectively, then the equivalent circular radius of the aperture is 7., = Vab and the

calculation of permeability proceeds as above.

As expected, permeability is enhanced in the direction of elongation which is taken to be
the z-direction (figure 4.11). The greater the aspect ratio of the ellipsoids, the greater
the anisotropy of the permeability. The percolation threshold in this direction is reduced.
In the z and y directions, the permeability is the same as the permeability of spheres at
the same porosity; it is independent of the aspect ratio of the ellipsoids. Therefore, if the
magma in a conduit contains bubbles which are elongate parallel to the axis of the conduit
then the rate of gas loss vertically through the magma to the vent is expected to be more

rapid than the rate of gas loss horizontally to the conduit walls.
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Figure 4.9: SEM image of tube pumice from the Minoan Phase One Plinian eruption,
Santorini, Greece.

Side view

Plan view

L l
\ W

Figure 4.10: Two intersecting ellipsoidal bubbles of aspect ratio « = L/W. The equivalent
circular radius of the aperture connecting the bubbles is vab.
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Figure 4.11: k — ¢ relationships for a monodisperse array of 1000 ellipsoidal bubbles of
aspect ratio 1 (spheres), 1.5, 2 and 3. (a) Permeability perpendicular to the elongation
direction (the x and y directions) is independent of the aspect ratio. (b) Permeability in
the z (elongation) direction increases as the aspect ratio of the bubbles increases. The
percolation threshold is reduced.
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Figure 4.12: Melt films between impinging neighbouring bubbles in a sample of pumice
from the Minoan Phase One Plinian eruption of Santorini, Greece. Scale bar is 50 pm.
This illustrates that there exists a barrier to bubble coalescence.

4.4.5 Effect of a barrier to coalescence

So far it has been assumed that a connected pathway between bubbles exists if they
overlap (i.e. if d < ry + r9). There is abundant textural evidence to suggest that the
reality is much more complicated than this suggests. The persistence of melt films between
impinging bubbles (figure 4.12) attests to the difficulty of bubble coalescence in magmas.
The retraction of the melt film, and hence the process of bubble coalescence, is slowest in

melts of high viscosity (Proussevitch et al., 1993b).

A full treatment of the dynamics of bubble coalescence is beyond the scope of this model.
We may, however, capture some of the features of the process by introducing an artificial
barrier between bubbles. We may imagine that, unless a pair of bubbles overlaps by a
certain amount, a film of melt remains between the bubbles and gas cannot flow between

them. The condition for an open pathway to exist between two bubbles of radius r is then:

d<r(2—e) (4.23)
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where ¢ is the ‘barrier factor’ (0 < € < 1) and d is the distance between the bubble
centres. The higher the value of €, the harder it is for an open pathway to exist between
two bubbles. All other factors being equal, € may be thought of as a measure of the melt
viscosity. Alternatively, e may be considered to be an indication of the timescale of bubble
coalescence relative to the timescale of cooling and solidification; if the magma stiffens
rapidly compared with the time required for film thinning to occur, then coalescence will
be difficult and € will be high. Proussevitch et al. (1993b) investigated the process of film
thinning and rupture and concluded that a melt film between bubbles will rupture when it
reaches a certain critical thickness. This thickness depends on the melt viscosity, interfacial
surface tension, the timescale of film thinning and the difference in internal pressures
between two adjacent bubbles. Based on simple calculations and SEM observations, Klug
and Cashman (1996) proposed that a typical value for the critical film thickness in pumice
is ~ 1 pm. Navon and Lyakhovsky (1998) suggest that the critical film thickness may be

as small as 0.2 pm.

The effect of this barrier is shown in figure 4.13. As € increases, the percolation threshold
is shifted to higher porosities and the trend of the k— ¢ relationship steepens. Comparing
figure 4.13 with figure 4.1, we may formulate a hypothesis to explain why the data of
Klug and Cashman (1996) and Eichelberger et al. (1986) give such different k — ¢ trends.
If bubble coalescence was more difficult in the samples of Eichelberger et al. than in
those of Klug and Cashman, the difference in the trends may be explained. Indeed, the
samples of Eichelberger et al. were of very high viscosity, coming from an obsidian dome.
This provides an alternative to the suggestion of Dingwell (1998), who proposed that the
difference may be due to mechanical damage on cooling. The ease or otherwise of bubble

coalescence is a major factor in controlling the development of permeability in magma.
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Figure 4.13: The effect of a barrier to bubble coalescence on the relationship between per-
meability and porosity. As the barrier factor e (equation 4.23) increases, the permeability
at a given porosity is much reduced, and the percolation threshold is shifted to higher
porosities. This barrier is one of the major controls on k— ¢ relationships.

4.4.6 Effect of the spatial arrangement of bubbles

So far it has been assumed that the bubble centres are randomly placed and that the
radius of each bubble is independent of its position. A more realistic approach is to set
the size of each bubble to be dependent on its surroundings. An isolated bubble which is
placed far from other bubbles will grow to a relatively large size as it has a large reservoir
of volatile resources from which to grow. By contrast, a bubble which is close to a group
of other bubbles cannot grow to be as large as it must compete with its neighbours for

volatiles.

In the model, this effect is simulated in the following way. The bubble centres are placed
at random positions in the domain as before. The Voronoi volume of each bubble centre is
calculated: this is the number of the X3 points which are closer to this bubble centre than

to any other bubble. Isolated bubbles have a relatively large Voronoi volume. The volume
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Figure 4.14: Permeability—porosity relationships for a Voronoi bubble population (sec-
tion 4.4.6). The radius of each bubble is dependent on its surroundings; bubbles which
must compete with their neighbours for volatile resources grow to a smaller size than those
which are relatively isolated.

of each bubble is set to a specified fraction f of the Voronoi volume V' (f is the same for all
bubbles), and the radius is calculated (= (3V f/4r)'/?) assuming the bubbles are spherical.
We shall term the resulting distribution a ‘Voronoi’ distribution. In this way, unimodal
BSDs are generated, which are very well approximated by a Gaussian distribution with
a standard deviation o of ~ 0.15 times the mean radius. The model reveals (figure 4.14)
that the effect of this spatial dependence of radius is minor; the & — ¢ relationship for the

Voronoi distribution is very close to that for a Gaussian distribution (with o = 0.157) in

which the radius is completely independent of position.

This Voronoi bubble population is what we expect to develop if all bubbles nucleate at
the same time. If, however, bubbles nucleate continuously during the growth process, we
expect to see exponential or power-law BSDs (chapter 2). Furthermore, the position of
each new bubble nucleus will be controlled by the position of the existing bubbles; the

bubble centres are not randomly positioned. New bubbles are most likely to nucleate as far
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from the existing bubbles as possible as this is where volatile resources are least depleted
(Lyakhovsky et al. 1996). By this mechanism, it is theoretically possible to generate a
material with nearly 100% porosity and zero permeability— an Apollonian packing of
bubbles (Rouault 1999; chapter 2). Therefore, if nucleation proceeds continuously over a
period of time it is very difficult to predict k- ¢ relationships using this model. This is
most likely to be a problem for highly non-equilibrium conditions which favour continuous

nucleation (chapter 2).

4.4.7 Effect of crystals

The presence of crystals is not considered explicitly in the model. We may, however,
qualitatively investigate how crystals might affect k— ¢ relationships. If the volume
fraction of crystals in the melt is § then we have the following relationship between the

porosity of the melt ¢ner and the bulk porosity ¢ior:

¢tot
1-p

¢melt = (4.24)

The k — ¢ relationships discussed in previous sections relate to melt porosity, however, it is
more standard to measure and quote bulk porosities. The addition of crystals increases the
melt porosity — and therefore the permeability — at a given bulk porosity, and will also
have the effect of shifting the percolation threshold to lower bulk porosities. Of course, the
real effect of crystals is more complex than is expressed in equation 4.24. The tortuosity
of the percolating path through the melt region around the crystals will be increased, and

this is likely to affect the permeability.



CHAPTER 4. THE PERMEABILITY OF MAGMA 139

4.5 Conclusions

Using this model, we have gained valuable information about which factors are most
important in controlling the permeability of vesiculating magma. It has been shown that,

in the case of a single nucleation event and crystal-free melt:

e In order to compare permeability measurements from different samples, permeability
must be normalized to the square of the mean bubble radius in the samples (l;; =

k/r?).

e The equation k = 8.27 x 1075(¢p — 30)%19 describes well the relationship between

k and ¢ from 30% to 80% porosity, for a monodisperse distribution of bubbles.

e The relationship between k/r? and ¢ is completely independent of bubble size as long
as r is less than 0.1 times the domain size. Therefore, in experimental measurements
of permeability, the sample size needs to be greater than ten times the largest bubble

radius to provide a meaningful result.

e Below 30% porosity, permeability is zero. This may be reduced by the addition
of crystals, or increased by imposing a barrier to coalescence. This means that,
during a volcanic eruption, vesiculating magma may start to lose gas by permeable
flow when the porosity reaches 30%. As vesicularity increases, permeability rises by

several orders of magnitude.

e Permeability is extremely dependent on the ease of bubble coalescence. This might
explain the discrepancy between two previously-obtained datasets (Eichelberger et

al. 1986; Klug and Cashman 1996).

e The form of the bubble size distribution has relatively little effect on permeability.

Polydisperse distributions give a permeability around one order of magnitude greater
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than that of monodisperse distributions, and a slightly reduced percolation threshold

of ~ 27%.

e If bubbles are elongate in a certain direction, then permeability is increased in this
direction. For example, if the bubbles are ellipsoids with aspect ratio 3, the perme-
ability in the elongation direction is increased by an order of magnitude. Normal to

this direction the permeability is unaffected.

The results are most readily applicable to low-viscosity magmas with spherical or sub-
spherical bubbles. Saar and Manga (1999) investigated k— ¢ relationships of basaltic
rocks with a range of microtextures. They revealed the very important influence of mi-
crotexture on the permeability; only scoria samples with sub-spherical bubbles exhibited
k— ¢ relationships of the form discovered in the present study. Samples in which flow had
caused the vesicles to become extremely distorted deviate strongly from the k— ¢ trends

of equations 4.9 and 4.22.

A better understanding of the dynamics of coalescence is required to be able to predict l;:—gb
relationships in magmas. Aside from this limitation, the model reveals that, if coalescence
occurs readily, permeability may be predicted from the porosity and mean bubble size
alone. These are both measurable by means of density measurements and image analysis,
and so this model provides a practical tool for calculating the permeability of crystal-free
melts at any stage in its evolution. It is not necessary to measure the exact form of the

bubble size distribution.

4.5.1 Implications for modelling volcanic processes

This study has provided evidence that magma can become permeable relatively early in
its evolution, at 30% porosity. If crystals are present, or bubbles become aligned by shear

(as observed at the Mule Creek exposure, Stasiuk et al. 1996) then open pathways for gas
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flow may develop at still lower porosities. Under conditions in which bubble coalescence is
difficult (for example, a high magma viscosity) the percolation threshold may be increased;
this is interpreted to be the reason why Eichelberger et al. (1986) did not measure a

significant permeability until a porosity of 60%.

This provokes an important question: if magma becomes permeable so early in its evolution
then how does it achieve the high porosities (60-80%) which we observe in pyroclasts? The
answer lies in a consideration of the rate at which gas loss by permeable flow might occur.
Even if an open pathway for gas is achieved at 30% porosity, the model shows that the
permeability at this porosity is 3 orders of magnitude lower than that at 60% porosity,
for the same bubble size. We expect that at 60% porosity the bubbles will be larger than
at 30% porosity; this increases the permeability even further since & depends on r2. 1

therefore propose that gas loss at low porosities is only important for very slow magma

ascent rates.

In the models of Jaupart and Allegre (1991) and Woods and Koyaguchi (1994) the mech-
anism of gas transport from the magma to the conduit walls was not considered. Both
these models assumed that gas loss was controlled (i.e. limited) by the permeability of
the conduit walls. This implies that the permeability of the conduit walls is less than
that of the magma. Woods and Koyaguchi (1994) calculated the conduit permeability
using the expression keopguit = 10725 exp(—2/1000) m? where z is the depth in metres.
Table 4.1 gives the values of permeability from this equation for depths from 0.5 to 6 km.
For comparison, table 4.2 gives the magma permeability according to the present model
(equation 4.22) for porosities from 35% to 80% and bubble radii from 0.001 to 1 mm. A
comparison of the values of permeability in the two tables shows that for bubble radii
greater than 0.1 mm the magma permeability is indeed greater than that of the conduit.
For smaller bubbles, however, depending on the depth and porosity, the limiting (smaller)
permeability may be either that of the magma or that of the conduit walls. A full solution

of the eruption dynamics must therefore include an evaluation of both the magma perme-
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Table 4.1:

Values of conduit permeability given by the expression Keonduit

depth z / km

2
Kconduit / m

0.5

ST W N~

1.9 x 10713
1.2 x 10713
4.3 x 101
1.6 x 10714
5.8 x 10715
2.1x10°1
7.8 x 10716

10712 exp(—2/1000) m? (Woods and Koyaguchi 1994).

Bubble radius / m

1x10° 1x107° 1x10~* 1x1073
35% || 24 x 10716 | 24 x 107" | 24 x 10712 | 2.4 x 10710
40% || 1.0x 107 | 1.0 x 107 | 1.0 x 10~ | 1.0 x 107?
45% || 2.4 x 10715 | 24 x 10713 | 24 x 10~ | 2.4 x 107?
50% || 4.5 x 1071 | 4.5 x 10713 | 4.5 x 10711 | 4.5 x 107°
55% || 7.1 x 1071 | 7.1 x 1073 | 7.1 x 10~ | 7.1 x 107?
60% || 1.0x 10714 | 1.0x 1072 | 1.0x 1071 | 1.0x 108
65% || 1.4x 107" | 14 x 1072 | 1.4x 10710 | 1.4 x 1078
70% || 1.9x 10714 | 1.9x 10712 [ 1.9x 10710 | 1.9x 108
5% || 2.5 x 10714 | 25 x 10712 | 25 x 10710 | 2.5 x 108
80% || 3.0 x 107 | 3.0 x 107" | 3.0 x 10719 | 3.0 x 1078
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Table 4.2: Values of magma permeability (in m?) given by equation 4.22 at various bubble
radii (columns) and porosities (rows).

ability and the conduit wall permeability. The model described in this chapter provides a

convenient method for calculating magma permeability and, if combined with a conduit

flow model such as that of Jaupart and Allegre (1991) or Woods and Koyaguchi (1994),

could provide a more accurate insight into volcanic eruption dynamics and the transition

between effusive and explosive eruptions.



Chapter 5

Conclusions

The preceding three chapters are self-contained and may be read as entirely separate
investigations. The purpose of this concluding chapter is to draw together the main
findings of all these studies and to discuss how they have contributed to the major problems

outlined in chapter 1.

Does degassing proceed in equilibrium with falling pressure?

In chapter 2 it was deduced that power law and exponential bubble size distributions,
both commonly observed in volcanic rocks, were indicative of non-equilibrium degassing.
For conditions of low initial bubble density, low volatile diffusivity, high melt viscosity or
high decompression rates, a supersaturation of volatiles is expected to build in the melt
pockets between bubbles. This supersaturation may lead to further nucleation events and
hence the generation of a power law or exponential BSD. The formation of these new
bubbles would reduce diffusion distances and promote degassing efficiency. The extent of
the disequilibrium nature of degassing therefore depends on the supersaturation necessary

to induce nucleation. If nucleation occurs readily then the system may never deviate far
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from equilibrium.

This problem can also be approached by use of the bubble growth model in chapter 3. This
model alone is not sufficient to provide a definitive answer, however, as it is currently based
upon unrealistic conditions; it is assumed that pressure is released either instantaneously or
linearly with time. As discussed in chapter 3, great progress could be made by linking this
model with a model of conduit flow. The rate of pressure drop could then be calculated,

not assumed, and the kinetics of degassing could be fully investigated.

How important is the loss of gas from magma by permeable flow?

Chapter 4 described the development of a model which can be used to predict the perme-
ability of magma as it vesiculates. It was discovered that magma can become permeable
at around 30% porosity (the percolation threshold), depending mainly on the presence or
absence of crystals and the ease of bubble coalescence. If bubbles become aligned due to
shear (Stasiuk et al. 1996) then permeability may be achieved at even lower porosities.
The magnitude of the permeability is very dependent on the volume fraction of bubbles;
magma at 60% porosity was found to be 1000 times more permeable than it is at 30%
porosity. The model revealed that values of permeability cannot be predicted accurately
without a deeper knowledge of the dynamics of bubble coalescence. If bubble coalescence
is difficult (for example, if magma viscosity is high or the time available for coalescence
is short), then permeability may not be achieved until the magma reaches a much higher
porosity. If nucleation proceeds in a continuous, space-filling fashion (chapter 2), with
subsequent bubbles nucleating far from pre-existing ones, then high porosities may be

achieved before bubbles begin to coalesce and form a permeable network.

For gas to be lost from magma by permeable flow, three conditions must be satisfied:
(i) the magma itself must be permeable, (ii) the walls of the conduit must be permeable

and (iii) the pressure in the magma body must exceed the far-field pressure. The model
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in chapter 4, together with measurements of permeability of volcanic tephra, shows that
magma can indeed become permeable due to the interconnection of bubbles, but it is very
difficult to ascertain the exact stage at which permeability is achieved. Field observations
(Stasiuk et al. 1996) and drilling expeditions (Eichelberger et al. 1986) have revealed that
conduit walls can be highly fractured; condition (ii) is therefore satisfied, at least in some
cases. Numerical models of conduit flow (e.g. Jaupart and Allegre 1991; Wilson 1998) and
observations of tumescence of the volcanic edifice (e.g. Voight et al. 1998) provide strong

evidence for an overpressure in the conduit, fulfilling condition (iii).

It seems almost certain, therefore, that at least some gas will be lost from the system by
permeable flow during an eruption. The true importance of this cannot be ascertained
without considering the rate at which the process can occur. If magma ascends rapidly
then there is little time for gas loss. On the other hand, a slow ascent rate may leave
adequate time for significant amounts of gas to be released from the magma, further
slowing magma expansion in a positive feedback mechanism (Jaupart and Allegre 1991).
There is no simple solution of this problem; quantitative investigation of these complex
and non-linear processes can only be performed by the development of a sophisticated

numerical model, or by laboratory experimentation.

What are the mechanisms controlling bubble nucleation?

A detailed consideration of the physics of bubble nucleation is beyond the scope of the
studies in this thesis. However, chapter 2 has provided good evidence that nucleation may
occur continuously during an eruption in response to non-equilibrium degassing. This con-
tinuous nucleation requires that new bubbles can form with only modest supersaturations.
Current estimates (Navon and Lyakhovsky 1998; Mourtada-Bonnefoi and Laporte 1999) of
the supersaturation required to induce homogeneous nucleation are of the order of several

tens of megapascals. Heterogeneous nucleation, on the other hand, can probably occur
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with much lower supersaturations, perhaps less than 10 MPa (Navon and Lyakhovsky
1998). Continuous nucleation is therefore much more likely to occur through heteroge-
neous nucleation, probably aided by the presence of crystals. This conclusion is supported
by the results of experimental studies of the degassing of silicate melts. Experimental
systems which employ crystal-free melts (e.g. Lyakhovsky et al. 1996) generally produce a
single nucleation event. In the experiments of Simakin et al. (1999) crystals were present

in the melt and continuous nucleation was observed.

What are the effects of concentration-dependent viscosity and diffusivity on

bubble growth?

The bubble growth model of chapter 3 was used to investigate in detail the dynamics of
bubble growth, incorporating the dependence of both melt viscosity and volatile diffusivity
on the concentration of water in the melt. It was found that the concentration-dependent
nature of both viscosity and diffusivity exerts a strong control on bubble growth. In
particular, a strong coupling between the effects of viscosity and diffusivity was revealed.
A high diffusivity (which promotes bubble growth) leads to a fast dehydration of the melt
and hence a rapid increase in melt viscosity (which inhibits growth). Bubble growth rates

are the result of a competition between these two factors.

The incorporation of concentration-dependent diffusivity has an unexpectedly large effect
on bubble growth; unexpected considering that diffusivity varies over less than two orders
of magnitude during an eruption, whereas the melt viscosity varies over five or six orders of
magnitude. If diffusivity is concentration-dependent, the form of the concentration profile
in the melt is different from that given by a constant diffusivity. This leads to a lower

effective melt viscosity and hence a higher rate of bubble growth.

In general, therefore, many important features of the dynamics of bubble growth cannot be

captured if either viscosity or diffusivity is assumed constant. For cases of near-equilibrium
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degassing these effects are less important but, as discussed above, the nature of degassing
(equilibrium or non-equilibrium) cannot be assumed a priori, but must be investigated

fully.

What can the textures of volcanic rocks tell us about eruption processes?

There are many textural parameters which could be measured in thin sections of volcanic
rocks, including the shape of bubbles and their spatial arrangement. In this thesis (chap-
ter 2) a different parameter, the bubble size distribution (BSD), was investigated. Using
evidence from a numerical model, analogue experiments and examination of natural sam-
ples, it was shown that the presence of an exponential or power law BSD was indicative

of a process of continuous bubble nucleation.

It is much more difficult to relate other textural parameters, such as bubble shape fac-
tors, directly to eruption processes. One reason for this is that the shape of bubbles is a
product of many poorly-understood processes such as bubble coalescence, the mechanical
interactions between bubbles and the distortion of bubbles due to internal strains in the
magma. It may be possible to draw empirical correlations between bubble shape factors
(e.g. perimeter-area relationships, the fractal dimension of the bubble) and eruption pa-
rameters which have been deduced by other means. Such a purely empirical study would,
however, be weakened by a lack of a physical mechanism which could explain the obser-
vations. The strength of the study in chapter 2 lies in its ability to explain the observed
textures (BSDs) in terms of real physical processes of bubble nucleation and growth. Fur-
thermore, the results of the study are insensitive to the details of the vesiculation process

which are, in any case, not completely understood.
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Concluding remarks

In this thesis, each aspect of magmatic degassing (nucleation, bubble growth and perme-
ability development) has been examined individually in order to gain a deeper understand-
ing of the physics involved. Many important results have been revealed, but their true
significance cannot be proven without an investigation of the effects of these processes on
the dynamics of volcanic eruptions as a whole. It is hoped that the findings of these inves-
tigations will be incorporated into future studies to create ever more realistic simulations

of volcanic eruptions.
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Appendix A

Stereology

The author is very grateful to Professor J.P. Keating of the School of Mathematics, Uni-
versity of Bristol for assistance with the following derivations.

Given a distribution F(R) of randomly-placed spheres in three-dimensional space, we wish
to find the expected distribution f(r) of circular slices resulting from the intersection of a

plane and the spheres.

Figure A.1 shows the intersection of a spherical bubble of radius R by a plane distant x
from the bubble centre. The radius of the circle described by the intersection of the plane

and the sphere is 7 where

r=+vR%— g2 (A.1)

A.1 Monodisperse BSD

The simplest case which shall be dealt with first is that of a monodisperse distribution
(i.e. all the bubbles have the same radius). If these bubbles are randomly positioned, then
a slice through the population will generate a range of circle sizes; some bubbles will be
intersected near a diameter and will appear as a circle of radius ~ R, whilst others will

be intersected away from a diameter and will appear as smaller circles (see figure 4.5 for
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Figure A.1: The intersection of a spherical bubble of radius R with a plane at a distance
z from the bubble centre. The radius of the circular slice of the bubble in the plane is 7.

an illustration of this).

From equation A.1:

dx r
B A2
dr R2 — 2 ( )
From the laws of probability:
|f(z) dz| = [f(r) dr|
dz
= fr) = )| & (4.3)

where f(r) and f(z) are the probability density functions of r and z respectively.

Now, since each value of z has an equal chance of occurring and 0 < z < R, f(z) = 1/R.

Therefore
flr) = T o (A.4)
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f(r)

Figure A.2: The expected two-dimensional size distribution (probability density function,
f(r)) of circles produced by the intersection of a plane with a monodisperse distribution
of spheres of unit radius whose centres are placed at random.

Figure A.2 shows the form of the expected two-dimensional slice distribution in the case

of a monodisperse BSD. The average slice radius 7 is given by:

I

- 1 R ,’,,2
r:/rf(r)dr = E/o NI =

A.2 Polydisperse BSDs— the general case

Equation A.4 gives the probability of obtaining a circular cross-section of radius r given
the intersection of a plane with a sphere of radius R. Now let us consider a polydisperse
distribution of bubbles with probability density function F'(R). The probability of a plane
intersecting a given bubble is proportional to the bubble radius R. Cross-sections of radius
7 may be obtained from any bubble with a radius greater than or equal to r. We may now

write a general expression for the probability of obtaining a cross-section of radius r from
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the whole distribution:

f(r) = /OOF(R)R%ﬁ dR (A.6)

That is to say, f(r) is the probability of finding a bubble of radius R, multiplied by the
probability of intersecting this bubble, multiplied by the probability of obtaining a slice

of radius r from this bubble, integrated over the range of R > r. This gives:

flr) = /OO \/ﬁ F(R)dR (A7)

A.2.1 Power law (fractal) BSD

The general form of a power law (or fractal) bubble size distribution is
F(R)=aR “ (A.8)
where @ is a constant and « is the power law exponent. From equation A.7:

F(r) = / ” 7#};_ — aR™"dR (A.9)

Substituting R = ry giving dR = r dy:

a

rdy

o r _
r)=a —, (T
fr)=a [ T 0
1 * oy
:ar_a/ ——d
1 Vy2—1 Y

(A.10)
Noting that the integral factor is simply a number (which is a function of ) we obtain:

f(r) ocr=(@=D) (A.11)
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This is an important result; it states that if the size distribution of bubble is in the form
of a power law with exponent « then the size distribution of slices is also in the form of a

power law with an exponent of (a — 1).



Appendix B

The physical properties of gum
rosin/acetone solutions

In chapter 2 a series of analogue shock-tube experiments used to investigate explosive
degassing are described. The experiments employ the gum rosin and acetone (GRA) liquid
system. The purpose of this appendix is to characterize the basic physical properties of

GRA solutions.

Gum rosin (natural pine resin) is supplied as glassy, amorphous solid blocks. A jaw crusher
is used to break these blocks up into gravel-sized pieces. GRA solutions are produced by
adding a known mass of gum rosin to a known mass of acetone in a 1-litre conical flask
and stirring using a powerful magnetic stirrer. Dissolution takes place on a timescale of a

few hours. The smaller the acetone concentration, the longer the dissolution time.

B.1 The rheology of GRA solutions

B.1.1 Rotary viscometry

The rheology of the GRA solutions was investigated using a Haake RV20 rotary viscometer
(figure B.1a). This employs a concentric-cylinder sensor system (figure B.1b) and is a

controlled-rate device; the user specifies the rotation rate to be applied to the sample
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and water
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Figure B.1: (a) The Haake RV20 rotary viscometer. The sensor system is surrounded by
a water jacket for temperature regulation. (b) Diagrammatic representation of the MV1
concentric-cylinder sensor mechanism. The rotor is shown slightly raised out of the cup
for clarity. The solution under test is placed between the cup and rotor. The rotor rotates
at a prescribed rate and the torque required to maintain this rotation rate is measured.

and the driveshaft torque required to maintain this rotation rate is calculated. The MV1
sensor system was employed— this is suitable for measuring viscosities in the range 1072

to 105 Pas. The equipment was calibrated against silicone oils of known (Newtonian)

viscosity.

In a typical measurement (figure B.2a) the rotation rate is increased linearly over a few
minutes to a prescribed maximum value, and is then decreased at the same rate to zero.
The required rotation rate is calculated (by the system software) from the given strain rate
using the physical dimensions of the sensor system. The instantaneous stress is calculated
from the instantaneous driveshaft torque, which is in turn calculated from the current

required to drive the motor at the required rotation rate.

The major control on the viscosity of a sample of GRA solution is its acetone content. In

the experiments discussed in this appendix and in chapter 2, the temperature is always
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Figure B.2: An example of viscosity measurement using the Haake RV20 rotary viscometry
system. The sample under test is a freshly-prepared solution of GRA with 25 wt.% acetone.
(a) The user specifies the strain rate as a function of time. The strain rate is increased
linearly over time to some maximum value, then decreased at the same rate to zero.
(b) Shear stress as a function of strain rate. In this case the rheology of the sample is
Newtonian with a well-constrained viscosity of 0.112 Pas. (The viscosity is the gradient
of the graph of shear stress vs strain rate.)

20°C. Provided that the measurement of viscosity is performed less than ~ 12 hours after
the solution is prepared (see section B.1.2), the solution exhibits a Newtonian rheology.
Measurements were made at 20, 25 and 30 wt.% acetone, and table B.1 shows the viscosi-
ties obtained. Measurements of viscosity at lower concentrations were made by Phillips et

al. (1995). Figure B.3 combines the data from this study and the present work.

B.1.2 Problems

The main difficulty in characterizing the rheology of GRA solutions is that the solution
properties change over time. Viscosities gradually increase over a period of hours (fig-
ure B.4) and after 12 to 24 hours, depending on the acetone content, the rheology departs
significantly from Newtonian. (figure B.5). In order to ensure that the rheology of the so-

lution in a shock-tube experiment is Newtonian, therefore, only freshly-prepared solutions
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Acetone concentration (wt.%) | Viscosity (Pas)
0 10
12 19
15 6.1
20 0.80
25 0.11
30 0.044

Table B.1: GRA viscosity measurements at different acetone concentrations at 20°C.
Measurements at 0, 12 and 15 wt.% acetone were taken from Phillips et al. (1995).

1014

1010}

106}

102_

GRA solution viscosity (Pa s)

10-2 L L
0 10 20 30
acetone concentration (wt.%)

Figure B.3: The viscosity of GRA solution as a function of its acetone concentration at
20°C. Data are in table B.1.
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Figure B.4: The increase in viscosity of a sample of 30 wt.% GRA solution with time since
the gum rosin and acetone were first mixed. Note that the dissolution time was 2.5 hours
so there are no measurements of viscosity before this time.

are used.

B.2 Diffusivity of acetone in GRA solutions

B.2.1 Experimental method

The diffusivity of acetone in solutions of GRA was measured using a weight-loss method.
The experimental procedure is as follows (figure B.6): A sample of GRA solution is poured
into a shallow, glass-bottomed circular dish with vertical sides and diameter 91.7 mm, to
a depth of ~ 1 mm. The dish is placed on a sensitive balance (accurate to 0.5 mg) in a
fume cupboard at constant temperature. The mass of the dish and solution film over time
is measured as the acetone evaporates from the free surface. The supply of acetone to the
free surface and hence the evaporation rate is controlled by the diffusivity of acetone in

the solution.
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Figure B.5: Development of non-Newtonian rheology in a sample of GRA solution. The
sample under test is from the same batch of solution as that in figure B.2b but the solution
is now 24 hours old. Not only is the graph of shear stress vs strain rate non-linear, but
the rheology is different for increasing and decreasing strain rate (figure B.2a).

evaporation of acetone

ot

- GRA solution - {1 mm

91.7 mm

Figure B.6: The experimental apparatus used to measure the diffusivity of acetone in
GRA solutions.
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B.2.2 Calculation of diffusivity

The diameter of the dish is much greater than the thickness of the film, and only one
surface is exposed to the atmosphere. The diffusion of acetone to the free surface proceeds
to a good approximation in one direction only, being perpendicular to the solution surface.

The one-dimensional diffusion equation is:

X <D(0)%) (B.1)

where ¢ is the concentration (mass fraction) of acetone in the film, x is the spatial coor-
dinate, ¢ is time and D(c) is the diffusion coefficient which is a function of the acetone
concentration (see B.2.2). Unfortunately, the concentration-dependent nature of the dif-
fusivity means that no analytical solutions exist for equation B.1. However, solutions can

be found if D is assumed constant. In this case D is an ‘effective’ diffusivity.

Solution of the diffusion equation

The author is very grateful to Professor J.P. Keating of the School of Mathematics, Uni-
versity of Bristol for the following derivation.

We are required to solve equation B.1 subject to the boundary conditions ([ is the thickness
of the film): (i) £ = 0,0 < z <! : ¢ =1 (initial uniform concentration of material); (ii)
t >0,z =1:c=0 (zero concentration at the surface of the film); (iii) all ¢, z > I: ¢ =0
(zero concentration outside the film); (iv) all ¢, z = 0: dc/dz = 0 (no diffusion across the

lower surface of the film). [ is the thickness of the film.

Now, since the diffusion coefficient D is assumed constant, we may write:

Jc 0%
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Firstly, we assume the equation is separable, i.e. ¢ = X (z)T'(t) where X and T are functions

of distance and time only, respectively. Now:

D = =-C (B.3)
where C' is some constant. Integration yields:
T = Cy exp(—Ct) (B.4)
where (1 is another constant. Also:

X'="2Xx (B.5)
= X = Acos (:v\/g) + Bsin (m@) (B.6)

A and B are also constants. Hence:

c(z,t) = Crexp(—Ch)

—~~

B.7)

[C . |C
A cos (:v 5) + Bsin (m 5)
[C . /C |C C
—A 3 sin (m 5) + B 7 ©os (m 5)
Boundary condition (iv) gives dc/0z = 0 at = = 0, giving B = 0. So:

¢ = C1Aexp(—Ct) cos (:v\/g) (B.9)

By choosing an appropriate scaling we may set C;yA = 1. Boundary condition (ii) gives

= g—; = Cy exp(—C't)

—~~

B.8)
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c=0at z =1 for t > 0. Therefore:

C
cos (l 5) =0

_ D 2, 2
= C = 50+ 1)’ (B.10)

where n is any integer. Each value of n gives a particular solution of equation B.9 above.
The full solution is the sum of these solutions, where each solution is multiplied by its

associated constant a,,:

> o+ 1 —D(2n + 1)2x2
c(z,t) = nz_oan Cos <$m) exp [ ( Z; )'’m t (B.11)

We need to solve this for a,, for all z. Choosing ¢ = 0, multiplying by cos((2m + 1)7z/2l)

(where m is any integer) and integrating over the thickness of the film:

/0 ' (2,0) cos (WQ dz

_ ian /Ul cos (W:ﬂ) cos <wx> dz (B.12)

Since 2 cos A cos B = cos(A+ B) +cos(A— B) and ¢(z,0) = 1 for all z (boundary condition
(1)):

/ (. 0) cos (WQ da

_ %gan /Ol cos <wx) + cos (@Q dz (B.13)

Integrating:

> l

2 [ 2m+1)m 1 ‘
(2m+1)ws‘“< 2 )‘izanms‘“(”—m)ﬂ) (B.14)

n=0
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The term inside the sum on the right-hand side of this equation is zero unless n = m.

Hence:

2l .1
(2n + 1)7r(_1) N §la"
e

Now we may write the full solution for the concentration profile across the film:

= A= (2n + )7 —D(2n + 1)%x?
c(z,t) = 7;] @ntn cos <Tm) exp [ E t (B.16)

We are required to find M;/Ms, which is the fractional amount of material lost from the

film at time ¢. This is:

l
M, .t)d 1 /!
_tzl_le__/CcE’t)dm
Moo o c(z,0)dz L' Jo

1 4(=1)" —D(2n + 1)?7? ! 2n+ )7
=1-= E S A e
; Gn+1) exp [ e t] /0 cos < :v) dz

21

+
0 4(=1) —D(2n +1)?7% ] 2(=1)"
Z exp [ 4]2 t] (2n+ 1)m

(B.17)

M, > 8 —D(2n + 1)%72
= —=1- Z ( e [ 12 t

Measurement of D from experimental data

In the experiments, the mass of acetone in the sample (M;) is measured as a function
of time. Figure B.7 shows a typical result from these experiments. The initial mass of
acetone (M) is known. There are several ways to recover the diffusivity D from these
data (Crank 1975). The most convenient way is to measure the time taken for a third of

the acetone to evaporate (t1/3). By substituting M;/My = 1/3 into equation B.17, we
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Figure B.7: A typical result from an experiment to measure the diffusivity of acetone in a
sample of GRA solution. The time taken for 1/3 of the original acetone to be lost is 5730 s.
p = 985 kgm™3 and my = 6.447 g giving [ = 0.994 mm (equation B.19). This gives a
diffusivity of 1.50 x 10~ m?s~! (equation B.18). Errors on each point are approximately
the size of the marker.

obtain:
2

!
D ~ 0.0872— (B.18)
1/3

The thickness of the solution film is very difficult to measure in situ. It is calculated from

the following formula:
. 4m0

= 20
prd?

(B.19)

where my is the initial mass of the solution, p is the density of the solution and d is the
diameter of the dish. The solution density is measured by weighing a known volume of

solution and is slightly dependent on the acetone concentration (figure B.8).

The results of these experiments are given in table B.2 and figure B.9. The measured

2

values of D cover a range between 2.8 x 1072 and 2.8 x 107! m?s~!. These values are

very close to those estimated for the diffusivity of water in rhyolitic magma under eruption
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Figure B.8: The density of GRA solution as a function of its acetone concentration. The
best fit line is p = 1052 —2.403¢, R? = 0.81. The density is calculated by weighing 100 cm?
of solution in a measuring cylinder. The error on the measurement of volume is +1 cm?;
the uncertainty in measuring the mass of the solution is much smaller (~ +0.1g in ~ 100g)
giving a total error on each measurement of +1%.

conditions (Watson 1994; Zhang and Behrens 2000). Note that measurement of D using
this method is only practical for solutions with 20 wt.% acetone or more. Beneath this

value, solutions become too viscous to easily spread into a thin film. This represents a

major limitation of the method.

Concentration-dependent diffusivity

The measured diffusivity is clearly dependent on the initial acetone content of the solution
film. The higher the acetone content, the higher the calculated diffusivity. The measured
value of D is therefore the average of the diffusivity from zero to the initial concentration

of acetone (Crank 1975):

1 [
Deasured = a/ Ddc (B-20)
0
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Initial acetone concentration (wt.%)

Diffusivity / 101! m%s~!

30.0
29.9
27.5
27.5
25.0
25.0
22.5
22.5
20.0

2.82
2.16
1.67
1.96
1.05
1.50
0.99
0.72
0.28
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Table B.2: Diffusivity of acetone calculated (equation B.18) at different initial acetone

concentrations. Errors on each measurement are around 10%. Also see figure B.9

35
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201

15

1.0
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30 35
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Figure B.9: Measured acetone diffusivity (equation B.18) as a function of initial acetone
concentration (table B.2). The measured diffusivity is strongly dependent on the initial
acetone content. The linear best fit line has the equation Dyeasureda = (0.217¢9 — 4.09) %
10~ m2s~! with correlation coefficient R? = 0.91.
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where ¢j is the initial concentration of acetone in the film. It is possible to derive the
functional form of D(c¢) from equation B.20 by plotting ¢y Deasured against ¢ and dif-
ferentiating the resulting curve numerically. This method, however, requires very large
amounts of data to achieve acceptable accuracy. It was decided that the calculated aver-
age diffusivity (table B.2) was sufficient to conveniently describe the degassing behaviour

of GRA solutions.

Sources of error

The formal error on the measurement of D from equations B.18 and B.19 is very small
since all the parameters (mg, d, p and #; /3) in these equations can be measured with an
accuracy of 1% or better. It is estimated that the largest errors arise from variations in the
thickness [ of the film, especially near the edge of the dish where a prominent meniscus
was observed to develop with time. D depends on [? so small errors in [ lead to large
errors in D. The actual error on [ is very hard to quantify with certainty, but I estimate

it to be around 5%, giving a total error of 10% on the measured value of D.



Appendix C

Derivation of the hydrodynamic
equation of bubble growth in the
case of radially-varying viscosity

The author is very grateful to Dr S.D.R. Wilson of the Department of Mathematics, Uni-
versity of Manchester for this derivation.

C.1 Rate of strain tensor

Let the rate of strain tensor be ¥;;. We wish to find

19 dA
| = — — A = — .1
Now
dX
_ v2
X? . X%  _R’R
_ R’R 2R’R
= Yrr = -2 A3 = _R3 — R% n X3 = —26 (C2)

177
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where
R’R
= - C.3
‘TR _RI+ X (G:3)
Hence, by incompressibility and radial symmetry:
’.)/09 = ’.)/¢¢ =€ (04)

C.2 Force balance

Let the total stress tensor be o;;. Consider a small surface element ds of a spherical shell,

distant A from the origin, subtending there an angle d\. Tangential stresses give a force

X+dX
X

of 2099d A ds(ds/A) towards the origin. Normal stresses give (o,,ds?) away from the

origin. The mass-acceleration of the element is p,,dAds? A. The equation of motion is

therefore:

X+dX

pmdA ds? A = (O'MdSQ)X

2700 1A ds? (C.5)
A
Now, using ds = Ad) and d) is a constant, and dA = X2dX/A? we obtain:

X2 . Jo X?
pmﬁA = a;g + 2F (Urr - (700) (06)

C.3 The equation of motion

Assuming the liquid is Newtonian with viscosity 7, we have:

Orp = —p+ 277'.71"1" = —PpP— 4776

099 = —p + 2199 = —p + 2ne (C.7)
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Substituting into equation C.6 and neglecting the inertial term, we have:

0= 4.0

X 68X (C.8)

At X = Ry, e = R/R, and at X = Sp, € = SS. Continuity of normal stress (o,,) at

X = Rgp and X = S gives:

= =

by = p(R07 t) + 47](R07 t)

0| W

Poc = P(S0,t) + 4n(So, 1) (C.9)

Integrating (C.8) by parts with respect to X between Ry and Sy:

(S )— ( ) = — ” 7
p(So,t) — p(Ro, t / e—dX
0 0 R, 0X

S0 9e S R
— 2 AX — 4 N2 +4 H= (C.1
4/;)”ax n@&n)5-+ nU%,)R (C.10)

Combining equations C.9 and C.10:

S0 Je
Poo — Pg = dn—dX C.11
o= [ (©11)

and, substituting for e from equation C.3:

dR [ n(c)X?
= peoo + 12R? — dx C.12
Pg =Poc + &Aﬁm—%+ﬁﬁ (C-12)




Appendix D

Finite difference form of the
diffusion equation in transformed,
radial, Lagrangian coordinates

In the transformed coordinate system (section 3.3.3) the diffusion equation 3.5 becomes:

e 1 9 AY 9é
5" v ov (’“(c)ea—ya—y) (D-1)

We wish to find an appropriate finite-difference form of the right hand side of this equation.
At a general grid point 7, integrating between the interpolated grid points ¢ — 1/2 and

i+1/2:

We approximate the diffusivity at an interpolated grid point as the mean of the diffusivities

9 k(~)i@ ~ L
oy \"\Yevay ), T oy

at the bracketing grid points. The concentration gradient 9¢/dY is similarly approximated:

k. ~ i1+ ki k. it ki
i+1/2 = 9 i—1/2 = 9
oc _Cit1— G oc _Gi—Cin

g T O |y oY
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The values of A; 119, Aj_1/2, Yiy1/2 and Y;_; /o may be calculated precisely. This gives:

d¢; 1 Al /2

dt 263 5y2 {(km +E) i = G) v

4
Ay } (D.3)

— (ki +ki1)(& — Cifl)ei’)Yiq/z



