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Abstract 

In this thesis, we investigate several aspects of the behaviour of systems of elongated 
molecules, using large scale computer simulations of a simple single site model. For 

much of this work, we made use of parallel molecular dynamics programs, which are 
discussed briefly. We then describe three essentially independent research topics. 

The first of these concerns the measurement of the Frank elastic constants 
KI-K3i which describe the energy cost of orientational deformations in the nematic 
phase. A technique for constraining the director during a simulation is introduced, 

and used to facilitate measurement of appropriate components of fluctuations in 

the reciprocal space order tensor. By extrapolating to low wavevectors, we obtain 
estimates of the elastic constants KI-K3. Our values agree with those obtained by 

carrying out the same simulation in the unconstrained ensemble, and qualitatively 
with experiment. 

Next, we report the results of extensive simulations of a large system of Gay- 

Berne particles near the weakly first order nematic-isotropic transition. We examine 
the divergence of correlation lengths, behaviour of direct correlation functions, and 
collective reorientation times in the neighbourhood of the transition temperature 
TNI, and compare our results with theory. We also discuss briefly the kinetics of a 
quench of a very large system from the isotropic into the nematic phase. 

The recent theoretical and experimental discovery of a new class of liquid crys- 
tal phases has generated much excitement. In our third project, we attempt a 
molecular-scale simulation of the twist grain boundary (TGB) phase, mimicking a 
twist-cell experiment by means of modified boundary conditions. The orientational 
and translational ordering seen is consistent with the structure of the TGB phase. 
We develop a technique for automatically locating twist defects, based on simulated 
annealing; the distribution and nature of defects found in our configurations provide 
further evidence for the identity of the phase. 
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Chapter 1 

Introduction 

1.1 Liquid crystal phases 

Three forms of matter: solid, liquid and gas, are familiar from our everyday lives. 

Many of the properties which distinguish them, such as density, rigidity and ther- 

mal conductivity, are immediately evident. Equally familiar is the idea that a single 

substance such as water can be transformed between these different states by al- 

tering external conditions of temperature and pressure. In the last century, great 

advances have been made in understanding how these phases, and the transforma- 

tions between them, are related to the microscopic behaviour of matter. Central to 

this understanding is the observation that phase transitions are often accompanied 
by a change in symmetry. The freezing transition, for example, is characterised by 

the breaking of rotational and translational symmetry, so that in the solid phase the 

only operations which leave the structure unchanged are the point group symmetries 

of the unit cell and translation through multiples of the lattice vectors. 
At normal temperatures and pressures, all monatomic substances, and many 

polyatomic ones, only have these three phases. However, at the end of the nineteenth 

century, it was discovered that on cooling certain liquids, solidification is preceded 
by the formation of mesophases, or liquid crystalline phases, in which there is an 
intermediate degree of symmetry breaking. A common feature of most molecules 
(mesogens) which give rise to these phases is that they are highly elongated. Typical 

1 
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examples are shown in figure 1.1. This anisotropy hints at the structure of liquid 

Figure 1.1: Two common mesogens, N (p-methoxybenzylidene)-p-butylaniline 
(MMBA) and p-azoxyanisole (PAA). At atmospheric pressure, these materials form 

a nematic phase in the indicated temperature range. 

MMBA CH3` 
(20°C - 47°C) OO CH= N CH2 CH2 

\ 
CH2/\CH3 

PAA 

(116°C - 135°C) CH3O -Co N=NO OCH3 

O 

crystalline phases: they all have a lower rotational symmetry with respect to the 

isotropic liquid. In the case of nematics this is the only broken symmetry - molecules 

are preferentially aligned along a certain direction, the director. In smectics, there 

is also some degree of translational ordering, but less than the full periodicity of the 

solid. In the smectic A phase, there is a periodic modulation of the density along the 

director. In chapters 3 and 4 of this thesis, we shall be investigating the properties 

of the nematic and isotropic phases. The smectic A phase is relevant to chapter 5. 

For illustrative purposes, we show typical configurations from computer simulations 

of these three phases in figure 1.2. There are many other mesophases, including 

biaxial nematics, discotics and columnar phases, blue phases, tilted smectics, and 

a plethora of chiral phases. Details of these can be found in [1-3]. The recently 
discovered twist grain boundary phase is the subject of some of the work in this 

thesis; we defer description of this phase to chapter 5. Liquid crystal phases are 

quite delicate - their structure can be modified quite easily by applying external 
fields. This property is of great importance for LCD technology, which relies on the 

2 



ability to modify the optical properties of a nematic liquid crystal by applying an 

electric field. An overview of technological applications can be found in [4]. 
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Figure 1.2: Isotropic, nematic and smectic phases. 

Isotropic phase 

" Short-range order of molecular orientations. 

" Short-range order of molecular positions. 

Nematic phase 

" Long-range orientational order . 
" Short-range order of molecular positions. 

Director n, uniaxial symmetry, n- -n. 
Order parameter S= (P2(e " n)). 

Smectic A phase 

" Orientational order as nematic. 

" Long-range positional order in one dimen- 

sion. 
Layer normal N (coupled to n). 

Complex order parameter (r). 
(See section 5.2). 
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1.2 Static and dynamical averages 
The formalism of statistical mechanics [5,6], which relates the structure of matter 

at the atomic and molecular level to its macroscopic properties, was developed at 

the end of the 19th century by Ludwig Boltzmann and Josiah Willard Gibbs. The 

fundamental concept which enables this link to be made is that of the statistical 

ensemble. Values of macroscopic observables in a thermodynamic system at equilib- 

rium can be expressed as averages over an ensemble. In a system of N particles, with 

positions r= {ri, r2 """ rN} and conjugate momenta p= {pl, p2 """ pN}, governed 
by a Hamiltonian f(r, p), an ensemble average of a variable A(r, p) takes the form 

(A)Gibbs = 
JJdrdp f (r, p) A(r, p) " 

(1.1) 

The phase space distribution f (r, p) depends on the nature of the external con- 

straints to which the system is subjected; for example, in the microcanonical ensem- 
ble, the number of particles N, volume V and total energy E are fixed, and 

frrvE(r, p) =a 
[li (r, p) - E] 

(1.2) 
ff drdp 6 [1l(r, p) - E] 

so that the average in eqn (1.1) is over an isosurface of total energy. 
At constant number, temperature and volume, the average is over the canonical 

ensemble: 

. 
frrvr(r, p) = 

exp [-fl(r, p) / keß'] (1.3) 
ff drdp exp [-ß-1(r, p) / kBT] 

In the Boltzmann formulation, macroscopic observables are expressed as dynam- 

ical averages, 
1T 

(1.4) (A)Boltzmann = lia 
Tf dt A [r(t), p(t)] 

The Gibbs and Boltzmann averages are equivalent, since (except in pathological 

cases), Hamiltonian systems are ergodic. We assume this to be the case for the 

many-particle systems studied here, and henceforth will denote averages of either 
kind by (" " "). 

In some cases, we may wish to calculate dynamical quantities. Of particular 
interest are time correlation functions defined by 

CAA(t) = (A(t)A(O)) . (1.5) 
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These describe the decay of fluctuations of a variable A, and are also related to the 
linear response of the system to an external, time varying field coupling to A [7,8]. 

In certain instances, they can be measured experimentally, for example inelastic 

neutron scattering probes density correlations, (pk(t)pk(0)). Similarly defined func- 

tions are useful in characterising orientational fluctuations in anisotropic fluids, a 
topic which we touch on in chapter 4. 

1.3 Mean field theories 

Solving a problem in statistical mechanics means, in its fullest sense, evaluating the 

partition function, a sum over all classical phase space or over all quantum states, 
from which all. thermodynamic functions and ensemble averages can be derived. 

However, the partition function, though. often easy to write down for a given system, 
is fearsomely difficult to evaluate. Exact solutions are few and far between, and most 

are for lattice systems [9], most famously the 2D Ising ferromagnet, which was solved 
by Onsager in 1944 [10]. To date, no exact solutions have been obtained for even 

the simplest model of a liquid crystal, the Lebwohl-Lasher [11,121 model. Much of 

the work in the past century has therefore consisted of constructing approximate 

theories which can be solved analytically. The most far ranging of these are mean 
field theories, which provide a unifying framework for discussing phase transitions. 

They are based on the concept of an order parameter, a macroscopic average which 
is zero in the disordered phase, and nonzero in the ordered phase. For example, the 

order parameter which describes the nematic-isotropic (NI) transition is a traceless 

second rank tensor, formed by averaging over the particle orientations e; 

QQa =V {eejß - 35Qß} N ý_1 

A phenomenological mean field theory (MFT) of the NI transition can be derived 

by expanding the free energy in powers of the order parameter. In the NI case, the 

free energy expansion is (see for example [13]): 

f 
2r 

(3Q2) 
-w 

(TrQ3) 
+u 

(r)2 (1.7) 
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=1 rS2 - wS3 - uS4 , 
(1.8) 

where S is the largest eigenvalue of Q, r= a(T -T *) and w and u are positive 

phenomenological constants. This model free energy captures several important 

aspects of the transition. Firstly, it shows that the transition is first order: the 

transition occurs at a temperature TNI, with a(TNI - T*) = w2/2u. On cooling from 

the isotropic, there is thus a metastable region for TNI <T< T* where the isotropic 

and nematic states are separated by a free energy barrier. Similarly, on heating 

the nematic, the orientational ordering is metastable up to a temperature T**, with 

a(T** - T*) = 9w2/16u. Nematic molecules tend to have anisotropic diamagnetic 

susceptibilities, and their interaction with a magnetic field can be represented in the 

free energy by an external field coupling to the order parameter. The theory predicts 

that the susceptibility to this field X oc (T -T*)'', i. e. the inverse susceptibility can 
be extrapolated to zero at the limit of metastability of the nematic phase. MFT 

can be further extended by allowing the order parameter to vary spatially. The free 

energy then becomes a functional of the order parameter - usually a spatial average of 

a term similar to equation eqn (1.6), plus a square gradient term favouring spatial 

uniformity. Using a theory of this type, Ornstein and Zernike [14] accounted for 

the divergence of correlation lengths near the critical point in a simple fluid. The 

treatment can be generalised [3,13] to describe correlations near the NI transition. 

There are other ways of formulating a MFT of the nematic-isotropic transition, for 

example the free energy functional approach of Onsager [15]. 

1.4 The role of computer simulation 
Some approximations in statistical mechanics are extrapolations of an exactly soluble 

limiting case - in Onsager theory, for example, the limit of infinitely thin rods. In 

other cases, their physical meaning is less clear, as for example the closure relations 
(e. g. hypernetted chain and Percus-Yevick) which form the basis of theories of simple 
fluids [7]. Given the difficulty of obtaining exact analytical results, the question 

arises: how do we know which approximations are valid? One of the functions of 
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computer simulation is to answer this question. It provides a way of obtaining exact 

numerical results for a given model. Simulation studies of the hard sphere fluid, 

for instance, were able to confirm the interesting theoretical result that this system 

undergoes a freezing transition at a density below close packing [16]. Computer 

simulation data have occasionally led to altogether new theoretical results, such as 

the long-time behaviour of velocity autocorrelation functions. 

Another motivation of simulation is to determine how well a given model cap- 

tures experimentally observed behaviour. This is of particular relevance in the field 

of liquid crystals, where the range of observed phases is large, and the constituent 

molecules moderately complex. It is known experimentally that the phase diagram 

morphology of mesogens is very sensitive to the details of molecular structure. How- 

ever, it is hard to investigate systematically the effects of molecular shape in the 

laboratory, owing to the difficulty of synthesising and characterising these organic 

compounds. Computer simulations allow this kind of study to be undertaken, since 

the form of the intermolecular potential can be altered at will. Another key advan- 

tage of simulation is that there is no restriction, a priori, on the kinds of observ- 

ables which may be measured - simulation gives one access to the full microscopic 
behaviour of the system. 

The limitations of computer simulation mostly have to do with the restricted time 

and length scales which are accessible, given finite computing resources. In efficient 

algorithms, CPU time scales linearly with the number of particles and duration of 

the simulation. In some cases, the structure of liquid crystalline phases can be quite 

subtle. Blue phases, for example, consist of a topologically complex arrangement of 

the director field which tiles space periodically. A meaningful simulation of this kind 

of structure would certainly require a system at least as large as the unit cell, which 
in real systems might contain of the order of 106 molecules. The timescale for the 

formation of really complex structures like this is also very large. For these reasons, 

molecular scale simulations of blue phases are probably not possible at present. Even 

in less exotic phases, there are often some quantities of interest which are hard to 

measure in computer simulations. In a fluid close to a critical point, for instance, 

there are fluctuations on all length scales. The simulation of critical phenomena, and 
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in particular measurement of critical exponents, is difficult, since long wavelength 
fluctuations are suppressed by the periodic boundary conditions. As we shall see, the 

same issues arise near the NI transition, which exhibits pretransitional divergence 

of length scales since it is only weakly first order. 
Despite these challenges, there is no cause for pessimism. The huge increase in 

computer power over the last 20 years has enabled an ever wider range of systems to 

be tackled. This expansion has taken two directions: larger and longer simulations 

of simple models, and simulation of more complex fluids such as polymers and 

amphiphilic systems. The latter have been promoted by new mesoscopic simulation 

techniques, which retain information on both microscopic and macroscopic structure 

without the need to treat all the degrees of freedom explicitly [17). 

1.5 Model potentials 
Early simulations of liquid crystal systems were on systems of hard ellipsoids and 

spherocylinders, the objective being to determine the range of validity of Onsager 

theory. Since these models are computationally inexpensive, and are in some sense 

natural anisotropic analogues of hard spheres, they have been extensively studied 

and much is now known about both their static structure and dynamics. Both 

ellipsoids and spherocylinders possess a nematic phase if sufficiently elongated; the 

latter also have smectic phases. A review of these and other hard convex body fluids 

can be found in [18]. 

The "canonical" continuous potential for simple fluids is the Lennard-Jones func- 

tion. Again, there is no unique way of generalising this to model nonspherical 

molecules. One possibility is to connect Lennard-Jones atoms with rigid bond con- 

straints. Though quite realistic models can be constructed in this way, they are quite 

computationally expensive, the number of site-site interactions increasing with the 

square of the chain length. An alternative approach is to use an anisotropic single- 

site potential. Among the first of these was the Gaussian overlap (GO) potential 

of Berne and Pechukas [19]. This model represents molecules by anisotropic Gaus- 

sian distributions with longitudinal and transverse ranges Ql and all. In the basic 
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GO model, the interaction potential is simply the overlap integral of the two dis- 

tributions, a function of the orientations e; and e2, and separation r= rr, of the 

particles: 
-rt Iii = E(ei, ei) exP (1.9) 

Q2(T, ei, e, ) 

In this expression, the well depth and range are given by 

«ei, ei) = co [1- X2(ei " e9)2] _1 
, 

(1.10) 

o, (r, ei, ej) = Qo 1-X 
(r"e; +i"e1 . )2+(i"e; -r"ej)2 _1 

, 
(1.11) 

2l+ X(ei ej) 1- X(ei ' ej) 

where x= (a 2I - 012 )/(C2 + a2)" In order to reproduce the anisotropic short range 

repulsion and long range attraction of real systems, Berne and Pechukas inserted 

the above expressions for e(e;, e, ) and a(r, e;, e1) into a Lennard-Jones potential: 

vGO = 4( (ei, ej) T 12 
-r (1.12) 

(a(i, 

ej))6] 

A few unphysical features remain, however. In a linear multisite model (for exam- 

ple a chain of Lennard-Jones atoms), the side-by-side well depth would clearly be 

significantly higher than in the end-to-end arrangement. The GO model fails to 

take account of this effect. On the other hand, the GO well-width does depend on 

the relative orientations, and this is not particularly realistic. The Gay-Berne (GB) 

model [20] addresses both of these problems, at the expense of increasing the com- 

putational complexity slightly, and introducing more free parameters. The potential 

is defined as follows: 

og 
VGB(ei, ej, rij) = 4E (ei, ej, rii) 

12 
- 

Q$ 
-)61. 

{(rij 

- a(ei, e1, F)+ Qs 

(ruj 

- a(ei, ej, Ttj) + as 
(1.13) 

The distance function a depends on the relative orientations of the molecules and 

the unit vector i; ' = rsj/rij: 

a (es, e>> iii) = vs 1-X 
(es '" rj + ej s"T. j 

)2 
+ý 

(es .. r. 
j _ ei ý"T.. i)2 

-1/2 
ý (1.14) 

2 1+Xej - ei 1-Xet"ej 

11 
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with shape anisotropy parameter X= (ice - 1)/(rc2 + 1); r. = oe/og, o is the side- 
by-side diameter and ae the end-to-end diameter. The well-depth function is 

e(ei, ej, iij) = c8 [, -'(ei, e>> Tij)]µ x [E"(eiº ej)]V (1.15) 

e'(eiv ej, iij) =1- 
x' [(ei 

. i,, + ej " Tij)2 
+ 

(ei 
" Tij - ej " iij)Z 

(1.16) 

1+X'ei"ej 1-X'ei"ej 

e"(ei, ej) = 
11 

-X 2 (ei " ej)2] _1t'2 (1.17) 

with well-depth anisotropy parameters X' = (W "µ 
- 1)1(n"I" + 1); rc' = F8/Ee. The 

two quantities e8 and ee are respectively the side-by-side and end-to-end well depths. 
It is usual to apply a spherical cutoff rC, and so in practice one uses the cut and 

shifted Gay-Berne potential 

vcBc(ei, ej, rij) = 
vGB(e1, ej, r1j) - VG13 (ei, e1, r ý) rtj < rC 

0 rsj > r` , 
(1.18) 

where r, - = r`r; j. 
This has become one of the most widely used continuous potentials for simu- 

lations of anisotropic fluids. The phase diagram in the density-temperature plane 
has been determined for a number of parametrisations [21-23]; there have also been 

some systematic studies of the effects on the phase diagram of the anisotropy pa- 

rameters is and K' [24,25]. and investigations have been made of many properties, 

such as dynamics [26], thermal conductivity [27,28] and viscosity [29,30]. References 

relating to the elastic properties will be cited in chapter 3. 

The model, or modified versions of it can also be used for studying uniaxial 

plate-like molecules [31], or biaxial systems [32]. Polymer chains can be constructed 

out of Gay-Berne units. 

1.6 Reduced units 
In common with most literature on the Gay-Berne model, throughout this thesis 

we use reduced units. Usually we denote these with a superscript ', for example 

temperature T* = kBT/e8, density p' = pa., and time t' = (s8/ma8)1/2t. 

11 



1.7 Simulation methods 
In a computer simulation we aim to calculate thermodynamic averages, i. e. to com- 

pute either the ensemble average, eqn (1.1), or an average over a phase space tra- 

jectory, eqn (1.4). Broadly, Monte Carlo (MC) and molecular dynamics (MD) sim- 

ulations correspond respectively to these two possibilities. 

1.7.1 Monte Carlo Simulation 

The Monte Carlo method was developed in the 1940s, for studying the diffusion of 

neutrons in fissile materials. As an efficient technique for sampling from a multidi- 

mensional probability distribution, it finds applications in many fields. The closely 

related simulated annealing method is also a very powerful technique for finding 

global optima in many dimensions, and we shall be making use of it in chapter 5. 

There are many books and review articles dealing with MC techniques for con- 

densed matter simulation, for example [33-36]; here we summarise the method in its 

simplest form, taking the canonical ensemble as an example. The aim is to calculate 

weighted averages over phase space of the form: 

(A) _ff 
dr dp A(r, p) exp [-li(r, p) / kBT] (1.19) 
ff dr dp exp [-7(r, p) / kau') 

In most cases, the Hamiltonian decouples into two independent terms, a kinetic 

energy quadratic in the momenta, and a potential term depending solely on the 

coordinates. f (r) is then a product of a Gaussian momentum distribution and 

a configurational part. When we calculate averages of a static variable A(r), the 

momentum dependence disappears, and we are left with a configuration average: 

f dr A(r) exp [-V(r) / kBT] (1.20) 
f dr exp [-V(r) / kBT] 

Clearly, an estimate of (A) can be obtained by selecting n, points uniformly from 

configuration space, {r('), r(2) """ r(') } and calculating 

Elý' 
(A) - _i 

A(r1) exp (-V(r(')) / kBT) 
1.21 

3() El_', exp (-V(r(t)) / kBT) 
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In a dense fluid, however, most randomly chosen configurations contain molecule 

overlaps, and so make an exponentially small contribution to the numerator and 
denominator of (1.21). Convergence is therefore very slow. It would be prefer- 

able to bias the selection of points towards regions where the configuration weight 
00) = exp (-V(r()) / kOT) is quite large. Even better would be to generate a se- 

quence of points which samples from the actual distribution of interest, 0. This 

can be accomplished by means of a Markov process, defined by a set of transition 

weights W(r(') -+ r(j)). Configurations are generated with the desired probability 
distribution in the asymptotic limit - i. e. after many transitions - providedt 

ZW(r(') --> r(i)) q5(I) 
TV(rU) -* r(i)) - 0(º) 

(1.22) 

We can think of tiV(r(') -- r(i)) as the product of a probability P(r() -4 r(3)) for 

"trying" a move, and the probability II(r(') -+ r(i)) of its acceptance. Rejecting a 

move means that the state remains unchanged, i. e. we set r('+1) =0 and include 

the same state in the average again. There are various ways of satisfying eqn (1.22). 

In the frequently used Metropolis scheme [37], the trial probabilities are chosen such 

that 
P(r() -4 r(i)) 

_ 1 (1.23) 
P(rU) -* 0)) 

and the acceptance probability 

H(r(') --4 r(1)) = min o(i) 
(1.24) 

(0' (i) 

Again, there are many ways of choosing trial moves in accordance with eqn (1.23). 

The most common is to select one of the particles and attempt a displacement along 

a random direction through a distance uniformly distributed on [0 : A]. The length 

of an MC run is usually expressed in MC sweeps, which correspond to cycles of N 

attempted moves, one on each particle. 

Besides the number of sweeps, the sampling efficiency depends on the acceptance 

rate for the moves, which can be tuned by altering A. An acceptance rate of around 
50% is common (the optimal value is system-dependent). 

tStrictly, this condition of detailed balance is sufficient, but it is not necessary [34). 
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The extension of the method to dealing with orientational degrees of freedom is 

quite straightforward. The acceptance criterion is unaltered - one simply introduces 

moves which reorient particles. 

1.7.2 Molecular Dynamics 

In molecular dynamics, we explicitly compute a phase space trajectory [r(t), p(t)]. 
The way in which this is done depends on whether one is studying hard particles or 

continuous potentials. For hard particle models, the dynamics consists of an ordered 

sequence of collisions occurring at discrete times, with free flight and/or rotation of 

particles between collisions. The most intensive part of the algorithm is determining 

whether, and when, a given pair of particles are going to collide. The simplest case, 

the hard sphere fluid is a useful reference for theories of liquids, and the earliest MD 

simulations, by Alder and Wainwright [16] were on this system. The computational 

cost of non-spherical hard models is usually much greater, as the time of collision 

equation has to be solved iteratively. 

In the case of continuous potentials, the dynamics is governed by Newton's equa- 

tions. There are several different schemes for integrating these equations, which 

are discussed in [341 and elsewhere. For all our MD work, we use the well-known 
"leapfrog" integration scheme. In the case of interest to us, i. e. uniaxial molecules 
interacting via a pairwise additive continuous potential V, the discretised equations 

of motion are as follows [38]: 

rs(t + St) = r; (t) + St v; (t + 2St) 
(1.25) 

v; (t + 2St) = v; (t - 2St) + St f; (t)/m (1.26) 

e; (t + St) = e(t) + St u; (t +2 St) (1.27) 

ui(t + 2St) = u; (t - 2St) + St [g- (t)/I + A(t)e(t)] (1.28) 

Here, ri, vi, e; and u= are the position, translational velocity, orientation, and orien- 

tational velocity of the ith particle; f; = -OV/äri are the forces. g; is the component 

perpendicular to e1 of the "gorque" gi = -OV/öe;. t Finally, a(t) is a Lagrange 

This is simply related to the torque: rr = e; x g;. 
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multiplier, introduced to constrain the orientation vectors e; to be of unit length 

(we shall give more details on the calculation of A in chapter 3, when we discuss our 
director constraint algorithm). Good energy conservation can be obtained with this 

integration scheme, provided the timestep bt is reasonably small. 

1.7.3 Boundary conditions 

The system sizes studied in computer simulations are quite modest, of the order of 
hundreds or thousands of molecules. In an open system of this size, surface effects 

would be very important - for example in a cube of 10 x 10 x 10 particles, some 50% 

are on the surface. In order to measure bulk properties, we eliminate all surfaces 
by means of periodic boundary conditions, which can be envisaged as filling space 

with periodic images of the basic simulation cell. Both the calculation of forces and 

update of particle positions are affected: 

" The 'potential (and force, in MD) between a pair of particles is calculated as 
if between their minimally separated periodic images. 

" At the end of each MD timestep or MC sweep, particles which have left the 

basic cell are "reboxed". 

Variants of this technique can be used to place various static or dynamical constraints 

on the system, for example to study shear flow [39] or liquid crystals subject to an 
imposed twist. The latter technique forms the basis of the simulations described in 

chapter 5. 

1.7.4 MC versus MD 

MD has several advantages, beyond its ability to measure dynamic quantities such 

as time correlation functions. One is the ease with which constraints can be built 

into the equations of motion. The "dynamics" in MC usually consists of a set of 

moves which operate on a single particle, whereas the constraint equations often 

involve collective properties. Implementing these kind of constraints in MC usually 

means over-constraining the single-particle moves, which leads to poor sampling 
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of phase space. Nevertheless, there are situations in which MC is preferred. For 

example, in the "real" dynamics of polymers, the timescale for reptation (motion of 
the whole chain) is much longer than that associated with microscopic motion of the 

constituent monomers. In MD, the simulation timestep is set by this fast motion, 

and so very long runs are required to sample the chain conformations adequately. 
Configuration bias Monte Carlo (CBMC) [35) attempts to overcome this problem 
by means of reptation-like moves, which traverse phase space more rapidly whilst 

still sampling the same ensemble. 

In this thesis we shall be concerned only with single-site models, for which the 

problem of competing timescales does not arise (at least, not at the molecular level), 

and so CBMC techniques are not applicable - although they were the inspiration 

for the annealing moves we use in chapter 5. We make extensive use of parallel 

algorithms, especially for our study of the twist grain boundary phase. In our mea- 

surement of the elastic constants, we impose a constraint on the nematic director, a 

collective property. Although we employed MC for some of our equilibration runs, 

these considerations led us to use MD in most cases. 

1.8 Practicalities 

1.8.1 Simulation and analysis codes 

Some of our work was carried out on Silicon Graphics or DEC Alpha workstations, 

using serial MD code developed by the author. These codes use standard techniques 

[34] such as linked lists and Verlet neighbour lists for computational efficiency. We 

also made use of these machines for much of the data analysis. However, for the 

bulk of the simulations we used parallel codes (see chapter 2) running on the t3d 

machines at Edinburgh and Bologna, and the SP2 machine at Daresbury Laboratory. 

Most of the analysis for chapter 5 was done on the YMP and J90 supercomputers 

at Edinburgh Parallel Computing Centre, with a certain amount carried out on 
departmental and university computers at Bristol. For transferring binary data 

between these machines, we used the NCSA hierarchical data format [40] libraries. 
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1.8.2 Visualisation 

The ultimate aim of simulation is to describe the behaviour of a system numerically. 
Nevertheless, graphical representations of molecular configurations often provide 

valuable insight into the formation and evolution of the structure. This is especially 

true when studying phases with complex geometry, such as the TGB phase. Con- 

figuration snapshots appearing in this thesis were produced with our own molecular 

graphics (MG) software, illustrated in figure 1.3. This software, which runs on a va- 

riety of workstations and PCs, consists of a set of routines for producing depth-cued, 

shaded images of collections of points, lines, spheres, spherocylinders and ellipsoids. 
Object attributes - shape, colour, size, position and orientation - are initialised with 

a set of Fortran subroutine calls, making the routines versatile and easy to use. The 

viewing direction and other parameters can be adjusted interactively, and tIi re are 

also facilities for displaying slices through the configuration. The rendered image can 

be output in various file formats, including postscript. The MG routines are widely 

used within our group, and may be downloaded from the World Wide Weh [411. 

Figure 1.3: The molecular graphics visualisation program, MG. 

y[indow ß. ndet yi. w Qutput 

Defect #4 
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1.9 Scope of this thesis 

In this thesis, we investigate several aspects of liquid crystalline behaviour, using the 

Gay-Berne model. As noted above, much is already known about the single-particle 

and intermediate-scale aspects of this model, and its phase diagram is well known. 

Rather than extending this work, we concentrate on three topics for which large scale 

simulations are required, namely calculation of elastic constants, pretransitional 
behaviour and ordering dynamics in the nematic-isotropic transition, and twisted 

smectic phases. For much of this work, we have made use of parallel molecular 
dynamics programs. In chapter 2 we give some technical details of the parallel 

algorithms used in these programs, and compare their performance for the systems 

of interest to us. The remainder of the thesis describes our scientific results, and is 

structured as follows: 

" In chapter 3 we report our measurements of the Frank elastic constants in 

the nematic phase of the Gay-Berne fluid. These constants are important 

both from a technological and a theoretical point of view. In this chapter we 
demonstrate the feasibility of calculating the constants in molecular dynamics 

simulations, assess the advantages or otherwise of various measurement tech- 

niques, and compare our results with published figures obtained via different 

simulation routes, and experimental values. 

" Chapter 4 concerns extensive simulations of a specific Gay-Berne model near 

the isotropic-nematic transition temperature TNI. This transition is known 

experimentally to be weakly first order, which means that marked pretransi- 

tional effects occur on approaching TNI from the isotropic side. We investigate 

the divergence of correlation lengths and of collective reorientation times by 

measuring suitable correlation functions, and compare our results with theory. 

We also discuss briefly the kinetics of a quench of a very large system from 

the isotropic into the nematic phase. 

" The twist grain boundary (TGB) phase discussed in chapter 5 has been the 

subject of much investigation since its theoretical prediction and experimental 
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discovery in 1989. We have carried out large scale simulations of a particular 

parametrisation of the Gay-Berne model which is known to exhibit a smectic 
A phase. By applying twisted boundary conditions, we mimic the effect of 

placing an experimental sample in a twist cell. We define suitable quantities 
for characterising the structure seen in our simulations; their behaviour is 

consistent with the structure of the TGB phase. We develop a novel technique, 

based on simulated annealing, which is able to locate the topological defects 

which are predicted to occur in the TGB phase. Applying this technique to 

our configurations, we confirm that these defects are present, and that their 

distribution is in qualitative agreement with theoretical predictions. 
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Chapter 2 

Parallelisation Techniques for 

Molecular Dynamics 

2.1 Introduction 

In the past two decades, the speed of single-processor machines has increased dra- 

matically, and workstations are now capable of millions of floating point instructions 

per second. Recently however, this upward trend in computational power has begun 

to slow down, and for intensive calculations the emphasis has shifted towards paral- 
lel architectures. A number of high performance parallel machines are available in 

the UK for scientific research, notably the Cray t3d at Edinburgh, and much effort 
has gone in to finding efficient techniques for the parallelisation of numerical algo- 

rithms. In this chapter we will briefly discuss different types of parallel machine, 

and strategies for parallelisation of serial codes. Next we summarise the criteria 

which should be used to evaluate the efficiency of a parallel program. There follows 

a description of the parallel molecular dynamics codes which we have used for many 

of our simulations. Some of these programs were written by the present author, with 

valuable assistance from Dr W. Smith of Daresbury Laboratory; others were written 

as part of the High Performance Computing Initiative consortium "Simulation and 

Statistical Mechanics of Complex Fluids". The authorship of these programs is as 

follows: 
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Dr. W. Smith Daresbury Laboratory MDMEGA program for LJ atoms 
Dr. M. R. Wilson Durham University 

PVM harness Mr. A. Sauron Sheffield Hallam University 

Dr. M. P. Allen 
Mr. M. A. Warren 

} Bristol University GBMEGA and GBMESO code 

2.2 Types of parallel architecture 
A parallel machine consists of several, sometimes many, processors, with some means 

of communication between them. It is useful to classify parallel computers according 
to two criteria. The first concerns the distribution of memory among the nodes. On 

single data machines, the same physical memory is addressable by all the processing 

elements (nodes). This common memory can be used for internode communication. 
In contrast, on multiple data machines, some or all of the memory is the preserve of 

the node to which it is attached. If all the memory is distributed in this way, then 

dedicated communication links are needed to pass data between nodes. 
Secondly, parallel machines are differentiated according to how instructions are 

distributed to the processing elements (nodes). On single instruction machines, there 

is just one program, and at each instruction cycle, the same operation is broadcast 

for execution on all nodes. The only autonomy nodes have in the execution of 
instructions is through the use of a mask, an array of logical values associated with 

each node: certain simple operations can be executed on the subset of nodes for 

which the mask is set. The DAP is a good example of such a machine. On multiple 
instruction machines, there is no such restriction, as the program runs independently 

on each node. In some cases, one can even run a completely different executable on 

each node. 
Parallel machines are increasingly of the multiple instruction, multiple data 

(MIMD) type, since this architecture is cost-efficient to build and extend, and allows 
for more flexibility in the design of parallel algorithm. It is also more convenient for 

multiuser systems, as several jobs can be run simultaneously, each using a portion 

of the available processors. Both the Cray t3d and IBM SP2 fall into this category. 
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2.3 Parallel algorithms for MD 

2.3.1 General considerations 

The most important criterion for judging a parallel algorithm is the speedup on n 

processors compared with its single-node performance. Ideally, one would like the 

execution time to be inversely proportional to n; in practice this is rarely achieved, 

except on MIMD machines in the trivial case of task farming. The latter consists 

of treating the machine as a set of completely independent computers, and running 
independent simulations on each one. This method can be useful for condensed 

matter simulation, especially for surveys of the phase diagram. In the present work, 
however, we are more interested in simulations of a large system at a small number of 

state points. Methods other than task farming involve dividing the problem among 

processors and some degree of communication between them, which introduces the 

following sources of inefficiency: 

" Duplication of work; in some cases the same calculation is performed on several 

nodes, especially in replicated data programs (see below). 

" Uneven load balancing, which results in some processors lying idle whilst await- 
ing a result from another node. 

" Communication overheads. These depend on the latency time (the startup 
time for sending a message, before any data is transmitted), and the band- 

width. 

On MIMD machines, there are two ways of organising the data, which define 

two approaches to parallelisation, namely replicated data and data parallel methods. 
The programs GBMESO and GBMEGA use these two techniques respectively, and are 
described below. 

2.3.2 Replicated data method: GBMESO 

The term replicated data (RD) simply means that whilst the computational effort is 

distributed among the nodes in some way, a copy of the data structures describing 
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the state of the entire system is maintained on every node. Some parts of the 

calculation may be done on the same data on all nodes simultaneously. This may 

seem an unattractive proposition, especially on a machine with distributed memory. 
However, for many serial programs, the bulk of the computation time is spent in 

a few sections of code (see table 2.1). With the RD technique, we concentrate 

on parallelising these, and leave the remainder in serial form. The way in which 

the expensive calculations are parallelised will vary from case to case, but always 

involves dividing the work equally among the nodes in some way, and then using 
internode communications to distribute the results so that all nodes have all the data 

ready for the next stage of the calculation. As the number of nodes is increased, the 

communication costs involved in broadcasting data to all nodes, and the duplication 

of work in unparallelised sections, lead eventually to inefficient CPU usage. Also, by 

definition, the method is inefficient in its use of memory, and this often imposes a 

limit on the size of problem that can be tackled. Two major advantages of this kind 

of approach are that it is comparatively straightforward to parallelise an existing 

serial code in this way - the process is one of gradual modification rather than 

rewriting from scratch - and that serial and parallel versions of the program can be 

maintained alongside each other. 

Table 2.1: Typical CPU usage in various sections of a serial MD program The timings 

shown are for a Gay-Berne simulation with a Verlet neighbour list, running on a DEC 

Alpha workstation. This workstation code also calculates certain properties related 
to the elastic constants (see chapter 3) during the simulation. Our parallel codes 

ly store configurations on disc for later analysis. 
Task Percentage of total CPU time 
Force calculation, no list update 70.9 

Force calculation with list update 14.8 
Calculation of order tensor fluctuations 11.4 

Leapfrog integration algorithm 1.2 

Other 1.7 
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From table 2.1, we can see that the obvious candidate for parallclisation is the 
force calculation. The generation of the Verlet neighbour list involves checking for 

pairs within cutoff, Ir,, - r; I < rc; i, j=1.. " N. This all pairs calculation is 

distributed among the nodes, using the scheme of Brode and Ahlrichs [42). In this 

scheme, "i" molecules are assigned to each processor in turn. For each of its i's, 

each node then checks molecules jE {i, i+1... i m. }, where 

[N12] 
Nmax - N/2 

N/2 -1 

odd i 

even i, i>N/2 

even i, i<N/2, 

Here, the operation [. " ") denotes integer truncation, and 

I2 x<N x= - 
x-N x>N. 

(2. i) 

(2.2) 

Once the Verlet list has been compiled, each particle goes through its (i, j) pairs 

and accumulates forces in the usual way: 
foreach (i, j) { 

fi E-- fi + fi 

fj F- fj - f; j (and similarly for the "gorques" g; ) 

}, 
Global sums are used to calculate the total forces and gorques, ensure that 

these are distributed to all nodes, and to compute the total potential energy and 

virial. The forces are used to update the full set of particle positions and velocities 
independently on all nodes. No attempt is made to parallelise this part of the 

algorithm. 

2.3.3 Data parallel method: GBMEGA 

As the name suggests, in data parallel (DP) methods the data is distributed among 

the nodes. In many problems, this is done by partitioning the system into spatial 
domains. Domain decomposition is particularly efficient in the case of lattice models, 

where the rules which evolve the system from time t to t+1 are local. In this case, 
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each domain can be updated almost independently of the others, the only external 

data required being the state of lattice sites in a narrow border region surrounding 

the domain. This same idea is used in the domain decomposition molecular dynamics 

program, GBMEGA . Briefly, this works as follows: 

. The system is partitioned into cuboidal domains, of sides (1z, ly, 1x). Each 

domain is assigned to a node. Nominally, only the coordinates and velocities 

of particles lying within that domain are held on the node. 

" In order to compute the forces on the particles within a given domain, the 

coordinates of the particles within the cutoff distance rc of the domain must 

be imported. Assuming that min{1z, ly, 1s} > rc, only neighbouring nodes need 

to exchange coordinate data. This is accomplished by six communication steps, 

which transfer information in the -x, +x, -y, +y, -z and +z directions, as 

illustrated in figure 2.1. 

" The forces on the domain's particles are calculated using a link cell algorithm, 

which speeds up the check for pairs within cutoff. 

" Each node updates the coordinates and velocities of the particles in its domain 

- the border particles are now redundant. 

" Each node exports any particles which have gone outside its domain to neigh- 
bouring nodes. The code to do this is very similar to that used for importing 

particles, except that in this case the particles' translational and orientational 

velocities are also exported. 

Extensions to basic domain decomposition program 

Partitioning into domains of equal size is appropriate for simulation of homogeneous 

systems. However, inhomogeneities in density can lead to poor load balancing. 

A general solution to this problem is rather difficult to develop, but this is not 

always necessary. For example, simulations of smectic vapour coexistence are often 

conducted in a slab geometry, so that the density varies only along one of the box 
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Figure 2.1: One of the communication steps used in the GBNIEGA program to 

import particle coordinates into the domain border region. In the step illustrated, 

node (i, j, k) communicates the coordinates of all the particles which lie in the left- 

most r`-wide strip of its domain to its neighbour (i - 1, j, k); it. then waits to receive 

coordinates from node (i + 1, j, k), which belong in the border region to the right.. 

This step is carried out simultaneously on all nodes. The sequential execution of 

this and five similar steps for the other directions ensures that all border particles, 

including ones in the corners, are correctly imported. 

r.. 

axes. We developed a modified version of GBMEGA for this case. The (loilºaill Wi<ltlº, 

are allowed to vary dynamically such that each domain contains approximately the 

same number of particles (subject to the constraint that all domain sides remain 

longer than rc). Though not used in this thesis, this version of the program has 

been employed by other members of our group [25]. 

In our study of the twist grain boundary phase we make use of twisted periodic 

boundary conditions (see chapter 5). Within GBMEGA , these are implemented by 

means of modified import and export routines, which apply a ±S rotation to particles 

transferred between the domains at the ±z ends of the simulation cell. We also 

change the map which defines the connectivity between neighbouring domains. 
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Figure 2.2: The distribution of the force calculation in the SIMD algorithm. The 

inner ring represents the stationary arrays; the outer one the travelling coordinates 

and forces. On each iteration the travelling coordinates are cycled in the sense 

shown. 

We have also implemented the constrained director mechanics described in chapter 

3 in both GBMEGA and GBMESO - this does not introduce any significant. overheads. 

2.3.4 Implementation 

Both of these tad codes are based on a harness which provides a set, of high-level 

routines for message passing and calculating global sums. Originally, the motive 
for this approach was to facilitate porting of the existing MDMEGA code for Lennard- 

Jones atoms, which was written for the iPSC supercomputer; the harness emulates 

the native parallel operations of this machine. Another advantage is that these 

routines are easier to use than the low-level PVM calls on which the harness is based. 

Originally PVM was the only message passing library available on the Cray tad. The 

harness has now been ported to use the MPI calls - this version is slightly faster. 

On the IBM SP2, the PVM version is still used. 
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2.3.5 A. parallel algorithm for SIMD architectures 

Some of the elastic constant work for chapter 3 was carried out on the distributed 

array of processors (DAP) at Bristol. This machine differs from the Cray in that it 

has a large number of rudimentary processors (n = 1024), and is a single instruction 

multiple data (SIMD) machine. On the DAP, we made use of the Brode-Ahlrichs 

decomposition, but this time with the arrays representing particle coordinates and 

forces distributed among the processing elements. In fact, there are two separate 

distributed arrays of forces and coordinates: a stationary set of r, e, f, g which cor- 

respond to the "i" molecule of the (i, j) pair, and a travelling set which correspond 

to molecule "j". The sum over offsets (see section 2.3.2) is done by circularly shift- 

ing the travelling arrays, incrementing both stationary and travelling forces at each 

step, as illustrated in figure 2.2. For improved efficiency, particles are sorted on r,, 

so that after a certain number of shifts, none of the (ij) pairs are within cutoff; it 

is then not necessary to take the offset all the way up to NR,. 

2.3.6 Performance of RD and DP algorithms 

From tables 2.2 and 2.3, it is evident that the domain decomposition program scales 

very well with number of processors, especially for large system sizes where there 

are relatively fewer particles in the border regions. For small system sizes and 

smaller numbers of nodes, replicated data works well. It is perhaps worth noting 

that replicated data would be a much more favorable strategy for dealing with long 

range potentials. More detailed discussion of the algorithms and their performance 

can be found in [43]. For our present purposes, we simply observe that for the 

the large system sizes (generally N> 8000), and short ranged Gay-Berne potential 

studied in this thesis, GBMEGA was clearly the preferred choice. 
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Table 2.2: Timings (expressed in elapsed seconds per timestep) for the replicated 

data program GBMESO, running on the Cray t3d. Each of these test runs consisted 

of 100 timesteps of NVE MD on a cubic box of Gay-Berne particles in the nematic 

phase. The potential parameters were is = 3, rc' = 5, p=2, v=1. Other parame- 

ters were as follows: radial cutoff rc = 4. Ooo, Verlet list radius r' = 4.4a0, density 

p` = 0.32, temperature T* = 1.00, and integration timestep bt = 0.0015. 

Number of particles Number of nodes CPU time 

(N) (n) Total Integration 

256 8 0.028 0.004 

2048 4 0.588 0.030 

2048 8 0.324 0.032 

2048 16 0.195 0.035 

2048 32 0.138 0.039 

2048 64 0.113 0.044 

16384 8 6.039 0.272 

16384 16 3.298 0.294 

16384 32 1.972 0.330 

16384 64 1.348 0.368 

16384 128 1.158 0.449 
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Table 2.3: Timings (expressed in elapsed seconds per timestep) for the domain 

decomposition program GBMEGA. The run parameters were exactly as in table 

2.2. 

Number of particles Number of nodes CPU time 

(N) (n) Forces Other 

256 8 0.058 0.0101 

2048 32 0.105 0.0127 

2048 64 0.061 0.0133 

16384 8 2.712 0.0653 

16384 16 1.431 0.0312 

16384 32 0.748 0.0220 

16384 64 0.395 0.0187 

16384 128 0.225 0.0203 

64000 8 8.895 0.1705 

64000 16 4.818 0.0921 

64000 32 2.685 0.0520 

64000 64 1.448 0.0366 
64000 128 0.740 0.0266 

64000 256 0.409 0.0247 
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Chapter 3 

Calculation of Frank Elastic 

Constants in the Nematic phase 

3.1 Introduction 

In a nematic liquid crystal, the distribution of molecular positions is translationally 

invariant but the orientational distribution shows preferential alignment along the 

director. Deviations from uniform alignment occur principally through the exis- 

tence of defects (for example, the disclination lines or threads which give the phase 

its name) and through the equilibrium, temperature-driven fluctuations which are 

resisted by elastic restoring forces. 

The continuum elastic theory of director fluctuations is based on Frank's expres- 

sion [44] for the free energy increase, 0F, as a function of gradients of the director 

field: 

A-F, =2f dr {K1 [V " n(r)]2 + K2 [n(r) " (V x n(r))]2 + K3 [n(r) x (V x n(r))]2 
(3.1) 

The parameters K1, K2 and K3 in eqn (3.1) are the splay, twist and bend Frank 

elastic constants respectively, and the associated squared terms correspond to the 

three distinct kinds of deformation of the director field n(r) depicted in figure 3.1. As 

well as determining the relaxation of long-wavelength director field inhomogeneities, 

the Frank constants influence the shapes of disclination defects [44], play a role in 
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nematodynamic flow [45], and determine the extent to which liquid crystals transmit. 

torques and respond to applied fields [3,46]. Since the last two of these are the main 

properties exploited in liquid crystal displays and switching devices, it is important 

to be able to relate them to the properties of the constituent molecules. There is also 

intrinsic interest in studying these quantities in the vicinity of the nematic-isotropic 

and nematic-smectic phase transitions. 

Figure 3.1: The three distinct elastic deformations in a uniaxial netnat it liquid 

crystal. 

e, ä, N %-, 
8X ,%, % 

NZ 
toto, 

, 'ý', %tetz; odp, : eq% 
Splay 

to, A 

far 1ýý fý 

/ iý 11 
Bend Twist 

Various experimental techniques have been developed to determine the Frank 

constants. Observation of the Freedericksz transition [47], in which a sample is sub- 

jected to competing bulk and surface-aligning fields, and a phase transition observed 

to occur at a critical field, together with a continuum elastic theory [48,49], is one 

well-known route. Such experiments may be combined with the measurement of var- 

ious optical [50-52] and other [52,53] properties. Quasielastic Rayleigh scattering 

in the presence of fluctuation-quenching fields [54] is another route, and the twist 

constant K2 has been obtained by direct torque measurements [55]. 

Computer simulation provides a method of calculating the Frank constants for 
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simplified molecular models, and hence of shedding some light on the basic rela- 
tionship with molecular structure. However, because the Frank free energy is only 

valid for slowly-varying director fields (i. e. for long wavelength perturbations) it is 

necessary to use reasonably large sample sizes: almost all practicable methods for 

estimating KI-K3 rely on extrapolating to low wavevector. At these low wavevec- 

tors, the orientational correlation functions decay relatively slowly, and so it in order 

to obtain reliable results it is also necessary to conduct reasonably long simulations. 

An extensive study of the elementary Lebwohl-Lasher spin model [56], using sys- 
tems of over 32000 lattice sites, compared three different techniques for calculating 
Frank elastic constants. The first of these is based on the Freedericksz transition, 

and closely follows the experimental method: the spins on the xy planes at the top 

and bottom of the simulation cell are kept aligned along the x direction, and the 

response of the system to a field applied in the z direction is measured. The single 

elastic constant of the model is simply related to the field at which the sample orients 

along the z direction. In principle this approach could also be applied to a system 

with translational degrees of freedom, the three elastic constants being related to the 

critical fields for different geometries of surface alignment and field direction [3]. The 

main technical difficulty of the method arises from the tendency of the system to flip 

between states aligned along +z and -z, which are equivalent by symmetry; this 

leads to long equilibration times and makes precise determination of the transition 
field difficult. The second approach involves measuring the thermally excited orien- 

tational fluctuations. At low wavevector these fluctuations are quadratic in k, and 
the magnitude of fluctuations associated with each distortional mode can be used to 

calculate the corresponding elastic constant. The third method consists of perturb- 
ing the system with a sinusoidally varying orienting field of specific wavenumber. 
The linear response to this field is proportional to the orientational fluctuations at 

that wavenumber [57], and thus the dependence of the response on k is another route 

to KI-K3. The conclusions of [56] were that the Freedericksz transition method was 

insufficiently accurate to be useful in calculating the elastic constants, and that of 

the perturbed-system and fluctuation methods, the latter was more cost-effective, 
by virtue of giving information for a large number of wavevectors at once. 

33 



Prior to this, attempts had been made to calculate elastic constants for systems 

of freely rotating and translating molecules modelled as hard ellipsoids and sphero- 

cylinders (58-60]. In all cases the orientational fluctuation method was used. Typical 

system sizes were in the range 125 <N< 600. Clearly, far fewer low values of k are 

available than for the large systems used in the Lebwohl-Lasher simulations, and 
this limited the accuracy of the results: probably the estimates of Kl-K3 for these 

systems are reliable to about 15%. Some evidence was obtained that the dependence 

of orientational fluctuations on system size seemed not to be very serious (61], but 

the desirability of extending system sizes from a few hundred molecules to at least 

a few thousand was clear. 

In this chapter we carry out such a programme, studying the well-known Gay- 

Berne molecular model in two parametrizations, for which state points in the nematic 
liquid crystal phase are well established, and using significantly larger system sizes 

than previously possible. The details of the molecular model are set out in section 

3.2. We employ the method of studying equilibrium orientational fluctuations as a 
function of wave-vector k, and we review the theory of this approach in section 3.3. 

It is convenient, for the purposes of analysis, to fix the nematic director orientation 
in the simulation box, and to do this we use a constraint technique described in 

section 3.4. The method we use to analyze the orientational fluctuation data is 

explained in section 3.5. We present our simulation results in section 3.6 and draw 

some conclusions in section 3.7. 

3.2 Gay-Berne model 

We have already introduced the Gay-Berne model in section 1.5. As originally 

proposed [20], the potential parameters are rc = 3,1c' = 5, p=2, v=1. This 

system has been studied by various groups [62,63]; the phase diagram as a function of 

temperature and density has been determined [22,64-66], and the potential seems to 

give rise to isotropic, nematic and smectic B liquid crystal phases, as well as vapour 

and, presumably, solid phase(s) of unknown extent. Zannoni and co-workers [23] 

have studied the system n=3, n' = 5, µ=1, v=3. This gives rise to isotropic, 
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Figure 3.2: The two cut and shifted Gay-Berne potentials used in this chapter. 
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nematic and smectic phases, and it seems that the nematic range is wider than in 

the case of some other models. Figure 3.2 shows the behaviour of the potentials 

as a function of radial separation, for several different relative orientations of the 

molecules. We conducted simulations at various state points in the nematic phases 

of these two different parametrisations. 

3.3 Theoretical background 

We define the ordering tensor in reciprocal space, in terms of the orientation vectors 

ei = (e, , eiy, e1) of each molecule i (again, for simplicity we consider only uniaxial 

molecules): N 
Q, #(k) =N2 

(ei,, eio - 35Qß exp(ik " r; ) . 
(3.2) 

i=1 

35 

rp 

K=3, K'=5, µ= 1, v=3 



Here J,, p is the Kronecker delta and a, Q=x, y, z. This is the Fourier transform of 

the real-space orientation density 

Qaß(r) .V Qap(k) exp(-ik. r). (3.3) 

In an unperturbed system the orientation density is independent of position: 

(Q(r)) _ (Q) _ (Q(k = 0))/V = constant. (3.4) 

The order parameter P2 is the highest eigenvalue of (Q), and the director n is the 

corresponding eigenvector, as discussed by Zannoni [67]. PZ = (P2(cos Os)) is the 

average of the second Legendre polynomial of the cosine of the angle between e; 

and n. We may define an axis system f-11, Q, Q, in which (Q) is diagonal with 

n= (0,0,1) and 

(Q11) _ P22) _ -2P2 

(Q33) = P2 

provided the phase is genuinely uniaxial. In all of these expressions, angle brackets 

(... ) and the overline both indicate equilibrium ensemble averages. 

Static orientational fluctuations are described in terms of Q, expressed in this 

coordinate system [8]: 

(Q13(k)Q13(-k)ý 
= (IQi3(k)I2) = 9P2 ykBT 

2 (3.5) Kilo+1, C k 33 

9-2 
(23(k)23(-k)) 

= 
(1Q23(k)I2) = 4P2V 

kBT'y 
(3.6) 

K2k2 + K3k2 

where the wave-vector k= (k1,0, k3) is chosen in the 13 plane. Just as the elastic 

constants are defined for long-wavelength director fluctuations, so the above equa- 

tions are valid only in the limit of small k. In practical applications, it is necessary 

to extrapolate to k=0. To extract the elastic constants from these expressions, one 

may fit 

wl3lkly k3) = 

VkBT kB2 
-} Klk2 + K3k3 as k -a 0 (3.7) 

(IQ13(k)1) 

W23 k1, k3 
21+ 

IC3k as k -+ 0 3.8 4P2V 
kBT 

--ý K2k2 ä) 
(VQ23(k)1) 
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to functions of and and k3, and extrapolate to k -> 0. Clearly, taking the low-k limit is 
the crucial part of this process, and it is essential to have a large enough simulation 
box size L to guarantee that W13(kl, k3), W23(kl, k3) depend quadratically on k in 

the regime k> 27r/L. 

Another expression for the Frank elastic constants [68,69] involves the direct 

correlation function C(i, j): 

'Cl (ri 1- rjl)s 
K2 = 

2p2kBT f dr; jdeidej C(i, j) (r12 - rj2 )2 e1le, if'(e13)f'(ej3). (3.9) 
1C3 (ri3 - rj3)2 

Here again the director n= (0,0,1) is chosen to lie in the z-direction. f (e; 3) 
f (cos 0) is the single-particle orientational distribution function (©; being the angle 
between et and n) and f' is its derivative with respect to its argument. The direct 

correlation function C(i, j) = C(r; 3, e;, e,, ) is of fundamental importance in liquid 

state theory, and can be written as a functional derivative of the free energy, but it 

cannot be measured directly by experiment or in simulation. However, the equation 

above does emphasize that, in measuring the KI-K3 we are learning something about 

the behaviour of C(i, j) in the nematic phase. Note that these expressions are exactly 

equivalent to the fluctuation expressions given earlier; see, for example, the work of 
Somoza and Tarazona [70]. Recently, it has proved possible to extract C(i, j) from 

simulation results by inverting the defining Ornstein-Zernike relation [71] and an 

attempt has been made to calculate Frank constants via this route [72,73] (we return 

to this later). The potential advantages of this approach are that extrapolation 

to low k is not required, and indeed, in principle, the relevant quantities can be 

measured by determining relatively short-range correlation functions. 

Although not an objective of this work, it is of interest to compare elastic con- 

stants determined in simulations with theoretical predictions, some inspired by the 

work of Onsager [15], and applied to systems of hard rods, spherocylinders, or 

ellipsoids [60,68,74-79], and some directed at soft-particle or attractive interac- 

tions [76,80,81]. Many of these approaches, implicitly or overtly, are based on 

density-functional theory which begins with an ansatz for C(i, j). From the com- 

parisons made to date [60] density-functional theories agree better with each other 
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than with simulation results for KI-K3, while reproducing the transition density 

and order-parameter variation quite well. This suggests that the predicted elastic 

constants are very sensitive to small errors in C(i, j). 

3.4 Simulation methods 

In this section we describe the main aspect of our simulations that is not completely 

standard, namely the algorithm we used to constrain the director. 

If left unconstrained, the system director will slowly reorient under the influence 

of thermal fluctuations. The set of wavevectors for which Q(k) can be measured is 

fixed within the periodic simulation box frame, which we assume here to be cuboidal: 
2irnz 

. 
2irn 27rn, 

k= x+ "y+ z (3.10) 
Lx Ly Ls 

where nx, n, and nz are integers and Lx, Ly and L; are the box lengths. Therefore, 

in the director-based 123 frame, the components of k= (k1,0, k3) will vary through 

a simulation run. To prevent this, it is convenient to fix the director by using 

Lagrangian constraints, and make it a constant of the motion. This approach has 

been used by Sarman and Evans [28] in studying transport coefficients of Gay- 

Berne-like systems. The effect of such a constraint on the properties of interest will 

be small, because the director is a quasi-conserved variable already (a Goldstone 

mode). Applying such a constraint allows us to measure the functions W0 (kl, k3) oc 

(Qaß(k)Qaß(-k))-1 on a fixed grid in k-space, simplifying the analysis, and allowing 

us to compare the fitted surfaces with the measured data points in a clear fashion. 

We emphasize that it is not necessary to use the director constraint method, and 

indeed many of our results are obtained from unconstrained runs, with the analysis 

performed in a way that takes account of director motion. We compare the two 

methods below. 

We adopt the usual Lagrangian constraints formalism [82-84]. Taking the po- 

sitions ri and axis vectors e; as generalised coordinates we write the Lagrangian 

as NN 

, C= 
2ýrs2Eeý-V. 

(3.11) 
t_1 1_1 
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Keeping the director fixed is equivalent to requiring that two components of the 

order tensor vanish; for instance if we wish the director to lie along z, then the 

constraint conditions are Q3 = Qyz = 0, or 

N 

0 
N 

f (2) _ esei: = 0. (3.12) 
i=i 

In addition, we constrain the orientation vectors to unit length: le; d2 = 1. These 

conditions become constraints on the time derivatives 

e; ei =0i=1... N (3.13) 
N 

aýlý " ei =0 (3.14) 

ai2ý " ei =0 (3.15) 
i=1 

where Of for a= 1,2. For director orientation along z, all 
= (e; 2,0, e1=) 

and a1 = (0, es:, eiy) " 
To integrate the equations of motion numerically we use the Verlet leapfrog 

algorithm. The updating of the positions and velocities proceeds as usual. At each 

timestep, given the positions and orientations, we compute the forces at time t, 

Fi (t) = -äV/äri, and use these forces to advance velocities from time t- 16t to 

t+25t: 
vi(t + 25t) = vi(t - 2öt) + ötF; (t)/m 

. 
(3.16) 

Next, the new midstep velocities are used to advance the positions from t to t+ bt: 

r; (t + at) = ri(t) + ötv; (t + 25t) . (3.17) 

The equations of motion for the orientations, including terms for constraint forces, 

are 
Iet = Gs + ai + ý(2)a; 2) + nje1 i=1... N, (3.18) 

where G; _ -äV/öei. The Lagrange multipliers ý(°), a=1,2 correspond to the two 

constrained order tensor components and the 'c; correspond to the length constraints. 
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At each timestep, we calculate the G;, ai , a(i2) and rc; from the set of positions {ri} 

and orientations {e; } at time t. It is convenient to define components of a; ' and 

a; 2) perpendicular to the axis vector: 

(a4°) 
- e, ) ei, (3.19) J 

and let 
iý; = Ki + c(l)ad, - ei + ýý2)a; 2) 

" ei. (3.20) 

To find the Lagrange multipliers, we advance the velocities by half a timestep and 

solve the constraint equations at time t. The time t velocities are given by 

Iu; (t) = Iut(t - !M+ 2t {G1-I- ýýlýb(1) + ý(2)b; 2) + a; e; } i=1... N, (3.21) 

where all quantities on the right are evaluated at time t, and ui - e;. From egns 

(3.13)-(3.15) we obtain 

a; =-{2ui(t-25t)+G; 
}"e; (t) i=1... N (3.22) 

and 
&) = [M-1](Q3)A(A) (3.23) 

R=1,2 

where N 21 
A(13) {u(t 

- eat) + Gi + . 1; e; 
j 

" aýQ) (3.24) 

and the 2x2 matrix M has elements 
N 

[M](ýý) _ a; Q) " b; Q). (3.25) 

Once Ai and the i°) have been calculated, the new midstep velocities are obtained: 

Iu; (t +2 6t) = Iu; (t - 25t) + it (G; + ý(l)bsl) + ýý2)b; 2) + a, e, } 

The orientations are then advanced in the usual way: 

e=(t + bt) = ei(t) + Stui(t + 28t) . 

i=1... N" 

(3.26) 

(3.27) 
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With this dynamics, the total energy is well conserved, typically changing by 

less than 0.07% over a 100,000 step run, and the director is constrained to within 

2x 10-4 radians of the desired direction over the course of the entire set of runs. 
We have noted occasionally an instability in the behaviour of the system in that 

the director field spontaneously splits into two differently-oriented domains, while 

the overall order tensor continues to obey the constraint condition. This has only 

happened twice in runs totalling over a million timesteps and needs further study. 

The results we present here correspond to runs in which a monodomain is stable 

throughout. 

Finally in this section, we mention the simulation algorithms used. Some prelim- 

inary simulations using elongated periodic boxes (1: 1: 2 and 1: 1: 4) were carried out 

on a 1024-processor DAP computer using the Brode-Ahlrichs method to calculate 

the forces [42]. Advantage was taken of the relatively short interaction range by 

sorting the particles in the z-direction, so that it was only necessary to examine 

pairs whose z-coordinates were within the potential cutoff [85]. 

All the simulations with i=3, rc' = 5, p=1, v=3, using 8000 particles in 

cubic periodic boundary conditions, were carried out on 64 processors of a Cray 

T3D, using the domain decomposition program GBMEGA, which we decribe in 

chapter 2. 

Lastly, most of the results for n=3, r. ' = 5, µ=2, v=1, in cuboidal boxes of 

shape 1: 1: 2 and 1: 1: 4, were obtained using a serial code running on a Silicon Graphics 

Power Challenge. For these simulations a simple Verlet neighbour list [86) was used, 

and extra efficiency was gained in the elongated boxes by using a one-dimensional 

link-cell structure of slices resolved in the z direction. 

3.5 Data analysis 

The data analysis consists of three parts. First, the instantaneous order tensor 

components are calculated in Fourier space for a set of wavevectors consistent with 

the periodic boundary conditions in the box-fixed xyz coordinate system. Secondly, 

these quantities are transformed to the 123 frame to obtain 41311 and 1Q2312 as 
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functions of ki and k3, and these quantities are accumulated in histogram bins for 

averaging. Finally, after the simulation is complete, the quantities, W13 and W23, 

defined by eqns (3.7), (3.8), are calculated and fitted to a bivariate polynomial in 

ki and k3 whose leading coefficients furnish estimates for the elastic constants. 
In the runs with n constrained, the transformation to the 123 frame is fixed 

throughout the simulation. In this case, we calculated the relevant symmetry compo- 

nents (V 1312) and (IQ23I2) during the course of each run, at intervals of 20 timesteps, 

and accumulated block averages over sub-runs of 1000 steps. Fluctuations on the 

block averages were used to estimate the errors on (IQQp(k)I2). In all cases the 

simulation box was cuboidal, with L; > Lz = Ly, and the wavevectors k considered 

were given by eqn (3.10) with nx and ny ranging from 0... 6 and n2 from 0... 12. 

For the unconstrained runs, calculation of the relevant symmetry components of 

the order tensor fluctuations is more awkward: the slow variation in n over time 

means that the set of {k1, k3} for which Q13(k?, k3) and Q23(ki, k3) can be calculated, 

change from one configuration to the next. 

In order to obtain results with estimated errors ready for fitting, we calculated 

all six distinct components of Q for k given by eqn (3.10) with n, ni,, ns = 0. .. 7, 

for every stored configuration, and separately transformed the order tensor for each 

configuration and wavevector into the instantaneous 123 frame, thus building up 

histograms of A312 and 4231 2 and their fluctuations on a rectangular grid of k, 

and k3 values. 
To calculate the errors in the mean for each histogram bin, it was necessary to 

estimate the statistical inefficiency S, i. e. the ratio of the correlation time for these 

quantities to the sampling interval. S is not the same for all values of k: it is greatest 

for low k, reflecting correlation times as long as 20000 timesteps in some cases, but 

is much smaller for high k. Estimating S separately for every bin was not possible, 

because the director variation caused some bins to hold relatively few counts in 

particular sub-runs, but we found that S could be reasonably well represented by a 

smooth function of the form 

S=c+ a/ki + b/2 . 
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We fitted the parameters a, b and c, using data from bins which were well sampled. 
Then for all bins, a value of S interpolated from the above formula, together with 
the measured mean-squared fluctuation in the counts for the bin, could be used to 

estimate the error. As an overall check, we found that results from two independent 

sets of runs could be made consistent within the errors calculated in this way, over 
the entire range of k values for which data is available. 

A useful check on (1Q13(k)I2) and (423(k) 12) is that in the k -+ oo limit both 

must approach a constant value, which may be expressed in terms of Legendre 

moments of the one-particle orientational distribution function: 

2pk1T 
Woo -" 

lim W03(kl, k3) = lim 
9 P2V kBT P-=_4 

__ (3.28) k-roo k-+oo 4 (V 
3 

(k) 12) P2 
35 P4 +-L 21 5 

3.6 Results 

In reduced units (see section 1.6), a simulation timestep of bt = 0.0015 was used 
for all the runs with p=2, v=1 [20], and 6t = 0.004 for the runs with is = 1, 

v=3 [23]. These values were found to give good energy conservation for all the 

state points considered. 

Table 3.1 shows other relevant parameters of each set of simulations, and table 

3.2 summarises the simulation results for each state point. We report the order 

parameter, calculated elastic constants KI-IC3i and infinite-wavevector limit Woo. 

The state points for the p=2, v=1 system were chosen to examine the effects of 

varying the state point while keeping the order parameter approximately the same. 
All these state points lie within the nematic region of the phase diagram [66]; it was 

checked that even at the highest density, the structure factor showed no strong peaks 

parallel to the director, which would indicate smectic ordering. As the temperature 

and density are both increased, the effect of the attractive part of the potential 

diminishes, so these results may shed some light on the role of attractive forces in 

determining the values of the elastic constants. For these state points, we carried 

out separate sequences of runs with the director constrained along the long axis 
(z) of the simulation box, along one of the short axes (x) of the box, and with 
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Table 3.1: Simulation details for calculation of elastic constants. p and T are the 

reduced density and temperature; N is the number of particles. The next column 

gives the relative x: y: z dimensions of the simulation box. The last three columns 

are the total number of simulation timesteps with director constraint along x, along 

z, and unconstrained respectively. 

p T N Box timesteps/1000 

shape x-constrained z-constrained unconstrained 

µ=2, v=1, ic=3,, c'=5 

0.32 0.90 1024 1: 1: 2 1100 1100 - 
0.33 1.00 1024 1: 1: 2 100 220 1100 

0.35 2.00 1024 1: 1: 2 150 - 1350 

0.38 3.00 2048 1: 1: 4 600 500 - 

µ=1, v=3, K=3, k'=5 

0.30 3.40 8000 1: 1: 1 -- 110 

0.30 3.45 8000 1: 1: 1 -- 170 
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Table 3.2: Simulation results. p and T are the reduced density and temperature. K1, 

K2, IK3 are the Frank elastic constants; the {K1, K3} pair come from the W13 surface 
fits the {K2, K3} pair come from the W23 surface fits. P2 is the order parameter 

averaged over all runs; W.. is the large-k limit defined in eqn (3.28). Estimated 

statistical errors in the final digit(s) are given in parentheses. 

p T K1 K3 K2 K3 P2 Woo 

2, v=1, ßc=3, ic'=5 

0.32 0.90 0.652 (33) 2.01 (08) 0.676 (55) 2.01 (10) 0.674 (2) 2.86 (3) 

0.33 1.00 0.697 (74) 2.59 (19) 0.718 (42) 2.27 (20) 0.708 (13) 2.69 (18) 

0.35 2.00 1.511 (25) 4.79 (15) 1.099 (98) 5.23 (18) 0.663 (3) 4.70 (7) 

0.38 3.00 3.55 (14) 13.5 (1) 2.53 (12) 13.0 (5) 0.730 (5) 10.5 (2) 

µ= 1, v=3, n =3, rc'=5 

0.30 3.40 2.17 (12) 3.97 (6) 1.71 (11) 3.95 (6) 0.553 (5) 4.55 (11) 

0.30 3.45 
. 
1.59 (2) 2.23 (8) 1.34 (2) 2.19 (10) 0.478 (5) 3.52 (9) 
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no director constraint applied. The two state points for the it = 1, v=3 system 

are reasonably close to the isotropic-nematic transition temperature for this system 
(which we estimate as lying between T=3.45 and T=3.50 for this system size, 

slightly below the estimate of reference [23], which was for a smaller system). For 

these runs, no director constraints were used. 
The functions W13(kl, k3) and W23(kl, k3) 

, 
defined in eqns (3.7), (3.8), are shown 

in Figures 3.3 and 3.4 for the four p=2, v=1 state points studied. We can see 

a significant increase in magnitude of these functions at higher densities, corre- 

sponding to larger values of KI-K3, and steadily developing orientational structure. 
Nonetheless, reasonable fits to the data can be obtained by the procedure described 

in section 3.5, in all cases, without introducing a large number of coefficients. More- 

over, in general we found a high degree of consistency between the runs with and 

without director constraints applied. In addition, the results for K3 from the fits to 

the W13 and W23 data are consistent with each other. 

At the highest density, some systematic differences were observed at high values 

of k between data obtained from runs with the constraint applied in the x and 

z directions, and these differences are particularly apparent in figure 3.3 at high 

kl (corresponding to short-wavelength splay deformations). This appears to be a 
finite-size effect: the box dimensions for these runs were in the ratios 1: 1: 4, and 

constraining the director to be parallel or perpendicular to the long axis appears 

to have a measurable effect on orientational fluctuations. In fact, we observed a 
difference of 5% in the nematic order parameter between the two sets of runs, and 

this may be related to the high-k behaviour. Nonetheless, the W13 and W23 surfaces 

at low k seem to be insensitive to this, and we see no significant effect on our 

estimates of the elastic constants. 

The values of the elastic constants quoted in table 3.2 are based on the low- 

order coefficients of the polynomials in k?, k3 used to fit the full set of data for each 

state point. The constrained-director runs give us the opportunity to compare slices 

through the fitted surfaces with measured data points along the kl and k3 axes; we 
do this in figures 3.5-3.7, for the µ=2, v=1, p=0.32, T=0.90 state point. It 

can be seen that the quality of the fit is excellent throughout, that different choices 
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Figure 3.3: The surface W13(kl, k3) defined by eqn (3.7), which measures the inverse 

of the k-dependent orientational fluctuations, as a function of kl and k3, for the 

system with p=2, v=1, at the four state points given in tables 3.1 and 3.2. 

We show the fitted surfaces used to estimate the elastic constants for all four cases 
(increasing (p, T), bottom to top) and our data points with estimated errors for the 

highest values (p, T) = (0.38,3.00). 
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Figure 3.4: The surface W23(kl, k3) defined by eqn (3.8), which measures the inverse 

of the k-dependent orientational fluctuations, as a function of k2 and kI. for the 

system with p=2, v=1, at the four state points given in tables 3.1 and 3.2. 

We show the fitted surfaces used to estimate the elastic constants for all four cases 

(increasing (p, T), bottom to top) and our data points with estimated errors for the 

highest values (p, T) = (0.38,3.00). 
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Figure 3.5: Splay fluctuations as a function of wavelength. For the it = 2, v=1, 

p=0.32, T=0.90 state point we show W13(ki, k3) for wavevectors in the plane 

perpendicular to the director n, i. e. with k3 = 0, plotted as a function of kl. The 

error bars are the MD results for runs with n constrained to lie along (a) the x- 

axis and (b) the longer z-axis of the box respectively. The full curve shows the 

corresponding section of the surface W13(kl, k3), which was fitted to all the data 

points, and the tangent at the origin is drawn with a gradient equal to the splay 

elastic constant Kl calculated from the fitted surface. 
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Figure 3.6: Twist fluctuations as a function of wavelength. For the 11 = 2, v=1, 

p=0.32, T=0.90 state point we show W23(kl, k3) for wavevectors in the plane 

perpendicular to the director n, i. e. with k3 = 0, plotted as a function of k2 
. 

The 

error bars are the MD results for runs with n constrained to lie along (a) the x- 

axis and (b) the longer z-axis of the box respectively. The full curve shows the 

corresponding section of the surface W23(kl, k3), which was fitted to all the data 

points, and the tangent at the origin is drawn with a gradient equal to the twist 

elastic constant K2 calculated from the fitted surface. 
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Figure 3.7: Bend fluctuations as a function of wavelength. For the Ei = 2, v=1, 

p=0.32, T=0.90 state point we show W13(kl, k3) and W23(kl, k3) for wavevectors 

lying along the n-direction, i. e. with kl = 0, plotted as a function of k3. The 

error bars are the MD results for runs as follows: (a) W13 with n constrained to lie 

along the x-axis; (b) W13 with n constrained to lie along the z-axis; (c) W23 with 

n constrained to lie along the x-axis; (d) W23 with n constrained to lie along the 

z-axis. The full curves show the corresponding sections of the appropriate surfaces, 

which were fitted to all the data points, and the tangent at the origin is drawn with 

a gradient equal to the bend elastic constant K3 calculated from the fitted surface. 
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of director orientation produce consistent results, and that the two different ways 

of measuring K3 (from W13 and W23) are also consistent. It is also clear from these 

figures that there is considerably more structure in the k-dependence of fluctuations 

where k lies along the director: there are far fewer k-points lying in the asymptotic 
low-k regime in figure 3.7 than in the other cases. This makes estimating K3 more 

prone to uncertainty than the other two cases, although the use of both W13 and 
W23 data partially offsets this factor. 

For the parametrisation it = 2, v=1, x=3, i' = 5, we have studied state 

points of progressively higher density and temperature, chosen so as to maintain the 

nematic order parameter of the system at P2 P 0.7. We observe a systematic increase 

in Kl, K2 and K3 with increasing density, whilst the variation in their relative 

magnitudes is less dramatic. In all cases we see that the inequality 1(3 > K1, K2 

expected for elongated molecules is obeyed, and the values of Kl and 1(2 are quite 

close to each other, with Kl > K2 in most cases. 

Our estimates of the elastic constants for p=2, v=1, k=3, W=5, p=0.33, 
T=1.00, may be compared with simulation results at the same state point by Stelzer 

et al. [72,73]. From Figures 6 and 9 of reference [73] their estimates of the elastic 

constants seem to be approximately {K1, K2, K3} _ {2.7 ± 0.2,2.5 ± 0.2,3.1 f 0.2} 

at this state point, whereas our estimates (table 3.2) are {K1, K2, K3} = {0.70 ± 

0.07,0.72±0.07,2.43±0.11}. There seem to be significant differences between these 

results, both in terms of the absolute values and the ratios of the elastic constants. 
Our results for p=2, v=1, i=3, IC' = 5, p=0.35, T=2.00, may be roughly 

compared with data reported for systems of hard ellipsoids [58-60]. In table I of 

reference [60] reduced elastic constants KQC/kBT are reported (where C is the semi- 

minor axis) for ellipsoids of axial ratio e=3, at a reduced density pva = 0.555 where 

vo is the ellipsoid volume. If we approximate vo = irra, /6 = 1.571, in our units, this 

corresponds to a density p=0.353, and the closest comparison density in table 3.2 is 

p=0.35. The order parameter in the hard ellipsoid simulation is P2 = 0.7, similar to 

ours. Setting T=2.0 and C=2, the hard ellipsoid elastic constants become, in our 

units, {KI, K2i K3} = 11.80,1.64,6.0}: these values are somewhat higher than ours, 

{K1, K2, K3} = {1.51,1.1,5.0} but the ratios are comparable; we emphasize that 
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there is no good reason to expect the two systems to match closely, because of the 

difference in interaction potential. If, instead, the softness of our potential function 

leads us to compare with slightly smaller hard ellipsoids, say 2-3% smaller in linear 

dimensions, the compensating change in vo means that the relevant comparison 
density in our simulations is the highest one in table 3.2, namely p=0.38. Setting 

T=3.0 we obtain a set of values from the hard particle simulations, {K1, K2, K3} = 
{2.70,2.46,9.0}, to be compared with our {ICI, K2i K3} = {3.55,2.53,13.25}. Now 

our values are larger, and the ratios are again comparable. 

3.7 Conclusions 

We have calculated the Frank elastic constants of the Gay-Berne fluid at a number 

of state points and with two commonly used parametrizations of the potential, 

by performing molecular dynamics simulations. These results were obtained by 

examining the behaviour in the long-wavelength limit of fluctuations in appopriate 

symmetry components of the reciprocal space order tensor Q. 
O (k). We have shown 

that it is possible to obtain the corresponding equilibrium averages very accurately 

at sufficiently low k, so as to reach the regime in which the Frank expression for 

the free energy is valid. System sizes of the order of a few thousand molecules are 

perfectly adequate for this kind of calculation, but simulation run lengths of the 

order of hundreds of thousands of timesteps are needed, in view of the very long 

correlation times for long wavelength fluctuations. 

In some of our simulations, a set of Lagrangian constraints was added to the 

equations of motion in order to keep the nematic director fixed; in others no such 

constraints were applied, so the director wandered slowly away from its initial direc- 

tion. Constraining the director simplifies the data analysis considerably, and in par- 

ticular makes it relatively simple to estimate statistical errors on each k-histogram 

bin. Without the director constraint, it is still possible compute the desired quanti- 

ties by discretising the data onto a grid of k values, at the expense of complicating 

the averaging process and the estimation of statistical errors. We have shown that 

the results from constrained and unconstrained runs are consistent. 
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Our results compare reasonably well with simulation results for hard ellipsoids. 
In all cases, the bend elastic constant K3 is much larger than the other two, while K1 

and K2 adopt quite similar values to each other. All the elastic constants increase 

with increasing density at roughly constant order parameter (with the temperature 

also increasing to ensure this). Any comparison of results for different systems (for 

example, with and without attractive forces) must take account of the sensitivity of 

the elastic constants to both density and order parameter, which may complicate 

comparisons of one state point with another. 

Our results do not agree well with those in [72,73], which proceed via calculation 

of the direct correlation function C(i, j). There could be many reasons for this, but 

clearly much depends on the accuracy with which C(i, j) is obtained by inverting 

the Ornstein-Zernike equation in the nematic phase. The integrals of eqn (3.9) 

include powers of separation rjj that make the result very sensitive to the form 

of the appropriate components of C(i, j). Our runs are conducted on much larger 

systems, and are much longer, than those of [72,73], but, of course, this does not 

rule out the possibility of obtaining satisfactory results by the C(i, j) route using 

smaller systems and shorter runs. These points clearly require further study. 
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Chapter 4 

Pretransitional effects and kinetics 

of the Nematic-Isotropic 

Transition 

4.1 Introduction 

In this chapter we investigate several aspects of the nematic to isotropic phase tran- 

sition. This transition is known experimentally [3] to be weakly first order in charac- 
ter. As the isotropic phase is cooled there is an increase in the range of orientational 

correlations: the inverse correlation length Cz 1 can be extrapolated to zero at a 

temperature T*. In fact though, this divergence is pre-empted by the occurence of 
the phase transition at a slightly higher temperature, TNI - experimentally, TNI -T* 
is a fraction of a Kelvin, or (TNI -T*)/TNI .:: 10-3. Another well-known effect which 

accompanies the coarsening of correlated domains is the lengthening of relaxation 

times for orientational fluctuations of a given wavelength. 

There have been several previous computer simulation studies of pretransitional 

phenomena at the NI transition. Some of these [87-89] used the Lebwohl-Lasher 

lattice model [11,12]. The computational simplicity of this model permits the study 

of large system sizes (more than 303 spins) and relatively long simulations. However, 

the absence of translational degrees of freedom means that this model corresponds 
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with real liquid crystals only in the most coarse grained sense. There have also 
been some investigations of hard particle models [90]. These provide some evidence 
for the growth of static correlations and slowing down of collective reorientation 

in the neighbourhood of the phase transition. The system sizes studied in these 

these early simulations were quite small, which restricted the range of correlations 

to a few molecular diameters. We felt it was desirable to perform simulations on a 

larger system, as this allows one to investigate longer ranged behaviour of the pair 

correlation function h(1,2), to be defined in section 4.2. Another motivation for 

revisiting this area is that techniques have recently become available [911 for inverting 

the Ornstein Zernike (OZ) equation, i. e. calculating the direct correlation function 

c(1,2) from h(1,2). Whilst c(1,2) cannot be measured directly in experiments, in 

some respects it is the more fundamental quantity, and it plays an important role in 

theories of liquids and liquid crystals. In particular, the condition of stability of the 

isotropic phase with respect to the nematic can be expressed in terms of moments 

of c(1,2) [92-94]. The results presented in this chapter are from extensive molecular 

dynamics simulations of a large system of Gay-Berne particles, at temperatures in 

the neighbourhood of the NI phase transition TNI. t 

In addition to the static correlation functions, we have also investigated the 

behaviour of time correlation functions describing the relaxation of long-wavelength 

orientational fluctuations. In a separate set of simulations, we performed a sudden 

quench of a larger system from the isotropic phase to a state point just inside the 

nematic. Whilst the system size and timescale studied were not sufficient to reach 

the scaling regime, we do obtain some information concerning the kinetics of nematic 

ordering in the early stages of the transition. 

The structure of this chapter is as follows. In section 4.2 we define the correlation 

functions which we measure, and summarise the methods used to invert the OZ 

equation. In section 4.3 we give the details of our simulations. Sections 4.4 and 

4.5 contain our results for static and dynamic correlations respectively. Section 4.6 

briefly describes the results of our simulated quench from the isotropic to nematic 

tIn order to avoid confusion, we drop the suffix'*' from temperatures, density etc. when referring 

to our simulations. Reduced units are used throughout this chapter. 
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phase. We conclude in section 4.7 with a summary, comparison with Landau-dc 

Gennes (LdG) theory and some thoughts on possible future work. 

4.2 Background 

4.2.1 Distribution functions 

In a simple fluid, the static structure is completely described by the single particle 

density po (r) and its correlation functions, defined by [7] 

P(n)(rl, rz,... rn) = (P(ri)P(r2)... p(rn)) (4.1) 

where the angle brackets denote an ensemble average. In a homogeneous simple 

fluid of average density p= N/V, two-point correlations are described by the pair 

distribution function, 

9(r1, r2) = P(2) (ri, r2)/P2 (i) (4.2) 

which represents the conditional probability per unit volume of finding a particle at 

r2, given that there is a particle at rl. 

In a fluid of uniaxial molecules, these definitions must be extended to include the 

orientational degrees of freedom [95]. The single-particle density becomes p(r, 0), 

the probability per unit solid angle and unit volume of finding a particle at r with 

orientation n. In the isotropic phase, p(r, fl), is independent of IL In the nematic, 

orientational ordering can be expressed in terms of Legendre moments of p(r, fl) 

about the director n [95] : 

(Pt) =V 
Jdrdý Pi (SZ - n) p(r, SZ) (4.3) 

of which the second, S= (P2), is the nematic order parameter. The symmetry of 

the nematic phase is such that all odd moments vanish, i. e. the directions n and 

-n are completely equivalent. t Eqn (4.2) can be similarly generalised, to define 

a function g(1,2) = g(rl, r2, SZ 1i fl2) specifying the probability density of finding a 

This does not necessarily mean that the molecules themselves have head-tail symmetry, al- 

though in the case of the Gay-Berne model the orientations el and -ei are indistinguishable. 

57 



particle with orientation 112 at r2, given that there is a particle oriented along fl, 

at rl. It is also useful to define the pair correlation function h(1,2) = g(1,2) - 1. 

In the homogeneous case, h(1,2) = h(r12,11,11z) where r12 = r2 - rl. Uniaxiality 

of the nematic phase implies invariance of h under rigid rotations of (112,521,112) 

about n, so that h(1,2) can be considered a function of five angles and the pair 

separation r12 = (r121. In the isotropic phase, h(1,2) is additionally invariant under 

arbitary rigid rotations of (112,11i, 112), as well as rotations of 11i and $12 through a 

common angle about i12, leaving three angular degrees of freedom (see figure 4.1). 

4.2.2 Basis functions 

In the molecular frame (r12 = z) we can expand h(1,2), or indeed any pair function, 

in terms of a complete set of angular functions of the coordinates shown in figure 

4.1: 
h(SZ1, Stz, r, i) _ hmnXix2 (r) Yx1 (ei, 0 1) YX2 (82,02) 

. (4.4) 
m, X1 n, X2 

The abovementioned symmetries of pair functions in the isotropic phase restrict the 

Figure 4.1: Molecular frame coordinates for the calculation of the pair correlation 

function h(r12, S2i, Ste) 
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values of m, Xl, n and X2: m and n must be even (head-tail symmetry), X1 + X2 =0 
(rotational invariance about z) and we can also take m>n, without loss since 
h(2,1) = h(1,2). We therefore set Xl = -X2 =X and write the coefficients in the 

molecular frame as h, nnx(r). 
It is also convenient to introduce an orthogonal set of rotational invariants in 

the laboratory frame [96]: 

4Dmn! (fli, 22, )= 47r E 
2l +1 

(mnl\ 
yµ (ý1)1' ('112) ß'ä(r) , (4.5) 

w, a pva 

fl 

where the 
rn 

µnn 
are Wigner 3j symbols. Pair functions can also be expanded 

in terms of this basis set: 

h(r, i, 0 f22)= hmni (r) , Dmnl(r n SZ) (4.6) 
mnl 

These expansions are completely equivalent, and the mnl and mnX sets of coeffi- 

cients are trivially related, via the X-transform (see table 4.1). 

4.2.3 Inverting the OZ equation 

The direct correlation function c(1,2) is related to h(1,2) via the Ornstein Zernike 

(OZ) equation [7] : 

h(1,2) = c(1,2) +1f dr3 d 13 Po(ds) h(1,3) c(3,2) . (4.7) 

Since we are concerned solely with the isotropic phase, po(SZ) = p, a constant. The 

solution of this integral equation can be carried out either in reciprocal space or 
in real space using the Baxter factorisation method. The k-space inversion method 

relies on an elegant factorisation of the OZ equation, the result of early work by 

Blum [97-99). This is formally a matrix equation relating the mnX coefficients of 
the Hankel transforms of c and h: 

hmnx(k) _ ömnx(k) + (-1)"PE hmpx(k)ý, nx(k) " (4.8) 
P 
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The Hankel transforms are most conveniently carried out in the mnl basis. In 

practice we make use of the fact that the lth order Hankel transform is equivalent to 

a hat transform (defined in table 4.1) followed by a Fourier-Bessel (FB) transform. 

Splitting the calculation up in this way does not appear to introduce any numerical 

difficulties, and is more efficient computationally since the FB transform can be 

calculated using an FFT. 

The real space inversion is based on the Baxter factorisation method [100] which 

is valid for finite-ranged direct correlation functions. Again, the generalisation to 

molecular liquids is due to Blum [99]. Briefly, it involves solving (independently for 

each X) a pair of simultaneous matrix equations 

2rrrcx(r) = -QX(r) + (-1)Xp f Rds 
QX(s)QX(s - r) (4.9) 

f R 
2irrhx(r) = -Q' (r) + (-1)Xp f ds 2r(r - s)hX(r - s)QX(s), (4.10) 

for the unknowns QX and cx(r). In these expressions, cX etc. are square matrices with 

elements c�,,, X, both m and n running from 0 to lm., primes indicate differentiation, 

and XT denotes the transpose. These equations are solved iteratively. 

The two methods are shown schematically in figure 4.2. In both cases, we trun- 

cate at some upper value of 1- we found that lmax =8 was adequate. 
We note in passing that to date, no attempt has been made to calculate the 

direct correlation function in the nematic phase from simulations - this is more 

complicated, since many more symmetry components are involved. 

60 



Figure 4.2: The sequence of transformations used in the real-space and reciprocal- 

space solution of the Ornstein-Zernike equation. The various transforms involved 

are defined in table 4.1. 
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Table 4.1: Transforms used in the inversion of the OZ equation. 

mn 
X Chi transform fmnx = El 

1 
fmnl 

X -X 0) 

_1 mnt =mnIf X Inverse chi f (2I + 1) Ex mnx 
X -x 0 

hat order-I hat transform f1 (r) = fi (r) - ff ° hPi (ä) ds 

hat-' Inverse hat f, (r) = it (r) - ff s2 f: (s) P1(1r) ds 

ds where Pe (z) =ydx 
Pi (x) Legendre polynomials. 

Fourier-Bessel transform l (k) =f DO $'k, -k f1(r) r2dr 

ý'-1 Inverse Fourier-Bessel f (r) =ý fo 2'` kr !I (k) k2dk 
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4.3 Simulation details 

The techniques used for these simulations are completely standard - i. e. constant 

NVE molecular dynamics, with periodic rescaling of velocities to maintain the de- 

sired kinetic temperature. All the simulations were carried out on the T3D machines 

at Bologna and Edinburgh, using the GBMEGA domain decomposition program de- 

scribed in chapter 2. The variant of the Gay-Berne potential used was the one first 

studied by Berardi et al [23]. Other relevant parameters of the simulation are listed 

in table 4.2. The length of the equilibration run in each case was judged by exam- 

ining the evolution of the pair distribution function h220(r). During each run, we 

stored the configurations at intervals of either 20 or 100 timesteps, and monitored 

the nematic order parameter P2. As illustrated in figure 4.3, we found spontaneous 

ordering on cooling from T=3.50 to T=3.45; however, at T=3.47, P2 fluctuated 

over a very large timescale. We therefore estimate that TNI P 3.47 lies between 

T=3.45 and T=3.50, compared with a value of 3.57 for the smaller system size 

studied in reference [23]. 

Figure 4.3: Evolution of the nematic order parameter in runs (i) cooled from T= 

3.50 to T=3.45, (ii) cooled from T=3.50 to T=3.47. 
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Figure 4.4: Temperature dependence of (top) the correlation length, and (bottom) 

the c("`) functions, in the vicinity of the phase transition. 
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Table 4.2: Run parameters for investigating correlations in the neighbourhood of 
TNI 

. 

Potential parameters 
Simulation timestep 

Moment of inertia 

Density 

Simulation algorithm 

r. =3, ßc'=5, u=1, v=3 
At = 0.004 

I=1.0 

p=0.3 
Domain decomposition (GBMEGA) 

Run length ( reduced units ) 

Temperature Equilibration Production 

T=4.00 20 20 

T=3.80 20 20 

T=3.70 20 20 

T=3.60 120 50 
T=3.55 260 200 

T=3.50 260 260 

T=3.47 150 - 
T=3.45 160 100 
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4.4 Static orientational structure 

We calculated the spherical harmonic components hmnx(r) in the molecular frame 

up to order lm. = 8. This involved accumulating histograms over all pairs of 

molecules, out to a cutoff distance of approximately half the box length L. In 

practice, the all-pairs sum for this long range calculation is rather expensive, so 

we only analysed every 1000th timestep. The short range correlation functions, for 

r< 5Q° were computed at intervals of 100 timesteps for better statistics, using a link 

cell algorithm. After combining short- and long-ranged histograms and averaging 

over the entire production run, we used the methods outlined in section 4.2.3 to 

calculate the direct correlation function. 

Several components of the the pair correlation function h(1,2) are shown in 

figure 4.5 (i)-(iii). The orientationally averaged centre-centre pair function h°°°(r) 

varies only slightly as the transition is crossed. Of more interest is the laboratory- 

frame h220(r) component, which measures correlations of the P2(el " e2) type. As 

expected, within the isotropic phase this function decays to zero at r= oo, and as the 

transition is approached its range increases; below TNI, the range becomes infinite. 

The long range decay at the isotropic state points fits well to an Ornstein-Zernike 

form h22° a exp (-r/e2)/r. Correlation lengths '2 extracted from this expression for 

each temperature are plotted in figure 4.4 (i). We find that the apparent divergence 

of the correlation length agrees quite well with Landau-de Gennes theory &2 IX 
(T - T*), with T* = 3.47 ± 0.02. 

The higher order components such as h440 (r) also become more long ranged as 

the transition is approached, although the amplitude of the long range decay is 

smaller. They also exhibit more short-range structure. 

In figure 4.6 we show the behaviour of corresponding moments of the direct 

correlation function c(1,2). The most important point is that all the c'"ni(r) remain 

finite in range through the transition. In fact, the changes in c220 and c44° in the 

temperature range 3.45 "". 4.00 are quite small - the values at r=0 become more 

negative and the first peaks more pronounced with decreasing temperature. These 

small changes alone are responsible for the dramatic increase in the range of h(1,1). 
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We can understand this as follows. Defining suitably normalised integrals 

p(21 + 1)'1/241 f 00 dr r2 h"' (r) 
0 

(4.11) 

p(2l + 1)-1/241 in dr r2 cuo(r) 
0 

(4.12) 

the instability criterion for the isotropic phase [92-94] may be expressed as c(<) -9 1, 

I=2,4,6.... This is related to an exact factorisation of the Ornstein- Zernike 

equation at zero wave-vector [95] which may be expressed 

1-c(ý) 
(4.13) 

Thus, c(<) -4 1 coincides with the divergence of the integral in eqn (4.11), and Bence 

divergence of the range of h10(r). The dependence of c(2) and c(4) on temperature is 

shown in figure 4.4 (ii). Again, these functions are consistent with TNI lying between 

T=3.45 and T=3.50. 
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Figure 4.5: Behaviour of selected components of the pair correlation function, at 
temperatures close to TNI. 
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Figure 4.6: Behaviour of selected components of the direct correlation function, c"W 

at temperatures near TNI. 

2.0 

0.0 --------- 

220 C -2.0 

TsC 

-4.0 

T. 3.50 

-6.0 

1.0 

--------- -------- -- ---- T=4.00 

i 

T. 3.50 

0.0 

sa c 

. 1. o 

_13 n -"o. o 1.0 2.0 3.0 to 
r 

69 



4.5 Reorientation dynamics 

In our calculations of the elastic constants (chapter 3), we measured static fluctu- 

ations in the reciprocal space order tensor. Collective reorientation is described by 

the dynamics of this tensor, i. e. by 

C(k, t) =Z (Qap(-k, 0)Qaß(k, t)) , (-1.14) 
a, ß 

where 
QQß(k, t) _2 

(eiQeii 
- 

3aap) 
exp(ik " ri) . (4.15) 

s-i 
Summation over indices is appropriate, provided we restrict our attention to the 

isotropic phase. In this case, C(k, t) is radially symmetric with respect to k. We 

compute C(k, t) in the following way: 

. We first compute components of the reciprocal space order matrix, Q"'3(k) for 

each configuration, for the set of Nvavevectors k= (n=x + nyy + njz)2r/L, 

where nz = -10"""10, ny = -10"""10, ns =0"""10. 

" For each k, we calculate the correlation function C(k, t), accumulating over a 

number of statistically independent time origins. 

" By averaging over equivalent k vectors, we obtain estimates of the errors on 

C(k, t). 

Except at large values of k we find that C(k, t) decays exponentially with time: 

C(k, t) = A(k) exp [-t/r(k)) 
, (4.16) 

and that both T and A are proportional to k'2, for k not too large. The propor- 

tionality constants are quite insensitive to temperature, except at very low values of 

k, where the decay times increase as the temperature is lowered. In particular, at 

k=0, we find that 7-(0) oc (T -T*)'2, in agreement with Landau-de Gennes theory. 

These results, which we represent graphically in figure 4.7, lead us to conclude that 

reorientational dynamics is unaffected by the transition, except at the very longest 

wavelengths. 
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Figure 4.7: Correlation times for the relaxation of orientational fluctuations. (i) 

shows the inverse correlation time as a function of k2 for T=3.50; the results 
for the higher temperatures are very similar when plotted this way. Dynamical 

slowing down in the neighbourhood of the transition is seen only at the lowest 

wavevectors. This is made clearer in (ii), which shows the wavevector dependence 

of the correlation time, for temperatures T=3.60 (diamonds), T=3.55 (squares) 

and T=3.50 (circles). 
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4.6 Kinetics of a nematic-isotropic quench 

Recently, dynamic scaling theories have been developed [101] which describe the 

growth of correlations when a system whose order parameter has a continuous sym- 

metry is quenched from the disordered into the ordered phase, for example from the 

isotropic into the nematic. A key prediction of these theories is that at sufficiently 

large times, the correlation functions obey scaling relations: 

C(r, t) =f (r/C(t)) (4.17) 

where f is a scaling function. The evolution of C(r, t) at late times is thus charac- 

terised by the increase of a single length scale, C. 

The observation of the true scaling limit is all but out of reach in molecular scale 

simulations, since it depends on the nature of the topological excitations which can 
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Figure 4.8: The correlation function h22° at several stages of the quench of the 

N= 64000 system. The times are in reduced units. 
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occur in the ordered phase. In a nematic, for instance, these are the disclination 

lines which give the phase its turbid appearance. Very large system sizes and lengths 

of run are needed to observe these objects, and so far, studies on this scale are 

only possible in lattice systems. However, it is still interesting to investigate the 

timescales associated with growth of structure in a molecular model, and we have 

made a modest attempt at doing this. 

We used a system size of 64000 molecules, subject to the usual periodic boundary 

conditions. The potential, timestep and other simulation parameters were exactly as 

in the equilibrium simulations reported above. After an equilibration run of length 

50000 timesteps in the isotropic, at the temperature 3.65, we quenched the system 

suddenly to the nematic state point T=3.40. In figure 4.10, we plot two measures 

of the degree of orientational ordering, namely the nematic order parameter for 
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the whole system, and the average of the order parameter computed separately for 

5x5x5 subcells and then averaged. The former remains very small throughout 

the equilibration period, but the non-vanishing subcell average shows that on the 

scale of a single subcell (about the same as the system size studied by Berardi et 

al [23]), there is some orientational order even at this temperature. Both quantities 

rise steadily after the quench, and they reach the same plateau value of around 0.55 

after around 125000 timesteps, indicating that even this large system rapidly reaches 

a monodomain state. This is the case, as the snapshot of the final configuration, 

figure 4.9 shows. The monodomain state is reached quite rapidly, as can be seen in 

the time evolution of the second rank correlation function h220(r), plotted in figure 

4.8. 

4.7 Conclusions 

Our simulations of a large system of Gay-Berne particles have shown that, close to 

the phase transition, system size effects are important. In particular, the nematic- 

isotropic transition appears at a lower temperature than in a smaller system. We 

have studied the behaviour of both the pair correlation function h(1,2) and the 

direct correlation function c(1,2) in the vicinity of TNI. We find that the range 

of orientational correlations grows as TNI is approached, and that the temperature 

dependence is consistent with the Landau-de Gennes picture. However, even in the 

large system size studied, we were not able to determine the apparent divergence 

temperature T* sufficiently accurately to distinguish it from TNI. The dramatic 

increase in the correlation length is the result of quite subtle changes in the direct 

correlation function. 

Our measurements of collective orientational correlation functions demonstrate 

that pretransitional slowing down of reorientation does occur, but at least at the 

temperatures we studied, this effect was seen only at wavelengths of order 10ao. 

The decay times for fluctuations with shorter wavelengths than this obeyed the law 

7-1 a k2. Our preliminary simulations of the kinetics of an isotropic -* quench do 

not allow us to make contact with scaling theories. They show that even for large 
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system sizes there is no splitting into domains with slowly evolving boundaries. In 

much larger systems, we might expect to see this behaviour. In this event, it would 

be very interesting to use techniques such as those employed in chapter 5 in order 

to characterise the structure and dynamics of the topological defects. 
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Figure 4.9: Snapshot of the final configuration of the quench. Colour coding repre 

sents orientation, with molecules lying along the system director coloured red. 
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Figure 4.10: Graph showing the growth of nematic order in the N= 64000 system. 

We show the order parameter for the entire system, and also the average value of 

P2 calculated for individual subcells of side ; ze 12a0. 
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Chapter 5 

Computer Simulation of the Twist 

Grain Boundary Phase 

5.1 Introduction 

In 1989, Renn and Lubensky (RL) predicted the occurrence of a novel liquid crys- 

talline phase in systems of chiral mesogens, the twist grain boundary, TGB phase 

[102]. This discovery, together with the first experimental observation of the phase 

which was made at around the same time, generated a great deal of interest, both 

for their own sake and because of a close analogy between these systems and super- 

conductors. In this chapter we present the results of extensive molecular dynamics 

simulations of a system of Gay-Berne molecules subject to twisted periodic boundary 

conditions. The translational and orientational ordering we observe in our system 

correspond qualitatively with the RL picture, and so we believe that this work repre- 

sents the first computer simulation of the twist grain boundary phase. A particularly 

interesting aspect of the TGB structure is the topology of the smectic layers at the 

interface between regions of different smectic orientations. In the RL theory, each 

interface contains a regular array of twist defects. We have developed a novel tech- 

nique for searching through molecular configurations for this kind of defect, and have 

found several convincing examples in configurations at the lowest two temperatures 

we studied. We have attempted to characterise the ordering in the neighbourhood 
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of these defects, and to estimate the defect core radius. 
The organisation of this chapter is as follows. In section 5.2 we give an outline 

of the RL theory, qualitatively describe the TGB structure and comment briefly on 

the relationship with superconductivity. Section 5.3 introduces the model and sim- 

ulation techniques used. The TGB phase is distinguished by the behaviour of the 

molecular orientation and smectic layer normal as a function of distance along the 

twist direction. In section 5.4 we define the profiles of nematic order parameter and 

structure function which we use to characterise this behaviour, and present these 

results for each of the statepoints studied. This is followed in section 5.5 by a discus- 

sion of diffusion profiles, which we measure primarily to check that no parts of the 

system have solidified. In section 5.6 we describe our simulated annealing technique 

for finding defects in molecular configurations, and apply this to investigating the 

structure of the domain boundaries. We conclude in section 5.7 with a summary of 

our results, some comparisons with experiment, and possible directions for future 

work. 

5.2 Theoretical and experimental background 

The Renn-Lubensky theory [102] was motivated by a close correspondence between 

the mathematical description of the normal-metal to superconductor transition and 

that of the nematic to smectic A. This correspondence, which was first noted by de 

Gennes [1] arises from the common character of the symmetry breaking in the two 

transitions. In the superconducting case the ordering field is the complex amplitude 

of Cooper pairs, '(r). In a smectic, the ordering field represents the periodic mod- 

ulation along the layer normal N of the nematogen density. This too is complex, 

since the modulation has both an amplitude and a phase; the deviation of the local 

single-particle density from its average value is 

P(r) - (p) = O(r) + 0'(r) . (5.1) 

Phenomenological mean field theories of a superconductor in zero magnetic field 

and the N-Sm A transition for uniaxial molecules are based on a free energy func- 
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tional F of the ordering field. Imposing the relevant symmetry on this functional 

(gauge invariance in the case of superconductivity, rotational invariance in liquid 

crystals ) leads to identical mathematical forms for 
. 
F[V)(r)], so there is complete 

correspondence between the theories. RL extended the superconducting analogy to 

include the effects of molecular chirality. They modelled this by including a term in 

the free energy density coupling to the twist in the director field, nx (V x ii). The 

superconducting analogue of this term is the coupling between the vector poten- 

tial and an external magnetic field. In superconductors, two regimes of behaviour 

can result when such a field is introduced. Which regime is followed depends on 

the ratio of two length scales, namely the correlation length !; ' and the penetra- 

tion depth . 12 - these in turn depend on the phenomenological constants in the free 

energy. In strongly correlated (type I) superconductors, where the Ginzburg param- 

eter ICC _ )2/ý < 1/f, there is just one critical magnetic field h,. Below hc, in 

the Meissner state, the magnetic field is expelled, and decays exponentially over a 

distance A2 inside the superconductor. At h= he there is a first order transition 

to the normal state, and fields above this value are able to penetrate the material 

completely and uniformly. In weakly correlated (type II) superconductors, for which 

KC > 1//, the behaviour is entirely different: there are now two critical fields, h, 1 

and hc2. For h< hc1 we have the Meissner state, and above hc2 the normal metal. 

There is now a new intermediate state between lower and upper fields hc1 and in 

which there is partial penetration of magnetic flux. Unlike in the normal metal 

however, the magnetic field in this state is not uniform; but is concentrated on lines 

running parallel to the applied field. These lines, or vortices, are topological defects 

in the order parameter field: the density of Cooper pairs IV)I2 goes to zero over a 

length ~ 6, and the phase of Vi undergoes a rotation of 27r around each vortex. 

When interactions between vortices are taken into account, the most energetically 

favourable arrangement is found to be the Abrikosov state in which the line defects 

lie on a triangular lattice. 

In the RL theory, all these ideas carry over to the liquid crystal case. The con- 

cepts of flux expulsion and penetration have straightforward interpretations: in the 

presence of molecular chirality the thermodynamically favoured disordered phase is 
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no longer an untwisted nematic, but a cholesteric phase N' in which the director 

rotates helically with a pitch determined by the rotatory power of the constituent 

molecules. This twist cannot penetrate very far into a homogeneously ordered smec- 

tic A since this would involve a large bending energy of the smectic layers - for this 

reason the smectic is said to expel twist. As the chirality is increased (for instance by 

increasing the concentration of chiral solute) then eventually the cost of destroying 

the translational ordering is outweighed by the free energy gained by reintroducing 

twist. In type I systems there is just one critical chirality, h,, above which the N' 

phase is regained. RL predicted the possibility of a liquid crystal analogue of type II 

behaviour, and hence an intermediate twist grain boundary state in which the twist 

is only partially expelled and a degree of translational ordering remains. Sketches 

of the phase diagrams in the type I and type II cases are shown in figure 5.1. 

The structure of the twist grain boundary phase, which we illustrate in figure 

5.2, consists of a set of domains along the twist axis. Within each domain there 

is smectic-like 1D translational order, and the director n lies almost parallel to the 

layer normal N. At each domain boundary though, both n and N undergo a discrete 

rotation through an angle 06. This rotation is mediated by a set of equispaced, 

parallel twist dislocations with orientation between the layer normals on the two 

sides of the interface. As in the superconducting case, these are topological defects 

in the ordering field 0; on encircling one of the defects one picks up a phase change 

of 2ir in ; i, so that the arrangement of the smectic layers in the vicinity of each 

defect resembles a spiral. In the RL theory, the system is assumed infinite in the 

directions perpendicular to the twist, and the defects form a regular array of infinite 

lines distance Id apart. The layer spacing away from the defects is de. 

As the defect line is approached, the degree of translational ordering I 0I2 tends 

to zero over some radial distance e C. An idealised representation of the geometry 

of a single interface is shown in figure 5.3. 

Just at the same time that the theory of the TGB phase was proposed, Goodby 

and coworkers [103] discovered a novel chiral smectic phase in the series of chiral 

mesogens nP1M7, which have the general formula: 
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Figure 5.1: Schematic phase diagrams in the temperature T chirality It plane. In 

a type I smectic, the effect of molecular chirality is to postpone the cholesteric- 

smectic transition; for a given temperature T< TNA there is a critical chirality he 

above which the smectic ordering is destroyed. In type II materials, the TGB phase 
intervenes between the cholesteric and the smectic, and is bounded by lower and 

upper critical chiralities, hc, and hC2. 

h 

type I 

h 

type II 

CnH2n+1p C=000O OO COOCH(CH3)C6N13 

The asterisk indicates the position of the chiral centre. Optical micrographs of 

textures and small angle X ray scattering measurements indicated that several ho- 

mologues of this series undergo a phase transition from a smectic-C' into a phase 

with both helical orientational order and smectic order, which led to speculation 

that this was the first experimental observation of the TGB phase. Subsequently 

the structure of the new phase was investigated more thoroughly: the variation of 

chiral pitch with temperature was determined from the position of troughs in the 

transmission spectra for circularly polarised light. High resolution X-ray diffrac- 

tion studies were able to measure the static structure factor, and hence provide an 

estimate of the smectic layer spacing, a lower bound on the range of translational 

correlations within smectic domains, and the width of domain boundaries [104-1061. 
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Figure 5.2: Domain structure of the TGB phase, showing the grain boundary angle 
p9, and domain width 1, 

oe 

Finally, electron micrographs of freeze fracture specimens [107] provided estimates 

of the grain boundary angle 09 and the defect spacing ! d. Cumulatively, these 

results confirmed the TGB structure as a convincing model of the new phase. The 

possibility of TGB-like structures in achiral liquid crystals was first put forward 

by Patel [108] in relation to experiments on a liquid crystal in a twist cell, i. e. in 

a sample bounded by plates favouring molecular alignment along the x direction 

on the top surface and along y on the bottom. The twist in the director field 

about the z axis induced by the director pinning can be detected as a non-zero 

transmitted intensity when the cell is placed between crossed polarisers. Patel found 

that the twist persists below TNA, whilst at the same time the presence of focal conic 

textures suggests smectic like ordering. Strain-induced TGB structures have also 

been observed in suspensions of the bacteriophage fd [109]. The comparatively large 

length of fd particles in this case - about 8800A - allows direct observation of the 

block domains via differential interference contrast microscopy. 
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Figure 5.3: Idealised structure of an interface between two domains in the TGB 

phase. 

i'l 

Ido 

5.3 Simulation method 

Several approaches to the modelling of the TGB system might be considered. One 

possible avenue of study would be to attempt an exact numerical solution of the 

mean field theory, i. e. minimisation of the RL free energy functional Flo, n), with- 

out any of the simplifying assumptions made in the analytical treatment, such as 

confinement of the director to the xy plane, and equality of the splay and bend elas- 

tic constants. Such calculations might be able to establish how significant an effect 

these assumptions have on the behaviour of the system. The reasonableness of the 

assumptions is not in doubt however, given the qualitative agreement between the 

theory and experimental results. A far more interesting topic is the question of how 

the TGB region is divided into states with different grain boundary angles AO and 

domain lengths ld. This is a subtle issue, since the lock-in corrections which occur 

when AO is a rational multiple of 2ir are difficult to treat analytically. Physically, 

these lock-in effects can be thought of as small terms in the free energy which favour 

states where the cholesteric pitch is commensurate with the rotation of the smectic 
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domains. A thorough numerical investigation of these effects would probably be very 

computationally expensive, even within a coarse-grained lattice model approach. 
Rather than beginning with a phenomenological free energy functional, in the 

present work we look for evidence of TGB formation in a molecular model which 

incorporates the essential features of chirality and anisotropic interactions, and sec to 

what extent comparisons can be made with theory and experiment. This represents 

quite a challenge, since a large system size is necessary to represent faithfully complex 

structures such as the grain boundaries that occur in the TGB phase. \Ve choose MD 

rather than MC, partly because it may be interesting at some later stage to look at 

the dynamics (although here we concentrate mainly on analysing static structure), 

and partly because of the comparative ease and efficiency with which MD can be 

parallelised. The majority of our simulations were carried out on the Edinburgh 

t3d parallel supercomputer, using the domain decomposition MD program which 

we describe in chapter 2. 

5.3.1 Definition of model 

A fully atomistic simulation of a chiral mesogen as complex as nP1A17 is clearly out of 

the question, at least at the system size we need in order to study the TGB phase. 

The use of a soft potential is preferred over reference hard-particle systems such 

spherocylinders, since parallelisation of hard-particle MD is difficult. We therefore 

use another parametrisation of the Gay-Berne model, this time with rc = 4.4, ?e= 

20, p=1, v=1, and a spherical cutoff at r, = 5.5. Diagrams showing the the 

dependence of this potential on the pair-pair separation for four relative orientations 

of the molecules are shown in figure 5.4. It is worth remarking that this particular 

parametrisation is somewhat peculiar in that the well depth at the equilibrium 

separation in the side by side arrangement is less than for the end to end and tee 

configurations. We choose this model since previous studies [110] have shown that 

there is a large region in the phase diagram where the smectic A phase is stable. 

At a reduced density of p' = 0.16, the phase transitions occur at the following 

temperatures: 
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TIN Isotropic -+ nematic T* = 1.6 

TNA Nematic -+ smectic T* = 1.1 

TAS Smectic -+ solid (? ) T* = 0.6 

The Gay-Berne potential itself is achiral: for any fixed ei and ej, the isopotential 

surfaces of Ui'j B(r, i, ei, ej) have Dooh symmetry. Clearly this potential on its own 

will not lead to any chiral phases. In order to make contact with the TGB theory 

and experiment we need some way of modelling molecular chirality. One approach is 

to add a suitable term to the pair potential, and indeed this method has been used 

in some simulation studies of chiral systems. From our point of view, this technique 

has the distinct advantage that the chirality can be adjusted continuously. Another 

method is to connect two or more Gay-Berne particles together with rigid bonds 

to form achiral "molecules". The introduction of chirality at the microscopic level 

is not the only issue in computer simulations however - another point which needs 

to be considered is the question of how the spatial dependence of the orientational 

ordering is constrained by the boundary conditions. Suppose for example that at 

a certain density, temperature and chirality the thermodynamically stable state of 

the model is a cholesteric, so that in equilibrium the director field is of the form 

n=ä cos(q " r) +b sin(q " r) , (5.2) 

where q is the twist axis, A= 27r/lq) is the equilibrium pitch, and ä and b are 

mutually perpendicular to q. The periodic modulation in the director field must be 

commensurate with the periodic boundary conditions: in a cuboidal box this means 

that A is restricted to the discrete set of values 

=1 (5.3) 

Fn2 ys 

The equilibrium pitch will not in general be accessible to a computer simula- 

tion with fixed box dimensions. Moreover, states with different twist wavevectors 

are separated by a large free energy barrier, and so transitions between them are 

rare events. One way in which these problems can be overcome is to conduct the 

simulations at constant pressure, and allow the dimensions of the simulation box 
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to change, in order to introduce continuous paths between states of different pitch. 
Typically, this is done by incorporating constant-pressure Monte-Carlo moves into 

the dynamics [34]. At regular intervals, one attempts a uniform expansion or com- 

pression of the configuration along a randomly chosen axis. The change in potential 

energy AV resulting from the attempted move is calculated, and the move accepted 

with a probability 

1 OH<0 
Paccept = 

e_nfr/kBT OH >0 
(5.4) 

where the change in enthalpy, 

OH = AV + POV - NkBT log(1 + AVIV). (5.5) 

These Monte-Carlo style volume moves in conjunction with molecular dynamics 

steps generate a phase space trajectory which correctly samples the NPT ensemble, 

and at least in principle they allow the director field to reach a thermodynamically 

stable state. In practice though, this state may still be reached only very slowly if 

the acceptance rate for the MC moves is very low. We expect this to be the case in 

the TGB phase, where reorientation of the chiral pitch axis involves thermodynamic 

forces coupling to both orientational and translational degrees of freedom. The MlC 

moves also suffer from two other disadvantages. Firstly, the fictitious moves in phase 

space mean that we lose the real dynamics of the system. For our present purposes, 

this would not be too much of a problem, since we are interested primarily in static 

structure. Secondly, and more inconveniently, it is difficult to define and average the 

spatial profiles we shall be using to characterise the ordering in the twisted system, 

if the box shape and chiral axis are continually changing. 

For these reasons, we abandon the idea of trying to reach an equilibrium state 

at constant p, T and h. Instead, we prepare a configuration with a chiral pitch 

consistent with the periodic boundary conditions, and conduct the simulation at 

constant Lx, Ly and L2. We anticipate that the chiral axis and pitch will be stable 

over any reasonable length of run. In fact, a twisted state can usually be maintained 

indefinitely even when the potential is achiral, since escape of the director field 
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towards uniform alignment involves crossing a free energy barrier of states with 

large splay/bend energy. As we shall see, this stability holds for the variant of the 

Gay-Berne potential we use here. 
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Figure 5.4: The cut and shifted Gay-Berne potential used in the TGI3 sitnulat. ions. 

The graphs show Vj = vGBc(ei, ej, rid), with molecule i at the origin and molecule 

j in the xy plane, (i) for ei = e3 = x, (ii) for e, =z and e, = x. 

(i) 

(ii) 
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Figure 5.5: Twisted periodic boundary conditions. Periodic images displaced in the 

z direction with respect to the original simulation box, shown in bold, are rotated 

a quarter turn about z. In the x and y directions, the usual boundary conditions 

apply. 
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Insofaras we are imposing a specified pitch on the system, our simulations are 

analogous to the twist cell experiments referred to in section 5.2. The main determi- 

nant of the physical realism of our model is the ratio of the pitch to the smectic layer 

spacing, A/do. This quantity varies widely among different experimental systems. In 

the DIC studies of fd [109], A/do -, 10, but these are flexible, highly elongated parti- 

cles with LID ý- 130. In the original experiments on nP1M7, typically A/do -ý 100. 

In order to reach acceptable values of A, we employ twisted periodic boundary con- 

ditions (TPBC), in which each periodic image of the cuboidal simulation cell along 

the z axis is rotated through ir/2 with respect to the last, as illustrated in figure 

5.5. This rotation is incorporated into the calculation of the forces between pairs of 

particles in different periodic images, and also when replacing particles which have 

left the basic cell in the ±z directions. In the latter case, the vectors describing 

the particle velocity and angular velocity are rotated, as well as the position and 

orientation, as illustrated in figure 5.6. The modified boundary conditions do not 

introduce any pathological effects - there are no stresses at the boundaries between 
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Figure 5.6: Replacement of a particle A leaving the simulation box in the +z direc- 

tion. It reenters as particle B, with its position, orientation, velocity and angular 

velocity rotated clockwise through one quarter about z. The helical twist in the 

director field, n, is also shown. 

A 

Lx 

Ly B 

the images, total energy is still conserved, and translational moment 11111 Is (. 01I. Served 

in the composite system consisting of four successive periodic images. In order for 

the images to match up, we must have Lx = Ly = Ll. 

5.3.2 Choice of system size 

As described above, the size of the system along the twist axis z determines the 

pitch. We set LZ -- 80a0, so that the pitch is 320a0 or approximately 80 smectic 

layer spacings, in reasonable correspondence with experimental values. The principal 

effect of finite L1 is to restrict the number of accessible smectic lavers to a discrete 

set. With L., = Ly = L1, the transverse wavevectors k1 consistent with the periodic 
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boundary conditions are 
kl = 22r 

Ll. 
(mx + ny) (5.6) 

where m and n are integers. In the RL theory, L1 is assumed infinite, and the set 
of accessible wavevectors is a continuum. This is also a good approximation for nil 
the experiments mentioned, in which Ll > do. We have discussed the difficulties 

of equilibrating a phase with periodicity in the orientational order, and similar con- 

siderations apply here. Again, one answer would be to allow the box dimensions 

to fluctuate via h1C-style box-shape moves. However, we do not do this, since it is 

inconvenient from the point of view of characterising the translational ordering for 

the set of accessible wavevectors to be continually changing. It is important to make 
Ll reasonably large though, since we shall be examining the structure factor as a 
function of z for evidence of TGB formation, and want to be sure that any division 

we see into smectic domains with distinct orientations is a real effect and not simply 

an artefact of the boundary conditions. 

5.3.3 Statepoints and lengths of runs 

We performed two independent sets of simulations, one with LjL = L=/2, and the 

other doubled in the x and y directions, i. e. with L. = L1. «e studied two temper- 

atures above the TNA of the untwisted system, and three below it. A summary of 
the run parameters and lengths of these runs is shown in table 5.1. In the original 

set of runs with N= 21000, the simulations at T' = 0.8 and To = 0.9 were both 

started from the final configuration at T' = 1.0. With this exception, the runs were 

contiguous in order of decreasing temperature. During each run, the temperature 

was maintained constant by periodically rescaling translational and angular reloc. 

ities. We monitored the evolution of the orientational and structure profiles, to be 

defined in the next section, and allowed the profiles to relax to a state from which , 
there did not seem to be any further qualitative change. This does not necessarily 
imply that an equilibrium state has been reaarhed: as we shall see, the time scale for 

the motion of boundaries between differently ordered regions is very long. Ideally, 

to check equilibration one would carry out several independent quenches from the 
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twisted nematic phase, but this is of course very expensive. A measure of conß- 
dence in the validity of our results can be obtained by comparing the independent 

simulations of the two different sized systems. 

5.3.4 Preparation of starting configuration 

The starting configurations for the runs were prepared using the following procedure: 

" We started with 5250 particles partially filling a simple cubic lattice at a low 

density (p = 0.02) in a box with relative dimensions 1: 1: 4, their orientations 

uniformly twisting along the z axis. 

" The particles were each given random initial displacements of 0.1 lattice spac- 
ing, and a rotation about a random direction through an angle up to 0.3 

radians. 

" The'system was gradually compressed to the required density. This was done 

using an MD run, with isotropic resealing of coordinates at regular intervals. 

A constant kinetic temperature T* = 1.4 was maintained through scaling of 

angular and translational velocities at each timestep. Throughout this proce. 
dure, the twisted orientational ordering was maintained using an extra field, 

3 [2 11 Vai; ý, =Voý{2et'n(T=s)ý-2J (5.7) 

with 

n(z) = cos 
(TL 

z) 
k+ sin 

(2L )y. 
(5.8) 

/: 
The magnitude of the field was progressively reduced so as to maintain the 

local nematic order parameter within 10% of the known value for the untwisted 

system at this statepoint. 

. The system was equilibrated for a further 50000 steps with no external field, 

to check for any instability towards an untwisted state. 
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Table 5.1: Simulation details. 

Potential parameters r. = 4.4, Ic` = 20, µ=1, v=1, r,, = 5.5 

Simulation timestep At = 0.0025 

Density p` = 0.16 

Original system Extended system 

System size N=21000 N= 84000 

Box dimensions 

Transverse 

Along twist axis 

Ll = 40.34 

L11 = 80.67 

Run lengths (/1000 timesteps) 

T*=1.4 40 

T* = 1.2 -- 
T*=1.0 120 

T* = 0.9 230 
T* = 0.8 100 

Li. = 80.67 
L11 = 80.67 

50 

40 

60 
65 
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"2x2x1 periodic images were concatenated to produce a configuration of 
21000 particles with box sides in the ratio 1: 1: 2, which was used as the 

starting configuration for the original set of runs. 

" The final configuration from the original runs at T' = 1.4 was doubled up 

again in the xy directions to produce the starting configuration for the 84000- 

particle runs. 

5.4 Orientational and translational order 

5.4.1 Definitions 

We now define the functions we use to characterise the variation of the orientational 

and translational ordering along the twist direction, z. We assume that any domain 

boundaries that form are oriented perpendicular to z, in accordance with theory 

and experiment - our results will show that this is the case. 

To characterise the orientational order, we use profiles of the order tensor. These 

are calculated in the usual way as second rank averages over the orientations of 

particles within each profile bin (a slab perpendicular to z): 

1 Nbin 31 

Qap(Zbin) =N 
{ei, 

Qei, ß - (5.9) 
bin 1 

We then diagonalise Q,, ß(z) to obtain a director profile "n(z) and nematic order 

parameter S(z). Generally, n is close to the zy plane. The orientation within this 

plane is defined by 

9�(z) = tan-' 
(ny) 

. (5.10) 
n,, 

The definition of profiles for characterising translational ordering is slightly more 

subtle. In an untwisted smectic, the appropriate quantity to measure would be the 

structure factor, 

S(k) = (Ip(k)12) (5.11) 
N 

p(k) = exp (ik " r; ) 
=. 

(5.12) 
, _1 
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In a well ordered smectic, this function has a large peak at the wavevector k= 

(2ir/do)N, where N is the layer normal, and do is the smectic layer spacing. We are 

interested in how N, do, and the height of the peak vary along the twist direction. 

In the TGB A phase, we expect N in each domain to be colinear with the director, 

and so we confine our attention to transverse wavevectors kl. We calculate the 

structure factor within profile bins perpendicular to z: 

S(kli zbin) = IP(kl; Zbin)I2 (5.13) 
1 Nbin 

P(kl; Zbin) _ exp (ikj. " r; ) , 
(5.14) 

bin i=1 

for a grid of transverse wavevectors compatible with the periodic boundary condi- 
tions, 

ir kl = 
2r (n., x + nyy) , Li. n, ny = 1... (Lll 

, (5.15) 
l ao 1 

where [" " "] indicates the integer part. The structure profiles S(kl; zb; ) are rather 
difficult to visualise. Within well ordered domains, the first order peaks lie on a ring 

of radius ko = 27r/do, and we are interested mainly in their angular position. In 

order to represent this dependence, we map our data from the kx, ky plane to polar 

coordinates k, 0, and integrate over a range about k0, to get a layer orientation 

profile S(O; z). The average of S over all profile bins 

1 nbins 

(S(kj))bins =E S(kli Zbin) 
nbins bin-1 

(5.16) 

is also informative. This is not the same as the structure factor for the whole 

system, eqn (5.11), but gives qualitatively similar information on the prevalence of 

fluctuations towards smectic ordering at different wavevectors. 

We use 40 bins for all our profiles, so that each bin is approximately 2oo in 

width and contains on average around 500 particles (2000 for the extended system 

runs). To obtain improved statistics, we averaged the profiles over several successive 

configurations. 
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Figure 5.7: Director profile at T* = 1.4, from the N= 21000 run. 
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5.4.2 Results 

Results at T* =1.4 

This is well above the N-+A transition of the untwisted system, and so we expect to 

observe twisted nematic order, but no long range smectic-like order. This is indeed 

the case. Profiles of the director orientation 0(z), figure 5.7, show that n(z) rotates 

uniformly from one end of the simulation box to the other. The degree of nematic 

ordering is quite low: the average order parameter (S(z))bIns is approximately 0.40. 

There is no sign of any escape of the director towards a uniformly aligned state n=z; 

on average the absolute angle n(z) makes with the zy plane is 9° or less throughout 

the runs for both system sizes. The absence of well ordered smectic regions is 

revealed in the bin-averaged structure factor, figure 5.8 (i). At this statepoint, the 

function is radially symmetric, with a broad, low peak at around (kI = 1.7. As the 

latter figure shows, at this statepoint, the radial dependence for the two system sizes 

is the same. 

Results at T* =1.2 

On cooling to this temperature, the qualitative behaviour of the director profile 

remains unaltered, although now the profile average of the nematic order parameter 

has increased to 0.59. The profile-averaged structure factor (S(kl))b;,,,, shown in 
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figure 5.8 (ii), retains its axial symmetry but the the peak is markedly narrower 

and higher than at T* = 1.4. We also observe a slight shift of the peak towards 

lower k. Whilst the bin-averaged structure factor is independent of 0, at a given 

z the fluctuations towards translational ordering are predominantly along the local 

director. This correlation between local translational and orientational ordering 

can be seen in figure 5.10, in which the colour shading shows the orientational 
dependence of the structure profile S(0; z), the dotted line is the transverse director 

profile 0(z). 

Results at T' = 1.0 

At this temperature, just below TNA, there is a definite change in the structure. 

The profile averaged structure factor, figure 5.9 (i), no longer has axial symmetry. 

Instead, we see the emergence of sharp peaks at specific wavevectors, whose heights 

fluctuate slowly during the course of the run. This suggests that the system is 

attempting to form smectic domains. In the N= 21000 system, we see some 

evidence of domain formation in the structure factor and director profiles, figure 5.10. 

The angular variation of n and N with z is no longer uniform, however there are 

no sharp domain interfaces. Examination of slices through the configurations shows 

that there are three fairly well ordered smectic regions of distinct layer orientations, 

interspersed with regions where the ordering is more nematic-like, which take up 

the twist. In each of these domains, the layer spacing do 4.3a0. 

In the N= 84000 system, the height of the structure peaks grows more slowly, 
but after around 40000 steps the results resemble those of the smaller system. 

Results at T* = 0.9 and T' = 0.8 

At T' = 0.9, the peaks in the bin-averaged structure factor which we observed 

at T* = 1.0 grow in height, as shown in figure 5.9 (ii). Much more interestingly, 

though, the director and structure profiles for the N= 21000 runs, figure 5.10, 

reveal very clear domain boundaries. At the particular timestep shown here, there 

are four domains, with boundaries at z=8,25,33 and G0; at other parts of the 
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run the smaller of these is not visible. The results from the independent quench 

from T* = 1.0 to T* = 0.8 (not shown) are rather similar, except that the maximum 

values of S(kx, ky) in the center of the domains are somewhat higher. The profiles for 

the N= 84000 system, figure 5.11, also show some non-uniformity in the director, 

although the boundaries are not so clearly delineated. These results are consistent 

with a TGB-like structure. 
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Figure 5.8: The bin averaged structure factor S= (S(kl))bjM, at temperatures 
T* = 1.4 and T* = 1.2. In (i) we show the run average of S for the N= 21000 

system, and also its radial dependence for both N= 21000 (circles) and N= 84000 
(triangles). The results for the N= 84000 system at T* = 1.2 are shown in (ii). 
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Figure 5.9: The bin averaged structure factor S= (S(kl))bin, at temperatures 
T* = 1.0 and T* = 0.9, for the N= 21000 system. 
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Figure 5.10: Profiles showing the orientational dependence of the structure factor, 

S(9; z) and the director profile, n(z). These results are for the simulations with 
N= 21000. In each case, the profiles are averaged over 1000 timesteps, near the 

end of the run concerned. 
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Figure 5.11: Profiles from the N= 84000 simulations. For key, sec figure 5.10. 
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5.5 Diffusion 

Our principal motivation for studying single-particle dynamics is to verify that the 

ordered domains we observe are smectic-like, and not crystalline. The diffusion rate 
is a useful indicator of whether or not the system has solidified. In an isotropic 

phase, there is a single diffusion coefficient D, which can be defined either through 

the Einstein relation describing the asymptotic behaviour of the mean square dis- 

placement, 

tm 
(Ir(t) 

- r(O) 12) = 6Dt. (5.17) 
+00 

or, equivalently, from the infinite time integral of the velocity autocorrelation func- 

tion. In a phase, for example smectic A or nematic, with uniaxial symmetry about 

some direction n=z, there are two coefficients Dl and DII, which correspond to 

diffusion along and perpendicular to z: 

lim. (Irr(t) - rz(0)12) = 2Dt, lim (Iri(t) 
- rl(0)12) = 4Dt. (5.18) 

t-+00 t-+oo 

Calculating the mean square displacements from simulation data is straightforward: 

the trajectory of each particle is unfolded from some chosen time origin, undoing 

the effects of the perodic boundary reboxings, and the displacement of each particle 

is then resolved along and perpendicular to n. 

The definition of diffusion coefficients in a twisted nematic or TGB phase is com- 

plicated by the inhomogeneity of the orientational order. In a system with spatially 
dependent director n(r), one can define, for each particle, the square displacements 

resolved along the local director evalulated at its initial position r(0), 

ril : -- 
(I[r(t) 

- r(0)] "n [r(0)] 1Z) 
, (5.19) 

and similarly ri for motion perpendicular to the director. In principle, if n(r) varies 

sufficiently slowly in space, so that the linear diffusive regime is reached before the 

particle strays into a region with a different director, then values for Dl and D11 can 
be calculated from these displacements. In order to demonstrate that the particles 

are diffusing, though, it is sufficient to calculate a profile of Ir(t) - r(0)12, i. e. the 

average total mean square displacement of particles which were in each of the 40 

103 



Figure 5.12: Profiles of total mean squared displacement, at the teml)c'rat. urv T' = 
0.9, from the N= 84000 run. Distances are in units of (7(), and t in timesteps, 

At = 0.0025. 
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slabs at time t=0. The results for the N= 84000 system at T' = 0.9 are shown 

in figure 5.12. The root mean square displacement over the entire run of 65000 

timesteps (tm = 160 in reduced units) is greater than 8ao in all of the profile bins, 

and the average over the bins is 8.8QO. Since this is more than twice our estimated 

value of do, we conclude that although the diffusion is quite slow, the system is 

certainly not a solid. 

5.6 Structure of interfacial regions 

Our orientational and structure profiles are consistent with the TGB structure. laut 

they do not shed much light on the structure of the domain interfaces. Since these 

interfaces occupy only a small fraction of the sample volume, it is difficult to probe 

their structure in X-ray scattering experiments, and to date no direct experimental 

evidence for the presence of the twist defects predicted in the RL theory exists. 

104 



Computer simulation allows us to investigate the domain boundaries much more 

closely. In this section we describe the techniques we use to search for defects, and 

compare the nature and distribution of defects seen in our simulations with the III, 

theory. 

5.6.1 Configuration slices 

Figure 5.13: Three successive slices perpendicular to the twist axis, from one of the 

configurations at the end of the run at T' = 0.8. The central slice contains a twist 

defect, running diagonally through the box. 

(i) -14.52 <z< -11.29 (ii) -11.29 <z< -8.07 (iii) -8.07 <z< -4.84 

Our first method for finding defects was inspecting images of slices through the 

configurations. Twist defects lying in the plane of the slices can be seen directly. In 

figure 5.13 for example, we show three successive slices perpendicular to the axis, 
taken from the final configuration of the runs at T' = 0.8. Slices (i) and (iii) both 

show more or less uninterrupted smectic ordering, in two different orientations, and 

a twist defect can be clearly seen running diagonally through the central slice (ii). 

The orientations of the smectic layers above and below the layer are approximately 
117° and 126°, so this defect creates a grain boundary with ., B ; zz 9°. 

Identifying defects in this way is tedious, and is particularly difficult if the de- 

fects do not lie in the plane of the slices. To overcome this problem, and allow a 
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more systematic investigation of the defect distribution, we developed a method for 

searching for them automatically. Briefly, this works as follows: we define a goal 
function which gives a numerical measure of how well the ordering in the neighbour- 
hood of a given line segment conforms to the topology of twist defects shown in 

figure 5.3, and then seek to maximise this goal function over the space of possible 

segments. 

5.6.2 Definition of goal function 

In the RL theory, the defects are infinite straight lines in the zy plane, but we do 

not assume this. Rather, we represent them as chains of connected line segments. 
The first step is to define a goal function for a single segment, G(r). In cylindrical 

coordinates based on the line segment, (r, with the ends of G(17) at ±lr/2, 

we set 

Pd(r' k) = J? zr 
drp(r) exp[i(k( - 0)] (5.20) 

where Rr is the cylindrical shell rmjn <r< rmax, I(1 < ±lr/2. We then define G(r) 

by taking the square modulus, normalising by the number of particles within Rr, 

and maximising over k: 

sd(r, k) = 
IPd(r, k) 12 

(5.21) fRr drp(r) 

G(r) = max Sd(r, k) . (5.22) 

It is intuitively reasonable that for a segment of fixed length, G(r) is greatest when 
r lies along a twist defect. In appendix A we confirm this by considering the 

behaviour of r for various idealised density distributions, and for portions of actual 

configurations in which defects have been found by eye. 

The single particle density which appears in eqn (5.20) is obtained by averaging 

over a number of successive configurations, for improved statistics. The rate of single 

particle diffusion gives a conservative estimate of the length of time over which we 

can perform this averaging without smearing out the density modulation. In practice 

the number of configurations is limited by the computational expense of calculating 
G, although this was reduced considerably by using a linked cell search to extract 

molecules lying within Rr. 
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The arrangement of defects in the system is described as a set of chains of 

segments, or conformation, Q. The global goal function ß(S2) consists mainly of a 

sum of single-segment terms, 

n. egs 

csggf _ c(ri) . i=1 
(5.23) 

In order to obtain a well-defined optimisation problem the following points must 
be considered: 

" Although the lengths of segments i need not be fixed, the evaluation of G(r) 

is clearly meaningless if the segment is too short (comparable with the smectic 
layer spacing). We insist that every segment be longer than some minimum 

length, lmin 
" 

" G(r) is always non-negative, so we must include an additional term in the 

goal function to prevent the total length of the chains from growing without 
bound. Whilst we do not know a priori the total length of defect, we estimate 
that it will be of the order 7rLI/2do. This is the total length predicted on the 
basis of a regular network of twist defects producing a ir/2 twist in the box. 

We therefore place an upper bound, Lm,, .:: irLI/2do, on the total segment 
length. 

. If the chains do not interact in any way, then several may choose to lie along 
the same defect. To inhibit this, we impose a limit on how close the line 

segments may approach each other. We imagine a hard spherocylinder Sr of 

radius rm and length lr, coaxial with each r. Pairs of spherocylinders (Se, Sj) 

are permitted to overlap only if the corresponding (F1, F, ) are neighbouring 

segments on the same chain. 

" Since our aim is to describe the defects in terms of connected line segments, we 

need another term in the global goal function which will favour longer chains 

over a large number of isolated segments. This is accomplished by adding a 

term -Ana, a; ns. In the limit A -+ oo, this will result in one long chain. In the 

limit A -4 0, the conformation will consist of isolated segments. 
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A precise definition of our problem is now possible: we must maximise 

subject to the spherocylinder overlap constraint, along with the conditions 

5.6.3 Maximisation of goal function 

Figure 5.14: These diagrams show variants of the annealing moves for maximising 

the goal function for detecting defects. A displacement consists of moving a node 

joining two segments; this move can be applied to (i) an interior node, or (ii) an 

endpoint. The second kind of move is a segment transfer. The transfer can be from 

one chain to another (iii), or to the opposite end of the same chain, if it contains two 

or more segments (iv). Transfer from a one-segment chain results in its destruction 

(v). In a disconnection move (vi) a chain is broken at one of its interior nodes. 
None of the segment conformations are changed, but there is a decrease in the goal 

9(Q) = Gssgf 
- 

)nchains 
t 

(5.24) 

neegs 

lr; < Lm (25a) 

lr; < lmin, for all i. (25b) 

function since nchains increases by one. 
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We use the simulated annealing method (111] to maximise g(Q) subject to the 

constraints, since SZ has both discrete and continuous degrees of freedom: the parti- 

tioning of segments among chains, and the positions of the nodes at which segments 

are connected. We choose a set of annealing moves MI, MV ""M,,, each of which 

modifies the conformation in some way. We begin with a random conformation no, 

and set the annealing temperature r to some ro > 0. At each step s of the annealing 

process, we select one of the moves, M; at random, and apply it to the current 

conformation, generating a trial conformation S1; rial = Mild. We then calculate the 

change in the goal function, 

A= g(f)triad g(c13) 
" (26) 

If OG >0 then we accept the move, i. e. we set 13+1 = f1trial. If the trial 

conformation has a lower goal function, then we accept the move with a probability 

exp(zg/T), and retain the unmodified conformation, SIa+1 = 52,. Over the course 

of the run, the `temperature' T is gradually reduced to zero, so that eventually only 

moves which increase the goal function are accepted. This procedure is guaranteed to 

find the global maximum provided that To is large enough, the moves are sufficiently 

general to allow exploration of the entire space of conformations consistent with the 

constraints, and r is reduced sufficiently slowly. 

The annealing moves we use, shown in figure 5.14, involve displacement of a node 

joining two segments, transferral of a segment from the end of one chain to another, 

and breaking a chain at a node. These three types were attempted with relative 

frequencies 10 :1: 1 respectively. The size of displacement moves was reduced 

adaptively as the temperature was lowered to maintain a constant acceptance rate 

of around 30%. The other relevant parameters in the simulated annealing process 

were as follows: 
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Initial conformation 
Number of attempted moves 
Number of segments 
Maximum total defect length 

Randomly placed unisegment chains 

nsteps = 106 

22 

6000o 

Bounds on segment length lminrlm 1OcFo < !r<2 

Chain weight a 

Initial annealing temperature 

Annealing schedule 
Cutoff radii for Rr 

40 

To=40 
Ts = TO (l - S/ilsteps) 

rmin = 2a o, rmax = 5.5oo 

5.6.4 Results 

The method outlined above successfully locates the defect which we found by eye, 

and many others. Moreover, independent annealing runs on a given density distri- 

bution starting from two different random conformations of unisegment chains give 
fairly repeatable results: the final conformations differ only in the positions of a few 

segments, and most of these clearly do not correspond to well defined defects. 
The simulated annealing results for the final configurations at T' = 0.8 from 

the N= 21000 simulations are shown in figure 5.15. There is qualitative agreement 

with the TGB defect structure in the following repects: 

" In the majority of cases, the distribution of molecules around each segment 
corresponds with the twist defect structure. 

" All of the segments found all lie approximately in the zy plane, and their 

orientations follow the position of the peaks in the structure profile. 

. The three defects at the bottom of the picture correspond to the domain 
boundary at z .P 10, seen in figure 5.10, and are oriented along y. A grain 
boundary consisting of defects with separation ld = Ll/3 and do = 4.3aO 

would give a 09 19°, whereas the structure and director profiles show that 
the actual grain boundary angle is nearer 28°. This discrepancy is presumably 
due to other less well defined defects, or nematic regions, involved in this 
boundary that are not seen by our program. 
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" Considering only segments whose ordering is convincingly helical, the total 

length of defect segments found in this particular configuration is 295QO, com- 

pared to irL2 /2do = 570ao, i. e. a fair fraction of the total amount of twist in 

the simulation cell is explained by the presence of well defined twist defects 

found by our annealing program. 

We also analysed the final configurations from the N= 84000 runs at T=0.9, and 
here too we found many segments which correspond to well defined defects. The 

distribution of these segments, and the molecular arrangement in the neighbourhood 

of a typical example, are shown in figure 5.16. The results are qualitatively similar to 

those described above. Interestingly, in this case however the distribution of defects 

along the z axis is more uniform. This is consistent with the structure profiles in 

figure 5.11, where we see that there is a large degree of local smectic ordering and 

yet it is difficult to identify grain boundaries at specific values of z. 
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Figure 5.15: The final chain conformation Q, obtained by running the simulated 

annealing program on the last five configurations of the T* = 0.8 run, in the N= 

21000 system. For each segment, we show the goal function Gr, and the distribution 

of molecules within Rr. This is plotted as a function of 0, running from 0 to 27r 

horizontally, and (, running from -lr/2 to +lr/2 vertically. For clarity, twisted 

periodic boundary conditions have been applied to some segments to return them 

to the basic simulation cell: solid lines indicate segments which are actually joined, 

dotted lines segments which are almost joined. Free ends of chains are shown with 
lines terminating in a point. 
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Figure 5.16: The distribution of segments from the simulated annealing analysis 

of configurations from the end of the T` = 0.9, N= 84000 run. Only segments 

which clearly correspond to defects are shown. We also illustrate the arrangement 

of molecules within a cylinder of radius 7a0 coaxial with a typical segment.. To 

show their orientations and positions clearly, we have depicted the molecules as 

depth-shaded ellipsoids; it should be noted however that the potential minima for 

end-end and side-by-side orientations occur at separations approximately double 

those suggested by this representation. 
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5.7 Conclusions 

We have performed extensive large scale molecular dynamics simulations of a system 

of particles interacting via a particular parametrisation the Gay-Berne potential. In 

order to represent the effects of molecular chirality (or an externally applied torque), 

twisted periodic boundary conditions were used. Starting from a twisted nematic, 

we investigated the structure that forms on lowering the temperature below the 

nematic - smectic A transition of the untwisted system. We calculated profiles to 

characterise the variation of orientational and translational ordering along the twist 

axis. These results indicate the development of several smectic-like domains, which 

at lower temperatures are separated by well defined grain boundaries. To this extent, 

the structure we observe corresponds with that of the twist grain boundary (TGB) 

phase. In order to study the interfacial regions, we have developed a novel technique 

for locating line defects in molecular configurations, based on simulated annealing. 

By using this in conjunction with an appropriate goal function, we have attempted 

to characterise the distribution of twist defects. Again, bearing in mind the limited 

system size and the very long time scale for motion of defects, the nature and 
distribution of defects observed in our simulation is in good qualitative agreement 

with the TGB structure. The pitch of the twist we apply to our system, and other 
key physical parameters are in reasonable agreement with experimental results [107], 

and may be summarised as follows: 

Property Simulation /uO Experiment /nm 

Smectic layer spacing do 4.3 4.1 

Helix pitch p 320 500 

Smectic domain size is 20 24 

Dislocation line separation ld 11 15 

Our simulated annealing technique could also be used to investigate the dynamics 

of defects. Their motion could be tracked from one density distribution to the next 

by means of short annealing runs at low annealing temperature. We did not do 

this; our director and structure profiles at T* = 0.9 and T* = 0.8 do not change 

appreciably once the domains have formed, and this suggests that the network of 
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defects is fairly static. Locating defects in a number of independent configurations 

would also give us good statistics for the single particle density distribution in the 

neighbourhood of a defect, which would allow us to calculate a radial profile I? P(r)I. 
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Appendix A 

Behaviour of the single-segment 

goal function 

In the case where r lies within a perfectly ordered smectic domain, we can calculate 
G(r, k) analytically, and so obtain an upper bound on the goal function in the 

absence of defects. To represent a uniform smectic with layer spacing 2ir/qo, layer 

normal N, and average density po = (p), we take 

"N p(r) = 2po cost 
40r 

2 
(A. 1) 

Defining 

q11 = qo cos(B) , ql = qo sin(9) , (A. 2) 

we obtain a goal function per unit length 

Jr -- 2irpo9j191, (A. 3) G(r, k) 

where 

12 
lr2 (k2 - gll2)2 

[(qjj 
- k) sin 

(qll +2 k)lr 
- (qli + k) sin 

(qII -2 k)lr 
(A. 4a) gll 

1 rmax 2 

91 = rm 2afr 
dr Jl (q1r)] (A. 4b) 

ax - rmin min 

In figure A we show the behaviour of 27rglig1 as a function of 0 and Zr. The goal 
function is zero for segments oriented perpendicular to the smectic layers. With 
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Figure A. 1: The goal function per unit length, maximised over k, for a segment F 

lying in a uniformly aligned smectic with no defects. The graph shows G(r, )/lj"po as 

a function of the segment length Ir and its orientation 0 relative to the layer normal. 
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Tmin = 2.0 and rm = 5.5, G/lr has local maxima for 191 18°, and a global 

maximum of -: 4.5po. 

A general expression for G(I', k) as a function of segment orientation and distance 

from a defect is rather difficult to obtain, but this is not really necessary: we are 
interested mainly in the peak value of the goal function, which occurs when the 

segment is positioned along the defect. In this case, we use a model density of similar 
form to eqn (A. 1), except that we assume N=z and include a phase dependence 

on ¢: 

p(r) = 2po cost 
Qoz -2 (A. 5) 

This gives a goal function per unit length 

Gtr, [(k - (A. 6) 
Ir = 2irpo 

(1' 
max - Tmin) S1nC2 2 

Evaluating this for the same values of rm;,, and r, � as above we find a peak value 

at k= yo of -ý 165po. Comparing this with the value above, we conclude that our 
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chosen goal function discriminates effectively between uniform translational order 

and ideal twist defects. It should be stressed, however, that the goal function per 

unit length obtained from actual configurations (for example those in figure 5.15) is 

much lower, since the degree of smectic density modulation is much less than that 

implied by eqn (A. 1) or eqn (A. 5). 
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