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ABSTRACT 

The frequent presence of ripples on the free surface of water. on 
both thin film flows and ponds or lakes motivates this theoretical 
investigation into the propagation of ripples on gravity waves. These 

ripples are treated as "slowly-varying" waves in a reference frame where 
the gravity wave flow is steady. The methods used are those of the 

averaged Lagrangian (Whitham 1965,1967,1974) and the averaged 

equations of motion (Phillips 1966) which are shown to be equivalent. 
The capillary wave modulation is taken to be steady in the reference 
frame which brings the gravity wave, or gravity driven flow, to rest. 

Firstly the motion over ponds or lakes is considered. Linear 

capillary-gravity waves are examined in order to set the scene. 
Crapper's (1957) exact finite-amplitude waves are examined next to show 
the actual behaviour of the flow field. The underlying gravity driven 
flow is that of pure gravity waves over an' "infinite" depth liquid. 
These gravity waves are modelled with "numerically exact" solutions for 

periodic plane-waves. The initial studies are inviscid and show that 
steep gravity waves either "absorb" or "sweep-up" a range of capillary 
waves or, alternatively, cause them to break in the vicinity of gravity 
wave crests. 

Improvements on the theory are made by including viscous dissipation 
of wave energy. This leads to a number of solutions approaching 
"stopping velocities" or the "stopped waves solution". In addition to 
these effects "higher-order dispersion" is introduced for weakly 
nonlinear waves near linear caustics. This clarifies aspects of the 
dissipation results and shows that wave reflection sometimes occurs. 

Secondly, waves on thin film flows are considered. Linear 

capillary-gravity waves are again examined in order to set the scene. 
Kinnersley's (1957) exact finite-amplitude waves are examined next to 

show the actual behaviour of the flow field. The underlying gravity 
driven flow is given by shallow water gravity waves. No modelling of 
these is necessary simply because they are included within Whitham's or 
Phillips' equations ab initio. This study is inviscid and shows the 
unexpected presence of critical velocities at which pairs of solution 
branches originate. 
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CHAPTER 1 
INTRODUCTION 

1.1 Oar Aims: Waves on Thin Film Flows and the 
Infinite Depth "Exercise" 

The f low of thin films exists in a variety of naturally occurring 
and important practical industrial situations. Consequently, there is 

great interest in the understanding of the behaviour of thin film flows 

which is reflected in a large volume of work related to thin film 

hydrodynamics. The phenomena of film flows that is of interest to us is 

the wavy region which occurs far downstream from a smooth surface flow 

upstream. The mainstream flow is usually gravity driven whilst the waves 
are usually surface tension driven. 

A comprehensive review and discussion on methods used for wave 

modelling in thin film flows is given by Dukler (1972). He shows that 

all attempts to calculate the wave structure (amplitude, shape, 
velocity) follow one of five "policies" for solving the equations of 

motion. He also shows that none of these policies can provide a complete 
closed-form solution to the problem. That is, either the policy produces 
partial information about the waves, say only its amplitude, or it 

requires, as input data, some characteristic property of the waves such 
as velocity, amplitude or, wavelength. 

Moalem-Maron, Brauner and Dukler (1985) state that the situation to 
date has not changed substantially. An exception is the integral 

approach to the prediction of wave properties offered by Brauner and 
Moalem-Maron (1983). An experimental study of the transport 

characteristics of wavy thin films is also undertaken by Brauner and 
Moalem-Maron (1982). Examination of their results shows that the film 
flows usually have high Reynolds numbers (Re » 1). Thus, the effects of 

viscosity on individual waves is negligible. However, viscosity does act 
over longer time and space scales. 

Our aim is to model the flow of pure capillary waves on thin films 

using an entirely different approach. Characteristic properties of both 

the mainstream flow (current distribution) and the waves are assumed to 
be "slowly-varying". That is, the time and length scales for variations 
of these properties are assumed to be very much larger than the period 
and wavelength of the individual waves. 



There are two existing convenient descriptions of the behaviour of 
slowly-varying wavetrains both of which lead to conservation equations 
for the global properties of the motion. One possible approach is a 
direct averaging of the equations of motion as presented -by 
Phillips (1966). The other possible approach is the averaged Lagrangian 

method of Whitham (1965,1967) summarised in Whitham (1974). 
The conservation equations arising from these two approaches 

simplify when the waves are either of infinitesimal amplitude or are 
propagating on liquid of infinite depth. The simplification occurs 
because for these two cases variations in the mainstream flow and the 

mean level of the liquid become independent of variations in wave 
properties. Therefore, the problem of short finite-amplitude capillary 
waves propagating on finite-amplitude deep water gravity waves is 

examined first as an preliminary "exercise" to aid in absorbing the 

general features of such approaches. 
In fact, recent interest in remote sensing of the sea surface with 

satellite based radar has focused new attention on this "exercise". For 

example, Longuet-Higgins (1987) considers the case where the short waves 
are infinitesimal pure gravity waves rather than capillary waves. He 

uses accurate numerical solutions for steep pure gravity waves to find 

variations in the wavelength and steepness of these short waves. In the 

course of our investigation it turns out that this "exercise" contains a 
rich variety of interesting behaviour which deserve to be examined in 

their own right. Consequently, this case is dealt with extensively and 
waylays'the thin films (finite depths) case in this thesis. 
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1.2 Wave-Current Interactions 

When waves interact with slowly-varying currents wave energy density 
is not conserved as there is an interchange of energy between waves and 
mainstream flow. The appropriate conserved quantity is the wave-action 
density. For infinitesimal, or linear, waves on a uniform current 
Bretherton and Garrett (1968) show that wave-action density is equal to 
the wave energy density divided by the frequency of the waves relative 
to the liquid. 

The interaction of gravity waves and currents was first analysed by 
Longuet-Higgins and Stewart in a number of papers culminating in a 
summary paper, Longuet-Higgins and Stewart (1964). That work is based on 
infinitesimal amplitude solutions for gravity waves. 

Peregrine (1972) uses linear slowly-varying theory to consider the 

effect of currents in a river on gravity waves generated by a boat. A 

boat travelling upstream at a constant speed relative to the river 
produces (gravity) waves of constant amplitude. If these (gravity) waves 
propagate upstream into a region of stronger current they may experience 
considerable amplification. Also, the boat may generate waves that are 
"stopped" (that is, propagating upstream with a group velocity equal to 

the stream velocity). These waves, which appear to be moving since their 

phase velocity is upstream, persist until dissipated, which may take a 
surprisingly long time. Waves whose group velocity is equal to minus the 

stream velocity are said to be at their "stopping velocity"., 
Holliday (1973) considers the propagation of both linear and 

weakly-nonlinear =gravity-capillary waves on a -deep slowly-varying 
current. Infinitesimal gravity (capillary) waves are amplified and 

compressed - wavenumber increases. (expanded -wavenumber decreases) as a 

negative (positive) current is encountered. At a particular current, 

namely the stopping velocity, these waves can progress no further and 

wave steepnesses become arbitrarily large. However, weakly-nonlinear 

waves are shown to propagate beyond the linear, stopping velocity. A 

comparison results for weakly-nonlinear gravity and capillary waves 

shows that the effect of nonlinearity - is much less pronounced for 

capillary waves than for gravity waves. . 

. 1, Cargett and Hughes (1972), in a analysis based on linear gravity 
waves, have concluded that the weak surface current induced by an 
internal wave can create a "barrier" (the stopping velocity) to surface 
waves. The results of Holliday (1973) show that nonlinear effects remove 
this "barrier" and reduce the amplitude enhancement considerably- below 

that which would be predicted by linear slowly-varying theory. 

3 



Linear slowly-varying theory (linear ray theory) predicts infinite 

wave amplitudes at the envelopes, called caustics, of group velocity 
paths (or rays) as a finite flux of wave energy is squeezed through zero 
area. Infinite amplitudes are not consistent with linear theory and-the 
crossing of group velocity paths (rays) implies rapid variation 
transverse to these paths (rays). The linear slowly-varying theory is 

clearly not valid in the region of the caustic as the wave amplitude is 

not slowly-varying and the waves may not be infinitesimal. 
Peregrine and Smith (1979) discuss a weakly nonlinear theory for 

waves near caustics. Their main result for caustics is that nonlinearity 

produces caustics of two different types which they call "R-type" and 
"S-type" caustics. The R-type caustic is physically interpreted as a 
possible reflection of the waves whilst the S-type caustic is 
interpreted as possibly leading to wave breaking. 

The singularities of linear caustics can be avoided by finding 

uniform solutions. Peregrine and Smith (1979) use an heuristic operator 
expansion method to derive a uniformly valid equation which incorporates 

the effects of weak nonlinearity. The solutions of the linearised 

equations involve Airy functions. The solutions of the weakly nonlinear 
equations involve the two Painleve transcendents - one for each type of 

weakly nonlinear caustic. Their heuristic results agree with those of 
Smith (1976). 

A noteworthy situation which involves caustics occurs off the 
South-East coast of South Africa. Here giant waves have caused extensive 
damage to shipping (Mallory 1974). The Agulhas current flows down the 

coast at 4 to 5 knots and is 90 to 165 km wide. Ships taking advantage 
of this current have encountered giant waves of the order 15 m 'when the 

wind produces waves propagating in opposition to the° current. 
Smith (1976) studies this phenomenon. He considers a' gravity wavetrain 

on deep liquid opposed by a steady irrotational current and reflected by 

a caustic. He derives a uniformly valid equation, a , modified nonlinear 
Schrödinger equation, which describes the wave amplitude. He shows that 

the wave profile can be asymmetric and, thus, the wave ̀ peaks can have 

extremely steep leading edges which can pose a danger to shipping. 
Numerically accurate `solutions for -pure gravity waves are now 

available. Schwartz (1974), Longuet-Higgins (1975) and Cokelet (1977) 

consider a perturbation expansion in wave steepness to calculate the 

properties of finite-amplitude plane progressive periodic deep water 

gravity waves. It is found that the mean properties of gravity waves, 
such as phase velocity and energy density, do not increase or- decrease 

monotonically with wave -steepness. Generally, flow properties attain 
their maxima or minima just before reaching the highest waves limit. 
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More recently, Teles da Silva and Peregrine (1988) use a boundary 
integral method to find such properties. They also include the effects 
of a vertical current shear. The properties of pure gravity waves can be 

used to study the refraction, reflection and breaking of 
finite-amplitude pure gravity waves in various situations using only the 

approximation that the nonlinear wavetrain and mainstream flow have 

slowly-varying properties. 
Finite-amplitude gravity wave interactions with currents are studied 

by Crapper (1972). He uses an approximate finite-amplitude gravity wave 
Lagrangian proposed by Lighthill (1967) in Whitham's approach. A survey 
of work on gravity wave interactions with currents prior to 1976 is 

given in Peregrine (1976). 
Peregrine and Thomas (1979) consider finite-amplitude gravity waves 

interacting with a mainstream flow on infinite depth liquid by using the 

tabulated properties to define an exact Lagrangian based on 
Lighthill's (1967) approximate Lagrangian. They consider two cases of 

mainstream flow. In one case a mainstream flow at 90° to the gravity 
wavetrain is considered. The gravity waves are refracted by the current 
gradient and if the wavetrain becomes parallel to the mainstream flow 

an R-type caustic arises giving wave reflection. In the other case a 

current either in the same direction as or opposite direction to the 

gravity wavetrain is considered. This case produces S-type caustics when 
the current opposes the wavetrain and represents wave breaking although 
if the wavetrain propagates to the stopping velocity with a small 
steepness reflection may occur. 

Peregrine (1981) considers, in a similar manner to Peregrine and 
Thomas (1979), gravity-waves approaching a circular caustic. An R-type 

caustic is found and "conjugate" solutions exist for sufficiently large 

value of his "caustic parameter C". This type of caustic usually 
indicates reflection of the wavetrain from the caustic unless the 

amplitude of the waves becomes too large in the approach to the caustic 
in which case wave breaking may occur. When reflection occurs from such 

a circular caustic a short-crested wave system is developed. However, 

the properties of short-crested waves (see, for example Marchant and 
Roberts 1988) can vary significantly from the progressive wave system 

used by Peregrine. 

Ryrie and Peregrine (1982) and Peregrine and Ryrie (1983) also use 
similar techniques' to Peregrine and Thomas (1979) to -examine 
finite-amplitude gravity waves obliquely incident onto a gently sloping 
beach. An R-type caustic results and near the caustic singularity 
"conjugate" solutions exist. A wavetrain approaching a, beach- from 
infinite depths will steepen and be refracted to propagate normal to the 
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beach until it breaks as it leads up to the caustic singularity. 
However, solutions of higher amplitude correspond to a wavetrain which 
is refracted to propagate parallel to the beach. This behaviour is 
termed "anomalous" refraction. 

Peregrine (1983) considers the possibility of wave jumps between 
"conjugate" solutions. For the example described above wave jumps can 
only occur for obliquely incident waves (see figure 3 of Peregrine and 
Ryrie 1982). Peregrine also considers the problem examined by-Yue and 
Mei (1980), that of waves incident onto a wedge of small apex angle. 
Wave jumps can occur for this example and Peregrine presents an analysis 
for a single infinite depth gravity wavetrain incident upon a wedge. He 
finds that it is possible, where "conjugate" solutions exist, for one or 
more wave jumps to occur causing the wavefield to be significantly 
modified. 

1.3 Surface Waves Dominated by Capillarity 

Pure capillary waves are of primary consideration in this thesis. 
Small amplitude capillary waves form a well known part of the classical 
theory of hydrodynamics. For instance, Taylor (1959) analyses the small 
amplitude' capillary waves which occur on a thin liquid sheet. Taylor 

observed that both symmetrical and antisymmetrical waves of such type 
exist and produced them experimentally on liquids as thin as 5-100 pm. 
Large amplitude capillary waves are not as well known. 

Crapper (1957) presents an exact solution for progressive capillary 

waves of finite-amplitude on infinite depth liquid. He shows -thatpure 
capillary waves are very rounded at their crests and that the -wave of 

maximum steepness (which is equal to wavenumber times amplitude) is 

reached when the surface of the wave bends back and touches itself 

enclosing a bubble of air in its trough. Thus, pure capillary waves have 

profiles that peak or "dimple" downward which is opposite to the case of 

pure gravity waves. This is illustrated in figure 1.1. Note that if any 

particular capillary wave steepness is taken as the liquid surface the 
lines below it are streamlines. The maximum steepness (2.29) is found to 
be over five times the maximum steepness (0.44) of pure gravity waves. 

Schooley (1958) experimentally confirms Crapper's capillary wave 
solution by showing profiles of short-fetch wind-generated capillary 

waves that were photographed using a high-speed motion picture camera in 

a small water-wind tunnel. Crapper's prediction for maximum wave 
steepness is approached closely enough to give confidence in its 

correctness. 
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Kinnersley (1976) presents exact solutions for progressive capillary 
waves of finite-amplitude on finite depth liquid. He finds that 
Crapper's solution generalises into two finite-amplitude versions of 
Taylor's symmetrical and antisymmetrical sheet waves. The sectional 
shape and maximum steepness criterion for these two waves are similar to 
those for infinite depth. However, another form of singularity, that of 

zero sheet thickness, is possible and only occurs for symmetrical waves. 
In a series of papers Hogan analyses the variations of mean wave 

properties with steepness and also examines wave profiles for both 

nonlinear pure capillary waves and nonlinear waves driven by surface 
tension and gravity on infinite depth liquid. Hogan (1979) analytically 
examines the case of nonlinear pure capillary waves. He finds that the 
potential energy density of such waves is greater than the kinetic 

energy density which is exactly the opposite behaviour to that of pure 
gravity waves. Also, the crest height above the mean level increases and 
then decreases whereas the trough depth below the mean level always 
increases with wave height for fixed wavelengths. 

Hogan (1980) numerically examines nonlinear waves driven by both 

surface tension and gravity avoiding the case of Wilton's ripples. He 
finds that gravity waves have non-monotonic- integral properties even 

when there is a small amount of surface tension present. However, as 

wavelengths decrease and the effects of surface tension become dominant 

the waves look and behave very much like pure capillary waves. - 
Hogan (1981) numerically examines the special case of Wilton's 

ripples. Wilton (1915) shows that when both gravity and surface tension 
are included for the case of collinear waves it is possible for two 

waves, one dominated by surface tension and the other by gravity, of 
wavenumbers ks and k2 and frequencies v, and cZ, say, to interact and 
produce a composite wave whose wavenumber k3 and frequency a3 are equal 
to ki ± k2 and a1 ± 02 respectively. If the natural frequency of this 

composite wave is actually equal to a3 then this wave is excited at its 
frequency and resonance can occur. Hogan (1981) finds that one nonlinear 
wave is "capillary-like" whilst the other is "gravity-like" in its 

properties and profiles. 
For pure capillary waves resonance is only possible if the two waves 

propagate at an angle to each other. McGoldrick (1965) shows that 

resonance of pure capillary waves is only possible if the angle between 

the waves is greater than 75° and less than approximately 80° -a very 
limited range. 

Hogan (1984) analytically examines the particle trajectories in 

nonlinear pure capillary waves. He shows that particle orbits are 

neither circular nor closed. The bulk of liquid near the surface moves 
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considerably forward during the passage of a steep pure capillary wave. 
Also, the particles spend most of their time near wave crests. This 
contrasts with the behaviour of steep pure gravity waves. 

Hogan (1985) numerically examines the particle trajectories. of 
nonlinear waves driven by both surface tension and gravity. When surface 
tension is dominant particle trajectories are qualitatively the same as 
those of nonlinear pure capillary waves although a small influence of 
gravity dramatically reduces the scale of the results as compared to 
that of nonlinear pure capillary waves. When gravity is dominant 

particle trajectories are qualitative the same as those of nonlinear 
pure gravity waves. When the forces are equal waves with the same length 

and height, but belonging to different "families" of Wilton's ripples, 
have completely different particle trajectory properties. 

Hogan (1986) analytically examines the highest waves, particle 
trajectories and phase speeds of both the symmetric and antisymmetric 
nonlinear pure capillary waves, given by Kinnersley (1976), on finite 
depths of liquid. He derives explicit criteria for the highest waves and 
finds expressions for the phase velocities for these two solutions in 
both of the classical frames of reference given by Stokes (1847). In the 
frame of reference in which the mean horizontal particle velocity is 

zero he finds that a decrease in sheet thickness results in a 
non-monotonic behaviour of global particle trajectory properties. In the 
frame of reference in which the mean horizontal velocity of the centre 
of mass in zero, i. e. no mass flux, he finds that the behaviour is 

monotonic. 

4 
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1.4 Short Waves Propagating on Longer Waves 

It is mentioned above that the problem of short finite-amplitude 

pure capillary waves propagating on long finite-amplitude pure gravity 
waves in infinite depth liquid is extensively studied in this thesis. 
Some past work on this problem is now examined. The simplest way to 

generate capillary waves is recorded in detail by Scott Russell (1945). 
On dragging a slender rod through water above some critical speed he 

observed waves of short length in front of the rod. It later emerged 
that the waves precede the rod because the velocity of energy 
propagation is greater than the velocity of crest, or trough, 

propagation. 
Wind-generated waves of all wavelengths are present on the surfaces 

of ponds, lakes and the sea. When a wind is blowing it is observed that 
capillary waves are mostly seen ön the front face of longer gravity 
waves. A photograph of such waves is shown in figure 1.2. Munk (1955) 

suggests that these capillary waves may be be due to some sort of 
unspecified disturbance near the gravity wave crests. Cox (1958) 

performed a series of experiments on 4.7 cm long plunger generated waves 
and found capillary waves on the front faces of gravity waves in the 
absence of wind. 

Schooley (1958) experimentally shows wave profiles in the transition 
region from capillary to gravity waves. Examples are given which show 
that capillary waves of appropriate wavelength (so as to have the same 
velocity as the gravity waves, -i. e. stationary capillary- waves) often 
ride just in front of the start of the crests of the gravity waves. 

Schooley (1960) also experimentally shows examples of 
"double-dimple" wave profiles (see his figure 1) in the region 
of 2.44 cm wavelengths as predicted by Wilton (1915). Additional 

experimental profiles are presented; to suggest that the formation of 
double-dimple waves are the mechanism by which the phenomenon 

characterised- by 3,4,5, etc., dimples of capillary waves of 

appropriate wavelength riding in front of the crests of gravity waves 
having-the same velocity. -, 

Inspired by Munk (1955), Longuet-Higgins (1963) suggests a possible 
mechanism to explain the observations of Cox 

. 
(1958). As a progressive 

gravity waves reaches maximum steepness surface tension becomes 
important near the crest. -This produces a travelling disturbance, in the 
form of a normal stress, which gives rise to a. train of capillary waves 
which in turn must be present on the front face of the gravity waves. He 

shows the importance of capillary, waves as regards the breaking of 

gravity waves. Through the action of radiation stress, energy is taken 
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from the gravity waves by the capillary waves. These capillary waves can 
dissipate this energy very quickly and efficiently and, thus, delay the 
breaking of gravity waves. 

Crapper (1970) uses this idea of a travelling disturbance to also 
examine the problem. Capillary waves can have large steepnesses and he 
argues that since they are actually seen on the gravity waves they must 
be nonlinear. He considers the capillary waves to be stationary on a 
slowly-varying mainstream flow. He shows that the method produces very 
steep waves in front of the gravity wave crests when the mainstream 
flow, or surface velocity, is fast and that low steepness capillary 
waves are possible on the rear of the gravity waves. 

McGoldrick (1972) observes non-stationary capillary waves in his 

experiments. His experiments also show that short gravity waves can be 

covered with capillary waves both in front of and behind crests. He 

proceeds to solve a time dependent model equation, using the method of 
multiple scales, neglecting the effects of viscosity. He concludes that 
the windless capillary waves are caused by nearly resonant harmonic 

nonlinear interactions. 

Benney (1977) derives equations governing the resonant interaction 
of a weakly nonlinear, slowly-varying, capillary wavetrain and a small 
amplitude gravity wavetrain. He finds that when the group velocity of 
the capillary waves equals the phase velocity of the gravity waves the 
capillary wave envelope is steady with the capillary waves attaining 
maximum amplitude at gravity wave crests. The flow is not steady with 
individual capillary waves propagating slower than the gravity waves. 

Ferguson, Saffman and Yuen (1978) provide further theoretical and 
experimental results on the subject. They derive a model wave equation 

which has several advantages over the one used by McGoldrick (1972). The 

model equation admits a similar dispersion relation to the full equation 

and Stokes-like pure gravity waves with highest waves enclosing a 120° 

angle. The numerical solution of this model equation is relatively 

straightforward. They find that on gravity waves of large amplitude 
either capillary waves can cover the entire gravity wave surface when 
the effects of viscosity are neglected or that capillary waves are a 
transient phenomena on the front crests of the basic gravity waves with 
magnitude and duration dependent on the choice of viscosity parameter. 

Ferguson et al (1978) explain that their work has implications on 
all previous work. The solutions of Longuet-Higgins (1963) and 
Crapper (1970) can only be true for finite time. The error may perhaps 
lie in the neglect of viscosity in the generation process or back 

reaction. There is confirmation of Longuet-Higgins (1963) suggestion 
that the presence of capillary waves delays the onset of breaking of 
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gravity waves. Also the inviscid behaviour is consistent with that 
suggested by the weakly nonlinear analysis of McGoldrick (1972). 
Benney's solution is stable but dissipation would damp out the capillary 
waves unless an external source of energy, such as wind, existed. This 
is not considered by Benney. It must be noted that these conclusions all 
relate to the model equation derived by Ferguson et al. There is no 
guarantee that the full equations would give identical solutions and, 
thus, conclusions. 

Chang, Wagner and Yuen (1978) conduct experiments intended to verify 
the theory of Longuet-Higgins (1963). Using laser optical slope gauges 
they obtain qualitative agreement particularly for the frequency and 
dissipation of capillary waves on the gravity waves flow. The agreement 
improves as the wavelength of the gravity waves increases but is rather 
poor when the capillary waves cover the gravity waves. The verification 
of Longuet-Higgins (1963) criterion for capillary wave steepness near 
the crests of the gravity waves is impossible by experiment. This is 

simply because this criterion is dependent on the curvature of the 

gravity waves in the absence of surface tension and, therefore, is 
impossible to measure. 
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1.5 An Outline of this Thesis 

This thesis consists of two parts. The first part considers short 
capillary dominated waves either interacting with a gravity driven 

mainstream flow or propagating on the surface of long gravity waves on 
infinite depths of liquid and consist of four chapters. The second part 
considers the interaction of short capillary dominated waves with a 
gravity driven mainstream flow which, in the absence of waves, satisfies 
the shallow water equations. This part consists of two chapters. 

Chapter 2 describes the general equations of motion as developed by 
Phillips (1966) and Whitham (1965,1967,1974) and also discusses a 
criteria for the presence of R and S-type near-linear caustics. The form 

and development of of the general equations in both finite and infinite 
depths of liquid are discussed separately. 

Chapters 3 to 6 inclusive consist of the first part of this thesis. 
Chapter 3 considers the problem for the case where the short waves are 
infinitesimal-amplitude waves driven by both surface tension and 
gravity. An S-type surface tension dominated caustic is found. This 
chapter is designed to show the effects of gravity- on surface tension 
dominated waves and, in some respects, justify the neglect of gravity 
for the short waves in subsequent chapters. 

Chapter 4 considers the problem for the case where the short waves 
are finite-amplitude pure capillary waves as given by Crapper (1957). 
This is inviscid theory and illustrates the wide variety of possible 
solutions. A "parameter space" of gravity waves on which capillary waves 
do or do not break is developed. Some conclusions are reached which have 
implications on the breaking of gravity waves. 

Chapter 5 also considers the problem for finite-amplitude pure 
capillary waves but includes the effects of dissipation due to 

viscosity. For some cases wave propagation is 'found to reach the 
stopping velocity. A weakly nonlinear uniform analysis is performed to 
find the actual behaviour of such propagations. It is found that partial 
reflection is possible as for some gravity waves cases. 

Chapter 6 discusses the wide range of caustics possible when 
capillary waves with a two dimensional propagation space interact with a 
two dimension current distribution. The waves are taken to be 
infinitesimal amplitude pure capillary waves. All caustics present are 
found to be of S-type. This chapter concludes the first part of this 
thesis. 
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Chapter 7 adds the effects of wave energy dissipation and 
acceleration of the mainstream flow to the general equations of motion 
given in chapter 2. The idea here is to later be able to consider a 
vertically falling film of liquid. The "modified" consistency relations 
of Peregrine and Stiassnie (1979) are confirmed and developed further. A 

wave-action conservation equation is developed incorporating both the 
dissipation and acceleration effects. This equation shows that the 
linear result of Christoffersen and Jonsson (1980) is valid for 

nonlinear waves. 
Chapter 8 discusses Kinnersley's (1976) symmetric and antisymmetric 

sheet waves. Slight corrections to Kinnersley's expressions are given 
where necessary. The symmetric wave case is examined in detail. 
Hogan's (1986) criterion for the highest waves is solved explicitly and 
wave profiles are given. Expressions for mean wave properties, such as 
kinetic and potential energy densities, are found. The variations of 
mean wave properties with wave steepness is shown for use in later 

chapters and for comparison with the results of Hogan (1979,1980, 
1981). 

Chapters 9 and 10 consist of the second part of this thesis. 
Chapters 9 and 10 have similar motivations to those of chapters 3 and 4 

respectively. Chapter 9 considers the simple case of infinitesimal 

amplitude waves driven by both surface tension and gravity but with the 
effects of surface tension dominating. Chapter 10 shows the variety of 
nonlinear solutions to the slowly-varying finite depth problem. All the 
solutions are inviscid. Many of the solutions have nonlinear 
singularities. The physical mechanisms underlying these singularities 
have yet to be clarified. Possible lines of future work are also 
discussed in this chapter. Specifically, the equations and solution 
method for the case of surface waves on a vertically falling film of 
liquid including dissipation are discussed. This case has been 

considered by the author but no results have been developed for lack of 
time. 

Results to each chapter are discussed within each chapter so that no 
concluding chapter is given. However, an epilogue is given discussing 

the general outcome of this thesis. 
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CAPTIONS FOR FIGURES 

Figure 1.1: Wave profiles for Crapper's waves for different values of 
steepness ak. 

Figure 1.2: Capillary waves riding on the front faces of gravity waves. 
The capillary waves propagate from right to left on gravity 
waves propagating from left to right. 



2.29 

1.66 

1.0T 

0.61 

ý"ý 0.30 

0.1.5 

F_z1_e 1.1. Wave pro: iles for C: ane_ s waves for 
steepness ak. 

Figure 1.2: Capillary waves riding on the front faces of gravity paves. 

Capilllary wave propagation direction. 



CHAPTER 2 
MATHEKATICAL FORMULATION 

2.1 Introduction 

In this chapter a brief summary is given of the present theory 

available for use in solving a general class of nonlinear problems of 
surface waves in liquids - those in which all the flow properties are 
assumed to be "slowly-varying". This is equivalent, as a first 

approximation, to assuming that flow properties are locally constant. 
There are two available approaches to such problems. One is given by 

Phillips (1966, § 3.6) and the other by Whitham (1965,1967,1974, 
§ 16.7). Phillips' approach directly averages the Euler equations of 
motion, to derive a system of equations called the averaged equations of 
motion, whilst Whitham's approach uses an averaged Lagrangian 
formulation. Since Whitham's equations lead to the introduction of 
wave-action and its conservation they are more attractive than the more 
general, but cumbersome, averaged equations of motion. However, the 
Lagrangian used by Whitham is only valid for irrotational flows. 
Crapper (1979) extends both systems of equations to include surface 
tension. 

The general features of linear and near-linear, or weakly nonlinear, 
theory, as discussed by Peregrine and Smith (1979), are also summarised 
in this chapter. Linear theory shows that the amplitude of a 
slowly-varying wavetrain becomes particularly large near a linear 

caustic. The near-linear theory shows that there exist two types of 
near-linear caustics in which nonlinearity either tends to advance or 
retard the reflection of waves from the caustic. 

In section 2.2 the averaged equations of motion are summarised. 
Section 2.3 discusses some kinematic relations usable with both the 

averaged equations and Whitham's. equations of motion. Whitham's 

equations are summarised in section 2.4. Definitions of mean wave 
properties in terms of an averaged Lagrangian and relations between mean 
wave properties are given in section 2.5. The form of both the averaged 
equations and Whitham's equations for the case of infinite depths is 
discussed in detail in section 2.6. In section 2.7 the particular case 
of steady variation is considered. Section 2.8 discusses the general 
linear and near-linear features of such slowly-varying problems. 
Reference frames and dimensionless units are discussed in section 2.9. 

14 



2.2 The Averaged Equations of Notion 

Define axes (xi, z), where i=1,2, with xi oriented horizontally and 
z vertically upwards. The liquid is of depth z=- h(xi) and the free 

surface is at z= q(xi, t) with mean value z= b(xL, t). There is a 
mainstream flow, or current distribution, (Ui(xi, t), 0) on which is 

superposed a wave motion with velocity field (ui(xj, z, t), w(xj, z, t)). The 
functions h(xi), U(xi, t), b(xi, t) and the mean properties of the wave 
motion are assumed to be slowly-varying. 

The definition of the wave motion is not unique. Stokes (1847) shows 
that there are an infinite number of ways in which to define the wave 
motion. He gives two preferred choices. The first is to require that the 
mean horizontal velocity below wave troughs be zero. The second is to 
require that the mean horizontal velocity of the centre of mass of the 
liquid be zero. The difference between the two definitions can be 
interpreted as a mass flux associated with the waves (Phillips, 1966, 

p 64). Here Stokes first definition is used. 
Phillips (1966, § 3.6) uses the Euler equations of continuity, 

momentum and energy to derive the averaged equations of motion for the 

variations of wave parameters. The summation convention is used. There 

are differences in both notation and definition from that of 
Phillips (1966). The averaged equations of motion are: 

the mass conservation equation 

p 
Ob 

+ 
i(pdUi + 11) -vi 

the momentum conservation equations 

(pdUi + Ii) + -aij 
[(pdUi 

+ 11) + Uj] +2 pgd2 Si + Si -Z] 

- pgd 
0s 

=0, (2.2.2) 

and the energy conservation equation 

f7 
pdUi +1 pgb2 +e+ Ui71] + 

[Ui (2 
pdUi + pgdb + E"+ UiZi) 

+71 +. ii gb+ 
. u] +siJUJI =0, (2.2.3) 

Where d(xi, t) =b+h (2.2.4) 
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is the mean total depth, Z1 is the wave momentum in the i-direction 
(equal to the mass flux in that direction due to the waves), Ssj is the 
radiation stress tensor, S is the energy density and T1 is the energy 
flux vector. Here p is the density of the liquid and g is the 
acceleration due to gravity. 

Definitions of these mean properties, as well as the kinetic energy 
density T and potential energy density V, in terms of averaged integral 

expressions are given in appendix A. Note that the definition of the 
radiation stress Sij differs from that of Phillips (1966,3.6.12) but 

agrees with that of Longuet-Higgins (1975 expression 1.6) (for the 

component S1, ), Crapper (1979) and Stiassnie and Peregrine (1979). 

There are many ways of writing these averaged equations of motion. 
The arrangement above is such that the first two terms of each are in 
conservation form and within each expression the terms are in the order: 
current, wave and interaction terms. One simplified way in which the 
momentum and energy conservation equations can be written is given here 
because it is the form in which the equations are used throughout the 
major part of this thesis. Subtracting Ui times the mass conservation 
equation (2.2.1) from the momentum conservation equations (2.2.2) gives 

J 
all 

+ 
NJ(UJ7, 

+ S, 
J) + 1J 

OIR 
+ pd( i+ Uj vaiU j+g Vii] 

.0, (2.2.5) 

as the momentum conservation equations. Also, subtracting' (gb -'JUL) 
times the mass conservation equation (2.2.1)-and Ui times the momentum 
conservation equations (2.2.2) from the, energy conservation 
equation (2.2.3) gives 

816 OUJ 
+UiC + fi) + Sid U'ai VR, 

+71Ii+UJ j+9-Eil =0, (2.2.6) 

as the energy conservation equation for the wave motion. 'These are the 

same as those derived, from first principles, in Crapper (1979). This 

energy conservation equation represents an energy balance 'for the wave 
motion since if there are no waves present the left hand side'of (2.2.6) 
is identically zero. An energy conservation equation for the mainstream 
motion is, thus, obtained by subtracting the energy conservation 
equation for the wave motion (2.2.6) from the energy conservation 
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equation (2.2.3). Then 

pdU2 + pgb2] + 0i 
{u1 

l2 pdUs + pgdb] + Z'UJ 

i+ Ui Ni 
=0 (2.2.7) + Us ̀gis 

+ 
-Ej (1sUJ), + gb -BR 

is the energy conservation equation for the mainstream motion. 

2.3 Kinematic Relations 

Suppose that the mainstream flow (U1, O) is uniform. If a wave is 

periodic in both space and time then the physical parameters describing 
the wave will be functions of the linear phase function X= kixi - wt. 
Here m is the frequency of the waves in axes (xi, z) and k, is the 
wavenumber vector. 

In these axes the wave motion is superposed on the mainstream flow. 
If interest is focused on the wave motion alone then the waves are best 

viewed from a set of axes (xi, z'), say, traversing with mainstream flow. 
A Galilean transformation gives xj = x1 - Uit, z' =z (with both set of 
axes coinciding at t= 0). Thus, if a wave property (e. g. a dispersion 

relation) on moving liquid is given by f(kjxj - wt) then it is also 
given by f (kixi + kiUit - cut) =f (kixi - Qt) where a=w- kiUi is the 
frequency of the waves in the axes (xi, z'). 

This relation between frequencies w and a is also assumed to hold if 
the mainstream flow is sufficiently slowly-varying. It follows that if a 
wave property is given on still liquid for a wave of frequency. a, the 

corresponding property for a. wave on liquid in motion is given by the 

relation 

_+ kiU1 
, 

(2.3.1) 

known as the Doppler relation. 
For slowly-varying wavetrains the appropriate form of the uniform 

plane-wave solution in terms of a phase function X is still applicable 
locally but the phase function X itself is not linear in xj and t. The 

wavenumber k, and the frequency w are defined in terms of a generalised 
phase function X(xi, t) by 

ki = (2.3.2) Ri 
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A pseudo-phase function O(xi, t) is also introduced to generalise the 
mainstream flow via the definitions 

197=- 
(2.3.3) Ui = 

9 99 

Where 7 is analogous to some Bernoulli "constant". 
If the second derivatives of these phases exist and are continuous 

then four consistency relations arise: 

ak i+ ac 
=0 

aki 
- 

Oki (2.3.4) JE a, NJ 

a -F l 
ui +a=0 au, aui (2.3.5 

The first of each set of relations is in conservation form 
(relation 2.3.4 is sometimes called the equation for the conservation of 
wavenumber). The last of each set implies the distribution of the local 
wavenumber in space and the mainstream flow are irrotational or, in 
terms of tensor terminology, symmetric. This latter restriction on the 
mainstream flow can be greatly eased. This is discussed further in 
chapter 7. 

2.4 Vhithan's Equations and the Averaged Lagrangian 

Vhitham (1965,1967,1974) proposes that for slowly-varying 
wavetrains the equations for the wave parameters are found by use of an 
averaged Lagrangian , C' given by (appendix B) 

£w=T -V (2.4.1) 

where w denotes that this is a property of the wave motion alone. Then 

G' = C'(Q, k, a, d) where k2 = kikl (2.4.2) 

and a is the amplitude of the waves. 
-Khitham's equations (equations B18 - B19 of appendix B) in terms of 

this averaged Lagrangian LW are: 

the dispersion relation 

or w=o Ua- (2.4.3) 
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an averaged Bernoulli equation which defines 7 in terms of flow 

parameters 

P17 - U1 - gbl +=0, (2.4.4) 

the mass conservation equation (compare with equation 2.2.1) 

(pb) + Na, 
[pdu 

+ ki -r' 
=0, (2.4.5) 

and the wave-action conservation equation 

+ 
iCUBF -li =0. (2.4.6) EfV 

J 'E -9 j 

The wave-action density .l and wave-action flux vector Bi are defined 
by 

A_ orw Bi =-ki (2.4.7) 

so the wave-action conservation equation (2.4.6) becomes 

+1(U1Ä + B1) =0. (2.4.8) JE N 

Vhitham's formulation gives the mass conservation equation (2.2.1); 
in place of the momentum conservation equations (2.2.2) or (2.2.5) there 

are the conservation equations in the consistency relations (2.3.5) and 
in place of the energy conservation equation (2.2.3) or (2.2.6) there is 

the wave-action conservation equation (2.4.8). 

Note that equation (2.4.4) essentially defines y in terms of other 
parameters of the liquid motion, i. e. 

7=U; + gb -1 
arw (2.4.9) 

The validity of the variational principle used to derive Whitham's 

equations from an averaged Lagrangian can be shown to be correct using 
the two-timing principle as given in Whitham (1970). 
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2.5 Relations between Mean Wave Properties 

All the mean properties of the wave motion are expressible in terms 
of the wave parameters o' and ki and a minimum of four of the mean 
properties of the wave motion. Those mean properties most commonly used 
are the mean depth d, the mean kinetic energy density T, the mean 
potential energy density V and the mean bottom velocity squared given by 

(Uk)_h or uh (2.5.1) 

where the subscript 
For consistency betwe 

Whitham's equations of § 

equations 2.2.1 and 2.4.5) 
defined, in terms of the 

manner (Crapper 1979): 

-h denotes evaluation at z=-h. 
en the averaged equations of § 2.2 and 
2.4 (e. g. compare the mass conservation 
the mean properties of the wave motion are 
averaged Lagrangian C, in the following 

k O'Cw 
, =G"'S, -kk 

-k 
- dvd S, (2.5.2) Y17- S ý 

.6 
OLW 

-G"', y, =ýJ1 
OLw p dtw Zý. (2.5.3) =Q No -0 

Consistency between these two systems of equations also 
implies (Crapper 1979, relations 75) 

arw 
=2, (2.5.4) 

W=-[3T- 
2Y+ pdu, (2.5.5) 

and JE =-2 puh . 
(2.5.6) 

The first of these can be deduced using the expression (2A16) and 
definitions (2.4.1) and (2.5.4). 
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Expressions (2.5.5 - 2.5.7) and definitions (2.5.3,4,2.4.7) give 
the following expressions for mean wave properties: 

Zi =2 
kki 

, 
(2.5.7) 

s= [3T_ 2Ve +7 pd uh 
, Ljýl + 

[T_ V+ Pd uh 
, Eij , 

(2.5.8) 

E=T+V, (2.5.9) 

ý'ý _( 3T - 2V11 +1 pduh 
] oz ki + uh ki 

A=2ö9 (2.5.11) 

Bi =f 3T - 2V11 +, pdun 
1 Fz (2.5.12) 

2.6 The Case of Infinite Depth 

When the depth of the liquid is infinite, i. e. h -+ - a, the 

continuity, momentum and energy equations can still be integrated from 

some level z=-h below which there is no wave motion and which is 
taken to be constant. However, several different values of h could be 

chosen and the same averaged equations should be obtained. Thus, any 
term in the averaged equations in which h appears will have to vanish. 
In the momentum conservation equations (2.2.5) h appears, in d, 

multiplied by 

au 

Ob 
«i + Uj j+g1. (2.6.1) 

Consequently, these expressions must vanish. It follows that the mean 
level b varies only in relation to variations in the mainstream flow and 
does not depend on the waves. These terms occur again in the energy 
conservation equation (2.2.6) causing the last term of this equation to 

vanish. The implication here is that the current satisfies the shallow 
water equations even when waves are present. Note that for general 
finite depth flows the mainstream motion satisfies the shallow water 
equations in the absence of waves. That is wave energy and momentum 
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densities become negligible compared with those of the mean flow. Thus, 

W+ 0 
i(dU1) =0 i+ U j+ g i= 

0 (2.6.2) 75E -F -D7 -vi 

The momentum conservation equations (2.2.5) become 

al' 
+ 

1(Uj7i 
+ Sij) + 7j ß=0 (2.6.3) -097 vi 

and the energy conservation equation (2.2.6) becomes 

+ (UiS + 7) + Sii i=0. (2.6.4) 

For infinite depths the Lagrangian Ew must be independent of mean 
depth d because the equations can not depend on depth h and because the 

mean level b does not depend on the wave motion. The expression (2.5.7) 
for the mean bottom velocity squared in terms of the averaged Lagrangian 
C', thus, implies that 

Uh =0 (2.6.5) 

which is actually the case for infinite depth flows. One implication of 
this is that, from definition (2.4.9) of 7, 

7= 
-2 Uj + gb (2.6.6) 

is the definition for 7 when the depth of the liquid is infinite. Other 
implications are that the mean wave properties, discussed in § 2.5, only 
require kinetic energy density T and the potential energy density V for 

evaluation. 
Note that the two definitions of the wave motion as proposed by 

Stokes (1847) become identical for infinite depths simply because there 
is negligible wave motion at large depths even though the mass flux is 

still non-zero. 
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2.7 The Case of Steady Variations 

Attention is now focused on the case when variations of the 

mainstream flow and the wave parameters, such as amplitude and 
wavelength, are steady, i. e. 

a (2.7.1) 

When this is the case the majority of equations become purely algebraic. 
A list of these equations is given here for future reference. 

The mass conservation equation (2.2.1), or (2.4.5), gives a constant 
value for the total mass flux: 

pdUi + 11 = constant, - mi . 
(2.7.2) 

The momentum conservation equations (2.2.2) and the energy conservation 
equation (2.2.3) do not become algebraic. 

The consistency relations (2.3.4) and (2.3.5) give constant values 
for frequency e and Bernoulli "constant" 7: 

w= constant , 
(2.7.3) 

7= constant . 
(2.7.4) 

The wave-action conservation equation gives a constant value for the 
total wave-action flux: 

UjA + Bi = constant, bi . 
(2.7.5) 
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2.8 Linear and Near-Linear Caustics 

A outline of results used in this thesis for the theory of linear 

and near-linear (weakly nonlinear) caustics, as given by Peregrine and 
Smith (1979), is presented in this section. These results are only 
applicable to infinite depth flows. The notation is slightly different. 

It is supposed that the amplitude of the waves is infinitesimal 

throughout the wave motion and that the mainstream motion U1(xi, t) is 

given ab initio. It is also supposed that the waves are isotropic. 

Define rays as lines in the flow field everywhere parallel to the 
total group velocity vector Cai(xi, t). Solutions to linearised 

slowly-varying problems may be found by integrating in (xi, t) along the 
rays from an initial point with given initial values of ca, ki and a. 
This is called linear ray theory. 

A caustic is defined to be an envelope of rays. In general if waves 
are propagating in three (two, one) dimensions a family of rays coalesce 
on a caustic surface (line, point). The position of the caustic varies 
with time. Here, however, attention is restricted to steady caustics in 

a steady wave field. It is assumed that variations of wave properties 
along the caustic are negligible compared to variations perpendicular to 
the caustic. This is a reasonable assumption since linear ray theory 
shows that the amplitude of a slowly-varying wavetrain varies greatest 
in this direction and is, in fact, singular at the caustic. 

Suppose that the near-linear dispersion relation takes the form 

G(ý, k) + H(k) az =0 (2.8.1) 

Where G and H are assumed to be slowly-varying functions of xi. Only the 
first nonlinear effects are included and any dependence of H on a is 

eliminated using the linear dispersion relation 

G(u, k) =0. (2.8.2) 

Let x, =x be the coordinate'perpendicular to the caustic with x=0 
being locally the position of the caustic. The x2 =y direction is then 

parallel to the caustic. Suppose that the waves'approach the caustic 
from the -x half of the (x, y) plane. The above assumption means that 

all wave properties depend on x only. The consistency relations (2.3.4) 

and (2.3.5) immediately show that w, k2 = in and U2 =V are constants so 
that the wavenumber component ki =l and the amplitude a are the only 
dependent variables to be found with U, =U being a given function of x. 
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It is easily shown that in the (x, l), or (U(x), l), plane the tangent of 
the linear solution at the caustic is parallel to the 1-axis. 

The near-linear dispersion relation is given by (2.8.1) and so as 
long as H is everywhere non-zero the solution curves for near-linear 
theory will lie on one side of the linear curve G=0. It is now 
supposed that H is always non-zero. In fact, solutions curves for 

near-linear theory must remain close to the lines 

G= 0 and 
i 

-x 
OG G l- HU B= 0 (2.8.3) 

which represent the linear and the zero wave-action flux "stopped" waves 
solution curves respectively. These lines intersect at the linear 

caustic 

G=U -1 =0. (2.8.4) 

Once the two lines given by equations (2.8.4) are found it is easy 
to sketch solution curves for near-linear theory since the sign of H in 

the near-linear dispersion relation (2.8.1) indicates which side of the 
linear solution C=0 the near-linear solution curves lie. This is 
illustrated in figure 2.1. 

Solutions may take one of two different forms, depending on the sign 
of 

H/[U2 a- 2U 82 
+ F] (2.8.5) 

at the caustic. The solutions are called R-type and S-type near-linear 
caustics for positive and negative values of (2.8.5) respectively. 

For an R-type caustic the solution lines for the wavenumber lie on 
the concave side of the linear solution in the caustic region of 
the (x, l) or. (U, l) plane. There are two branches of the near-linear 
solution corresponding to incident and reflected waves. Unlike the 
linear solution these do not meet at a caustic. However, each branch has 

a singularity in the slope of the amplitude before the position of the 
linear caustic is reached. This singularity implies a rapid variation of 
wavenumber and, hence, the slowly-varying assumption becomes invalid 
before the singularity is reached. The singularity occurs at a 
sufficiently small amplitude for the near-linear approximation to remain 
valid. It is concluded that the wave field of R-type caustics is 

regular, since wave steepnesses are not near their maximum, and that a 
reflection of waves may occur. Uniform solutions may be found and the 
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wave field has no singularity. 
For an S-type caustic things are quite different. The solution for 

the wavenumber lies on the convex side of the linear solution in the 
caustic region of the (x, l) or (U, l) plane. As the linear solution 
approaches its singularity the near-linear solution diverges from it. 
There is no singularity in the wave solution. However, as the solution 
diverges from the linear solution the amplitude of the waves increases 

and the near-linear assumption breaks down. Fully nonlinear solutions 
(Peregrine and Thomas 1979) show waves can reach their maximum 
steepness. It is concluded that waves may break in the neighbourhood of 
S-type caustics. 

2.9 Reference Frames and Dimensionless Units 

The general problems considered in this thesis are of two types. One 
type is called the "wave-current interaction" problem, or just the 
"interaction" problem, and the other type the "wave propagation" 
problem, or just the "propagation" problem. In the interaction problem 
both the mainstream flow and the waves travel in a horizontal direction 

as a result of which interaction between the waves and mainstream flow 

occurs. In the propagation problem there is a gravity wavetrain present 
ab initio so that "small" waves propagate on the surface of the "long" 

gravity waves and do so in a direction parallel to the surface of the 
gravity waves. The mainstream flow, in this case, is a direct result of 
the gravity wave motion and is also in a direction parallel to the 
surface of the gravity waves. 

Two reference frames are defined for use in both the wave-current 
interaction and wave propagation problems. The first is the w reference 
frame with axes (xt, z) in which the mean current, or mainstream flow, 
is (U1, O), e. g. frame fixed to an observer moving with the gravity 
waves. The second is the a reference frame with axes (xi, z') in which 
the mean current is zero (below wave troughs), i. e. frame moving with 
the mainstream flow (%, 0). These reference frames are called the 
m-frame and u-frame because the frequency of the waves in these frames 
is denoted by w and a respectively. 

Two other frames are also defined for use specifically in the 
propagation problem. One frame (X1, Z) is that which travels at the phase 
speed V of the gravity waves. The surface velocity of the gravity waves 
is defined to be (U1, O) in this frame which implies that this frame is 

also an w-frame. The other frame is that frame given by Stokes first 
definition applied to the motion of the pure gravity waves alone, 
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i. e. frame in which the gravity waves have phase speed T. This frame is 

called the observer's-frame because it is the frame in which the 

propagation problem is physically observed. 
For the interaction problem the w-frame and a-frame have xi, xj 

horizontal and z, z' vertically upwards. However, for the propagation 
problem xi, xj and zj, z' are directed along and perpendicular (out of 
liquid) to the surface of the gravity waves where, in addition, 
coordinates (X, Z) are used with X horizontal and Z vertically upwards 
(figure 2.2). Note that if U, =0 then xi = xi and z, = z'. 

For the purposes of the problems examined it is useful to work in 

one of three different systems of units. One is the standard system of 
S. I. units in which mass, length and time are measured in kilograms, 

meters and seconds respectively. These are denoted as "dimensional 

units". 
The second is a dimensionless system in which density p, gravity g 

and wavenumber K of gravity waves take unit value. These units are 
denoted as "gravity" units and are represented by a subscript 0. If 

mass, length and time are denoted by M, L and T in dimensional units and 
by Mo, Lo and To in gravity units then 

M= ý3 Mo ,L=1 Lo ,T= (gK)-l To (2.9.1) 

define the dimensionless units. 
The third is a-dimensionless system in which density p, surface 

tension r and the magnitude of frequency w (non-zero) of the waves take 

unit value. These units are denoted as "capillary" units and are 
represented by a subscript 1. If mass, length and time are denoted by M, 
L and T in dimensional units and by M,, L1 and T1 in capillary units 
then 

1: 
2, L= [2]L1 

,T= T1 (2.9.2) 

define the dimensionless units. One important feature is that given any 

expressions or equations in dimensional units the corresponding 
expression or equations in capillary units are most easily found by 

substituting p=r= mZ = 1, m=w, =±1 (+ 1 for w>0 and -1 
for cu < 0) and adding a subscript 1 to all the wave and mainstream flow 

parameters. This substitution method of non-dimensionalisation is 

employed throughout this thesis. Parameters such as wave-action flux bi 

and the mass flux m, are given in capillary units using (2.9.2). 
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CAPTIONS FOR FIGURES 

Figure 2.1: Diagram illustrating the behaviour of near-linear waves in 
the neighbourhood of a linear caustic. Heavy lines 
represent the linear solution. Dashed lines represent the 
stopped waves solution given by 1(HGk - JGHk) - kHUGQ = 0. 
Thin continuous lines represent solutions of slowly varying 
near-linear theory; (a) R-type, and (b) S-type caustic. 

Figure 2.2: Definition diagram for short waves on long gravity waves. 
Axes (X, Z) and (x, z) are w-frames fixed to the gravity 
waves; axes (x1, z, ) is a u-frame locally fixed to the 
surface velocity distribution U of the gravity waves. 'e is 
the phase speed of the gravity waves in the observers 
reference frame. c is the phase speed of the short waves in 
u-frame (x,, z1). A and A are the amplitude and wavelength 
of the gravity waves. 
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CHAPTER 3 
INFINITESIMAL AMPLITUDE CAPILLARY-GRAVITY WAVES 

ON INFINITE DEPTH LIQUID 

3.1 Introduction 

In this chapter both the wave-current interaction and the wave 
propagation problems are considered for the case of free irrotational 
infinitesimal plane-waves steadily travelling in the same or opposite 
sense either to a given steady current distribution (the interaction 

problem) or to the surface currents of a steady gravity wavetrain (the 

propagation problem) over an infinite depth of liquid. That is the case 
where d= co, 8/öt = 0, U2 = 0, k2 =0 and U, = U, k, = k, say. The waves 
are influenced by both surface tension and gravity. 

Our aim is to find the variations of both wavenumber and wave 
steepness of the capillary-gravity waves for both problems. Whitham's 

equations are used to solve the problems. The equations for both the 
interaction and propagation problems are similar. Peregrine (1976, p64) 
shows that the propagation problem is solved in exactly the same way as 
the interaction problem except that gravity g and current U are 
everywhere replaced by effective gravity g* and surface current U(X). 
For certain cases singularities in the wave field in the form of linear 

caustics are found. The behaviour in the neighbourhood of the linear 

caustic is found using the near-linear theory outlined in section 2.8. 
In section 3.2 all the various wave solutions that can be 

encountered and some of their properties are considered. The equations 
solved numerically are developed in section 3.3. The cases of stationary 
and non-stationary waves are solved and discussed in sections 3.4 

and 3.5 respectively. Section 3.6 discusses the type of near-linear 
caustic present and its consequences. 
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3.2 The Possible Waves 

A uniform plane-wave of infinitesimal amplitude propagating over 
still liquid of infinite depth with vertical displacement and velocity 
potential 

rý =a cos(kx - at) ace'Z sin(kx - at) (3.2.1) 

has dispersion relation and group velocity, the velocity of energy 
propagation, 

02 = gk + ski C. =U=7c9 
sk 2 (3.2.2) 

where s= rip is the ratio of the surface tension to the density of the 
liquid. Variations of phase velocity and group velocity with wavenumber 
are shown in figure 3.1 together with the limiting cases of pure 
capillary waves and pure gravity waves. 

If these waves are superposed onto a mainstream flow then the 
frequency of the waves is shifted by an amount kU as shown by the 
Doppler relation (2.3.1). The phase and group velocities of the waves 
are also shifted. The total phase and group velocities are denoted by C 
and C, respectively where 

C=U+c and C. =U+C. . (3.2.3) 

Figure 3.2 shows the variation of frequency a with wavenumber k as 
given by the dispersion relation (3.2.2) and the Doppler 

relation (2.3.1) for a constant mainstream flow U. The liquid is taken 
to be water with p= 1000 Kg m'3 and r=0.0742 kg s-2. If the 

wavenumber k is taken to be positive then sgn c= sgn cg = sgn (o), 

sgn C= sgn w, and cr and C. may be identified by examination of the 

gradients of the curves and lines of figure 3.2: cg is gradient of the 
tangent to the dispersion relation curves and C. is this gradient minus 
the gradient of the Doppler relation line. Note that the effect of 
surface tension (gravity) is greatest on waves whose wavenumber k is 
large (small), i. e. small (large) wavelength. 

In this section the Doppler relation (2.3.1) and the dispersion 

relation (3.2.2) are combined and all the possible waves, for a constant 
mainstream flow U, are discussed. The change is direction of their phase 
and group velocities, resulting from the presence of the mainstream 
flow U, are also discussed. A wave propagates in the direction of 
its (total) group velocity because this is the direction of propagation 
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of the energy of the wave: it is only the wave crests (and troughs) 

which propagate in the direction of the waves (total) phase speed. 
Figures in the vain of figure 3.2 are used for the specific cases r' = 0, 

m>0 and w<0 in order to analyses the possible waves and their 

properties. 
The analysis is similar to that given in Peregrine (1976) for the 

case of pure gravity waves. Firstly, consider the case of stationary 

waves where the frequency w is zero (figure 3.3) so that the total phase 
speed C is zero. These waves are called stationary waves because the 

wave crests remain stationary. The Doppler relation (2.3.1) gives 

kU =-o=U=-c. (3.2.4) 

Suppose c>0 so that U<0. Then, the dispersion relation (3.2.2) 

implies that there are either: 

(a) two waves if U<- cmln (figure 3.3). One wave, denoted CG, 

represents capillary-gravity waves whilst the other, denoted 
CC, represents gravity-capillary waves. Both these waves have 

c` positive but only wave CC has Cg positive whilst wave CC has 
Cs negative. Consequently, before superposition onto the 
mainstream flow both waves travel in the +x direction but 
after superposition onto the mainstream flow only wave CG 
travels in the +x direction whereas wave CC travels in the -x 
direction. 

(b) one wave if U=- Cmin (figure 3.3). This wave occurs when the 
CC and CC waves meet- (if U is increased from a very large and 
negative value). It corresponds to the position of a caustic. 
This wave has ce positive but has Ca zero. It follows that the 
mainstream flow U is such that U=- cg =- cmtn and the energy 
of the wave remains stationary as well as the wave crests. It 
is seen from figure 3.1 that the group velocity curve passes 
through the position of minimum phase speed. 

(b) no waves if U>- cm, n (figure 3.3). 

For stationary waves, without loss of generality, k and U can be 

chosen to be positive in which case v is negative, k and U can be chosen 
to be positive and negative respectively in which case a is positive, 
etc., . Thus, the relative signs of k, U and o are fixed. The sign 
convention chosen by us is that k>0, U<0 and a>0. Thus, the 
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mainstream motion, coming from the right, brings the waves, whose crests 
(and troughs) are coming from from the left, to rest. 

By discussing the transition of the two stationary waves CC and CC 

as the magnitude of w increases the general cases of w>0 and w<0 are 
interpreted. For w#0 the conventions on signs becomes different. 
Without loss of generality two of w, U, a and k may be chosen to be of 
fixed sign. The signs of the other two parameters must be allowed to be 

positive and negative. The sign convention chosen by us is k>0 and 
U<0 since this proves best for interpreting the transition from the 

two stationary waves CC and CC. Suppose that IwI is small (figures 3.4), 
i. e. long total period. Then: 

(a) for U=0 (figure 3.4) the Doppler relation gives e=w. The 

waves CO and CC do not exist but two new waves appear. One, 
denoted G+, has w>0 whilst the other, denoted G-, has w<0. 
These waves have large wavelengths and are, thus, gravity 
waves. Wave G+ has c and ca positive whilst wave G- has c 
and cs negative. Note that, from definition (3.2.3) C=c 

and Cg = cg. Consequently, wave G+ travels in the +x direction 

and wave G- travels in the -x direction. 

(b) for U#0 (figure 3.4) there are at most six waves: three 

with w>0 and' three with w<0. Two correspond to waves 
C+ (w > 0) and C- (w < 0). The other four waves arise from the 
Doppler shifting of the stationary waves CG and CC: two waves 
arise form each of these waves, one with w >, 0 and the other 

with w<0. These are denoted by CG or CC followed by the 

corresponding sign of w, i. e. CG-, GC-, CG+ and GC+. 

The two waves arising from a transition of one stationary 
wave are distinct. Each stationary wave CG and CC is shifted a 
small amount by the Doppler relation but in opposite 
directions corresponding to w>0 and w<0. This in turn 

corresponds to the waves experiencing an increase or decrease 
in their phase velocity c. -From 

the Doppler relation (2.3.1), 

c=-U+k. (3.2.5) 

Recalling that U<0 and k>0, it is seen that the CG- and GC- 

waves experience a decrease and the CG+ and GC+ waves 
experience an increase in phase velocity c. 

Waves G+ and G- maintain the same signs of c, C and cg, Ca 
for U#0 as for U=0 and, thus, experience no changes in 
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direction of propagation. Waves CG(+, -) and GC(+, -) all have c 
and cg positive. Wave CG+ has C and C. positive, wave CG- has C 

negative and Cg positive, wave GC+ has C positive and C. 

negative and wave CC- has C and C. negative. Thus, the 
directions of travel of waves CG(+, -) and waves CC(+, -) are the 

same as the stationary waves CC and CC respectively, i. e. in 

the -x and +x directions respectively. It is the direction of 
the phase speed C which is affected by the transition from 

stationary to non-stationary waves. 

All these waves have a non-zero value for their total phase speed C 

so that their crests (and troughs) are in motion. 

As the magnitude of w increases the effect of surface tension on 
waves C+ and C- also increases whilst the relative importance of surface 
tension and gravity on waves CG(+, -) and CC(+, -) changes. Indeed, if IcI 
is very large then waves C- can also be dominated by surface tension 
(waves G+ do not exist). This agrees with the classification of waves in 
terms of their frequencies as given by Kinsman (1965, § 1.2). All the 
other features remain unchanged including the notation, even for the two 
special cases r -º 0 and g -º 0 (discussed below). Thus, for w#0 there 
are at most (least) six (two) waves. 

A caustic occurs when the total group velocity C. - is zero, 
i. e. cg =-U, so that the Doppler relation line is tangential to the 
dispersion relation curve and two waves coalesce. It follows that for 
the stationary waves case there is one possible caustic which occurs 
when the two waves CC and CC coalesce (figure 3.3), i. e. when U=- cmIn 
(figure 3.1). This is denoted as the CC/CC caustic. 

For the non-stationary waves case there are, in general, three 

possible caustics. One occurs when waves CC+ and G+ coalesce and is 
denoted as the GC+/C+ caustic. The other two occur when waves CC- and 
CC-, or CG+ and GC+, coalesce and are denoted as the CG-/GC-, or 
CG+/GC+, caustics. These latter two caustics correspond to a transition 
of the CC/CC caustic of stationary wave theory. This can be seen by 

consideration of figures such as figure 3.4. 
Two interesting special cases are those of pure gravity and pure 

capillary (figure 3.2) waves. For either of these cases there are at 

most four waves and only one possible caustic. For stationary pure 
gravity waves (Peregrine 1976) where r -º 0 wave CC ceases to exist and 

no caustic is possible. For non-stationary pure gravity waves waves 
CC(+, -) cease to exist and the only possible caustic is the CC+/G+ 

caustic (a stopped gravity waves caustic). 
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For stationary pure capillary waves where g -º 0 wave CC ceases to 
exist and no caustic is possible. For non-stationary pure capillary 
waves waves G+ and CC+ cease to exist and the only possible caustic is 
the CC-/GC- caustic (a stopped capillary waves caustic). Note that this 

caustic does not require a minimum in phase velocity c as does the 

stationary wave CC/CC caustic. Also, wave C- still exists but is 

unphysical since wavelengths for this wave are large and, thus, it is 
bound to be affected by gravity. 

w a c c CC Ca b notation 

0 + + 0 + ++ CG 

0 + + 0 + -- GC 

+ + + + + ++ CG+ 

+ + + + + -- GC+ 

+ + + + + ++ G+ 

CG- 

-++-+-- cc- 

+ C- 

Table 3.1: Properties of the two possible stationary waves CG and GC and 
the six possible non-stationary waves CG(+, -), GC(+, -) and 
G(+, -) on a mainstream flow. 

The properties of each possible type of wave are summarised in 
table 3.1. This table also gives the sign of a parameter b. This b is 
the value of the total wave-action flux UA +B and is discussed below 
in § 3.3. Note that the sign of properties of stationary waves CC and CC 

are the same as those of non-stationary waves CG(+, -) and CC(+, -) except 
for frequency w and total phase velocity C which are both zero. Also 

note that at a caustic. the total group velocity C. is zero for those 
waves which coalesce at the caustic. 

For the major part of this thesis interest is focused on pure 
capillary waves. Thus, emphasis in this chapter is swayed towards waves 
CG(+, -) and CC- and towards the CG-/GC- caustic. 
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3.3 The Equations 

To find expressions for the mean wave properties (§ 2.5,6) the 
kinetic energy density T and potential energy density V are needed. 
Expressions for these can be found in any basic text on water waves or 
derived directly from the solution (3.2.1,2) using the definitions in 

appendix A. These are given by 

zz 
T=Y=a (3.3.1) 

The wave-current interaction problem is examined first. For a given 
value of current U wavenumber k of the waves is found by eliminating a 
from the dispersion relation (3.2.2) using the Doppler relation (2.3.1). 
Thus, 

ski - U2k2 + (g + 2wU)k - Wz =0. (3.3.2) 

For a particular value of IwI this equation is solved by varying U over 
a given range. Waves are only sought for U<0 so that no waves are 
repeated. The actual waves found are then deduced using table 3.1. 

The wave amplitude a is given by the wave-action conservation 
equation (2.7.5). From expressions (2.5.10 - 2.5.12) for S, .l and B in 

terms of mean wave properties and infinite depth mean property (2.6.5), 

which states that the mean bottom velocity squared is zero, the 

wave-action density A and wave-action flux B are given by 

(3.3.3) 

but cg = so B= ca A (3.3.4) 

so that U+B=U+ Cr e_ ýg 6=b, say, (3.3.5) 

where b is the constant value of the total wave-action flux. This means 
that, since e >_ 0, the sign of b is given by sgn b= sgn (Cg) and is 

given in-table 3.1 for each of the possible waves. 
Now, since E=T+V is given using expressions (3.3.1), the 

amplitude of the waves is given by 

a=r b] . (3.3.6) 
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This equation shows that for linear waves the actual magnitude of b is 

qualitatively unimportant since it serves as a magnifying factor and 
nothing else. It is the sign of b which is important. This sign, and the 

sign of e, are found using table 3.1. However, it is noted that (b/aCg) 

is always positive. Once equation (3.3.2) is solved for wavenumber k, 

equation (3.3.6) is solved for amplitude a with a and C. =U+ cg found 

using the Doppler relation (2.3.1) and expression (3.2.2) for cg 

respectively. Wave steepness ak can then be deduced. Note that as the 

two waves which coalesce at the caustic approach the caustic the value 

of C. -º 0 for both waves and so the amplitude of these waves becomes 

singular. 
The propagation problem is slightly more complicated. The waves now 

propagate on the surface of a gravity wave and not horizontally 
(figure 2.2). Suppose, for the moment, that there are no short waves so 
that only the motion of the gravity waves is considered. In the m-frame 
the gravity waves are both steady and stationary so that their surface 
is a streamline of the gravity wave motion. Thus, the velocities of 
surface particles must be parallel to the surface and in the -X 
direction (figure 2.2). Note that the c-frame must be used since U is 

unsteady in all other frames such as the observers frame. Also the 

surface is a surface of constant pressure so that the gradient of the 

pressure P* is in a direction perpendicular to the surface. The 

effective gravity g* (Peregrine 1976, p64) defined by 

9*_ -* (3.3.7) 

is. in a direction perpendicular to the surface of the gravity waves. 
Recall that for infinite depths of liquids the mainstream flow 

effects the waves but the waves have no effect on the mainstream 
flow (§ 2.6). Thus, in equations (3.3.2,6) the current U now takes the 

value of the surface velocity, which is negative, of the gravity waves. 
Also gravity g is everywhere replaced by the effective gravity g* 
(Peregrine 1976). 

There is an easier method of solving the interaction problem only. 
This involves specifying the wavenumber k and solving for current U (as 

opposed to specifying U and solving for k) using 

u=+(+ sk] , (3.3.8) 

derived from equation (3.3.2), where, fora specific' value 'Of 
. 
I&I, the 

choice of sign is made from table 3.1' and waves are only sought 
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for U<0 (if w>0 then choose the minus sign and if w<0 then both 

signs need to be considered). The corresponding amplitude variation is 

still found from equation (3.3.6). 
This method is not plausible for the wave propagation problem since 

it is the current U, and the effective gravity g*, which are given ab 
initio so that the wavenumber k must be sought and equation (3.3.2) must 
be used. Also, interpolation methods can not be used on the results of 
the interaction problem because this would not take account of 
variations arising as a result of the effective gravity g*. 

3.4 Stationary Waves 

The simpler case of stationary waves is considered first. As m=0 
dimensional S. I. units are used. Throughout the rest of this thesis the 

values for density and surface tension are taken to be p= 1000 kg m'3, 
r=0.0742 kg s'2 which correspond to water. For the interaction problem 
equation (3.3.2) gives 

sk2 - Ulk +g=0 or k= U2 ± U4 
s- 

4sgr)l (3.4.1) 

Thus, there are two waves: the plus (minus) sign represents 
wave CG (CC). The variation of wavenumber k with current U is plotted in 
figure 3.5a. This is exactly the same as the variation of k with -c 
given from figure 3.1 as is expected since U=-c. The one possible 
CG/GC caustic occurs when the solution curve in the (U, k)-plane has a 
vertical tangent and at this point the two waves coalesce so that 

U=-Cmin' U4=4sg and k=U (3.4.2 

The amplitude of the waves is given by equation (3.3.6) but 

since c=-U it follows that 

a= 
C- 

p 
b, (3.4.3) 

At the caustic the group velocity cg is equal to the phase 
velocity c (figure 3.1) so that the total group velocity Ca is 

zero (Cg =C= 0). Thus, from (3.4.3), the wave amplitude a is singular. 
The wave-action flux b, is taken to be ±1 with the appropriate sign 
chosen from table 3.1. The variation of steepness ak with current U is 
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plotted in figure 3.5b. It is noted that ak reaches seemingly 
unrealistic values of the order of 300. This is true of all figures in 
this chapter. A scaling of b in equation (3.4.3) or (3.3.6) would easily 
reduce (or increase) the values of ak -b is only qualitatively 
important. Solutions which depend quantitatively on b are considered in 

chapter 4 and these lead to reasonable values of ak. 
Note that, from the expression (3.2.2) for cg, 

Caca + Caac = Cca Igg+ sk 3 
ccc'ci 

+ CGC 
1g+ 3S 

ac 

J (3.4.4) 

but, from the Doppler relation (3.2.4) and equation (3.4.1), 

c =CGC, sk2=Uzk- g, 
(3.4.5) 

kcG + kcG =- UZ , kcGkoc =g 

so that C`cG + Cacc + 2U =0 or CgCG + CQGC =0 (3.4.6) 

which implies that waves CC and CC have equal but opposite total group 
velocities Cg. Thus, from (3.4.3), it follows that the amplitude 
variation of both waves CC and CC is the same. However, the steepness 
variation of both waves differs because the wavenumber variation 
differs. 

For pure capillary (gravity) waves where g -º 0 (r -º 0) the GC (CG) 

wave ceases to exist and no caustic exists. From (3.4.2) it is seen that 
the caustic is pushed to U=0 and k=0 (k = co) (see figures 3.5). 

The propagation problem is solved using equations (3.4.1 - 3.4.5) 
but with U taking the value of the surface current distribution U(X) of 
the gravity waves and gravity g everywhere replaced by effective 

gravity g'(X). The surface properties of pure gravity waves are found 

using the program described by Teles da Silva and Peregrine (1988). This 

program works with gravity units described in § 2.9. Thus, the 

wavenumber K is needed to transform surface data to dimensional units. 
It is found, using (2.9.1), that 

X=RXo' U= []u0 
� g*_. ggö . (3.4.7) 

In gravity- units the surface properties are all functions of 
steepness AK only, whereas in dimensional units they are functions of 
both wavenumber K and steepness AK. Note that, in the ca-frame, - gravity 
waves attain a maximum (minimum) in surface velocity at their crests 
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(troughs) and that this maximum (minimum) increases (decreases) as the 
steepness AK and wavenumber K of the gravity waves increases. An idea of 
the variations of wavenumber k and steepness ak is gained by examination 
of figures 3.5 over the range of surface velocities for particular 
gravity waves. This method is only exact for pure capillary waves 
because there is no effective gravity g* but serves as a rough guide 
here and aids interpretation. 

Observations of water surfaces, such as those of ponds and lakes, 

suggest that wavelengths A=0.1,0.2 m are typical for the presence of 
capillary ripples on the surface of the gravity waves. Consequently, 

attention is focused on these values for wavelength with 
steepnesses AK = 0.3,0.4 since these represent steep gravity waves. 

Throughout this thesis figures for the propagation problem have 

troughs of gravity waves at the two ends and a crest at the centre 
unless otherwise stated. Results are plotted in figures 3.6 - 3.10. The 

variations of wavenumber k and steepness ak with distance X along the 

w-frame (fixed to the gravity waves) are plotted. For A=0.2 ma 
caustic exists when the gravity wave steepness AK is near its maximum 
(AKmax = 0.44) as illustrated in figure 3.6 where AK = 0.43. For 
instance, when AK = 0.4 or 0.3 both waves CC and CC exist over the whole 
length of the gravity waves so there is no caustic (figures 3.7,8). 
Essentially, the velocity U(X) at the crest (the maximum of U(X)) is 
less than the velocity required for the existence of the caustic, given 
by expressions (3.4.2), so that, from figures 3.5, the caustic does not 
exist for this case. A decrease in wavelength A results in an increase 
in the crest value of U(X) so, from figures 3.5, the caustic may come 
into existence. For instance, for A=0.1 m when AK = 0.4 the caustic 
exists (figure 3.9) but when AK = 0.3 the caustic does not exist 
(figure 3.10). When the caustic exists it is positioned symmetrically on 
either side of the crests of the gravity waves. 

For gravity waves of length greater than approximately 0.47 m the 

caustic will never exist for any steepness AK not equal to the maximum 
steepness AKmex (the maximum steepness gravity wave has a stagnation 
point at the crest so that the velocity at that point, in the W-frame, 
is always equal to zero). This is essentially because all these gravity 
waves have surface velocities U(X) at the crest which are less than the 
velocity required for the existence of the caustic, given by 

expression (3.4.2). 
When the propagation problem is viewed from the observers reference 

frame in which the gravity waves are in motion it is easily seen that 
waves CC (CC) propagate in the +X (- X) direction towards the caustic, 
if it exists, situated on the backward (forward) faces of the gravity 
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waves. If no caustics exist then waves CC overtake the gravity waves 
whilst waves CC are overtaken by the gravity waves with either of the 

waves propagating over the whole of the gravity waves. If caustics exist 
then waves CC (CC) encounter caustic type behaviour as they propagate 
towards the backward (forward) faces of the gravity waves as the waves 
attempt to propagate over the crests. 

For the case of pure capillary waves no caustic exists so that no 
caustic would be present for any values of A and AK. The only waves 
present would be waves CC and these would propagate over the whole 
length of the gravity waves. It is, therefore, seen from figures 3.7,8 

and 3.10 (3.6 and 3.9) that for the cases A=0.2 in, AK = 0.3 , 0.4 

and A=0.1 in, AK = 0.3 (A = 0.2, AK = 0.43 and A=0.1, AK = 0.4) the 

effects of gravity are qualitatively unimportant (important) on the 

propagation behaviour of waves CC. Thus, the effects of gravity are 
generally unimportant for propagations on gravity waves with "large" 

wavelengths and "small" steepnesses. This is further remarked on in 

chapter 4 where the case of pure capillary waves is considered. 
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3.5 The Doppler Shifted Waves 

In general, the Doppler shifted waves are those waves which occur 
from the Doppler shifting of stationary waves. Such waves occur when-the 
total frequency w of the waves is non-zero so that these waves are 
non-stationary waves. Also, as w is non-zero capillary units are used. 
Dimensionless equations are formally derived using expressions (2.9.2) 

which give 

ýzi sý _101Q, , k=fS, k1, a=fez, as (3.5.1) 

U= (slwl)l Us 'g= (sw')' gi , Ca = (SIwI)ý C'Ks (3.5.2) 

but are most easily given by substituting p=r= w2 =1 and adding a 
subscript 1 to all other parameters, including w, present in the general 
equations of § 3.3. 

a The Wave-Current Interaction Problem 

The interaction problem is examined first. The parameters for the 
problem are given by 

WI =ý ý- _±1 and b, = 
[ý12] Tb (3.5.3) 

which are the dimensionless values of c, and b. Note that wjL =+1 
and w, 1 corresponds to m>0 and w<0 respectively. It is seen 
that the four parameter space of r, s, w and b is reduced to the three 
parameter space of COs, gi (or p, r and pmt) and b1. As already mentioned 
the magnitude of b, is unimportant for a linear waves analysis so 
that b1 =t1 is taken with the appropriate sign chosen from table 3.1. 

Results are shown in figures 3.11,12 for water where IcI = 5, 
100 rad s'1 respectively. These give g1 = 27.30 and 0.5030 respectively. 
The solution curves in the (Ul, ki)-plane either have one or three 
vertical tangents confirming the possible existence of the three 
CG+/GC+, CG-/GC- and GC+/G+ caustics: all three caustics exist when W is 
small, i. e. gi large, (figures 3.11) but only the CG-/GC- caustic exists 
for w is large, i. e. gi small, (figures 3.12). This is readily seen from 
figures 3.2 - 3.4. As co is increased from zero the CG+/GC+ and' GC+1G+ 
caustics come into existence but as co is further increased the values 
of U at which these caustics exist grow closer and closer and at some 
unique w these two caustics coalesce and cease to exist. This explains 
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the transition from figure 3.11 to figure 3.12. As the two waves which 
coalesce at the caustic approach the caustic their amplitudes become 

singular. This is shown in the (U,,, ak) plots. 
For pure capillary (gravity) waves where g -º 0 (r -+ 0) the G+ and 

GC+ (CG(+, -)) waves cease to exist so that only one caustic exists. 

b The Wave Propagation Problem 

The propagation problem is now considered so U= U(X) and g is 

replaced by g*(X). The parameter space must now include p, r, A, AK 

and (wJ, as well as w,, and b1, since these are needed to define the 
gravity waves and transform Xo, Uo(Xo) and gö from gravity units to 
capillary units. 

Results are shown in figures 3.13 - 3.15. These figures show the 

variation of either wavenumber k1 or steepness ak with distance X1 along 
the w-frame fixed to the gravity waves. These are for gravity waves with 
wavelength A=0.1 or 0.2 m and steepness AK = 0.4 and are typical of a 
strong interaction with steep gravity waves (AK is approximately 91 % of 
the maximum gravity wave steepness AK... ). 

The cases with A=0.1 in, JwJ =8 rad s-1 (figures 3.13) and 
A=0.2 in, (wl =5 rad s-' (figures 3.14), which lie within the lower 

ranges of w in table 3.2, illustrate the existence of either all three 

caustics or just the two GC+/G+ and CG-/GC- caustics respectively. All 

six waves are present at such low values of JwJ (figures 3.13,14). Note 

that when JwJ =8 rad s-1 the scaled gravity gi = 14.59. The 

case A=0.2 in, JwJ = 100 rad s'', which lies within the higher ranges 
of w in table 3.2, illustrates the existence of the CG-/GC- caustic only 
(figures 3.15). Only four of the six possible waves exist. The waves G+ 

and GC+. do not exist at such a high value of IwI. 

The behaviour of all six waves is similar to stationary waves CC and 
CC. In general as Iwo is increased from zero all six waves exist 
firstly, then only four waves exist (no G+ and GC+ waves) and finally 

only two waves exist (no G- and CG- waves). Also, in general there may 
be either three, two (CG-/GC- and GC+/G+) or one caustic (CG-/GC-) only 
(see figures 3.13 - 3.15). When caustics exist , they are again 
symmetrically situated about the crests of the gravity waves. It is 
known that waves CG(+, -) and G+ propagate in the +X direction and. waves 
GC(+, -) and G- propagate in the -X direction. So, viewing the 

propagation from the observers frame, if the appropriate caustic exist 
then the appropriate waves encounter caustic type behaviour as they 
attempt to propagate over the gravity waves or if the appropriate 
caustic does not exist then the appropriate waves either overtake or are 
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overtaken by the gravity waves depending on the direction of traverse of 
the waves under consideration. This is similar to the stationary waves 
case. 

Steepness Wavelength Approximate ranges of w rad s-' for 
which there exists a caustic 

AK Am lower rangs higher ranges 

0.3 0.20 4.56 <w<4.92 - 685.89 <w<- 70.75 

0.4 0.20 4.39 < w< 7.20 - 797.01 < w 3.86 

0.3 0.10 6.46 < w< 7.20 - 228.66 < c, <- 12.17 

0.4 0.10 0.00 <m< 10.18 - 268.38 <w<0.00 

Table 3.2: flan&es of W over which caustics exist for linear 
capillary-gravity wave theory. 

For fixed values of p, r, A and AK the behaviour of the wave field 

as INI is varied is also investigated. The results are summarised in 
table 3.2. The table gives two ranges of c over which caustics exist. 
However, there are a total of three possible caustics. This is resolved 
by examination of the stationary waves case. For the first three cases 
considered in table 3.2 there is no CC/CC caustic for the stationary 
waves case (§ 3.4). Thus, as w is increased from zero the CG+/GC+ 
caustic will not exist for these cases. This is seen more clearer by 

examination of figure 3.2. Hence, for these cases the lower ranges of m 
correspond to the CC+/C+ caustic only. Propagation plots for these lower 

ranges of w are all qualitatively similar to figures 3.14. For all four 

cases the higher ranges of c correspond to the CC-/GC- caustic. The 

propagation plots for these higher ranges are all qualitatively similar 
to figures 3.15. 

For the fourth case the CG/GC caustic for the stationary waves 
case (§ 3.4) does exist. Thus, the lower ranges of co correspond to both 
the CC+/GC+ and GC+/G+ caustics: the CG+/GC+ caustic exists throughout 
the lower range of co whereas the GC+/G+ caustic exists 
for 6.21 rad s'' <_ m <_ 10.18 rad s'1. As the value of co is increased 
from zero the CC+/G+ caustic comes into existence at m=6.21 rad s'1. 
Then as co is further increased both caustics coalesce and cease to exist 
at the same value of co N 10.19 rad s-1 and only the CG-/GC- caustic 
exists. This behaviour is as expected from the interaction problem 
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results. However, note that the value of m at which the caustics 
coalesce will vary for different gravity waves, i. e. it is not unique. 
This is caused by gravity g being replaced by effective gravity g*: 
gravity is no longer constant and quantitative results of the 
interaction problem vary for different values of g in equation (3.3.2). 
The propagation plots for 6.21 <w< 10.18 are qualitatively similar to 
figures 3.13. A typical example of propagation results for 0<m<6.21 
is not shown. 

The general properties for any case, i. e. any AK and A, are similar 
to either the first three cases or the fourth case of table 3.2 
depending on whether or not a CG/GC caustic exists for the corresponding 
stationary waves case. 

For the case of pure capillary waves the waves CC+, C+ and the 
GC+/G+ caustic do not exist. Only waves CG(+, -), CC-, G- and the CG-/GC- 

caustic exist. This is, in fact, the case for all the higher ranges of w 
in table 3.2 except for A=0.1 m, AK = 0.4 where both caustics and all 
the waves exist for the lower ranges of w in table 3.2. It is, 
therefore, seen from table 3.2 that for fit) > 11 rad s'' all the 
propagation behaviour will be qualitatively the same as that of pure 
capillary waves for all four gravity waves considered. Moreover, 
for 71 rad s'1 < Imp < 268 rad s'1 the CC-/GC- caustic will be the only 
one existing for all four gravity waves considered so that the 
qualitative effects of gravity are negligible and all propagation 
figures are qualitatively the same as that in figure 3.15. Thus, the 
value Imj = 100 rad s-1 is typical for considering the qualitative 
characteristics of pure capillary waves and their CG-/CC- caustic. 

Hogan (1980) investigates the properties of steep waves affected by 
both gravity and surface tension. He classifies waves according to 

values of the dimensionless parameter Ic = rk2/pg and shows that 

x=0.000075 and 0.0075 represent gravity waves. Now, a wave of length 

20 cm corresponds to 'c = 0.0075. For this case Hogan shows that the 

maximum possible wave steepness AK is 0.3545. He points out that his 

criterion for maximum wave steepness, although only technical, does 
"have some relevance". If this is the case then the consideration of a 

gravity wave of length 20 cm and steepness 0.4 may be unrealistic. 
Nevertheless, such a wave is worth examining for a qualitative 
understanding of flow properties. 
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3.6 Near-Linear Caustics 

The results of § 3.5 show that for a wide range of cases (table 3.2) 
linear caustics exist. Also caustics exist for some stationary wave 
cases discussed in § 3.4. The nature of the waves in the neighbourhood 
of the linear caustic is investigated here. 

The wave field and linear caustics are steady and the X coordinate 

of the m-frame fixed to the gravity waves is perpendicular to the 

caustic. The higher ranges of frequency w in table 3.2 are the only ones 

considered since our interest lies in capillary dominated waves. 
Attention is, thus, focused on the CG-/GC- caustic. The results of 
Peregrine and Smith (1979), given in § 2.8, are used. 

Wilton (1915) shows 

Z- (g + sk2) 
2s2k4 +s kz + 8g2 d1l + 0(ßi) . 

(3.6.1) - 8(g - 2sk') 
]J 

is the near-linear dispersion relation for plane-waves on still liquid. 
He is unclear about the specific nature of the constant z1 (he says that 
s, is arbitrary and negative). In fact, by following a perturbation 
method similar to Isobe and Kraus (1983) and comparing with 
Wilton (1915), it is easily shown that d can be taken as - ak. 

For the propagation problem gravity g is replaced by effective 
gravity g* so that, to order a2, the near-linear dispersion relation is 

02 - (g*k + ski) - 
(2s2 k4 g s-*ksc+ 8g *2 k3 a2 =0. (3.6.2) 

Thus C= Q2 - (g*k + ski) (3.6.3) 

12 4 *k 2 *2 

and g=- 2s k +g s- 
2s k') 

81 k3 . 
(3.6.4) 

Thus, since g* >0 and 2s2k' + sg*k2 + 8g*2 > 0, it follows that 

sgn[ -tv a +o ] Zur ow 

sgn (g* - 2sk2)(3sk - U2) . (3.6.5) 

For all of the higher ranges of ' in table 3.2 equation (3.6.5) implies 
the existence of S-type near-linear caustics suggesting that the caustic 
represents a breaking type of singularity. Also for the case of pure 
capillary waves where g= g* =0 equation (3.6.5) implies that the 

existence of S-type near-linear caustics in the neighbourhood of the 
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CG-/GC- caustic. 
The two factors in (3.6.5) cause two changes of sign relative to the 

gravity wave case of Peregrine and Smith (1979) and Peregrine and 
Thomas (1979). One, at g* = 2sk2, gives the wavenumber where the primary 

wave resonates with its second harmonic (Kinsman § 13.5). Our 

slowly-varying theory is inapplicable for such resonant interactions 

simply because only one wavetrain is present here (more than one 

wavetrain is required for resonance). No interpretation of the other 

change of sign, at UZ = 3sk, has been found. 
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CAPTIONS FOR FIGURES 

Figure 3.1: The variation of phase velocity c and group velocity ca 
with wavenumber k. Dashed lines represent the limiting 
cases of pure capillary, i. e. g --1 0, and pure gravity 
waves, i. e. r --+ 0. 

Figure 3.2: The general variation of frequency a with wavenumber k as 
given by the Doppler and dispersion relations. Dashed lines 
represent the limiting cases of pure capillary, 
i. e. g -- 4 0, and pure gravity waves, i. e. r -º 0. 

Figure 3.3: Diagram illustrating the possible existence of stationary 
waves CG and GC. 

Figure 3.4: Diagram illustrativ the possible existence of Doppler 
shifted waves CG(+, -), GC(+, -) and G(+, -). 

Figure 3.5: The variation of (a) wavenumber k and (b) steepness ak with 
current U for stationary waves. 

Figure 3.6: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves where the gravity wave has 
A=0.2 m, AK = 0.43. 

Figure 3.7: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves where the gravity wave has 
A=0.2  , AK = 0.4. 

Figure 3.8: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves where the gravity wave has 
A=0.2 a, AK = 0.3. 

Figure 3.9: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves where the gravity wave has 
A=0.1  , AK = 0.4. 

Figure 3.10: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves where the gravity wave has 
A=0.1 m, AK = 0.3. 

Figure 3.11: The variation of (a) wavenumber k1 and (b) steepness ak 
with current U, for IwI =5 rad s'1. 

Figure 3.12: The variation of (a) wavenumber kl and (b) steepness ak 
with current U, for wl = 100 rad s-1 . 

Figure 3.13: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for IwI =8 rad s', A= 0.1 m, AK = 0.4. 
Magnified figures are given in order to show the behaviour 
of all waves. 

Figure 3.14: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for I wj =5 rad s-1, A= 0.2 m, AK = 0.4. 
Magnified figures are given in order to show the behaviour 
of all waves. 

Figure 3.15: The variation of (a) wavenumber kl and (b) steepness ak 
with distance X, for IwI = 100 rad s-1, A=0.2 m, 
AK = 0.4. 
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CHAPTER 4 
FINITE-AMPLITUDE PURE CAPILLARY WAVES 

ON INFINITE DEPTH LIQUID 

4.1 Introduction 

In this chapter the wave-current interaction and wave propagation 

problems are further examined for the case in which the "short" waves 

are of finite-amplitude. At present no exact analytical solution exists 
for finite-amplitude capillary-gravity waves (or pure gravity waves) 

over still liquid of infinite, or finite, depth. To consider this 

general case it would be necessary to either use an approximate theory 

or seek numerically exact solutions for such waves. 
Our aim is to examine the train of waves seen on the forward faces 

of steep gravity waves near their crests. These waves have very small 

wavelengths so that they are capillary dominated and it is, thus, 

reasonable to neglect the effects of gravity. Longuet-Higgins (1963) 

examines this problem. He suggests that the capillary waves are 

generated by the travelling normal stress associated with the effect of 

surface tension near the crest of steep gravity waves, namely a 

pressure - rrc, where rc is the curvature of the gravity waves surface. 
The wavelength and amplitude of such capillary waves are then found as a 
linear perturbation on the nonlinear gravity waves. Other mechanisms of 

wave generation exist. For instance, it is readily observed that 

capillary waves are generated at the crests of small gravity waves as a 

result of small scale breaking of the gravity waves. Here we suppose 
that capillary waves already exist - the generation of capillary waves 
is not of primary interest. 

For the case of finite-amplitude pure capillary waves an exact 

solution, found by Crapper (1957), is available. Lighthill (1965, 

equation 80) subsequently uses this exact solution to find the 

appropriate averaged Lagrangian. Crapper (1970) uses Lighthill's 

averaged Lagrangian to examine the interaction and propagation problems 
but restricts attention to the stationary waves case. Here, the results 

of Hogan (1979) are used to examine the interaction and propagation 

problems for both the cases of stationary and Doppler shifted 
finite-amplitude pure capillary waves. Hogan (1979) uses Crapper's exact 

solution to find expressions for mean wave properties such as the 

average kinetic energy density T and the averaged potential energy 
density V. It can easily be shown that T-V gives Lighthill's averaged 
Lagrangian. 

46 



Details of the exact solution found by Crapper (1957), together with 

some expressions derived from Hogan (1979), are given in section 4.2. 

The concept of generalised group velocity is examined in section 4.3. In 

section 4.4 the equations for both the interaction and propagation 

problem are developed using Whitham's equations as given in section 2.4. 

The cases of stationary and Doppler shifted waves are examined in 

sections 4.5 and 4.6 respectively. Section 4.7 find estimates for lower 

and upper bounds to wavenumbers as imposed by basic assumptions on the 

problems. The "critical gravity waves" curves for a given capillary wave 

solution are found and interpreted in section 4.8. The influence of the 

pure capillary waves on gravity wave breaking is discussed on section 
4.9. 

4.2 Crapper's Exact Solution 

An exact solution for progressive pure capillary waves of arbitrary 

amplitude over infinite depth liquid has been found by Crapper (1957). 

The surface profile of pure capillary waves, in the a-frame, is given by 

x- ct _ 
2A sin 2ra 

-a (4.2.1) A-++ cos 7a 

21+Acos2Ta 
- 

21+A2 (4.2.2) 
r++ cos ra 

where a varies from 0 to -1 over one wavelength A and i is such 
that n=0. The parameter A is a strictly. increasing function of 

amplitude a for a given wavelength A and is related to the wave 

steepness ak by 

ak = 
4A 

=A=+l- 1l (4.2.3) ýl 
JJ 

From Crapper's (1957) ýänalysis 0< ak < 2.29, so 0<A<0.455 =Amex 
The value Amax corresponds to the position where the surface profile is 

tangent to itself and, thus, encloses a bubble of air. This physical 

property of the exact solution is interpreted as the breaking point of 

the waves. 

[hl4V{, 
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The dispersion relation for finite-amplitude pure capillary waves on 

still liquid is 

2 

ol Z= sk3D where D= 1+T (4.2.4) 

SO Dmin = 0.657 <D<1. (4.2.5) 

It proves to be easier to use the parameter D rather than A or ak. 
Certain expressions derived by Crapper (1957,1970) and Hogan (1979) and 

used below are far more "pleasant" in terms of D. The only slight 
drawback is that this parameter D is a strictly decreasing function of 
amplitude a for a given wavelength A. 

From (4.2.3,4) wave steepness ak in terms of D is 

ak = 
ly (1 - D)1(1 + D) , 

(4.2.6) 

Expressions for the mean wave properties listed in § 2.5 are needed 
in order to derive equations for the wave-current interaction and wave 
propagation problems. Such expressions can be found once the mean 
kinetic energy density T and the mean potential energy density V are 
known (see § 2.6). Hogan (1979) derives expressions for these in terms 

of the parameter A. In terms of D these are 

T=Cb-D]r, V=2(4.2.7) 

The possible waves theory of § 3.2 still applies because for a 

particular steepness ak, i. e. a particular value of D, plots of the 

dispersion relation (4.2.4) and the Doppler relation (2.3.1) are 

qualitatively similar to figure 3.2 (dispersion relation curve in the 

limit g -º 0). Thus, when finite-amplitude pure capillary waves interact 

with slowly-varying currents there is only one possible stationary wave 
CG and four possible Doppler shifted waves CG(+, -), GC- and G-. Also, 

there are no caustics possible for the stationary waves case and only 

one possible caustic CG-/GC- for the Doppler shifted waves case. Recall 

that waves G- will be strongly influenced by gravity and so, to all 
intent and purposes, are ignored. 

48 



4.3 Generalised Group Velocity 

The concept of group velocity is very valuable in understanding and 

predicting the propagation of linear waves. Its extension to nonlinear 

waves presents difficulties since there are many possible definitions 

for the group velocity. Peregrine and Thomas (1979) analyse possible 

nonlinear group velocities for finite-amplitude deep-water pure gravity 

waves. A similar analysis is performed here for finite-amplitude pure 

capillary waves on infinite depth liquid. 

A direct physical approach to the problem of wave propagation leads 

to a velocity for the propagation of some mean property J, say, of the 

waves. This velocity, denoted (c1)1, is defined'as 

(CJ)i - 
flux of J 

density o 

The most obvious properties J to consider are the energy density B and 
the wave-action density .4 with corresponding respective fluxes 71 and Bi 

so that 

(CE)1 =i ' 
(CA)i _ 

ý1 
(4.3.2) 

in the absence of any mainstream flow. In the presence of 'a mainstream 
flow Ui the total energy flux is U, B + T1 and the total wave-action flux 
is U1A + B1 so that 

(CE)i = Ui + (CE)i 9 (CA)i = Ui + (CA)i (4.3.3) 

are the total generalised group velocities. For pure capillary waves on 
infinite depth liquid the mean properties B, 7j, ,A and Bi are given by 

the expressions in § 2.5 and the mean properties (4.2.7), Vg =0 

and (2.6.5) for the mean bottom velocity squared. Thus, 

(cE)1 =T+ c1 , (CA) i= C1 . (4.3.4) 

For linear pure capillary waves the group velocity (cg)i is unique 
and is given by (cgiin)i = 3ci/2. This linear group. velocity is derived 
from definition (4.3.1) with mean property J as e and is, thus, the 

velocity of propagation of energy. It is seen that for nonlinear pure 
capillary waves (cA)i gives the same as the linear, waves case. In the 
linear-limit the kinetic and potential energy densities 

, 
are equal, 

i. e. T=V, so that expressions (4.3.4) give (cE)i = (cA)i = (Cglin)i" 
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It is interesting to note (Peregrine and Thomas 1979) that it is not 
generally possible to define a propagation velocity in terms of the 

momentum density. For example, a generalised group velocity (cz)1 might 
be sought with 

(cI)Ji = Sii , 
(4.3.5) 

where Z1 and Sij are given by expressions (2.5.7,8), to which case 
there is no general solution for (ci)i. 

Velocities defined in terms of (4.3.1) suffer from the disadvantage 

that they are based on the properties of a uniform wavetrain. Another 

relatively simple approach is to take the linear relation 

(cg)i =K 
11 (4.3.6) 

and extend it to nonlinear waves. In general a not only depends on ki 

but also on some amplitude measure. Note that it is possible to choose 
different definitions for the amplitude measure (Hayes 1973) simply 
because the Whitham's analysis of § 2.4 and appendix B is independent of 
the amplitude measure chosen. It may be verified that the dispersion 

relation (2.4.3) and the values of the wave-action density A and 

wave-action flux Bi given by the definitions (2.4.7) are invariant with 

respect to a change in the definitions of the amplitude measure. On the 

other hand, the actual value of (cg),, as defined by (4.3.6), does 

depend on which amplitude measure is actually kept constant. 
Lighthill (1965) suggests , C"'/o, as a possible amplitude measure. This 

leads to a value of (cg)1 equivalent to (CE)i. Algebraic simplicity of 

the dispersion relation (4.2.4) suggests that the most natural amplitude 

measure is given by the parameter D. After a little algebra this leads 

to a value of (cg), equivalent to (CA)i. 

The group velocities (cE) I and (CA)i are clearly not equal. The 

importance of wave-action density .4 in slowly-varying wave theory 

suggests that (CA)i may be more significant. For example, 

U+ cA =0 (4.3.7) 

gives the "stopped" waves solution discussed below in § 4.6 and remarked 
upon in the introductory chapter. 

Propagation velocities may also be obtained from the equations 
describing slowly-varying waves. Whitham (1967) and Lighthill (1967) 
first derived them for water waves but Hayes (1973) gives a more 
complete account. Hayes defines a "basic-group velocity" (cB)i and-two 
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"basic signal velocities" (c±)i. The basic signal velocities are the 
velocities of characteristics of the partial differential equations 
describing linear modulations of both amplitude and wavenumber for a 
slowly-varying wavetrain. The basic group velocity is the average of the 
basic signal velocities. 

Hayes chooses the wave-action density .4 as the amplitude measure, so 
that LW = C'(v, k, A), and uses the dispersion relation in the form 

alcw 
=0 (4.3.8) 

to eliminate a where necessary and defines a new function r(k, A) by 

r(k, A) =k- G'"(o, k, A) . (4.3.9) 

Hayes derives the basic group velocity as 

k (CB)s = 
8T2 

Fi . (4.3.10) 

Use of expressions (4.3.8,9) and definitions (2.4.7) for A and Bi give 

Q= and B, =Wk xi 

so that 
aß, 

__ 
ao- ki ýCHýi =kNE 

IA 

. 

(4.3.11) 

(4.3.12) 

This means that the basic group velocity is that given by 
definition (4.3.6) with the amplitude measure as . 4. 

Hayes derives the basic signal velocities as 

(c*)I =L 
fa 

±l 
(a air 

sgn (cos )l ýi (4.3.13) 
J 

where 0 is the angle between the normal to the perturbation (modulation) 

wavefronts, discussed by Hayes (1973), and the direction of propagation 
of the waves. 

Note that, in general, 

82r 82TW (4.3.14) 71 FA 

may be either positive or negative and, thus, the velocities (c, ), may 
be real or complex respectively'. 'Complex values correspond to the 
equations describing these wave modulations as elliptic in which case an 

and 
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initial value problem is illposed and a uniform wavetrain is unstable to 
linear modulations. This aspect is discussed by Lighthill (1965,1967) 

and details of the instability are described by Benjamin (1967) and Lake 

et al (1977). Hayes gives the stability boundary based on this criterion 
for near-linear gravity waves in all depths of water. Peregrine and 
Thomas (1979) give the stability boundary for finite-amplitude deep 

water gravity waves as well as other work on stability. 
Hogan (1985) examines the stability of a train of nonlinear 

gravity-capillary waves on the surface of an ideal liquid of infinite 
depth. He derives an evolution equation for the wave envelope correct to 
fourth order in wave steepness. The main difference from the third order 
evolution equation is, as far as stability is concerned, the 
introduction of a mean flow response. He proceeds to show that, in 

general, the mean flow effects for pure capillary waves are of opposite 
sign to those of pure gravity waves. For pure capillary waves this means 
that the "sidebands" of a resonant quartet transfer energy to the 

primary wave implying an instability in the primary wave - exactly the 
opposite behaviour to that of pure gravity waves. 

Some more algebra shows that 

3V-T+ 2T 
cs (4.3.15) 2V T+ rJ 

Note that for the case of linear waves (T =V= 0) (cB)1 is equal to the 
linear group velocity (calsn)i. 

A little more algebra shows that 

3T (V - 2T + 2r c k1 (c*)I = (CB)i ± (- ,-+ 
4T sgn (cos 0) 

and since the expression in the square root is always negative the basic 

signal velocities (c: )1 are always complex. This means that 
f inite- amplitude pure capillary wavetrains are unstable to all long 

modulations. 
Figure 4.1 shows the variation of IcAI/IcI, JcEl/Ic) and IcHI/IcI 

with wave steepness ak for finite-amplitude pure capillary waves on 
infinite depth liquid. The definition most appropriate for our purposes 
is that given by (CA)i essentially because wave-action density plays the 
greatest part in slowly-varying wave theory and it appears to be the 
most naturally derived group velocity from definition (4.3.6). In all 
other sections (CA)i is denoted by (cg)i. 

Such a clear definition is needed in order to decide the direction 
of propagation of the finite-amplitude capillary waves. This definition 
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(and all the other real valued definitions) imply that a 
finite-amplitude capillary wave propagates in the same direction as its 
linear counterpart. The direction of propagation is, thus, given by the 
direction of the total group velocity (Cg)i. For the purposes of the 

waves CG(+, -), CG- and C- considered here this direction is given by the 

sign of C. in table 3.1: if C. >0 (C. < 0) then the waves propagate in 
the positive (negative) X direction. Thus, waves CG(+, -) propagate in 
the +X direction and waves CC- and G- propagate in the -X direction. 
It follows that all the properties of these waves, listed in table 3.1, 

are still applicable. 

4.4 The Equations 

Our aim is to find equations for the three unknowns k, a and a. The 
derivation of such equations is simplified by the introduction of 
velocity variables P and Q defined by 

P=ý and Q=ý (4.4.1) 

equal to phase velocities C and c respectively. Then finding equations 
for the unknowns k and C is equivalent to finding equations for the 
unknowns P and Q. 

In these velocity variables the Doppler relation (2.3.1) and the 
dispersion relation (4.2.4) are 

P=Q+U and 

Where sw, ß =1. 

D= QPQ2 (4.4.2) 

(4.4.3) 

The velocity variable P is determined using the Doppler 

relation (4.4.2), the dispersion relation (4.4.2) and the wave-action 
conservation equation (2.7.5). Now, from the expressions (2.5.11,12) 
for A and B and (2.8.5) for the mean bottom velocity squared, 
noting VK =0 for pure capillary waves, the wave-action density A and 
wave-action flux B are given by 

A=2ý, B=3T. (4.4.4) 

Thus, using the definitions (4.4.1) for P and Q, the Doppler and 
dispersion'relation (4.4.2) and expression (4.2.7) for T the wave-action 
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conservation equation (2.7.5) gives 

rs 
1Q3 

- Q2PZQ] (2P + Q) =b. (4.4.5) 

There are now two cases to consider, namely zero and non-zero total 
wave-action flux b. If b=0 then, using the Doppler relation (4.4.2), 

1- Q2P2(P - U)4 =0 or 3P -U=0. (4.4.6) 

Using the dispersion relation (4.4.2) the first of these two equations 
gives D=1 so this is the linear-limit of the nonlinear theory. 
Expanding this equation gives the sixth order polynomial 

ß2P6 - 4ß2P5U + 6Q2P'UZ - 4QZP3U3 + Q2PZU4 -1=0 (4.4.7) 

for P in terms of fl and U. This is equivalent to equation (3.3.2) with g 
set to zero. 

The second of equations (4.4.6) implies that the total group 
velocity C. is zero so that these waves have no direction of traverse. 
This equation represent nonlinear waves with zero total wave-action flux 

and so this is a "stopped" waves solution (see § 4.3 equation 4.3.7). 
Waves are stopped in the sense that their wave-action is stationary. 

Note that our convention requires U<0, k>0 so that P<0 which 
means that w<0 for stopped waves. Thus, these waves have C<0. 
However, stopped pure gravity waves have C>0. This difference is due 
to the fact that for pure capillary waves c< ca so 
that C=c+U< ca +U=C. =0 for stopped waves whereas for pure 
gravity waves c> ca (see Peregrine and Thomas 1979 for generalised ca) 
so that C>C. =0 for stopped waves. 

The second of equations (4.4.6) gives 

P=. (4.4.8) 

If b#0 then equation (4.4.5) gives rise to a seventh order 
polynomial for P in terms of fl, b and U. Expanding (4.4.5), using the 
Doppler relation (4.4.2), gives 

3ß2P7 - 13ß2UPe + 22ß2U2P5 - 18Q2U3P4 + (7ß2U4 + b*)P3 
- (ß2U5 + 3b*U)P2 + (3b*UZ -, 3)P + (U - b*U3) =. 0 (4.4.9) 

where Tsb* =b. (4.4.10) 
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For the case of stationary pure capillary waves the velocity 
variable P can no longer be used since w=0 implies P=0. A new 
variable R is defined where 

R= (4.4.11) 

The definition of Q remains unchanged. The equations for the motion of 
such waves can then be derived using one of two methods. The first is to 
proceed as above and follow the analysis through using the new 
variable R. The other is to substitute 

P=ý or OR =A (4.4.12) 

in the equations derived above and then take the limit w -º 0 or, 
equivalently, ß -º oo. The latter method is the more succinct method. 
However, all the equations derived below have been confirmed using both 

methods. 
The Doppler relation (4.4.2) and the dispersion relation (4.4.2) 

become 

0=Q+U, and D= RQ2 . (4.4.13) 

The wave-action conservation equation (4.4.5) becomes 

TS 
`12 

- RZU2] =b. (4.4.14) 

For the case b=0 equations (4.4.6) and (4.4.14). gives 

R= UZ (4.4.15) 

since R>0 by our convention of k>0. Note that there is no stopped 
waves solution. This is essentially because both the crests, or troughs, 
of the waves and the wave-action can not be simultaneously stationary. 

For. the case b#0 equations (4.4.9) and (4.4.14) give 

R= (1 - b*U2 1 
(4.4.16) 

This equation leads to equation (5) in Crapper (1970) on substitution of 
k in favour of R. 
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Equations (4.4.8,9,9,15, and 16) are solved for the unknown P 
or R, for a given wave-action flux b, by choosing a value of U and then 
finding the roots of the polynomials where appropriate using a standard 
solver (NAG LIB C02AEF). The unknown Q is then found using the Doppler 
relations (4.4.2,13). These are then used to find the unknowns k and a 
using definitions (4.4.1,11). The wave amplitude a is found using the 
dispersion relations (4.4.2,13) to find D and then using 
expression (4.2.6) which gives wave steepness ak in terms of D. Note 
that solutions within the steepness range given by (4.2.5) are the only 
ones allowed. 

At the end of § 3.3 it is noted that, for the linear waves case, 
there exists a simpler method of solving the wave-current interaction 
problem. The same phenomenon exists for the nonlinear waves case 
presently under examination. The wavenumber k is determined using the 
Doppler relation (2.3.1), the dispersion relation (2.4.4) and the 
wave-action conservation equation (2.7.5). Using expression (4.4.4) for 

wave-action .4 and wave-action flux B the wave-action conservation 
equation (2.7.5) gives 

T[2 +3 
]=b. (4.4.17) 

Again, there are two cases to consider, namely zero and non-zero 
total wave-action flux b. If b=0 then either 

T=0 or 2Uk+3a=0 
. (4.4.18) 

The first of these implies, from expression (4.2.7) for T, D=1 so that 
this is the linear-limit of nonlinear theory. The Doppler 

relation (2.3.1) and the dispersion relation (4.2.4) give 

ski - U2k2 + 2wUk - w2 =0 (4.4.19) 

which is equation (3.3.2) with g=0. This'is solved, as in § 3.3, for k 

over a given range of U and using the same polynomial solver (NAG LIB 
C02AEF). Then o is found using the Doppler relation (2.3.1) with a=0 
since ak = 0. + 

The second equation in (4.4.18) implies, with the use of the Doppler 

relation (2.3.1), 

Uk = 3& or a 2c, . (4.4.20) 
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The dispersion relation (4.2.4), thus, gives 

k3 =Z (4.4.21) 

This equation is solved for k by varying D over its range (4.2.5). 

Then U and a are found using equation (4.4.20) and expression (4.2.6) 

for steepness ak in terms of D respectively. Note, from 

equations (4.4.20), that the frequency a of these waves is constant and 

negative. These equations represent the "stopped" waves solution. Note 

that (4.4.20) implies that m<0 for these waves as before. 

If b#0 then elimination of U, via the Doppler relation (2.3.1), in 

the wave-action conservation equation (4.4.17) gives 

T [2 ý+ 1] =b (4.4.22) 

Which, on use of the dispersion relation (4.2.4), gives 

k6 -2 k4 +F k3 - 
4s--6bz- 

=0. (4.4.23) 

This equation is solved, in the same manner as equation (4.4.21), for 

different values of the total wave-action flux b using -a standard 

polynomial solver (NAG LIB C02AEF). Wave amplitude a is found using 

expression (4.2.6) for steepness ak in terms of D. Frequency a is found 

using equation (4.4.22) (it could be found using the dispersion 

relation (4.2.4) but then table 3.1 would have to be used to find the 

appropriate sign of a corresponding to particular waves). Current U is 

then deduced from the Doppler relation (2.3.1). 

The solution to the propagation problem can, in fact, be solved 
using the equations derived above specifically for the interaction 

problem. However, interpolation methods must be used on results of the 
interaction problem to find the exact behaviour of the capillary waves 
as they propagate on the gravity waves since it is the surface 
current U(X) which is specified, ab intio for the gravity waves. The use 
of interpolation methods takes considerable computational time. It 

proves quicker and easier to solve the propagation problem using the 
direct method involving the variables P and Q. 

This interpolation method idea has one very, important consequence. 
Knowledge of the range of surface velocities for given gravity waves can 
be used to gain both a qualitative and quantitative, idea of the 
behaviour of capillary waves on gravity waves using the results of the 

57 



interaction problem as is suggested in § 3.4 and § 3.5. Thus, the 

results of the interaction problem prove to be very useful when 
interpreting the results of the propagation problem. 

Both methods are actually used to solve both the interaction and 
propagation problems. The results obtained by both methods are exactly 
the same. A third method is also used to solve the propagation problem. 
This involves the solution of an ordinary differential equation and is 

given in chapter 5. This method also gives the same results. 
Note that the interaction problem equations provide a quick and easy 

way to find the values of wave parameters when the capillary waves are 
at their breaking point (put D=D. I. in equation 4.3.22,24) or, for 

that matter, at any specific steepness of interest. This is used below 
in § 4.7. 

4.5 Stationary Waves 

The case of stationary waves is considered first. Dimensional units 
are used. This case, has already been considered by Crapper (1970). 
However, he aims to consider the effects energy dissipation and energy 
input and so adds terms representing these effects so that results 
defer. The validity of these terms and the problem of wave energy 
dissipation are addressed in detail in chapter 5. The equation 
describing the variation of wavenumber k with current U as derived from 

the equations of § 4.4 is the same as equation (5) of Crapper (1970). In 
fact, the equations derived in § 4.4 simplify considerably for this 

case. 
Both the equations for the interaction and propagation problems lead 

to the same equations- for this case. The general nonlinear 

equations (4.4.22,16) give the equivalent pair of equations 

k=b and k=T Up 2 

(4.5.1) 

Either of these equations is solved to find the variation of k with U. 
Variations of a and a are found using the general method described 
in § 4.4. 

- When b=0 these equations lead to the those given by the linear 

equations (4.4.15,19). It is seen that waves with b>0 are the only 

ones which exist since k>0 and T>0. This agrees with the general 

properties of waves CG listed in table 3.1. It is also seen that waves 
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exist only when 

UZ <7 P 
(4.5.2) 

so as b increases the range of U over which the waves exist decreases. 
This range for b agrees with that given in Crapper (1970). The stopped 
waves equations (4.4.20,21) imply that the stopped waves solution 
branch tends to the single point U=k=0 as m -4 0, as does the 
caustic (§ 3.4), and ceases to exist. 

Results for the interaction problem are shown in figures 4.2 for 

various values of the wave-action flux b. Essentially all the wave 
solution curves exhibit a "parabolic" (exactly for linear waves) type 
variation. The linear theory (dashed lines) shows no caustics. This is 

as is expected and is essentially due to the fact that there is no 
minimum in phase velocity (figure 3.1) for pure capillary waves. Wave 

solutions reach maximum steepness as the current U decreases from zero, 
say. At this position the waves have maximum wavenumber. 
Expressions (4.5.2) imply that waves exist for all b but since the 
maximum possible wavenumber decreases with increasing b those waves for 
"large" values of b will be strongly influenced by gravity. Indeed, 

waves for all b are influenced by gravity when wavenumbers k, or 
currents U, are "small". 

Equations (4.5.2) are used to find solutions for the propagation 
problem as well as the interaction problem since they specify the 
wavenumber k as a function of U as does equation (4.4.16). For the cases 
considered, that is A=0.2 and 0.1 m and AK = 0.3 and 0.4, it is found 
that for wave-action fluxes b not "close" to zero there are no solution 
curves for the capillary waves. This is as expected since waves with 
"large" b are strongly influenced by gravity. Essentially, this feature 

arises because the maximum velocity attained by the gravity waves is too 
low. 

Results for the propagation problem are shown in figures 4.3 and 4.4 
for A=0.2 m and AK = 0.3 and 0.4 respectively. The linear-limit 

solution curves are shown (dashed lines) since these form a framework 
for the interpretation of the results. It is seen that the qualitative, 
and to some extent quantitative, characteristics of linear pure 
capillary wave propagations are the same as those of linear 

capillary-gravity wave propagations as shown in figures 3.8 and 3.7 

respectively. Thus, 
ithese cases are worthwhile considering since the 

effects of gravity are qualitatively unimportant. 
For both the cases the qualitative features of linear and nonlinear 

propagations are the same. An increase in the steepness of the gravity 
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waves does not change the qualitative behaviour of the waves. For very 

small b the waves propagate over the whole length of the gravity waves. 
For higher b the waves propagate over the gravity wave crests but break 

as they propagate rightward (Ca > 0) towards the gravity wave troughs. 

In the observers frame capillary waves with very small b will always 

overtake the gravity waves whereas capillary waves with larger b are 

absorbed on the forward faces of the gravity waves as they attempt to 

overtake the gravity waves. However, the feature of increasing steepness 

as the capillary waves propagate from the gravity wave crests to the 

gravity wave troughs is not realistic because wave energy dissipation 

would have a marked effect at such high wavenumbers (see § 4.7). This is 

shown to be the case in chapter 5. 

4.6 The Doppler Shifted Waves 

The case of Doppler shifted waves is now considered. The equations 

of § 4.4 are solved in, capillary units. 

a The Wave-Current Interaction Problem 

The parameters for the problem are again w, and b, as given by 

expressions (3.5.3). Note that now different solutions are obtained for 

different b, as for. the stationary waves . case above, i. e., bl effects the 

qualitative characteristics of variations of a, k and a, whereas this is 

not the case for linear theory in chapter 3. It follows that the four 

parameter space r, s, m and b is reduced to the two parameter space of 

w, and b, as for linear theory of § 3.5., 
_ 

Results are shown in. figures 4.5 and 4.6. Figures 4.5a and 4.6a show 

variations of wavenumber k, with current U1 whilst figures 4.5b 

and 4.6b, c show corresponding variation of. steepness ak with 

current U1. For clarity. of discussion attention. is predominantly focused 

on figures 4.5a and 4.6a, i. e. on figures with wavenumber k, as the 

abscissa, with reference to other figures where necessary (steepness 

variation of waves on figures 4.5a or 4.6a can, ofcourse, be found from 

figures 4.5b, and 4.6b, c). 
The zero total wave action flux case has five branches (dashed 

lines). Four of these correspond to linear theory; one, shown on 
figure 4.5a, is the linear-limit of waves CG+ and the other three shown 

on figure 4.6a are the linear-, limits of waves CG-, GC- and G- (note that 

according to nonlinear theory the steepness. of linear waves As zero). 
The fifth, shown on figure 4.6a, corresponds to the nonlinear stopped 
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waves solution. 
The non-zero total wave action flux case has four branches 

corresponding to waves CG+ (figure 4.5a) and CC-, GC-, G- (figure 4.6a) 
(waves G- are not shown in any figures because, as already mentioned, 
the effects of gravity become important for these waves). Waves CG+ 

exist for 0< bi < 2.26, waves CC- exist for 0< bi < 0.16 and waves CC- 

exist for all b1 < 0. Solution curves corresponding to waves CC- have 

a (local) minimum non-zero steepness whereas those for other waves do 

not (figures 4.5b, 4.6b, c). Waves CC- reach maximum steepness as U1 
both increases and decreases (figure 4.6b) but waves GC- reach maximum 
steepness as U1 increases and zero steepness as U1 decreases 
(figure 4.6c). 

Waves CG+ have a finite non-zero steepness at U, =0 and reach 
maximum steepness as U1 decreases (note that waves CC+ can be regarded 
as an extension of waves G- with equal, but opposite, frequency w and 
equal steepnesses when U1 =0 so that the existence of a finite non-zero 
steepness at U3 =0 is expected: a convention of k>0 and w>0 shows 
this more clearly). The qualitative characteristics of waves CG+ are the 
same as those of the stationary waves CC. This is easily seen from 

comparison of figures 4.2 and 4.5. However, waves CC- and CC- are, in no 
way, qualitatively, or quantitatively, similar to the stationary 
waves CC. 

Suppose that waves are traversing in a direction such that the 
current U1 is increasing, for example from U1 =-3 towards U1 =0 say. 
Consider the waves CG- and CC- with reference to figures 4.6 because 
these waves are the ones which propagate past the linear caustic. Linear 
theory shows the existence of a linear caustic and as these linear waves 
traverse towards the caustic their steepness becomes singular and the 
slowly-varying assumption invalid as is shown in § 3.5. 

Nonlinear theory suggests that as U, increases waves CC- and CC- can 
traverse past the linear caustic and break. However, the validity of the 
slowly-varying assumption must again be questioned. From figures 4.6b, c 
it is seen that solutions for "small" bi have the most rapidly varying 
steepness and that this rapid variation occurs in the neighbourhood of 
the linear caustic. Therefore, the validity of the slowly-varying 
assumption is most dubious for such solutions in this neighbourhood. In 

effect, it becomes increasingly difficult for a current to remain 
slowly-varying for all wave solutions as its velocity approaches the 
velocity at the caustic. 

Whether or not the slowly-varying assumption is actually violated 
depends on the relative length scales for variations of the mainstream 
flow U(X) and the wavenumber k (or amplitude a). Flows with specific 
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current distributions U(X) are considered below where the propagation 
problem is examined. For such flows it may be possible, as suggested 
above, for the waves to traverse past the linear caustic and break or 
for waves to undergo reflection (CG- or GC- waves reflected onto CG-. or 
CG- waves respectively with equal, but opposite, values of total 

wave-action flux). The actual behaviour is studied later, in chapter 5, 

using a uniform nonlinear approximation in the neighbourhood of the 
caustic. 

Solution curves for waves CG- and GC- are close to the linear waves 
solution curves and stopped waves solution curve for small values of"b1 
(figure 6a) and lie on their convex side of the linear solution curves. 
These correspond to near-linear theory and so S-type behaviour exists in 
the neighbourhood of linear caustic which confirms the results of § 3.7. 

b The Wave Propagation Problem 

The propagation problem is now considered. The parameter space now 
includes p, r, A, AK and IwI as well as w1 and b1 as for linear theory 
of § 3.5. The qualitative and quantitative nature-of propagations are 
seen from figures 4.5 and 4.6 for the interaction problem. Table 4.1 

shows the range of velocity U1 corresponding to four different gravity 
waves and two different values of Iwo which can be used to gain a feel 
for the behaviour of propagations. The liquid is, as usual, clean fresh 

water. 

AK A 
dIWI s 

Uimax Uimin 

m ra s Uicrest Uitrough 

0.3 0.1 100 - 1.26 - 2.56 

0.3 0.1 500 - 0.74 - 1.50 

0.3 0.2 100 - 1.79 - 3.62 

0.3 0.2 500 - 1.04 - 2.12 

0.4 0.1 100 - 0.79 - 2.69 

0.4 0.1 500 - 0.46 - 1.57 

0.4 0.2 100 - 1.12 - 3.80 

0.4 0.2 500 - 0.66 - 2.22 

Table 4.1: Surface velocity range in capillary units for several 
different gravity waves and corresponding IcI 
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The equations (4.4.1 - 4.4.10), involving the variables P and Q, are 

solved in capillary units. Note that equation (4.4.9) is an odd order 

polynomial so that there must be at least one solution for each sign 

of bi as expected from the possible waves analysis of § 3.2. Also note 
that waves CG+ have P1 >0 whereas the other three waves have P1 < 0. 

The wavelength A=0.2 m is chosen because gravity waves of this 
length have a greater range of velocities U1 (table 4.1) than gravity 
waves of length A=0.1 m and, thus, show a wider range of behaviour. 
Figures 4.7 - 4.10 show the propagation of capillary waves with 
frequency jwj = 100 rad s-1 on gravity waves with A=0.2 in, AK = 0.3 
(figures 4.7 and 4.8) or 0.4 (figures 4.9 and 4.10). The linear-limit 

solution curves and the stopped waves solution curves are also 
shown (dashed lines) since these form a framework for the interpretation 

of the results. It is seen that the qualitative, and to some extent 
quantitative, characteristics of linear pure capillary wave propagations 
are the same as those of linear capillary-gravity wave propagations as 
shown, for example, in figures 3.15. Thus, these cases are worthwhile 
considering since the effects of gravity are qualitatively unimportant. 
Note that waves CG(+, -) traverse in the +X direction whereas wave GC- 

traverses in the -X direction. 
Figures 4.7 and 4.8 show the behaviour of capillary waves on gravity 

waves with steepness (AK = 0.3) equal to approximately 68 7. of the 

maximum steepness (AK = 0.44) of gravity waves on an infinite depth of 

water. Both waves CG+ and CG- always propagate over the crests of the 

gravity waves. Both also propagate over the troughs for "small" b1 but 

break as they propagate towards the troughs for "large" b, (figures 4.7b 

and 4.8b). 

Waves GC- also propagate over the crests for "small" 1b1j but break 

as the crests are approached for "large" Ib1I (figure 4.8c), 

e. g. when bi >_ -1 waves GC- propagate over the crests but for bi <-2 

they break as the crest is approached. Waves GC- experience a decrease 

in steepness as they propagate towards the troughs of the gravity waves. 
Figures 4.9 and 4.10 show the behaviour of capillary waves on 

gravity waves with steepness (AK = 0.4) equal to approximately 91 7 of 

the maximum steepness (AK = 0.44) of gravity waves on an infinite depth 

of water. Waves CG+ behave qualitatively in the same manner on this 

gravity wavetrain as they do on the gravity wavetrain with AK = 0.3. 

This is seen by comparison of figures 4.7 and 4.9. This is expected 

since these waves exist at U1 =0 (figures 4.5) and are always 

qualitatively similar to stationary waves CG. This is seen from 

comparison of figures 4.4,4.6 and 4.8. 
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Both waves CG- and GC- break as they approach the crests of the 

gravity waves (figures 4.10) no matter what the value of b1. Thus, as 

the steepness of the gravity waves increases the capillary waves 

experience breaking as is expected. As both waves CG- and GC- propagate 

towards the troughs of the gravity waves the features of the propagation 

are qualitatively similar to those of AK = 0.3 case discussed above. 
This is seen by comparison of figures 4.8 and 4.10. 

As mentioned for stationary waves CG the feature of increasing 

steepness as waves CG(+, -) propagate towards the gravity wave 

troughs (or crests) is not realistic because of the effects of wave 

energy dissipation (see § 4.7) as are discussed in chapter 5. 

These propagations give a specific length scale for the variation of 

the mainstream flow and, thus, allow us to more closely examine the 

validity of the slowly-varying assumption. It is seen from 

figures 4.7 - 4.10 that as waves CG- and GC- approach the caustic the 

slowly-varying assumption definitely breaks down (the variation of wave 

steepness changes quickly in the neighbourhood of the caustic). This 

feature is further examined in chapter 5. 

4.7 Lower and Upper Bounds for Wavennmbers 

The above solutions assume that all the properties of the flow field 

are slowly-varying and that the effects of wave energy dissipation are 

negligible. However, these assumptions are not necessarily always valid. 
Upper and lower bounds for wavenumbers are easily calculated between 

which these assumptions can be assumed valid. 
The lower bound k' for the wavenumber originates from the 

slowly-varying assumption for the current distribution U(X). Formally, 

the slowly-varying assumption may be stated as 

k» max 
lÜ 

a-xI -(4.7.1) 

The curvature of the gravity waves also gives a length scale which 

will correspond to some lower bound since this has been ignored 

(x in 4.7.1 is the horizontal coordinate of the m-frame for the 

interaction problem). Thus, 

k» max x (4.7.2) 

where ic is the curvature of the surface of the gravity waves. The 

64 



variation of the maximum curvature ICma x, i. e. the curvature at the 

crests, of pure gravity waves with steepness AK in gravity units is 

shown in figure 4.11. 
Note that with 9 defined from (figure 2.2) 

cos 0= dX (4.7.3) 

the x and X coordinates for the propagation problem are related. Thus, 

conditions (3.6.1) and (3.6.2) are found numerically using the known 

values of U, x and 9. Note that in gravity units, denoted by a 
subscript 0, the wavelength of gravity waves is fixed to 2r. It is found 
that 

for AK = 0.3 max 
1 dUo 

= 1.42 max rco = 0.78 luoo I 

for AK = 0.4 max 
1 
Üo ýdUo CK0 = 0.48 max no = 2.86 l 

The maximum of these forms the basis of the lower bound kö in gravity 
units. Thus, 

for AK = 0.3 kö » 1.42 and ' for AK = 0.4 kö » 2.86 . 

To convert these to dimensional and capillary units expressions (3.4.6) 

and (3.5.1) must be used so that 
, specific values of p, 'r, K and w must 

be chosen. As usual, consider A=0.2 m and 0.1 m with 
j wj = 100 rad s". If the lower bound is chosen to be four times the 

number given above the lower bounds will be as shown in table 4.2. 

Steepness Wavelength Values of lower and upper bounds for 
wavenumber k 

AK Am k' m-1 k1 ku m-1 ki 

0.3 0.20 178 0.4 3940 8 

0.4 -0.20 359 0.7 3940 8 

0.3 0.10 357 0.7 6260 12 

0.4 0.10 718 1.4 6260 12 

Table 4.2: Lower and upper bounds for wavenumbers k1 in capillary units. 
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The upper bound ku is a result of the physical nature of capillary 
waves. Short capillary waves are quickly damped out by viscosity so that 
at high wavenumbers the results are irrelevant because of rapid viscous 
damping. Our criterion is to insist that the waves travel an appreciable 
fraction of the gravity wave before they decay because of viscosity. A 
time scale for the decay of free surface waves is found in Lamb (1932) 

as 

Td = 2vk' (4.7.5) 

where v is the kinematic viscosity of the water. For pure capillary 
waves ce = 3c/2 and c2 = sk. So the length scale for the decay is 

E -3 
Ld=cgTd= T-v kom. (4.7.6) 

Suppose that the waves traverse a distance 8A, for some fraction 8, 
before they decay. Then 

Ld = 8A = 
3s' -3 

(k°) '[ so k" =3 (4.7.7) l 
Now, for water v=1.3 x 10'8 m2 s'1 so that 

A=0.2m=4 ku=8509'r m'i ,. A=. 0.1m=k"=13500'm'1. 

A=0.2 m= k' = 3940 m'' 
If 8=0.1 then (4.7.8) 

A=0.1 m ku = 6260 m-1 . 

Converting to capillary units with IoI = 100 rad s-1 gives upper bound 
as in table 4.2. Note that this analysis is independent of the steepness 
of the gravity waves. 

These lower. and upper bounds can also be applied to the results of 
chapter 3. If the slowly-varying assumption is examined for the 
effective gravity g*(X), in the same manner as for U(X), then it is 
found that the bounds are not changed. The most important effect of the 
lower bounds in. chapter, 3 is that the majority of solutions, with the 
GC+/G+. caustic have the caustic occurring at_wavenumbers lower than the 
lower bounds so that results regarding this caustic are dubious. 

Examination of figures 4.3,4,7 -r 10 shows that waves CC, CG+ and 
CC- (CC-) always have wavenumbers larger (smaller) than- the lower 
(upper) bounds. The majority of solution curves for waves CC, CG+ and 
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CG- have wavenumbers larger than the upper bounds at some point so that 

waves CG, CG+ and CG- will be strongly affected by dissipation whilst 

waves GC- will hardly be affected. Only a few of the solution curves for 

waves GC- have wavenumbers smaller than the lower bounds and when this 
is the case the solution curves are in the trough regions of the gravity 

waves. However, this does not mean that the slowly-varying assumption is 

valid since it can also be violated by rapid rates of change of 

wavenumbers, steepness, etc., as is the case here. 

4.8 Interpretation: Critical Gravity Waves 

a Critical Gravity Waves 

Define a breaking velocity UB as that velocity U at which a 
capillary wavetrain reaches maximum steepness and so reaches breaking 

point. Then waves CG- have two breaking velocities (figures 4.6), waves 
GC-, CG+ and the stopped waves have one breaking velocity (figures 4.5 

and 4.6). Again, waves G+ are not considered. 
For given values of IwI, s and bi, i. e. for a particular capillary 

wavetrain, the range of velocities of a gravity wavetrain may intersect 

the corresponding (U,, k, ) solution curve in one of three following 

ways (figure 4.12): 

Case 1. Intersection for the whole range of velocities. This 
implies the capillary wavetrain propagates over whole of 
the gravity wavetrain, 

Case 2. Intersection for part of the range of velocities. This 
implies the capillary wavetrain either breaks or reaches 
zero steepness and, thus, ceases to exist somewhere on the 

gravity wavetrain, and 

Case 3. No intersection with velocity range. This implies that 
this particular capillary wavetrain can not exist on this 

particular gravity wavetrain. 

Of these case 2 is the most interesting for this is the only case 

which includes breaking. This case itself can be split in to 

two (figure 4.12). Case 2i (2ii) corresponds to, breaking (either 

breaking or reaching zero steepness) as the waves propagate towards the 

crests (troughs). For, waves CG- both cases, 2i and 2ii represent 
breaking., For waves GC- and stopped waves cases 2i and 2ii represent 
breaking and reaching, zero steepness respectively. Only case 2ii is 
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possible for waves CG+ and this represents breaking. Thus, waves CG-, 

GC- and stopped waves (waves CG- and CG+) are the only waves which can 
break whilst propagating towards the crests (troughs) of the gravity 

wavetrain. 
Define a crest (trough) breaking velocity as the velocity required 

for breaking of the capillary wavetrain as it propagates towards the 

crests (troughs) of the gravity wavetrain. For waves CG- and CG+ the 
trough breaking velocities occur at a high wavenumber where dissipation 
is important (§ 4.7, table 4.2) and, hence, breaking is unlikely in 

practice. In chapter 5 this is shown to be the case. Thus, attention is 

confined to crest breaking velocities and, thus, to waves with w<0. 
Note that the stopped waves come into this category. 

For a particular value of b1 waves CG-, GC- and stopped waves have 

unique crest breaking velocities UB1 in capillary units. For 

particular s and jwI the dimensional value of this velocity is Iiven by 

the expression in (3.5.2) for U in terms of U1, i. e. UB = (slwl) UHF . 
Define the critical gravity waves for the chosen particular 

capillary wavetrain to be those gravity wavetrains whose surface 

velocity at the crest is equal to the crest breaking velocity UB. The 

wavetrain will break whilst propagating over any steeper or shorter 

gravity waves where as it will propagate over any lower or longer 

gravity waves. 
The surface velocity at the crest of a gravity wavetrain when 

expressed in gravity, units is a function of steepness AK only and its 

value, U,,,,, for the full range 0< AK < 0.44 is given in figure 4.13. 

For any chosen steepness AK and wavenumber K the surface velocity at the 

crest in dimensional units is given by an expression in (3.4.7) for U in 

terms of. U0, i. e. Uc = (g/K)i Uco . So wavenumbers of the critical 

gravity wavetrains for a particular capillary wavetrain are found by 

varying AK over its range, equating UH to Uc and solving for K. This 
77 gives K= g(slwl) UCo/UBI 

b' Results and Interpretation 
The critical gravity waves for the stopped waves solution are shown 

in figure 4.14 for various values of IwI with s=7.42 x 10-5 m3 s'2, 
the value for water. Similar curves exist for all the CG- and CC- wave 

solutions shown in figures 4.6. Note that for a particular value of bi 

waves CG-, CC- and the stopped waves have wavenumbers kB1 and 
frequencies OB1 associated with them. For given s and jwd these 

wavenumbers and frequencies are expressed in dimensional units using 

expressions in (3.5.1,2) for dimensional unit wave parameters in terms 

of capillary unit wave parameters. So associated with each curve in 
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figure 4.14 is a value of the dimensional quantities Iwo, UB, kH and OB. 
These are given in table 4.3. 

This table shows that for jwd > 20 rad s-s the wavenumbers at the 

stopped waves breaking velocity corresponds to those of pure capillary 

waves (k > 250 m'1). In chapter 3 it is deduced that the effects of 

gravity are qualitatively negligible for such values of w. This is, 

therefore, reaffirmed here. Also, examination of table 4.2 shows that 
for 50 s-1 < jwj < 1000 s-1 the wavenumbers at the stopped wave breaking 

velocity lie within the lower and upper bound for all the four waves 

Iml rad s'1 UB m s-1 kB m'1 aB rad s'' 

10 - 0.15 

20 - 0.19 

50 - 0.25 

100 - 0.32 

1000 - 0.69 

2000 -- 0.87 

200 - 20 

320 - 40 

590 - 100 

940 - 200 

4350 - 2000 

ý, 6900 ý- 4000 

10000 - 1.49 20170 - 20000 

Table 4.3: The dimensional values of breaking current, wavenumber and 
frequency corresponding to the stopped waves solution for 
different total frequencies Imp. These also correspond to the 
critical gravity wave curves for the stopped waves solution. 

considered. Thus, a choice of gym) = 100 s-' seems good since then 

wavenumbers for waves CG- will also have a chance of being within the 

ranges specified by the lower and upper bounds. This is shown to be the 

case in the figures above. I 
Recall that for a gravity wavetrain of fixed wavenumber K 

(steepness AK) the surface velocity at the crest Uc increases as 

steepness AK (wavenumber K) increases. By definition, a critical gravity 
wavetrain has surface velocity UB at the crest. So a CG- or GC- 
(stopped) capillary wavetrain "just" propagates over (exists at) the 

crests of the critical gravity wavetrain ("just" in the sense that the 

steepness of the�capillary waves is maximum at the crests, of the gravity 
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waves) when observed from the &, -frame. Note that the stopped waves can 

not propagate over the crests of the critical gravity wavetrain because 

they do not propagate in any direction. 

Also recall that if the surface velocity at the crest is greater 
than the breaking velocity then any CC- or CC- (stopped) capillary 

wavetrain breaks (does not exist) as it propagates towards (at) the 

crests of the gravity wavetrain. This will be so if for a fixed 

wavenumber K (steepness AK) the steepness AK (wavenumber K) of the 

gravity wavetrain is increased. 
It is concluded that, for any gravity wavetrain with K and AK to the 

right (left) of the critical gravity wave curves of any CC- or CC- 

capillary wavetrain, those particular capillary waves will break (not 

break) as they propagate towards (over) the crests of the gravity 

wavetrain. Also, for any gravity wavetrain with K and AK to the 

right (left) of the critical gravity wave curves of the stopped 

waves (figure 4.14) the waves will not (will) exist at the crests of the 

gravity wavetrain. 
Note that the crest breaking velocities of waves CC- and CC- are all 

less than the crest breaking velocity of the stopped waves solution 
branch (figure 6a). Thus, -. if a capillary wavetrain does not exist at the 

crests of gravity wavetrains for the stopped waves solution then it will 
definitely break as it propagates towards. the crests for any CC- or CC- 

capillary wavetrains. However, if a capillary wavetrain does exist at 
the crests of gravity wavetrains for the stopped waves solution-then it 

may, -or may not, propagate over the crests for a . CG- or CC- capillary 

wavetrain. ý 
All the physical interpretation above is related to observations in 

the m-frame of reference. However, when examining lakes or ponds, or any 

real liquid system, observations are usually made with respect to the 

observers frame defined in § 2.9. The above results are now given in 

this frame. 
If, in the w-frame, a CC- or CC- capillary wavetrain propagates over 

the crests of a gravity wavetrain then, in the observer's-frame, the 

gravity wavetrain either overtakes (waves CC-) or is overtaken by (waves 

CC-) the capillary wavetrain depending on the direction of propagation 

of the waves. Also, if, in the m-frame, a CC- or CC- capillary wavetrain 
breaks as it is swept towards the crests of a gravity wavetrain then, in 

the observer's-frame, the gravity wavetrain either sweeps-up (waves CC-) 

or absorbs (waves CC-) the capillary wavetrain. Note that sweeping-up 

and absorbing are both due to the breaking of the capillary waves. Waves 

CC- are swept-up on the forward face of the gravity waves whilst the 
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waves CG- are absorbed on the rear face of the gravity waves because 

these waves propagate in the -X and +X direction respectively. Note 

that since, in the w-frame, the stopped waves "packet" does not traverse 
then, in the observer's-frame, the stopped waves "packet" is carried 
along by the gravity wavetrain at the phase speed ce of the gravity 

wavetrain. 
Thus, for any gravity wavetrain with K or AK to the right (left) of 

the critical gravity wave curves for a GC- or CG- capillary wavetrain, 
that gravity wavetrain will either sweep-up (overtake) or absorb (be 

overtaken by) that capillary wavetrain. Also, for any gravity wavetrain 

with K or AK to the right (left) of the critical gravity wave curves for 

the stopped waves wavetrain, that gravity wavetrain will carry along the 

waves with breaking (no breaking) occurring at some point on the gravity 
wavetrain. 

Relating this to figure 4.14 it follows that if a gravity wavetrain 
does not have waves existing at its crests for the stopped waves 
solution then it will definitely sweep-up any GC- or absorb CG- 

capillary wavetrains. However, if a gravity wavetrain does have-waves 

existing at its crests for the stopped waves then it may, or may not, 
overtake or be overtaken by a GC- or CG- capillary wavetrain. 

Note that the likelihood of waves CG- either overtaking or being 

absorbed by a gravity wavetrain is very small since these waves will be 

quickly damped out by energy dissipation as the majority of wave 
solutions for these. waves reach wavenumbers greater than the, upper 
bounds given in table 4.4. Waves CC- are the ones which are either 
overtaken by or swept-up by a gravity wavetrain. 

71 



4.9 The Breaking of Gravity Waves 

Suppose that a train of capillary waves is propagating up the 
forward face of a gravity wave (figure 2.2). These will be either . the 

stopped waves or waves CC-. Examining the capillary waves motion it is 

seen that the the liquid under the capillary waves propagates rightward 
relative to their profiles (figure 4.15). When the capillary waves are 

at their breaking point they form a bubble ABCDE (figure 4.15). There is 

then a shear at AE where the surface of the liquid touches itself. Also, 

the vorticity generated by the bubble ABCDE is directed anti-clockwise. 
Longuet-Higgins (1988) shows that the transient effects of breaking of 
these capillary waves may result in a net drift current directed 
leftward. 

Banner and Phillips (1974) point out that the incipient breaking of 
a steady gravity wavetrain is characterised by the occurrence of 
stagnation points at gravity wave crests. As previously mentioned the 
motion of liquid under a gravity wavetrain when viewed from a reference 
frame fixed to the gravity waves, i. e. the w-frame, is leftward. The 

possible transient leftward net drift due to capillary waves breaking 

would increase the magnitude of the surface velocity of gravity waves 
and, thus, further remove it from the stagnation value. Consequently, 
the breaking of either the stopped waves or waves GC- on the forward 
faces of steep gravity wavetrains could have a stabilising influence on 
the gravity waves. On the other hand, the unsteady disturbance from 

capillary wave breaking may precipitate breaking of the gravity waves. 
It is also possible for capillary wave propagation to have a 

destabilising effect on the gravity wave motion. Capillary waves CC, CG+ 

and CG- propagate down the forward faces of gravity waves. If the 

effects of wave energy dissipation are accounted for (see chapter 5) 
then these waves rapidly dissipate their energy. This results in a 
momentum transfer to the surface current. A surface drift current 
develops whose direction of motion is rightward. Thus, a net decrease in 

the magnitude of the surface velocity for gravity waves would result so 
that the stagnation value is approached giving the destabilising effect. 

These interactions between breaking or dissipating waves and the 

mean flow have yet to be effectively modelled. In the following chapter 
we are only able to account for the effects of dissipation on the 

capillary waves. 
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CAPTIONS FOR FIGURES 

Figure 4.1: The variation of generalised group velocity ratios JcAJ/JCJ, IcE /Ich andIcBI/Icl with steepness ak for 
inite-amplitu e pure capillary waves. 

Figure 4.2: The variation of (a) wavenumber k and (b) steepness ak with 
current U for stationary waves; various wave-action 
fluxes b as shown. 

Figure 4.3: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves where the gravity wave has 
A=0.2 m, AK = 0.3; various wave-action fluxes b as shown. 

Figure 4.4: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves where the gravity wave has 
A=0.2 m, AK = 0.4; various wave-action fluxes b as shown. 

Figure 4.5: The variation of (a) wavenumber k, and (b) steepness ak 
with current U1 for Doppler shifted waves CG+; various 
wave-action fluxes bi as shown. 

Figure 4.6: The variation of (a) wavenumber k1 and (b, c) steepness ak 
with current U1 for Doppler shifted waves CG- and GC-; 
various wave-action fluxes b, as shown. 

Figure 4.7: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for waves CG+ with Iw) = 100 rad s-i where 
the gravity wave has A=0.2 m, AK = 0.3; various 
wave-action fluxes b1 as shown. 

Figure 4.8: The variation of (a) wavenumber kl and (b, c) steepness ak 
with distance X1 for waves CG- and GC- with jwl = 100 rad s-1 where the gravity wave has A=0.2 m, 
K=0.3; various wave-action fluxes b1 as shown. 

Figure 4.9: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for waves CG+ with IwI = 100 rad s-' where 
the gravity wave has A=0.2 m, AK = 0.4; various 
wave-action fluxes b1 as shown. 

Figure 4.10: The variation of (a) wavenumber kl and (b, c) steepness ak 
with distance Xs for waves CG- and GC- with 
Jwj = 100 rad s-' where the gravity wave has A=0.2 m, 

= K 0.4; various wave-action fluxes bi as shown. 

Figure 4.11: The variation of curvature icco at the crest with steepness 
AK for gravity waves. 

Figure 4.12: Diagram illustrating the possible ways in which the 
velocity range of a gravity wavetrain can intersect a 
capillary wave solution curve of the type given shown in 
figures 4.2,5,6. 

Figure 4.13: The variation of surface velocity Uco at the crest with 
steepness AK for gravity waves. 

Figure 4.14: Critical gravity waves curves for the stopped waves 
solution; various frequencies w as shown. Corresponding 
wavenumbers k1, etc., at the crest breaking velocity are 
given in table 4.3. 



Figure 4.15: Diakram illustrating the motion of liquid under a breaking 
capillary wave: ABCDE shows the enclosed bubble singularity 
with the surface touching itself at AE. 
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CHAPTER 5 
FINITE-AMPLITUDE PURE CAPILLARY WAVES WITH DISSIPATION 

AND THE UNIFORM APPROXIMATION THEORY 

5.1 Introduction 

Chapters 3 and 4 consider the linear and nonlinear interaction and 
propagation problems respectively. In both these chapters the effects of 

viscosity are assumed to be negligible. However, from observation it is 

seen that capillary waves are quickly damped out by viscosity. In this 

chapter the effects of energy dissipation on nonlinear capillary waves 
are considered. A dissipation term is added to the averaged energy 
conservation equation and the subsequent equation derived is solved. 

Crapper (1970) includes both energy input and dissipation terms in 

the averaged energy conservation equation for the case of stationary 

waves. His energy input term is derived from Longuet-Higgins (1963) 

hypothesis for the generation of capillary waves near the crests of the 

gravity waves. Our problem does not address the generation of capillary 

waves so that no such energy input term is considered. Moreover, the 

observation that capillary waves may, in fact, be generated at the crest 

of gravity waves as a result of small scale breaking of the gravity 
waves would sometimes make the addition of such a term dubious. 

As remarked upon in previous chapters the results of slowly-varying 
theory are most dubious in the neighbourhood of the linear caustic. It 

is found that similar features exist for the slowly-varying dissipative 

problem. Consequently, a uniform near-linear Schrödinger approximation 
in the neighbourhood of the linear caustic is used in order to examine 
the validity of the slowly-varying results. A nonlinear Schrödinger 

equation (NLS equation) is derived which includes the effects of 
linear (first order) dissipation. Peregrine and Smith (1979) outline the 

heuristic development of such an NLS equation and Rosales (1978) gives 
details of the standard method of solution employed. This aids in 

forming an overall view of the behaviour of the wave field and, thus, 

concluding the infinite depth propagation problem. 
In section 5.2 the general form of the dissipative averaged energy 

conservation equation is discussed and a dissipation term is added to 

this equation. It is shown in section 5.3 that the averaged energy 
conservation equation and the wave-action conservation equation are 

analytically equivalent when dissipation is negligible. In section 5.4 

the numerically solved equation is derived and the generation of initial 
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conditions is discussed. The special case of no gravity waves, 
i. e. U=0, is considered analytically in section 5.5. The cases of 
stationary and Doppler shifted waves are considered in section 5.6 and 
5.7 respectively. The uniform NLS equation is derived and discussed in 

section 5.8 with subsequent results given in section 5.9. In section 
5.10 a general discussion of the overall wave field is undertaken and 
certain conclusions are made relating to actual observations. 

5.2 The Dissipative Averaged Energy Equation 

When waves in a slowly-varying wave field are dissipating energy the 
total wave-action flux UA +B is no longer constant. The effects of 
dissipation on the wave-action conservation equation (2.4.9) are not 
immediately clear. This question is examined further in § 5.3 and fully 

answered later in chapter 7. In order to consider such effects the 
averaged energy conservation equation (2.6.4) for the wave motion, with 
a term added for dissipation, must be used. This states 

d (UE + 7) +S 

where D is mean rate of, energy dissipation and S= S11 is the 
"11"-component of the radiation stress. The validity of this form of the 
averaged energy conservation equation is shown later in chapter 7 but is 
intuitively obvious. Note that the addition of dissipative effects means 
that the wave-current interaction problem can no longer be considered 
since the distance coordinate x is present in the equations ab initio. 
Consequently, only the wave propagation problem is considered. 

As the propagation problem is in consideration the velocity 
variables P and Q, defined by (4.4.1), are used. The left hand side of 
equation (5.2.1) is considered first. Expressions for S, I and S are 
found using the expressions (2.5.8 - 2.5.10) for these parameters in 
terms of the four "basic" mean wave properties. Note that Vg and the 

mean bottom velocity squared are both zero. Use of expression +(4.2.7) 
for T, the dispersion relation (4.4.2) for D in terms of P and Q and 
noting V=V it follows that 

e_r (1 - PPQ2) (3 ̀ + pPQ2) f=3q (1 - Q2PZQ4) (5.2.2) 

S=2 (1 - ßPQ2)(1 +, 2ßPQ2) 
. 

(5.2.3) 
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Then, using the Doppler relation (4.4.2) to eliminate U, the 

averaged energy conservation equation (5.2.1) gives 

[T 1- 
04, -Z [3 + QQZ(P + 2Q)]] 

+2ß (1 - ßPQ2)(1 + 2ßPQ2)I -, _-D. (5.2.4) 

The right hand side of equation (5.2.1) is now considered. An 

expression for the dissipation term D is found using a result quoted in 

both Batchelor (1967, § 5.14) and Lamb (1932, § 329). They show that for 

an irrotational liquid motion 

D- Jo 81 (q2) ni ds (5.2.5) 

where p is the viscosity of the liquid, q is the velocity at the surface 
of the waves, ni is a unit vector directed outward and normal to the 

plane of the surface and ds is a length element along the surface of the 

waves. The expression (5.2.5) can also be used to derive a finite depth 
dissipative term as is done later. 

Crapper (1970) finds the expression for the dissipation term D 

corresponding to finite-amplitude pure capillary waves on a liquid of 
infinite depth using the solution given in § 4.2. In our notation 

D= 
S9 pis (1 - Q2PZQ4)(3 - Q2PZQ`) (5.2.6) 

This expression has been verified by the author. 
Linearisation of both D, in terms of Crapper's parameter A, and 

expression (4.2.3), for the parameter A in terms of wave steepness ak, 
leads to 

Tiin = 2psk'a2 + O(a4k4) (5.2.7) 

which agrees with the expression in Lamb (1932, § 348). It follows that 

=1 (1 + D')(3, - DZ) (5.2.8) 

Figure 5.1 shows the variation of P/Din with wave steepness ak. It is 

seen that' D/D. ln is a monotonic increasing function of steepness ak, 
i. e. as the steepness of the waves increases the rate of dissipation of 

energy also increases, as would be expected. It is also seen that the 

rate of change of D/Olin increases as 'steepness ak increases. 
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5.3 A Wave-Action Conservation Equation With Dissipation 

Our aim in this section is to derive a wave-action conservation 

equation with terms added to account for the effects of dissipation. 

From the expression (2.5.11) for the wave-action density A in term of 
the kinetic energy density T it is seen that the difference between 

energy type terms and wave-action type terms is a factor of a. Thus, 

dividing the energy conservation equation by v should give a wave-action 
conservation type equation. Now, using definitions (4.4.1) for P and Q, 

0= (5.3.1) 

so that, on division by v, the energy conservation equation (5.2.4) 

gives 

Tq- u [3 
+Q 2(Q-P) - ß2 PQ2(P + 2Q) 1 

+ TS 
[$3 

+Q2$- Q2 4PZQ] L-Y, 
=-Q (5.3.2) 

The expression (4.4.5) for the total 'wave-action flux UA +B suggests 
that if a wave-action conservation type equation is to be derived then 
terms of order Q° and /3Z should collect together but terms of order /3 

should cancel. Collecting terms of similar order in Q gives 

+ T-j 
l' (5.3.3) Qo $a 

[Q3 
+43( 

dx, 
_U L f2P 

Q1 2Pd(Q-P)'+2pfý-91- 0, (5.3.4) 

pz qU [- PQ2 (P + 2Q)] - 4P2Q IN 

[P2Q(2P + Q)J (5.3.5) 

as is required. Thus, it immediately follows that 

u (U. 4 + B) 
01. 

(5.3.6) 

Therefore, when the viscosity p of the liquid is zero, i. e. D=0, the 

energy conservation equation (5.2.1) and the wave-action conservation 

equation (5.3.6) must give the same results. Note that this is proof 

only for the special case of two dimensional finite-amplitude pure 
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capillary waves on infinite depth liquid. A general approach for any 
slowly-varying wave system is undertaken later in chapter 7. It follows 

that the energy conservation equation (5.2.1) and the wave-action 
conservation equation (5.3.6) are interchangeable. 

5.4 The Numerically Integrated Equation and "Windows" 

The behaviour of E, 7, S, described in Hogan (1979), and D with 
steepness ak (figure 5.1) suggest that the equation (5.2.4) will not be 

stiff. Thus, a numerical integrating package (NAG LIB D02CBF) for 

non-stiff systems is used. This package uses a variable-order 
variable-step Adams method. This requires the equation to be solved, in 
our case the energy conservation equation, to be written in the form 

U=f (x, P) . (5.4.1) 

After a little algebra the energy conservation equation (5.2.4) gives 

dP_M+N 
a3E =w (5.4.2) 

P Where M= 
Ts t (P 

1 
u) 3. [1 - ß2P2 (P - U) 4] [3 '- Q2P2 (P - U) 4] 

N= 2 [4P - U+ ß2P2 (P - U)' (2P - U)] du 

and N= 6P + 2Q2P(P - U)4[(3P - U)2 - 3P2] . 

In equation (5.4.2) x is a curvilinear coordinate on the surface of 
the gravity waves (figure 2.2) but the surface data for the gravity 
waves is known in terms of the horizontal coordinate X. Consequently, 

equation (5.4.2) needs 
, 
to be expressed in terms of X. Now, it is seen 

that dX = cos 9 dx, where 0 is the angle between the horizontal and the 
surface of the gravity waves, so 

I= cos 
,o 

(5.4.3) 

and 
dP' M+Ný 
ir= cos 5.4.4 

This equation is integrated numerically to find the variation of P or k 

with X. Then frequency a is found using Doppler relation (2.3.1) and 
wave steepness ak is found using dispersion relation (4.4.2) for D and 
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expression (4.2.6) for wave steepness ak in terms of D. Note that 0 is 

part of the surface data of gravity waves which is known ab initio. The 

results of the integration should give a constant total wave-action 
flux U. 4 +B when the viscosity of the liquid is zero. This is used to 
check the accuracy of the numerical integrating scheme. 

The integrating routine requires a direction of integration, 
i. e. +X or -X or, equivalently, +x or - x, and an initial value for X 

and P or k. Capillary waves are attenuated by energy dissipation and 
this is found to be the case when integration is performed in the 
direction of the total group velocity C. as may be expected since waves 
propagate in this direction. Integrating in the opposite direction 

results in the solution of a final value problem (a feature made use of 
later in § 5.8,9). In terms of P and Q the total group velocity C. is 

given by 

Cg = (2P + Q) (5.4.5) 

Now, from table 3.1, waves CC and CG(+, -) have C. >0 whilst waves CC- 

and C- have C. <0 so that waves CC, CG(+, -) propagate in the +X 
direction and waves CC- and G- in the -X direction as is briefly 

remarked upon in § 4.3. 
The initial values of X and P are chosen in the following manner. 

Firstly choose a value for p or, equivalently, values for s and m. Then 

choose a particular: gravity wavetrain,, together with a position on the 
gravity wave at which capillary wave propagation commences. This is 

usually chosen to be at a crest or trough of the gravity wavetrain. The 
initial values of both X and U are then fixed. The initial value of P 

or k is given by the Doppler relation (4.4.2) or (2.3.1) and the 
dispersion relation (4.4.2) or (4.2.4), i. e. 

D= ßP (P - U)2 or sk3D = (w - kU)2 . (5.4.6) 

As D is varied over its range (4.2.5) this equation gives at most 
four ranges for P or k corresponding to the four possible waves CG(+, -), 
GC- and G-. Thus, these four possible ranges give four possible 
"windows" from which propagation can commence. ' In essence 
taking D=1, D. I. gives the curves which bound each window 

U=P+ [p] 
or U. =w+ (skD)'l (5.4.7); 

in the (U, P) or (U, k)-plane. The latter are shown in figures 5.2a, b 

78 



for w=0 and c#0 respectively. This feature of windows exists whether 

or not dissipation is present in a problem. This explains why in § 4.5 

and § 4.6 the solution curves corresponding to the stationary wave CG or 

waves CG(+, -), GC- (and G-) merge from distinct regions. 

5.5 The Special Case U=0 

The accuracy and efficiency of the numerical integrating routine for 

equation (5.4.4) is checked using the exact solution for the case U=0 

as well as solutions for the case p=0. From the general analysis 
of § 3.2 and the window analysis above it is seen that when U=0 waves 
will only exist if w#0 and that the only waves which exist are waves 
CC+ and G-. Now, since U=0 these waves have equal magnitudes of k, v, 
c, ct and b for a particular Imp but opposite signs of v, c and c.. Note 

that these waves will be realistic only when IwI is "large" because the 

effects of gravity decrease as IwI increases. It follows that these two 

waves actually represent the one single wave when U=0 whose direction 

of traverse is given by the sign of w, that is +X (- X) direction if m 
is positive (negative). I 

Putting U=0 in the wave-action conservation equation (5.3.6) gives 

dB 
ýx-ý ý (5.5.1) 

or, equivalently, Z5i =2 TS 
(1 - PTTT-+ 

3- ZPe (5.5.2) 

This equation is easily integrated using standard methods to give 

s= 
2ßP3 "T In (1 ++2 In Il 

+ constant (5.5.3) yr 3 

Note that the dispersion. relation (4.4.2) states D= ßP3 when U=0 so 
that equation (5.5.2) could be expressed directly in terms of D and then 
integration performed. This is done as a check for the solution (5.5.3). 

The value of the constant is determined by the choice of initial values 
for x and P or D. The numerical routine integrates equation (5.4.4) 

or (5.5.2) for this special, case to give exactly the same solution as 

given by expression (5.5.3). The solution (5.5.3), shows that the 

capillary wave steepness diminishes rapidly with increasing 
(decreasing) X for wave CG+ (G-) as would be expected in the absence of 

a mainstream flow. 
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5.6 Stationary Waves 

As mentioned in § 4.4 the velocity variable P defined by (4.4.1) is 

only suitable when the frequency w of the waves is non-zero and a 

variable R, defined by (4.4.11), must be used. The equations for the 

motion of stationary waves can then be derived using one of the two 

methods outlined in § 4.4, i. e. the direct method or substitution 

method. Both methods have been used to confirm the equations derived 

below. 

The energy conservation equation (5.2.4) becomes 

TE [2rQ(i 
- RQZ), - 

RQz (1 - RQZ)(1 + 2RQ2) R=-D (5.6.1) 

where 1' =4S P7 (1 - RZQ4)(3 - R2Q4) . 
(5.6.2) 

The corresponding numerically integrated equation is still given by 

the ordinary differential equation (5.4.4) but with 

M= - TSI(1- 
R2U4)(3- R2U4) , N=- 2U(1+R2U4) Ti 

and W= 2RU8 . 

For this case there is only one possible window given by 

D= RU' or skD = U2 . 
(5.6.3) 

As usual dimensional units are used for this case. The differential 

equation (5.4.4) is integrated in the +X direction because C. >0 for 

waves CG. Initial values of P are found using equation (5.6.3). Once the 

variation of P or k with X and, thus, U is found a and a are found using 
the general method described in § 5.4. 

Results are shown in figures 5.3,4 for p=1.304 x 10-3 kg m"1 s-1 

- the value for water. The gravity waves have wavelength A=0.2 m and 

steepness AK = 0.3. As shown in chapters 3 and 4 the effects of gravity 

on waves CG propagating on gravity waves with A=0.2 m and 

AK = 0.3,0.4 are qualitatively unimportant. The propagation of 

capillary waves can be initialised from any position on the gravity 

waves. However, all the general features are shown when propagations are 

commenced from either the troughs (figure 5.3) or the crests 
(figure 5.4) of the gravity waves. Each solution curve is denoted by the 
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appropriate initial wavenumber k with the corresponding value of b and 
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initial position given in table 5.1. The linear solution curves (dashed 

lines) are also shown since they provide an interpretive framework. This 

is an inviscid solution curve and provides a "limit" of the parameter 

space for wavenumber k and steepness ak. 

k m-1 b kg m3 s'2 Position 1k m-1 b kg m3 s_2 Position 

7000 9.46 x 10-7 trough 

8500 4.21 x 10-6 trough 

10000 6.12 x 10_6 trough 

1700 2.89 x 10-6 crest 

2000 1.46 x 10'6 crest 

2500 2.56 x 10-5 crest 

Table 5.1: Initial wavenumbers k, wave-action fluxes b and positions of 
propagation. 

Figures 4.3 shows the qualitative characteristics of non-dissipative 
propagations. Table 5.2 gives initial wavenumbers of dissipative wave 

propagations and values of b for the qualitatively, corresponding 

non-dissipative wave propagations of figures 4.3 so that comparison can 
easily be made. 

Initial k Corresponding b Initial k Corresponding b 

m'i kg m3 s-Z m-s kg in3 s-2 

7000 10'6 1700 10'8 

8500 5x 10'g 2000 10'6 

10000 .5x 
10'8 2500 2.5 x 10'6 

Table 5.2: Initial wavenumbers-k for dissipative wave propagations and 
values of b for qualitatively corresponding non-dissipative 
wave propagations of figures 4.3. 

There is a marked contrast between dissipative and non-dissipative 

propagations. Comparing figures 5.4 and 4.3 it is seen that that waves 

actually experience a rapid decrease in steepness as they propagate from 

gravity wave crests towards gravity wave troughs. The increasing 

steepness effects of non-dissipative theory has been over shadowed by 
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the decreasing steepness effect of wave energy dissipation. However, 

comparing figures 5.3 and 4.3 it is seen that when propagations commence 
from gravity wave troughs both dissipative and non-dissipative theory 

give decreasing steepness effects. Thus, waves CG dissipate in a shorter 
distance when propagating from gravity wave troughs than they do when 
propagating from gravity wave crests. 

When propagations commence from the gravity wave crests waves CG 
become invisible to the eye after propagating 4 cm where as when 
propagations commence from the gravity wave troughs waves CG become 

invisible to the eye after propagating only 1 cm. Thus, waves CG remain 

visible to the eye for longer distances when on the forward faces of 

gravity waves. This explains why stationary capillary waves are most 
often observed on the forward faces of gravity waves. 

The steepness of waves CG decreases rapidly when the initial 

steepness is large - greater than 0.8, say. Examination of the variation 
of dissipation ratio D/Dlin, given by expression (5.2.12), with wave 
steepness ak, as shown in figure 5.1, shows that the rate of change 
of D/Olin is greatest when ak is large so that this behaviour is to be 

expected. 
If the steepness of the gravity waves is increased, to AK = 0.4 say, 

it is found that results are qualitatively the same as for the 
case AK = 0.3 considered here. 

These waves have stationary crests and troughs but as a packet they 

propagate in the +X direction. Thus, in the observers frame the wave 
packet would be seen attempting to overtake the gravity waves but would 
very quickly dissipate and cease to exist. 

The integrating routine gives results which agree exactly-with those 

previously derived in chapter 4-for the case of zero viscosity and the 

total wave-action flux is found to remain constant as required. This is 

the third method mentioned in § 4.4 for finding inviscid solutions and 
has been tested for both stationary and Doppler shifted waves. Note that 

this requires a -large number of points (order 103) on -one' gravity 

wavelength with routine NAG LIB D02CBF in order to force the routine to 

take small step lengths and thereby maintain a high level of accuracy. 
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5.7 The Doppler Shifted Waves 

The case of Doppler shifted waves is now considered so that the 

equations of § 5.4 are solved in capillary units. The parameters for the 

problem are w1 and p where µ1 is the dimensionless viscosity and is 

given by 

I 

µ1 = Sw 3 
7 

Results are given for water with p taking the values p=0, where 

necessary, and p=1.304 x 10-3 kg m-s s-s so that comparison between 

inviscid and dissipative results can easily be made. Also, tables of the 
form of table 5.2 are given so that the results of this chapter are 

easily related to those of chapter 4. The gravity waves have 

wavelength A=0.2 m and steepness AK = 0.3. The capillary waves have 

frequency jwj = 100 rad s` -so that p± = 3.428 x 10'3. These parameter 

values are chosen because the effects of gravity on Doppler shifted 

waves are negligible for such a case. As usual, attention is confined to 

waves CG(+, -) and CC- since waves G- are strongly affected by gravity in 

any real situation. The propagation of the capillary waves can be 

initialised from any position on the gravity waves. However, all the 

general features of solutions are shown when propagations are commenced 

at either the trough or the crest. 
The results are shown in figures 5.5 - 5.13. Figures, 5.9,5.11 

and 5.13 have p=0 whilst the others have p#0. Also figures 5.4,5.7, 

5.12 and 5.13 have propagations commencing at the gravity wave troughs, 

and so have a crest at the centre, whilst figures 5.5,5.8 - 5.11 have 

propagations commencing at the gravity wave crests, and so have a trough 

at the centre. In any case, the initial position for waves CG(+, -) 
is X, =0 whilst that for waves CC- is X, t! 102. Each solution curve is 

denoted by the appropriate initial wavenumber k1 with the corresponding 

wave notation, initial value of bi and initial position given in 

table 5.3. The linear solution curves and the stopped waves 

curves (dashed lines) are also shown since these provide an interpretive 

framework. These are inviscid solution curves and provide the "limits" 

of the parameter space for wavenumber k and steepness ak. 
Figures, 4.7 and 4.8 show, the qualitative `characteristics of 

non-dissipative propagations for waves CG(+, -) and CC-. Table 5.4 gives 
initial wavenumbers of dissipative wave propagations and values of b1 

for the qualitatively corresponding non-dissipative wave propagations of 
figures 4.7 and 4.8 so that comparison can be easily made. 
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ki Wave bý Position k, Wave b, Position 

14 CG+ 0.006 trough 1.85 CG- 0.03 crest 

17 CG+ 0.03 trough 2.6 CG- 0.1 crest. 

20 CG+ 0.04 trough 3.4 CG- 0.15 crest 

4.2 CG+ 0.01 crest 1.04 GC- - 1.1 crest 

5.0 CG+ 0.1 crest 1.48 GC- - 0.05 crest 

5.8 CG+ 0.2 crest 1.52 GC- - 0.04 crest 

13 CG- 0.006 trough 0.317 GC- - 34 trough 

16 CG- 0.03 trough 0.328 GC- - 1.7 trough 

19 CG 0.04 trough 0.3289 GC- - 0.03 trough 

Table 5.3: Initial wavenumbers ki, wave-action fluxes b1 and positions 
of propagation for waves GC(+, -) and GC-. 

Initial k1 
and wave 

Corresponding b, Initial k1 
and wave 

Corresponding b1 

14 CG+ 0.01 1.85 CG- 0.01 

17 CG+ 0.01 2.6 CG- 0.1 

20 CG+ 0.01 3.4 CG- 0.15 

4.2 CG+! 0.01 1.04 CC- --1.0 
5.0 CG+ 0.05 1.48 GC- - 0.01 

5.8 CG+ 1.0 1.52 GC- - 0.01 

13 CG- 0.01 0.317 CC- - 25.0° 

16 CG- 0.01 0.328 GC- - 5.0 

19 CG-. 0.01 0.3289 GC- - 0.1 

Table 5.4: Initial wavenumbers ki for dissipative wave propagations and 
values of b, for qualitatively corresponding non-dissipative 
wave propagations of figures 4.7,8. 
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Figures 5.5 and 5.6 show the propagation behaviour of waves CG+ with 
viscosity p#0. Waves CG+ have positive Cg and, thus, propagate in 

the + X, direction. As for stationary waves CC the dissipative behaviour 

of these waves is markedly different to the non-dissipative behaviour 

shown in figures 4.7. The characteristic behaviour of waves CG+ is the 

same as that of stationary waves CC for both dissipative and 

non-dissipative theory. Waves CG+ are rapidly damped out. Also, if 

propagation commences form the crest of the gravity waves then waves CG+ 

remain visible to the eye four times the distance if propagation 

commences from the trough. This is seen by comparison of figures 5.5 

and 5.6. However, the feature of rapid dissipation implies that the 

slowly-varying assumption may be violated by such propagations. 
Figures 5.7 and 5.8 (5.9) show the propagation of waves CC- with 

viscosity p#0 (it = 0). Propagations with p=0 corresponding to 
figures 5.7 are all qualitative similar to those with b=0.01 in 

figures 4.8a, b. Those corresponding to figures 5.8 are shown in 

figures 5.9. Waves CC- have positive Cc and, thus, propagate in the +X 
direction. Waves CC- also show marked differences between dissipative 

and non-dissipative behaviour. They also rapidly dissipate and cease to 

exist. They never increase in steepness and, thus, never propagate 
towards breaking. 

Figures, 5.10 and 5.12 (5.11 and 5.13) show the propagation of waves 
GC- with viscosity p#0 (p = 0). Those of figures 5.10 (5.12) can be 

compared with figures 4.7a, c and 5.11 (5.13). Waves CC- have 

negative Cc and, thus, propagate in the - X1° direction. Dissipation 

still affects the waves but not to the same degree as, for-waves CC-. The 

steepness of the waves is attenuated, in comparison to non-dissipative 

results, as expected. 
One striking feature is dominant on the propagation of waves CC-. 

The majority of solutions propagate and eventually reach the stopped 

waves solution where the total group velocity Cg is zero (figures 5.10 

initial ki = 1.52,1.49,1.04 and figures 5.12 initial k1 = 0.3289)-but 
have non-zero non-maximum amplitude when this occurs. If the equations 

are integrated-further in the - X1 direction the total group velocity Cc 

of the waves immediately becomes positive and the waves steepness 

rapidly increases. Both of these features confirm that the solution is 

mathematically and physically unrealistic beyond the point at, which 

total group velocity Ca is zero. Also, solutions commencing at - this 

point, where Ca = 0, and integrated in. the + X, direction, i. e. CC- wave 

solutions, have a negative total group velocity Cg-after a remarkably 

short distance and also rapidly increase in steepness. -, Again, both of 

these features confirm that propagation in the + X1 direction, is also 
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unrealistic. This suggests that waves CC- can not be reflected into 

waves CC-. The question of the behaviour of these solutions from this 

point onwards is at present unknown. 
This type of behaviour also exists for waves CG- (figures 5.8 

initial k1 = 1.86) but not so often. This could be due to the basic 

assumption of the theory, namely, the slowly-varying assumption since 
wave properties in the neighbourhood of the stopped waves curves do vary 
quickly and the slowly-varying assumption does break down. This quickly 
varying feature commences in the neighbourhood of the caustic and, thus, 
firstly breaks down there. This is further investigated below in § 5.8 

where a uniform theory is applied to study the behaviour in the 

neighbourhood of the caustic. Note that the solutions with 
initial k, = 1.04 (figures 5.10) and 0.328 (figures 5.12) propagates 
over the whole of the gravity wave shown but end with a lower steepness 
and a lower total wave-action flux. When these solutions are allowed to 

propagate further they will eventually reach the stopped waves solution. 
Waves CC- can still break but it is found that they propagate 

further before breaking (figures 5.12 and 5.13 initial k, = 0.317). Also 

there exist waves which break as they approach the crests of the gravity 
waves for p=0 but propagate over the crests when p#0 (figures 5.12 

and 5.13 initial k1 = 0.328). There are no solutions which reach zero 
steepness no matter how small the value of the initial steepness of the 

waves (figures 5.10 initial k, =, 1.48,1.04). If propagation is 

commenced with a small initial steepness and, thus, a small initial 
total wave-action flux, then the steepness of the waves remains small 
but non-zero and proceeds to increase as the gravity wave crests are 
approached. This is because when, the steepness of- waves CC- is'small 

their wavenumbers are also small so that dissipation effects become 

negligible. In fact, under these circumstances the solution curves 
eventually hit the stopped waves curve (figures 5.10 initial k1 = 1.48). 

It is generally deduced that the increasing steepness effect of 
non-dissipative theory experienced by waves CC, CC(+, -) is over shadowed 
by-the decreasing steepness effect'of wave energy dissipation. This can 
be attributed to, the small wavelengths of these waves. It is concluded 
that for waves CC and CG(+, -) the majority of propagations result in 

rapid and complete dissipation of the waves. Some propagations for 

waves CC-, which commence close to the stopped waves solution and with a 
low value of total wave-action flux, reach the stopped wave solution. , 

For waves CC- the majority of propagations result in an overall 
decrease of 'steepness ý and ý total' wave-action flux with solutions 

eventually reaching the stopped waves solution where the total group 
velocity Cc is zero but with finite-amplitude. Some propagations 

86 



commencing with a high value of steepness and total wave-action flux 

may (e. g. figures 5.12 initial ki = 0.317) or may not (e. g. figures 5.10 
initial ki = 1.04) break. 

In the observers frame waves CG(+, -) behave in a similar fashion to 

stationary wave CG. They attempt to overtake the gravity wave crests and 
troughs but quickly dissipate and cease to exist. As the steepness of 
waves GC- is attenuated there will be cases where the inviscid theory of 
chapter 4 predicts that the capillary waves are swept-up by the gravity 
waves on the forward faces of the gravity waves but dissipation allows 
the capillary waves to be overtaken by the gravity waves- so that no 
breaking occurs. The general translation of propagations from the 

m-frame to the observers frame should, by now, be familiar to the reader 
so that greater detail is not given. 

The case A=0.2 in, AK = 0.4 is not considered here because of the 
following reason. The surface velocity at the crests of the gravity 
waves is less than all the crest breaking velocities. Consequently, no 
windows exist at the crests and it would not be possible to show all the 
features of possible solutions as shown above. Propagations which 
commence at the troughs of the gravity, waves have similar features to 
those for the case AK = 0.3 with the added restriction, seen from the 

stopped waves solutions curves of figures 4.8, that no waves can 
propagate over the crests. Thus, as waves CG- approach the crests they 

will dissipate and reach zero steepness or, on a rare occasion, reach 
the stopped waves solution and as waves GC- approach the crests. they 

will either break, after propagating slightly further, or reach the 

stopped waves solution. 
Note that the fact that the stopped waves curves separate the two 

regimes of the CG- and the GC- waves further suggests that the correct 
definition for the group velocity has been made for the problem 
considered here. 

It is found that all wave propagation commencing in the 

neighbourhood of the stopped waves solution are "attracted" towards the 

stopped waves solution and that there is no propagation away from the 

stopped waves solution. Thus, positions on the stopped waves solution 
are propagation solution points which can not experience changes in wave 
parameters, such as steepness. How can this be possible, especially when 
wave energy dissipation is present ? 

It is easy to investigate the time it takes for wave modulations to 

reach the stopped waves curve according to slowly-varying theory using 
an analysis local to the zero total group velocity position. Numerical 
investigations show that total group velocity of such wave solutions 
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becomes zero linearly. That is, 

H= Cg N-X or t In IX (5.7.2) 

local to the zero total group velocity positions now transformed 
to X=0. This means that wave solutions take an, infinitely long period 
of time to reach zero total group velocity, i. e. the zero total group 

velocity position can never be reached by slowly-varying wave 
modulations. 

Simple consideration of the (X, t)-plane shows that any wave 
modulation of finite length in X will experience a continuous decrease 
in length as time increases. Thus, as the zero total group velocity 
position is approached the, slowly-varying assumption for the wave 
modulation will be violated. The only possible way in which the 

slowly-varying assumption could remain valid is for the wave modulation 
to be of infinite length, i. e. a uniform wavetrain. Thus, the zero total 

group velocity positions can only be sustained by uniform wavetrains 
approaching the zero total group velocity positions from "infinity" - in 

our case the trough, say. The uniform wavetrain is a source of 
wave-action flux and balances the dissipative effects at positions on 
the stopped waves curve. 

It remains to investigate the behaviour of the waves CG- and GC-, 

especially those wave solutions which hit the stopped waves curves, in 

the neighbourhood of the caustic where the slowly-varying assumption 
breaks down. One possibility, pursued below, is to use a near-linear 
Schrödinger equation type of analysis as outlined, for instance, in 

Peregrine and Smith (1979). 
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5.8 Uniform Near-Linear Schrödinger Approximation 
in the Neighbourhood of the Caustic 

Throughout all the analysis so far it has been assumed that both the 
mainstream flow and the wave parameters are slowly-varying. It is 

explained in chapter 4 that for the wave-current interaction problem 
this assumption is most dubious for waves with "small" b, in the 
vicinity of the linear caustic. Also, for the wave propagation problem 
this assumption definitely breaks down in this vicinity. Peregrine and 
Smith (1979) give, using a heuristic Taylor expansion in the 
neighbourhood of a linear caustic, a near-linear Schrödinger 

equation (NLS equation) which represents a uniform approximation in the 
neighbourhood of a linear caustic. This heuristic derivation is 
continued and an appropriate first order dissipation term is derived and 
added to the (steady-state) NLS equation. This equations is then solved 
in order to investigate the validity of results for slowly-varying 
theory. 

From Peregrine and Smith (1979) the time-dependent NLS equation, 
valid in the neighbourhood of a caustic is, 

aQ as 1 a2c a2a ag 1 -t - -2 - yx-z +xT, a+H ja12a =0ý (5: 8.1) 

Where 0= C(w, k, a; U(x), x, t) _ ý(ý - kU, k, a) = C(u, k, a) 

using the notation of § 2.8 with the coefficients all evaluated at the 
linear caustic k=k., U=U. situated at x=0. This equation describes 
both an incident and a reflected wave solution. It requires that waves 
be incident from the -x direction. Here a is the complex amplitude of 
the first approximation, although, as may be, seen, the equation includes 
cubic terms. 

Attention is focused on waves CG- and GC- only since these are the 
only waves which exist in the neighbourhood of the linear caustic. Note 
that no such analysis can be performed for the stationary waves CG since 
for this case there is no caustic point. Note that the wavenumber k. 1, 
frequency e., and current U, 1 at the caustic are given by 

2 
-2 kýý = 23, ccý =2 and Uci =-3x23. (5.8.3) 

The idea is to use the linear dissipation term Dltn given- by 
expression (5.2.7) to find the appropriate first order dissipation term. 
The heuristic derivation in Peregrine and Smith (1979) involves a Taylor 
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expansion about the caustic. In the neighbourhood of the caustic the 
total linear energy density E and the linear dissipation D1 are given 
by 

E= ý7 k1c 1a12 and Dlin = 2psklc lall (5.8.4) 

where a subscript c denotes values at the caustic. 2j is an energy 
term so it is required that the time-dependent NLS equation (5.8.1) must 
be manipulated to the form of an energy conservation equation. Thus, the 

expression (5.8.4) for E implies that equation (5.8.1) must be 

manipulated to include a term of the form 

Jg 1 a12 (5.8.5) pi _ k. 

Taking a*(5.8.1) - a(5.8.1)*, where * denotes complex conjugation, 
gives 

2 ö 
- -rwkc 2 [a* 82 a- aöa * 2C lal2+i z 

te, =0. (5.8.6) F LM-T/ TX-T 

Note that the x öc/öx and H terms present in the time-dependent NLS 

equation (5.8.1) are no longer present. To add the first order effects 
of dissipation 'simply replace the right hand side of this energy 
conservation equation by - D11n, With Dlsn given by expression (5.8.4), 

so that 

IaZ+i cate [a* 0aa *1 ! LLs ký a*a (5.8.7) 

This energy equation must now be manipulated to give those terms 

present in the time-dependent NLS equation (5.8.1). The simplest method 
of doing this is reverse the manipulations involved in deriving the 

energy equation (5.8.7). In doing this those terms which have cancelled 
during the formation of (5.8.7), i. e. the terms involving x O6/äx and H 
in the time-dependent NLS equation (5.8.1), are added back simply 
because one of our criteria for the equation derived is that this 

equation must reduce to the time-dependent NLS equation when the 

viscosity µ is zero. It is easily found that 

09 öa 019 dZa 
+2 

OG 
a+g ýa12a =-i 

2S 00 k2 a (5.8.8) lw U- yW7 dz 
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Thus, the steady-state dissipative NLS equation takes the form 

dla 
so r- mx a-n lalla - ip a=0 (5.8.9) 

where m=2 
/ate, 

n=2H/ate, P= 
AP-S kcTW/ate. (5.8.10) 

The coefficient in represents the effects of the linear dispersion, n 
the effects of the higher order dispersion (S-type near-linear caustics 
imply that n<0 whereas R-type near-linear caustics imply n> 0) and p 
the first order effects of dissipation. 

The results, present in chapter 4 and above, for the slowly-varying 
propagation problem show that the X-axis of the m-frame is directed 

perpendicular to both the caustics occurring symmetrically on either 
side of the gravity waves crests or troughs. However, neither of the 

caustics is situated at X=0. Moreover, only one caustic has waves 
incident from the -X direction - the caustic occurring to the left of 
gravity wave crests. These restrictions are easily removed: a simple 
translation of X places the caustic at X=0 and, if. necessary, a simple 
reflection X -º -X ensures that waves are incident from the -X 
direction. Thus, both the caustics can be examined with either of waves 
CC- or GC- as the incident waves and the other as the reflected waves. 
Note that a simple reflection z -º -x does not change the form of the 
steady-state NLS equation which is clearly seen from examination of 
equation (5.8.8). Consequently take x -º X in the steady-state NLS 

equation (5.8.9) so that the equation under consideration is 

dom- 2( /a ] Xa- 2H/ate ýa12a- i 
jgS ( 182 ký a=0 (5.8.11) 

ll 

This equation is scaled to capillary units after which Ince (1944, 

p 328) is followed. Thus, define 

w= I+ 
1 

nimi1 Si ,2= 
ýmiý Xi (5.8.12) 

ki 
ml =2 where n, Tik1 dUl _ 

[- 

ý1-1C 

[Val, 

- 
U21, ax-I jC (5.8.13) 

The choice of sign for the w expression' depends on the sign of n, and 
this in turn depends on the type of near-linear caustic present. It is 

shown in chapter 3 that the CG-/GC- caustic is of S-type so that n, <0 

and the upper sign must be chosen. 
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The fact that waves must be incident from the -X direction means 
that dU/dX must be positive at the caustic so that m1 > 0. Thus, waves 
are always incident from the -z direction when either of the caustics 
on a gravity wave is considered. Therefore, the equation to consider for 

either of the caustics is 

d'w 
z- zw +2 lwl2w - iB w=0 (5.8.14) 

ri6s w k14, - 
where B=Ii_ 

itif 
lZl (5.8.15) 

This equation is a generalised Painleve equation. It can be written in 

the form 

d'w 
r- (z + iB) w+2 Iw12w =0. (5.8.16) 

For B=0 Miles (1978,1980) gives 

3 

wNA, r-' z-t exp - zýl as z -º + co 

and Peregrine and Smith (1979) give 

Fl N A2 Tý (- z)'4 sin I (-z)ý +J as z --+ - co 

where Al and A2 can be complex. This means that for B=0 the 

near-linear (cubic) term in the generalised Painleve equation (5.8.14) 
is asymptotically small so that the asymptotic form of the Airy function 

applies. The question is: Do these expansions still remain valid 
for B#0? If the near-linear term is omitted then the generalised 
Painleve equation is 

dZw 
- (z + iB) w=0 (5.8.17) dz 

for which asymptotic limits are easily given by transformation 
(z -º z+ iB) of those above for the Airy function. Essentially, these 

asymptotic expansions are valid as z -' ± oo for the generalised Painleve 

equation if lwI2w is small compared to w' and (z + iB) w and the w' 

and (z + iB) w terms balance each other. This is, in fact, the case 
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as z -º + oD but not as z -º - oD. Thus, 

WN Al Ai(z + iB) -º A, 1i 
z'i exp 

2 
zlz - iB z] (5.8.18) 

as z --++oo . 
The generalised Painleve equation (5.8.14) is integrated in the -z 

direction with use of the asymptotic condition (5.8.18) to generate 
initial conditions. A standard integrating routine (NAG LIB D02CBF) is 

used. This requires a system of first order coupled "real" equations. 
The substitution w= reis is used to generate such equations. The 

accuracy of the integrating routine, is checked with the results of 
Rosales (1978) and Miles (1978,1980) who examine the case of B=0 in 

great detail. Our results agree qualitatively (maxima and minima occur 

at approximately the same values of z but take slightly different values 

of w) with those of Rosales (1978) and Miles (1978,1980). Their methods 

are more accurate than those used here because they include extra terms 

in the asymptotic expansion of the Airy function (the first ten terms to 

be precise). 
To examine particular cases considered above and in the 

slowly-varying theory of chapter 4 'specific values of B and Al are 

required. The value of B is easily found from definition (5.8.15) once 

specific values of A, AK and w are chosen since then, for any 

slowly-varying solution of chapter 4 (p = 0) or § 5.6,7 (p # 0), the 

value of A/dX1 at both the caustics is fixed by the value Uýj of the 

current at the caustics. Note that for particular A, AK and w the 

positions Xc, of the caustics are unique so that the value of U1 at the 

caustic positions X., is equal to Uc1 and is, thus, the same for all 

slowly-varying solutions whether linear or nonlinear. The values of k1 

and a, differ from k. 1 and a. 1 respectively for the nonlinear solutions 
(see, for example, figures 4.5 or 4.7). 

Various values of A, are used. The modulus Iwo of the solution of 
the generalised Painleve equation for a particular A is separated into 

the constitutive incident and reflected parts. This is only taken to a 
first approximation assuming that the incident and reflected waves 
behave in a linear fashion, i. e. w= ajei('`-wt) + are- s(kx, t), except 
in the immediate neighbourhood of the caustic. The values of au and art 

of the incident and reflected waves are then calculated using 

expression (5.8.12). The value of Xi is not needed but can be calculated 

also using expression (5.8.12). 
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Formally, a uniform solution must be matched (as z -º - oo) with a 
slowly-varying solution (as z -+ 0). Thus, the values of ail and art 
as z -+ - co must be equal to the amplitudes, at the caustic 
positions XCl, of (two) slowly-varying solutions (since z=0 is the 

position of the caustic for the slowly-varying theory). This matching 
requires analytic solutions so since only numerical solutions are 
available a patching method is used. The values of ail and art are found 

at z=- 10 and these are taken to be the values as z --i - co. 
The slowly-varying solutions, with these amplitudes at the caustic 

positions X. 1, are found using the method of § 5.4 but integrating in 
the opposite direction to the actual direction of propagation, 
i. e. solving a final value problem. This requires values of k, 

corresponding to amplitudes asp and art and these are easily found using 
the value Uci of the current at the caustics, the Doppler 

relation (2.3.1), the dispersion equation (4.2.4) and expression (4.2.6) 

which gives wave steepness ak in terms of the parameter D. These give 

(1 - k, U, l = k; D and k, = a-2 
(1 + D)ß(1 - D) , (5.8.19) 

where a1 = as, or arg, which gives two equations for the two unknowns D 

and k,. These will give kip or kT1. Equations (5.8.19) are 
transcendental equations and are solved using a standard solver (NAG LIB 
CO5NBF) for such equations. Note that these equations have a , maximum of 
four possible solutions corresponding to the four possible waves 
CG(+, -), GC- and G-. Only the two solutions for waves CG- and GC- are 
sought. Thus, there will be two solutions for incident waves and two 
solutions for reflected waves - one each for waves CG- and CC-. 
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5.9 Results for Uniform NLS Theory 

Consider, as usual, the typical case where A=0.2 m, AK = 0.3 

and IwI = 100 rad s-1. For such a gravity wave it is found that the 

magnitude of the derivative (dUi/dX1),, needed to calculate the 
dissipation parameter B in the generalised Painleve 

. equation, 
is 4.452 x 10-1. Then expressions (5.8.3,15) give B=0 for it =0 

and B=0.151 for µ#0. The value of Al is taken to be 0.15 since it is 

found that this value corresponds to near-linear steepnesses for the 

pure capillary waves. 
Figures 5.14a and 5.15a show the variations of lvii with z, for 

solutions of the generalised Painleve equation corresponding to A=0.15 

and B=0 and 0.151 respectively. These figures also show the 

corresponding variations of incident and reflected wave amplitudes wii 

and w11. These latter curves are used to find the values of incident and 

reflected wave amplitudes air and arg at z=- 10. Using 

expression (5.8.11) it is found that 

ail = an = 0.0908 

air = 0.146 and art = 0.0561 

Substitution of these amplitudes 

equations (5.8.19) gives values 

corresponding to the incident 

respectively given by 

and Ucl, given 
of wavenumber k1 

and reflected 

µ=0; 

0' . 

from- (5.8.3), into 

and steepness ak 
waves. - These , are 

all = a=1 = 0.0908 k1 = 1.69, ak = 0.153 

and ki = 1.50, ak = 0.136 

ail = 0.146 k, = 1.77, ak = 0.258 and kl = 1.46, ak = 0.224 , 
arg = 0.0561 ki = 1.65, ak = 0.0924 and k, = 1.53, ak = 0.0859 

The maximum steepness of finite=amplitude pure capillary waves is 2.29 

so that the steepnesses corresponding to this uniform NLS solution are 

all near-linear. Note that the uniform solutions shown in figures 5.14a 

and 5.15a correspond to both the caustics ona gravity waves and, thus, 

to both cases of waves CG- and GC- incident on the caustics situated to 

the left and right of gravity wave crests with waves GC- and, CG- 

reflected respectively. 
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All that remains is to find slowly-varying wave solutions, 

corresponding to both the incident and reflected waves, with these 

amplitudes and wavenumbers at the caustic positions. Those for the 

incident waves are found, as described above, by integrating in the 

direction opposite to that of wave propagation. Recall that 

waves CC- (CC-) travel in the +X (- X) direction so integration is 

performed in the -X (+ X) direction to find the incident wave 
behaviour. Integration is commenced at the caustic positions, given by 

Xý = 47.1 for waves CC- and X, = 55.4 for waves CC-, with (incident) 

initial wavenumbers as above. Those for the reflected waves are found by 

integrating forwards in the usual way but with propagation commencing 
from the caustic positions with (reflected) initial wavenumbers as 

above. 
The slowly-varying solutions are shown in figures 5.14b, c 

and 5.15b, c for p=0 and µ#0 respectively. These figures also show 

the linear and stopped waves propagation curves (dashed lines) to aid 

understanding. Both figures show the incident waves CC- (CC-) 

propagating towards the caustic situated to the left (right) of gravity 

wave crests and the corresponding reflected waves CC- (CG-) propagating 

away from this caustic. The incident= and reflected wave values of a.,, 
ký , 

(ak)c and bet are shown in table 5.5. Note that both the incident 

waves CC- and CC- for p#0 reach a position where their zero total 

group velocity is zero,, i. e. they coincide with the stopped waves curve. 
It is also noted that for p=0 both incident waves CC- and CC--can 

be regarded as commencing propagation from wave troughs but for p#0 

the incident waves CC- are the only-such one. In this case waves CC- can 
be regarded as commencing propagation at Xl-= 37.2 with ki = 8.63 and 

wave steepness at its maximum. 

air ki, (ak) 11 big arg krl (ak)r1 bra 

0.0976 '1.69 °°0.153 0.0003 0.0976 1.50 0.136 - 0.0003 

0.0976 1.50 0.136 - 0.0003 0.0976 1.69 0.153 0.0003 

0.146, 1.76 0.258 0.0013 0.056 1.53 0.0859 -. 0.00007 

0.146 1.45 0.224 = 0.0013 0.056 1.65 0.0924 0.0000006 

Table 5.5: Cases considered for evaluation of solutions to the uniform 
NLS theory in the neighbourhood of the caustic; values given 
are those at the caustic. 
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5.10 Discussion 

In the neighbourhood of the caustic position the uniform theory is a 

more accurate model than the slowly-varying theory so long as wave 

steepnesses in this region are near-linear. For the specific example 

chosen this is clearly the case. In fact, any propagation with a value 

of A, between zero and approximately 0.3 will correspond to linear or 

near-linear slowly-varying propagations. Moreover, the qualitative 

characteristics of these propagations will be similar to the particular 

case considered above. Consequently, these results serve as a model 

example of the behaviour of the flow field. 

Figures 5.14a shows that for p=0 the qualitative characteristics 

of the uniform NLS solution are similar to its linear counterpart, 
i. e. the near-linear term in the generalised Painleve equation (5.8.14) 

has no strong qualitative effects. This figure and figures 5.14b, c show 

that waves CG- (CC-), incident from the - X1 (+ X, ) direction, will be 

reflected as waves CC- (CG-), propagating in the - X1 (+ X1) direction, 

with equal but opposite (constant) total wave-action flux b. 

Figures 5.15a show that for p#0 the qualitative characteristics of 
the uniform NLS solution are very different from those of its linear 

counterpart. Again this figure and figures 5.15b, c show that the waves 
are reflected but for this case the magnitude of the total wave-action 
flux b (at the caustic positions) of the reflected waves is much reduced 
compared to that of the incident' waves. The signs of wave-action flux 

will, as before, be changed. The-marked differences between the incident 

and reflected wave amplitude curves in figure 5.15a can be interpreted 

to mean" that incident waves spend a considerable time in the 

neighbourhood of the caustic with dissipation acting. This is obviously 

related to the infinite time it takes for wave propagations to reach the 

stopped waves curves. 
Thus, this uniform theory shows that wave reflection, for waves CC- 

and CC- only,.. definitely occurs at the caustic position if wave 

steepnesses are near-linear. Any waves which do not have near-linear 

steepnesses in-the neighbourhood of the caustic may, or may not-, -behave 
in the manner suggested by the slowly-varying solution. This is because 

the slowly-varying assumption is clearly violated by. those waves whose 

propagations come near the stopped waves solution whereas it may, or may 

not, -hold for other wave propagations (figures 5.5 - 5.13). The question 

of the validity of slowly-varying solutions for such cases is still 

open. 
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These features modify the general propagation behaviour of waves as 
discussed in § 4.7. Some general conclusions are now made about the 

propagation behaviour of the stationary waves CG and the three Doppler 

shifted waves CG(+, -) and CC- as seen in either the m-frame or the 

observers frame of reference. 
The w-frame is dealt with first. Slowly-varying solutions suggest 

that stationary waves CC and waves CG+ dissipate and cease to exist, 

whilst propagating towards the, leftward faces of the gravity waves, 
after propagating approximately a quarter of the wavelength of the 

gravity waves (as seen by the naked eye). This is the expected behaviour 

of waves with such large wavelengths so that the slowly-varying 
approximation appears to be a good one. ' 

Waves CC- dissipate in a similar fashion to waves CG+ for the 

majority of propagations. The behaviour of these waves differs in that a 

small proportion of all the possible slowly-varying propagations reach a 

position where their total group velocity is zero. This position is 

called a "stopping velocity position" since C. =U+ 3c/2 =0 so 
that U=- 3c/2 which is the "stopping velocity". Such propagations do 

not propagate near the caustic position '(figures 5.8, 

initial k1 = 1.86). Also, the slowly-varying approximation does not 

appear to be violated because neither wavenumber nor steepness vary 

rapidly. It must,. therefore, be concluded that such waves, in fact, 

attempt to reach a stopping velocity position whilst taking an 
infinitely long time to do so. Exactly how this type of behaviour is 

sustained is unclear since the strong dissipative effects will not allow 

a uniform wavetrain at infinity, say the trough. -" 
According to slowly-varying solutions waves CC- can exhibit- one of 

three types of behaviour. One is-to break as they propagate towards the 

rightward faces of gravity waves (figures 5.12, -initial ki = 0.317). 
Such propagations do not violate the slowly-varying approximation so 
that the solution is-valid. Breaking of this type is sometimes observed 

on pond or lakes. 
A second is to propagate over the-crests and down the leftward faces 

of gravity waves (figure 5.10 initial k, = 1.04 and figures 5.12 

initial ki = 0.328). Such propagations experience quite rapid changes in 

steepness as they propagate past the caustics and over the crests so 

that the validity of the slowly-varying approximation is dubious. The 

uniform theory is no use for such propagations since they always have a 

nonlinear steepness at the caustic. Thus, if the slowly-varying 

approximation is not violated, the waves propagate over the whole length 

of the gravity waves and have their-steepness attenuated. 
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The third is to propagate to a stopping velocity position 
(figures 5.10 initial k1 = 1.48,1.52 and figures 5.12 
initial k1 = 0.3289). The steepnesses of this third type of propagation 
are not necessarily near-linear when at the caustic position. However, 

any propagations with near-linear steepnesses at the caustic position 
always reach a stopping velocity position. From the "time" analysis 
of § 5.7 and the uniform analysis of § 5.8,9 it follows that there are 
two possible type of behaviour for such wavetrains. 

One possibility is partial reflection of the waves at the caustic 

position. Thus, waves CC- are partially reflected to waves CC-, which 
would rapidly dissipate, after spending a considerably long time near 
the caustic position. The second possibility is that the waves attempt 
to reach a stopping velocity position whilst taking an infinitely-long 

period of time to do 
. so. Moreover, the virtually constant values of 

wavenumber and steepness in the region near troughs (figures 5.10 
initial ki = 1.48 and figures 5.12 initial k, = 0.3289) suggest the 

presence of a uniform wavetrain at the troughs which could sustain this 
type of behaviour. Thus, waves CC- would appear to "sit" on the forward 
faces of gravity waves for long periods of time. A combination of these 
two effects is also possible. A capillary wavetrain maybe partially 
reflected and partially "transmitted" at a caustic near the crests of 
gravity wavetrains. 

Note that, according to slowly-varying theory, any waves, CC- 
. which 

propagate over the whole length of the gravity waves will have their 
steepness attenuated by dissipative effects. These waves will never 
reach zero steepness (see § 5.7 or figures 5.10) and so, after 
propagating several wavelengths, will reach a stopping velocity 
position. This is the characteristic of the third type of general 
behaviour for waves CC-. Also note that waves CC- reach positions, near 
the troughs, where their wavelengths are quite large and so might 
possibly- be affected by gravity. However, this is 

, 
qualitatively 

unimportant since such waves will not be greatly affected by dissipation 

and so will propagate past the troughs towards the crests of the gravity 
waves where wavelengths are small again. 

Attention is now focused onto the observers frame. Stationary waves 
CC and waves CG+ rapidly dissipate and cease to exist whilst attempting 
to overtake the gravity waves. Waves CC- also rapidly dissipate in the 

same manner as waves CC or CC+ for the majority of propagations. A small 
proportion of propagations for waves CC- take an infinitely long time to 
try and reach a stopping velocity position whilst attempting to overtake 
the gravity waves. The mechanism for the sustenance of such behaviour is 

unclear. 
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Waves GC- exhibit one of four types of behaviour. One is to be 

swept-up on the forward faces of gravity waves whilst the gravity waves 
attempt to overtake them. A second is to actually be overtaken by the 

gravity waves but have their steepness attenuated after, say, one 
wavelength of the gravity waves has passed. A third is to take an 
infinitely long time to try and reach a stopping velocity position and, 
thus, sit on the gravity wave fronts whilst the gravity waves attempt to 

overtake them. The fourth is to be partially reflected, at the caustic 
position, to waves CG- whilst the gravity waves attempt to overtake 
them. These reflected waves rapidly dissipate and cease to exist whilst 
attempting to overtake the gravity waves. A combination of the latter 

two behaviours is also possible. Note that any waves GC- which exhibit 
the second type of behaviour eventually reach a stopping velocity 
position and, thus, exhibit either the third or fourth types of 
behaviour or, ofcourse, a combination of these. 

The general behaviours of the capillary waves in any frame of 
reference are now summarised. Considering some general distribution of 
capillary waves generated by a puff of wind it will be found that the 

waves either: 

i) rapidly dissipate and cease to exist (stationary waves. GC, 

waves CG+ or CG-); 

ii) exhibit breaking on the forward faces of gravity waves (waves 
GC-); 

iii) take an infinitely long time to try and reach a stopping 
velocity position (waves CC- or CC-); 

iv) are eventually partially reflect on the forward faces of 

gravity waves (waves CC-) to waves (CC-) which rapidly 
dissipate and cease to exist; or 

v) experience a combination of the latter two behaviours (waves 

GC-). 
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CAPTIONS FOR FIGURES 

Figure 5.1: The variation of dissipation ratio D/Olin with steepness ak 
for finite-amplitude pure capillary waves. 

Figure 5.2: Diagram illustrating the existence of windows for 
(a) stationary waves, and (b) Doppler shifted waves. 

Figure 5.3: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves with µ#0 where the 
gravity wave has A=0.2 m, AK = 0.3 and crest at centre; 
various initial wavenumbers k as shown. 

Figure 5.4: The variation of (a) wavenumber k and (b) steepness ak with 
distance X for stationary waves with p#0 where the 
gravity wave has A=0.2 m, AK = 0.3 and trough at centre; 
various initial wavenumbers k as shown. 

Figure 5.5: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for waves CG+ with p#0, 
Jwj==0100 rad s-1 where the gravity wave has A=0.2 in, 
K .3 and crest at centre; various initial 

wavenumbers k1 as shown. 

Figure 5.6: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X for waves CG+ with µ#0, 
W= 100 rad s-1 where the gravity wave has A=0.2 in, 

= 0.3 and trough at centre; various initial 
wavenumbers k1 as shown. 

Figure 5.7: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for Waves CG- with p#0, 
Iwo = 100 rad s-1 where the gravity wave has A=0.2 in, 
K=0.3 and crest at centre; various initial 

wavenumbers k1 as shown. 

Figure 5.8: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for Waves CG- with p#0, 
ImI = 100 rad s'1 where the gravity wave has A=0.2 m, 
K= 0.3 and trough at centre; various initial 

wavenumbers k1 as shown. 

Figure 5.9: The variation of (a) wavenum ber ki and (b) steepness ak 
with distance X1 for Waves CG- with p=0, 

= 100 rad s-1 where the gravity wave has A=0.2 in, 
K= 0.3 and trough at centre; various initial 

wavenumbers k1 as shown. 

Figure 5.10: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for Waves GC- with µ#0, 
jwj==0100 rad s-1 where the gravity wave has A=0.2 in, 
K .3 and trough at centre; various initial 

wavenumbers kl as shown. 

Figure 5.11: The variation of (a) wavenumber k, and (b) steepness ak 
with distance X1 for Waves GC- with µ=0, 
jwj==0100 ran s-' where the gravity wave has A=0.2 m, 
K .3 and trough at centre; various initial 

wavenumbers kl as shown. 



Figure 5.12: The variation of (a) wavenumber k1 and (b) steepness ak 
with distance X1 for Waves GC- with it # 0, 
W= 100 rad s-1 where the gravity wave has A=0.2 m, 

= 0.3 and crest at centre; various initial 
wavenumbers k1 as shown. 

Figure 5.13: The variation of (a) wavenumber kl and (b) steepness ak 
with distance X1 for waves GC- with it = 0, 
W Imp = 100 rad s-' where the gravity wave has A=0.2 in, 
AK = 0.3 and crest at centre; various initial 
wavenumbers k, as shown. 

Figure 5.14: (a) The variation of amplitude Jw1I with distance z1 as 
given by the generalised Painleve equation for asymptotic 
parameter A=0.15 and viscosity parameter B=0 (p = 0) 
with the corresponding variations of the constitutive 
incident and reflected wave amplitudes w1, and wir; 
(b, c) The corresponding incident and reflected slowly 
varying solutions [(_b) wavenumber k, and (c) steepness 

a 

verses distance X1] for waves CG- and GC-. The gravity wave 
has A=0.2 0, AK = 0.3 and crest at centre. 

Figure 5.15: (a) The variation of amplitude 1wil with distance zi as 
given by the generalised Painleve equation for asymptotic 
parameter A=0.15 and viscosity parameter B= 151 (p # 0) 
with the corresponding variations of the constitutive 
incident and reflected wave amplitudes w ,j and wig.; 
(b, c) The corresponding incident and reflected slowl 
varying solutions [(a) wavenumber ki and (b) steepness ak 
verses distance X1] for waves CG- and GC-. The gravity wave 
has A=0.2 m, AK = 0.3 and crest at centre. 
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CHAPTER 6 
LINEAR THREE DIMENSIONAL PURE CAPILLARY WAVE-CURRENT 

INTERACTIONS ON INFINITE DEPTH LIQUID 

6.1 Introduction 

Peregrine and Smith (1979) examine the specific physical example of 
linear three dimensional pure gravity waves on three dimensional deep 

water currents. They determine those currents upon which caustics can 

occur and the type of near-linear caustics present. At that stage they 

state that "similar results can be expected to arise for other 
dispersive waves in a moving medium". Here this remark is shown to be 

true for linear pure capillary waves. The analysis of Peregrine and 
Smith (1979) section 5 is followed. The equations for the linear 

caustics are developed and subsequent results are discussed in 

section 6.2. The nature of near-linear caustics are, discussed in 

section 6.3. 

6.2 The Equations 

The general theory of § 2.8 is used for studying caustics. As usual, 
only steady straight caustics in a steady wave field are considered. It 
is supposed that the caustic is situated at x=0, where xi = (x, y), ' 

with the x-axis perpendicular to the caustic. It is also supposed that 

waves are incoming from the -x half of the (x, y)-plane. Variations in 

the wave parameters are in the x'direction only since variations of 

parameters along the caustic* are negligible. The notation of § 2.8 is 

used. 
It is supposed that both the waves and the mainstream flow are three 

dimensional. Therefore, both waves and-mainstream flow propagate in two 
dimensions so that k, = (1, m) and Ui = (U, V) with 1, in, U and V 

generally non-zero. As the caustics -and --the wave field are steady and 
there are no variations in the y direction the consistency 

relations (2.3.4) imply that the total frequency w and the wavenumber 

vector component x are constant. 
For pure capillary waves the linear dispersion relation on still 

liquid is given by 

(o,, k) = u2 - ska =0 (6.2.1) 
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where k2 = kaki = 12 + m2. At a caustic caused by the mainstream flow 

the condition (2.8.4) for the presence of a caustic gives 

U -IFUE=2Ua+3skI=0. (6.2.2) 

Suppose that m, m and U(x) are given. Then equations (6.2.1,2) can 
be solved to find the values lo and V0, of the two unknowns l and V, at 
the caustic. However, it is more interesting to examine these equations 
from another direction. The equations are used to find all possible 
currents on which caustics can occur. This is done by fixing m and 
eliminating 1 between equations (6.2.1,2) to yield a relation between U 

and V. Equation (6.2.2) gives 

4U2o2 = 9s2k212 (6.2.3) 

Which, on using the dispersion relation (6.2.1), gives 

4U2k = 9s12 since k#0. (6.2.4) 

Squaring this equation, substituting for k2 = l2 + m2 and solving gives 

1=± 2JUI 
S 

[2U2 + (4U' + 81s2m2) ]& since 12 >0. (6.2.5) 

This solution for the wavenumber component l at caustics is used to 
eliminate 1 from equations (6.2.1,2) and find the desired relation 
between U and V for a fixed in. Two cases, namely m=0 and m#0, arise. 
For the first of these expression (6.2.5) gives 

1=± (6.2.6) 

Then, since k= III equation (6.2.2) implies 

U=0 or 27sw '+ 4U3 =0. (6.2.7) 

using the Doppler relation (2.3.1). Now if U=0 then (6.2.6) 

gives k=0 which is unphysical. Thus, the solutions for this case are, 

using expression (6.2.6) for 1, 

,l=± 
4W2 )i (6.2.8) U=±3.0 (sw) f S - 
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Note that because m=0 makes equations (6.2.1,2) independent of V 

caustics occur at these values of U for all V. 
The second case, namely m#0, itself is split up into two cases. 

These are U=0 and U#0. For U=0 expression (6.2.5) implies 1 =. 0, 

so that at the caustic waves propagate along it. It follows that k= Iml 

so that caustics occur on flows with 

3 

V= ý± mf mý (6.2.9) 

using the Doppler relation (2.3.1) and the dispersion relation (6.2.1). 
For the U#0 it is expected that the solution for wavenumber 

component I at the caustic should pass through the whole range of real 
numbers as U goes from - oo to + oo (with l=0 when U= 0). This is only 
possible if 

1=± g-S [2U2 + (4U4 +, 81s2m2)'ýJ (6.2.10) 

for any U. Then caustics occur on flows with V given, from 
equation (6.2.2), by 

v_ 2U (w - lU + 3skl (6.2.11) 2m 

using the Doppler relation (2.3.1). These are solved by fixing m and 
varying U to find the value of l and, thus, k using expression (6.2.10) 
and then substituting these into expression (6.2.11) to find V. 

It follows that for a given fixed value of m there is a line of 
points in the (U, V) plane at which caustics can occur. These are found 

using equation (6.2.8) for m=0, equation (6.2.9) for m#0 and U=0, 

and equations (6.2.10,11) for m#0 and U#0. The equations show that 
each line of caustic points, other than m=0, has two symmetrical 
branches. -The 

lines of symmetry are U=0 and V= '/m.. This feature of 
symmetry is exactly the same as for the pure gravity waves case studied 
by Peregrine and Smith (1979) and is to be expected from the isotropy of 
the dispersion relation. 

The way in which caustics arise is clarified by considering two 
specific simple currents: 

i U# 0, V=O, and 
ii U=O9 Y#0. 
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Case i corresponds to currents flowing with or against the waves. 
This is the familiar case already examined in chapter 3 for m=0 with 

gravity g non-zero. Case ii corresponds to a shearing current which 
bends rays around until they are parallel to the current and form a 

caustic if the current increases sufficiently with x. 
In general, the variation of wavenumber component l with current U 

or V, for fixed V or U respectively, is sought. Use of the Doppler 

relation (2.3.1) and the dispersion relation (6.2.1) gives 

U=Z[ý-mY+(ski)], (6.2.12) 

or V=m [w - IU '+ (ski) ] (6.2.13) 

which respectively give the required variations. The variations for 

cases i and ii are given by substituting V=0 and U=0 in 

expressions (6.2.12,13) respectively. Caustics occur at positions where 
the solution curves of these, equations have vertical tangents in 

the (U, l) or (V, l)-planes. 

Note that for the case m#0, U=0 and l=0, with V given by 

expression (6.2.9), there exists a caustic point according to the 

conditions (6.2.1,2). However, on closer examination it is seen that 

this caustic exists only when U is fixed to zero and V varied. This 

caustic does not exist when V is fixed to one of the two values given by 

expression (6.2.9) and U varied through zero. The dispersion 

relation (6.2.1), in the form of expressions (6.2.12,13), must be 

examined for this case. The derivatives of these with respect to 1 are 
found since a caustic exists where these derivatives are zero. Use of 
L'Hopital's rule leads to 

dU 
-º 

3 [i*] 
as 1 -0 (6.2.14) 

and since this is non-zero for all values of m there is no caustic 

at U=0 and l=0 when U is varied. Also, 

dV31 si, i UT 2M- TTI +m 
(6.2.15) 

which is zero when l is zero so that, there is a caustic point at U=0 

and 1=O, when V is varied. 
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Throughout the previous chapters, where V=m=0, a convention 

of U<0 and l>0 with w taking any sign is adhered to. Other 

conventions, such as w>0 and l>0 with U taking any sign, are 

possible. This latter convention takes the CG-/GC- caustic point into 

the regime U>0, k>0. The versatility of conventions is basically due 

to the simple form of the Doppler relation (2.3.1) for this case. 
When V#0 no 'convention can be imposed on U. The only possible 

convention is to take m>0 and m>0 with U, V and l taking any sign 
(solutions for w<0, or m<0, are found by the transformation 

U-i- U, V -i - V, orV -º - V). 

The cases of stationary and Doppler shifted linear pure capillary 

waves are considered separately. For stationary waves dimensional units 

are used. The currents at which caustics occur are shown in figure 6.1. 

The lines are all symmetrical about U=0 and V=0 as expected. There 

are no higher order singularities, such as a triple-root caustic, of the 

type discussed by Peregrine and Smith (1979), i. e caustics are either of 
R-type or S-type. The case studied in previous chapters, i. e. m=V=0, 

suggests that caustics will be S-type. 

For, Doppler shifted waves dimensionless capillary units are used. As 

mentioned in § 2.9 equations in these units are most easily given by 

substituting p=r= w2 = 1, and adding a suffix 1 to all dimensional 

quantities, including w, to give the corresponding quantity in capillary 

units. However, since the convention for this chapter has m>0 the 

parameter w, 1 so that substituting p=r=w=1 is all that is 

necessary to find the appropriate equations in capillary units. The 

currents at which caustics occur-are shown in figure 6.2. The lines are 

all symmetrical about U, =0 and V1 = 1/m1 as expected. As for the 

stationary waves case there are no higher order singularities. 
Figures 6.3,4 show the solutions of the dispersion 

relation (6.2.1), as given by expressions (6.2.12,13), for the two 

cases i and ii described above respectively. For both cases it is seen 
that two different caustics arise for one value of m (m >1 for case i 

and all m for case ii). These two caustics would involve quite different 

wavetrains. 
Figures 6.5,6 show solutions for V, =3 and U, =3 with varying ml 

whilst figures 6.7,8 show solutions for varying V, and Ui for a 

single mi, namely m, = 3. These four figures show the richness of 

caustics present in a three dimensional problem. All the caustics which 

arise are different although there may be qualitative similarities which 

allow them to be split into sets. 
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6.3 Near-Linear Caustics 

The results above show that for a wide range of cases linear 

caustics exist. The nature of the waves in the neighbourhood of the 
linear caustic is now investigated. Wilton (1915) shows that 

F- sk2 =-$ sk2 i41 + 0(rAi) . 
(6.3.1) 

is the near-linear dispersion relation for plane waves on still liquid. 
As stated in § 3.7 d1 is found to be equal to - ak. It follows that the 
near-linear dispersion relation is 

0Z- ski +1 skaa2 =0 (6.3.2) 

/( 02G 02G 82Gl sk6 (6.3.3) so H [Uý 
Td-rz vow, - 2U +7J=-s+m' 

11 Thus, sgn 
[a 

- 2U a 
VOW, +8 

sgn [2tJ2k - 3s(212 + m2)] . (6.3.4) 

Note that this is independent of the velocity component V so that for a 
particular value of U, 1 and ma particular type of caustic exists for 

all possible V. Substitution of either expressions (6.2.8) or (6.2.10) 
into expression (6.3.4) shows, after a little algebra, that all 
near-linear caustics are of S-type. This implies that waves will usually 
travel past a linear caustic and eventually break. 
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CAPTIONS FOR FIGURES 

Figure 6.1: The currents (U, V) at which caustics occur for stationary 
waves; various wavenumber component values m as shown. 

Figure 6.2: The currents (U1jV, ) at which caustics occur for Doppler 
shifted waves; various wavenumber component values m1 as 
shown. 

Figure 6.3: The variation of wavenumber component 11 with current 
component U1 for case Vi = 0; various wavenumber component 
values o, as shown. 

Figure 6.4: The variation of wavenumber component 11 with current 
component V1 for case U1 = 0; various wavenumber component 
values m1 as shown. 

Figure 6.5: The variation of wavenumber component 1, with current 
component U, for case V1 = 3; various wavenumber component 
values m1 as shown. 

Figure 6.6: The variation of wavenumber component 11 with current 
component V1 for case U1 = 3; various wavenumber component 
values m1 as shown. 

Figure 6.7: The variation of 
component U1 for 
values V1 as shown. 

wavenumber component 1,, with current 
case mi = 0; various current component 

Figure 6.8: The variation of 
component V1 for 
values U, as shown. 

wavenumber component 11 with current 
case m,, = 0; various current component 
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CHAPTER 7 
EQUIVALENCE OF SYSTEMS OF EQUATIONS 

7.1 Introduction 

The behaviour of slowly-varying wavetrains is usually studied by 

using either the averaged equations (§ 2.2) or Whitham's 

equations (§ 2.4). These two systems are always used interchangeably 

without question. In chapter 5 it is shown, for the case of free 

irrotational pure capillary waves on liquid of infinite depth, that the 

energy conservation equation . 
(2.2.6) is, indeed, equivalent to the 

wave-action conservation equation (2.4.6,8). 

It is our aim to show that the the two systems are generally 
equivalent for waves on both finite and infinite depth liquid. Also the 

effects of dissipation of wave energy due to.. the viscosity of the liquid 

and of a "parallel acceleration" (this term is explained below in 

section 7.4) of the mainstream flow are added to the averaged equations 
of motion. Subsequently, these are used to aid in the development of a 
modified wave-action conservation equation which includes such 
dissipation and acceleration effects. 

Crapper (1979) shows that h'hitham's equations, can be manipulated 
into the averaged equations provided the . -consistency relations (2.3.5) 

for the mainstream flow are true. However, this-, means that, it is 

necessary to assume that the flow field is globally irrotational, 

i. e. curl UL = 0. Stiassnie and Peregrine (1979) examine the two systems 

of equation from an irrotationality point of view. They, point, out the 
fact that the averaged equations only require the,.. flow field to be 

locally irrotational, i. e. curl u, = 0,, whilst, Whitham's equations 

require the flow field to be globallyirrotational. This, is essentially 
because the averaged equations are derived from Euler's equations which 

only require local, irrotationality whilst. Whitham's equations are 
derived by averaging a _Lagrangian 

for a globally irrotational flow. 

Stiassnie and Peregrine (1979) go on to derive modified. consistency 

relations, replacing the consistency relations (2.3.5), which generalise 
Whitham's equations to non-globally irrotational flows. -They do this by 

manipulating the averaged equations into forms similar to Whitham's 

equations. . 
It is, therefore, implied that there must exist necessary and 

sufficient conditions, known here as "equivalence relations", for the 

two systems of equations to be equivalent. Also these equivalence 
relations must be the same as the modified consistency relations derived 
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by Stiassnie and Peregrine (1979). Here this is shown to be the case so 

that the modified consistency relations of Stiassnie and Peregrine are 

confirmed. The method used here differs from that of Stiassnie and 
Peregrine (1979). 

In sections 7.2,3 the two systems are shown to be equivalent and 

the equivalence relations are derived for the. cases of finite and 
infinite depth liquids respectively. The effects of wave energy 
dissipation and a "parallel acceleration" of the mainstream flow are 

added to the averaged equations in section 7.4. General expressions for 

dissipation terms are also derived in section 7.4 which give the 

first-order dissipation effects when no (real) bed is present. The 

modified wave-action conservation equation and modified equivalence 

relations are subsequently derived in section 7.5. 

7.2 The Equivalence Relations 

In this section our aim is to show that the two systems of equations 

are equivalent and thereby derive the equivalence relations. Formally, 

this requires us to show that the momentum conservation 

equation (2.2.2,5) and energy conservation equation (2.2.3,6) are 

equivalent to the wave-action conservation equation (2.4.6,8). This is 

because the mass conservation equation (2.2.1,2.4.5) is common to both 
systems and the Bernoulli equation (2.4.4) is regarded as defining the 

parameter 7 in terms of other flow parameters. This is, done by deriving 

general equations relating terms present in the averaged equations and 
Whitham's equations from first principles via manipulations of the 

averaged Lagrangian r. These equivalence relations show that the 

consistency relations (2.3.5) are sufficient, but not necessary, for the 

averaged equations and Whitham's equations to be equivalent. 
To simplify the presentation of equations in this chapter a symbolic 

notation is used. The following table gives all the symbolic names. Each 

name corresponds to terms on the left hand side of an equation or 

relation given in chapter 2 but not to the equation or relation itself - 
this aspect is very important. The relevant equation number, together 

with a. description of the corresponding equation, is given in the 

table 7.1. Note that MCE, FECE, ECE, WACE and IECE are scalar terms, 

FMMCE, MMCE, CCR and IMMCE are vector terms and ICR is a tensor term - 
all of these are terms not equations. 

108 



symbolic name equation number description 

MCE (2.2.1,2.4.5) 

FMMCE (2.2.2) 

FECE (2.2.3) 

MMCE (2.2.5) 

ECE (2.2.6) 

CCR (2.3.5) 

ICR (2.3.5) 

mass conservation equation 

full momentum conservation equation 
full energy conservation equation 

momentum conservation equation 

energy conservation equation 

consistency conservation relation 

irrotationality consistency relation 

PACE (2.4.6,8) wave-action conservation equation 

IMMCE (2.6.3) infinite depth momentum 
conservation equation 

IECE (2.6.4) infinite depth energy 
conservation equation 

Table 7.1: Symbolic names for equations and the corresponding 
descriptions 

Equations needed here and for comparison with Stiassnie and 
Peregrine (1979) and Crapper (1979) are derived in appendix C. The two 
important equations are CIO and C21. These state 

i+ 
ý(Uj7i 

+ Sig) +I 
OU' 

+d1= kiI OÄ 0+ (UJÄ+ Bi), 

(7.2.1) + 1j fi- Nij 
9 

8819 t+ lxs(U'i + Si)' + Si ji+1 Zi 0O_ 
p 

Uh 
[p 

+ (pdUi + I1)1 + o. 
[ (Ui,, ý + B1), (7.2.2) 

These equations do not assume the validity of any equations or relations 
in § 2.2, § 2.3 or § 2.4 except the Doppler relation (2.3.1), 

consistency relations (2.3.4) involving the wavenumber vector k1 and the 

total wave frequency w, and the dispersion relation in the basic Whitham 

form (2.4.3) involving the Lagrangian C'. The equations (7.2.1,2) are, 

thus, purely algebraic relations between terms present in either the 

averaged equations or Vhitham's equations of motion. This is also the 

case for any other equations in this chapter unless otherwise stated. It 

is important to keep this in mind when further reading this chapter. 
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These two equations can be compared to equations (48) and (53) 

respectively of Crapper (1979) - derived using the same methods as those 

used in appendix C. His equations state that the left hand sides of 

equations (7.2.1,2) are equal to zero. This is because he assumes that 

the mass conservation equation (2.2.1), the wave-action conservation 

equation (2.4.6) and the irrotationality consistency relation (2.3.5) 

are true, i. e. MCE = 0, WACE =0 and ICR = 0, so that the right hand 

sides of equations (7.2.1,2) are set to zero. He has all the apparatus 
to derive the equivalence relations but does not do so. He instead goes 

on to show that the consistency relations (2.3.5) are sufficient 

conditions for the equivalence of the two systems of equations. 
From Whitham's equation (2.4.4), which effectively defines 7 in 

terms of mean wave properties, 

_- p[7- -2 U. - gb] (7.2.3) 

so 
Rý-d 

-p 
Lam' 

+ Uý N J+ gWj 

-pf LTt i+ +UjI-Ni -all] . 
(7.2.4) 

Substituting this into equations (7.2.1,2) gives the equations 

i+ 
sýUsTi 

+ Sys) + 1s 
-uj 

+ pd[ au, + Us 3+g 
Wil 

= 

9 -? i9 

s1w + -&, (v, Ä + B, )] 
+ Pd` '+ ýII 

+ (PdUj + 7i) ' -mil (7.2.5) 

or MMCE = ki VACE +pd CCR + (pdUj + . l) ICR , (7.2.6) 

+ Ni (U1E + Si) + Si, ý i+ Zi f'+ Uj -&j +g 
X11 

= 

uq 
[p N+ -H1(pdUi 

+ it )] +old 
raÄ 

+ 
-&i (U1Ä + Bi )] 

+ 71 [Lul 
+t Uj [i "ai1] (7: 2.7) wt- 

lij 

or ECE _ ub MCE + a VACE + 7j (CCR + Uj ICR) . 
(7.2.8) 

Note that equation (7.2.7) is identically zero if. no waves are present. 
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These provide equations which relate the left hand sides of the 
averaged momentum and energy conservation equation (2.2.5,6) and 
Vhitham's wave-action conservation equation (2.4.6). Recall that in both 

systems the mass conservation equations are identical simply because the 

wave momentum vector Ii is defined in terms of r by (2.5.2). 
Stiassnie and Peregrine (1979) use the averaged momentum and energy 

conservation equations in their "complete" form (2.2.2,3). Equations 

relating these averaged equations and Whitham's equations are derived by 

reversing the manipulations, outlined at the end of § 2.2, needed to 
derive the averaged equations in the form (2.2.5,6) from the 
form (2.2.2,3). Thus, adding Ui times the mass conservation 
equation (2.2.1) to equation (7.2.5) gives 

(pdUi + 7i) + Fj 
[(pdu, 

+ 7i) + Uj] + pgd2 bi j+ Ss i-T] 

- pgd i= 
Ui IP 

-+ 1(PdUj + 7j), +k1l 
faÄ 

+wj (Ujýl + Ba)] 

+ pd[ 'H Ji+ 
Ril 

+ (pdUj + 1i) CvRj 
- 

"ai, (7.2.9) 

or FMMCE = Ui MCE + k, WACE + pd CCR + (pdUj + 1j) ICR (7.2.10) 

and adding (gb - jUi) times the mass conservation equation (2.2.1) 

and U, times equation (7.2.9) to equation (7.2.7) gives 

I pdUi + pgbz +S+ Usti] + 
Wi [Ui [71 

pdU'j + pgdb +e+ UiZ. i] 

+71 +1, 
fgb+ u] +S, JUJ] =7 

[p 
+ (pdUi +T, )] 

+f+ 
i(UiA 

+ Bi)] + (pdUi + 11) Iii + 
87 1 (7.2.11) 

or FECE =7 MCE +m WACE + (pdU1 + 11) CCR , (7.2.12) 

since (Z Uj + 7, ýU, ) 
( out -Vii, =0 U1Uý fý 

-Vii, =0 (7.2.13) 

The derivation of equation (7.2.12) requires use of the Doppler 

relation (2.3.1), the definition of 7- as given by Whitham's 

equation (2.4.4) or (7.2.3) and expression (2.5.6) for the mean bottom 

velocity, squared in terms of C. 

The mass conservation equation-(2.2.1) or (2.4.5), i. e. MCE = 0, is 

given by both systems of equations. Substitution of this into these 

equations gives equations (11) and (10) respectively of Stiassnie and 

111 



Peregrine (1979). Note that Stiassnie and Peregrine (1979) take the 
averaged equations and manipulate these equations to give their 

equations (11) and (10). As stated above, the method used here does not 
assume the validity of either the averaged equations or Whitham's 

equations of motion. It derives purely algebraic relations between the 
left hand sides of the two sets of equations. 

From the equations (7.2.9,11) it follows that the equivalence 
relations are 

Pd{ 1+ RI] + (PdUj + Zj) f aý 
- 

Uil 
=0 (7.2.14) 

or pd CCR + (pdUj + Zj) ICR =0, (7.2.15) 

(PdUi + Zs) Cam' 
+ 

t1, 
=0 (7.2.16) 

or (pdUi + Z1) CCR =0, (7.2.17) 

Which are conditions (13) and (12) respectively of Stiassnie and 
Peregrine (1979). 

The equivalence relations (7.2.14,16) are also easily derived from 

equations (7.2.5,7). Equation (7.2.5) gives the equivalence 
relation (7.2.14) whilst equation (7.2.7) gives the a third equivalence 
relation 

Iir i+ 87 Uj ri- maill 
=0 (7.2.18) 

Llý JJ 

or it (CCR + Uj ICR) =0. (7.2.19) 

Note that unlike the equivalence relations (7.2.14,16) this relation is 
identically-zero if no waves are present. Adding Ui times equivalence 
relations (7.2.14) to relation (7.2.18) gives the equivalence 
relation (7.2.16) after using the expressions (7.2.13). 

Now, the equivalence relation (7.2.16) can be derived from 

relations (7.2.14) by taking the scalar product with (pdU, + Zi). Thus, 
the three equivalence relations (7.2.14,16,18) are all related and the 

only independent ones are the vector relations (7.2.14). 
Equivalence relations (7.2.14) can be rewritten (Stiassnie and 

Peregrine 1979) to show the influence of the waves on the currents more 
directly by eliminating 7 using the defining expression (2.4.4) 

or (7.2.3) and expression (2.5.6) for the mean bottom velocity squared 
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in terms of Lw: 

Uj OUi+ g ab NJ N, 

+- 
LWG 

N1, + 
illh 

=0. 
(7.2.20) 

Note that the last two terms are negligible if the depth of the 
liquid is infinite (§ 2.6) and exactly zero if there are no waves. This 

shows, again, that the mainstream flow satisfies the shallow water 
equations (2.6.2) if the depth of liquid is infinite or if there is no 
Wave motion. 

The equivalence relations (7.2.14) replace consistency 
relations (2.3.5) in order to make the averaged equations and Whitham's 

equations fully equivalent. Note 
. 
that these show that the mainstream 

flow need not necessarily, be irrotational for Whitham's equations to 
hold which is the motivation for Stiassnie and Peregrine (1979). 

7.3 The Case of Infinite Depth 

Taking the limit d -º 0 in the finite depth equivalence 
relations (7.2.14) gives (divide relation 7.2.14 by pd and take the 
limit) 

out +R+U, ý Il 
au, 

- 
-Eil 

=0 (7.3.1) 
J 

or CCR + Uj ICR =0. (7.3.2) 

Another method of deriving this is by noting that for infinite 
depths the averaged Lagrangian L' is independent of d (§ 2.6). Then the 
derivative expression (7.2.4) gives 

i+UjNJ+gW =Wi+ 42 i'+Uiý ý- iý (7.3.3) 

which, using the shallow water equations (2.6.2), gives 
relation (7.3.1). 

The fact that L" is independent of d is enough, to give simplified 
versions of equations (7.2.1,2) valid for infinite depth liquids. This 
is most easily seen by following the algebra of appendix C 
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With C= C'(o, k, a) only. The equations (7.2.1,2) simplify to 

OÄ 0 
-i +i (Ui71 + Si i) + 7i -gj =k[A+ Ni MÄ + Ba )1 

+ Zj [-ai 
- 

Wil (7.3.4) 

or IMMCE = ki VACE + Zj ICR , (7.3.5) 

+ 
ýi(Uie 

+ 7k) + Sij au i=c 8A l+ a 
i(U, 

A + Bi)] (7.3.6) 

or IECE = o WACE . (7.3.7) 

The dependence of the mainstream flow on the shallow water equations 
results in the inapplicability of the mass conservation equation (2.2.1) 

or (2.4.5). Note that the mass conservation equation does not appear in 

equation (7.3.6) even though it does appear in equation (7.2.2). 
Consequently, equations (7.3.4,6) imply that the equivalence 

relations for infinite depths can be given by the single set of 
relations 

- 
i, -Vii, =0' (7.3.8) 

or lj ICR =0. (7.3.9) 

Note that multiplying relation (7.3.1) by 71and using 
relation (7.3.8) gives 

1s [LIU, 
+i, =0 (7.3.10) 

or 7i CCR = '0 . (7.3.11) 

Thus, it is concluded that the equivalence relations fora liquid of 
infinite depth are given by (7.3.8) with the limiting relations (7.3.1) 

of the finite depth equivalence relations and (7.3.10) as restrictions 
imposed by the shallow water equations (2.6.2). However, the shallow 
water approximation for the mainstream flow when the depth of the'liquid 
is infinite is inappropriate and further analysis is needed. This type 
of analysis has been considered to some extent by Peregrine (1976, 
§ IIF) or, using a rather different approach, by Hasselmann (1971). 
From § 2.7 it is deduced that this would mean that the wave motion would 
have to affect the mainstream flow. 
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7.4 Wave Energy Dissipation and "Parallel Acceleration" 

Our aim is to be derive equations which model flows of liquids 
incorporating two extra features. One feature is the effect of 
dissipation of wave energy due to viscosity. The second feature is to 

consider flows in which the mainstream motion is in a non-horizontal 
direction. There exist naturally occurring flows which incorporate 

either one or both of these features. For example, the wind-generated 
infinite depth waves considered in previous chapters include the effects 
of wave energy dissipation. Also, the flow of a vertically falling sheet 

of liquid is accelerated by gravity and sometimes has waves dissipating 

energy present on the sheet. 
For finite depth flows the primary effects of energy dissipation 

arise from the boundary layer set up at the bed. The modelling of such 
dissipative effects requires a completely new approach to the problem 
and is not pursued here. Instead, attention is restricted to those flows 
in which either the depth of liquid is infinite, as in chapter 5, or in 

which the liquid is bounded by two free surfaces so that the dominant 
dissipative effects are in the body of the liquid. Such a sheet flow 

occurs, for example, when water flows over a sharp edged weir. The two 
free surface problem is supposed to be symmetrical about the centreline 
and so the "bed" is thought of as being a pseudo-bed at the centreline. 
This is the case in the vertically falling film problem. 

Therefore, in this section terms corresponding to the effects of 
wave energy dissipation are added to the averaged equations. Also terms 

corresponding to an acceleration of the mainstream flow parallel to the 
bed, henceforth called the "parallel acceleration", are also added to 
the averaged equations. 

a The Effects of Wave Energy DissiD in 
The effects of wave energy dissipation are to modify the momentum 

conservation equations (2.2.2) by the addition of a dissipation term Ei 

to the right hand ° side and modify the energy conservation 

equation (2.2.3) by the addition of UiEi - l' to the right hand side. 
Thus, Ei is the mean momentum transfer (from waves to mainstream flow) 

and D is the mean rate of energy dissipation of the waves (compare these 

additions with Phillips, 1966, p 65). The mass conservation 

equation (2.2.1) is unaffected. 
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The dissipation terms Ej and Pare defined by 

Ei = i_h µ 
ýa 

+a 
7]Ui dz 

ý. - 
f_hitUL [+jui a7+W [a7+a 1wdz (7.4.2 117 

and are derived by integrating and averaging over the waves those terms 

with viscosity present in the Navier-Stokes equations of motion. These 
terms are neglected when the averaged equations of § 2.2 --are derived 
(see, for example, Crapper 1979). Thus, E, - is the term found by 
integrating the Navier-Stokes equations over the total depth and 
averaging, and U1Ei -D is the term found by multiplying the 
Navier-Stokes equations by'(Ul + ul, w), integrating over the total depth 

and averaging. 
Following the manipulations at the end of § 2.2 it is seen that the 

effect of dissipation on the averaged momentum and energy conservation 
equation in the form given by equations (2.2.5,6) is to add Ej on the 

right hand side of the momentum conservation equation (2.2.5), as 
before, but simply add -D to the right hand side of the energy 
conservation equation (2.2.6). Thus, the use of the energy conservation 
equation in chapter 5 with D alone is validified. 

The expressions (7.4.1) and (7.4.2) for the wave energy dissipation 

terms El and D are examined more closely in order to see how the 

expression (5.14.8) in Batchelor, (1967) for D, used in chapter 5 and 
later in chapter 10, is derived. These dissipation terms are a property 

of the wave motion only and the effects of the mainstream flow is purely 

one of convecting the term Es in the energy conservation equation 
(2.2.3). Thus, for the present analysis Ui is taken to be, zero. 

Letting u3 =w and x3 =z and using the summation convention 
over i=1,2 and 3 (previously summation convention is over i=1,2 

only) gives the integrand of (7.4.2) as 

it ul 
ate' 

= 2p uI 
Oeti 

where ei _fl+ 
Vii, (7.4.3) 

denotes the rate-of-strain tensor (Batchelor-1967 expression 3.3.16). 
Then 

z 
µ UI Ni = -NJ(ui 2µ eij) - 2µ eij OqRJ 

i (7.4.4) 
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Integrating over the total depth and averaging over the waves is the 

same as integrating over a volume element, with unit span, of the 
liquid. Consequently, it is possible to use the divergence theorem on 
the first of the two terms in (7.4.4) to give 

J_h 
J(ul 

2p e1j) dz = 
JS 2p esa usnj dS (7.4.5) 

where S represents the boundaries of the liquid and ni is the unit 

outward normal to the surface. The boundaries of the liquid consist of 
the free surface, the bed (at infinity) or pseudo-bed (centreline) and 
two surfaces periodically situated normal to the bed or pseudo bed. 

Now, nj is oppositely oriented on the two periodically situated 
surfaces so that these two parts of the surface integral (7.4.5) cancel 
each other. To consider the surface integral (7.4.5) on the other 
surfaces, i. e. the free surface and the bed (at infinity) or pseudo-bed 
(centreline), it is noted that the rate-of-strain tensor ejj is related 
to the stress tensor uij and pressure p by 

2p eij = aij +pö (7.4.6) 

so 
is 2p eLj ulnj dS = 

is 
oijuinj dS + 

is 
puLn, dS . 

(7.4.7) 

On the free surface vLjnj = Pont, where p= po is the constant 

surface pressure, so that 

is 2p eij u, nj dS = 2po Is, 
usni dS . (7.4.8) 

On the the bed at infinity u'i =0 and the surface integral (7.4.5) 

vanishes. On the pseudo-bed =(centreline) Q, inj = (rb)i = pbn, 

where (rb)i is the bed shear stress and Pb is the variable bed pressure 
so that 

J2PeiJutnJdS=2jpbuintdS 
. 

On the pseudo-bed, (centreline) u, n, is identically zero which is also 
the case on the free surface when viewed from a reference frame moving 

with the waves (no mass flow, through the . 
free surface). Thus,. the 

integrals (7.4.8,9) are equal to zero and so the integral (7.4.5) is 

zero. 
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The second of the two terms in (7.4.4) gives the expression 

D= 
_h 

µ eije, j dz 

Which is the origin of Batchelor's expression. 
convention is now re-established. 

The dissipation term Ei simplifies when 
dimensional. Thus, suppose that there are no 
direction. Then u= ut, x= x1 and E=E,, say, so 

=a i-b [ate 
+a] dz 

(7.4.10) 

Our usual summation 

the waves are two 
variations in the x2 

(7.4.11) 

The Cauchy-Reimann equations for a two dimensional locally irrotational 
incompressible flow give 

- 
ý'' 7.4.12 

so that E=µ IE Olu 
- , 

_h . (7.4.13) 

b The Effects of Parallel Acceleration 
The effects of parallel acceleration, gpi, of the mainstream flow on 

the averaged. momentum and energy conservation equations (2.2.2,3) are 
found in a similar manner to the derivation of the wave energy 
dissipation terms Ei and D. The gravity term g in the averaged equations 
must be replaced by g� where g� represents an acceleration term for the 

mainstream flow directed perpendicular to the bed (at infinity) or 
pseudo-bed (centreline) and into the liquid, i. e. in the -z direction. 

The addition of a parallel acceleration term to the Euler, or the 
Navier-Stokes, momentum equations is simply given by adding a term pgpi. 
Integrating over, the total depth and averaging results in modification 
of the momentum conservation equations (2.2.2) by the addition, of pdgpi 
to the right . 

hand side. Similarly,. multiplying the Euler momentum 
equations, with the additional pgpi term, by (Ui + ui, w), integrating 

over the total depth and averaging results in modification of the energy 
conservation equation (2.2.3) by the addition of (pdUj + 11)gp, to the 
right hand side. The mass conservation equation (2.2.1) is, again, 
unaffected. - 
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Following the manipulations at the end of § 2.2 it is seen that the 
effect of a parallel acceleration, gpi, of the mainstream flow on the 
averaged momentum and energy conservation equations (2.2.5,6) is to 
add pdgpi to the right hand side of the momentum conservation 
equation (2.2.5), as before, but simply add g9il1 to the right hand side 
of the energy conservation equation (2.2.6). 

7.5 The Modified Wave-Action Conservation Equation 

The wave-action conservation equation (2.4.6) and the equivalence 
relations (7.2.14,16) must be modified by the addition of new terms 

when the effects of wave energy dissipation and parallel acceleration 
are considered. In this section it is our aim to derive the modified 
wave-action conservation equation and modified equivalence relations. 
The work of chapter 5 suggests that the appropriate term to add to the 

wave-action conservation equation for dissipation effects is -D /o. 
Christoffersen and Jonsson (1980) prove this to generally be the case 
for infinitesimal amplitude wave motions. 0 

Adding appropriate terms to both sides of equation (7.2.8) gives 

alr 
+ 

i(U1C 
+ Ss) + Sij i+ 111 i+ Uj Nj + gv 

Nil 

- lgPiIi. - 0ý= Uh[p + &i(pdUi + Zi)J 

+ Q1 OÄ a+1 (U1.4 + Bi)J + 1i 
[1f gi 

t Uj 
[' 

.1 
uxaui ijJ 

- (gpi11 - D) (7.5.1) 

or ECE - (-11gp1 - D) _1 uh MCE +o WACE 

+ It (CCR + Uj ICR) + (gP, 71 - D) . (7.5.2) 

The wave-action conservation equation (2.4.7) replaces the averaged 
energy conservation equation (2.2.3,6) in Whitham's formulation of the 

equations of motion. Also, the wave-action conservation equation is 
identically zero when no waves are present as is the averaged energy 
conservation in the form (2.2.6). This is also true of equation (7.5.1). 
Physically, terms involving wave energy dissipation and parallel 
acceleration must be involved in the modified wave-action conservation 
equation. Thus, the specific form of the modified wave-action 
conservation equation is easily seen from equation (7.5.1). It must take 
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the form 

(gp171 - D) . 5.3) +i(Uiý + Bs) =Q (7 

or WACE _ (gpili - D) (7.5.4) 

The form of the equivalence relations when wave energy dissipation 

and parallel acceleration of the mainstream flow are added are derived 

by use of the equations (7.2.9,11). Terms must be added to these 

equations which are such that the right hand side of the modified 

equations subsequently derived contain terms involving the wave-action 
conservation equation in the form (7.5.3) rather than the form (2.4.6). 

Adding appropriate terms to both sides gives 

(pdUi + 7i) + 
[(pdUi 

+ 7, )ýp + Uj] + pg�d2 61j + St j- 
1p 

J 

- Pg. d 
i- 

(Ei + Pdgpi) = UiIp + 
j(PdUi 

+ ii)-E 
N 

l 
`J 

+ k, f + wj(UiA + Bi) -� (gpjlj - D), 

+ pd 
ý1 

++ (pdUj + 1J) [au' 
- 

Wi, 

- (Ei + Pdgpl) + 
ý' (gpjij - D) (7.5.5) 

or [FMMCE - (Ei + pdgpi)] = Ui MCE + ki [VACE 
-1 (gpjlj - D),. 

+ pd CCR + (pdUj + 1j) ICR - (Ei + pdgpi) + 
ki (gpjlj - D) (7.5.6) 
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and pdUi +1 pg�bz +E+U, 11, + 
[Ui C-2 

pdUý + pg�db +E 

+ UJ1 ]+r+ 1i [g�b 
+ 

-2 U] + Si 
, BUJ] - (UjEý - D) 

+0 1(UIÄ 
+ Bi) - (pdU, + 1i)gpi = 7(p 

w+ Ni(pdUi 
+ Ii)] +k 

0-4 

9 at 
Mgr ill - D), + (PdUi + 11) (i+ 

il - 

- (U1E1 - D) - (pdUi + 71)gpi +E (gpili - D) (7.5.7) 

or [FECE - (UiEi - D) - 
(pdUi + Zi)gpi) 

=7 MCE 

+m 
[RACE 

- (gp i Zi - D), + (pdUi + 11) CCR 

- 
(ULE1 

- D) - (pdUL + IL)gps +Q (gp, 1i - D) . 
(7.5.8) 

In equations (7.5.6,8) the terms in the square brackets represent the 

modified momentum and energy conservation equations irespectively. It, 

therefore, follows that the modified equivalence relations are 

pd avi ++ (Pau, + z, ) ý'i aUJ [T i Cam, - 'N1ý 
- (E1 + Pdgvi) + 

li (9pili - D) =0 (7.5.9) 

or pd CCR + (pdUj + lj) ICR 

- (E1 + pdgri) + 
0i (gpjlj - D) =0 (7.7.10) 

and (pdUi + 71) f'+ Wil 

- Ul(EI + pdgpl) + 
kjUj (gpili - 7) =0 (7.5.11) 

01 

or (pdUi + 1s) CCR 

- UL(Ei + pdgri) +k 
Uj (gvili - D) =0 (7.5.12) 

Where the Doppler relation is used to derive the modified equivalence 
relation (7.5.11) from equation (7.5.7). 

Subtracting U1 times equivalence relations (7.5.9) from 

relation (7.5.11) gi ves the relation (7.2.18) after using 

expressions (7.2.13). Alternatively, the relation (7.2.18) is 

immediately deducible from expression (7.5.1) on use of the modified 
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wave-action conservation equation (7.5.3). Thus, the equivalence 
relation (7.2.18) does not change when dissipation and parallel 
acceleration are added to the system. 

The modified equivalence relation (7.5.11) can not be derived from 

the equivalence relations (7.5.9) by, for example, taking the scalar 
product with (pdUi + 1±). Therefore, the vector relations (7.5.9) and 
one of the scalar relations (7.5.11,7.2.18) are independent. 

The equivalence relations (7.5.9), together with the definition of y 
given by expression (2.4.9), replace the modified momentum conservation 
equations in order to make the modified averaged equations and the 

modified Whitham's equations fully equivalent. 
Throughout this thesis the case of an irrotational mainstream flow 

is always considered. Also it is supposed that the consistency 
relations (2.3.5) are satisfied so that Whitham's replacement of the 

momentum conservation equations is, as previously mentioned, given' by 

the former of these consistency relations. This can only be the 

situation if there is 'no wave energy dissipation or parallel 
acceleration of the mainstream flow. However, when either one or both of 
these effects are considered the above form of the equivalence relations 
must replace the momentum conservation equations. Note that the 

mainstream flow can still be supposed (globally) irrotational. 
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CHAPTER 8 
FINITE-AMPLITUDE PURE CAPILLARY WAVES 

ON FINITE DEPTH LIQUID 

8.1 Introduction 

Taylor (1959) analyses the possible infinitesimal amplitude pure 

capillary waves which occur on a thin liquid sheet. He shows that two 

types of waves are produced. One type is symmetrical and the other 

antisymmetrical with respect to the centreline of the sheet. He 

experimentally confirmed the existence of such waves using liquid sheets 

as thin as 5-100 pm. 
Finite-amplitude pure capillary waves were first analysed by 

Crapper (1957). He shows that there exists an exact solution for large 

amplitude pure capillary waves on liquid of infinite depth and that this 

solution is expressible in terms of elementary functions (§ 4.2). At 

that time he made the following remark: "there, is also an exact solution 
if the liquid has finite uniform depth. The analysis is, however, rather 
complicated, involving elliptic functions, and the solution is not 
considered worth evaluating in detail. " 

This statement remained untested , 
for almost, twenty years. 

Kinnersley (1976) examines this point and shows that there two 

generalisations' of Crapper's. (1957), solution. These are shown to be 
finite-amplitude versions of Taylor's symmetrical and. antisymmetrical 
sheet waves. The analysis presented in Kinnersley's paper is a 
generalisation of Crapper's approach. 

Hogan (1986) examines these two finite-amplitude solutions. He 

extends Kinnersley's work to give an exact criterion for highest waves 
and also shows that Kinnersley's parameter c is not equivalent to either 
definition of the phase speed given by Stokes (1847). 

In section 8.2 the wave solutions of Kinnersley (1976) are described 

with slight corrections and alterations where necessary. Attention is 

then focused on 'the symmetrical waves solution. In section 8.3 the 
highest waves criterion of Hogan (1986) is explicitly solved for these 

symmetrical waves. In section 8.4 expressions for the mean level: of the 
liquid, the mean kinetic energy density, the mean potential energy 
density and the mean bottom velocity squared are found. The variation of- 
these and other mean quantities are discussed in section°8.5. 

ý {' 
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8.2 Kinnersley's Exact Solution 

Kinnersley (1976) considers steady, symmetric, periodic nonlinear 

pure capillary waves which propagate on a sheet of incompressible 

inviscid liquid of finite thickness. The motion in the liquid is 

two-dimensional and irrotational and the wave is moving to the right. By 

considering the motion in a frame of reference fixed to the waves the 
flow is reduced to a steady state. Kinnersley's results are given in 

such a frame but with his Cartesian axis x,. measured horizontally to the 
left (downstream) and axis ZK measured vertically downwards. The 

subscript K denotes that these are Kinnersley's axes and a hat denotes 

variables in a frame fixed to the waves. The axes used in our work are 

chosen with x measured horizontally to the right (upstream) and z 
measured vertically upwards. Consequently, Kinnersley's results need 
slight modification owing to these differences. Essentially, all that is 

required is a transformation xR =-x and ZK =-z. Elsewhere 
Kinnersley's notation is used throughout including the convention that 
the modulus of elliptic functions is omitted, since all functions of 
velocity function 0 have modulus Ic and all functions of the stream 
function 0 have modulus x' where k2 + X12 =1 and 0< Ic < 1. Note that 
this velocity potential and stream function are dimensionless. Excellent 

references for both elliptic functions and elliptic integrals are Byrd 

and Friedman (1971) and Abramowitz and Stegun (1965). The centreline of 
the sheet is given by 0=0 and the free surfaces by 0=±B. 

For symmetric waves (case Ib of Kinnersley) the wave profile, 
relative to axes moving with speed c, is given by 

x=-T [2E(o) 
- ßc'2'0 - 2rc2sn 0 cd +2c, c'2sd 

0c 
nd 1 (8.2.1) 

d2 

Z=-T 
[(1 

+ XZ)0 - 2E(ß) + 
2n sn Cn 1 (8.2.2) 

where E(¢) is the incomplete elliptic integral of the second kind. Thus, 

expressions (8.2.1,2) are in the form k= k(O, 0) and z= z(04) 
respectively with velocity potential 0 and stream function 0 as the 
independent- variables. The parameter A is generally not related to 
Crapper's parameter A described in § 4.2. 

Now, sn and cn range between t1 with period 4K (K no longer 

represents the wavenumber of a gravity wavetrain), where K(, c) is the 

complete elliptic integral of the first kind, whilst do ranges between 1 

and ic' with period 2K. It follows that 0=0, ± 4K, etc., at wave crests 
and 0=± 2K, ± 6K, etc., at wave troughs. 
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The parameter A is related to the free surface 0=+B by 

1=-A, c'zsn B cd B. (8.2.3) 

Choosing B to lie in the first quadrant, i. e. 0<B<K, A must be 

negative. This implies (see Kinnersley 1976) ý and 0 increase to the 
right and upwards, i. e. in the directions of our axes. 

The crest-to-crest wavelength A is given by 

A= x(4K, O) - x(0,5) , 

so a=- 
oý? 

(2E - k'ZK) 

Where E(sc) is the complete elliptic integral of the second kind. 
The amplitude a of the waves is given by 

a=1 [z(0, + B) - z(2K, + B)] 

so a=- c2-zrscB 

(8.2.4) 

(8.2.5) 

(8.2.6) 

(8.2.7) 

The trough depth t, 'measured from the centreline to a trough on the 
surface, is given by 

t= z(2K, + B) (8.2.8) 

so t=-msz [(1+xz)B- 2E(B) +2 sc B(dn B- K)] . 
(8.2.9) 

The phase, speed cp, ý defined by Stokes' (1847) first definition, is 

given by 

02 K cp =c (8.2.10) 

The expressions (8.2.5,7,9) differ from those of Kinnersley by a 
negative sign. Those in his paper give negative values for A, a and t, 

These symmetric waves can be regarded as either occurring on a 
liquid of finite depth, with a fixed bottom at 0=0, or as a nonlinear 
version of Taylor's symmetrical waves on a liquid sheet. For the latter 
case the lower boundary occurs on 0=-B and the trough depth t 
represents the sheets minimum semi-thickness. 
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For antisymmetric waves (case IIb of Kinnersley) the wave profile is 

given by 

x=-c (2E(ß) ¢+ 2x sn 
_ cn 

, (8.2.11) 

ZcI 2E(O) +0-2 do 0 cs +2 ns- 
xcs 

1 (8.2.12) 

Where the parameter A is related to B by 

1=-A cs B nd B, (8.2.13) 

Which means that A is negative, and A, a and t are given by 

a=- (2E - K) (8.2.14) -YX 

a=- nc B, (8.2.15) 

t=-- [B - 2E(B) +2 sn B dc B, - 2ic(nc B -1)) (8.2.16) 

This solution is the finite-amplitude version of Taylor's antisymmetric 
sheet waves. 

The phase speed cp is given by 

cp _ 
(4x' - 1)K + 4(1 - 2, cZ)E c (8.2.17) 

Both the phase speeds (8.2.10,17) are derived by Hogan (1986) and show 
that, in general, cp #c so that c is not the phase speed of the waves. 
Hogan (1986) also shows that c is not equal to the second definition of 
phase speed given by Stokes (1847) for either the symmetric or 
antisymmetric waves., 

Crapper's (1957) solution (caseIll of Kinnersley) is given, in this 

notation, by 

X= c2A 
{0 

+ cosh 
2 sincos , (8.2.18) 

Z= erl 
Ce 

cosh 
si- 

cos 
l (8.2.19) 
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Where the parameter A is related to B by 

1=A tanh B, (8.2.20) 

which means that A is positive, and A and a are given by 

2rs taub B, (8.2.21) 
C, -x- c 

a=cs cosech B= sech B (8.2.22) 

The parameter A is not identical to Crapper's parameter A described 

in § 4.2 but they are simply related. For this case the phase speed 
defined by Stokes (1847) first definition is equal to c. 

Generally the parameters rc, B and c are interpreted as depth, 

amplitude and velocity (or frequency) parameters although other 
interpretations are possible as is revealed by limiting cases such as 
the linear-limit is -º 0. The parameter A can then be interpreted as a 

wavelength parameter. Note that the limit x -º 0 represents the 
infinitesimal amplitude limit of these solutions and the limit B -' 0 

represents capillary waves on a liquid sheet which is very thin. Also 

as 'c -' 1 the trough depth, or sheet minimum semi-thickness, t -' 0. 
Crapper's solution is obtained from both the symmetric and 

antisymmetric 
'solutions 

by taking the limit is -' 0 after the 

transformation 

-+ }ý - K(rc') 'z --' 
sfl [(1 + ic2)K(ic') - 2E(rc') - z] (8.2.23) 

which essentially shifts the position of the origin. This transformation 
takes Kinnersley's Ib and IIb solutions and transforms them to the Ia 

and Ha solutions respectively. The Ia and Ib, or Ha and Ilb, solutions 

are exactly the same in a physical context but differ analytically in 

the directions of: ' and o and, thus, in the labelling of streamlines. 
Also, this transformation does not effect the phase speeds of the waves 

and it is easily seen that both expressions (8.2.10,17) for cp tend to 

c in the limit rc --º 0. 
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8.3 Highest Waves 

Crapper (1957) shows that finite-amplitude capillary waves on liquid 
of infinite depth have maximum steepness when the free surface touches 
itself to enclose a bubble in the trough (see § 4.2 and figure 1.1). The 
qualitative characteristics of free surfaces of Kinnersley's waves and 
Crapper's waves are the same. It, therefore, follows that the criterion 
for the maximum steepness is given by requiring a vertical tangent 
atx= P. 

For the symmetric (case Ib) waves Hogan (1986) shows that the 
criterion is explicitly given by requiring 

Lý - 2(1 + icz) = 2L cn ¢ ds (8.3.1) 

Where L(O) = 4E - 2E(O) + x'2o - 2, c'2K . 
(8.3.2) 

The criterion is solved by fixing x and solving equation (8.3.1) for ý. 
The value of B= Bmax corresponding to the maximum steepness wave is 
then given from 

do B... =L cd +2 sn (8,3.3) 
+x sn cd 0 

Expressions (8.3.1 - 8.3.3) have been verified from first principles. 
Similarly, for the=antisymmetric (case IIb) waves, fix is and solve 

for 0 from 

I2 sn do ='2(2 dn2ý - 1)(I cn 0+ sn 0 do 0) (8.3.4) 

Where 1 (0) = 4E - 2E(0) +0- 2K 

with the maximum value of B=B., x then found from 

dsBm, x-ic(Icn0+2sn4dn0) 

(8.3.5) 

(8.3.6) 

If B> Bmax then the free surface of the waves intersects itself. This 
is interpreted as wave breaking, as it is for the infinite depth case, 
so that B= Bmax represents the breaking point of the waves. Note that 
the criterion for the highest waves is independent of the velocity 
variable c. 
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Also note that Hogan (1986) requires a vertical tangent at xK =a 
for 0# 2K (which correspond to a wave trough). The condition 0# 2K is 

not required above simply because 0= 2K is not a possible solution. The 

position 0= 2K corresponds to a wave trough where a vertical tangent 
can not occur. In fact, there is a horizontal tangent at a trough. The 

requirement of xR = is rather than XK =a clearly makes no difference 
to the exact form of the criterion. This has been analytically confirmed 
by the author. 

Attention is focused on the symmetric (case Ib) waves. The 
equations (8.3.1) is solved numerically using a standard transcendental 
equation solver (NAG LIB CO5PBF). The solver requires an initial guess 
for 0. It is found that the routine always converges to the solution 
when the initial value of 0 is unity. Many other initial guesses will 
also always converge. The value of Bmax is then found using the 
definition 

dn't (0) =-tt-r. dt (8.3.7) 

which is calculated using a standard integrating routine (NAG LIB 
D01AHF). 

This method is employed for all a with 0< rc < 1. For is =1 the 
complete elliptic integral of the first kind K(x) -º oD and a rather 
different approach has to be undertaken to find Bmax. Kinnersley (1976) 

considers this limiting case in more detail and finds that Bmgx = r/4. 
This is, in fact, the limiting solution of (8.2.1,3) as 'c --' 1. The 

variation of Bmax with 'x is shown in figure 8.1. It is' seen 
that Bore, --4 OD as is -º 0. Typical wave profiles for the symmetric (case 
Ib) waves are shown in figures 8.2,3 'and discussed in § 8.6. Typical 

wave profiles for the antisymmetric (case IIb) waves are given in 
Hogan (1986). 
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8.4 The Four "Basic" Mean Wave Properties 

In § 2.5 expressions for all the mean properties of the wave motion 
are given in terms of four "basic" mean wave properties: ' the mean 
kinetic energy density, the mean potential energy density, the mean 
bottom velocity squared and the mean depth of the waves. In this section 
expressions for these four mean properties are found for the symmetric 
(case Ib) waves. Hogan (1979) performs the same calculations for 
Crapper's waves. 

Substituting ýb =+B into the solution (8.2.1,2) gives the surface 
profile as 

X=c sfl [2E(O) 
- x'20 - 2, cZsn 0 cd'6 + 

2a, c'2sd 
cd 

nd , (8.4.1) 

29 
= c4 

[E 
+-ac] (8.4.2) 

Where a=x nd B ic'2 sn B cd B (8.4.3) 

and E= (1 + X2)B - 2E(B) . (8.4.4) 

Note that ß_-Ä. (8.4.5) 

Also let B= 2E - ý'zK,. (8.4.6) 

It is seen that the surface profile is a function of three parameters, 
namely r., B and c. Therefore, expression for mean wave properties are 
sought in terms of these three-parameters. 

The integral definitions of the mean properties required are given 
in the a-frame in which the waves move at their phase speed cp.. The 

surface profile in the a-frame is given by the Galilean transformation 

x=x- cpt (8.4.7) 

Where x is the horizontal axis in the u-frame. The z-axis remains 

unchanged. 
The calculation of these mean-properties requires the evaluation of 

dx dx d 
ui and 

, 
(8.4.8) 

so these are examined first. Detailed algebra is shown in appendix D. It 
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is found that 

di 
_ - a1 

[(1 + 2k'sdlo) - a2(cd2q5 + 2sd29$)] (8.4.9) 
c TI cd 

=41- cd ý7 [- 2aß sd 0 nd 0] . (8.4.10) 

Extensive use of Byrd and Friedman (1971) is made in deriving these 

expressions and the expressions below. 

At this stage five integrals, for use in the expressions for the 

mean wave properties, are defined: 

-a cd 
dý 12(B, k) = 

JoK 
(I -a 

sd 20 d# I1(B, k) JoK 
I -7 cd 0) ' 

''` 1+ 2rczsd2- a2 cd2 +2 sd2 d0 Jo -a Cd 0)' 

I, (B k) 4k 1 (1 + 2, c2sdz - nz cd2 +2 sd2 do -Jo n +r. c- ncd 

Is(B k) `k 1 (1 + 2rc2sdZ - aZ cdZ +2 sd2 do -fo n cd 0)4 (1 -ac 

Note that the only dependence on B in these integrals is through a. 
Also, all the. integrals defined for this and proceeding work are all 
functions of the surface parameter B and the modulus x only; there is no 
dependence on the velocity variable c. 

a. The Mean Level b 
The mean level b isygiven, by 

n=b=I fo dx 

Which, on substitution of expression (8.4.2) for n, gives 

b-cCE+foK 
-ac ýdýJ 

(8.4.11) 

(8.4.12) 

so, using expression (8.2.5) for A and expression (8.4.9), it follows 

that 

b= 
c2 `x'ZB ý20e + x'ZQI3) (8.4.13) 

Therefore, b is a function of x, B and c. 
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The bed has 0=0 and so z=0. Therefore, in the notation 
introduced in chapter 2 depth h=0 and mean depth d=b. However, if 

the origin is transformed, in the z direction, so that depth h#0 then 

expression (8.4.13) would not give the mean level b but would only give 
the mean depth d. 

b. The Mean Kinetic Energy Den iT 
Longuet-Higgins (1975) takes the expression (All) for the mean 

kinetic energy density T and shows that 

T=f J'i dl (8.4.14) 

Where I is the velocity potential of the wave motion, in the u-frame and 
the integral limits range over one period of I. Now, the velocity 

potential ý is a dimensionless quantity derived from a dimensional 

velocity potential 4K in Kinnersley (1976). The relation between 

and ý is, from Kinnersley (1976), 

fl- 0 (8.4.15) it _- cl c 

using formula (8.4.5) for A. Also, since 4K is the velocity potential in 

the frame fixed to, the waves (regardless of the orientation of the 

axes, i. e. 4K = 4), 
-the 

relation between AK and dt is, 

OK = dl - cp dx (8.4.16) 

which is found using the relation (8.4.7) between x and x. 
Substitution of expressions (8.4.15,16) into expression (8.4.14) 

gives 

T- 
Pk C- sg j 4K 

' do + cp 
J° 

'7 dx] (8.4.17) 
C 

The first of the two integrals give 

oK 
' dO =c 

joKc 
+1-ac] dqS (8.4.18) so 4 20 

4K sfl 

so 
jo do =c (4Ke+2f3Ii) . 

(8.4.19) 
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The second of the two integrals is related to the mean level of the 
liquid and so, from expressions (8.4.11,13), gives 

fo 
rýdx=Csr2 (tee+ ýcl2ß13) 

It follows that 

T_M, 02K 2 (X'2KI3 - 9Is) . 

Therefore, T is a function of x and B only; no dependence on c. 

(8 4 . 20) 

(8.4.21) 

c. The Mean Potential Energy Dni 

The mean potential energy density V, is given, from definition (A13), 
by 

V= fo 
+- 1 dx (8.4.22) {[i 

lJJ 

so V=I (I 
J+ 

[a]] 
-Jd (8.4.23) 

Note that the positive square root must be taken in these expressions 
for V simply because a negative square root would imply a non-zero 

potential energy density contribution of - 2r in the presence of no 

waves, i. e. V=0. 
It is shown in appendix D that 

2+ d 2]1 
= Sq 1- 

a2cd2 
(8.4.24) 

c (i [[] fal 
It follows, 'from expressions (8.4.9, `24), that 

[[J2 
+ _2 a2 '2 sd2 (8.4.25) 4 []2] 

c- ac 

So, using expression (8.2.5) for A and expression (8.4.22) for V, 

V=T (a2 _ r2 28 
(8.4.26) 

Note that V is is function of k and B only as is T. 
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d. The Mean Bottom Velocity Squared U2 
The horizontal component u of the velocity of the liquid particles 

in the o-frame is given using the equation 

UK Uu+ Cp (8.4.27) 

derived using xK =-x and the relation (8.4.7) between x and x. This 

gives 

uh 22 = cp +T joK (fig 
- 

2cpüK)h 
d7 

dO 
. 

(8.4.28) 

The velocity component üK is found using equation (27) in 
Kinnersley (1976). Note that this equation is given incorrectly by a 
negative sign. The corrected equation gives 

X'Z cd2 - iczsdz snz. 4.29) fig 
-n+Kn cn 

f) c (8 ' 

On the bed 0=0 so that sn, o =0 and cn 0, = do 0=1. Therefore, 

IP 2 
UKh =n+x en c (8.4.30) 

so, using expressions (8.2,5,10) for A and cp and also 
expressions (8.4.9,28,30), it follows that 

uý =f+ (014 - 2KI5)} c2.. (8.4.31) 

Note that this is a function of B because the integrals 14 and 15 

are function of B. This is due, mathematically, from the change of 
variables of the integrals, as prescribed in expression (8.4.28), from x 
to 0. Physically, it is expected that the mean bottom velocity squared 
will be a function of wavelength and since wavelength is a function of B 

this feature of dependence on B follows. This is also to be expected 
since waves of different amplitudes and depths would have different 

values of the mean bottom velocity squared. It is seen from 

expression (8.4.34) that the mean bottom velocity 'squared is a function 

of all three variables x, B and c. 

It is, therefore, seen that expressions for the mean properties of 
the wave motion are expressed generally in terms of rc, B and 'c except 
for certain special cases where the variables is and B are enough. 
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However, all the expressions involve one or more of the integrals 
Il - 15. These definite integrals can be worked out in terms of complete 
elliptic integrals of the first, second and third kind. For instance, 

the simplest of the integrals I1 is given by 

II _ 
4K 1 

dý = f4K do do +a cn dO (8.4.32) Jo 
oa co n- acn 

so I1 =31 a2[ 
j04K 

_dnaisn 
dc +a° cn 

a sn 
dO (8.4.33). I zo 

f 

Where a2 
Z a2 

. (8.4.34) = fir 

The first of the two integrals in expression (8.4.32) is given by 
formula (339.01) in Byrd and Friedman (1971). The second of the two 
integrals is zero because cn(¢ + 2K) =- cn(S). It follows that 

-2 2 

Ii =T 4X2K -z II(4K, a )] (8.4.35) 

Where II(0,0) is the incomplete elliptic, integral of the third kind. 
Again the modulus x is omitted from notation for the elliptic integral. 

Now II(4Kýail =f cK 
ýn 

.= 2II(a) +2fo- aic u 
(8.4.36) 

Where II(a2) is the complete elliptic integral of the thirdIkind. Since 
the second of the integrals in expression (8.4.33) is zero it is 'seen, 
from expression (8.4.32), that the integral in expression (8.4.36) is 
the same as I, but with limits 0 and K rather than 0 and 4K and with a 
replaced by a,. It follows that 

X"2&2 II(4K, a, ) = 2U(&2,, ) + 2[ 
ic2K - ý3 II(K, 0Z), (8.4.37) 

of - 

Where a? _- :s. (8.4.38) 

ýz z So Is =7-72- ýc a X2K ia 
11 

(l -ar. - a, 
, 

)C0202 r'202 

-ý lII(ai) -- II(K, a2)JJ (8.4.39) 

aE 
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Similar expressions can be derived of 12 - 15. The expression for 12 is 

simpler in form than (8.4.39) whereas those for I3 - 15 are more 
complex. Substitution of these expressions into those derived above for 

mean wave properties would lead to long expressions in terms of various 
elliptic functions and integrals. The evaluation of any elliptic 
functions or integrals requires the formation -of complex numerical 
routines. Such routines are prone to many errors. It proves simpler and, 
in some ways, more efficient to evaluate the integrals I, - I5 
themselves using using'a standard integrating routine (NAG LIB DO1ABF). 

The algebra in this section involves complicated expressions and 
formulae for elliptic functions and so is prone to many possible errors. 
The simplest method of checking the general expressions for the mean 
wave properties and, thus, the algebraic manipulations used is to show 
that the linear-limit of the expressions gives the correct results. This 
is shown to be the case in appendix E. 

8.5. Variations of Mean Wave Properties 

The variations of mean wave properties are given in units with 
density p and surface tension r taking unit value and the length A of 
the waves equal to 2r. Such units are chosen' for comparison with the 
results of 'Hogan (1979,1980,1981). The variation of= all the mean 
properties considered. by Hogan are given. For example, the-variation 
of (c2 P/c0) is given where cö =Aanh B is the linear phase velocity. The 

specification of the velocity parameter c; in terms of rc-and B, is given 
from the expression (8.2.5) for A= 2x as 

c2 = 
2ýz (2E - ic'2K) . (8.5.1) 

Expressions for all the mean wave properties of the wave motion are 
given in § 2.5. It is seen that since wavenumber k=1 in these units 

Z=2Tk=LT (8.5.2) 
aQ 

In § 8.3 the domain for the variables rc and B is found. It is shown 
explicitly in figure 8.1., It is most logical to show the variation of 

mean wave properties along sections through this domain., Four general 
sections are considered. These are k=0.25,0.75 with , 

0-< B. <_ Bmax, 
B=0.7 with 0< is <1 and. B, = 2.0 with 0 <_x < kmax.. The evaluations of 
the elliptic functions sn(O, ic), cn(O, ic) and dn(o, K) and the elliptic 
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integrals K(rc), E(r. ) and E(ý, ic) are carried out using rigorously tested 
routines supplied by Prof. P. Drazin of Bristol University, England. 

The profiles of waves along these sections are shown in 
figure 8.2,3 respectively. For the sections K=0.25,0.75 and B=2.0 

capillary waves reach their maximum steepness where they enclose. a 
bubble of air in troughs. However, for the section B=0.7 capillary 
waves never reach the maximum steepness "enclosed bubble" shape. This is 

simply because Bmax > r/4 for all values of 'c. In this case the 
capillary waves become singular when k=1 and the bed is touched by 

wave troughs. 
Variations of mean wave properties are shown in figures 8.4 - 8.7 

for the four sections. It is seen that as B -º 0 all mean wave 
parameters shown, except (cp/cö), also tend to zero. Marked differences 
in variations are shown for the cases is = 0.75 (figure 8.5) 

and B=0.7 (figures 8.6). Many mean wave properties have local maxima 
which is not the case for infinite depth Crapper waves. Also, it is 

possible for the radiation stress component SZZ to take positive values. 
This differs from the infinite depth Crapper waves. 

From the classical theory of infinitesimal water waves (see any 
basic text on the subject) it is known that waves in general are 
uninfluenced by the presence of a bed when kd > r. Here k=1 

so kd =d=b. However, it is possible for trough depth t to be "small" 

even when the mean depth d is "large". For example, the maximum wave 
for x=0.75 (figures 8.2,5) and the wave touching the bed for B=0.7 
(figure 8.3,6) have "large" mean depth d but "small" trough depth t. 
Under such circumstances the bed would be expected to have an influence 

on the waves. Moreover, for infinitesimal waves (see appendix E) d=t. 
Thus, it seems more appropriate to take the condition kt =t<r as a 
criterion for waves influenced by the bed. If thin film flows are of 
interest then the criterion would be kt < 0.3, say, or more generally kt 
"small". 

From § 8.2 it is seen that expressions for wave steepness ak and the 

parameter kt are independent of the parameter c. This allows for 

calculation of the variations of ak or kt with either rc or B as given by 

the highest waves (K, B)-curve. The variations of ak and kt with x are 
also shown in figure 8.1. Now, for fixed r. (B) steepness ak always 
increases as B (K) increases. Thus, the variation of ak shown in 
figure 8.1 gives the maximum steepness. Also, for fixed is (B) 

parameter kt increases (decreases) as B (K) increases. Thus, the 

variation of kt shown in figure 8.1 gives its maximum possible value. 
Note that if the variation of kt with B, as given by the highest wave 
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curve, is considered then the curve given would represent the minimum 
value of kt. 

It is, thus, seen from figure 8.1 that kt <r if either rc > 0.02 

or B<4.5. These give bounds for waves whose motion is generally 
influenced by the bed. A "small" subcatogory of this range comes under 
thin film flows. It is seen that kt < 0.3 if either rc > 0.45 

or B<1.45. 

138 



CAPTIONS FOR FIGURES 

Figure 8.1: The variation of B. a. with ic for the Kinnersley's symmetric 
waves. 

Figure 8.2: Wave profiles for Kinnersley's symmetric waves with 
(a) x=0.25 and (b) ic = 0.75 where B ranges from zero 
to B.... 

Figure 8.3: Wave profiles for Kinnersley's symmetric waves with 
(a) B=0.07 and (b) B=2.0 where ic ranges from zero 
to 'cmax (imax =1 for B=0.07). 

Figure 8.4: The variation of mean wave properties with steepness ak 
for K=0.25 (B varies); units with p=r=1 and A= 2r 
are used. 

Figure 8.5: The variation of mean wave properties with steepness ak 
for x=0.75 (B varies); units with p=r=1 and A= 2r 
are used. 

Figure 8.6: The variation of mean wave properties with steepness ak 
for B=0.07 (ic varies); units with p=r=1 and A= 2r 
are used. 

Figure 8.7: The variation of mean wave properties with steepness ak 
for B=2.0 (#c varies); units with p=r=1 and A= 2r are 
used. 
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CHAPTER 9 
THE LINEAR WAVE- CURRENT INTERACTION PROBLEM 

FOR CAPILLARY-GRAVITY WAVES ON FINITE DEPTH LIQUID 

9.1 Introduction 

It is now supposed that the depth of liquid is finite. Finite depth 

slowly-varying problems are far more complex than infinite depth 

slowly-varying problems. This is because variations in wave properties 

cause variations in the mainstream flow and the mean level of the 
liquid. One consequence of this is that only the wave-current 
interaction problem can be examined. The wave propagation problem can 

not be examined simply because the basic mainstream gravity flow can not 
be specified ab initio. 

Here it is supposed that the waves have infinitesimal amplitudes and 
that both capillary and gravity forces effect the form of the waves. 
However, our interests are on those waves dominated by capillarity. This 

chapter is, thus, the finite depth version of chapter 3. Much of the 
analysis in this chapter, for example the possible waves, is based upon 
that of chapter 3. 

Some general features of Whitham's equations, applicable to both 
linear and nonlinear waves, are discussed in section 9.2. : The possible 
waves are analysed in section 9.3. Section 9.4 considers the general 
equations for the finite depth slowly-varying wave-current interaction 

problem. Results for the cases of stationary and Doppler shifted waves 
are presented and discussed in sections 9.5 and 9.6 respectively. 
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9.2 The Influence of Finite Depths 

This section discusses some general features of Whitham's equations 
as presented in § 2.4. This discussion is included at this stage, and 
not in chapter 2, because it is more directly relevant to the work of 
this and the subsequent chapter and gives the reader a better 

appreciation of the mathematical method of solution used. 
As in chapter 2, it is supposed that variations of wave parameters 

and mainstream flow are slowly-varying and that there is zero wave 
energy dissipation. From definition (2.4.9) of the Bernoulli 
"constant" 7 and expression (2.5.7) for the mean bottom velocity squared 
in terms of the averaged Lagrangian ' it is seen that 

7= (Ui + ui) + gb . 
(9.2.1) 

For general nonlinear problems two of the three unknowns d, b and h are 
independent. For our purposes d and b (h) are the two independent 

parameters so that h=d-b (b =d- h) is the dependent parameter. The 

presence of two more unknowns requires two more equations to form a 
closed solvable system. These are the mass conservation equation (2.4.5) 

and the consistency conservation relation (2.3.5) together with the 
definition (9.2.1) of 7. Note that an alternative to the consistency 
conservation - relation (2.3.5) is the momentum conservation 
equation (2.2.2,5) in which case the definition (9.2.1) of 7 is not 
needed. 

If steady variations are considered then the consistency 
conservation relation (2.3.5) implies that 7, like w, is constant and so 
is chosen ab initio. Under such circumstances the definition (9.2.1) 

of 7 can be regarded as specifying variations of b once variations of 
all other flow properties are known. Thus, d can be regarded as the 
single unknown present as a result of finite depths. The mass 
conservation equation (2.4.5) is then the single equation needed in 

order to form a closed solvable system. 
Also for steady variations, the actual value assigned to ry is 

qualitatively 'unimportant. From definition (9.2.1) of 7 it is seen 
that 7 acts like a translation factor for b since a 
translation z -º z- 7/g results in a translation of b -º b+ 7/g so 
that definition (9.2.1) of 7 gives 

0= (Ui + ui) + gb . 
(9.2.2) 
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Expression (9.2.2) is independent of ry so that such translations have no 
qualitative effects. Note that if flow properties vary with time 
then y= 7(xi, t) so that the required translation of z varies with both 

position and time and the qualitative independence of 7 is not true. 
For infinitesimal waves the averaged Lagrangian r is of order a2. 

Thus, it is seen from the expressions (2.4.7,2.5.2 - 2.5.6) that all 
the mean wave properties, except d, are order a2. It follows that the 

mean bottom velocity squared term in the definition (9.2.1) of 7 and 
the G" term in the mass conservation equation (2.4.5) are negligible to 

the order of linear theory. Consequently, these equations take the forms 

7= 1'Ui + gb and 
a(pb) 

+8 (pUd) =0 (9.2.3) 

respectively. Therefore, since the definition of y here is exactly the 

same as for infinite depths, given by expression (2.6.6), b is 

independent of the wave motion for the case of linear waves on liquid of 
finite depths. 

If the flow field is steady the mass conservation equation 
(2.7.2,9.2.3) becomes 

pdU1 =- mi . (9.2.4) 

It is, therefore, seen that steady finite depth problems generally 
have one more parameter vector mi and one more unknown d than the 
infinite depth problem. This means that the general complexity of 
problems increases by one dimension the consequences of. which can be 
dramatic. 

All the above features are very, important and must be kept in mind 
when reading this and the subsequent chapter. 
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9.3 The Possible Waves 

A uniform plane-wave of infinitesimal amplitude propagating over 

still liquid of finite mean depth d with vertical displacement V and 

velocity potential ý given by 

=a cos (kx - at) ac cosh k (z + h) 
sin (kx - at) (9.3.1) 

sin { 

has dispersion relation and group velocity, the velocity of energy 

propagation, 

Qz = (gk + ski) tank kd ca =YCg 
sk3 

+ tan . (9.3.2) 

Note that these expressions show that both c and c. -º (gd) I as k -º 0. 
If the mean depth d is infinite then both c and cg -º aD as k -º 0 as is 

shown in figure 3.1. 
Figure 9.1 shows variations of c and cg with k for water 

depths d= 10 mm, 5 mm and d=1 mm. It is seen that for da5 mm both c 

and ca have local minima at some finite non-zero k but for d45 mm both 

c and ca only have. global minima, given by (gd) i, at k=0. Note that 
for d5 mm waves are non-dispersive for wavenumbers less 

than k 300 m-1 , i. e. wavelengths- greater than A= 20 mm. This depth 

of 5 mm is usually referred to as the "ripple tank depth" since it is 

useful in simulating the effects of non-dispersive wave systems such as 

sound or light. 

In § 3.2 the Doppler relation (2.3.1) and the dispersion 

relation (3.2.2), for waves on infinite depths of liquid are combined and 

all the possible waves, for. a constant mainstream flow U, are found and 
discussed. A similar analysis is performed in this section for the case 

of finite depths. All the possible waves for a constant mainstream 
flow U and a constant mean depth d are found and discussed. Our usual 

convention of k>0 and U<0, with v>0 for stationary waves, is used. 
Figure 9.2 shows the variation of frequency v with wavenumber k as given 
by the dispersion relation (9.3.2) for d= 10 mm, 5 mm and 1 mm. 

Firstly consider the case of stationary waves where the total 
frequency w is zero. The Doppler relation takes the form (3.2.4) 

of Q=- kU or c=-U. The dispersion relation (9.3.2) implies that 

there are two possible waves CC and CC if da5 mm and only one possible 
wave CC if d45 mm. This is clearly seen from examination of 
figures 9.1,2. As for infinite depths waves only exist when -U Cmin. 
If dý5 mm then cm sn< (gd) l and wave CC exists for cm i� <-U< (gd) l. 
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If d45 mm then cmin = (gd)l, wave CC does not exist and wave CC exists 
for -U> (gd)4. The directions of travel, etc., of the waves are 
exactly the same as their infinite depth counterparts. Note that if d is 
infinite then wave CC exists for all -U> cmjn as expected. 

By discussing the transition of the stationary waves CC and CC as 
the magnitude of w increases the general case is interpreted. If the 

stationary wave CC can exist then the analysis is exactly the same as 
that for infinite depths so that there are six possible waves. However, 
if the stationary wave CC can not exist then the transition results in 

only four possible waves. The waves GC+ and G+ do not exist. The general 
properties of waves, when they exist, are the same as their infinite 
depth counterparts and are listed in table 3.1. 

If the stationary wave CC can exist then there is one possible 
stationary wave caustic, the CG/GC caustic, and three possible Doppler 

shifted wave caustics, the CC+/G+, CC+/CC+ and CG-/GC- caustics. 
However, if the stationary wave CC can not exist then there are no 
possible stationary wave caustics and only one possible Doppler shifted 
wave caustic, the CG-/GC- caustic. 

Two interesting special cases are those of pure gravity and pure 
capillary waves. For stationary pure gravity waves the only possible 
wave is wave CC which will exist for all -U< (gd)l. The stationary 
wave CC does not exist and there are no possible caustics. For Doppler 

shifted pure gravity waves the. only possible waves are waves G(+, -) and 
CC(+, -) and the only possible caustic is the CC+/C+ caustic. For 

stationary pure capillary waves the only possible wave is the wave CC 

which exists for all U. The stationary wave CC does not exist and, there 

are no possible caustics. For Doppler shifted pure capillary waves the 

only possible waves are waves CG(+, -), CC- and G- and the only possible 
caustic is the CG-/GC- caustic. The Doppler shifted pure gravity or pure 
capillary waves cases are qualitatively similar in their analysis to the 

corresponding infinite depth cases. 
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9.4 The Equations 

The linear interaction problem is now examined. The mainstream flow 

and the wave parameters are all assumed to be steadily slowly-varying. 
The unknowns for the problem are o, k, a and d. The equations used to 
find variations of these unknowns are the Doppler relation (2.3.1), the 
dispersion relation (9.3.1), the wave-action conservation equation 
(2.7.5) and the mass conservation equation (9.2.4). 

The mass conservation equation (9.2.4) states that pUd =-m so that 

our convention of U<0 means that m>0 since d>0. Also, it is seen 
that a large (small) magnitude for the mainstream flow U means a 
small (large) magnitude of depth d. Note that m=0 is not considered 
simply because it does not correspond to realistic flow fields. 

The variation of k is given by using the Doppler relation (2.3.1), 

the dispersion relation (9.3.1) and the mass conservation 
equation (9.2.4). These give 

stanhýk3 - U2 k2 + 
[2wU 

+g tanhp, k- w2 =0. (9.4.1) 

For particular values of w and m this equation is solved by varying U 

over a given range and solving for k. Note that this equation is 

singular when U=0. However, from the mass conservation 
equation (9.2.4) it is seen that U=0 implies that d= oo so solutions 
for U=0 are found from the corresponding infinite depth 

equation (3.3.2). 
Once equation (9.4.1) is solved for variations of k with U 

variations of a are found using the Doppler relation (2.3.1). Variations 

of d are found from the mass conservation equation (9.2.4). Note that d 

is independent of C. Variations of b are found using expression (9.2.3) 

with 7=0, i. e. 

U2 b=-g (9.4.2) 

with h given by h=d-b. Note that b is independent of both w and in. 
The variation of a, or ak, with U is given by the wave-action 

conservation equation (2.7.5). Expressions (3.3.3,4) are true for 

finite depths as well as infinite depths so that the wave-action 

conservation equation takes the form (3.3.5). It is the expressions for 

the wave energy density E and the group velocity C. =U+ cg which are 
different. Expression (9.3.2) gives the group velocity cg. The wave 
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energy density E is given by 

E_1 ý p(g + sk2) a2 (9.4.3) 

which can be derived in the same way as the corresponding infinite depth 

expression. Thus, equation (3.3.5) gives 

a Lp( g +2St g 
b] . (9.4.4) 

Note that, as for infinite depths, the magnitude of b is 

qualitatively unimportant so that w and m are the only parameters of the 
interaction problem. Also note that if the limit d --+ oo is taken, with U 
finite, then the mass conservation equation (9.2.4) implies that m -+00 
which implies that equations (9.4.1,4) give equations (3.3.2,6) 

respectively as would be expected. 
Equation (9.3.2) is a transcendental equation whose solutions are 

found numerically using a standard solver for such equations (NAG LIB 
CO5NBF). Such solvers require an initial estimate from which the 
solution is found. It turns out that the initial estimate, for a 
particular initial current U, is adequately given by the infinite depth 

solutions of chapter 3. As U is incremented a wave solution is tracked 
by using the solver but with the initial estimate given by the previous 
solution point. 

I. 
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9.5 Stationary Waves 

The case of stationary waves is considered first. As usual, 
dimensional units are used and the liquid is water with 
density p= 1000 kg m-3 and surface tension r=0.0742 kg s-Z. 
Equation (9.4.1) becomes 

s tanh PU 
k2 - UZ k+g tanh 3=0 (9.5.1) 

and since a=- kU equation (9.4.4) becomes 

a=f-pg+SU 
ab, . 

(9.5.2) 

The mass conservation equation (9.2.4) aids in providing a lower 
bound of U for the existence of waves CC. It is known that waves CC 

exists if d> dý =5 mm so that they exist if U>- m/pdc using the mass 
conservation equation (9.2.4). Now, from the possible waves analysis 
of § 9.3 it is also known that if both waves CG and CC (only waves CG) 

exist then 
i 

waves CC (CG) cease to exist when -U= (gd)4 or 
U= (- gm/p) using the mass conservation equation=(9.2.4). It follows 

that if - m/pdc 4 (- gm/p)4 then waves CC must exist otherwise only 
waves CC exist. Thus, waves CC exists if ma p(gd3)4 = 1.11 kg m's s's . 

Results are shown in figures 9.3 for m=1 and 3 kg m'1 s''. These 

show variations of - wavenumber k and steepness ak with current U. 
For m=1 kg m'1 s'1 only waves CC exist and there is no caustic as 
expected. For m=3 kg m'i s'1 both waves CG and CC exist and so does 

the CG/GC caustic as also expected. For m=1 and 3 kg m'' s'1 waves CG 

and CC respectively cease to exist when U= (- gm/p)4 with zero k and ak 
and finite d. 

For infinite depths variations of k with U, as shown in figure 3.6a, 

are exactly the same as variation of k with - c, as shown in figure 3.1, 
for the stationary waves case. No analogous feature exists here simply 
because d varies with U. However, the variations of k with U for m=1 
and 3 kg m'1 s'1 are qualitatively similar to those of k with -C 
for d=1 mm and 10 mm respectively as shown in figure 9.1. 

Our primary interest is that of pure capillary waves where only 
waves CC exist. This is the case when m41.11 kg m'1 s'1 so that the 

qualitative effects of gravity are unimportant for such m unless k is 

small, k< 250 m's say. Moreover, small m corresponds to small d so that 
the influence of the bed increases with decreasing in. 
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A dimensionless parameter comparing the effects of surface tension 
forces with the inertia of the mainstream motion is given from terms in 
the energy conservation equation. The energy conservation 
equation (2.2.3) has wave and mainstream terms U,. 6 and IUipdUi 

respectively so, for one-dimensional flows, the dimensionless parameter 
is 

.6_r ak 2 (9.5.3) 
P 

for infinitesimal waves. The mass conservation equation (9.2.4) gives 

rPak Z=r ak Z (9.5.4) 
m 

For thin film flows it is required that this parameter be "large", i. e. 

T Z> 1 m< r (9.5.5) 
MIUI 

taking both IUD and ak to be 1, say. 
Now, results for flows with m41.11 kg m-1 s' all have wavenumber 

and steepness variations qualitatively the same as m=1 kg m-1 s-1. 
Thus, flows with m<r all qualitatively resemble that 
of m=1 kg m's s'1 and are not pursued. Note that the value 
of U= (- gm/p)l at which k and ak are zero becomes closer to zero as m 
decreases and is identically zero for pure gravity waves. 

It is concluded that the effects of gravity are unimportant 
when m41.11 kg m'' s'1 and that thin film flows have m<r. 
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9.6 The Doppler Shifted Waves 

The case of Doppler shifted waves in now considered. As usual 
capillary units are used. The parameters for the problem are w1, & 
and b,, defined in § 3.5, and ms given by 

m1 =STm. (9.6.1) 

Again, the qualitative characteristics of amplitude variations are 

unaffected by the magnitude of b1 for linear waves so that bi is taken 

to be equal to ± 1. The method of solution for the equations is as 
outlined in § 9.4. 

Results are shown in figures 9.4,5 for IwI =5 rad s'1 and 
figures 9.6,7 for IwI = 100 rad s-1, i. e. g, = 27.30 and 0.5030, 

respectively. These show variations of wavenumber k1 and steepness ak 

with current U1. Two values of mass flux m1, namely ml =1 and 3, are 
considered. For Iwo =5 rad s-1 there are four waves and one caustic 
when mi =1 and six waves and three caustics when ml = 3. 
For (wI = 100 rad s'1 there are four waves and one caustic for both 

values of m1. 
From the possible waves analysis of § 9.3 it is known that waves G+ 

and GC+ can only exist if the stationary waves GC exist. Note that, as 
for the infinite depth case, these waves may, or may not, exist 
depending on the actual value of w because this effects the position of 
the Doppler relation lines on the (k, a)-plane shown in figure 9.2. Waves 
CC exist when mý1.11 kg m-1 s-I so that, using the definition (9.6.3) 
for mi, the waves G+ and GC+ can exist when m1 a 0.63 IwI'. So 
for IwI =5 and 100 rad s-i* it is required that ml a 1.07 and m1 a 2.91 

respectively. Thus, for mi =1 there are four possible waves and 
for ms =3 there are six possible waves. However, only four of the six 
possible waves exist when IwI = 100 rad s'1 and mi =3 because of the 
large value of w as is the case for infinite depths. 

Also, for infinite depths all six possible waves and all three 

possible caustics exist when IwI =5 rad s'1 and only four of the six 

possible waves and one of the three possible caustics exist 

when IwI = 100 rad s-1 as seen form figures 3.12,13 respectively. 
However, it is noted in § 9.4 that the infinite depth case is obtained 
by taking in, or mi, to infinity whilst keeping U, or Ui, finite. 

Consequently, for IwI =5 rad s'1 the case m, =3 qualitatively 
resembles the infinite depth case whereas the case mi =1 does not. 
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Now, different values of w give different qualitative results 
because of the presence of gravity. This is not the case for pure 

capillary waves where the parameter g, is always zero. However, the 

effects of gravity are qualitatively unimportant only when waves G+ and 
GC+ do not exist. This is the case if m, ý 0.63 IwIl. Thus, if it is 

required that gravity be unimportant when m, =1 and 3 then it is 

required that Iw) a 108 s-1. 
It is concluded that flows with "small" m, will correspond to thin 

films. These are not considered here but are examined more closely in 

chapter 10 since flows with "small" m, have negligible gravity effects. 
Flows with "large" m, will have negligible gravity effects if jwl is 

"large". 
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CAPTIONS FOR FIGURES 

Figure 9.1: The variation of phase velocity c (continuous lines) and 
group velocity ce (dashed lines) with wavenumber k for 
water depths of 10 mm, 5 mm and 1 mm. 

Figure 9.2: The general variation of frequency a with wavenumber k as 
given by the Doppler and dispersion relations for water 
depths of 10 mm, 5 mm and 1 mm. 

Figure 9.3: The variation of (a) wavenumber k and (b) steepness ak with 
current U for stationary waves with mass fluxes m =1 
and 3 kg m-i s't. 

Figure 9.4: The variation of (a) wavenumber k1 and (b) steepness ak 
with current U, for IwI =5 rad s-! with mass fluxes m1 =1 
and 3. 

Figure 9.5: The variation of (a) wavenumber ki and (b) steepness ak 
with current U, for IwI = 100 rad s- with mass 
fluxes m1 =1 and 3. 
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CHAPTER 10 
, 

THE NONLINEAR WAVE- CURRENT INTERACTION PROBLEM 
FOR PURE CAPILLARY WAVES ON FINITE DEPTH LIQUID 

10.1 Introduction 

In this chapter the wave-current interaction problem is further 

examined for the case of finite amplitude pure capillary waves. This 

chapter is, thus, the finite depth version of chapter 4. The symmetric 

waves solution of Kinnersley (1976) is used. It is shown in chapter 8 

that such waves have a variety of behaviour differing from the infinite 

depth Crapper waves. For instance, these waves can reach a zero trough 
depth singularity as well as the maximum steepness enclosed bubble 

singularity. Moreover, the mean properties of these waves experience 
considerable qualitative, changes as the depth of the liquid decreases 

towards the thin films range. 
Our aim is primarily to examine waves which occur far downstream on 

thin film flows. Previous work on thin film flows,, for example Brauner 

and Moalem-Maron (1983) or as described in section 1.1, uses completely 
different methods to the slowly-varying approach used here. Our approach 

gives interesting general finite depth solutions as well as thin film 

solutions. Our literature searches have not revealed any previous work 
on the nonlinear finite depth (or thin film) slowly-varying problem. The 

simplest case-to examine is that of stationary waves. This case is 

considered in detail in order to aid in the general analysis of the 

phenomena found. 

This work is of an-exploratory nature and involves the accumulation 
of several interesting mathematical concepts and ideas. Section 10.2 

reintroduces Kinnersley symmetric waves solution and corresponding mean 
wave properties. All the possible waves are discussed in section 10.3. 
In section 10.4 the 'equations for the slowly-varying problem are 
developed and discussed. Section 10.5 discusses the numerical method of 

solution. The-concept of windows is analysed in section 10.6 along with 
the limiting "maximum steepness curves". The cases of stationary and 
Doppler shifted waves are examined ' in , sections 10.8 and 10.9 

respectively. 
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10.2 Wave Parameters and Mean Wave Properties 

Exact solutions for progressive pure capillary waves of arbitrary 

amplitude over finite depths of liquid are found by Kinnersley (1976). 

For problems in which a bed is present the symmetric (case Ib of 
Kinnersley) wave solution must be considered. The solution for such 

waves, as detailed in chapter 8, has origin z=0 on the centreline or 
bed so that depth h is zero and mean level b is equal to mean depth d. 

For the purposes of the slowly-varying problems this is not a convenient 

situation since depth h will vary. Consequently, the origin z=0 is 

transformed, in the z direction, to an arbitrary position so that 

depth h is non-zero and mean level b is not equal to mean depth d. 

Therefore, expression (8.4.13) gives the mean depth d and not the mean 
level b. 

In chapter 8 expressions for wave parameters and mean wave 

properties are given in terms of the three parameters rc, B and c. It 

proves convenient to express all wave parameters, and mean properties in 

the form of some function of x and B multiplied by some integer power of 

c. From chapter 8 

T= T(B, x) V= V(B, x) , (10.2.1) 

d= F1(B, x) 
12 

and ub = F2(B, x) c2 (10.2.2) 

Where Fi(B, x) _ sfl (20c + x'2QIa) (10.2.3) 

and FZ(B, x) =x+ Tx 
'a 
F (6I, - 2KI6) . 

(10.2.4) 

Also k= F3(B, x) C2 ,a= F4(B, x) 
12 

, 
(10.2.5) 

t= F5(B, x) 
12 

and cp =`F6(x) c (10.2.6) 

Where F3(B, K) _" ns B dc B, F4(B, ic) = 2sk sn B sd B (10.2.7) 

F8(B, ic) .=s sn B cd B, [(1 + x2)B - 2E(B) +2 sc B(dn B- x)] (10.2.8) 

Fe(k) =V . (10.2.9) 
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The crest height H, i. e. the distance of capillary wave crests from the 
bed, is given from the symmetric waves solution (8.2.2) as H= z(0, + B). 
It is more easily given as 

H=t+ 2a = (Fa + 2F. ) c2 
. 

(10.2.10) 

Note that om = F3(B, ic) Fe(ic) c3 (10.2.11) 

and that T, V and F1, where i=1,2... 6, are always positive. Also note 
that wave steepness ak = F3F4 and the dimensionless parameter kt = F3F5 

are independent of the velocity variable c. 
Substitution of the above expressions for symmetric waves into 

expressions (2.5.7,11,12) for the wave momentum Z, the wave-action 
density A and the wave-action flux B in terms of the four basic mean 
wave properties give 

1= 1 
-l=ýZ3 and B='(6T+pFýF2) E2 (10.2.12) 

as expressions for 7, A and B in terms of x,, B and c. 
Note that as for infinite depth theory there are several possible 

definitions for the generalised group velocity c5. However, no detailed 
discussion is undertaken here. The group velocity c. for finite 

amplitude pure capillary waves is again defined as 

c. (6T + pF, F2) F. 
c=I 4T + pIF '' 2l cp , 

(10.2.13) 1J 

This expression consists of two terms. The first term corresponds to the 

generalised group velocity for pure capillary waves, linear- or 

nonlinear, on liquid of infinite depth. The second term is the 

additional term appearing because the depth of liquid is finite. - It is 

remarked in Longuet-Higgins (1975) that the mean depth times the mean 

bottom velocity squared, i. e Fj2, tends to zero'as the depth of liquid 

tends to infinity. So this expression gives the correct limit as the 

mean depth d tends to-infinity. 

'M5.. 
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10.3 The Possible Waves 

Recall from chapter 9 that for linear pure capillary waves there is 

one possible stationary wave, namely wave CG, and there are four 

possible Doppler shifted ' waves, namely CG (+, -) , GC- and G-. Also, for 

stationary waves there are no possible caustics and for Doppler shifted 

waves there is one possible caustic, namely the CG-/GC- caustic. For 

nonlinear pure capillary waves analytic and physical continuation imply 

that the same waves can still exist as is the case for infinite depths. 

However, this is not so easily seen as it is for infinite depths in 

§ 4.2. Thus, a simple analysis is performed in this section to show that 

this is actually the case. The analysis also allows the parameter c to 
be related to the waves in both magnitude and sign. This proves to be 

useful later when solutions are sought. 
To do this both the Doppler and dispersion relations, in terms 

of rc, B and c, are examined. It is supposed that the parameters rc and B 

take fixed values in the (rc, B)-plane shown in figure 8.1 given by the 
highest waves criterion of § 8.3. This is equivalent to considering 
fixed values of mean depth d and amplitude a since, in most instances, 'c 
and B are interpreted as depth and amplitude parameters 
respectively (see § 8.2). 

Using the expression (10.2.5) for wavenumber k the Doppler 

relation (2.3.1) gives 

o=w- F3U c2 (10.3.1) 

as one expression for frequency o in terms of 'x, B and c. A second 

expression for frequency a in terms of rc, B and c is given by the 
"dispersion relation" (10.2.11) which states that a= F3F6c3. Note that 

this expression implies that sgn a= sgn c. 
Figure 10.1 gives a sketch of the possible ways in'which the Doppler 

relation (10.3.1) can intersect the dispersion relation a= F3F6c3 in 

the (c, o)-plane for fixed values of rc, B and U. This is used, in a 
similar manner to the (k, o)-plane sketches in chapter 3, to show all the 

possible waves. The analysis in the rest of this section refers to this 
figure. Note that only a sketch is given simply because it is the 

qualitative characteristics which are required. 
Recall that our convention requires that k>0 and U<0 with a>0 

for stationary waves. Thus, for stationary waves a= F3F6c3 implies that 

the parameter c >_ 0. Also, for any U#0 and c "small" - F3Uc2 > F3Fec3 

and for any U#0 and c "large" - F3Uc2 < F3F6c3 so a sketch of 
the (c, o)-plane reveals that there is always one and only one wave 
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present. This wave must be the stationary wave CC. 
For Doppler shifted waves consider the cases w>0 and m<0 

separately. Firstly consider the case ca > 0. For any U and c<0 
w- F3Uc2 > F3Fec3 so that there are no waves. Also, for any U and c 
"small" and positive w- F3Uc2 > F3Fec3 and for any U and c "large" and 

positive w- F3Uc2 < F3Fec3 so a sketch of the (c, o)-plane reveals that 

there is always one and only one wave present and it has c>0. Thus, 

since this wave has both w>0 and c>0 this wave must be wave CG+. 

Note that, as for infinite depths, waves CG+ seems to be qualitatively 

similar to the stationary waves CC. 
Now consider the case w<0. Suppose that c _< 

0. For any U and Ic 

"small" w- FaUc2 < F3F8 c3 and for any U and 1c) "large" 

w- F3Uc2 > F3Fac3 so a sketch of the (c, o)-plane reveals that there is 

always one and only one wave present and it has c<0. Thus, since 
both w<0 and c<0 this wave must be wave G-. Now suppose that c >_ 0. 

For any U and c both "small" and "large" w- F3Uc2 < F3Fec3. There may, 

or may not, be a range of c over which w- F3Uc2 > F3Fec3. This depends 

on the specific values chosen for'U and w. If such a range exists then a 

sketch of the (c, a)-plane reveals that two waves exist both 

having c>0. If no such range exists `then a sketch of the' (c, o)-plane 

reveals that no waves exist. If these waves exist then, since *w <0 

and c>0, they must be the waves CC- and CC-. 

The magnitude of c is directly proportional to the magnitude of a 
since a= F3Fec3. Thus, it is concluded that the one possible stationary 
waves CC have c >_ 0. The possible Doppler shifted waves G- have c<0 
and the three possible Doppler shifted waves CC(+, -) and CC- have c>0 

with the magnitude of. c having the distinct order 

CG+ > CC- > CC- > G- . (10.3.2) 

The signs of c'and the ordering of the magnitude of c are useful for 

identifying specific wave solutions when they are found'in terms of the 

parameters rc, B and c as is the case below. 
F.. 

ýý 
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10.4 The Equations 

The nonlinear interaction problem is now examined. Our aim is to 
derive equations for the interaction problem in terms of the three 

parameters rc, B and c and subsequently solve these equations to find 

variations of these three parameters. The general equations used are 
those described in § 9.4 for the linear capillary-gravity wave-current 
interaction problem. 

The dispersion relation for the waves is implicitly contained within 
the expressions for a, k, a, d and t in § 10.2. Substituting 

expressions (10.2.5,11) for k and a respectively into the Doppler 

relation (2.3.1) gives 

or 

m= Us C3 + F3c2U 

U=F3 
C2-Fec 

(10.4.1) 

(10.4.2) 

which is an expression for U in terms of ic, B and c. 
The equations for the interaction problem are found by substituting 

appropriate expressions given above into the mass conservation 
equation (2.7.2) and the wave-action conservation equation (2.7.5). The 

mass conservation equation (2.7.2), gives 

m c' - (pF, Fg - 2T) 1e 
c3 +ý=0 (10.4.3) 

and the wave-action conservation equation (2.7.5) gives 

2wT b c° - (2T + pF, FZ) 2F-- c3 - =0. (10.4.4) 73 731 16 

The special case of zero total wave-action flux b needs separate 
consideration. Direct substitution of b=0 leads to slight 
simplification of the equations but since the equations still involve 

elliptic functions and elliptic integrals' their method of solution is 

exactly the same as the general case. It is, expected that two 
independent solutions will arise, one corresponding to linear- pure 
capillary waves and the other corresponding to- stopped waves. The 

equations for the linear case are derived by taking the limit X -+ 0 of 
equations (10.4.3,4). This is examined below in § 10.7. As for the 
infinite depth case the equations for the stopped waves are given by 
dividing out the linear equations from the- nonlinear equations 
(10.4.3,4). Unfortunately, this is not explicitly possible so that the 
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equations for the stopped waves are contained within the nonlinear 
equations (10.4.3,4) with b=0. The stopped waves are also discussed 
further below in § 10.7. 

Once a solution curve is found in terms=of the parameters i, B and c 
the variation of wave and mainstream flow parameters such as a, k, a, d, 
t, H and U are all found using the appropriate expressions given above. 
Variations of the mean level b are determined using expression (9.2.2) 

since 7 is taken to be zero, i. e. 

s 
g [fir 4--77- + (F' + F2) C2l (10.4.5) b=-2 

J 

with depth h=d-b. Note that the acceleration due to gravity g is 

present in this expression even though the waves are pure capillary 
waves. This is because the mean level 

.b 
can be regarded as a property of 

the mainstream flow which, in the absence, of waves, satisfies the 

shallow water equations (2.6.2)., In essence, the, mainstream flow is a 
gravity dominated flow and has zero surface tension so that g appears in 

an expression for the mean level b. 

Wave solutions in the space, of rc, B and, c with equally distributed 

numerical solution points will often result , in, unequally, spaced values 
of wave parameters such as a, k, a, d, t, H and U., This is due to the 
nonlinear nature of evaluation of these wave parameters. 

The. method of derivation, as outlined in § 4.4_for the interaction 

problem on infinite depth liquid, involves the elimination of. U from the 
equations. For infinite depths one equation ., 

(4.4.24) is derived 
involving two unknowns k and D. The unknown D is 

, 
then varied over its 

range and the equation is solved. Here, there , are two equations 
(10.4.3,4) involving three unknowns 'c, B and c. These equations are 
solved by varying one of the three parameters, either, r. or B, over its 

range and finding simultaneous solutions of the two, equations for the 

remaining two parameters. 
The range for x is 0 

_< x <, 1 with 0<B. < B.,,.. (x) and the . range for 

B is 0<B _< ao with 0 <, x <i max(B) < 1. The, values of Bmax(, c) 
or x., x(B) are given from the results of., § 8.3 for, highest waves. In 

essence, solution, curves in the (rc, B)-plane are required to remain 
within the area bounded by the curves 'c = 0, rc = 1, B=0 

and B= Baax(K) or, equivalently, k= km, x(B) as shown in figure 8.1. 
One consequence of the increase in, the "dimensionality", of the. 

interaction problem from the infinite depth value of two to the finite 
depth value of three is that all the equations derived, either for the 
linear or nonlinear case, are transcendental equations, rather than 
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polynomials so numerical solution of the equations becomes much more 
difficult. Another consequence is as follows. For fixed w and 
different b solution curves for the infinite depth problem can not 
intersect. This is because an intersection of two, or more, solution 

curves would imply that the values of k and D at the intersection are 

the same so that the values of b would have be the same which is a 

contradiction. The same is true for the finite depth problem when 

solution curves are shown in a three dimensional space, for instance the 

space of rc, B and c. However, if -solution curves° are projected onto a 

two dimensional space then they may appear to cross. 

10.5 Numerical Solution of the Equations 

Equations (10.4.3,4) are transcendental equations and are solved 

numerically using the standard solver NAG LIB CO5NBF. Thus, for 

particular values of m, m and b the parameter 'c, or B, is fixed to some 
initial value and simultaneous solutions of (10.4.3,4) for B, or ic, 

and c are sought. For this nonlinear interaction problem the initial 

estimate for the solver needs to be relatively close to the solution. 
Once the initial solution point is found the parameter rc, or B, is 

incremented and the'solver used, with initial estimate as the previous 
solution point, 'to find -solutions for B, or-x, and c. Solutions 'are 
tracked in this manner until they reach one of the limiting "borders" 

of (x, B)-plane, as shown in figure 8.1 and as described above where'the 
ranges of is or B are considered, or until they reach B= 10. The reason 
for the latter condition is that once B is so "large" the range'for is is 

so small, of the order 10'°, that the numerical solver (NAG LIB CO5NBF) 
finds it virtually impossible to continue tracking the solutions. Also, 

as rc -º 0 and B -º aD the linear expression for d (appendix E), shows 
that d -4 co so that B> 10 corresponds to infinite depth solutions. 

Four methods 'are used for choosing the initial estimates. Some of 

these are discussed in more detail in sections below 'but are briefly 

outlined here. One method is to consider the linear-limit is -º 0 and use 
the equations derived for this limit to give an initial estimate. - This 

is only useful when the nonlinear 'solutions tend towards the linear 

solutions in some instance. This method works for three of the four 

possible waves, namely waves CG(+, -) and G-., 
A second method is to find windows corresponding to the four 

possible waves. These are used to give initial estimates for the 

parameters B, or x, and c for particular, w, m and b. This method works 

well for waves CG- when they do not tend towards the linear solutions in 
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any instance. However, it is mostly used for waves GC-. 
A third method is to use the highest waves results of § 8.3 to find 

those regions in parameter space of w, m and b for which solutions reach 

maximum steepness. These then give initial estimates for the parameters 
B, or Ic, and c for particular w, m and b. Note that the initial point 

must be situated on the highest waves curve of figure 8.1. This method 

obviously works well for those waves which reach breaking point. It is 

used for waves CG- and sometimes waves GC-. 

The fourth method is to make estimates based on experience. The 

above analysis relating the parameter c to the waves is useful here. 

This method works successfully after some feel is gained for the general 
behaviour of solution curves and is most used for waves GC-. 

10.6 "Windows" and Highest Waves 

The question of existence of windows is- now examined for finite 

depths. Suppose that w and m are fixed. Choose a particular value of 'c, 

or B. The windows for the four waves for this, ic, or B, are found by 

varying B, or Ic, over its range 0<B< Bmax(x), - or 0<x< icmax(B) < 1, 

and solving the polynomial (10.4.3) for corresponding ranges, of c. Once 

these windows are found these values of rc, B and c are substituted into 

equation (10.4.4) to find corresponding ranges of b. An alternative 

method of finding windows is to reverse the roles of m and b and also 

equations (10.4.3,4). Thus, equation (10.4.4) gives the windows for a 
fixed b and equation (10.4.3) gives the corresponding ranges of m. These 

two methods are referred to as the "m-fixed" and "b-fixed" methods 

respectively. 
Either of these methods' can be used to give initial estimates for 

the numerical solver. Suppose that particular values'of w, m and b and 
initial x, or B, are chosen. Find the windows corresponding to this X, 

or B, using either of the m-`fixed or b-fixed methods. Then examine the 

ranges of b or m corresponding to these windows and find those points, 
if such points exist, at which b or m as given by these ranges is 

approximately equal to the particular b or m of interest. The closest of 
these points are then used as initial estimate for the solver. 

In § 8.3 the highest waves criterion is explicitly solved for the 

symmetric (case Ib of Kinnersley) waves. -The variation Of' Borax with x, 

or x., x with B, resulting from this criterion is shown in figure 8.1. It 

is noted that the highest waves solution is independent of c. However, 
for particular values for w and m or b solutions for c corresponding to 

the highest waves are found by substituting the highest wave solutions 
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for x and B into equations (10.4.3) or (10.4.4) respectively. The 

solutions for rc, B and c corresponding to the highest waves can then be 

used to find the values of wave and mainstream f low parameters, such 

as k, a, ak, d, b, h, t, H, cp, ca and U, on the highest waves using the 

appropriate expressions given earlier. 
Also, these solutions for 'c, B and c can be substituted into 

equations (10.4.4) or (10.4.3) to find corresponding ranges for b or m. 
These can be used to give initial estimates for the numerical solver in 

the same manner as for the windows analysis when the initial point has rc 

and B on the highest waves curve of figure 8.1. Note that these 'c, B 

and c are not solutions of the slowly varying interaction problem. They 

are one of the limits of solutions. 

10.7 The Linear-Limit Equations 

Here the linear-limit rc -º, 0 of equations (10.4.3,4) is found. 

These linear equations are used, to give initial estimates for the 

numerical solver. Comparison of general expressions (10.2.2,5,6) with 
the corresponding linear-limit expressions (appendix E) and use of 
linear-limit expression for the parameter A in terms of B (appendix E) 

gives the linear-limits of F12 F,, F3 and Fe as 

F, -º. sBtanhB , F2-º2, c2 , 
(10.7.1) 

Fa -ýScothB and F6--. 1 . 
(10.7.2) 

Substitution of these linear-limit expressions and the linear-limit 

expression for the kinetic energy density T (appendix E) into the 

general nonlinear equations (10.4.3,4) gives the equations 

m c4 - sB tanh B c3 + s2wB tanh2B =0 .% 
(10.7.3) 

b c5 - x2tanh B (sinh2B +. B tanh B) c3 - 2, c2sinh2B tanh2B =0 (10.7.4) 

respectively where only the leading order terms in equation (10.4.3) are 

retained. 
In a nonlinear sense linear waves have zero b. Substitution of b=0 

into the linear equation (10.7.4) gives the expected result x=0. Thus, 
for the nonlinear interaction problem the linear equation (10.7.3) is 

solved to give the variation of B and c with x=0. These can then be 

substituted into the linear-limit expressions to find corresponding 
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variations of wave and mainstream flow parameters. Note that r. =0 
implies amplitude a=0 and vice versa as expected. 

As mentioned in § 10.5 the linear equations (10.7.3,4) are useful 
for finding initial estimates for the numerical solver (NAG LIB CO5NBF) 

used to solve the general nonlinear equations (10.4.3,4) if the 
nonlinear solutions tend towards the linear solutions in some instance. 

There are two cases to consider. These are stopped waves and general 
nonlinear waves. It is known that the stopped waves solution joins the 
linear solution at the linear caustic. Thus, once the linear solution is 
found from equation (10.7.3) the values of B and c at the caustic are 
found. These values are then used as the initial estimates and the 
nonlinear equations (10.4.3,4) with b=0 solved for some small fixed 
initial ic, x= 10'° say, to find an initial solution point for the 
stopped waves. It is found that subsequently incrementing is 
towards rc =1 is the best method of finding the stopped waves solution. 

For general nonlinear waves this method of generating initial 

estimates is only useful when the parameter B is fixed and simultaneous 
solutions of the nonlinear equations (10.4.3,4) for rc and c are sought. 
Suppose that B is fixed to some initial value. This initial value is 

usually taken as B= 10 because at such a large value of B the 
range 0< 'c < xmax(B) is small and corresponds to linear or near-linear 
values of ic. Note that near-linear, values of is are acceptable because it 
is only an initial estimate that 

, 
is required. The linear 

equation (10.7.3) is, then solved for c, These c and the initial B are 
then substituted into the linear equation- (10.7.4) and values of 'c 
found. If the value of x is in the range 0<x. < kinax(B) then these 
values of x, B and c are used as, initial estimates. Subsequently 
incrementing B in a, decreasing direction is 

, then employed, to find 

general nonlinear solutions. It 
At the end of § 8.4 it is mentioned that the simplest way of 

checking the general expressions , 
derived, in that section is to show that 

the linear-limit of the expressions gives, the, correct results. A similar 
analysis is performed in appendix F. The linear mass conservation 
equation (9.2.4) and the, wave-action conservation equation (2.7.5) are 
used to directly derive the linear interaction problem equations in 
terms of the parameters rc, B and c using the same method as in § 10.4. 
It is found that these equations are the same as the linear-limit 
equations (10.7.3,4). This demonstrates the . consistency of the algebra 
and equations derived above. 
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10.8 Stationary Waves 

The case of stationary waves is considered first so that, as usual, 
dimensional units are used. For this case the equations of § 10.4 

and § 10.7 considerably simplify as do the expressions of § 10.2. The 

linear equation (10.7.3) gives 

c =. E B tanh B (10.8.1) 

Whilst the nonlinear equations (10.4.3,4) give 

c= ID 
(pF1Fe - 2T) and c2 =1 (2T + pF1F2) 

- (10.8.2) 

or m2 Fg(2T + pF1F2) -b 2F3(pF1Fe - 2T)2 =0 (10.8.3) 

on elimination of c. The linear equation (10.8.1) shows that 

c-+0 asB-º0 (10.8.4) 

c ---º 
sB as B -' c. (10.8.5) 

For given m and b the single equation (10.8.3) is solved to find 

solutions for B, or x, ' for given values of rc, or B. These 'solutions are 
then substituted into the first of equations (10.8.2) to find tje 

corresponding values of, c. The second of equations (10.8.2)'can also be 

used recalling that, by our convention, c>0 for waves CG. 
The above equations show that m>0 and b>0. Also, there is only 

one c corresponding to each rc and B so that there is only one possible 
window with one corresponding range for b or m. This is as expected for 

waves CG. 
The simple form of the above equations allows for the following 

"transformation concept". Suppose that m= mg, or, b= be, is fixed and 

that solutions, in terms of the parameters rc, B and c, -have been found 

for different b, or in. Then solutions for °another fixed in = mb, 

or b= bb, and different b, or in, are most easily found using- the 

transformation 

i 
b -4 j7 b and c --º mb c, (10.8.6) 

or m --ý 
F_, 

m and c -º 
[L] 

c. (10.8.7) 
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Thus once one solution set for a fixed in, orb, is found solutions sets 
for other m, or b, are easily found. No such transformation concept 
exists for Doppler shifted waves. 

Generally for any m, expressions for k, a, d, t and H (§ 10.2) are 
all proportional to either-c' or 1/c2 -a single power of c. Recall that 

ak and kt are independent of c. Also, for the case of stationary waves 
expressions for U and b (§ 10.4) are proportional to c and c2 
respectively - generally for any w they are a combination of terms 

proportional to differing powers of c. Therefore, it follows that the 

qualitative variations of k, a, d, t, H, b, ak and kt-with U will be the 

same for all fixed in, or B. That is, without loss of qualitative 
generality, one particular fixed in, or B, will be sufficient to show a 
wave solution set. 

However, the qualitative variations of h will differ for different 
fixed in, or B, since 

h=d-b= Fiý2 + (Fe + F2) c2 (10.8.8) 
g 

This is a minor point since it is easiest to calculate h after d and b 

are calculated if different solution sets are sought. 
Solution sets are presented for fixed m and various b. The 

value m=1 kg m-' s'' is chosen without loss of qualitative generality. 
Results are shown in figures 10.2 for this m and various b. The linear 

wave solutions (long-dashed lines) and the maximum steepness curves 
(dash-dot-dash lines), derived as described in 10.6, are also shown in 

order to aid interpretation. 
Figures 10.2a, b show variations of B and c'with 'c. 'These show the 

trajectories of wave solutions through the space of rc, B and C. It is 

seen that wave solutions exist for any b. All wave solutions reach 

maximum steepness as B increases from zero, say. No wave solution 

reaches rc =1 so that no wave solutions reach zero' trough depth. For 

"large" values of b the maximum value of is reached by wave solutions 
becomes close to one but'never actually reaches one. Thus, trough depths 

become very small but never zero. Recall that in chapter 8 it is' 

concluded that thin film flows have x>0.45 or B<1.45. Stationary 

wave solutions enter this region only when b is large, 

i. e. b >_ 0.01 kg m3 s'2. 
Figures 10.2c, d show variations of wavenumber k and steepness ak 

with current U as given by the trajectories in the space of ic, B and c. 
The qualitative variations are exactly the same as for the infinite 
depth case (figures 4.2) when b is small, i. e. b<0.001 kg m3 s'Z. When 

b is large, i. e. b10.01 kg m3 s'2, different behaviour does exist. 
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This is not easily seen in the present scale of the figures. However, 

this is unimportant (for this particular m) since these wave solutions 
have small wavenumbers, less than 250 m-1 say, and are, therefore, 

always influenced by gravity. 
The highest waves steepness curve in figure 10.2d shows that for 

all U4-0.2 m s-1 the maximum steepness is , constant and equal to 

approximately 2.3, the maximum steepness of pure capillary wave on 
infinite depth liquid. ForýU ), - 0.2 m s's the highest waves steepness 
curve is monotonic decreasing with increasing U. It is, therefore, 

suspected that for U4-0.2 m s's waves are unaffected by the bed so 

the bed appears to be at infinity and that finite depth effects probably 

occur for U-0.2 m s'1. 
Figure 10.2e shows the variation of the dimensionless parameter kt 

with current U. Wave solutions with b>0.0001 kg m3 s"2 
and b >_ 0.001 kg m3 s'2 always have kt <r and kt < 0.3 respectively. 
Also, for U>-0.25 m s-" all wave solutions have kt < z. Thus, 

when U>-0.25 m s'1 all wave solutions are affected by the bed. 
Moreover, waves solutions with b>0.0001 kg m3 s_2 are always affected 
by the bed. Wave solutions with b>0.001 kg m3 s'2 correspond to thin 
film flows. However, as mentioned above, these thin film wave solutions 
have wavenumbers corresponding to gravity waves. 

It is shown above that solution sets for other values of m will be 

qualitatively the same as for m=1 kg m-1 s-'. Quantitative differences 

will occur. Thus, if. a different -m is chosen then the wavenumbers of, the 

above thin film flow solutions will be scaled to values corresponding to 

capillary waves. The transformation (10.8.6) together with the 

expression (10.2.5) for k give the scaling on wavenumbers. Also, from 

chapter 9 it is known ýthat, -m'< r for thin film flows. It follows 

that m=0.05 kg m-' s'1 is an appropriate value. 
Transformation of wave solutions for m=1 kg m's s_i to those 

for m=0.05 kg m-1 s"s - is done by, - see expression (10.8.6), 

taking b --. 2.5 x 10-3 b and C-420 c. The trajectories of wave 
solutions through the space of rc, B and c are exactly the-same as 
for m=1 kg m s-1 except that c is scaled by 20 and the value of b 

corresponding to each wave solution is scaled by 2.5 x 10-3. All wave 
solutions for m=0.05 (1.0) kg m-1 s'1 have kt < 0.3 when 
b? 2.5 x 10-6 (0.001) kg m3 s'2 and, thus, correspond to thin film 
flows. 

Figures 10.3a, b show variations of wavenumber k and steepness ak 

with current U. When b is `small, i. e. b<2.5 x 10-8 kg'm3 s-Z, 

wavenumber k monotonically increases as current 'U decreases from zero, 

say, until maximum steepness is reached. However, athe wavenumbers of 

163 



such wave solutions are very high near maximum steepness so that 

dissipation will have a strong effect. Thus, these wave solutions are 

not considered further. When b is large, i. e. b>2.5 x 10'6 kg m3 s-2, 

wave solutions have a vertical tangent in, the (U, k) and (U, ak)-planes. 
As the current U is decreased from zero, say, each wave solution ceases 

to exist when a critical velocity, i. e. the velocity at the vertical 

tangent, is reached and at that velocity the wave solution has neither 

zero trough depth nor maximum-steepness. The only possible conclusion is 

that each wave solution itself consists of two branches. 

One branch reaches maximum steepness "singularity" as U increases 

from the critical velocity. It is, - therefore, called the "thin films 

singular branch" or simply the "TS-branch". The second branch has lower 

wavenumbers and steepnesses than the TS-branch. It asymptotes the 
linear (U, k) and (U, ak) curves for small, b and small U, 

i. e. b<2.5 x 10-° kg m-ls'11, as -U increases, from the critical 

velocity. It never reaches maximum steepness and so remain "regular". 

Thus, it is called the "thin films regular branch" or simply the 
"TR-branch". -1 t 

Wave solutions with large b, i. e. b>2.5 x 10'' kg m3 s-2, have 

wavenumbers which correspond to gravity waves., However, if m is chosen 
to be smaller than 0.05 kg m-" s'' then these wave solutions would be 

scaled to have wavenumbers corresponding to capillary waves. Thus, thin 
film flows, m<r, always-have this two branch characteristic. 

Figures 10.3c -g show variations., of., mean- depth d, trough depth t-, 

crest height H. mean level b and depth h with current U. These show that 

for the TS-branch (TR-branch)-the mean depth d, trough depth t and crest 
height H remain very small (tend to infinity as current, U tends to zero 
from the critical velocity). Indeed, the trough=depths near the critical 

velocity for both branches can not be seen by the naked eye. 
Figures 10.3f, g aid in forming as visualisation of the actual flow 

field. The mean level b is always negative simply because the mean 

Bernoulli constant ry is' chosen to be zero. This means that the 

origin z=0 is always above the mean level of the waves. The TR-branch 

has a minimum depth h at some finite non-zero U and has depth h tending 

to infinity as U increases to zero from the critical velocity. 
Schematic diagrams, i. e. figures showing the relative variations of 

depth h, trough depth t, mean level b and crest height H, for the flow 

of some of the wave solutions are given. In essence, these involve 

showing the variations of - h, -h+t, b and -h+H with U. 

Figures 10.3h, i are schematic diagrams for b=2.5 x 10-6 

and 2.5 x 10-5 kg m3 s'2 respectively. The monotonic decreasing trend in 

figure 10.3h is qualitatively typical of all wave solutions with 

164 



small b, i. e. b<2.5 x 10'e kg m3 s'2, through the velocity range (not 

near zero) for which they exist. The linearity in this figure is due to 
the nonlinear transformation of equally spaced point in the space of rc, 
B and c resulting in unequally spaced values of wave parameters. Recall 

that both these b represent thin film flows. 

It is concluded that wave solutions corresponding to stationary 
waves CG for large m1, i. e. m>0.5 kg m'1 s'1 say, and any b will 
always be unaffected by the bed. All wave solutions will behave in the 

same manner as those for the infinite depth case already studied. Waves 
CG will experience finite depth and thin film effects if m is 

small -m<0.2 for thin film effects. Thin film wave solutions with 
"large" b consist of two branches, the TS and TR-branches, which join at 
a critical velocity. 

At present it is unclear how the transition from the TR-branches to 

the TS-branches occurs. The actual propagation of waves must involve the 

wave generation. For a given wave-action flux b waves can only be 

generated at velocities greater than the critical velocity. If waves the 

propagate towards the critical velocity it is unclear what happens to 
the waves when they reach the critical velocity. 

However, the general validity of such inviscid wave solutions is 
dubious. Both physical observations and the infinite depth theory in the 
first part of this thesis imply that stationary waves CG are strongly 
affected by wave energy dissipation. It would be expected for 
dissipative wave solutions to experience a general decrease in total 
wave-action flux. Consequently, solution curves would effectively pass 
through a set of inviscid solutions with decreasing b. This would 
probably remove the presence of these critical velocity positions. 

For the infinite depth case the qualitative characteristic of waves 
CG+ are the same as those of stationary waves CG. Also, waves CG+ have 

wavenumbers which correspond to pure capillary waves when w is large. 
This feature may also possibly exist for finite depths of liquid. A 

detailed examination of this possibility is' undertaken in § 10.9. 
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10.9 The Doppler Shifted Waves 

The case of Doppler shifted waves is now considered so that 
dimensionless capillary units are used. Note that F2 and F6 will remain 

as they are simply because they themselves are dimensionless. It is seen 

that there are three parameters for the problem, namely ws, m1 and b1. 

The parameters a1 and bi are defined in §. 3.5 and the'parameter m1 is 

defined by expression (9.6.1). From the linear equation (10.7.4) it is 

seen that 

c1, -1 0 as: B -+ 0 (10.9.1) 

and ct --4 w1 or cl --i 
B 
m1 as B -º (10.9.2) 

Wave solutions are sought for fixed positive values of total. mass 
flux m, and various values of total. wave- action flux b, It proves 
interesting to investigate, the number of solutions that equations 
(10.7.3,10.4.3) possess for fixed ms . This-number is directly related 
to the number of possible windows. Both. these, equations are quartics 
in cl so that for fixed values of rc and. B there are either four, two or 

no real roots for ci . Note that_ three or one real roots for ci are also 

possible in exceptional circumstances. The cases m>0 and m<0 are 

considered separately. 
Firstly consider the case m>0, i. e. wl =+1,, with m, taking a 

fixed positive value. For a fixed 
.. value . of B the linear 

equation (10.7.3) always has either two or. no real roots for cl. There 

are always two positive roots as B -ºoo, one with a c, -ºooand the 

other with cz -º 1. These. correspond. ;. to,, U, -+ - oo and U1 -+ '0 
respectively. As B decreases from infinity; the two roots coalesce at 

some finite value of B with finite positive c, This corresponds to some 
finite negative value of U1. Thus, the two roots�for, c correspond to one 
linear wave limit. This must be the linear-limit of wave CG+. 

For fixed, values of rc and 
'B 

the nonlinear equation (10.4.3) also 

always has either two or no real roots for c1. There, are always two 

positive roots for cl when x is small and B is large, i. e.. for 

0< 'c < Kc and B>B. say, and no roots for cl when rc is large or, B is 

small, i. e. for xc <a<1 or 0<B<B. say. The, values of n. and Bc 

decrease and increase respectively with increasing mi. Thus, 
,. 
there are 

either two or no nonlinear wave trajectories passing through every point 

of the (rc, B)-plane. These two trajectories must correspond to waves CG+ 

with different values of b,. Note that this implies that for fixed ml 

and is or B there are, either two or no windows with either two or no 
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corresponding ranges for bi. Both these windows must corresponding to 

waves CG+ when they exist. 
Now consider the case w<0, i. e. w, =-1, with mi taking a fixed 

positive value. For any fixed value of B the linear equation (10.7.3) 

always has two real roots for c±. One root has c, <0 and the other has 

c1 >0 and as B -º oo these roots have c, -º -1 and c, --º o0 

respectively. As B -º 0 both roots have c, -º 0. The root with c1 <0 

corresponds to the linear-limit of waves G- and the root with c" >0 

corresponds to the linear-limits of both waves CG- and GC- and, thus, 

the CG-/GC- caustic. 
For any fixed values of x and B the nonlinear equation (10.4.3) also 

always has two real roots for c,. One root is positive and the other 

negative. Thus, there are two nonlinear wave trajectories passing 
through every point of the (ic, B)-plane. The one with negative c, 

corresponds to waves G- and the one with positive cl corresponds to 

either waves CC-, waves CG- or the stopped waves. This implies that the 

waves GC-, CG- and the stopped waves trajectories in the ('c, B)-plane can 

never cross. It follows that for fixed m1 and x or B there are always 
two windows, one with negative cl and the other with positive c1, with 
two corresponding range for b1. These correspond to waves G- and stopped 

waves, waves GC-, CG- respectively. 
Thin film flows require small mass fluxes, i. e. m<r. Using 

expression (9.6.1) for ms in terms of m it is seen that m'< r 
implies m, < (slwl)l = 0.25 for J&) = 200 s'1 with s taking the value of 

water. However, on commencement of these investigations primary interest 

was focused on waves CG- and CC- because these waves encounter a caustic 

according to linear wave theory. It was found that small values of m1 

give waves invisible to the naked eye in the neighbourhood of the linear 

caustic (see below). Larger values of m1 give waves visible to the naked 

eye. 
Consequently, two cases are considered, namely ms =1 and 3, in 

order to show the general effects of changes in total mass flux mi. For 

gravity to have negligible effects hei > 108 s'1 (see § 9.6). - If 

jwl = 200 s'z , say,. then m, =1 and 3 imply that m=0.30 - and 

0.91 kg m-' s'1 respectively. It is possible for these ms to correspond 

to m< rbut this would require extremely large frequencies IwI which 

are unrealistic. In fact, these m1 give solutions for waves G-, CG- and 

GC- which are-affected by the bed on both a general finite depth basis 

and a thin films basis. 

At the end of our investigations it is concluded that small values 

of ml, m, < 0.25 say, should have been considered for waves CG+. This is 

obvious from what is said above but was not so obvious at the time of 
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these investigations were conducted. The process of finding wave 
solutions is very time consuming so that, unfortunately, no such 
investigation has been undertaken. Solutions of equations 
(10.7.3,10.4.3,4) are found separately for each of the waves CG+, G-, 
CG-, GC- and the stopped waves. 

a. Waves CG+ 
Solutions for waves CG+ are found by taking w1 =+1 and seeking 

wave solutions with cs > 0. Figures 10.4 show results for m, = 1. 
Figures 10.4a, b show variations of B and cl with, ic. Wave solutions only 

exist in the region 0< rc 4 0.1 and B32, that is x-0.1 and Br. =2 
(see above discussion on number of possible solutions). Such small 
values of rc and large values of B imply that wave solutions will be 

mostly unaffected by the bed, - there might be some finite depth effects. 
All wave solutions reach maximum steepness as B and c, increase. No wave 
solutions reach rc =1 , so that no wave solutions reach zero trough depth. 
Note that solutions curves for waves CG+ are in no way qualitatively 
similar to those for stationary waves CG in the space of a, B and c1. 

Figures 10.4c, d show variations of wavenumber k, and steepness ak 
with current Ui. These- show-, that wave solutions are, in fact, 

qualitatively similar to those of waves CG with "small"-b and waves CG+ 

on liquid of infinite depth (figures 4.5). This is - surprising 
considering the marked differences in wave solutions in the space of rc, 
B and cl. This is due to the fact that calculations of k,, ak and U, use 
a highly nonlinear transformation of. the variables 'c, B and c,. 

It is seen that Us - 0---as x, ---4 0, B -º co and c1 --' 1. Now, since 
solutions are numerically tracked to B= 10 waves -solutions do not 
actually reach U, = 0. - This is unimportant since the qualitative 
characteristics are clear and it is obvious that wave solutions would 
have finite non-zero values of wavenumber k1 and steepness ak 
when Us = 0. Recall that waves CG+ can be regarded as an extension of 
waves G-, or vice. versa,. with opposite frequency w, and equal 
wavenumbers k1-and, steepnesses. ak when U1 = 0. Moreover, as mentioned 
earlier, -wave solutions for B> 10 definitely correspond to the infinite 
depth solutions already studied so that they are not of interest here. 

The maximum steepness curve has steepness which is approximately 
constant at 2.3 for all currents U1. There is no monotonic decreasing 

effect as U, increases towards zero as there is for the corresponding 
maximum steepness curve for stationary waves CG. This implies that kt is 

always greater than r so that waves. CG+ never feel the effects of the 
bed. 
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Figure 10.4e shows the variations of parameter kt with current U1. 

All wave solutions have kt > 0.3. Wave solutions with small b,, 

i. e. b, <_ 0.2, have 1.7 < kt <r for a small range of currents U, and 

are, thus, affected by the bed over these currents. However, these bed 

effects show no qualitative changes in the variations of wavenumber k1 

or steepness ak with current U,. Thus, these wave solutions are not 

considered further. 

Figures 10.5 show results for mi = 3. Figures 10.5a, b show 

variations of B and c, with r.. These show that x, = 0.001 and Bc = 6.5. 

The qualitative variations of B and c1 with is are exactly the same as 
for m! = 1. This implies and, indeed, it has been shown numerically that 

the qualitative variations of wavenumber k1, steepness ak, etc., are all 
the same as the case mi =1 as would be expected since the bed will 
definitely have no effects on these wave solutions. Note that only two 

wave solutions are shown for ml = 3. This is because the tracking of 

wave solutions becomes very difficult when a is of the order 10'3 and B 

so large, greater than 6 say. 
It is concluded that wave solutions corresponding to waves CG+ for 

large m1, i. e. mi > 0.5 say, and any b, will always be unaffected by the 
bed. All wave solutions will behave in the same manner as those for the 
infinite depth case already studied. Wave CG+ will experience finite 

depth and thin film effects if m, is small - m1 < 0.25, say, for thin 
film effects. Wave solutions will have the same qualitative 
characteristics in the space of x, B and c but will reach values of rc 
near one and "small" values of B. The general trend in previous chapters 
is that wave solutions for waves CG+ are qualitatively the same as those 

of stationary waves CG. Thus, it is expected that TS and TR-branches 

will exist for thin-film flows, with "large" bs . 

b Waves 
-C- 

Now consider waves -G- so that w, 1 and wave solutions 

with c, <0 are sought. These waves are not considered when the depth of 

the liquid is infinite because wavenumbers are so small that the effects 

of gravity become important. For the infinite depth problem a specific 

value for w 'is chosen for the conversion of surface data of pure gravity 

waves to capillary units. No such choice on w is needed here because no 

gravity flow is specified ab initio. Thus, if large values of w are 

chosen the corresponding dimensional wavenumbers will always be those of 

pure capillary waves. In any case these prove interesting because they 

show finite depth and thin film effects. 
It is found that wave solutions for m1 =3 are all qualitatively 

similar to those for m1 = 1. There are some quantitative and maximum 
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steepness curve differences but these are not physically relevant. 
Results are shown in figures 10.6 for m, = 1. Figures 10.6a, b show 

variations of B and c, with 'c. Wave solutions with small b1, 

e. g. bi <_ 0.2, reach x=1 with B< r/4 as a increases from zero so that 

such wave solutions reach a position where trough depth is is zero. Wave 

solutions with large bi, e. g. b1 > 0.6, reach maximum steepness as ,c 
increases from zero. 

Figures 10.6c, d show variations of wavenumber ks and steepness ak 

with current Ui. All the wave solutions shown have a critical velocity 

position and, thus, consist of two branches. One branch reaches the 

singularities of either zero trough depth or maximum steepness as U, 

increases from the critical velocity and is, thus, an S-branch. The 

second branch has lower wävenumbers and steepnesses than the S-branch. 
It never reaches maximum steepness or zero trough depth and so remains 
"regular". It is, thus, called the "regular-branch" or "R-branch". 

The R-branch has finite non-zero wavenumber ki and steepness ak 

when U, = 0. Moreover, U, ̀ -º 0 for the R-branch as is -º 0, c1 -º -1 
and B -º co so U1 =0 is not actually reached. As stated above waves G- 

can be regarded asýan extension of waves CG+. Again,. this is unimportant 
since wave solutions for B> 10 corresponds to the infinite depth 

solutions already studied so that they are not of interest here. This 
latter observation and the fact that wave solutions for waves CG+ 

with B1 > 1.45, say, are unaffected by the bed imply that the R-branch 

will also be unaffected by the bed. Also, the critical velocity and, 
thus, the S-branch must be result of bed effects. If this is the case 
then the R-branches must be affected by the bed near the critical 

velocity. 
Figures 10.6e shows the variations of parameter kt with current U1. 

The S-branch always has kt < 0.3 and is, thus, a thin films branch or, 

simply, a TS-branch. The R-branch has kt < 0.3 near the critical 

velocity and generally has kt <2 except when current U is close to 

zero. This branch is, mthus, generally a finite/infinite depth branch 

rather than a- thin films branch. It is, thus, called the 
"finite/infinite depth regular branch" or the "FIR-branch". 

The qualitative variations of trough depth ti with current, U, are 
the same as-those-, of parameter kt. Also, the qualitative variations; ýof 
mean depth di, as shown in figure 10.6f, and crest height H, are the 

same. *Schematic diagrams for the cases b1 = 0.2,0.6 are given in 

figures 10.6g, h. Recall that when b1 = 0.2 and 0.6 the TS-branch 

reaches zero trough depth and maximum steepness respectively. Thus, 

figure 10.6g and h are typical of all wave solutions with bjL < 0.2 

and bi >_ 0.6 respectively. It is noted that in calculating the mean 
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level b, and, thus, the depth h1 it becomes necessary to choose a 

specific value for dimensionless gravity gi. Now, different g1 give 
different quantitative variations but the same qualitative variations 

of b1 and hs. So, without loss of qualitative generality, g, is chosen 

to be one. 
It has been shown numerically that the qualitative characteristics 

of wave solutions for all m1 in the space of rc, B and c1 are the same. 
That is, the m<0 Doppler shifting causes the general characteristics 
of wave solutions for all m, to be the same. It is, therefore, concluded 
that wave solutions for waves G- will always consist of two branches -a 
TS-branch and a FIR-branch. It is, thus, shown that the a<0 Doppler 

shifting of the stationary wave CG results in the existence of thin film 

and general finite depth flows for large mass fluxes mý. 

c. Waves CG- 
Now consider waves CG- so that w, 1 and wave solutions with 

"large" c, >0 are sought. Results are shown in figures 10.7,8 

for m, = 1,3 respectively. Figures 10.7a, b show variations of B and c, 

with 'c. It is seen that there exists a nonlinear wave solution 
for b, =0- the -stopped waves solution (short-dashed lines). It 

intersects the linear waves solution x=0 at the caustic and ceases to 

exist when x=1 and B=0 where both the trough depth t, and 

amplitude a, are zero. It never intersects the maximum steepness curve 

so that the stopped waves never break. Generally, wave solutions only 

exist for b, <_ 0.20. Wave solutions for small b,, i. e. b, < 0.07, -reach 

maximum steepness at one end and zero trough depth at the other. 
Wave solutions for large b,, i. e. b, > 0.08, have two separate 

branches. One branch (0.08 < b, < 0.15) reaches maximum steepness at 
both ends. The other branch (0.08 < b, < 0.2) reaches zero trough depth 

at one end and either maximum steepness or again zero trough depth at 
the other. Thus, both these branches are S-branches. The behaviour of 

all wave solutions in the (rc, c, )-plane is qualitatively the same as that 
in the (a, B)-plane. 

Figures 10.7c, d show variations of wavenumber k, and steepness ak 

with current U,. The stopped waves solutions has a critical velocity 

position and so consists of two branches. This feature is not present 
for infinite depths and so must be a result of bed effects. Also, for 

infinite depths the stopped waves solution reaches maximum, steepness 
(figures 4.6) which is not the case here. It is, therefore, suspected 

that both branches of the stopped waves solution will be affected by the 

bed. 
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Wave solutions with small b1, i. e. b, < 0.07, have a critical 

velocity and, thus, also consist of two branches. One branch reaches 
maximum steepness whilst the other branch reaches zero trough depth 

as U, decreases from the critical velocity. Thus, both these branches 

are also S-branches. The two branches of wave solutions for large bi, 

i. e. bi >_ 0.08, have no critical velocities. One branch has a minimum 

non-zero steepness at some finite current Ui. 
The maximum steepness curve has a constant steepness of 

approximately 2.3 for U, 
_< - 

3. This is not actually shown in the 
figure. So wave solutions in the region U, <-3 will probably be 

unaffected by the bed. Thus, wave solutions for any non-zero b, 

generally comprise of two S-branches. One branch exists " only 
for b, <_ 0.15 whilst the other only for b, < 0.20. 

Figures 10.7e shows the variation of parameter kt with current U,. 
It is seen that- one branch has very small (< 0.05) values of 
parameter kt and is, thus, a thin films branch or a TS-branch. The other 
branch has kt increasing as U, decreases from the critical velocity (if 
it exists). Nevertheless, it is found that kt <r except when bi is 

small, i. e. b, < 0.06, so that this is mostly influenced by the bed. It 
is, thus, a FIS-branch. - The actual trough depth t, for the TS-branch 
itself remains- less than 0.03 and its general variations are 
qualitatively the same as those*of the parameter kt. 

Schematic diagrams for the cases b, = 0.07,0.1 for the FIS-branch 

and b, = 0.07,0.1,0.2 , (0.1 -gives maximum steepness at one end 

whilst 0.2 gives zero trough depth at both ends) for the TS-branch are 

given in figures. 10.7f, g and f, h, i respectively. A schematic diagram 

for the stopped waves branch is given in figure 10.7j. Note that the 

monotonic decreasing characteristic of depth - h,, etc., as current U, 

decreases continues until, -trough depth tj is zero at U, =- 78. Also, 

the curves for` -h+t, -h+d and -h+H meet at a single point 

corresponding to the linear caustic. 
Figures 10.8a, b show variations of B and c with rc. These show that 

the stopped waves solution has two distinct branches. One branch 

intersects the; linear, waves solution is =0 at the caustic and reaches 
maximum steepness - clearly a FIS-branch. The other branch goes from the 

point x= 1-and B=0, where both the trough depth t1 and steepness ak 
are zero, and reaches -maximum steepness - clearly a TS-branch. 
Generally, all wave solutions also consist of two distinct branches. One 

is a FIS-branch whilst the other is a TS-branch. Again, the FIS-branch 

only exists for b, < 0.15. However, the TS-branch exists for b, < 0.30. 
Again, the behaviour of all wave solutions in the (rc, c, )-plane are 

qualitatively the same as those in the (x, B)-plane. 
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Figures 10.8c, d show variations of wavenumber k,, and steepness ak 
with current U1. The qualitative variations of wavenumber k, and 
steepness ak for the FIS-branch are exactly the same as those of 
infinite depth solutions (figures 4.6). Also, the maximum steepness 
curve has a constant steepness of approximately 2.3 for U, <-1.6. 
Thus, since the FIS-branch only exists for such currents, it is 

suspected that there are no bed effects on this branch. 
Figures 10.8e show the variation of parameter kt with current U1. 

The TS-branch has very small values of parameter kt - they can not be 

seen on the scale shown. The FIS-branch does have kt <r over a small 
range of currents Ui so that this is mostly uninfluenced by the bed. The 

actual trough depth t1 for the TS-branch itself remains less than 0.0045 

and its general variations are qualitatively the same as those of the 
parameter kt. 

Schematic diagrams for the cases b1 = 0.1 for the FIS-branch 

and bi = 0.06,0.3, (0.06 gives maximum steepness at one end whilst 0.3 

gives zero trough depth at both ends) for the TS-branch are given in 
figures 10.8f and g, h 'respectively. Schematic diagram for FIS and 
TS-stopped waves branches are given in figure 10.8i, j. Again, for the 
FIS- stopped waves branch, the curves for -h+t, -- h+d and -h+H 
meet at a single point corresponding to the linear caustic position. 

From figures 10.7a, 8a it is seen that the value of B at which the 
stopped waves solution meets the line x=0 (the caustic point) for the 
case mi =1 is less than that for the case mi = 3. This is generally 
true: the B value at the caustic decreases with decreasing mass flux m1. 
Thus, it is clear that small mi, m1 < 0.25 say, will give small B value 
at the caustic. Waves with small B values can not be seen by the naked 
eye. Nevertheless, it has been shown numerically that the qualitative 
variations of wave solutions for all mi in the space of rc, B and c1 are 
the same as either m1 =1 or 3 when w<0. Thus, m1 = 1,3 are enough to 
show, the, general behaviour of waves with such w. 

- It is -concluded that in general solutions for waves CG- consist of 
two branches - the TS'and FIR-branches. For small ms, i. e. m, < 1, and 
"small" b1 both branches meet at a critical velocity. For small mi, 
i. e. 'm1 < 1, and "large" b1 both the branches are disjoint as they, are 
for large mi, i. e. m1 > 3, and any bi. The FIR-branch stops feeling the 

effects of the bed as mi increases. In contrast, the TS-branch has 
decreasing trough depths as m1 increases. 
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d. Waves CC- 
Now consider waves GC- so that w, 1 and wave solutions with 

"small" cl >0 are sought. Results are shown in figures 10.9,10 
for m, = 1,3 respectively. Figures 10.9a, b show variations of B and c 

with X. Wave solutions are closed orbits which only exist 
for b, >_ - 0.12. No wave solutions reach either maximum steepness or 

zero trough depth so that all wave solutions are "regular". The presence 

of closed orbits in the (ic, B) and (x, ci)-planes implies that wave 

solutions in all other planes will also be closed. Note that the maximum 

steepness curves are not shown. 
Figures 10.9c, d show variations of wavenumber ki and steepness ak 

with current Ui. All wave solutions have two critical velocity positions 
as expected from closed solution curves. All wave solutions, thus, 

consist of two R-branches. Neither of these branches reach maximum 
steepness which is not the case ' for infinite depths (figures 4.6). It 
is, therefore, suspected that both branches will be affected by the bed. 

Figures 10.9e shows the variation of parameter kt with current U1. 

It is seen that all-wave solutions have kt < r. One branch has kt < 0.3 
for large b±, i. e. b1 

_< - 
0.04. The other branch always has kt < 0.3. 

Thus, the majority of wave solutions for both branches are thin film 

solutions. So, one branch- is a TR-branch whilst the other is a 
FTR-branch. The qualitative characteristics of trough depth ti are the 

same as those of the parameter kt. Schematic diagrams for the 

case bi =-0.04 are given in figures 10.9f and represents both TR and 
FTR-branches. 

Figures 10.10a, -b show variations of B and c1 with rc. It is seen 
that the most striking-difference between wave solutions for mi =1 

and 3 is in their breaking properties. Wave solutions for mý`= 3 (1) can 
(not) break. 'Whether solutions for a given ms can or can not break is 

most easily deduced by consideration of the relative positions of the 

stopped waves solution curve and the maximum steepness curve. If the 

stopped waves solution curve does (not) intersect the maximum steepness 

curve then waves GC-can (not) break as is the case for m1 =3 (1). This 

is most easily seen from figure 10.10a (10.9a). 

Wave solutions for small b,, i. e. bi >-0.3, reach maximum 
steepness at two positions and so are S-branches. Wave solutions for 

large b,, i. e. b, <_ 0.4, are closed orbits which exist for b, >-0.55 

and so are R-branches. These latter wave solutions are, therefore, 

similar to those for m, = 1. So it is seen that wave solutions can break 

but can not reach zero trough depth. 
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Figures 10.10c, d show variations of wavenumber k,, and steepness ak 

with current Us. These show that the stopped waves solution branches now 
have no critical velocity positions. All wave solutions for small b1, 

i. e. b1 >_ - 0.3, have only one critical velocity whereas wave solutions 
for large bi, i. e. bi <-0.4, have two critical velocities. Thus, all 

wave solutions consist of two branches. Both branches reach maximum 

steepness when b1 is small, e. g. bl >-0.3, and neither branches reach 

maximum steepness when bi is large, i. e. bi <_ - 0.4. 

The maximum steepness curve has a maximum steepness of approximately 
2.3 for U, 4-1.75 and is monotonic decreasing with increasing U, for 

Us ), - 1.75. Now, when all wave solutions, including the stopped waves 

solution, reach breaking they intersect the maximum steepness curve 

along the monotonic decreasing part. It would follow that the effects of 
the bed are felt by both branches. However, the qualitative variations 

of wavenumber k, for one of the branches when b, is small, i. e. 
b, >-0.3, is the same as for infinite depths (figures 4.6) in the 

vicinity of maximum steepness. So it seems that the effects of the bed 

are not felt qualitatively for this branch in this region. , 
Figures 10.10e show the variation of parameter kt with current U. It 

is seen that all wave solutions have kt < r. One branch has kt < 0.3 for 

large b1, i. e. bjL <_ - 0.3. The other branch always has kt < 0.3. Thus, 

one 'branch is a TRS-branch whilst the other is a FRS-branch. The 

qualitative characteristics of trough depth ti are the same as those of 
the parameter kt. Schematic diagrams for the case b, 0.06 are given 
in figures 10.10f and represents both branches. 

Recalling that m, = 1,3 are enough to show the general behaviour of 

waves GC- the following conclusions are made. General solutions for 

waves GC- consist of two branches. One is a T-branch whilst the other is 

a F-branch. For small mi, i. e. m1 < 1, the T and F-branches are actually 
TR and FIR-branches. For large m,, i. e. m, > 3, the T and F-branches are 

actually TRS and FRS-branches. Thus, the occurrence of wave breaking 

increases as mL increases. Also, the effects of the bed become 

increasingly less important on the F-branch as m, increases. 
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10.10 Discussion 

Inviscid theory shows that stationary waves CG have two branches of 
wave solutions when the bed has a strong influence on the flow. These 

occur for thin film flows with "large" wave-action fluxes. The two 
branches meet at a critical velocity. The Doppler shifted waves CG+ have 

only been investigated for "large" values of dimensionless mass flux m1 
for which wave solutions are the same as those for infinite depths of 
liquid discussed earlier in this thesis. The general trend of these 

waves is to exhibit the same qualitative behaviour as the stationary 

waves CG. It is, therefore, felt that these waves will also give two 
branches of wave solutions for thin film flows, i. e. flows in which ms 
is "small" - less than 0.25 say. 

The Doppler shifted waves G-, CC- and CC- give two branches of wave 
solutions for any ms. One branch is a thin films branch whilst the other 
branch is a finite/infinite depth branch. For waves G- and CG- the 

effect of the bed on the thin films (finite/infinite depth) branch 
increases (decreases) with increasing m1. For waves GC- the thin films 
branch becomes a thin films/finite depth branch with increasing ms. One 
branch always tends towards the infinite depth solutions as m1 
increases. Like the stationary waves CG, pairs of solutions branches for 

the'Doppler shifted waves meet/originate at critical velocities. 
The existence of these critical velocities is not yet understood. It 

is felt that detailed investigation of the actual flow field, perhaps 
along the lines of the schematic diagrams given above, may lead to 

explanations for' such velocities. On the other hand the inviscid 

approximation is not entirely realistic. The addition of viscous effects 
on the flow would almost certainly result in a deeper understanding of 
the actual behaviour of such flows and lead to corresponding physical 
explanations. This is certainly the case in the first part of this 
thesis. 

There are two leading order viscous effects. Firstly, the wave 

motion results in a oscillating Stokes type boundary layer at the bed. 

This boundary layer will either result in wave energy dissipation or 
perhaps even wave energy addition. Sarpkaya (1957) demonstrates that 

waves can be amplified as a result of the presence of a current and a 
bed. Secondly, the viscous shear from the bed results in a vorticity 
distribution through the flow. This vorticity distribution develops over 

a distance of many wavelengths and for a steady flow corresponds to a 
Poiseuille flow. This vorticity is likely to be most important in the 
"inviscid" effect of vorticity on the waves. Inviscid (constant) 

vorticity effects on steep, steady gravity waves on water of finite 
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depth are described by Teles da Silva and Peregrine (1988). These would 
probably only quantitatively change results shown here. 

Many naturally occurring thin film flows have such viscous effects. 
For example, waves on an inclined plane. A kinematic wave model for such 
a flow is as follows. The continuity equation (2.2.1), with U=0, gives 

pfA 
al 

+ -F =0 with 7= pQ = 
ZQg-C/os a ba (10.10.1) 

where d=b since h=0, Q is the volume flux of liquid across a plane 

normal to the flow (per unit width) and a is the angle between the 
inclined plane and the vertical (see Batchelor, expression 4.2.13, note 
that his h equals our b). 'This gives 

+ p2 gsa bZ b=0 (10.10.2) 

Solutions are readily found using the method of characteristics (see 
Whitham 1974 for general solution method). These show that the forward 
facing slopes of waves continually steepen. This steepening implies that 
the simple kinematic approximation fails. The corresponding example in 

turbulent flow gives roll waves. 
For thin enough films the structure of steep wavefronts becomes 

dominated by capillary action. Also, when viewed from a reference frame 

moving with the waves, the bulk of liquid prior to the steep leading 

edges is stationary . If no wave breaking occurs then it is observed 
that this stagnant liquid causes the generation of a train of capillary 
waves in front of the gravity driven kinematic waves. Frequently, the 
first of the waves generated has a trough very close to, if not quite 
touching, the bed. Note that this implies that there is little motion 
present in the bulk of the liquid of this wave as is the case for 

Kinnersley's symmetric waves with 'c near one - most of the motion occurs 

near wave troughs. These capillary waves experience "global (large) 

scale" wave energy dissipation. Thus, it may be possible to model the 
flow of these capillary roll waves using the slowly-varying 

approximation and Kinnersley's symmetric waves solution. The whole flow 

could then be modelled by "locally" matching, i. e. on the scale of a 

quarter of a wavelength say, the slowly-varying capillary wave flow with 

a hydrostatic gravity-capillary profile. Perhaps this could be related 
to the deep water gravity-capillary solitary wave solution described by 

Longuet-Higgins (1989). 
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The inclusion of energy dissipation (addition) or vorticity effects 
is not a trivial task. The modelling of such viscous effects is a major 
project in its own right. It is easier to consider the flow in a sheet 

of liquid as given, for example, by a vertically falling thin sheet. The 

effects of dissipation on such a flow are given in the same way as in 

chapter 5 for infinite depth liquids. Thus, the dissipation term D is 

given using expression (5.2.5). For Kinnersley's symmetric waves the 

expressions in chapter 8 give 

K 

D=- c2 
f4 K 

(q2) 
J 

V=B 
dO (10.10.3) 

but since _ (1 - q2) and q=1+a cd (10.10.4) 

it follows that D=K 11 s ßc4 Ie (10.10.5) 

Where Ie = 
f4K cd 

a ca 
cd+ - 1) do . 

(10.10.6) 

The addition of such dissipation and parallel acceleration (gp = g, 

g� =0 if x-axis is downward and z-axis horizontally rightwards) effects 
to the slowly-varying equations of chapter 2 are described in chapter 7. 

It is seen that either the modified averaged equations or Whitham's 

equations must. be used. These require the calculation of the mean rate 

of momentum transfer E given by expression (7.4.1) or, more 

appropriately, (7.4.13). It is not a difficult task to derive this term 
for Kinnersley's symmetric waves. The term itself is rather long and 

consists of a sum of terms involving many different integrals, similar 
in form to those already encountered, and so is not given here. 

The presence of three unknowns, namely rc, B and c, requires the use 

of three equations - the mass, momentum and energy conservation 

equations say. Three ordinary differential equations have been derived 

from these equations for the steady-state problem. The algebra involved 

in deriving these is very long and tedious. This is essentially because 

the derivatives of elliptic functions, integrals and mean wave 

properties causes the appearance of many long and complex expressions 
involving a large quantity of integrals of the type I, - I6. Note that 

the mass flux pUd +I is still constant but is best expressed in the 

form of a differential equation. The equations are not presented here. 

An attempt has been made to solve these equations using several 

standard solvers from the NAG library of routines. However, although 
integration was achieved, no sensible solutions were obtained. This 

maybe due to "bugs" present in the program or to the complex nature of 
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terms involved in the equations. To overcome this latter feature of the 
problem it may be better to devise an integrating scheme designed 

specifically for these equations rather than use a standard solver. This 
dissipative study was abandoned for lack of time. Results to this 
problem would hopefully lead to further understanding. 
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CAPTIONS FOR FIGURES 

Figure 10.1: Diagram illustrating the possible existence of stationary 
waves CC and Doppler shifted waves CG(+, -), CC- and G-. 

Figure 10.2: The variation of parameters (a) B and (b) c with ic; and 
(c) wavenumber k, (d) steepness ak and (e) parameter kt 
with current U for stationary waves with mass 
flux m= 1 kg m-1 s'; various wave-action fluxes b as 
shown. 

Figure 10.3: The variation of (a) wavenumber k, (b) steepness ak, 
c mean depth d, (d) trough depth t, (e) crest height H, 

(f) mean level b and (g) depth h with current U for 
stationary waves with mass flux m=0.05 kF m'1 s"1; 
various wave-action fluxes b as shown. The variations of 
parameters B and c with x are given by figures 10.2a, b 
with c and wave-action flux b scaled by 20 and 2.5 x 10-3 
respectively. 

Also, the schematic diagrams for stationary waves with 
mass flux m=0.05 kg m-1 s-' and wave-action fluxes b 
equal to (h) 2.5 x 10-8 and (i) 2.5 x 10--a kg m3 s-2. 

Figure 10.4: The variation of parameters (a) B and (b) c1 with ic; and 
(c) wavenumber k,, (d) steepness ak and (e) parameter kt 
with current Us for waves CG+ with mass flux m1 = 1; 
various wave-action fluxes b1 as shown. 

Figure 10.5: The variation of parameters (a) B and (b) cl with Kc for 
waves CG+ with mass flux m1 = 3; various wave-action 
fluxes bi as shown. 

Figure 10.6: The variation of parameters (a) B and (b) cl with r.; and 
c wavenumber ki, (d) steepness ak, (e) parameter kt and ) 

mean depth d1 with current U1 for waves G- with mass f 
lux o1 = 1; various wave-action fluxes b1 as shown. 

Also, the schematic diagrams for waves G- with mass 
flux mi =1 and wave-action fluxes b1 equal to (g) 0.2 and 
(h) 0.6. 

Figure 10.7: The variation of parameters (a) B and (b) c, with ic; and 
(c) wavenumber k,, (d) steepness ak and (e) parameter kt 
with current U1 for Waves CG- with mass flux mi = 1; 
various wave-action fluxes b1 as shown. 

Also, the schematic diagrams for waves CG- with mass 
flux m, =1 and wave-action fluxes b1 equal to (f) 0.07, 
(g, h) 0.1, (i) 0.2 and (j) 0. 

Figure 10.8: The variation of parameters (a) B and (b) c1 with x; and 
(c) wavenumber k1, (d) steepness ak an d (e) paramete r kt 
with current U1 for Waves CG- with mass flux m, = 3; 
various wave-action fluxes bi as shown. 

Also, the schematic diagrams for waves CG- with mass 
flux m, =3 and wave-action fluxes b1 equal to (f) 0.1, 
(g) 0.06, (h) 0.3 and (i, j) 0. 

Figure 10.9: The variation of parameters (a) B and (b) c, with ic; and 
(c) wavenumber k,, (d) steepness ak and (e) parameter kt 
with current U, for waves GC- with mass flux mi = 1; 
various wave-action fluxes b1 as shown. 

Also, the schematic diagrams for waves GC- with mass 
flux m, =1 and wave-action flux b1 equal to (f) - 0.04. 



Figure 10.10: The variation of parameters (a) B and b) cl with ýc; and 
(c) wavenumber ki, (d) steepness ak and (e) parameter kt 
with current U1 for waves GC- with mass flux ml = 3; 
various wave-action fluxes b1 as shown. 

Also, the schematic diagrams for waves GC- with mass 
flux m, =3 and wave-action flux b1 equal to (f) - 0.06. 
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EPILOGUE 

This thesis consists of two parts. The first part considers "short" 

waves either interacting with a slowly-varying mainstream flow or 

propagating on the surface of pure gravity waves on liquid of infinite 

depth. The second part considers "short" waves interacting with a 

slowly-varying mainstream flow on liquid of finite depth. In either part 
it is supposed that the waves are dominated by surface tension. 

In the first part it is shown that the neglect of gravity effects on 
the "short" waves is justifiable for flows on many "typical" gravity 
waves. The inviscid theory permits calculation of those gravity waves on 
which capillary wave breaking occurs. However, the dissipative theory 

shows that only waves CC-, which propagate up the forward faces of pure 
gravity waves, can break. If these waves do not break then they may 
actually persist for long periods of time or, alternatively, they may 
undergo wave reflection, transmission or even a combination of both. 
Usually waves CC and CG(+, -), which propagate up the backward faces of 
pure gravity waves, rapidly dissipate. On rare occasions waves CC- may 
possibly persist for long periods of time. This explains why capillary 
waves are generally seen on the forward faces of gravity wavetrains. It 
is very difficult to make quantitative observations of capillary waves 
on the surface of gravity waves. Thus, a quantitative confirmation of 
results is not undertaken. 

The second part of this thesis is less complete. A detailed account 
is given of the interaction of all possible finite-amplitude capillary 
waves with a shallow water gravity driven mainstream flow. Infinitesimal 

wave theory always shows the existence of one branch of wave solution 
for each of the possible waves. However, finite-amplitude theory shows 
that generally finite depth influenced flows give two branches of wave 
solution for each of the possible waves. In some cases, for example the 

thin films stationary waves case, the two branches join at a singularity 
in the form of a vertical tangent velocity position. In other cases, for 

example waves CC- with "large" dimensionless mass flux ml, the two 
branches of wave solutions are completely disjoint - one representing a 
thin films flow and the other a finite/infinite depth flow. 

Interpreting wave solutions, especially the existence of critical 

velocity positions, is a difficult task. Possible reasons for such 

velocity positions may be found upon further examination of details of 

the flow field. For instance, the schematic diagrams given may lead to 

further understanding. It is seen from the introductory section 1.2 on 

wave-currents interactions and the first part of this thesis that the 
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behaviour of some waves, here waves CG- and GC-, is more clearly 
interpreted once the stopped waves solution or, in this case, solutions 
are clearly interpreted. 

The second part of this thesis forms the foundation for further 

study in several different directions leading to explanations of 
observed naturally occurring phenomena. These are discussed at the end 
of chapter 10 and involve the inclusion of, for example, wave energy 
dissipation and vorticity effects. 
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APPENDIX A 
Integral Definitions of Mean Wave Properties 

Some integral definitions of mean properties of the wave motion are 
given here. The wave momentum vector Zi is defined as 

Zi =p 
f-h 

ui dz (Al) 

and is equal to the mass flux in the i-direction due to the waves. An 

overbar denotes the average over the waves. 
The radiation stress Sfj for pure gravity waves is defined as 

Sfj = 
f-h (puiuj + Pöjj) dz - Pgd2 bli (A2) 

Where p is the pressure. The radiation stress Sij for pure capillary 
waves is defined as 

aa] 

2] 
-I- 

'5TI, j 
-212, 

-1 
[1 [2k 

bij (D) 
CX["gkj 

7 

where r is the surface tension of the liquid. The total radiation 
stress Sij is then given by 

si=Sfj+SIJ (A4) 

and represents the excess momentum flux due to the waves. This is a 
tensor since the square root in each term is invariant under rotation of 
axes. 

The energy density CK for pure gravity waves is defined as 

Eg =1p 
_h 

(u, ui + w2) dz + pg (n - b2) (A5) 

The potential energy density ET for pure capillary waves is defined as 

ýT =r{ 
[1 

+ 
(Lkl 21 

- i} . 
(A6) 
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The total energy density E is then given by 

C= Eg + Cr . (A7) 

The energy flux vector 7 for pure gravity waves is defined as 

= 
J_h TI I 

ui[ P (uiui + w2) +p+ pg (z - b), dz . (A8) 

The energy flux vector Pi for pure capillary waves is defined as 

=T1 
[W 

- Uj 
,JnI1+ 

ral7k 2] 
(A9) 

Where the subscript q denotes evaluation at z=q, i. e. at the surface 
of the liquid. The total energy flux vector 7, is then given by 

71 = 7f + ii . (A10) 

The kinetic energy density T is defined by 

T= Pf 
_h 

[[j2 
+ 

(2]2] dz 
. (All) 

The potential energy density V9 for pure gravity waves is defined by 

Y` =1 ý pg(n - b2) (A12) 

The potential energy density V' for pure capillary waves is defined as 

ran 

will, - 
'I 

The total potential energy density V is then given by 

V=V9+V' . 

Note that 

and that 

CST 
=VT 

e=T+V. 

(A13) 

(A14) 

(A15) 

(A16) 
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APPENDIX B 
Vhitham's Averaged Lagrangian Method 

The averaged Lagrangian method of Whitham (1965,1967,1974) and the 
equations derived are outlined here. Whitham proposes that once a 
Lagrangian L is found for a specific wave problem an averaged Lagrangian 
G is found by substituting the plane-wave solution into the Lagrangian L 

and averaging over the waves. Then, for slowly-varying wavetrains, the 

equations for the wave parameters are found by use of the averaged 
variational principle 

S ff Cdxidt=0 . (Bi) 

The appropriate form for the Lagrangian L is found by taking the 
form suggested by Luke (1967) for pure gravity waves and adding on a 
surface tension term. Thus, 

L=- Pf-" 
1+LiJ2+[] 2J 

+ gzý dz -r 
{[i 

l 
ýý 

1 

Where 4 is the velocity potential function. 
The most generalised form of the velocity potential f for uniform 

wavetrains. is given by 

.1=+ cS(x, Z) (B2) 

with q=b+ n(X) (B3) 

where c is the velocity potential for the wave motion alone. 
Substituting into L and averaging over the waves gives 

G=- pd l+ 
[gi] 2] 

pJ 
_h 

[R 
+i kj dz 

p J_h II 
iJ 

+l dz -y pgýn - h2) -rI1+f il 
21 

- 1} . 
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By definition of the velocity potential 

ui =w= (B4) 

1 11 
so pI 

_h 
[ ̀ g1, Z+ []2] dz =T (B5) 

Also note that (appendix A) 

Pg(ý b2) +r 
{[i 

+ 
ran Zl 

- 11 =V. (B6) 7 L"Fil 

Thus, using the definition (2.3.3) of the pseudo-phase, 

G=pdf7- 7Ui 
-2 pg(b2 - h2) -T- Y- p 

f_h [A 
+U1 

21) dz 

and since, using definition (2.3.2) for the phase, 

9_ 
_- 

-rze 
w9 ýx 9 1 I ýx k1 (B7) 

it follows, using the Doppler relation (2.3.1), that 

8+ Ui = (- w+ k1Ui) 8=-u (B8) 

but, by definition, CI = jj2 ki c, ki =u, (B9) 

where c1 is the phase velocity vector of the wave motion alone, so that 

v= cikl = Cl = cjui (B10) 

after use of (B7) and (B4). Thus, since 

B11 p 
J-h 

Ciui dz = Ci1i 

the averaged Lagrangian G is given by 

G= pd17- ýu] 
- 

ýpg(b2 
- h2) + cili -T-V (B12) 
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From Longuet-Higgins (1975 § 2) it is easily seen that the 
generalisation of the Levi-Civita relation is 

2T = cill (B13) 

so that G= pd[7 - Ui] - pg(b2 - h2) +T-V (B14) 

Let G' =T-V, (B15) 

where w denotes that this is a property of the wave motion alone, then 

W= LW(o, k, a, d) (B16) 

so, using the Doppler relation (2.3.1), 

LW =C (w - kjU,, k, a, d) , (B17) 

where a is the amplitude of the waves. For differentiations in Whitham's 
averaged variational principle the form (B17), with m rather than v, 
must be used. 

The Euler equations corresponding to the variational principle (Bi) 
lead to the following four equations: 

ac _o 7- 

O'F I. 
J- 

Ni 
[JU, ,_o 

alc 

_ 
E 

Ia-j -1 
[WiJ 

= 

(B18) 

(B19) 

Substitution of expression (B14) into these equation gives the four 

equations (2.4.3 - 2.4.6) in terms of C'. 
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APPENDIX C 
Relations between terms in the Averaged Equations 

and Whitham's Equations of Notion 

In this appendix two general equations are derived. No equations or 
relations are to be used except the Doppler relation (2.3.1), the 
consistency relations (2.3.4) between the wavenumber vector ki and the 
total wave frequency w and the dispersion relation in the basic 
form (2.4.3) in terms of f. The method of Crapper (1979) §3 is 
followed. 

Consider the equation 

DC' al-, 80, acw A Mw as D' as (Cl) N, : -- Tci+Nßx1+-d Wxi+Ma Ni. 

The Doppler relation (2.3.1) gives 

"ai 
=f 

Ni 
- Uji - ki Ni (C2) 

auj 
so Si j-[8k+Uj 

-Ei 
+kj ýj iJ 

aCw ak MW ad 
+a wi +m Ns (C3) 

where the consistency relations (2.3.4) are used in (C2) and the 
dispersion relation is used in (Cl). Adding 

Ot' 

kL[v1J+ j [Uj I _k) (C4) VO. a FO. -A i 

to both sides of (C3) gives 

-ski 
No, 

+ki -F I 
raL*wl 

+ Uj 
Ni 

-aý - -Oýk 
i 

Otw + 
N, 

S 
ij -g N 

0 [uj DC' 
_kj 

aCI DC' 0U J a' ad 
+ki ýk -ä + ki -09ýi -m 

raci 8 atwl ] ks 1iJ+ [U, TJ 
- 

kj 
Xj. (C5) 

Now 8k 
k 
kj Oks 

_ 
kj Oki (C6) ail -xi k NJ 
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using the consistency relations (2.3.4), so that (C5) gives 

[k1 a4W] + [uii ac' kik, acw + cw +k acw av, acW ad si ] 

= k, IF LVA aCw 

+ W, IU, - ýi acw] ] (CT) 
at ' ad But -R W1 

a 
= VRJ 

arw [- df 51,, a DC ) +d ied , C8 

so 
[k 

, 
r' 

+j 
f U, k1 N+ G"' Si 

OLl öU, 8 DLW + k, Yö N, +d wild 

0 OG"'_k 
+, 

1U, 
F 

- 7- -g -df öi, 1 
1-19 

III ' ýC9ý 
which, after use of definitions (2.4.7) and (2.5.2,3) for the mean wave 
properties in terms of f, gives 

+ (Ui7s+Sst)+7ývij+dNJ =ksfg+-&j(U, ýýl+Ba)1 

+ Ij [uj - gaui ;). (cio) 

This is the first of the required equations. To find the second consider 

acý _ ac' aT + acw Ok ' Od + acw as ýcllý To Fý7k ýt+ -d ac-t-a 
a Ft 

Now Od 
=A and 

A_ ki äkß (C12) 

so, using dispersion relation (2.4.3), (C11) gives 

0 ar- aa ak, k, acw BC ab fob 
- C"' =o 

[ý, 
'ýt k ýk ýd fit' (C13) 

Also a v, oa - G'" -okiarw 
a (U, Ot"' kia 

Wol 

au Kw [Ui 
- 

E` 'j 'I 0 
- 1(Ultw) 

(C14) + 
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So 
1Q 

- c] + *0 7 
[U, [Q N_ 

, 
w] 

-Q 
ki 

V 

L£ + 
ýU' kia 

k XJ 
ý Oa, 

+ xi 
OL ki DLw [UL 

k -k 
l 

- 7i(ult - 1 ui -g 
- 

-9 (015) 

The dispersion relation (2.4.3) and expressions (C1,6) give 

orw 
__ ý1ý0C- 

ao 
+ 

DC'" k, Oki 
+ 

OL Od (C16) 
iQ1 

-N i wi -2 
i 

so 
1 

lu 
- 

ý1 
' 

-K j -i 
(USC"') 

-1 
ýi 

-E N - 

_ 
öo ki DG`" kj äk j DC"' 

- 
ök i Ui k1 DG"' 

OR, l WE E ? C1 ux T 1 
ux 

-i 'R F Ui -a 
Ni 

(C17) 

The consistency relation (2.3.4) and the expression (C2) give 

"a1=--H 
-Ui'Ri-k1 

8FU i. (C18) 
I 

So, after substitution of (C18) into (C17), expression (C15) gives 

[�0£' 
- G"', +i 

[UifoN 
_ C'", _ u&i 

Ni 
- 

a a + 
ju, 

-DýC"' _ 1k-i i 
lc 

a1- kik D' aü 
ux 

J+x'( 
-gi 

Ni - 
Otw Ob 
99_ 

orw ad Ui 
ýu xi 

(C19) 

or 
kT- C+ 

if 
Ui 7- C'"] - 

1i 
-p 

atw ki7 

+ 
(G"' SL i- 

ký'k-j ý- d zu 5,,, OTR i= 

[t9 a+ Y 
ai fUi 
ZR 

afw 
" TO, 

ki a 
k ýk 

] 

" ýd -t Ui -&1 - d 1- 1f -a ki . (C20) 

But uOt« 
Ob 

d ýt+U'-d xi+d 
i+p 

i(a 
k1 ar- j_ 

a 
[fit 

+Ni(dUi) +pWfkip"]] +Pki 
-g1m 

189 



so, using definitions (2.4.7) and (2.5.2,3 
, 6) for mean wave properties 

in terms of Lw, expression (C20) gives 

+ 
a(Uie 

+ f1) + Sij i+ 11 

Uh p+ w1(pdUi + Zi)J + 01 1-9 -xi(UiA + Bi)] (C21) 

Which is the second of the required equations. 

APPENDIX D 
Expressions required for the calculation of 

Mean Wave Properties for Kinnersley's Symmetric Waves 

In this appendix expressions are derived for the quantities 

4 and laJ 

1 71 Z+ 
WJ2 (Dl) 

for the case of symmetric waves since these are needed to find 

expressions for the four basic mean wave properties. Extensive use'is 
made of 'formulae, involving elliptic functions, in Byrd and 
Friedman (1971). 

Now, expressions (8.4.1,2) give x and i. The latter clearly gives 

e- 
cr TI-a1c [- 2aß sd 0 nd 0] (D2) 

Whilst the former gives 

e 

(D3) =I1+ 2ýc2sd2o + 2a (sd 
a cdj]] 

1 Nov [ 
sd 

a]_ (1 a cd 
[cd ¢ (nd2 ¢+ xZ sd2 o) 

- a2(nd2O + ic2cd2¢sd2q$)] (D4) 

so 
a_- 

a1 
[(1 + 2i2sd20) - a2(cd20 + 2sd20)] (D5) 

cT cd 0)' 
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It follows that 

= 
SEýr- 

- a1C 
1[(l + 2k2sd2'S) 

f"ý'J Z+ E]2 

- a2(cd2c +2 sd20)]2 + 4i2ß2sd20 nd2c} 
. 

(D6) 

Substituting a2ß2 = 
(a2 

-X2)(1 - a2) (D7) 

into expression (D6) and collecting terms of the same order in a gives 

[rd4x] 
+lJS Fr- (1 

(1 
- aZýd2 

Z (D8) 

APPENDIX E 
The Linear-Limit x -+ 0 

It is mentioned in § 8.2 that the limit r. -º 0 represents the 
linear-limit. This limit is now considered in detail so that the general 
expressions derived for the mean properties above are shown to be 
correct in this limit and so the algebraic manipulations of § 8.4 are 
verified as being correct. If such an analysis is not undertaken then 
the validity of the expressions derived in § 8.4 would be dubious. 

As the modulus x -º 0 the complementary modulus x' -º 1. All the 
limiting expressions for elliptic functions and elliptic integrals used 
above can be found, after a little manipulation in some cases, using 
formulae in Byrd and, Fr, iedman (1971). These are shown in appendix G. 

Directly taking the limit r. -4 0, using appendix G, in the 
solution (8.2.1,2) for symmetric (case Ib) waves neglecting terms of 
order x' and above gives, 

X. - c- 
(¢ + 2, c sin ý cosh 5+ 2c2 cosh2o sin q$ cos 0) (E1) 

and z=- c- 
(o - 2, c cos ý sinh 0-2, cZ sinh 0 cosh 0 cosec) . (E2) 

191 



Also, taking the limit r. -+ 0, again using appendix G, on 
expressions (8.2.3 - 8.2.10) and retaining the leading order term only 
gives 

1=-A tanh B, (E3) 

2rs 
,a=-x sinh B, (E4) a=- 

t=-cB and cp =c. (E5) 2sx 

Note that the only place at which 'c occurs in expressions (E4,5) is in 
the expression for the amplitude a so that as rc -º 0 the function of is 
is to behave as an amplitude parameter. In this limit B and c behave 
like depth and velocity parameters with A as a wavelength parameter as 
for the general case. 

Substituting +B into expression (E2) and averaging over the 
waves gives 

d=b=- B BtanhB 
C71 F (E6) 

It immediately follows that the total depth d is equal to the trough 
depth t in the linear-limit. The above expressions (E3 - E5), thus, give 

c2 = sk tanh kd (E7) 

where k is the wavenumber of the waves. This is the linear dispersion 

relation for pure capillary waves on liquid of finite depth. This-shows 
that }expressions (Ei - E5) are the correct equations for the 
linear-limit. 

The kinetic and potential energy densities of linear pure capillary 
waves are given by 

T=V= k2a2 (E8) 

and the mean bottom velocity squared is given by x 

U2 = k2aZc2 cosech2kd . 
(E9) 

These can be found in any elementary textbook on water waves or can, 
alternatively, be - found from first principles using the 
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expressions (El - E7). 
The general expression for the mean properties of the wave motion 

are given in terms of the parameter ic, B and c. Therefore, the limits of 
these expressions will also be in terms of r., B and c. The above 
expressions are given in these variables using expressions (E3 - E5). 
These are 

T=V=r, cZsinh2B and un = 2, cZc2 . (E10) 

In order to find limits of the general expressions for the mean 

properties of the wave motion the limits of the integrals I. - Its are 
found first. Terms to order ic3 and above are neglected in the 

evaluation. Expressions for the limits of these integrals are found in 

appendix H. It is shown that 

I, -a 2v + , c2 (1 +2 cosh 2 B) 

2 12 -+ r+xT cosh2B 

I3 -º 2T + rcz yr (5 +6 cosh2B) , 

I4--º2r+Icz (29 - 16 cosh B) 

and I5 -º 2r + , cz . 27 (13 -8 cosh B) . 

(Ell) 

(E12) 

(E13) 

(E14) 

(E15) 

The limits of a, p, c and 9 are also required. These can all be 

deduced with little difficulty from those limits given in appendix G. As 

for the integrals I, - 15 terms of order', c3 and above-are neglected. It 

is found that 

a --º ,c cosh B, (E16) 

, Q-ºtanhB 

- ý2sech2B [sinh B cosh B (2 sinh2B + 3) + B] , 
(E17) 

E--'B- 2tanhB + K2tanhB (1- BtanhB) (E18) 

and 0 -º 
[1 

+ K2] 
, 

(E19) 
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Substituting these limits into the general expressions for the mean 
properties of the wave motion found in § 8.4 and retaining only the 
leading order terms gives 

d=b -º 
ý2 B tanh B, (E20) 

T -+ rc2 r sinh2B , 
(E21) 

V -º ßc2 r sinh2B (E22) 

and uh -º ßc2 2c2 (E23) 

These agree with the direct linear expressions (E9,10). 

APPENDIX F 
The Linear Interaction Problem Equations 

The linear mass conservation equation (9.2.4) and the wave-action 
conservation equation (2.7.5) are used to directly derive the linear 
interaction problem equations in terms of the parameters x, B and c 
using the same method as in § 10.4. 

Substitution of the linear-limit expressions of appendix E into the 
Doppler relation (2.3.1) gives 

U= smtanhB12- c (F1) 

Which is an expression for U in terms of B and c. 
Also, substitution of the linear-limit expressions of appendix E 

into expressions (2.5.12,13) for 
.4 and B in terms of the four basic 

mean wave properties gives 

A= 2rs, c2sinh2B tanh B 13 
, (F2) 

B= rsx'tanh B (3 sinh2B +B tanh B) 1Z (F3) 

as expressions for .4 and B in terms of x, B and c. Note that both these 
expressions are of order x' so that, using the analysis of appendix E, 
they are both of order a2 as is expected. 

Substitution of expression (F1) for U into the linear mass 
conservation equation (9.2.4) and use of the linear-limit expression 
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for d, given in appendix E, gives equation (10.7.3). Also, substitution 
of the above linear-limit expressions into the wave-action conservation 
equation (2.7.5) gives equation (10.7.4). 

A linear analysis of the wave-current interaction problem, as in 

chapter 9, is given in as follows. The linear equation (10.7.3) is 

solved for fixed w and m by varying B over a given range and solving for 

c using a standard polynomial solver (NAG LIB C02AEF). Substitution of 
this solution into the linear equation (10.7.4) then gives the variation 
of x. Note that the magnitude of b is taken as one since this is 

sufficient for linear theory so that x may possibly be less than zero or 
greater than one. Substitution of the solution for x, B and c into the 
linear-limit expressions of appendix E and expression (Fl) give the 
variations of wave and mainstream flow parameters. It is found that the 
solutions of the linear equations (10.7.3,4) are exactly the same as 
those of the linear equations (9.4.1,4) with g equal to zero. This 

again confirms the validity of the equations. 

-APPENDIX C 
The Limits of Elliptic Functions and 

Integrals as the modulus is --' 0 

The limits of elliptic functions, complete elliptic integrals and 
incomplete elliptic integrals are given as the modulus 'c -º 0 or 
complementary modulus rc' -º 1. The majority of limits are taken directly 
from Byrd and Friedman (1971) but some require a little algebra. 

Firstly, the elliptic functions are considered. Recall that all 
functions of ý have modulus a and all functions of 0 have modulus a'. 
Asa--i0 

sn --4 sin - 
2cos ý(ý - sin 0 cos 0) (G1) 

cn -º cos + 2sin ý(ý - sin cos 0) (G2) 

and do -º 1-Z sin2q5 . (G3) 
fP 

195 



It follows that 

sd -º sin -Z cos sin 0 cos20 +2 sin3q) (G4) 

and cd 0- cos 0+ Zsin 0(0 + sin 0 cos 0) (G5) 

so sd20 __4 sin20 - 
Z(¢ cos 0 - sin 0 cos20 +2 sin3o) (G6) 

and cd2o --4 cosec + 2sin ¢(0 + sin 0 cos 0) . (G7) 

As x' -. 1 

sn -+ tanh 0+2 sech 25(sinh 0 cosh 0- 0) (G8) 

cn 0 --4 sech 0 -2 tanh 0 sech O(sinh 0 cosh 0- 0) (G9) 

and 
Z do 0 -+ sech 0+ tanh 0 se ch 5(sinh 0 cosh 0+ 0) . (G10) 

Also, as i -º 0 

K(x) -4 
[i+ 2] 

and E(sc) --º 7r 
[i 

- -xj 
2] (G11) 

The limit of E(9S) and E(5) as Ic -º 0 are found using 

Uu- E(u) = dn2u . (G12) 

Thus, using expressions (G3,10), 

E(c) -º 1 - ic2sin20 (G13) 

and UU- E(5) ---+ sech25 + I2tanh 0 sech25(sinh 0 cosh 0+ 0) (G14) 

so that E(O) --4 0 -2(O - sin 0 cos 0) (G15) 

and E(5) --4 tank 5+ 1C2 (fib - tanh 0+0 tanh20) . (G16) 
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APPENDIX H 
The Linear-Limits of Integrals I. to 15 

The limits of I, - 15 as rc -º 0 are found up to and including terms 

of order 'c2. Expressions in appendix G are used to find the limits of 
the integrand and integral limits. Firstly, consider 

j4K 1 
I1 =o1-a cd 

dý ' 
(H1) 

From appendix Ga cd c -+ k cosh B cos (H2) 

so 1_ä cd j --4 1+x cosh B cos c+ '2cosh2B cos2O . 
(H3) 

Therefore I1 --. 
J0 (1 + ic cosh B cos 5+ xzcosh2B cos2ý) dc (H4) 

Where 4K -º 7= 2x11 + KZl 
. 

(H5) 

It follow that Is -i 2r + x2 (1 +2 cosh2B) . (H6) 

Also 12 = 
foK 

(1 dO . (H7) 

Expression (H3) gives 

1-a 
cd -º 1+k2 cosh B cos + rc2 3 cosh2B cost 0 (B8) 

Whilst the limit of sd2O is given by expression (G6). So 

12 
[sine 

+ ic 2 cosh B sin2ý cos + 
2(6 

cosh2B sin2q cos20 
jo 

-0 cos 0- sin ¢ cos20 +2 sin3q)] d$. (H9) 

It follows that 12 -4 r+ K2 cosh 2B (H10) 

Also 13 = 
14k (1 + 2i2sd2 

--aaC 
cd2 +2 sd2 d¢ (H11) 

0 (1 d 0)' 
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Again use of expression (H3) and appendix G leads to 

I3 --+ 
J: {1 + 'c 3 cos B cos ý+ ßc2 [cosh2B (2 

+7 cos26) +2 sin2o]} do . 
(H12) 

It follows that 13 --º 2r + x2 (5 +6 cosh2B) . (H13) -27 

The remaining two integrals are given by 

I4 =k1 
(1 + 2x'sd2 - a2 cd2 +2 sd2 d0 

,Jon+xc-a 
cd 0)' 

f4k 1 (1 + 2, c2sdZ - a2 cd26 
+ 2, sd2 

I6 
+x cd -a cdý n 

Which on use of expression (H3) and appendix G give 

14 -º 
Jo {1 +x 2(cosh B- 2) cos o+ x2 2[(cosh2B -4 cosh B+ 5) 

- (2 cosh2B -4 cosh B+ 3) sin2q$]} do (H14) 

15 -4 
Jo {1 +x 2(cosh B -1) cos + X2 [(2cosh2B -4 cosh B+ 3) 

- (4 cosh 2B -4 cosh B) sin20]} do . (1115) 

It follows that 14 ---4 2r + ßc2 1 (29 - 16 cosh B) (1116) 

and 15 -+ 2r + x' . 27 (13 -8 cosh B) (R17) 
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