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Summary 

The Timoshenko beam equations have been extended to account for flexural vibration of a 

shear-sensitive beam carrying a mass, thus enabling steady-state damping measurements to 

be made when the drive and pick-up mechanisms are attached to the beam. These equations 

have been subsequently adapted to account for simple bending/shearing of a shear soft 

sandwich beam. Experimental verifications, regarding the frequencies and mode shapes, 

have been carried out. 

A method has been devised for measuring the dynamic properties of honeycomb in shear. 

The orthotropic shear properties of a number of aluminium and composite honeycombs have 

been investigated. 

The basic laminated plate theory and the Adams-Bacon damping criterion, have been 

utilised to predict, from constitutive data, the modulus and the specific damping capacity of 

unidirectional laminated composite beams with respect to fibre orientation. The necessary 

experimental verifications have been carried out. 

Using the constitutive data of the laminated skins, and the dynamic data of the core, the 

modified Timoshenko beam equations have been utilised to predict the proportions of the 

skin/core contribution to the overall damping of a shear soft symmetric sandwich beam with 

respect to the skin fibre orientation. The necessary experimental verifications regarding the 

overall damping have been carried out. 
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Chapter I 

INTRODUCTION 

1.1 General introduction 

Earlier sandwich structures were often made from non-metallic skins with corrugated or 

foam cores; the work on these was mainly focused on the static loading characteristics, and 

specially on the core stability under lateral load. More modem sandwich structures, made 

mostly from aluminium and incorporating a honeycomb core, proved to be adequately stiff 

in that respect but posed problems in dynamic loading, namely, vibration, noise and fatigue. 

These problems, of particular concern in aerospace applications, are frequently realised only 

subsequent to some in-service period, and the necessary modifications are usually costly, 

difficult to implement and often unsatisfactory. Tremendous interest has, therefore, been 

shown in different aspects of sandwich damping as a means of minimising the resonant 

vibrations. In aerospace applications particularly, an important consideration has been in the 

efficient incorporation of damping into the sandwich such that an acceptable 

weight/stiffness ratio is realised. This task has been made easier with the, advent of 

polymer-based fibrous composites, which provide the designer with a greater degree of 

flexibility in material selection and even the material design, the so called "tailoring" of 

properties. 

Work on the mechanisms of vibration damping' in a sandwich, in so far as the proportion of 

the contribution of the constituent parts to the overall damping is concerned, has been 

usually confined to the one-dimensional case, i. e. a 'beam'. Initial work on sandwich 

damping was carried out around 1960 in the U. S. A. The earlier works seem to have suffered 

By the term 'damping', the specific damping capacity, defined as the ratio of energy dissipation per cycle to maximum strain energy, is 

meant. Any reference to the 'damping energy'. or alternatively the'energy dissipation', will be made specifically in those terms. 
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from the lack of a systematic analytical tool. It is, therefore, not surprising to see that, for 

example, some investigations on the sandwich beam took into consideration one or both of 

the second order parameters, namely rotary inertia and shear flexibility, but simply assumed 

an elementary (Bernoulli-Euler) type of mode shape. From the pioneering works of Keer 

and Lazan [1961] to the work by Bert eta! [1967] continuous refinements were made to, or 

utilised in, the theory. 

In this last work [Bert et al, 1967], the Timoshenko beam equations, uncoupled into the 

bending slope and total deflection through Huang's procedure [1961], were adapted for a 

sandwich configuration. Characteristically, the Timoshenko equations stem from an attempt 

to refine the classical (Love-Kirchhoff) bending theory by adding the deflection due to 

transverse shear when it no longer can be ignored. Of course, 'exact' analyses have been 

introduced which, by definition, have their basis not so much in refinements or corrections 

of simple existing theories, but in a wholesome application of the elasticity theory 

following, more or less strictly, the patterns developed by the stresses, strains and 

displacements. As such, these analyses can be expected to offer correct, or more correct, 

predictions as well as providing an insight into the actual deformations. Inevitably, however, 

they are also very complex and generally difficult, if not impossible, to apply to other than 

simple idealised situations. Moreover, these difficulties are not usually matched by the 

improvements they afford on the 'corrected' theories. 

Measurement of damping is a somewhat involved procedure, demanding a great deal of 

time, care and patience. Repeatability has seldom been the virtue of damping tests, 

particularly when different test-methods, mathematical models, units etc. have been used. 

Indeed, the ad hoc approach to sandwich damping is a characteristic of the early works. 

Quoting figures for 'facing damping coefficient', having units (in 3/lb-cycle), or 'core 

damping coefficient', here of units (in? /Ib-cycle), are not uncommon. For that reason, 
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throughout this work the specific damping capacity, a non-dimensional measure of damping, 

is used. 

Furthermore, in the early works the method for damping measurement was almost 

exclusively by the free-decay of the resonant amplitude. Although this method is a quick 

and convenient way of assessing the vibration damping, but compared to the steady-state 

damping measurement, the free-decay suffers several drawbacks [Adams, 1967]. The chief 

limitation is the fact that, similar to the bandwidth method, the damping is measured over a 

varying stress amplitude, making it difficult to quote measurements at a particular stress 

level for a material with stress dependent damping. The problem becomes more acute for 

high damping materials where the decay rate is relatively short, and the material 

non-linearity is large. A further problem may arise in testing composites which show some 

degree of anisotropy in flexure, where the free vibration is more prone to coupled modes. 

Damping measurement in steady-state vibration, on the other hand, can be expected to offer 

a higher degree of repeatability. Moreover, it can provide a convenient means to measure 

damping at different stress amplitudes, thereby providing an insight into the material 

behaviour with respect to stress variation. Indeed, it has been used as a means of 

non-destructive testing of structural integrity of the material [Adams and Cawley, 1985]. 

The method's shortcomings include the fact that the shape of the cyclic deformation needs to 

be explicitly determined, and that forced vibration could, and often does, introduce 

additional extraneous damping due to the excitation system. 
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1.2 Objectives 

4 

The basic objective of this work was to investigate the mechanisms by which the constituent 

parts of a symmetric composite-honeycomb-composite sandwich beam contribute to the 

overall damping in flexural vibration and, by a wider implication, the possibility of 

predicting the damping properties of such a beam at a given skin fibre orientation from the 

constituent data based on elasticity and damping properties of the unidirectional composite, 

and those of the honeycomb. A second, concurrent, objective of the work was to measure 

the damping of the sandwich in steady-state vibration. These general objectives involved the 

following 

a) extending the modified Timoshenko-Huang beam equations to account for flexural 

vibration of a loaded shear-soft beam, thus enabling the assessment of the bending/shearing 

proportion in the beam when the latter is required to be loaded with the drive and pick-up 

mechanisms, 

b) devising a method for measuring the dynamic properties of honeycomb in shear, and 

c) verification of the Adams-Bacon damping criterion in predicting the damping properties 

of a multilayer unidirectional fibrous composite with respect to fibre orientation from the 

orthotropic elastic data and the damping data of the composite. 
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Chapter 2 

A SURVEY OF LITERATURE 

Scope - Given the great volume and the diversity of the work on the dynamics of sandwich 

structures, one cannot afford but to be very selective regarding the past work. In this 

chapter, an outline of the work reported on those aspects of the dynamics of sandwich beams 

which are deemed to be of relevance to the present work, is considered. 

2.1 Application of Timoshenko beam equations 

Timoshenko [1921] proposed to add the shear effect in the transverse vibrations of prismatic 

bars. In so doing, he derived the well known and often used equation incorporating both the 

rotary inertia, which had been introduced earlier by Lord Rayleigh, and the shear effects. 

Beam analyses which include both these so called 'secondary effects', are generally referred 

to as Timoshenko beams. 

It was not, however, until the lapse of another thirty years or so that the Timoshenko beam 

analyses were gradually utilised to their best effect. Much of the earlier work on vibration of 

the Timoshenko beams seems to have suffered complexity or inaccuracy of analysis. The 

Uflyand analysis, for example, of a semi-infinite Timoshenko beam subjected to a 

concentrated load has incorrect boundary conditions [Dengler and Goland, 1951], although 

Miklowitz [1953] shows that Uflyand's solutions are meaningful subject to 'proper 

interpretation'. 

Kruszowski in 1949 was reported to be the first to have applied the correct boundary 

conditions for use with Timoshenko beam equations [Bert et al, 1967] although the 

correctness of his boundary conditions are not universally acknowledged [Nordby et al, 
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1965]1. There is, however, agreement [Miklowitz, 1953; Nordby et al, 1965; Bert et al, 1967] 

on the validity of another form of the boundary conditions derived by Dengler and Goland 

[1951]. In analysing the problem of the instantaneous stresses produced in transverse impact 

of long beams, Dengler and Goland used the Timoshenko beam equations using time 

dependent boundary conditions. They point out, however, the limitations of the Timoshenko 

theory ('and in this way achieves its simplicity') inasmuch as, unlike the solutions obtained 

by the elasticity theory, they do not account for the presence of the higher modes at each 

wavelength, which are of significance in impact. 

Forced vibration of the Timoshenko beams is discussed by Herrmann [1955], who utilised 

the method first used by Mindlin and Goodman in 1950 in dealing with time dependent 

boundary conditions. 

The first explicit use of Timoshenko's original coupled equations and the associated 

boundary conditions was probably due to Anderson [1953]. As stated by Anderson and 

reiterated by Miklowitz [19531, the coupled equations approach results in simplified 

associated expressions and well defined boundary conditions. Using the classical mode 

superposition method, Anderson proceeds to solve the Timoshenko beam equations in a 

series form, in the same way as the solutions of the elementary (Bernoulli-Euler) equations 

are usually presented. In this, he shows the convenience for routine numerical calculations. 

Although this view is shared by such as Dengler [1954], Anderson's series solutions have 

also been subject to criticism as 'cumbersome' [Nordby et al, 1965] and somewhat 

superficial compared to the exact solution [Dengler, 1954]. 

In his paper, Huang [1961] mentions the complexity and limitations of the analysis by 

Kruszowski. The latter obtains the frequency equations for clamped-free and free-free 

beams by solving a complete differential equation in lateral deflection with prescribed 

1 Nordby et al [1965] state that these incorrect boundary conditions will be discussed in a later section, but no further reference to this 

point is made. 



-Ch2- 7 

boundary conditions. Huang, however, proceeds in obtaining two complete differential 

equations in bending slope and total deflection from the original coupled equations due to 

Timoshenko [1955 -a slightly modified version of Timoshenko, 1921]. Two solutions are 

therefore obtained with the constants in the solutions being related through the original 

coupled equations. The 'novel' features of his approach include homogeneous prescribed 

boundary conditions. Frequency equations and normal mode functions are obtained for all 

combinations of fixed, free and simply supported end conditions. 

Kobayashi's analysis in 1954 of the vibration of a sandwich beam was reportedly the first of 

its kind [Nordby et a!, 1965] but his analysis was based on the elementary equations. Kimel 

et a! in 1959 used an energy approach and included both shear and rotary inertia effects but 

again based their mode shapes on the elementary theory. Raville et al [1961] also used an 

energy approach and included both shear and rotary inertia effects. They derived the 

frequency equation for a fixed-fixed beam in the form of a series which would converge to a 

'good accuracy' with the number of terms used only slightly higher than the number of 

frequencies required. They attributed the consistently lower experimental values to the 

difficulty in achieving complete fixity at the ends. Clary and Leadbetter in 1963 were 

reportedly the first to apply the Timoshenko beam theory to a sandwich beam [Nordby et a!, 

1965] but used the same boundary conditions as Kruszowski. 

Nordby et al [1965] were apparently the first to apply correctly the Timoshenko-Huang2 

beam equations to a sandwich beam. To this end, they assumed the direct stresses and shear 

strains were limited to the skins and the core respectively. Their use of the equations so 

obtained was, however, limited to predicting the natural frequencies and mode shapes of a 

free-free sandwich beam. Their prediction of the fundamental frequency and the nodal 

locations of various samples is fairly good with almost all the values within a difference of 

+I% to +6% from the experimental values. 

2 Although not specifically using Huang's method, they arrived at the same equations using the Lagrangian method. 
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Similar use of the Timoshenko-Huang equations together with what is said to be the 

Dengler-Goland boundary conditions was made later by Bert et al [1967]. Their prediction 

of the fundamental frequencies and the nodal locations of aluminium and GFRP sandwich 

beams, with free-free boundary conditions, are generally good with a difference from 

experimental values of mostly below 5% in frequencies and -2% to +5% in nodal locations3. 

2.1.1 The shear correction factor 

From the onset of the derivation of Timoshenko's beam equations, controversy has existed 

about the characteristic nature of what is usually known as the shear correction (or shape) 

factor. The shear correction factor, usually represented by k, is defined as the ratio of the 

mean shear stress over the beam cross section to the maximum shear stress occurring at the 

neutral axis, and stems from the assumption of uniformity of shear stress distribution over 

the cross section in deriving the Timoshenko beam equations. In the static analysis of the 

deflection of a solid and uniformly loaded beam with rectangular cross section it is readily 

shown that the parabolic nature of the shear distribution will require that k be 2/3 4. Initially, 

it was simply assumed that this value also applied to the dynamic problems [Timoshenko, 

1921], only to be modified later to an empirical value of 8/9 [Timoshenko, 1922]. The 

inadequacy of the static value of k for dynamic problems has been mentioned in several 

works [Mindlin, 1951; Goodman and Sutherland, 1951; Mindlin and Deresiewicz, 1953; 

Dengler and Goodman, 1954; Cowper, 1966; Whitney, 1973 etc. ] where it is generally 

pointed out a more complicated nature of shear distribution, especially at higher frequencies, 

due to the presence of inertia forces. There is, however, less unanimity in an alternative 

definition for the shear correction factor. Roughly speaking, there seem to be two general 

approaches in tackling the factor k. Expressions have been derived which find k either 

3A persistent misrepresentation of the expressions for a and ß has been noticed in the paper by Bert et al, as well as in Wilkins [19651 

which is believed to be the original source for this paper. In both cases the term (r24) in the expressions appears with the first power 
while this term should be of the second power. 

4 Even this definition of the static value of k has been subject to criticism. See [Cowper, 1966]. 
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through equating the shear dominant frequencies of vibration [Mindlin, 1951] or relate k to 

the Poisson's ratio through the application of the elasticity theory [Mindlin, 1951; Goodman, 

1951; Cowper, 1966]. 

Mindlin's approach to the problem seems to have been the most popular of all, and many 

workers who subsequently used the Timoshenko beam equations followed this approach in 

one way or another. In a paper [1951) concerning the two dimensional analysis of plate 

vibration, analogous to the one dimensional Timoshenko beam analysis, he postulated to 

find the factor k in such a way that the first pure thickness-shear frequency predicted by the 

Timoshenko beam (or in his case plate) equations equals the frequency of the first pure 

shear mode of vibration according to the exact three-dimensional theory of elasticity. For a 

beam with rectangular cross section, these frequencies are, respectively, given as 

(0, I = kAG/pI 

w, 2 = (n/h)2 (G/p) 

where A, o, p, I and h are the cross sectional area, shear modulus, density, second moment of 

area and depth of the beam respectively. The first frequency is readily obtained by setting to 

zero the lateral displacement amplitude, w(x, ) , in the Timoshenko beam equations (Appendix 

(C)), while the second frequency follows from the equations of the waves of distortion in an 

elastic medium [Timoshenko and Goodier, 1951]. Equating these frequencies will result in 

k=n2/12 (=0.822), which is also the value obtained by Mindlin for a simply supported plate. 

Mindlin's reasoning for this procedure was based on the fact that at the frequencies of the 

first thickness-shear mode, there is a strong coupling between the flexural and 

thickness-shear modes [Mindlin and Deresiewicz, 1955]. In the same paper [1951], using 

classical plate theory, he derives an expression relating the k factor to Poisson's ratio in 

which the former ranges from 0.76 to 0.91 for a range of the latter from 0 to 0.5. Mindlin 

restates Rayleigh's observation that the classical plate theory gives better results for long 
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waves and that its departure from the three-dimensional theory of elasticity at shorter 

wavelengths is almost entirely due to the transverse shear deformation. 

In a somewhat similar way to Mindlin's first method, Goodman [1951] derived a cubic 

equation for the case of a simply supported beam in which k is found in terms of Poisson's 

ratio. For a Poisson's ratio of 0.33, this equation yields k=0.869. 

As noted by Goodman [1954] and Mindlin [1955], at lower frequencies the shear stress 

distribution is not much different from the parabola of statics but, as the frequency 

increases, owing to inertia forces a "skin effect" dominates in such a way that the shear 

distribution tends to revert, maximising near the surface and diminishing towards the 

mid-depth (Fig. 2.1). 

j 

(a) (b) 

Fig. 2.1 Schematic shear distribution in solid beams 
a) static, b) high frequency dynamic 

In a three-dimensional elasticity analysis of beams, Cowper [1966] derived expressions in 

terms of Poisson's ratio for various cross-sections which were 'most satisfactory for static 

and... low-frequency' situations. Cowper's value for k for a rectangular section beam with a 

Poisson's ratio of 0.33 is 0.851, which is somewhat lower than the corresponding figure 

obtained by Goodman. The expressions used for shear stress and displacement are said to be 

applicable to both uniformly loaded beams as well as to end loaded cantilever beams, since 

in both cases the shear stress distribution is exactly the same. Based on this, Cowper 
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concludes that the k values would be valid approximations for general loading, including 

dynamic loading. 

It will be noted that whichever method is used regarding the determination of k, the latter 

will be frequency dependent owing to the inertia effects and therefore, as advocated by most 

writers and in particular by Mindlin [1951], a choice should be made or compromised 

depending on the 'relative importance of the two modes of motion' (i. e. flexural and 

thickness-shear). 

There seem to be only a few investigators who have undertaken to find the shear correction 

factor for a skin/core sandwich configuration [Yu, 1959-a, b; Nordby et al, 1965; Bert et al, 

1967], although the shear factor for thick solid laminated beams and plates has been the 

subject of several investigations [Whitney and Pagano, 1970; Chow, 1971; Kulkarni and 

Pagano, 1972; Whitney, 1972,1973; Sun and Whitney, 1973 etc. ]. In an elaborate analysis 

in which no otherwise customary assumptions were made, Yu [1959-a] developed 

stress-strain and displacement equations of motion for the flexure of a symmetric sandwich 

plate. His method was, in fact, an extension of Mindlin's earlier work on plate theory and 

reduces to Mindlin's results for a continuum plate as a special case. Similarly, the 

one-dimensional case is reducible to that of a Timoshenko beam. In much the same way as 

Mindlin's method, Yu [1959-b] then proceeds to find the thickness-shear frequency equation 

and equates the frequencies to those obtained from the exact theory of elasticity. His 

expression for the factor k so obtained involves the skin/core ratios of thickness and density. 

In the limiting case of very thin skins, k becomes unity, thereby removing the need for a 

shear correction factor. 

Nordby et at [1965] applied Mindlin's method in its entirety to a sandwich beam, that is, they 

adapted the expression for pure shear frequency given by the three-dimensional theory of 

elasticity for a solid beam by replacing the density with the effective density of a sandwich. 

Through this procedure, they arrive at an expression for k in terms of the mass, the mass 
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moment of inertia of the beam, and depth of the core. For a typical sandwich beam, their 

expression gives a value for k of the order 2. This method was subsequently used by Wilkins 

[1965]. 

Bert et a! [1967], while acknowledging the 'very simplified' nature of the earlier analysis by 

Nordby et al, proceed to replace the expression for the pure shear frequency in that work by 

the one they obtain through treating the core and the skins as a two degree of freedom 

system consisting of a shear-type spring bounded between two longitudinally vibrating 

masses. Their expression for k is a function of mass moment of inertia and width of the 

beam, density of the skin and depth of the core. They report k values in the range of 1 to 1.4 

for typical sandwich constructions. They further propose a second method, based on 

elasticity analysis, in which the core is treated as a continuous medium. From symmetry, the 

half depth of the core and one skin are considered as a "shear cantilever" subjected to the 

lateral vibration of the end mass. The expression for the factor k involves the mass moment 

of inertia and width of the beam, the depth of the core and the densities of the skin and the 

core. No typical value for k is reported. 
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2.2 Damping of composite and sandwich structures 

2.2.1 Undamped analysis 

Although a considerable amount of work has been carried out on damping of composites, 

relatively fewer works have been produced specifically on the damping of honeycomb 

sandwich structures. The earliest reported investigation on the damping properties of these 

structures was due to Keer and Lazan in 1961 [Bert et al, 1967]. They used the elementary 

theory for their analysis and for this reason the apparently close agreement between the 

theoretical predictions and experimental results has been subject to scepticism [Nordby et al, 

1965; Wilkins, 1965]. 

In a sizeable work on the damping of aluminium honeycomb sandwich beams, James [1962] 

undertook to demonstrate the feasibility of predicting the damping of the compound beam 

from that of the constituent partss. He used an energy method to find the frequency and in 

this he included both rotary inertia and shear effects. Nonetheless, he used a mode shape 

based on the elementary theory. Basically, his method for predicting the specific damping 

capacity (SDC) of the compound beam may be written as 

(AU /U) = (AUS /U) + (AUS IU) , 

where AU and U are the damping energy per cycle and the maximum strain energy 

respectively, and the suffixes s and c refer to the skin and the core. Assuming the damping 

energy to be proportional to the square of the stress amplitude (the 'linear damping' 

mechanism), then all the terms in this equation will have the square of the displacement 

amplitude of vibrations as a factor and this is cancelled out. The SDC will then be a function 

of the beam geometries, Young's modulus of the skin, the shear modulus of the core, and the 

damping properties of the skin and of the core. An assumed logarithmic decrement, that of 

5 As acknowledged by lames 119621, the method is originally due to C. W. Norris of the Forest Products Laboratory, U. S. A. 
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soft aluminium (0.00052, equivalent to a SDC of 0.1%) was used throughout. The damping 

of the compound beam was then found experimentally by the free-decay method 

James' predictions of the fundamental frequency are only fair (within -0.8% to +12% of the 

experimental values) but the damping predictions are generally poor (mostly with a 

difference of between 30 to 70%, and as high as +134%, from the experimental values). 

James attributes the poor damping predictions to the 'simple theory' used. 

Nordby et al [1965] used the free-decay method to measure the damping of honeycomb 

sandwich beams. All their samples had GFRP skins. The honeycomb cores were either 

GFRP or aluminium. They present their damping results as a function of stress amplitude in 

the skins which they measured using strain gauges. 

Bert et al [1967] used the same basic method as James [1962] in order to predict the 

damping of a honeycomb sandwich beam. However, they followed the method of Nordby et 

al [1965] (as outlined in 2.1), to derive the frequency equation and mode shape of a free-free 

beam. They further used the mode shape equation to derive expressions for maximum strain 

energy as well as the damping energy per cycle for the skins and the core, and thus 

proceeded in predicting the damping of the beam from those of the constituent parts. All 

their samples consisted of GFRP skins and either GFRP or aluminium honeycomb core. 

They used reported values for the damping coefficients of the skin and the core, although 

they measured the skin modulus at compatible frequencies. They found a difference of 

mostly above 20% and as high as -37% between the predicted and the measured damping of 

the compound beam. Nonetheless, in comparison, their predictions are an improvement on 

James' results. 
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2.2.2 Damped analysis 

15 

The flexural vibration of another sandwich configuration, that of a beam consisting of 

alternate layers of elastic and viscoelastic material, was analysed by DiTaranto [1965]. As 

such, DiTaranto's analysis involved the concept of complex notation where the elastic and 

viscous behaviour of a linearly viscoelastic material are modelled as separable quantities 

and are treated as real and imaginary components of a complex set. DiTaranto derived a 

sixth-order linear homogeneous differential equation of motion in terms of the longitudinal 

displacements. Expressions were subsequently obtained for the natural frequencies and loss 

factor of a freely vibrating beam. These expressions implied that the variation of the loss 

factor with natural frequency was independent of the end conditions and mode shapes but 

dependent on the cross-sectional geometry and material properties of the elastic and 

viscoelastic materials. 

It is noted that in DiTaranto's analysis, all the damping is attributed to the viscous shearing 

of the viscoelastic layer. Furthermore, unlike the 'undamped' analyses in which the equations 

of motion are derived for materials assumed to be Hookean elastic, in analyses such as 

DiTaranto's the viscoelastic nature of the modulus will lead to equations of motion for a 

damped material, and consequently to damping dependent frequencies. 

In a later work [DiTaranto and Blasingame, 1967], the results of the earlier analysis 

[DiTaranto, 1965] were used to obtain generalised plots, presenting loss factors and various 

eigenvalues as functions of a parameter in terms of the average mass density of the 

composite beam, the Young's modulus of the elastic layer, the elastic component of the 

viscoelastic shear modulus, the thickness of the elastic layer, and the reduced natural 

frequency. 

Agbasiere and Grootenhuis [1968] question the notion of a complex shear modulus since it 

'presupposes' a definite stress-strain law. Their own analysis of a damped sandwich beam 

concerns a general stress-strain relation applicable to both linear and non-linear materials. 
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This approach, however, resulted in a complex set of four simultaneous equations of the 

twelfth order which were cumbersome to solve in a closed form and therefore they resolved 

to a numerical method (Finite Differences). Nonetheless, their expressed confidence in the 

analysis is backed by some experimental results which they obtained from tests on a three 

and a five layer beam. These results indicate fairly accurate predictions of resonance curves 

and mode shapes especially for the three layer and the lower modes of the five layer beam. 

Mead and Markus [1969] derived a sixth order differential equation of flexural motion, 

analogous to that of DiTaranto's, in terms of the transverse displacements (the DTMM, 

DiTaranto-Mead-Markus equation as it was subsequently called by Mead [1982]). The 

equation in terms of the transverse displacements, they argue, will allow a better physical 

understanding of the problem, especially in the presence of transverse loading. Furthermore, 

they challenge DiTaranto's use of the complex stiffness notation for free vibration and state 

that DiTaranto's resonant frequencies and modes can, in fact, be attributed to a special class 

of forced vibration. All the other conclusions of DiTaranto, and in particular his assertion 

that the curve of the loss factor versus frequency is independent of the end conditions, are 

reiterated in this work; although one particular result in a later work [Mead and Markus, 

1970] seemed to imply otherwise. In their analysis, Mead and Markus [1969] make the usual 

simplifying assumptions which include no through thickness straining and negligible normal 

stresses in the core and shear strains in the skin compared to the same quantities in the skin 

and in the core respectively. In these analyses, the rotary inertia effects are also ignored. In 

fact, for a sandwich beam with a shear stiff core, the DTMM equation will reduce to the 

elementary Bernoulli-Euler equation [Mead, 1982]. The DTMM equation is refined in a 

later work [Mead, 1982] by including the shear and longitudinal inertia effects in the skins. 

The rotary inertia effects were still ignored. 

In an analytical work much reminiscent of the earlier one [1961], Huang and Huang [1971] 

incorporated viscoelastic damping in the Timoshenko beam equations. The viscoelastic 



-Ch2- 17 

response was based on the standard viscoelastic model. Here, too, the frequency equations 

and mode functions for different combinations of end conditions were obtained. 

Mead [1972] undertook a theoretical study of the effect of imposing elastic boundary 

conditions, such as stiffeners and rivets, on the damping of a three layer damped sandwich 

plate. A constant loss factor (0.3), representing a highly damped viscoelastic layer, is 

assumed throughout but a wide range of the shear moduli' are considered. Computed results 

are mostly presented as plots of the loss factor of the plates with different boundary 

conditions versus the shear parameter, the latter being a non-dimensionalised function of the 

complex shear modulus, Young's modulus of the elastic layer, the plate geometry and 

Poisson's ratio. Among the conclusions made from these results one is that in the absence of 

torsional edge constraints, preventing local shearing through riveting would substantially 

reduce the damping but the latter would increase when torsional constraints are also 

imposed. Furthermore, torsional constraints on their own would reduce the damping of a 

soft core sandwich, but would increase that for a stiff core. 

A similar analytical study, but this time concerning the effect of boundary conditions on 

eigensolutions of a sandwich beam, was carried out by Markus and Valaskova [1972]. 

Frequency equations are obtained for the case of the unrestrained and that of the riveted free 

end of a cantilever beam. Results showed that, for a relatively soft core sandwich beam, 

certain nodal shifts relative to Bernoulli-Euler beam occurred in both cases. As expected, no 

such shifts resulted for a beam with a very rigid core. Analogous effects were deduced from 

eigenvalues. 

Soovere [1973] investigated the dynamic response and sonic fatigue resistance of 

honeycomb sandwich panels with graphite fibre skins. In all cases, Nomex cores were used. 

A coil attached to the panel and a magnet provided the means of excitation, while strain 

I The expression for the complex shear modulus on the second page should read G* (1+43). according to the definitions in the appendix. 
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gauges attached to the panel were used to measure the response. Results showed that the 

damping in the fundamental mode of the graphite sandwich panel was of about the same 

order as that in an aluminium sandwich panel or in a graphite fibre solid beam. Increased 

damping in other modes was attributed to the acoustic radiation. Free-free tests on PRD-49 

(Kevlar) panels showed a five fold increase in damping of these panels compared to the 

graphite panels. Apart from the possibility of higher material damping, it was concluded that 

the increase in damping was possibly due to different fibre orientations (woven and 

unidirectional respectively) and the methods of fabrication (hand-lay-up and pre-cured 

sheets). 

Similar conclusions were reported in a later work [Soovere, 1984]. It was found that 

acoustic radiation was the major contributor to damping in stiffened honeycomb panels. The 

material damping was found to be very low in CFRP sandwich honeycomb panels. On the 

other hand, damping in Kevlar sandwich honeycomb panels was found to be quite 

significant and it was shown to be resin dominated. The damping due to fasteners was 

shown to be small. 
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2.3 Works of Adams et at 

19 

Much of the present work has been based, directly or otherwise, on the earlier works by 

Adams and co-workers. In this section, the relevant works are outlined. 

Adams and Bacon [1973-a] described an apparatus suitable for measurement of material 

damping in steady-state flexural vibration. The apparatus, it is reported, can be used to 

measure accurately specific damping capacities as low as 0.1% over a frequency range of 
e 

100 to 800 Hz and a temperature range of -50 to +200 C. A pair of coils attached to opposite 

surfaces in the mid-span of a free-free beam and placed in magnetic fields provide the 

means for excitation and measurement of displacement. The Bernoulli-Euler beam equations 

with the appropriate boundary conditions are used to derive expressions for the frequency 

equation, mode shape function, and maximum strain energy. These equations, together with 

a knowledge of the displacement amplitude and the excitation energy per cycle were then 

used to compute the SDC, maximum surface stress and the dynamic Young's modulus of the 

beam. Tests were carried out in air and in a vacuum, and over a range of temperatures. The 

results showed that air damping was of significance for low damping high modulus 

materials such as Duralumin and CFRP along the fibre direction, and that it increased 

linearly with displacement amplitude. The mode shapes were accurately predicted. 

Guild and Adams [1981] developed a new technique for the measurement of the SDC of 

beams in flexure. This technique was basically a rearrangement of the earlier method of 

Adams and Bacon [1973-a] in that here the two coils were attached to the beam ends. Unlike 

the centrally driven arrangement in which only symmetric modes can be attained, this 

technique can produce both symmetric as well as anti-symmetric modes. The relevant 

expressions, based on Bernoulli-Euler beam equations, are derived for the new boundary 

conditions. Good agreement was obtained between theoretical and experimental mode 

shapes for the fundamental mode and it was shown that the rotary inertia of the end coils did 

not have any significant effect on the mode shapes. However, compared to the results 
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obtained by Adams and Bacon [1973-a], their results of tests on Duralumin seems to 

indicate a relatively significant increase in extraneous damping (from 0.1% to 0.5%). This 

result is somewhat unexpected since, as will be shown in the present work (Chapter 5), the 

end driven arrangement should lead to reduced extraneous damping. 

Theoretical predictions and experimental results of the variation of dynamic properties in 

flexure as well as torsion of unidirectional composites with respect to fibre volume fraction 

are presented by Adams and Bacon [1973-b]. They adopt Hashins's expression for the 

complex moduli as a function of fibre volume fraction for their prediction of axial and 

longitudinal shear damping. The damping is assumed to be stress independent and due to the 

matrix only. A torsion pendulum apparatus was used to find the longitudinal shear damping 

of the matrix. Their prediction of the flexural damping involves first finding the damping 

due to interlaminar shear from a knowledge of the longitudinal shear damping of the matrix 

and the Bernoulli-Euler mode shape. Their flexural damping is then given by the sum of the 

axial and interlaminar shear damping. Attempts were made to compare their predictions of 

damping in longitudinal shear with those of Hashin and the results, normalised with respect 

to the matrix damping and presented as functions of fibre volume fraction, show that 

although both theories overestimate the damping, the predictions of Adams and Bacon are 

closer to the experimental points. Flexural damping results are presented as functions of 

aspect ratio of the beam. As expected, predictions based on the law of mixtures alone do not 

account for the variation of damping with aspect ratio and also they underestimate the 

damping by a large margin. However, predictions which do take into account the 

interlaminar shearing closely follow the trend of the experimental results but still generally 

underestimate them by a significant margin. 

The effect of fibre orientation and laminate geometry on the dynamic properties of free-free 

composite beams are discussed by Adams and Bacon [1973-c]. They postulate a criterion for 

damping in which the damping energy in an elastically deformed element of the material is a 
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function of three independent components of energy dissipation in the x, y and xy 

directions. Hence, with respect to the fibre direction, x, of a unidirectional layer of 

composite, the total damping would be a function of longitudinal, transverse and 

longitudinal shear damping. Using the constitutive equations of flexure of a laminated plate, 

they derived expressions for the effective Young's modulus and flexural damping of a 

free-free laminated beam. For simplicity of solution, stress independent damping across the 

beam thickness was assumed. The bending-twisting coupling was ignored and tests on the 

off-axis unidirectional CFRP beams showed that the induced torsion due to the above 

mentioned coupling was relatively small. The Young's modulus and flexural damping 

results are presented as functions of fibre orientation. The predictions of modulus and 

damping in the case of unidirectional beams are reasonably good, but for the angle plied 

laminates they generally overestimate the damping, increasingly so towards the 45° 

orientation. It was shown that neither the modulus nor the damping was significantly 

affected by the width of the beam. 

In a similar but more refined work, Ni and Adams [1984] obtained expressions for 

predicting the dynamic Young's modulus and specific damping capacity of laminated 

fibrous beams in flexure. Using the Adams-Bacon apparatus, tests were carried out on both 

CFRP and GFRP free-free beams in the fundamental mode. Beam samples were either cut at 

different orientations from a unidirectional laminate ('off-axis' beams), or cut at different 

orientations from cross and angle ply laminates ('general ply' beams). Experimental results 

were closely predicted. Comparing their damping results with those of Adams and Bacon 

[1973-c], Ni and Adams attribute their improved predictions to the fact that, unlike the 

former work, they did take into account the bending-twisting coupling. 

Based on Adams-Bacon [1973-c] damping criterion, Lin et al [1984] included the 'damped 

element' in a Finite Element program originally due to Cawley [1978]. The analysis is 

basically the plate equivalence of that of Ni and Adams [1984] for beams, although the 
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Adams-Bacon damping criterion was extended to five terms including the two transverse 

shears (the xz and yz shears, x and y being the in-plane co-ordinates). Parabolic variation of 

transverse shear over the thickness was assumed. Flexural frequencies, mode shapes and 

damping of various free-free angle plied symmetric composite plates were both measured 

and computed. Damping measurements were obtained from the frequency domain transient 

response using a dynamic analyser capable of 'zooming' on a resonance peak, a method 

developed earlier by Lin and Adams [1984]. Both GFRP and CFRP plates were tested for up 

to the sixth flexural mode. An examination of their results show that the frequencies were 

predicted to within a range of -14% to +20% of experimental values but mostly less than 

6%. The damping results were predicted to within a range of -34% to +18%, but again 

mostly much lower. They further produced plots for prediction of frequencies and damping 

from the geometry of the plate. 

The work of Ni et a! [1984] concerns the prediction of dynamic properties of hybrid layered 

composite beams and plates. They adapted the earlier analysis [Ni and Adams, 1984] for the 

damping prediction of beams, and used the damped element Finite Element program of Lin 

et al [1984] for prediction of the plate modal damping. In both cases the test pieces were 

made up of symmetrically oriented layers of GFRP sandwiched between CFRP. The 

predictions of the effective Young's modulus and the SDC of the beams are in most cases in 

good correlation with the experimental results. They attribute the few deviations to the lack 

of perfect fibre alignment. The predictions of the first six flexural frequencies of the plates 

are mostly within 5% of experimental values, while the damping results fall within an error 

range of -45% to +9%. 
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Chapter 3 

FLEXURAL VIBRATION OF A TIMOSHENKO BEAM 

Scope - In this chapter, equations are developed for flexural vibration of a centrally loaded 

free-free beam using Timoshenko beam equations. The developed equations are then 

adapted for prediction and measurement of damping in a free-free sandwich beam. 

Theoretical and experimental results, regarding frequencies and mode shapes of both solid 

and sandwich beams, will be presented. The case of a symmetrically end loaded beam will 

also be considered. Application of these equations with regard to damping of sandwich 

beams is considered in later chapters. 

3.1 Loaded beamsl 

The flexural vibration of both centrally loaded and end loaded beams is of particular interest 

in steady-state measurement of damping, since in forced vibration of the beam, it may be 

required that the latter is point-loaded in the centre, or loaded symmetrically at both ends, by 

the drive and/or pick-up mechanisms [Adams and Bacon, 1973-a; Guild and Adams, 1981 ]. 

Depending on the load, this would change the frequency and mode shape of the beam, 

which should be taken into account when computing the kinetic or strain energies. 

Moreover, whereas for a monolithic beam within the limits of linear damping, the damping 

is theoretically independent of any load carried by the beam (also verified experimentally by 

Wren and Kinra [1989-a]), for a hybrid structure such as a shear-soft sandwich beam the 

load will have an influence on the proportion of the skin/core contribution to the overall 

damping of the beam. 

1 The terms 'load' and loaded' are somewhat loosely used in this work; but they are used for conciseness and are meant to merely refer to a 

mass attached to a point on the beam. 
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The case of the centrally loaded Timoshenko beam applies to the present work and its 

analyses will be considered here in some detail. The analyses of a symmetrically end loaded 

Timoshenko beam are given in Appendix (C). 

Explicit representations of the developed equations will be extremely lengthy and therefore 

unwarranted; substitutions will have to be used. 

3.2 Constitutive equations 

The coupled equations for the total deflection, w, and the bending slope, 0, of a uniform 

beam in harmonic flexural vibration are given as [Timoshenko, 1955] 

a24 aw a24 
El -+ k( -- ¢) AG - p1 -=0 (3.1. a) aX2 aX an 

pA -- k( -- 
aý) 

AG =0 (3.1. b) 
at= a2X ax 

where 

w= We1o 

0= eýý 

and w and 0 are normal functions of x. 

(3.2) 

(3.3) 

Eliminating, in turn, 0 and w from Eqns. (3.1), the following two uncoupled differential 

equations of flexure are obtained [Huang, 1961] 2 

a+w a2W Ep1 dew p21 &w 
EI -+ pA -- (p1 +-)+--=0 (3.4. a) 

ax+ a12 kG ax2at2 kG at4 

aýý a20 Ep' a'4 p21 a04 EI -+ pA -- (p1 +L 
PI 

+--=0 (3.4. b) 
ax4 atz kG axlat2 kG at' 

2 See Appendix (C) for a complete derivation. 
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Substituting for 0 and w in Eqns. (3.1) and (3.4), the latter are respectively reduce to 
a20 1 aw 

sI a- 
(1 - bz r2 s2) 4+L0 (35. a) 

s 

a2W a(D 
a+ 

b2 s2 f2 -[ aý =0 (3.5. b) 
z 

aaw a2w 
-+ b2( r2 + s2) -- b2 (I - b2r2s2 )W=0 (3.6. a) 

a+(D a=(b 
-+ h2( r2+$2) - -b2(1 -b2r2s2)C1 =0 (3.6. b) 
aC4 aC2 

where 

x ý=L (3.7) 

PAL40 2 
b2 = (3k) 

EI 

I 
r2 =- (3.9) 

ALz 

E/ 
S2 = 

kAGIJ (3.10) 

The solutions to the uncoupled Eqns. (3.6) are given as 

W=C, cosh(ba4) + C2 sinh(baý) + C3 cos(b(3C) + C4 sin(bßc) (3.11. a) 

0=C,, sinh(bac) + C2' cosh(baý) + C,,, sin(bI )+ C4' cos(b(3C) (3.11. b) 

where 

1, i2 �I 

a, f= ý2 -, + (r2+s2) + (r'-s2)2 +4J (3.12) 

Only one half of the coefficients C; , C; - (s . 1.4) are independent since w and c are coupled by 

Eqns. (3.1). The dependent coefficients are found by substituting Eqns. (3.11) in either one of 

the coupled Eqns. (3.5) and equating the coefficients of individual hyperbolic and 

trigonometric terms. The following are found from Eqn. (3.5. b) 
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b a2+s2 b a2+s2 
Cl, =L(a)C, C2' =L(a) C2 

b P2 P -S2 b 1-s2 
C3' =--() C3 C, ' =L() C4 

(3.13) 

Equations (3.11) and their first derivatives may now be written as 

W=C, cosh(baý) + C2 sinh(baý) + C, cos(bßý) + C4 sin(b3C) (3.14. a) 

aw b 
ax L 

(C, a sinh(baý) + C2 a cosh(bat) - C3ß sin(b(3C) + C4 0 cos(bf i)J 
(3.14. b 

b a2+s2 
=-I (C, sinh(bac) + C2 cosh(bcc, )) 

La 

- 
W-S2 

(C3 sin(bRC) - C, cos(bRC)) ] (3.14. c) 

b 

ax = (L )2 I (a2+s2)( C, cosh(baý) + C2 sinh(baý)) 

- (R2-s2)( C3 cos(b(3ý) + C4 sin(bP3 ))] (3.14. d) 
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3.3 Centrally loaded beam 

27 

A free-free Timoshenko beam with a point load at the mid-span (Fig. 3.1) vibrating in a 

symmetric normal mode is subjected to the following conditions 

Mc 

fL 

Fig. 3.1 Centrally loaded beam 

- 
i) at x=0, EI =0 (zero bending moment) ax 

aý so, -=0 (3.15. a) ax 

ii) at x=0, kAGy =0 (zero shearing force) 

aw 
so, ( -4D)=0 (3.15. b) ax 

L 
at x= , 0=0 (zero bending slope) (3.15. c) 2 

` iv) at X= 
-, 

cý W=0 kAGy -ý (shear force induced due to Mc) 

aw 
so, - 4)) - LAG ( - WW=o 

ax 2 

M W ` or wW=0 MG ( )- (3.15. d) 
a 2 
x 

In Eqns. (3.15), the local effects due to the point load [Timoshenko and Goodier, 1951] have 

been neglected. 
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Equations (3.15) will respectively give the following four equations 

C, (a2+s2) - C3 (p2-S2) =0 (3.16. a) 

- C2 s2 + C4 a s2 =0 (3.16. b) 

P (a1+sz)(C, sinh(H) + C2 cosh(H)) -a (ß2-s2)((C3 sin(T) + C4 cos(T))= 0 (3.16. c) 

mL b 

bis 
(C, a sinh(H) + C2 a cosh(H) - C3ß sin(T) + C4 P cos(T)] 

zL 

MC 
- (C, cosh(H) + C2 sinh(H) + C3 cos(T) + C4 sin(T)l =0 (3.16. d) 

2 

where 

H= baJ2 ;T= b012 

Equations (3.16) may be written in the form 

JAI (CJ =0,. - 1.4) 

For a non-trivial solution, the determinant of the matrix of coefficients (Al is set to zero. 

This will give the following frequency equation for the centrally loaded free-free 

Timoshenko beam 

a2+ m ( p) 
cosh(H) sin(T) - 

(p2-. a2) 
sinh(H) sin(T) 

MC 
+ 

32 (ßI-s2) b aß2 2 

(a2+(32) m (a2+s2)2+(p-s2)2 MC Mý 
- sinh(H) cos(T) + cosh(H) cos(T) -+=0 

aß (a2+s2) b I3(a2+s1)(ß2-s2) 2 

(3.17) 

From Eqns. (3.16), three of the constants C. may be found in terms of the fourth one, for 

example C,, giving, from Eqn. (3.14. a), the total deflection, W, as 
z 

W= _s C3 cosh(baý) + C3 sinh(baý) + C,, cos(b(3C) + C,, sin(bßC) (3.18) 
a2+s2 

where 

(f -s2)(a sin(T) -ß sinh(H)) 
P= (3.19) 

(02-sz) cos(T) + (a2+s2) cosh(H) 
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Now, if W is known at some positive x, then C. can be found from Eqn. (3.18). Consequently, 

the constants C� C2, C, will be known, and the quantities w, Max, 4) and ac/ax can be found 

explicitly for any x. 

3.3.1 Strain energy 

The total strain energy stored in flexure of a Timoshenko beam is assumed to consist of two 

separable strain energies, one due to bending about the y axis (Fig. 3.2), and the other due to 

shearing between the xy planes. 

z 

y 
j-x 

Fig. 3.2 Beam co-ordinate system 

Thus 

(ýL EI ao fi kAC aw 
U= Ub + Us =Jo2 (-ax )22 dr +Ja2 (-ax - 4D) _ dx (3.20) 

f 

To avoid complex algebra in the above integration, it will be convenient to rewrite 

Eqns. (3.14) in the same general form, viz 

W=A cosh(baC) +B sinh(baý) +C cos(bßý) +D sin(bpC) (3.21. a) 

aw_ b 
ax L 

(A cosh(ba5) +B sinh(ba; ) +C cos(bßý) +D sin(bß; ) I (3.21. b) 

b 
_-IA cosh(baC) +B sinh(baC) +C cos(bpC) +D sin(bf 3ý) J (3.21. c) 

L 

ýD b 

ax -(LlA cosh(baý) +B sinh(ba) +C cos(b f g) +D sin(bpC) J (3.21. d) 
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where the coefficients A, B, C and D are only locally defined within each individual equation. 

In terms of C, , these coefficients are found as follows 

In Eqn. (3.21. a) 
L2-S- 

-s2 
1 

A= C3 ; B=RPC, 
a2+s2 

1 
C= C3 ;D=aP C3 

(3.22. a) 

in Eqn. (3.21. b) 

A-aPC3 B_a -s2 C3 
R a2+s2 

CaP C3 D-R C3 
(3.22. b) 

in Eqn. (3.21. c) 
I P2-S2 

A=- (a2+s2) P C3 ;B=C, 
aß a 

% p2 
-S2 

C= aß (P2 -S2) P C, ;D=-ß C3 (3.22. c) 

and in Eqn. (3.21. d) 

I 
A= ((32-s2) C3 ;B=R (a2+s2) P C, 

1 
C=- (f-s2) C, D 

a 
(2-s2) P C, 

(3.22. d) 
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3.3.1.1 Strain energy of bending 

Strain energy of bending of a Timoshenko beam is given by 

EI D (D 
b= 2 

02 
(ax) 

Substituting for Wax from (3.21. d) and integrating will give 

Ub= EI ( 
b)3 

Sb (A'-B2+C'2+D2) 
L4 

A2+B2 C2-D2 
+ sinh(2H) + sin(2T) 

4a 4ß 

AB CD 
+- cosh(2H) -- cos(2T) 

2a 2ß 

2 
+( (a AC - (i BD) sinh(H) cos(T) 

a2+ß2 

+ (a BD + (3 AC) cosh(H) sin(T) 

+ (a AD +ß BC) sinh(H) sin(T) 

+ (a BC - (3 AD) cosh(H) cos(T) J 

AB CD 2 
--+-- (aBC-ßAD) 

2a 2ß a2+ß2 

31 

(3.23) 

(3.24) 

where A, B, C and D are given by Eqns. (3.22. d). 
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3.3.1.2 Strain energy of shearing 

Strain energy of shearing of a Timoshenko beam is given by 

L kAc aw 
US =- (- -c)2dx 

fo 

2 ax 

Substituting for awiax and 0 from Eqns. (3.21. b) and (3.21. c), and integrating will give 
bb2222 

Us = kAG (L)4 (Als - B, 2 + C, 2 + D12) 

22 
A, 2+B, 2 

+ sinh(2H) 
4a 

+ 
A12B, 2 

cosh(2H) 2a 

2 

22 
C, 

2 -D! 2 
+R sin(2T) 

4 

C, 2D12 
- cos(2T) 

2a 

(a A12Clz - (3 B, 2D12) sinh(H) cos(T) 
a2+ß2 

+ (a B! 2D, 2 +ß Al2C12) cosh(H) sin(T) 

+ (a A12D, 2 +ß B12C12) sinh(H) sin(T) 

+ (a B1, C, 2 - (3 A12DJ2) cosh(H) cos(T) ] 

A, 2B12 C, 2D, 2 2 
- 2a 

+ 
2p - 

aZ+02 
(a B12C12 -ß Ai2Diz) 

where 

A, 2 , B, 2 , C, 2 , D, 2 = A, - A2 , B, - B2 9 C, - C2 , D, - D2 

and 

A,, B1, Cl, D, =A, B, C, D 

as given by Eqns. (3.22. b); and 

A2, B2, C2, D2=A, B, C, D 

as given by Eqns. (3.22. c). 

32 

(3.25) 

(3.26) 
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3.3.2 Bending and shearing stresses 
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For the first mode of vibration, the maximum bending moment of a free-free Timoshenko 

beam is given by 

ao 
M,,.. EI (ax ) (x=u2) (3.27) 

where a4/ax is given by Eqn. (3.21. d), in which the constants A, B, C and D are given by 

Eqns. (3.22. d). 

The maximum bending stress is then given by 

-h (3.28) 
12 

The shearing stress is given by 

aw 
T= kG (-- 4)) (3.29) 

ax 

where awiax is given by Eqn. (3.21. b), in which the constants A, B, C and D are given by 

Eqns. (3.22. b); and 0 is given by Eqn. (3.21. c), in which the constants A, B, C and D are given by 

Eqns. (3.22. c). 

3.3.3 Bernoulli-Euler simplification 

The Timoshenko beam equations are readily simplified to the elementary Bernoulli-Euler 

beam equations by setting the rotary inertia and the shear parameters to zero. Thus 

r=3=0 

and Eqn. (3.12) will now give 

a=ß= 1/ib 

The following relationship is then established between the quantity b in this work and ? in 

[Bacon, 1973] 

-Jb = A. (330) 
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Once relevant substitutions are made, Eqns. (3.17) and (3.18) will be identical to Eqns. (18) and 

(19) in [Bacon, 1973]. The total strain energy in Eqn. (3.20) will now reduce to the strain 

energy due to bending, Ub , and the latter will reduce to the corresponding Eqn. (21) in 

[Bacon, 1973]. 

3.3.4 Sandwich beam 

By making certain simplifying assumptions, it is possible to adapt the Timoshenko beam 

equations for a symmetric skin-core-skin sandwich beam [Bert et a!, 1967]. To that end the 

following usual assumptions are made 

1- the in-plane modulus of the core is negligible compared to that of the skin 

2- transverse shearing of the skin is negligible compared to that of the core 

Both assumptions have been almost universally accepted as justified and have been utilised 

in sandwich analyses [James, 1962; DiTaranto, 1965; Mead, 1968; Donnell, 1976 etc. ] By 

virtue of the assumption 1, the bending stiffness El in Eqns. (3.8) and (3.10) will be that of the 

skins only. In accordance with the Timoshenko beam equations, this implies the skins bend 

about the sandwich neutral axis and, therefore, undergo uniaxial tension or compression. 

Also implicit within this assumption is that the mass of the beam is concentrated in the 

skins, which is a justifiable assumption since the skins are usually several times heavier than 

the core. From assumption 2, the area A will be the cross sectional area of the core only. The 

rotary inertia parameter, r, is now expressed in terms of 1, c, the effective moment of inertia 

of the whole beam cross section. Based on these assumptions, Eqns. (3.8) to (3.10) can be 

written as follows 

12 = 
nO 

(3.31) 
(Ei)s 

_ 
IS c r (3.32) 

Ac 

(EJ)s 
s2 = 

(kAG)c V (3.33) 
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where suffixes s and c indicate skin and core respectively, and',, is given by 

Isc = IS + 
PC 

- Ic (3,34) 
PS 

In the above formulae, the contribution from the adhesive layer3 to the overall stiffness has 

been considered negligible. Furthermore, as Mindlin [1951] showed, the rotary inertia is 

almost entirely negligible 'over the whole wave-length spectrum'. For a typical sandwich 

beam, the shear parameter, s, is of the order of ten times or more of the rotary inertia 

parameter, r. In view of this and the fact that, unlike the skin and the core, the geometry of 

the adhesive layer is not well defined, the rotary inertia due to the adhesive layer has also 

been ignored. 

The question arises as to the value of the factor k (Eqn. (333)), following the above 

procedure. Unfortunately, the equations so developed for a sandwich configuration throw 

little light on the actual shear distribution over the beam cross section, even more so than 

their original counterparts intended for a solid beam. The first of the above assumptions 

implies that the shear distribution over the core cross section is uniform [Mead and Markus, 

1969], which in turn leads to a shear correction factor of unity. However, the notion of unity 

of the factor k which follows the assumed uniformity of shear distribution over the core 

cross section would be somewhat misleading, for it ignores the shearing stresses which must 

exist in the skins if the implication of shear discontinuity at the interface is to be avoided 

[Chow, 1971]. On the other hand, if it is assumed that the shear stress over the whole 

sandwich cross section is uniform, then this implies that the shear stress in the skin is of the 

same order as that in the core, regardless of the core shear rigidity. As pointed out by Mead 

[1981], this cannot be the case when the core is soft, in which case the skins tend to bend 

independently of the core and about their own neutral axis. Moreover, as was already 

pointed out, when the beam is subjected to dynamic loading, the inertia effects could 

3 In this work, the 'adhesive layer' refers specifically to the adhesive used in the skin/core interface. 
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become the determining factors in the shear distribution, although this is expected to occur 

only at high frequencies. 

An assumption which is implicit within the Timoshenko beam equations is that no through 

thickness straining in the beam occurs, such that the outmost planes, for example, remain 

plane and at the same fixed distance regardless of the state of the stress. This assumption, 

however, is not exclusive to the Timoshenko equations and follows from the classical theory 

of bending; it is another 'almost universal' assumption in sandwich analyses. Even in solid 

beams there is a variation in this distance due to the Poisson's effect alone [Donnell, 1976; 

Whitney, 1987]. For a sandwich configuration in particular, where the core is of relatively 

small elastic modulus, this assumption imposes a constraint on the deformation, in that it 

allows no localised bending of the skins which can be expected to occur because of such as 

point loads. By the same token, the state of stress within the skins is assumed to be 

unaffected by any compressive stresses which may develop in the core [Benjamin, 1969]. 

When the beam is point loaded in the mid span, the situation becomes somewhat more 

complicated. From symmetry, there cannot be shearing in the mid span while, immediately 

beyond this point, an abrupt change in the shear stress should take place. Timoshenko and 

Goodier [1951] elaborate on local effects at the point of loading and show that the shear 

deflection for a length along the beam approximately equal to half of the depth of the beam 

is slightly less than when assuming a uniform stress distribution. 

It is apparent from the foregoing that an analytical determination of the shear correction 

factor for a sandwich configuration becomes extremely difficult and subject to the particular 

circumstances. Subsequently, the determination of the factor k in the present work was 

approached from a different view point, i. e. , that its value be such that the experimentally 

determined natural frequencies are accurately predicted. It is suggested that this procedure is 

justifiable as far as the damping of a shear soft sandwich is concerned since, in effect, the 
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factor k is manipulated so that the correct ratio of the bending/shearing stiffness, as indicated 

by the sandwich natural frequency, is achieved. 

However, in so doing, the physical meaning of the factor k will be somewhat removed from 

its original definition. A more appropriate definition for k would now be 'a correction factor' 

taking into account mainly the assumption of the uniformity of the shear distribution, but 

also the extent of the validity of the assumptions made for the particular test piece, as well 

as the extent of the idealisation of the test piece, that is, such factors as the accuracy of the 

skin and core moduli, the structural integrity of the sandwich, the degree of the contribution 

of the adhesive layer to the overall stiffness and, as correctly pointed out by James [1962], 

the uniformity of the adhesive distribution since, depending on the particular mode shape 

and nodal locations, a non-uniform distribution would lead to overrating or underrating the 

experimental natural frequency. 

3.3.5 Computation of the specific damping capacity 

By definition of the SDC, the damping energy in the skins undergoing uniaxial 

tension/compression is given by 

AU, =J aZ e. yr(a. )d(v, ) (3.35) 
v, 

where v, is the skin volume and y(a) indicates the stress dependency of damping, T. For a 

uniform beam in flexure, the integration over the width is trivial. However, the stress varies 

over both depth as well as length in the beam. Hence, in order to take the stress dependency 

of SDC into account, it will be necessary to establish the relationship between the SDC and 

as for the particular material under test. Adams and Bacon [1973-a] outlined a method in 

which this relationship may be established through the use of a polynomial of a suitable 

degree fitting the experimentally determined SDC versus stress points, the coefficients of 

which are determined experimentally. Such a procedure would subsequently involve 

numerical integration of the integral in Eqn. (3.35). White and Abdin [1985] postulated a 
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similar approach. However, most workers in the past have assumed a damping mechanism 

in which the damping energy is proportional to the square of the stress amplitude [Keer and 

Lazan, 1961; Bert et al, 1967; Adams and Bacon, 1973-a, b, c; Ni and Adams, 1984 etc. ]. In 

this case, the SDC will be independent of the stress amplitude and the so called 'linear' 

damping mechanism applies. Keer and Lazan [1961] reported that stress independency of 

the SDC was recorded in all their tests on aluminium honeycomb sandwich beams. This 

assumption can be justified only for the lower regions of stress amplitude where many 

materials show a constant damping with the variation of stress. Lazan [1968] showed that 

for metals, the linear damping existed for amplitudes of cyclic stresses up to 80% of the 

fatigue limit, at which point the material showed both nonlinear and 

stress-history-dependent damping. 

For most engineering purposes, a low stress amplitude and, therefore, linear damping may 

be assumed. In this case, Eqn. (3.35) may be written as 

AU, = yr, f a, e, d(v, ) 
v, 

(3.36) 

where W, is the flexural damping of the skin as determined experimentally from a uniform 

beam of the same material. The integral has already been evaluated as Eqn. (3.24), in which 

for a sandwich beam, Eqns. (331) to (3.34) apply. 

Similarly, the energy dissipation in the core is given by 

AU, =JG. E. yt(a 1) d(vd (337) 
vc 

As mentioned earlier, the assumption of negligible direct stresses in the core will lead to the 

assumption of uniform shear distribution over the core cross section. Therefore, the 

integration over both width and depth of the core becomes trivial, and the stress dependency 

of the SDC is integrated over the length only. The experiments of Keer and Lazan [1961], 
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however, showed that the linear damping mechanism was also present in the core. With this 

assumption, Eqn. (3.37) may be written as 

DUB = Wý 1 
VC 

ßn c d(vd (3.38) 

where yr, is the core shear damping. The integral has already been evaluated as Eqn. (3.26) 

where, for a sandwich beam, the quantity kAG will be that of the core. 

The SDC of the beam is, therefore, given by 

_ 
W, Ub+Wcu, 

(3.39) 
Ub + U, 

where Ub and U, are given by Eqns. (3.24) and (3.26) respectively. It is noted that both Ub and U, 

have the square of the displacement amplitude as a factor and, therefore, V will be 

independent of the amplitude of vibration. 

For measuring the SDC in steady-state flexural vibration, Eqn. (3.39) may be re-written as 

AU 

U+U 
(3.40) 

b U. 

In Appendix (A), a method is described for measuring the energy dissipation per cycle oU , 

as well as the displacement amplitude of vibration at mid-span, thereby obtaining the values 

of Ub , U, and the maximum bending stress, a�, (Eqn. (3.28)), for a given mid-span 

displacement amplitude. 

For a slender solid beam of the Bernoulli-Euler type, Eqn. (3.40) is reduced to 

Au y! = Ub (3.41) 

where ub is found following the arguments given in section 33.3. This equation may be used 

for measuring the SDC of the thin skins bending on their own. 
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For predicting the individual contributions of the skin and of the core to the total SDC of the 

sandwich beam, Eqn. (3.39) may be rearranged as 

Ws Ub Yc 11U. 
+ 

Ub + U, Ub + U, 
(3.42) 

where the first term is the contribution to damping of the skins in bending, and the second 

term is the contribution to damping of the core in shearing. In Chapter 4, a method for 

measuring the core shear damping, jr, , will be described. 

3.3.6 Computer implementation 

The above analyses were put into computer code using FORTRAN 77. One program, 

BEAM4. FOR, was written for the computation of the SDC using either the Adams-Bacon or 

the Adams-Guild test rigs. Both solid as well as sandwich beam options have been 

implemented. A second program, BEAM6. FOR, was written specifically for the eigen solution 

of either beam. 

The roots are found successively, and are first roughly located by a simple scanning of the 

frequency equations ((3.17), (C. 11) (Appendix (C)) and (C. 15)), detecting the change of sign. A 

sufficiently small sampling interval, found by experience, is used. In the case of the end 

loaded beam, the frequency equation is discontinuous and the roots are situated at alternate 

occurrence of the change of sign. Subsequent pin-point location of the root is carried out 

using the secant iterative method. 

On request, both programs can provide the user with a file containing a detailed description 

of a data file, thereby avoiding the need for a separate 'user-guide'. A desk-top computer can 

be conveniently used to run either one of the programs. 



-Ch3- 

3.4 Experimental verifications 
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Few explicit experimental investigations of the Timoshenko beam analysis have been 

reported in the literature. Huang [1961] presented a graph of the ratio of the Timoshenko to 

Bernoulli-Euler frequencies as a function of the rotary inertia for the first five modes of a 

clamped-free beam. He noted that the eigen solution of a Timoshenko beam was 'highly 

transcendental'. Such a frequency chart would, therefore, allow corrections to be made to the 

frequencies obtained by the elementary analysis. Bert et al [1967] carried out a series of 

theoretical investigations on the effect of the beam length on the fundamental frequency and 

nodal locations of different sandwich beams. 

Here, the Timoshenko beam equations were subjected to a series of experimental 

investigations. Frequency and mode shape tests were carried out on solid as well as on 

honeycomb sandwich beams. Only free-free end conditions, which are the only end 

conditions applicable to this work, were considered. Both loaded as well as unloaded beams 

were tested. Solid beams of two different cross sections and materials were investigated. 

The specifications of the solid beams are tabulated in Table (3.1). 

Table (3.1) Solid beams specifications 

Material Designation m 
(g) 

L 
(mm) 

w 
(mm) 

h 
(mm) 

Duralumin ALI 257.2 600.0 12.65 12.65 

Duralumin AL2 292.1 600.5 19.00 9.50 

Mild steel MS 1 748.4 600.0 12.65 12.65 

Mild steel MS2 858.6 600.0 19.10 9.60 

where m, [., w and h are mass, length, width and thickness of the beams respectively. 

The Young's modulus of the solid beams was found dynamically. First, the fundamental 

frequency in flexure was found for a slender beam sample. Using the Bernoulli-Euler option 
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in the program BEAM4. FOR, and hence avoiding the need for a shear correction factor at this 

stage, the dynamic Young's modulus was computed according to Eqn. (3.8). It will be noted 

that, for a sufficiently slender beam, the elementary and improved analysis give almost 

identical results for the first frequency. The Poisson's ration, v, for aluminium and for mild 

steel was assumed to be 0.35 and 0.28 respectively. The shear modulus, G, was calculated 

from E=2G (1 + v). The elastic properties of the solid beams are tabulated in Table (3.2). 

Table (3.2) Elastic properties of solid beams 

Designation E (GPa) G (GPa) 

AL1 67.34 24.94 0.35 

AL2 69.88 25.88 0.35 

MS 1 207.36 81.00 0.28 

MS2 207.08 80.89 0.28 

The sandwich beams were pre-fabricated symmetric all-aluminium beams using identical 

skin, core and adhesive (Ciba-Geigy's 'Aerolam M-Board'). The specifications of the 

sandwich beams are tabulated in Table (3.3). 

Table (3.3) Aluminium sandwich beams specifications 

Designation m 
(g) 

L 
(mm) 

w 
(mm) 

c 
(mm) 

r 
(mm) 

cell size 
(mm) 

2SB1-X 72.2 400.0 40.0 12.5 0.57 6.25 

2SB2-X 87.2 400.0 40.0 25.0 0.57 6.25 

2SB3-X 67.4 270.0 39.5 33.5 0.57 6.25 

2SB4-X 120.9 400.0 40.0 50.0 0.57 6.25 

where c and i are the thicknesses of the honeycomb core and the skin respectively, and cell 

size refers to the diameter of the inscribed circle of the hexagonal honeycomb cell. 
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No raw material was available for the skin of the sandwich beam and the manufacturer's 

figure for the Young's modulus had to be used. The shear modulus of the core (Ciba-Geigy's 

Aeroweb 5.2,1/4,25-3003) was found using the honeycomb shear test-rig (Chapter 4). The 

shear modulus was found along the ribbon, or x, direction since this was the orientation of 

the core in the sandwich beam tested. The elastic properties of the sandwich beams are 

tabulated in Table (3.4). 

Table (3.4) Elastic properties of sandwich beams 

Designation E, (GPa) G, (GPa) 

2SB1,2,3,4-X 69.0 0.285 

3.4.1 Natural frequencies 

The roots of the frequency Eqns. (3.17), (C. 11) (Appendix (C)) and (C. 1S) will give the 

frequencies of the centrally and end loaded Timoshenko beam. The frequencies of the 

unloaded beam are obtained by simply setting Mc, Me =0 in these equations. 

The frequency tests were carried out to within the sensitivity of the equipments available. As 

far as it was possible, the steady-state technique was used for greater accuracy. An 

electrodynamic shaker was used for excitation and the amplified signal from a microphone 

was fed to a voltmeter and an oscilloscope. The resonance frequency was then noted at the 

maximum reading of the voltmeter. Beyond the limit of the shaker (about 5 kHz), the 

transient technique was used, taking particular care to tap the sample on the centre so that 

not to excite any torsional frequencies. The test set-up for the latter method is shown in 

Fig. 3.3. 
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Fig. 3.3 Transient measurement of natural frequencies 
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The test procedure for the transient tests was as follows. The first 25 frequencies were 

initially computed for the particular beam under test using the Timoshenko' option on the 

BEAM6. FOR program, at this stage ignoring the shear correction factor (i. e. k=1). The lower 

frequencies were determined without any filtration. At higher frequencies, the 'Freq. 

Analysis' option on the signal conditioner was used to filter out the noise at the expected 

frequency, thus giving a cleaner signal. For some range beyond the range of the signal 

conditioner (20 kHz), still a reasonable signal could be gained using the 'Auto. ' option. 

The frequency results are presented in Figs. 3.5 to 3.19. For the solid beams, the predicted 

frequencies were obtained for a shear correction factor of 0.82. For the sandwich beams, the 

frequencies were obtained for a correction factor which would predict the highest test 

frequency within ±0.5% (see below). Comparison is also made with the predictions 

according to the elementary theory. With negligible rotary inertia effects, this theory may be 

conceived as that for a Timoshenko beam with a shear factor tending to infinity. For both 

the solid as well as the sandwich beams, the frequency results with unit correction factor are 

also included. These results, F(k=1) , have also been used as basis for normalising the 

frequencies, F, according to the following criterion 

F- F(k=1) 
(3.43) 

F(k_1) 
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As such, this quantity represents the percentage error with respect to the frequencies F(k_1). 

The choice of a theoretical rather than the test frequency as the normalising basis was made 

to keep any scatter in the test results within the latter. The specific choice of F(ks1) was made 

on the basis of its significance as the case for 'no shear correction'. All the frequencies are 

presented as functions of the mode number, the latter being the only common factor as far as 

the elementary and the improved theories are concerned. 

Referring to the results, generally with or without a correction factor, excellent frequency 

predictions are made by the improved theory. Moreover, it can be seen that the accuracy of 

predictions are maintained over the whole frequency range. Comparing the results obtained 

through the two theories, the mainly shear effects which are accounted for in the improved 

theory are clearly manifested at higher frequencies and in the shorter beams. 

As can be seen (Figs. 3S to 3.12), in the case of the solid unloaded beams, the difference 

between the predicted frequencies and the test results for either value of k is of any 

significance only at the top range of frequency. However, there does not seem to be any 

particular trend in the predictions regarding the two values of the shear factor. For the 

square section Duralumin beam (Fig. 3.5), the k=0.82 tends to underestimate the predictions 

while k=1 seems to overestimate the predictions. This trend is seen to be repeated for the 

rectangular section mild steel beam (Fig. 3.8). On the other hand, for the rectangular section 

Duralumin beam (Fig. 3.6) and the square section mild steel beam (Fig. 3.7), the k=1 and 

k=0.82 frequencies are, respectively, seen to give very accurate predictions, although, as is 

best shown in the normalised frequencies of Fig. 3.7, within each set of these two results, a 

constant fluctuation between the theoretical and test frequencies occurs, a possible 

indication of slight frequency dependence of the shear distribution. As expected, for the 

same mode, the elementary theory leads to a higher percentage of error for the thicker, 

square section beams, as these experience more shearing (cf. elementary results of Figs. 3.5 

and 3.6, and of Figs. 3.7 and 3.8). 
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In comparing the test results with those obtained with the two values of the shear factor, the 

impression should be avoided that any one value of k is necessarily a 'better' representation 

of the shear distribution. Certain assumptions have been made regarding the elastic 

properties. A value for the Poisson's ratio, for example, has been assumed, and the shear 

modulus has been found accordingly. Furthermore, it has been assumed that the moduli 

remain independent of the frequency. A more rigourous investigation, if warranted, would 

require that both moduli are found at each test frequency, and the theoretical frequencies are 

found accordingly, a procedure which would bring about further complexities. Clearly then, 

a limit emerges as to the capacity of the test results in accurate determination of the shear 

distribution at any particular frequency. 

Theoretically, the influence of the decrease in the wavelength on the second order effects 

should be the same regardless of how the decrease is realised. Then, when increasing the 

frequencies by progressively shortening the beam, the same trend in the predicted 

frequencies should be observed regarding different values of k. However, unlike the results 

of the frequency as a function of mode number, the scatter of the test results observed 

regarding the frequency as a function of the beam depth/length (Figs. 3.9 to 3.12) makes the 

emergence of any particular trend difficult; although in one particular case (square section 

mild steel beam, Fig. 3.11), a value of unity for the shear factor gives more accurate 

predictions at high frequencies. However, since the difference between the two results is 

only marginal and within the range of the experimental errors, again, no firm conclusions 

can be drawn. 

As expected, compared to the results for the unloaded beams, there are some discrepancies 

in the frequency results of the loaded solid beams (Figs. 3.13 and 3.14), more so in the case of 

the end loaded beam. The discrepancies are believed to be almost entirely due to the 

extraneous inertia effects. The central load on the Duralumin beam was in the shape of a 

cylinder with a mass ratio to that of the beam of 0.38. This was bonded along its length 
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across the width of the beam so that point-loading condition could be achieved. As can be 

seen from the last few results (Fig. 3.13), the theoretical predictions generally overestimate 

the frequency. However, while the overestimate is consistently larger for the symmetric 

modes (Fig. 3.13(a)), it is relatively small for the anti-symmetric modes (Fig. 3.13(b)). The 

reason for this seems to be due to the fact that in the latter case, the mid-span is laterally 

stationary. Hence, the extraneous inertia effects brought about by any off-set between the 

centre of the mass and the mid-span will be smaller for the anti-symmetric modes. It will be 

noted that, neglecting the in-plane rotary inertia effects of the centre mass, the 

anti-symmetric frequencies of the centrally loaded and those of the unloaded beam will be 

the same since in either case the mid-span is laterally stationary. This can be verified by 

comparing the anti-symmetric frequency results in Figs. 3.6 and 3.13(b). Up to the onset of the 

discrepancies (mode 12, Fig. 3.13(b)), the two frequencies are found to be almost identical. 

In the case of the end loaded beam, two identical cubic masses having a total mass ratio to 

the beam of 0.26 were bonded to the beam at either ends with the edge of the beam 

positioned half way on the cube surface (Fig. 3.4). 

Fig. 3.4 End loaded beam 

The results (Fig. 3.14) indicate much larger discrepancies, and are somewhat inconsistent. 

There is a fluctuation of test results across the frequency spectrum, initially falling below the 

predictions, before overtaking the predictions for the higher modes. Dynamically, the end 

loaded beam is less stable than the centrally loaded beam because of the presence of two 

loads which makes the achievement of perfect symmetry that much more difficult. To this 
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must be added the difficulty in achieving point-loading at the beam end and, similarly, in 

determining the effective length of the beam. At one stage it was noted that a slight 

misalignment of one end load dropped the third frequency by 8% (from 594 to 545 Hz). 

As is evident from Figs. 3.13 and 3.14, unlike the unloaded beams, with the loaded beams the 

fundamental frequency is generally underestimated by both values of k=1 and 0.82, a likely 

indication of a major difference in shear distribution, at least in the fundamental mode, 

between the loaded and unloaded beams. 

The shear effect is much more profound on the frequencies of the sandwich beams, as can 

be seen by comparing the frequencies obtained by the elementary and the improved theories 

in Figs. 3.15 to 3.19. This is, of course, due to the relative shear softness of the sandwich core. 

Comparing a typical aluminium honeycomb sandwich with a solid aluminium beam, such as 

2SB1-X and AL1 beams specified in section 3.4, the shear modulus of the former is some 93 

times less than the latter. For the same reason, the frequencies are much more sensitive to 

the shear factor, k. For example, at the highest frequency which could be attained for the 

unloaded 2SB1-X beam (mode 9, Fig. 3.15), a change of k from 1.77 to 1.0 decreases the 

frequency by some 25% while, in a solid beam and at a comparable frequency number, a 

change of the same order in the value of k bears almost no consequence on the frequency. 

As mentioned earlier, k was selected to predict the highest test frequency which could be 

attained within ±0.5%. The reason for setting this criterion was based on the argument that 

the higher modes are more representative of the dynamic shear distribution in the beam 

since, as advocated by Goodman [1954] and Mindlin [1955], the nature of the shear 

distribution is different for lower and higher frequencies owing to the inertia effects (section 

2.1.1). Nonetheless, the results here indicate a remarkable accuracy of the predictions over 

the entire frequency range, especially for thicker beams (Figs. 3.17 to 3.19). The persistently 

close predictions may be due to the lower inertia effects of the sandwich, since these are 
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primarily due to the skins, and therefore a more stable shear distribution with respect to the 

frequency. 

The frequencies of the centrally loaded beam (Fig. 3.16) are also accurately predicted, 

although slightly more scatter of results is observed here (cf. Figs. 3.15 and 3.16). 

From these results, it is clear that the assumption of unity of k due to the assumed uniformity 

of transverse shear distribution over the core cross section of the sandwich cannot account 

for the sandwich frequencies. The test results for the four sandwich beams varying only in 

thickness of the core (Figs. 3.15 to 3.19) suggest that the value of k is sensitive to the core 

thickness. In Fig. 3.20, the optimum value of k, obtained from earlier results, has been 

considered as a function of the skin/core thickness ratio. These results suggest that a linear 

variation of k with the ratio of skin/core thickness exists. It is of interest to note (Fig. 3.20) 

that a value of 1.0 for k occurs only at infinitely small skin/core thickness ratio. 

3.4.2 Mode Shapes 

The stored energy in a vibrating structure at any instant depends on the shape of the 

deformation of the structure at that instant. By definition, therefore, the accuracy of the 

prediction, or steady-state measurement, of the SDC is directly related to the accuracy of the 

function defining the mode shape. 

A series of tests was conducted on the 2SB1-X sandwich beam. All the tests were carried 

out in the first mode and on different lengths of the free-free beam which was supported on 

cotton threads at the nodal points. The latter were detected by sensing the vibration through 

a thin rod lightly held on the beam. Both unloaded and loaded beams were tested. In the 

latter case, the beam was either loaded at the mid-point with the drive and pick-up coil 

assembly (of 134 g mass) or loaded at the ends with the drive and pick-up magnets 

(each of 40 g mass). In the case of the unloaded beams, an electrodynamic shaker was used 

to excite the beam at one end, and a microphone held over the mid-point was used to detect 
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and tune the resonance frequency as well as to check and maintain a constant displacement 

amplitude. In the case of the loaded beams, the drive coils were used for excitation. For each 

test, the beam was marked at equal intervals (10 mm) along its length and on the edge of the 

upper skin. An image-shearing optical device (WISE) was used to measure the displacement 

amplitude at the marked points. With the forced vibration arrangement (centrally or end 

driven), steady-state vibration was maintained throughout the test duration. However, using 

the shaker as a means of excitation proved to be troublesome and the current to the shaker 

had to be constantly readjusted to maintain a constant amplitude of vibration. Furthermore, 

only the longer beams could be tested in the unloaded or end loaded set ups. This was 

because, unlike the centrally driven arrangement, in these cases the displacement amplitude 

was too small to be measured with certainty. Attempts were also made to carry out tests in 

the second mode, but for the same reason these proved to be futile even with the centrally 

driven arrangement. 

The theoretical predictions were obtained following the arguments given at the end of 

section 3.3, which have been implemented in the program BEAM4. FOR. In the centrally and 

end driven cases, the voltage induced in the pick-up coil was used to measure the local 

displacement amplitude while, with the unloaded cases, the central displacement amplitude 

was measured using the WISE. In this procedure of predicting the mode shape, it is 

important to measure the single displacement amplitude accurately since, depending on the 

particular mode shape, its value will to a lesser or greater extent influence the predictions. 

This concept will be explained in more detail below with reference to some illustrative 

examples. 

The flexural mode shape (lateral displacement amplitude) results are shown in Figs. 3Z1 to 

3.26. As Fig. 3.21 indicates, with the 400 mm unloaded beam no appreciable difference exists 

between the predictions of the two analyses and the test results, although a slight 

overestimation of the Bernoulli-Euler predictions towards the beam ends is noticeable. As is 
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indicated by Fig. 3.22, the deviation of displacement amplitude according to the elementary 

theory from the actual displacement amplitude is-more pronounced as the beam becomes 

shorter. For the beams carrying a central load (Figs. 3.23,3.25 and 3.26), this effect is 

increased even further, since the elementary (Bernoulli-Euler) analysis does not account for 

the shearing of the core which increases with the shorter beams and with the beams which 

carry a load. The nature of the actual deformation is illustrated even more positively in Fig. 

316, where the extent of the shearing in the centrally loaded shorter beam is such that the 

beam curves in, a process which is in sharp contrast to the prediction of the elementary 

theory where, as expected, a convex curve is resulted through the assumption of pure 

bending of the beam. The Timoshenko beam analysis on the other hand closely predicts the 

mode shape. The slight deviation of the Timoshenko predictions from the actual results in 

Fig. 3.26 could be either due to the underrating of the core shear modulus or the onset of a 

discrepancy between the theoretical predictions and the experimental results. However, 

since there is no apparent reason to question the accuracy of the measurement of the core 

shear modulus it seems therefore that the latter case is true. Referring to the same figures 

3.23,3.25 and 3.26, it can be seen that as the nodal lines move towards the mid-point, the 

central displacement amplitude and its ratio to the end displacement amplitude decreases. In 

the case of the centrally driven 200 mm beam, for example (Fig. 3.26), this ratio is of the order 

of nearly 1: 10 for the experimental results. Hence, any error occurring in the measurement 

of the central displacement amplitude will be magnified by 10 times when computing the 

end displacement amplitude. For this reason and in the absence of the means for accurate 

measurement of the central displacement amplitude for the prediction of the mode shape, it 

may be advantageous to use a curve fitting procedure whereby the mode shape is computed 

from a displacement amplitude which would bring the theoretical and experimental results 

as close together as possible. This procedure was used by Ritchie [1973]. 

The mode shape results for the end loaded 400 mm beam are shown in Fig. 3.24. No 

appreciable difference exists between the predictions of the elementary and the improved 
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theories. The shift between the predicted and actual displacement amplitudes in the middle 

portion of the beam is believed to be due to the overrating of the end displacement 

amplitude from which the mode shapes were predicted. As mentioned previously, the end 

loaded beams are less stable than the centrally loaded beams due to the difficulties in 

achieving perfect alignment of the two end masses. The scatter of the test results in this 

figure, compared to the results of the centrally driven beams, seems to have been caused by 

the instability of the vibrating system. 

3.5 Conclusions 

On the basis of the Timoshenko beam equations, the theoretical frequencies and mode 

shapes of both solid as well as sandwich beams were computed, and these were shown to 

follow closely the experimental results for both loaded and unloaded free-free beams. 

Certain assumptions were made in adapting the Timoshenko equations for a shear soft 

sandwich beam. On the basis of the high correlation between the results, these assumptions, 

within the context of the shear correction factor, seem to be justified. The particular 

relevance of these equations to the shear flexible sandwich beams was clearly shown. 

In the case of the solid beams, two special values for k, n2112 and 1.0, were considered. The 

difference in results was found to be marginal and well within the limitations of an 

experimental verification; no trend could be detected as to the superiority of one value or the 

other in prediction of frequencies. With the loaded beams, both values were found to 

underrate the fundamental frequency. 

It was further concluded that, at least in the case of aluminium honeycomb sandwich, the 

shear factor was a linear function of the relative thickness of the skin and of the core, and 

that in practical situations its value was more than unity. Moreover, it was shown that for 

both solid beams and aluminium sandwich beams, any deviation from the experimental 

results could be attributed solely to the value chosen for the shear correction factor, k, such 
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that for a 'correct' factor, the accuracy of frequency predictions was maintained over the 

entire frequency range. 

Owing to unnecessary complexities involved in an analytical approach to the determination 

of the factor k in a sandwich beam, specially when, as in the damping tests in the present 

work, the beam is to be subjected to mid-span forced vibration, an empirical approach to its 

determination was suggested. 

Generally, owing to shear, there is a shift of the nodal lines towards the centre of the beam 

and a partial translation of the total lateral displacement amplitude into the shear rotation, a 

process which was found to be closely followed by the Timoshenko theory. 
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Chapter 4 

HONEYCOMB DYNAMIC SHEAR PROPERTIES 

Scope - In this chapter, a device is described for measuring the dynamic shear properties, 

namely dynamic modulus and the SDC, of honeycomb. Results of shear tests are then 

presented and these are compared with those reported in the literature. Some of these results 

will be used in a subsequent chapter. 

4.1 Measurement of honeycomb dynamic shear properties 

Very few works have been reported on the measurement of the honeycomb dynamic 

properties in shear. The first attempt in this field seems to have been due to James and 

Norris in 1958 [James, 1962]. Their work was followed by the work of Keer and Lazan 

[1961]. Except for a schematic diagram, reproduced here in Fig. 4.1, no details are given of 

the apparatus used in this latter work. 

A 

A- Accelenxnroier 

C- Sandwich cam 

S- Shaken movins coil 

V- Velocity pickup 

M1 222 
M2 

Fig. 4.1 Keer-Lazan honeycomb shear test-rig 
(After Keer and Lazan (19611) 
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Evidently, the test-rig constitutes a two DOF vibrating system due to lateral anti-phase 

vibration of the masses M1 and M2 (indicated by hatchings in the diagram). From their 

assumption that the core damping energy was proportional to the square of the transverse 

shear stress amplitude, Keer and Lazan sought to find the constant of proportionality, the so 

called'core damping coefficient', . 1,, in 

O, =J, T2 

where 

Dý=2ttWo/A, 

in which wa is strain energy which, for small damping, may be assumed as equal to kinetic 

energy, and therefore 

WO =0S(M, x12+M2 x22), 

and A, is the amplification factor at resonance, which is obtained from the frequency 

band-width, ow, at 42 of the resonance amplitude according to the relationship 

Al=t Ii of 

where 4 is the natural frequency. Having obtained the shear modulus of the core from 

G=w�z 
MI M2 C 

- Mj+M2A 

in which c and A are thickness of the core and the total area under shear respectively, they 

proceed to find the total displacement amplitude of vibration by adding the deflections x, 

and x2 as measured by the accelerometer and the velocity pick-up. The shear strain, and 

subsequently the shear stress are found from the total deflection. 

The results are presented as values of �, for a number of honeycomb core materials including 

aluminium and fibreglass. Contrary to their assertion, no explicit results are presented in this 

work in support of the assumption of proportionality of damping energy to the square of the 

stress amplitude. In a later work, however, James [1962] presented results showing that 
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linear damping mechanism existed in the case of aluminium honeycomb for a stress 

amplitude up to about 140 kPa. At higher stresses, the power of the stress proportionality 

increased, reaching a value of 4.5 at about 700 kPa. 

The honeycomb damping results reported by these experimenters are dimensionalised with 

respect to the particular samples. However, from the definition of the SDC as 
eu 

SDC =- U 

where 

AU=D, and U=0S T2/G, 

then the following relationship may be established between the SDC and the core damping 

coefficient 
SDC =2 JJ G (4.1) 

Nordby et a! [1965] proposed to utilise the modified Timoshenko-Huang beam equations in 

order to compute the dynamic shear modulus of the core, as well as the dynamic Young's 

modulus of the skin, from the fundamental natural frequency and nodal locations determined 

by a single test on a sandwich specimen. To this end, they showed that the natural frequency 

depends on both E and E/G, and that nodal locations depend on E/G only. Since there is 

only one unique set of values of E and G which satisfy a unique value of E and the ratio 

E/G, then they can both be explicitly determined. Their tests in the fundamental mode 

showed that for both fibreglass skin and aluminium core, the dynamic moduli were 'the 

same as' then static values. 
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4.2 A new method for measurement of dynamic shear properties 

57 

In this work, a new method was used to measure the dynamic properties of the sandwich 

honeycomb core in shear. The basic requirement was for an arrangement whereby the 

honeycomb could be put into shear vibration with the least extraneous damping. The shear 

modulus could then be computed from the natural frequency, and the SDC could be 

obtained by the free-decay method or, in a steady-state test, computed from the 

measurement of maximum strain energy and the damping energy per cycle, in much the 

same way as in the flexural tests. The latter method offers the possibility of measuring 

damping as a function of stress amplitude. The double-lap joint arrangement, described 

below, proved to be adequate for this purpose. 

Initially, two identical aluminium sandwich beams were bonded together on the skin and a 

slot was cut through the middle section, leaving the single skin on each side (Fig. 4.2). A 

length of the single skin and the honeycomb was then removed at both ends on each face, 

leaving the double skin protruding out at the ends. 

Fig. 4.2 Original honeycomb shear test-rig 
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This arrangement is basically a double-lap joint which allows for the application of an axial 

force at the ends to be--translated into mainly shearing of the honeycomb. The test piece is 

symmetric about the mid-plane as well as the mid-section. 

Two equal masses were clamped at either ends with a permanent U magnet attached to each 

mass. Using cotton threads, the test piece was then suspended horizontally, from the end 

masses, inside an aluminium frame and two coils, attached to the frame, were positioned 

inside the magnets' poles. The instrumentation used was the same as that used for the 

flexural test-rig (fully described in Chapter 5), with one coil driving the end mass, and the 

other sensing the displacement amplitude of vibration. 

Initial difficulties, not dissimilar to those reported by Bacon [1973], were experienced 

concerning the pick-up signal. In developing the flexural test-rig, Bacon reported an 

interference of the drive magnetic field with the pick-up signal when the drive and pick-up 

coils were positioned in the same plane. The voltage across the pick-up coil is expected to 

rise linearly as the frequency approaches resonance. However, Bacon observed a sharp 

non-linear fall of the pick-up signal as the beam approached resonance. He attributed the 

cause to the cutting of the drive magnetic flux by the pick-up coil. Since at resonance the 

drive current falls to a minimum, so does the intensity of the drive coil magnetic field and 

therefore any induced voltage across the pick-up coil due to the drive system. The nature of 

the problem in the honeycomb shear test was somewhat different from that experienced by 

Bacon in that the pick-up signal was not responsive to resonance to any appreciable extent. 

The distance between the drive and pick-up points was about 15 in., some five times that in 

the flexural test-rig. Moreover, the flux intensity of the permanent magnet used here was 

much lower than the flux intensity of the electromagnet used in the flexural rig. These may 

explain the fact that pick-up was not responsive to the changes in the drive magnetic flux. 

The remedy, however, was found to be the same as that reported by Bacon. At resonance, 

the pick-up coil/magnet set were rotated through 90° so that the plane of the pick-up coil 
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was perpendicular to the plane of the drive coil. As the coil was rotated, the pick-up signal 

intensified, reaching a maximum at 900. The most likely explanation seems to be the 

sensitivity of the pick-up coil to the electromagnetic radiation from the drive coil. When the 

two coils are positioned at right angles, the drive/pick-up interaction reaches a minimum 

allowing the voltage induced in the pick-up by cutting the magnetic flux to prevail. 

In the double-lap joint arrangement, because of the eccentricity of the forces in the 

mid-plane and the outer faces, bending moments are induced which tend to distort the outer 

skins specially in the middle. As a result, the skins undergo a complex cyclic deformation. 

These deformations have an adverse affect in two ways. First, they are expected to increase 

extraneous damping and secondly a number of frequencies are excited which make the 

detection of the shear frequency that much more difficult. Clearly, a more rigid test piece 

was needed. To that end, two thick Duralumin plates were stuck to the outer skins using a 

thermoset adhesive. This reduced the non-shear frequencies but at the same time seemed to 

have slightly increased damping, most likely due to deformation of the additional adhesive 

layer. 
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At this point, it was decided to fabricate the test piece from the constituent parts, replacing 

the skins with thick plates. A schematic diagram of the new test piece is shown in Fig. 4.3. 
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Fig. 4.3 Honeycomb shear test piece 

Four honeycomb slices of equal size were cut from stock and, using a hot-press, were 

adhered to Duralumin plates following the manufacturer's moulding instructions and 

specifications. The same adhesive film used in the beams, was used for this purpose. Using 

the sandwich beams is a simple and convenient way to fabricate the shear test piece. Also, it 

has the merit that tests can be carried out on the manufacturer's end product. However, tests 

on the new test piece showed that the former method was inadequate for honeycomb shear 

assessment. For the same honeycomb, the SDC as measured by the second arrangement was 

reduced by almost a half (from 2.1% to 1.1%). The non-shear frequencies were not totally 

eliminated but compared to the shear frequency, these were of negligible amplitude. The 

vibration in the poles supporting the coils was still a cause for concern. The possibility of 

reducing these was explored by first placing the test piece horizontally on a solid platform 
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with the coils fixed to two brackets which were rigidly secured in position (Fig 4.4). With 

this arrangement, the damping due to-the suspension, which at the time could not have been 

assessed, would be avoided. The vibration in the coils was almost entirely eliminated but the 

damping increased slightly (1.1% to 1.3%). Clearly the new source of extraneous damping 

was due to the contact between the test piece and the platform. The fact that the two 

overhung end masses were now imposing a bending moment of their own on the structure 

could also have been a contributory factor. 

Fig. 4.4 Rearrangement of the honeycomb shear test 

An alternative method which would avoid the problem of overhung end masses as well as 

the damping due to the vibration of the suspension was to suspend the test piece vertically 

from the outer plates (Fig 4.5). A new frame was build for this purpose with particular 

emphasis put on the rigidity of the coil supports. Tests on the same honeycomb sample 

showed that this arrangement was a good improvement on the horizontal suspension, 

reducing the SDC from 1.1% to 0.7%. All subsequent honeycomb shear tests were carried 

out using this test-rig. 
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The vibration system is basically a two DOF system which with a symmetrical test piece 

will give two symmetric frequencies. Then, the only non-rigid-body motion is when the end 

masses vibrate in opposite directions. The relative motion of the end masses was verified 

experimentally by attaching an accelerometer, in turn, to the outer end of each mass and 

comparing the two signals. 

Some extraneous damping due to the vibration of the outer Duralumin plates is inevitable, 

although this is expected to be insignificant. Generally, the outer plates are subjected to a 

complex system of forces, but provided the plates are sufficiently rigid the resulting 

vibrations and therefore any air-damping will be of negligible magnitude. The plates used in 

the shear test piece were 1/2 in. thick Duralumin plates and as expected, it was found that the 
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largest displacement amplitude was due to the flexure at the mid-section where the plate is 

subjected to the maximum bending moment. However, compared to the shear displacement 

amplitude this was of insignificant value (less than one tenth). 

4.2.1 Analysis of honeycomb dynamic shear properties 

4.2.1.1 Shear modulus 

From symmetry, the mid-section is axially stationary and only one half of the test piece need 

be considered, as shown in Fig 4.6. The undamped spring-mass mathematical model is shown 

in the same figure, in which the two parallel springs, each of stiffness K, are subjected to 

longitudinal vibration of the mass m, where M is the total mass attached at either end of the 

shear test piece, including mass of the central plate. 

a 

c 

M 126 

(a) (b) 

K 

Fig. 4.6 Schematic representation of honeycomb shear test piece 

For harmonic vibration of M, the frequency is given by 

f� _, 4 (2K/M) (4.2) 
Zit 

However, the total stiffness of the springs subjected to a force F is given as 
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F 
2K =- (43) 

S 

and the shear modulus is given by 

Fc 
G= -- 2A 8 

(4A) 

where A and c are, respectively, the shear area and thickness of each honeycomb slice. Then, 

the dynamic shear modulus of the honeycomb may be found from Eqns. (4.2) to (4.4) as 
2n2f�2MC 

(4.5) 
A 

4.2.1.2 Steady-state shear vibration damping 

The specific damping capacity of the vibrating system is given as 

Au 
v= - (4.6) 

u 

where the damping energy per cycle, AU, is found from the measurement of the drive current 

and the pick-up voltage, as described in Appendix (A). For small damping, the total maximum 

strain energy, u, may be assumed as equal to the total maximum kinetic energy. The latter is 

given as 
s 

K. E. =M (w� S) (4.7) 

where w� is the angular frequency and 6 is the peak displacement amplitude at either end, 

which is obtained from the frequency of vibration and the induced voltage in the pick-up 

coil (Eqn (A. 6), Appendix (A)). In Eqn. (4.7), compared to the total end masses (2xM = 2.28 kg), 

the mass of the honeycomb has been neglected. 

The SDC may be plotted as a function of the maximum shear stress in the honeycomb, and 

the latter may be obtained from the maximum shear strain as 

T,,,,, =G (S / c) (4.8) 
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421 Honeycomb shear tests 
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A series of shear tests was carried out on aluminium (Aeroweb Type 3003) and the polymeric 

based Nomex (Aeroweb Type Al) honeycomb samples with different specifications. The latter 

honeycomb is described by the manufacturer (Ciba-Geigy Information sheet No. ATA 55k) 

as 'high temperature resistant fibrous aramid' coated with phenolic resin. The tests were 

carried out in air and at room temperature. 

The basic method of manufacture of the honeycomb involves rolling glue lines onto 

alternate flat sheets which are subsequently stacked, bonded to each other and then 

expanded to form the honeycomb panels. The cell size is controlled by the distance between 

the glue lines. Alternatively, the sheets are corrugated to form a series of half-cells, the 

adhesive is applied at nodes and the sheets are stacked and bonded on the nodes. Due to the 

geometry of the cells as well as the fact that the glue lines are locations of bonded 

double-web junctions (also called node or ribbon) which are aligned along one direction of 

the panel, a degree of orthotropy exists in the honeycomb panel. 

The honeycomb density refers to the bulk density of the expanded cells and therefore 

depends on both the cell size and the degree of expansion. In this work, only the 

honeycombs which have been nominally expanded to regular hexagonal cells have been 

considered. As such, the honeycomb density would depend on the cell size only, the latter 

being defined as the diameter of the inscribed circle of the regular hexagonal cell. For the 

same cell size, the variation in bulk density indicates a variation in one of, or both, thickness 

and density of the honeycomb web. 

The same designation system used by the manufacturer for the honeycombs is used here. 

This designation is best described through the use of the following example. The 

designation: Aeroweb 23,3/8,15 - 3003 refers to, respectively, a particular Aeroweb hexagonal 

honeycomb of 2.3 Ibf/ft3 bulk density, 3/8 in. cell size, and made from a foil having a 

thickness of 15x0.0001 in. and being an aluminium alloy of the 3003 type. 
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The same basic designation system is also used for Nomex honeycombs, although metric 

units are used here. The Nomex honeycombs are distinguishable from the aluminium ones 

by the presence of the characters Al in their designation as in Aeroweb A1,50,6 which refers to 

an Aeroweb Al type honeycomb (Nomex) with hexagonal cells having a bulk density of 50 

kg/m3 and a cell size of 6 mm. It is also noted that, unlike aluminium honeycomb, the 

thickness of the web is absent from the designation of the Nomex honeycombs, although 

these are quoted in the manufacturer's brochures. 

Preparation of each shear test piece involved cutting four small slices of honeycomb and 

eight pieces of adhesive film (Redux 609) of the same size. These were then assembled onto 

the Duralumin plates, which had already been degreased with acetone, to form the shear test 

piece (Fig. 43). The test piece was placed in the pre-heated press and cured at 120° C 

temperature and under about 5 kN force for one hour. 

To avoid distorting the honeycomb geometry and specially crushing the cells, all the 

honeycomb samples were cut cell by cell using a pair of scissors. As far as possible, 

symmetry in each slice was maintained by cutting along the same row of cells. This was 

easily achievable with the well regulated and more resilient Nomex cells but not always 

possible with aluminium honeycombs which are very malleable. 

Altogether, nine different types of aluminium and Nomex honeycombs were subjected to 

steady-state shear vibration tests, and the shear modulus and the SDC were computed. In 

some cases, the degree of orthotropy in the honeycomb was determined by measuring the 

shear properties across as well as along the ribbon direction. In one case, different 

thicknesses of the same specimen were subjected to shear tests. The specimens tested were 

as follows 
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1- Aeroweb 2.3,3/8,15 - 3003 
2- Aeroweb 3.4,1/4,15 - 3003 
3- Aeroweb 5.2,1/4,25 - 3003 
4- Aeroweb A1,29,3 
5- Aeroweb A1,48,3 
6- Aeroweb A 1,50,6 
7- Aeroweb A1,64,3 
8- Aeroweb A1,64,5 
9- Aeroweb A1,96,3 
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The tests were carried out in air, and at room temperature. The frequencies for the 

aluminium honeycombs fell in the range 1000 to 2500 Hz, and for the Nomex honeycomb in 

the range 700 to 1500 Hz. 

For each test, the shear frequency was verified using an accelerometer as described earlier. 

The test was carried out by noting the pick-up voltage at a number of drive currents, as the 

latter was increased. 

4.21.1 Edge effects 

So far, the assumption has been made that the honeycomb in the double-lap test piece is 

subject to shear stresses only. This, however, is not entirely true. As mentioned previously, 

because of the eccentricity of forces applied to the honeycomb, bending moments will be 

induced which, because of the symmetry of the test piece, will have zero global effect, but 

nonetheless tend to distort the honeycomb locally in a non-shear manner. The edge near the 

central loading point (Fig. 4.7(a)) is subjected to tensile stresses, while the edge further from 

this point is subjected to compressive stresses [Adams and Wake, 1984]. 
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Fig. 4.7 Schematic honeycomb edge effects 
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Similarly, the magnitude of the stresses developed at the edges will be different from those 

in the honeycomb slices. In their extensive treatment of the lap joint employed in adhesive 

testing, Adams and Wake [1984] present results from finite element stress analysis, based on 

which they conclude that stress concentration at the edge is 'at least 10 times the applied 

shear stress on the joint'. 

Because honeycomb is basically a structure, the stress distribution in honeycomb cells is 

less uniform than in an otherwise solid material, and the stress concentration is expected to 

be more severe at and near the edge. Furthermore, the geometry of the cells and whether or 

not these are complete structures at the edge, will play a significant role in the extent of 

stress concentrations. These stress concentrations in the honeycomb will generally cause the 

damping to become increasingly non-linear [Keer and Lazan, 1961]. 
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In an attempt to assess the significance of these 'edge effects' in the double-lap honeycomb 

shear test piece, a series of tests was carried out on aluminium honeycomb with a cell size of 

3/8 in., this being the largest cell size used in a sandwich configuration in the present work. 

The honeycomb, in the shape of the double-lap joint, was progressively sliced through 

symmetrically at both ends and along the length of the test piece. For each reduced shear 

area so obtained, the test piece was subjected to the shear test. The shear modulus and SDC 

were then calculated and plotted against the normalised shear area (Fig. 4.8). 

As the figure indicates, with the present total shear area in the double-lap test piece 

(4x(9lmmx62mm)), the edge effects are small in the computation of modulus. For a reduction 

of up to 60% or so in the shear area, the computed modulus remains independent of the 

variation in the area, while from about 60% to 80% the increase in the computed shear 

modulus is relatively slight. This tends to suggest a fairly uniform shear stress distribution 

over the length, as has been suggested in Fig. 4.7(a). The sudden upsurge of the computed 

shear modulus for the lowest 'shear' area (about 93% reduction in the original shear area) 

seems to be due to a sharp increase in the relative stiffness owing to, it is suggested, a 

change of mode from a predominantly shear deformation for a sufficiently large number of 

honeycomb cells (Fig. 4.7(a)), to a deformation comparable to that caused by the lateral 

deflection of a fixed-fixed beam (Fig. 4.7(b)). 

The SDC results, however, indicate that eliminating the non-linear damping is somewhat 

more difficult. The relatively low rate at which the damping approaches linearity (Fig. 4.8) 

may be explained by the fact that, there will always be stress concentrations in the outer 

honeycomb webs at the edges regardless of the shear area, especially if these are not parts of 

a complete cell structure. Nonetheless, the trend of the damping results seems to suggest 

that, for this particular cell size, the present total shear area of the test piece is the minimum 

area required in order to make any non-linear damping due to edge effects insignificant. As 

the largest cell size, together with the highest modulus, present the worst case for edge 
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effects, it may therefore be safely assumed that the latter is effectively eliminated on both 

counts of modulus and the SDC in aluminium and Nomex honeycombs with smaller cells. 

4.2.2.2 Test results 

Results of tests on aluminium and Nomex honeycombs are presented in Figs. 4.9 to 4.11, and 

4.12 to 4.16 respectively. 

The aluminium honeycomb Aeroweb 2.3,3/8,15-3003 (Fig. 4.9) is almost exactly the same 

sample as one tested by James [1962, Table 3, second sample], save for the lower foil 

thickness of the former (0.0015 and 0.002 in. ). His figures for the SDC, after the necessary 

conversion through Eqn. (4.1), are 1.8% along and 5.6% across the ribbon direction. 

Compared to 0.7% in both cases as found in the present work, James' figures are 

considerably higher, especially in the cross-ribbon direction where the above figure for 

aluminium honeycomb is unrealistic. However, unlike the expanded samples used here, his 

honeycomb sample was corrugated and this may, at least partially, account for the difference 

between the two sets of results. James could not find a convincing explanation for the 

unexpectedly high damping result in the cross-ribbon direction, including possible increased 

extraneous damping in the apparatus owing to 'more compliant' orientation, and the cause 

remained 'obscure'. 

Tests by Keer and Lazan [1961] on the other hand, showed slightly higher damping along 

than across the ribbon direction (1.88% and 1.60% SDC respectively). Generally, the 

aluminium cross-ribbon damping results are somewhat erratic and unpredictable. Both Fig. 

4.9 and particularly Fig. 4.10 indicate non-linear damping in this direction, possibly due to 

one or both friction damping caused by imperfect bonding in the nodes and stress 

concentration owing to misalignment of a number of honeycomb cells. However, as is 

evident from Figs. 4.9 and 4.11 there is no or very little difference in the low stress damping 

when stressing the honeycomb along and across the ribbon direction. All other factors being 
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the same, it is believed that the significant difference observed in Fig. 4.10, and possibly also 

the difference in the James' results, could well be due to an unsound specimen. 

The ribbon-direction modulus of the above named honeycomb is some 30% lower than the 

figure reported by James (141 and 206 MPa), although this difference should be considered 

against a 25% lower density. The cross-ribbon modulus is only slightly lower (98 and 103 

MPa). 

A similar honeycomb to Aw 5.2,1/4,25 (Fig. 4.11) was tested by Nordby et al [1965, Table 1] 

through the above mentioned procedure (section 4.1), and the shear modulus, measured 

along the ribbon, agrees well with the value found here (281 and 285 MPa respectively), 

although the latter value is some 35% lower than the manufacturer's quoted figure (440 MPa, 

Ciba-Geigy Publication No. LGC 35c). This is a considerable difference and cannot be 

readily accounted for by such factors as, for example, misalignment of the honeycomb cells. 

It should, however, be pointed out that the manufacturer's figure is the result obtained by a 

different test-method, namely, the three-point bending test (a full description of this test is 

given by Teti and Caprino [1989]). 

The damping results for different Nomex samples (Figs. 4.12 to 4.16) indicate a low amplitude 

sensitivity of the SDC. In the case of the A 1,48,3 Nomex (Fig. 4.13) for example, a rise of the 

SDC of the order of 3% is observed before the latter becomes constant with the amplitude. 

Whether this low amplitude non-linearity is indeed the damping characteristic of the 

honeycomb Nomex material, or whether it has been caused by such external factors as the 

low sensitivity of the pick-up voltmeter at lower frequencies, is difficult to determine with 

certainty. However, as will be seen later (Chapter 6), the practical level of the shear stress in 

the sandwich honeycomb is well above the limit of non-linearity observed here. For that 

reason, in using the damping data of the Nomex honeycombs in subsequent computations, 

the apparent non-linear lower regions of these graphs have been ignored. 
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The damping results for the Nomex honeycombs (Figs. 4.12 to 4.17) further indicate that, 

similar to aluminium, the orthotropy of the honeycomb structure does not affect damping to 

any appreciable extent. Moreover, referring to the same results, and in particular to Figs. 4.15 

and 4.17, it may be concluded that neither the honeycomb density nor the cell size is a 

determining factor in the damping of the Nomex honeycomb. In short, whatever the 

specifications, Nomex honeycombs posses a high damping level (about 10% to 12% SDC) 

and any variation in the damping between different specimens, or due to the orthotropy of 

the honeycomb, will be relatively marginal. 

In Fig. 4.17 the variation of shear properties with density for the same cell size are shown. 

The manufacturer's quoted results are also included (Ciba-Geigy Information Sheet No. 

ATA 55k; the cell size is not specified for the "Typical' results). As can be seen, evaluation 

of moduli of the Nomex honeycombs agrees reasonably well with the manufacturer's figures 

for most parts, the major difference being in the modulus of the 96 kg/m' Nomex honeycomb 

which is seen to be some 30% lower (70 and 100 MPa). However, too few experimental 

results and the scatter observed make it difficult to find with certainty any particular trend 

from the present results, although it would be safe to assume that, at least initially, the 

modulus increases linearly with density. More tests are needed for a conclusive verification. 

Benjamin [1969] quotes static shear modulus versus density test results for glass cloth 

honeycomb, showing that the modulus could vary by about 20% from an expected linear 

mean 'depending upon the resin used, the dimensions of the honeycomb, etc'. 

4.2.3 Conclusions 

The double-lap shear test piece is an effective arrangement for measuring the dynamic 

properties of honeycomb in shear. Compared to flexural tests, fewer sources of extraneous 

damping are present in this configuration. Main sources of energy loss are friction at the 

points of attachment of the end masses to the test piece, and the energy transmission from 
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the drive unit to the frame. However, these sources of extraneous damping would be of any 

significance only when testing low damping materials such as aluminium honeycomb. 

Preparation of the test piece is a somewhat lengthy and laborious procedure, but the method 

should ensure minimum extraneous damping. This is testified by measuring a SDC of 0.7% 

for aluminium honeycomb in shear, by far the lowest figure reported for a comparable 

sample in the literature. 

There is still some room for modification of the test-rig from its present state. In particular, a 

frame rigid enough to evade the expected frequencies of the honeycomb is warranted. 

Otherwise, due care should be taken in interpreting the system response to excitation. 

The test results clearly show that a sound honeycomb sample experiences linear damping at 

low stress amplitudes. Furthermore, the orthotropy of both aluminium and Nomex 

honeycombs is manifested only in the considerable difference in the shear moduli; there is 

little difference, if any, between the low stress damping of the shear vibration along the two 

principal directions. Results not conforming to these trends, should be treated as the 

characteristics of the particular sample under test. 
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Chapter 5 

THE STEADY-STATE FLEXURAL DAMPING TEST 

Scope - In this chapter, the centrally driven test-rig, suitable for measuring the SDC of beams 

in steady-state flexural vibration, is described. Test results are presented showing that in 

most cases, the extraneous energy losses are well within the tolerances of the results for the 

materials tested in this work. 

Both in-air and in-vacuo damping of all-aluminium sandwich beams will also be considered. 

5.1 The test-method 

The test-method used here is originally due to Adams el al [1969]. Later improvements of 

the apparatus were carried out by Bacon [1973] who gives a full description of the 

development of the test-rig. However, Bacon's test-rig was inadequate for this work. Having 

been designed for testing slender composite beams, it was too small and ineffectual for the 

relatively larger and stiffer sandwich beams. Consequently, based on the original design, a 

larger apparatus, incorporating a more powerful drive system, had to be utilised. 

The basic principles of the test are given below. The theory behind the test is given in 

Appendix (A). The computation of the SDC for the slender beams tested here is based on 

Eqn. (3.41). 

Basically, the test involves suspending a uniform beam horizontally at its nodal points so 

that free-free boundary conditions are achieved at the beam ends. Then, the beam is excited 

at one of its flexural natural frequencies (usually the fundamental frequency) and the input 

energy per cycle and the lateral displacement amplitude of the steady-state vibration 

measured. 
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The means of excitation and displacement measurement are by two flat coils of wire, the 

planes of which are mutually perpendicular (Fig. 5.1(a)). The coil assembly incorporates a 

clamping arrangement and is secured at the mid-span of the beam with the coils positioned 

on opposite faces. Each coil can move freely in the gap of a U-magnet cutting the magnetic 

flux at right angles. The gaps are deliberately narrowed in order to intensify the flux and to 

keep the lines of flux straight, while the mutually perpendicular arrangement of the two coils 

is intended to minimise, if not quite eliminate,. the interference of the drive magnetic flux 

with the pick-up coil (the pick-up flux from a relatively small permanent U-magnet, is too 

weak to have had any detectable effect on the drive coil). 

In constructing the coil assembly, consideration should be given to the lightness and to the 

choice of material which should be ferrous-free. Aluminium adequately satisfies both 

requirements and was, therefore, used for the coil assembly. Excess material was removed 

by drilling holes in the clamping beams and the coil yoke, while maintaining symmetry 

(Fig. 5.1(a)). 

In the test set-up used (Fig. 5.1(b)), the initial steady-state sine-wave is supplied by a signal 

generator which also provides the means to adjust and read, digitally, the frequency to 

within one millionth of a Hertz. The signal is amplified to the required level and is fed to the 

drive coil which interacts with the magnetic flux of the drive magnet to induce a magnetic 

force proportional to the drive current. This causes the beam to vibrate at the frequency of 

the initial signal. At the same time, the cutting by the pick-up coil of the magnetic flux of 

the pick-up magnet will induce a voltage across this coil which is proportional to the 

velocity of vibration. A digital ammeter in the drive circuit is used to read the current 

supplied to the drive coil and a digital voltmeter is used to read the voltage across the 

pick-up coil. Both drive and pick-up signals are monitored on the oscilloscope, the latter 

signal after being conditioned through the signal conditioner. 
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An electromagnet, capable of taking a current of up to 8 A, was used in the drive system. A 

3A current, however, was found to be adequate which, with a maximum allowable rms 

drive current of 1.5 A, provides a cyclic force of about 0.9 N amplitude (see Appendix (A)). 

The D. C. current supplied to the electromagnet had to be kept constant during the test 

period, and this was achieved by connecting a car battery across the stepped-down D. C. 

supply, with the battery in effect acting as an electric buffer for any fluctuation in the 

current. A rheostat in series with an ammeter were used to adjust and monitor the current. 

The drive and pick-up coil/magnet pair had to be calibrated and re-calibrated from time to 

time. The details of the calibration method are given in Appendix (A). 

Measuring the current input to the drive coil will provide the means to compute the energy 

needed to maintain the vibration at a steady-state and will, therefore, give a measure of the 

energy dissipation. At the same time, by measuring the induced voltage across the pick-up 

coil, the displacement amplitude of vibration at the centre of the beam may be computed. 

When the displacement amplitude is known, the strain energy of the beam or the kinetic 

energy of the vibrating system can then be computed. 

5.2 Extraneous damping 

Provided it can be shown that the energy dissipation mentioned above is limited to the 

specimen, then this energy would represent the damping energy of the specimen, or in a 

more general term, the 'material damping'. Otherwise, the experimenter should verify that 

the extraneous damping energies are sufficiently small not to impair the measurement of the 

overall damping of the specimen. 

In practice, losses occur due to interaction between the material under test and its 

environment. Generalisations of the chief sources of extraneous damping have been made 

[I, azan, 1960] as structural (interfaces with the vibrating system), hydro-mechanical (e. g. air 

damping) and electro-mechanical (eddy currents and magnetic hysteresis). 
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All the flexural tests in this work were carried out using the free-free resonant test method. 

With the free-free end conditions, the extraneous damping introduced due to an otherwise 

clamped specimen will be avoided. 

Air damping is caused by the cyclic flow of air particles due to lateral pressure difference 

induced by the vibrating system. As such, air damping would be expected to be a function of 

the dimensions of the vibrating system, frequency and amplitude of vibration as well as the 

viscosity and density of the air. Bacon [1973] distinguished the lower, amplitude 

independent, and upper regions of the SDC versus Amplitude graph as 'viscous' and 'inertia' 

effects respectively, associated with lower and higher Reynolds numbers. His attempts, 

however, for predicting the air damping proved futile, leading him to the conclusion that'the 

only satisfactory way' would be to test in-vacuo. 

At low displacement amplitudes, air damping remains constant with amplitude. 

Furthermore, air damping is known to be more amplitude dependent in the clamped-free 

than free-free vibrations [Soovere and Drake, 1985]. Hence, strictly speaking, if it is 

intended to measure the damping as, for example, a means of material assessment, then the 

material should be tested in a vacuum. Otherwise, the beam should be tested in the free-free 

condition and only the test-results at the lower amplitudes should be considered. No such 

general statements, however, may be made as regards to the frequency of vibration and the 

relative dimensions of the specimen since, all other factors being the same, these only vary 

in inverse proportion to one another. 

Another source of energy loss is the friction caused between the specimen and the points of 

attachment of the coil assembly to the beam. The beam is secured between two thin silver 

steel rods cemented in V-grooves which are cut on the surfaces of the clamping beams, the 

latter forming an integral part of the coil retaining yoke (Fig. 5.1(a)). At first, it would seem 

best to secure the coil assembly on two points across the beam and on the neutral axis where 

no straining occurs. However, any gain in so doing should be weighed against the practical 
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difficulties in maintaining the stability of the coil assembly during the vibration and on the 

method of point-attachment if a new source of friction damping is to be avoided. The 

clamping arrangement was consequently used. 

The suspension mechanism brings about another source of energy loss which is more 

difficult to resolve. The beam rests on its lower face at two nodal points on two pieces of 

cotton string which are attached to the supporting structure. Here, the energy losses are 

caused in mainly two ways, one friction between the beam and the supporting string in 

much the same way as the clamping arrangement mentioned above, and the other by 

vibration transmission via the suspension to the supporting structure. Again, an effective 

remedy to reduce losses in the suspension mechanism would seem to be to position the 

supports on the neutral axis of the beam, but, as mentioned previously, this method would 

impose practical difficulties. The vibration of the suspension strings, however, cannot be 

eliminated regardless of where the supports are located, because the nodal cross-sections 

have a longitudinal vibration. 

5.2.1 Assessment of extraneous damping 

Before carrying out the flexural tests, it was necessary to ensure that the contribution of 

extraneous damping to the overall damping was insignificant. To this end, tests were carried 

out on slender Duralumin beams. Aluminium is known to have a very low damping level; 

figures as low as 0.002% for the in-vacuo SDC of Duralumin in torsion have been reported 

[Cottell et al, 1948]. Duralumin has been frequently used as a reference material in the 

assessment of background damping [Adams et al, 1969; Bacon, 1973; Adams and Bacon, 

1973-a; Guild and Adams, 1981 etc. ], where the material damping of the beam, as compared 

to the background damping, has been assumed to be negligible. In the ensuing discussions, 

this assumption has been maintained. The frequencies of tests on Duralumin beams fell in 

the range 70 to 80 Hz. 
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Air damping may be accounted for by testing in a partial vacuum. A specially designed 

vacuum chamber, originally due to Bacon [1973], was available for this purpose. The 

in-vacuo tests were carried out under the minimum air pressure which could be achieved, and 

this was recorded to be about 1 kPa or 1% of the atmospheric pressure. This is believed to 

be a good enough vacuum for effectively removing air damping. 

In Fig. 5.2, the results of the in-air and in-vacuo tests on the same Duralumin beam are shown. 

From this figure it is noted that the in-vacuo damping remains almost constant at about 

0.15%, a figure which agrees with previous results [Bacon, 1973, Fig. 8]. The in-air results 

indicate the initial invariability of the SDC with amplitude, and the increase of the SDC at 

higher amplitudes, attributed to air damping, is seen to be linear. Extrapolation of the two 

curves to zero displacement amplitude suggests a difference of about 0.04% SDC between 

the Duralumin beam in-air and in-vacuo . This is believed to be partly due to aerodynamic 

losses but mainly due to the damping caused on the beam surface under hydrostatic stresses. 

For this particular test, therefore, this figure represents low amplitude air damping. 

Generalisation to other materials, however, is not possible since the low amplitude air 

damping would depend on the material under test. 

Air damping is proportional to the size of the vibrating system. The new and larger coil 

assembly was compared with Bacon's coil as regards to air damping. The results of the tests 

on the same Duralumin beam are presented in Fig. 5.3. From the in-air results in this figure, it 

is noted that using a larger coil would indicate a larger SDC than a smaller coil, significantly 

more so at higher amplitudes. At lower amplitudes, however, the difference is within 0.02% 

SDC, a portion of which (about 0.01%) is believed to be due to a higher friction damping 

inherent in the larger coil, as indicated by the in-vacuo results. 
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Compared with the quoted figure of 0.002%-0.02% for Duralumin [Cottell et al, 1948], a 

SDC of 0.15%, as indicated by the in-vacuo results of Fig. 5.2, suggests that the major 

proportion of the in-air damping at low amplitude is due to the friction caused at the 

clamping lines and to the suspension mechanism. Induction of eddy currents in the coil 

assembly owing to radiation from the coils is possibly another contributory factor [Bacon, 

1973], although compared to the two former sources, these are believed to be of little effect. 

For stability reasons, the coil assembly originally incorporated a 3-line clamping 

arrangement whereby the beam could be clamped between two silver steel rods on the upper 

surface and one rod, positioned between the two upper rods, on the lower surface. This was 

modified to a 2-line clamping with one upper and one lower rod positioned immediately 

opposite each other. Careful and even tightening of the coil assembly to the beam proved 

that the stability was not compromised in the latter arrangement. In Fig. 5.4 the in-air and 

in-vacuo results of the two arrangements are compared. This figure clearly shows the 

increase in the SDC due to the friction caused at the extra clamping line. The results indicate 

that, at lower amplitudes, the difference in damping of the 2 and 3-line clamping is almost 

the same (a SDC of about 0.02%) for the in-air and in-vacuo tests, although at about a 

displacement amplitude of 0.35 mm an increase in both cases occurs, but remains constant 

for higher amplitudes. The constant difference in damping due to the extra clamping line is 

in support of the proposition that friction damping is independent of sliding velocity and 

depends only on the number of friction points [Soovere and Drake, 1985]. 

The losses due to the clamping of the coil to the specimen may be accounted for by using 

the Guild and Adams [1981] test-method. In this arrangement, two small U-magnets are 

bonded to the beam at either end and are positioned in suspension on top of two small coils 

which act as the drive and the pick-up coils. Hence, the friction damping which is otherwise 

encountered in the clamping of the coil to the beam will be avoided, although some energy 
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losses may occur at the points of attachment of the magnets to the beam due to the straining 

of the adhesive layer. However, being located at the beam ends, strains are minimal, and 

energy losses can be reduced further by using the least amount of adhesive necessary. 

Using the end driven technique, the in-vacuo SDC of the Duralumin beam was found by the 

free-decay method. Free-decay tests were also carried out on the centrally driven beam 

in-vacuo. In each case, the test was repeated three times and, using the error criterion 

analogous to Eqn. (3.43), it was found that within a tolerance of ±0.01% a good consistency 

existed in each set of results. The SDC of the centrally driven beam was found to be 0.135% 

(cf. 0.15% found in steady-state) while for the end driven beam it was recorded as 0.053%. 

A major proportion of the latter figure should, therefore, represent a measure of the damping 

due to the suspension as well as any energy losses at the points of adhesion of the end 

magnets to the beam. This figure agrees with a value of 0.05% suggested by Adams et al 

[1969] although they used foam knife edges for supporting the beam, a method which, when 

compared to cotton suspension, is known to impart more damping on the system [James, 

1962; Bacon, 1973]. The difference between the results obtained using the centrally and end 

driven methods, amounting to a SDC of about 0.08%, is believed to indicate the order of the 

friction damping at the clamping lines using the centrally driven method. 

53 Damping of aluminium sandwich beams 

At this point, it is appropriate to consider the damping of all-aluminium sandwich beams 

which exhibit a low level of damping. In so doing, the application of Timoshenko's modified 

equations for steady-state damping measurement will also be considered. 

Three thicknesses of pre-fabricated all-aluminium sandwich beams (Ciba-Geigy's Aerolam 

M-board) were subjected to both in-air and in-vacuo steady-state damping tests, using the 

centrally driven arrangement. The damping of the sandwich with respect to the orthotropic 
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properties of the core were also considered. The results are presented in Figs. 5.5 to 5.7. The 

frequencies of tests on sandwich beams fell in the range 400 to 1200 Hz. 

Also included in these figures are the free-decay (FD) results, obtained from the decay of 

the lowest displacement amplitude of the steady-state tests. The free-decay results are the 

average of results of three tests, although 'for the most part they were noted to be fairly 

consistent. 

The beams, 2SB1,2,4, were all of dimensions 400 mm length x 40 mm width, and 0.57 mm 

skin thickness, as previously tabulated in Table (3.3); the core was Aeroweb 5.2,1/4,25-3003, 

the dynamic shear properties of which were already presented in Fig. 4.11. 

Computation of the SDC in steady-state flexural vibration was based on Eqn. (3.41), and the 

computation of the maximum stress in the skins was based on Eqn. (3.28). As mentioned 

previously (section 3.4), no raw material was available for the skins and no prediction of the 

sandwich damping could be made from the damping properties of the constituent parts. 

In Fig. 5.5, the damping results of the 1/2 in. beam are shown. The shear correction factor, k, 

was found so that the test frequency was accurately predicted (within ±0.5%), as advocated 

previously (3.3.4). Also included in this figure are the results for a unit factor, as well as for a 

factor tending to infinity (Bernoulli-Euler beam). 

The in-air results (Fig. 5.5) generally show the trend observed earlier for the Duralumin 

beam, i. e., a constant initial damping with respect to the stress amplitude, followed by an 

increase in damping. However, unlike the Duralumin beam (Fig. 5.2), the in-vacuo damping 

results show an increase with stress amplitude, which can be seen to happen even at 

comparable stress levels (cf. Figs. 51,5.6 and 5.7). For the thicker beams (Figs. 5.6 and 5.7), an 

unexpected rapid change is noticed in the SDC of the low stress region of the in-vacuo tests. 

This apparent upsurge of the SDC cannot be explained, although it is also noted that the 
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free-decay results are generally higher than is indicated by steady-state results at these low 

stress regions. 

The in-vacuo results in Fig. 5.5 indicate a low stress damping of aluminium sandwich of 

0.25%. Assuming the extraneous dampings are of about 0.15%, the in-vacuo SDC of the 

aluminium sandwich will be roughly of the order of 0.1%. 

The SDC was read off at 1 MPa skin maximum stress from Figs. 5.5 to 5.7, and was plotted 

against the core thickness in Fig. 5.8. From this latter figure, it is clear that at low level stress, 

both in-air and in-vacuo SDC of the beam increases with the core thickness. The similarity of 

the trends in the in-air and in-vacuo results tends to rule out the influence of aerodynamic 

damping, which is only to be expected since these are negligible at low amplitudes. 

Moreover, since at the same skin stress, the core shear stress subsides with the increase in 

the core thickness, the possibility of the influence of any non-linear damping in the core on 

the observed increase in the SDC also seems to be an unlikely cause. 

In fact, the increase in the SDC with the core thickness follows the mechanism by which the 

sandwich constituent parts contribute to the overall damping. Both the bending and shearing 

energies increase with the sandwich thickness. However, as is shown in Fig. 5.8, the rate of 

increase of the shearing energy (U) is more than that of the bending energy (Ub), which 

means that the skin contribution to damping falls and that of the core rises with the core 

thickness (Eqns. (3.23)). Since the strain energy in bending is the dominant of the two, this in 

turn implies that the rise in the core contribution to the overall damping is proportionally 

more than the fall in the skin contribution, resulting in a net gain in overall damping. This 

process will be considered again in the next chapter (section 6.7.2.2), with reference to actual 

skin and core damping contribution. 

In measuring the damping of the sandwich by the forced resonance method described above, 

the main result of not allowing for shearing of the core (Bernoulli-Euler beam) is to not 
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account for strain energy in shearing of the core. Moreover, the computed strain energy in 

bending of the skin is also overestimated. In Fig. 5.9, the bending and shearing energies of 

the X-oriented 1/2 in. thick sandwich beam have been plotted against the central 

displacement amplitude. The bending energy of the beam obtained by the elementary 

(Bemoulli-Euller) analysis is also included in this figure. When shear is ignored, the 

elementary theory attributes all the central deflection to the direct strain in the skin and 

therefore, a rise in the strain energy of bending compared to the same energy in the 

sandwich will result. As the figure shows, this theory increasingly overrates the total energy 

of the beam with amplitude and therefore, as is indicated in Fig. 5.5, underrates the damping. 

However, provided the core strain energy is substantially lower than that of the skin, the 

difference in measured damping at low amplitudes will be relatively small. For the same 

reason, any correction for shear, will also have marginal effect on the measured damping 

(Fig. 5.5). 

Generally, good agreement is seen to exist between the free-decay damping results and 

those measured in the steady-state, the only exceptions being the in-vacuo results of the 1 

and 2 in. thick beams (Figs. 5.6 and 5.7), as mentioned previously. 

The cross-ribbon (Y) damping results also follow the trend shown by the results in the 

ribbon (X) direction, although as observed in the double-lap shear tests, they are generally 

slightly higher (Fig. 5.8). 

5.4 Conclusions 

The centrally driven system described above offers an adequate method for determining the 

SDC in free-free steady-state vibration. Compared to the end driven method, the system is 

more stable, the loading points are better defined, and the rotary inertia is limited to the 

specimen, making the steady-state damping analysis and tests that much more reliable. One 
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drawback, inevitably, is the fact that it involves more extraneous damping, roughly by a 

factor of 3 to 1. 

At low amplitudes, friction-damping is the major contributor to the overall extraneous 

damping, surpassing the air damping by a factor of about 4 to 1. Nonetheless, the overall 

extraneous damping of the centrally driven system used in this work, is within a SDC of 

0.2%, a figure which should be taken into account when measuring the properties of lightly 

damped materials, such as unidirectional composites or aluminium sandwich beams, but is 

low enough to be discarded for most other cases. 

In the absence of air damping, the extraneous damping in the centrally driven system 

amounts to a maximum SDC of about 0.15%. Roughly 2/3 of this figure results from the 

friction at the clamping points where the coil assembly is secured to the mid-span of the 

beam. The remaining 1/3 may be attributed to friction and the vibration transmission in the 

suspension arrangement. 

Testing all-aluminium sandwich beams, the steady-state damping results were found to be in 

good agreement with those obtained by the free-decay of the resonant amplitude. Depending 

on the sandwich thickness, the in-vacuo damping of all-aluminium sandwich beams was 

found to be in the range of 0.25% to 0.55% SDC, including the extraneous damping. Due to 

the fact that strain energy in bending of the sandwich skin was the dominant contributor to 

the total strain energy of the beam, no appreciable difference in damping measurement 

resulted from considering a shear correction factor, especially at low amplitudes of 

vibration. 
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Chapter 6 

DAMPING OF COMPOSITE/HONEYCOMB SANDWICH BEAMS 

Scope - In this chapter, first, utilising the basic relations of unidirectional composites and the 

Adams-Bacon damping criteria, equations are derived for prediction of moduli and damping 

of the sandwich skins from constitutive data. 

Then, using the above results and the results obtained in Chapter 4 for the dynamic shear 

properties of the honeycomb core, the equations developed in Chapter 3 are utilised for 

computation of damping in sandwich beams, and the proportion of the skin and core 

contribution. 

In each case, the predicted results are verified experimentally. Particular attention will be 

paid to the variation of damping with stress in the laminated composites with different 

orientations. 

6.1 Constitutive equations of unidirectional composites 

The three-dimensional stress-strain relations in the fibre co-ordinate system (Fig. 6.1) of a 

transversely isotropic unidirectional lamina are given as 

C. DE, -v,,, IE, -v,, /E, 000 axx 
CY, -v,, IE, RE, -v, )E, 000 ay 
Eu -va/E, -v/E, 11E, 000 a. 
c, = 

000 11G,, 00 ßn 
£XX 0000 11G. 0 On 
£X), 000001 /GO (Ti, 

(6.1) 
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Fig. 6.1 Coordinate system of unidirectional lamina 

where from the material symmetry 

E,, =E, , vyj lE,, = vom, /E,, = vu /E1, vn /E,, = ), /E, 
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The elastic properties in Eqn. (6.1) refer to those obtained by uniaxial tests on a typical 

unidirectional laminate, viz 

EE=E,, E, =E,, G, =Gk, v, =vu 

where suffixes t and t refer to the directions along and transverse to the fibre respectively, Gfr 

is the longitudinal shear modulus, v� is the major Poisson's ratio and G, and G. are 

interlaminar shear moduli. 

In practical applications, laminae are sufficiently thin to assume that a state of plane stress 

within the lamina prevails. In this case a. = vn = att = cr, = c.. = 0. Strict application of the 

plane stress criterion, however, cannot account for significant interlaminar shearing which 

does occur in flexure of thick laminates. For that reason, formulations have been developed 

in which the transverse shears, c,,, and E. , are retained in Eqn. (6.1) to account for 

interlaminar shears, while keeping with the assumption that the state of stress within the 

lamina remains that of plane stress [Pagano, 1970; Whitney and Pagano, 1970; Chow, 1971; 

Kulkarni and Pagano, 1972; Whitney, 1972,73,87 etc. ]. These formulations, generally 

referred to as the 'shear deformation theory', are an extension of Mindlin's theory for 

homogeneous plates and as such are based on the assumption of a state of plane strain for 

12_ Y. 
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the laminate. However, as pointed out by Whitney [1987], the state of the plane stress within 

a lamina leads to the implication of the stress discontinuity at the ply interface, warranting 

further modifications for a more reasonable shear distribution. Similar formulations have 

been used, with reasonable success, as the basis for finite element analysis of modal 

vibration of thick isotropic plates [Cawley and Adams, 1978,79] and laminated composites 

[Lin et al, 1984]. Whitney [1987] shows that for a symmetric laminated beam, the shear 

deformation theory leads to the Timoshenko beam equations. His application of the theory 

to a soft core sandwich beam, however, involves no shear correction factor. 

The approach in this work was to treat the skins as thin and homogeneous materials 

undergoing uniaxial tension/compression about the sandwich mid-plane. Timoshenko beam 

equations, adopted through the usual simplifying assumptions could then be used to 

determine the bending/shearing energy ratio and damping in a sandwich, as advocated 

previously (Chapter 3). Both assumptions of thin as well as homogeneous skins are 

justifiable for relatively high ratios of skin/core thickness [Whitney, 1987]. The minimum 

skin/core thickness ratio used in this work was of the order 1: 6; for the majority of the 

beams, however, this ratio was of the order 1: 12. 

For the sandwich skins, therefore, a state of plane stress is assumed. In this case, Eqn. (6.1) 

reduces to 

E. 11E, -ui,, /Es 0 as 
Eyy _ -u,; IEs 1 /Ey 0 ari (6.2) 
E. y 

001 /G,, v,, 

or 

(£:., )=lC:., 1fQ=., ) (6.3) 

The suffix xy here is intended to indicate reference to the fibre coordinates system. In this 

equation, e,,, and a.,, are on-axis strain and stress, and C,,, is the on-axis compliance matrix. 

Equation (6.2) is applicable to an orthotropic lamina under plane stress conditions, and as can 
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be seen, to completely characterise such a lamina four independent elastic properties are 

required. 

Equation (6.3) may be written as 

{aj,, } =IQ., 1(c, ) 

where 

(6.4) 

Q. Q, 0 
lQ., 1=lC:, r1r= Q, Q» 0 (6S) 

00Q. 

and 

El. E, E, 1), E= Ey 
Q 

ry = Q., 
ry (6.6) Q. = 

E. -v2X, E, '" E, -very E, 'Q Ej-Wry E, =C 

Transformation of stress from the fibre to the lamina coordinate system is carried out 

through the transformation matrix [Tja 

(CF) = (Tyla (a:. r) i, i-1,2,6 (6.7) 

Similarly 
(E) = IT. ). (E., ) i, i -1,2,6 (6.8) 

where i=I. 2.4,5,6 in the laminate coordinate system are analogous to xx, yy, yz, xz, xy in the 

fibre coordinate system. Equations (6.4), (6.7) and (6.8) will give 

(Cri) = [%aa (Q,,, J I TO, (c) i , 1.1,2,6 

or 

(a, )=IM(ei) 1, i-1,2,6 (6.9) 

where 
./ 

(Qd - IT do (Q,, rl MI. r, f-1,2.6 (6.10) 



-Ch6- 90 

and 

m2 nz -2mal 
(T], = n2 m2 2mn (6.11) 

mit -mn m2-n2 

where m=cosO, n=sinO. 

In general IT], * IT), due to the use of engineering rather than tensorial shear strains. The 

matrix [T]E is given by IT],, when the elements 13 and 23 in the latter are divided by two and 

the elements 31 and 32 multiplied by two. 

The components of IQ;, ] are given as 

I Q11 Q12 Q16 

l Qq1 = Q12 Q22 Q26 (6.12) 

Q16 Q26 Q66 

where from Eqn. (6.10) 

Q1, =m4Qu+n4Q, +2m2n2(Q, +2Q�) 

Q12 =m2 n2(Q. +Q,,, -4 Q�)+(m4+n4)Q2,, 

Q1e =mn (m2 QLr - n2 Qn, - (m2 - n2)(Q, +2 Q�)1 

Q22=n+Q=+mrQ, +2mmn2(Q, +2Q,, ) 

Q26 =mn (n2 Q., -mzQn, +(m2 -nz)(Q,, +2 Q�)] 

Q6= m2 n2 (Q. +Qn, -2QX, )+(m2-n2)2Q� 

(6.13) 

In Eqn. (6.9), [QJ for i, j=1,2,6 is referred to as the off-axis reduced plane-stress stiffness 

matrix of the lamina. 

6.2 Flexure of a thin laminate 

From the usual assumption of plane stress conditions for a thin composite plate, it follows 

that the normals to the undeformed planes in the plate would remain normal and 

undeformed in the deformed planes with the implication that the in-plane strains in the plate 
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are linear functions of thickness. Then, the following strain-displacement relations apply to 

the composite plate 
e, a2W/ax, = z x, z 
F-2 = a2W/ay, 2 z= X2 Z (6.14) 

C6 2a2W/aX, ay, z X6 Z 

where W is the lateral displacement and X, 9 X2 and X6 are curvatures. 

The constitutive equations for general loading of a laminated plate are given in terms of 

stress and moment resultants per unit length, Nt and M, , at the mid-plane 

1Ni A; BO c°; 

Mi By Dq x; i. J 1.2.6 

where e0; are mid-plane strains, and 

W 
(A,;. B. D�) = Q4;; (1, z. z2)dz i, 1-1,2,6 (6.16) 

in which Q4, refers to the reduced stiffness matrix of the Oh layer and h is the thickness of 

the plate. The matrices A;; , B;; and Dv are referred to as the in-plane modulus, 

bending-stretching coupling modulus and the flexural modulus respectively. 

In the absence of in-plane forces, Eqn. (6.15) is reduced to 

M; = B;; e°; + DV X1 id -1.2.6 (6.17) 

For symmetric laminates, the bending-stretching coupling effect, which mutually induces 

in-plane stresses and moments, is removed and Eqn. (6.17) is reduced to 

Mý = Dy X; 4.1-1.2.6 (6.18) 

The k'rh layer stiffness matrix, Qky , 
is a function of both material properties and ply 

orientation. The flexural damping of special cases where either material properties or 

orientation remain constant across the section, and therefore may be factored out of the 

integral in Eqn. (6.16), are discussed in [Ni et al, 1984] and [Ni and Adams, 1984] 

respectively. 
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The flexural modulus, Dy , is given by Eqn. (6.16). In this equation, the reduced stiffness 

matrix, Q;; , is independent of thickness within the k'th lamina. The equation, therefore, may 

be written as 
(w2) 

D;, =J Qka z= dz 
-(w2) 

NC/2 
/ý =2L Qk4i Z2 dz 

k=1 

ýha-n 

2 N2 
=- 7 Q*y ijj . 1.2.6 

3 k=1 

where N is the total number of layers and h(k) , h(k_1) are the upper and lower coordinates of 

the k'th layer. For the case where the layers are of the same thickness, ho , this equation may 

be written as 

2hß N12 
D,; E QAy (k3 -(k-1)J) t. f-1.2.6 

3 k=1 

W8 N/2 
D;; _--I Qk (k3-(k-1)3) i. 1-1.2.6 (6.19) 

12 N3 k=1 

Normalised flexural modulus is defined as 

* 
Dy Du 

D° 
(h3 / 12) h"` 

8 N/2 
-1 Q';, (k3-(k-1)') 1,1.1,2,6 (6.20) 
N3 k-i 

And, therefore, the normalised flexural compliance is given as 

C*y = D* = Cy-h* i. l-x. 2,6 (611) 

63 Effective Young's modulus of laminated beams in flexure 

The curvatures are given by Eqn. (6.18) as 

(y 
. j) =1 Dj1'1 [M1) =1 Cyl [M1) (6.22) 
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If a beam is subjected to the bending moment M, only, the deformation is referred to as 'free 

flexure'. In this case, if the assumption is made that application of the bending moment m, 

involves only one curvature along the '1' direction, x, , then, Eqn. (6.22) is reduced to 

Xi = c� M, (6.23) 

The analogous curvature for a homogeneous isotropic beam is given by 

M, 
Xr - EI 

(6.24) 

where in accordance with the definitions in Eqn. (6.15), M, and I are moment and moment of 

inertia per unit width of the beam. Then, the effective Young's modulus in free flexure, E. , 

is defined as that of a laminated beam equivalent to a homogeneous isotropic beam; and is 

obtained by equating Eqns. (6.23) and (6.24) 

II 
Eff E 

C� h* C*� 
(6.25) 

In 'pure flexure', any twisting curvature, X6 , resulting from the application of the moment m, 

is constrained to zero by the application of the twisting moment M6 . In this case, Eqn. (6.22) 

gives 
- Cl6 

M6 = CM, C66 

and, therefore, the effective Young's modulus in pure flexure, Ew, is given by 
c* 66 EEI= 

C*uC*66 - C*_ ra 
(6.26) 

The case of free flexure is applicable to the free-free flexural vibration tests in this work and 

will be used for the prediction of the effective Young's modulus. 

6.4 Damping prediction of laminated beams 

Experiments of Adams and Bacon [1973-c], Ni and Adams [19841, Ni et al [1984], Lin et al 

[1984] and Wren and Kinra [1989-b] have shown that damping properties of unidirectional 

fibrous composites can be predicted with a good degree of accuracy using the Adams-Bacon 

damping criteria. Adams and Bacon [1973-c] postulated that the energy dissipation in a thin 
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unidirectional lamina is the sum of separable energy dissipations due to az , 
ay and a,,, l. Then, 

the specific damping capacity of a laminated composite may simply be written as 

eu= euy nur W= W(x. y, xy) =++U (6.27) 

By definition, the energy dissipation due to a, is given by 

DU, =2 
ryrýeýajdv 

Substituting for aj and e, from (6.7) and (6.8) gives 

1 -1 
DU: =2rW, ýITr; It (£; ) } (m2 (a1)) dv i-t. i-1, z. 6 

noting that for free flexure of the beam, a, = a6 = 0. Substitution for a, from (6.9) gives 

1 't k 
AUS _ Wi l (T; 

1lc 
(e1)ß ßm2 [Qy ] [c1)) dv i-1.1-1,2.6 

2 

Substituting for i, from (6.14) gives 
1 -1 k 

DUB =2W, ( ! TTýIt (X/)z) (m2(Qy ] (z)Z) dv i-I, 1-1,2,6 

Substituting for x; from (6.22) gives 

1 -, . 
AU. =2r ITO It I CO1 M, (Q# 1I Cy)M, m=z2 dv 

Then, for a beam of unit width, the energy dissipation becomes 
f 1.2 A/2 -1 1 

AU, ý =2 M1' dx Vi (To 1c1 Cy I (Qq II CO 1 m2 z2 dz i"1.1-1,2.6 
0J0 

Strain energy stored in the beam under the bending moment resultant, M, , 
is given by 

U2 
U=M, x, dx Ja 

(6.28) 

1 Analogous suggestions have been postulated with reasonable success, for example, regarding the strain energy of natural rubber as a 
separable function of the extension ratios (author's M. Sc. thesis). 
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Substituting for x, from (6.23) gives 

U=C,, M, 2 dz (6.29) 
fo 2 

The specific damping capacity due to a, is, therefore, given by 

2 wz -I 
W: IT# JE ICI IQ,, 1 IC ij I m2 z2 dz i -I j- 1,2,6 Cu 0 

Assuming that the linear damping mechanism holds, that is that the amplitude of vibration is 

sufficiently low to make the specific damping capacity independent of the stress amplitude, 

then this equation may be written as 

2y, w2 -' k 
Wý - IT# hI Cyl IQy / IC 41 M2z2dz i"1, /. 1.2.6 

Cii 
0 

The orientations m, n and the stiffness matrix Qy are independent of thickness within the Oh 

lamina. Then following the same arguments in deriving Eqn. (6.20), the above equation 

reduces to 
h3 841, N12 '1 R 

W, -E [Tu 1. IC, I IQvI IC#1m2 (k'-(k-1)') I-1.1-1.2,6 12 Cl, N3 k-I 

Using the normalised flexural compliance, as defined in Eqn. (6.21), this equation is 

simplified further to 
1 8y! º N12 -1 R 

W: -C*11 N' 
2I [Ty 1, l C*ql IQÜ II C*; ý1 m2(k3 -(k-1)3) l-i, l-1,2, e 

or 

*41º E2 
m2 (m2 C*11 + n2 Cn + mit C*16) (C*Jr Qk,, + C*, 2 Qkli + C*, 6 Qk, 6) (k' -(k-])]) 

C 1, N3 k-I 

(6.30) 
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Similarly, it can be shown that 

-= *XVr 
72 n2 (n2 C+ m2 C12 + mit C*16) (C*Jl Qku + C*12 012 + C*16 Q4,2) (k3 - (k-1)3) 

C �N3 k=1 

and that 

N12 
Wry = *11 

7, mit (2mn Cm,, - 2mn C*12 - (m2 - n2) C*16) (C*u Qk1 + C*n Q'n + C*1e Q&, 2) x 
�N3 k=1 

(k3 - (k-1)3 ) 

6.5 Computer implementation 
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(6.31) 

(6.32) 

The above analyses were put into computer code using FORTRAN77. The necessary data for 

running this program includes the modulus and SDC of the 0° and 90° orientations in 

flexural mode, modulus and SDC of the longitudinal shear mode and the major Poisson's 

ratio. Once these data are supplied, the program can compute the effective Young's modulus 

and SDC in flexure of a beam having mid-plane symmetry of orientation. Although the need 

did not arise in this work, the program can be easily modified to account for beams having 

material symmetry across the section so that it can be run for beams consisting of different 

composites. 

Similar to the computer programs mentioned previously (section 3.3.6), this program, 

PREDAMP. FOR, can provide the user with a file containing a detailed description of a data 

file, again avoiding the need for a separate user-guide. A desk-top computer can be 

conveniently used to run the program. 
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6.6 Experimental procedure 
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Combinations of three different unidirectional composites and three different honeycombs 

were used for the fabrication of the sandwich beams. In all cases, both skins consisted of 

eight plies of the same unidirectional composite material. The skins were of identical 

orientations and the sandwich was of mid-plane symmetry. In addition to the orthotropic 

0°/90° skins (0° along the beam), for which D*, 6 =0, two systems of anisotropic skins 

(D*16 *o), namely the 'off-axis' (all layers at 0) and the symmetric 'angle-ply' (layers at -9,0, - 

e, e, e, -e, e, -e), were considered. For either system and each particular skin/core material 

combination, a series of sandwich beams was fabricated for increments of 15° of fibre 

orientation covering the 00 to 90° range. Experimental and theoretical results were obtained 

for both the beams (sandwich skins) and the sandwich beams regarding the variation of 

modulus and the SDC with respect to orientation. 

In all cases, the sandwich cores were aligned along the ribbon direction. 

6.6.1 Preparation of the sandwich skins 

All the sandwich skins were moulded from the pre-preg sheets using a hot press. To make 

sure of accurate orientation, the pre-preg sheet was pinned down on a board and the plates 

were marked on the pre-preg prior to cutting out the ply with a sharp scalpel. The plies, cut 

slightly over the size of the mould, were then stacked and trimmed along the edges to the 

same size as the mould. This step was necessary since in stacking the plies it is not always 

possible to make the edges coincide, and once the plies are in contact it is difficult to 

separate them without disturbing the fibres. The backing sheets at the outer surfaces were 

not removed until the moulding stage for protection. 

In compression moulding of composites, flushing of some resin through the mould openings 

is not only inevitable but also desirable since this helps the flow of the resin through the 

fibres thereby filling voids and expelling air and gases from the moulding. Excess flushing, 



-Ch6- 98 

on the other hand, might lead to areas of 'resin starvation' and possible debonding of fibres. 

With this in mind, it was decided to set the height of the mould cavity to the nominal 

thickness of the laminate. Shims, inserted between the top mould surface and its backing 

plate, were used for this purpose. The amount of flushing varied for different mouldings. In 

some cases, these were carefully removed from the mould and the moulding and weighed. 

The weight of the excess resin was found to be generally below 1% of the weight of the 

moulding. 

Prior to each moulding operation, the mould was cleaned and degreased with acetone. It was 

then heated to 60' C and the release agent (Frekote 700-NC) was sprayed onto the surfaces 

of the pre-heated mould. The mould was re-heated, this time to 1200 C, and the laminate was 

carefully placed on the bottom surface and the top plate was lowered into the mould. The 

mould walls were then tightened up and the mould was placed in the hot press. In closing 

the press platens onto the mould, it is important to apply the pressure as gently as possible in 

order to minimise fibre misalignment caused by otherwise too violent a resin flow around 

the fibres. The press used lacked the facility for setting the closing rate, but this could be 

controlled manually by throttling the flow valve. 

The manufacturer's curing specifications were used in moulding of the plates, and these are 

listed in section 6.6.1.1. 

For the off-axis beams, unidirectional square plates (300 mm x 300 mm) were first moulded 

and the beams with the different orientations marked on the plates. Two plates were then 

stacked together and cut through giving pairs of beams with identical size and orientation. 

Smaller, rectangular plates (300 mm x 70 mm) were moulded for angle-ply orientations. Each 

plate was subsequently cut into halves along its length for the two sandwich skins. A milling 

machine with a diamond-wheel cutter was used for cutting the beams. Using this cutter 

results in very smooth edges. To avoid any edge-effects, a width of about 2 mm of all the 

edges of the moulding were also removed. 
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6.6.1.1 Pre-preg and moulding specifications 

Three different unidirectional composites were used. These were 

1- DLS-280 
2- Fibredux 913G-E-5-30 
3- Fibredux 913C-TS-5-40 

99 

The first two are glass fibre reinforced plastic (GFRP) composites and the third is carbon 

fibre reinforced plastic (CFRP) composite. The Fibredux 913 refers to the resin used in the 

pre-preg and is specified by the manufacturer (Ciba-Geigy Information Sheet No. FTA. 46e) 

as a modified epoxy resin for use at a working temperature in the range -55 to +130° C. The 

designation G-E-5-30 in the second composite refers to, respectively, the fibre type as Glass 

fibre of type E, with a cured pre-preg thickness of 5x0.001 in. and, finally, the resin content 

of the pre-preg as 30% by weight (equivalent to 54% of fibre by volume - personal 

communication with the manufacturer). Similarly, the designation C-TS-5-40 in the third 

composite refers to Carbon fibre of 'high tensile strength, with a cured pre-preg thickness of 

5x0.001 in. and a resin weight fraction of 40% (equivalent to 54% of fibre by volume). 

The following moulding specifications, recommended by the manufacturer (personal 

communication), were used. 

DLS-280 cured at 90° C for 1/2 hr. and at 120° C for 1 hr. 
Fibredux 913G-E-5-30 cured at 120° C for 1 hr. 
Fibredux 913C-TS-5-40 cured at 120° C for 1 hr. 

All the plates were moulded under a nominal pressure of 600 kPa on the mould backing 

plate. At the end of the curing cycle, the mould was removed from the press and allowed to 

cool at room temperature. Close inspection of the mouldings revealed that, in most cases, 

these were of reasonably good finish, although a few visible surface imperfections proved to 

be unavoidable. 
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6.6.2 Preparation of the sandwich beams 
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Three different honeycombs were used for the fabrication of the sandwich beams (Table 

(6.2)). The honeycomb was cut from stock using the same method described previously 

(section 4.2.2). 

The adhesive film used for the fabrication of the sandwich beams was Redux 609, specified 

by the manufacturer (Ciba-Geigy Instruction Sheet No. RTC. 101d) as a high strength epoxy 

adhesive incorporating a cotton scrim for easy handling. The adhesive film is said to possess 

a good filleting property to be particularly suitable for honeycomb sandwich construction. 

Having degreased the composite skins, the adhesive film, previously cut to size, was peeled 

off the backing sheets and placed on the skin. The skins were then carefully assembled onto 

the honeycomb core, applying a slight pressure to make the sandwich hold together. The 

beams were then placed side by side between two aluminium plates for uniform pressure 

and for protection of the outer surfaces. The assembly was then placed in the heated press. 

The manufacturers curing specifications for Redux 609 were followed, namely at 120° C for 

one hour. A nominal pressure of 100 kPa on the sandwich skins was used. At the end of the 

cure cycle, the beams were removed from the press and let to cool at room temperature. 

Excess adhesive on the edges was carefully scraped off using a sharp scalpel. 
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6.7 Test procedure and results 
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The tests were carried out in two stages. First, having prepared the sandwich skins, dynamic 

flexural tests were carried out on one of each pair of the skins. Having obtained the 

necessary data for the skins, the latter were subsequently used to construct the sandwich 

beams. Dynamic flexural tests were then carried out on the sandwich beams. 

The tests basically involved determination of modulus and the SDC in the first flexural 

mode. All the tests were carried out in the steady-state vibration using the centrally mounted 

coils, in air and at room temperature (19° to 22° C). For each test piece, the SDC results were 

obtained for increments of the maximum bending stress of the composite (skins). 

Computation of the effective dynamic Young's modulus of the skins bending about their 

own neutral axis was based on Eqn. (3.8) after reduction to the elementary theory (section 

33.3), while the computation of the effective dynamic Young's modulus of the skins of the 

fabricated sandwich bending about the sandwich mid-plane was based on Eqn. (3.31). The 

two moduli are referred to as the 'skin modulus' and the 'sandwich modulus' respectively. 

Computation of the SDC of the skins in steady-state flexural vibration was based on 

Eqn. (3.41), and that for the sandwich on Eqn. (3.40). 

Computation of the maximum stress in the skin on its own and in the sandwich was based 

on Eqn. (3.28), in the first case after reduction to the elementary theory. Computation of the 

shearing stress in the core was based on Eqn. (3.29). 

Regarding the sandwich skins, prediction of the modulus and the SDC at different 

orientations was based on Eqns. (6.25) and (6.27) respectively, utilising the constituent data 

obtained from tests on narrow beams (Table (6.1)). Prediction of the sandwich beam damping 

was based on Eqn. (3.39), utilising the predicted properties of the skins, and the honeycomb 

shear results obtained in Chapter 4 (Table (6.2)). 
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A detailed account of these computations, together with estimation of experimental error, is 

presented in Appendix (D) with reference to a typical result. 

6.7.1 Sandwich skins 

Before fabricating the sandwich beams, steady-state flexural tests were carried out on the 

composite beams subsequently used as the sandwich skins. However, in the case of the 

off-axis beams, owing to the relatively large mass of the central coils, achieving resonance, 

specially for orientations higher than 45°, proved to be difficult. In the off-axis case, 

therefore, tests had to be carried out on smaller beams (nominally 200x12x1 (mm)), using the 

small central coils. 

The skin dimensions were nominally 250x35x1 (mm). The beams used in the flexural tests 

were, therefore, of a sufficiently high length/thickness aspect ratio (at least 200) for the 

application of the elementary theory with good accuracy. This was verified in the case of 

one beam (0° 913C, 252x36x1.1 (mm) at 103 Hz) which was treated as a Timoshenko type, 

with an assumed shear correction factor of 0.82. The shear modulus in flexure of a 

laminated Timoshenko beam is given by GR [Ritchie et at, 1975] and this was measured from 

a torsion test (Appendix (B)) on the 900 beam. The improved theory showed an increase of 

0.12% in modulus (113.86 and 113.72 GPa) and a reduction of 0.06% in the SDC (0.8488% 

and 0.8493%). Subsequently, the beams were treated as Bernoulli-Euler type, and the 

experimental values of the modulus and the SDC were obtained for all orientations. 

For each composite type, longitudinal shear tests were also carried out and the modulus and 

the SDC in this mode were obtained. The longitudinal shear tests are discussed in Appendix 

(B). 

In Table (6.1), the flexural and longitudinal shear data needed for the prediction of the 

modulus and the SDC of the composite sandwich skins tested in this work are listed. The 

flexural data represent results of tests on the beams of nominal dimensions 200x12x1 (mm). 
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Table (6.1) Constitutive data of sandwich skins 

103 

composite V1 El Et yri wt Gh Wit vet 

(%) (GPa) (GPa) (%) (%) (GPa) (%) 

DLS-280 52 47.4 10.7 1.17 7.8 5.9 7.80 0.290 

Fibredux 913C 54 112.5 8.4 0.74 7.3 4.8 6.60 0.301 

Fibredux 913G 54 41.5 12.5 1.61 6.7 5.0 7.30 0.286 

The SDC values yr, , yes and yrit were measured at the lowest stress amplitude attainable, 

where a stress independent SDC was assumed. This point will be discussed later (6.7.1.2) 

with reference to experimental results. 

The major Poisson's ratio, -oll , was measured using strain gauges (TML, type : FLA-3-1 1). A 

strip of material of 0° fibre orientation, 1 mm thick, 15 mm wide and of about 180 mm gauge 

length was used as the test piece. To avoid damaging the test piece in the grips, and also for 

a more uniform distribution of load, each end of the test piece was bonded between two 

rectangular metal pieces. Gauges were used on both faces of the test piece to account for any 

possible bending effects. Two strain gauges, connected in series and forming one arm of the 

bridge, were bonded on opposite faces of the test piece in the longitudinal direction. A 

second pair of gauges, connected in series and forming the second arm of the bridge, were 

similarly bonded in the transverse direction. The test piece was then subjected to a number 

of tensile loads, in the range 0 to 10 kN, and the longitudinal and transverse displacements 

were recorded. 

6.7.1.1 Modulus 

Prediction of the moduli follows from the application of the basic laminated plate theory 

reduced to the one dimensional case (Eqn. (6.25)). The experimental points and the 

predictions are presented in Figs. 6.2 to 6.6. As mentioned previously (6.7.1), because of 
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practical difficulties, narrow beams had to be used for tests on the off-axis series, and the 

predictions for these beams are based on results obtained from tests on narrow beams 

(nominal dimensions 200xl2xl (mm)). The predictions for the angle-ply beams are based on 

results obtained from tests on actual sandwich skins (nominal dimensions 250x35xl (mm)). 

Results generally show excellent prediction of the experimental moduli for the off-axis 

beams, while in the case of the angle-ply beams discrepancies exist. Subsequently, tests 

were also carried out on a series of angle-ply narrow beams (nominal dimensions 

200x12x1 (mm)) and, as can be seen (Figs. 6.3 and 6.5), the results of the tests on the narrow 

beams fall close to the predicted points. 

Clearly then, the source of the discrepancy should be sought in the dimensions of the 

sandwich skins. These were nominally 250x35xl (mm), where the length was limited to the 

mould size and the minimum width was limited to a size which could accommodate a 

reasonable number of honeycomb cells in order to avoid edge effects. On the other hand, it 

was felt that tests should be carried out on the actual skins in order to have as few variables 

as possible. 

Adams and Bacon [1973-c] investigated the variation of the flexural modulus of orthotropic 

angle-ply beams with respect to orientation. Their angle-ply beams consisted of a total of 5 

to ply pairs which were repeated through the thickness. With no mid-plane symmetry, this 

type of laminate is referred to as the antisymmetric (or quasi-symmetric) angle-ply laminate. 

Their tests on both narrow (0.5 in. ) and wide (I in. ) beams, all of 10 in. length, showed 'no 

significant effect' in the SDC or the modulus due to the beam width. Experiments of Wren 

and Kinra [1989-b] on symmetric graphite/aluminium angle-ply beams also showed close 

prediction of the experimental results. Their beams had length/width aspect ratios ranging 

from 10 to 20. 
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The basic difference between the anisotropic and orthotropic laminates lies in the presence 

or otherwise of the shear and normal couplings. For an antisymmetric angle-ply laminate, 

the bending-twisting couplings (D, 6 and D26) are eliminated but the bending-stretching 

couplings (B, 6 and B26) are mutually induced. A complete reversal of this process occurs for 

the symmetric laminates (this, in fact, can be shown to follow from Eqn. (6.16) where for a 

symmetric laminate Qky (z) = Qk,; (-z) while for an antisymmetric laminate Q4,; (z) =- Qk;; (-z); 

and it can further be shown that both these effects tend to diminish as the number of plies is 

increased resulting in a'quasi-homogeneous' material). 

Hence, for the 0° and 90° beams, from the data of which the predictions are made, and for 

the antisymmetric angle-ply beams, any deviation from the definition of a beam will be 

confined to the curvature X2 , due to the Poisson's coupling D, z (Eqn. (6.22)), while for the 

symmetric angle-plies the curvature Xo , due to the shear coupling D, 6 , also comes into 

effect. The Poisson's coupling, however, tends to diminish rapidly with decreasing aspect 

ratio, while the shear coupling becomes negligible only for high aspect ratios [Whitney and 

Dauksys, 1970; Whitney, 1987]. This process, on the one hand, explains the close 

predictions of Adams and Bacon [1973-c] for both widths of the beam, and on the other, the 

close predictions of the narrow beams results in the present work as well those of Wren and 

Kinra [1989-b]. It further explains the more pronounced deviations observed for the low 

angle wide beams (15° to 45°, Figs. 63 and 6.5) where the shear effect is more severe. The 

Poisson's effect is noticed in the 0° and 90° beam results on Fig. 6.3, and more clearly on Fig. 

6.5, where the moduli of the narrow beams fall below the apparent moduli of the wider 

sandwich skins. Even closer predictions of the results of the angle-ply narrow beams are 

obtained if the predictions are derived from the 0° and 90° data of the narrow beams (these 

predictions are not included on the figures). 

The effect of the shear coupling D, 6 on the off-axis beams is even larger than the angle-ply 

beams. Close inspection of the off-axis results reveals some deviation in the shear sensitive 
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regions even for the narrow beams (Figs. 6.4 and 6.6). Compared with the angle-ply beams, 

the sharp fall of the modulus of the off-axis beams with increasing 0 is due to the lack of 

constraints which adjacent layers impose on one another, allowing the plies to deform 

independently. 

6.7.1.2 The specific damping capacity 

In supporting the beams on the cotton strings, one rule was followed, and that was 

supporting the beam where the least amount of vibration was transmitted to the supporting 

structure. At the same time, it was verified that this position also coincided with the peak 

displacement amplitude, as indicated by the pick-up voltage. In all cases of the angle-ply 

beams, the nodal lines were lateral to the beam, and the optimum locations for supports 

coincided with the nodal lines; the latter being determined by sensing the vibration (the 

customary use of sand or powder for nodal location was not always possible owing to 

relatively low frequencies). In the case of the off-axis beams, the nodal lines were at an 

angle to the transverse direction of the beam, being at a maximum of about 50° for the 15° 

beam and gradually tending to 00 for the 90° beam. However, supporting the beam on the 

nodal lines did not necessarily lead to the least amount of vibration transmission, possibly 

due to a more complex nature of behaviour of the nodal lines than conceived. In fact, in a 

few cases where the nodal lines were at a large angle to the lateral direction (15° and 30° 

beams), it was found that maintaining the nodal supports lateral to the beam led to less 

damping (higher pick-up voltage) than otherwise supporting the beam on the nodal lines. 

Both the symmetric angle-ply and the off-axis beams are subject to the bending-twisting 

effect. Using a stroboscope, the motion of the centrally driven 300 off-axis as well as that of 

the 450 angle-ply wide beams was studied. In each case, the stroboscope was tuned to a 

small frequency difference thus showing the beam movement in slow motion. The beam end 

was then viewed against a horizontal datum line. Up to a maximum peak-to-peak 

displacement amplitude of approximately 10 mm at the end of the beam, no twisting could 
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be detected in either case.. Given that the damping test displacement amplitudes are well 

below this figure (3 mm at most), and that the Young's moduli are well above the shear 

modulus, the effect on the strain energy due to any twisting of the beam is believed to be 

negligible. Pagano and Halpin [1968] showed that the twisting of the beam end had little 

effect on the normal strain field. 

The SDC results for various stress amplitudes are presented in Figs. 6.7 to 6.11. Comparisons 

of the experimental SDC results at the lowest stress amplitude and the predicted results are 

presented in Figs. 6.12 to 6.16. 

Ideally, the SDC values used for the predictions should be measured at the same stress level 

and, similarly, comparison should be made with those experimental points which are at the 

same stress level. However, because of the low sensitivity of the voltmeter at low pick-up 

voltages, there was a limit to the lowest displacement amplitude which could be attained. 

Consequently, depending on the modulus of each beam, the initial SDC results fell at 

different stress levels (Figs. 6.7 to 6.11). Nonetheless, referring to the results, it can be seen 

that in most cases the lowest amplitude falls within a stress level not more than I MPa and, 

since those results which do not fall into this range (0° and 15°) are the ones which show 

most stress independence, it may therefore be safely said that the SDC results represent 

damping at a stress amplitude not more than 1 MPa. Moreover, in most cases the assumption 

of stress independence at low stress amplitude seems to hold, although in some cases closer 

examination of the SDC at low stress amplitudes is needed. For example, an initial apparent 

sensitivity of the SDC is observed in a number of the higher angle beams (75° and 90° 

beams in the DLS series (Fig. 6.7), 75° in the off-axis 913C series (Fig. 6.9), 45° to 90° in the 

angle-ply 913G series (Fig. 6.10)), but as can be seen, this effect is not universal. Similar low 

stress sensitivity of the damping values was also observed in some of the damping tests on 

the honeycomb cores (Figs. 4.13 to 4.16). 



- Ch 6- 108 

Several trends can be seen in the results. In all cases, the low level damping, which is 

observed in the low-angle beams (0° and 15°), is seen to be relatively stress independent 

over the whole stress range. In these cases, the fibre properties are dominant and the 

composite approaches a Hookean elastic material. The low angle beams show the closest 

resemblance to linear damping where the hysteresis loop is elliptical and the energy 

dissipation is proportional to the square of the stress amplitude. For the higher angle beams, 

the stress sensitivity of the SDC seems to be a function of fibre/resin interaction. For 

example, in the case of the angle-ply 913C series (Fig. 6.8), the onset of non-linear damping 

for the high-angle beams (30° to 90°) can be seen to be about 1 MPa, while a change of fibre 

from carbon to glass (Fig. 6.10) results in a substantially reduced non-linearity of the SDC for 

up to the test range of 4 MPa. A similar low sensitive SDC is noticed in the second glass 

fibre composite (DLS, Fig. 6.7). Bacon [1973] reports non-linearity in the SDC of the 

HM-S/DX209 (CFRP) angle-ply beams, although no results are given indicating the extent 

or the onset of non-linear damping. He associates the phenomenon with 'a more complex 

state of stress than predicted by plate theory'. 

Non-linear damping is generally attributed to a plastic-type deformation which most 

materials experience beyond certain critical stress limits [Lazar, 1960,68]. With fibre 

reinforced composites having a polymeric matrix, the non-linear behaviour becomes even 

more significant, particularly in the transverse direction and in shear where the resin 

undergoes a considerable amount of straining. 

Poor material integrity also causes non-linear damping. Defects in the micro structure, such 

as voids, crazing, impurities and 'frozen-in' stresses in the resin, and imperfect resin/fibre 

bonding or delamination in the composite are locations of stress concentration and/or 

friction, both of which tend to increase the damping energy in a proportion exceeding the 

second power of the stress amplitude. Hence, Bacon [1973, p. 39] would be correct in 

suggesting that linear damping indicates a modulus which is invariant of amplitude, but his 
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assertion that, similar to certain cast irons, non-linear damping in composites is necessarily 

indicative of a decreasing modulus is not entirely true. Damping is more sensitive to the 

composite material integrity than is the modulus. 

Rate-dependent damping as a contributory factor to non-linear damping cannot be ruled out, 

given that increasing the displacement amplitude increases the strain rate even at a constant 

frequency. The rate-dependent damping mechanism is manifestly observed in viscoelastic 

materials where the material shows a time/temperature dependent response to the applied 

load due to the inertia of the molecular chains in coiling/uncoiling and the intermolecular 

movements. The viscoelastic damping is known to peak at the 'glass transition temperature', 

marking a transition from the 'rubbery' (higher temperatures/lower frequencies) response to 

the applied load to a 'glassy' (lower temperatures/higher frequencies) response. The 

viscoelastic phenomenon is not strong in thermosets, and the degree of the viscoelastic 

response depends on such factors as the degree of cross-linking and on the fibre contribution 

in load bearing in the fibrous composites. Increasing the frequency by a combination of 

shortening the beam length in the first flexural mode as well as testing in the second mode, 

Bacon [19731 found 'some' frequency dependence in the steady-state damping of the 

F/MNA epoxy resin even at room temperature (an increase in the SDC from 3% at 250 Hz to 

5.7% at 2200 Hz). In interpreting these results, it should be borne in mind that he used the 

elementary (Bernoulli-Euler) theory which tends to give lower modulus/higher SDC with 

increase in frequency. Soovere [1985], however, recorded a 'constant' variation of damping 

with frequency in the (1,1) mode for both composite as well as aluminium honeycomb 

panels. 

Generally, good correlation exists over the whole range of 0 between the experimental and 

the predicted damping results (Figs. 6.13 to 6.16); an exception is the results of the off-axis 

DLS beams (Fig. 6.12) which will be discussed later. 
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The results generally show that the longitudinal component of the SDC is the sole 

contributor in the 00 beams, and the major contributor in the 15° angle-ply beams. Its 

contribution at higher angle beams becomes insignificant, although it falls more gradually in 

the angle-plies than the off-axis beams. 

The shear component of the SDC peaks at 30° in the off-axis beams (Figs. 6.12,6.14 and 6.16) 

and at 45° in the angle-plies (Figs. 6.13 and 6.15). Peaking of the shear component at 45° is 

analogous to the shear distribution in an isotropic material, indicating the more uniform 

nature of the shear constraint with respect to the angle of ply in the angle-ply laminates. In 

the off-axis beams, the shear component is the dominant contributor in the 150 to 45° range, 

while with the angle-plies it is the major contributor only in the 30° and 45° beams. 

The transverse component of the SDC rises with the angle of orientation, but more gradually 

so in the angle-ply beams. It becomes the major contributor in the 60° and 750 beams and 

the sole contributor in the 90° beams. 

As expected, comparison of the overall damping results in the off-axis and angle-ply beams 

shows a reversal of the process observed with the moduli. Here, a rapid increase in the SDC 

of the off-axis beams occurs with increasing angle of orientation, and a more gradual rise is 

seen in the angle-ply beams. 

Naturally, the degree of the contribution of each component to the overall damping at any 

angle would depend on the proportion of the longitudinal, transverse and longitudinal shear 

damping of the particular composite. Hence, the peaks in the overall damping reported, for 

example, by Adams and Bacon [1973-c] (at 30° for the off-axis, and at 45 0 for the angle-ply 

beams of the HM-S/DX209 (CFRP) composite), are absent in the present results, since they 

used a longitudinal-shear SDC of some 10%, compared to a value of 6.6% found for the 

CFRP tested in this work. 
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The test results for the SDC of the angle-ply narrow beams (200x12x1 (mm)) are also 

included on Figs. 6.13 and 6.15. Generally, the beam width does not seem to have affected the 

damping results to any appreciable extent. With the 913G narrow beams (Fig. 6.15), the 

computed SDC is of a lower value than that of the wider sandwich skins for the 00 and 15° 

orientations, and slightly higher for higher orientations. The same trend is observed for the 

913C beams (Fig. 6.13) for the 0° and 15° orientations, although even less deviation exists 

here, and for the higher orientations the results are more scattered than the 913G, but still no 

significant difference exists between the two results. It is unlikely that the increase in the 

SDC of the 0° and 15° wide beams is due to the increase in the air damping at higher 

frequencies since, comparing the 913C and the 913G results (Figs. 6.13 and 6.15), higher 

frequencies of the latter have not led to lower deviations. 

In contrast to the 913 composites, large deviations exist between the experimental and the 

predicted SDC of the DLS composite (Fig. 6.12). This is almost certainly due to the problems 

experienced in moulding this pre-preg. Being dry, and possibly out of shelf life, it was found 

necessary to wet the surface of the layer (with acetone) when stacking the plies. As a 

consequence of wetting the layers, if not because of an already degraded resin, the 

mouldings were found to contain voids, as indicated by opacity. The moduli, however, do 

not seem to have suffered (Fig. 6.2), indicating that there was no serious delamination. 

Furthermore, and somewhat unexpectedly, no undue non-linearity is observed in the SDC 

results (Fig. 6.7). Comparison of the experimental and the predicted results (Fig. 6.12) seems 

to suggest overestimation of the longitudinal shear and, possibly also, the transverse 

damping used for the predictions. Only a limited amount of this pre-preg was available, and 

no attempt could be made to produce improved mouldings. The material, nonetheless, was 

used for fabrication of some of the sandwich beams and the results are included here. 
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6.7.2 Sandwich beams 
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Similar to the sandwich skins, steady-state flexural tests were carried out on the fabricated 

sandwich beams. The SDC of the sandwich beams were computed for increments of the 

maximum direct stress in the skins. 

In Table (6.2), the sandwich beams tested in this work, together with the core dynamic shear 

properties, are listed (The skin properties were listed previously in Table (6.1)). 

Table (6.2) Composite sandwich beams and core specifications 

skin core 

material orientation material c G yr 

(MM) (MPa) (%) 

DLS-280 off-axis A1,50,6 (Nmx) 12.75 48.0 10.4 

Fibredux 913C off-axis A1,50,6 (Nmx) 12.75 48.0 10.4 

Fibredux 913C angle-ply A1,50,6 (Nmx) 12.75 48.0 10.4 

Fibredux 913C angle-ply 5.2,1/4,25 (Alum) 12.70 284.0 0.75 

Fibredux 913G angle-ply A1,64,5 (Nmx) 6.90 56.9 10.6 

6.7.2.1 The factor k 

From the works on the shear correction factor for solid laminated beams and plates (section 

2.1.1), the work by Chow [1971] on the subject seems to have drawn particular attention. 

Using a strain energy method and treating the case of static flexural loading of symmetric 

laminated beams, he derived expressions showing that the value of k'depends heavily on the 

material constants' and ply orientations. For homogeneous anisotropic materials, his results 

reduced to the earlier results of Reissner [1945] for homogeneous isotropic materials and a 

value of 516 for k. Suggestions were also made to the effect that, for low frequency dynamic 

loading of the beam, k could be ignored (i. e. k=1), and that for high frequencies, k was 
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'usually of order unity'. Kulkarni and Pagano [1972] suggested the values of 213 and 516, 

depending on the mode of vibration. They too, confirmed that k was a function of fibre 

orientation, though apparently not dependent on the number of layers. 

Bert et al [1967] found that for a sandwich beam with a sufficiently stiff core, such as 

aluminium, the damping was relatively insensitive to the value of the factor k, while for a 

more flexible core, such as fibre-glass honeycomb, the experimental results for frequency, 

nodal location and damping did not 'clearly distinguish' any one value of k- obtained 

according to four different theories and in the range of 0.706 to 1.94 - as being superior. 

As mentioned previously (3.3A), an empirical approach to the determination of the factor k 

has been made in the present work, i. e., that its value be such that the test frequency is 

accurately predicted. The three basic conclusions made regarding the shear factor of 

all-aluminium sandwich beams, are reiterated here. These were that a) it is a linear function 

of the relative thickness of the skin and of the core, b) its value is more than unity and c) it is 

basically frequency independent. 

Through similar frequency tests, the feasibility of establishing any relationship which might 

exist between the factor k and laminated sandwich parameters were examined. A plot such 

as in Fig. 3.20, for example, would change the status of the factor k from a purely empirical to 

a semi-empirical quantity, such that for the given parameters, its value could be estimated. 

Initially, frequency tests were conducted on two 0° composite sandwich beams used for the 

damping tests, and the results are presented in Figs. 6.17 and 6.18 (for more clarity of the 

improved predictions, the full extent of the elementary predictions is not shown). As before, 

the theoretical results are based on ak factor which would accurately predict the last 

frequency attainable (within ±0.5%). Figure 6.17 shows frequency test results for the 0' beam 

with the same aluminium honeycomb specifications used in the 2SB1-X (Aerolam 

M-Board) sample (Fig. 3.15). Compared to the latter, what is immediately apparent here is 

the relatively large increase in the overestimations of the elementary theory, even for the 
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fundamental frequency, which is basically due to some 60% increase in the skin modulus 

(70 and 113 GPa) although, as before, the accuracy of the predictions of the improved theory 

are maintained over the whole frequency range. When the aluminium honeycomb of the 0° 

beam is replaced by Nomex (Fig. 6.18), a reduction of some 490% in the core modulus (285 

and 48 GPa) brings about an even sharper increase in the overrating of the elementary theory 

and, more to the point, a distinct deviation in the improved theory results. This deviation 

(also visible on a reduced scale in the 913C/aluminium beam, Fig. 6.17), seems to be 

primarily due to a frequency dependence of the Nomex honeycomb modulus, and can be 

attributed to a viscoelastic characteristic of the material where the measured properties are 

not constant but functions of the test conditions, namely frequency and temperature. 

Clearly then, no single value of k could be expected to fit the experimental points over the 

whole frequency range, unless the frequency dependence of the moduli is taken into 

account. 

On the other hand, shear correction for all orientations in a series of beams is not always 

possible. The sensitivity of the sandwich frequencies to the factor k much depends on the 

relative stiffness of the skin and the core. Increasing the factor k, for example, is tantamount 

to increasing the core stiffness and therefore to sustaining a higher portion of a given lateral 

deflection to direct strains in the skins. As a consequence, the extent of the sensitivity of the 

frequency to the factor k would depend on the skin stiffness. The stiffer the skin, the more 

sensitive the frequencies become to k. This is the case with the lower angle beams (0° to 30) 

where only a small adjustment of the shear factor is needed to arrive at the exact test 

frequency. Conversely, the change in the factor k is of little consequence to the frequencies 

of the 90° beam. In this case, larger changes of k are needed to predict the exact frequency. 

Further complications arise from the fact that the moduli of the higher angle beams tend to 

become more frequency dependent with the result that the test frequencies are generally 
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higher than the predicted frequencies, thus impeding shear correction for higher angle 
beams. 

Subsequently, for each series of the beams, the factor k was chosen such that the damping 

test frequency of the 00 beam was predicted, and this value was maintained for the rest of 

the beams in the series. 

The effect of a shear correction on the damping mechanisms is considered in Fig. 6.19. As 

can be seen, the influence of a shear correction is more pronounced in the bending/shearing 

damping ratio than in overall damping, specially for the skins of lower moduli. The figure 

can also be interpreted as showing the result of stiffening the core, which tends to have little 

effect on a sandwich of highly stiff skin but, as expected, for skins of lower stiffness, it 

would lead to a higher skin/core damping ratio. 

In Figs. 6.20 to 6.24, the results of the sandwich moduli are presented. In these figures, the 

'skin modulus' refers to the sandwich skin modulus as obtained from the frequencies of the 

narrow beams, while the 'sandwich modulus' refers to the apparent modulus of the sandwich 

skin computed from the sandwich frequency. The considerable discrepancy which could 

result from the assumption of unit correction factor is clearly evident from these results. In 

Fig. 6.20, for example, for the unidirectional skin (0) of the DLS series, a 28% overrating of 

the sandwich modulus results by not allowing for shear correction, and a similar order of 

discrepancy is maintained over the whole orientation range to the 90° beam where a 27% 

overrating occurs. For the latter beam, the shear correction reduces the deviation of the 

sandwich modulus from the skin modulus to +11%, although, as mentioned previously, the 

fact that the two moduli have been measured at different frequencies (510 and 38 Hz 

respectively) is a possible contributory cause of the deviation. The second GFRP series 

(913G, Fig. 6.24) also shows a similar order of overrating of the sandwich modulus (25% for 

the 00 beam). In Figs. 6.21 and 6.22, the results of the same angle-ply sandwich beams but 

with different cores are presented. For the beams with aluminium core, larger deviations are 
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noticed between the skin modulus and the sandwich modulus (cf. the 300 and 45° beams on 

the figures), most likely due to a stiffening effect arising from the flexure of an anisotropic 

skin constrained by a higher modulus core (aluminium). The discrepancies between the skin 

and the sandwich modulus result in corresponding discrepancies in the measured and 

predicted damping results, as will be discussed later. 

However, testing on all-aluminium sandwich beams, James [1962] found overrating of the 

experimental frequencies (underrating of modulus) by the predictions of the order of 17%. 

He attributed the discrepancy partly to an overrating of the honeycomb shear modulus, 

owing to the use of 'heavy adhesive layer' in his shear test on the honeycomb. It is more 

likely that, the overestimates were due to his use of a theory which was basically of the 

Bernoulli-Euler type. 

6.7.2.2 The specific damping capacity 

Steady-state damping tests on the sandwich beams were carried out twice, with an interval 

of eight weeks in between. In all cases, the earlier results were reproduced, although slightly 

lower values were obtained in the second series of tests, almost certainly due to a drop in the 

temperature. 

The free-decay tests were also carried out, and the results are included. It should be pointed 

out that in some cases, the free-decay results were rather erratic. Tests on the same sample 

gave results which could be different by as much as 1.5% in the SDC between two tests, or 

the SDC at two different amplitudes for the same specimen. The signal was found to 

degenerate for the lower amplitudes of the sandwich beam, mainly due to coupled modes. 

The free-decay results reported here are those obtained from the decay of the highest 

displacement amplitude of the steady-state tests. All the free-decay results were obtained 

from the average of the results of three tests. 
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The SDC results for increments of the skin stress amplitude are given in Figs. 6.25 to 6.29. 

Comparisons of the steady-state SDC results at the lowest stress amplitude and the predicted 

results, as functions of the sandwich skin fibre orientation, are presented in Figs. 6.31 to 6.35. 

The maximum skin stress which could be achieved depended on the stiffness of the 

particular sandwich, and was limited to the maximum current which could be safely fed to 

the drive coil (not more than 2 A). Hence, as can be seen, the stress in the sandwich skins 

falls well below the corresponding stress obtained when testing the skins on their own, and 

in almost all cases is within the limit of linear damping observed for the skins. 

For the 913C/Nomex samples, non-linear damping is observed in the shear sensitive skins 

for both off-axis and angle-ply orientations (15° to 60° beams, Figs. 6.27 and 6.28). However, 

no such trend is observed when the Nomex core is replaced by aluminium (cf. Figs. 6.26 and 

6.27). This is almost certainly due to the bending-twisting effect imposed by the skins on the 

core, which causes non-linear damping in the Nomex core, but has little effect on the 

aluminium core owing to the low damping properties of aluminium. The same trend, but on 

a reduced scale, is observed in the DLS/Nomex (Fig. 6.25) beams. The reason for the reduced 

non-linear damping in this case should be sought in the skin properties. For the same core 

thickness, and at the same lateral displacement amplitude, the bending-twisting deformation 

is larger in the 913C skins than in the DLS, because of the substantially higher moduli of the 

913C skins. The shear coupling, D, 6 , becomes more severe in the sandwich [Lantz, 1969; 

Whitney and Dauksys, 1970], because of the weighting factor introduced by the core (cf. 

Eqn. (6.20)). Hence, only slight non-linear damping is observed in the 913G/Nomex samples 

(Fig. 6.29) compared to the DLS/Nomex (Fig. 6.25), because of the (slightly) lower skin 

moduli and the thinner core of the former. 

It is noted that, apart from the anisotropic cases mentioned above, the SDC results for the 

sandwich do not violate the results obtained earlier for the constituent parts. Linear damping 

in the sandwich is maintained within the limits of linear damping of the skins. For the 
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angle-ply 913C/aluminium series, the results of the SDC versus core shear stress amplitude 

are also included (Fig. 630). Although core shear stresses were found to exceed the 

maximum shear stress when testing the cores on their own (e. g. compare Figs. 6.30 and 4.11), 

the indications are that the shear stresses in the cores are within the linear damping range. 

The variation of damping with stress in the 0° DLS beam (Fig. 6.25) seems to be an 

exception. The results show an unexpected non-linear damping, compared to, say, the 15° 

beam. Although the cause is difficult to pin-point, partial debonding of the skin due to the 

lack of adhesive was possible, given that the adhesive layer was not uniform and there were 

locations of thinning of the adhesive. The moduli results (Fig. 6.20) do not seem to contradict 

the postulation. If there is a partial debonding of the 0° sandwich skin, a drop in the 

measured modulus of the sandwich, and consequently a higher value of k, should result, 

hence underestimating the sandwich modulus of the immediately higher angle beam, i. e. the 

15° beam, which is seen to be the case. 

The SDC results as functions of the skin orientation are given in Figs. 6.31 to 6.35. Although, 

as expected, the results are more scattered and somewhat less consistent than those obtained 

for the sandwich skins, closer examination will show that for most parts, the predicted 

results faithfully follow the earlier results concerning the damping and modulus of the skin. 

For example, a general overestimate of the predicted SDC results in the DLS series is seen 

to be confined to this series. In almost all other cases, the theoretical results underestimate 

the experimental ones. Since the moduli results in the DLS series (Fig. 6.20) are fairly close, 

the overrating of the damping by the predictions seem to be mainly due to the overrating of 

the constituent damping data used for the predictions; as suggested previously (section 

6.7.1.2). 
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The general underrating of the experimental damping by the predictions have been caused 

mainly by the energy dissipations which have not been accounted for, namely, the 

bending-twisting effect and the adhesive layer. 

The geometry of the adhesive layer in the honeycomb sandwich is too complex for an 

assessment of stress distribution, even if a uniform distribution of adhesive is assumed. 

However, owing to the open-ended honeycomb, it is for most parts an unrestrained layer and 

as such is not expected to experience an otherwise substantial shearing. More likely, it 

basically follows the flexure mode of the skin, and if warranted, its strain energy may be 

approximated on that basis. However, in practical applications of the sandwich where the 

skin is highly stiff, the strain energy due to the adhesive layer becomes negligible. Then, 

provided the core is damped (e. g. Nomex core), the damping contribution due to the 

adhesive also becomes negligible. This point will be discussed further. 

To this should be added the complications brought about by the twisting phenomenon, 

believed to be clearly manifested in the angle-ply 913C/aluminium series (Fig. 6.32). The 

influence of the aluminium core damping due to the bending-twisting effect on the overall 

damping is unlikely to be significant. Then, assuming the free-decay results represent actual 

damping, the underestimates in the 15° to 45° range in the computed steady-state results can 

be attributed to mainly the bending-twisting of the skin and adhesive layer which, as 

expected, peaks at 45°. The underestimation of the experimental results by the prediction is, 

at least in part, due to the additional damping introduced by the adhesive layer. This point 

will be discussed further. 

The process mentioned earlier for the all-aluminium sandwich beams (section 5.3), by which 

the SDC increases with the core thickness, is graphically illustrated here. Comparing Figs. 

6.31 and 6.35, where skin and core properties are (roughly) compatible and the predominant 

factor is the difference in the core depth (12.75 mm and 6.90 mm respectively (Table (6.2)), 

the sharp fall of the core contribution to the overall damping in the thinner beams (Fig. 635) 
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is seen to be accompanied by only a modest increase in the skin contribution. As a result, a 

similar sharp fall of the overall damping is noticed in the lower region (low angle beams) 

where core damping dominates, while the increase in the overall damping in the 

skin-dominant region is relatively slight. Moreover, it is seen that as the core depth is 

increased (Figs. 6.35 and 6.31 respectively), the point where the core contribution 

predominates extends further such that, for a sufficiently deep core, the latter could become 

the principal contributor to the overall damping for any skin orientation or modulus. 

The influence of the adhesive layer on the overall damping is well illustrated in the shallow 

beam results (Fig. 6.35). Here, since the skin becomes the principal contributor in the higher 

angle beams, and also any discrepancies due to the shear coupling are greatly reduced, the 

relatively large underestimating of the tests results by the predictions at higher angle beams 

can be more assuredly attributed to, mainly, the damping due to flexure of the adhesive 

layer. It is notable that, for the same reason, the computed SDC results (steady-state) 

generally overestimate the results obtained by free-decay since, in the former, the increase in 

the strain energy due to the flexure of the adhesive layer is not accounted for. It will be 

appreciated that, as the angle of fibre orientation is increased, the beam modulus approaches 

that of the adhesive layer; for the 90° beam, the two are roughly compatible. Furthermore, it 

is noted that since in the lower angle beams the core damping dominates, the discrepancies 

due to the flexural damping of the adhesive layer are minimised and, consequently, all the 

results can be seen to fall very close together. 

In fact, referring to the results, the above arguments are seen to hold for all the samples. 

That is, where the discrepancies due to the anisotropy of the skin are absent, and the 

adhesive damping is marginal, the steady-state, free-decay and the predicted results fall very 

close together. This can be observed from the 0° and 90° beam results in Figs. 631 and 633, 

the 90' result in Fig. 632, and the 0° results in Fig. 6.35. It could similarly be argued that, with 

orthotropic skins, the discrepancies are most likely due to the adhesive layer. This can be 
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seen to be the case in the 0° 913C/aluminium beam (Fig. 6.32) and the 90° 913G/Nomex (Fig. 

6.35), where the experimental results are underestimated by the predictions. In the first case, 

the discrepancy is due to low damping of the aluminium core, making the skin damping 

dominant at all orientations. As a result, the energy dissipation in the 0° beam will be mainly 

due to the flexure of the adhesive layer, and possibly also some air-damping. In the second 

case, the discrepancy was already mentioned to have been caused by the relative 

shallowness of the sandwich, making the damping due to the adhesive layer more 

pronounced at higher orientations. 

Comparing the angle-ply and the off-axis results (Figs. 6.33 and 6.34), as expected, the trend 

observed earlier in the variation of damping with orientation is seen to recur, that is, a sharp 

rise in the damping due to the skin with fibre orientation in the off-axis series, followed by 

an almost constant damping with orientation, as opposed to a more gradual rise with the 

angle-plies. The fact that the fall in the core damping with fibre orientation follows the same 

pattern as the rise in the skin damping arises from Eqn. (3A2), where the strain energy due to 

bending of the skin, Ub , is the dominant contributor to the total strain energy. 
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Comparing the sandwich beam results with those obtained earlier for the sandwich skins, the 

relatively larger discrepancies are not entirely unexpected, bearing in mind, in addition to 

the discrepancies caused by the above mentioned factors, also the following 

a) here, a compound structure is involved, with more variables, analysis and 

simplifying assumptions; 

b) within the laboratory environment, the consistency of material (adhesive 

layer, honeycomb core) for all the samples cannot be ensured; 

c) the method of manufacture is entirely different; the sandwich beams are 

individually assembled by hand and any off-set of the skins or misalignment of the 

core etc. is not always obvious; 

d) some additional assumptions have been implied; for example it has been 

assumed that both modulus and damping are independent of frequency (and 

temperature) within the test range, and that no post curing of the sandwich skin, or 

core, has occurred. 

In most cases, the steady-state and the free-decay results are seen to be reasonably close. 

The maximum error, with reference to the free-decay results, was found to be -20%, in the 

15° 913C/aluminium beam results (Fig. 632). Given the factors mentioned above, and in 

particular the complexities brought about by the shear coupling effect and the adhesive 

layer, these results seem to verify the adequacy of the Timoshenko beam equations in 

measuring the steady-state damping, and justify the simplifying assumptions made in 

adopting these equations for a sandwich beam. 

It will be noted that, unlike the simple beams, sandwich damping properties will be 

necessarily a function of beam length, end conditions or any load supported by the beam, 

since such factors have an influence on the relative bending/shearing the beam undergoes. 

The point is illustrated in the theoretical variation of the SDC with the mode number, and 

the core depth/length ratio presented in Figs. 6.36 and 6.37 respectively. As expected, the 
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graphs follow a similar trend which covers a range between two extremes. On one extreme, 

a sufficiently long sandwich beam would experience little shearing and the energy 

dissipation is almost entirely through bending of the skins. The beam would be in effect a 

Bernoulli-Euler type. On the other extreme, the beam experiences a thickness-shear type 

mode of deformation. Theoretically, depending on the beam length, the damping of the 

sandwich could be almost entirely due to either the core or the skin. This concept is of great 

significance in the overall damping of the sandwich if unlike, for example, all-aluminium 

sandwich, the two constituent dampings are not compatible. 

The effect of a load on damping contribution of the constituent parts is shown in Fig. 6.37. 

Evidently, for the free-free beam, the contribution of the skin to the total damping drops 

when the beam is loaded in the mid-span, although the mutual increase in the core damping 

would more than compensate for the decrease. This follows from consideration of the mode 

shape, together with Eqn. (3A2). The load on the beam moves the nodal lines closer to the 

mid-span. This has the effect of increasing the strain energy of shearing in the core and a 

mutual, proportionately higher, reduction in the strain energy of bending of the skins. 

6. S Conclusions 

The tests showed that, using basic plane-stress relations for laminated composites and the 

Adams-Bacon damping criterion, the moduli and the SDC of both symmetric angle-ply and 

off-axis beams at any orientation can be predicted with fairly good accuracy. However, the 

bending-twisting could result in serious overestimates of the measured effective Young's 

moduli in flexure, although its effect on the measured SDC was found to be not as severe. 

The absence of bending-stretching coupling has made the symmetric angle-ply laminated 

plates of particular interest on two accounts. First, these are less prone to warping caused by 

thermal contraction, and second they are more amenable to closed form mathematical 

analysis. However, anisotropy could cause serious discrepancies between the measured and 

predicted effective flexural moduli of the beams, unless these are of sufficiently large aspect 
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ratios to make the deformations not accounted for in the simple bending of beams 

insignificant. 

A variety of composites, orientations and honeycombs was used in the construction of the 

sandwich beams, to allow a broader assessment of the damping mechanisms in the 

sandwich. Generally, the results showed a high degree of inter-dependence between the skin 

and the core in either one's capacity in contributing to the overall damping of the sandwich. 

It was shown that the Timoshenko beam equations were adequately capable of accounting 

for energy mechanisms of simple bending/shearing in a shear soft beam. These equations 

were used for the steady-state measurement of the SDC in a sandwich beam, and for 

determining the bending/shearing proportion to the overall damping. It was suggested that 

the shear factor be found empirically for the particular damping test, and it was concluded 

that the shear correction is of more significance to the bending/shearing damping ratio than 

to the overall damping. 

The theoretical results were found to follow the free-decay results with reasonable accuracy. 

In most cases where discrepancies occurred, these were found to correlate with the energy 

dissipations not accounted for in the theory, namely, 1) the bending-twisting inherent in the 

anisotropic composite skin, which is more severe than when testing the skins on their own 

owing to the weighting factor introduced by the sandwich core, and 2) the adhesive layer. 

The latter, however, would be of little significance in most practical constructions of the 

polymer based honeycomb sandwich, where the skin stiffness is sufficiently high to allow 

the core damping to predominate. 
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Chapter 7 

GENERAL CONCLUSIONS 

Relevant conclusions have been drawn at the end of each chapter. Here, general conclusions 

which can be made collectively from different aspects of the work will be outlined. 

The modified Timoshenko beam equations may be used with confidence for measuring the 

flexural damping of shear-flexible symmetric, honeycomb sandwich beams in steady-state 

vibration. Excellent repeatability of the damping results can be expected. The same 

equations can be utilised for predicting the skin/core contribution to the overall damping. 

However, discrepancies will inevitably arise if the beam vibration is not exclusive to the 

simple bending/shearing of the skin/core components. 

In adapting these equations for a sandwich configuration, certain assumptions are made 

which cannot be fully verified. The problem becomes more complicated with the presence 

of the as-yet ill-defined shear correction factor, k, associated with these equations. 

Nonetheless, it was shown in the case of solid beams, with or without a shear correction, 

that these equations are well capable of predicting the frequencies with good accuracy even 

in the high frequency domain; also, for the all-aluminium sandwich beams, a linear 

relationship exists between the optimum value of k and the skin/core thickness ratio. For the 

all-composite sandwich, a frequency-dependent modulus was noticed with the result that no 

single value of k could be expected to fit all the experimental values. The shear correction 

was found to be of less influence on the overall damping of the sandwich than it was on the 

skin/core contribution to damping. An empirical approach for the determination of the factor 

k was suggested. 



-Ch7- 126 

It was further shown that it is possible to predict, with a good degree of accuracy, the 

modulus and the specific damping capacity of laminated composite beams having an 

anisotropic flexural modulus. The effective flexural modulus was found to be more sensitive 

to the plan aspect ratio than the orthotropic modulus as reported in the literature. The 

discrepancies in the damping results due to anisotropy were found to be only noticeable 

when the beams were used as skins in a sandwich configuration. 

The sandwich damping results were generally found to follow the expected trend, and a 

correlation was found to exist between the degree of the discrepancies and the skin 

anisotropy and/or the energy dissipation in the adhesive layer. 

Regarding the skin orientation, two sandwich beams of the same dimensions and fabricated 

from the same composite skin and damped honeycomb core materials, might show the same 

order of vibration damping, yet the mechanism of damping in each, could be entirely 

different. In a beam with 0° skins, for example, the core is the principal contributor to 

damping while, in a 90° beam the skin becomes the principal contributor. The end 

conditions, any loads supported by the beam, and the beam dimensions would all influence 

the proportion of the contribution of the skin and of the core, and hence, the overall damping 

of the beam. 

A test method was developed for measuring the modulus, as well as the specific damping 

capacity of honeycomb in steady-state shear vibration. Though somewhat laborious to 

produce, the double-lap test piece was found to give by far the lowest relevant SDC reported 

in the literature. 
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Suggestions for further work 

Some aspects of the present work are believed to merit further investigation. These are 
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1) The establishment of any possible relationship between the shear factor 

and the relevant parameters (core thickness, fibre orientation etc. ) of the 

composite/honeycomb beam 

2) Only the first mode of vibration was considered in this work. Of particular 

relevance to the present work is the prediction and measurement of sandwich 

damping in higher modes of vibration, where the specimen is subjected to intensified 

shear deformation. In both of the above cases, any frequency dependence of modulus 

should be accounted for 

3) Only free-free end conditions were considered. Similar investigation of 

sandwich damping with respect to other end conditions (clamped-clamped, 

clamped-free) is also warranted 

4) In the range between the orthotropic 0° and 90° orientations, only 

anisotropic orientations (symmetric angle-ply) were considered. It would be of 

interest to see if, as expected, using orthotropic orientations (e. g. anti-symmetric 

angle-ply laminate) reduces the discrepancies in the damping of the sandwich. 

Closed form analyses have been used in this work. The disadvantage here is the limitation of 

a closed form analysis to model accurately the actual deformation. More accurate modelling 

should be possible using such numerical methods as the Finite Elements Analysis. Indeed, 

some work was carried out to modify an existing Finite Element program (GINYOR, Lin et a! 

[1984]) for a composite/honeycomb sandwich configuration using the shear deformation 

theory [Whitney, 1987]. Although implemented, the program (PLATE. FOR) remains to be 

tested on its own ('debugged'), and to be verified experimentally. 
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Appendix (A) 

ANALYSIS OF THE FLEXURAL TEST-RIG 

A. 1 Determination of the specific damping capacity 

The specific damping capacity, SDC, is defined as 
Au 

W= (A. 1) 

where AU is the energy dissipated per cycle, and U is the maximum strain energy. 

With an applied cyclic force, F, maintaining the vibration in a steady-state, the energy 

dissipation per cycle is given by 

AU= 
fF 

dw 

where 

F F. cos(wt) 

For relatively low damping, at resonance the response lags the applied force by n/2 to a close 

approximation. Then 

W=W. sin(tot) 

and AU = it F. Wm (A. 2) 

where F., and W. are maximum force and the corresponding displacement amplitude 

respectively. 

The quantities F. and W. are found by measuring the current flowing through the drive coil 

and the voltage induced across the pick-up coil respectively, as follows 
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The maximum induced force on a total length, L, , of the drive coil subjected at right angles 

to the lines of flux of intensity Bd of the drive magnet is given by 

F. IP. 
ak 

Ld Bd 

where t,, is the peak current in the drive coil. Provided 1 remains the only variable in a 

damping test, then this equation may be written as 

F. = 1,. * Td 

where the constant rd is termed the 'drive sensitivity'. 

(A3) 

Similarly, the maximum induced voltage across a total length, L. , of the pick-up coil cutting 

at right angles the lines of flux of intensity B, of the pick-up magnet is given by 

V, = v, 1LLBo 

which may be written in terms of the 'pick-up sensitivity', r, , as 

V,, = V. rp (A. a) 

where v. is the maximum velocity of the pick-up coil and is given by 

v. =wW. (A3) 

1 
Then W. 

V,, 
(A. 6) 

ro W. 

Equations (A. 1), (A. 2), (A3) and (A. 6) will now give 

% r, %. V. W=rf1 (A. 7) 
v 

The computation of the maximum strain energy, U, of a free-free beam carrying a central 

mass, M, , in the first mode of flexural vibration of lateral displacement amplitude W,, has 

been covered previously (Chapter 3). 
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Al Calibration of the drive and pick-up coil/magnet sets 
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One way of finding the sensitivities r, and r, is to treat both the drive and pick-up sets as 

pick-up. This may be conveniently achieved by using the flexural test set-up itself. In this 

case, the coil assembly, mounted on the mid-span of a low damping beam (e. g. Duralumin), 

is tuned to an appropriate frequency and a number of v_ Vs W. points are measured for 

each coil/magnet set while employing the second coil/magnet set as the drive unit. The 

displacement amplitude, W. , may be measured by an optical image shearing device, as was 

done in this work using 'WISE', or any other appropriate method. Then, in each case, the 

quantity r, may be found according to Eqn. (A. 4). The unit of r, so found will be V. s/m which 

is applicable to the pick-up set. For the drive set, however, the sensitivity rd is of the unit 

N/A according to Eqn. (A3). It is easily verified that since 

Watt = Newton. meter / second = Volt. Amp 

Then 1 (V. s/m) =1 (N/A) 

The sensitivities might change over a period of time and it would be sensible to check these 

regularly. The changes in the sensitivities may be due to any change in the gap size of the 

drive electromagnet, possible short circuit of one or more loops in the coils, room 

temperature etc. In most cases, however, it was found that the variation in the sensitivities 

was small (less than M. 

Calibration graphs are presented in Figs. A. 1 to A. 3. The solid lines join the first and last 

points in the range. Figures A. 1 and A. 2 indicate the sensitivities of both drive and pick-up 

units remain constant over the whole range of displacement amplitude. Figure A. 3 shows the 

calibration of the drive sensitivity over a range of the electromagnet current. As can be seen, 

up to a current of 5A the sensitivity is linear and, if need be, may be read off directly from 

this graph with reasonable accuracy. 
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Appendix (B) 

THE LONGITUDINAL SHEAR TESTS 

Fox [1972] and Flitcroft [1976] used test rigs which were based on the torsion pendulum 

arrangement for measuring the dynamic properties in torsion. Both apparatuses used two 

sets of coil/magnet for the drive and pick-up systems. 

Investigating the dynamic properties of cast iron for up to and beyond fatigue endurance 

limit, Fox developed an apparatus capable of producing relatively large torques. As such, 

this apparatus consisted of a heavy metal frame on which large drive and pick-up magnets 

were fixed, while the drive and pick-up coils were fixed at either ends of a symmetrical 

inertia bar. The specimen was clamped at one end to the frame and at the other to the inertia 

bar. A Duralumin 'dummy specimen' was similarly clamped to the inertia bar at one end and 

to the frame at the other end, thereby establishing clamped-clamped end conditions. The 

dummy specimen had been incorporated in the system in order to constrain 

flexural/torsional coupling, and also to have a degree of control over the resonance 

frequency by using dummies with different dimensions. 

Flitcroft, investigating the dynamic torsional properties of fibrous composites, found Fox's 

apparatus to be inadequate for this purpose. This was because the dummy specimen 

dominated the stiffness of the system and hence the calculation of the stiffness of the test 

specimen would involve small differences between large numbers. Removing the dummy 

specimen, however, would bring about adverse affects on two accounts. First, flexure of the 

specimen tended to occur due to the imbalance of the inertia bar, although he found that 

dynamic balancing of the inertia bar 'eliminated' this problem; and second, the system was 

of too large an inertia for testing of composites at an appropriate frequency. He developed a 

similar apparatus with the necessary modifications which included removing the dummy 
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specimen and replacing the inertia bar with a cylindrical coil arrangement incorporating the 

drive and pick-up coils thereby reducing inertia as well as enhancing dynamic balance. 

Both these rigs were available for the present work, but were found to be of too high an 

inertia for the stiffness of the test piece. They are also rather tedious to set up due to the lack 

of adequate access and the hindrance caused by the presence of various fly wires. 

Consequently, a new and simple rearrangement was utilised. The test-rig used is basically a 

scaled down version of Fox's rig but in a clamped-free formation, that is, without a dummy 

specimen. With a relatively small inertia bar, higher frequencies, more compatible with the 

tests in this work, can be attained. It has the added advantage that, unlike the previous rigs, 

no fly wires are involved, although any gain in reducing extraneous damping would be of 

significance only for low damping materials. Moreover, as pointed out by Willway and 

White [1988], with the clamped-clamped formation direct strains are induced which cannot 

be neglected for higher amplitudes. 

The rig was originally intended for testing the less stiff flat specimens at adequate 

frequencies (not below 30 Hz), but it also proved to be suitable for testing standard circular 

section specimens, although a heavier inertia bar had to be used in this case. 

The test-rig consists of a relatively small symmetric inertia bar which carries two pairs of 

small permanent magnets (Fig. B. 1(a)). The inertia bar is fixed to one end of the specimen, 

and the latter is firmly clamped at the other end to a concrete block. Two corresponding 

pairs of coils, each pair in series and each pair positioned diagonally on an aluminium frame 

(Fig. B. 1(b)), provide the drive and pick-up coils. 1 



Appx (B) - 

inertia ö 

bar L_-- 

D drive magnets beam 

p pick-up magnets sample 

(coils not shown) 
fixed 

--JAI. end _..: ý- -- - -- - --- 
x I-r 

Ro R, 
ýý-r ý- 

- P F--] F-I I "ý [E DýI-*I 

D ýLJ PL 

(a) (b) 

Fig. B. 1 Longitudinal shear test-rig 

i i_ý 

The instrumentation and the test procedure are similar to those in the flexural tests. With a 

current flowing through the drive coils forces are induced which can be made of opposite 

directions by ensuring that the position of one drive magnet poles relative to the current flow 

is opposite to that of the poles of the second drive magnet. Then, provided the inertia bar is 

dynamically balanced and that the two drive coils are of the same sensitivity, a pure couple 

should result. 

In the case of the Fibredux 913C and 913G composites, circular section samples were 

machined from the square section mouldings prepared by stacking strips of the 

unidirectional pre-preg. In the case of DLS-280, the same moulded material which was used 

for flexural tests was also used for longitudinal shear test t. Hence, in this latter case, the 

I This was due to the lack of material for this particular composite. 
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specimen was in the shape of rectangular flat strip which was cut from the moulded 

unidirectional plate. 

The circular section test pieces were of standard dimensions (nominally 10 mm diameter and 

140 mm gauge length) with square ends. For these test pieces, a heavier inertia bar, 

incorporating two V-clamps (Fig. B. 1(b)), was used. 

The arrangement, therefore, imposes a single DOF system of torsional vibration on the test 

piece, the frequency of which is given by 

f=1 2n 

where K is the torsional stiffness of the specimen and J, is the mass moment of inertia of 

the inertia bar about the x axis (Fig. B. 1(a)). 

The moment of inertia of the inertia bar was obtained by comparing its period of oscillation 

with that of a uniform disc whose moment of inertia, j, , could be readily calculated. The 

inertia bar and the disc were in turn suspended from the same length of wire and, following 

a small initial twist, the period of oscillation in each case was measured. Applying Eqn. (B. 1) 

to each case and equating the stiffness yields 

�ew =( )2 �ax (B. 2) 
T di. 

B. 1 Analysis of the circular section test piece 

B. 1.1 Shear modulus 

The angle of twist resulting from the application of torque T over a uniform length L of the 
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specimen is given by 

e= 
TL 

(B. 3) 
GJ 

where G is the shear modulus and J is the polar second moment of area of the specimen. 



- Appx (B) - 135 

By definition, the torsional stiffness is given as 

T 
K=- (B. 4) 

Then, Eqns. (B. 1), (B. 3) and (BA) will give the shear modulus as 
1281rf. 2 J6,, L 

G= (BS) 
d4 

where d is the diameter of the specimen. 

B. 1.2 Steady-state vibration damping 

By analogous arguments in deriving Eqn. (A. 2) in Appendix (A), the energy dissipation per 

cycle of the longitudinal shear vibration is shown to be given by 

AU =nT. e,. (B. 6) 

where T. and 0. are the peak values of the torque and the corresponding angle of twist 

respectively. These are given by 

T, 
ý _ 42 I,,., r. R. (B. 7) 

J2 V, ý� on, _ (B. 8) 21r rrRof1, 

where l,,,,, and V,,, � are the current through the drive coil and voltage across the pick-up coil, 

R, and R. are the mean radii of the drive and pick-up coils from the axis of rotation (Fig. B. 1), 

and r, and r, are the total sensitivities of the drive and pick-up coil pair respectively. It will 

be noted that in order to avoid imposing any flexural deformation on the specimen a pure 

couple should be applied, and ideally this is achieved by ensuring that the two drive 

coil/magnet pairs have the same sensitivity. However, manipulating the sensitivities of the 

ready made coils is not without difficulty, and a compromise should be made as regards to 

the closeness of the sensitivities. The drive units used here were of sensitivities 0.070 and 

0.074 N/A, believed to be sufficiently close to make any flexural deformation negligible. 
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Assuming a uniform distribution of stress in the material, the maximum strain energy in 

torsion is given by 

1 
U=-G ?2v 

4 

where y, n 
is the maximum shear strain and v is the volume of the working length of the 

material. 

Since 

d 
0. 

2L 

therefore 

nGd49. = 
U= (B. 9) 

64L 

Then, by the definition of the SDC as yr = DUIU, the latter is given by Eqns. (BS) to (B. 9) as 

1�., r, r, R, Ro 
T 

Jb., V. fn 
(B"ýO) 

Also, the maximum shear stress is found as 
42 GdV,,,,, 

ýý _ (B. 11) 
4nL1', RPf� 

B. 2 Analysis of the rectangular section test piece 

B. 2.1 Shear modulus 

Exact solutions are obtained in torsion of circular shafts by assuming, to a good 

approximation, that the plane cross sections remain plane. This assumption, however, does 

not hold for prismatic bars [Timoshenko and Goodier, 1951]. The usual solution to this 

problem has been through the membrane analogy in which the outline of the cross section is 

treated as a membrane subjected to tension and lateral pressure. 
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Utilising the membrane analogy, the torque on a rectangular section uniform beam can be 

shown to be given by [Timoshenko and Goodier, 1951 ] 

0 T =k, G - wh3 
L 

(B. 12) 

where w and h are the width and depth of the bar respectively, and k, is a numerical factor the 

value of which will depend on the ratio weh. The factor k, is given as 
1 192 h °° I 

k, _- (1 ---I- tanh(nitb/2d)) (B. 13) 
3 7C3 W n_1.3.3... ns 

Then, Eqns. (B. 1), (B. 3) and (B. 12) give the longitudinal shear modulus as 

4 n2f 2Jam, 
G= (B. 14) 

k, wh3 

The maximum shear stress is given by 

tom= kGL. h (B. 15) 

where similar to k� k is a numerical factor depending on the ratio w/h. The factor k is given as 

8 
k= (I -- (B. 16) 

n= n=1,3. s.... n2 cosh(nnb/2d) 

Substituting for e,. from (B. 8) in (B. 15) will give 
42 kGV,,., 

ýý _ (B. 17) 
2nLr, Rof� 

B. 2.2 Steady-state vibration damping 

The maximum strain energy in torsion of a narrow rectangular bar of width w and depth h is 

given by [Timoshenko and Goodier, 19511 

U=1k, G-w hi (B. 18) 
2L 



- Appx (B) - 138 

Then, Eqns. (B. 6), (B. 7), (B. 8), (B. 14) and (B. 18) will now give the SDC as 
i, rd r Rd Ro 

Jbar Vmufe 
(B. 19) 

As expected, this expression is seen to be identical with the one obtained for a circular 

section sample. 

B. 23 Experimental verification 

Walton [1973] found that for both round and rectangular section beams, a decrease in the 

cross sectional area resulted in a small but detectable decrease in the measured shear 

modulus, and the decrease was, therefore, accompanied with an increase in the measured 

SDC of the material. 

The theoretical values for longitudinal shear modulus and damping, as given by Eqns. (B. 14) 

and (B. 19), were verified experimentally. For shear modulus, a torsion test was carried out on 

a rectangular section aluminium beam and the shear modulus was computed using 

Eqns. (B. 14). The modulus so found was then compared with the expected shear modulus of 

aluminium. 

The following data for the shear modulus test was recorded 

= 107 mm 

w = 12.74 mm 
h = 3.38 mm 

ib� = 3.22 x 10-3 kg m2 
f, = 60.8 Hz 

A digital computer can be conveniently programmed to compute the factors k, and k 

according to Eqns. (B. 13) and (B. 16). The series converge fast and these factors can be found 

very accurately for any given value of w/h. For the aluminium test piece, weh = 3.77 for 
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which it was found that k, = 0.2776. Equation (B. 14) will now give 

G= 25.8 GPa 

The Young's modulus was measured dynamically, and was found to be 

E= 69.52 GPa 

Taking the Poisson's ratio, v, for the aluminium sample as 0.35, then the static value of G is 

given as 
E 

G== 25.75 GPa 
2 (1 +v) 

This value is almost identical with the value computed using Eqn (B. 14). 

The SDC as given by Eqn. (B. 16) was checked by simply comparing the result with the one 

obtained by free-decay method. The following data were recorded for the longitudinal shear 

damping test on the GFRP (DLS-280) specimen at the lowest displacement amplitude. 

w = 13.7 mm 
h = 1.60 nun 

1. = 21 mA 
V. = 1.79 mV 

rd = 0.144 N/A 

0.081 mV. s/mm 
Rd = R,, =25.5 mm 
fA = 35.2 Hz 

The coil sensitivities had been found individually for each coil using the same procedure as 

described for flexural test-rig (Appendix (A)). 

For the ratio wih = 8.562, k, = 0.3088 and k=1.0. Equations (B. 17) and (B. 19) will now give 

at T. = 0.81 MPa 

W=7.85% 
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The average of three free-decay test results (7.45,7.57 and 7.52%) for this sample was 

found to be 

yr=7.51% 

The computed result is 4.5% higher than the free-decay value of the SDC. This is a fair 

agreement between the two results. 

The results of the steady-state tests on the three sample are presented in Figs. B. 2 and B. 3. 

These results indicate that, within the range tested, the stress dependency of the SDC is only 

marginal. 

Adams et al [1969] found that the longitudinal shear damping of the CFRP was both stress 

and (slightly) stress-history dependent, but for GFRP it was found to be generally stress 

independent. Experiments of Willway and White [1988] also showed stress dependent 

damping in resin and CFRP rods, under both clamped-clamped and clamped-free conditions. 
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Appendix (C) 

ANALYSIS OF A SYMMETRICALLY END-LOADED TIMOSHENKO BEAM 

Scope - In this appendix, the uncoupled Timoshenko beam equations are first derived, and are 

subsequently applied to a symmetrically end loaded beam. 

C. 1 Timoshenko's uncoupled equations 

Applying Newton's second law of motion to an element of a uniform beam (Fig. C. 1) 

subjected to lateral vibration will give [Timoshenko, 1955] 

aQ a2w 

ax _ (PA dx) 
n 

(C. 1) `r 

am a2 

-- dx +Q dx = (pl dx) äý= (C. 2) 

L 

Ix iHdx 

/1Q 
MI +. ý \ 

dx 

M+(a M/ a x)dx 

Q+(a Q/ a x)dx 

Fig. C. 1 Elementaryf exure of Timoshenko beam 

where 0 is the bending slope and w is the total lateral deflection. 
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Now, 

M= -EI axe (C3) 

and 
kAGy 

aw 
=kAG (ax 0) (C. 4) 

Then, substituting for m and Q in Eqns. (C. 1) and (C. 2) will give 
j)2 aw 

EI 
axe 

+ k( 
ax 

0) AG - pI at =0 (C. 5) 

iw 
pA - k( 

w- 
a-ý) AG =0 (C. 6) 

zs 

Solving Eqn. (C. 6) for 0 gives 

0; 12w p a2w 

J( ax; kG at2 

aw p a2w 
= dr + Const. 

ax kG atz 

Substituting for 0 in Eqn. (C. 5) gives 
ajw p a°w p a2w 

EI( -- 
ý7G 

)+ kAG dx 
aX3 aX2 at2 kG at2 

a3w p c; > w 
p' ax at kG ate 

dr) + Const. =0 
z 

Differentiating w. r. t. x gives 
a+w a2w Epl a'w p2/ a4w 

EI -+ pA -- (PI +-)+0 (C. 7) 
ax, a12 kG ax2aý2 kG C) t4 

Similarly, from Eqn. (CS) 

EI a2¢ Pl a2 
dx w- kAG axe + 

kAG ate 
) 
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Substituting for w in Eqn. (C. 6) gives 

f a=- 
- 

EI 
p 

a+0 pl a=e 
LJ 

aýý 
- AJ ät= kAG 7X2 ate kA ät2 ' d; r - 'mac + axe 

EI a40 pl a+w ao 
+) dz --+ Const. =0 

roc ax' sac axe ate ax 

Differentiating w. r. t. x gives 

El 
0+ 

pA 
a2o 

- (pl + 
EPI 

) 
ýo 

+1 
CP40 

=0 (C. 8) 
ax' ate kG ax2at2 kG at+ 

Equations (C. 7) and (C. 8) are Timoshenko's uncoupled differential equations of lateral 

vibration corresponding to Eqns. (3.4. a) and (3.4. b). 

C. 2 End loaded beam 

Consider a Timoshenko beam symmetrically loaded with equal symmetric masses at either 

ends (Fig. C. 2) and vibrating in a normal mode. 

M`/2 

ý_ L 

Fig. C. 2 Symmetrically end loaded beam 

Provided the end masses do not hinder rotation of the beam end, then the beam may be 

considered as being free-free and will be subjected to the following conditions 
&0 aw 

i) at x=0, E! -+J W- =0 (C. 9. a) ax ax 
(bending moment due to rotary inertia, i, of end mass) 

ii) at x=0 , MG ( 
aw 

ax -4))+ 
Me 
2 OW=0 (C. 91) 

(shear force due to acceleration of end mass) 
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For symmetric modes, the following conditions apply 

L 
iii) at x=2, c=0 (zero bending slope) (C. 9. c) 

L aw 
(zero shearing force) iv) at x= 2-, MG ( ax -(D)=o 

aw 
SO, -=0 (C. 9. d) 

ax 

For anti-symmetric modes, the following conditions apply 

at x= -, W=O (zero lateral displacement) (C. 9. e) 
L 
2 

L4 
iv) at X= -, -=O (zero bending slope) (C. 9. f) 

2 ax 

C. 2. a Symmetric modes 

Equations (C. 9. a, b, c, d) will respectively lead to the following equations 

(C, (a2+s2) - C3 (ß2-s2)) mL2 + (C2 a+ C4 P) Jb= 0 (C. 10. a) 

-2m(CZß-C4 a)+Meb(C, +C, )aß=0 (C. 10. b) 

j3 (a2+s2)(C, sinh(H) + C2 cosh(H)) -a (ß2-s2)(C,, sin(T) - C, cos(T)) =0 (C. 10. c) 

C, a sinh(H) + C2 a cosh(H) - Cj ß sin(T) + C4 (3 cos(T) =0 (C. 10. d) 

where 
H=ba/2 T=bß/2 

By setting the determinant of the matrix of coefficients to zero, the following frequency 

equation for the symmetric modes of the end loaded Timoshenko beam is obtained 

(fp -s2) nd 2-ß tan(T) Jb aß Me b+ tam tan(T) 
+=0 (C. 11) 

(a2+s2) mL) -a tanh(H) A aß Me b+ 2ßm tanh(H) 

From Eqns. (C. 1O), the constants C, , C2 , C, may be found in terms of C, , giving the total 

lateral deflection, W, as 

W=P Cj cosh(bac) -P C3 tanh(H) sinh(baý) + Cj cos(b(3C) + C3 tan(T) sin(b3C) (C. 12) 
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where 

P= 
aP Me b+ 2m tan(T) 

-- pa Me b+ 2m tanh(H) 

C. 2. b Anti-symmetric modes 

Equations (C. 9. e, f) will respectively lead to the following equations 

C, cosh(H) + Cz sinh(H) + C3 cos(T) + C4 sin(T) =0 

(a2+s2)( C, cosh(baý) + C2 sinh(baC)) - (2-s2)( Cj cos(bf t) + C4 sin(b(3ý)) =0 
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(C. 13) 

(C. 14. a) 

(C. 14. b) 

By setting to zero the determinant of the matrix of coefficients in Eqns. (C. 9. a, b) and (C. 14), 

the following frequency equation for the anti-symmetric modes of the end loaded 

Timoshenko beam is obtained 
(ß2-s2) mV +ß cot(T) Jb 0 M, b- tam cot(T) 

(a2+s2) ml) -a coth(H) Jb + =0 aß M. b+ 2ßm coth(H) 
(C. 15) 

The constants C,, C2, C, are found in terms of C, using Eqns. (C. 9. a, b) and (C. 14). The total 

deflection, W, is then given as 

W= Cj P cosh(b4) - Cj P coth(H) sinh(baC) + C3 cos(bßt) - Cj cot(T) sin(bJ3 ) 

where 
a Me b- 2m cot(T) 

P= -- PaM. b+ 2m coth(H) 

C. 2.1 Strain energy 

(C. 16) 

(C. 17) 

Strain energy of an end loaded Timoshenko beam is given by Eqn. (3.20), for which, similar 

to the centrally loaded case (Chapter 3), it will be convenient to rewrite Eqns. (3.14) in the 

form of Eqns. (3.21). 



- Appx (C) - 146 

The coefficients of Eqns. (3.21) for symmetric modes of an end loaded Timoshenko beam are 

found as follows 

In Eqn. (3.21. a) 

A=P C3 ;B=- tanh(H) P Cj 

C= C3 ;D= tan(T) C3 
(C. 18. a) 

in Eqn. (3.21. b) 

A= -atanh(H)PC3 ; B= aPC3 

C=ß tan(T) C. ;D= -ßC3 
(C. 18. b) 

in Eqn. (3.21. c) 

a2+s2 a2+s2 A=- tanh(H) P C3 ;B=P Cj 
aa 

s2 _s2 C=R tan(T) C3 ;D=--C, 
(C. 18. c) 

and in Eqn. (3.21. d) 

A= (a2+s2) P C3 B=- (ct2+s') tanh(H) P CJ 

C=- (2_s2) C3 ;D=- (f -s2) tan(T) Cj 
(C. 18. d) 

The coefficients of Eqns. (3.21) for anti-symmetric modes of an end loaded Timoshenko 

beam are found as follows 

In Eqn. (3.21. a) 

A=P C3 ;B=- coth(hf) P C3 

C= C3 ;D=- cot(T) C3 
(C. 19. a) 
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in Eqn. (3.21. b) 

A=-a coth(H) P C3 

C= -ßcot(T)C3 

B=aPC3 

D= -ßC, 
(C. 19. b) 

in Eqn. (3.21. c) 

a2+s2 
A=- coth(H) P C3 

a 

s2 

C=- cot(T) C3 

a2+s2 
B= PC3 

a 

D= --s. C3 
ß 

(C. 19. c) 

and in Eqn. (3.21. d) 

A= (a2+s2) P C3 

C=- ((32-s2) C3 

B=- (ac=+s2) coth(H) P Cj 

D= (p2-s2) cot(T) C,, 
(C. 19. d) 

Strain energy of bending is now given by Eqn. (3.24) in which A, B, C and D are given by 

Eqns. (C. 18. d)/(C. 19. d) for symmetric/anti-symmetric modes of an end loaded Timoshenko 

beam. 

Similarly, strain energy of shearing of an end loaded Timoshenko beam is given by 

Eqn. (3.26), in which 

A12, B129 C12, D12 =A, -A2, B, -B29 Cj -C2, D, -Di 

where 
A,, B,, Cl, D, =A, B, C, D 

as given by Eqns. (C. 18. b)/(C. 19. b) for symmetric/anti-symmetric modes; and 

A2, B2, C2, D2-A, B, C, D 

as given by Eqns. (C. 18. c)/(C. 19. c) for symmetric/anti-symmetric modes. 
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C. 2.2 Bending and shearing stresses 
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For the first mode of flexural vibration of an end loaded beam, the maximum bending stress 

is obtained from Eqns. (3.27) and (3.28), where a/ax is given by Eqn. (3.21. d) in which the 

constants A, B, C and D are given by Eqns. (C. 18. d). 

Similarly, the shearing stress is given by Eqn. (3.29), where DWiax is given by Eqn. (3.21. b), in 

which the constants A, B, C and D are given by Eqns. (C. 18. b); and D is given by Eqn. (3.21. c), 

in which the constants A, B, C and D are given by Eqns. (C. 18. c). 

C. 2.3 Bernoulli-Euler simplification 

Simplification of the end loaded Timoshenko equations to the Bernoulli-Euler equations 

(section 33.3) will establish the following relationship between the quantity b in the present 

work and 4) in [Guild and Adams, 1980] 

Jb = 4D (C. 20) 

Once relevant substitutions are made, Eqns. (C. 11) and (C. 12) will be identical to Eqns. (10) and 

(11) in [Guild and Adams, 1980]. The total strain energy in Eqn. (3.20) will now reduce to the 

strain energy due to bending, U, , and the latter will reduce to the corresponding Eqn. (14) in 

[Guild and Adams, 1980]. 
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Appendix (D) 

AN EXAMPLE OF THE COMPUTATION OF THE RESULTS 

AND 

ESTIMATION OF EXPERIMENTAL ERROR 

Scope - In this appendix, a detailed account of different stages of computations involved in 

the determination of both theoretical and experimental results for a typical sandwich beam is 

presented. The results under consideration are the modulus and the SDC of the angle-ply 

913C/Nomex sandwich beam at 15° orientation (Fig. 6.33). All the predictions regarding the 

sandwich skins are based on the constituent data obtained from tests on narrow beams. 

Also included in this appendix is an estimation of the experimental error for this particular 

beam. 

D. 1 Sandwich skin 

D. 1.1 Prediction of modulus and the SDC of the sandwich skin 

In order to predict the modulus and SDC of the above sandwich skin, the longitudinal, 

transverse and longitudinal shear properties (modulus and SDC) of the unidirectional 

composite will be needed. The first two sets of data are obtained from flexural tests on the 

0° and 900 beams using the centrally driven flexural test-rig, while the longitudinal shear 

properties are obtained from the longitudinal shear test. 

The following data were recorded for the flexural test on the 0° beam 
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Test piece specifications 

m=3.8 g 
G= 200 mm 
w= 12.8 mm 
h=1.00 mm 

Test parameters (small coils) 

M, = 45.2 g 
rd = 0.514 N/A 
ro = 0.784 V. s/m 

Test readings in the first flexural mode at the lowest amplitude 

f� = 144.1 Hz 
10 mA 

V,,,,, = 3.82 my 

Using the above data in the program BEAM4. FOR gives the following results 

modulus = 112.5 GPa 

maximum bending stress = 4.93 MPa 
SDC = 0.74% 

The following data were recorded for the flexural test on the 90° beam 

Test piece specifications 

m=4.2 g 
L= 202 mm 

w= 12.5 mm 
h=1.12 mm 

Test parameters 

same as for 00 
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(D. 1) 

(D. 2) 

Test readings in the first flexural mode at the lowest amplitude 
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f� = 43.3 Hz 
20 mA 

V". = 2.82 mV 

Using the above data in the program BEAM4. FOR gives the following results 

modulus = 8.4 GPa (D. 3) 

maximum bending stress = 0.9 MPa 
SDC = 7.3% (D. 4) 

The following data were recorded for the longitudinal shear test on a unidirectional 

cylindrical sample of the 913C composite. 

Test piece specifications 

G= 141.5 mm 
d=9.94 mm 

Test parameters 

, 1,,, = 5.52x10-5 kg m2 
R, = 26.0 mm 
Ro = 26.0 nun 
rd = 0.144 N/A 
rp = 0.081 V. s/m 

Test readings at the lowest angular amplitude 

fn = 122.2 Hz 
40 mA 

V. = 0.81 mV 

Using the above data, first the shear modulus was obtained from Eqn. (B. 5) (Appendix (B)). 

Then, the SDC and the corresponding maximum shear stress were computed from Eqns. 

(B. 10) and (B. 11) respectively. The following results were obtained 

shear modulus = 4.8 GPa (D. 5) 

maximum shear stress = 0.104 MPa 

SDC = 6.6% (D. 6) 
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The data given by (D. 1) to (D. 6) constitute the necessary data for the prediction of the 

modulus and the SDC of the 15° angle-ply laminate. These data, together with the major 

Poisson's ratio found for the material, are summarised below 

yr, = 0.74% 

yr, = 7.3% 
vu = 6.6% 
E, = 112.5 GPa 
E, = 8.4 GPa 

G� = 4.8 GPa 

v� = 0.30 
laminate (-15 , 

15 ,- 
15 

, 
15 ), 

Using these data in the program PREDAMP. FOR gives the following predictions for the 15° 

angle-ply laminate 

modulus = 86.3 GPa 

W= 0.62% 

W= 0.05% 

Wý = 1.04% 

SDC = 1.71% 

D. 1.2 Measurement of modulus and the SDC of the sandwich skin 

The following data were recorded for the flexural test on the 15° beam 

Test piece specifications 

Measured to within Error 

m=3.8 g 0.01 g ± 0.26% 
L 200 mm 0.5 mm ± 0.25% 

12.0 mm 0.05 mm ± 0.42% 

h=1.05 mm 0.005 mm ± 0.48% 

(D. 7) 

(D. 8) 
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Test parameters (same as for 00) 

Measured to within Error 

M, = 45.2 g 0.05 g ±0.11% 
r, = 0.514 N/A -± 2% (estimated) 
r, = 0.784 V. s/m -± 2% (estimated) 

Test readings in the first flexural mode at the lowest amplitude 

132.8 Hz 0.1 Hz ± 0.08% 
10 mA 0.1 mA ± 1.00% 

V. = 1.81 mV 0.05 mV ± 2.76% 

Using the above data in the program BEAM4. FOR gives the following results 

modulus = 88.0 GPa 

maximum bending stress = 2.1 HiPa 

overall SDC = 1.70% 
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(D. 9) 

(D. 10) 

The theoretical and experimental values of the modulus, given by (D. 7) and (D. 9) 

respectively, are compared on Fig. 6.3 (for the 15° orientation). The SDC versus stress 

amplitude can be found in Fig. 6.8, while the theoretical and experimental values of the SDC, 

given by (D. 8) and (D. 1o), as well as the theoretical damping components yr, , W, and Wr , are 

given in Fig. 6.13, although as mentioned in the text (section 6.7.1.1), the predictions on these 

figures are based on the data of the wide beams which give slightly different values of 87.3 

GPa for modulus and 1.80% for the overall SDC. 

stion of experimental error Emati 

The modulus is found from Eqn. (3.8) in which b is found iteratively to within 10-9 from the 

frequency equation (3.17). After reduction to the elementary theory, this latter equation will 

be a function of Malm. Then, neglecting the error in computations, b is found to within 

±[(m%)-'+ (M, %)21I12 = ±1(026Y + (0.11)21112 =± 028% 
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The modulus is, therefore, accurate to within 

± [22(b%)2 + (m%)2 + 32(L%)2+ 22((%)2 + (w%)2 + 32(h%)2Jvv2 = 

± [22(0.28)2 + (0.26)2 + 32(025)2 + 22(0.08)2 + (0.42)2 + 

32(0.48)211/2 =±1.79% 
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The maximum bending stress is found from Eqns. (3.27) and (3.28). The quantity ao/ax is given 

by Eqn. (3.21. d) which after reduction to the elementary theory will be a function of b, L2, and 

WM . 
The displacement amplitude, W. , is given by Eqn. (A. 6) and is, therefore accurate to 

within 

± [(V,,,,, %)2 + (r %)z + (f%n)2 J112 =± ((2.76)2 + (2)2+(0.08)211,2 

=±3.41% 

Then, a4/ax is accurate to within 

± ((b%)2 + 22(L%)2 + (WM%)2]112 =± ((028)2 + 22(0.25)= + (3.41)2]112 

=±3.46% 

The maximum bending stress is, therefore, accurate to within 

± ((E%)2 + (aOlax%)-+ (w%)2 + 22(h%)2)112 =± ((1.79)2 + (3.46)2 

+ (0.42)2 + 22(0.48)1112 =±4.03% 

The SDC is found from Eqn. (3.41) in which U. is given by Eqn. (3.24). After reduction to the 

elementary theory, this latter equation will be a function of E, i, b2ILs and W. 2. From Eqn. 

(A. 2), AU is a function of F. and W.. The SDC is, therefore, accurate to within 

± [(E%)2 + (w%P + 32(h%)2 + 22(b%)z + 32(L%)2 + (r, %)2 + (1,,, �%)2 + 
(W%)23112= 

± %(1.79)2 + (0.42)2 + 32(0.48)= + 22(o. 28)2+32(025)2 + (2)2 + 

(1.00)2 + (3.41)211/2 =±4.79% 
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D. 2 Sandwich core 
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The following data were recorded for the shear test on the honeycomb core used for the 15° 

angle-ply sandwich beam (Aeroweb A 1,50,6; Fig. 4.14) along the ribbon direction 

Test piece specifications 

Measured to within Error 

A= 63mm x97mm 1x1.5 mm ±(1.6%x1.5%) 

c= 12.75 mm 0.1 mm ±0.78% 

Test parameters 

Measured to within Error 

M= 1142 g1g ±0.08% 
rd = 1.185 N/A -± 2% (estimated) 
ro = 1.352 v. s/m -± 2% (estimated) 

Test readings at the lowest amplitude 

1010 Hz 0.5 ±0.05% 
51 mA 0.1 ±0.20% 

V,,,,, = 0.34 my 0.02 ±5.88% 

Using the above data, first the shear modulus was obtained from Eqn. (4.5), and then the 

maximum shear stress and SDC were computed using Eqns. (4.6) to (4.8), in which DU and 8 

were found using Eqns. (A. 2), (A3) and (A. 6). These were found to be 

shear modulus = 48.0 AN (D. 11) 

maximum shear stress = 211 Pa 

SDC = 10.4% (D. 12) 

as indicated on Fig. 4.14. 
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Estimation of experimental error 

The core modulus is given by Eqn. (4.5) and is, therefore, accurate to within 

± (22(f %)2 + (M%)2 + (C%)2 + (A%)2j: 12 = 

± 122(0.05)2 + (0.08)2 + (0.78)2 + (1.60)2 + (150)2]1/2 =±2.33% 
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The maximum shear stress is given by Eqns. (4.8) and (A. 6), and is, therefore, accurate to 

within 

±[(G%)2 + (V,,. %)-' + (rr%)' + (fVlo)2 + (c%)112 = 
± [(2.33)2 + (5.88)2 + (2)2 + (0.05)2 + (0.78)2)i12 =±6.68% 

The SDC is given by Eqns. (4.6), (4.7) and (A. 2), and is, therefore, accurate to within 

t [(%%)2 + (V, %O)2 + (rd%U)2 + (r, %)2 + (M%)2 + 0)2J1/2 _ 

t [(020)2 + (5.88)2 + (2)2 + (2)2 + (0.08)2 + (0.05)2)1/2 =t 6i3% 

D3 Sandwich beam 

First, the empirical value of the shear correction factor, k, corresponding to the prediction of 

the exact frequency of the centrally driven 0° sandwich beam, was obtained. For the 

frequency test on this beam the following data were recorded 

Test piece specifications 

Measured to within Error 

m = 48.3 g 0.2 g ±0.41% 
L = 248.0 mm 0.5 mm ± 0.20% 

w = 41.3 mm 0.1 mm ± 0.24% 
t = 1.15 mm 0.005 mm ±0.43% 

c = 12.75 mm 0.1 mm ± 0.78% 

EI = 112.5 GPa (from DI) 
G, = 48.0 MPa (from Dli) 
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Test parameters (large coils) 

M, _ 132.5 g 
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Using these data, the value of k which would predict the first natural frequency of 838 Hz 

was found to be 1.24. 

The following data were recorded for the flexural damping test on the 15° sandwich beam 

Test piece specifications 

Measured to within Error 

in = 42.0 g 0.2 g ± 0.48% 
L = 251.0 mm 0.5 mm ±0.20% 

w = 36.3 mm 0.1 mm ± 0.28% 

t = 1.12 mm 0.005 mm ± 0.45% 

c = 12.75 mm 0.1 mm ± 0.78% 

E, = 88.0 GPa (from (D. 9)) 
G, = 48.0 MPa (from (D. 12)) 

k=1.24 

Test parameters (large coils) 

Measured to within Error 

MM = 132.5 g 0.5 g ±0.38% 
rd = 0.585 N/A -± 2% (estimated) 
ro = 0.685 v. s/m -± 2% (estimated) 

Test readings at the lowest amplitude 

Measured to within Error 

f� = 833 Hz 0.5 Hz ± 0.06% 
101 mA 0.5 mA ± 0.50% 

V. = 0.8 mV 0.02 mV ± 2.50% 
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Using the above data in the program BEAM4. FOR gives the following results 

sandwich skin modulus = 93.4 GPa (D. 13) 
maximum bending stress in the skin = 91 kPa 

shearing stress in the core = 0.26 kPa 
sandwich SDC = 8.44% (D. 14) 

The skin modulus and the sandwich skin modulus, given by (D. 9) and (D. 13) respectively, are 

compared on Fig. 6.22 for the 15° orientation. 

The following data are needed to predict the SDC of the sandwich beam 

VºJ = 1.7% 
ý{ºý = 10.4% 

(from (D. 8)) 
(from (D. 12)) 

These data, together with the test piece specifications (above) in which the experimental 

value of E, is replaced by the predicted value (86.3 GPa, from (D. 7)), constitute the necessary 

data for prediction of the SDC of the 15° sandwich beam. The program BEAM4. FOR gives the 

following results 

SDC due to skin = 0.3% (D. 15) 
SDC due to core = 7.7% (D. 16) 
total sandwich SDC = 8.0% (D. 17) 

The experimental and theoretical values of the SDC of the sandwich, given by (D. 14) and 

(D. 17) respectively, as well as the proportion of the contribution of the skin and the core to 

the overall SDC, given by (D. 15) and (D. 16), are presented in Fig. 6.33 for the 15° orientation. 
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Estimation of experimental error 
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The sandwich modulus (for k=1) is found from the sandwich frequency according to Eqn. 

(3.8). The frequency number, b, in this equation is found iteratively from the frequency 

equation (3.17). This latter equation is a function of a2 , ß2 , s2, m and M, . Ignoring the rotary 

inertia parameter r, a and ß are given by Eqn. (3.12) as functions of s. From Eqns. (3.8) and 

(3.10), s2 is found to within 

± ((m%)2 + (W%)2 + (t%)2 + (L%)2 + 22 (J%)2 + (G%)2)112 = 

± ((0.48)2 + (0.28)2 + (0.45)2 + (02)2 + 22(o. 06)2+(2.33)2]1,2= ± 2.45% 

Therefore, b is found to within 

± ((a%)2 + (m%)2 + (Mc%)2]112 = 

± ((2.45)2 + (0.48)2 + (0.38)2)1'2 =±2.52% 

The modulus is, therefore, found approximately to within 

±122(b%)2 + (m%)2 + (w%)2 + 32(t%)2+ 42(L%)2 + 22f%) 2+ 32(c%)1112 = 

± [22(2.52)2 + (0.48)2 + (028)2 + 32(0.45)2 + 42(020)2 + 22(0.06)2 + 

32(0.78)2)12 = ±5i3% 

The SDC is found from Eqn. (3.40), in which AU is given by Eqn. (Al) and, U. and U, are 

given by Eqns. (3.24) and (3.26) respectively. Ignoring the rotary inertia parameter, the SDC is 

found approximately to within 

± ((E%)2 + (1, %)2 + 42(b%)2 + 32(L%)2 + 22(S%)2 + (G%)2 + (V,,,,, %) + 

(rP%C)= + (J,,, %)2 + (r %)2 + (jgf)2»/2 = 

± [(1.79)2+(0.28)2+32(o. 45)2 + 32(0.78)2 + 42(2J2)2+32(020)2+ 

22(2.45)2 + (2.33)2 + (2.50)2 + (2)2+ (050)2 + (2)2 + (0.06)2 =± 12.51% 
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