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ABSTRACT

The matrix converter offers an all silicon solution to the variable speed AC motor

drive problem. The large reactive components required in rectifier/inverter circuits

are not needed and therefore a compact and reliable converter can be built. The

matrix converter has a number of other advantages over the inverter drive,

including four quadrant operation with natural regenerative operation.

With the control methods currently being introduced for use with AC machine

drives the induction motor is becoming increasingly popular in applications where

DC machines have been used in the past. AC induction motors have the advantages

of lower cost and maintenance as well as a greater reliability than DC motors.

These advantages are due to the absence of the brushes that are required in DC

motors. If AC motor drives could be made in a cheaper and more compact form

then it may be possible to expand the market even further into the areas currently

occupied by DC drives. In the future the matrix converter may offer this exciting

prospect.

This thesis considers the present and future prospects of the matrix converter.

Problems associated with control, current commutation and supply harmonics are

addressed. The building and testing of a microprocessor controlled PWM matrix

converter is described. Alternative uses of the circuit and control theory are also

considered.

With the price of semiconductors falling and the reduction in device switching times

it may not be long before the matrix converter's silicon solution to AC motor

control problems may be commercially viable.



Claims

Claims

A general PVVM control algorithm for matrix converters has been developed. A

suitable microcontroller has been identified from a range of 16-bit processors

compatible with the matrix converter control process. It has been demonstrated

that present day high performance micro-controllers can offer adequate

performance to meet the needs of matrix converter control. Therefore the use of

the matrix converter is no longer impeded by the requirement for high processing

power.

A study has been made of modern semiconductor power switching devices, and the

IGBT chosen as the most suitable device for switching power converters of this

type at the present time. The design of a suitable bi-directional switch for use in

matrix converter circuits has been considered. A gate drive circuit that is capable

of meeting the requirements of the converter has been developed.

The problems associated with current commutation between switches in the matrix

converter have been addressed. A state machine categorisation of existing and

new solutions has been developed. The technique of semi-soft current

commutation has been introduced and implemented using Logic Array technology.

The semiconductor losses in the matrix converter have been modelled and

quantified. Methods for the minimisation of the losses have been introduced. The

benefits .of these loss reduction methods have been quantified. It has been shown

that the matrix converter losses are lower than those in a rectifier/inverter circuit at

the higher switching frequencies being used in today's . AC drives.

The switching frequency input , current harmonics . have been calculated, modelled

and measured. Guidelines and techniques for input filter design to meet future

European EMC regulations have been developed.

A 3.5kWatt experimental matrix converter has been built and tested. The practical

results have been found to agree with the analysis and predictions, proving the

validity of the simulation and mathematical modelling of the converter. Novel uses

of matrix converter control theory have been proposed. Practical commercial

applications of the matrix converter technology have been considered.
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Chapter I: Introduction	 2

1.1 Introduction

In 1888 the induction machine was invented by Tesla [1] and for the next 75 years it

was used as a fixed speed motor. The robust and maintenance free structure of the

induction machine 'made it very popular within the fixed speed constraints. The

introduction of the DC machine drives seemed to fulfil the need for variable speed

motors, however DC machines suffer from the need to have commutation brushes

that require regular maintenance. Even so, the days of the induction machine in

many applications seemed numbered until the advancement of silicon technology

reached the point, in the 1960s, where efficient variable speed drives for induction

machines became feasible [2].

Three Phase

Supply

Figure 1.1. The Layout of a General A.C. Motor Drive

The solution to the problem of controlling the speed of a three phase induction

motor is summarised in figure 1.1. A fixed *frequency three phase mains supply

must be altered with some form of power conditioning circuit in such a way that the

machine will turn at the desired speed. A controller may then be implemented to

adjust the operating parameters 'ofthe system.

There are many possible circuits for achieving this power conditioning. This thesis

will consider a direct conversion circuit that consists of nine fully controllable bi-

directional switches, as shown in figure 1.2. This circuit, 'commonly called a matrix

converter, allows any input line to be connected to any output line for any given

period of time. It is possible to open and close the switches in a suitable sequence

that will generate the required output waveforms.
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Figure 1.2. The Matrix Converter Switch Layout

The matrix converter has a number of distinct advantages over the commonly used

rectifier/inverter circuit:

• Natural regeneration.

• No requirement for large reactive components.

• Sinusoidal input currents with displacement factor control.

This introduction will describe the alternatives to the matrix converter and will

consider the development of matrix converter technology over the last twenty years.

The structure of the thesis will also be outlined.

1.2 Solutions to the Variable Speed AC Drives Problem

Besides the matrix converter there are three other basic power circuits that may be

used as variable speed drives for AC motors:

• The Rectifier and Inverter

• The Back-to-Back Converter

• The Resonant Converter
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Figure 1.3. A Voltage Source Inverter Circuit

This section will consider each of these alternative circuits, giving a brief account of

the merits and disadvantages of each configuration.

1.2.1 The Rectifier/Inverter

The inverter is the most common commercial AC variable speed drive system used

today [3]. The circuit generally consists of a diode bridge rectifier input stage; a

large capacitor to smooth the DC Link voltage, that also circulates the switching

frequency, and a controllable output-bridge. The output-bridge may be configured

as a Voltage Source Inverter (VSI) [4], or a Current Source Inverter (CSI), [5]. A

typical rectifier/inverter circuit is shown in figure 1.3.

Progress in power switching device and microprocessor technology has made the

use of inverters in industrial applications more widespread. In the last few years

much work has been done to improve the performance and efficiency of the inverter

[6-8].

In the last 10 years new control methods, such as field orientation control, have

been used to enhance the performance of inverter drives '[9-11]. This has enabled

the AC motor to offer the degree of control that was previously only available with

DC motors.
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Figure 1.4. A Double-Bridge, Controlled Rectifier/Inverter Circuit

1.2.2 The Double-Bridge Converter

The input currents drawn by a bridge rectifier are far from sinusoidal and there is no

natural means of regeneration into the mains when the inverter is used to brake the

motor. A solution to these problems can be found if a controlled bridge is used in

place of the diode bridge rectifier. The output-bridge associated control can remain

independent of this input-bridge, therefore existing control methods can be used.

The addition of this controlled rectifier to the inverter circuit forms the so called

"back-to-back" or "double-bridge" converter. A typical controlled double-bridge

circuit is shown in figure 1.4.

With correct control this form of input-bridge is capable of sinusoidal input

currents. If a control loop is implemented to maintain the DC link voltage at a

given voltage then the drive also becomes naturally regenerative. Many methods of

control for the input-bridge have been proposed [12-14], including some based on

matrix converter control theory. The double-bridge circuit requires twice as many

switching devices as the rectifier/inverter circuit and still requires a large DC link

capacitor as well as input line inductors.
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Figure 1.5. A Parallel Resonant AC Voltage Link Converter

1.2.3 The Resonant Converter

In an attempt to reduce the switching losses inherent in the structure of most power

converters whilst increasing the switching frequency, to reduce the filtering

requirements, the concept of introducing resonance to the DC link has been

proposed. In these converters a capacitor and an inductor are used to sustain a high

frequency resonance in the voltage or current waveforms of the DC link. The

output-bridge can then be used as a high frequency to low average frequency

converter, with the switch state changes taking place at the zero crossings [15].

This will minimise the switching losses and the associated stresses placed on the

switching elements.

It is possible to have either the voltage or the current resonating by using a parallel

or series resonant circuit. The resonance is either an AC waveform or an AC

waveform superimposed on a DC level so that the current or voltage will never fall

below zero. This gives four basic circuit configurations for a resonant converter:
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Figure 1.6. Typical Waveforms for a Parallel Resonant AC Converter

• Parallel Resonant AC Voltage Link

• Parallel Resonant DC Voltage Link

• Series Resonant AC Current Link

• Series Resonant DC Current Link

1.2.3.1 Parallel Resonant AC Voltage Link Converter

The parallel resonant AC voltage link is the simplest of the possible resonant link

converter structures. The circuit is shown in figure 1.5. The high frequency

resonance in the link voltage is caused by the reaction between the inductor and the

capacitor [16-19]. The output-bridge -is then used to switch sections of the high

frequency link voltage of a given polarity between the output lines to give the

desired average output voltage waveform, as shown in figure 1.6. This form of

converter requires fully controllable bi-directional switches. The device utilisation

is poor due to the high device voltage ratings required by the resonant peak voltage.

For these reasons a more cost effective form of the resonant converter must be

considered.
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Vac

Figure 1.7. A Parallel Resonant DC Voltage Link Converter

1.2.3.2 Parallel Resonant DC Voltage Link Converter

To avoid the requirement for bi-directional switches, a DC bias can be added to the

resonant voltage by the addition of an extra capacitor, as shown in figure 1.7. The

link voltage will now take the form of a biased sine wave [20-24]. In the

implementation of this circuit care must be taken to ensure that the link voltage

actually reaches zero every cycle. The requirement for a bidirectional switch has

therefore been removed. This form of the converter still suffers from poor device

utilisation because of the high peak voltages in the link. This effect may be reduce

with an active clamp circuit that will limit the maximum link voltage to a pre-set

level of 700V [25,26]. Using this technique it is possible to reduce the required

device voltage rating by 50%, making it comparable with the device requirements of

a conventional inverter output-bridge.
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Figure 1.8. A Series Resonant AC Current Link Converter

1.2.3.3 Series Resonant AC Current Link Converter

If the resonant circuit is built as a series circuit instead of a parallel circuit then a

resonant current link may be formed [27-29], as shown in figure 1.8. Since the

current will pass through zero the switch state changes can take place in a zero

current switching mode. This zero current position will also allow the use of

thyristor type devices because the current will pass through zero at the time of

switching. Thyristors have the advantage of large current carrying capabilities at a

lower cost than in a MOS controlled device structure. Because the current is

bidirectional a pair of back to back thyristors will be required. The major problem

with the series resonant circuit at high power levels is the design of the magnetic

components.
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Figure 1.9. A Series Resonant DC Current Link Converter

1.2.3.4 Series Resonant DC Current Link Converter

In the same way as a DC voltage bias can be added to the resonant AC voltage in

the parallel arrangement, a DC current bias may be introduced to the resonant

current link [30,31]. This may be done with the addition of an inductor in parallel

with the resonating capacitor as shown in figure 1.9. The current flowing in this

inductor" requires careful regulation to ensure -that the current will reach zero every

cycle. As in the previous circuit it will then be possible to switch at the zero current

intervals. Since the current will also be positive the switches may now be

implemented as single thyristors, making the bridge circuit. relatively simple.

The increase in the required current handling capabilities of the switching devices

will not be as serious as the voltage problems in the par. allel circuit because high

current devices carry a lower premium than higher voltage devices, however a

current clamp may be added to reduce the maximum resonant current. One possible

method of achieving this is by placing a clamp thyristor across the capacitor and

part of the resonant inductor [32,33].
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Figure 1.10. An Output Voltage Waveform Form a Matrix Converter With a

Very Low Switching Frequency

1.3 A Review of Matrix Converter Technology

The fully controllable matrix converter circuit was first proposed in a book by

Gjugyi and Pelly in 1976 [35]. They stated that if fully controllable bi-directional

power switching devices became available then the principle of Cycloconverter

operation could be extended to cover an unrestricted output frequency range. This

can be achieved by opening and closing the switches in a suitable sequence that will

generate the required output voltage waveforms, as shown in figure 1.10. Table 1.1

compares the characteristics of the matrix converter circuit to the alternatives

described in the previous section.

The first papers about the practical realisation of the circuit were published by

Daniels and Slattery in 1978. They started by introducing a single phase output

matrix converter [36]. This work was then extended to cover a full three phase to

three phase converter [37]. Power transistors were used to form the switches and

attempts were made to classify the behaviour of the switches.
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Back-to-
Back

Inverter Matrix Resonant

Series AC Parallel AC Series DC Parallel DC

No. of Active
Devices

12 . 6 18 12 (24) 1
Thyristors

12 (24) 1 6 (12) 1
Thyristors

6 (12)1

No. Reactive
Components2

4 >1 0 2 2 3 3

Input Current
Quality

Good,
Sinusoidal

Poor Good,
Sinusoidal

Poor
(Good)

Poor
(Good)

Poor
(Good)

Poor
(Good)

Silicon Device	 -
Ratings

Medium Medium Medium/
Low

High
Current

High
Voltage

High
Current3

High
Voltage3

Regenerative Yes,
Controlled

No Yes,
Naturally

No (Yes) No (Yes) No (Yes) No (Yes)

Table 1.1. Comparison of Switching Power Converter Topologies

These converters worked on making use of the input lines with the maximum

voltage difference at any given time and then using the required proportion of this

voltage between the output lines to satisfy the demand from the control circuit. For

this reason the low order harmonics in input currents to the converter resemble

those of a rectifier [38].

1.3.1 PWM Control Algorithms-

In 1980 Venturini proposed a PWIyI control algorithm that allowed the converter to

draw sinusoidal input current and produce sinusoidal output voltages, albeit at the

relatively low input to output voltage ratio of 0.5. [39]. Venturini and others then

proceeded to analyse the mathematics of the control algorithm and consider the

1 Bracketed numbers refer to circuits including a regenerative rectifier bridge.

2 Ignores relatively small input filter components.

3 Can be reduced with the use of active clamping
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operation of the circuit [40-46]. The PWM techniques described in these papers

also allow the control of the input displacement factor with limits imposed by the

nature of the load. The ideas originally proposed by Venturini were then extended

to allow the voltage ratio to be increase to 0.866. This is achieved with the

inclusion of the third harmonics of the input and output frequencies on all the

output waveforms [38,47-49].

The control of the input displacement angle can be achieved by defining two

converter control algorithms [50]. The first algorithm passes the output

displacement angle to the input terminals of the converter and the second inverts the

intput displacement angle in comparison to the output displacement angle. By

combining the converter algorithms in defined proportions it is possible to control

the input displacement angle within the magnitude constraints dictated by the nature

of the load [38,39,51,52].

Alternative schemes involving the generation of PWM waveforms in single and

multiple stages were proposed by Ziogas et al in 1985 [53,54]. The multiple stage

control techniques generally consist of an imaginary rectification stage followed by

an imaginary inverter stage [38,55]. These control schemes require less

computational work than the algorithm proposed by Venturini. Unfortunately these

methods are unable to deliver all the desirable characteristics of sinusoidal input

currents, controllable input displacement factor and low output voltage

subharmonics.

1.3.2 Scalar Control Algorithms

Scalar control algorithms based on the principles used by Daniels and Slattery [37]

have been proposed which enable the drawing of s inusoidal input currents. These

algorithms use a principle of making the current drawn from each phase

proportional to the input voltage on each phase in every. switching cycle [56-60].

However these algorithms are very numerically intensive, requiring very powerful

micro-processors or the off-line calculation of control variables. They also require

accurate tracking of all three of the input voltage waveforms, which leads to higher

hardware costs.
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1.3.3 Space Vector Modulation

Space Vector Modulation (SVM) has been used in the micro-processor control of

inverters. SVM has the advantage of reducing the software overheads in the

processor to a minimum whilst maintaining functionality. The principles of SVIvl

have been manipulated and introduced to matrix converter control [61-63] and

refined [64-66]. These methods can be derived from the enhanced Venturini

control algorithm [67], and are a convenient tool for the implementation of a matrix

converter with real time calculation of switching periods.

1.3.4 Practical Bi-Directional Switches

For the purpose of mathematical analysis and computer simulation the nine bi-

directional switches in the converter may be considered as perfect. If real power

semiconductor devices are used then the non-ideal characteristics may cause short

circuits between the input lines or open circuits between the output lines. These

conditions must be controlled if the matrix converter is to be a viable commercial

proposition [68,69]. Some techniques for overcoming these situations have been

• proposed [65,70,71], but it has so far proved difficult to define a fail-safe method of

commutating the current between switches.

The design of the bi-directional switches must also be considered. Until semi-

conductor device technology reaches the point where a fully controlled bi-

directional switch with reverse voltage blocking capabilities is realistically realisable

these switches must be constructed from *discrete devices [70-72]. The bi-

directional switches may be formed by placing an , active device across a diode

bridge or by using a back-to-back pair of active devices with anti-parallel diodes for

reverse voltage blocking [66,70,73-75].

1.3.5 The Uses of Matrix Converter Control Theory

The ideal matrix converter circuit was proposed as the most general form of power

converter circuit by Wood in 1978 [76,77]. These ideas have led to the suggestion

of a simplified form matrix converter control theory being used in the control of

controlled rectifiers and inverters [49,78-80]. This may be achieved by setting the
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input or output frequency to zero accordingly. The circuit may also be simplified so

that the converter may be used as a three phase to single phase converter [81-83].

The circuit has also been suggested as being useful as an active filter to correct

harmonics drawn by rectifier configurations [84,85], and as an input displacement

factor controller for Cycloconverters [86].

1.4 Conclusions

A brief outline the state of matrix converter technology today has been given. The

important aspects in the development of the circuit and the various methods of

controlling it over the last twenty years have been chronicled. Alternative solutions

to the problem of three phase induction motor speed control have been briefly

introduced.

1.5 The Thesis Layout

Chapter 2: The intrinsic limit on the maximum output voltage of a matrix

converter is considered. A control algorithm is described which is capable of

achieving the maximum output voltage. The operation of the control algorithm is

examined and there is discussion of methods for adaptation to non-ideal conditions.

Chapter 3: A suitable state of the art micro-controller for the matrix converter and

other PWM converters is identified. The implementation of the control algorithm

discussed in Chapter 2 is explained and an overview of the software design is given.

Chapter 4: The design of the semiconductor switches for a matrix converter is

considered. The building of the bi-directional switch from currently available

discrete devices is described. The choice of controllable semi-conductor device

from the ever increasing range of power devices is examined. Methods of driving

MOS controlled semiconductor devices are investigated.

Chapter 5: The current commutation problems involved in using real

semiconductor components instead of perfect switches is addressed. The existing

solutions to the current commutation problem are categorised and the basic
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principles involved are extended to generate new commutation methods with

considerable practical advantages. The implementation of these methods as state

machines on programmable logic arrays is described.

Chapter 6: z, A model of the semiconductor losses in a matrix converter is

developed. This model is used to compare the losses in a matrix converter to those

in a rectifier/inverter circuit. Methods of reducing the switching losses in a matrix

converter are proposed.

Chapter 7: The development of a mathematical model of the input current

waveform is described. The model includes the switching frequency harmonics and

the side harmonics to the switching frequency harmonics. The model is verified

using both practical and simulation results.

Chapter 8: A summary of the conductive EMC regulations is given. The

regulations of special significance to the matrix converter are identified.

Consideration is given to the design and analysis of possible filter configurations to

meet the current and future regulations.

Chapter 9: The building of a 5kWatt experimental matrix converter is chronicled.

Practical results from the converter are presented and analysed.

Chapter 10: The idea of the general matrix converter as the most general form of

switching power converter is proposed. The degeneration of the matrix converter

circuit and control theory to other forms , of switching power converter is

considered.

Chapter 11: The thesis is concluded with possible uses of the matrix converter and

the possible areas for further research in this subject.
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2.1 Introduction

This chapter considers the maximum output voltage limitations of a matrix con-

verter. A possible PW/vl control scheme to realise this maximum output voltage is

described. The effect of the control scheme on the input and output waveforms of

the converter is considered. A method of control for the input displacement factor

of the converter is described.

2.2 The Intrinsic Maximum Output Voltage

2.2.1 Calculating the Maximum Output Voltage

The output voltage of a matrix converter is generated by sequentially closing and

opening the switches between the input and output lines. The output voltage wave-

form must always be within the envelope of the three phase input voltage wave-

forms, as shown in figure 2.1. The maximum output voltage swing is therefore the

instantaneous minimum difference between the input line voltages. This limitation is

shown mathematically in equation 2.1.

mint.	 V. — V i = max,	 IV	 .
to<co ,4e.2 fri [ s,max 	 10<a)11<2; L 0,max	 o

	
(2.1)

Let x be the instantaneous potential difference between any two of the matrix con-

verter input or output lines, and Vy denote either input or output voltages.

X Y =	 VY,max

= Vy .[cos(co yt) — cos(0) yi + -`)]
	

(2.2)

The minimum and maximum differences can then be found by finding the minimum

and maximum values of the difference equation.

dx),
— = y • y • [sin(coy t) — sin(a) t + 1E)]dt	 y	 3

=0
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Magnitude

Figure 2.1. Area of Possible Instantaneous Input and Output Voltages

Therefore:

Vy .a)y = 0

sin(coyt) = sin(coyt+-)
	

(2.3)

The useful solutions to equations 2.3 are then:

,,1 t = 0

C.0y2 
t = 6

Substituting these values into equation 2.2 we find that the minimum difference
between the input lines is:

=	 (2.4)
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Rectifier
	

Filter
	 PWM Inverter

Figure 2.2. An Inverter Circuit

And, the maximum difference between the output lines will be:

x„,.= 15.V0	 (2.5)

By substituting equations 2.4 and 2.5 into equation 2.1 we find the intrinsic

maximum output voltage of an ideal matrix converter.

',max = 0.866.K

This intrinsic maximum output voltage limitation is a limitation imposed due to the

structure of a matrix converter and will apply to any control algorithm adopted

which allows unlimited control of output frequency, assuming an ideal matrix

converter with no reactive components connected to the input lines.

2.2.2 Effects of the Maximumi Output Voltage

As described in the previous section the maximum output voltage of a matrix con-

verter is equal to 0.866 of the input voltage. In an ac: motor drive application the

limit on the output voltage would reduce the torque available from the motor if

compared to an inverter system. This would require the motor to be overrated

slightly for a given application to achieve the same performance. The motor rating

will be dealt with in more depth later in this thesis.
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Figure 2.3. The Phasor Diagram for the Venturini Converter

A rectifier/inverter configuration shown in figure 2.2 maintains a one to one ratio

between input and output voltage by boosting the dc voltage level after the recti-

fication stage. The voltage boosting effect is achieved using the effect of the

capacitance in the dc link.

2.3 Methods of Realising Maximum Output Voltage

2.3.1 The Venturini Converter

When the matrix converter concept was first examined by Venturini [1],[2],[3] it

was thought that the maximum average output voltage would be equal to 0.5 of the

input voltage. The assumption was that the average output voltage could not ex-

ceed the minimum level of the input voltage.
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Figure 2.4. The Venturini Converter Input and Output Voltage Waveforms

= 0.5Vi.cos(co0t)

The theory behind this assumption can be shown with the aid of a phasor diagram.

The average output voltage waveform is taken as the continuous output waveform

of the converter ignoring the superimposed switching frequency. This average

output voltage causes the continuous output current to flow in the motor windings.

Consider the input voltages of the converter to be three phasors of unity magnitude.

Each phasor is displaced by an angle of from each 'other. The set of phasors are

on a plane rotating at the input frequency, co y Also consider the average output

voltages to be represented by three phasors rotating on a second plane at the con-

verter output frequency, coo . The relative magnitude of the output voltage phasors

to the input voltage phasors represents the relative magnitude of the fundamental

input and output voltage waveforms of the matrix converter.
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WI

Figure 2.5. The Phasor Diagram for a Matrix Converter with Added
Input Voltage Waveform Third Harmonic

The phasors for the Venturini converter [1] can be drawn as shown in figure 2.3.

The dotted circles on the phasor diagrams represent the loci of the phasors as they

rotate. The neutral points of the input and output voltage phasor sets are at the

same point. This limitation explains why a maximum output voltage of only half the

input voltage is achievable using this scheme. The two sets of waveforms are

shown in the time domain in figure 2.4.
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Figure 2.6. Input and Output Voltage Waveforms for Converter with Added
Input Voltage Waveform Third Harmonic

= Vi[0.75.cos(coot)+0.25.cos(3coit)]

2.3.2 The Addition of The Third Harmonic of the Input Waveform

If the third harmonic of the input voltage waveform is added to each of the output

waveforms then the maximum output voltage- becomes 0.75 of the input voltage

[4]. The third harmonic moves the imaginary neutral point of the output voltage

waveform as shown by the single phasor in figure 2.5. In drive applications this

common mode third harmonic will not affect the operation or performance of the

motor. This is because no neutral is connected between the input and output of the

matrix converter. The time domain waveforms for the. addition of the third har-

monic of the input voltage waveform are shown in figure 2.6.
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wi

Figure 2.7. The Phasor Diagram for a Matrix Converter with Added
Input and Output Voltage Waveform Third Harmonics

2.3.3 The Addition of The Third Harmonic of the Output Waveform

Besides the third harmonic of the input, voltage, the third harmonic of the output

voltage waveform may be added to. each of the fundamental output voltage

waveforms [5]. The addition of this output frequency third harmonic will increase

the maximum output voltage of the matrix converter to 0.866 of the input voltage.

The addition of these two third harmonic phasors is shown in figure 2.7. The intro-

duction of the third harmonic is used in inverters [6]. The third harmonic phasors

will rotate in such a manner that the loci of the average output voltage phasors will

never pass outside the loci of the input voltage phasors. The effect of this process

is shown in the time domain representation of the voltage waveforms in figure 2.8.



(2.6)
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Figure 2.8. Input and Output Voltage Waveforms for Converter with Added
Input and Output Voltage Waveform Third Harmonics

= V, [0.866. cos(coo t)+ 0. 25. cos(3w it) — 0.12. cos(3 coot)]

2.4 Construction of a Control Algorithm

By writing mathematical equations for the ideal input and 'output waveforms a con-

trol algorithm can be generated. A construction mechanism involving the internal

creation of an imaginary dc link provides a useful tool in the derivation of the con-

trol matrix.

2.4.1 Input and Output Waveforms

The input waveforms to the converter are assumed to be a three phase sinusoidal

set as defined in equation 2.6.

Vii(t)	 cos(co it)

Vi (t) = [V,2 (01= Vi .[cos(coit+ 231)

r' 3 (t)	 COS(Wit -Fjtr)



cos(o)0 t)[11

= cos(co„t +- r ) +(0.2517 10.866J'. cos(3co l t)-0.12Vi .cos(3co0 t)).
cos(coo t + )	 1
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As discussed in the previous section, the average output voltage waveforms are a
three phase set. The addition of third harmonics of the input and output frequencies

allows the maximum possible output magnitude to be achieved. The required out-

put waveformi can therefore be defined.

vol ( 0 1
v. ( = [K2 (t)

J'3 (t)

(2.7)

2.4.2 Defining a Control Matrix

A three by three control matrix, G(t), can then be defined to link the input and out-

put voltage matrices.

v( t) = Cy(t).Vi(t)
	

(2.8)

This control matrix consists of nine elements. Each element consists of a sum of

sinusoidal functions with a total magnitude that varies between -0.5 and 0.5. These

continuous functions can be used to verify the operation of the control matrix. A

matrix of duty cycles for each switch may then be derived from the control matrix.

The duty cycle matrix will be -considered after the control matrix has been

constructed.

2.4.3 The Derivation of a Control Matrix

For the purpose of developing and proving the adopted control algorithm for the

matrix converter a high switching frequency has been assumed. This assumption

allows all the control, input and output waveforms to be considered as continuous.

The effects of the switching frequency on the converter will be dealt later in the

thesis.



(2.10)
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The switches in the converter are considered to be perfect. The input voltage

waveforms are initially considered to be a set of perfect sinusoids. In deriving the

control matrix the load is initially considered to be purely resistive.

To derive a possible control matrix consider the action of the rectifier/inverter cir-

cuit in figure 2.2. The transition between the input and output waveforms is a two

stage operation. The first stage is rectification from three phase ac to dc. The sec-

ond stage is the chopping of the dc voltage to three phase ac of the required fre-

quency. These two stages can be used to construct a matrix converter control

matrix. The first part of the control matrix, 11(0, will create an imaginary dc link.

The second half, F(0, will generate the required three phase output voltage wave-

forms from this imaginary dc link.

G(t) = F(t).H(t)
	

(2.9)

Due to the nature of matrix multiplication the imaginary rectification stage requires

the three functions in each row of the control matrix to be the input waveform

functions as shown in equation 2.10. The output of the converter with this control

matrix would be dc voltages.

cos(wit) cos(wit+-2f) cos( co i t + -4f)

II(t)= —2 . cos(coi t) cos(coi t +2f) cos(coit+-`)
3

cos(wit) cos(wit + 2f) cos(coit +-V)

Calculating the output of the conyerter, under :the operation of the imaginary rec-

tification control matrix, H(t), will give the imaginary .dc link as shown in equation

2.11. The double frequency terms will cancel due to the fact that the sum of three

sine functios all	 out of phase with each other is equal to zero.



voAc( t) = H(t).Vi (t) =	 1

1 (2.11)

(2.12)
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The imaginary dc link can then be modulated by the second control matrix, F(t), to

form the output voltage waveforms. The three functions in each column of this

second matrix will be of the same form as the rows in the output voltage matrix.

[ cos(coo t)	 cos(coot)	 cos(0V)

F(t) = 0.866. cos(coot+) cos(o)0t +-) cos(coo t+ 'I;)

cos(co0t+) cos(coot+ '') cos(coot+ '1')

[cocos(3coit) cos(3 it) cos(3coit)

+ cos(3coit) cos(3colt) cos(3coit)0.25.

cos(Roit) cos(Roit) cos(3coit)

[0.12. c

co°4(33°V) cos(3c0„t) cos(3coot)

+ coot) cos(3co0 t) cos(3co0t)

cos(Root) cos(3co0t) cos(3(.00t)

Calculating the converter output for a converter with the dc input described by

equation 2.11 will give the required average output voltage waveforms required to

achieve the maximum possible output voltage magnitude.

v,,(t) = F(t).Vo,dc(t)

[	

1cos(coot)

= 0.866V; . cos(coo t +	 + (0.25V .cos(3w 1 t)-- 0.12k .cos(3co0t

cos(coo t +.``)

The two imaginary control matrices given in equations 2.10 and 2.12 may be com-

bined to give the single control matrix, G(0.
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G(t) F(t).H(t)

cos((co, + co. )t)
1

= —0.866. cos((co, +0)0 )t +2f)
3

- cos((0), +co0)t+131)

cos(( c), + coo )t +23E)

cos((co, + coo )t +1-)

cos((co, +0)0)t)

cos((coi + co c,)t +

cos((co, + coo)t)

cos((coi + co o )t +2f)

cos(40),t) cos(4coit	 cos(4colt +
+ 1 0.25j cos(4col t) cos(4co,t + 25E ) cos(4co 4 t +V-)

3
cos(4colt) cos(40)1 t + 2 ) cos(40)1 t+ '1`)

cos((3co0 + coi )t) cos((30)0 +coi )t+ :13s) cos((3co0 + co i )t +2f)
_!0. 12j cos((30) 0 + co; )t) cos((3co0 + co; )t +NE-) cos((30)0 + co, )t + -2-f)

3
cos((3co0 +0),)t) cos((30) 0 + coi )t +) cos((3co0 + co i )t +23E)

cos(( co, — coo )t)	 cos(( co, —	 )t —	 cos(( co ; — coo )t — '+`)

+1 0.866. cos(( co ; — coo )t	 cos(( co, — coo )t —	 cos(( co, — coo )t)
3

cos((coi — co o )t — '*r )	 cos((0) ; — 0). )t)	 cos((co i — co„ )t —231)

cos(20),t) cos(2co i t — 2f) cos(2colt

cos(20),t) cos(2co it- 2f`) cos(20)it-1)
3

cos(20)it) cos(2co it	 cos(2colt--4f)

cos((30)0 —coi )t) cos((30)0 — coi )t	 cos((3c00 — coi)t—If)

— 1 0.12. cos((3co0 — 0) 1 )t) cos((30)0 — co; )t —	 cos((30)0 co i )t
3

cos((3co0 —co i )t) cos((3co0 — (.0 i )t	 co4(30)0 —co ; )t —2i1)

(2.14)

2.5 The Matrix Converter Input and Output Waveforms

The operation of the control matrix described by equation 2.14 will be verified by

matrix multiplication. The nature of the output voltage waveforms and the input

current waveforms can be checked assuming ideal input voltage waveforms, ideal

switches and an ideal resistive load.



[

Vi .cos(wt)

V. (t) = G(t). V; .cos(co i t +-2f)

Vi .cos(coi t +ill)

cos(coot)

= Vi .0.866. cos(w„t+[ +(rri .0.25.cos(3co.t)—Tri .0.12.cos(3co i t)).

11

1

cos(coo t + -4f) 1

(2.16)
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2.5.1 The Output Voltage Waveforms

The validity of the control matrix may be shown by performing the appropriate

matrix multiplications. The input voltage waveforms are assumed to be sinusoidal

and at a fixed frequency. The switching frequency is again considered to be high so

that the output voltage waveforms may be considered continuous at the output fre-

quencies. The output voltages can be found by substituting the control matrix given

in equation 2.14 and the ideal input voltage matrix given in equation 2.6 into

equation 2.8.

(2.15)

The matrix manipulations for these calculations are given in appendix A.

2.5.2 The Input Current Waveforms

Assume that the output voltage waveforms are perfect as described in

equation 2.15. Consider a matrix converter, connected to a three phase resistive

load as shown in figure 2.9. The output currents may be considered to be a three

phase set of sinusoids because the zero sequence third harmonics will cancel.

101(0	 COS( COot)

(t) = [102	 =	 .[cos(coo t +

/03 (t)	 COS( Wo t +1311)

Where is a scaling factor that is determined by the size and nature of the load.
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Figure 2.9. A Matrix Converter Connected to a Resistive Load

The current drawn from the input lines is constructed from the output current by the

action of the control matrix in the reverse manner to the construction of the output

voltage of the matrix converter from the input voltage waveforms. The nature of

the input current may therefore be determined by the multiplication of the transpose

of the control matrix and the output currents.

(t)
1 1 (t)= [1,2 (01 = GT(t).I0(t)

12 (t)
(2.17)

If the control matrix given in equation 2.14 and the ideal output current defined in

equation 2.16 are substituted into equation 2.17 then the ideal continuous model of

the input currents may be calculated.

[cos(cocos(wt)

11 (t) = GT (t) .1 0 (t) = 4 . vi . cos(w it + )

cos(a)1 t + '.c)

The matrix manipulations for these calculations are given in appendix A.

(2.18)
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Figure 2.10. Input Current and Voltage Phasors for a Resistive Load

Because the load has been assumed to be purely resistive the output currents are in

phase with the output voltages. Using this assumption the input currents have been

shown to be in phase with the input voltages as shown in figure 2.10. If a real load

is considered then the output currents and voltages will not be in phase. This can be

used to control the input displacement factor.

2.6 The Input Displacement Factor

If a motor is connected to a three phase supply then there will be a displacement

between the input current and voltage waveforms. The manipulation of the control

matrix of the matrix cOnverter allows this input displacement to be altered. The in-

put displacement factor (d.f) is taken to be the cosine of the angle, 7, between the

voltage and current input frequency waveforms. The output displacement factor .is

the cosine of the angle between the fundamental output voltage and current wave-

forms. This is shown in the time domain in figure 2.11.

d.f.= cos(7)	 (2.19)



(2.20)
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Figure 2.11. Displacement Factor Between Current and Voltage Waveforms

This section deals with this displacement factor and its effect on the operation of a

matrix converter under the proposed PWM control scheme [7],[8].

2.6.1 The Converter Load Model

A simple, but valid model for the load presented by an induction motor to a matrix

converter is a set of three resistors in series with three inductors as shown in

figure 2.12. Assuming sinusoidal output voltage waveforms, the output voltage and

current phasors for such a load can be drawn as shown in figure 2.13. The angle 7

is the angle between the voltage and current waveforms at the converter's output

frequency. Equation 2.16 can then be rewritten to include this displacement angle.

	

101 (t)	 cos((.0„t — y)

Io (t) = [102 (t1 = . Vi .[COS(COot ± — y)

	

103 (t)	 cos(coot + *r — y)
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Figure 2.12. Simple Load Model for an Induction Motor
Connected to a Matrix Converter

2.6.2 The Division of the Control Matrix

The control matrix, G(t), given in equation 2.14 may be split into two parts:

• A Positive Converter Control Matrix

• A Negative Converter Control Matrix ,•

The positive half of the control matrix, G,(t), .consists of the functions containing

frequencies that are the sum of the input frequency and the required output

frequencies.
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Figure 2.13. Output Current and Voltage Phasors
for a Real Three Phase Load

cos(( co ; + coo )t)

GI (t) = 
1
-3 0.866. cos(( co i + coo )t +T)

cos((coi + coo )t +

cos((coi + coo )t -23E)

cos((coi + coo )t +-V)

cos((co, +0)0)t)

cos((co i + coo )t +V)

cos((co, +coo)t)

cos((co, + coo )t +

cos(4co 3 t) cos(4col t +*) cos(4coit+1)

+ 1 0.25. cos(4wi t) cos(4coit+ 219 cos(4coit+)
3	 3	 3

cos(4co l t) cos(4roi t+1-) cos(4coit+-41)

cos((30)0 +coi )t) cos((30)0 + 0) 1 )t +V-) cos((30)0 + cojt +-`)
1

—0.12. cos((3co0 + co, )t) cos((3co0 + )t + 11f-r ) COS((30)0 0)1)t

cos((3co0 + 0)1 )t) cos((3co0 + coi )t +	 cos((3co0 + cojt +

(2.21)

The negative half of the control matrix, G 2(t), consists of the functions containing

frequencies that are the difference between the input frequency and the required

output frequencies.
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Vi3

Figure 2.14. Input Current and Voltage Phasors
With Lagging Displacement Factor

	

cos((co, — coo )t)	 cosacoi — coo )t	 cosaco, — coo )t —
1

	

G, (t) = +-
3

0.866. cos((a), — co o )t —) cos((co, — co. )t 	 )	 cos((co, — co o )t)

cos((co, — c),,)t — ±31)	 cos((co, — co o )t)	 cos(( co, — coo )t

cos(2co lt) .cos(2co,t	 cos(2cojt —213E)

+ !025 1 	cos(2colt	 cos(2colt
3

•	 cos( 2 co it) cos(2col t — 13E) cos(2co,t

cos((3co0 — co,)t) cosf(3co0 — (o, )t	 cos((3c00 — (0 )t —135-)

— !o12 1 	— co, )t) . cos((3coo	cos((3(.00 — coi)t
3

cos((3co0 — co,)t) cos((3c00 — co, )t	 cos((3 coo — coi)i

(2.22)

Due to the nature of the multiplication of sets of three phase waveforms and the

way in which the double frequency terms cancel it is possible to analyse the

operation of these two halves of the control matrix separately.
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2.6.3 Waveforms Obtained with a Resistive Load

Repeating the output voltage analysis given in section 2.5.1 for each of the two

halves of the control matrix shows that the ideal output voltage waveforms would

be identical to the result obtained for the complete control matrix. This is shown in

equation 2.23. This output voltage analysis is independent of the output

displacement factor. This is because the output voltage may be considered as a

function of the input voltage and the control matrix, and not the output current.

V o,G (t) = G(t).v,(t)

cos(coot)

[	

11
= Vi .0.866. cos(co„t + 2f) +(V1 .0.25.cos(Roo t)—Vi .0.12.cos(Ro it)). 1

cos(coo t +-sr )	 1

Vo.G. (t) = GI ( t). VI ( t)

cos(coot)

[	
11

= Vi .0.866. cos(wo t + 2;1) +0; .0.25.cos(30m)—Vi .0.12.cos(3co i t)). 1

cos(coo t + 1;1)	 1

v02 ( t) = G2 (t). Vi (t)

[ 

cos(wot)	

1= Vg .0.866. cos(coot+ 2f) +(Vi .0.25.cos(3a) o t)—V1.0.12.cos(3co i t)). 1

cos(co ot + )	 1

. -
	 (2.23)

Repeating the input current analysis for a resistive load as given in section 2.5.2 for

each of the two halves of the control matrix would also yield the same result as the

whole control matrix.
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cos(

[

	 wet)

IEG (t) = GT (t).I0 	 CO

	

(t) = .T .	 S( W i t -1-*) I

COS(Wi t + =If)

[COS(Wit)

w1 (t) = G I T ( t). I o (t)	 co= g.v, . s( wi t + -2-F)

cos(co i t +)

[ cos( am)

I, ,G2 (t) = G2 T (0.' 0 (t) = 4.Vi . cos( wi t +2f)

cos( wi t +`#r)
(2.24)

2.6.4 Waveforms Obtain with the Motor Model Load

The input current is a function of the output current. The output displacement fac-

tor will therefore affect the nature of the input currents. The input current analysis

given in equation 2.24 may then be repeated for the control matrix GAO. The

modified output currents given for the inductive load in equation 2.20 are used to

model the load effect of a motor on the converter's input currents.

i„(t)= GT (0.'0 (t)

[ 

cos(coo t — y)

= GT (t)..v4 i . cos(0),,t+— y)

cos(a)„t + V-- y)

[ cos(coit — y)

=J'. cos(coit+2y)

cos(coit + i — y)
(2.25)

As can be seen from equation 2.25, the positive converter control matrix, G1(0,

would demand an input current with a displacement factor from the supply voltage

equal to the output displacement factor. A load with a lagging displacement factor,

such as a motor, would therefore have a lagging supply displacement factor. This is

shown in phasor diagram form in figure 2.14.
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w i

Figure 2.15. Input Current and Voltage Phasors
With Leading Displacement Factor

The input current analysis may be repeated for the negative going converter control

matrix, G2(t).

1 12 (0 = GT(t).Io(t)

[ 

cos(c)ot— y)

= GI(t). .Tri . co s(aio t + 2f` — y) .

cos(coo f+-y-- y)

[ 

cos(c.oit+ .y)

= g.K. cos(coit+2+y)

cos(wit + -1+ y)
(2.26)

As can be seen from equation 2.26, the negative converter control matrix generates

an input displacement factor of the opposite sign to the output displacement factor.

If this negative control matrix was used to implement a matrix converter then the

input current would lead the input voltage by the same angle as the output current
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lags the output voltage. This leading input displacement factor is shown in phasor

diagram form in figure 2.15.

2.6.5 Control of the Input Displacement Factor

As shown in equation 2.25, the positive control matrix, G,(t), will give a converter

with an input displacement factor that lags at the same angle as the output

displacement factor. The negative control matrix, GAt), will give a converter with

an input displacement factor that leads at the same angle as the output displacement

factor lags. If a matrix converter were to be implemented with one of these two

control matrices alone then these input displacement factors would result.

A matrix converter could be implemented in which the positive and negative control

matrices are averaged. The output voltage waveform can then be found as shown

in equation 2.27.

Vo( t) = (1•G1(t)±1•G2(0).V1(t)
	

(2.27)

The input currents may then be analysed as previously done in equation 2.26, but

with the new averaged control matrix.

= (1•00-1-1.G2 (0) T . I0 (t) 	 (2.28)

The input current phasors for each control matrix operating alone would effectively

be halved and then combined. This situation would give a matrix converter with a

unity input displacement factor. The phase angle between the input current and

voltage waveforms in each phase would be zero. The phasor diagram for this

would take the same form as the input waveforms for a resistive load shown in

figure 2.11.

The positive and negative control matrices may be averaged unequally: This would

give an output voltage as defined below.



Possible Area for fol

Chapter 2: The Control Algorithm	 52

WI

Figure 2.16. Phasor Diagram Showing Areas
for Possible Output Current Phasors

V0(t)=(a.G1(t)+(1—a).G2(0).V1(t)
	

(2.29)

where: a = -4 1

This output voltage waveform would lead to a set of input currents with variable

displacement from the input voltage.

(t) = (a. Gi (t) + (1— a). Q2 (0)T .I.(t) .	 (2.30)

By varying a between zero and one it follows that the input displacement factor will

vary between 7 leading and 7 lagging. This will give a possible range of input cur-

rent displacement angles as shown by the areas on the phasor diagram in

figure 2.16.

2.7 Waveform Quality with Harmonic Distortion in the Supply

So far it has been assumed that the three phase input voltage waveforms from the

mains supply are perfectly sinusoidal and matched. In any real supply these voltage



(2.31)

cos(wit)

[	

P.cos(5coit)

Vogh (t) = cos(coi t + 2 `)Y. +Vi . 13.cos(5co i t +-2-311)

cos(coi t + =tf)	 13.cos(5coit +=ill)
(2.32)
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waveforms may be unbalanced or distorted. The harmonic distortion will affect the

performance of the matrix converter. This section will examine the consequences of

this distortion and unbalance on the input and output waveform quality of a matrix

converter.	 -

2.7.1 Harmonic Distortion of the Input Voltage Waveforms

The distortion in the input voltage waveforms is due to the use of electrical equip-

ment with non-sinusoidal input currents and unbalanced supply demands. The

maximum amount of harmonic distortion that may be generated by any one piece of

equipment is defined by legislation [9]. The superposition of these harmonics from

many different pieces of equipment can lead to a significant amount of harmonic

distortion. In the research environment it is possible to obtain results at certain

times of the day when the distortion is low. However, this is not a viable solution in

industrial applications.

The equations for input voltage waveforms given in equation 2.6 may be modified

to model the distortion.

[ 

cos(c04+ (harmonic distortion)

Vi,real (t) = r'. cos( wi t + -`) + (harmonic distortion)

cos(coi t + ) + (harmonic distortion)

For the purpose of examining the effects of the harmonic distortion on the

performance of a matrix converter let us take an input voltage waveform that has a

significant 5th harmonic, as shown in equation 2.32. The variable fi represents the

relative magnitude of the harmonic to the fiindamental. • The arguments presented

would apply to any other harmonic or combination of harmonics.
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2.7.2 Effect of Harmonics on the Converter if No Action is Taken

The output voltage waveform analysis presented in equation 2.15 may be repeated

using the modified input waveforms defined in equation 2.32.

[	

1cos(w i t)	 p. cos(50) it)

V. (t) = G(t).T1 . cos(co i t + 21-) + p. cos(5 coit + I-)

cos(co i t + 2 )	 P.cos(5c0 i t +`')

[cos(coot)

= V1 .0.866. cos(coo t + 2 ) +V; .0.25.cos(3co0t)—Vi.0.12.cos(3colt)

cos(co o t +11f)

[ cos((4 co ; + coo )t)

+PV. i .0.866. cos((4co i + coo )t +-2f)

cos((4co i + odt +N-)

[ 

cos((o)„ —4coi)t)

+/3J'.0.866.cos((co o —400t+-2f)

cos((coo —4co 1 )t +If)

13.vi .0 .25.1cos((3co 0 — 4w) i t)+ cos((3coo + 4w1 )t)}. 1[

11

-1-	

1

1

—P.T1 .0.12.tcos(7co l t)+cos(—pu 1 t)}. 1[1

1]

(2.33)

The 5th harmonic causes some differential and common mode distortion of the out-

put voltage waveforms. The differential mode would cause distortion in the output

current waveforms. The common mode functions would cancel in the output cur-

rents in the same way as would the common mode third harmonics in the ideal

output voltage waveforms. The ideal output currents described by equation 2.16

are therefore modified accordingly.



(2.35)
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cos(coot)

[	

cos((4coi + co)o )t
MO= 4.v,. cos(coot+-V +0..K. cos((40) ; +0.)0)t+13-1)

cos(coo t + *9	 cos((4co, + coo )t + 'is)

[ cos((coo — 4c0i)t)

+13.g.Vi . cos((w o —40);)t+-zt)

cos((coo — 4 co, )t + -41)
(2.34)

This distortion in the output current waveforms imposed on the converter will lead

to distortion of the input current supply waveforms. These input currents may be
found by repeating the input current analysis in equation 2.18 using the distorted
output currents in equation 2.34.

I, (t) = GT(t).10(t)

[ 

cos(wi t)	 2.cos(3om)
= . V; . cos(co i t +-) +0.4.V; . 2.cos(3co l t +1;1)

cos(coi t +-V	 2.cos(3w1t +V-)

[ cos(5wi t)	 cos(5coit +2a),,t)
+.Vfl 4. ; . cos(5coi t +-2t) + P. 4.V; . cos(Ro i t + 2co0 t +*)

cos(5co l t +NI)	 cos(5coit +20)„t+-`1)

The ideal sinusoidal input currents have been lost due to this distortion. The matrix

converter will also add to the distortion due to the currents it will present to the

mains supply.

2.7.3 The Correction of the Converter Waveforms

If a motor was to be controlled by a matrix converter then it is preferable that the

output voltage waveforms are approximately sinusoidal. This would lead to

sinusoidal output current waveforms. It is possible to modify the control matrix,

given in equation 2.12, to take into account the input voltage harmonic distortion.

This modification will enable the converter to produce the ideal output waveforms.

The control matrix, G(t), for the correction of the 5th harmonic distortion can be
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derived using the techniques described in section 2.4.3. This modified control

matrix is shown in equation 2.36.

G(t) = F(t).H(t)

3

cos( ( co, + co, )t)	 cos(( co, + co, )t + If)	 cos((co i + coo )t + =-13E )
= -1 0.866. cos((co, +coo )t + 231)	 cos((0), +coo )t+)	 cos((coi+coo)t)

cos((co, + co o )t+ 'ir-)	 cos((coi +0)0 )0	 cos((co i + coo )t + is)

cos((5co, + co o )t)	 cos((50), + co o )t - *I ) cos((5co , + w, )t

	

+-
3

0.866. cos((5co, + co o )t- �) cos((5co, + co o )t -	 cos((5co1 + co o )t)

	

3	 3

COS((5C0 i + co o )t -	 cos((5co, + co o )t)	 cos((5co,+ co 0 )t -

cos(4 co i t) cos(4 co a t +	 cos(4 co i t + "i-r)
+ 0.25. cos(40) 1 t) cos(4coit+-2fr ) cos(4coit+*)

3
cos(4colt) cos(4coit+ 2f) cos(4 co i t + `*`)

	

cos((3co 0 + co ,)t) cos((3co 0 + co ,)t +	 cos((3 co + co 1 )t +2`)
- 1 0.12. cos((3co 0 +co i )t) cos((30.) o + ,)t + '1 ) cos((3 co 0 + co ,)t +

3
cos((3co0 + co, )t) cos((3co 0 + co i )t+ 13-1) COS((3 CO 0 -F CO i )t

COS((C0 1 —	 )t)	 COS((ü)i — co0 )t —135-) COS((C0 1 C00 )t —11f-)

+ 1 0.866. cos((co, - coo )t	 cos((coi —coo )t	 cos((c01—co0)t)
3

cos((co, - co o )r	 cos((coi —co o )t)	 cos((coi—coo)t--21-)

	

cos((sco i —co o )t)	 cos((5c0 1 —co0 )t	 cos((50), -0)0)t

	

+ 13-0.866. cos((50), -co o )t - 11) cos((5co i co „)t	 cos((5co - o)t)
3	 .3

COS((5C0 i — CO 0 )t - 13E )	 cosR5 co - co o )t)	 cos((5co, - co 0)t

cos(2co it) cos(2col t --2f) cos(2coit
+!0.25. cos(2co i t) cos(2co l t --2f) cos(20.)1t

3
cos(2coit) cos(2co jt	 cos(2colt -2131)

cos((3co 0 -coi )t) cos((3co0 - 1 )t--) cos((3co 0 coi)t

- 1 0.12 cos((30) 0 -coi )t) cos((3co0 - co, )t --4tr ) ôos((3co o - co 1 )t -*)
3

	

cos((3co0 - co, )t) cos((3co 0 - co i )t -	 cos((3co0 - co, )t -2f)

-A3E)1

(2.36)

Using this modified control matrix to correct the effect on the output voltage wave-

form of the input voltage harmonics would give ideal sinusoidal output currents.



(2.37)
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Unfortunately the modifications to the control matrix will modify the input currents
drawn by the matrix converter. A repeat of the input current analysis will show that
these input current harmonics are at the same frequency and are in phase with the
input voltage ,harmonics.

cos( w i t)[cos(5c.o)it
I i (t) = 	 cos(coit + `-) +0.4.ii. cos(scoit+)

cos(co,t+*9	 cos(5colt+-4f)

The control algorithm may be adapted in a similar way to that explained above to

cope with many waveform distortion effects. If the output currents are non-

sinusoidal due to the effects of the load then the output voltage generated by the

converter may be altered to compensate. This adaptation of the control algorithm

would lead to a distortion of the input current waveforms.

As a general rule, if the control algorithm is adapted to correct output voltage dis-

tortion then the input currents will no longer be sinusoidal. If the input currents are

corrected by the adaptation of the control waveforms then the output voltage wave-

forms will be distorted.

2.8 Waveform Quality with an Unbalanced Supply

2.8.1 Unbalanced Supply Voltage Waveforms

The three phase mains voltage supply. may be significantly unbalanced due to un-

balanced loads that may be connected. The effect of this may be modelled by

rewriting equation 2.6. Let x and y denote the relative higher voltages on the

second and third input lines in comparison to the first input line, as shown in

figure 2.17.
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Figure 2.17. Input Voltage Waveforms with an Unbalanced Supply

Vii(t)	 cos(a)t)

Vi (t)= [Iii2 (t)1= Vi.[(1+x).cos(wit+)

J 3 (t)	 (1+ .cos(co it +

2.8.2 The Effect of an Unbalanced Supply

The output voltage analysis described in equation 2.15 may be repeated using the

modified input waveforms from equation 2.38. For simplicity the input voltage is

assumed to have unbalance caused by one line, therefore x equals zero. If all three

input voltage waveforms are unbalanced with respect to each other then they could

be modelled using superposition.



(2.39)

Chapter 2: The Control Algorithm 	 59

[

cos(coit)

V. (t) = G(t).Vi .	 cos(co i t + -2f)

(1+ y)cos(co i t +.-1r)

[cos(coot)

V= i.0.866.(1+i). cos(0)t+2)

cos(co o t + )

[11

+(vi.0.25.(1+ i).cos(3coo t)—Ti.0.12.(1+ 23-).cos(3co it)). 1
1

[

cos(ao i t + co o t + V) + cos(coo t— 2w 1 t +V)

+V1 	 cos(ao i t+ coo t ++ cos(co o t —2(.04

cos( 2co i t + co o t) + cos(coo t — a)i t +V)

[cos(5col t + 2)+ cos( co i t +V)
441.0.25.y.	 cos(5col t + V)+ cos( wit)

cos(5co ; 0+ cos(c) i t +V)

[	

cos(2co i t +3co o t)+ cos(3co	 coo t — 2 it)

+Ifi .0.12.y. cos(2co i t+ 3coo t + *9+ cos(Ro o t — 2c0 i t +1;1)

cos(ao i t + Roo t + -,)+ cos(3co 0 t — 2w ,t + V)

This distortion of the output voltage waveforms will cause distortion of the output

current waveforms. This output current distortion will cause distortion in the input

current waveforms.

2.8.3 Correcting the Effects of an Unbalanced Supply

The elements of the control matrix, G(t), which are involved in the manipulation of

the unbalanced input line may be multiplied by the reciprocal of the relative mag-

nitude of the unbalanced voltage waveform.



/	 1
Gkt) --0.866.

3

1
+ —0.866.

3
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cos( (co , + coo )t)	 cos((co, + co o )t + -2f) (*). cos((co, + co o )t + -r)
cos((C0 1 + CO, )t +	 cos((c0, + CD, )t +NI)	 (1.±), ).cos((CO, + CO, )t)

cos((co, + coo )t	 cos((co, + co o )t)	 (*,).cos((co, + co o )t + -2-3E)

cos( 4 w i t) cos(4 w i t +	 (*).cos(4 w i t +is'E)

+ 1 0.25. cos(4 w it) cos(4co,t + f) (*).cos(4co l t + `+r)
3

cos(4 cm) cos(4 w i t + r ) ( 1717,).cos(4	 +)_

cos((3co 0 +	 )t) cos((30) 0 + co, )t + ) (*,).cos((3co0 + c), )t + -2f)

— 1 0.12. cos((3c0 0 + co, )t) cos((3co 0 + co, )t +	 (*,).cos((3co0 + co, )t + tE)
3

cos((3c00 + co, )t) cos((3co 0 + co, )t + *r ) (*,).cos((3co0 + co, )t +

cos((co, — co o )t)	 cos((co, — co o )t —	 (*).cos((co, — co o )t —

cos((co, — co,, )t — *r) cos((, w0 )t- 1311 )	 (*).cos((co, — co o )t)

cos((co, — coo )t — -43 )	 cos((c) — co 0 )t)	 (*,).cos((co, — co o )t — *r)

1
+ —0.25.

3

cos(2 (0,0 cos(2c01 — -21)3 (-).cos(21+y 3

COS(2C0 1 t) COS(20).t — 21)i	 3 (-).COS(20)I.t	 ‘r)1+y 	 3

COS(2W i t) COS(2CO . t 3 (—).cos(2co.t —	 )1+y	 3

1
— —0.12.

3

cos((3co 0 — co, )t)	 cos((3co 0 — co ,)t — `-̀)3

COS((3(0 0 	co i )t)	 cos((30)	 — co, )t —ǹ )3

().cos((3co o — co, )t — 11 )1+y	 3

().cos((3co o — co, )t —1+y	 3

COS((3CO, )t)	 COS((3C0 0 — co i )t —11)3 (--).COS((3(00 —	 )t1+y	 3

(2.40)

This scaling will eliminate the effect of the unbalance in the output voltage wave-

forms. The output voltage analysis described in equation 2.15 can be repeated

using the input voltages given in equation 2.37 and the control matrix given in

equation 2.40. This analysis would result in the ideal output voltage waveforms as

described in equation 2.7. If switching frequency harmonics are ignored then the

output currents are sinusoidal, as described in equation 2.8.



I i( t)= 4 v, (1+1,4') •

cos(coit — 20)0t)

cos( co i t — 2 co o t + 11)

cos( co i t — 2o)0 t +=If)
(2.41)
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The input current analysis may then be repeated. As previously suggested the cor-

rection of the output voltage waveforms will result in distortion of the input current

waveforms. Similar methods may be employed to correct the input current wave-

forms, but this would cause distortion in the output voltage waveforms.

-
cos( wit)

cos(co,t +-r)

1-1-y
cos(co i t +_

[cos(co	 -2-i t +2coo t +31-)

+(*,) cos(co,t + 2co0t +)

cos(om + 2(.00t)

This unbalanced load analysis has assumed a restive load and only one unbalanced

input voltage waveform. The principles of superposition may be used if all the lines

are unbalanced. The analysis is still valid if an inductive load is used.

If the control algorithm was digitally implemented then these adaptations to the

control algorithm could be performed by the control software. This would allow

the converter to adapt to the prevailing conditions at any time.

2.9 Conclusions

The maximum output voltage limitation of a matrix converter has been examined.

The intrinsic maximum output voltage limit for a matrix converter is 0.866 of the

input voltage. The theory and historical evolution in obtaining this maximum

output voltage has been discussed. A control algorithm capable of achieving the

maximum output voltage may be derived using a two stage rectifier/inverter model.

It is possible to verify the operation of the proposed control matrix mathematically

using ideal input and output waveforms. The ability of the control matrix to control

the input displacement factor of the converter has been explored. The control

algorithm is capable of input displacement factors between the output displacement

factor lagging and the output displacement factor leading.
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The control matrix may be adapted to deal with distortion in the input voltage

waveforms. In a digital implementation this adaptation could be a continuous

operation which would allow the converter to cope with the changes in the input

voltage waveforms that may be experienced over a period of time.
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3.1 Introduction

To implement the control algorithm described in Chapter 2 on a matrix converter

some form of controller must be provided. Analogue control would require a large

volume of hardware and would be inflexible to changes in control strategy [1].

Digital control was therefore chosen for the prototype matrix converters.

A high switching frequency was considered important to minimise the size of the

converter's input filters. The calculations in the control algorithm would therefore

require a powerful processor. It was felt that a single microchip solution would be

preferable to allow for maximum flexibility of programming and simplicity of

hardware design.

This chapter deals with the choosing of a suitable processor. It considers the

implementation of the control algorithm on the chosen processor and describes the

design of the program structure.

3.2 Microcontrollers

A group of processors on the market called "microcontrollers" combine a micro-

processor with a number of timers and other peripheral devices. These micro-

controllers have the advantage of low software overheads for timer functions and

reaction to external events. The peripherals usually include some on-board ana-

logue to digital converters.

The lower end of the microcontroller family consists of comparatively slow 4 bit

controllers suitable for central heating control systems and low cost embedded ap-

plications. The bulk of microcontrollers are 8 bit controllers used in embedded

applications in everything from food mixers to cars [2]. These 8 bit processors can

be reasonably powerful and may be found in many existing power converters. In

recent years a range of 16 bit microcontrollers has been released by the major

manufacturers. During the next few years their market share is expected to increase

dramatically [2] as shown in figure 3.1.
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1995

Figure 3.1. Comparative Percentage World Sales of the Members
of the Microcontroller Family

At the time of investigation three of these new generation 16 bit microcontrollers

were being introduced.

• TMS320E14 from Texas Instruments.

• MC68332 from the 68000 family by Motorola.

• SAB80C166 from Siemens.

3.2.1 The Texas Instruments TMS320E10

The TMS320E10 is a 16 bit microprocessor . based on the established TMS320

digital signal processor family. According to the User's Guide [4] it has been

designed to combine the high performance of a DSP with the on-chip peripherals of

a microcontroller. This DSP engine provides the controller with an efficient and

small instruction set. The on-board barrel multiplier ind short instruction cycle

times mean that this processor is capable of implementing complex control

algorithms with high speed and accuracy.

The controller has an on-board Event Manager that is well suited to PWM wave-

form production, with 10 bit resolution at 251cHz. There are only 6 high resolution
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PWM output channels on the processor. This limitation would mean that the imple-

mentation of the matrix converter would require additional external hardware to

generate the three extra PWM waveforms.

The TMS320C14/E14 belongs to the TMS320 family and therefore is backwardly

software compatible with all preceding processors in the family. Future upgrades to

the controller family will also be software compatible leading to long term stability

in user's architecture investments. The TMS320C14 became available in early

1992. Before this development would have been slow as only the EPROM version

was available. The key features of the microcontroller are listed in Table 3.1.

CPU clock Frequency	 25.6MHz

Average Instruction time	 16Ons

Multiply Instruction Time	 16Ons

Division Instruction Time	 N/A

PWM output channels 	 6

Minimum Pulse Width	 4Ons in high resolution mode,

(16Ons in standard mode)

Number of Timers	 4

Package	 68 pin leaded chip carrier packages.

Number of Interrupts	 15

Input/Output	 16 discrete I10 pins

Serial Ports	 2

Table 3.1. Features of the TMS320C14/E14 Microcontroller

3.2.2 The Motorola MC68300

The Motorola MC68332 16 bit microcontroller was based on the MC68020 fam-

ily [6]. It is the first in a proposed MC68300 family of embedded controllers. An

impressive array of on-board peripherals is boasted. These include a time processor

unit [7], a system integration module [8] and a queued serial module [9], each of

which comes with an independent set of manuals! It is mainly aimed at the auto-

motive industry, but is capable of many highly complex timing applications.
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Figure 3.2. A Functional Block Diagram of the MC68332

The PWM generation unit is flexible and has an integrated automatic update facility

to reduce software overheads. The functional block diagram for the controller is

shown in figure 3.2. The backward compatibility with the MC68000 processors

leads to a large and inefficient instruction set in comparison to other similar con-

trollers. Future derivatives of this processor will have a higher clock frequency

leading to a reduced instruction cycle time. The features of this controller are

summarised in table 3.2.

CPU Clock Frequency

Average Instruction time

Multiply Instruction Time -

PWM output channels

Minimum Pulse Width

Number of Timers

Serial Ports

Package

Number of Interrupt levels

Input/Output

Instruction Set

32.77MHz

400ns (many 600ns or more)

3200ns for 16x16 (1600ns for 8x8)

16

192Ons

2

2

132 pin plastic quad flat pack

7

32 discrete I/O pins.

Large and comprehensive

Table 3.2. Features of the MC68332 Integrated Microcontroller
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Clock 8kByte ROM 1kByte RAM

_

Watchdog 10-Channel
Tuner 16-Bit CPU 10-Bit A/D

Converter

Timer TO
Interrupt and PEC Control

Serial
16-Channel Tuner Tuner Channel

Capture/ Unit Unit ASCO
Compare GPT2 GPT2

Unit Timer T2 Tuner T5 Serial
Timer T3 Channel

Timer Ti Timer T4 Tuner T6 ASC 1

Bus Control I/0 Ports

Figure 3.3. Functional Block Diagram of the SAB80C166

3.2.3 The Siemens 5AB80C166

The SAB80C166 has been developed to meet the high performance requirements of

real time embedded control applications [11]. The processor uses a control based,

"RISC" style instruction set. The array of peripherals includes an Intelligent Pe-

ripheral Subsystem with a 16 channel Capture/Compare unit that can be used as a

flexible PWM waveform generator. A block diagram of the controller is shown in

figure 3.3.

The SAB80C166 is the first in Siemens' proposed new 16-bit controller family. The

family will be backwardly compatible. Being the first in a new family of processors

means that this controller has not suffered from the design constraints that can

compromise the functions required in control applications. The future derivatives

will include extra and more flexible peripherals in line with the requirements of their

major customers.
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CPU Clock Frequency

Average Instruction time

Multiply Instruction Time

Division Instruction Time

PWM output channels

Minimum Pulse Width

Number of Timers

Serial Ports

Package

Number of Interrupts

Input/Output

Instruction Set

20M1-1z

100ns

500ns (16x16)

100Ons

16

400ns

6

2

100 pin Plastic quad flat pack.

19 (external)

76 discrete I10 pins

"RISC" style

Table 3.3. Features of the SAB80C166 Microcontroller

The second controller in the family is the SAB80C167 [12]. This recently released

processor has an expanded capture and compare unit that would allow greater accu-

racy for PWM waveform generation. Siemens also support the addition of cus-

tomer specific on-board peripherals. These peripherals could include a dedicated

PWM generation unit.

3.3 Choosing a Microcontroller for the Matrix Converter

3.3.1 The Desirable Functions for a Matrix Converter Controller

A matrix converter consists of nine independently controlled bi-directional switches.

Nine PWM waveforms are therefore required to drive these switches. A controller

with at least nine PWM output channels would therefore reduce the need for

additional hardware. A selection of on-board event timers and interrupts would be

useful in allowing the controller to react to external events. This would allow the

correction of the model of the input frequency and input phase order detection.
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A switching frequency of 20IcHz was chosen for the converter. The reasons for this

choice of frequency are explained later in this thesis. This relatively high switching

frequency requires the controller to compute the pulse widths quickly. Even if the

values are only updated every other switching period, the software needs to operate

efficiently on a high throughput microprocessor. At a 20kHz switching frequency

the controller will have 501.ts to perform the PWM duty cycle computations. At this

switching frequency it would be important to have a PWM waveform with a

relatively high resolution and minimum pulse width. A minimum pulse width of

500ns could take advantage of the faster semiconductor switches that are currently

available.

The control algorithm described in Chapter 2 requires multiplication to control the

output voltage amplitude. A processor with an efficient and accurate multiplication

instruction is therefore necessary. Nine is the minimum number of multiplications

the control algorithm will require to give output voltage control. If the processor

has a slow multiplication instruction then this will seriously decrease the time left

for the lookup table routines and the correction algorithms.

3.3.2 The Choosing of a Micro-Controller

The need for nine PWM output channels excludes the TMS320C14/E14 as a viable

controller for the matrix converter unless external hardware is used. The

TMS320C14 has a fast multiplication instruction and a useful instruction set. At

the time of choosing a controller, only the EPROM version of this controller was

available. This hardware restriction would have impeded the software development.

The MC68332 has a long multiplication instruction time, 3.2[ts. If the nine

multiplications required by the control algorithm were to be implemented using this

processor then there would only be 181.1s left in any one instruction cycle. This

would make it impossible to update of the compare registers every switching cycle.
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Function TMS320C14 MC68332 SAB80C166

Multiplication

Instruction Time

160ns 3200ns 500ns

Average

Instruction Time

160ns 400ns 100ns

PWM Output

Channels

6 16 16

PWM Pulse

Width

Resolution

4Ons 1920ns 400ns

Minimum PWM

Pulse Width

4Ons 6Ons 400ns

Table 3.4. Comparison of Processor Functions Critical to

The Matrix Converter

The minimum pulse width for the PWM generation unit on the MC68332 is 1920ns.

This long minimum pulse width would lead to inaccuracies in the control

waveforms. The pulse width restriction would not allow this processor to take

advantage of any future faster semiconductor switch technologies. The MC68332

has the advantage of having an automatic PWM compare register update function

that saves the software overhead required in the updating of these registers.

The SAB80C166 has an instruction set that is written with control requirements in

mind. There are sixteen PWM output channels with a minimum pulse width of

400ns. The multiplication takes 500ns, leaving 45.5p,s for other software functions.

For these reasons the SAB80C166 was chosen to control the matrix converter.
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3.4 The Modulation Matrix

In Chapter 2 a control matrix for the matrix converter was proposed. To implement

this control matrix on a microprocessor, the continuous control waveforms must be

converted into duty cycles. This implementation will require the normalisation of

the control functions and sampling of the control functions every switching cycle.

The safe operation of the switches must also be considered to avoid open circuits

on the output lines and short circuits between the input lines. This section looks at

the manipulation of the control matrix to obtain a modulation matrix in a suitable

form for software implementation.

3.4.1 The Switch Function

If a converter implemented with perfect switches is assumed then a function, m(t),

can be defined to describe the switch operation, as shown in equation 3.1. A per-

fect switch has zero propagation delay, zero switching time and zero conduction

losses [16].

m(t) = 1 (when the switch is closed)

m(t) = 0 (when the switch is open)
	

(3.1)

A three by three matrix of these functions, M(t), can then be defined to describe the

switch function of all nine switches in the matrix converter. The indices refer to the

switch numbers shown in figure 3.1

,n(t) m4 (t) m(t)1

M(t) im2 (t) m5 (t) m8(t)

m3 (t) m6 (t) m9(t)
(3.2)
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Vol	 Vo2	 Vo3

Figure 3.4. The Matrix Converter Switch Layout

3.4.2 Safe Switch Operation with Perfect Switches

The switches in the converter must be controlled in such a way that two input lines

are never connected to the same output line. It is also important that every output

line is always connected to an input line as open circuiting a phase of the motor will

give rise to large voltage spikes due to the inductive nature of the load. To avoid

open circuits on the output lines, all output lines must always be connected to an

input line. These restrictions will give a set of 27 legal matrices for M(t), as shown

in table 3.1, [17].
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1 11 	 1101

000 	 001
[ 1

000 	 000

0 11 	 0001

000 	 111

[ 1

100 	 000

0 01 	 0001

110 	 110

[ 1

000 	 001

0 10 	 1001

000 	 000
[ 1

101 	 011

0 10 	 0011

001 	 100

[ 1

100 	 010

1[ 1[ 101	 101 	 011
 010	 000 	 100
 000	 010 	 000

[

[1[1[1[100 	 000	 010 	 000

011 	 011	 101 	 101

000 	 100	 000 	 010

[1[1[1[000 	 001	 000 	 000

000 	 000	 001 	 010

111 	 110	 110 	 101

1[ 1[000 	 010	 100 	 1
100 	 100	 00 1 	0
011 	 001	 010 	 0

1[

[001

010

100

1[ 110
000
001

Table 3.1. Legal Forms for the Modulation Matrix, M(t)

3.4.3 The Switch Duty Cycles

Chapter 2 introduced a possible control matrix for a matrix converter ,G(t). Each

element of this control matrix consists of the sum of six sinusoidal functions. To

operate the switches a duty cycle for each must be defined. This duty cycle matrix,

D(t), may be obtained by the addition of a constant to each element of the control

matrix. The constant is the sum of two elements. The first element is a fixed value

to ensure that the duty cycle will never take a negative value.
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•
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Figure 3.5. Timing Diagram for One Output Line of a Matrix Converter

The second element is required to balance the currents drawn from the input lines

when the matrix converter is not operating at maximum output voltage. This

combined constant has no effect on the operation of the control matrix because it

does not effect the nature of the control functions.

d1 d2 d3

D(t) = [d4 d5 d6

d7 d8 d91

[(1— q)

= (1 — g)

(1— q)

(1— q)

(1 — q)

(1— q)

(1— q) .

(1 — q)

(1— q)

+

0.5 ,

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

+ G(t)

(3.3)

The duty cycle matrix is sampled to define the closed time of each switch in the

converter. This may be achieved by calculating each duty cycle and comparing it to

a saw-tooth timer waveform. This waveform has a period T., that is the switching

period for the converter. The compare process for this PWM waveform generation

is shown for one output phase in figure 3.5. Ti is the connection time of the output

line to input line 1; T2 the connection time to line 2; and so on.
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3.5 The Implementation of the Control Matrix

The duty cycle matrix in equation 3.3 may be computed using a microprocessor.

The PWM waveforms for each switch are then generated. These waveforms can

then be used to drive the bi-directional switches in any matrix converter.

3.5.1 The Program Design

The basic layout of the core program for the matrix converter control algorithm is

given in figure 3.6. Before the control algorithm can be calculated, the control pro-

gram must set up the various timers, analogue to digital converters and 110 channels

that are required. The capture and compare unit has to be configured as a PWM

generator and the generation modes for each output signal have to be set . These

initialisations are achieved by writing to the relevant special function registers

(SFRs).

The controller then reads in the required output frequency, magnitude and dis-

placement factor from the user interface. These values are used to set up the con-

trol frequencies. The value of the control function can then be found using lookup

tables.

There are three sine wave lookup tables, one for each of the control waveform

magnitudes. This pre-scaling takes up memory, but allows faster calculation of the

control functions. In this application, time may be at a higher premium than mem-

ory. The time step for the next switching period is also calculated. These time

steps are added to the current position in the lookup table. The larger the time step,

the higher the control frequency.

From the value of the control function, the switching times for the PWM output

waveforms can be established. The switching times are sent to a buffer to be used

to update the PWM compare registers when the current switching cycle has fin-

ished. This updating can be set to happen automatically when the relevant interrupt

is present. This is done using the onboard data moving function.
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Figure 3.6. A Brief Outline of the Main Program Layout

The final step in the program allows the controller to correct the phasing of the in-

ternal control functions. These internal control functions must be kept in phase

with the actual input waveforms.. The correction routines are activated when a

positive edge has occurred in the signal from the zero input voltage crossing de-

tector. This task could be accomplished using interrupts, but the main body of the

program is a critical zone as far as the control functions are concerned. The input

frequency is very low in comparison to the switching frequency and hence there will

be no measurable loss in accuracy.
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3.5.2 Correction of Controller Phasing Errors

The control functions (equation 2.14) which deal with the 2nd and 4th harmonics of

the input frequency are easily phase corrected. These two waveforms will pass

through zero at the same time as the input voltage waveform. It is therefore a rela-

tively easy task to correct any small error in these functions by setting them to zero

when a positive edge from the zero crossing detector is present. The control func-

tions containing harmonics involving the output frequency will not be passing

through zero at this time. A way of correcting the time phasing of these remaining

functions must therefore be found.

Consider the two control functions that are the sum and the difference of the input

and output frequencies for switch 1.

g11 (t) = cos((a), + (.00)t)

g12 (t) = cos((co, — wo)t)
	

(3.4)

These two functions may be expanded:

g11 (t) cos(co,t).cos(coot)+sin(wit).sin(coot)

g12 ( t) = cos( wit). cos( coo t) — sin( co it). sin( (Dot)
	

(3.5)

When the input voltage waveform is passing through zero:

cos(wit) = 0

and:

sin(at) = 1

Equation 3.5 can therefore be rewritten:

gi b) = sin(coot)

g12 (t)= —sin(coot)

= sin(—coot)	
(3.6)
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Figure 3.7. The Relationship Between the Input Voltage
Waveform and the Control Waveforms

When the input voltage waveform ispassing through the zero point, the two control

functions are at the same point as each other on their particular sinusoid function,

but have the opposite sign. This Can be used to correct any small phasing error that

may have occurred between them. This theory can be applied to any of the control

functions that contain the output frequency or the third harmonic of the output

frequency. The correction process is shown in figure 3.7.

The controller also uses the input voltage information to measure the input fre-

quency to the matrix converter. Multiple zero crossing hazards can occur in the

signals from the zero voltage detector. To prevent these hazards affecting the per-
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formance of the converter either a phase locked loop or some crude filtering of the

signal must be implemented.

The order of the three phases of the input voltage waveforms to the matrix con-

verter affects the operation of the control matrix. The controller's model of the in-

put voltage waveform model must agree with the voltages applied to the matrix

converter. A second zero crossing detector is required to provide the controller

with this input voltage phase order information. The controller can then detect the

phase order of the input voltages and correct the internal model accordingly. This

simple operation saves the necessity of checking the phase ordering of the mains

every time a matrix converter is installed in a new location.

3.6 Conclusions

The microcontroller family of processors are well suited to the task of controlling

power converters such as the matrix converter. The latest 16-bit processors with

their associated peripherals minimise the software overheads involved in the gen-

eration of PWM waveforms. The SAB80C166 was chosen for the implementation

of the prototype matrix converters due to the suitability of the processor and

peripherals.

The manipulation of the control matrix into a duty cycle matrix has been described.

The safe operation of the switches in a matrix converter must always be considered.

With these restrictions in mind, the basic design of a digital implementation has been

described. Problems associated with the accumulation of small phase errors

between the input voltage wavefo-rms and the Controller's model of the input wave-

forms must always be addressed in the implementation of a matrix converter.
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4.1 Introduction

This Chapter considers the implementation of the practical bi-directional switch

required for the implementation of a matrix converter. The choice of controllable

switching device is considered in the light of recent semiconductor developments.

The construction of a switch from discrete components is described and an

optimum design within the limits of present technology suggested.

The ratings for the devices used in the construction of the converter are calculated.

Data for the device ratings is given for a range of converter sizes and the method

of calculation is shown. The building of the hardware required to drive the chosen

switching device is explained. Minimisation techniques for this hardware are

reviewed and the optimum solution is presented.

The building of a general purpose gate driver for voltage controlled devices is

described in detail. Practical results for device characteristics for IGBTs using this

gate driver are given.

4.2 The Choice of Switching Device

Any switching frequency converter requires the use of some form of controllable

or semi-controllable switching devices. Recent years have seen a rapid increase in

the use and performance of semiconductor switching devices, particularly the use

of silicon based technologies. These technological advances have opened the door

to solutions that could not have been implemented fifteen years ago [1]. This

section will take a brief look at present switching device technologies and consider

their suitability for use in matrix converters.

4.2.1 Thyristors

This was the first and most rugged of the semiconductor power switching devices.

It has a four layer npnp structure. The device is turned on by a current pulse to the

gate. Once on the device will remain latched on until the current carried by the

device falls to zero. Thyristors are capable of very high current and voltage
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carrying capabilities, with devices available with ratings of 6000 Volts and

3500Amps.

Cathode

Figure 4.1. The Element Structure and Circuit Symbol for a GTO Thyristor

If two thysistor structures are connected in inverse parallel then a triac is formed.

This is a bi-directional device, but suffers from the same lack of turn off control as

the thyristor.

4.2.2 Gate Turn-off Thyristors

The GTO is used in many high power applications due to thyristor-like current

carrying capacity. The device offers low on-state losses, a high voltage blocking

capability and full gate control [4]. The device is manufactured as an array of

cathode elements to permit good gate access to the conducting regions to facilitate

the turn-off process. Unbalanced current sharing during turn off due to variations

in characteristics across the device can lead to high 16cal dissipation. For this

reason a GTO must have a snubber circuit to restrict the rate of rise of the anode

voltage. This snubber arrangement causes high switching losses and hence the

GTO can only be used at low switching frequencies. The structure and circuit

symbol for the GTO are shown in figure 4.1.
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Anode

Cathode

Cathode

Figure 4.2. The Structure and Circuit Symbol for an MCT

4.2.3 Mos Controlled Thyristors

The MCT is a thyristor type device that can be triggered on or off by a short pulse

on the MOS gate. It is comparable to the IGBT in switching speed, but has a

lower forward voltage drop leading to lower conduction losses. The devices have

high peak current carrying capabilities and very high dv/dt and di/dt ratings,

typically about 5000V4ts and 1000A4ts [6]. They may be suitable for use in

resonant converters, which have zero current switching. The MCT will be

available on a large scale commercial basis in the near future. The first devices will

be available with ratings of 1000 Volts and 30Amps.

4.2.4 Static Induction Transistors

The structure of this device was first proposed as far back as 1950. Developments

in the fabrication of silicon devices allowed the practical manufacture of these

devices. The SIT is a normally on device and this may cause protection problems

under gate driver fault conditions. The SIT requires a higher gate drive potential

than MOS gate voltage controlled devices.
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Drain

Figure 4.3. Structure and Circuit Symbol of a SIT

Since the SIT is a majority carrier device, conduction losses are higher than in

IGBTs and other conductivity modulated devices, although the switching times are

lower. This restriction makes the SIT unsuitable for general purpose power

electronics. The SIT has however been used in Japan for induction heaters and

uninterruptable power supplies [5].

4.2.5 Bipolar Junction Transistors

The BJT is a current controlled three layer device. It is faster than a thyristor type

of device and has high current carrying capabilities, with devices available with

ratings of 1200Volts and 800Amps. The device suffers from a characteristic

second junction breakdown problem. The switching frequency of BJTs is

restricted by the switching delays and the switching losses that are considerably

greater than in an MOS type device. The advantages of the voltage controlled

MOS style devices have led to them replacing BJTs in many power applications

4.2.6 MOSFETs

The power MOSFET is the fastest of all the currently available switching devices.

This device is capable of operating at MI-lz switching frequencies. The MOSFET

is a voltage controlled device that requires a high pulse of current to charge the

gate capacitance at turn on.
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P

N-

Drain

Figure 4.4. Structure and Circuit Symbol for a MOSFET

The switching losses in a MOSFET are low due to the fact that it is a majority

carrier device and that the switching times are therefore short. The MOSFET does

suffer from high conduction losses due to a relatively high, temperature dependent

on-resistance. There is a parasitic parallel diode present in the device structure. It

would be possible to utilise this diode in some applications but it is unfortunately

relatively slow. The structure and circuit symbol for the power MOSFET are

shown in figure 4.4. MOSFETs are available with power ratings up to 600Volts

and 50Amps.

4.2.7 Isolated Gate Bipolar Transistors

An IGBT is a hybrid MOS gated BJT [7]. The device combines the attributes of

MOSFETs and BJTs. The device has BJT conduction characteristics and the

general drive characteristics of a MOSFET. An IGBT has good forward voltage

blocking capabilities and is a normally off device. Devices are available with

ratings of 1200Volts and 400Amps. The impurity concentration in the p + of the

device must be carefiffly controlled to prevent the thyristor structure of the device

from latching. The IGBT can tolerate higher current densities than MOSFETs and

is rapidly replacing both MOSFETs and BJTs in high power, mid-frequency

applications. The characteristics of the IGBT make it a Very suitable active device

for use in switching power converters such as the matrix converter. The structure

and circuit symbol for the IGBT are shown in figure 4.5.
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Collector

4.2.8 The Future

The prospect of power devices based on Gallium Arsenide technologies in the near

future may represent a major breakthrough in semiconductor technology [8].

These devices could have a greatly reduced forward voltage drop that will

dramatically decrease conduction and switching losses.

A fully controllable bi-directional, high power switching device of suitable

characteristics for use in switching power converters is not yet available in a

practical form. This type of device is presently only available in the form of a

photo-electric device [9]. In these devices a laser is used to illuminate a piece of

silicon when conduction is required.

4.3 Bi-Direction Switch Configurations

The practical realisation of a Matrix Converter requires the use of a bi-directional

switch. Until device technology progresses to the point where such a device is

practical this bi-directional switch must be fabricated using discrete components

[10]. There are three possible configurations for the arrangement of the

semiconductor components to implement this switch:

• Diode Bridge

• Back-to-back IGBT with common collectors

• Back-to-back IGBT with common emitters
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Figure 4.6. Diode Bridge Bi-directional Switch Configuration

4.3.1 The Diode Bridge Bi-Directional Switch

A switching device may be placed across a diode bridge to create a bi-directional

switch, as shown in figure 4.6. This style of bi-directional switch has the

advantage of only requiring one controllable device and associated gate driver

circuit [11]. The main disadvantage of the diode bridge arrangement is that three

devices are conducting at any given time giving rise to relatively high conduction

losses. The switch would not be able to control the direction in which the current

can flow. The high component count and large conduction losses may lead to a

large and inefficient converter.

4.3.2 The Back-to-back IGBT Switch in Common Emitter Mode

Figure 4.7 shows a back-to-back IGBT arrangement for the bi-directional switch

[12]. The diodes in series with each IGBT are for reverse voltage blocking. These

diodes are required because IGBTs have no reverse voltage blocking capabilities.

The connection between the emitters of the IGBTs 'is not required for the

operation of the switch, but does improve the transient characteristics. The back-

to-back arrangement has the advantage of a lower overall component count than

the diode bridge arrangement, as shown in table 4.1.
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SA

SB

Figure 4.7. Back-to-back IGBT in a Common Emitter Configuration

In the back-to-back IGBT switch only two devices are conducting at any given

time. Lower device conduction losses than in the diode bridge arrangement will

therefore be achieved. The direction in which the current may flow in the back-to-

back switch can also be controlled by independent control of the IGBT gates. This

current direction control can be used to ensure the safe commutation of the current

path between switches. This current commutation method will be considered in

chapter 8. The connection of the devices in common emitter mode means that only

one isolated gate drive could operate both devices in the switch. The subject of

gate drives will be considered more fully later in section 4.6.

4.3.3 The Back-to-back IGBT Switch in Common Collector Mode

An alternative to the common emitter connection of the IGBTs is to connect the

devices in a common collector configuration, as shown in figure 4.8. This switch

configuration has all the advantages of the common emitter configuration, except

that the emitter of each device will be connected to either an input or an output line

of the converter.
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SA

SB

Figure 4.8. Back-to-back IGBT in a Common Collector Configuration

A matrix converter could be built with a separate heat sink for each bi-directional

switch. Each switch can be implemented using discrete devices. If the connections

for the back-to-back switch were to be made in common collector mode, then the

need for device isolation from the heat sink would be removed. This situation

occurs because the collector of an IGBT is usually connected to the tab in T0220

and TO3P packages. The cathodes of the diodes are also electrically common to

the collectors of the IGBTs. The cathode of a discrete diode is also usually

connected to the device's tab. This configuration would therefore reduce the

wiring complexity and lead to lower thermal resistances between the devices and

the heat sinks. The layout of this circuit on an individual switch heat-sink is shown

in figure 4.9.
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Vin Vout

Figure 4.9. Circuit Layout for a Back-to-back IGBT Bi-Directional Switch

Arrangement Built on an Individual Heat Sink

4.3.4 A Comparison of Comparative Circuit Semiconductor Costs

Table 4.1 gives a comparison of the number of semiconductor and passive devices

required to implement a matrix converter with a diode bridge or a back-to-back

IGBT bi-directional switch. The table also includes the component count for a

rectifier/inverter circuit and an inverter with a cOntrolled input bridge.

The diode bridge switch would give a matrix converter a high component count.

The back-to-back configurations would require fewer components, but would

require more IGBTs. The cost of controllable devices is greater than the cost of

diodes, and hence the lower component count may not lead to the lowest

semiconductor costs.
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MATRIX CONVERTER INVERTER

DEVICE Diode Bridge Back-to-back Diode
Rectifier

Controlled
Bridge

Diodes 36 18 12 12

IGBTs 9 18 6 12

Large Reactive
Components

o o 1 1

Semiconductor
Device Count

45 36 18 24

Table 4.1: Device Count for the Switch Configurations

It should be noted that a matrix converter constructed with switches implemented

in the diode bridge configuration would require fewer IGBTs than a controlled

rectifier/inverter circuit. The controlled rectifier approach still requires a large dc

link capacitor as well as inductors in the input lines [13]. The cost of this circuit

may prove to be higher than the matrix converter, making the matrix converter

attractive when sinusoidal input currents are required.

4.4 Device Ratings for Matrix Converters

The calculation of ratings for the discrete devices in the matrix converter switch is

presented in this section. The maximum instantaneous current flowing in any given

device for a given motor power rating is calculated. The maximum instantaneous

voltage across any given transistor or diode is also considered.



Chapter 4: Switching Devices and Gate Drivers 	 97

An ideal matrix converter under steady state conditions has been assumed. The

effects of unbalanced input voltages, starting currents, overload conditions, current

commutation problems, device losses and harmonic distortion have been ignored.

4.4.1 Device Current Ratings

The power taken from the supply to the motor can be calculated as follows:

P	 T IL .1 p cos(T)	 (4.1)

By rearranging an equation for the phase current, Ican be derived:

p,rms 

Ariv,.cosco	 (4.2)

For a matrix converter the maximum possible output line voltage can be calculated

for an input voltage of 415Volts as shown in equation 4.3:

VL =

= 4.415
2

= 360 Volts	 (4.3)

Therefore, by substituting in equation 4.3 into equation 4.4:

0.0016.P
p,nn, =	 f

COS k (p) (4.4)



0.00 160. -5.P1„.,	 = cos(T)

O. 00225. P.
COS(T)

(4.5)

Chapter 4: Switching Devices and Gate Drivers 	 98

The instantaneous maximum current passing through a given device in an ideal

matrix converter is then the peak value of this current:

4.4.2 Device Voltage Ratings

The maximum peak voltage seen across any given device in the converter, Vd,max,

is the maximum voltage between two lines of the three phase input voltages:

Vd,max = 240. NE .{cos(cot) — cos(wt +,)] 
wax
	

(4.6)

This maximum value may be calculated as shown in section 2.2.1.

Vd  = 24O.-5 f

= 588 Volts
	

(4.7)

4.4.3 The Semiconductor Device Ratings

For a matrix converter operating from a 415Volt three phase supply the required

voltage rating of the switching devices is 588Volts. Assume the converter is

connected to a motor or similar load with a power factor of 0.87. The required

current rating for the switching devices is then 2.6Amps for every lkWatt of rated

output power using equation 4.5.
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15V

-5V

OV	 IGBT E

Figure 4.10. Circuit Diagram of a Gate Drive Circuit with an

Individual Isolated Power Supply

A matrix converter designed to drive a 5kW motor would therefore require IGBTs

and diodes rated to take a maximum pulsed current of 13Amps. The diodes would

require a minimum reverse bias voltage blocking capability of 600Volts. The

IGBTs would also be required to have a minimum forward voltage blocking

capability of 600 Volts.

4.5 The Requirement for Isolated Gate Drive Power Supplies

To switch each IGBT in the converter a voltage must be applied between the gate

and the emitter of the device. Each device in the converter is floating on an input

line, an output line or a connecting line. Each switching device would therefore

require a gate drive circuit with an isolated power supply and an isolated control

signal. Every control signal wourd require an independent optical link to the gate

drive circuit.
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15V

ON'	 IGBT E

Figure 4.11. Gate Drive Circuit for Independent Control of a

Common Emitter Back-to-back Switch

This section considers the number of isolated supplies required for the devices in

the converter. Ideas on how the devices may be grouped to reduce the number of

independent gate drive power supplies are discussed.

4.5.1 One Gate Drive Supply for Each Device

The simplest method of driving the devices is to use one independent gate drive

circuit for each device in the converter. Each gate drive circuit would have to have

an independent isolated power supply. The number of independent gate drive

power supplies required would then be the number of controllable devices in the

converter. If the back-to-back cOnfiguration was used then the converter would

require eighteen independent supplies. Construction of the switches in the diode

bridge form would require nine isolated supplies. Each gate drive circuit would

take the form shown in figure 4.10. If a back-to-back switch configuration is used

then the required number of isolated power supplies for the gate drive circuits may

be reduced.
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OUT1	 OUT2	 OUT3

Figure 4.12. The Switch Matrix Layout for a Complete Converter Using

Back-to-back IGBT Switches in Common Collector Mode

4.5.2 The Number of Isolated Gate Drive Supplies Required for a Back-to-

Back Switch in Common Emitter Mode

The common emitter configuration of the bi-directional switch would allow the

same isolated gate drive supply to be used in the driving of both devices. This is

possible because each device requires a gate voltage with reference to the emitter

voltage. The connection between the emitters allows the sharing of the isolated

power supply. If independent control of the two devices in the switch is not

required then the circuit shown in figure 4.10 may simply be connected to both

devices.
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15V

OV	 IGBT E

Figure 4.13. Gate Drive Circuit a Common Collector Back-to-back Switch

If the independent control of each device is required for current commutation then

a circuit of the form shown in figure 4.11 may be used. The notation used for the

control signals refers to the devices as shown in figure 4.12. This style of gate

drive circuit would reduce the required number of isolated supplies to nine, whilst

maintaining the ability to control the direction in which the current may flow in the

switch.

4.5.3 The Number of Isolated Gate Drive Supplies required for a Back-to-

back Switch in Common Collector Mode

The back-to-back switch may be connected in common collector mode, as

described in section 4.3.3. In common collector mode the emitters of every device

would be connected to either a converter input or an output line. The devices can

then be grouped in sets of three with common emitters.. These sets are shown in

table 4.2. The labelling of the devices refers to the labels in figure 4.11.
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Group Switches

1 S 1A, S2A, S3A.

2 S4A, S5A, S6A.

3 S7A, S8A, S9A.

4 S1B, S4B, S7B.

5 S2B, S5B, S8B.

6 S3B, S6B, S9B.

Table 4.2. IGBT Groups for a Common Collector Back-to-back Switch

Each group of IGBTs will require only one isolated power supply for its gate

drivers. A circuit such as the one described by figure 4.13 may then be used. This

simplification reduces, to six, the number of isolated supplies required by a matrix

converter.

A standard rectifier/inverter circuit would require only three high side gate drives.

A controlled rectifier/inverter circuit would, however, require six isolated high side

gate drives. The matrix converter therefore has no disadvantage in comparison to

the back-to-back converter in terms of the IGBT gate driver requirements, even

when switch is implemented in a back-to-back configuration.

4.6 The Gate Drive Circuit

This section records the design, building and performance of an isolated gate drive

circuit suitable for operating IGBTs at high switching frequencies. A minimal

design has been implemented to reduce the size and complexity of the driver. The

driver has been tested at a high dV/dt to ensure correct operation in adverse

conditions.
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The gate drive has been designed for general use in driving floating IGBTs. Some

compromises in the design have been made so that the gate drive is suitable for

other applications besides the matrix converter.

4.6.1 The Operating Conditions

The gate drive is required to operate in switching power devices for a range of

variable speed controllers for AC motors. These circuits may require the circuit to

be able to withstand high values of dVidt with rapid repetition rates. The driver

will have the ability to operate in an electrically noisy environment. Some types of

converter, such as the matrix converter, will require a large number of gate drives,

and so the circuit must be relatively cheap and easy to produce in small batches.

For the purposes of control, silicon management and semiconductor losses, a low

propagation delay of signals through the driver circuit is desirable. Control

algorithms may also be easier to implement if the turn on and turn off propagation

delays are approximately equal. The ability to control the rise and fall times of the

gate signal may also be useful in some applications.

An IGBT typically has a maximum gate threshold voltage of about 5Volts, with a

maximum required gate charge of about 20nC. The maximum permissible gate

voltage for most devices is ±20Volts. The device requires the gate to be brought

down to OVolts on turn off. To prevent the device turning on under transient

conditions the gate voltage may be pulled down to -5Volts .

Under short circuit fault conditions it is possible to detect a significant rise in the

voltage \Tee. This voltage rise may then be used to turn the device off in a

controlled manner. In such a fault condition it is better to lower the gate voltage

to OVolts and then to -5 Volts rather than attempting to snap the device off too

quickly by pulling the gate rapidly down to -5volts [14].
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Figure 4.14. Block Diagram of the Gate Driver

4.6.2 The Circuit

Many simple circuits for driving IGBTs have been proposed [14], [15], [16]. For

the purpose of this application a TSC429 driver was chosen to drive the gate of the

device. The TSC429 is capable of a 6amp peak drive current and has a low output

resistance [17]. This device has a maximum output voltage swing rating of

18Volts, and therefore a compromise gate voltage swing of -5 Volts to +12Volts

was chosen. The use of this component greatly simplifies the circuit, whilst

maintaining performance. The control signal to the driver is received through an

opto-isolator that incorporates a Faraday shield. The output from the opto isolator

can then be used directly to drive the TSC429.

The gate driver board is powered from a high frequency isolation transformer.

This transformer is small and the design allows a large number of boards to be

powered from the same mains power supply. Two regulators are then used to

control the rectified and smoothed voltage waveforms. The common connection

for the circuit is connected to the centre tap on the high frequency transformer.

The basic layout of the circuit is described in a block diagram in figure 4.14. The

complete circuit diagram is shown in figure 4.15.
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luF

Figure 4.16. The Test Circuit for the IGBT Gate Driver

The gate drive is connected to the gate through a set of two resistors and a diode

so that the turn on and turn off gate resistance may be varied independently. This

will allow the independent shaping of both edges by the adjustment of the resistor

values.

4.6.3 Testing the Gate Driver

The gate drive circuit was built on a small printed circuit board. A test circuit was

built to test the operation of the gate drive under high values of dVidt, as shown in

figure 4.16. The board was tested using a 500Volt supply to generate a 5Amp

pulse of 21.1s, with a repetition rate of 51cflz and a clamped load. The propagation

delays in the gate drive circuit were measured. The effect of using different values

of gate resistance was examined and the propagation delay of the control signals

was measured.
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IRGBC2OF
Measured

IRGBC2OF
Data Sheet'

MG50Q2DS1
Measured

MG50Q2DS1
Data Sheet'

Turn On
Delay

25ns(18Ons)2 35ns 350ns(500ns)2 400ns

Rise Time 3Ons 18ns 320ns 300ns

Turn Off
Delay

45ns(16Ons) 2 9Ons 980ns(1100)2 800ns

Fall Time 210ns 242ns 180ns 200ns

Table 4.3. Switching Delays for IGBTs Using the Designed Gate Driver

4.6.4 Test Results

Figure 4.17 shows the effect of the gate drive turn-on resistance on the rise time of

the load voltage. The damping of the waveforms and increased delays caused by

adding more gate resistance should be noted. If the capacitance between the gate

and the emitter of the device is increased then the switching times will also

increase. The effect of this extra capacitance is shown in figure 4.18. Both these

effects are seen because the gate drive must charge the gate capacitance before the

device will be fully turned on. The higher the gate capacitance and resistance, the

slower the turn on time for the device.

The propagation and state change for the delays for the gate drive driving a single

IRGBC2OF with 5052 of gate resistance can be found from figure 4.18b. These

delays are shown in table 4.3. The figures for the device from the manufacturer's

data sheet, [18], are also included for comparison. The measured and supplied

data for the Toshiba MG50Q2DS1 devices have also been included. The

propagation delay of the control signals was measured.. The turn on delay was

found to be 155ns and the turn off delay was 115ns.

'Based on Manufacturer's Conditions
2 Bracketed figures include the gate driver propagation delay as well as device
propagation delay.
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Figure 4.17a. The Characteristics for an IRGBC20. R mon =Oa, Rm0ir=0S2•
1. Load Current, lAmphliv. 2. Load Voltage, 200Volts/div. 3. Control Signal, 10Volts/div.

20Ons/div

Figure 4.17b. The Characteristics for an ERGBC20. R g,0n =330, Rg,0ff=1000.
1. Load Current, lAmp/div. 2. Load Voltage, 200Volts/div. 3. Control Signal, 10Volts/div.



1

2

3

1

2

3

Chapter 4: Switching Devices and Gate Drivers 	 110

20Ons/div

Figure 4.17c. The Characteristics for an IRGBC20. Rgon =100S2, Rg,off=100C2•
1. Load Current, lAmp/div. 2. Load Voltage, 200Volts/div. 3. Control Signal, 10Volts/div.

20Ons/div

Figure 4.18a. The Characteristics for An IRGBC20s. Rgon = l0L2, Rg0ff=100S2
1. Load Current, lAinp/div. 2. Load Voltage, 200Volts/div. 3. Control Signal, 10Volts/div.
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20Ons/div

Figure 4.18b. The Characteristics for Two ERGBC2Os Driven by
the Same Gate Driver. Rg,..=100., Rgmff=100S2•

1. Load Current, lAmp/cliv. 2. Load Voltage, 200Volts/div. 3. Control Signal, 10Volts/div.

4.6.5 The Construction of a Bi-Directional Switch for an Experimental

Matrix Converter

For the building of a flexible experimental 5kWatt matrix converter, a self

contained bidirectional switch unit has been designed and built. Each switch is

built on a separate heat sink. The switch consists of a pair of back-to-back IGBTs

in a common collector configuration, as shown in figure 4.8. No isolation is

required between the devices and the heat sink because the collector of the IGBTs

and the cathode of the diodes are common. Each switching device is driven by a

dedicated gate driver circuit as described above. The matrix converter requires

nine of these bi-directional switch units. Figure 4.19 shows a single bi-directional

switch unit complete with two independent IGBT gate drivers and the device heat

sink.
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Figure 4.19. A Bi-Directional Switch Unit with Independent IGBT Gate

Drivers

4.7 Conclusions

A brief overview of the state of the art semiconductor switching device technology

has been presented. The IGBT has been chosen as the most suitable device for the

implementation of a matrix converter at the present time. Consideration has been

given to the configuration of these uni-directional switching devices to realise a

practical bi-directional switch. The cost implications of the various bi-directional
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switch configurations have been examined. The required device ratings for the

discrete devices used in the realisation of the switch have been reviewed.

A simple, easily manufactured gate driver for prototype AC motor drives has been

developed and tested. The circuit contains the minimum of components whilst

maintaining high performance. It is capable of short and symmetrical propagation

delays and high frequency switching. An experimental bi-directional switch unit

has been built and tested using this gate driver.
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5.1 Introduction

When controlling a matrix converter it is important to ensure that there are never

any short circuits between the input lines. There must also be no uncontrolled open

circuits of the output lines. If an output line was to become an open circuit it would

cause voltage spikes due to the open circuiting of the motor winding. Controlling a

converter with perfect switches would make avoiding these situations a relatively

simple task. Safe operation with perfect switches can be achieved by ensuring that

the three control signals relating to each output line have no overlaps or dead times.

When using semiconductor switches input short circuits or output open circuits may

occur due to the finite switching times and propagation delays of the devices [1]. A

possible effect of these delays is shown in figure 5.1. A momentary input short

circuit or output open circuit may cause damage to the devices. A mechanism for

preventing these situations from occurring must therefore be implemented.

This Chapter attempts to categorise and analyse existing current commutation

methods. A new and more robust current commutation strategy is also proposed.

This new strategy combines the advantages of the previous methods whilst reducing

the effects of their disadvantages.

5.2 Possible Current Commutation Strategies

In the past, researchers have suggested ideas that overcome the current commu-

tation problem by hiding it with capacitor and snubber circuits [2],[3]. Some papers

have produced control methods to overcome the problem [4], [5], [6]. • All these

methods have significant drawbacks with the size of the required reactive

components or susceptibility to failure due to non-ideal conditions. The proposed

new semi-soft current commutation method reduces the probability of possible

implementation problems, uses no reactive components and is simpler than some of

the alternative methods.
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Figure 5.1. The Control and Current Waveforms for a Transition in Current

Path Between Switch 1 and Switch 2

There are three basic current commutation strategies. Other strategies have been

proposed, but they can be categorised as variations of these three.

• Dead Time.

• Overlap Time.

• Semi-Soft: a. Uni-Directional Current Flow.

b. Bi-Directional Current Flow.

The term 'semi-soft' current commutation is introduced and defined later in this

chapter.



Chapter 5: Current Commutation

INI

IN2

IN3

IA	 1B

2A	 2B

3A	 3B

a

OUT 1

119

Figure 5.2. The Bi-directional Switches for One Output Phase

5.2.1 Dead Time Current Commutation

The simplest solution for preventing short circuits between input lines is to

introduce dead times between the switching periods of each switch. This is the

method used in standard inverter circuits [7]. The control waveforms for a current

path change between switch 1 and switch 2 ate shown in figure 5.3. The control

waveforms for both halves of the semiconductor switch are identical. Any of the

switch arrangements described in Chapter 4 can be used if this form of current

control is used. The size of the dead times, td, may be altered to suit the

characteristics of the devices used in the converter.
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Figure 5.3. Switch Control Waveforms for Dead Time Current Commutation

If this method of current control is used then provision in the power circuit must be

made to control the voltage spikes caused by the temporary open circuiting of the

motor. This may take the form of a clamp circuit or a capacitor to limit the size of

the spike.

The switch patterns for the current path hand-over between switches may be shown

in the form of a state transition diagram. The state transition diagram for dead time

operation is for one output phase in figure 5.4. The transitions between the states

are caused by the control waveforms from the controller relating to the three

switches for the given output phase. In more complex current commutation algo-

rithms, the output current direction, Ia, is also a state transition variable. The binary

numbers within each state refer to the state of each device in the converter. The

notations for these state variables are defined in figure 5.4. The state transition dia-

grams for the other two output lines are identical, except that the control signals

and current direction refer to the particular output phase.
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Figure 5.4. State Transition Diagram for Dead Time Current Commutation

5.2.2 Overlap Time Current Commutation

An alternative to dead time operation would be to introduce overlap times between

switching periods [4]. This method would have the advantage of reduced switching

losses and no open circuits on the output lines. This method of current

commutation would require inductance in each of the input lines to minimise the

short circuit currents between the input lines. These inductors would have to be

relatively large and would produce higher converter losses. The state transition

diagram for this switching period overlap scheme for one output phase is shown in

figure 5.5.
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Figure 5.5. State Transition Diagram for Overlap Time

Current Commutation

Overlap and dead time current commutation have the advantage that control of the

current direction within each switch is not required. A switch implemented with

just one controllable device could therefore be implemented, as shown in figure 4.6.

This would reduce the number of gate driver circuits required. In the future a truly

bi-directional controllable semiconductor switch may become available. Overlap or

dead time operation of the converter switches would then become essential to take

advantage of the circuit simplification the new technology may allow.

5.2.3 Semi-Soft Current Commutation With Uni -Directional Current Flow

A method of combining the advantages of both dead time and overlap time current

commutation is to consider the direction of the output current at the time of switch

state change. This current direction can then be used to pass the current between

the switches in a controlled manner [5]. A switch implemented in such a way that

the direction in which the current may flow is controllable is therefore required.
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In this method, only the switch in the current carrying direction is closed. This

allows the current conduction path to be passed between the switches with all the

advantages of both overlap and dead time operation. There will be no short circuits

between the input lines and no open circuits on the output lines. There will, how-

ever, be additional states to commutate the current between the two halves of the

switch when the output current changes direction or is at a low level.

This method of current commutation has the disadvantage that the current direction

must be detected correctly. Incorrect detection may occur due to factors such as

electrical noise within the drive. At start-up and in low load situations the output

current may be too small to guarantee correct current direction detection.

This method of current commutation therefore requires additional detection to

establish when the current is entering the near zero zone. This extra information is

used as part of the state changing variable and adds to the complexity of the state

machine implementation. This method is shown for one output phase in the state

diagram shown in figure 5.6.

The switch control signals could change state whilst the output current is in the near

zero region. In this situation the state machine will wait until the current has a

definite direction before allowing a change of switch state.

A variation on this would be to introduce extra states to the state machine so that
-

the switch states can be changed in the near zero current region. These extra states

could revert to dead time operation for this condition. The voltage spikes caused

by the open circuiting of the motor Would be smaller than at other times due to the

low current flowing in the windings. This would produce a scheme of the type

proposed in [6]. The state diagram for the state machine for this type of current

commutation is shown in figure 5.7.
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• Figure 5.6. State Transition Diagram for Semi-Soft Current Commutation

with Uni-Directional Current Commutation

5.2.4 Semi-Soft Current Commutation With Bi-Directional Current Flow

The current can be commutated - from one switch to the next by providing an

overlap in the switching periods of the conducting halves of the bi-directional

switches [9]. The non-conducting 'half of the switch is then closed a short time after

the current path hand-over has been achieved. This current path hand-over is

shown in figure 5.8 for a path change from input line 1 to input line 2, with the

current in a positive direction.

This method of current control will allow zero current switching of the IGBTs if the

outgoing device is reverse biased by the turn on of the inboming device. This situ-

ation will occur when the voltage on the input line of the incoming switch is greater

than the voltage on the input line of the outgoing switch in the conduction path.
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Figure 5.7. Semi-Soft Current Commutation With Uni-Directional

Current Flow, and Near Zero Current Zone State Changing

This method of current commutation will . thdrefore achieve a 50% reduction in the

average switching losses in a matrix converter because there is a 50% chance of the

reverse biased situation occurring. For this reason, an appropriate term for this type

of control is semi-soft current commutation. The State diagram for one output

phase for this form of current control is shown in figure 5:9.

If the output current direction is wrongly detected, in the near zero output current

region for example, then the control method will operate' as if dead times had been

inserted. This will occur because the switch will look open in the true current di-

rection if the wrong half is closed first. However, this may be the best way to cope

with this low current situation.
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Figure 5.8. Control Waveform Diagram for Semi-Soft Current Commutation

with Bi-Directional Current Flow

5.3 Implementation

The current control algorithms defined above require a quicker and more accurate

response than is presently available, with microprocessors. This current control

must therefore be implemented externally to : the processor. It is possible to

implement the current control using discrete logic devices and an oscillator, but the

circuit would become complex and the simplicity of the control hardware would be

lost. An alternative is to use programmable logic arrays which would allow the

current control for each phase to be implemented in a single device.
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Figure 5.9. State Transition Diagram for Semi-Soft Current Commutation

With Bi-Directional Current Flow
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The use of logic arrays for the implementation of current commutation algorithms

has a number of advantages. The ability to be able to program a complex algorithm

with a single, low cost device would- maintain hardware simplicity. The state

machine approach would also ensure- safe operation of the devices even if the

control waveforms from the processor become corrupted.
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Figure 5.10. A Flow Diagram for The GAL High Level Programing Language

5.3.1 The Use of Logic Arrays

The proposed control sequences may be easily implemented using programmable

logic arrays. The control sequendes proposed "above may be implemented using a

high level programming language to program a Generic Array Logic device (GAL).

Each state in the state transition diagram is assigned a seven digit binary number.

This state number corresponds to the required output vector for that state plus an

internal identification bit (ii). The internal identification bit distinguishes between

any states with common output vectors. Using this method of assignment optimises

the use of the programmable logic device because the state variables are also the

output vectors.
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Figure 5.11. The Current Direction and Near Zero Current Detectors

for One Output Line

The input vectors required to trigger the transitions between the states can then be

defined. The input vector consists of the control signals from the controller and the

current direction signal. This process is shown in the form of a flow diagram in

figure 5.10 for a state change between switch 1 and switch .2 using semi-soft current

commutation with bi-directional current flow.

5.3.2 Safe Switch operation Using a Programmable Logic Array

The possible output vectors of the logic array are .fixed and transition between the

states will only occur if the correct input vector is received. If the appropriate input

vector is not received then the state machine will not change state. This mechanism

would ensure that no short circuits between the input lines would be caused by

corruption of the control waveforms from the microcontroller.
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Figure 5.12. The Connections to the Programmed Logic Array

5.3.2 Programming the Logic Array

A compiler calculates the product terms and prepares a file that is used to program

the device. Any current commutation algorithm that can be defined as a state

diagram may be implemented using this method. The current direction and near

zero current signals may be obtained from a detection circuit such as the one shown

in figure 5.11.

A programmable frequency oscillator can be used to provide the clock signal for the

GAL. The period of the clock is the time spent in each state. This allows the time

constant of the sequencer to be altered to suit the time delays of devices used in the

converter. An identical array is used for each output phase. The general GAL

circuit used for the first output phase is shown in Figure 5.12. The signal EN is the

chip enable signal for the GAL that may be pulled low under a fault condition to

disable the output signals. In a converter implementation the three current
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commutation controllers would be identically programmed but would use the

control and current waveforms for the relevant output phase.

5.4 Conclusions

The method used to commutate the current path between the switches in a matrix

converter is important. The creation of short circuits between the input lines and

open circuits on the output lines due to finite switching delays in the semiconductor

devices must be avoided. If these situations are allowed to occur then the converter

will be unreliable due to the stress on the devices. Four fundamental methods of

dealing with current commutation have been described. Some variations on these

methods have been discussed.

The design and building of a state machine to allow current commutation between

switches has been described. A method of semi-soft current commutation with bi-

directional current control has been selected as the preferred method of current

commutation due to its inherent simplicity and robustness.
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6.1 Introduction

This chapter presents an investigation of the semiconductor device losses in a

matrix converter. The effects of different approaches to the PWM waveform

generation and current commutation control on the power losses of the converter

are examined. The effect of the switching frequency on the converter losses is

considered. A comparison is made of the power losses and the heat sink rating for

a matrix converter and a rectifier/inverter circuit.

6.2 The Losses in the Switching Devices

This section considers the dominant factors that influence the magnitude of the

semiconductor losses in a matrix converter. This will allow examination of the size

of the heat sink required to dissipate the semiconductor losses in the converter.

These semiconductor losses consist of conduction and switching losses. The

conduction losses due to the voltage drop across the IGBT and the diode when

they are conducting. The switching losses are due to the finite switching times of

the IGBTs. The magnitude of the switching losses in the matrix converter is

dependent on the method of current commutation adopted in the converter and on

the type of PWM generation used.

6.2.1 The Conduction Losses

The conduction losses in any semiConductor device are due to the forward voltage

drop across the device when it is conducting. This voltage drop is variable with

both junction temperature and collector current. The junction temperature is also

dependent on the collector current.

(6.1)
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The average power dissipated in a given device is the product of this voltage drop,

the average line current and the average duty cycle of that device, (4.

Pconduction = Vce • I c•(ta/t)

	

(6.2)

It can be assumed that the switching times of the switches are negligible in

comparison to the conduction time. The conduction losses for one output phase of

the converter can therefore be calculated as the sum of the conduction losses in

each switch in that phase, as shown in equation 6.2. The conduction loss in a

given switch is the product of the forward voltage drop, the average current

flowing in the switch and the duty cycle of the switch, d n , as shown in

equation 6.3.

Pcond,phan = Elyceni)+ (VAIfid

n=3 r

(6.3)
n=1

Where: v Saturation voltage of the IGBT I = Collector current in the IGBT

= Forward voltage of the diode I f = Forward current in the diode

At any given time only one diode/IGBT pair will be conducting for each output

line. If it is assumed that the switching time delay is small in comparison to the

total conduction time of the switches then the donduction loss can be calculated for

one set of devices as if they are conducting • all the time. This is shown in

equation 6.5.

Pcond,phase I 1 • ( -ce vf)

	

(6.4)

In a rectifier/inverter circuit either the freewheeling diode or the IGBT would be

conducting in the output bridge [1]. A pair of diodes would also be conducting in

the input bridge as shown in figure 6.1.

ce,)Pcond,phase 4.(0.91. Vce,1G8T + 1.09. fi dlode	 (6.5)
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Figure 6.1. A Rectifier/Inverter Circuit

6.2.2 The Switching Losses

The switching losses per switch in the matrix converter are calculated as the

product of the switching frequency and the switching energy loss per pulse, E

for a given device. The switching energy loss per pulse is usually given in device

data sheets for given conditions.

Pnvitch ,phase	 E 10-if
	

(6.6)

The total power loss for a matrix converter can then be calculated. The total

losses are equal to the sum of the switching losses and the conduction losses, as

shown in equation 6.7.

Ptotal =	 Fond ,phase Psvach,phase)
	

(6.7)

The contribution made by the conduction losses and th,e switching losses to the

total losses in a matrix converter are shown graphically in figure 6.2.
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Total losses for 5kW converter (Watts)
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Figure 6.2. The Composition of the Matrix Converter Semiconductor Losses

6.3 Methods of Switching Loss Reduction

The characteristics of the chosen devices in a matrix converter determine the

conduction losses. The switching losses may also be reduced by careful selection

of devices. However the switching losses can be reduced for a given switching

frequency if consideration is given to the method of current commutation

employed and the PVVM switching patterns used.

6.3.1 Switching Loss Reduction Using Semi-soft Current Commutation

The switching losses can be reduced by the implementation of a suitable method of

commutating the current from one conducting switch to the next, such as semi-soft

current commutation that was described in Chapter 5. . This method of current

control will allow zero current switching of the IGBTs if the outgoing device is

reverse biased by the turn-on of the incoming device.

21000
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Figure 6.3. The Areas Probability of Where One Input Phase is at a Higher

Potential Than Another

This reverse bias situation will occur when the voltage on the input line of the

incoming switch is greater than the voltage on the input line of the outgoing switch

in the conduction path. The probability of the incoming input line being at a

greater potential than the outgoing input line is equal to the probability of a sine

wave being greater in value than a-sine wave with 2/3 phase shift. By inspection it

can be seen that this probability will -be 50%; as shown in figure 6.3. This reverse

biasing will therefore occur in 50% of the switch state changes. This method of

current commutation will reduce the switching losses in a matrix converter by

50%.

6.3.2 Switching Loss Reduction Using Semi-Symmetrical PWM Waveforms

The switching losses can also be reduced by 33% with the implementation of a

PWM method in which the last in a set of three switching periods becomes the first

switching period in the next set of three switching periods.
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a. Non-symmetrical PWM

tb	 tc

b. Semi-symmetrical PWM

Figure 6.4. The Control Waveform Sequences for Semi-Symmetrical and

Non-Symmetrical PWM

Instead of a conventional order of switch Si, switch S2, switch S3, switch Si,

switch S2, switch S3 and so on, the order becomes switch Si, switch S2, switch

S3, switch S3, switch Si, switch S2 and so on. This method has been termed

semi-symmetrical PWM. This change to the PWM generation scheme will affect

the characteristics of the switching frequency harmonics. The switching sequence

for semi-symmetrical PWM is shown in figure 6.4.

6.3.3 Total Switching Loss Reduction

The above semiconductor loss reduction methods will give four switching pattern

variants for a matrix converter switching patterns:

• Basic matrix converter with dead-times and non-symmetrical PWM.

• Matrix converter using semi-symmetrical PWM.

• Matrix converter with semi-soft current commutation.

• Matrix converter using semi-symmetrical PWM and with semi-soft current

commutation
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Figure 6.5. The Effect of Switching Loss Reduction Techniques on the Total

Converter Losses

If both switching loss reduction methods are implemented on the matrix converter,

the switching losses will be reduced by 66%. The average number of switch state

changes giving rise to a switching loss will be reduced from nine per switching

cycle to three per switching cycle.

The inverter has six hard switch state changes per switching cycle. Therefore the

matrix converter could have lower. switching losses than a basic inverter.

Depending on the chosen switching frequency, these savings could compensate for

the extra conduction losses that are inherent in the matrix converter structure. The

effect of implementing both semi-soft current commutation and semi-symmetrical

PWM on the switching losses of a matrix converter is shown in figure 6.5. The

reduction in switching losses for each technique implemented independently is also

shown.
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6.4 Calculation of Semiconductor Losses and Heat Sink Rating

To quantify the semi-conductor losses in any circuit, assumptions have to be made

about the behaviour of the device. The following equations are derived from

linearizations of the characteristic graphs given in IGBT data sheets. The

equations allow a good approximation of the conduction and switching losses in

the matrix converter to be determined. In some cases iteration is necessary as

variables are interdependent. The equations have been used to develop a spread

sheet program which allows the effect of changing various variables on the

converter losses and the size of the heat sink to be modelled.

The fixed variables used for the spread sheet are dependent on the supply used and

on the devices chosen:

1. The Maximum Output Volts (=0.866.V 1). [Vout]

2. The Total Thermal Resistances in the devices. [Rth]

3. The Forward Voltage Drop at given Temperatures. [Vee]

4. The Maximum IGBT Junction Temperature. [Ti]

5. The energy loss per pulse under given conditions. [Eloss]

The user defined variables on the spread sheet are dependent on the environment in

which the converter is used and on the required converter performance-.

1. The Ambient Air Temperature. [Tail]

2. The Power Output cif the Motor. [P1

3. The Power Factor of the Motor. [(1)]

4. The Switching Frequency. K]

The phase current [Ip] for the motor is calculated from the output power and the

power factor of the motor:

I
P
 -  r- P
 11 3 - 0- Vr,out (6.8)
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6.4.1 Estimation of the Switching Losses

The IGBT switching loss per pulse has to be scaled for the defined junction

temperature and collector current under which it is operating. The junction

temperature and the switching loss per pulse are proportional to each other and

this will therefore create an iterative loop.

[	 (t t d)]	 p]
.EE switch—le:5JY = 1+	 #	 loss,d • r

Id

Thus the switching power loss for each hard switching on and off of a device is:

Pswitch = -fs • Eswitch—loss,Tj
	

(6.10)

The total switching loss depends on the PWM scheme implemented and on the

current commutation methodology that is adopted. The switching losses are then

proportional to the number of hard switching switch state changes per cycle in the

converter [Ks], which are shown in table 6.1. The average switching loss in each

phase can therefore be calculated.

Pswitch dotal = Ks • Psviich
	

(6.11)

6.4.2 Estimation of the Conduction Losses

The forward voltage drop across the IGBT is dependent on the phase current and

the operating junction temperature of the device:

Vce,IGBT Vcd,d •[(T). 

	 	

(6.12)

(6.9)



P	 — 3.Pcond,lotal	 cond,phase (6.14)
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Switching Strategies Number of Lossy Switch State
Changes

Dead-times and non-symmetrical
z '	 • PWM

9

Semi-symmetrical PWM 6

Semi-zero voltage switching 4.5

Semi-symmetrical PWM with semi-
zero voltage switching

3

Table 6.1. Number of Lossy Switch State Changes

The forward voltage drop of the diode is calculated in the same way except that

the junction temperature will be different from that for the IGBT. This will have to

be calculated from the total power dissipated and the heat sink temperature. This

creates another iterative loop.

The conduction loss per phase may then be calculated assuming that one

bi-directional switch of devices is always conducting. Equation 6.3 can therefore

be rewritten:

Pcond,phase = 1 p • free,IGBT +7ce,diode)

	

(6.13)

Because the matrix converter has three output phases the total conduction losses

are given by:



Ptotal • Ah,IGBT • Rth,diode Ti,IGBT • Rth,diode Tj,diode • Ah,IGBT 

I?rh,diode Ah,IGBT
Tsink

From this information the minimum total heat sink rating can be calculated:

Tsink	 .
Heat Sink Rating — 	

— 
Tair K / Watt

• total
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6.4.3 The Total Device Losses and Heat Sink Rating

The total power loss for the converter is the sum of the total switching and

conduction losses as shown in equation 6.15.
•

= 'witch dotal Pcond ,total
	

(6.15)

Using this total power loss and the thermal resistances of the devices it is possible

to calculate the temperature of the heat sink, as shown in figure 6.6.

(6.16)

Where:

=	 +thCS Rth,JC

Aka = Case to Sink Thermal Resistence

Akfc = Junction to Case Thermal Resistence

(6.17)

6.5 Comparison of Losses for a Matrix Converter and an Inverter

This section compares the semiconductor losses in a matrix converter and an

inverter that employs similar semiconductor components. The calculations are

based on a 5kWatt experimental matrix converter described in Chapter 9. The

IGBTs used are IRGBC20 600Volt, 13 Amp devices. The diodes used are

MUR860 600Volt, 8Amp devices.
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Figure 6.6. Thermal Resistance's for a Bi-Directional Switch

The methods described above for calculating the device losses and the heat sink

ratings have been used to create a spread sheet program in Lotus 123. The

estimation program enables the effects of altering the switching frequency and

power rating of a matrix converter employing these devices to be studied. The

effect of the four switching style variants on the total converter losses has been

examined as shown in figure 6.5. The effects of output power and switching

frequency on the comparative losses of the matrix converter and the inverter have

also been investigated, as has the effect of output power and switching frequency

on the rating of the heat sink.

Besides the information given in device data sheets [3,4], the following constants

have been assumed for this program:

\Tout = 360Volts

Tair = 30°C

T.max = 150°CI

4) = 0.866
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Total Semiconductor Losses (Watts)

Switching Frequency (Hz)

Figure 6.7. Total Power Losses Against Switching Frequency

for a 5kWatt Converter

Figure 6.2 showed how the components of the total power loss are affected by the

switching frequency of the converter. It can be seen that an increase in switching

frequency has a small effect on the conduction losses due to the increase in

junction temperature.

The variation of power loss with switching frequency for a matrix converter with

semi-soft current commutation and semi-symmetrical PWM is shown in figure 6.7.

The power losses in an inverter employing similar components are also shown for

comparison. It can be seen that as the switching frequency increases, the

difference between the power losses decreases. At higher switching frequencies

the matrix converter will become more efficient than the inverter. It should be

noted that the losses in the DC link capacitors of the inverter have not been

included in these semi-conductor loss calculations.
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Total Semiconductor Losses (Watts)

Output Power (Watts)

Figure 6.8. Total Power Losses Against Output Power

for a Switching Frequency of 10kHz
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Figure 6.9. Minimum Combined Heat Sink Rating Against Output Power

for a Switching Frequency of 10kHz
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Figure 6.8 shows how the power loss varies with the output power of the

converter. A comparison with the inverter is also given. The effect of this power

loss on the required minimum rating of the heat-sink is shown in figure 6.9.

,.
6.6 Conclusions

This chapter has described some of the work carried out to estimate the minimum

ratings for the switching devices and their associated heat sink in the Matrix

Converter. A series of measures to reduce the switching losses of the matrix

converter have been described. The semiconductor power loss has been estimated,

allowing the investigation of the converter efficiency. From these losses an

estimation of the required total heat sink rating has been made. All these figures

have been compared to an inverter using the same principles.

It has been shown that the matrix converter has semiconductor losses of the same

order of magnitude as an inverter. If a switching frequency above 16kHz is chosen

then the matrix converter becomes a more efficient converter than the

rectifier/inverter circuit. The size of heat sinks required by the two converter

topologies are therefore very similar if a relatively high switching frequency is

chosen.
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7.1 Introduction

This chapter mathematically investigates the effects of the switching frequency in a

matrix converter. • A mathematical model is developed of the harmonics that the

switching frequency generates in the control waveform. This is used to model the

harmonics in the output voltage waveform from the converter. The results are

presented graphically with the aid of spectral maps.

The use of the mathematical model can be extended to examine the possibility of

harmful subharmonics to the output frequency caused if a matrix converter is

operated at low switching frequencies. The harmonics associated with the

switching frequency in the input current waveforms can be examined. The

problems associated with providing a circulation path for the switching frequency

harmonics can therefore be addressed.

7.2 The Calculation of the Nature of the Harmonics

7.2.1 The Mathematics

In order to establish the principles involved in mathematically modelling the

waveforms in the converter, consider a basic sinusoidal modulation function as

defined in equation 7.1

Ac = 1(1 + M cos(co ct))
	

(7.1)

The control function is uniformly sampled at a frequency cos. The height, ic, of the

control function above the time axis at a given sampling point will give the switch

duty cycle.

Let:	 x = cost

y=o)ct
	

(7.2)

and: n = order of control frequency harmonics

m = order of switching frequency harmonics



(7.4)

(7.5)

(7.6)

(7.7)
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This will give a periodic pulse train of pulses of width lc every seconds, which

corresponds to the periodic variables x and y. This pulse train can therefore be

expressed as a double Fourier series in terms of x and y as derived in equation 7.14.

This series win give a pulse train for the uniformly sampled series derived from the

modulation function. This process is shown pictorially in figure 7.1.

es3

F(x,y 1 )=I-a0 (y3 +E[a„,(y1)cos(mx)+ b„, (y1 ) sin(mx)]
m=1	 (7.3)

Where

a„, (y 1 ) =12iF(x,y1)cos(mx)dx
7r 

0

and
1 27r

b(y1 ) = f F(x,y1)sin(mx)dx

These coefficients are functions of y only. These values are also periodic with

respect to y and can therefore also be represented by a Fourier series for all possible

values of y:

00

am (y)= Xcom + I [c„„, cos( ny) + dnn, sin(ny)]
n=1

cn. = —
17

am(y)cos(ny)dy
ir

0

dn. = —
17

b(y)sin(ny)dy
0



II,

1/2

\
	 %
21r

0

-

-

\\
X

'T

-

X

(7.8)

(7.9)

Chapter 7: Switching Frequency Harmonics 	 154

Figure 7.1. The Control Waveform

P.

b.(y)= X eo. +1[en. cos(ny)+ f,„, sin(ny)]
n=1

12g
en. = — f bm (y) cos(nAdy

r

fn. =-1- 2i b„,(y)sin(ny)dy -
re 0

If the equations for am(yi) and bm(yi) given in equations 7.4 and 7.5 are

substituted into the series given in equations 7.7 and 7.9 then the expanded

equations become:

0
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,„..12N2i5F(x,y)cos(mx)dx]cos(ny)dy]
Ir o z 0

=	 ili.F(x,y)cos(mx)cos(ny)dxdy

= y71--e [5f F(x,y)cos(mx + ny)dxdy + F(x,y)cos(mx — ny)dxdyi

(7.10)

d„,„ = 2P-r[21:F(x,y) cos(mx)cbc]sin(nAdy]

= if F(x,y)coEy. s(mx)sin(ny)dxdy

.L[ff F(x,y)sin(mx + ny)dxdy + F(x,y)sin(mx — ny)dxdy]

(7.11)

=
ric—1 

f F(x,y)sin(mx)dx]cos(nAdy]

r",(
'Zj j kx, y) sin kmx i cosk nyicady

=	 F(x,y)sin(mx + ny)dxdy + F(x,y)sin(mx — ny)dxdy]

(7.12)

= —
1 1 1-1

F(x,y)sin(mx)dx] sm(ny)dy]
Rt 0

1
= 7r-2 if F(x, y) sin(mx) sin(ny)thcdy

= 271.21 {ff F(x,y)cos(mx — ny)dxdy — if F(x,y)cos(mx — ny)dxdyl

(7.13)
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Equations 7.6 and 7.8 are substituted into equation 7.13; then equations 7.10

to 7.13 substituted into this new equation; and then like terms are collected to
produce:

1	 r

	

F(x,y) =	
r
jF(x,y)dxdy

	

27r1

▪ 	

2	 [Cay COS(nY) SnySin(nY)]

1 x,-r
+ 2 /3 2 Zdirr 1 C 1wE COS(MX) SmxSin(MX)]

1

P	 n---11 mx"Y
+ 2 2 E X[

C 	 cos(mx + ny) + S„„y sin(mx nY)1

Where:

Co = ff F(x,y)cos(0)dxdy

Se = fiF(x,y)	 dxdy

(7.14)

The first term of equation 7.14 gives the DC component of the PWM waveform.

The second component will represent the control frequency and its associated

harmonics. The third term relates to the fundamental of the switching frequency

and its harmonics. The final term models the harmonics of the control frequency

associated with each of the switching frequency harmonics. To evaluate

equation 7.14 it is necessary to find a solution to the double integrals.

7.2.2 The Solutions

To achieve a real solution to the equation the terms So and Co are combined:

Dag

Co ± iSe = f f F(X,y)ei9dXdY
	

(7.15)
0 0
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The height of the pulses in the pulse train will be considered to be unity. The first

integral represents the area of a given pulse. In evaluating this area it must be

remembered that the pulse width is sampled at the beginning of the cycle.

Drh,

Cmx+ny = f el(mx+")dxdy
00

27r

= —	 [e4mx+")k —
mY 0

Where n# 0 and m � 0

(7.16)

The term e inY in equation 7.16 can be ignored as it is periodic with respect to y.

Equation 7.16 can then be compared to the form equation 7.17, which is the

definition of a Bessel function of the first kind:

—n 2ir

.j (z)
	 f eiZcosc13 einclvo
2ir 0

Equation 7.16 can then be written in terms of a Bessel function:

22yi g
„,	

mx+ny+mojn(  (mx+2ny)M)
Cmx+ny -1-6,+„y =	 m e

(7.17)

(7.18)

By separately equating the real and imaginary parts of equation 7.18:

= -	 .1,,( (mx+2n71 )COS( m÷7 ifr)

smx+ny = 22Y .r„((—+27)m) sin( -27 + .2-)

(7.14)



1
F4 (x, y )= -xy[C +ny COS(MX ny) + Smx+ny sin(mx + ny)12n2

in=1 n=±1

- x - ±'. J [-(mx ± fly)]	 ,

r ..,,,=±1 (mx ± ny)
, sin (mx ± ny) + (nix + nY) nr}

2y	 2
= -/ I 

2y 

- a) - ±- .1„[--(mco +nco )1	 ,	 \ (trims + nu)c) nr=	 s v E 	 2(1)	 s — c

\	 sin kmcost+ ncoco+

	

r ‘-',„.1„=±1	 (mo),±moc )	 2coc	 2

(7.20)
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If equations 7.19 are substituted into the last term of equation 7.14 then a time

domain model of the control frequency harmonics of the switching frequency may
be evolved:

If either n or m is set to zero in equation 7.20 then the remainder of the equation

will represent the second and third terms of equation 7.14 respectively:

—a) **  n[S—:°:1 
sin(nco t —F2(X 1 =

(no) c	 26.),	 2
JV

1 4;1- Jo[S] ,

	

F3(x, = L	 sinvn cost )

	

ir m.1	 m

Combining equations 20, 21, 22 we obtain the result:

\
F(t) = L

27r

[ n 2Z _ v	 sin(no) t - 1'2= - 11Ec	 2co,	 2)(ncoc)

1 - 1-J0[2] 
sin(m cost)+ I

m=i	 m

(7.21)

(7.22)

_cos i; ,t,* J12÷(mco s + ncoc)1 	 ,
zam=1„±1	 (mcos+ncoc)	 sm (in cost + naict) 

(mo d nwc) nr
aoc	2

(7.23)
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7.2.3 Evaluation of the Solutions

By evaluating the Bessel functions for a given harmonic it is possible to calculate

the magnitude' of that harmonic at any given frequency. The magnitude of given

harmonics may be useful in examining subharmonics of the output frequency when

the converter is under low switching frequency operation. The magnitudes of

harmonics are also required when considering the bandwidth required by a band-

pass input filter stage and in evaluating other EMC related problems. A more

complex control algorithm can be evaluated by the superposition of suitably scaled

control frequencies substituted into equation 7.23. This has been done for the

PMW control algorithm described in chapter 2.

7.3 The Subharmonics of the Output Frequency

7.3.1 The Magnitude of the Harmonics

Consider a simple matrix converter using the control function i'. The ideal output

voltage waveform for one of the three output lines can be calculated:

[ 

V cos( wit)

Vol = [F(t) F(t +V) F(t +1-)1 Vcos(coit+2)

V cos(w,t +V-)

. Vo), nto	 ir 
)2ir Ln., (no) j sink nwct — w it —a7,,:— 7

sin(nz	 — wit +f)27r „,_,,	 m

vw	
+

.,	 [A (m co, + no),)] 	(mu), n(1+ rad}
,	 n (m cos +ncoc wi)t27r	 (mcos+noic)	 2we

(7.24)
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Figure 7.2. The harmonics to the Switching Frequency

From equation 7.24 the magnitude of any harmonic in the output voltage can be

calculated. As can be seen from equation 7.24, the line to line output voltage

frequency spectrum will consist of:

• The required output frequency

• Harmonics of the required output frequency

• The switching frequency

• Harmonics of the switching frequency

• Side bands of the switching frequency' relating to the output frequency

and harmonics of the output frequency

• Side bands of the harmonics of the switching frequency relating to the

output frequency and harmonics of the output frequency

1 This phrase is used throughout this thesis to describe the harmonics which occur

at frequencies described by (cos ±ncoo).
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Figure 7.3. The Magnitude of the Harmonic h4 Against mo

Consider a matrix converter operating with a low switching frequency (for example

licHz) and a high output frequency (for example 150Hz). In this situation the side

bands of the switching frequency relating to the fourth and fifth order harmonics of

the output frequency would be subhannonics of the output frequency. This effect is

shown in figure 7.2.

To assess the effect of these subharmonics on the quality of the output voltage

waveforms their magnitudes can be calculated. By inspection it can be seen from

equation 7.24 that the maximum magnitude of these subhannonics will occur when

the output frequency is set so that the frequency of the harmonic is equal to the

required output frequency. For example the fourth and fifth side band harmonics of

the switching frequency at points A and B in figure 7.2.
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7.3.2 The Maximum Magnitude of the subharmonics of the Output Voltage

Frequency in a matrix Converter Operating at a Low Switching Frequency

Consider the 'side band harmonic relating to the forth harmonic of the output

frequency, 14, as shown in figure 7.2. At a point A the output frequency is such

that the harmonic will become a subharmonic of the required output frequency.

Using equation 7.24 the magnitude of h4 at this point can be calculated:

From figure 7.2, the output frequency at point A on h4 can be found:

coo = co, —4coc + 0);

a). =	 (Di

Therefore at point A:

coc = 220Hz

coo =170Hz

If we assume that:

cos =1000Hz

co; = 50Hz

Then the magnitude, Am, of the harmonic relative to the output frequency

magnitude at point A can be found:

-

W4 j4 	 s2 w crico —4w )1 .
[

24co —4co
s	 c

2r(1000 —880)

= 7.96 x10-4

A
m

=

[K(1000-880)]
1000J4	440

= —32dB	 (7.25)
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If the output frequency is increased above 170Hz then the frequency of the

harmonic . 14 will reduce towards 0Hz and the value of the Bessel function in

equation 7.25 will exponentially decrease to zero. The maximum magnitude of the

given harmoniC will therefore be the value found from equation 7.24. This effect is

shown in the magnitude against output frequency plot given in figure 7.3.

If the above calculations are repeated for harmonic h5 then the magnitude relative

to the output frequency can be found for the point B in figure 7.2. This harmonic

will also exponentially decease to zero as the output frequency is increased.

B.= 0.187 x10-3 =-37dB
	

(7.26)

These subharmonics caused by the side bands of the switching frequency will

therefore not have a large effect on the quality of the output waveforms, because

their magnitudes wiA be insignificant. As the order of the harmonics increases, its

magnitude will decrease. It can also be shown from equation 7.24 that as the

switching frequency increases the magnitude of the possible subhannonics will also

decrease.

7.3.3 The Extension of the Theory to Cover More Complex Control

Algorithms

The above method can be extended using the principles of superposition to cover

the complete frequency spectrum of a more complex control algorithm, such as that

given in Chapter 2. The line output voltage waveform for this converter when

using the extension of the above method is given in equation 7.27. In all cases the

magnitude of these harmonics at the point they cross the output frequency is always

the same order of magnitude or less than those given above. As the frequency of

intercept decreases, the magnitude of the subhannonics will also exponentially

decrease.



6

Vol = /13%
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in 	[ n 	 (v(n-ox)o, c sococr t —	 2 )
27r ',I (no.),x)

+	 ,
	 cos‘mco,t — colt)

r ‘—; m

	

J„[—*—(mco +no) )1	 (m cos + ni-(n—l)rco„,)
y, 	 27.	 s	 ,- cos (inco,+ no)cx 0),)t

Vim), + ncoe.r )	 2coc,

Where:	 and:
CO	 + co;

C ° a	 (.1) i — °Jo

cO	 = 4o,

Wc4 = —20);

a)cs = 0)i+ 3 wo

COcfs = we	 3wo

=0.433

P2 = 0.433

133 =0.125

P4 = 0.125

135 =0.060

A — 0.060 (7.27)

7.4 The Frequency and Magnitude of the Harmonics

7.4.1 Output Voltage Waveform

The model of the output waveform given in equation 7.27 was numerically analysed

using a Matlab program. The result of this was a spectral map-like graph of the

expected frequency harmonics. The spectral map shows a plot of frequency against

magnitude against time. The output frequency is varied with time. These plots can

then be compared to a spectral map obtained from measurements made on a real

converter to check the validity of the mathematical model. Figure 7.4 shows the

spectral map for one voltage output line obtained from a matrix converter operating

under the algorithm set out in Chapter 2.
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Figure 7.4. A Spectral Map of the Output Line Voltage Created From the

Mathematical Model

A switching frequency of licHz was chosen to enable the output frequencies to be

seen easily on the same axis as the switching harmonics. The plot shows an output

frequency sweep from 30Hz to 180Hz. Only the first harmonic area of the

switching frequency is shown, but the pattern will repeat with different magnitudes

at 2, 31os, etc.

7.4.2 Input Current Waveform

To investigate the switching frequency harmonics induced in the unfiltered input

current of the matrix converter, the method used . in equation 7.14 was adapted to

produce a suitable mathematical model. The model of the input current is given in

equation 7.28. This model assumes that a sinusoidal current is induced in the motor

windings by the output voltage waveform from the matrix converter.
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Figure 7.5. A Spectral Map of the Harmonics to the Switching Frequency

Input Line Current Created from the Mathematical Model
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Frequency, fs Relative Magnitude

50Hz 1.000

201cHz 0.667

40IcHz 0.068

60IcHz 0.061

8 OlcHz 0.018

100IcHz 0.021

120kHz 0.008

Table 7.1. Relative Maximum Magnitudes of

the Input Current Switching Frequency Harmonics

Where:

ct)ci =	 wi

wc2 = wo	 (7.28)

The Matlab program was modified to produce a spectral map for this input current

waveform. The output frequency was increased from 30Hz to 180Hz. The

switching frequency was set at 20IcHz with an input frequency of 50Hz. The

spectral map for the switching frequency and it's side band harmonics is shown in

figure 7.5. The pattern for higher order harmonics of the switching frequency is

similar but with lower magnitudes, as shown in table 7.1.
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Figure 7.6. The Input Line Current Spectra of the Harmonics to the

Switching Frequency Created from a Computer Simulation, fo=30Hz

The spectra of the harmonics to the switching frequency in the input current can

also be obtained using a computer simulation. These simulation results have been

obtained using the ACSL simulation program. The simulated spectral map for the

same conditions as the mathematical model in figure 7.5 is shown in figure 7.6. As

can be seen, there is a very good correlation in the frequency and magnitude of the

mathematical model and the simulation results. The simulation results for the of the

input current spectrum, for a complete frequency range up to 60kliz, is shown in

'tare 7.7.

These results have been verified against practical reeults from a matrix converter

capable of driving a 5kWatt motor (The operation of this converter will be

examined more fully in Chapter 9). The spectrum of the switching frequency and

it's side band harmonics in the input current to this mains voltage converter is

shown in figure 7.8. Again, good correlation can be found between this result and

the predicted spectra shown in figures 7.5 and 7.6. The 'complete spectrum which

relates to the simulated results in figure 7.7 is given in figure 7.9.
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Magnitude [AmPa]

Figure 7.7. The Input Line Current Spectra of the Created Using the

Computer Simulation
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	 20.5k
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Figure 7.8. The Input Line Current Spectra Showing the Harmonics to the

Switching Frequency for a 5kWatt Matrix Converter. fo=30Hz
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Figure 7.9. The Input Line Current Spectra for a 5kWatt Matrix Converter

7.5 Conclusions

This chapter has presented a method of mathematically modelling the harmonics

generated due to the switching frequency in a matrix converter. The method has

been used to assess possible subharmonics of the output frequency at low switching

frequencies. These subharmonics have been found to have negligible effect.

The mathematics has also been extended to allow models of the line output voltage

and the input current waveforms to be examined. The results obtained have been

plotted in a similar form to a spectral map for a sweep of output frequency using the

Matlab mathematical analysis package. The boundary conditions for the integrals

may be changed to allow other switching strategies to be modelled. In this way the

effect of semi-symmetrical switching patterns may be analysed.

The results obtained from the mathematical model have been compared with results

obtained using simulations of the matrix converter. These simulations have been



Chapter 7: Switching Frequency Harmonics 	 171

found to agree very closely with the mathematical results. Both the mathematical

and simulation results have also been compared to the results obtained from an

experimental 5kWatt matrix converter. Again the results have been found to be

consistent. '
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8.1 Introduction

This chapter looks at the requirements of the input filters of a matrix converter.

The effect of the input filter on the performance of the matrix converter is

considered. Also, the effects on the input current from the mains supply are

examined and discussed with regards to existing and possible future regulations.

Consideration is given to a converter in both motoring and regenerative modes. An

explanation of the unique aspects of a matrix converter complying with conductive

EMC regulations is given.

The unfiltered input current to a matrix converter consists of the fundamental input

frequency and its associated harmonics, harmonics around the switching frequency

and the harmonics of the switching frequency as discussed in Chapter 7. The

frequencies of interest in the design of the input filters are components in the

regions of the switching frequency and its harmonics. For a matrix converter oper-

ating at a switching frequency of f,  the frequency regions of interest will be around

f, 2f3, 3 fs, 4Letc. A switching frequency of 20IcHz was chosen for the initial

matrix converter design.

If the supply voltage has no unwanted harmonics and is balanced then a matrix con-

verter will draw insignificantly low harmonic currents related to the fundamental

frequency. The permitted levels for these harmonics are set out by the Electricity

Association [1]. It has been shown that the 3rd, 5th, etc. harmonics of the input

current are at a very low level in comparison- to the fimdamental in a practical

matrix converter. Due to the low level of these harmonics in an ideal matrix con-

verter the recommendations for these harmonics will easily be met. They will there-

fore not be considered any further in this chapter. "
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8.2 The Regulations

8.2.1 The New EEC Regulations

The current EEC regulations on this issue came into force in all member states on

January 1st 1992, although they will be operating alongside any existing regulations

until January 1st 1996. After January 1st 1996 all equipment sold must comply

with European Directive number 89/336/EEC. These regulations deal with

harmonics of the fundamental current frequency up to 2.5kHz and with frequencies

that may interfere with radio communications in the frequency range 150kHz to

30MHz. This Radio Frequency Interference (RFD range is dealt with in the

regulations set out in EN55011. These ranges give an unregulated band between

2.5kHz and 150kHz. There is a statutory duty in this frequency range not to

interfere with anybody else's equipment under the Wireless and Telegraph Act [2].

EN55011 also states that the frequency range between 10kHz and 150kHz is under

review. The regulations are summarised in table 8.1.

8.2.2 Possible Future Developments in the Regulations

posshhe that future devdopments in communications may utilise parts of the

spectrum from 50kHz to 150kHz to communicate along existing mains cabling in

houses and offices. These communications could be used for a range of appli-

cations such as wireless connections between . computers and printers; remote baby

listening devices; and remote reading of electricity meters. Future technologies are

likely to take advantage of this under-utilised dommunicafion resource. The regu-

lations in this area are therefore likely to be considered by the EEC in the near

future. The filtering of the switching frequency harmonics generated by a matrix

converter therefore warrants investigation. The viability of the matrix converter

may depend on the effects any future legislation in this area has on the input filter

requirements.
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Regulation Dates Applicable Country

BS800 Until 1-1-96 UK.

VDE0871-1 Until 1-1-96 Germany

EN55011 Optional until 31-12-95

Compulsory from 1-1-96

All EEC Member

Countries

Table 8.1. A Summary of the European Regulations

8.3 Application of Regulations to a Matrix Converter

8.3.1 The Standards for the 10kHz to 150kHz Frequency Range

The current European and British Standards for allowable distortion of the input

voltage are shown in figures 8.1 and 8.2. The German VDE0871 part 1 defines the

acceptable levels for these switching frequency harmonics as shown in figure 8.3.

These German regulations may form the basis for future EEC regulations in the

10kHz to 150kHz frequency range. For the purpose of this chapter we will

consider the implementations of a matrix converter complying with this German

standard.

If the converter was used in regenerative mode then the switching frequency har-

monics would still be being circulated in the input 'filter in the same way as in

motoring mode. The regulations for harmonics of the input frequency would still

apply as defined in G5/3 [1]. These regulations set out the size of any harmonics of

the input frequency that may be generated. However the levels of inter-harmonics

that may be generated are comparatively high because they are unlikely to have a

cumulative effect.
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Disturbance Voltage/dB(uV)
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	 1	
SO
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0.01	 0.1

Figure 8.1. British Standard for Interference Limits, BS800

Disturbance Voltage/dB(uV)

Figure 8.2. The European Standard for Voltage Disturbance Limits,

EN55011
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Figure 8.3. VDE 0871 Partl, Recommended Disturbance Voltage Limits

8.3.2 Implications of Complying with the Recommendations of VDE0871-1

If we consider a matrix converter operating at 20kHz, then it is possible to calculate

the relative magnitudes of the switching frequency harmonics under worst case

conditions, as described in Chapter 7. These harmonics will be in the differential

mode. If we consider the limits described in figure 8.3, then the allowable levels of

input current to the converter at these frequencies may be calculated for a given

converter output power rating. From these allowable levels of input, current dis-

tortion the required attenuation of the input filters at these switching frequency

harmonics may be calculated.



Chapter 8: The Input Filters 	 179

Frequency, fs Relative Magnitude

.	 50Hz 1.000

201cHz 0.667

401cHz 0.068

601cHz 0.061

80IcHz 0.018

100IcHz 0.021

1201c1{z 0.008

1401cHz 0.0100

160kHz 0.0050

1801cHz 0.0060

2001cHz 0.0065

Table 8.2. Relative Maximum Magnitudes of

the Switching Frequency Harmonics

8.4 Calculating the Required Filter Attenuation

The filter attenuation may be calculated by finding the magnitude of the input

current harmonics. These magnitudes can then be compared to the magnitude of

the maximum harmonic current that may be drawn from the supply to keep within

the disturbance voltage limits.



7disturbance	 Amps

j2z1,50x10-6
1 + 	 1 

• (8.1)

i,disturbance=
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8.4.1 The Magnitude of the Harmonic Currents

Consider a matrix converter with a maximum input current of I. The largest

switching frequency current harmonics around the switching frequency, I

have a maximum magnitude of 0.66/Amps as shown in table 8.2. This maximum

value occurs when the output frequency is zero at maximum input current. This

worst case situation is therefore assumed for the input filter calculations in this

chapter. The value of this maximum switching frequency harmonic current may be

found by evaluation of the appropriate Bessel Function, as described in Chapter 7.

8.4.2 The Allowable Harmonic Disturbance Voltage

At 20kHz the recommended maximum disturbance voltage is 0.02Volts. This dis-

turbance voltage is measured in terms of Quasi-peak with a bandwidth of 200Hz, as

defined in [5], but for the purpose of this approximate study it will be assumed to be

equal to the peak level at any given frequency. The assumption is made that the

impedance of the supply can be considered as a 5052 resistor in parallel with a 5011H

inductor [5]. The level of disturbance current that may be drawn from the supply,

can be calculated:

8.4.3 The Required Filter Attenuation

To achieve this level the input filter must reduce, the switching frequency current

drawn from the supply to this level. The required filter attenuation at 20kHz may
then be calculated:

Afilter,20kHz 201og 	 fs.	 dB
i,disturbance
	

(8.2)
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This procedure may be repeated for 2fs, 3f5 and so on, although the magnitudes

reduce as the frequency increases, the recommended magnitudes of the harmonics

also decrease. The maximum magnitudes for these switching frequency harmonics

for a switching frequency of 20IcHz are shown in table 8.2. This information can

then be used to develop the required filter characteristics for a given size of matrix

converter.

Consider a matrix converter with a line input current of 6.5Amps, then the maxi-

mum switching frequency harmonic near 20IcHz will have a magnitude of 4.3Amps.

Using equation 8.1 it can be found that the maximum allowable disturbance current

at this frequency will be 3• 4 x 10-3 Amps. Using equation 8.2 the required filter

attenuation is then found to be 62dB. Repeating this procedure for 40IcHz, 601cHz,

etc. will enable the required filter attenuation to be calculated, as shown in table 8.2.

The magnitude of the disturbance voltage created by an unfiltered matrix converter

is shown in figure 8.4. The minimum required filter attenuation characteristics can

then be drawn as shown in figure 8.5. The filtering is only required to reduce har-

monics around the switching frequency and its harmonics. These harmonics have a

maximum value as shown in figure 8.4, and have a band width that is dependant on

the input and output frequencies as shown in [5].

8.5 Filter Configurations

If we consider filtering the differential mode switching frequency harmonics dis-

cussed above then we will require line-to-line filters designed to meet the attenu-

ation characteristics shown in figure 8.5. These filters can be considered as circu-

lating the switching frequency currents between the input lines.
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Figure 8.4. The Magnitude of the Disturbance Voltage

for an Unfiltered Converter
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Figure 8.5. The Required Filter Attenuation at the

Switching Frequency Harmonic Frequencies
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Phase

Figure 8.6. LC Line to Line Filter

8.5.1 Single Stage LC Low Pass Filter

The simplest and most widely used form of input line filter would be a simple LC

filter, as shown in figure 8.6. At the frequencies of interest we are able to assume

that these components will behave as ideal components and therefore we can ignore

all parasitic components of the inductors and capacitors in the analysis. The ratio of

the input voltage to output voltage is given in equation 8.3.

= 	 1

V° 1- (02Lc+ ILLL
	

(8.3)

If we ignore the last term of the denominator, because it will be insignificant at the

frequencies of interest, then this equation may be simplified:

_	 1

— 1— co2LC
	

(8.4)

This equation is shown graphically, for a resonant frequency of 2kHz in terms of

attenuation, in figure 8.7. As can be seen from this graph, a one stage LC filter of

this kind would not be capable of the required attenuatio,n around 20kHz, although

the filter would provide sufficient attenuation at 40kHz. However, if the resonant

frequency of the filter was lowered to achieve the 'required attenuation, the

components would be large and uneconomical. A possible solution to this would be

to provide a multi-stage LC filter. Possible component values for this filter are

shown in table 8.3.
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Figure 8.7. The Attenuation Characteristics for LC Filters

a. Single Stage LC Filter	 b. Two Stage LC Filter

8.5.2 Multi-Stage LC Low Pass Filter

A multi-stage filter would require more components, but the total value of the

components could be smaller whilst still providing greater attenuation at lower

frequencies. A two-stage filter using the same total inductance and capacitance as

in the single-stage filter example is shown in 'figure 8.8. This filter would have an

approximate attenuation characteristic* as shown in figure 8.7h. The attenuation

characteristic shows that this type of filter would have just enough attenuation at

the critical frequency of 201cHz. The two stage filter would also have the advantage

of a higher self resonant frequency for the same attenuation at 201(11z. For the

purpose of the converter example considered earlier in this chapter this solution

would seem viable.
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Converter
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Figure 8.8. Multi-stage LC filter Circuit

A variation on the two stage filter is a pi-filter. The inductance in the input line is

then used as the first inductor in the filter. Unfortunately, in a matrix converter the

second break frequency of this filter would only be useful if an uneconomically large

value of capacitance was used.

8.5.3 Low Pass Filter With Added Harmonic Current Diversion

For higher power converters or converters that may require a higher filter resonant

frequency, it may be necessary to increase the order of the multi-stage filter. A pos-

sible alternative to this increase in size and complexity of the filter may be to pro-

vide a short circuit path for these unwanted lower order switching frequency har-

monics along with the low pass single stage LC filter. A circuit for this type of filter

is shown in figure 8.9.

The series line-to-line LC combination may be tuned to the frequency of the

unwanted switching frequency harmonics whose level is greater than the regulations

will allow if a single-stage LC filter is used alone. In the example shown in

figure 8.9, this series LC path would be tuned to the switching frequency of 201cHz.

The attenuation characteristics of such a filter would take the form shown in

figure 8.10. The characteristic shows that this modified circuit would provide

sufficient attenuation at 201cHz as well as at 401cHz.
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	 rrp -1- -I- •

Figure 8.9. LC Line to Line Filter With Added Harmonic Diversion

8.6 Filter Costs

8.6.1 The Comparative Component Costs of the Filters

Calculating the comparative costs of the components for the filters is complex, due

to the large number of contributory factors. In an attempt to make cost

comparisons between the various possible filter configurations, it has been assumed

that the cost and size of a comparable component is proportional to the

component's power rating. The cost of inductive power has been taken as twice as

much as capacitive power.

Using these assumptions, it is then possible to calculate the approximate com-

parative costs of the three filters described above using a normalised cost factor - as

shown in equation 8.5. The result of this equation on the three types of filter is

shown in figure 8.11. From this graph it is possible to pick component values from

within a suitable range to achieve the most economical filter design. The com-

ponent sizes for the example used in this chapter are given in table 8.3.
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Figure 8.10. The Attenuation Characteristics for a Low Pass LC Filter

With a 20k Short Circuit Path

Cost Factor= 2. 05{2E L„1„2 + E Cy2

Where: V = input voltage,.

Irms = total input current

The converter side components used in such a filter would require a ripple current

rating that would allow them to carry the switching frequency currents. These

currents may be considered as approximately the same as the unfiltered switching

frequency currents described in Table 8.2. The series inductance of such capacitors

is about 30nH [12], and therefore would have a self resonance frequency of about

1MHz, which is well above the frequencies of interest.

11.00	 M.00

n=1	 ns=1 (8.5)
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Filter Type Inductance Capacitance Cost Factor

Single Stage LC' 3mH 1.5pF 1

Single stage LC

with 20IcHz Diversion

3mH

0.5mH

1.5pF

0.160

1.07

Two Stage LC 2mH

2mH

10

lpF

1.35

LC capable of -60dB

at 20kHz

11mH 6pF

_

3.74

Table 8.3. Component Values for the Three Considered Types of Filter

(Based on a Converter with an Input Line Current of 6.5Amps at 415Volts)

(1 does not meet required attenuation at 20IcHz)

8.6.2 The Effect of Switching Frequency on the Size of the Input Filters

As the switching frequency is lowered, the input filter size will increase. This can

be shown by calculating the cost of the filter required to meet the regulations at dif-

ferent converter switching frequencies. At switching frequencies below 101thz the

first switching frequency harmonic above 10IcHz has been considered. The graph of

switching frequency against filter . cost is shown in figure 8.12. The cost factor is

calculated using equation 8.5. As can be seen from this graph, the cost and size of

the input filter increases dramatically as the switching frequency is lowered.
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Figure 8.11. A Graph of Comparative Filter Costs Against Inductor Size

(The Component Values For the Harmonic Diversion Components are Optimal)

( 1 Does not meet regulations at 20IcHz)
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Figure 8.12. The Effect of Switching Frequency on the

Comparative Cost of the Input Filter
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in	 V

Figure 8.13. A Single Phase LC Filter

The information from figure 8.12 would suggest that the highest switching

frequency possible should be used for the converter. However, as the switching

frequency increases, the switching losses in the IGBTs will increase, as shown in

figure 6.5. The switching frequency may also be limited by the capabilities of the

converter's chosen microcontroller. A trade off must be made between the

converter losses, with the extra heatsink costs, and the cost and size of the input

filters. It should be noted that the converter switching losses are proportional to the

switching frequency, whilst the input filter size is an inverse square function of the

switching frequency.

8.7 The Effect of Filter Phase Lag and Self Resonance

This section examines the non-ideal properties of an input filter that may have a

detrimental effect on the operation • of a matrix converter. When reactive

components are place in a power circuit a phase shift between the voltage and

current may occur. The input filter of a matrix converter will exhibit this

characteristic and therefore the magnitude of this phase shift should be considered.

LC-type filters also exhibit self resonance at a given frequency. The effect of this

resonance and possible solutions will therefore be considered.



(8.6)

(8.7)
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8.7.1 Filter Phase Lag

The inclusion of the filter into the matrix converter structure will cause an additional

phase shift between the input voltage and current waveforms at the fundamental

input frequency. This phase shift will change the input displacement factor seen by

the mains supply to the converter.

Consider a single phase LC low pass filter as shown in figure 8.13. If the matrix

converters input displacement factor is assumed to be unity, then the impedance of

the filter capacitor and the impedance of the load, gin. The basic LC filter can be

analysed as shown below. The phase shift can then be calculated as shown in

equation 8.7.

From figure 8.13 it can be seen that:

= +

Vi,, = V,. + v L+vc

Rearranging and rewriting equation 8.6:

LdJ =

dv
C di	 m

j coa =

jco&c = —

Therefore:

jc.oC+ g„, 

jcoLRL + ( 1+ co' LC)

1,
Where- gin

•	 in

For the filter component values assumed in the chapter it an be seen that the phase

lag will be very small if the motor is not lightly loaded, as shown in equation 8.8.

If	 L=2mH, C=2.2p.F, RL=0.10 and g,=0.04

1.
Then .	= 0.04 tan(0. 03°) (8.8)
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Figure 8.14. A Single Phase LC Filter with Real Damping Resistor

8.7.1 Reducing the Effect of Filter Resonance

The input filter will have a frequency or frequencies at which self resonance will

occur. This unwanted resonance will cause unwanted noise on the input waveform.

To reduce the effect of this resonance it may be necessary to implement a damping

circuit for the filter. A possible solution for a single phase filter is shown in

figure 8.14. The principle can be easily extended to a three phase converter.

The performance of this damping circuit can be seen by examining the filter

characteristics. A comparison between the characteristics of an undamped filter and

filter with a 100C2 damping resistor is shown in figure 8.15. It should be noted that

the inclusion of this resistor decreases the filter attenuation at higher frequencies. If

a small line inductance in the resistive . loop is provided then this resistive current

path will have a higher attenuation at higher frequencies. The effect of adding a

small inductor in this resistive path is shown in figure 8.16. This inductance could

be added by using a wire wound resistor that would naturally have a small amount

of line inductance.
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Figure 8.15. Filter Characteristics for a Resistance Damped and
an Undamped LC Filter

Figure 8.16. Filter Characteristics for a Resistor Damped and
a Inductor and Resistor Damped LC Filter
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Figure 8.17. A Possible Filter Circuit for Total EMC Compliance

8.8 Complete EMC Filtering

This chapter has dealt with the differential mode noise that is unique to the structure

of the matrix converter. Also in the converter there will be higher frequency

common mode Radio Frequency Interference due to the action of the switches.

This RFI will not differ greatly from the problems usually associated with a standard

inverter, and is therefore not dealt with in any detail in this thesis. A circuit of the

type shown in figure 8.17 could be used to overcome this noise and hence comply

with the regulations in this higher frequency area.

8.9 Conclusions

The filters considered in this chapter would be used, along with the differential and

common mode filters already employed, to comply with the EMC regulations at

frequencies greater than 1501cHz in inverter circuits. This chapter has examined the

relevant regulations and recommendations in the EMC band between 101(Hz and

1501cHz where a matrix converter is likely to cause new differential mode noise

problems. It has been shown that complying with possible future regulations will

require the matrix converter switching frequency to be relatively high in order to
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minimise the size of input filter components. The maximum switching frequency is

limited by the acceptable switching losses in the devices used to implement the

switches.

Comparisons have been made between different filter configurations. It has been

shown that the most economical filter in terms of cost and size would be a simple

LC filter with a harmonic diversion to reduce the magnitude of the fundamental

switching frequency. The attenuation characteristics for this filter are the same as

for a simple LC filter except that there is a notch at 201cHz.
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9.1 Introduction

This chapter will describe the circuits required for the operation of a practical

5kWatt matrik converter that have not yet been presented in this thesis. These

auxiliary circuits include input voltage phase detection; output current direction

detection and the output voltage clamp. A block diagram giving the full matrix

converter circuit is shown in figure 9.1. The operation of a 5kWatt experimental

matrix converter will then be described and practical results of the waveforms

obtained will be presented.

-

Figure 9.1. Block Diagram of the Matrix Converter Circuits

9.2 The Auxiliary Circuits

This section will examine the elements of the matrix converter structure that have

not been described in previous chapters. These circuits are essential for the

operation of a matrix converter under the limitations of present technology. They

include an output voltage clamp, input voltage zero crossing detection and output

current direction detection.
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Figure 9.2. Output Voltage Clamp for a Matrix Converter

9.2.1 The Output Voltage Clamp

The output voltage clamp protects the switching devices from turn-off transients

during low output current conditions. Under low current conditions there may be

uncertainty in the output current detection signal and this uncertainty may cause

unwanted dead time current commutation to occur. This dead time would cause an

open circuit between the motor windings leading to potentially large voltage rises

on the output lines. These voltage transients could damage the switching power

devices.. The circuit used is shown in figure 9.2. The clamp allows current flow

from the matrix converter's output lines if the Voltage on these lines is greater than

the clamp voltage. The monitoring of this clamp voltage provides a useful means of

checking for transient switching faults in the converter.

9.2.2 The Output Current direction Detector

The semi-soft current commutation methods described in Chapter 5 requires

knowledge of the direction of the output current at the time of current handover.

This information can be obtained by looking at the voltage across a pair of back to

back diodes placed in the output line of the converter [1]. However, this method

increases the losses in the converter.
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Converter	 Motor

Figure 9.3. The Output Current Direction Detection Circuit

An alternative would be to sense the current direction in each switch by looking at

the voltage drop across each of the 18 diodes already implemented in the switch

matrix circuit. This method would give the most accurate indication of the current

direction at any given time, but would require a large amount of additional

hardware. Eighteen individual comparator circuits would have to be implemented

and the information then processed to give the current direction for each output

line. An extension of this idea would be to make the current commutation strategy

operate semi-independently within each bi-directional switch circuit. This would

have the 'advantage of greater accuracy in the correct commutation of current, but

would require a large increase in the circuit complexity.

The current direction may be found using Hall effect current sensors [2,3]. The

information from these sensors is often used in mitor control techniques and there

would therefore be only a small cost increase in implementing this sensing strategy.

A possible circuit for the implementation is shown in figure 9.3.
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Figure 9.4. The Input Voltage Zero Crossing Detector

9.2.3 The Input Voltage Zero-Crossing Detector

The microprocessor used to control the matrix converter must track the input

voltage to keep its model of the input voltage waveform in phase with the actual

input voltage waveform. The circuit used is shown in figure 9.4. A 240Volt to

5Volt transformer is used to provide isolation and a compactor provides the

controller with positive and negative edges that are used to trigger non-critical

interrupts in control software. Two input voltage zero crossing detectors are

implemented so that the controller can .ascertain the phase order of the three phase

supply. This phase ordering is performed as part of the software initialisation

routines.

The information from these detectors is also be used to enable the controller to

measure the input frequency and change the control frequencies accordingly. This

method would allow the converter to be used as a constant frequency supply from a

variable frequency source. The converter could also be connected to a supply of

any frequency and adapt itself to the supply with no manual set-up.
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Figure 9.5. The Experiment Matrix Converter

9.3 The Building of the Experimental Matrix Converter

This section briefly considers the building of the 415Volt matrix converter that has

been used to obtain the practical results given in this thesis. The converter was

designed to be capable of driving a 5kWatt motor in both motoring and generating

modes.
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Harmonic Number Rectifier
Harmonics

Matrix Converter
Harmonics

1 . 100% 100%

3 4.1% 0.6%

5 27.6% 1.2%

7 18.5% 0.38%

11 10% 0.14%

13 6.5% 0.08%

Table 9.1: Input Current Harmonics for a Rectifier and a Matrix Converter

The experimental matrix converter was designed to be capable of driving a 5kWatt

motor from a 415Volt three phase supply. The power semiconductor devices and

the input and output cabling were kept as far away as possible from the signal level

circuits to minimise noise problems. Sufficient heat-sinking is provided for the

power semiconductor devices to dissipate the losses described in Chapter 6. The

power cables between each of the bi-directional switches is minimised to reduce the

effect of the inductance in the wire.. The cony- erter was also designed to be easily

repairable if there is damage to any of the power semiconductor devices.

The building of a bi-directional switch has been described in Chapter 5. Nine of

these switches are then arranged in a three-by-three square to form the switch

matrix in a suitable enclosure. The auxiliary circuits were built and fitted on the

power side of the switch matrix. The control signals were fed from the current

commutation control circuits directly to the signal side Of the switch matrix. Fans

were added to the front panel of the converter's enclosure to provide the required

cooling for the power semiconductors. The complete experimental matrix

converter is shown in figure 9.5.
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Figure 9.6. The Output Voltage and Input Current Spectrum for a 5kWatt

Matrix Converter Operating with an Output Frequency of 30Hz

9.4 Practical Results

This section will give some practical waveforms obtained from the experimental

matrix converter. They show both time and frequency domain results under

different operating conditions.

9.4.1 The Input and Output Waveforms

Figure 9.6 to 9.8 show the input current and output voltage low frequency

spectrum for a matrix converter with output frequencies of 30Hz, 80Hz and 120Hz.

As can be seen from these waveforms there are no significant subhannonics to the

output frequency. The harmonics to the input frequency are low, and the harmonics

that can be seen are due to the harmonics in the lab supply on the day measurements

were taken. Table 9.1 gives a summary of the input current harmonics obtained for

a matrix converter in comparison to the input current harmonics for . a rectifier [5].

The harmonics that are present are mainly due to distortion in the supply voltage

waveforms.
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Figure 9.9: The Input Line Voltage and Current Waveforms with Lagging

Input Displacement Factor

9.4.2 Input Displacement Factor Control

The input displacement factor of the converter may be varied by altering the

appropriate variable in the control algorithm. This allows the displacement factor to

be altered in a range from lagging at the motor's power factor to leading at the

motor's power factor, including unity. I Figures 9.9 and 9.10 show these two

extremes. The ripple on the input current waveform is due to the resonant

frequency of the input filter.

9.4.3 The Converter in the Regenerative Mode

The matrix converter is a naturally regenerative converter. The waveforms in figure

9.11 show the converter operating in the regenerative mode. A DC Machine

operated from a Control Techniques Mentor Drive is used to drive the AC machine.
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Figure 9.10: The Input Line Voltage and Current Waveforms with Leading
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Figure 9.11: The Input Line Voltage and Current Waveforms Showing the
Converter Operating in a Regenerative Mode
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9.5 Conclusions

The construction of the auxiliary circuits that are required for the safe operation of

a practical nriatrix converter has been described. The operation of a matrix

converter under various operating conditions has been examined and the results

presented. The converter offers sinusoidal input currents and output voltages.

There are no significant subhannonics in the output voltage waveforms. The

converter has been shown to be capable of operation as a four quadrant drive, with

natural regeneration.
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10.1 Introduction

The structure of a generalised matrix converter can be viewed as the fundamental

switching power converter [1]. From this structure it is possible to introduce re-

strictions and simplifications to the converter circuit to create any switching power

converter circuit. Once the circuit has been established a suitable control algorithm

for the given application can be found.

This chapter examines the belief that the matrix converter circuit is the most gen-

eralised converter circuit. The degeneration of the three phase matrix converter to

a controlled rectifier and the degeneration to current and voltage source inverters is

explained in detail. The possibility of using matrix converter control algorithms to

control these converters is considered. The fundamental role played by the reactive

elements in a power converter is discussed.

10.2 The Matrix Converter's Place in the Switching Power Con-
verter Family

10.2.1 The Generalised Matrix Converter

The true unrestricted matrix converter consists of x input lines that can be con-

nected to any of the y output lines by the closing of a perfect bidirectional switch.

Such a switch is placed on every intersection node between the input lines and the

output lines so that any input line may be connected to any output line at the dis-

cretion of the control mechanism of the converter. This generalised circuit is shown

in figure 10.1. The circuit may be used to convert any x-phase input supply of any

fundamental frequency into any y-phase output. supply of any fundamental fre-

quency.

The matrix converter considered in this thesis has been a converter in which the

number of inputs and outputs have been restricted to three. Other converters may

be similarly described by defining the appropriate number of input and output lines.

For example, an inverter can be viewed as a two input line, three output line matrix

converter with a zero input frequency.
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Input

Lines

Output Lines

Figure 10.1. The Generalised Matrix Converter Structure

In some case the switches of the converter will not require the full functionality of

the bidirectional switch. In these situations the circuits can be simplified by re-

moving parts of the switch that are not required. In this way all converter

topologies can be found using a single simplified matrix converter circuit or a com-

bination of simplified matrix converter circuits.

10.2.2 Constraints on Simplified_ Converter Structures

In some cases additional restrictions may be imposed on the range of input and

output frequencies due to the nature of the power switches employed. An example

of this is in a Cycloconverter, [3], where the maximum output frequency is reduced

to a third of the input frequency because of the inability to turn off the switching

devices until they are negatively biased. This imposition Of frequency restrictions is

also sometimes inherent in the converter if there are fewer input lines than output

lines. This situation will occur in a single phase to three phase direct conversion

process.
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Converter
Type .

Example Input
Frequency

Output
Frequency

Input
Lines

Output
Lines

3AC/3AC Matrix
Converter/

Cycloconverter

any any/<34 3 3

3AC/AC Single Output
Phase Matrix

any any 3 2

AC/3AC AC Resonant
Output Stage

any <10fi 2 3

3AC/DC Three Phase
Rectifier

any zero 3 2

DC/3AC Three Phase
Inverter

zero any 2 3

AC/AC AC Chopper any <3f1 2 2

AC/DC Single Phase
Rectifier

any zero 2 2

DC/AC Single Phase
Inverter

zero any 2 2

DC/DC DC Chopper -	 zero ,	 zero 2 2

Table 10.1. Converter Types and Restrictions

These restrictions in the degeneration of the generalised, matrix converter structure

are summarised with examples in table 10.1. The three-phase matrix converter can

be simplified by the restriction of the number of input and output lines and the re-

striction of the input and output frequencies. Taken one at a time these restrictions

can be used to develop a family tree of all possible switching power converter

structures as shown in figure 10.2.
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3AC/3AC

3AC7DCA /AC	 DC73AC

AC/DC	 DC/AC

DC/DC
Figure 10.2. The General Power Converter Family Tree

More complex converters have to be considered as a combination of more than one

restricted generalised converter. Passive components in converter structures can be

considered as a necessity to provide each of the component generalised converters

with ideal supplies.

For example, a back to back converter; [4], is a combination of a three input, two

output converter with zero output frequency and a two input three output converter

with zero input frequency. The bidirectional switches of the converter can be sim-

plified by considering the circuit redundancy. The DC link capacitor in the standard

converter structure can be considered as providing the first converter with a current

sink and providing the second converter with a nearly ideal voltage source.
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Output Phase
Angle

voutl voila vout3

r6 +ve -ve zero

11%
,

-ve +ve zero

Table 10.2. Output Voltage Variation with Output Phase Angle

10.3 The Implementation of a Controlled Rectifier

If the output frequency of a matrix converter was set to 0Hz and the amplitude set

to a non-zero value then the converter could operate as a controlled rectifier. This

controlled rectifier would allow the control of the DC output voltage and would be

capable of natural bidirectional current flow. The converter can be used as a single

ended or dual ended supply. If a dual ended supply is implemented then the output

voltage ratio between the two supplies can also be controlled.

10.3.1 The Degeneration of the Matrix Converter Control Algorithm

The control algorithm given in chapter 2 may be simplified by setting co. =0. This

will give the output voltages defined in equation 10.1. The output voltage phase

angle, (p0, is the static operating point of the Converter in the range of possible

output voltages

[ 

0.866K . cos( T. ) + 0.25. cos(3 wit)

V. (t) = 0.866K . cos( To + 2i-) + O. 25. cos(3coit)

0.866K . cos( (p,, + 135-) + O. 25. cos(3 coat)
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Output Voltageo_. V 3—Zero

Output Phase Angle

Figure 10.3. Possible Output Voltages for Output Phase Angle Operating

Points

All the output lines will have a superimposed common mode third harmonic of the

input frequency to maintain the maximum output voltage range. An operating point

can be chosen such that one of the three output lines will be at zero volts, whilst the

other two output lines will be at maximum negative and maximum positive po-

tentials. • This zero voltage will occur on the third output line when the operating
5 1r/ 	 A I_point is set to an output phase angle of/6 or Il . At these points the first and

second output line will have maximum positive and negative values as shown in

table 10.2. By controlling the operating position, the ratio of the positive and

negative DC potentials can be altered. This control of the potentials of the output

voltages is shown in figure 10.3.
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Figure 10.4. The Degeneration of the Matrix Converter to a Single Ended Bi-

Directional AC-DC Converter

10.3.2 The Simplification of the Matrix Converter Power Circuit

A rectifier requires only two output lines, therefore one output phase of the matrix

converter will become redundant. The switches required by this redundant phase

need not be implemented. This, reduces the number of bidirectional switches

required from nine down to six as shown in figure 10.4. Only twelve switching

devices will then be used to implement this AC-DC converter. The natural bi-

directional current flow of the matrix converter circuit and control algorithm will

allow the converter to provide regeneration without the need for any extra circuits

or additional complex control algorithms.
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S2B	 "es*	 S3B

S2A	 S3,

—I Load H
Figure 10.5. The Degeneration of the Matrix Converter to a Single Load Uni-

Directional AC-DC Converter

This rectifier topology has the additional advantage of allowing the DC voltage to

be switched between positive and negative by simply inverting the phase angle of

the output voltage operating point..	 •

If reverse current flow is not required then half of each bidirectional switch will not

be required. These unused switches do not need to be implemented, therefore re-

ducing the required number of switching devices to six. • The circuit for this uni-

directional current flow AC-DC converter is shown in figure 10.5. The circuit re-

quires the same number of devices as a standard PWM bridge rectifier.
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IN2
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IN3
S9B
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Figure 10.6. The Degeneration of the Matrix Converter to a Double Load Bi-

Directional AC-DC Converter

The converter may be extended to a dual supply topology by the inclusion of all the

switches. In this configuration the third phase becomes the effective zero voltage

point in the output circuit [5-7]. This dual supply circuit will provide the supply

with sinusoidal input current even if the loads are unbalanced. This is possible be-

cause of the averaging effect of the control algorithm when the input displacement

factor is set to unity. This effect can be explained by considering the effective

cancellation of the output power factor in the matrix converter algorithm. The im-

balance in the DC current may be viewed as the same effect of the phase angle.
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OUT1	 OUT2	 OUT3

Figure 10.7. The Degeneration of the Matrix Converter Circuit to a Voltage

Source Inverter

10.4 The Implementation of an Inverter

If the input frequency of the converter is set to zero then the matrix converter will

fimction in an inverter-like fashion [8]. Some of the switches in the converter will

become redundant and therefore Would not be implemented. This reduction in the

number of switches will lead to two possible converter configurations. These two

circuit configurations correspond to a voltage source inverter (VSI) [13] and a

current source inverter (CSI) [14].
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Figure 10.8. The Average Output Voltage Waveforms from the VSI

10.4.1 Simplification of the Matrix Converter to a Voltage Source Inverter

The input voltage frequency, w i, will be set to zero. This will simplify the control

equations set out in Chapter 2. Since the input is DC, only two input lines are re-

quired and the switches for one of the matrix converter input lines are not im-

plemented. The reverse current flow in each switch does not require control as this

will be dealt with by the anti-parallel diodes. The half of each switch that would

carry this reverse current is therefore redundant and is not implemented. This

circuit reduction is shown in figure 10.7.

The maximum output voltage of a matrix converter is restricted by the voltage of

the input voltage. The inclusion of the third harmonic of the input frequency will

increase the line to line voltage as shown in figure 10.8. The maximum output

voltage of the converter in this VSI arrangement can therefore be calculated as

shown in equation 10.2.

',,peak = 0.866. 3Vd2 '	 (10.2)
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Figure 10.9. The Degeneration of the Matrix Converter to a Circuit to a

Current Source Inverter

10.3.2 Simplification of the Matrix Converter to a Current Source Inverter

The control algorithm described in Chapter 2 takes a continuous input voltage and

generates a discontinuous output" voltage. This output voltage waveform's fun-

damental frequency forces a continuous current to flow in an inductive load.

To operate in a CSI configuration, the control matrix can be transposed. This

transposed matrix can then be reduced by setting the input frequency, 0N, to zero.

The input voltage will now be the discontinuous voltage instead of the output volt-

age because of the constraint of having a continuous input current. This is shown in

equation 10.3
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DC

lo (t) = M(01 0

DC (10.3)

The matrix converter circuit may be simplified by not implementing the unused

input line of the converter in the same way as for the VSI. The DC current has to

be continuous, so the halves of the bidirectional switches in the non-conducting di-

rection are not required. This will reduce the number of switching devices in the

converter to six, as shown in figure 10.9.

10.4 Conclusions

The most generalised form of the matrix converter has been presented and the idea

of the matrix converter as the most general form of switching power converter has

been proposed. The degeneration of the circuit into other presently recognised

power converters has been described.

The simplification of the matrix converter circuit to a controlled rectifier, VSI and

CSI circuits has been considered. It has been shown how the matrix converter con-

trol algorithms presented in this thesis can be used to control these forms of con-

verter and their advantages have been discussed.
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11.1 Summary of the Work Undertaken

The work summarised in this thesis has covered many aspects of the matrix

converter circuit and its operation. The intrinsic maximum input to output voltage

ratio for the matrix converter circuit has been established and a PWM control

algorithm capable of achieving this maximum ratio has been derived. This control

algorithm is capable of drawing sinusoidal input current with no minimised low

frequency harmonics, whilst maintaining sinusoidal output voltage waveforms and

enabling the control of the input displacement factor. The input displacement factor

can be set to be either leading, lagging at the same angle as the displacement factor

of the load, or anywhere in between these limits including unity. These

characteristics can be compared to a rectifier/inverter circuit that requires a large

DC capacitor and draws non-sinusoidal input currents at a fixed, lagging power

factor.

Detailed consideration has been given to the silicon devices required in a matrix

converter for both control and power handling. The required characteristics of a

suitable micro-processor for use in controlling switching power converters have

been discussed and a suitable micro-controller identified and tested. The chosen

controller has then been used for the real time implementation of a PWM matrix

converter control algorithm.

The characteristics of modern semiconductor power switching devices have been

examined and the IGBT established as the most suitable controllable device for this

type of hard switching power converter at the present time. The design and

operation of a bi-directional switch from discrete 'components have then been

considered, and a back-to-back pair of common collector IGBTs with anti-parallel

diodes has been chosen as the most suitable arrangement because of functionality

and minimum conduction losses. The minimum device ,ratings for the devices in

these switches have been calculated.

The problems associated with passing the current path between the switches in the •

converter has been addressed. Existing solutions have been categorised, and

alternative methods proposed. The state machine design of possible solutions has
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been given and the single chip implementation of these state machines on Generic

Logic Arrays has been outlined.

The power losses in the matrix converter circuit have been analysed and quantified.

Methods of reducing the switching losses have been introduced which include the

use of semi-soft switching techniques and of semi-symmetrical PWM waveform

generation. The power losses associated with the matrix converter have been

compared to those in a rectifier/inverter circuit. It has been shown that at higher

switching frequencies the losses in a matrix converter can be less than those in a

comparable rectifier/inverter circuit and therefore a smaller heat sink can be used.

If the converter is driven from a perfectly sinusoidal supply then it will draw no

harmonic currents, unlike a rectifier. However, filters may be required to reduce

the levels of the switching frequency harmonic currents drawn from the supply.

These filters may be required to meet future EMC regulations. The effect of these

possible regulations on the size of the input filters and the unique aspects of the

filter design required by the matrix converter circuit have been considered. The

cost of these filters with respect to the switching frequency of the converter has also

been considered. The cost of the filter would reduce with a higher switching

frequency, but the switching losses in the converter will increase with frequency. A

balance must therefore be found between the size of the input filter and the

acceptable magnitude of the switching losses.

An experimental matrix converter for driving a 5kW three phase induction motor

has been built and tested. The results from this converter have been encouraging

and have helped in the refining and verification of the ideas presented in this thesis.

The experimental converter has been tested in both motoring and regenerative

modes and under different loading conditions.

The concept of the reduction of matrix converter circuit and control theory to

inverter and controlled rectifier circuits has been discussed. This may be achieved

by appropriately setting the input or output frequency to zero. The redundant •

switches in the circuit may then be removed, reducing the matrix converter circuit

to the usual inverter or controlled rectifier circuits.
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11.2 Potential Applications

Because Of the intrinsic limit of 0.866 for the maximum input to output voltage

ratio of the matrix. converter it is unlikely that it will be used widely as a general

purpose variable speed motor drive in the near future. It would be difficult to sell a

product that could not be used as a direct replacement for an inverter drive. For

this reason it would seem likely that the back-to-back converter will be used in

situations where sinusoidal input currents are required instead of the matrix

converter in the next few years.

However, the matrix converter may well find applications in motor drives where the

absence of large capacitors would be very desirable, and would compensate for the

inconvenience of having to use a lower voltage motor. Applications of this type

may be found in potentially hazardous areas, such as mines, where it is desirable not

to have stored energy due to the risk of explosions. Other applications may be

found in areas where the physical size of the drive is important, and the all silicon

solution offered by the matrix converter will provide a means of minimising the size

of the drive.

The all silicon solution offered by the matrix converter circuit makes it very suitable

for production in hybrid modules, with the associated cost and size improvements

that hybrid technology may bring. In some applications it may be possible for the

required hybrid module for a matrix converter motor .drive to be mounted on or

inside the casing of small motors: A possible- example of this is in pump and fan

applications. The case of the motor would then form the heat sink for the drive.

This would give a very compact aid user-friendly unit with lower installation costs.

The matrix converter can be set up to operate from any input frequency. Other

applications for the circuit may therefore exist in situations where a constant

frequency supply is required from a variable frequency source. An example of these

applications is the generation of electricity for the national grid from natural sources

such as wave power and wind turbines, where the frequency and phase of the

generated electricity can not be guaranteed. The matrix converter could be set up
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to alter the frequency and phase of the generated power to match the phase and

frequency. of the national grid.

Other potential uses could include connections between power systems of different

frequencies, fo—r example to allow power flow between 50Hz and 60Hz distribution

grids. The circuit could also be used to cope with step changes in frequency. For

example, in a uninterruptable power supply system the circuit can be used to ensure

a constant frequency supply from either the AC supply or a backup DC supply.

Matrix converters have also been suggested for use as active filters. In this

application a dummy inductive load is used as the output voltages would riot usually

be sinusoidal.

11.3 Scope for Future Work

The motor control aspects of variable speed drives have not been addressed in this

thesis. The principles involved have been widely developed for inverter motor

drives and fiiture work could therefore involve the extension of new inverter control

techniques to the matrix converter structure.
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A.1 The Notation

To minimise the size of the equations and to simplify the trigonometry involved in

the verification of the matrix converter control algorithm the following shorthand

notation has t;een adopted:

c(x,y,n,4)) = cos(x	 + y coot + + 4))
	

(A.1)

By applying this notation to the control matrix given in Chapter 2 the control matrix

may be rewritten as shown in equation A.2. These equations assume that the

control matrix is set up for unity input displacement factor and that the converter is

operating at maximum output voltage, but the results of the analysis are valid for all

possible conditions.

[ 41,1,0+ 41,-1,0) c(1,1,2)+ c(1,-1,-2) 41,1, 10+ 41,-1,-4)

9.G(t) =	 . c(1,1,2) + 41,-1,-2) c(1,1,4)+c(1,-1,-4) 41,1,0)+41,-1,0)

41,1,4) + 41,-1,-4) 41,1,0)+41,-1,0) 41,1, 2) + 41,-1,-2)

[ c(4,0,0)+42,0,0) c(4,0,2)+42,0,-2) 44,0,4)+c(2,0, -4)
-I- 2t5- . c(4,0,0)+c(2,0,0) 44,0,2)+c(2,0,-2) 44,0,4)+42,0,-4)

44,0,0)+c(2,0,0) c(4,0,2)+c(2,0,-2) 44, 0,4)+c(2, 0,-4)

[

41,3,0+ c(-1,3,0) c(1,3,4)+c(-1,3,-4) c(1,3,2)+ 4-1,3,-2)

c(1,3,0)+ 4-1,3,0) c(1,3,4)+ 4-1,3,-4) . 41,3,2)+c(-1,3,-2)

41,3,0)+4-1,3,0) . c(l,3,4)+4-1,3,-4) 41,3,2)+4-1,3,-2)

-	 (A.2)

A.2 The Output Voltage Waveforms

If the input voltage matrix is multiplied by the control matrix then the output

voltage waveforms can be verified, as described in equation A.3. This process

assumes that the switching frequency is very high in comparison to both the input

and output frequencies, and that the input voltage waveforms are perfect sinusoids

of the supply frequency.
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c(1, 0, 01

c(1,0,2)
41,0,4)
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v0 (t)={v02(t)i=G(t).v1(t)
f'3(t)

vol(t)

= G(t)J' 41,0,2)

•	 [c(1, 0, 0)i

c(1, 0, 4)

z,

(A.3)

Each output phase will be considered independently, and therefore only one line of

the control matrix need be considered for each output phase. The ideal output
voltage waveform for the first output phase will therefore be:

0.866.(c(1,1,0)+41,-1,0))

+O. 25.(c(4, 0,0) + 42, 0,0)

—0.12.(41,3,0)+ 4-1,3,0))

0.866.(c(1,1, 2) + 41, —1, —2))

-i-0.25. (44, 0, + c(2, 0, —2))

—0.12.(c(1,3,4)+

0.866.(41,1,4)+ 41,-1,-4))

+0.25. (44, 0, 2).+ 42, 0,-2))

—0.12.(41,3,4)+
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Vol (t) = V,.+.{0.866.(c(2,1,0) + c(2,1,2)+3.42,1,4) + 40,1,0)

+42,-1,0)+	 +42,-1,-2) +3.40,-1,0))

+O. 25.(45, 0,0) + 45, 0,2) + 45,0,4)+3.43, 0, 0)
,

+41, 0, 0) + 41, 0,-2) + 41, 0, -4) +3.4-3,0, 0))

+0.12. (42,3, 0) + 42,3, +c(2,3, 4) +3.c(0,3,0)

+4-2, -3, 0) +	 -2) + 4-2, —3, -4) +3.40, —3, 0))}
(A.4)

Using the assumption that the sum of a set of balanced three phase waveforms of

equal magnitude is zero:

4x, , , 0) + c(xl ,y1 , 2) +	 , 4) = 0

And the assumption from trigonometric laws that:

c(0, , (Pi ) = c(0,	 ,	 )

c(x„ 0, 02 ) = c(—x 1 , 0, —02)

Equation A.4 can be rearranged and simplified:

Kb) = Vi t0.866.40,1,0) 0.25.43,0,0) + 0.12.c(0,3,0)}

(A.5)

(A.6)

(A.7)

This analysis can be repeated for The second output , phase of the converter. Only

the second row of the control matrix need be considered for the second output

phase:
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0.866.(41,1,2)+ 41,-1,-4)) -

+0.25.(c(4,0,0) + c(2,0,0))

—0.12.(c(1,3,0)+ c(-1,3,0))

0.866.(c(1,1,4)+ c(1,-1,-2))

+0.25.(c(4,0,2)+ c(2,0,-2))

—0.12.(c(1,3,4)+ 4-1,3,-4))

0.866.(41,1,0)+ 41,-1,0))

+0.25.(44,0,2)+ 42,0,-2))

—0.12.(c(1, 3, 4) + c(-1, 3,-4))

V02 (t) = .1 .{0.866.(c(2,1,0)+ c(2,1,2)+3.42,1,4)+ c(0,1,2)

+c(2,-1,0)+ c(2,-1,-4)+c(2,-1,-2) +3.40,-1,-4))

+0.25.(c(5,0,0)+ c(5,0,2)+c(5,0,4)+3.c(3,0,0)

+41,0,0) + 41,0,-2) + 41,0,-4)+ 3.c(-3,0,0))

+0.12.(c(2,3,0)+ 42,3,2)+42,3,4)+3.40,3,0)

+c(-2,-3,0)+	 + 4-2,-3,-4) +3.40,-3,0))}

Equation A.8 can be rearranged arid simplified:

Vo z(t) = V1 t0.866.c(0,1,2) + 0.25.43,0,0) + 0.12.40,3,0))

(A-8)

(A.9)

This analysis can be repeated for the third output phase of the converter. Only the

last row of the control matrix need be considered for the third output phase:



:

vo,(t) =1

.[

c(1,0,0)1

c(1,0,2)

c(1,0,4)
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T
0.866.(c(1,1,4)+ c(1,-1,--2)) -

+0.25.(c(4,0,0)+ 42,0,0))

—0.12.(41,3,0)+4-1,3,0))

0.866.(c(1,1, 0) + 41,-1,0))

+0. 25.(c(4,0, 2) + c(2,0,-2))

—0.12.( 41,3,4) + 4-1,3,-0

0.866.(41,1,2)+ c(1,-1, —4))

+O. 25.(4 4, 0,2) + 42,0,-2))

—0.12.(41,3,4)+ 4-1,3,-0

J',3 (t) = V; .1.{0.866.(42,1,0) + 42,1,2) +3.42,1,4) + 40,1, 4)

+c( 2, -1, 0) + c( 2, -1, -4) + 42,-1,-2) + 3. c(0, -1, 4))

+0.25.(c(5, 0,0) + 45, 0,2) + 45, 0,4) + 3.43,0, 0)

+c(1, 0,0) + 41,0,-2) + c(1,0,-4) +3.4-3,0,0))

+0.12.(42, 3, 0) + 42,3, 2) + 42,3, 4) +3.40,3,0)

+4-2,-3,0) + 4-2,73,-2) +4-2,-3,-4) +3.40, —3, 0))} (A.10)

Equation A.10 can then be rearranged and simplified:

Vo (t)= lii { o.866.c(O,1, 4) + 0.25.c(3,0,0) + 0.12.40,3,0)1	 (A.11)

By combining equations A.7, A.9 and A.11 the output voltage matrix produced by

the control matrix under ideal conditions can be found:
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vol(t)1

v0(t)=[vo2(t)

• r',3(t)

z,	 •	 [c(0,1,o)

= 0.866. c(0,1,2) + 0.25.c(3,0,0)+ 0.12.c(0,3,0)

c(0,1,4)

[ cos( wot)

= 0.866. cos(wot + 2i1) + 0.25.cos(3co l t)+ 0.12.cos(3a)0t)

cos(coo t + V-)
(A.12)

This ideal output voltage matrix formed by the control matrix corresponds to the

ideal output waveforms needed to obtain the maximum output voltage magnitude,

as described in equation 2.4.

A.3 The Input Current Waveforms

The ideal output currents from the matrix converter will be sinusoidal assuming that

the output voltage waveforms are ideal. These output current equations can be

written in the notation form used above as shown in equation A.13.

[cos(c	 3oot +0

10 (t) = .1 cos(co0t++.01)

cos(co0t+-+0,)

[c(0,1,0,0 1 )1 -	 .
=4.1; c(0,i,2,01 )	 •

c(0,1,4,0,)
(A.13)

Where is a scaling factor determined by the magnitude and nature of the load.

The ideal input current will be the output currents modulated by the control matrix.

The currents can be considered as being modulated in the opposite direction

through the converter as the voltages. The ideal input currents can therefore be



(t) =

.[

41,0,0,01)1

41,0,2,01)

c(1,0, 4, 01)
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described by the output currents multiplied by the transpose of the modulation

matrix, as shown in equation A.14.

i i (t) =	 = GT(t).Io(t)

(A.14)

Again each phase will be examined separately. If the first input line current is

considered then only the first column of the control matrix applies:

0.866.(41,1,0)+c(1,-1,0))

+0.25.(C(4,0,0) ± C(2,0,0))

—0.12.(c(1,3,0) + c(-1,3,0))

0.866.(c(1,1,2)+ c(1,-1,--4))

+0.25.(c(4,0,0)+ 42,0,0)

—0.12.(c(1,3,0)+c(-1,3,0))

0.866.(c(1,1,4)+c(1,-1,-2))

+0. 25.( c( 4, 0,0) + c( 2, 0, 0))

—0.12.(c(1,3,0)+c(1,3,0))



1,2(0
-[c(i,o,0,01)

•1c(1,0,2,1)

c(1,6; 4, 01)
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4(0 = .a0.866.(41,2,0,40+ c(1,2,2,03+3.c(1,0,0,0 1 )+ c(1,2,4,01)

—0 1 )+ 41,-2,-4,-0 1 )+41,-2,-2,- 1 ) +3.41,0,0, —OM

+0.25.(44,1,0)+ 44,1,2) + 44,1,4)+ 44,-1,0)+

+42,1:;0)+42,1,-2)+42,1,-4)+	 0)+ 42,-1,2)+42,-1,4))

+0.12.(41,4,0)+ 41,4, 2)+ 41,4,4)+ 4-1,-4,0)+

+4-1,-2,0)+4-1,-2,-2)+4-1,-2,-4)+41,2,0)+41,2,2)+41,2,4W

(A.15)

Equation A.15 can then be rearranged and simplified:

i.1 (t) = 4.11 .0.866.c(1,0,0)	 (A.16)

The second input line current may then be examined in the same way. Only the

second column of the control matrix needs to be considered:

0.866.(c(1,1, 2) + c(1,-1,-4))

+0.25.(c(4,0, 2) + c(2,0, 2))

—0.12.(c(1, 3,2) + c(-1,3, 2))

0.866.(c(1;1,4)+

+0.25.(c(4,0,2) +42,0,-2))

—0.12.(c(1,3,2) + 4-1,3,-2))

0.866.(41,1,0)+ 41,-1,0))

+O. 25.(44, 0,2) + 42,0,-2))

—0.12.(c(1,3,2)+ c(-1,3,-2))



1,3 (t) =
{c(1,0,0,01

• 41,0,2,01)

41,'0,4,01)
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112 (t) = i..{0.866.(c(1,2,0,01)+ c(1,2,2,0 1 )+3.c(1,0,2,03+ 41,2,4 A)

+O. 25.(44,1,0) + 44,1, 2) +c(4,1,4) + 44,-1,0+

+42,1,0) + 42,1, -2) + 42,1,-4) + 42,-1,0) + 42,-1, 2)+42,-1,0

+0.12.(41, 4,0) + 41, 4, 2) + 41, 4, 4) + 4-1,-4,0) + 	 +4-1,-4,-4)

41,2,0+ 41, 2,2)+ 41, 2, 4))}

(A.17)

Equation A.17 can then be rearranged and simplified:

(t) = 4.1 .0.866.c(1,0,2)	 (A.18)

The third input line current may then be examined in the same way. Only the third
column of the control matrix needs to be considered:

0.866.(c(1,1,4)+c(1,-1,-2)) -

+0.25.(c(4,0,4)+c(2,0,-2))

—0.12.(41,3,4)+4-1,3,-2))

0.866.(c(1,1,0)+ 41,-1,0))

+0.25.(c(4,0,4)+c(2,0,-2))

—0.12.(c(1,3,4)+471,3,-2))

0.866.(c(1,1,2)+ 41,-1,-4))

+0.25.(c(4,0,4)+ c(2,0,-2))

—0.12.(41,3,4)+4-1,3,-2))



= J.
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i3 (t) Ii.g.{0.866.(41,2,0,01)+41,2,2,01)+3.c(1,0,4,4)+41,2,4,01)

+c(1,-2,0,-01)+41,-2,-4,-01)+c(1,-2,-2,-0/)+3.41,0,4,-40)

+0.25.(44,.1,0)+c(4,1,2)+c(4,1,4)±c(4,-1,0)+44,-1,-2)+c(4,-1,-4)

+42,1,0)±c(2,1,-2)+42,1,-4)+c(2,-1,0)±c(2,-1,2)+42,-1,4))

+0.12.(c(1,4,0)+c(1,4,2)+c(1,4,4)+c(-1,-4,0)+ c(-1,-4,-2)+c(-1,-4,-4)

+4-1,-2,0) + c(-1,-2,-2) + c(-1,--2,-4) + c(1, 2,0) + c(1,2, 2) + c(1,2, 4))}

(A.19)

Equation A.19 can then be rearranged and simplified:

I,3 (t) = 4./i .0.866.c(1,0,4)	 (A.20)

The input current matrix may now be formed by substituting equations A.16, A.18
and A.20 into equation A.14 and decoding the notation:

I ; (t) =[I ;21=•i.[c(1,0,2)

1j3	 c(1,0,4)

cos(coot)

cos(coo t +2f)

cos(co,,t+Af)

(A.20)

These ideal input currents are of the same form .as the input voltages and are in

phase with the input voltage waveforms, as required.

The analysis presented in this appendix has assumed that the converter has a perfect

three phase supply with no impedance. The load has been considered as a perfect

current source capable of absorbing current without any change in characteristics.

The nine bi-directional power switches in the converter have been taken as perfect

switches with no delays or losses. The switching frequency of the converter has

c(1,0,0)1



Appendix A: The Verification of the Control Matrix Operation 	 243

been considered as infinite in comparison to the input output and control

frequencies.



Appendix B

List of Symbols



Appendix B. List of Symbols 	 245

The following is a list of the symbols used in this thesis and their meanings.
Chapter numbers have been given after the symbol definition in situations where
the use of a variable may be unclear.

A	 Filter attenuation

arlY)	 Fourier function of y

bm(y)	 Fourier function of y

Capacitance

Co	 Double integral with product cosine function

sn(y)	 Fourier function of y

cos(p)	 Power factor

dm(y)	 Fourier function of y

dx	 Duty cycle of switch x

Energy lost per device switching cycle for a given device

ern(y)	 Fourier function of y

F(t)	 Sub-division of Control Matrix, rectifier process matrix

F(x Y)	 Function of x and y

fi	 Fundamental input frequency .

I(y)	 Fourier function of-y

fo	 Fundamental output frequency •

fs	 Switching frequency

G(t)	 Control Matrix

G1(t)	 Sub-division of Control Matrix, leading displacement factor

G2(t)	 Sub-division of Control Matrix, lagging displacement factor
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gm	 Input voltage to current ratio (Chapter 8)

	

gxY	 Element x,y of the control matrix

H(t)	 Sub-division of Control Matrix, inverter process matrix

	

hx	 Harmonic of order x

	

Ia	 Current Direction

	

iac	 Instantaneous AC current

	

ic	 Capacitor current (Chapter 8)

	

lc	 Collector current in a IGBT

	

If	
Forward current in a diode

	

Iix	 Input line current in arbitrary input line x

	

im	 Motor current

Id°	 Input current matrix

Id°	 Output current matrix

lox	 Output line current in arbitrary output line x

J(Z)	 Bessel Function of the first kind of Z, order n

Ks	 Number of hard switching cycles per switching period

Inductance

Order of switching frequency harmonics (Chapter 7)

Output signal from a current sensor (Chapter 9)

M(t)	 matrix of switch functions

m(t)	 switch function (Chapter 3)

Order of control frequency harmonics

Average power
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q	 Modulation index

R	 Resistance

RI,	Resistance of a real inductor

Rth	 Thermal residence in a device

Se	 Double integral with product sine function

Sx	 Switch number x

SxA	 Forward current direction switch control signal

SxB	 Reverse current direction switch control signal

Sxy	 Switch connected to input line x and output line y

t	 Time variable

TI,T2	 Transformers (Chapter 9)

Tau.	 Ambient air temperature

T.	 Device junction temperature
J

Tseq, Ts	 Switching period

Tx	 Closed period of switch number x

vac	 Instantaneous AC voltage

Vc	 Voltage across a capacitor

Vce	 Saturation voltage of an IGBT

Vdc	 DC voltage

Vf	Forward voltage of a diode

Vix	 Input line voltage on arbitrary input line x

Vo,max	 Maximum output voltage magnitude in a given period

Vo,min	 Minimum output voltage magnitude in a given period
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V0(t)	 Input voltage matrix

V0(t)	 Output voltage matrix

Vox	 Output line voltage on arbitrary output line x
z,

Proportional factor for unbalanced supply calculations (Chapter 2)

Proportional factor for unbalanced supply calculations (Chapter 2)

di	 Rate of change of current
di

dv

di	 Rate of change of voltage

Current scaling factor dependant on nature of the converter load

7	 Displacement factor between voltage and current waveforms

a	 Displacement factor control variable

Proportional factor for harmonic distortion calculations

Angular control frequency

co;	 Angular frequency of input waveform

(00	 Angular frequency of output waveform

Angular Switching frequency

Px	 Magnitude of function number x,
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REDUCING THE SEMICONDUCTOR LOSSES IN A MATRIX CONVERTER

P. W. Wheeler and D. A. Grant'

Abstract

This paper looks at the implementation of a matrix converter switching strategy under microprocessor control
and using IGBTs. The effects of different switching methodologies for the converter are investigated. The power
losses in the switching ddfices of a matrix converter are analysed and quantified. The effects of different
switching frequencies and approaches to PWM generation are considered. Comparisons are drawn with a
conventional inverter in terms of efficiency and relative cost.

With the price of semiconductors falling and the reduction in device switching times it may not be long before
the matrix converter's silicon solution to AC motor control may be commercially viable.

1 Introduction

The matrix converter is an alternative to an inverter drive for 3-phase frequency control. The converter consists
of nine bi-directional switches arranged as three sets of three so that any of the three input phases can be
connected to any of the three output lines (see figure 1). The switches are then controlled in such a way that the
average output voltage is a sinusoid of the required frequency. This circuit was considered in the late 1970's [1]
and further work carried out by Venturini [2] in 1981. Some of the limitations of the matrix converter have
subsequently been overcome [3], [4] making it a more viable commercial proposition.

.s7	 S9'1\

Vol	 Vo2	 Vo3

Figure 1: The Matrix Converter Switch Layout

2 The Semiconductor Losses

Since a suitable bi-directional semiconductor switch has not yet been developed the matrix converter can be
realised using a switch constructed from discrete components. The switch can be realised in two ways as shown
in figure 2. The back to back IGBT arrangement was chosen as it allows independent control of the current in

IP. W. Wheeler and D. A. Grant are with the Industrial Electronics Group, Department of Electrical and Electronic
Engineering, University of Bristol, UK.
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a

b. Back to Back IGBTa. Diode Bridge Bi-directional Switch

both directions within each switch. This control would not be possible if the diode bridge circuit was used. The
diode bridge circuit also has a greater conduction loss since there are two diodes in series with the IGBT.

Figure 2: Possible Bi-directional Switch Configurations

The losses in a matrix converter consist of conduction losses and switching losses. The conduction losses are
proportional to the forward voltage drop across the device and the current carried by the device. The forward
voltage drop is dependant upon the junction temperature of the device and the current carried by the device.
These relationships require an iterative calculation since the device losses and the junction temperatures are
interdependent. The conduction loss per switch is calculated as the sum of the conduction losses in the IGBT
and in the associated diode. The conduction loss in a matrix converter is therefore slightly greater than in an
inverter in which either the IGBT or the diode would carry the load current.

The switching losses in the IGBT are due to the finite time taken for the device to change state. These losses
are dependent on the junction temperature, giving a further complication to the iterative loop between the losses
and the junction temperature. The switching losses are also proportional to the switching frequency at which
the converter is operating.

3 Calculation of the Converter Losses

If the assumption is made that the switching time of the switches is negligible in comparison to the conduction
time, then the conduction losses for one output phase of the converter can be calculated as the sum of the
conduction losses in each switch in that phase, as, shown in equation 1. The conduction loss in a given switch is
the product of the forward voltage drop, the average current .flOwing in the switch and the duty cycle of the
switch, a„, as follows:

Peond.,,hose=1,[(riceni,,d„)+(vfi,/fi,aji

.( Tice +V.1)

Where: IC = Saturation voltage of the IGBT	 I = Collector current ca. rried by the IGBT

= Forward voltage of the diode	 I,. = Forward current carried by diode

The switching losses per switch in the matrix converter are calculated as the product of the switching frequency
and the energy loss per pulse, E loss , for the given device.

Pswitch,phase = 3./es • E loss
	

(2)
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This will give a total power loss for the matrix converter equal to the sum of the switching losses and the
conduction losses, as follows:

.Plow! =	 Pcond ,ph +ase Pswach ,phase)

The contribution made by each component of the power loss to the total matrix converter power losses are
shown graphically in figure 3 far a range of switching frequencies. The figures are based on a 5kWatt converter
using IRGBC20 600Volt,i3Amp IGBTs and MUR860 600 Volt, 8Amp diodes. The graph was computed using
an iterative process set up on a computer spread sheet.

This value of the total converter power loss assumes that every current path change in the converter results in a
switching loss. A possible method of reducing the converter losses could therefore be to reduce the number of
switch state changes that produce switching losses.

Total losses for 5kW converter (Watts)

200

(3)

Total Losses

IGBT Conduction Losses

IGBT Switching Lossea_------

Diode Conduction Losses

20 -

3000
	

8000	 9000	 12000	 15000	 18000

Switching frequency (Hz)

21000

Figure 3: The Composition of the Matrix Converter Semiconductor Losses

4 Methods of Reducing Semiconductor Losses•

The conduction losses in the matrix converter are determined by the forward drop characteristics of the chosen
devices. However the switching losses may be reduced by selecting devices with short switching times. The
switching losses may also be reduced by adopting an appropriate method of commutating the current from one
conducting switch to the next. It will be shown that switching losses can be further reduced by the use of a
method of Partially Symmetrical PWM.

Switching losses can be reduced by providing an overlap in the switching periods of the conducting halves of
the bi-directional switches. This method of current commutation allows zero current switching if the outgoing
device is reversed biased by the turn on of the incoming device. This situation will occur when the voltage on
the input line of the incoming switch is greater than the voltage on the input line of the outgoing switch in the
conduction path. There is a 50% probability of the zero current switching occurring at any given current path
changeover. This method of current commutation will therefore achieve a 50% reduction in the average
switching losses in a matrix converter. For this reason an appropriate term for this type of control is semi-soft
current commutation. Figure 4 shows the control waveforms for semi-soft current commutation between
switch Si and switch S2 assuming the output current is flowing in the a direction as defined in figure 2.

8/3



1	 1

2	 	 1

la

lb	 1

Za

2b

Figure 4: The Timing Diagram for the Switch Control Functions
During Semi-Soft Current Commutation

The switching losses can also be reduced using a PWM method in which the order of the closing of the switches
is considered. Instead of operating the switches in a conventional order of switch S I, switch S2, switch S3,
switch Si, switch S2, switch S3 and so on, the last switch in the set of three becomes the first in the next set of
three. The switching order therefore becomes switch Si, switch S2, switch S3, switch S3, switch Si, switch
S2, switch S2, switch S3 and so on. This method of PWM has been termed semi-symmetrical PWM. A
reduction of 33% in the required number of switch commutations is achieved using this method.

If both of the switch loss reduction techniques described above are implemented, then a reduction of 66% in the
switching losses can be achieved. If the total semiconductor losses in the matrix converter are compared to total
losses (rectifier and inverter stages) of an inverter drive, it can be shown that this reduction in switching losses
will compensate for the extra conduction losses inherent in the matrix converter structure. Figure 5 shows that
at higher switching frequencies the matrix converter can be more efficient than an inverter drive.

Total Semiconductor Losses (Watts'
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Figure 5: A Comparison of Inverter and Matrix Converter Losses Against Switching Frequency
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5 Conclusions

The semiconductor losses in a matrix converter have been examined. The conduction losses in the matrix
converter have been found to be higher than the conduction losses in a standard inverter. Methods of reducing
the switching losses in a matrix converter have been proposed. The implementation of these methods means
that the total losses in the matrix converter can be less than those in an inverter drive at high switching
frequencies. It has been shown that even at lower switching frequencies the losses in the matrix converter are
not significantly greater than those in an inverter drive.
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A LOW LOSS MATRIX CONVERTER FOR AC VARIABLE-SPEED DRIVES

P.W. Wheeler and D.A. Grant
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Abstract. This paper reports the construction and testing of a matrix converter in which novel
switching methods are employed to minimise the losses in the switching devices. A mixture of
, hard and soft commutation is used during each cycle of the output waveform. This permits
losses to be reduced to a minimum while waveform quality is enhanced. It is demonstrated that
at elevated switching frequencies the efficiency of a matrix converter can be comparable to that
of the traditional inverter drives. IGBTs are used as the switching devices and a
microcontroller is used to generate the switching waveforms and provide control. Reactive
components have been minimised so that the matrix converter is now approaching an all-
silicon solution to ac-ac power conversion. Practical results are presented.

Keywords. Matrix Converter, Forced Conunutated Cycloconverters, Variable Speed Drives,
Current Commutation.

INTRODUCTION

The matrix converter is an alternative to an inverter
drive for 3-phase frequency control. The converter
consists of nine bi-directional switches arranged as
three sets of three so that any of the three input phases
can be connected to any of the three output lines (see
figure 1). The switches are then controlled in such a
way that the average output voltage between the output
lines is a sinusoid of the required frequency. This
circuit was first considered in the late 1970's [1] and
further work carried out by Venturini [2] in 1981.
Some of the limitations of the matrix converter have
subsequently been overcome [3], [4] making it a more
viable commercial proposition.

Vii

Vi2

Vi3

Vol	 Vo2	 Vo3

Figure 1: The Matrix Converter Switch Layout

The matrix converter has a number of advantages over
conventional variable speed drives. A matrix converter
requires no large reactive components as there is no
DC link. This makes the matrix converter an all
silicon solution for variable speed drives. A matrix
converter also draws sinusoidal input currents after the
filtering of switching frequency harmonic. Most
control algorithms also allow the input displacement
factor to be set at unity or even leading.

INTRINSIC MAXIMUM OUTPUT VOLTAGE

The output voltage of a matrix converter is limited to
0.866 of the input voltage. This limitation is because
the maximum peak to peak output voltage cannot be
greater than the minimum voltage difference between
two phases of the input. This is an intrinsic limit on
the performance of any matrix converter.

The maximum output voltage may be achieved by
intrOducing third harmonics of the input and output
frequencies on to the output waveform to make full use
of the available input voltage. These third harmonics
will give the line output voltages described by
equation 1.

[ cos(om)
V.( t) = 0.866. cOs( um +	 + 0. 25. cos( coot) + 0.12. cos(wet)

cos(coet--;f)

(1)
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Figure 4: Back to Back IGBT Bi-Directional
Switch in a Common Collector Configuration

SAFE CURRENT COMMUTATION

A PRACTICAL BI-DIRECTIONAL SWITCH

The practical realisation of a Matrix Converter requires
the use of a bi-directional switch. Until device
technology progresses to the point where such a device
is practical this bi-directional switch must be fabricated
using discrete components. The switches may be
constructed using diodes and transistors. IGBTs have
been chosen as the controllable devices due to their
high switching speeds and current handling
capabilities. There are three possible configurations for
this bi-directional switch:

• Diode Bridge with a Single IGBT

• A Pair of Back to Back IGBTs in Common
Collector Mode

• A Pair of Back to Back IGBTs in Common
Emitter Mode

Diode Bridge Switch Configuration

Figure 2 shows the a diode bridge arrangement with
one switching device providing the current path at all
times. This style of bi-directional switch has the
advantage of only requiring one IGBT and its
associated gate driver circuit. The main disadvantage
of the diode bridge arrangement is that three devices
are conducting at any given time giving rise to
relatively high conduction losses.

If the devices in the switch are connected in common
emitter mode then only one isolated gate drive is
required to drive each switch. In common collector
mode the emitter of each device is connected to either
an input of an output line of the converter. With this
configuration the number of isolated gate drive supplies
for the converter is reduced to six.

Sb

Figure 3: Back to Back IGBT Bi-Directional
Switch in a Common Emitter Configuration

Sa

Figure 2: The Diode Bridge Bi-Directional
Switch Configuration

Back to Back IGBT Switch Configurations

Figures 3 and 4 show how a back to back arrangement
of IGBTs may be used to implement the bi-directional
switch for a matrix converter. The two diodes are used
to provide the reverse voltage blocking capability. This
arrangement was chosen as it allows independent
control of the current in both directions within each
switch. This control can then be used in current
commutation between switches to reduce the switching
losses. The back to back arrangement also has lower
conduction losses than a diode bridge switch
arrangement as fewer devices are conducting at any
given time.

The switches in the converter must be controlled in
such a way that two input lines are never connected to
the same output line. It is also important that every
output line is always connected an input line to avoid
Open circuiting the motor. These conditions may occur

•.due to the finite Switching times in semiconductor
switches. A method of avoiding these situations is
therefore required.

Dead Time Current Commutation

Matrix converters have been built using dead times [5]
to overcome the shorting of the input lines due to the
finite switching times of the devices. If dead times are
used then some form of voltage clamping or an
alternative current path must be provided to avoid an
uncontrolled open circuit of the motor. The
introduction of dead times also increases the losses in
the converter. The switch control waveforms for dead
time operation are shown in figure 5 for the passing of
the current path between switch 1 and switch 2.
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Figure 7: The State Diagram for the Semi-Soft Current Commutation Strategy
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Figure 5: Switch Control Waveforms for Dead
Time Current Commutation

Overlap Time Current Commutation

Overlap between the switching periods of switches has
been used as an alternative to dead times [6]; with
inductance introduced in the input lines to minimise
the short circuit currents. The inductors required to
minimise these currents would be large and expensive.
This paper presents an alternative that minimises the
switching losses and requires minimal voltage
Clamping.

Semi-Soft Current Commutation

The current can be commutated from one switch to the
next by providing an overlap in the switching periods
of the conducting halves of the bi-directional switches.
This method of current control will allow zero current

switching of the IGBTs if the outgoing device is
reversed biased by the turn on of the incoming device.
This situation will occur when the voltage on the input
line of the incoming switch is greater than the voltage
on the input line of the outgoing switch in the
conduction path. There is a 50% chance of the reverse
biased situation occurring. For this reason an
appropriate term for this type of current control is
semi-soft current commutation. Figure 6 shows the
control waveforms for semi-soft current commutation
between switch Si and switch S2, with A and B
denoting the two independent halves of the switch.

1
2

la

lb

2a

2b

td 	 .

Figure 6: The Timing Diagram for the Switch
Control Functions for Semi-Soft Current

Commutation

Figure 7 shows the semi-soft current commutation
control in the form of a state diagram for one output
phase of the matrix converter. This state diagram may
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then be used to program a logic device such as a GAL.
The clock frequency for the logic device may be a used
to adjust the existence time for each transition state.
The existence time of each state can then be set to
match the characteristic propagation and switching
delays of the devices used in the converter. This
approach to the implementation of the current
commutation strategy gives a simple and flexible
solution to the safe operation of the matrix converter
switches.

THE CONVERTER LOSSES

The semiconductor losses in a matrix converter consist
of conduction losses and switching losses. The
switching losses are due to the finite time taken for the
IGEIT to change state. The conduction losses are
proportional to the forward voltage drop across the
device and the current carried by the device. Figure 7
shows graphically the composition of the total losses in
a matrix converter. The graph was generated using
iterative routines on a computer spread sheet. The
figures are based on a 5kWatt converter using
IRGBC20 600Volt, I3Amp IGBTs and MUR860
600 Volt, 8Amp diodes.

reduction in the average switching losses in a matrix
converter because there is a 50% chance of the reverse
biased situation occurring.

Switching Loss Reduction Using Semi-Symmetrical
PWM Waveforms

The switching losses can also be reduced by 33% with
the implementation of a PWM method in which the
last in a set of three switching periods becomes the first
switching period in the next set of three switching
periods. Instead of a conventional order of switch Si,
switch S2, switch S3, switch Si, switch S2, switch S3
and so on, the order becomes switch Si, switch S2,
switch S3, switch S3, switch Si, switch S2 and so on.
This method has been termed semi-symmetrical PWM.
The switching sequence for semi-symmetrical PWM is
shown in figure 8.
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164
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II

Figure 7: The Composition of the Matrix Converter
Semi-conductor Losses

REDUCTION OF SWITCHING LOSSES

The characteristics of the chosen devices in a matrix
converter determine the conduction losses. The
switching losses may also be reduced by careful
selection of devices. However the switching losses may
be reduced by considering the method of current
commutation employed and the switching patterns.

Switching Loss Reduction Using Semi-soft Current
Commutation

The switching losses can also be reduced by the
implementation of a suitable method of commutating
the current from one conducting switch to the next.
Semi-Soft current commutation will achieve a 50%

The effect of implementing both semi-soft current
commutation and semi-symmetrical PWM on the
switching losses of a matrix converter is shown in
figure 9. The reduction in switching losses for each
technique implemented independently is also shown.

Telal Switch Power Loma r.,11w Converter (Watts)

Figure 9: The Effect of Switching Loss Reduction
Techniques on the Total Converter Losses
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The semi-conductor losses for a rectifier/inverter
circuit employing similar components may also be
calculated. These losses for this inverter circuit can be
compared to the losses in a matrix converter as shown
in figure 10. At higher switching frequencies it may be
seen that a matrix converter offers lower semi-
conductor losses than the inverter.

Orr/ /Naps'

400

Figure 10: A Comparison of the Total Converter
Losses for a Matrix Converter and an Inverter

Figure 11b: The Output Current Waveform and the
Output Voltage Spectrum, 80Hz Output Frequency.

bon loopol

RESULTS
2

A lkWatt, 415Volt matrix converter has been built and
tested. The system uses a Seimens SAB80C166 micro-
controller to provide the control signals. GALs have
been used as the programmable logic devices for the
implementation of the current commutation strategy.

Conn /004

4

	 1

b. /Snook'

Figure ha: The Output Current Waveform and the
Output Voltage Spectrum, 32Hz Output frequency.

Figure 11c: The Output Current Waveform and the
Output Voltage Spectrum, 130Hz Output

Frequency.

A switching frequency of 20kHz has been chosen for
the converter to minimise the size of the input filters
whilst keeping switching losses at an acceptable level.
The converter has been designed to give output
frequencies between 0Hz and 200Hz. Figure 11 shows
the output waveforms obtain from the converter. The
input current frequency spectrum is shown in figure 12.
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Figure 12a: The Input Current Voltage Spectrum
Showing the Fundamental and First Harmonic of

the Switching Frequency. 30Hz Output Frequency
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Figure 12b: The Input Current Voltage Spectrum
Showing the Harmonics to the Switching Frequency.
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CONCLUSIONS

This paper has examined the design and limitations of
a matrix converter, with particular emphasis on losses

in the power semiconductor devices. New methods of
minimising switching losses have been described. It
has been shown that total losses in a matrix converter
can be comparable to those in the conventional inverter
drive. Practical results obtained from a IkWatt,
415 Volt matrix converter have been presented,
showing that good waveform quality can be obtained,
and that the matrix converter is a serious challenger to
the inverter in ac variable-speed drives.
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ABSTRACT

This paper considers the switching frequency
harmonics drawn from the supply by a matrix
converter. The magnitude and frequencies of the
switching frequency harmonics are examined. The
problems associated with input current filtering to
comply with existing and possible future EMC
regulations are investigated. Possible solutions to
these filtering requirements are evaluated. The
paper compares results from mathematical theory,
computer simulation, and a power level converter
under microprocessor control.

With the price of semiconductors falling and the
reduction in device switching times it may not be
long before the matrix converter's all silicon solution
to AC motor control may be commercially viable.

1 INTRODUCTION

The matrix converter is an alternative to an inverter
drive for 3-phase frequency control. The converter
consists of nine bi-directional switches arranged as
three sets of three so that any of the three input
phases can be connected to any of the three output
lines (see figure 1). The switches are then controlled
in such a way that the average output voltage
between the output lines is a sinusoid of the required
frequency.
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Figure 1: The Matrix Converter Switch Layout

This circuit was first considered in the late 1970's [1]
and further work carried out by Venturini [2] in
1981. Some of the limitations of the matrix
converter have subsequently been overcome [3], [4]
making it a more viable commercial proposition.

1.1 Advantages of a Matrix Converter

The matrix converter has a number of advantages
over conventional variable speed drives. A matrix
converter requires no large reactive components as
there is no DC link. Reactive components are
therefore minimised so that the matrix converter is
now approaching an all-silicon solution to ac-ac
power conversion. A matrix converter also draws
sinusoidal input currents after the filtering of
switching frequency harmonic. Most control
algorithms also allow the input displacement factor
to be set at unity or even leading if the converter is
connected to a load with a lagging power factor.
IGBTs are used as the switching devices and a
microcontroller generates the switching waveforms
and provides control.

1.2 Intrinsic Maximum Output Voltage

The output voltage of a matrix converter is limited to
0.866 of the input voltage. This limitation is because
the maximum peak to peak output voltage cannot be
'greater than the minimum voltage difference
between two phases of the input. This is an intrinsic
limit on the performance of any matrix converter.
The Maximum output voltage may be achieved by
introducing third harmonics of the input and output
frequencies on to the output waveform to make full
use of the , available input voltage. These third
harmonics will give the line output voltages
described by equation 1. This voltage restriction is
the only significant restriction on the performance of
a matrix converter.

[ cos(o),,t)

V0 (t) = 0.866. co (1.)„/ +2) + 0.25.co4ai„t) + 0.12.cos(w0r)

cos(wr,t — -2f)

(1)
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3.1 Computer Simulation

The operation of the converter may be modelled
using a computer simulation. A suitable program
has been written using ACSL. The simulation
program may be used to generated the input current
spectrum for the converter. The input current
spectrum for an output frequency of 30Hz is shown
in figure 4.

Owal

51n,.n 0.1

Figure 4: A Simulated Input Current Spectrum

3.1 Practical Results

A 2kWatt, 415Volt matrix Converter has been built.
The unfiltered input current frequency spectrum is
shown in figure 5 for an output frequency of 30Hz.
The switching frequency and it's second harmonic at
401(Hz can be seen. Figure 6 shows the harmonics to
the switching frequency that are of the form
predicted above.
149.9+.1,5.9.1

Figure 5: The Input Current Spectrum Showing
the Switching Frequency and 2nd Harmonic

24.90.tle I•enpal

Figure 6: The Input Current Voltage Spectrum
Showing Harmonics to the Switching Frequency.

4 REQUIRED FILTER CHARACTERISTICS

The mathematical model of the input current
waveform may be used to determine the maximum
magnitudes of the switching frequency harmonics.
This worst case condition will occur when the
converter is driving a motor at zero speed with
maximum torque. The disturbance voltage caused by
the input current of the converter drawn from a
standard supply can then be calculated [8]. Once
this disturbance voltage spectrum is known the
attenuation characteristics for the input filter can be
found. The switching frequency current has the
largest magnitude of all the switching frequency
harmonics. The minimum size filter would therefore
be required to provide the necessary attenuation at
the switching frequency.

4.1 Filter Circuit Design

A single stage LC filter could be used to provide the
required attenuation. However to meet the
regulations a single stage filter would become large.
A more economical solution could be to use a
multistage filter or a single stage filter with a tuned
harmonic diversion as shown in figure 7.

Figure 7: LC Line to Line Filter With Added
Harmonic Diversion

-
4.2 Filter Component Costing

In an attempt to make cost comparisons between the
various possible filter configurations it has been
assumed that the cost and size of a comparable
component is proportional to the component's power
rating. The cost of inductive power has been taken
as twice as much as capacitive power. Using these
assumptions. it is possible • to calculate the
approximate comparative costs of any filter
configuration using a normalised cost factor as

shown in equation 2. •

Cost Factor= 2.05 21 L„I„,u. + ECV2
n= I	 ,^=1	 (2)

V = input voltage, Irms = total input current
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The cost factor can also be used to optimise the
proportions of inductance and capacitance in the
filter. The component sizes for the a range of filter
configurations can then be calculated and compared
as shown in table 1. The figures given are based on
a 415Volt converter with a maximum input line
current of 6.5Amps and a switching frequency of
20kHz.

Filter Type
v._

. C Cost
Factor

Single Stage
LC1

3mH 1.51.IF 1

Single stage
with 20kHz
Diversion

3mH
0.5mH

1.5iff
0.1611F

1.07

Two Stage LC 2mH
2inH

liff
•	 11.1F

1.35

LC capable of
60dB A 20kHz

IlinH
_

61.1.F 3.74

Table 1: The Component Values for the Three
Considered Types of Filter

(' does not meet required attenuation at 20kHz)

The effect on the input current spectrum of the
addition of an input filter is shown in figure 8. This
current spectrum can be compared to the unfiltered
spectrum shown in figure 6.
um.* 104,1

Figure 8: Input Current Spectrum After Filtering-

If the switching frequency of the converter were to be
reduced then the relative size of the filter increases
as shown in figure 9. This increase in filter size
must be compared to the reduction in switching
losses achieved by use of a lower switching
frequency.
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Figure 9: The Effect of Switching Frequency on
the Comparative Cost of the Input Filter

5 CONCLUSIONS

The filters considered in this chapter would be used
along with the existing measures employed to solve
higher frequency EMC problems in inverter circuits.
This paper has examined the relevant regulations
and recommendations in the EMC band between
10kHz and 150kHz where a matrix converter is
likely to cause new differential mode noise problems.
It has been shown that complying with possible
future regulations will require the matrix converter
switching frequency to be relatively high to minimise
the size of input filter components. Comparisons
have been made between different filter
configurations. It has been shown that the most
economical filter for cost and size would be a simple
LC filter with a harmonic diversion to reduce the
harmonics to the fundamental switching frequency.
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