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A hctrnet 

This thesis describes research aimed at the development of methods of identifying hidden 

corrosion damage in structural steelwork. It was inspired by a need to improve methods of 
inspection for support structures at an ICI manufacturing works. 

A review of non-destructive testing methods for steel structures was conducted. This 

concluded that a method which measured the local stiffness, the coin-tap test, was suitable. 

The test was advanced by introducing two new techniques to detect damage from the 

impulse time history: (a) the computation of either the peak impulse force divided by the 

total area enclosed by the impulse or the area enclosed by the impulse over an interval 

centred on it divided by the total area enclosed by the impulse, as measures for identifying 

local stiffness change; (b) the inspection of the time history for changes in structural 

vibration ('ringing') as a measure for identifying changes in local damping. 

A review of selected methods of pattern recognition for automatic classification of dynamic 

waveforms was then presented. This introduced the back-propagation neural network, for 

situations where structures in known conditions were available for training, and the 

Probabilistic Resource Allocating Network (PRAN), for classifying structures whose 

condition was not known. 

The techniques described were used to detect corrosion damage in a bolted steelwork joint, 

tensile wire rope, splice plates on the Clifton Suspension Bridge, and between a chequer 

plate floor and its supporting beam. In each case it was possible to identify corrosion 

deterioration by the characteristic changes in the waveforms produced by increase in 

damping or reduction in stiffness. 

The study has shown that the coin-tap test is an effective diagnostic tool for identifying 

corrosion damage in structural steelwork. The PRAN proved to be a valuable method of 

classifying waveforms automatically when no reference structures were available. A self- 

contained corrosion monitoring system consisting of coin-tap test apparatus and the pattern 

recognition algorithms is proposed for on-line inspection. 
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1. INTRODUCTION 

The condition of all steel structures is subject to decay with time, due to various factors. 
The first is the environment. Parts of the structure exposed to wind and rain or in which 
water or dirt may become trapped will eventually begin to corrode. Another factor is 
fatigue. This is the growth of microscopic cracks in parts of a structure due to repeated 
loading as in bridges. Condition monitoring is concerned with methods of detecting 

structural decay so as to prevent substantial failure. The objective of this project was to 
investigate condition monitoring of damaged steel structures by methods of non-destructive 
testing (NDT). It was inspired by the specific problem of corrosion damage in structural 

steelwork used in the petro-chernical industry. 

In the petro-chemical industry steel is the primary material used for both process equipment 

and support structures. Condition monitoring of process equipment such as vessels and 

piping is a diverse field. Recent trends in NDT have been reviewed by De Bruyn (1996). 

Although some of these techniques may be relevant, this study focuses on the problem of 

monitoring corrosion in structural steelwork used for the support of such equipment. 

Furthermore, the study proposes some advances in methods of manual field measurement. 

It does not address the issues of continuous condition monitoring (Moss and Matthews, 

1995) although methods of data interpretation may be relevant. 

For petro-chemical structural steelwork the environment is the main cause of decay. 

Steelwork is exposed to the weather as well as to corrosive fumes and salty air (chemical 

works are frequently located at coastal sites) and there are also parts of structuresý that can 

trap dirt and moisture. Figure 1.1 shows a support beam severely corroded by fumes and 

moisture in the air of a chemical storage shed. Whilst the industrial environment has 

become cleaner in recent years many structures are more than 50 years old and the 

combination of age and aggressive environment means that maintenance and repair has 

become very expensive. For example, the recent structural refurbishment, shown in Figure 

1.2. of a pipe-bridge at an ICI chemical works was reported to cost f-25 million (Gallon, 

1993). Therefore the detection of structural decay is important for safety and for 

maintaining production and is also a cost-effective preventative measure. 
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Visual inspection is the primary method of inspection in the petro-chemical industry. It is 

satisfactory for detecting substantial corrosion that is not concealed. No specialist 
equipment is necessary and there is considerable experience of this approach. ICI 

engineering use four visual categories (ICI, 1990(l) 

abbreviated as follows: 

i) paint intact and no sub-surface corrosion 

and ICI, 1990(2)) which can be 

ii) paint intact but signs of loss of section or scale 
iii) paint system broken down as well as insignificant (less than 15%) section loss 

iv) significant section loss (more than 15%) or holing, member loss or distortion. 

There are several limitations to this current approach. Assessment may not be possible in 

regions of steelwork that do not permit easy access for the inspector or where the damage is 

hidden by paint or protective coverings. Furthermore, different individuals may classify the 

same region of steelwork differently and there is a limit to the resolution of defect size that 

can be detected. A requirement therefore exists for a non-subjective method of detecting 

invisible corrosion damage. 

The objectives of this work were therefore three-fold and are as follows: 

i) to explore viable methods of NDT suitable for detecting hidden corrosion in 

structural steelwork 

ii) to explore the use of intelligent computing methods with a view to the 

automatic categorisation of field test data 

iii) to identify the components of a self-contained, on-line monitoring system for 

detecting corrosion damage in steel structures. 

To achieve this, a review of established NDT methods suitable for steel structures was 

conducted and these are discussed in Chapter 2. The methods which emerge as showing the 

greatest potential in this application are described in Chapter 3 which is concerned with 
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dynamic methods. The requirements of the ideal dynamic method for this application are 

also identified and described in detail in Chapter 4, which is on the coin-tap test. In Chapter 

5 selected techniques in pattern recognition by computer are reviewed with the emphasis on 

methods suitable for the classification of dynamic NDT data. In Chapter 6 selected methods 

of pattern recognition are combined with the coin-tap test for the non-destructive testing 

and automatic classification of test data from two examples of jointed metal structures: a 

small bolted steel frame and a riveted iron bridge. This exercise is followed up in Chapter 7 

by applying the methods to steel wire rope under tension and I-sections under chequer 

plating. The findings of this study are discussed in Chapter 8 and concluded in Chapter 9. 
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2. REVIEW OF METHODS OF NON-DESTRUCTIVE TESTING 

1. Introduction 

The literature on non-destructive testing of steel structures is voluminous. It may be 

classified broadly as follows: 

i met os for examining the quality of manufacture or fabrication, in particular 

welds of pressure vessels 

ii) methods for detecting propagating cracks in structures in service e. g. fatigue 

cracks in cranes, steel offshore jackets and bridges 

iii) methods for general condition assessment i. e. to detect if the structural 

condition has changed without necessarily focusing on the cause. 

In the main this project is concerned with the third group of methods although techniques 

from (i) and (ii) may be relevant. 

There is an abundance of NDT methods in existence. An extensive survey was given by 

Iffland and Bimstiel (1993). A short review of NDT methods for welded structural 

steelwork is given in Burdekin (1993) and a review of methods suitable for wire ropes is 

given in Weischedel (1988). Reviews of recent research work in each field can be found in 

editions of the British Journal of NDT. 

The methods described in the following sections are considered to be relevant to steel 

structures. Methods that do not involve the exchange of energy between the structure and 

the testing instrument are generally capable of detecting superficial damage only. These 

'passive' methods include visual inspection, liquid penetrant inspection and magnetic 

particle inspection. Those which do involve the exchange of some energy are capable of 

detecting damage at various depths in the material depending on the method under 
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consideration. These 'active' methods of testing include electromagnetic, eddy current, 

electrical resistance, radiographic, acoustic emission and ultrasonic. 

Each of the methods will be discussed in the following sections with a view towards the 

adoption and development of a method capable of improving the ability to detect corrosion 
damage in structural steelwork. 

2.2. Visual Inspection 

This is probably the most widely used NDT method for the inspection of steel structures 

and assemblies, for quality control and in the field. It is usually used to give an initial 

ap raisal before a more detailed examination by another method. rp 

In the petro-chemical industry, steelwork supporting process equipment is visually 

inspected and categorised on a regular basis. The procedure also involves the removal of 

surface layers for detailed inspection where corrosion damage is suspected underneath. In 

the field of production quality control, visual inspection is used for assessing the quality of 

welds. The external profile can reveal information concerning the welding process used, as 

well as the presence of various types of flaw. The results of visual inspection are recorded 

on a report form. 

However, there are several limitations to the use of visual inspection as the only method of 

structural examination. Visual inspection is inherently subjective because it relies on the 

judgement of different individuals and one inspector may spot something that another does 

not or may classify the same fault differently. Furthermore, as there is a limit to the 

resolution of the eye, there is an associated limit to the size of defect that can be detected. 

This places a restriction on how early it is possible to detect potentially critical damage. 

The condition monitoring of support steelwork in the petro-chernical industry presents 

further specific problems. The first is the inability to inspect regions with poor accessibility. 

This is a common problem at petro-chemical sites where I-sections can be hidden under 

chequer plate flooring, or truss joints may be hidden behind concrete fireproofing. Another 

7 



common problem is the inability to see corrosion that is hidden by paint or concealed 
between the interfaces of a joint. 

These limitations are clearly difficult to minimise. In the absence of an obvious way of 
improving the performance of visual inspection in the present application, it was decided to 

explore the possible use of other methods. 

2.3. Liquid Penetrant Inspection 

This method is also known as dye penetrant inspection. In this technique a thin coat of 

penetrant is applied to the cleaned metal surface allowing sufficient time for it to be 

absorbed into the cracks. The excess liquid is then cleaned off and a developer is applied 

which draws the absorbed liquid from the cracks. The location of the cracks can be found 

by visual inspection because the penetrant has a dye or fluorescent material dissolved in it. 

The effectiveness of the method depends on the ability of the liquid penetrant to wet the 

testing surface. 

Liquid penetrant inspection is frequently used to inspect the quality of manufacture. It 

works best on structures that have exposed and accessible surfaces such as turbine blades 

(e. g. Glazkov, 1993), castings, jet engine frames, turbines and circular saw blades. It is 

probably the simplest and cheapest of NDT methods. It can be used on both ferromagnetic 

and non-ferromagnetic surfaces and could conceivably be used to detect the microscopic 

cracks in painted steelwork that lead to corrosion. 

However, corrosion damage in structural steelwork tends to be concentrated in moisture 

traps such as joints, equipment supports and under chequer plate flooring (Gallon, 1993) 

and in these cases it would be difficult to apply the method which as previously mentioned 

works best on exposed surfaces. For this reason the technique was not considered further 

for this study. Further information on this technique can be found in ASTM (1983) and 

ASM (1976). 
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2.4. Magnetic Particle Inspection 

This method works on the principle that when a magnetic field is applied to the surface of a 
ferromagnetic material, discontinuities that lie transverse to the field direction will cause a 
leakage field. Small particles of ferromagnetic material spread over the surface become 

aligned with the magnetic field, and discontinuities at or near the surface can be identified 

because they are found at the locations of the field leakage. 

Magnetic effects, historically speaking, were the first to be used for the non-destructive 

testing of quality standards. As early as 1868 Saxby of the Institute of Naval Architects 

made use of a compass to detect defects and inhomogreneity in cannon tubes. The use of 

iron filings for the detection of cracks in steel parts results from an observation first made 

by chance by Hoke in the USA in 1917, and later patented in 1919 (Dobmann and H61ler, 

1980). 

Magnetic particle inspection is extensively used to inspect for cracks in heavy goods 

vehicle's sub-structures, railway tracks, airframes, plant machinery, crane hooks and steam 

turbines. The method is a sensitive means of detecting shallow and surface breaking cracks 

and discontinuities. There is little or no limitation on the size or shape of the part being 

examined and no elaborate pre-cleaning is necessary as cracks filled with foreign material 

can still be detected. It is also one of the simplest and cheapest methods of non-destructive 

testing. 

However, the sensitivity of magnetic particle inspection is drastically reduced by a thin non- 

ferromagnetic coating such as paint. Structural steelwork at ICI chemical sites is regularly 

painted as part of routine maintenance (Gallon, 1993) and because water can collect 

underneath damaged paintwork there exists a need to detect corrosion that develops in this 

way. Therefore this renders magnetic particle inspection unsuitable for this application. 

Further information on the use of this method for inspecting wire ropes can be found in 

Winchester (199 1). General information may be found in ASTM (1985) and ASM (1976). 
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2.5. Electromagnetic Inspection 

Electromagnetic inspection, also known as the magneto-inductive method, is a method 
based on magnetism in which the field that magnetises the specimen is derived from an 
electric current passed through it. The magnetic field is only capable of penetrating to a 

shallow depth in steel and this determines the maximum depth at which a fault may be 

detected. Any regions at or near the surface where the composition of the structure being 

tested changes, or which contains faults, will alter the local magnetic permeability and this 
in turn produces a leakage field. This leakage field can be detected by the changes in 

current of a 'probe' circuit that is moved within the external field. 

This method represents an advancement on magnetic particle inspection in two respects: 
firstly the use of an internal electric current as opposed to an external permanent magnet to 

generate the magnetic field was introduced by Deforest in 1929; and secondly the magnetic 

particles were replaced by very small field sensitive probes by Fbrester in 1938 to 1939. 

Electromagnetic inspection is commonly used in quality control to sort steels on the basis of 

chemical composition, hardness, residual stresses, case depth and condition of heat 

treatment. It can also be used to detect cracks and discontinuities in the surface of 

ferromagnetic materials. 

Compared with conventional physical tests and methods of chemical analysis, 

electromagnetic induction is a fast, convenient and economical alternative. Furthermore, 

corrosion damage in steelwork produces compositional changes that could be suited to 

detection by this method. 

However, two common locations for corrosion damage in supporting steelwork are at the 

joint interfaces and under chequer plate flooring (Gallon, 1993) leading to the requirement 

that the method be capable of detecting faults under a considerable thickness of steel. The 

limitation of electromagnetic methods to detecting shallow faults renders it unsuitable for 

the purposes of this project. Further information on the use of this of this method for 
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inspecting wire ropes can be found in Weischedel and Ramsey (1989). General information 
can be found in ASTM (1984), Lord (1985) and ASM (1976). 

2.6. Eddy Current Inspection 

Eddy current inspection works on a similar principle to electromagnetic inspection in the 
sense that both methods use an induced sinusoidal electric current. In the eddy current 
technique a small circular current is induced in the surface layers which generates an 
associated magnetic field. The presence of any cracks, void, or similar faults will alter the 
flow of the eddy current which in turn alters the magnetic field it produces. These changes 
can be detected by an inspection coil that is moved within the field. This differs from 

electromagnetic inspection in two respects: firstly, the current is induced in the surface of 
the specimen rather than across the entire cross-section; and secondly, it is the current-fault 
interaction rather than the field-fault interaction that plays the primary role in detection. 

This implies an assumption that the magnetic field produced by the eddy current is not 

significantly affected by variations in the local permeability of the specimen as is the case 

with electromagnetic inspection. 

Some of the earliest applications of sinusoidal eddy currents to the NDT of metals were 

made by Lewis (1951), Hochschild (1958) and Russell et al. (1962). These methods were 
based on earlier work aimed at the determination of the physical properties of conducting 

materials (Hughes, 1879). 

Eddy current inspection is commonly used as a quality control tool for the inspection of 

steel tubes and solid cylinders. The main advantage of this method is that it is largely non- 

specific, i. e. it can be applied to a wide range of discontinuities including cracks, slivers, and 

pits and any discontinuity that appreciably alters the eddy current flow. 

However, this method would not be suitable for monitoring corrosion damage in structural 

steelwork in this case for two reasons: Firstly, because eddy current inspection can only be 

applied to exposed ferromagnetic surfaces and petrochemical steelwork frequently has 

protective coatings; and secondly, since only a small area can be examined at one time the 
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inspection of a single typical member of structural steelwork would take an unacceptably 
long time. For these reasons eddy current testing was not considered further in this project. 
Further information on the use of this method for inspecting wire ropes can be found in 
Grimberg et al (1990). General information can be found in ASTM (1984), ASM (1976) 

and McEleney (1992). 

2.7. Electrical Resistance Inspection 

Electrical resistance or conductivity testing (inversely proportional to resistance) relies on 

an electrical current that is passed down the specimen being tested. The presence of any 

cracks or changes in composition caused by corrosion damage changes the electrical 

resistance which in turn produces a measurable change in current. As with eddy current 

testing the method relies on the flow of an electric current that is sensitive to the presence 

of flaws. However, in this case the current is not restricted to the surface of the specimen 

and it is the changes in electric current rather than secondary magnetic field that indicate the 

presence of damage. 

The development of electrical resistance inspection as an NDT method has been in progress 

for several decades. Some of the earliest work was aimed at advancing the method for the 

purpose of corrosion monitoring in refinery equipment (e. g. Freedman et al, 1958). 

In recent times the method has been applied to the monitoring of corrosion damage in 

reinforcement bars for concrete. However, a great deal of electrical power is required to 

pass a current down a reinforcement bar of quite modest cross-section and for this reason 

electrochemical methods are more commonly used. For the determination of the 

conductivity of metals in quality control, eddy current testing is the preferred choice 

because unlike electrical resistance it is a non-contact method and therefore potentially 

faster. 

Despite its relative unpopularity electrical resistance has the advantages that, in principle, it 

is a simple and convenient method and it does not require specialist equipment, However, 

electrical resistance testing requires a clear path down the member being examined. The 

12 



highly jointed structural steelwork used at petro-chemical works is therefore not ideally 

suited to examination by this method. The method could be applied with some probes 

covering one small section at a time but this would be too time consuming. Electrical 

resistance testing was therefore not considered further in this project. Further information 

on this technique can be found in Hinsley (1959) and Zivica (1993). 

2.8. Radiogr4phic Inspection 

Radiographic inspection uses a beam of ionising radiation that is passed through the 

structure being testing to form a direct image on some radiation sensitive film (conventional 

radiography) or fluorescent screen (fluoroscopy). Types of radiation include charged 

particles (e. g. alpha, beta, protons), uncharged particles (neutrons) and electromagnetic 

radiation (gamma rays and X-rays). When the film is developed, regions of damage win 

contrast with good regions owing to their differing radiation absorptivities. Alternatively 

the variations in radiation intensity could be monitored with various types of electronic 

radiation detector (radiation gauging). The radiation beam may be composed of photons or 

particles with the same energy (monoenergetic) or with a spectrum of energies. 

The various aspects of radiography have been developed over several decades for the NDT 

of structures. X-rays have been found to be effective in the measurement of specimen 

thickness and have been shown to be capable of measuring thickness changes in the order 

0.2% (Halmshaw, 1966). Neutrons provide a significant advantage over X-rays for NDT 

owing to their ability to measure the thickness of low atomic number materials located 

within materials of high atomic number. The first reported demonstration of this unusual 

property was made by Thewlis (1956) by showing the successful neutron radiograph of a 

piece of waxed string behind 5 cm of lead. Monoenergetic charged particles have been 

demonstrated to show greater sensitivity to changes in areal density than the previous 

methods allowing the possibility of detecting variations in composition caused by voids or 

other such faults. An early example of this application was reported by Jung (1968). 

Electrons (beta radiation) show particular sensitivity to thin samples and have been used 

for the analysis of surfaces (Herz, 1969). 
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Common uses for radiographic inspection include the determination of thicknesses and 
detection of internal flaws in castings and weldments and the inspection of semiconductor 
devices for cracks and other faults. Radiography can also be used on forgings and 
mechanical assemblies although in the latter case it is usually limited to inspection for 

condition and proper placement of components. The main advantage of this method is that 
it is deeply penetrating. This would allow the radiographic inspection of corrosion damage 

under a substantial thickness of steel at the joint interfaces of structural steelwork. The 

method offers the further advantage of over ultrasonic inspection (also deeply penetrating) 
that it is more effective at detecting non-planar defects such as voids and inclusions. This 

might be a useful property in the detection of concealed corrosion products. 

However, it would be necessary to use either very long exposure times or higher energy 

sources to penetrate thick structural steelwork and still obtain good quality radiographic 

images. The former requirement would make the method unacceptably slow whereas the 

latter would require heavy shielding making the equipment less portable. For these reasons 

radiographic inspection was discounted as a possible solution to the current problem. 

Further information on this technique can be found in ASTM (1989), Rockley (1964) and 

ASM (1976). 

2.9. Acoustic Emission 

This is also known as microseism. or stress-wave emission. This technique relies on 

detecting the sub-audible sounds made by a developing crack or during plastic deformation 

in a structure under stress. Much of the energy released during the process is in the form of 

heat so that the acoustic emission signal is very small. A very sensitive sensor is required to 

detect the signal. 

One of the earliest studies of acoustic emission was carried out in the late 1940's and early 

1950's by Mason et al. (1948). However, its first use as a true surveillance device was 

probably made by Green et al. (1964). In this application it was used to detect cracks in a 

pressure vessel for the containment of missiles. 
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Together with the detection of flaw formation in welds during welding and cooling phases, 
the detection of cracks in pressure vessels remains the main use of acoustic emission. It can 
also be used for the surveillance of localised areas of known high potential for flaw 
development such as the primary coolant systems of a nuclear reactor, or regions of high 
stress or fatigue in structures. 

One of the main advantages is that it does not require much accessibility because the signal 
internally traverses the steel, radiating in all directions from the fault. It is also possible to 
locate damage using multiple high sensitivity sensors and the triangulation technique. 

However, the acoustic emission signal represents a propagating crack and therefore it 

cannot be used to give an early warning of damage. Furthermore, the level of the acoustic 

emission signal is very small and its duration is very short (typically about 0.03 p in steel) 

so that false alarms could result if spurious noise signals are mistaken for an acoustic 

emission signal. This is particularly likely if this is applied to the condition monitoring of 

structures under normal operating conditions such as the support steelwork at petro- 

chemical sites. Further information on the use of this method for inspecting wire ropes can 
be found in Harrop and Surnmerscales (1989). General information can be found in ASTM 

(1985) and Scott (1991). 

2.10. Ultrasonic Inspection 

In this method an ultrasonic travelling wave is passed into the structure under examination 

using a transmitter. This produces stress waves that propagate through the material and are 

reflected from any interfaces encountered. These might be due to the presence of cracks, 

changes of phase or composition within the material, or a material to air boundary. The 

modifications in the frequency content of the signal caused by this event are determined by 

analysing the spectrum of the reflected signal detected by a receiver placed at another 

location on the surface. 

Perhaps the oldest application of ultrasonic testing was the determination of material 

transmission properties by manual tuning of a conventional impulse echo instrument 
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(Roderick and Truell, 1952). The method was later refined to the automatic tuning of test 

signals by frequency modulation (FM) and applied to the determination of wall thicknesses 
(Evans, 1959). This method is also known as ultrasonic resonance testing. However, the 

true forerunner to the use of ultrasonic testing for detecting faults was the technique of 

examining the shape of an impulse before and after it had interrogated a specimen. Changes 

in the impulse shape result from the reflection of the signal from or transmission through 

boundaries separating regions of different density or composition (Gericke, 1963). Today it 

is possible to detect more subtle impulse shape changes with electronic Fourier analysis 
(Cooley, 1965). 

The ability to measure wall thickness with ultrasonic inspection is frequently exploited in 

the monitoring of section loss in steel structures. ICI engineering has made limited use of 

ultrasonic inspection for this purpose (Gallon, 1993). It is also used to examine the micro- 

structure of polycrystalline metals. However its most common use is in the identification-of 

cracks in structures and components. The changes in impulse shape produced by 

interaction with cracks or inclusions within the steel are sensitive to the shape of the fault. 

This information is crucial in deciding whether the structure should be replaced or repaired. 

A recent advance in ultrasonic inspection, which uses the impulse echo technique, allows 

the testing of steel beneath thick protective coatings and corrosion products (Cygnus 

Instruments, 1996). This would be advantageous for the inspection of petro-chemical 

structural steelwork where corrosion develops in moisture traps that are often inaccessible 

(Gallon, 1993). 

However, a clear transmission path on which there may be defects is needed and the 

structural steelwork typical at petro-chemical sites has a large number of joints. Further 

information on this technique can be found in ASTM (1988) and Szilard (1982). 

Ultrasonic testing can also be used to determine those physical properties of a material that 

depend on microscopic structure such as elastic moduli, hardness, fracture toughness and 

tensile strength. This field is known as non-destructive evaluation (NDE). Parameters of 

the travelling wave, such as velocity and energy loss, that are sensitive to these physical 
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properties can be measured by experiment. A recent advancement on this technique known 
as resonant ultrasound (RUS) is a more efficient method that uses ultrasonic standing 
waves (Migliori et al, 1993). RUS requires the determination of Parameters such as 
resonant frequency and damping for resonances in the range 20 kHz to I GHz. However, it 
is presently limited to simple shaped advanced materials with dimensions of the order of 1 

3 
MIM . RUS is an example of a dynamic test, i. e. a technique that uses the dynamic 
properties of the specimen itself to test its condition. 

2.11. Dynamic testing 

Dynamic testing is older than usually thought. Originally it involved striking a specimen 

with a hammer and listening to the sound produced. This approach was used by the 

ancients to check if their clay pots and glass bottles were sound. Today the potential scope 

of dynamic testing has considerably broadened owing to the availability of electronic 
instruments capable of generating and detecting vibrations in the sub-audible range. 

In principle it should be possible to detect a wide range of faults with dynamic testing. This 

is because any fault that affects the local properties, usually stiffness or damping, should 

affect the dynamic response. It can be applied to any structure that has resonances within 

the scope of experimental measurement (generally below 20 kHz) such as airframes, 

engines and bridges. Dynamic testing is an attractive proposition for industrial steelwork 

because the response is not affected significantly by the presence of paintwork. 

There are two main approaches to dynamic testing of structures. The first is to excite the 

modes of vibration in some way (impulse or periodic function), and to measure the natural 

frequencies, damping and mode shapes. Changes in these properties during the life of the 

structure would be indicators of damage. The second approach is to apply an impact and 

observe the response spectrum or the spectrum of the interacting force. The traditional 

impact test on pottery and glass and the railway wheel tapper's test are examples of the 

former. Increased, darnping reduces the amplitude of the high frequencies and results in a 

dull thud instead of a ringing tone. The coin-tap test is an example of measurement of the 
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interacting force that is affected by local stiffness. Damaged material is usually less stiff and 
results in a lower frequency response locally. 

However, it has been found that the sensitivity of methods based on measuring the dynamic 

response to flaws in steel structures is generally disappointing and that changes in frequency 
are too small to detect unless there has been major damage (e. g. Stubbs and Osegueda, 
1987). 

There have been numerous efforts to improve the sensitivity of frequency response methods 

and these are reviewed in the next chapter. Further general information on dynamic testing 

can be found in Kozin and Natke (1986). Impact methods such as the coin-tap test have 

been exploited successfully in other contexts and will be considered in detail in the next 

chapter. 

2.12. Summary and Conclusions 

Table 2.1 summarises the findings of the literature review. For the purposes of brevity 

alternative names have been used for some methods, e. g. microseism for acoustic emission, 

and the remaining columns contain only a selection of entries. The reader is advised to 

refer to the appropriate section for full details. 

Table 2.1 NDT Methods Suitable for Steel Components and Structures 

Method Typical Uses Advantages Limitationst 

Visual Welds, structural appraisal Cheap Objectivity 
Dye Penetrant Turbine blades, engine frames Cheap, simple Crevices 
Mag. Particle 
Electromagnetic 
Eddy current 
Conductivity 
Radiographic 
Microseism 

Crane hooks, steam turbines 
Chemical and physical sorting 
Steel tubes & cylinders 
Concrete reinforcement 
Castings, weldments 
Welds, pressure vessels 

Cheap, simple 
Speed 
Non-specific 
Cheap, simple 
Penetrating 
Accessibility 

Paint coatings 
Deep faults 
Paint coatings 
Jointed steelwork 
Portability 
Early warnings 

Ultrasonic Section loss in steel Penetrating Jointed steelwork 
Dynamic Airframes, engines Non-specific Sensitivity 

Regions where testing is not possible, or desirable attributes that the method does not 

possess. 
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None of the available methods of non-destructive testing are entirely satisfactory for 

damage assessment of structural steelwork. However, dynamic testing methods appear to 

have some potential advantages for this purpose, particularly those based on impacts, and 

will be reviewed in more detail in the next chapter. 
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3. REVIEW OF DYNAMIC METHODS 

1. Introduction 

Although dynamic techniques for NDT have been used for centuries the subject is still 

capable of considerable development. Since the introduction of the Fast Fourier Transform 

(FFT) there have been major advances in transducers, electronics and digital analysers. The 

increasing sensitivity of transducers and increased speed of processing has led to the 

widespread use of dynamic methods for product development and performance. 
Experimental observations generally have two major objectives: (a) determining the nature 

and extent of dynamic response, and (b) verifying theoretical models and predictions 

(Ewins, 1984). Damage detection can be considered as belonging to the second group 

where the objective is to correlate theoretical and experimental data, or to correlate before 

and after experimental data, thereby identifying the causes of discrepancies. 

Dynamic data are generally either in the time or frequency domain and there are various 

mathematical techniques to interchange between the two. The techniques arise from a 

theorem first formulated by Fourier (1822) and extended by Papoulis (1962), which states 

that any periodic curve may be converted, using a Fourier Transform, into a series of pure 

sinusoids with harmonically related frequencies. This is known as the frequency spectrum 

or autospectrum (abbreviated to 'spectrum') and it is a more reliable indicator of dynamic 

behaviour than the time history. The data may then be converted from the frequency 

domain into the modal domain. Time domain data does not readily lend itself to harmonic 

analysis and is therefore more prone to noise and spurious signals. For this reason the 

frequency domain is generally is generally the basis of the many researches undergone in the 

field of damage detection with dynamic data. 

In the first part of this chapter the theoretical background to dynamic behaviour is briefly 

outlined. Emphasis is placed on the parameters that can be conveniently measured 

experimentally. This is followed by a short review of how measured signals may be 

processed to provide useful data for performance assessment. Finally a review is presented 
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of damage detection methods that are based on the dynamic behaviour of structures and this 
is followed by a discussion of the experimental methods for obtaining dynamic data. 

3.2. Dynamic Response TheoKy 

The structural dynamic equation of motion for a multi-degree of freedom system (MDOF) is 

given by equation 3.1: 

[Mlä (t) +[ Clä (t) +[ KIÖ (t) =f (t) 

Where 8 is a d-dimensional vector of the time dependent displacement response at d fixed 

locations on the structure andf(t) is the external force vector on the system. M, C and K 

are the mass, damping and stiffness matrices. The Fourier Transform off(t) is given by: 

f(j(o) f f(t) e -i". dt (3.2) 

Therefore f (j(o) f [M8 (t) + C8 (t) + K8 (t)]. e -i". dt (3.3) 

f A((o)ej'dco (3.4) 

Equation 3.4 follows from the Fourier theorem. A((o) is a function of the response 

amplitude at frequency (o. The first derivative of 8(t) is: 

f A((o)ej'd(j) dt 

f (A(w 
-d- ejo" w 

00 
)( dt 
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Therefore 8(t) = j(o f A(co)ej"d(o 

Therefore 8 (t) = j(08 (t) 

Similarly the second derivative of 8(t) is given by. 

ä= 
-0) 

25 (t) 

Substituting equation 3.5 and equation 3.6 into equation 3.3 gives: 

(j(o) f ([-M(o 2+ 
jCO) + Ký (t+ -j'o'. dt 

[_Mo) 2 
+jC(O+K]'f (8(t)e-j")'ýdt 'o 

Therefore f (i(O) = 
[_M(02 

+ jC(o + Kp (j(o) 

Where 8(j(o) is the Fourier transform of the response vector 8(t) 

(3.5) 

(3.6) 

(3.7) 

The Fourier Transform 

can take various forms depending on the type of signal being analysed. Equation 3.3 and 

equation 3.4 represent the transforms for a continuous periodic signal. The Discrete 

Fourier Transform (DFT) is a Fourier transform that can be applied to periodic signals that 

are digitised, therefore it is easily implemented on a microprocessor. It generates periodic 

frequency spectra that are also digitised. However, it has largely been superseded by the 

FFT which requires less processing time. The DFT equivalent of equation 3.3 and equation 

3.4 are detailed in Ewins (1984). The eigensolutions of equation 3.7 are the mode shapes 

Sn, modal frequencies wn and modal damping cyn, where a is the damping factor. Each 

mode also has a generalised stiffness, mass and damping. Rearranging equation 3.7 leads to 

an expression for the frequency response function (FRF) of the system, H(j(o): 
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H(jo)) -8 
(jco) 

: -- 
1 

(3.8) f (j(o) [_M(o 2+ jC(o + KI 

Equation 3.8 can be written in partial fraction form: 

2n 

H(j(o) =I 
an 

(3.9) j(l)-P 
n= n 

Where a, is known as the residue, P, is a pole of the system (= (y, + jco, ) and n is the mode 

number. The function H(j(o) is known as the accelerance when the response is measured as 

the acceleration. This function peaks when j(o =- P, i. e. at the modes of vibration. 

The response 8(t) of a constant parameter linear system to an applied force f(t) can be 

written as: 
8(t) = h(, r) * f(t) (3.10) 

Where h(r) is the response of the system to a force spike of unit magnitude as a function of 

time (T) and * represents the convolution integral. The FRF can be found by taking the 

Fourier transform of both sides of equation 3.10, this yields. 

8(jco) = H(V). f(io)) (3.11) 

Where v is the frequency, 8(j(o) and f(j(o) are d-dimensional vectors of the Fourier 

Transform of the response function and the forcing function respectively at angular 

frequency (o. 

The power spectrum, S, of a signal is the product of its amplitude in the frequency domain 

with the complex conjugate of that amplitude. The FRF can also be defined as 

H(v) = 
SXF(V) 

(3.12) SFF(V) 
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where SxF = X(jw). F(jo)), SFF = F(jo)). F(jw) and the complex conjugate of F(jw) is 

denoted by F(jo)). This has the advantage that both SxFand SFFcan be averaged. Other 

approaches to improving the measurement accuracy are described in Maguire, 1984. 

The modal parameters (7, and (o, that are contained in the system's pole term, P, (equation 

3.9) can be found by curve fitting the measured FRF H(j(o) at one point due to a particular 

exciting force vector f(t). The simplest techniques available, known as single degree of 
freedom (SDOF) analyses, all assume that near a resonance the total response is dominated 

by the contribution of the mode with the closest natural frequency. In one of them, the peak 

amplitude or peak picking method, the modal frequency is taken to be that which 

corresponds to the peak amplitude and the modal damping fl, is estimated from the 

relations, 

co 
2_ (1) 2 

A(o 
2 Co 

n n 

(3.13) 

where il, is the hysteretic damping factor for mode n. (0, ' and (Ob, which are known as the 

half-power points, are the frequencies that correspond to the root mean square (RMS) 

amplitude. This method can only be used when the structure is not so heavily damped that 

peaks overlap. Furthermore, it is only possible to use this method when the structure is not 

so lightly damped that there are insufficient data points around the peak to measure its 

amplitude accurately. It is appropriate in cases where a rough estimate of the modal 

parameters is sufficient but it is not suitable for determining the structural model. This is 

because the single-mode assumption is not strictly applicable even for well spaced peaks and 

the neighbouring modes always contribute a noticeable amount. A more accurate approach 

that takes account of the contribution of other modes is the circle-fit method which is 

discussed in detail in Ewins (1984). Finally, the shape of each mode (8, ) can be found by 

measuring the response amplitude at various locations on the structure and fitting a smooth 

curve to the data. 
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3.3. Data Acquisition 

In the previous sections the theory and practice of dynamic methods have been presented. 
This section describes the computational processes that produce a record of dynamic 

behaviour from a physical measurement. Data acquisition is often executed by a dedicated 

instrument such as an oscilloscope or a spectrum analyser. It is concerned with procedures 

which result in the capture of a digital record of a dynamic event. The output from a 

transducer is captured to produce a digital record in the time domain. If the stored record 
is to be converted to the frequency domain it is also necessary to use an electronic window 

to prevent a phenomenon known as leakage. There are many other procedures involved in 

data acquisition and a full treatment is beyond the scope of this thesis but the reader is 

referred to the text by Ifeachor and Jervis (1993) for further details. The two processes 

mentioned above will now be discussed in turn. 

3.3.1. Data Capture 

The analogue output of a transducer is digitised to produce a time record of amplitudes at 

fixed intervals (the raw data). The main procedures are sampling, and averaging. These 

will be discussed in turn. 

3.3.1.1. SMpling 

For a given analogue signal the sampling theorem by Shannon (1949) places restrictions on 

the sampling rate. It can be abbreviated to the following statement: 

To recover the signal accurately, it is necessary to sample it at 

a rate at least twice its highest frequency component. 

For a given sampling frequency, v,, the highest frequency that can be recovered is 1/2 v,. 

This is known as the folding (or Nyquist) frequency vf,,. If the original signal contains 

components of higher frequency they will be folded back into the range 0 Hz to vf,,. The 

consequence of using a lower sampling rate is a phenomenon known as aliasing which is 
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illustrated in the time domain in Figure 3.1 (a). The analogue signal shown as a solid line is 

sampled at a rate that is less than twice its frequency (the signal shown represents a pure 
sinusoid and therefore has only one frequency component). Consequently the alias 
frequency, which becomes that of the recorded raw data, is approximately half that of the 
original signal. The distortion of the original signal can be also demonstrated in the 
frequency domain. The FFT converts the signal into a periodic series of well-separated 
frequency spectra because the sampling frequency is approximately 2.5 times the bandwidth 

which is limited to the range 0 Hz :! ý v !! ý VB, whereVB is the maximum analysis frequency, 

as shown in Figure 3.1 (b). However, if the sampling frequency is not sufficiently large a 

portion of the image centred on v, folds over (aliases) into the original spectrum resulting in 

distortion, as shown in Figure 3.1 (c). Modern spectrum analysers have anti-aliasing filters 

which, combined with the high sampling rate, remove the possibility of aliasing. However 

these filters cause degradation of signals with rapid rise times and therefore should not be 

used in these cases. The raw data acquired as described above will be contaminated with 

noise from the physical system and unless measures are taken to remedy this any further 

computation will be liable to error. The level of noise can be reduced by averaging the raw 

data in either the time domain or the process domain. These are the first steps in data 

processing. 

3.3.1.2. Averaging 

The two principle types of averaging used for dynamic data are process averaging, where 

linear and exponential are two examples, and time averaging. As its name suggests, the 

latter process is appropriate for continuously averaging over the duration of a measurement 

that is contaminated with noise. Process domain averaging is similar to time domain 

averaging except that averaging is carried out over separate physical measurements. It is 

appropriate for measurements that have a relatively high degree of intrinsic randomness 

such as speech and music. In time domain averaging the measurement duration is divided 

into a number of time records in which the signal will repeat itself exactly. However, the 

noise component will be always be different owing to its random nature so that averaging all 

the records it will be found that the noise tends to zero whereas the signal remains the same. 
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On this basis the two components can be separated and the quality, or signal to noise ratio 
(SNR), can be improved. It is essential that the phase of the signal is the same at the 
beginning and end of each record when data sampling is initiated (triggered) 

- Therefore, for 
each record, it is necessary to trigger the start and end of data sampling with another signal 
that has the same frequency as the noisy signal. The time history of a square wave buried in 
noise is sketched in Figure 3.2 (a), where the signal waveform is barely discernible. 
However, after 128 time averages the SNR has improved and the waveform is clearly 
discernible (Figure 3.2b). This shows the importance of time domain averaging. 

By computing the sum of all the records and dividing by the number of them the spectrum 

analyser performs the task of process domain averaging automatically. Figure 3.2 (c) shows 

a spectrum with no averages obtained from just one measurement. After five averages a 

significant improvement in the statistical quality is observable, as shown in Figure 3.2 (d). 

After ten averages the improvement is even more dramatic with the emergence of a single 

sinusoidal component, as shown in Figure 3.2 (e), demonstrating the importance of this 

process. 

Exponential averaging is a more sophisticated type of process domain averaging which 

makes allowance for systems whose dynamic properties vary over the course of several 

measurements. For example, if the frequency of a sinusoidal component was changing, the 

linear average might give the impression that there were two or more signals of different 

frequency in the measurement. The exponential average circumvents this problem by 

placing a greater weighting factor on recent measurements than on older ones. In this way 

old data is gradually 'forgotten' and no longer influences the result. However, effectively 

less data is now available for averaging so poorer statistical stability is obtained. 
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3.3.2. w 

To convert measurement data to the frequency domain a spectrum analyser uses an FFT 

which requires that the raw data be continuous and periodic in time. In practice this means 
that the time record (section 3.3.1) should have identical phase at the beginning and at the 

end. Signals for which this occurs naturally require a rectangular window that essentially 
leaves the record unmodified. These are discussed below. 

There are two instances of signals in which the phase at the beginning and at the end of the 

record is the same. The first is when the length of the time record is greater than the 

duration of the signal and therefore the amplitude tends to zero at both ends. An example 

of this is the transient signal shown in the upper diagram of Figure 3.3 (a) . The periodic 

signal assumed by the FFT remains continuous at the limits of the record as shown in the 

lower diagram. The other instance is when the length of the time record is less than the 

signal duration but equal to an integral of the period of the signal. The period of the sine 

wave shown in the upper diagram of Figure 3.3 (a) is exactly half that of the record length. 

Consequently the phases at the record limits are matched and a continuous, synchronous 

periodic signal is assumed by the FFT as shown in the lower diagram. 

However, when the length of the time record is less than the signal duration it is extremely 

unlikely that it will also be a multiple of its period. For example the sine wave in the upper 

diagram of Figure 3.3 (a) has three half periods in one record. In a case such as this the 

assumed periodic signal is asynchronous and has discontinuities at both ends of the record 

as shown in the lower diagram. This causes the FFT to generate 'pseudo' high frequency 

spectral lines that might mask real spectral lines of low intensity. This phenomenon, known 

as leakage, can be overcome by using a window that modifies the signal. The most widely 

used window of this type is the Hanning window, which is discussed below. 

The Hanning window constrains the signal to be continuous at each end of the record by 

forcing its amplitude there to be zero. This is illustrated in Figure 3.3 (b) which shows the 

effect 
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of a Hanning window on a sine wave. There is an improvement in frequency resolution 
owing to the elimination of leakage but, because the raw data is modified, an accompanying 
reduction in amplitude resolution. There are usually other windows available each of which 
have different advantages and disadvantages. The choice of which window to use depends 

on the signal being measured and the balance between frequency and amplitude resolution 
required. 

3.4. Damage Detection 

The basic principle behind damage detection is that the frequency and modes of vibration or 
dynamic response of a structure change when it has been damaged. The change is caused 

by a change in stiffness at some point due to a fracture, or change in continuity, or a change 

in damping due to friction at new interfaces in the damaged structure. For the purposes of 

this report damage detection is achieved either by comparison of experimentally measured 

changes in the structure's dynamic response caused by damage with those predicted by a 

theoretical model, or by comparison of experimental measurements before and after 

damage. In principle it is possible to identify the presence of damage using time domain 

data. For example Elkordy et al. (1994) detected stiffness reduction in a simple five storey 

frame by subjecting it to band limited white noise and identifying characteristic changes in 

the displacement amplitude at certain locations. However, most of the research in the 

damage detection field has used the frequency domain because it is easier to perform 

harmonic analysis in the frequency domain. Furthermore, although continuous excitement 

can be used for damage detection, e. g. Salane and Baldwin (1990), there is a greater 

tendency to use the impulsive method, particularly impact, owing to its comparative ease of 

use. Therefore, the following discussion primarily focuses on research in the frequency 

domain using the impact method. In the first set of techniques to be discussed the 

parameters are estimated from modal attributes. 

The presence of damage is often characterised by reductions in some modal frequencies, a 

classic indicator of stiffness reduction or mass change. A common approach to damage 

localisation and detection is to measure the modalfrequency shifts caused by damage on the 

real structure and compare them, or parameters computed from them, with those predicted 
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by a finite element model (FEM) of the structure. A good match between these either 
validates the model or the structural behaviour whereas a discrepancy would either indicate 
that the model was inaccurate or that there is structural damage present. 

Mannan and Richardson (1990) discuss in theory the effect of localised stiffness reduction 
on the stiffness matrix of a plate structure. The sensitivity was poor but it was found that 
the damage sensitivity, which is the percentage reduction in modal frequency for a given 
localised stiffness reduction, rose with increasing mode number. However, the limited 

capability of experimental apparatus prevents the excitement of the highest modes of 

vibration and this places a constraint on techniques based solely on frequency change. For 

this reason most research has been aimed at improving sensitivity computationally. 

Cawley and Adams (1979) describe a method in which the ratio of frequency change for 

two modes is used to locate damage on a plate structure. In this case the sensitivity of the 

method was increased by correlating the stiffness matrix with the mode shape. However, 

the increase in sensitivity becomes less significant when more complex structures requiring a 

greater number of degrees of freedom are modelled. For example it was found that the 

detection limit for damage in an offshore type structure was 50% reduction in the stiffness 

of a major structural member (Stubbs and Osegueda, 1987). Thus, modifications have been 

made to matrix methods to improve the sensitivity. 

Messina et al. (1996) introduced a Damage Location Assurance Criterion (DLAC) as a 

further improvement to the sensitivity of the Cawley and Adams method. The DLAC gives 

an index between 0 and 1 that directly compares the experimental frequency shifts with 

those predicted theoretically. The method was tested on the FEM of a small steel frame and 

was reported to be capable of detecting a 20% reduction in the stiffness of an element, but 

the results were highly susceptible to measurement error. 

Pandey and Biswas (1994) explored the possibility of using changes in the flexibility matrix 

(proportional to the inverse of the stiffness matrix). An artificial crack was cut into the 

centre of an I-beam that was excited with an instrumented hammer. From the response the 

change in flexibility with position was plotted before and after damage. Information on the 
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location and extent of damage was present in the results but this method is computationally 
very complex. The method is claimed to have a number of practical advantages but does 

not improve on the sensitivity of the stiffness matrix approach. 

Park et al. (1988) replaced the stiffness error matrix with a weighted error matrix (WEM). 
The WEM places a weighting factor on each element of the error matrix and this magnifies 
those elements most sensitive to the damage. The factors are calculated from the same data 

used to compute the error matrix. The method was tested on a 600 mm x 100 nun three 

storey frame and a plate structure. A small notch in one member of the frame and a large 

H-shaped notch in an element 1/24th the total area of the plate structure were located with 

this method. The traditional error matrix gave inconclusive results in both cases. The 

WEM is computationally demanding but the researchers suggest a step-by-step approach to 

applying the method that minimises computation time. 

The shifts in modal frequency that characterise structural damage are accompanied by a 

reduction in the modal amplitude of response near the original modal frequency. Another 

approach to damage detection is to compare the amplitude at the modal frequency before 

and after damage. Wu et al. (1992) describe a procedure that compares a band of FRF 

amplitudes corresponding to the fundamental mode of vibration of a simple three storey 

frame. However, the best sensitivity obtained was a stiffness reduction of 50% in one of the 

members showing that this approach does not represent an improvement to the frequency 

shift approach. 

The mode shape can also be used to identify damage. One method is to compare the 

curvature mode shape, which is proportional to the second derivative of the mode shape, 

for the damaged and undamaged cases. Another is the modal assurance criterion or MAC 

(Allemang and Brown, 1982). The MAC provides an index between 0 and 1 that is a direct 

comparison between two mode shapes. It approaches I as the similarity between the mode 

shapes increases (i. e. as damage sensitivity decreases). 

Pandey et al. (1991) used the curvature mode shape to determine damage location and size 

on two simple structures modelled on a computer. The difference in curvature mode shape 
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between the damaged and the undamaged models was plotted. The damage location 
became accentuated on these plots and it was possible to distinguish damage down to 
1/10th reduction in the Young's modulus of a member. This shows the potential sensitivity 
of the mode shape method of damage detection. However, in practice it is very difficult to 
measure mode shapes accurately. Furthermore, it is likely that structures that are more 
complex than those chosen for this study will be tested, and in these cases the sensitivity 
would be expected to decrease, as observed by Cawley (1979). It would be useful to know 

whether mode shape changes are sensitive enough to detect small damages in these cases. 

Biswas et al (1989) describe a study aimed at detecting simulated damage on an actual 
highway bridge. The removal of several bolts from a splice plate was detected by inspection 

of the changes produced in the MAC. These ranged from 0.86 for the fundamental to 0.2 

for the eighth mode showing a consistent increase in damage sensitivity with increasing 

modal frequency. However, the test was performed under highly controlled conditions, in 

particular the flow of traffic was temporarily suspended during testing. Opportunities to 

conduct such tests are rare and it would be more useful to be able to carry out such an 

experiment during the normal service of the structure. 

In the methods previously discussed, damage detection depended on the identification of 

changes in specific modal attributes. By using such a small proportion of the available data 

it is possible that potentially valuable information is discarded. Furthermore, small spectral 

changes could become masked by noise. The following methods attempt to detect damage 

by calculating parameters from all or most of the frequency domain. 

Adaptive Template Matching (ATM) requires the calculation of the minimum tolerance to 

keep the FRF of the changed structure within that of the unchanged structure. The 

tolerance increases with degree of structural change. The signature assurance criterion 

(SAC) provides an index between 0 and I that is a direct comparison between two FRFs- 

The SAC approaches I as the similarity between the FRFs increases. Another approach is 

to convert the FRF amplitudes into a set of parameters more sensitive to change. The slope 

or curvature differential function is the difference between the first or second derivative 

respectively of the original structure's FRF and that for the changed structure. Both 
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functions are examples of a waveform. chain code (WCQ and the area under this is sensitive 
to changes in the FRF. 

Samman et al. (1994) used ATM and SAC to detect cracks of 6 mrn to 51 mm length on a 
bridge model. The deck dimensions were 1.22m x 2.57m and it had three girders in which 
the cracks were made in one of two locations. Crack length discrimination was possible 

with all methods. In a similar experiment Samman et al. (199 1) used slope and curvature 
differential functions to detect a small simulated crack in the web and flange of a bridge 

model 65"x 24" (scale 1: 24). These results show that by analysing a greater proportion of 

the FRF it is possible to detect damage but because the methods are inherently non-specific 
damage is harder to locate. 

3.5. Experimental Procedures 

The two basic approaches for obtaining the dynamic response are to use either continuous 

or impulsive excitation. In the former case the exciting forcef(t) can be either periodic or 

random. For periodic sinusoidal excitation the dynamic response is determined directly 

either by measuring the response amplitude as a function of time at a fixed frequency (the 

time history) or by measuring the response amplitude, normalised to the amplitude of the 

exciting force, over a range of frequencies (the FRF). This is known as the resonance or 

stepped sinusoidal method. In the latter case the excitation may result from the sudden 

release of a restraining force or it may be due to an impact or intermittent force. For impact 

excitation structural vibrations are excited by applying a sharp impact at one point and the 

impulse response is recorded at some other point for further analysis. Both techniques can 

be termed global because, in principle, damage anywhere on the vibrating structure can be 

detected irrespective of the location of the exciting force. 

3.5.1. The Resonance Method 

To illustrate the resonance method consider the simple 5-storey frame in Figure 3.4 (a). 

The shaker provided an excitation force, f(t) =a sin cot, at a frequency, (o, determined by an 

electrodynamic oscillator at the location x= 290 cm, y= 750 cm., z=0 cm. This frequency 
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was varied over a certain range and the response 8(t) was measured at x=0 cm, y= 750 
cm, z=0 cm by the attached accelerometer. Figure 3.4 (b) shows the accelerance plotted 
between o)/(2n) =0 Hz and (o/(2n) = 600 Hz. The first five modes of vibration under 
horizontal force are also indicated. This is an example of a dynamic response for which the 
peak amplitude analysis might be appropriate. The modes are well separated and do not 
overlap considerably. However, there are only one or two data points in the peak regions 
and an accurate peak amplitude analysis would only be possible if the frequency resolution 

could be increased. Figure 3.4 (c) shows the shapes of the two modes 81 and 84- It should 
be noted that the structure also has modes of vibration perpendicular to the plane shown, 
but these are not shown in Figure 3.4. The presence of damage or physical change in a 

system alters the structural characteristics and therefore the dynamic response. The 

resulting change in FRF or mode shape may then be detected. 

3.5.2. The Impact Method 

An early example of the impact method as a modem form of quality testing was the railway 

wheel-tap test which was used to detect cracks in railway wheels (Adams and Cawley, 

1985). The inspector would walk alongside the train striking each wheel hard enough to 

excite structural vibrations. An experienced inspector could judge the wheel condition by 

the quality of the note produced. This is because new interfaces due to the presence of a 

crack increase the frictional damping. In the time domain this gives a rapid decay of the 

vibration resulting in a dull thud instead of a ringing tone. However, it was limited by its 

inherent subjectivity as the judgement made by more than one inspector testing the same 

structure could differ considerably. 

There existed a need for impact methods that could be computationally analysed. In this 

respect the introduction of the FFT (Cooley, 1965) was an important advance. The FRF of 

the structure is determined from the FFT's of the acceleration response h(, r),, and the 

impact time historyf(t) (see equation 3.8). 

00 
f h(, r )e-j"" - dT 

H(j(o) 0ý (3.14) 
f f(t)e-j"'. dt 
0 
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Thus the frequency response is obtained in one measurement by exciting the structure with 
a harnmer and evaluating the FFIF of the measured acceleration. Halvorsen and Brown 

(1977) discussed some of the early problems encountered in the development of the 

computerised impact method. It has since been the subject of rapid development and is now 
in widespread use. One issue that is still largely unresolved is that of modelling the 

structural non-linearities induced by an impact (Ewins, 1984). Often a linear model is 

sufficient but for some systems it is unacceptable as potentially valuable structural dynamic 

information may be lost. To address this Brandon (1996) has proposed a non-linear 

methodology for identification with the impact method. 

In the field of damage detection of steel structures most of the attention has been focused 

on the analysis of the global response of the structure to an impact. The main drawback 

with this approach is that it is insensitive to the small structural changes typically caused by 

damage. However, it has become apparent that the local response is more sensitive to 

damage if it is near to the location of impact. A method that uses measurement of local 

response to an impact is the coin-tap test developed by Cawley and Adams (1988). This is 

discussed further in Chapter 4. 

3.6. Conclusions 

The theoretical and experimental bases of dynamic methods of non-destructive testing has 

been presented together with a review of recent research progress in that field. The review 

has shown that the biggest problem faced by researchers is how to improve the sensitivity of 

dynamic methods so that they are capable of detecting smaller damage. Theoretical 

modelling has shown that, although new computational techniques such as the WEM and 

WCC can help, the sensitivity of methods that use global response data is generally not 

satisfactory for practical applications in structural steelwork. Furthermore, damage has 

been modelled using only stiffness reduction because it is difficult to measure damping 

changes from global response data. In the case of corrosion damaged steelwork damping 

changes could be significant and should not be ignored. 
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It would appear that an effective way to improve the sensitivity would be to measure the 
local response and therefore it was decided to investigate the possibility of applying the 

coin-tap test to steel structures. The increase in sensitivity over global methods would be 

advantageous in field measurements where high noise levels can be expected. Furthermore 

it is possible to detect the changes in damping caused by damage using this method and 

therefore take advantage of infon-nation neglected in the more popular methods based on 
detecting stiffness changes. Chapter 4 describes the theory and practice of the coin-tap test, 

and this is followed, in Chapter 5, by a discussion of pattern recognition methods by 

computer that are suitable for automatic classification of dynamic data. The application of 

the coin-tap test to real structures is described in Chapter 6 and Chapter 7. 
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4. THE COIN-TAP TEST 

1. Introduction 

Traditionally this method involved tapping each part of the structure with a coin and 
listening to the sound caused by the ensuing vibration. Defective areas sounded 

comparatively "dead" and this could be detected by a skilled inspector (Adams and Cawley, 

1985). In the modem method the impact is applied with an instrumented hammer and 
damage is detected by computational analysis of the time history of the impact force. As 

the technique only detects defects local to the point of impact it could be quite time 

consuming if the whole structure is to be tested. This is not necessarily a serious drawback 

in this application because corrosion damage on petro-chernical steelwork tends to occur at 

known moisture traps rather than uniformly over the entire structure (Gallon, 1993). 

Cawley and Adams (1988) showed that the difference in sound produced by defective areas 

compared with good areas was due to a change in the input force given to the structure. 

The differenc es in the input force caused by local stiffness change allowed the identification 

of damage. In the absence of damage the force should remain unchanged with location on a 

perfectly rigid structure. However, in flexible structures it can be expected to vary with 

location owing to spatial changes in the local stiffness and in the extent to which resonant 

vibrations are excited. Members with stiff supports at either end are commonly found in 

structural steelwork. Between the supports the stiffness is very sensitive to the distance 

from the supports (Owens and Knowles, 1992), these typically being welded or bolted 

joints. This is also true for wire ropes under tension. Therefore, striking by a hammer may 

result in significant variation in observed stiffness between blows. An investigation into the 

effect of this variability on the sensitivity of the coin-tap test when applied to unsupported 

aluminium beams (Cawley and Adams, 1988) and aluminium plates (Cawley and Adams, 

1989) showed that although structural variations reduce the sensitivity of the test, typically 

sized defects were still detectable. In manual impacts, random variations in location are 

likely to be the largest source of experimental error and will therefore determine the 

sensitivity of the method to detect damage. 
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It is usual to assume a linear structural response in methods of computational damage 
detection based on global response data. This is because the response is measured with 
transducers that are normally mounted well away from the location of impact where non- 
linearities arise. The coin-tap test uses the impact force as the source of dynamic data and 
therefore the assumptions of linearity are reviewed later in this chapter before computational 
damage detection based on them can be used. 

To facilitate damage detection the total energy and frequency distribution in the impact 

force is optimised. Two governing factors are velocity of impact and the hammer 

specifications, particularly tip stiffness and head mass. The hammer specifications can be 

easily controlled but for manual impacts accurate control over the velocity of impact cannot 

realistically be achieved. In these cases it is necessary to use methods of computational 

damage detection that are independent of hammer velocity. 

In section 4.2 the validity of a linear model for the input force is tested and this is followed 

in section 4.3 by a review of methods of damage detection based on the analysis of the 

interacting force. It discusses existing measures based on detecting local stiffness change 

and presents two new methods both of which use time domain data. The first makes use of 

the ratio of peak impact force to the total impulse momentum. The other method uses the 

force time history to detect changes in structural vibrations caused by local damping. 

Section 4.4 discusses some technical details involved in the fabrication of two instrumented 

hammers for use in the coin-tap test, and the findings of this chapter are concluded in 

section 4.5. 

4.2. Linearity in impact Dynamics 

The relationship between the impulsive force and its relative displacement during a dynamic 

collision is governed by several factors that determine the physical nature of the process. 

Where there is direct proportionality between the two the system can be said to have linear 

stiffness. Such processes are generally reversible and occur only when the relative 

displacement is small. When the linear regime breaks down, non-linear behaviour ensues 
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and this is characterised by either a more complex polynomial relationship between force 

and displacement or irreversible plastic deformation. 

Consider a mass, m, striking one end of a mass-less spring of stiffness k as shown in Figure 

4.1 (a). The velocity of the mass at the moment of impact is v. The force at the supporting 

surface is P(t). 

The mass and spring form a simple oscillator with zero damping and at no time during the 

collision does any external force act on the system. The displacement time history is 

obtained by setting the damping, C, and external force, f(t), to zero in equation 3.1. 

Therefore 

m8 (t) + k8(t) =0 (4.1) 

By inspection it can be seen that this equation can be solved by using a displacement time 

history of the form 

5(t) = Asin(o), t) (4.2) 

where A is the amplitude and (o, is the angular frequency constant that can be found in 

terms of k and m by substituting equation 4.2 into equation 4.1. Hence 

m(oc 
2=k (4.3) 

Coc 
Výk:: 

m 
(4.4) Where, m 

The internal force, P(t), between the mass and spring can be obtained from equation 4.2 

together with the spring stiffness, so that, 

P(t) = (kvl (o, ) sin((o, t) 0! ý t !ý Ti (4.5) 
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where the amplitude is derived in Appendix A. The impulse duration Ti, corresponds to half 
the period of the mass-spring system and is given by, 

'Ti = X/(J)c (4.6) 

and the mass will rebound at speed v because the collision is perfectly elastic. From 
Newton's second law (the conservation of momentum) we get. 

Ti 

fP dt = 2mv 
0 

(4.7) 

Figure 4.1 (b) and Figure 4.1 (c) show force waveforms in the time and frequency domain 

respectively for the model described above. The time history has the shape of a half sine 

wave of period 2, ri. The spectrum shown in Figure 4.1 (c) is often plotted on logarithmic 

axes which present the amplitude as essentially constant (flat) below a certain frequency 

then rapidly falling to the first minimum. 

The linear elastic theory is appropriate for an idealised impact scenario based on the 

simplified damage model assumed in the mechanical impedance method of testing (Cawley, 

1984). In this model a defect in an unsupported beam is represented by a slot that traverses 

its width. The linear defect stiffness, kd,, is that of the part of the beam above the slot which 
is essentially fixed supported as shown in Figure 4.2 (a). A sinusoidally varying force, of 

frequency considerably less than the lowest resonant frequency, is applied to the structure. 

When a defect is present this causes a displacement that is assumed to be due to local 

bending above the defect. In the absence of a defect there is no bending. The impedance is 

determined from the ratio of peak force to peak displacement and, because of the 

aforementioned restriction on the frequency of excitation, this approximates to a measure 

of the local stiffness. In the idealised impact scenario the sinusoidally varying force is 

replaced by a half sine impulse provided by a mass, m, with incident velocity, v as shown in 

Figure 4.2 (b). 
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The above model assumes that the stiffness between the load and the structure is infinite. 
This assumption is inaccurate when considering a dynamic collision because of the large 
impulsive forces generated. In this case it is necessary to take account of the deformation 

of the contacting surfaces that occurs. Cawley (1984) suggested the inclusion of the 
contact stifiness, k, to take account of the finite stiffness of the dry contact used in the 

mechanical impedance method. The variation of the contact force between two elastic 
spheres as a function of the relative displacement of their centres is described, under static 
conditions, by the Hertz theory of contact (Hertz, 1881). This theory has also been 

extended to various dynamic collisions (Timoshenko and Goodier, 1934). A more accurate 
description of the impact process might also take account of the effects due to excited 

resonant vibrations. This theory has been applied to the case of a transverse collision 
between a mass and a beam by Raman (1920). 

Figure 4.3 illustrates the impact scenario for an elastic sphere and beam with a finite contact 

stiffness. Figure 4.3 (a) is a snapshot at the instant when the sphere hits the structure with 

velocity, v. During the collision the separation of the beam and sphere is reduced from its 

initial value of d and the contacting surfaces become deformed. The sphere's kinetic energy 

is converted to elastic potential energy which is the integral of the contact force, P(8) 

(assumed to be spread over a circular area of radius r) with respect to the relative 

displacement of the sphere and beam, 8, as shown in Figure 4.3 (b). 

The contact stiffness predicted by Hertz's contact theory is non-linear with magnitude of 

impact. This is because the contact between a sphere of diameter d and an unyielding 

surface results in a non-linear relation between the contact force and the elastic compression 

of the sphere at the point of impact. Therefore the force, P, is not generally proportional to 

the relative displacement (except for very small displacements). Figure 4.3 (b) is a 

diagrammatic representation of a mechanical impedance model indicating the finite contact 

stiffness. The local stiffness measured by a tap on the structure is equivalent to that of a tap 

on either of the two springs in Figure 4.4. For the damaged beam it is due to the linear 

combination of the defect stiffness with the contact stiffness as shown in Figure 4.4 (a) 

whereas for the undamaged beam the defect stiffness is infinite and the local stiffness is due 

to the contact stiffness alone as shown in Figure 4.4 (b). In practice an improvement in 
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sensitivity can be achieved by increasing the contact stiffness, an infinite contact stiffness 
will give the maximum sensitivity to defects. Perfectly elastic conditions are in reality 
extremely rare and in a dynamic collision such as the one described some mechanical energy 
will inevitably be lost to sound and heat. One way in which this might happen is by plastic 
deformation at the contact point that occurs when the elastic limit is exceeded. The non- 
linear behaviour of a perfectly elastic contact stiffness breaks down under these 

circumstances and it is necessary to use an approximation. 

Cawley and Adams (1988) tested the hypothesis that the behaviour of the contact stiffness 

was in practice approximately linear. In their experiment a rigid aluminium test block was 
impacted with a spherically tipped aluminium alloy striker of known mass, m, and incident 

velocity, v. The force versus time history during the collision was calculated by multiplying 

the signal provided by an accelerometer mounted behind the tip by the striker mass. 
According to the linear theory, the measured impulse duration, 'ri, should be related to the 

angular frequency according to equation 4.6, and the angular frequency is related to the 

peak force according to the first term on the RHS of equation 4.5. Using the measured 

velocity the peak force thus predicted was compared with that observed directly from the 

dynamic response. Similarly, the frequency of the first minimum in the spectrum is 

predicted from the impulse duration by 1.5/, ri (Cawley and Adams, 1988). This was also 

compared with the value observed from dynamic response. Furthermore, the initial 

momentum of the striker (observed) should be related to the total momentum transferred 

during the collision (predicted) by the conservation of momentum (equation 4.7) and these 

two values were compared. The results are summarised in table 4.1. 

Table 4.1. Verification of Linearity (Cawley and Adams, 1988). 

Quantity Predicted Observed 

Total momentum (Ns) 0.030 0.034 
Peak force (N) 220 198 
First minimum in spectrum 6.250 6.400 
(kHz) 

The agreement between predicted and observed results was regarded as close enough to 

justify the adoption of a linear representation of the contact stiffness in this case. 
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This discussion has shown that, using the mechanical impedance damage model, the impact 
scenario can be represented by an impact on a spring whose stiffness is a combination of the 
contact and defect stiffnesses. The linearity assumption, proposed by Cawley and Adams 
(1988) will hold for the manual impacts on structural steelwork described in later chapters if 

a comparable process occurs at the contact point. 

4.3. Review of Measures for Damage Detection 

This section presents new and established methods for identifying structural change, in 

order to detect damage from coin-tap test data. In the applications described in this thesis 

the methods are applied to data for the purposes of classification. For this reason both 

quantitative and qualitative methods of damage detection were considered appropriate. 
Quantitative methods involve the computation of some measure of structural change 

whereas qualitative methods involve some exercise in pattern recognition. 

Experimental data usually contain some random noise from both the physical measurement 

and the electronic instrumentation used for data capture and processing. Therefore, in this 

application, insensitivity to background noise is a prerequisite of all useful methods. 

Furthermore, in order to obtain good statistical accuracy it is necessary to maximise the 

amount of experimental data included in any calculations used. 

The coin-tap test indicates damage by changes in the local stiffness during an impact. 

Established measures have been devised to do this, indirectly, by detecting changes in the 

force input to the structure (section 4.3.1). However, it has emerged in the course of this 

study that, under certain circumstances, the interacting force contains direct information 

about the structural vibration. Changes in structural vibration can be detected directly and 

serve as an indicator of changes in structural damping. These findings are presented in 

section 4.3.2. 
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4.3.1. Damage Detection by Stiffness Changes 

In this sub-section the impact response is assumed to be linear as discussed in section 4.2. 
Changes in local stiffness give rise to characteristic alterations in the waveform of the input 
force. These are illustrated in Figure 4.5 which presents the waveforms predicted for 
transverse impacts on a fixed supported bar with stiffness changes effected by changing the 
Young's modulus (E). It is assumed that the impact does not excite significant vibration in 

either the hammer or the bar. 

In the time domain a reduction in local stiffness is accompanied by an increase in the 
impulse duration together with a reduction in the impulse amplitude. This is illustrated in 

Figure 4.5 (a), where r'i r'i and r'i represent the impulse durations obtained by impacts over 

an area with decreasing local stiffness such that rj'<, r'j<, r'j. In the frequency domain a 

reduction in local stiffness is accompanied by a more rapid rate of reduction in amplitude 

with frequency producing a spectrum with a lower high frequency content as indicated in 

Figure 4.5 (b). 

The effect of impacts at the same location, but with different hammer velocities, is 

illustrated by the dotted curves. In the time domain a reduced velocity impact produces a 

lower peak force as shown in Figure 4.5 (a). The duration of the impulse is unchanged 

because this is only dependent on the hammer mass and local stiffness. In the frequency 

domain there is a reduction in the amplitude at zero frequency. This amplitude can be 

shown, in equation 3.2, to correspond to the mean force level in the time domain by 

substituting f(t) with P(t), putting (o = 0, performing the integration and dividing the result 

by the impulse duration. 

This illustrates why it is necessary, when experimental data is obtained by manual impact, to 

detect damage by calculating quantities sensitive to local stiffness that are also independent 

of hammer velocity. The change in impulse height is not therefore a useful measure of 

stiffness change. However, the first minimum frequency is independent of impact velocity 

as indicated by Figure 4.5 (b) in which the first minima for spectra 
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corresponding to impacts at two different velocities both occur at approximately 455 Hz. 
Similarly, in the time domain the impulse durations for impacts at the two velocities are both 

approximately 3.4 ms. These would appear to be the ideal measures of stiffness change for 

manual impacts because of the expected variability in hammer velocity on impact. 
However, both are estimated in regions of the dynamic response where the amplitude is low 

and the signal to noise ratio is correspondingly high; consequently it would be difficult to 

obtain an accurate value. 

There is a direct relationship between the impulse duration, the peak force and a frequency 

known as the first cut-off point. It is easier to measure the first cut-off frequency than the 

impulse duration because it occurs in a region of the spectrum where the signal to noise 

ratio is comparatively high and, unlike the peak force, the cut-off frequency is independent 

of hammer velocity. This measure of local stiffness is described in more detail in the 

following sub-section. 

4.3.1.1. The First Cut-off Frequency 

The frequency spectrm, P(j(o), of the internal force between the mass and spring for the 

linear elastic collision described in section 4.2 is obtained by substituting P(t) from equation 

4.5 forf(t) in equation 3.2 and integrating over the impulse duration. 

Ir i 
P(j(o) f P(t). ej'o'. dt (4.8) 

0 

ij (Ot 

Therefore P(j(o) f P., si n (co 
, t). e dt 

0 

The constant P,,. represents the peak force of the impulse defined in equation 4.5 as kvlo),. 

Substituting (o, from equation 4.6 gives a general expression for the spectrum of the 

impulse. 

Ti 

P(j(o) =P..... f sin Mt-). ej'Ot. dt (4.9) Therefore Ir I. 
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Integrating this expression by parts gives the real and imaginary components. The spectrum 
can then be expressed in terms of its magnitude, IP(jo))l and phase, O(w) by the following 
expressions (Harris and Crede, 1961): 

2, r iýnax cos((or/2) 
7c/, ri Tf 1-((oT /, g)2 

p 'r. max 1 (0 = COC 2 

(OT - O(co) 21 +n7c 

(4.10) 

(4.11) 

The first cut-off frequency is defined as (o = (o, and therefore it is related to the impulse 

duration according to equation 4.6. The spectral amplitude at the cut-off frequency, 

IP(jo), )I, is defined by equation 4.10. The amplitude at zero frequency, IP(0)1, is obtained by 

putting o) =0 in equation 4.10. 

2P r- IP(O)i max i 
Ir (4.12) 

A convenient method of finding the cut-off frequency in the spectrum is to measure the 

-frequency interval corresponding to a reduction in amplitude from IP(O)j to IP(j(o, )I. The 

spectral amplitude is commonly displayed on a logarithmic scale in units of decibels (M). 

dB(o)) = 20 x log IP(j(o)l (4.13) 

The required amplitude reduction AP(j(o) can be evaluated in decibels by substituting the 

corresponding expressions for the spectral amplitude: 

dB(O) - dB(o)c) = 20 x (log IP(O)I - log IP(j(oc)l) 
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IP(O)l Therefore AP(j(O) = 20 x1og 

20XIog 

20 x log(4) 
7c 

Therefore AP(j(o) =2 dB (I s. f. ) (4.14) 

Therefore the first cut-off frequency can be estimated by inversely mapping a spectral 
amplitude of 2 dB less than the amplitude at zero frequency onto the frequency axis. This 

frequency can be used with manual impacts to detect damage because it is independent of 
the hammer velocity but dependent on local stiffness. 

Although the signal to noise ratio is comparatively high near the first cut-off frequency, this 

quantity is still vulnerable to random noise because it is based on the measurement of a 

single data point. The following two sub-sections describe quantities that are less sensitive 

to random noise because they are calculated from a larger amount of data. 

4.3.1.2. The Ratio of Areas Under the Frequency Spectrum 

Earlier in this section it was noted that a reduction in local stiffness had the effect of 
lowering the high frequency content of the spectrum as indicated by Figure 4.5 (b). 

Therefore, the changes in the high frequency content of the spectrum could be used to 

identify changes in local stiffness for manual impacts provided it was independent of the 

hammer velocity. It can be demonstrated that this is not the case by inspecting the spectra 

for impacts at two different impact velocities on a local stiffness corresponding to 

E=21.19x 10 10 Nrn -2 . The areas are very different because of the amplitude difference. 
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This problem can be avoided by norrnalising the frequency spectrum to the (maximum) 
amplitude at 0 Hz. This has the effect of producing spectra with unit maximum amplitude 
that are identical for a particular local stiffness, regardless of the hammer velocity. 
However, a reduction in local stiffness still lowers the high frequency content of the 
normalised spectrum. The effect of normalisation is illustrated in Figure 4.6 (a) and Figure 
4.6 (b) where the spectra are presented on a linear axis for greater clarity. Figure 4.6 (a) 
shows the spectra corresponding to two impacts with different hammer velocities on areas 
of differing local stiffness. The normalised spectra are shown in Figure 4.6 (b) and clearly 
the spectrum corresponding to impact over the area with higher local stiffness has a greater 
high frequency content. Therefore this property can be used to identify changes in local 

stiffness when significant random variations in hammer velocity are expected such as during 

manual impacts. The high frequency content of a spectrum can be defined as the area under 
the curve and beyond an arbitrary threshold frequency, v, This was the basis of a quantity 

used by Cawley and Adams (1988) to detect stiffness change in aluminium beams with the 

coin-tap test. They calculated the ratio, Rf, of the high frequency area, B, to the total area 

enclosed below a maximum frequency, v,,,,, near to the first minimum. Thus 

Rf = BI(A + B) (4.15) 

where A is the area enclosed by the spectrum below the threshold frequency. This is 

illustrated in Figure 4.6 (c) where the threshold frequency and the maximum frequency are 

200 Hz and 500 Hz respectively. The minimum recommended amplitude to be used in the 

calculation is 30 dB below the amplitude at zero frequency (Cawley and Adams, 1988). 

Figure 4.6 also shows the location of the maximum analysis frequency, VB- 

The present discussion has revealed that, currently, the only methods of detecting local 

stiffness change that are suitable for this application, use spectral data. Modern spectrum 

analysers are capable of displaying both the time history and the frequency spectrum 

simultaneously from a single impact. In order to make full use of the available data it was 

decided to devise a measure sensitive to stiffness change that is also suitable for time 

domain data obtained by manual impact. A new quantity has emerged from this 

investigation and it is described in the following sub-section. 
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4.3.1.3. The Ratio of Imi)ulse Peak Force to Enclosed Area 

This sub-section shows that the ratio, R, of the peak force to the total area under the 
impulse is a measure of local stiffness that is suitable for data obtained by manual impact. 

The impulse width is dependent on the contact stiffness according to equation 4.4 and 

equation 4.6. Figure 4.5 (a) shows the impulses for impacts over three different local 

stiffnesses for a constant hammer velocity (4.64 ms-'). In each case the total area under the 

impulse is a constant given by the conservation of momentum (equation 4.7). The peak 

force reduces with local stiffness so it follows that R, will also reduce proving that it is an 

effective measure of local stiffness. 

Figure 4.5 (a) shows the effect of impacts of different hammer velocity on the local stiffness 

corresponding to E= 21.19x1010 NM-2 

. Both impacts produce impulses with the same 

duration, ri. If the peak force corresponding to a hammer velocity of 4.64 MS-2 is pmax'], the 

area, A,, under this impulse is given by: 

Therefore 

Therefore 

ti 

P sin((t)ct) d(t) max] 

f 

0 

COS(CO, t) 
Ti 

A, = P, 
ax, , (» 

c 

10 

2, T 1ýý 
[All m 

TC 

where (oc = n/, ri. The ratio for this impulse, RI, t, is given by the equation. 

2, r v 

(4.16) 

(4.17) 

(4.18) 
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If the peak force corresponding to a hammer velocity of 3.64 rM-2 iSq Pmax, 
29 then the area, 

A2, under this impulse is given by the following equation. 

2, r P 
L42 Ii max, 2 

(4.19) TC 

Clearly the ratio for this impulse is the same, i. e. R, 
't -"-*-,: 

R2, 
t . This shows that Rt is 

independent of hammer velocity. Therefore it is a particularly useful measure of local 

stiffness when data is obtained by manual impact because significant random variations in 

hammer velocity are to be expected. 

If there is noise on the signal, or insufficient data points are obtained to define the peak 

region precisely, then poor accuracy will result. In such cases, changes in local stiffness 

may be detected with a ratio, R',, derived by making a slight modification to the R, 

calculation. The peak force is replaced by the area under the impulse within a small interval 

of width 2c centred onri/2. 

If the angular frequency, peak amplitude and impulse duration for impact on the local 

stiffness corresponding to E= 21 . 19XI010 Nm -2 at 4.64 ms-1 are (o, P,,,, and ri,, 

respectively, then the area, A', under the impulse within the interval is given by the 

equation: 

(ti, I /2)+c 

A', : -- Pmaxl f sin (o ct 
dt 

(ti, I /2)-c 

Therefore A, = Pmax, I 
COS((O 

c 
t) t, /2+c 1 

(0 
cIt, /2-c 

Therefore A, - 
Pmay, 

1 (-2 sin(w,, r j, / 2) sin(cw, ) 
(0 c 

(4.20) 
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Therefore, 'r IA', I 
LU 

1`17ýc 2ý1 (si n(Tcc Pr j, 1)) (4.21) 

where equation 4.21 is obtained by substituting coC = x/r. Dividing equation 4.21 by 

equation 4.17 gives an expression for R',,,, the modified ratio of this impulse. 

R',, I= sin(Tcc/, ri, I) (4.22) 

For a fixed interval width this quantity is only dependent on the impulse duration. The 
impulse duration, Ti, 2, for an impact on the local stiffness corresponding to E= 10.19x 10'0 
Nm -2 is greater than it is for the previous case (E = 21.19xI010 NM-2) so R,,, is reduced. 
Therefore, the ratio R', is an effective measure of local stiffness. 

Impacts of different velocity on the same local stiffness have the same impulse duration 

(Figure 4.4a). Therefore, ri, l in equation 4.22 is constant and the modified ratio is also 
independent of impact velocity. 

As the interval width approaches the impulse duration the ratio R', tends to I and its 

sensitivity to local stiffness change diminishes. Therefore, the optimum interval width will 
depend on the balance between accuracy and sensitivity appropriate for the available data. 

This concludes the discussion of measures to detect structural change by identifying the 

associated changes in local stiffness. The three measures described will be used in tests on 

structural steelwork described in later chapters. The next section describes a method of 

detecting structural change by the identification of changes in local damping using coin-tap 

test data. 

4.3.2. Damage Detection by Changes in Structural Dampin 

This section presents a brief discussion of the physical principles behind a new method for 

identifying changes in structural damping from the time history of a hammer impact. The 

method differs from those previously discussed in that it offers the possibility of detecting 
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damage by inspection of the structural vibrations rather than the local stiffness. A complete 
mathematical treatment of the propagation of vibrations within materials is outside the 
scope of this thesis but the reader is referred to the text by French (197 1) which presents a 
comprehensive discourse on the subject matter. 

According to the linear elastic model of impact the total kinetic energy is conserved so that 

the speed at which a hammer recoils from a fixed surface is the same as its incident speed. 
Although the linear elastic model may remain a valid approximation (section 4.2), these 

conditions are rarely achieved in practice and some of the hammer's initial energy is lost in 

the collision. A small amount of the energy deficit is due to energy dissipated immediately 

as sound and heat. However, the dominant factors are deformation at the contact surface 

and excited structural vibrations. 

Deformation occurs because one of the contacting surfaces is usually curved and generates 

a high local stress which causes highly localised elastic and plastic deformation in one of the 

surfaces resulting in the dissipation of heat energy. Vibrations generally occur in the 

structure rather than the hammer because of design constraints on the latter. They are 

excited at the instant of contact and may persist for some time, even after contact has 

ceased, dissipating energy as sound and (primarily) heat. In the time domain this means that 

the contact duration is now dependent on the coefficient of restitution (Newton, 1686) 

which is the ratio of the final to the initial total velocity of the system in the direction of 

impact. The structural vibrations are of great importance because they are sensitive to 

changes in structural damping. 

There are several factors that determine the magnitude and nature of the excited structural 

vibrations. These factors either affect the structure's FRF or the effective bandwidth of the 

frequency spectrum of the impulse. Structural vibrations are not significantly excited when 

the first natural frequency (fundamental) is significantly greater than the impulse bandwidth. 

In the time domain this means that the half period of the fundamental is small in comparison 

with the contact duration, which is largely determined by the hammer mass and the contact 

stiffness. The structural vibrations are weakly excited and occur well within the impulse 
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duration (Rayleigh, 1906). High natural frequencies are characteristic of structures with 
simple shapes exhibiting a low surface area to volume ratio. 

This is not true of structural steelwork which consists of interconnected members exhibiting 
a high surface area to volume ratio. The first few natural frequencies of these structures are 
usually well within the bandwidth of a typical manual impact involving metal to metal 
contact. Under these conditions the contact duration (Goldsmith, 1960) becomes extended 

and the time history may be profoundly affected by structural vibrations. 

What is of particular interest in the present discussion is the case whereby the contact 
duration is comparable with the half period of the fundamental. Strongly excited stress 

waves corresponding to higher order natural frequencies radiate a considerable distance 

from the impact location during the period of contact. This effect has been reported for 

longitudinal waves produced by the coaxial impact of cylindrical bars (Conway and 
Jakubowski, 1969). Impact testing of structural steelwork generates transverse stress 

waves, and higher order natural frequencies of vibrations are set-up when these are reflected 

from joints and interfaces and form standing waves. If this occurs during contact then these 

oscillations modulate the contact force, an effect known as ringing. 

Therefore any structural damage that significantly affects the damping of a vibration mode 

can be identified by inspecting the impact time history for a reduction in the amplitude of 

oscillations due to that mode. This will be true provided that the hammer carries sufficient 

kinetic energy and impinges on the correct location to excite strongly a number of higher 

order modes as well as the fundamental. 

The phenomenon of ringing is illustrated in Figure 4.7. In the absence of structural 

vibration the time history of the impact is assumed to approximate to a half-sine impulse 

with a duration of approximately 12.5 ms, as shown in Figure 4.7 (a). However, the impact 

is assumed to excite the fundamental, a low frequency structural mode at 75 Hz and a high 

frequency structural mode at 637 Hz. The time history, approximated by a linear 

superposition of the contact force with the modes of vibration, is shown in Figure 4.7 (c). 
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Ringing effects becomes apparent after an interval of At which corresponds to the time 
taken for stress waves to return to the impact location after reflecting from the nearest joint 
or interface. At this point the time history becomes modulated with ripples caused by the 
high frequency mode. However, the effect of the low frequency mode is not apparent over 
the first 12.5 ms because its period is similar to that of the impulse duration which 
dominates because its amplitude is greater. The low frequency mode becomes apparent 
beyond 12.5 ms when the impulse amplitude has returned to zero but contact is maintained 
by the weakly excited fundamental. 

4.4. Design and Fabrication of Instrumented Hammers 

The previous section highlighted the importance of controlling impact parameters to 

optimise damage detection with the coin-tap test. The sensitivity of methods based on 

changes in local stiffness were shown to depend on the contact stiffness (section 4.2) and it 

was noted that the statistical accuracy was improved by obtaining a larger number of data 

points (section 4.3). The method based on changes in local damping required that the 

hammer carried sufficient energy to excite structural vibrations. To some extent these 

requirements could be met with some control over the specifications of the hammer. This 

section presents the dynamic and technical considerations involved in making two 

instrumented hammers for applying the coin-tap test to structural steelwork. 

4.4.1. Dynamic Considerations 

The dynamic wavefonns of the interacting force between the hammer and structure are 

influenced by the contact stiffness. The contact stiffness, on which the local stiffness is 

dependent, is controlled by the choice of material for the hammer tip. In order of 

decreasing Young's modulus: steel, aluminium, nylon, plastic and polyurethane were 

available for making the tips. The influences of local stiffness on the dynamic waveforms of 

the impact force have been discussed in section 4.3.1. It follows that tips made of steel or 

aluminium will produce a wider impulse bandwidth than tips made of polyurethane or 

plastic and will therefore be more effective at exciting higher order structural vibrations. 

They will therefore be useful for the method of damage detection based on changes in 
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structural damping described in section 4.3.2. Furthermore, greater sensitivity will be 

obtained in methods based on stiffness change with steel and aluminium tips. 

The influence of hammer mass on the dynamic waveforms is illustrated in Figure 4.8 which 
presents the waveforms predicted for transverse impacts on a fixed supported bar with both 

the Young's Modulus, E, and hammer velocity, v, fixed. It is assumed that the impact does 

not excite significant vibration in either the hammer or the bar. 

In the time domain an increase in hammer mass is accompanied by an increase in both the 

impulse duration and the peak force. This is illustrated in Figure 4.8 (a) which shows the 

time histories corresponding to two impacts with hammers of different mass. For a given 

sample rate the heavier hammer generates an impulse with a longer duration. Therefore 

there are a larger number of data points and the statistical accuracy of damage detection 

methods is increased. In the frequency domain an increase in hammer mass is accompanied 

by an increase in the amplitude at zero frequency and a reduction in the frequency of the 

first minimum as indicated in Figure 4.8 (b). The 300 g hammer is more effective at 

exciting structural vibrations below approximately 200 Hz than the 200 g hammer because 

the amplitude of its spectrum is greater there. Therefore the method of damage detection 

based on changes in local damping would work better with a heavier hammer. 

The final dynamic consideration is the resonant frequency of the hammer. If the lowest 

natural frequency of the hammer is within the spectral bandwidth of the impact force it will 

be excited and the measured spectrum will be due to structural vibrations of both the 

hammer and the structure. To avoid this the hammer is designed so that its lowest natural 

frequency is considerably greater than the force's spectral bandwidth for a typical impact. 

The spectrum in Figure 4.8 (b) for a 200g hammer is that predicted for a rigid tip impacting 

a mounted steel bar and its first minimum is about 450 Hz. The local stiffnesses are close 

enough to that of the experimental impacts described in Chapter 6 and Chapter 7 to provide 

an order of magnitude estimate of the expected bandwidth. The physical specifications 

were based on those of two commercial hammers (PCB, 1996). These had resonant 

frequencies of 31 kHz and 12 kHz, both considerably greater than the expected bandwidth. 

These were the PCB model GK29 I CO I and model GK29 1 C20. 
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4.4.2. Technical Considerations 

The two instrumented hammers are shown in Figure 4.9. The larger one was designed for 
use on heavy structural steelwork such as I-sections. The smaller hammer was for lighter 

steelwork such as angle sections. The sections below detail the technical considerations 
involved in assembling both hammers. 

4.4.2.1. linpact Tip and Load Cell 

The load cell chosen for use in both hammers was the Dytran model 105 1V5 (Dytran, 1996) 

which had a force range of 1000 lbf. This was an integrated circuit piezoelectric (ICP) type 

transducer and as such has its own built in signal amplifier. The advantage of using this 

instead of a charge mode device is that it is does not require an additional signal amplifier, 

making the equipment more portable. The measured force on impact is mainly due to the 

deceleration of the mass behind the load cell in the direction of impact. Therefore the load 

cell is mounted at the front of the hammer head so that the force delivered to the structure is 

close to the measured force (Figure 4.9). Another consequence of locating the load cell in 

this way is the possibility of damaging it if a substantial force acts on the tip at a large angle 

to the load cell axis. This is unlikely to occur with the smaller hammer because the tip 

diameter is less than that of the load cell, as shown in Figure 4.9 (a). The outer edge of the 

load cell protects it from impacts at large 'off-axis' angles. However, the tip diameter of 

the larger hammer is more than that of the load cell and therefore it is necessary to recess 

the cell into the hammer head. By doing this the cell is protected by the outer edge of the 

hammer head, as shown in Figure 4.9 (b). 

The voltage signal produced by the load cell is due to the compression of an internal quartz 

plate mounted at right angles to the axis of the load cell. The impact tips are originally 

spherically shaped so that a force acting normal to the surfaces and at a small 'off-axis' 

angle is conducted to the tip's screw thread which is coaxial. Another advantage of the 

spherical tip is that the contact area when it impacts a flat surface is very small and this 

reduces spurious effects caused by trapped air. 
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4.4.2.2. Hammer Head and Shaft 

The heads of both hammers were made from steel. The total mass of the head for the small 
hammer was 225g. This includes a small detachable mass known as an extender which is 

shown in Figure 4.8 (a). This could be replaced by a longer extender that increased the 
head mass to 300g making the hammer more versatile. The total mass of the head for the 
larger hammer was 1.56 kg. 

During an impact, large forces act on the axis of the load cell. These might break the shaft 
if allowed to generate an appreciable bending moment at the interface between the shaft and 

its screw thread. For this reason the shaft on both hammers is fixed into the head so that 

the interface is in-line with the load cell axis and the force does not cause bending. On the 

larger hammer the shaft's screw thread was introduced from the top of the hammer head 

with a recessed headed screw and tapped into a solid steel cylinder as shown in Figure 4.9 

(b). The mass of each shaft is minimised so as to make the hammers more portable without 

compromising their strength. This is achieved in the small hammer by making it out of 

aluminium alloy whereas the shaft of the large hammer was constructed from a hollow steel 

tube. The handle on each hammer is made by drawing a strong rubber sleeve from the 

lower end of the shaft. 

4.5. Conclusions 

In this Chapter the coin-tap test has been reviewed with the emphasis on its application to 

the manual testing of structural steelwork. The theorem of linear impact dynamics was 

presented with reference to the experiments by Cawley and Adams (1988) and it was 

suggested that this might be sufficiently accurate for the manual tests described in later 

chapters if a similar process occurs at the contact point. Two established methods of 

computational damage detection relevant to this test were detailed. These were the first 

cut-off frequency and the ratio of areas under the spectrum. Two new methods of damage 

detection in the time domain were also introduced: the first, which was sensitive to local 

stiffness changes, was the ratio of the peak impulse height to the enclosed area. The 
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second, which was sensitive to changes in local damping, was to inspect for changes in the 

amplitude and frequency of 'ringing'vibrations. 

The methods described in this chapter will be applied to experimental data derived from the 

tests described in Chapter 6 and Chapter 7. In practice dynamic testing generates large 

volumes of experimental data and it is unrealistic to attempt to process it manually. 

Algorithms for the processing and computation of quantities sensitive to damage from 

experimental data are described in Appendix B. The following chapter describes the pattern 

recognition techniques employed to classify measurements automatically according to the 

condition of the joint or structure being tested. 

69 



5. PATTERN RECOGNITION 

1. Introduction 

Pattern recognition in general covers a wide range of applications. It can be described as a 
discrimination or classification of a set of processes or events that could be either a set of 

physical objects or mental states. Its goal is to clarify the complicated mechanisms of 
decision-making processes and to automate these functions using computers. Although 

pattern recognition is applied to biological problems, such as brain modelling, the present 

chapter is only concerned with its uses in engineering applications. 

Because of the complex nature of the problem most pattern recognition research has been 

concentrated on relatively straightforward problems, particularly the recognition of Latin 

characters and the classification of waveforms. The different computational techniques used 

may be grouped into two general approaches; namely, the decision-theoretic approach, 

which includes statistical and neural classifiers, and the syntactic (or linguistic) approach, 

which includes knowledge based systems (KBS). Hansch et al. (1993) compared the 

performances of both recognition techniques on the waveforms of spectra from ultrasonic 

testing. It is the application of pattern recognition to the classification of waveforms 

produced by the coin-tap test that is the concern of this chapter. 

In the decision-theoretic approach a set of critical features are extracted from each 

waveform measurement to form a feature vector. This is then assigned to a particular class, 

usually by partitioning feature space with a classifier. The method of feature extraction 

ranges from the primitive technique of sampling the waveform in the time or frequency 

domain, to the computation of quantities less sensitive to statistical variations such as those 

described in the previous chapter. The method of classification varies depending on the 

practical situation. It may be that given a set of feature vectors the aiiin is to determine their 

probability distribution by establishing the existence of classes or clusters amongst them. 

Alternatively, it may be known that there is a certain number of classes and the aim is to 

find a rule (discriminant) that partitions feature space allowing a new feature vector to be 

assigned into one of the existing classes. The former type of classification is known as 

Unsupervised, the latter as Supervised. Furthermore, the classification methods used in this 
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study fall into the two categories of Neural and Statistical computation. Both methods 
compute a probability of class membership for a vector and it is necessary to define a 
criterion based on this probability to classify the vector. General information on neural and 
statistical classifiers can be found in Hertz et al. (1993) and Fukunaga (1972) respectively. 
A broad review of methods of neural computation can be found in Lippmann (1987) and 
Hecht-Nielsen (1988). 

Statistical classifiers are generally characterised by having an explicit underlying probability 
distribution and the method of feature extraction requires the computation of quantities as 
described above. Neural networks are computer models whose function mimics the 

knowledge acquisition and organisational skills of the human brain. They consist of layers 

of interconnected units, each producing a non-linear function of the total input. The input 

to a node may come from other nodes or directly from the input data. The output of the 

final layer of units represents the network output. Therefore the complete network 

represents a complex set of interdependencies allowing very general functions to be 

modelled. The input to a neural network can be either computed quantities or sampled 

waveforms. 

The syntactic approach can be applied to patterns that are quite complex and possess a large 

number of features. In these cases it is often better to divide the pattern into a number of 

sub-patterns forn-iing a hierarchical (tree-like) structure. This approach is often used for the 

recognition of continuous speech and it has been applied to waveform recognition. An 

example of the latter is a study carried out by Comerford (1989) who developed a KBS to 

classify data from seismic tests on a concrete pile. However, a considerable amount of time 

is. required to set up a KBS including frequent interviews with experts (Brule and Blount, 

1989). Considering the limited time-scale of this study it was deemed inappropriate to 

employ a KBS in the present application. Further information on expert systems can be 

found in Jackson (1990). 

This chapter is divided into two sections that discuss pattern recognition methods used with 

coin-tap test data. The first section covers supervised classifiers and includes the back- 

propagation neural network and two simple statistical techniques: the nearest mean and the 
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nearest neighbour. The second section describes an unsupervised classifier known as the 
probabilistic resource allocating network (PRAN). 

5.2. Supervised Pattern Recognition 

5.2.1. The Back-propagation Neural Network 

These networks have a feed-forward architecture. Figure 5.1 (a) shows a back-propagation 

network that has two layers. The five component feature vector, ý, from a sampled 

waveform is 'clamped' to the input distribution which is represented by small solid circles. 
This forms the input to the first layer of processing units, Vj, represented by large open 

circles. However, the strength of the total signal, hj, received by each of these units 
depends on the weight on each interconnection which is given by the matrix wjk. The output 

from each unit is derived by applying the non-linear sigmoid activation function, 0, (also 

called the logistic function) to the total signal. The function is given by 

0, (hj) =1 I+exp(-Ph. ) 
I 

(5.1) 

where P is a constant and the total signal, hj, received by a unit in the first layer is the sum 

of the weighted signals carried by each interconnection as given by the equation 

5 
hj =I Wjkýk 

k=l 
(5.2) 

Sometimes the output level is adjusted by subtracting a threshold but this is neglected in the 

present discussion for clarity. The equivalent expression for the total signal, hi, received by 

units in the second layer is obtained by replacing wjkwith Wij, and replacing the feature 

vector with the output vector from the first layer, hp The output of the second layer units, 

Ui, represents the network output. The sigmoid function is plotted in Figure 5.1 (b) for 

values of h between -2 and +2 and for different values of the constant P. The function is 0.5 

when h=0 and tends to I or 0 as h approaches plus and minus infinity, respectively. 
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The curves indicate that for increasing values of 0 the sigmoid function tends to a step 
function. During a training phase feature vectors of known class membership, called 
training vectors, are clamped to the input distribution and a code representing the class, 
called the target vector, is clamped to the network output. For each sample vector 
adjustments are made to the weights on the interconnections. At the end of training the 
weight vectors represent a distributed store of information that allows the partitioning of 
feature space and the subsequent classification of unknown feature vectors that are 
presented during a test phase. There should also be some statistical variation between 

training vectors with the same target and this should be typical of the statistical variation 
inherent in obtaining the unknown feature vector. 

Back-propagation networks adjust their weights by means of a gradient descent algorithm. 
The standard gradient descent, otherwise known as the steepest descent method, is 

described here. Before training the network weights are initialised and then, using the 

current set of weights, the network computes its output vector Oi. This is subtracted from 

the corresponding target vector, Ti, and the error for each training vector is the sum of the 

squared difference for each component. These values are then summed to give an error for 

each pattern. The error function, E (sometimes called the cost function) is the sum of the 

errors for each training vector, 

1 
1: (T, ý'- 0,9 

2 i, g 
(5.3) 

where ýt is the number of the current training vector. The factor of 1/2 is for convention 

only. The signal produced by one unit in the output layer can be written in terms of the 

weight matrices (Hertz et al, 1993) as follows: 

09 =0 wijo 
ýl I Wjk4 k 

k 
(5.4) 
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The inner parentheses represent hjý' , the total signal received by a unit in the first layer when 
the training vector g is presented to the network. Therefore each output unit sums up the 
signals produced by units in the first layer and applies the sigmoid function to the result. 
When all the training vectors have been presented to the network a weight adjustment is 

performed so that each weight changes in proportion to the negative derivative of the error 
function with respect to the present value of the weight. The weight change equation for 
interconnections between the input distribution and first layer units is 

AWjk aE 
a 

Wjk 

where the constant q is called the learning rate. 

(5.5) 

The equivalent expression for 

interconnections between the first and second layer units is obtained by replacingWjkwith 
Wij. An epoch is completed when all the training vectors (the training set) have been 

presented to the network and all the weights have been adjusted. Weight adjustments, 

which back-propagate through the network in the opposite direction to the original signal, 

reduce the value of the error function for the next epoch. Training is complete once the 

error function is minimised; the network is then said to have converged. The rate of 

convergence can be increased either by adjusting the leaming rate or by adding a 

momentum term to the weight change equation (equation 5.5) and adjusting the momentum 

constant a. This makes the weight change at iteration t+1 proportional to that at iteration t. 

For an interconnection between the input distribution and the first layer the time dependent 

weight change equation is given as follows: 

Awjk (t -T, 
aE + OCA'ýVjk awjk (5.6) 

This term can also reduce the level of the error function by 'jiggling' it out of a local 

minimum allowing the network to converge on the global minimum. 

Clearly the back-propagation neural network requires a large number of parameters to be 

defined. These can be grouped into algorithmic parameters that affect the way each unit 
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computes its output, and architectural parameters that affect the size and complexity of the 
network. Since the number of interconnections in an m-layered network with 1 units in each 
layer is M12 (provided that only interconnections between adjacent layers are allowed), 
larger networks result in a considerable increase in the duration of the training phase. The 

architectural parameters that control the network size are discussed below. 

The first parameter to consider is the number of components in the feature vectors because 

this will detern-fine the number of interconnections to first layer units. When the feature 

vector is composed of computed quantities only a few components will be necessary. For 

example Kirkegaard and Rytter (1993) computed a five component feature vector from the 

relative changes in the first five natural frequencies of a structure. Similarly, Elkordy et al. 
(1994) computed a five component feature vector from the relative changes in displacement 

at five locations on a structure. However, more components are generally necessary when 

the feature vector is a sampled waveform. For example Kudva et al. (1992) produced forty 

component feature vectors by sampling strain mode shapes, and Wu et al. (1992) produced 

two hundred component feature vectors by sampling FRFs over a 20 kHz band. 

The next parameter to consider is the number of units in the first layer as this will determine 

the ability of the network to partition feature space in a way that groups the training set 

according to their class membership. If this can be done with a single linear discriminant 

only one first layer unit is required (the single layer perceptron). However, this situation is 

rare and more first layer units are required to represent increasingly complex discriminants 

(multi-layer perceptrons). The optimum number is usually determined by trial and error but 

it is widely recognised that a number of first layer units equal to half the number of 

components in the feature vector is sufficient. The number of units in the second layer is 

determined by the number of classes. If each unit represents one bit of a binary code, and 

each binary number represents a class, then 21 classes can be represented with 1 second layer 

units. This architecture minimises the number of interconnections but takes longer to 

converge (and may fail altogether) than a network that has 1 equal to the number of classes. 

The number of algorithmic parameters is large and may depend on the software package 

used. There is no generally agreed procedure on choosing the optimum values. Parameters 
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such as the learning rate and momentum constant are usually deten-nined by trial and error 
to minimise the training time. Other gradient descent algorithms exist which result in 

shorter training times under certain circumstances (Simpson, 1990). The standard Newton 

method and the quasi-Newton are examples of such algorithms. However, the former 

method only tends to work well when the weights are initialised at specially chosen values, 

and the latter method is only suitable for small networks. Similarly, other refinements of the 

standard gradient descent method also have their drawbacks. 

5.2.2. Nearest Mean and k-Nearest Neighbour Statistical Classifiers 

These assume that each feature vector, ý, belongs to a probability distribution p(ý) that is 

the superposition of a number of generator functions. They approximate the posterior 

probability, p(Cqlý), that the vector belongs to a class, q, that has conditional probability 

density p(ýIQ. Baye's theorem states the relationship between these quantities as, 

P(Cq I 
P(ý I Cq)P(Cq) 

A) 
(5.7) 

where p(Cq) is the prior probability of membership of class q. Statistical classifiers 

approximate the posterior probability indirectly by either modelling the conditional 

probability with a standard distribution or by estimating it from the local 'lie of the data'. 

These two approaches are referred to as parametric and non-parametric methods 

respectively. It is then possible to classify unknown vectors by assigning them to the class 

with the highest conditional probability. 

Parametric methods assume the minimal number of generator functions to represent the data 

adequately whereas non-parametric methods assume a generator function located at each 

feature vector. Consequently non-parametric methods are more computationally 

demanding. In this investigation two types of statistical classifier were used: k-nearest 

neighbour (k-NN) which is non-parametric and the nearest mean (NM) which is parametric 

(Michle et al, 1994). 
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In the nearest mean approach the centroid (mean) of each class of feature vectors is 

computed and the Euclidean distance between this and a feature vector of unknown class 

membership is computed. The unknown vector is assigned to the class corresponding to the 

shortest distance. The nearest mean technique models the conditional probability of the 

classes as symmetrical generator functions with equal spread and the highest classification 

success rate will be obtained when the feature vectors are distributed in this way. In the k- 

nearest neighbour approach a hypersphere centred on the feature vector of unknown class 

membership and containing k feature vectors of known class membership, is constructed. 

The conditional probability for a particular class is estimated from the vectors lying within 

the hypersphere by dividing the number belonging to that class by the total number. The 

unknown vector is assigned to the class corresponding to the highest conditional probability 

estimate. When k=I the unknown vector is assigned to the class of the feature vectors that 

lies closest to it. This special case is called the nearest neighbour technique. The success 

rate of k-NN classification does not depend on the form of the conditional probability 

distribution but is susceptible to spurious data because the conditional probability is 

estimated from only a small number of feature vectors. 

The two techniques are illustrated in Figure 5.2. The feature vectors have two components 

and either belong to group 's' or group V. X marks the mean for each class of 

measurements. The unknown feature vector is labelled V. In Figure 5.2(a) the nearest 

neighbour belongs to the V group and the unknown measurement would be correctly 

classified by this technique. However, the V class of vectors is not symmetrical and the 

unknown vector would be miss-classified by the nearest mean technique because the mean 

of the 's' class is nearer than that of the V class. In Figure 5.2(b) the vector classes are 

symmetrical and of equal spread but a vector computed from a spurious measurement is the 

nearest neighbour to that of the unknown resulting in misclassification by this technique. 

However in this case the nearest mean gives the correct classification. When the number of 

components is greater than three it is not possible to visualise the distribution of feature 

vectors and consideration of results produced by both techniques is the best approach. The 

classification success rate improves with the number of components. 
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5.3. Unsupervised Pattern Recognition - The Probabilistic Resource Allocating Network 

The Probabilistic Resource Allocating Network (PRAN) is a novelty detector and as such it 

can be thought of as a binary classifier: it either assigns an unknown feature vector to 

membership of a parent population, or excludes it. Its operation, which can be understood 
from both the neural and statistical perspectives, has many similarities to that of the 
Carpenter/Grossberg classifier (Carpenter and Grossberg, 1986). However, the input to the 
Carpenter/Grossberg classifier must be binary and therefore it is not suitable for sampled 

waveforms which are continuous valued. It trains by means of a constructive algorithm to 

optimise the number of processing units. Therefore it is more efficient than networks that 

have a fixed architecture such as Kohonen self-organising feature maps. 

The PRAN's initial architecture is similar to a neural network that has one layer containing 

only one processing unit (also called a Gaussian kernel) as shown in Figure 5.3(a) where the 

solid black circles represent the input distribution and the large open circle represents the 

unit. The feature vector, ý, is 'clamped' to the input distribution forming the input to the 

unit. The output of the unit is obtained by applying the non-linear Gaussian activation 

function Og, to the vector, h, which is the difference between the feature vector and a 

vector, m, representing the mean of the kernel. Hence h is given by 

(5.8) 

The Gaussian activation function is given by 

Og(h) =A exp - (5.9) 
ý: F 

T. 
CF 2 

where (y is a vector representing the standard deviation of the kernel. A is the maximum 

amplitude of the Gaussian function which is given by, 

A=-' 
(27c) 

N12 
cy 

(5.10) 
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where N is the number of components in the feature vector. Note that the scalar (T is the 

amplitude of the standard deviation vector (Y for the kernel. Gaussian functions with zero 
mean are plotted in Figure 5.3(b) for N= 48, values of h between -10 and 10 and for 
different values of the standard deviation. The functions decrease smoothly from the 

maximum amplitude at h=0 and approach zero as h tends to plus and minus infinity. The 

curves indicate that as the standard deviation decreases the Gaussian function tends towards 

a spike function localised on the mean. 

The PRAN uses statistical principles for novelty detection and as such assumes that each 

feature vector, ý, belongs to a probability distribution p(ý) that is the superposition of a 

number of generator functions. The generator functions are assumed to be Gaussians each 

of which is defined by a processing unit or kernel. The number of these kernels required to 

represent the distribution adequately, together with the corresponding means and standard 

deviations are determined during the training phase. The final number of generator 

functions is generally less than that of parametric methods but more than non-parametric 

methods. Therefore this method is sometimes referred to as semi-parametric. Further 

general reading on Gaussian mixture models can be found in Bishop (1995). 

The probability distribution, p(ý), is defined by Baye's rule which states that the probability 

of a feature vector ý is the sum, over all K kernels, of each probability that it belongs to the 

kth kernel. The probability that the vector belongs to kernel k is the product of the prior 

probability of selecting that kernel, p(k), with the conditional probability of ý given that 

kernel k has been selected, p(ýI k), 

where. 

K 

p(ý) = jp(k)p(ýIk) 
k=l 

K 
0 :! ý p(k) :51 and Y, p(k) =I 

k=l 

(5.11) 
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The conditional probability is simply the Gaussian activation function (equation 5.9) which 
may be written in terms of the ith feature vector and the kernel mean, Og(ýi; Mk, (Yk) bY 

substituting equation 5.8 into equation 5.9. 

0Ai; Mky(yk) exp 
(ýi 

-Mk) 
T (ýi 

-Mk) 
(5.12) 

2Tc 
N12 

G2T kk *(y k 

The sum over all ý of the log of equation 5.11 is called the log-likelihood. 

N 
IlogAi) 
i=l 

(5-13) 

The required probability distribution is determined by seeking Gaussian kernels that 

maximise the log-likelihood. Substituting p(ý) from equation 5.11 into equation 5.13, 

differentiating and setting the result to zero gives (Traven, 199 1) 

Na 
1 p(kl ý i) a[m 

logog(ýi; Mk3(y 
J: 

-- 0 

i=I ki(7 k1 

Where p(klýj) is the posterior probability that vector ýj belongs to kernel k. By substituting 

the corresponding quantities in equation 5.7 it can be written in terms of the prior 

probability of selecting kernel k, p(k), the conditional probability of ý given kernel k has 

been selected0jýiMbOk) and the probability distribution p(ý). Roberts and Tarassenko 

(1994) proposed an iterative solution to equation 5.14 together with a procedure for 

representing the probability distribution p(ý) by 'growing' units (Gaussian kernels) in the 

PRAN during a training phase. 

A solution to Equation 5.14 was formulated which updates the mean and variance, F, for 

the kernel at each iteration according to the following equations. 
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Mk, r+i - 

Mkt + (X, [p(k 1 Uýt 
-Mk, t] 

(5.15) (1-(Xt)+(xtp(kl ýt) 

Mkt +(xt[p(kl ýt)(ýt -m 
Xýt 

-Mk, t) 
T_F 

F k, t kt (5.16) 
k, t+I 

(X 
t)+(X, p(kl ýt) 

Where F= (Y. (y and (x is called the adaption parameter which is given by, 

(Xk(tk) --z 
(X 0 (5.17) tk + ýC 

(x 

where ao and r(, are constants. The posterior probability is computed from equation 5.7 by 

substituting the probability distribution, p(ý) and prior probability, p(k), as defined in 

equation 5.11, and by substituting the conditional probability as defined in equation 5.12. 

The first kernel is established at the first iteration with its mean equal to the first feature 

vector and its variance equal to the variance among the components of that feature vector. 
The kernel has a time index that is set to zero and a prior probability that is set to 1. At 

each subsequent iteration the mean and variance are updated according to equation 5.15 

and equation 5.16, the time index is incremented and the adaption parameter is updated 

according to equation 5.17. 

The decision as to whether or not another kernel should be grown is based on the proximity 

of the current vector to the kernel which in turn depends on the kernel's spread (standard 

deviation) as well as its location (mean). If the separation exceeds a certain threshold 

metric it is necessary to grow a new kernel to represent the probability distribution 

accurately. Considering the Gaussian functions in Figure 5.3(b) to be PRAN kernels, 

clearly a feature vector corresponding to h=4 is distinctly separated from the kernels with 

a=0.5 and (T =I whereas it is closely associated with the kernel that has (T = 3. In the 

former cases one new kernel would be grown whereas in the latter case the vector should be 

simply 'added' to the kernel, i. e. its mean and standard deviation should be accordingly 
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updated. The metric is based on the difference between the maximum kernel amplitude, A, 
and the response 0, (h) of that kernel to the feature vector. This is called the Malhalanobis 
distance (Roberts and Tarassenko, 1994). Figure 5.3(c) shows the PRAN architecture 
after one additional kernel has been grown. Subsequently there is one iteration for each 
existing kernel and if the growth criterion is met at any of these iterations a new kernel is 

generated before the next feature vector is presented. The initial variance of new kernels is 
different from that of the first. The ith component of the kth kernel's variance, (Fk)ii, is 

given by, 

(Fk)ii .. ý1 Tr[C] N (5.18) 

where C =(Mk - MI)(Mk - MJ)T in which 1 is the index of the kernel that, before growth, had 

the largest posterior probability for that vector. The set of feature vectors is presented 

cyclically and if the growth criterion is not met at any iteration during the presentation of all 
the vectors they are presented once more and then training is stopped. The network is then 

said to have converged. 

Apart from the number of feature vectors used, the key factor that determines the training 

time is the growth threshold. For computational simplicity this is chosen between 0 and I 

and the Malhalanobis distance is replaced by the kernel response normalised between the 

same limits. Growth occurs if the normalised response is less than the threshold. The 

number of kernels grown, and consequently the training time, will increase with threshold 

because it becomes more likely that a kernel's response to a given vector will be less than 

the threshold. In addition to the constraints on the prior probabilities (equation 5.11) they 

are always equal and updated each time a new kernel is grown. The constants that 

determine the adaption parameter, (xo and xo, are set to 0.7 and I respectively in this study. 

Once the PRAN is trained, its kernels represent an approximation of the population 

distribution for the feature vectors. It has the advantage that the parameters of this 

distribution are easily accessible, being stored in the processing units. This permits the 

testing of the PRAN in two distinct ways depending on the practical situation. It may be 
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known that the feature vectors used to train the PRAN all belong to the same class of 
measurement and the aim is to determine whether or not new feature vectors also belong to 
this class. Those that do not may be identified as novel. Alternatively, it may be suspected 
that a minority of feature vectors used for training belong to a different class of 
measurement and the aim is to identify these vectors as novel. 

In the first method of testing, the response of new feature vectors to each existing kernel is 

compared with the maximum threshold parameter. The vector is classed as novel if the 
growth criterion is met for any of the existing kernels. In the second method of testing it is 

assumed that when a kernel has only a few vectors closely associated with it those vectors 
are novel. These kernels can be identified as those that produce the lowest total posterior 
probability, T, over the all vectors. For a given kernel T is computed as follows. 

N 
T= Jp(klýj) 

i=l 
(5.19) 

The novel vectors can be identified by testing the network as described above after these 

kernels are removed (pruned) from the network. The pruning process is illustrated in 

Figure 5.4 for a network that had four kernels after training. A feature vector with two 

components is shown for clarity but vectors that represent sampled waveforms normally 

have considerably more. 

The PRAN architecture after training is shown in the first diagram of Figure 5.4(a). The 

feature vectors are plotted in the second diagram together with an indication of the location 

and spread of the kernels (intersecting error bars). Clearly the third kernel has the fewest 

vectors closely associated with it and therefore the lowest total, T. The architecture of the 

PRAN after this kernel has been identified and pruned, is as shown in the first diagram of 

Figure 5.4(b). This effectively alters the probability distribution so that those vectors that 

were closely associated with the third kernel are now identified as novel. 

The ability to visualise the layout of vectors and kernels in feature space provide an 

opportunity to compare the PRAN's classifications with those of the user. However, when 
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the vectors have more than three components it is not possible to visualise them unless a 
group of two or three components from each vector are plotted. One technique for 

choosing the components that are most likely to reveal clusters of vectors is called principal 
component analysis (PCA). 

The principal components of a vector are those that exhibit the highest variance from one 

vector to another. The variance, s2, of the jth component of a vector is given by, 

s2= -k') (5.20) 

where N is the total number of vectors and g is the mean of that component which is given 

by. 

J-Li= *Y1Ei 
i=1 

(5.21) 

PCA allows feature vectors with a large number of components, such as those that 

represent sampled waveforms, to be reduced to two or three component vectors that can be 

plotted on orthogonal axes. The location and spread of the kernels can also be visualised by 

plotting the corresponding components of the mean, m, and variance, F, for each kernel. 

PCA can also be performed on feature vectors before pattern recognition to reduce the 

amount of computation required and hence the processing time.. 

5.4. Summmy 

This chapter has discussed topics in computer pattern recognition relevant to the 

classification of waveform data. The methods were broadly divided into two classifier 

groups depending on whether or not the class membership for each measurement was 

known (supervised or unsupervised). Three supervised classifiers (k-nearest neighbour, 

nearest mean and back-propagation neural network) were introduced for use in situations 

when the class membership for each measurement was known and an unsupervised classifier 
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(the probabilistic resource allocating network or PRAN) for situations when the 

requirement is simply to identify novel measurements. Appendix B describes the 
interaction of the various algorithms designed and written by the author for the purpose of 

processing and classifying the waveform data from the coin-tap test. While the k-nearest 

neighbour and nearest mean algorithms were implemented with standard programming 

techniques, the PRAN required more advanced features to make the algorithm run more 

efficiently on a serial computer. Therefore, a description of the operation of the PRAN 

algorithm is also presented. The back-propagation neural network was implemented with a 

commercial software package (McClelland and Rumelhart, 1988). These methods will be 

used on data obtained by applying the coin-tap test to different structures in experiments 

described in the next two chapters. 
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6. TESTS ON BOLTED AND RIVETED STEEL JOINTS 

6.1. Introduction 

This chapter describes the application of the coin-tap test to the detection of corrosion 
deterioration in bolted and riveted joints in structural steelwork. Methods of pattern 
recognition described in the previous chapter were also used. The experience of ICI at their 
chemical works has shown that joints are particularly susceptible to corrosion damage in 

exposed structural steelwork because they act as moisture traps (Gallon, 1993). Capillary 

action draws water between the plies of bolted or riveted joints resulting in the formation of 
a layer of corrosion. Such a joint may be considerably weakened by loss of cross-section of 
bolts or rivets and by the expansive forces exerted by the corrosion products which occuPy 

more volume than the original steel. 

The first structure to be tested was a simple bolted joint constructed in the laboratory that 

was tested in various simulated conditions of deterioration due to corrosion. The methods 

were then applied to the detection of corrosion damage in the splice plates of the Clifton 

Suspension Bridge in Bristol. Two instruments were available for data acquisition: the first 

was a Diagnostic Instruments, PL202 spectrum analyser (Diagnostic Instruments, 1995); 

and the other was a Gould model OS4020 Digital Storage Oscilloscope (Gould, 198 1). 

6.2. Bolted Steelwork Joint 

The layout of the bolted joint is shown in Figure 6.1. It consisted of an angle section 

connected to two fixed I-sections, both of which were made from black mild steel, as shown 

in Figure 6.1 (a). The angle was fixed to each I-section with two grade M10 bolts in each 

joint as shown in Figure 6.1 (d). This configuration represented the joint in its sound 

condition. Two conditions of deterioration were simulated: the first was a joint packed with 

corrosion products; the second was a joint that had suffered section loss. The first 

condition was achieved by introducing a layer of coarse iron filings, bound with grease into 

a stiff paste, at the interface between the plies before bolting up. The second was achieved 

by cutting away part of one leg of the angle close to the joint as indicated in Figure 6.1 (c) 

by the shaded rectangle. 
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(a) Experimental Set-up (scale 1: 16) 

I- section 

(b) Section (scale 1: 3) 
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(c) Elevation (scale 1: 3) 
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(d) Plan (scale 1: 3) 

Fii! ure 6.1. Bolted Steelwork Joint (dimensions in mm) 
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In the next section, the three categories of deteriorated joint that are referred to are 
described as follows: 

sound : clean surfaces bolted firmly; 

corroded : packed with corrosion products; 
damaged: part of angle section removed. 

6.2.1. Experimental Procedure and Results 

The closer the location of impact is to the region affected by corrosion the greater will be 

the sensitivity to deterioration, provided that the damage significantly alters the structural 

properties in the direction of impact. In practice the location of impact may be limited by 

access to the joint and for this reason it was decided to test by impacting the angle section a 

short distance from the joint (see Figure 6.2). The angle was impacted at the mid-point of 

its lower leg in a direction that was perpendicular to the interface between the plies, this 

location being indicated on Figure 6.1 (c) by the black square. Owing to the dimensions of 

the angle it was only possible to impact at the desired location with the lightweight hammer, 

so this was used together with the long extender. The aluminium tip was used to maximise 

the contact stiffness and therefore the sensitivity. 

Forty measurements of the impact force were taken by testing the joint as described above 

and acquiring the time history and frequency spectrum with the spectrum analyser. A 

rectangular window was used and the bandwidth was 20 kHz corresponding to a sample 

rate of 50 kHz (20 gs between samples). The frequency interval was 12.5 Hz. Each 

measurement was obtained by performing a process average on the time histories and 

spectra acquired from three impacts on the joint. The time histories and spectra for typical 

impacts on the joint in each condition are presented in Figure 6.3. 

The impulse duration for the corroded joint is approximately 1.5 ms which is about the 

same as that of the sound joint as shown in Figure 6.3 (a) and Figure 6.3 (c). This suggests 

that the local stiffness of the corroded joint was not significantly less than that of the sound 

joint. Correspondingly, at approximately 300 Hz in the spectrum, the cut-off frequency 
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(the frequency at which the spectral amplitude has fallen by 2 dB) for the sound joint is 
about the same as that of the corroded joint as indicated by the broken lines in Figure 6.3 
(b) and Figure 6.3 (d). However, Figure 6.3 (e) shows that the impulse duration of the 
damaged joint is greater than 2 ms indicating a significant reduction in local stiffness 
compared with the sound joint. Figure 6.3 (f) shows that, at approximately 170 Hz, the 
cut-off frequency of the damaged joint is also significantly less than that of the sound joint. 

Figure 6.4 shows the distributions of quantities sensitive to local stiffness for forty 

measurements on the joint in each of the three conditions. Figure 6.4 (a) shows a plot of 
the cut-off frequency versus the ratio of the area, B, between the threshold frequency (v, ) 

and the maximum frequency (v,,,,, ), to the total area (A+B) under the spectrum up to the 

maximum frequency. The threshold frequency was 600 Hz corresponding to 30% of the 

maximum frequency (2 kHz). These frequencies are also indicated on the spectra of Figure 

6.3. It is clear that using both quantities, i. e. cut-off frequency and ratio of areas, it is 

possible to discriminate between all three conditions of the joint but this would not be 

possible using either one of the quantities on its own. The ratio of areas under the spectrum 

revealed a slight reduction in local stiffness in the corroded joint compared with the sound 

joint, that could not be identified from the cut-off frequency. The variability in a particular 

quantity for measurements on the joint in the same condition occurred because the location 

of impact between the supports varies from one blow to another and the local stiffness is 

generally very sensitive to this. 

Figure 6.4 (b) shows a plot of the ratio of the impulse peak force to the enclosed area in the 

time domain versus the ratio of areas under the spectrum. It shows that the ratios in the 

time domain for measurements on the damaged joint were lower than those for 

measurements on either the sound joint or the corroded joint. This indicates that the ratio 

identified the stiffness reduction associated with the damaged joint and demonstrates the 

practical usefulness of this quantity. However, as with the cut-off frequency, it could not 

distinguish between measurements on the sound joint and measurements on the corroded 

joint. This is probably because the ratio in the time domain and the cut-off frequency are 

both related to the impulse duration and this does not change significantly because the local 

stiffnesses of the sound joint and the corroded joint are similar. 
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Figure 6.3 also shows the effect that corrosion damage has on the nature of the observed 
structural vibrations. Figure 6.3 (a) shows that there is significant 'ringing' on the sound 
joint's time history and it is clear from Figure 6.3 (c) that its amplitude is reduced in the 
corroded joint. This result suggests that vibrations, estimated from Figure 6.3 (a) at 
approximately 5.3 kHz, are effectively damped by the presence of corrosion products and 
that the time histories of the corroded joint and the sound joint can be distinguished on this 
basis. The damaged joint can also be distinguished from the sound joint by the changes in 

structural vibration. However, in this case it is the difference in the frequency of ringing 

vibrations on the damaged joint compared with that of the sound joint that is most 

significant. Figure 6.3 (e) shows that the damage reduced the 'ringing' frequency to 

approximately 2.5 kHz. Closer inspection of the time histories of the sound joint and the 

corroded joint after the impulse (time greater than 1.8 ms) reveals that the mean force level 

does not return to zero (the mean level of the pre-trigger between 0 and 0.25 ms). This 

indicates that contact persists for longer than 2.5 ms. Therefore the bandwidth was reduced 

to 5 kHz giving a sample rate of 12.5 kHz (80 Rs between samples) which increased the 

duration of the time record to 10 ms. The time histories of these measurements are shown 

in Figure 6.5. 

The time history of the sound joint is shown in Figure 6.5 (a). The interval between 2.5 ms 

and 10 ms reveals a 'ringing' frequency of approximately 625 Hz. Figure 6.5 (b) shows that 

the amplitude of these vibrations are reduced in the corroded joint indicating that there is 

strong damping by the corrosion products. The lower frequency vibrations are not visible 

on the time history obtained with a 50 kHz sample rate (Figure 6.3) because the period of 

these vibrations (- 1.6 ms) is close to the impulse duration (-1.5 ms). The two coincide 

and it is the impulse that dominates. Although the Shannon theorem is not violated, the 5.3 

kHz vibrations that are visible at the higher sample rate (Figure 6.3) are not visible at the 

lower rate. This is because the period of these vibrations is -189 p allowing only two 

samples per cycle at the lower sample rate compared with nine at the higher rate. 
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To verify this result the accelerance of the mounted angle section was measured by the 
impact method. The section was impacted with a polyurethane tip at the same location and 
the response of an accelerometer mounted on the other side of the angle directly opposite 
the impact location was measured. The less stiff tip had the advantage that it minimised the 
possibility of inducing non-linearities while still being capable of exciting the frequency band 

of interest. 

The measured accelerances for the sound joint and the corroded joint are shown in Figure 

6.6. It is clear from the general widening of the peaks that the corroded joint exhibits 

considerably more damping than the sound joint. The mode of vibration at approximately 

700 Hz is affected more than the others and this probably corresponds to the 625 Hz 

structural vibrations. The modal frequency observed from the spectral response of an 

impact test is greater than the resonance frequency obtained using the oscillator because, 

unlike the latter., it is not influenced by structural damping. This confirms that the presence 

of corrosion products at the joint produces a significant change in local structural damping 

which in turn produces a noticeable reduction in the amplitude of 'ringing' vibrations. On a 

logarithmic amplitude scale the half-power points are the frequencies that correspond to an 

amplitude reduction of 3 dB. It is clear from Figure 6.6 that the corresponding frequency 

interval between the half power points for the mode of interest is very small and difficult to 

measure and therefore the damping factor in that mode is difficult to determine accurately. 

To investigate the mechanism by which the structural vibrations are damped by corrosion 

products, the shape of the mode corresponding to the lower frequency 'ringing' vibrations, 

shown in Figure 6.5 (a), was measured using the resonance method. An electrodynamic 

oscillator, was connected to the angle section at the location of impact indicated by the 

black square in Figure 6.1 (c). The oscillator was tuned to the resonant frequency at 625 

Hz and the response of an accelerometer attached at equally spaced locations along the 

mounted angle section was measured and plotted. 

Figure 6.7 (a) shows that the mode shape, which was determined by fitting a smooth curve 

to the plotted points, had eight nodes between the flanges of the I-section. The response 
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amplitude where the angle was connected to the I-section itself was comparatively low, so 
the mode shape in that region was sketched on a larger scale and is shown in Figure 6.7 (b). 
Evidently the region where simulated corrosion products were introduced is periodically 
compressed and expanded during the vibration of this mode. These vibrations are heavily 
damped by the corroded joint because mechanical energy is dissipated in the viscous paste 
whereas they are lightly damped in the sound joint because mechanical energy is dissipated 
in air. 

This concludes the discussion of results obtained by applying the coin-tap test to the bolted 

steelwork joint under these specific experimental conditions. Other experimental 

approaches that were effective at detecting corrosion are presented in the section 6.2.3. 

The following section describes the methods of pattern recognition which were applied to 

this data in order to classify it automatically according to the condition of the corresponding 
joint. 

6.2.2. Methods of Pattem Recognition 

The coin-tap test measurements corresponding to known joint conditions that were 

acquired with a 50 kHz sample rate (20 kHz bandwidth) were used with methods of pattern 

recognition. The supervised methods assumed that the measurements belonged to one of 

three classes corresponding to each condition of the joint. The unsupervised method 

assumed that there were only two classes, those corresponding to measurements that were 

from the sound joint and those that were not. The methods were tested with feature vectors 

obtained from measurements on the joint after it had been dismantled then re-assembled in 

each of the three conditions. These represent the unknown vectors and are subsequently 

referred to as test vectors. 

The first two supervised methods were simple statistical classifiers: the nearest mean and 

the nearest neighbour. Two dimensional feature vectors, composed of the cut-off frequency 

and the ratio of areas under the spectrum, were computed from measurements on the joint 

in each of its known conditions. These vectors formed a probability distribution with three 
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generator functions each comprising measurements from the joint in one of three conditions 
and representing one class. 

The performance of the statistical classifiers was then tested with three test vectors, each 
representing a different condition of the joint. The cut-off frequencies were numerically on 
a scale of the order of 125 Hz to 360 Hz whereas the ratios of areas under the spectrum 

were of the order of 0.08 to 0.14 and the ratios in the time domain were of the order of 
4x 10-4 to IXIO-3 

. Because of the large differences in numerical scale it was found 

convenient to normalise these components by dividing each by the standard deviation of that 

component over all the vectors in the probability distribution. This standardises the scale of 

each component of the distance vector and prevents the largest component from 

dominating. 

To determine the nearest mean the components of the mean for a class of vectors were 

computed and the distance of this mean from the test vector was computed by taking the 

square root of the sum of the square of each component of the scaled distance between the 

test vector and the mean. This process was repeated for all classes and the test vector was 

assigned membership of the class corresponding to the shortest distance. To determine the 

nearest neighbour the scaled distance between the test vector and each vector in the 

probability distribution was computed and the test vector was assigned membership of the 

class to which the nearest vector belonged. Table 6.1 summarises the results obtained. 

Condition Scaled Scaled Distance from Class Mean Class of 
of Joint test vector Sound Corroded Damaged nearest 

neighbour 

Sound 3.31,7.78 0.48 1.67 2.58 Sound 
Corroded 3.06,6.09 1.73 0.61 2.20 Corroded 
Damaged 2.06,10.9 3.11 4.59 2.81 Damaged 

Table 6.1. Classirication of Impact Force on Bolted Joint with Statistical Technigues 
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For each test vector the class of its nearest neighbour is the same as the condition of the 
joint from which the measurement was taken and the test vector is closer to the mean of this 
class than that of any other class. The results show that both of the simple statistical 
methods were effective in classifying test vectors according to the correct condition of the 
bolted joint. 

The second method of supervised classification was the back-propagation neural network. 
Forty-eight components of the feature vectors were obtained by sampling the dynamic 

waveforms of both time history and the spectrum. Feature vectors of the time history were 
composed of the first consecutive samples of the raw data after the pre-trigger, 

corresponding to a time interval of approximately I ms (Figure 6.3). This approach was 

preferred to that of doubling the interval by ignoring alternate raw data points and thereby 

representing the whole impulse. The reason was that such an approach does not preserve 

the details of the impulse caused by 'ringing' and these could be important in discriminating 

between corroded and sound joints because the impulse durations are very similar. 

However, the spectra were sampled to form feature vectors that represented the frequency 

content over the 2 kHz interval where its amplitude was significant (Figure 6.3). The first 

eight components were obtained by sampling at 125 Hz intervals and the remaining forty 

from 1.025 kHz to 2 kHz were obtained by sampling at intervals of 25 Hz. 

The neural network was implemented on a commercial software package (McClelland and 

Rumelhart, 1988). The first layer had twenty units and the second layer had three units, one 

for each condition of the joint. Before training the weights on the network interconnections 

were initialised with random values as were the thresholds for each unit. The network was 

set to a training mode whereby it updated the weights after every training vector rather than 

after every epoch. The learning rate was 0.5, the momentum constant was 0.2 and the 

criterion for network convergence was defined as an error function that had been reduced to 

a value of 0.04 or less. Each training vector was normalised between 0 and I and the three 

target vectors were 100,010 or 001 depending on whether the training vector corresponded 

to a sound joint, a corroded joint or a damaged joint. The network converged after 682 

epochs (- 17 hours) when trained with feature vectors sampled from the time histories and it 
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converged after 283 epochs (-7 hours) when trained with feature vectors sampled from the 
spectra. 

The performance of the network was then tested with nine test vectors, three for each 
condition of the joint. Each vector was 'clamped' to the input distribution and the network 
output was computed with the weights computed during training. Table 6.2 surnmarises the 

results obtained. These show that the network correctly classifies all conditions of the joint 

with a high degree of certainty, particularly the time histories. For example, it estimates a 
99.7% probability that a test vector representing the sound joint's time history belongs to 

that class and an 89.6% probability for the corresponding spectrum. The probability of 

misclassification is generally very low, the highest observed value being a 25.7 % probability 
that the second test vector representing the spectrum of the corroded joint belongs to the 
damaged class. The results show that the neural network was effective in correctly 

classifying test vectors according to the condition of the bolted joint. 

Condition Test Target 
of sample No. values 

Output values 

Time history Frequency Spectrum 

Sound 1 1000.992 0.007 0.000 0.921 0.002 0.174 
2 0.997 0.001 0.005 0.896 0.008 0.053 
3 0.991 0.002 0.002 0.916 0.016 0.017 

Coffoded 1 0100.001 0.998 0.001 0.000 0.986 0.103 
2 0.002 0.998 0.000 0.000 0.948 0.257 
3 0.001 0.997 0.005 0.001 0.988 0.040 

Damaged 1 0010.002 0.000 0.999 0.002 0.000 0.999 
2 0.009 0.000 0.994 0.001 0.000 0.999 
3 0.009 0.001 0.995 0.003 0.000 0.999 

Table 6.2. Classification of Impact Force on Bolted Joint with Neural Network 

The unsupervised method was the probabilistic resource allocating network (PRAN). The 

PRAN was trained by cyclically presenting it with 40 feature vectors that were obtained by 
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sampling the sound joint's time history at 48 points as for the neural network. The constant 
(xo was set to 0.7 as recommended by Roberts and Tarrassenko (1994) and it was found that 
when the maximum threshold parameter was 6x 10-3 the PRAN grew 17 units and 
subsequently classified test vectors representing the sound joint as normal whereas test 
vectors representing the corroded and damaged joints were classified as novel. It was 
found that when the maximum threshold was a higher value more units were grown and the 
PRAN classified some of the sound joint's test vectors as novel. When the maximum 
threshold was lower fewer units were grown and some of the test vectors representing the 

corroded or damaged joints were classified as normal. These results suggest that, given 

sufficient feature vectors to represent the sound joint and an empirically chosen maximum 
threshold, the PRAN can be used effectively to detect measurements from joints that have a 
deteriorated condition due to the effects of corrosion. 

This section has described the results obtained when the coin-tap test was used to detect 

deterioration due to corrosion in a bolted steelwork joint under given experimental 

conditions. The ability to identify different states of deterioration due to corrosion is 

improved by obtaining more dynamic information on the structure being tested. One 

approach is to maximise the information obtained from one measurement by computing 

different quantities and sampling waveforms as described in this section. Another is to 

perform the test under new experimental conditions. The next section describes the 

experimental conditions that were found to be effective in identifying corrosion 

deterioration from the bolted joint's impact time histories, together with the results 

obtained. All experimental conditions other than those specified were the same as those 

described in this section. 

6.2.3. Other Exnerimental Procedures 

This section describes the results obtained when the coin-tap test was applied to the bolted 

joint under new experimental conditions. The time history of the impact force was captured 

on the oscilloscope and recorded on an x-y plotter. Identification of corrosion deterioration 

in the bolted joint was found to be possible by varying the location or direction of impact or 

by varying the tip stiffness. 
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The time history was found to be sensitive to the presence of corrosion when the location of 
impact was on the bolt itself. Figure 6.8 (a) shows the impulses for impacts on the bolt 

furthest from the I-section web. The impulses of the sound joint and the damaged joint are 
indistinguishable because the damage does not affect the local stiffness near the bolt. 

However, the impulse of the corroded joint is clearly distinguishable from that of the sound 
joint. Figure 6.8 (a) shows that the corrosion products reduce the local stiffness producing 

the characteristic increase in impulse duration. It can also be noted that the impulse 

durations are generally shorter than those of impacts on the angle a short distance from the 

joint indicating that the local stiffness at the bolts is greater. There is also less 'ringing' 

because the local response at the bolts is influenced by the I-section support which is 

heavier than the angle and therefore requires more kinetic energy to excite structural 

vibrations. Corrosion was also detectable by changing the direction of impact from 

horizontal to vertical as illustrated in Figure 6.9. 

Figure 6.8 (b) shows the time histories obtained when the joint was impacted at the same 

distance from the I-section as the location indicated in Figure 6.1 but vertically and on the 

upper leg of the angle. The different conditions of corrosion deterioration can be 

discriminated according to their impulse durations. The local stiffness of the corroded joint 

is less than the sound joint and the local stiffness of the damaged joint is less than the 

corroded joint as indicated by the corresponding increases in impulse duration. 

Figure 6.10 shows that different joint conditions could also be discriminated by differences 

in local stiffness when the aluminium. tip was replaced with a plastic tip thereby reducing its 

stiffness. The differences in impulse duration indicate that all three conditions could be 

discriminated when the angle was impacted horizontally on its lower leg as shown in Figure 

6.10(a). Only the sound and corroded joints could be discriminated when it was impacted 

vertically on its upper leg as shown in Figure 6.10 (b). 
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6.3. Splice Plates 

The splice plates provide continuity for the flanges of an iron lattice girder belonging to the 
Clifton Suspension Bridge in Bristol (built in 1864). There are two parallel rows of twenty- 
six splices and each row is located underneath the handrails near to the footways that border 

either side of the road (Figure 6.11). The splices had been painted some time ago but this 

could conceal corrosion that may develop at the joint interfaces when capillary action draws 

water through the damaged paint-work trapping it there. It has been found that many of 
these splices have worked loose over a period of time due to deterioration through 

corrosion and repeated loading. 

Some splices appeared to be sound but the paint-work on others showed small cracks and 

discoloration indicating that deterioration due to corrosion was present. Other splice plates 

that were visibly very badly corroded had already been repaired by means of steel cover 

plates and friction grip bolts in place of the rivets. Therefore there were three different 

visual categories of splice plate: sound riveted; badly deteriorated riveted; and recently 

repaired bolted. A visual appraisal of the splices such as this may indicate deterioration due 

to corrosion but it is not always reliable. For example, a splice may be corroded even 

though the paint-work does not appear to be deteriorated. In such cases it should be 

possible to detect deteriorated splices using the coin-tap test. 

The riveted iron splice plate is shown in Figure 6.12. It is made up with an iron cover plate 

riveted to the ends of the angle section flanges as shown. The test was performed by 

impacting the underside of the joint at the location indicated by the black square on Figure 

6.12. Although inconvenient this was necessary because the timber handrail prevented 

access to the upper surface. It was also necessary to expose the steel surface by removing 

some paint at the location of impact; this improves the sensitivity because the contact 

stiffness is increased. 
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6.3.1. Experimental Procedure and Results 

One measurement of the impact force for each of the fifty-one splices (one was temporarily 
inaccessible) was taken by testing as described above with the lightweight hammer (see 
Figure 6.13). The aluminium tip was used to maximise sensitivity. The time history and 
frequency spectrum were acquired with the spectrum analyser using a rectangular window 

and a bandwidth of 20 kHz corresponding to a sample rate of 50 kHz (20 Rs between 

samples). The frequency interval was 12.5 Hz. Each measurement was obtained by 

performing a process average on the time histories and spectra acquired from three impacts 

on the splice. Figure 6.14 presents the force waveforms for typical impacts on two riveted 

splices: one appeared to be sound; and the other appeared to be badly deteriorated. 

Figure 6.14 (a) and Figure 6.14 (c) both show that although there is a slight increase in the 

deteriorated splice's impulse duration compared with that of the sound splice; both are 

approximately 0.33 ms and neither exhibit the 'ringing' effect. For these reasons it would 

be difficult to use the time history to discriminate the deteriorated splice from the sound 

splice. The corresponding spectral cut-off frequencies, indicated by broken lines in Figure 

6.14 (b) and Figure 6.14 (d), are also similar. However, the profiles are distinctively 

different between the deteriorated splice's first minimum (-4.5 kHz) and 10 kHz. The 

deteriorated splice's spectrum tends to increase to a maximum then fall off whereas the 

sound splice's spectrum just decreases to a minimum. This low amplitude, high frequency 

feature probably occurs because part of the deteriorated splice has worked loose causing a 

slight rattle and it is a possible means of discriminating deteriorated splices from sound 

splices. 

Figure 6.15 shows a plot of the cut-off frequency versus the ratio of the area, B, between 

the threshold frequency (v, ) and the maximum frequency (V.,,, ), to the total area (A+B) 

under the spectrum and below the maximum frequency. The threshold frequency was 2.8 

kHz corresponding to 46% of the maximum frequency (6 kHz). Measurements from the 

bolted splices span the region of the diagram occupied by both conditions of riveted splice. 

The cluster of measurements from deteriorated riveted splices in the lower left region of the 

distribution confirms that the coin-tap test can discriminate between the two conditions of 

113 



Awp- 
row 

Aig, 
all 

,i/ 

JJVJ6ý 'VA 
1% FAFF 

P, 

-WA IfArs 

TA 
w 

,v AUF 0' 

OW 

ra 

0 

A-ý 

r-L 

-0ý 

ýz 

114 

.. mo, Ak. 
AWAWJL 



5 

-5 

. 8-15 

25 

-35 

-45 

-55 1iiiiIiI 
0 0.5 1 1.5 2 2.5 3 

Time (ms) 

(a) Time History of Sound Splice 

5 

ý-25 

-35 

-45 11 

-55 

1iiiiiiiii 

0 0.5 1 1.5 2 2.5 3 
Time (ms) 

(c) Time History of Deteriorated Splice (d) Spectrum of Deteriorated Splice 

Figure 6.14. Force Waveforms for Impact on Splice Plates 

0.09 11 

0.08 

m 
E 

20.07 
u "0 

() 

0 

, 00.06 

0.05 4- 

1200 1600 2000 
Cut-off Frequency (Hz) 

* Corroded 

* Sound 

A Bolted 

Figure 6.15. Cut-off Versus Ratio of Areas Under Spectrum for Splice Plates 

44-A+ 

4+ 
+A 

+ 

A+ 
A+A + 

A 

x 

In, 

+ 

x 
xx 

& 

)00 
Frequency (Hz) 

-45 
------------ 

a R-55 

-65 

100000 Frequency (Hz) 

(b) Spectrum of Sound Splice 

11 

-45 

--------- --- 

0 ion 1000 

-65 

115 



riveted splice. The next section describes a method of pattern recognition employed to 
perform this task automatically. 

6.3.2. Computer Pattem Recognition 

The spectra were sampled to form feature vectors that represented the normalised spectrum 
over a6 kHz frequency interval. The 48 components were obtained by sampling at 125 Hz 
intervals from 125 Hz to 6 kHz. The unsupervised probabilistic resource allocating network 
(PRAN) was trained by cyclically presenting it with the 51 feature vectors. Given the 

observed 'lie-of-data' when two quantities computed from the spectrum of each 

measurement were plotted (Figure 6.15), it was assumed that the probability distribution 

had about 4 generators. Therefore, the PRAN was trained to grow 4 units by repeatedly 

training and adjusting the parameters appropriately. By using this empirical approach the 

constant M, which determines the adaption parameter, was 0.6 and the maximum threshold 

was IXIO-5 

A principal component analysis, as explained in chapter 5, was then performed on the 

feature vectors. It was found that the first two principal components of the feature vectors 

were the 36th and 37th, corresponding to 4.5 kHz and 4.625 kHz. The approximate 

location of the principal components on the normalised spectrum is shown by the broken 

line on Figure 6.16 and this indicates that the magnitude of the sound splice's principal 

components is greater than those of the deteriorated splice. In Figure 6.17 the distribution 

of splice plate measurements is plotted on orthogonal axes corresponding to the two 

principal components. The measurements are represented by three types of symbol, one for 

each splice plate condition. Sometimes more than one vector with the same symbol 

coincide leading to an apparent discrepancy in the number of measurements. The kernels 

are represented by intersecting error bars, the width of which corresponds to the standard 

deviation of the kernel and the point of intersection corresponds to its mean. Clearly the 

measurements from deteriorated splices along with a few measurements from bolted splices 

are located in a sparsely populated part of the plane whereas measurements from sound 

splices are in a densely populated part. It would be possible to identify these 
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measurements as novel by selectively pruning the two kernels that are closely associated 
with them. 

The 51 feature vectors were presented to the PRAN again and for each kernel the posterior 
response was computed and added to a running total. After the two kernels with the lowest 
total response were pruned the feature vectors were presented again. The 14 vectors that 
were identified as novel are circled in Figure 6.17. Three of these vectors appear to be 
associated with one of the remaining kernels but they were more closely associated with 
another kernel that was pruned and therefore these measurements were identified as novel. 
This apparent anomaly occurs because the kernels are close and their error bars overlap. 
Eight of the novel vectors represented measurements on bolted splices suggesting that these 

might also be deteriorated. The other novel vectors corresponded to measurements on 
deteriorated riveted splices. Only one splice plate that appeared deteriorated was not 
identified as novel. 

When only the kernel with the lowest total posterior response was pruned, two vectors 

were identified as novel: one represented a measurement on a riveted splice; and the other a 

measurement on a bolted splice. These vectors were closely associated with the kernel that 

lies at the lower extreme of the distribution indicating they represented measurements on 

splice plates with severe deterioration. This was verified by the external appearance of the 

riveted splice which was more badly corroded than the others and it was clear that its plates 

had separated allowing movement. The bolted splice did not display severe deterioration 

and the paint-work was largely intact. It is intended to dismantle this splice to determine 

whether corrosion has developed at the interface. 

The measurements on all 51 splice plates were carried out again to test the repeatability of 

the coin-tap test in this application. Feature vectors were computed in the same manner and 

the two principal components were the 38th and the 39th corresponding to 4.75 kHz and 

4.875 kHz. The distribution of vectors together with the 4 Gaussian kernels is plotted in 

Figure 6.18. The locations of vectors and kernels have changed but this is to be expected 

considering that the repeat measurements were carried out 3 months later. As before the 

118 



0.5 

0.4 
+-b 

50.3 

cu 

0.2 

"0 

LA 0.1 

0 

cz) 

0 0.1 0.2 0.3 0.4 0.5 0.6 

First principal component 

x Deteriorated 

Sound 

A Bolted 

Novel 

Figure 6.18. Plot of Feature Vectors of Normalised Spectra from Impact on Splice 

Plates after Two Dimensional Principal Component Anal-vsis (Repeat) 

119 



upper right part of the distribution is densely populated and the lower left sparsely 
populated. Fewer vectors were identified as novel because some of the vectors representing 
bolted splices have shifted to the upper right, indicating that the bolted splice's responses 
are more variable with time. When only the kernel with the lowest total posterior response 
was pruned the two vectors representing measurements on the same bolted and riveted 
splices were identified as novel indicating, again, that the corresponding splice plates were 
severely deteriorated. 

6.4. Summary 

The coin-tap test has been applied to two types of joint: a bolted steelwork joint; and bolted 

and riveted splice plates. 

The force waveforms for impact on the steelwork joint were found to exhibit features that 

allowed the identification of the presence of corrosion products and the loss of section. 

Both of these deteriorated conditions produced a reduction in local stiffness and 

furthermore the presence of corrosion products was found to increase local damping. In the 

second application it was not assumed that the visual appearance of splice plates was 

directly related to their actual condition. However, the coin-tap test revealed a reduction in 

local stiffness of deteriorated splices compared with sound splices and it was possible to 

distinguish between measurements on the two types of splice on this basis. Furthermore, 

measurements from some bolted splices that did not appear to be deteriorated were 

clustered with the deteriorated riveted splices, indicating the presence of concealed 

corrosion. 

Methods of pattern recognition were employed to classify coin-tap test measurements 

according to the condition of the joint. In the case of the bolted steelwork joint, data from 

measurements on the joint in three known conditions were available. This permitted the use 

of two algorithms: a novelty detector (the probabilistic resource allocating network or 

PRAN) trained on data from the sound joint; and a supervised classifier (the back- 

propagation neural network) trained on data from all three joint conditions. The PRAN 

correctly classified new measurements as either being from a sound joint or from a 
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deteriorated joint, and the neural network correctly classified new measurements according 
the specific condition of the joint. 

In the case of the splice plates the internal condition of the joint was assumed unknown and 
therefore it was necessary to use the unsupervised PRAN. This formed clusters of data 

from measurements on the riveted splices that corresponded with the visual categories. The 

distribution of feature vectors and kernels suggested that the data could be grouped into 

three categories corresponding to riveted splice plates that appear to be sound, deteriorated 

or badly deteriorated. The badly deteriorated group had two members, one of which was a 
bolted joint that did not show visible signs of serious deterioration. This implied that the 

bolted splice had concealed corrosion and that this could be automatically identified by the 

PRAN. 

The chapter has shown that it is possible to detect and identify the effects of corrosion in 

steelwork joints by using the coin-tap test in conjunction with methods of pattern 

recognition. 
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7. OTHER APPLICATIONS 

7.1. Introduction 

This chapter describes the application of the coin-tap test and methods of pattern 
recognition to the detection of deterioration due to corrosion occurring at two further 

locations on structural steelwork: at the interface between chequer plate flooring and its 

support and within wire ropes under tension. 

Chequer plate flooring is used in industrial buildings where it provides support for loads due 

to process equipment and personnel. At chemical works many such buildings are used for 

the storage or production of corrosive chemicals which, in situations of elevated humidity, 

result in an aggressive environment. Under these circumstances the gap between the 

chequer plate and the beam to which it is fixed may trap moisture leading to the 

development of corrosion products and compromising the strength of the flooring (Gallon, 

1993). Limited access underneath the chequer plate makes visual inspection difficult, 

particularly when it requires the removal of ceiling coverings from the lower storey. There 

exists a need to detect corrosion by testing from the upper surface of the chequer plate 

where there is easy access. 

Wire ropes used on suspension and cable stayed bridges are prone to deterioration because 

they are exposed to attack from environmental agents (Stafford and Watson, 1988). They 

are also subject to static and dynamic forces causing stress corrosion, corrosion fatigue and 

eventually fracture. Corrosion pits occurring on the outer surface of the rope provide water 

with access to the core leading to hidden corrosion. There are two principal techniques 

aimed at preventing contact between the steel and environmental agents; both have serious 

drawbacks. The first is to galvanise or paint the rope but these coatings quickly degrade 

under normal operational conditions. The other technique is to provide ropes with 

polythene sheathing but these have been found to split during service if not carefully stored 

during preparation. The best way to obviate failure is to detect hidden corrosion by testing 

on a regular basis. 

122 



The next section describes the application of the coin-tap test to the detection of corrosion 
occurring under chequer plate flooring in a chemical works building. This is followed by a 
description of the application of the coin-tap test to detect various simulated conditions of 
corrosion deterioration in a wire rope under tension mounted in the laboratory. Two 
instruments were available for data acquisition: the first was a Diagnostic Instruments, 
PL202 spectrum analyser (Diagnostic Instruments, 1991); and the other was a Gould model 
OS4020 Digital Storage Oscilloscope (Gould, 198 1). 

7.2. Chequer Plate Flooring 

The region of flooring tested was directly above one of a series of small I-sections that 

supported the third floor of a packing shed for the production and storage of sodium nitrate 
(Nitram) as shown in Figure 7.1. The small I-section that was chosen for testing is shown 
in Figure 7.2. The flooring comprised 8 mm thick chequer plates fixed at regular intervals 

along their long edges to the flanges of two small I-sections by five steel bolts with 

countersunk heads, as indicated in Figure 7.3 (a). The short edges of the chequer plate 

were supported by two large I-sections that were perpendicular to the small I-sections. 

Visual inspection of this beam from the lower floor showed that, at the mid-span region, 

corrosion products were packed at its interface with the chequer plate, whereas the regions 

towards its ends were relatively free from corrosion. These regions were categorised as 

'corroded' and 'sound' respectively. There were also intermediate regions where the 

condition was ambiguous because corrosion products were not clearly visible from the 

lower floor although they might have been present. These regions were categorised as 

4suspectý. 
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7.2.1. Experimental Procedure 

One measurement of the impact force was taken at each of forty equally spaced positions 
along the longer edge of the chequer plate that was supported by the test I-section. 
Measurements were taken directly above the flange along the line of the fixing bolts. 
Therefore five of the measurements corresponded to impacts on bolt heads as indicated in 
Figure 7.3 (b). The heavy duty hammer fitted with the aluminium tip was used 
(see Figure 7.4). The time histories and frequency spectra were acquired with the spectrum 
analyser using a rectangular window and a bandwidth of 10 kHz and a frequency interval of 
6.25 Hz. The sample rate was 25 kHz (40 Rs between samples). Each measurement was 

obtained by performing a process average on the time histories and frequency spectra 

acquired from three impacts at a particular position on the chequer plate. Figure 7.5 

presents the force waveforms for typical impacts over regions known to be sound and 

corroded. 

Figure 7.5 (a) and Figure 7.5 (c) both show that the presence of corrosion products under 

the point of impact has the effect of damping the structural vibrations of the chequer plate. 

This is clear because the time history of the sound region exhibits low frequency 'ringing'. 

This effect is also apparent by comparing the spectra shown in Figure 7.5 (b) and Figure 7.5 

(d). Unlike the spectrum of the corroded region, the spectrum of the sound region exhibits 

peaks corresponding to modes of vibration. The apparent impulse duration of the sound 

region is greater than for the corroded region because of undamped structural vibrations 

feeding back into the hammer's force transducer. These are damped out rapidly by the 

corroded region resulting in a simple, clean force-time history as shown in Figure 7.5 (c). 

In the spectra the cut-off frequency of the sound region is approximately 138 Hz which is 

lower than for the corroded region at approximately 481 Hz, as indicated by the broken 

lines in Figure 7.5 (b) and Figure 7.5 (d). This is due to the relative increase in structural 

vibration of the sound region compared with corroded region. These differences in the 

spectra are a possible means of discriminating corroded regions from sound regions. 
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Figure 7.6 shows a plot of the cut-off frequency versus the ratio of the area, B, between the 
threshold frequency (v, ) and the maximum frequency (v,. ), to the total area (A+B) under 
the spectrum and below the maximum frequency. The threshold frequency was 1.2 kHz 
corresponding to 40% of the maximum frequency (3 kHz). Measurements over the suspect 
regions were grouped with those corresponding to corroded regions in the upper right of 
the distribution, suggesting that the suspect regions were actually corroded. Measurements 
on the bolts were also grouped with measurements on corroded regions suggesting that the 
force waveforms were similar and therefore structural vibrations of the chequer plate were 
also suppressed by the bolts. Measurements from the sound regions tend to be clustered in 
the lower left of the distribution whereas those from the corroded regions are clustered in 

the upper right of the distribution. This confirms that the coin tap test can discriminate 
impacts over corroded regions of the I-section from impacts over sound regions. The next 
section describes a method of pattern recognition employed to perform this task 

automatically. 

7.2.2. Computer Pattem Recognition 

The spectra were sampled to form feature vectors that represented the normalised spectrum 

over a3 kHz frequency interval. The 48 components were obtained by sampling at 50 Hz 

intervals between 0 Hz and 250 Hz (eight components) and at 68.75 Hz intervals between 

250 Hz and 3 kHz (40 components). This was done purely for convenience. The 

unsupervised probabilistic resource allocating network (PRAN) was trained by cyclically 

presenting it with the forty feature vectors obtained from measurements at each position on 

the I-section. Given the observed 'lie-of the data' when two quantities computed from the 

spectrum of each measurement were plotted (Figure 7.6), it was assumed that the 

probability distribution had two generators. Therefore, the PRAN was trained to grow two 

units by repeatedly training and adjusting the parameters appropriately. By using this 

empirical approach the constant W, which determines the adaption parameter, was 0.7 and 

the maximum threshold was IX 10-17. 

A principal component analysis, as explained in section 5, was then performed on the 

feature vectors. It was found that the first two principal components of the feature vectors 
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were the 16th and 17th, corresponding to 950 Hz and 1018.75 Hz. The locations of the 
principal components on the normalised spectrum are indicated by the broken lines on 
Figure 7.7 and these show that the approximate magnitudes of the sound region's principal 
components are less than those of the corroded region. In Figure 7.8 the distribution of 
measurements on the chequer plate is plotted on orthogonal axes corresponding to the two 
principal components. The measurements are represented by four types of symbol, one for 
each category assigned to the condition of the interface between the I-section and the 
chequer plate. Sometimes more than one vector with the same symbol coincide, leading to 
an apparent discrepancy in the number of measurements. The kernels are represented by 
intersecting error bars, the width of which corresponds to the standard deviation of the 
kernel and the point of intersection corresponds to its mean. The measurements from the 
corroded regions are in a densely populated part of the plane whereas measurements from 

sound regions are in a sparsely populated part. It would be possible to identify these 

measurements as novel by pruning the kernel that is closely associated with them. 

The 40 feature vectors were presented to the PRAN again and for each, the posterior 

response was computed and added to the running total. After the kernel with the lowest 

total response was pruned the feature vectors were presented again. The 11 vectors 

identified as novel are circled in Figure 7.8, all were from measurements on the sound 

region. Two of the vectors appeared to be more closely associated with the kernel that was 

not pruned. However, it must be remembered that the plot in Figure 7.8 is a projection of 

the feature vectors onto a two dimensional plane. The PRAN used all forty-eight 

components of the feature vectors to classify and it is likely that there were other 

components that identified these vectors as belonging to the kernel that was pruned. 

Measurements on the bolts and measurements on suspect regions were clustered with 

measurements on corroded regions. This confirms the observation made earlier that the 

suspect regions were actually corroded, and that the response of the bolts was similar to 

that of the corroded regions because both exhibited damping of the vibrations of the 

chequer plate. 
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7.3. Wire Rope Under Tension 

The structure of a simple wire rope specimen is shown in Figure 7.9. It consisted of seven 
helical wires made of high tensile steel surrounded by a polythene sheath. The tensile 

properties of one of these wires are given below in Table 7.1. 

Tensile Property Estimated Value 

Failure load 42 kN 
Area of wire 

-before fracture 25.9 MM2 

-after fracture 24.4 MM2 

Stress at failure 1621.6 N/mm 2 

Strain at failure 0.262% 
Yield stress 1177.6 N/rnrný 

Young's modulus 211.9 kN/mm 2 

Table 7.1. Tensile Properties of a Sin2le Wire 

A length of wire rope was installed in a Losenhausen UHS 60 fatigue testing machine 

(Losenhausen, 197 1) and put under tension. The layout of the apparatus is given in 

Figure 7.10. 
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7.3.1. Experimental Procedure 

The first three experiments were to determine the effect of changes in the experimental 
condition of the wire rope, other than damage to the rope itself, that might influence the 
force-time history and thereby reduce the sensitivity of damage detection. 

The first two tests investigated the effect of the polythene cover: 

Experiment I- The specimen was fixed at both ends with the cover removed. 

Experiment 2- The specimen was fixed at both ends with the cover intact. The 

experiment was carried out over a range of tension from 0 kN to 120 kN- 

The third test investigated the effect of changing the support conditions: 

Experiment 3- The strand with cover intact was fixed at both ends. In addition a 

clamp (Figure 7.11) was installed at the middle section. The purpose of the clamp 

was to standardise the supporting conditions at different positions on the strand, as 

shown in Figure 7.12. When the unclamped rope is impacted centrally, as indicated 

in Figure 7.12 (a), the local displacement profile is markedly different from that 

obtained when it is impacted near a support, as shown in Figure 7.12 (b), because of 

the large difference in the amount of lateral restraint at the two positions. However, 

when the clamp is installed centrally, the amount of lateral restraint is similar to 

that obtained when it is installed near the support and the deflection profiles 

obtained at both positions would be similar to that indicated in Figure 7.12 (c). 

The fourth experiment was to determine the effect that minor damage might have on the 

force-time history of the impact test: 

Experiment 4- An artificial defect was made to the specimen in the middle section 

by sawing one of the wires to a depth of approximately I mm. It was tested with 

the clamp in place and with the cover intact. 
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Figure 7.11. Supporting Clamp for Wire Rope 
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(a) Central Impact (no clamp) (b) Off-centre Impact (no clamp) 

(c) Central Impact (clamp installed) 

Figure 7.12. Effect of Clamp on Deflection Profile of Wire Rove 
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In each experiment the rope was subjected to a four-stage test in which it was impacted 
with the lightweight hammer fitted with the long extender and aluminium tip. The force- 
time history was acquired with the oscilloscope and recorded on an x-y plotter. 

The first two stages were to determine whether changes in applied tension and position of 
impact had a significant effect on the force-time history, thus reducing the damage 

sensitivity. 

(a) Impacts were made to the specimen (see Figure 7.13) at the positions shown in 

Figure 7.10 starting at 40 kN tension. 

(b) This was repeated at every 40 kN increment of tension until 200 kN (except 

experiment 2 which was limited to 120 kN). 

The last two stages were to determine the effect that substantial damage to the rope might 

have on the force-time history: 

(c) One of the wires was cut and then the specimen was loaded until the wire 

ruptured. This normally occurred at a load greater than 200 kN. 

(d) The load was reduced to 200 kN and impacts were made at the same positions 

as before. 

7.3.2. Theoretical Model of Transverse Stiffness of Rope under linpact 

The effects on the measured local stiffness of different tensions, different positions of impact 

and different rope conditions were compared with a theoretical model that predicted the 

local stiffness of a wire rope subjected to a transverse point load. The model assumes a 

static point load and therefore it does not take account of the effects of any structural 

vibrations that may be excited by the hammer on impact. It also assumes a uniform cross- 

sectional area. Furthermore, it does not include the finite contact stiffness between the tip 

of the hammer and the rope. 
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Figure 7.13. Applying the Coin-tap Test to Wire Rope (clamped) 
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7.3.2.1. Variations in Local Stiffness With Position Along a Mounted Wire Rope 

This discussion concerns the variation with location of the local stiffness, k, measured by a 

small point load applied to a tensile wire rope in a direction perpendicular to its length. It is 

assumed that the displacement caused by the load is small compared with the rope's length. 

The rope is mounted between two pinned supports, A and B. The discussion is therefore 

equally valid in these cases. Figure 7.14 (a) shows the mounted wire rope. The bold line 

represents the undistorted rope which has an initial horizontal tension. The initial length of 

the rope is L and the point load is applied at L1. Its Young's modulus is E and it has cross- 

sectional area, A. 

(a) Wire Rope Supporting Negligible Bending Moment 

In this sub-section it is assumed that the rope can be treated as a cable because it has a small 

shear modulus. Therefore the point load produces a negligible bending moment in it and the 

rope deforms by longitudinal extension that is uniform over its cross-section. The point 

load, P, produces a small local displacement, y, as indicated in Figure 7A4 (b) which 

clarifies the geometry of the displaced cable. 

The load effectively divides the cable into two sections with lengths a and b and tensions Ta 

and Tb. The stiffness, kj, of one of these sections is the linear combination of the stiffness 

due to longitudinal extension of the cable, kl,,, and the stiffness due to the initial tension, 

kl, T- 

ki = kl,, + kl, T 

This is given by, 

(7.1) 

(T sinO, ) (Tsin0l) (Tosin0l) 
-1 -1, Sl 'IV 1) +- (7.2) 

yyy 
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Figure 7.14. Cable Subjected to Transverse Static Point Load 
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where T, is the increase in tension due to the extension of section a, and To is the tension 
before the point load was applied (in this case equal to H). The first term on the right hand 

side (RHS) of equation 7.2 represents kl,, and it can be written as follows: 

(7; sinO e 
yy 

(Tsin0l) T Therefore ee (7.3) 
ya 

T, is derived from Hooke's law: 

Te = EA x (7.4) 

Therefore kl, 
e= EA x 

(a - Ll) 

Therefore k, 
(a LI) (7.5) 

,e 
EAX f2 

I 

Where the substitution a-L, was made in the denominator of equation 7.5 because the 

displacement y is small. The extended length of rope, a, can be written as. ) 

+2 
)112 (7.6) 

The RHS of equation 7.6 can be expanded as the first two terms of a Taylor series. This 

yields 

2 

a-= L, +-L Y (7.7) 
24 

This can be substituted into equation 7.5 to give 
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LTA2- 
(LI +1y2 (7.8) L, 2 L, 

Therefore EAy 2 

2L3 (7.9) 
1 

The load acts on both sections of cable simultaneously so the local stiffness in the load 
direction due to longitudinal extension of the cable, k, is obtained by the linear addition of 
the contribution of each section. 

ke 
..: 

kl, 
e 

+k2, 
e (7-10) 

Therefore ke 
= 

EAy 213 

(7-11) 2-L, 

The second term on the RHS of equation 7.2 represents 
kl, 

T and it is derived from the 

relation, 

To Sin 01 -Y 
To 

(7-12) 
a 

The length, a, is approximately L, because the displacement, y, is small hence, 

(To sinO T 
kl, 

T : -- 
0 (7.13) 

y L, 

The load acts on both sections of cable simultaneously so the local stiffness in the load 

direction due to the initial tension in the cable, kT, is obtained by the linear addition of the 

contribution of each section. 

Therefore 

kT= kl, 
T+ 

k2, T 

T kT =o+ L, (L-LI) 

(7-14) 
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Therefore k =- 
L To 

.=TL T LI(L 
- LI) 0 L, (L 

- LI-) 

(b) Wire Rope Supporting Significant Bending Moment 

In this sub-section it is assumed that the rope can be treated as a bar because it has a large 

shear modulus. Therefore the point load produces a substantial bending moment in it and 

the rope deforms by bending forming a curved profile. 

The displacement, y, produced by a point load, P, acting at a distance of L, from one of the 

supports of a fixed supported bar with length L is given by (Owens and Knowles, 1992). 

P33 Iý (L - LI) 
3EIL3 

Where I is the bar's second moment of area. Therefore the local stiffness due to bending, 

(7.15) 

(7.16) 

kb, is given by, 

Therefore 

kb f- 3EIL3 
- y- q(L-Ljý 

kb= 3EI L 
L, (L - Ll) 

(7.17) 

(c) General Case 

In this sub-section no assumptions are made concerning the behaviour of the rope when 

subjected to a transverse load. Therefore, the local stiffness, k, in the wire rope can be 

modelled by a combination of the stiffness due to longitudinal extension, k, (equation 7.11), 

the stiffness due to tension, kT (equation 7.15) and the stiffness due to bending, kb 

(equation 7.17). 
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k=k, +kT +kb (7.18) 

An approximation of the contribution of each stiffness component can be found by 
substituting the appropriate values for the rope into equation 7.11, equation 7.15 and 
equation 7.17. For impact at L, = L12 with a tension of 100 kN, and assuming a 
displacement of 14 mm for y, this gives a value of 441 N/m for k, 5.7 x 105N/m for kTand 
3.1 X 105 N/m for kb. Clearly, the stiffness due to longitudinal extension is significantly less 
than the stiffness due to bending or the stiffness due to tension. 

Therefore k =- kb+kT (7.19) 

-- 3EIL3 +L 
To 

g(L - L, LI(L - LI) 

3EIL3+L, 2(L- L, YLTO 
Therefore k=- 

Lý(L - Lq Y 
(7.20) 

where E, I, L and To are the Young's modulus, the second moment of area, the rope's 

original length and the applied tension, respectively. This is approximate because kT 

assumes the displacement profile of a cable but, considering that the displacement at the 

load is small, the error should be insignificant. 

The load is applied at a distance L, from one of the supports. The local stiffness at the mid- 

point of the rope can be obtained by substituting L, = L/2 and rearranging equation 7.20 to 

yield. 

2 
1 

k= 
3EI+ 

16 
To 

(L )3 

2 

(7.21) 

Using the values of cross-sectional area and Young's modulus quoted in Table 7.1, and 

assuming a rope with a circular cross-section that is seven times the area of one wire, the 
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first term in the numerator, which represents the influence of bending on local stiffness, has 

a magnitude of 1.666 x 103 NM2 
. The rope's length was 0.7 in so the magnitude of the 

L 2/ 16 factor was 3.0625 x 10-2NM 2. This means that the second term in the numerator, 
which represents the influence of applied tension on local stiffness, is of the same order of 
magnitude as the first term when the applied tension is of the order of 100 kN- 
Consequently, the measured local stiffness would be expected to vary significantly over the 
40 kN to 200 kN range used in these experiments. 

The model makes two assumptions that could reduce the accuracy of its predictions in this 

application. The first is that the model assumes a rope with uniform cross-section whereas 

the experimental rope was made up of seven wires. Although its cross-sectional area is the 

same, the experimental rope has a smaller shear modulus and its local stiffness will be less. 

The second assumption is that the contact stiffness between the hammer and the model rope 

is infinite whereas in practice it is finite. This would also tend to increase the local stiffness 

of the theoretical rope relative to the experimental rope. Therefore, the impulse durations 

predicted by the model are expected to be shorter than those measured experimentally. 

However, the model should predict the relationship between the variables correctly and it is 

these trends that are of most interest in the present discussion. 

7.3.3. Test Results 

Factors that affect the force-time history, other than damage to the rope, may affect the 

sensitivity of the coin-tap test. The effects of differences in the applied tension, position of 

impact, support conditions and the presence of the cover were considered. 

Figure 7.15 shows that the shape of the force-time history was not affected by change in the 

applied tension. Figure 7.15 (a) shows that the force-time history during impacts at L/7 

from the support (position 1) on the uncovered rope (experiment 1) exhibits four cycles of 

ringing vibration over the duration of the impulse for tensions in the 80 kN to 200 kN 

range. Similarly, Figure 7.15 (b) shows that the impulses from impacts at the mid-point 

(position 2) of the covered rope (experiment 3) approximate to a half-sine shape for 

tensions in the 120 kN to 200 kN range. 
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Force (arbitrary scale) 

Time (arbitrary scale) 

(a) Impact at L/7 From Support (Position 1) of Uncovered Rope (Experiment 1) 

Force (arbitrary scale) 

Time (arbitrary scale) 

(b) Impact at Mid-Point (Position 3) of Covered Rope (Experiment 3) 

Figure 7.15. Effect of Rope Tension on Shape of Force-time History 

147 



Figure 7.16 shows that the impulse's duration decreased with increasing applied tension. 
The figure shows the trends for impacts at the mid-point of the uncovered rope (experiment 
1) over the 5 kN to 200 kN tension range. Clearly the rate at which the impulse duration 
decreases with increasing tension is greater at lower tensions such as 40 kN, than at higher 

tensions such as 160 kN. Similar trends were observed for other experimental conditions of 
the rope but the magnitudes of the impulse durations were different. The impulse durations 

at different tensions with stiffnesses predicted by equation 7.20 for impacts at the mid-point 
(position 2) of the rope are also plotted. The predicted impulse durations are shorter than 

those obtained experimentally because of the assumptions of the theoretical model or the 

missing term accounting for longitudinal extension. 

The effect of different positions of impact is illustrated in Figure 7.17. The Figure shows 

three observed impulse durations for impacts on the uncovered rope (experiment 1) at 80 

kN tension. Clearly the impulse duration at the mid-point (position 2) is greater than it is at 

position I and position 2. The impulse durations at different positions on the rope with 

stiffnesses predicted by equation 7.20 and at a tension of 80 kN are also plotted. The 

experimentally observed trend appears to be similar to that predicted theoretically although 

the impulse durations are generally shorter. Similar trends were observed for other 

experimental rope conditions. 

The supporting condition was found to affect the force-time history. The impulse durations 

were found to reduce when the support condition was altered by fitting the clamp to the 

rope, indicating that the clamp had the effect of increasing the local stiffness of the rope. 

For example, at 200 kN tension the impulse duration was 0.94 ms when the unclamped rope 

(experiment 1) was impacted at L/7 (position 1) from the support. However, the duration 

was 0.78 ms when the clamped rope (experiment 3) was impacted at the same position. At 

L/2 from the supports the corresponding durations were 2.06 ms (experiment 1) and 

0.78 ms (experiment 3). The clamp increased the local stiffness even though the polythene 

cover, which would tend to reduce the local stiffness and increase the impulse duration, was 

also present. 
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The results also show that the clamp performed its intended function in making the local 

stiffness at different positions along the rope constant by standardising the amount of lateral 

restraint. When the clamp was not installed the difference between the impulse duration at 

L/2 and its duration at L/7 was 1.12 ms, this was greater than the corresponding difference 

when the clamp was installed (0 ms). 

This concludes the discussion of factors that reduce the damage sensitivity. The discussion 

that follows is concerned with the sensitivity of the coin-tap test for discriminating between 

time histories of impacts on the wire rope when its condition was either deteriorated by a 

fractured wire or by an artificial defect. 
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The presence of a fractured wire was found to affect only the shape of the time history for 
impacts on the uncovered rope (experiment 1). Figure 7.18 shows that there was a sharp 
4spike' after the impulse's tail. This feature, believed to be caused by the rebounding free 
ends of the fractured wire, could be a potential indicator of fracture. The shape of the time 
histories for impacts on the rope in other experimental conditions was unaffected, probably 
because the ends of the fractured wire were restrained by the cover. 

The change in impulse duration due to the presence of a fractured wire was found to be 

inconsistent. Table 7.2 presents the results for the uncovered rope (experiment 1) and the 

covered, supported rope (experiment 3). In some cases the duration for the fractured rope 

was less than the unfractured rope. However, the duration of the fractured rope should 

always be greater because its cross-sectional area is effectively reduced by the area of one 

wire producing a corresponding reduction in the second moment of area (assuming the 

cross-section remains approximately circular) and the local stiffness (equation 7.20). The 

inconsistent experimental results were probably due to inaccuracies in measuring the width 

of the impulse because its boundaries were not well defined. 

Experiment I (uncovered) Experiment 3 (covered) 

Fractured Non-fractured Fractured Non-fractured 

Position 1 1.25 0.94 0.60 0.78 
Position 2 2.06 2.06 0.95 0.78 
Position 3 1.16 0.93 0.69 0.93 

Table 7.2. Duration of Force-time Histories (ms) for Impacts on Wire Rove at 200 kN 

Equation 7.21 suggests that the sensitivity of the coin-tap test to changes in local stiffness 

caused by fracture could be improved by reducing the tension. The first term in the 

numerator is dependent on the second moment of area whereas the second term is 

dependent on the tension. The tension on the rope was 200 kN giving a value of 6125 NM2 

for the second term. The first term was 1666 NM2 for the unfractured rope whereas it was 

1199 NM2 for the fractured rope. The change in the numerator and therefore the local 

stiffness is very small (6%). However, when the tension is reduced to 5 kN, the second 
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term is 153 NM2 producing a larger local stiffness change (26%) and increasing the 
sensitivity of the test. 

This is illustrated in Figure 7.19 which shows the variation in impulse duration as a function 
of the rope's cross-sectional area at 200 kN and at 5 kN. The dotted vertical bars indicate 
the cross-sectional areas of the fractured and the non-fractured ropes. Clearly at both 

positions of impact the difference between the fractured and non-fractured rope impulse 
durations is greater for the lower tension. At position 2 the predicted difference is 0.44 ms 
which, given the variation in experimentally measured values (table 7.2), would be large 

enough to produce a consistent measurable reduction in impulse duration. 

The presence of a defective wire with a small notch on it did not produce noticeable 

changes in the shape of the force-time history. It did not produce a measurable change in 

the impulse duration either, despite the rope being tested at a low tension (4 kN). The 

reason for this is thought to be because the reduction in cross-sectional area was not large 

enough to produce a measurable change in local stiffness. 

7.3.4. Computational Damage Detection 

It was mentioned in the previous section that the shape of the force-time history of an 

impact on the uncovered rope is changed by the presence of a fractured wire. This section 

describes computational methods of discriminating between the impact force on the rope in 

its fractured and non-fractured states. At a tension of 200 kN, five measurements were 

made at five positions on the uncovered rope; position 1, position 3 (Figure 7.10) and at 

three intermediate positions separated by 125 mm. The impact positions were then 

consecutively re-numbered from I to 5 in order of distance from the upper clamp. The time 

histories and frequency spectra were acquired with the spectrum analyser using a 

rectangular window and a 20 kHz bandwidth (50 kHz sample rate). Each measurement was 

obtained by performing a process average on the data from three impacts at each position 

on the rope. 
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The first method was to use a back-propagation neural network, as described in chapter 5, 
to classify automatically the time history waveforms according to the condition of the rope. 
The network had 20 first layer units and a single output unit. Thirty-six component feature 
vectors were obtained by sampling the waveforms over a fixed interval and normalising 
between 0 and 1. For each condition of the rope thirteen of the fifteen measurements taken 

at position 3 and the two neighbouring positions were used for training. Therefore there 

was a total of twenty-six training vectors. The targets for training vectors from the 
fractured rope and unfractured rope were 0 and I respectively. The leaming rate was 0.5, 

the momentum constant was 0.2 and the criterion for network convergence was defined as 

an error function that had been reduced to a value of 0.04 or less. Training was complete 

after approximately 5 hours. 

The network was then tested with four randomly chosen feature vectors; two were from 

measurements on the fractured rope and two were from measurements on the unfractured 

rope. Using the weights computed during training, the network computed an output for 

each test vector and these are presented in Table 7.3. Clearly the network correctly 

classifies test vectors from the fractured rope and the unfractured with a high degree of 

accuracy. This is probably because the 'spike' in the force-time history is such a distinctive 

feature of the response of the fractured rope. 

Condition of rope Test Vector Target Network Output 

Unfractured rope 1 1.0000 1.0000 
2 1.0000 1.0000 

Fractured rope 1 0.0000 0.0000 
2 0.0000 0.0000 

Table 7.3. Classification of Impact Force on Wire Rope with Neural Network 

The second method of discriminating between impacts on the fractured rope and the 

unfractured rope was to compute the ratio of areas under the spectrum, as described in 

Chapter 4, and compare these. Figure 7.20 shows typical spectra of impacts at position 3 

on the rope in each condition for a 10 kHz bandwidth. Near the cut-off frequency 

(- 175 Hz) the spectrum of the fractured rope is almost indistinguishable from that of the 
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unfractured rope. This agrees with the earlier observation that, at a tension of 200 kN, the 
test was not sensitive enough to detect the changes in the impulse duration caused by rope 
fracture. However, at frequencies above I kHz, the amplitude of the spectrum of the 
fractured rope is frequently greater and a larger area is enclosed between it and the 
frequency axis. Therefore the ratio of the area, B, between the threshold frequency (v, ) and 
the maximum frequency (v .. a, ), to the total area (A+B) under the spectrum and below the 

maximum frequency would be greater for the fractured rope (provided that a substantial 

proportion of the area B is above 1 kHz). The increased high frequency content of the 

spectrum for the fractured rope is probably caused by the rebounding loose wire and 

corresponds to the 'spike' previously observed in the time history. 

The ratio was computed with different values for vt and v,,,,,. The greatest sensitivity was 

obtained when vt was 178 Hz corresponding to approximately 10% of v,,,,,, which was 1.78 

kHz. The locations of these frequencies on the spectra are indicated on Figure 7.20. By 

comparison it can be noted that for damage that primarily reduces the local stiffness, it is 

recommended that vt is chosen between 30% and 50% of v,,,,, for greatest sensitivity 

(Cawley and Adams, 1988). 

The sensitivity was also found to vary at different positions on the rope. Table 7.4 shows 

that the difference between the ratio of the fractured rope and that of the unfractured rope 

diminished as the position of impact neared the supports but reached a maximum at the mid- 

point of the rope. This suggests that maximum sensitivity is obtained by impacting at the 

mid-point of the rope, as predicted for damage that primarily reduces the local stiffness. 

This discussion has shown that it is possible to detect fracture in wire ropes by applying 

computational techniques to the dynamic waveforms of impact forces on them. It has been 

demonstrated, with the neural network, that pattern recognition can be employed to classify 

the time histories directly. These results indicate the potential feasibility of using a 

computer to perform the classification process and thereby automate the process. 
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Position on Wire Rope Ratio of Areas Under the Spectrum B/(A+B) 

(vt = 178 Hz; vmax= 1.78 kHz) 

Fractured Non-Fractured 

1 0.51 0.5 

2 0.48 0.48 

3 0.57 0.48 

4 0.48 0.48 

5 0.49 0.50 

Table 7.4. Variation in Ratio of Areas Under Spectrum with Position on Wire Rope 
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7.4. Summary 

The coin-tap test has been applied to two types of structural steelwork: wire rope under 
tension and chequer plate flooring. 

In the first application the presence of corrosion products between the chequer plate and the 
supporting I-section was found to dampen structural vibrations of the chequer plate when 
impacted and therefore the resulting force waveforms were distinctively different from those 
obtained by impact over a sound region. This allowed the presence of corrosion products 
to be identified. Furthermore, measurements taken at regions where it was suspected that 
there may be corrosion products also exhibited increased damping, indicating the presence 

of concealed corrosion. The force waveforms for impact on the wire rope were found to 

exhibit a feature that allowed the presence of a loose fractured wire to be identified 

(provided that the rope's protective cover had been removed). The fractured wire was 
found to reduce the local stiffness which in turn was affected by the supporting conditions, 

the position of impact and the applied tension. The sensitivity of the test to a fractured wire 

was best when the rope had no additional support, and it was impacted at its mid-span point 

under minimum tension. 

Methods of pattern recognition were employed to classify coin-tap test measurements 

automatically, according to the condition of the steel structure. In the case of the wire rope, 

two known conditions were available. This permitted the use of the supervised back- 

propagation neural network which successfully classified new measurements as either being 

from the fractured rope or from the unfractured rope. In the case of the chequer plate 

flooring the condition of the interface between the chequer plate and the supporting I- 

section at the exact position of impact was not known and therefore it was necessary to use 

the unsupervised probabilistic resource allocating network (PRAN). This formed two 

clusters of data from measurements on the chequer plate. The distribution of feature 

vectors and kernels suggested that the data could be grouped into two categories 

corresponding to corroded regions and sound regions. 
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8. DISCUSSION 

8.1. Introduction 

In Chapter I the three objectives if this project were stated, these were: 

i) to review current methods of non-destructive testing and identify a method 
suitable for the inspection of corrosion damaged steelwork; 

ii) to review selected methods of intelligent computing suitable 
for categorising field test data automatically; 

iii) to identify the components of a self-contained monitoring system capable of 
detecting and classifying corrosion damage in steel structures. 

The coin-tap test has been shown to be effective in detecting corrosion deterioration at four 

locations on steel structures: bolted steelwork joints; bolted and riveted splice plates; wire 

ropes under tension; and I-sections under chequer plate flooring. Supervised and 

unsupervised methods of pattern recognition were used to classify the measurements 

automatically. 

The test was advanced by the introduction of a new quantity sensitive to local stiffness 

change; the ratio of the peak impulse force to the area enclosed by the impulse. It was also 

advanced by identifying changes in structural vibration ('ringing') due to damping caused 

by corrosion products. 

The next section reviews the findings of these investigations and it is followed by a section 

that draws on this information to identify the components necessary for a self-contained on- 

line monitoring system capable of detecting and classifying deterioration due to corrosion 

on-site. The last section makes suggestions for future research. 
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8.2. Researc Findinas 

Corrosion deterioration was identified by inspection of the interacting force time history 
from an impact on the structure. The characteristic changes produced by local stiffness 
reduction were found to be useful for identifying corrosion deterioration of a bolted 
steelwork joint, in particular when there was considerable loss of section. The reduction in 
'ringing' produced by damping increase was found to be effective in identifying the 
presence of corrosion products at the steelwork joint and at the interface between chequer 
plate flooring and its supporting I-section. 

Severe corrosion deterioration may cause certain parts of the structure to work loose. This 

will increase the frequency response function amplitude at higher frequencies and in 

extreme cases it produces a 'spike' in the time history. These effects were found to be 

useful for identifying looseness in corroded splice plates and for identifying the presence of 

a fractured wire in a strand of wire rope under tension. 

The method of pattern recognition employed to classify the force waveforms depended on 

the availability of structures of known condition for training. When structures of known 

condition were available, supervised methods of pattern recognition could be employed, 

whereas when they were not, unsupervised methods had to be used. 

The steelwork joint and the wire rope were assembled in the laboratory under experimental 

conditions and therefore it was convenient to prepare them in known conditions and employ 

the supervised back-propagation neural network to classify new measurements 

automatically according to the condition of the structure. In the case of the wire rope the 

deteriorated condition was a fractured wire whereas the steelwork joint was prepared in 

two deteriorated conditions: the first had corrosion products at the joint interface; and the 

other had suffered loss of section. 

The splice plates and the I-section under the chequer plate flooring were tested on-site and, 

at the time of testing, examples of the structures in known conditions were not available. 

Therefore it was necessary to employ the unsupervised probabilistic resource allocating 
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network (PRAN) to group the measurements automatically into clusters representing the 
different conditions of the structure. The clusters containing measurements from 
deteriorated parts could then be identified. 

In circumstances when structures that are known to be in good condition are available on- 
site, it will be possible to use the PRAN to form a probability distribution of measurements 
from these structures and then test it on measurements from other structures. An example 
of this is when comparatively new I-sections that have not suffered corrosion deterioration 

are present under chequer plate flooring. In this case the PRAN could be used to form a 
probability distribution of measurements over the new beam and then it could be tested with 

measurements over other beams. 

8.3. On-line Monitoring System 

The system would comprise an instrumented hammer to perform the coin-tap test, data 

acquisition software to convert analogue signals to digital signals in the time and frequency 

domains, and pattern recognition software to classify measurements according to the 

condition of the test structure. 

Both types of software could be installed on a portable lap-top microcomputer. This would 

have two main advantages over a spectrum analyser and a desktop computer, as used in this 

study. The first is that it would allow the condition of the structures tested to be classified 

on-site without the need to return to the office. The second advantage is that, unlike 

spectrum analysers that have limited storage capacity, it would allow a large number of 

measurements to be included in the training and testing stages. 

Data processing software would also have to be installed so that measurement data could 

be normalised and compressed and so that anomalies generated by the electronics (e. g. 

'spikes') could be removed from the acquired data. The operation of the monitoring 

system's pattern recognition software would consist of two stages; training and testing. 
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The purpose of training is to determine the distribution of measurements in feature space. 
The neural network performs this function by adjusting its weights to define discriminants 
that partition feature space, dividing the measurements into groups representing specific 
structural conditions. The PRAN performs this function by clustering the measurements in 
feature space. 

The time taken for training depends on the following factors: 

the number of measurements that are to be included; 

the size of the feature vectors and the distinctiveness between them for 

different structural conditions; 

the pattern recognition algorithm and architecture chosen and; 

the processor speed. 

For tests on the steelwork joint, a back-propagation network implemented on a 25 MHz 

processor was found to require seventeen hours to train when presented with one hundred 

and twenty time history feature vectors, each containing forty-eight components. However, 

when frequency spectrum feature vectors were used only seven hours were required 

because the differences between them for different structural conditions were more distinct. 

The PRAN generally requires a much shorter time to train than the back-propagation 

network because it uses a constructive algorithm. Under the same experimental conditions 

as those described for the back-propagation network, the PRAN took typically less than ten 

minutes to train. 

The tests on the steelwork joint and wire rope were performed under laboratory conditions. 

However, under conditions of field testing the variability of measurements on wire ropes 

will be increased by wind loads and live loads, and the variability of measurements on 

steelwork joints will be affected by various difficulties in testing and other factors (paint, 

spills of products, dirt etc. ). Under these circumstances it would be prudent to train the 

pattern recognition software with measurements taken under the widest possible range of 

operational loads. 
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The purpose of the test stage is to classify feature vectors from measurements on structures 
with unknown condition (test vectors). The trained pattern recognition software is 
presented with the test vectors which are then assigned to the classes defined during 
training. The PRAN is a novelty detector, so test vectors would be either classified as 
6normal' when they are similar to those in the training set; or they would be classified as 
4novel' when they do not. The neural network could be trained with feature vectors 
representing two or more structural conditions and therefore, there would be as many 
different classes to which new test vectors could be assigned. For example, if the possible 

conditions of a steelwork joint were 'sound', 'corroded' and 'damaged', then a test vector 

would be classified as belonging to one of these three classes. 

8.4. Future Work 

The condition monitoring of deterioration due to corrosion on structural steelwork could be 

advanced by applying the methods developed in this thesis to other locations on structural 

steelwork. In his report, Gallon (1993) identified a number of locations on structural 

steelwork at petrochemical sites that were particularly vulnerable to hidden corrosion. 

Therefore, those locations to which the coin-tap test has not been applied in this thesis 

would be ideal subjects for future research. 

One such location would be to detect corrosion at steelwork joints that are hidden behind 

slabs of concrete fireproofing in chemical storage sheds. In this case the closest access to 

joints at floor level is often a considerable distance along the associated members where 

they become exposed from behind the concrete slab. The on-line monitoring system could 

be trained on examples of similar joints that are exposed and then tested on concealed 

joints. The test is likely to be more sensitive to changes in structural damping than local 

stiffness because of the large distance from the joint at which the member would be 

impacted. 

Another application would be to test for corrosion occurring between back-to-back angles. 

The member would be impacted directly over the suspect region and corrosion could be 
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identified by the change in local stiffness or local damping relative to regions known to be 

sound. 

The pattern recognition software could be improved with more efficient algorithms which 
would speed up the time for training. The back-propagation algorithm employed in this 

project was effective but in some cases training took several hours. This is acceptable for 

research but in an industrial application it would not be cost-effective. 

Salomon and Hernmen (1996) have shown that the training time can be significantly 

reduced by introducing a leaming rate that is adjusted iteratively according to the error 

function. Chen and Chang (1996) showed that significant reductions in the training time 

could also be achieved by introducing an activation function, the shape of which changes 

iteratively to prevent saturation. In the case of the sigmoid function this can be achieved by 

adjusting the constant P as described in Chapter 5. It would be worthwhile to implement 

these refinements to the back-propagation network and investigate the algorithms' 

performances in classifying waveforms. 

The number of local minima in the error function of a given back-propagation network is a 

critical factor in determining the training time. This is an inevitable consequence of using a 

non-linear activation function and it would appear to limit the speed of supervised 

classifiers in these applications. However, radial basis function (RBF) networks (Michie et 

al, 1994) have hybrid architectures (first layer is trained unsupervised and second layer is 

trained supervised) and the activation functions of the second layer of units are linear. 

Roberts and Tarassenko (1993) suggested that the PRAN could be used to grow kernels 

that represent the first layer (also called the hidden layer) of RBF networks and thereby 

ensure that the optimum number of units are obtained. The output of each first layer unit is 

connected to each unit in the second layer (also called the output layer). The second layer 

units of RBF networks have weighted inputs that are computed by the standard gradient 

descent algorithm with the same training set used by the PRAN to grow the first layer. 
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Because the activation functions of the second layer units are linear the error function has 

no local n-ýinima and the training time for the second layer is reduced considerably. The 
PRAN only takes a short time to grow the first layer so the total training time would be 

considerably less than a two-layered back-propagation network. It would be worthwhile to 
implement this combined architecture and investigate the algorithm's performance in 

classifying waveforms. 

8.5. Summary 

The coin-tap test has been shown to be an effective diagnostic tool for detecting 

deterioration due to corrosion at four common locations on structural steelwork. 

Furthermore, two new techniques for identifying deterioration were introduced. The 

classification of different categories of deterioration can be automated with supervised and 

unsupervised methods of pattern recognition. 

However, the scope of the coin-tap test should be widened by applying it to other steel 

structures and the efficiency of methods of pattern recognition could be improved with 

more sophisticated algorithms. A complete self-contained, portable monitoring system 

would be possible by the inclusion of a laptop microcomputer. This would allow large 

quantities of data to be stored and processed on-site. 
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9. CONCLUSIONS 

1. The coin-tap test is effective in detecting deterioration due to corrosion at a variety of 
locations on structural steelwork including: bolted steelwork joints; wire ropes under 
tension; I-sections under chequer plate flooring, and bolted and riveted splice plates on an 
iron bridge. 

2. It is possible to identify the increase in local damping associated with the presence of 

corrosion products by inspecting the time history for changes in the amplitude or frequency 

of 'ringing' vibrations. 

3. It is possible to identify the reduction in local stiffness associated with severe 

deterioration due to corrosion by computing the ratio of the impulse height to the area 

enclosed by it. This quantity is also independent of the velocity of impact. 

4. The measurement data produced by the coin-tap test can be classified automatically 

according to the condition of the structure. The back-propagation neural network can be 

employed for supervised classification whereas the probabilistic resource allocating network 

(PRAN) can be employed for unsupervised classification. 

5. Situations are common where classification is a question of identifying unusual 

measurements and in these cases the PRAN has considerable potential as a novelty detector. 

This is because: 

i) it is easy to obtain the internal representation of the measurement data within the 

PRAN 

ii) the distribution measurement data within the PRAN can be visualised by 

performing a principal component analysis. 

6. A self-contained on-line monitoring system for detecting corrosion in structural 

steelwork could be assembled. Such a system would comprise an instrumented hammer 

connected to a portable microcomputer with pattern recognition and data processing 
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software installed. The total time required to perform and classify measurements would be 

considerably less than that of a system in which the acquisition and processing software 

were separate because there is no longer a need to transfer data and because the on-line 

storage capacity is greater. 
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APPENDIX A 

The Peak Interacting Force Between a Linear Elastic SDring 

and a Mass Resulting from a Dynamic Collision 

When a mass, m, travelling with velocity, v, collides with a grounded linear elastic spring of 

stiffness k, the duration of interaction will be half the period, 'r, of oscillation for the 

combined system provided the mass has sufficient kinetic energy. The time history of the 

contact force, F, at the mass-spring interface will be half sine shaped, 

F, sin cot t!! ý, r/2 (A 1) 

where F, is the peak force and (o is the angular frequency of the combined system. At time 

, r/2 the mass will rebound and lose contact with the surface. The strain energy stored in the 

spring is given by 

U= 
kX2 

2 
(A2) 

where x is the displacement. The mass converges on the spring with velocity, v and 

therefore has kinetic energy, Ekgiven by. 

Ek = -Lmv 2 
(A3) 

To find the maximum force the maximum displacement, xo, must be determined. At this 

instant all of the kinetic energy of the mass has been used up. 

I-v2 
2 "'0 (M) 

Therefore -2 

V2 (A5) 
XO MVL 

Therefore k 
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It can be readily shown that the natural frequency, (o, of a mass spring system in radians per 

second is given by, 

therefore, X0 =v W 

and the maximum force can be found by substituting this result into Hooke's law: 

kv 
0) 

which on substitution into equation Al gives the force-time history. 

k' sin cot 0:! ý, t:! ý, r/2 

(A6) 

(A7) 

(A8) 

(A9) 

184 



APPENDIX B 

Data Processing and Classification System 

1. System DescriDtion 

The system consists of four basic modules, the first two perform data processing and 
analysis whereas the third and fourth perform classification. 

The first, 'compress' reads files in the form of two columns of data, each pair of data items 
being separated by a delimiter such as a space or a comma. This is the typical output format 
for data acquisition instruments where one column represents the x-axis (for example time 

or frequency) and the other represents the y-axis (usually amplitude or phase). In order to 

minimise the required storage space, the x-axis can be removed, provided that the initial 

value, the interval size and the number of data items are known. 'Compress' also checks 
for 'spikes' which are abnormally high amplitudes that corrupt the data files. 

The compressed files can then be used by the second module, which is multi-functional, 

called 'impulse'. This converts the dynamic waveforms into feature vectors which are either 

sampled waveforms (normalised between 0 and 1) or computed quantities sensitive to 

structural change (the ratio of areas under the frequency spectrum for example). Each 

component of the feature vector is represented by numbers on a single line preceded by an 

identifier and separated by white space. The last component is followed by a label that 

represents the class of the data. 

The third module, 'classify', implements the k-nearest neighbour and nearest mean 

supervised classifiers. Its input is feature vectors composed of computed quantities and its 

output is the appropriate class label. The fourth module, 'NoveltyNet% implements the 

unsupervised Probabilistic Resource Allocating Network (PRAN). 'NoveltyNet' ignores 

the class labels that follow the sampled waveform that form its input. Its output has only 

two states that indicate whether a feature vector belongs to the parent population ('normal') 

or whether it does not ('novel'). 'NoveltyNet' can also perform principal component 
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analysis on the feature vectors. In this case it outputs, for each sampled waveform, the 

required number of principal components on a single line. It also outputs the mean and 

standard deviation of each kernel, so that the distribution can be plotted on orthogonal axes. 

The sampled waveform can also be used by the parallel distributed programming (PDP) 

commercial software package that implements the back-propagation neural network 
(McClelland and Rumelhart, 1988). 

The layout of the data processing and analysis system is summarised in Figure Al. 

2. Operation of the Probabilistic Resource Allocating Network (PRAN) Module 

The PRAN (Roberts and Tarrasenko, 1994) is a network that is trained with a constructive 

algorithm. It can be implemented with standard programming procedures but a large 

amount of memory would be required because the size of the network is not known before 

growth. Therefore, it is more efficient to use dynamic variables which allocate the required 

amount of memory as the network grows. 

Each processing unit represents a Gaussian kernel and it is implemented with a record that 

has six fields (variable names are in italics): 

(i) the mean (a real variable); 

(ii) the variance (a real variable); 

(iii) the adaption parameter (a real variable); 

(iv) the iteration number (an integer variable); 

(v) the total response (a real variable) and 

(vi) the link to the next processing unit (a pointer variable). 

The network is initialised with one processing unit by the procedure 'CreateNet'. The mean 

is set to the first feature vector in the training set and the variance is set to the square of the 

standard deviation between the components of that feature vector. The adaption 
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parameter is initialised at 0.7 as recommended by Roberts and Tarrasenko (1994), and the 

iteration number and total response variables are set to zero. The variable next is set to NIIL 

as there are no other processing units at this stage. 

The network is then grown with the procedure 'GrowNet' which consists of two sub- 

procedures called 'UpdateNet' and 'Addunit'. UpdateNet presents the training vectors 

iteratively to the processing unit, updating its variables according to the formulas given by 

Roberts and Tarrasenko (1994). If and when the growth criterion is met, another unit is 

added to the network by the procedure 'Addunit' (Figure A2). The Memory required for 

the new unit is created with the standard procedure 'New', as indicated by the shaded unit 

in Figure A2 (b). The process is completed when the 'next' variable of the original unit is 

set to point to the new unit, as indicated in Figure A3 (c). The network is then continually 

updated, growing new units as required, until the convergence criterion is met. 

The next course of action depends on which of four possible regimes was selected. 

(a) The Test Regime 

For each of a set of test vectors presented to the network, the procedure 'TestNet' 

computes the response of each existing kernel to that vector. If the growth criterion is met 

on any kernel the vector is assumed to belong to the parent population and given the 

classification 'normal', otherwise it is classified 'novel'. 

(b) The Prune Regime 

The procedure 'PruneNet' identifies feature vectors that are associated with kernels in 

sparsely populated regions of input space. The pruning process is illustrated Figure A3. 

The kernels are identified by summing up the posterior response of each kernel to the 

training set and storing the result in the 'total' field. The most sparsely populated kernel is 

that with the lowest response and this is indicated by the shaded processing unit in Figure 

A3 (a). The unit that points to the lowest response kernel is then set to point to the same 

location that the lowest response kernel points to by making the appropriate changes to its 

next variable, this is illustrated in Figure A3 (b). The lowest response kernel is removed 
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with the standard procedure 'Dispose', freeing up the previously occupied memory space, 
as shown in Figure A3 (c). The training set is then presented to the pruned network once 
again. The feature vectors that were associated with the pruned kernel are identified as 
91 novel' and those that were not are identified as 'normal 

(c) The TCA' Regime 

The procedure 'PCA' implements a principal component analysis on the training vectors. It 

computes the variance between the training vectors for each of their components. The 

component with the highest variance is identified as the first principal component, that with 

the next highest variance is identified as the second principal component, and so on. For 

each training vector the procedure then outputs the required number of principal 

components, together with the mean and standard deviation for each of the processing units 

in the network. 

(d) The 'Train' Regime 

In this case it is only necessary to output a description of the network. This includes: 

(i) the number of processing units in the network and 

(ii) the value of the iteration variable for the original network unit. This gives an 

idea of the total number of iteration required to grow the network. 

The layout of the PRAN module is surnmarised in Figure A4. 
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