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ABSTRACT 

This thesis presents a theoretical and numerical investigation on the anisotropic 
viscoplastic deformation behaviour of single crystal nickel base superalloys under 
isothermal and thermornechanical loading. Two constitutive models, one 
phenomenological model and one crystallographic model, have been proposed and 
implemented into the finite element code ABAQUS using UMAT subroutines for 

structural analysis. 

A consistent procedure to determine the material constants in the two models using the 
same experimental results is proposed. The procedure includes a number of local 
optimisation routines to determine several groups of material constants from 

experimental data associated with the deformation characteristics described by a given 
group of material constants. This allows a direct comparison to be made of the intrinsic 

characteristics of the phenomenological and crýstallogrqphic models. 

The analytical procedures for transforming the differential anisotropic viscoplastic 
equations of the both models into numerical incremental equations suitable for finite 

element application have been developed. Also the techniques for implementing the 
equations in a UMAT subroutine for the ABAQUS finite element code have'been 
developed. The closed form solutions achieved in the implementation procedure 
improve both the numerical calculation accuracy and FE analysis efficiency. 

A comprehensive program has been carried out to verify the numerical implementation 

procedure, the UMAT subroutines and interfacing them with ABAQUS. The results 
obtained from the finite element analysis were found to be in good agreement with 
theoretical predictions. The UMAT and ABAQUS codes have been successfully used 
for structural stress analysis for different geometric shapes, including cylindrical bars, 

plates and tubes. The shapes were subjected to uniaxial tension, cyclic 
tension/compression, pure torsion and combined tension-torsion loading conditions. 

There are two main significant findings, among the other findings, in this work. Firstly, 
a procedure has been developed and successfully used to determine the material 
constants in the anisotropic elasto-viscoplastic constitutive models. The procedure was 
consistent and common for both the phenomenological and the crystallographic models, 
and can provide necessary material data for direct comparison of the two models. 
Secondly, a novel method had been developed to achieve a closed form numerical 
implementation of the two models into FE codes. This provides the solid base for 
successful and efficient structural analysis of single crystal engineering components. 
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Chapter I 

CHAPTER1 

INTRODUCTION 

The design of advanced jet engines with improved efficiency and durability has 

placed increasing demands on materials that operate in the hot sections of gas 

turbine engines. Single crystal nickel base superalloys developed for gas turbine 

blade applications have superior thermal, fatigue and creep properties than 

conventional cast alloys. Though single crystal alloys are more expensive and 

difficult to produce and improvement is required to commercially achieve the 

superior properties, it is an important development for gas turbine material. The 

superior properties of single crystal alloys are attributed to the elimination of grain 
boundaries with only a single grain. However, the single gain material structure for 

single crystal alloys also leads to material anisotropy that produces orientation 
dependent material response. In order to fully utilise the advantages of single crystal 

alloys, new constitutive models have been developed to account for both the strong 

orientation dependent and the viscoplastic behaviour of single crystal alloys during 

high temperature operations. The material models should be available in a 

multiaxial form for use in conjunction with a finite element method, or a similar 

analysis, so that a component can be assessed for structural stability and integrity 

under the complex conditions representative of service .. 

There are two categories of constitutive models for anisotropic single crystal 

materials. One category is the phenomenological models that are developed from the 

continuum based approaches. 'Me phenomenological models for single crystal alloys 

were based on modification of the isotropic constitutive models developed for 

polycrystalline materials. Another category is the crystallographic models that are 
developed from the physical based approaches. The crystallographic models for 

single crystal were based on the modification of the classical plasticity models of the 

crystalline slip theory. There have been a number of studies carried out to investigate 

the characteristics of a specific model, and to verify the model with various 

experimental data (Choi and Krempl [1989], Nouailhas [1990], Li [1993]), (Stouffer 

et al [1990], Meric etal [1991], Jordan and Walker [1992]). However there has been 

only very limited work that compares the different models, in particular with the 
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Chapter I 

comparison of the general features of the phenomenological and crystallographic 

models to investigate the similarities and differences between the two categories of 

models. 

Similar to all the modem constitutive models, both phenomenological and 

crystallographic include a larger number of material constants compared with the 

classical isotropic models. These material constants must be determined by some 

simple laboratory tests. It is well known that an appropriate procedure to determine 

the material constants is essential to successfully apply any modem constitutive 

model. There have been a number of studies on the development of procedures for 

determining material constants for isotropic constitutive models (James et al [1987], 

Agatonovic and Clorman [1987], Sherwood and Fay [1992], Schwertel et al [1992]). 

The procedure to determine the material constants for the constitutive models for 

single crystal materials are more complex compared with those for isotropic models. 
However, there has been no specific work that is dedicated to developing procedures 
for single crystal materials. Furthermore, in order to be able to compare 

phenomenological and crystallographic models, the material constants in both 

models must be determined using a consistent procedure using the same 

experimental data. If this is not done the approximations and errors introduced in 

the procedure for determ ining the material constants may override the characteristics 

of the models. Consequently, it will not be possible to explore the intrinsic features 

of different models. 

Structural analysis of engineering components, such as turbine blades, under 

complex loading conditions is generally carried out using the displacement-based 

finite element method. The numerical differential formulation of this method comes 
from the principle of virtual work. Therefore, once a constitutive model has been 

developed, there are two steps required for its application for structural analysis. 
First, an identification process must be undertaken to obtain all the material 

parameters in the constitutive models; second, num6rical implementation of the 

equations has to be performed (generally in finite element codes) in order to solve 

practical boundary value problems. For single crystal superalloys, both the 
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Chapter I 

determination of the material constants and the numerical implementation of the 

anisotropic constitutive equations may be different from the approaches used for 

classical isotropic models. This is because account has to be taken on the significant 

anisotropic mechanical deformation characteristics. 

The main objectives of this work are the development and comparison of the 

phenomenological and crystallographic models for single crystal materials, and 

numerical implementation of the models for finite element structural analysis. A 

literature review on single crystal nickel base superalloys is presented in Chapter 2. 

'Me review is - carried out mainly on the material microstructural features, the 

anisotropic mechanical deformation characteristics induced by material anisotropy 

and the constitutive models to describe the anisotropic behaviour of single crystal 

alloys. The formulations of two constitutive models, one phenomenological and the 

other crystallographic model for both isothermal and thermornechanical 

applications, together with a consistent procedure to determine the material 

parameters in the models, are presented in Chapter 3. Numerical simulations are 

also carried out in Chapter 3 to compare the fundamental characteristics of the two 

different models. The numerical implementation procedures for the two models for 

FE analysis, and interfacing, through UMAT subroutines, with the ABAQUS finite 

element code are developed and verified in Chapter 5. The FE programs are used in 

Chapter 6 for structural stress analysis using different geometry specimens under 

various loading conditions. Finally, concluding remarks and recommendations for 

future work are presented in Chapter 7. 
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Chapter 2 

CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

To utilise single crystal superalloys efficiently for structural components a full 

understanding of material behaviour under thermal mechanical loading is essential. 

Broad research investigations have been undertaken both experimentally and 

theoretically. This chapter provides a literature review of experimental 
investigations and developments in the modelling of nickel base single crystal 

superalloys used at high temperature. In section 2a concise description on 

processing developments for single crystal superalloys is given. The microscopic 

structure and features of single crystal metallic alloys are described in section 3. 

Single crystal mechanical properties based on a wide range of experiments are 

presented in section 4. The review of aspects of isothermal anisotropic elastic 

viscoplastic deformation modelling is given in section 5, while the nonisothermal 

modelling is given in section 6. Finally a review on the implementation of material 

models into FE code for structural analysis is presented in section 7. 

2.2 Development of Processing of Nickel Base Single Crystal Alloys 

Nickel base single crystal superalloys have been developed over the last decades and 

are widely used for high temperature engine applications. Power generation and 

aerospace applications constitute the major field of use for nickel base superalloys, 

and applications include steam generator tubing, structural components of reactor 

cores, gas turbine parts such as blades, disks, rings shafts and various compressor 

and diffuser components. All these components are subjected high temperature, and 

therefore the material is required to have superior high temperature strength and 

resistance to oxidation and corrosion. 

To improve the mechanical properties of an alloy various elements are added to 

perform one or more desirable functions. Nickel base superalloys are defined as 

those alloys that have nickel as the major constituent, with significant amounts Of 
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chromium. The combination of nickel and chromium gives these alloys outstanding 

oxidation resistance. Nickel base superalloys are both solid solution and 

precipitation strengthened. Precipitation - strengthening nickel alloys contain 

aluminium, titanium or niobium to cause precipitation of a second phase during 

appropriate heat treatment. The precipitated phase, usually y'ory" substantially 

increase the strength and hardness of the alloy (Pollock and Argon [1994]). 

Strengthening of the grain boundaries has been achieved by introducing titanium, 

tantalum, hafnium and niobium, which are used to form carbides, and these carbides 

play an effective role in the strengthening of the grain boundaries. 

There are several disadvantages associated with the grain boundaries in a material 

for high temperature application. First, material strength is lowered because the 

grain boundaries are a source of weakness at high temperature particular those which 

lie perpendicular to the applied stress. Creep life and thermal fatigue life are both 

badly affected by these transverse boundaries. Micro damage along the grain 

boundaries is one of the main creep failure mechanisms. Second, alloying additions 

are required to strengthen grain boundaries and many of these additions lower the 

incipient melting temperature of the alloy. This limits the maximum allowable heat 

treatment temperature and prevents the realisation of the full strength potential of the 

alloy. 

In order to eliminate the transverse boundaries, directionally solidified casting was 

introduced. In this way the grains can be made to grow in one preferred orientation 

(along the length of the blade) and have no transverse boundaries. The mechanical 

properties obtained from directionally solidified (DS) material show significant 

improvements in thermal fatigue resistance, creep life and ductility in the 

longitudinal direction, i. e. parallel to grain orientation. The Young's modulus along 

the major axis of DS material is reduced by 30%. The principal reasons for the 

improvement in creep and ductility properties lie in the absence of transverse grain 

boundaries and in the preferred crystallographic orientation of the grains (Kounitzky 

et al [ 1991 ]). However, the transverse properties tend to be unaffected. 
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Further development of directional solidification is the production of single crystal 

alloy which only has a single crystal grain, and therefore eliminates all the grain 

boundaries in the alloy. The absence of transverse grain boundaries in single crystal 

alloys further enhances creep properties compared with DS alloys, since damage 

along the grain boundaries is one of the main mechanisms of creep failure. 

Furthermore, since single crystal alloys contain no grain boundaries there is no need 

to add in the alloy elements that are traditionally used to strengthen these 

boundaries. When these elements (C, B, Zr, Hf) are excluded from nickel base alloys 

the melting point is raised appreciably. This allows high temperature heat treatments 

to be applied to single crystal alloys that cannot be used with conventionally cast 

(CC) or DS superalloys. The heat treatments optimise the microstructure of the alloy 

and allow the full strength potential to be achieved. The combination of these factors 

gives significant improvement for single crystal alloys in terms of creep and thermal 

fatigue properties compared with conventionally cast material (Kounitzky et al 

[1991]). 

2.3 Material Anisotropy and Microstructure Features 
Z 3.1 Initial Material Structure 

Nickel-base single crystals superalloys are produced by directional solidification and 

are both solid solution and precipitation strengthened. They have a face-centred 

cubic crystal structure, i. e. in a unit cubic cell, in addition to 8 atoms at 8 comers 

there is one atom in th*e'centre of every cubic plane. Fig 2.1 shows a unit cell of the 

basic structure of a nickel base single crystal superalloy and the three principal cubic 

symmetry orientations [001]-[010]-[100]. The basic structure of single crystals 

consist of ay matrix with a precipitated y' phase. The y matrix is a face centred 

cubic disordered phase and solid-solution strengthened by -y' precipitates phase 

which has an ordered face centred structure. y' precipitates are coherent with the, 

surrounding y matrix. Therefore, there are two ways to describe a nickel base single 

crystal. At the micro-level, it can be described as a two-phase material, the overall 

material characteristics are determined by the material properties of the y and y' 

phases and their interface characteristics (Nouailhas [1995]). At the macro-level, it 
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can be described as a homogeneous material with a single material response 

reflecting the overall combined properties of y and y' phases and their interface. 

Since both y and y' phases have cubic symmetry, the initial structure of a single 

crystal nickel base superalloy exhibits an overall cubic symmetry response (Stouffer 

et al [ 1990], Li [ 1993]). 

The y' volume fraction has a strong influence on the material structure and 

characteristics of a single crystal superalloy (Pope and Ezz [1984]). The strength 
increases with increasing the volume fraction of the y'. The new generation single 

crystal nickel base superalloys normally have a high y' volume fraction of 55-70% 

(Li [1993]) with the single crystal SRR99 used in this study having a y' volume 
fraction of 60%. Therefore, the elementary cell of the typical initial microstructure 

of a single crystal superalloy can be represented by a periodic pattern made from a 

cube (y' phase) and surrounded with the matrix channels (y phase). Also it was 
found that the microstuctural changes can be induced by internal stress due to the 

lattice misfit, (Iýouailhasand Cailletaud [1995]). 

Z3.2 Structure Change Induced by Internal Stress 

One of the significant characteristics of structural change of single crystal alloys 

under high temperature deformation is the progressive coarsening of the cuboidal -y' 

precipitates into preferentially orientated plates or "rafts" structure. This 

phenomenon is caused by the internal stresses due to the lattice mismatch of y matrix 

and y' precipitates, and driven by external applied stress. Directional coarsening of 

y' precipitates under the influence of an applied stress was first studied in detail by 

Tien and Copley [1971], and this phenomenon has been observed subsequently and 

investigated by many researchers (Nathal et al [1983,1985], Pollock and Argon 

[1994]). The morphological changes in the two phases of the microstrUcture of 

nickel base superalloys are of particular interest because it alters the creep resistance 

of the material in the stress and temperature range where these alloys are used 
(Pearson et al [1980], Nathal et al [1989]). 
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Two types of rafting behaviour in [001] oriented nickel-base single crystals have 

been identified by Fredholm et al [1984]. In type N, the elongated precipitates or 

"rafts" develop normal to the direction of an externally applied stress; in type P, 

elongated precipitates or "rafts" develop parallel to the direction of the externally 

applied stress. Under creep conditions, type N "rafts" occur under tensile stresses, 

whilst type P "rafts" develop under compressive stresses. 

The development of the "rafted" structures in single crystal alloys under high 

temperature deformation changes the overall material microstructural characteristics, 

and consequently influences the material response. There have been also studies on 

the influence of rafting on creep deformation rupture behaviour of single crystal 

alloys (Schneider et al [1992], Pollock and Argon [1994]). However, only limited 

investigations have been conducted on the influence of the rafting structure on the 

fundamental material characteristics, such as material anisotropy, of single crystal 

superalloys. Some numerical simulation results show that the initial cubic 

symmetry, which is -a basic material -property of single crystal nickel base 

superalloys, may no longer exist when the rafting process takes place (Nouailhas 

[1995]). 

2.4 Mechanical Deformation Characteristics 

2.4.1. Anisotropic Elastic Behaviour 

As discussed in section 2.3, the single crystal nickel base superalloy initially has a 

face centred cubic material microscopic structure (not considering microstructural 

change, e. g. rafting), which means that the material crystal lattices possess 3 axes of 

symmetry. Consequently, the anisotropic elastic deformation response of a single 

crystal alloy exhibits cubic symmetry characteristics. The elastic stress and strain 

relationship in the single crystal principal symmetry axes, i. e. [1001-[0101-[0011, can 

be written as: 
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There are three independent material constants, Young's modulus E, Poisson! s 

ratiov, and shear modulus G in the [001] orientation. Using this stress-strain 

relationship, the orientation dependence in the elastic stress and strain can be 

modelled by transforming equation (2.1) into any given orientation (Li et al [ 1994]). 

For uniaxial. loading in a given crystal orientation [h, k, 1], and using the 

transformation from the principal coordinate of the single crystal to the coordinates 

which coincide with [h, k, 1], then the stress and strain relation in the loading 

direction can be expressed as: 
212 212 2 

cr 
44)h +k +h k2 

11 =E[likil Cl I S11- (Sll 
-S12)-ý2- 22 +12)2 

ell (2.2) 
2) (h +k 

with 

v (2.3) Sl 
I 

S12 S44 =G 

It can be seen that the elastic response will be different for specimens tested with 

different crystal orientations, since the longitudinal elastic modulus, E[hkI1 11 is a 

function of the direction cosines [h, k, 1]. 

Test results (Gabb et al [1986]) for the longitudinal elastic modulus of single crystal 

nickel base superalloy Rene N4 at 760"C and 980*C confirmed the orientation 
dependence behaviour. At 760*C, Young's modulus varies from 104 GPa in the 

most compliant [001] direction to 253 GPa in the stiffest [111] direction. At 980T 

the trend is the same, but the elastic modulus decreases with increasing test 

temperature. A systematic study on the influence of crystal orientation on the elastic 
behaviour of single crystal SRR99 for different temperatures has been conducted by 

Li and Smith (1995b). 
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A number of studies have also been performed to investigate the transverse elastic 

anisotropy under a uniaxial loading for different crystal orientations (Yang [1985], 

Li et al [1996]). Both theoretical and experimental results indicate that the 

transverse strains induced by longitudinal stress, in general, varies sinusoidally 

around the longitudinal axis. Only for loading in the [III] and [00 1] directions is 

the transverse response isotropic. For all other loading directions, the transverse 

response shows various degrees of anisotropy. For the case of a nickel base single 

crystal, the highest degree of anisotropy is seen when loaded in the [011] 

crystallographic direction (Yang [1985]). This is attributed to the cubic symmetry 

structure of nickel base single crystal. When loaded in the [011] orientation, the 

lattice spatial distribution in the transverse directions is most irregular, and therefore 

produces the highest degree of material anisotropy. 

Z 4.2 Orientation Dependent Plastic Response 

The ba§ic microstructure of modem nickel base single crystal alloy consist of ay 

matrix with a precipitated y' phase. The cubic precipitates of the crystallographic y' 

phase are in coherence with the crystallographic cubic matrix y phase. Therefore the 

global deformation response of the microscopic two phases (composite) single 

crystal alloys exhibit general (pure) cubic single crystal characteristics (Nathal and 
Ebert [1985], Milligan and Antolovich [1987], Walker and Jordan [1989], Meric et 

al [ 199 11, Nouailhas and Cailletaud [ 1995]). 

The basic plastic deformation mechanism in a single crystal is slip, i. e. the sliding of 
blocks of material over one another along definite crystallographic planes, called slip 

planes. The extent of slip in a single crystal depends on the magnitude of the shear 

stress produced by external load, the geometry of the crystal structure and the 

orientation of the active slip planes with respect to the shearing stresses. Slip begins 

when the shearing stress on slip planes in a slip direction reaches a threshold value 
called the Critical Resolved Shear Stress (CRSS), which is defined by Schmid's Law 

[ 193 1] for the uniaxial loading case as: 
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Ts =Cry Cos 0 COST (2.4a) 

or Ts = CFYS 112.1"2. n I 
)(13.1"3. n3 ) (2.4b) 

where ay is the yield stress, 0 is the angle between the applied tensile stress 

[h, mi, ni] and th e slip direction whilst the 9 is the angle between the applied tensile 

stress [L, mi, ni] and the slip plane normal direction[13, M3, rb], which are illustrated in 

Fig. 2.2. s=cosOcosq is Schmid's Factor. The details on the derivation of the 

Schmid's law and the calculation of the Schmid factor are given in Appendix 1. 

Slip occurs most readily in specific directions on certain crystallographic planes. 
Generally the slip plane is the plane of greatest atomic density and the slip direction 

is the closest-packed direction within the slip plane. The slip plane together with the 

slip direction establishes the slip system. The active slip systems in fcc nickel base 

single crystal alloys depend upon crystal orientation with respect to the applied 
loads, temperature and strain rate, and could involve one or more types of slip. For a 

nickel base single crystal alloy, 30 possible slip systems have been identified and 

can be divided into 3 primary slip groups: 

(a) 12 Octahedral (III)[I 10] slip 

(b) 12 Octahedral ( 111) [ 112] slip 

(c) 6 Cubic (00 1)[I 10] slip 

The three slip groups are illustrated in Fig. 2.3. The flow behaviour of a single 

crystal alloy is determined by the active systems. 

A number of investigations were carried out on various nickel base single crystal 

superalloys, such as PWA1480 (Milligan and Antolovich [1987], [1990]), AM1 

(Guedou and Honnorat [1990], Poubanne [1990]), Rene N4 (Miner et al [1986a], 

[1986b]) and SRR99 (Ghosh et al [1992], Leverant et al [1971], Russell et al [1985], 

Sun and Hazzledine [1988], Li [1993]), to study the anisotropic plastic deformation 
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behaviour of single crystal alloys. The results indicated that temperature also has a 

strong influence on the orientation dependent plastic deformation response, because 

different slip systems can be active at different temperatures for a given crystal 

orientation. 

Z4.3. Time and Temperature Dependent (Creep) Behaviour 

Single crystal nickel base superalloys have been developed for high temperature 

applications, such as gas turbine blades operating at temperatures over 1000'C. At 

elevated temperature, single crystal superalloys also exhibit time dependent 

deformation (e. g. creep), although the creep resistance of single crystal alloy is 

improved compared with polycrystalline alloys. There has been a number of 
investigations on the time dependent deformation behaviour of single crystal nickel 
base superalloys (Kear and Piearcey [1967], Leverant et al [1971], [1973], Oblak 

and Rand [1974], Nathal and Ebert [1985], Fleury and Remy [1994], Pan et al [104, 

1997]). Most of the studies have been conducted to study the influence of crystal 

orientation and temperature on the creep deformation and creep rupture life of single 

crystal superalloys. 

It was found that the major anisotropic effect is exhibited in the temperature range 

750*C to 850'C. Kear and Piearcey [1967] were the first to study the creep 
behaviour of single crystal supera1loys. Their results revealed that a substantial 

improvement in creep life of single crystal Mar-M20 occurs between 750"C to 

850*C with orientations near [001] and [I III, and very short lives were exhibited 

with orientations near [0 11]. At 980*C, crystallographic orientation was found to 

have much less of an influence on the creep life. 

At a temperature of about 760"C, the degree of anisotropy in stress rupture lives is 

often large. Single crystals Mar-M20 (Kear and Piearcey [19671, Leverant et at 
[1971], [1973], Oblak and Rand [1974]) oriented near [011] have much shorter 

rupture lives than crystals oriented near [001]. Mar-M247 single crystal showed 

similar behaviour, and also very long rupture lives were observed for samples 
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orientated near [I I I]. Large differences in creep lives were found for differently 

orientated samples. In order to understand the orientation dependence of the extent 

and rate of creep, Leverant and Kear [1970] considered the Schmid factors and 

multiplicity of slip for the (111)[112] slip system. In general, crystals having 

orientations with high Schmid factors are more favourably orientated for slip than 

crystals with low Schmid factors. Thus, a crystal with an orientation near [I I I] 

should exhibit the highest stress rupture life. This, in part, is because the [I I I] 

orientation provides the lowest Schmid factor (0.3 1) for [ 112] slip, and strong work 
hardening may occur due to interactions between mobile dislocations gliding within 

several intersecting systems. In general, both [001] and [111] orientations showed 

better creep life behaviour compared with other orientations. However, there were 

contradictory experimental results regarding whether [001] or [111] crystal 

orientation has the longest creep life (Ghosh et al [1990], (Winstone [1989], Sun and 

Hazzledine [1988]). 

In the temperature regime over 1000*C the effect of crystal orientation on creep 

properties of nickel base alloys is much less pronounced and the material behaviour 

appears to be isotropic in terms of creep life. The explanation for this is the thermal 

activation of the other slip systems at this temperature. For instance, slip on the 

(1001 planes becomes energetically favourable. However, the increased mobility of 

dislocations due to thermally activated climb and cross slip processes enhances 

creep rates overall. 

There have been also a number of investigations on the microstructural change, i. e. 

rafting, of single crystal nickel base superalloys under creep loading (Schneider et al 

[19921, Pollock et al [1994]). However, most of the studies are limited to creep 

deformation induced microstructural change in the [00 1] orientation. 

Z4.4. Strain Rate Dependent Behaviour 

Early experimental investigations on mechanical behaviour of single crystal 

superalloy CMS-X2, PWA1480 and AMI by Milligan et al (1987), Jean-Yves 
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Guedou et al (1990) and Poubanne (1990) reported that at temperatures above 760'C 

strong strain rate dependent mechanical behaviour was observed in a wide range of 

orientations. Comparison of test results with strain rates of 0.008pct/s and 0.8pct/s 

were given by Milligan et al for single crystal PWA1480 (Milligan et al [1987]. At 

temperatures below 705'C there is no effect of strain rate in the range. At the lower 

strain rate the strength began to fall at 760'C, while at the higher strain rate the 

strength does not begin to drop until above 815'C. At constant temperature, the 

strength was significantly lower for the lower strain rate. The saturation stress at 
950T noticeably increases with strain rate. At the same strain, the higher the rate of 

strain is, the higher will be the stress, (Lemaitre and Chaboche, [1990]). A change 
in the strain rate during the test results in an immediate change in the stress-strain 

curve. 

Z4.5. Yielding Behaviour 

The yield behaviour for single crystal alloys under uniaxial and multiaxial loading 

has been investigated experimentally by many researchers (Li [19931, Milligan 

[1987] and Miner [1986], Nouailhas [1993]). It was reported that the yielding 
behaviour of single crystal is much more complex than conventional materials. The 

yield strength is generally temperature, strain rate and orientation dependent for 

uniaxial loading, and non-uniform yielding is observed for pure torsion and for the 

tension-torsion combined load. 

For nickel-base superalloy PWA 1480 the yield strength was constant from 20'C to 

760T. Above 7600C the strength dropped rapidly and became a strong function of 

strain rate (Milligan [1987]). A similar trend was found for single crystal SRR99, 

i. e. all specimen orientations show a yield strength plateau between room 

temperature and 600T, followed by an increase in yield strength with temperature 

between 600 to 7500C. ' A significant drop in strength occurs beyond 7500C, 

although the rate of decrease is less for temperatures beyond about 9000C (Li 

[1993]). Such behaviour is typical of high y' volume fraction nickel base superalloy 

single crystals and has been documented for several similar nickel base single crystal 

systems (Nathal et al [ 1982], Shah and Duhl [ 1984], Walter et al [ 1987]). 
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The orientation dependence of yield strength was not significant for temperatures 

above 750T with the yield strength slightly higher in the [I 11] orientation. Also the 

tension-compression asymmetry of yield strength was found in [001] and [111] 

orientations but no significant asymmetry of yield strength was found for specimens 

with intermediate orientations. 

The yield behaviour of single crystal alloys depends on both temperature and 

loading conditions. Yielding and plastic deformation behaviour of single crystal 

alloy under multiaxial loading is more complex, since material anisotropy induces in 

non-uniform deformation. Only limited experiments had been conduced to 

investigated multiaxial yielding behaviour of single crystal alloys (Policella et al 

[1990], Nouailhas et al [1993]). A thin tube made in single crystal CMSX2 was 

submitted to tension-torsion loading (Nouailhas et al [1993]). The axis of the tube 

coincides with the [001] material orientation. Local strain measurement was made 

by means of strain gages, and the analysis of the slip traces was made by a replica 

technique. Both octahedral and cubic slips were observed in the tension-torsion tests, 

but only octahedral slip was active in tension for the [001] orientation. Cubic slip is 

predominant for pure torsion loading at room temperature and high temperature 

(Nouailhas et al [1993]). A strong strain localisation occurs in the four [011] zones 

at room and high temperatures. The [110] regions are more deformed than the [100] 

ones. The localisation of the shear bands in the [110] regions is more pronounced at 

high temperature (950*C) than at room temperature (Nouailhas et al [ 1993]). 

Some experimental investigations on the effect of hydrostatic pressure on the plastic 

flow properties of single crystal were carried out by Spitzig (1978,1981), and 

Richmond et al (1980). Their experimental results show that the assumption of 

constant volume remains reasonably valid for single crystal alloys, which means the 

material flow or plastic deformation is hydrostatic pressure independent as is 

assumed for conventional polycrystalline materials. The first stress invariant 

represents hydrostatic pressure, therefore the yield criterion and flow law should not 
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include the first invariant, and only be the functions of the second and higher stress 
invariants. 

Z 4.6. Cyclic Deformation and Fatigue Behaviour 

The high temperature fatigue behaviour of a nickel base single crystal superalloy 

will be much more complex than tensile or creep behaviour, because at elevated 

temperatures, plastic flow, creep, and relaxation may occur simultaneously under 

cyclic loading. The fatigue deformation and life behaviour of single crystal alloys 

are strongly dependent on both temperature and crystal orientation as well as cyclic 
loading conditions. 

The orientation and temperature dependence of the cyclic yield strength, tension - 

compression anisotropy and flow behaviour in fatigue tests are generally similar to 

those observed in tensile tests. Experimental results on PWA1480 (Milligan [1990]), 

Rene N4 (Gabb. et al [1989]), AMI (Poubanne [1990]) and SRR99 (Li [993]) 

nickel base single crystal superalloys show that the magnitude and orientation 
dependence of tension-compression anisotropy is quite signiflcant at lower 

temperatures (below 760OC-8000C), but generally not so at higher temperatures. A 

similar tension -compression anisotropy has been observed in single crystal N'3AI by 

Ezz et al [1982] and by Shah and Duhl [1984] for the single crystal PWA1480- 

The cyclic and fatigue behaviour of SRR99 single crystal were studied by Li and 

Smith [1995] at 7500C, 950"C and 1050"C. Specimens with various orientations 

were subjected to various applied strain ranges. Dwell periods at constant applied 

tensile strain, compressive strain and balanced tension/compression strain were 

included in a number of experiments to study the combined creep-fatigue effect. 
The hardening and softening response was investigated by considering the resulting 

stress range over the life. At 750"C the stress range remained stable throughout the 

test, thus indicating that no hardening/softening behaviour was present. This was 

found even when dwell periods were included. At 950'C no hardening/softening was 

observed until dwell periods were introduced. Tensile, compressive and balanced 

tension/compression dwell cycles all induced cyclic softening during the first 10% 
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of fatigue life. At 1050"C continuous cyclic softening was observed for all tests, 

with or without dwell cycles. However tensile dwells induced the most softening, 
indicating more creep damage was introduced during tensile dwell period. 

The temperature dependence of cyclic work-hardening behaviour has been observed 
for several other nickel base single crystal superalloys (Gabb et al [ 19 8 6], - Poubanne 

[1990]), At lower temperatures (below 760"C), only slight work-hardening was 

observed for Rene N4 (Gabb et al [1986]) and AMI (Poubanne [1990]). The 

orientation dependence of work-hardening is also very small at lower temperatures. 

For example, the calculated hardening exponents for all orientations, including the 

[001], [011], [111], [236], [027] and [145] orientations, for Rene N4 is about 0.20. 

At higher temperatures, work hardening becomes large and strong work hardening 

anisotropy for different orientations is observed. Both Rene N4 and AMI show the 

highest hardening in the [001] orientation compared with other orientations. It is 

quite surprising to note the markedly low hardening level of the [111] orientation. 

The high temperature fatigue life behaviour of nickel base single crystal alloys was 

found to be significantly better than nickel base polycrystalline alloys. Li and Smith 

[1994] had compared the high temperature fatigue lives between single crystal 

SRR99 and polycrystalline Mar-M002 nickel base superalloys. A significant 

improvement in the fatigue life was observed for SRR99 single crystal alloy. At a 

given total strain range, the fatigue life of SRR99 was found to be nearly ten times 

longer that that of the polycrystalline nickel base superalloys Mar-M002 (Li [1993], 

Li and Smith [1994]). 

The improved fatigue behaviour of single crystal alloys has been attributed to a 

change in the mode of crack propagation from intergranular in conventionally cast 

materials to transgranular in single crystals. High temperature fatigue tests on nickel 

base single crystal superalloys Mar-M200 (Chan et al [1987a, 1987b])], Rene N4 

(Poubanne [1990]) and PWA1480 (Millian [1990]) all show similar fatigue fracture 

modes. Fatigue crack initiation occurred at carbides or micro-pores, and subsequent 

crack growth takes place by either a stage I or stage 11 mode. Fracture behaviour is 

also strongly dependent on temperature, crystal orientation and cyclic frequency. 
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Z4.7 Material Deformation Mechanisms 

The basic inelastic (plastic, creep and viscoplastic) deformation mechanism for a 

single crystal alloy is slip. There are a number of possible slip systems for a given 

single crystal material. The type and number of active slip systems observed from a 

particular test depend on microstructure of the single crystal, temperature, 

orientation and loading conditions. 

Basic studies of the cyclic stress-strain behaviour of single crystals, devoted to pure 

copper, (Mughrabi [1978], Vogel et al [1982] and aluminium alloys with a low 

volume fraction of fine precipitates (Vogel et al [1982], Reme [1984]), showed that 

f. c. c. crystals deform by octahedral (111)<110. slip. The behaviour of superalloy 

single crystals is much more complex since they bear out a high volume fraction of 

the y' phase. Some studies have shown the role of cubic slip in the mechanical 

properties of and y-7' superalloys by in-situ experiments between 150'C and 900'C 

(Clement et al [1991]). -A number of studies have been carried out to identify the 

active slip systems using various techniques, including photos, replica and 
interferometry (Hanriot et al [1991], Policella et al [1990], Nouailhas et al [19931). 

Single crystal nickel base superalloy AMI was studied by Hanriot et al [19911. 

Cyclic stress-strain tests were conducted at 650T and 950'C. The orientations 

considered were [001], [101], [111] and [213]. Plastic replicas of the tested 

specimens were taken to study the characteristics of the slip bands, and for the 

identification of the active slip systems. It was found that AMI deforms by both 

cubic and octahedral slip, even at intermediate temperature (Hanriot et al [1991 ]). 

At 650'C plastic strains were accommodated by very localised slip bands. The slip 

band structure is heterogeneous at a macroscopic level, except for near the [I I I] 

orientation, which exhibited a more homogenous slip band structure. The [0011 

orientation gives rise to multiple octahedral slip, as shown in Fig. 2.4. Slip occurred 

along the (III)< 10 1> system and along several directions in the (III) plane. Near 

the [101] orientation, multiple cubic slip was also observed. The (001) slip plane 
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was predominant. This is the single plane visible at a low magnification on a surface 

replica, shown in Fig. 2.5. Observation under a high magnification revealed short 

slip traces on a secondary cubic plane. Near the [111] orientation, deformation 

occurred only by multiple cubic slip with a (001) primary system. Near the [213] 

orientation, both multiple octahedral slip, on aII -I I) slip plane, and cubic slip on 

{ 100) and {00 II planes, were observed. 

Experimental results for PWA 1480 single crystal alloy at intermediate temperatures 

(65 OT - 7600C) also revealed cubic slip deformation for the [I I I] orientation (Gabb 

et al [1989]). 

At 950T, surface replicas taken by Hanriot et al [1991] are shown in Fig. 2.6 and 

2.7. The [001] orientation gave rise to multiple octahedral slip. Slip occurred in the 

four octahedral {I I I) planes along two or three directions (Fig. 2.6). Near the [I I I] 

orientation, deformation occurred only by cubic slip along the {001)[110] slip 

system (Fig. 2.7). 

Active slip systems not only depend on temperature but also depend on loading 

conditions. Single crystal nickel base superalloys CMSX 2 was studied by Policella, 

et al [1990] and Nouailhas et al [1993]. Mechanical tests using tube specimens were 

carried out a room temperature, 650T, 950T and HOOT under various loading 

conditions, including torsion and combined tension-torsion loading. Different 

methods had been used to identify the active slip systems. 

The experimental results showed a strong heterogeneity of deformation in torsion at 

both room temperature and at 95 OT (Nouailhas et al [ 1993 ]). - Figure 2.8 shows the 

slip traces observed on the outside surface of the specimen. It can be seen that 

horizontal and vertical traces, characteristic of cubic slip, are not evenly distributed 

along the circumference of the tube specimen. They are localised on four more 

deformed zones which were identified as the areas corresponding to the [110] region 

in the transverse direction (the axis of the specimen is along the [001] orientation). 
Similar slip traces have been observed by Policella et al [1990], as shown in Fig. 2-9. 
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A detailed study of the traces on the specimen tested under torsion had been made 
by means of replicas and interferometry (Nouailhas et al [1993]). Typical results 

obtained by Nouailhas [1993] are reproduced in Fig 2.10. Fig. 2.10a shows the 

horizontal slip lines taken with a scanning electron microscope at low magnification. 
The corresponding picture obtained by interferometry is shown in Fig. 2.10b. The 

results confirmed the presence of slip bands at the surface of the specimen, with very 

small step (0.8ýtm) in the slip band. The same microstructural study has been made 

on the specimen under combined in-phase tension-torsion and followed by pure 

torsion test. The microstructure was found to be much more complex, due to the 

combined tension-torsion loading. Both octahedral and cubic lips were present 
(Nouailhas et al [1993]). A general view of the slip bands is given in Fig. 2.1 1. The 

four octahedral planes were found to be active, together with the cubic ones. The 

traces of the octahedral planes have a sinusoidal form, while the cubic traces as fine 

horizontal lines. 

A more detailed illustration of the surface is given in Fig-2-12. The first view 
(Fig. 2.12a) shows that the cubic and octahedral systems were present 

simultaneously. Fig. 2.12b and 2.12c correspond to increasing magnification of 

Fig. 2.12a. They reveal the y' structure and also the fact that several bands can be 

seen inside a large one. The interferometry (Fig. 2.12d) demonstrated that the step 

corresponding to the octahedral planes was much larger than the step of the cubic 

planes. 

From the above experimental results, it can be seen that among a number of possible 

slip systems, octahedral and cubic slip systems, are the basic slip systems that appear 

to operate during deformation of nickel base single crystal superalloys. Therefore, 

these fundamental slip systems should be considered in the constitutive models for 

single crystal nickel base superalloys. 
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2.5 Isothermal Anisotropic Viscoplastic Deformation Modelling 

2.5.1. Overview 

The elimination of grain boundaries in single crystal nickel base superalloys has led 

to superior thermal fatigue and creep properties compared to conventional cast 

alloys. However, as reviewed in section 2.3, the absence of grains in single crystal 

alloys also leads to material anisotropy which produces orientation dependent 

material responses. In order to fully utilise the advantages of single crystal alloys, 

new constitutive models must be developed to account for both strong orientation 

dependent and general viscoplastic behaviour for high temperature application. The 

models should be available in a multiaxial. form for use in conjunction with a finite 

element method for structural stress analysis, or a similar analysis, so that a 

component can be assessed for structural stability and integrity under the complex 

conditions representative of service. 

There has been significant progress on the development of isothermal anisotropic 

constitutive models to describe viscoplastic deformation behaviour of various 

materials in the last decades. A large number of different constitutive models have 

been proposed (Chaboche and Nouailhas [1989], Chan and Lindholm [1990], Chan 

et al [1989,1990], Walker and Jordan [1989]) and their applicability to describe 

material response under various loading conditions have been reviewed by a number 

of investigators (Chaboche and Rousselier [1983], Ohno and Wang [1992], Ohno 

[1990]). Consequently, the review in the following sections will only limited to 

development of isothermal constitutive models for single crystal superalloys. In 

section 2.5.2 a brief summary of the general development of viscoplastic constitutive 

models is presented. Then two different approaches, i. e. the phenomenological and 

the crystallographic approaches, used to develop constitutive models for single 

crystal superalloys are reviewed in sections 2.5.3 and 2.5.4 respectively. In the final 

section, 2.5.5, other simple models developed for single crystal alloys are also 

briefly reviewed. 
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25.2 General Development of Constitutive Models 

(i) Classical and Un ifted Models 

In general, material deformation behaviour can be classified in three different 

categories: elastic, plastic and creep. Consequently, for small strain cases, a 

classical constitutive model is written as: 

(2.5) 

where the total strain rate tensor is decomposed into elastic strain rate ýij, plastic 

strain rate ý jPj and creep strain rate t i'j tensors. 
li 

However, a distinguishing feature in the development of modem constitutive 

models, such as the unified model, is to treat both plasticity and creep as one 

inelastic strain. The decomposition of the total strain rate tensor for small strain 

cases in a unified model is given as: 

(2.6) 

where ý'i, " is the inelastic strain rate tensor. 

The primary motivation for using unified models is based on two aspects. Firstly, a 

modem constitutive model intends to include more important manifestations of 

inelastic behaviour in the same set of equations, e. g. strain rate dependent plastic 

flow, creep, stress relaxation. However, inelastic behaviour of solids is exceedingly 

complex and many aspects of the physics of polycrystalline, even single crystal, 

materials are far from being fully understood. Interaction of 'creep' and 'plasticity' is 

one such complication. Because creep-plasticity interactions and recovery of 

hardening may take place simultaneously, it is difficult to separate time-independent 

(plasticity) and time-dependent (creep) deformation. 

Secondly, studies on the physical mechanisms of inelastic deformation also reveal 
that both 'plasticity' and 'creep' (at least creep due to slip) are controlled by the 
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motion of dislocations. This leads directly to unify 'plasticity' and 'creep' with a 

single set of equations, rather than taking the traditional engineering approach of 

using one set of equations to predict 'time-independent' plastic strains and a separate 

set of equations to predict 'time-dependent' creep strains. 

(ii) Internal Variables and Evolution Laws 

Another distinguishing feature of the development of modem constitutive models, 

particularly the unified models, is the use of internal variables to describe the 

influence of microstructural change on the mechanical response of materials, e. g. 
drag stress and back stress for isotropic and kinematic hardening. This is based on 

the physical knowledge of the role of internal structure (e. g. - dislocation density, and 

the state of internal stress) in controlling the inelastic deformation. This leads 

directly to the use of internal structure variables, rather than only the external 

variables. 

Consequently the strain rate equation, gives the inelastic strain rate. ýT in tenns of U 

intemal variables (e. g., K and X. the deviatoric stress aij (where aii = (Tij -5ijakJ, 

which are defined below), and the tempemture T, i. e. 

tj 
in ( Cr' , K, Xjj, T) ii ii (2.7) 

The evolutionary equations describe the rate of change of the internal variables due 

to stress, current structure and temperature, i. e. 

k= k(aij, Xij, K, T) (2.8) 

and 

ýCjj =ýCjj(crjj, Xjj, K, T) (2.10) 

Typically, two internal variables are chosen as the minimum set. One internal 

variable which is associated with kinematic hardening or deformation-induced 

anisotropy, is often termed as the "back stress" and is given by a second-order tensor 

Xij* Mechanically, back stress Xjj defines the centre of the loading or yield locus. 
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This back stress Xjj affects the magnitude of the superimposed applied stress needed 

to produce additional plastic flow and thus produces the Bauschinger effect i. e. the 

type of anisotropy associated with kinematic hardening. The other internal variable, 
K, is associated with isotropic hardening effects to describe cyclic hardening or 

softening. 

25.3. Crystalloggraphic Models 

Modelling of the time-dependent behaviour of single crystal superalloys started with 

the crystallographic approach in conjunction with Schmid's law. It assumed that the 

overall behaviour of a single crystal under a given loading condition is controlled by 

the deformation characteristics of a certain number of active slip systems, and the 

contributions of each slip system are summed up by using established procedures of 

time-independent crystal plasticity theory. Early developments in the 

crystallographic approach are attributed to Taylor [1937], Bishop and Hill (19511, 

and Bishop [1952]., The application of the crystallographic approach to single 

crystal nickel base superalloys began with the work of Paslay et al (1970,1971], and 

recently by Shah [1983] to the 7' phase of these alloys. The classical constitutive 

assumption is Schmid's law, in which slip on a particular system is a function of the 

resolved shear stress on the slip plane in the direction of slip. However, the simple 

Schmid's law used in time-independent crystal plasticity theory does not apply for a 

L12 crystal, or for single crystal nickel base superalloys. This is because the 

deformation of these materials is time dependent. Modifications of the crystal 

plasticity theory have been carried out for describing the viscoplastic deformation 

behaviour of single crystal nickel base superalloys. More recently, the 

crystallographic approach has been developed by Dame and Stouffer [1988], 

Stouffer et al [1990], Walker and Jordan [1989], Cailletaud [1987,1988], Meric et al 
[1991]. The principal advaniage of this approach is that a significant portion of the 

model is based on the physics of the deformation mechanism. 

In general, the constitutive equations are introduced at the microscopic level which 
is the slip system and are similar to the form of the phenomenological unified 
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constitutive equations, e. g. Chaboche model (Chaboche [1989]). At the macroscopic 
level, the macroscopic strain is partitioned into an elastic and inelastic strain as in 

the unified theory. The elastic constitutive relations are written directly at the 

macroscopic level by using classical elasticity theory. The models include three 

distinct steps and two operating levels, i. e. a step that introduces localisation, a step 

that introduces constitutive equations at the local level and finally a step the sums 

the individual contributions (a homogenisation step), see Fig. 2.4. In the first step, 

i. e. the localisation step, the macroscopic stress tensor is transformed or resolved to 

shear stresses at the microscopic level in the slip systems. In the second step, the 

constitutive equations, which are the relationship between the resolved shear stresses 

and the inelastic shear strain rates on the slip systems, Le. ý' = operate at 

the microscopic level, and the local shear strain rates can be obtained. In the third 

step, a transformation from the microscopic shear strain rate ý` to the macroscopic 

strain rate tensor Ois carried out. Overall the fundamental requirement for the 

application of the crystallographic model is the identification of the active slip 

systems in the single crystal under a given loading condition. 

The advantages of this type of model are: 

(i) The concept is based on the physical deformation mechanisms in a single 

crystal; - 

(ii) The different microstructural changes and the deformation characteristics of 

the various slip systems can be taken into account. 

The disadvantages are: 

(i) It is difficult to accurately determine the number and type of active slip 

systems; 

(ii) It is not easy to determine the material parameters in the model when written 

at the microscopic level for each slip system; and 
(iii) A large number of equations are to be solved in the numerical 

implementation. 
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Z5.4. Phenomenological Models 

Phenomenological constitutive models, especially the unified models, have been 

well developed and applied, with some success, to describe the cyclic plasticity and 

viscoplasticity behaviour of polycrystalline materials (Chaboche and Nouailhas 

[1989], Chan and Lindholm [1990], Chan et al [1989,1990]). However, there are 

only limited studies on the applicability of these models to the single crystal 

superalloys. An attempt was made by Choi and Krempl [1989] to adopt the 

orthotropic unified theory of viscoplasticity based on overstress (VBO) (developed 

by Lee and Krempl [1991] for polycrystalline materials) for a cubic single crystal, 

and to describe the tension/compression tests in the [001], [110] and [1111 

directions. However, this was only a theoretical study with no experimental 

verification of the model. 

The approach used in the phenomenological model was based on continuum 

mechanics framework, and modification of the isotropic constitutive models 

developed for polycrystalline materials. Therefore, the choice of the formations of 

the functions used in the model will determine the anisotropic features described by 

the model. In this context, the potential (yield) functions is expressed as a function 

of the invariantsUD 12--'Ij, which involve the function automatically invariant for 

the group. of orthogonal transformations characterising the material symmetries 

required in continuum mechanics. The problem is then the determination of the 

integrity basis. For afc. 'c crystal, and for second-order stress tensor, aij P one way to 

express the integrity basis is (Smith and Kiral [ 1978]): 
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Y 

Where crij are the deviatoric components of the stress tensor (Yij 

How many and what stress invariants are to be included in the potential (yield) 

function is a compromise among accuracy, complexity and practicability. This 

choice must be guided by material deformation characteristics and verified by the 

experimental results. 

The Chaboche viscoplasticity model [1989] was modified by Nouailhas [1990] for 

modelling the cyclic mechanical behaviour of single crystal CMSX-2 at elevated 

temperature, and used for simple uniaxial cases under continuous cycling conditions. 

This model has been ftirther developed by Li [1993] based on a comprehensive test 

programme involving combined creep and fatigue loading under isothermal 

conditions. The constitutive equations have been used with some degree of success 

to describe the cyclic viscoplastic deformation response and for predicting the 

fatigue and creep life of single crystal SRR99. 

However, the previous studies have been limited to studies using simple specimens 

and uniaxial loading conditions. The characteristics of the constitutive model to 

describe a complex component geometry, e. g. a gas turbine blade, under three 

dimensional loading conditions have not been examined. This requires the use of the 

constitutive models with finite element analysis. Furthermore, complete structural 

analysis using the finite element method also makes it possible to directly compare 

the phenomenological and crystallographic models. 

25.5. Other Models 

There are also other models used to describe various deformation behaviours of 
single crystal superalloys. Some of the models are not developed in terms of the 

principles of continuum mechanics, but by fitting of empirical expressions to 

experimental observations. Graham and Walles (Graham and Walles, [1955]) 
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proposed a set of creep equations, i. e. Graham-Walles model, to describe the creep 
deformation of metals and superalloys. This model was developed purely to fit the 

uniaxial creep curves. This model has been further developed by Harrison and 
Homewood [1994] for modelling the anisotropic creep deformation of single crystal 
SRR99 under simple loading conditions. In this model, the initial Graham and 
Walles equations are directly applied to the local slip systems. 

For an isotropic material: 

Ci(701 tki (T! --T) 
-20k, (2.10) 

where. ci 1 Pi and k, are material constants. 

For a single crystal at each slip plane: 

7=Z CirPi tki (T-T) -20ki (2.11) 

The overall creep response of a single crystal alloy is determined by the summation 

of all the creep deformation of all the possible active slip systems in the way exactly 

same to the crystallographic model. 

This model can be used, with some degree of success (Harrison and Homewood, 

[1994]), for modelling pure creep deformation of single crystal alloys. However, 

this model can not be generalised to a three-dimensional constitutive model to 

describe the viscoplastic deformation response including both plasticity and creep. 

This ii'because there is neither a yielding criterion nor a load/unload criterion in the 

model. 

2.6 Nonisothermal Mechanical Behaviour Modelling 

Over the last decade there has been substantial interest in developing elastic 

viscoplastic constitutive equations which are suitable for complex thermal and 

mechanical loading. A number of different approaches have been adopted to 

develop thermornechanical models to describe nonisothermal deformation behaviour 

of various engineering materials (Miller, [1976]; Bodner et al, [1978]; Merzer et al, 
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[1979]; Walker, [1981]; Moreno and Jordan, [1986]; Chan et al [1988,1990]; 

Bhattachar et al, [1993]; Jordan and Walker, [1992]). In general, the effort has been 

devoted to developing nonisothermal models by extending and using isothermal 

models for predicting the nonisothermal response of materials. Two major different 

categories of nonisothermal models have been developed: explicit and implicit 

models. 

The explicit models use temperature or temperature rate explicitly in the constitutive 

equation, i. e. using temperature or temperature rate as explicit variables in the 

constitutive equations. 11be Miller model (Miller [1976,1987]) included the 

temperature in the flow equation and in the equation for the evolution of the back 

stress. The unified nonisothermal model by Ramaswamy and Stouffer model 
(Bhattachar and Stouffer, [ 1993]) has also included temperature in the flow equation. 
The flow equation is based on the Axrhenius theory for nonisothermal processes and 

the material parameters used in the flow equation and the evolution equations do not 

vary with temperature. This method uses an activation energy term to represent a 
dominant mode of deformation. 

in the implicit models the temperature or temperature rate are included in the 

constitutive equation through the temperature dependent material parameters rather 

than as explicit variables. The Bodner model has been used to predict the 

nonisothermal response of the single crystal alloy B1900+Hf (Chan et al, [1988, 

1990]) by the introduction of temperature rate terms in a procedure similar to a 

Taylor series expansion. The temperature derivatives of the flow, back stress 

evolution and isotropic hardening equations are included. Temperature rates have 

also been introduced in the elasticity equations by differentiating the modulus of 

elasticity with respect to temperature. 

A number of investigators have compared the advantages and disadvantages of the 

implicit and explicit methods (Miller [1976], Bhattachar and Stouffer [1993], 

Thompson [1982]). The explicit method requires deformation data with 
temperature, i. e. stress and strain as functions of temperature. This requires complex 
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thermal mechanical deformation tests. Implicit methods are generally developed by 

extending the isothermal constitutive models, and consequently only isothermal test 

data are required to determine the temperature dependent material parameters. 

There have been only limited studies using thermal mechanical models of single 

crystal alloys. The Walker (Jordan and Walker [1992]) crystallographic model uses 

an implicit method to carry out the prediction of thermornechanical. response for 

single crystal superalloy PWA 1480 (Jordan and Walker [1992]). Here the implicit 

method will be used to extend the isothermal constitutive models developed to 

describe the thermomechanical. defonnation of nickel base single crystal superalloy 
SRR99. Consequently, only the implicit method is described briefly in the 

following section. 

2.7 Implementation of Constitutive Models for Structural Analysis 

Z7.1. Overview 

The ultimate objective of any investigation into the material response, and 

subsequent development of constitutive models, is to be able to perform structural 
analysis to assess the structural integrity of engineering components, such as single 

crystal gas turbine blades. To achieve this objective, some appropriate numerical 

meth6ds are, required to implement the constitutive models into a formulation 

suitable for numerical simulation. Then the practical boundary problems of 

structural analysis are conducted by using a finite element code in the design and 

assessment of engineering components operating under complex conditions 

representative of service. 

There has been a large number of investigations on the development of numerical 

methods to implement various constitutive models [Meric and Cailletaud. [1991], 

[1994], Culie and Nouailhas [1993], Chan and Lindholm [1990]). The general theory 

of the finite element method has been well developed and details can be obtained 
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from standard text books. In this section, only a brief review is presented on the 

numerical method developed for stiff viscoplastic equations, and the basic features 

of the finite element code, i. e. ABAQUS, used in this work. 

2. ZZ Numerical Implementation of Viscoplastic Equations 

A common feature of the viscoplastic constitutive equations is the property of "high 

stiffness" due to their rate dependent nature. The primary numerical consideration is 

mathematical 'stiffness' arising from a coupling of the non-elastic and elastic strain 

to calculate the total strain. For example, assume the total strain rate ýT is specified, 

and consider the prediction of the stress history directly from the compatibility 

equation 

dr = 
E[j _tin (Cy)] (2.12) 

Because 0' (cr) is a strong function of cr, small numerical or truncation errors in cr 

are magnified through their effect on V (a). These errors feed back as larger errors 

in cr via the above differential equation for &. Small strain increments are therefore 

required to obtain reasonable accuracy and to prevent unstable numerical 

oscillations. 

The procedure employed in the numerical analysis is the displacement-based finite 

element method. The exact solution for the problems involving approximate (finite 

element) solutions for stress, strain, deformation and force, etc. requires that both 

force and moment equilibrium be maintained at all times over any arbitrary volume 

of the body. The displacement finite element method is based on approximating this 

equilibrium requirement by replacing it with a weaker requirement, that equilibrium 

must be maintained in an average sense over a finite number of divisions of the 

volume of the body. The formulation used is small strain and small displacement, so 

that only material nonlinearities are taken into account. The integration of 

constitutive equations is carried out at the Gauss points for given total deformation 
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increments. There are generally two integration algorithms which can be used for 

transforming the constitutive rate equations into incremental equations: explicit and 
implicit algorithms. For explicit integration, e. g. forward Euler integration, the time 

increment needs to be controlled. For implicit integration, the algorithm is more 

complicated and often requires local iteration, but there is usually no stability limit. 

The generalised trapezoidal rule and the midpoint-type rule are often used in implicit 

integration methods. At a temperature T and a temperature rate =dT/dt), all of 

the unified constitutive models for general nonisothermal mechanical deformation 

can be represented in the following temperature explicit form: 

ý"'=f(a, xj) , (2.13a) 

ý=g(a, xj) (2.13b) 

dr = D(d _din) + rftý D)T (2.13c) 

with 
DD Da 

rKa, D) = [c-s" +a(T- TO)] --D[(T-T. )-+cc] (2.13d) 
OT ff 

where c, c"', cr and x are the total strain, inelastic strain, stress and hardening variable 

vectors respectively; D is the elastic stiffness matrix and a is the coefficient of 

thermal expansion. 

The implicit thermornechanical constitutive model contains temperature dependent 

material parameters. The model predicts nonisothermal deformation based on 

material constants determined from isothermal data and their derivatives of' 

temperature. Using these constitutive models for thermornechanical loading requires 

a means of tracing and updating the current values of the hardening variables and the 

other materials parameters during temperature changes. 

Following from the general description of the constitutive equations for the 

phenomenological model described in section 2.5.2, the general forms of thermal- 
mechanical constitutive equations are as follows: 

The yield function is: 
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f= f(a ij, X ij, M ij (T), R, k(T)) (2.14)- 

and the flow law is: 

F(a.., X.., Mij(T), n(T), K*(T)) (2.15) 

The kinematic hardening rate equation is: 

ýCjj = G(aijgXijgNij(T), Qij(T)) (2.16) 

and to describe isotropic hardening: 

R= H(R, b(T), Ro (T)) (2.17) 

The material parameters Mij, k, n, K*, Nij, Qjj, b, Ro are temperature dependent and 

expressed as functions of temperature. There is no explicit temperature variable in 

the constitutive equations. 

In the trapezoidal rule, a linear interpolation is employed within the time increment 

At, so that for variable Z: 

AZ = [(I - O)Z(t) + OZ(t + At)]At (2.18) 

IACF I 
Acr " 

where AZ 
AC 

. 
for phenomenological models; AZ = Ay' for crystallographic 

As in 

ýAx ) 

models. 

The implicit time operator 0 has values ranging from zero to unity, i. e. 0 --5 0 --5 1. It 

should be noted that the numerical scheme reduces to Euler's explicit method when 

0=0 and to Euler's implicit method when 0=1. 

The value of t"', and ýC, at time t= t+At can be approximated by their previous 

values and their gradients at time t through the Taylor's expansion: 
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&in a in In 
ý111 (t+ At)= 0'(t)+-j, Acr+ 1, AX+& ItAT (2.19) 

acr ax 6r 
ýC(t + At) = : V, (t) + aýc It A& in + 

aýc 1, AX + 
aic ItAT (2.20) 

ac, ax 09T 
Substituting constitutive equations for and the above equations into the 

incremental equations for Aa, As, As'", AX , then after rearranging terms leads to 

Acr 

Iml 
AcIll 

[AV] + [AV'] 
AX 

-A6 
and 

Acr 

Acill 
= x 

-Ae 

where 

aF 
acyl 

IM] 0 

I- oAt aF 
to ax 

aG OG 
=It I-OAt It 0 Wn ax 
D0 -D 

At{Fl 

O'G J, tinýin)_O(ýC, [AV] At{ýCl -&in 

and 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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om OF Itt 

[, &V'] om 
OG t 
aT 

Atil (a, D)t 

(2.25) 

where [M]-'[AV] are the isothermal terms, [M]-'[AV'] are the nonisothermal 

terms, and I is the unit matrix. 

2.7.3. FEApplication Codes 

Many FE application packages have been used in elastic-viscoplastic modelling 

(Meric and Cailletaud [1991], [1995], Culie and Nouailhas [1993], Chan and 

Lindholm [1990]). Different packages use different code and for different analysis 

purpose. For main frame computers, there are ABAQUS, ADINA, ANSYS, etc. 

For present research the ABAQUS code has been used. 

The finite element program ABAQUS has been widely used in the deformation and 

stress analysis of solids. Besides a broad range of constitutive models, ABAQUS 

also provides an interface where by the user'may write his or her own constitutive 

model in a subroutine (UMAT) in a very general way using the FORTRAN 

language (ABAQUS User's Manual, 1989). The stresses, strains and solution 

dependent state variables are solved incrementally by ABAQUS. When the 

subroutine UMAT is called, it is provided with the state at the start of the increment 

(stress, solution dependent state variables) and with the strain increments and the 

time increment. The subroutine UMAT performs two functions: it updates the 

stresses and the solution dependent state variables to their values at the end of the 

increment, and it provides the material Jacobian matrix, aAa/vAs, for the constitutive 

model as required for an iterative Newton-Rhapson solution. So any material 

constitutive model can be coded in ABAQUS by using UMAT. 
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2.8 Summary 

From the literature review, it can be seen the absence of grain boundaries in single 

crsytal alloys also leads to material anisotropy which produces orientation dependent 

mechanical deformation responses. In order to fully utilise the advantages of single 

crystal alloys, new constitutive models must be developed to account for both strong 

orientation and time dependent elasto-viscoplastic behaviour of single crystal alloys 
during high temperature operations, in conjunction with new methods specifically 
developed to implement the anisotropic elasto-viscoplastic models. Even though a 
lot of work has been done for single crystal alloys, considerable work is still 

required in the following area: 

I- Further development of constitutive models, including development of 

procedures for determining the material constants in the models. 

The two categories of models have been developed separately based on totally 

different principles. They have been used with some success to limited loading 

conditions. A comprehensive understanding of the intrinsic characteristics of the 

models is required to apply the models to general applications. One Way to 

explore the features of the models is to directly compare the two models. The 

comparison results will provide information for finther development of the 

models based on the characteristics of the models. 

Both constitutive models include a larger number of material constants. A 

consistent procedure to determine these material constants is vital for 

engineering application of the models. Furthermore, in order to be able to 

directly compare the two models, a consistent procedure must be developed for 

both models using the same experimental data. Otherwise, it will not be possible 

to explore the intrinsic features of different models. 
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2. Development of a robust method for implementation of the anisotropic models in 

FE code for structural analysis. 

The literature review indicated that numerical implementation of the modem 

constitutive models, even for isotropic materials, is always a challenge due to the 

highly non-linear systems of equations with the property of mathematical 

'stiffness'. For single crystal materials, it is much more difficult since the 

anisotropic constitutive models result in direction dependent deformation 

response during structural analysis. A novel method is required to be developed 

to implement both the phenomenological and the crystallographic models to a 
FE code, such as ABAQUS, to achieve stable and efficient structural 

calculations. 
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CHAPTER 3 

ISOTHERMAL AND NONISOTHERMAL CONSTITUTIVE 
EQUATIONS FOR SINGLE CRYSTAL SUPERALLOY 

3.1 Introduction 

Two categories of constitutive models, i. e. phenomenological and crystallographic 
models have been proposed to describe the anisotropic viscoplastic deformation 
behaviour of single crystal nickel base superalloys. The two kinds of models have been 
developed based on different principles. The phenomenological models have been 
developed by modifying* the unified isotropic models proposed initially for 

polycrystalline materials in terms of continuum mechanics theory. The crystallographic 
models have been developed in terms of the deformation mechanism of single crystal 
alloys, i. e. slip deformation on different slip systems. These two different types of 

material constitutive models have been employed in this research to simulate high 

temperature mechanical behaviour of nickel base single crystal superalloys under 
arbitrary loading and to carry out structural FE analysis. 

The formulation of two isothermal-, constitutive models, phenomenological and 

crystallographic, is presented in section 3.2. Then modification of these isothermal, 

constitutive equations for non-isothermal application is described in section 3.3. A 

general procedure for determining the material constants in both models using the same 

experimental data is proposed in sections 3.4 and 3.5. Finally in section 3.6 a 

comparison of the fundamental intrinsic characteristics of the two models is discussed. 

3.2 Formulation of Isothermal Constitutive Equations 

3. ZI- Phenomenological Model 

The phenomenological model presented in this section is a generalisation, of a unified 

model initially proposed by Chaboche [1989] for isotropic materials subjected to 

multiaxial cyclic loading. The anisotropic characteristics of single crystal superalloys are 

taken into account by modifying the model and introducing a number of anisotropic 

material parameters. The basic mathematical formulation of the anisotropic viscoplastic 
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model is developed in the material principal axis, i. e. crystallographic axes [100]-[010]- 

[00 1], Fig. 3.1, for a cubic single crystal. 

The components of the total strain rate tensor are decomposed into elastic and inelastic 

(plastic and creep) strain rates: 

+ ý. *. in 

The elastic strain rate is expressed in terms of the anisotropic elastic theory: 

(3.2) ijk 16 
*kl 

whereSijkt represents the basic elastic compliance matrix of the single crystal alloy. 

Note that the * superscript denotes conditions corresponding to the crystallographic axes. 

The yield function and yield criterion in Chaboche's isotropic model is generalised by 

introducing a fourth order material anisotropy tensor, Mijkl, to describe the initial 

anisotropy and possibly deformation induced material anisotropy: 

ý3 (a*'- X 
ij ij)Mijkl(a*kl -X'ý, ) -R-k: 5 0 ki i (3.3) 

where ai'j I and Xi'j I are the deviatoric components of stress and back stress deviation 

tensors. 

A viscoplastic potential is proposed using the same formulation as in Chaboche's [19891 

model: 

K If\ n+l 

n+l\-K/ 
(3.4) 

where n and K are material constants to represent the effects of viscosity and are strongly 

temperature dependent. Ile bracket< > is defined as: 

if U> 0 
if U: 5 0 

(3.5) 

The viscoplastic (or inelastic) strain rate is then obtained from the normality hypothesis, 

that is: 
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fn-, - x--- ) an 
. 

gf 3(- mijkl(Cykl 
kl 

P-; 7 =-i iý) 
cr cy ij cr i 

(3.6) 
V«21(Gmn 

- X*mn)M. 
�, 

(G*, 
� -X*., ) 

with 

V2 ý*PM-l ý*P 
f 

3 ii kiki ki 
(K) 

(3.7) 

which is the accumulated inelastic strain rate. 

The evolutionary equation for the back stress, which describes non-linear kinematic 

hardening, is modified to the form: 

in 
-lNijkl4kl QijklX*kl P* 
2 (3.8) 

where two additional anisotropic material tensors, Nijki 
and QjkI , are introduced to 

describe the anisotropic hardening induced by microstructural anisotropy. 

The evolution of isotropic hardening is given by 

ft = b(W - R)P* (3.9) 

where b and W are two material constants used to describe deformation induced isotropic 

material hardening. 

The above constitutive equations (3.1) to (3.9) are only applied to the case when stress 

directions are coincide with single crystal symmetry axes, i. e. [100]-[Olo]-[001], Fig. 3.1- 

For arbitrary general loading conditions, the constitutive equations can be modified by 

stress and strain transformations. 

Using the Voigt vectorial notation for the strain and stress tensors, they can be written as: 

[Crll = I(YI = Cr I 12CF2 '= (7229CF3 = (7339CF4 = a239CF5 = CY319'U6 = (Y 121 (3.1 Oa) 

lel' = 161 = £lleF-2 = £222£3 = C33)64 = F'239£5 = F312e6 = rýU 1 (3.1 Ob) 
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The stress and strain transformation from the global loading to the crystal axes, Fig. 3.1, 

can be written as: 

Aij[cyj loading 

16i Lrystal = Bijfcj loading 

(3.1 Oc) 

(3.1 Od) 

where Aij and Bij are transformation matrices (see Appendix II), which can be 

expressed as a function of the crystal orientation direction, [hkl], associated with one of 

the co-ordinate axes of the stress tensor in a general loading condition. 

Using the Voigt notation and the transformation from the loading to the crystal axes, the 

general constitutive equation based on the phenomenological model, for a single crystal 

nickel base superalloy, can be summarised as follows: 

+6in Total strain rate: I 

Elastic strain rate: ýe = Bi-j 1 Sik A ki &1 (3.11 b) 

Anisotropic yielding: f=V-1((: r'-X')'AW A -R-k=O (3.11c) 2iiu ik kl((Y; -Xl) 

. in B; 'Mj, Alk(Cyk -X'k) 
Inelastic strain rate: &i (3.11 d) 

ýui 2\K*/ V-! ((T'-X')WMjkA 02ii 
ji ki(CFi -X; ) 

&A (3.11 e) Kinematic hardening: ýCj= 3-A-'N I 
(A-lQjk 

ki X1 
(2 

ii jkBkl 

Isotropic hardening: ft =b (W-R)p (3.11 D 

Accumulated inelastic strain rate: 
V2 (ý in ýin )'B!. M-'Bkl (3.11 g) ii jk I 

where A-jj' , B-,, ' and Af1j, Bi'j represent the inverse and transposed matrices of 

Aij and Bij respectively. 
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There are total of II viscoplastic material constants in the model. Five constants, k, K*, 

n, W and b are similar to those included in the isotropic model developed by Chaboche, 

to describe the time dependent viscoplastic behaviour. The other six constants are from 

the matrices M ij ,N ij and Q ij. The anisotropic behaviour of a single crystal is described 

by the introduction of the three anisotropic material tensors Mij, Nij and Qjj, and the 

three tensors, Mij, Nij and Qjj are reduced to the identity matrix in the case of isotropy. 

If it is assumed that cubic symmetry is retained for the inelastic properties for a nickel 

base single crystal superalloy and assuming inelastic strain incompressibility (Richmond 

and Spitzig [1980]), the anisotropic material tensors can be expressed in the general form 

(Li, [1993]): 

1111 -1112 0 0 0 0 0 

0 1111 -012 0 0 0 0 

0 0 1111-012 0 0 0 
(3.12) 0 0 0 1144 0 0 

0 0 0 0 1144 0 

0 0 0 0 0 1144_ 

where [] can be replaced by M, N or Q respectively. Because the term [III - R2 can be 

treated as a single constant there are only 2 constants for each of matrices M, N and Q. 

these are the simple formulations for the M, N and Q matrices, which can describe the 

fundamental anisotropic deformation behaviour of single crystal alloys. For more 

complex deformation response, such as deformation induced anisotropy, the formulation 

of the matrices will be more sophisticated. 

Therefore generally for this phenomenological approach there are 7 variables, 

CT, CCC in 
. cr, X, R and p used with 14 associated material constants including 3 elastic 

constants, E, v and G. 

3.2.2. Crystallographic Model 

The anisotropic viscoplastic crystallographic models for single crystal alloys are 

developed from the classical time-independent crystal plasticity theory. In a typical 
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crystallographic model the constitutive equations are established at two levels, i. e. 

macroscopic and microscopic levels. 

At the macroscopic level, the model is also a unified model with the total strain rate 
decomposed into a elastic and an inelastic strain rates as phenomenological model: 

i! T ý*e + ý. *. in 
li ii li (3.13) 

The elastic strain rate is expressed at the macroscopic level which is identical to the 

phenomenological model, 

=s ijkl6*kl (3.14) 

At the microscopic level, the model follows the general time-independent crystal 

plasticity theory. The overall inelastic strain is assumed to be the summation of the 

inelastic shear strain on a number of active slip systems. 

Although there are 30 possible slip systems for nickel base single crystal superalloys, 18 

slip systems are only generally considered in a crystallographic model. This was bsed on 

the experimental observations reviewed in section 2.4.7 in Chapter 2. These include 12 

octahedral [110](111) and 6 cubic [110](001), Fig. 3.2. Slip in the [112](111) slip 

system only occurs at some particular temperature and loading conditions and has 

insignificant effect on most of the cases (Stouffer et al [1990], Meric et al [1991], Jordan 

and Walker [1992]). 

The macroscopic inelastic strain rate is calculated through three steps to connect the 

macroscopic and microscopic levels of the constitutive equations. For a general loading 

case, the applied stress, aij, in the global coordinate system is transformed into 

crystallographic coordinate system, cri'j , using equation (3.10c), similar to the 

phenomenological model. 

The first step for the crystallographic model is then to resolve the macroscopic stress, 

aij , into the resolved shear stress (RSS), Ts, at each slip system using Schmid's law: 

(T ii m sii (3.1 5a) 
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with 

mý =1 (nT + nT) (ij = 1,2,3; s= 1,2,3 
..... 

18) (3.15b) U21Jji 

where nf, and l'i are the slip plane normal vector and slip direction vector respectively, 

each associated with the s slip system. The formulation of matrix m'ij related to the 18 

slip systems is given in Appendix 111. 

The second step is to develop constitutive equations for different slip systems. One 

approach is to use the equations which are generally identical to those used in the 

phenomenological model. In this crystallographic model the constitutive equations at the 

microscopic level have the iame formulation as the Chaboche isotropic model [19891. 

The yield criteria for octahedral and cubic slip systems are: 

f03 = 
IT' 

- x' I-k. 
- r,, :50 00 

(s=1,2,3 ... 12) (3.16a) 

fcs IT' 
- x'l- k. - r, ' :ý0 cc 

(s=13,14 ... 18) (3.16b) 

where x' and r' are kinematic hardening and isotropic hardening variable respectively 

associated with each slip plane, and k,, and k. are the initial critical resolved shear 

stresses (CRSS) for octahedral and cubic slip systems respectively. 

Using the approach as for the Chaboche [1989] model, the constitutive equations at the 

microscopic level describe the relationship between the inelastic shear strain rate, and the 

resolved shear stress, for the octahedral and cubic slip systems. The inelastic shear strain 

rates on the two slip systems are given by: 

n,, 
5S ITO 

- xOj - k. - 
sign(, r' 0- xs (s=1,2,3 ...... 12) (3.17a) 

KO 0 

k -r 
n, 

i Sc = 
ITSC. 

- XC I-ýcc 
sign(, r' - x') (s= 13,14 ...... 18) (3.17b) 

Kccc 
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where the bracket () is defined as: (x) =x if x>0, (x) =0 if x :! ý 0. 

The rate of kinematic hardening variable is: 

ký = co ýs -do x'j 000 
ý'Oj (s= 1,2,3 ...... 12) (3.18a) 

4=c,, ý' ,-d, xs, 1 ý, c 
I (s= 13,14 ...... 18) (3.18b) 

The rate of isotropic hardening is: 

.s S) ro = (qo - bo io l 0 
is I (s= 1,2,3 ..... 12) (3.19a) 

i, ' = (q c- bc rcs )I sl jc (s=13,14 ...... 18) (3.19b) 

The third step sums up the individual viscoplastic shear strain rates, j', for each of the 

slip systems to obtain the overall macroscopic viscoplastic strain rate, i*jIn j in the 

crystallographic coordinate system. 

12 18 
zmýýOs + 2: S *S 

S=l 
u 

s=13 
mij YC (3.20) 

ý*in Finally, the viscoplastic strain rate, ij 2 in the crystallographic coordinate system is 

transformed into the global coordinate system using the reverse of equation (3.1 Od). 

There are a total of 14 material constants, k., K., n., c., d, % and b. for the octahedral 

slip system, and k, K, n, c, d, q, and b, for the cubic slip system, respectively. 

Similar to the phenomenological model, equations (3.13) to (3.20) are only applied to 

crystallographic coordinate systems. For arbitrary loading conditions, the constitutive 

equations are modified with introducing the Voigt notation and using the stress and strain 

transformations in the same way as for the phenomenological model. 
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3.3 Formulation of Nomsotherm-al Constitutive Models 

The thermornechanical constitutive equations for single crystal superalloys are developed 

by modification of the isothermal constitutive equations presented in section 3.2 using an 
implicit approach. 

For a general thermomechanical loading condition, the components of the total strains 

(and the corresponding rates, ýT ) are decomposed into three parts: elastic strains &j 

inelastic strains cj'" and thermal strains ei" : 

in th Ei =Ei +Ei +Ei (3.21) 

In the material principal axes (i. e. [100]-[010]-[001]), the thermal strains are expressed 

as: 
III ci ' =cci(T-T. ) (3.22) 

with Cc 
Icc(T) when i=1,2,3 

0 when i=4,5,6 

and i=1,2,3 correspond to the direct (tensor diagonal) strains and i=4,5,6 correspond to 

shear strains. There are no shear thermal strains, since the three material principal axes 

have same material properties, i. e. thermal deformations in [100], [010] and [001] are the 

same. 

In the implicit approach, temperature, T, is only included explicitly in the thermal strain 

equation. The influence of temperature on the elastic and inelastic deformation is 

modelled implicitly by including temperature in the constitutive equations through the 

temperature dependent material constants. Temperature rates have also been introduced 

in the thermal and elastic strain rate equations by differentiating the corresponding strain 

equations with temperature. Following this approach, the thermornechanical constitutive 

equations of the phenomenological model can be summarised as follows: 
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Total strain rate: +ýin + ý! h 
(3.23a) 

Elastic strain rate: ýe B-1 S+ 
O(Bi-j 1 Sik (T) A kI 

Cr (3.23b) ii jk (T) A ki 
61 

09T 

Thermal strain rate: B--l 
dcc j (T) 

(T - T,, ) + ccj (T) (3.23c) 
jI dT 

ýj,, =3 
n(T) B-ij 1 Mjj J) A 1k 

(CF'k - Xk ) 
Inelastic strain rate: _ (3.23d) 

2( 41(ai 
-X')tA!. M k1 (CF1 - X; ) 2i ii ik (T) A 

with temperature dependent yielding: 

f= V3 ((Y' X')'AýMjk (T)A -XI) -R(T)-k(T)=0(3.23e) i li kl ((Y I 

Kinematic hardening: 

ý(j = -! A-'N iin - A-lQjkA 2 ii jk(T)Bkl I ii kl MXI P 

Isotropic hardening: ft = b(T) (W(T) - R) P 

Accumulated inelastic strain rate: V23-(&)tBW-1(T)Bk1 ý in i 1i ik 

where Aij and Bij , A-ijl, B-ijl and Aitj, Bi'j are defined in section 3.2.1. uu 

(3.23f) 

(3.23g) 

(3.23h) 

The material parameters, k (T), K*(T), n(T), W(T) , b(T) and the anisotropic material 

tensors Mij(T), Nij(T) and Qjj(T) are defined similar to those in the isothermal model, 

but now they are temperature dependent parameters rather than material constants. 

A similar procedure is applied for the crystallographic model to modify the isothermal 

constitutive equations to describe thermornechanical deformation of single crystal 

superalloys. 
OF 
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3.4 Determination of Material Elastic Constants 

3.4.1 Analytical Procedure 

Nickel base single crystal superalloys have a cubic structure. Only three elastic constants 
are required to define its elastic response. The elastic stress strain relationship for the 

single crystal in the main symmetry axes, i. e. [100]-[010]-[100] is: 

gil Sil S12 S12 0 0 0- CYII- 

C22 S12 Sil S12 0 0 Cr22 

C33 S]2 S12 Sli 0 0 C733 

E: 23 0 0 0 S44 0 0 Cy23 

% 0 0 0 S44 0 C731 

U12 J L 0, 0 0 0 0 S44J Lcyi2J 

1 0[00 "I with S,, = Efooll , S12 
Efoolj , SI, = G[001] 

where E10011, v10011 and G10011 are the Young's modulus, Poisson's ratio and shear modulus 

respectively when the loading is coincident with the [001] direction. 

There are a number of methods commonly used to obtain the elastic constants, such as 

the sonic resonance technique, dynamic measurement and mechanical testing. For 

polycrystalline isotropic materials, Young's modulus E, shear modulus G and Poisson's 

ratio v are not independent, and measurement of any two of them is enough to determine 

the elastic behaviour. The Young's modulus E and shear modulus can be directly 

calculated from the flexural and torsional resonant frequencies measured from the sonic 

resonance technique. For mechanical testing, one axial and one diametrical strain 

measurement can determine E and v. Alternatively, E and G can be determined by 

uniaxial loading and simple torsion tests. However, for single crystal superalloys, the 

three elastic constants 1310011, vjoýýI-and. GI., j are independent. Therefore, the sonic 

resonance technique cannot determine all the three constants. Also the simple torsion 
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test can not be used for single crystal alloy to determine the shear modulus due to the 

anisotropic shear response around the circumference of the torsion specimen. 

Consequently, measurement of the three elastic parameters of single crystal superalloys 

is relatively difficult compared vrith polycrystalline, materials. A simple method to 

determine the three elastic constants has been proposed in this work through some 

theoretical analysis and only requires simple mechanical testing. 

For loading in any orientation [1, m, n], the elastic strains can be expressed through stress 

and strain transformation matrices Aij and Bij described in Section 3.2 as: 

c'i=B-ij'S A I jk kPI (3.24a) 

To investigate the anisotropic transverse elastic response around the circumference of the 

specimen, a transformation Qjj from the global coordinate system X-Y-Z to the 

coordinate system rotated around Z axis is applied to the above equation: 

QijB-lSk, Alpcrp jk (3.24b) 

with the transformation matrix Qjj as a function of rotation angle 0 given by: 

Cos 
20 

sin 
20 

sin 
20 

COS2 

00 

Qij 00 
00 

L-sin0cosO sin0cosO 

0 0 0 2sin0cosO 

0 0 0 -2sin0cosO 
1 0 0 0 
0 cosO - sinO 0 
0 sinO cosO 0 

0 0 0 (COS20 - sin 2 o)j 

(3.24c) 

So for uniaxial loading along [1, m, n], the mathematical expression for the local 

transverse strain, c 22, as a function of orientation [1, m, n] and measurement angle, 0, 

given by: 

r-22(l, m, n, O) 
= 2W(l, m, n, 0)(SI I- 

2S44) +M(l, m, n, O)SI2 (3.25a) 
a 
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and the longitudinal strain, C33 , along the loading direction is only a ftinction of 

orientation [l, m, n]: 

L3-3 
= S, I- [2(SI I- 

S12) - S44]A(l, m, n) (3.25b) 
a 

The coefficients W, M, A and B are given by: 

W(l, m, n, 0) = B(l, m, n)[I 
Z(M4 +m2n2+n 4) COS2 () + M2 n 

2(12 + M2 +n2 )sin 20 

- Imn(m 2_ 
n2)Vj2 + m2 + n2 sin0 cos 0] 

m, n, 0) = B(I, m, n)f (m 2+n 2)2 + 12(I2M2 + 2m2n 2 +l2 n 
2) C0S2 0+ 

(12 + M2 +n 2)[(12 +n 2) + M2(12 + M2 )]sin 20+ 

VFI 2+ -M2 2( 2_2 21mn +n mn )sin0cosO 

12M2 + M2 n2 +12 n2 

(1 2+m2 +n 2)2 

m, n) =1 (12 + M2 +n 
2)2(12 + M2) 

To solve the unknown values S,,, S, 2 andS44 three equations, i. e. equation (3-25a) and 

equation (3.25b) with different angles 01 and 02 are required. The loading orientation 
[1, m, n] can be any direction except orientations [00 1] and [III] because in these two 

orientations the transverse strains, ce (l, m, n, O), are the same or uniform, which means 22 
there are only two equations for three unknown values. 

3.4.2 Experimental Determination 

In principle, the proposed method for determination of single crystal elastic constants 

presented in above section only requires one specimen to determine the elastic properties, 
i. e. uniaxial loading in [1, m, n] oriented specimen. The measurements for local axial and 

transverse strains are needed. 

50 



ChaDter 3 

Local axial and transverse strain measurements can be made using a combination of axial 

and diametrical extensometers (Li, Han and Smith [1996]). Fig. 3.2a shows the 

schematic of the testing set up. The local transverse strain measurements have been 

made at 15-degree increments by rotating the diameter extensometer around the main 

axis of the cylindrical specimen. Measurements were conducted for nickel base single 

crystal alloys SRR99 and SC 16 to determine the temperature dependent elastic constants. 

T1-ie measurement results were then analYsed using the method given. in section 3.4.1. 

Fig. 3.2b presents a comparison between measurement and calculation results for SRR99 

at 4500C, 750"C, 850'C and 950'C. Similar comparisons, though not shown here, were 

also made for SC16 at different temperatures. A good agreement between the 

experimental and calculation results were obtained for all the temperatures. The 

calculated elastic constants for SRR99 at various temperatures are given in Table 3.1. It 

can be seen that both Young's modulus, E, and shear modulus, G, decrease with 

temperature, whilst Poisson ratio u increases with temperature. 

Since measurement of the elastic constants for single crystal alloys is relatively difficult 

compared with polycrystalline materials there are very limited data published including 

all the three elastic constants. 

For single crystal alloy SC16, measurement of Young's modulus, E, at different 

temperatures has been performed using tensile tests, as well as using dynamic 

measurement (Toulios [1993]). These results are shown in Fig. 3.2c and compared with 

the data obtained from this study. It can be seen that there is a general agreement 

between the results although the Young's modulus obtained from dynamic measurements 

is higher than those from static measurements. The results also indicate that there is an 

abrupt change of Young's modulus in the temperature range from 600T to 750*C, which 

is in agreement of the results obtained for SRR99 single crystal alloy. 
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3.5 Determination of Inelastic Material Constants 

3. S. ] Identification of Deformation Characteristics 

The phenomenological and crystallographic models include a large number of material 

constants. These constants must be determined from simple mechanical tests. 

Theoretical analyses have been carried out to determine the deformation responses 

predicted by the phenomenological and crystallographic models under various simple 

loading conditions. Uniaxial mechanical tests using specimens with [00 1] and [ 1111 

orientations identified as the most simple tests which meet the requirements for 

determining the basic material properties. 

(i) Phenomenological Model 

The equations for uniaxial loading in the [00 1] and [III] orientations are derived from 

the general constitutive equations, and expressed as follows. 

For uniaxial loading in the [00 1] direction, as shown in F'g. 3. L(I b), with the loading 

a3 applied along direction 3, the complete equations are: 

_R_k)n, _ -in 
1(73 

2 
JJMIý: MI2 

M _3_X3 
c 11 -- 

3- X3) (3.26a) 3K*M, 2sign((73 2 

ýin =-I ýin ýin = iin = 6in =0 (3.26b) 
2T3456 

ýC3 2 (NI I-N, 2)ý3! n - (Ql I- Q12) X3 P (3.26c) 3 

'ýC 2 
J2 ýC 

3; 
(3.26d) ýCl 

ý' 
ýC4 

=-- 
ýCS 0 

in 
31 

I- 
M12 

(3.26e) 

ini 
ft=b(W-R)ý =b (W-R) 

14 

(3.260 TMII=-MI2 
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For uniaxial loading in the [III] direction, as shown in Fig. 3. Ic with loading applied 

along direction 3, the complete equations are: 

ill 
= 

JCF 
3- -21 

X3 JýM- 

44/2-R-k 
n 

VM44-1 2sign((T3 -'32- X3) (3.27a) 
K 

__Lýin 
ýin = ýin = ýjn =0 223; 456 (3.27b) 

in 3ý3 =-I N44ý3 -Q44X3ý 3 

ýC 
I'': - 

ýC2 
-'ý -I 

3ý3; 

16 in I 

VM44/2 

ýC4 
= 3ý5 

in 

ft=bý(W-R)p =b (W-R) 
3 

ýM-44/ 
2 

(3.27c) 

(3.27d) 

(3.27e) 

(3.27f) 

It can be seen that for these two special orientations, i. e. [00 11 and [III], the transverse 

strains ( -i'" and 6"' are equal and the loading does not produce any shear 12 

deformation (ýin = 61n ýin 
= 0). This indicates that the overall deformation 456 

behaviour of the single crystal under uniaxial loading in either the [00 1] or the 

orientation exhibits isotropic response. 

Another interesting observation from equations (3.26) and (3.27) is that the material 

parameters (MII-MI2), (NII-N12) and (QII-QI2) are completely uncoupled 

from M44, N44 and Q44 for these two crystal orientations. Therefore tests in the 

[00 1] and [III] orientations are sufficient to determine fully all the material constants 

in the phenomenological model. 
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(ii). Crystallographic Model 

For the crystallographic model, derivation of the constitutive equations for uniaxial 
loading is more difficult compared with the phenomenological model. A brief 

description of the derivation is given in the following sections. 

For uniaxial loading in the [001] direction, as shown in Figure 3.1. (Ib), the loading 

stress is C73. To obtain the resolved shear stress r' on each of the 18 possible slip 

systems the stress transformation, described by equation (3.10), and Schmid's law is 

used. It is found that there are only 8 octahedral slip systems with non-zero resolved 

shear stresses. The shear stresses on the other 4 octahedral slip systems and all the 6 

cubic slip systems are zero. Furthermore, the magnitude of the resolved shear stresses 

on the 8 octahedral slip systems are the same, and is: 

I 
To = -CF3 

NF6 
(3.28) 

From equation (3.17), it can be seen that the, shear strain rate on each slip system is 

proportional to the resolved shear stress on that slip system. Therefore the inelastic 

shear strain rates on the 8 octahedral slip systems also have the same magnitude. To 

obtain the total inelastic strain rate in the crystallographic coordinate system all the 

inelastic shear strain rates on the 8 octahedral slip systems are summed. This summed 

strain is then transformed to the global coordinate system. The constitutive equations 

for uniaxial loading in the [001] orientation can be expressed as: 

1 no 

ýln 8 T6 (73 - Xo ko ro 1 3) (3.29a) (F3 Xo 3 ; 76 Ko sign( 
-, 
f6- 

i il n ým ; in. 6 in = ýin =6in =0 (3.29b) 
22 13 456 

*3 C 2E6 ý i,, 3 'f6 ýin 
0083 -do xo 83 

(3.29c) 

3 
[6 

Jýinj (3.29d) 
0, -(qo - bo r03) 3 8 
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Where x', and r, -, ' donate to the back stress and isotropic hardening parameter in the 0 
third octahedral slip system. 

For uniaxial loading in the [I I I] orientation, as shown in Fig. 3. I c, the loading stress is 

again (T3 . Since loading is not in the crystallographic coordinate system, the loading 

stress is transformed into crystallographic coordinate system. The transformed stress 
in crystallographic model is: 

**** 
*= 

*I Gl=G2=Gl=a4=a5 (; 6=-(: F3 (3.30) 
3 

Using Schmid's law it is found that there are 3 cubic slip systems, as well as 8 

octahedral slip systems, with non-zero resolved shear stresses. The magnitude of the 

resolved shear stresses on the 3 cubic slip systems are the same, and the magnitude of 

the resolved shear stresses on the 8 octahedral slip systems are also the same. These 

stresses are: 

T2=T3=T4=T8T 12 

T5T9= TIO = -To 9T6T7=T 
11 

= To 

T 
14 T 

16 
= Ir 

18 
=0, T13 rl5 = T17 =Tc 

with .0- 
J6 

a3; C 
\f2- 

-3 (3.31) 93 

It can be seen that cubic shear stress, 'rc 9 is Nf3 times higher than the octahedral shear 

stress, -r.. Therefore at low strains, the inelastic deformation is dominated by the 

cubic slip systems, and the octahedral slip systems may be not active due to the low 

resolved shear stress on these slip planes. However, when the shear stresses on the 

octahedral slip systems increase and reach the critical resolved shear stress, the 

octahedral slip systems become active and also produce inelastic deformation. 

Since the shear strain rate on each slip system is proportional to the resolved shear 

stress on that slip system, the shear strain rates on the 8 octahedral slip systerns, and 

those on the 3 cubic slip systems, have the same magnitude respectively. Surnming up 

all the inelastic shear strain rates on the octahedral and cubic slip systems to obtain the 
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total inelastic strain rate in the crystallographic coordinate system using equation 

(3.20) gives: 

in) 
18 12 18 

S 's (Mý ý s) =y (Mý i so) +Z (M 7c) n) +(ý ii 

S=l 
u 

S=l 
u 

s=13 
ij ijo ije 

(3.32a) 

The total inelastic strain rate in the global coordinate system can be obtained by the 

strain transformation described by equation (3.1 Od), and expressed as: 

ýT = ýT + ýT 
u U0 1je 

(3.32b) 

The inelastic strain rate contributed by octahedral slip and by cubic slip can be derived 

from equations (3.15) to (3.19). Using the Voigt notation given in (3.1 Oa) and (3.1 Ob), 

the constitutive equations associated with octahedral and cubic deformation can be 

expressed in the following. 

Octahedral inelastic strain rate: 

, F6 
CY3 -x, 

l-ko-r, no 

= 
2V6 9 

sign( 
[6- 

(73 Xo (3.33a) (63 
3 Ko 9 

(iin )o = (ý in )o i (ý in (ýin)o = (6in)o = (ýin)o 0 (3.33b) 
12230456 

= 
V6 

(6in)o 
J6 in (3.33c) x04 co I --T do Xo 

1('3 )ol 

io = 
\r6- (qo-boro in (3.33d) 
43 

)ol 

Cubic inelastic strain rate: 
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Nf2- Cý3 - Xc - kc - rc 
nc 

(ý ill),; 

131 

NF2 
3 

F2 

( 

Kc 

) 

sign( 3 Cý3 - Xd (3.34a) 

.I-_. L(6in) . (ý in (ýin)c = (ým)c =0 (3.34b) )c (ý21, )c 
23 co 4 )c 

56 

f2 
(ýin)c 

ý2 in 
xc2 Cc 32 dcxc 1(63 )cl (3.34c) 

in N2 (qc - bc rc 3 (3.34d) fc =2 

The total inelastic strain rate in the loading direction along the [I I I] orientation can be 

written as: 
ýin = (ýin)o + (gin)c. 

333 (3.35) 

It can be seen that the inelastic strain deformation caused by the octahedral and cubic 

slip systems exhibit isotropic characteristics. Consequently, the overall inelastic strain 

response under uniaxial loading in the [I I I] orientation will also be isotropic. 

Similar to the phenomenological model, the crystallographic model predicts isotropic 

deformation characteristics under uniaxial loading along the [001] and [111] 

orientations. Anisotropic deformation is predicted for all other orientations using the 

crystallographic model. Therefore, the best way to determine material constants in the 

crystallographic model is by using uniaxial tests along the (001] and [111] 

orientations. For the [001] case, the global inelastic deformation is the summation of 

only the shear deformation of the octahedral slip systems and the material constants for 

the octahedral slip systems can be determined from the [001] uniaxial tests. For the 

[I I I] case, both octahedral and cubic slip systems contribute to the global inelastic 

deformation, a procedure is required to determine the material constants for the cubic 

slip systems. 
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3.5. Z Identift"cation of Material Constants 

In this section experimental results required to determine the material constants 

associated with different deformation responses are identified. 

The stress response for monotonic uniaxial tensile loading in the [001] and [1111 

orientations for the phenomenological model can be obtained by rearranging equations 
(3.26) and (3.27) to give: 

Uniaxial loading in the 1001] orientation 

k+R K* I -.! X (ý; noj, ). (3.36a) [0011 2 [0011 +0 V'KM ýl M 12 
(MI 

I- 
M12 

2- Nil -N12 QII-QI2 * X[0011 -'": 3 
CMI 

I- M12 
Qll -Q12 

(I - exp {- vmll 
- M12- ef'"0011)) (3.36b) 

in 

R=W I -expl-b 

le[ool]l 
(3.36c) 

Uniaxial loading in the [1111 orientation 

k+R K* (ýinl -L X +. + 
(n+l)/2n P (3.37a) C'(1111" 2 fill] (M44/2) 

44 

4 
P-4 

4 
N44 

e2 
in (3.37b) x1l 11) ýxp{_W Q44)6[1 111)) 3V 2 44 

Iýi, 
44( 

I. jin 

R=W I -exp{-b J'44 (3.37c) 
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For crystallographic model, similar expressions can also be obtained from equations 

(3.29), and equations (3.33) and (3-34) for uniaxial loading in the [001] and [I 11] 

orientations respectively. 

Uniaxial loading in the [0011 orientation 

-F6x +j6-k NF6r�+( 
J6- 

%- c1fooll --: 8) 
Lý6 K. (ýt"0'0., )' (3.38a) 

,, in xo=-E-2(I-exp(-do-ýC6 (3.38b) 
do 8 

a2 --, 
f6d,, 

in ro = bo exp 8 Efooll) (3.38c) 

Uniaxial. loading in the [1111 orientation 

Ei-iilll ])0 +(E[, illl)c (3.39) 

From the octahedral slip systems contributions 

3, [6- 
xo +K6 ko + 

3V-6 
ro + Ko(ýinlll)ouno (3.40a) 

222 V4) n, 

, Nf6- in xo = -So (I - exp {-do cp 111)) (3.40b) 
do 4 

ro=qO 
(I-exp(-Nr6d'(Ej'j'j, 

])o (3.40c) 
bo 4 

From the cubic slip systems contributions 

3 -52 342- 3 
xc +2A kc + -rc +- K 

c(i[jnIIj)cI/nc (3.40d) 
222 (5) nc+l 1 
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, F2 in xc = 
ý-c 

exp kl- 
dc(c[IIII)c)) 

dc 2 

rc=S-c 
(I-exp(-42dc(Ej'"j, 

j])cj bc 2 

(3.40e) 

(3.400 

It can be seen that a group of generic equations can be extracted for both the 

phenomenological and crystallographic models under uniaxial tension loading in either 

the [00 1] or [IIII directions. 

X'+k'+R! +IC 
in ) I/n' (3.4 1 

N X=Q (1-exp{-Q'c"» (3.41b) 

R'= W'(1 - exp f-b'c in )) (3.41c) 

The experimental variables required to determine the material constants are 

a, c in 
, and ý"'. Since both phenomenological and crystallographic models can be 

expressed using generic equations, a universal procedure is available to determine the 

material constants in both models using the same experimental data. 

The real material constants for each model under different loading direction are related 

to the generic material constants in the following way: 

Phenomenological model. - 
Loading in [001]: 

kK (3.42a) kl= -ý: - - K'*= )(n+l)/2n VTMI; M 12 
(Ml 1 -M12 

(QII-QI2) (3.42b) N'= (N II-N 12) Q': -- 4WI ý ým 
12 

wt =-w; b'= VMI 
b- (3.42c) ýM 

II 
--M 

12 
TI ýýM 

12 
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Loading in [I 11]: 

kl= k K'*= K (3.43a) (M44 )(n+l)/2n jlý'44 /2 /2 

N'=2 N44 Qv= Q44 (3.43b) 4KF4412 

wo 
w bl =b (3.43c) ýrM44/2 ' /2 VM44 

Crystallographic modek 

Loading in [0011: 

kl=-ý6- kO n, f6- K,, (3.44a) 

N'=! C. Q'= '(6 do (3.44b) 
48 

W, = 46 qo b'= -ýE6 bo (3.44c) 
b08 

Loading in [I I I]: 

In this case, due to the combined contributions of both the octahedral and the cubic slip 

systems to the overall inelastic deformation, a procedure is required to determine the 

material constants associated with the cubic slip systems. 

This is done in three parts, first the octahedral inelastic strains are determined, and 

second the cubic inelastic strains are found by subtracting the octahedral contribution 

from the total inelastic strain. Finally the material constants are found from the cubic 

contribution. 

Determination of the octahedral slip system contribution 
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Ir The material constants for the octahedral slip systems wil have been determined f om 

the [001] orientation test data. The octahedral inelastic strain rate, and other 3 

in variables such as inelastic strain (C3 ),, and back stress, xO, as functions of applied 

stress, cr , can be determined by numerical simulation of equations (3.40a) to (3.40c). 

(ii) Determination of the cubic slip system contribution 

The cubic inelastic strain rate (ý'")c and cubic inelastic strain, (c"), n 33, ca. be extracted 

from the total inelastic strain rate, ý", and inelastic strain c'", using 33 

(3.45) ( T)c 
«T 

111)o in ý3 «'ý ý3 -(ý3 33 (F-3 

(iii) Determination of the material constants 

The constitutive equations describing the cubic inelastic strain rate, equations (3.40), 

can also be written in the same formulation as for the generic equations. Finally the 

common procedure can be used directly to determine the material constants associated 

with the cubic slip systems using the relationships: 

k, 3-F2 kc K'* =3 nc-I 
Ke (3.46a) 

2 (42-) 

32 
N cc Q, = ýE dc (3.46b) 

44 

wl 3, \f2 3,9 2 bc bl =A (3.46c) 
2bc2 

From above analysis, it can be seen that the two types of constitutive models become 

very similar to each other for uniaxial loading in the two specific orientations, i. e. 

[00 1] and [III]. Isotropic deformation responses have been predicted by both the 

phenomenological and crystallographic models. Also the basic constitutive equations 

for uniaxial loading in the [00 1] and [III] orientations can be expressed as a group of 

generic equations. These generic equations provide the background to determining the 
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material constants of both models using a single procedure and based on the same 

experimental data. 

3.5.3. Procedurefor Determining Material Constants 

(i) Test Requirement and Data Reduction Scheme 

From the generic Equations (3.41 a) to (3.41 c), it can be seen that three basic variables, 

cr, ý" and 0' are required from experimental results to determine the material 

constants. The procedure proposed here is based on the separation of the material 

constants into different groups. Each group provides the characteristics of the 

material, described by the relevant material constants. The three groups of constants 

are associated with equations (3.41a), (3.41b) and (3.41c); where in one group the 

viscosity parameters K* and n' are determined together with the initial yield stress k', 

in the second group the back stress parameters N' and Q' are evaluated and in the third 

group the isotropic hardening parameters W' and b' are determined. 

The procedure requires a number of total strain controlled uniaxial tests subjected to 

different strain rates, ý T, for the tOOl] and [111] orientations (at least 3 for each 

orientation). The strain ranges should be large enough such that a saturated stress state 

is achieved, i. e. ý" ý-- ýT All the material constants, except for those used to max max - 
describe isotropic hardening, are determined by these simple monotonic uniaxial 

tensile tests. In addition, cyclic tests may also be required to obtain the cyclic 

hardening data to determine the isotropic hardening material constants, W' and W. 

During each test, a continuous record of axial stress versus strain, CY -CT, is. required. 

The stress and total strain results are used in the following data reduction scheme to 

obtain material constants in the generic equations. To obtain the inelastic material 

constants it is necessary to determine the inelastic strain and strain rate. These are 

determined by subtracting the elastic strain from the total strain. 
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(H) Regression Ana! ysis 
Based on the generic equations obtained from the theoretical analysis, the material 

constants arc determined by regression analysis using the different groups described 

earlier. 

(a) Viscosity Parameters K* 11 

From equation (3.4 1 a), a viscoplastic stress can be defined as : 

av = cy - k'-R'- X= K *(ý in ) 1/n (3.47) 

The back stress is a strong function of inelastic strain, and will reach its saturated state, 

i. e. X' =constant, very quickly at relatively large strains which are 2.5% and 1% for 

loading in orientations [00 1] and [III] respectively. On the other hand, the isotropic 

hardening parameter, R', is a weak function of accumulated inelastic strain, and is 

introduced in the models mainly to describe the cyclic hardening effect. In the case of 

monotonic uniaxial loading, the influence of R' is small and here it is neglected. This 

is discussed later. At large strains, the stress and strain response will reach a saturated 

iin ; zz; state, with '::: ý cons tan t, and k'+R' -- k'= constant. 

Consequently, from a number of monotonic uniaxial tests with different strain rates, 

e. g. F tests, a group of equations can be obtained from equation (3.47) using the results 

for saturated stress at given total strain rates. For the ith and jth tests 

k-X= K'*(ii in)l/n' = K' *(ýiT)I/n' (3.48a) 

(cr, )j cri - k'-X'= K'*(ýj in)lln' = K' *(ýjTpn' 
. 

(3.48b) 

Therefore 
[(j ai (i, j=1,2,3 

....... F) (3.49) 

Letting 

cri - crj, and x. (n) (3.50) 

equation (3.47) becomes: 

Y.,, = 1,2,3 ....... F(F-I)/2) (3.51) 
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ý T(i= I From the test results of a, (i=1,2,3 ....... F) and , 2,3 ....... F), where F is the number 

of tests, the total of F(F-I)/2 non-linear equations, like eq6tion (3.51), contain the 

unknown parameters K! * and n'. 

For a given value of the visco-plastic constants n' (i. e. n'= no ), the non-linear 

equations (3.5 1) reduce to a group of linear equations. Therefore, using a least squares 

regression method, the square of the errors R for the chosen n,, and the subsequently 

calculated K'* are written as 

2 ))2 R., (no) (Yi -K xi (no (3.52) 

where K'* is calculated using: 

K'*(no) = 
EYixi(no) 

(3.53) 
E(xi(no ))2 

Tberefore, for a number of different values of n', the corresponding value of K'*(n'), 

as well as the square of the errors R2 (n') can be calculated. Finally, K'* and n' are 

determined when the square of the error R2 (n') attains a minimum. 

(b) Back Stress Parameters N'and Q'and Yield Parameter k, 

From equation (3.41a), it can be seen that the non-viscosity stress component can be 

written as (noting that it is assumed that R'=O) 

a- K' *(&)l/n'= k'+X' (3.54) 

Combining Equations (3.54) with (3.4 1 b), we have 

a- K'-(ý in )I/n' = k'+ N' (I - exp(-Q's in )) (3.55) Q, 

Letting Y =a-K' 
*(ýin)lh' (3.56) 

and k'+ E 
(I - exp(-Q' c 

in 
(3.57) 

Q, 
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in Since K* and n' have been determined, then from the data pairs cri, ý!, " and Ci 

(i=1,2,3 ....... G) from a given test (or tests), the overall non-viscosity stress component 
Y can be calculated. Consequently, a group of non-linear equations can be obtained in 

the form 

*(ý in )I/n' Yi=ai-K' i 

k'+ 
N' 

(1 - exp(-Q'C in O= 1,2,3 
....... G) (3.58) 

Q, i 
The non-linear problem is reduced to a linear problem by choosing an initial value of 
Q'O. For a number of different Q' values, a least squares regression approach can be 

used to determine the optimum value of Q': 

=E(y, _y 
2 N' in ))]2 i )2 =E[Yi-k'- (I-exp(-Q'si (3.59) 

i=l Q, 
M N' in [Yi - k'- (I - exp(-Q'c i0 (3.60) Q, 
aR2 n 

I- N' 'v in I 
In)) 0 Y. [Yi-k -(I-exp(-Qc, ))] -(I-exp(-Q' (3.61) ON i=l Q, Q, i 

A group of linear equations are obtained from Equations (3.60) and (3.61). These 

equations are solved by using the Gaussian method to obtain the constants N' and k' 

corresponding to each chosen Q'. The fmal values of N', Q' and k' are determined 

when the square of the errors R' reaches the minimum value. 

(C) Isotropic hardening parameters Vand bI 

The isotropic hardening parameter, R', is introduced in the models mainly to describe 

the cyclic hardening effect. Tberefore the material constants associated with the 

isotropic hardening parameter should be determined using the cyclic hardening data. 

In the case of uniaxial loading the accumulated inelastic strain, p, can be simplY 

expressed as: 
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N 
ZASin (3.62) 
0 

where N is the number of cycles, and A? is the inelastic strain range which will 

change slightly with cycle number. Then the isotropic hardening parameter can be 

expressed as: 

N 
R'(N) = W- I- exp(-b'l: Ac in (3.63) 

10 

In the total strain controlled tests, the inelastic strain rate, &, is approximately the 

same at the maximum stress of each cycle. The back stress, V, will be also 

approximately same corresponding the maximum stress at each cycle. Therefore from 

equations (3.4 1 a) and (3.4 1 c), the isotropic hardening parameters can be related to the 

change of the maximum cycle stresses in the cyclic tests as: 

M Nj 

(N (Nj) = R'(N i R'(Nj) = exp(-b'. 2 As'") - exp(-b'F, As in ) (3.64) 
00 

A similar non-linear regression method, as described in the previous sections, has been 

applied to Equations (3.63) and (3.64) to determine the isotropic hardening material 

constants W' and W. 

3.5.4 Numerical Calculations 

There are no existing experimental data required for the proposed procedure. 
Therefore verification of the proposed method to determine the material constants has 

been carried out using a set of simulation data. The simulation data have been 

obtained by simulating the proposed uniaxial monotonic and cyclic tests using the 

phenomenological model. The material constants used in the simulation were 
determined from experimental results for SRR99 single crystal nickel base superalloys 

obtained by Li in an earlier study (Li, [1993]). The earlier studies (Li et al, [1994], Li 

and Smith, [19951) also indicated that the mechanical deformation behaviour of a 

range of nickel base single crystal superalloys, such as SRR99, PWA1480, AMI, 
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CMSX 2 are very similar. The results presented here are therefore representative of 

generic nickel base single crystal superalloys. Further discussion about the SRR99 

single crystal data used in this work is given in Chapter 6. 

The monotonic uniaxial experiments were conducted at 950'C for total strain 

controlled tests along the [001] and [111] orientations respectively. Six different strain 

rates, with J=0.000041s, 0.00041s, 0.0011s, 0.004/s, 0.011s, 0.04/s, were used in the 

simulations in this work; Figures 3.3a and 3.3b plot the stress and strain curves for 

[00 1] and [I I I] respectively. For each orientation, samples were strained to achieve 

saturated stresses. The saturated stresses are given in Table 3.2. It can be seen that 

both orientations exhibited strong strain rate dependent characteristics. Due to the 

higher elastic modulus of [ 111 ] orientation compared with the [00 1] orientation, the 

stress level for a given strain rate at low strain range is higher for the [I I I] orientation 

compared with that of the [001] orientation. However, the inelastic hardening rate is 

higher in the [001] orientation than for the [111] orientation, and consequently the 

stress level at the final stage of deformation in the [001] orientation is observed to 

higher than that in the [I I I] orientation. Also the total strain ranges where the stress 

response reached a saturated state were found to be higher for [0011 orientation 

compared with [I I I] orientation. 

Figures 3.4a and 3.4b plot the cyclic stress and strain response in the first few cycles 

for the [001] and [111] orientations respectively. It can be seen that the cyclic 

hardening effect for SRR 99 single crystal alloy at 950'C was not significant. 

From the 'experimental results', which are a group of simulation results, shown in 

figures Ma and 3.3b, as well as 3.4a and 3.4b, the data reduction scheme Was used. A 

number of FORTRAN programs were written to perform the non-linear regression 

analyses. The generic equations are applied to the [00 1] and rIII] orientations to 

determine the generic material constants in the equations. Examples of the regression 

results are given in Fig. 3.5, where the square of the errors R2 is plotted as a function 

of various material parameters. 
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Using the material constants in the generic equations, determined from the numerical 

regression analysis, the material constants for the phenomenological and the 

crystallographic models were then determined from the relationships described in 

section 3.4.2 Table 3.3 shows the material constants for the phenomenological model. 

The material constants for crystallographic model were determined by the general 

procedure assuming that the [1111 orientation has combined octahedral and cubic 

deformation, and are given in Table 3.4. 

3.5.5 Material Parameters for Thermomechanical Model 

The thennomechanical constitutive model has been developed by modification of the 

isothermal constitutive models. The material parameters in the thermomechanical 

equations are temperature dependent and can be expressed as various functions of 
temperature. The formulation of the functions can be determined from the 

experimental data. For a given temperature, the thermornechanical equations are 

reduced to the isothermal equations. The values of the material parameter at this 

temperature can be determined using the procedure described in the previous sections. 

Therefore, from the results obtained from a number of isothermal experimental data 

over a sufficient temperature range, the temperature dependent material parameter 

functions can be determined by numerical regression or curve-fitting. 

Without a comprehensive experimental program in this project to obtain the material 

constants from testing data, a literature survey has been carried out to find the 

necessary material data from earlier publications. It was found that only sufficient 

elastic constants and thermal expansion ratios of single crystal superalloys over 

specific temperature ranges can be obtained (Li et al, [1996] and Dandekar ct al, 

[1990]). The functional formulations for the elastic constants and thermal expansion 

ratio have been established as cubic functions of temperature by curve-fitting. The 

temperature dependence of the elastic constants are: 

E=a, T 3 +b, T'+c, T+d, 

a2T 
3+ b2T 2+C 

2T+d2 

(3.65a) 

(3.65b) 
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G=a., T 3+ b3T 2+ 
C3T+d3 (3.65c) 

a= a4T'+ b4T 2+ C4T+d4 (3.65d) 

All the coefficients for the above equations are listed in Table 3.5. 

To obtain material constants for viscoplastic behaviour it was necessary to review 

results given in the literature. Material constants for single crystal alloys SRR99, 

CMSX2, AMI and PWA 1480 were obtained. For example, Hanriot et al [19911 

showed that the viscoplastic constant n is 10 and 4.6 for 6500C and 950"C respectively. 
Similar constants were obtained for PWA1480 at 593'C and 871'C by Jordan and 

Walker [1992]. For temperatures below about 600*C the mechanical behaviour is 

essentially elastic-plastic with little or no evidence for strain rate effects. This is 

observed in the variation of yield stress as a function of temperature for SRR99 (Li and 

Smith [1995]). This variation is shown in Figure 3.6a. A similar variation in the 

material constant k, is also expected. 

For temperatures above about 600T, the variation of the viscoplastic constant K* is 

shown in Figure 3.6b. A number of studies have been carried out to investigate the 

cyclic deformation behaviour of single crystal superalloys (Milligan [1990], (Gabb. et 

al [1989]), Poubanne [1990], Li [993]). This has been reviewed in Chapter 2. 

However, there has been no experimental data available in the form of real hysteresis 

to determine the temperature dependent isotropic hardening behaviour of single crystal 

alloys. The variations of material constants b ad W with temperature can not be 

determined. Therefore based on a limited data set only an approximate thermo-elastro- 

viscoplastic analysis can be undertaken for temperature above 600*C. However, for 

temperatures below 600T the material response is not time dependent and 

consequently it would be necessary to utilise two models. Further work is required to 

explore use of dual models. 
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3.6 Comparison of the Phenomenological and Crystallographic 

Models 

The two categories of model have been developed separately based on totally different 

principles. The crystallographic models have been developed based on crystalline slip 

theory. On the 'other hand, the phenomenological models have been developed by 

modifying the isotropic constitutive models initially proposed for polycrystalline 

materials. A number of studies (Nouailhas [1990], Stouffer et al [1990], Meric et al 
[1991], Jordan and Walker [1992], Li [1993]) have been carried out to investigate the 

characteristics of a specific model, and to verify the model with various experimental 
data. However, there has been only very limited work that compares the different 

models. 

The identification of the common generic equations, (3.41a) to (3.41c), for both 

phenomenological and crystallographic models in section 3.5 makes it possible to 

determine the material constants of both models using a single procedure and based on 

the same experimental data. This will provide a basis for direct comparison of the two 

models to explore intrinsic features of each model. In this section, numerical 

simulation results using the phenomenological and crystallographic models are 

compared. The simulations have been conducted by a number of FORTRAN 

programs. The FORTRAN programs were verified by comparison of the simulation 

results with those obtained from a commercial software code SIMNON (Elmquist et 

al, [1986]). 

3.6.1. Orientation Dependent Deformation Response 

The simulation results from the phenomenological and crystallographic model are first 

compared with the 'experimental results' in Figs. Ma and 3.3b for the [001] and [111] 

orientations respectively. The stable cyclic stress and strain responses for the [00 1] and 
[I I I] orientations are presented in Figs. 3.4c and 3.4d. The material constants given in 

Tables 3.3 and 3.4 were used for the phenomenological model and the crystallographic 

model respectively. As expected, the results obtained from both the phenomenological 
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and the crystallographic models are in very good agreement with the 'experimental 

results'. 

Using the material constants determined from the same experimental results with a 

common procedure, numerical simulations have been carried out for other orientations 

as shown in Fig. 3.7. This allows direct comparison of the two different categories of 

constitutive models. Firstly the deformation responses of some particular orientations 

under uniaxial loading conditions have been simulated to examine the fundamental 

features of single crystal nickel base superalloys with a cubic symmetry structure. The 

simulatio! i results indicated that both phenomenological and crystallographic models 

can describe the following uniaxial deformation characteristics. 

(i) Specimens with orientations on the [001]-[Oll] side of the stereotriangle, i. e. 

orientations [Oab], Fig. 3.7, exhibit no inelastic shear defonnation in the XY and YZ 

directions when loaded in the Z direction. 

(ii) Specimens with orientations on [Oll]-[Ill] side of the stereotriangle, i. e. 

orientations [abb], show no inelastic shear deformation in the XY and XZ directions 

when loaded in the Z direction. 

(iii) These is no inelastic shear deformation for a specimen with the [0111 orientation. 

However the two transverse inelastic strains are different. 

(iv) As discussed before, specimens with orientations in either [00 1] or show 

isotropic inelastic deformation response. 

(v) For all other orientations, simple uniaxial loading induces a complex anisotropic 

inelastic deformation response. All the six strain components are not zero. 

These features of the inelastic deformation predicted by both the phenomenological 

and crystallographic models are similar to the elastic deformation described by the 

anisotropic elasticity theory for cubic symmetry. Some of these features, e. g. (iv), 
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have been verified by experimental data (Milligan [1990], Gabb. et al [1989], 

I Poubanne [ 1990], Li [993]), and further experiments are required to fully verify these 

deformation characteristics. 

Another interesting observation from the simulation results is the orientation 

dependent inelastic strain hardening characteristics of single crystal nickel base 

superalloys. Both the phenomenological and crystallographic models predict that the 

influence of orientation on inelastic strain hardening is opposite to the effect of 

orientation on the elastic modulus. The inelastic strain hardening rate, dcr / de in, as a 
function of inelastic strain for various orientations, is shown in Fig. 3.8. The 

simulation results of both models indicate that the lower the elastic modulus, the 

higher the inelastic strain hardening rate. The [001] orientation with the lowest elastic 

modulus exhibits the highest inelastic strain hardening. The [I 11] orientation with the 

highest elastic modulus shows the lowest inelastic strain hardening. 

The phenomenological model and the crystallographic model exhibit similarities in 

terms of describing the above fundamental deformation characteristics of single crystal 

nickel base superalloys. However, significant differences are also observed when 

results for various orientations are directly compared. To explore the differences 

between the two models, simulation results of the two models for a large number of 

orientations on the three sides of the stereographic triangle, Fig. 3.7, have been 

compared. The relative errors between stress levels at a total strain of 1.2% predicted 

by the two models for different orientations are summarised in Fig. 3.9. The relative 

error is defined as 
I(Tphen. 

- (: Fcry. 1 
whereaph., and a,, y are the stresses predicted by the 

Cyphen 

phenomenological and crystallographic models. Some examples of direct comparisons 

of the stress and strain response are given in Fig. 3.10. 

A number of simulation results for orientations on the [001]-[Oll] side of the 

stereographic triangle, i. e. orientations [Oab], are plotted in Fig. 3.10a. In this case, the 

differences between the simulation results of the two models increase as the orientation 
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moves away from [001] orientation, and significant differences are observed for 

orientations near the [0 11] orientation. 

Comparison of the simulation results obtained from the two models for the orientations 

on the [Oll]-[Ill] side of the stereographic triangle is given in Fig. 3.10b. 

Deformation responses predicted by both the phenomenological and crystallographic 

models for orientations near to [I 11] were found to be similar, and discrepancies have 

been observed as the orientation moves to [0 11]. 

The simulation results of a number of orientations on the [001]-[I I I] side of the 

stereographic triangle, i. e. orientation [aab], indicated that deformation responses 

predicted by the phenomenological and crystallographic models are very similar for 

the orientations near the [001] or the [I 11] orientations. The differences between the 

simulation results increase as the orientations move away from the two comers and 

significant difference is observed for the middle orientation. Some of simulation 

results are compared in Fig. 3. I Oc. 

3-6-Z Comparison of Yielding Behaviour 

In both the phenomenological and crystallographic models, the yield function is used 

as an inelastic potential in the inelastic strain rate equations. Consequently, the yield 

function has a significant influence on the inelastic deformation behaviour described 

by the constitutive models (Nouailhas et al, [1995]). Further simulations have been 

carried out to investigate the yield characteristics described by the phenomenological 
and the crystallographic models. 

Figure 3.11 plots the variation of the initial yield stresses, normalised by the yield 

stress of the [001] orientation, for different orientations under uniaxial loading 

conditions. It can be seen that yield stresses predicted by the phenomenological and 

the crystallographic models are the same for the [00 11 and [III] orientations. The 

differences between the simulation results increase as the orientations move away from 
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the two corners. Significant differences are observed for the middle orientations, with 

the largest discrepancy being observed for the [0111 orientation. These observations in 

terms of yield stresses are similar to those for the stress strain responses presented in 

Fig. 3.9. 

3.6.3. Comparison of Deformation Meclianisna 

The inelastic deformation predicted by the crystallographic model is the combination 

of the inelastic deformation produced by the octahedral and the cubic slip systems. 
The importance of each of the two slip systems changes with crystal orientation. Both 

the simulation and experimental results indicate that inelastic defonnation is 

dominated by octahedral slip for orientations close to the [001] and by cubic slip for 

orientations close to the [111] (Walker and Jordan [1989], Handot et al [1991]). 

Further detailed simulations have been carried out to examine the importance of the 

octahedral and cubic slip deformation for various orientations. The percentage of the 

inelastic strain produced by the cubic slip systems and by the octahedral slip systems at 

total strains of 1.2% for different orientations are presented in Fig. 3.12. It can be seen 

that importance of the two slip systems to inelastic deformation depends strongly on 

orientation. The region where cubic slip dominates is much larger than the region for 

octahedral slip. This can also be attributed to the significant difference of the inelastic 

strain hardening behaviour between the octahedral and the cubic slip systems. The 

octahedral slip systems (dominating [001] deformation) have the highest strain 

hardening and the cubic slip systems (dominating [111] deformation) the lowest, 

Fig. 3.8. Therefore inelastic defonnation is more easily caused by cubic slip than by 

octahedral slip. 
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CHAPTER 4 
FINITE ELEMENT IMPLEMENTATION OF THE MODELS 

4.1. Introduction 

Structural analysis of engineering components under complex loading conditions, 

such as a turbine blade under combined fatigue and creep loading, is generally 

carried out using the finite element method. In order to use a constitutive model for 

structural analysis, numerical implementation of the constitutive equations is 

required in conjunction with a finite element code to solve the practical boundary 

value problems. I'lie finite element package used in this work is ABAQUS- This 

package has an advantage of having an interface that allows the user to implement 

general constitutive equations. The user defined material model is implemented in 

the subroutine UMAT. 

For the implementation of the anisotropic viscoplastic constitutive equations into 

UMAT, and interfacing with ABAQUS, there are two aspects of problems to be 

solved: (i) developing a methodology to transform the differential equations into 

numerical incremental equations for FE coding; and (ii) writing a FORTRAN 

program for the UMAT subroutine, and performing the interface with ABAQUS. 

In this chapter, the numerical implementation procedures for the isothermal 

constitutive models, both the phenomenological and the crystallographic models, 
are presented in section 4.2. The procedures for implementing the nonisothermal. 
constitutive models are described in section 4.3. The three dimensional (31)) UMAT 

subroutines for the procedures developed in sections 4.2. and 4.3 and their 
interfacing with the ABAQUS main finite element code are described in section 4.4. 
The verification results of the finite element implementation procedure and UMAT 

program are described in section 4.5. Finally, improvement of the computing 
efficiency of the numerical implementation is described in section 4.6. 
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4.2. Isothermal Numerical Implementation 

4.2.1. Numerical Integration Method 

To carry out structural FE stress analysis the constitutive rate equations need to be 

transformed to incremental equations for integration. An implicit time integration 

scheme, using the trapezoidal method, is used to implement both the 

phenomenological and crystallographic models in this work. Due to the 

complexities of the anisotropic 31) constitutive models, the numerical integration 

procedure involves a very large amount of mathematical derivations. Using the 

trapezoidal method, the increments of the stress and strain, as well as the state 

variables in the constitutive equations can be expressed in terms of the relative rates 

at both beginning and end of the time increment. In the following a brief description 

of the integral procedure is presented step by step. 

For a variable z and its rate i, the trapezoidal rule is presented as: 

Az = At[(l - O)i(t) + 02(t + At)] 

The general implicit operator 0 can be chosen from the interval 0: 5 0: 5 1.0. The 

value 0=0 reduces the scheme to the explicit integration, i. e. forward Euler while 

0 =1 leading to backward Euler integration. The method leads to unconditionally 

stable integration when 0 varies in the interval 0.5: 5 0: 5 1.0 (Hughes, [1983], Ortiz 

and Popov, [19851). 

To avoid complicated mathematical equations for the 3D case, the implicit time 

integration scheme is used for the following simple uniaxial phenomenological 

model to demonstrate the main characteristics of the scheme. The constitutive 

equations are written as: 

T-c- in 
=C +C (4.2a) 

0= E-1 6r (4.2b) 

V=g(a, X, R) (4.2c) 
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ýC=h(O, X) (4.2d) 

ft = q(P, R) (4.2e) 

ý= r(t'") (4.2f) 

Using the implicit time integration scheme, i. e. the trapezoidal rule, the increments 

of the stress and strain, as well as the state variables in the constitutive equations can 
be expressed in terms of the relative rates at both beginning and end of the time 
increment such as: 

Ar in= At[(1_0)6 in +0ý in 
t+Atl (4.3a) 

AX =Atl('-O0(t+oýCt+Atl (4.3b) 

AR = At[(l - 0)At + Okt+At ] (4.3c) 

In the FE analysis, the variables at time t+At are unknown and need to be 

determined. The only known variables are the total strain ST and increment As T 

Consequently, all increments of other variables should be expressed only as a 

function of ArT. 

The rates of each variable and ft, +& are unknown values, and there are 

three methods to obtain these values and the increments of the variables. 

Meth odI 

Using equations (4.2c) to (4.2e) to obtain Ein and A in the increment t+ t+At 
equations (4.3a) to (4.3c) gives: 

)ý, 
+Aj = (4.4a) 

kl+At 

-=q(ý"'At, Rt. At) (4.4b) 

lei ý, 
+t%, =g(cr, +äcy, X, +AX, R, +AR) (4.4c) 
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Further substituting equation (4.4b) into equations (4.4a) and (4.4c) leads: 

ýCt+At 
=h(g(a, +Aa, X, +AX), X, +AX) (4.4d) 

Iý l+At = q(g(cr, + Aa, X, + AX), Rý+ AR) (4.4e) 

Then substituting equations (4.4c) to (4.4e) into equations (4.3a) to (4.3c) 

respectively resplts in the follovAng: 

AF = At[(l - OXt" + Og(crý + Acr, X, +AX, R, + AR)] (4.5a) 

AX=At[(I-O)ýC, +Oh(g(X, +AX, cr, +Aa, R, +AR), X, +AX)] (4.5b) 

AR=At[(I-O)k, +Oq(g(Xt+AX, crt+Aa, R, +AR), R, +AR)] (4.5c) 

From equation (4.2b), the stress increment equation is as: 

Acy = E(As T- Ain) (4.5d) 

The total strain increment ACT is known in ABAQUS because it uses the 

displacement method, so there are four unknown values, AX, AR A. in and Acr for 

four equations ý4.5a) to (4.5d). Ilerefore the solutions for AX, AR, Acin and Aa 

are completely determined. This method leads to an analytical solution or closed 

form solution for the increments of inelastic strain and stress for the model used in 

this work. In general, a analytical or closed form solution may not be possible, and a 

numerical method is required to solve the group of equations. 

However the flow function g(cr, X, R) is a high order nonlinear function of stress cr 

and back stress X, so the equations (4.5a) to (4.5c) are nonlinear and a coupled 

equation set, therefore the solution procedure is very complex mathematically. To 

avoid this two other methods can be used. 
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Melliod2 

in 
+At )X and R can be obtained by using a numerical solution method for the tO t" +At 1,, +At 

following nonlinear differential equations: 

0' + At(I _ 
0)ýin + AtMn (4.6a) tO 14) (, +At 

Xtl, 
+At --": 

Xt(l + At(I - 0)ýCjo + At0(t(, 
+At 

(4.6b) 

Rt,, 
+At =Rt, l + At(I - O)k t, + AtOlý t, l +At (4.6c) 

where At=t-to 

There are many numerical solution methods for solving nonlinear differential 

equations, such as the Euler method and Runge-Kutta method. However, numerical 

solution results are highly time consuming and result in low accuracy. 

Meth od3 
This method is similar to method I and an approximation is introduced to avoid a 

complex analysis. This approach provides an approximate closed form solution or 

a so-called linear solution. 

Here the unknown inelastic strain rate i" at t+At are t+At 9 
ýCt, 

At and A 
+,, t 

approximated by their previous values and their gradients at time t through a 
Taylor's expansion, so that: 

in =tin+ag(cr, 
X, R) IIA(S + 

ag(a, X, R) 1, AX + 
ag(a, X, R) 

1+, &t I au ax aR 
1, AR ...... (4.7a) 

ý(I+Af 
ý Jl[I 011(t . ", X) II At ill + 

ah(t III X)i,, 
&x . ...... (4.7b) &ill ax 

ýRj + 
&(i R) 

+ 
&(V, R) 

&,,, OR -ItAR . ...... (4.7c) 

Equation (4.7a) leads: 
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ag(cr, X, R) ag(a, X, R)I, 
X+ag(a, 

X, R) I 
, &cr + 1, AR ... (4.7d) At"' t', 

+m acy ax aR 

Combining equations (4.7b) to (4.3d) leads ý(t,,, and to be functions of 

Acr, AX and AR , then substituting ýC 
+,, and ft +, t 

into equations (4.3b) and (4.3 c) 

whilst combining equations (4.7a) and (4.3a) so that the inelastic strain increment, 

As ill , and internal variable increments, AX and AR can be expressed as: 

Ac'" = X(Acr, AX, AR) (4.8a) 

AX = y(Aci", AX, AU) (4.8b) 

AR = ii(Ac", AR, Acr) (4.8c) 

Combining equation (4.5c), i. e. 

Au = E[ACT _ A. in I (4.8d) 

It can be seen that there are only four unknown variables, AU , A. in 
, AX and AR, in 

the four equations (4.8a) to (4.8d). Therefore it is sufficient to determine Aa , AC in 

AX and AR using these equations. 

Then all the variables at time t+At can be updated so that: 

at+At ýGt + Aa (4.9a) 

in int + äin F, I+ät --2s (4.9b) 

Xt+At `xt + AX (4.9c) 

R t+, u =Rt +AR (4.9d) 

The methods used to solve the nonlinear equations (4.8a) to (4.8d) depend on the 

complexity of the functions X(AX, Au, AR), y(Ac'n, AX, AR) andTj(Ac'n, AX, AR). 

if only a first order Taylor expansion is used for approximating 
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X,,,, and R,.,, in equations (4.7a) to (4.7c), then equations (4.8a) to (4.8d) 

are a set of linear equations. So all the increments of stress, inelastic strain and back 

stress can be solved easily. 

In this work this method has been used and the approximate closed form solutions 
have been achieved - for implementing both the phenomenological and 

crystallographic models. A outline of the implementation procedure is given in the 

next sections. 

4.22 Numerical Implementation of Phenomenological Model 

Now applying the trapezoidal rule to all the variables in phenomenological model 

leads tp the following: 

ACT = At[(l _ 0)ýTj) + OýTt.,. 
At) (4.1 Oa) 

i i( i( 

, äcyi = At[(l - o)äi(t) + ()äi(t. At) 1 (4.1 Ob) 

At[(l - 
0)ý .- in (4.1 Oc) 

i(t) + 0q, +At) 
I 

AXi = At[(l - 0)ý(j(t) + 0Cj(t+at) 1 (4.1 Od) 

AR = At[(I-O)ftt +Oftt,, &t] 

where i=1,2,. --6. 

1 Oe) 

In the FE analysis, the variables at time t+At are unknown and need to be 

determined. In the FE application software ABAQUS, which is based on the 
T 

displacement method, the only known increment is the total strain increment AE: 

Consequently, all increments of other variables should be expressed only as a 

ET function of Ai. 

By introducing a short hand notation for the various transformations, the original 3D 

constitutive equations are rewritten for simplicity and given in Appendix IV. 
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From 
cl W 

where i, j=1,2, ---6. 

The following equations can be obtained: 

ACT = As! + As in 
IIi 

ACT d- [ACT - ACT 
li ii 

I 

(4.11 b) 

So only the incremental equations (4.10c) to (4.10e) need further analysis. The 

unknown rate variables at time t +At, inelastic strain rate, it"+, t . back stress rate, 

ýCt,, 
t and isotropic stress rate At+At 

9 are expressed approximately by their previous 

values and their gradients at time t using a Taylor expansion, so that 

In =In 
1, AXj + ýin 

i(t) + , &crj + AR (4.12a) 
a(Yi axi aR 

axi J, Aýin + 
ax, ItAXj + 

axi 11 Xi(t) + 
&in aX 

IJAý (4.12b) (t+At) C)ý 

ý(t+At) 
= 

ft(t) + 
aR, 

tAp+LR, t AR (4.12c) 
aR 

L 
I, At! n 

in I (4.12d) 

From equation (4.12a): 

In In In 
It ACTj + ItAX +2ýLItAR (4.13a) 

acrj i aR 

From equation (4.12d): 

-ý I 
t& 

in Ap =-0 -- (4.13b) 
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Combining equations (4.10), (4.12) and (4.13), the inelastic strain increment, Ar-'n , 
back stress and isotropic stress increments, AX and AR, can be expressed as: 

X(Aui, AXi, AR) 

AXi = ý/ (Acri, AXj, AR) 

AR = II(Acr , AX j, AR) (4.16) 

Replacing Acr, in above equations with equation (4.1 lb), there are only three 

unknown variables, Asi"', AXj and AR, in the three equations (4.14) to (4.16). 

Therefore it is sufficient to determine Aci'"11 AXj and AR using these three 

equations. 

The partial differential expressions in each temi of equations (4.12a) to (4-12d) and 
(4.13a) to (4.13b) are as follows: 

3 fI 'Aýik + 2N' 
Oak 

(4.17a) 
acri 4g 

1ý 

g 
ik 

I 

a(Ti 

3 =1 =-- f-Wik+2jM 2 
aX'k 

(4.17b) 
axi 4gl g 

ik 

I 

ax 
i 

& i" 3n (f 0-1 M, -, X, ) 
i -- ij(oj -j (4.17c) 

OR 2K* K*) g 

2 N!. (4.18a) 

ax L (4.18b) 
axi 

-Q!. X (4.18c) 
03 

= -bý (4.19a) aR 
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aR 
= b(Q - R) (4.19b) 

05ý 

[3 ýin + ýinm3 (N, 
ik kk ki) (4.20) 

in 3P 

where 

f) n-I 31 
2 iýFURF) -2 -9 

V-11(cri - Xi), m ii(ai - xi) 

f 

Wik = Wi [M'kl (Cr'l - 
XI) +M 'Ik (a'l -X, 1)] 

211 NVi -"ý 
Mik (ak -k- 

9 

i, k, 1= 1,2,... 6 

M2, M3 
ij, N ij, Q lij and g are defined in Appendix IV. and M! -, u 

Solving equations (4.14) to (4.16) results in an expression for the inelastic strain 

increment as a function of the total strain increment, 

in 
=F? + F. (4.21a) 

The functions Fj' and F! are defined in Appendix IV. 
li 

Then the increments of stress Auj, and state variable AXI and AR can all be 

&T 
expressed as functions of the total strain increment i, 

FO + Fl AET ]] Acr C!, [As T-[j 
jl 1 (4.2 1 b) 
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(4.2 1 c) 

(4.2 1 d) 

Equations (4.2 1 a) to (4.21 d) provide the complete set of equations for the integration 

of the equations in FE analysis. 

Then all the variables at time t+At can be updated so that: 

(yi(t+At) =Cri(t) +ACri (4.22a) 

sell =C! " (4.22b) i (t +At) I(t) i 

-"ýXi(t) +Axi (4.22c) 

R(t+At) = R(t) + AR (4.22d) 

Furthermore, the interface of UMAT with the main program of ABAQUS (Standard 

UMAT only) also requires provision of the Jacobian matrix, Dip at each increment 

level. This can be obtained from equation (4.21b), so that: 

aACT i Fl Dii = OAST 
=Ci'j-Cilk ki 

J 
(4.23) 

It can be seen that the second term in the Jacobian matrix is directly associated with 

the inelastic deformation. Since significant non-elastic strains are involved, the 

Jacobian matrix is a variable stiffness matrix and must be updated from one 

increment to the next increment. 
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4.2.3 Implementation of the Crystallographic Model 

Some short hand notations have been introduced into the constitutive equations for 

the crystallographic model. The notations are given in Appendix IV. 

Similar to the phenomenological model, the following incremental equations are 

obtained for the crystallographic model: 

Acri = cl 
ij(, 

&CT _ ACin) 1,2, - -- 6) ii 

Acj"' = M3j Ay jin _m 

AT., = mmisi Aaj 

Ay... = [(I 
- 

0)ý,. 
(t) 

+ 0ý. 
(O-At) 

]At 

Ax. = At[(l - O)ic., (t) + Ois(, 
+&) 

]At 

where 

(4.24a) 

(4.24b) 

(i = 1,2, -.. 6; s=1,2, ---18) (4.24c) 

(4.24d) 

(4.24e) 

The rates of ý. and ý. at time t+ At can be expressed by a Taylor expansion in 

the following forms: 

ýS(t) + 
A. 

-I, &,. 
2 L. l, &. (4.25a) 

&. ON m 

+ ItAt. + 
Ns J, A.. (4.25b) 
ax m 

Substituting cquations (4.25a) to (4-25b) into (4.24) leads to the following: 

Ays =At[ýs(t) +oas-It AT, +OAS-ItAx. ] (4.26a) 
OIT m 

ax 
m 

Ax. = At[k, (, ) +0 J, Aý, +0A'-j, Ax. ] (4.26b) 
O-X. 

n 

Equation (4.25a) leads to: 
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Aýs = ýs(, 
+At) t 

ATIn + -0 (4.26c) -ýs I, Axm 
GtTm ax 

m 

where the partial differential expressions in each term of above equations are as 
follows: 

9ý Pý 
AA2.,. (4.26d) 

N 
-I- = BBIsIll BB2$in (4.26e) 

ax. 0 k. 

where s, m =1,2,... 18; 

0, when s : P-- m 
AAI.,. ni x (4.26f) 

whens=m 

, 
ki \ki / IT. -X. I 

AA2sm= -AA I ým 
(4.26g) 

0, when s:; & m 
BBIsn, = ci -di 

x '7' 
, when s=m 

(4.26h) 
Iýml 

BB2 S, -, ý 
0, when s#m (4.26i) 
-djjý. J, when s=m 

The suffix i in the above matrices has two values, i. e. o and c and representing 

octahedral slip and cubic slip systems respectively. Equations (4.260 to (4.26i) 

implies that there is no cross slip or interaction between slip systems, which is 

consequence of no interaction between slip systems introduced in the constitutive 

equations. 
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Combining equations (4.24a) to (4.24c), (4.26a) to (4.26c), the increments of 

A, r., Ay, and Ax, can be obtained as functions of the known values of variables at 

time t and total strain increment AcjT. Using the additional short hand notations, 

given in Appendix IV the increments of the variables can be expressed as: 

[A'Cls ý-- MM's' cl [, &CT 
- M3 (4.27a) 

.1 

Clik (ACTk - ACvk MM'Si 
ik k kin (AY). I 

T (Ay), = E4, + E5mk AC k (4.27b) 

ACT [Ax], =CCI, +aCC3sk k-aCC4.,. (Ay). (4-27c) 

where, s, m= 1,2,... 18; j, k= 1,2,... 6. 

The matrices E4. , E5mk 2 CCI$ 9 CC3sk I CC4sm and parameter a are also given in 

Appendix IV. 

Then the increment of all the other variables can be solved, to give 

AF-i" = Wpn(Ay) (4.28) 

Acri = Cl ij (ACT (4.29) 

Finally, the Jacobian matrix at each increment level required by the ABAQUS 

interfacing with the UMAT subroutine can be expressed as: 

.n 

cl - 
Clik 

aAC Ik 
=Cl -ClikM3kma(Ay)' (4.30) 

aAF: T ij ii a&T 

Similar to the phenomenological model, the second term in the Jacobian matrix is 

directly associated with the inelastic deformation. Since significant non-elastic strain 

are involved, the Jacobian matrix is a variable stiffness matrix and must be updated 

from one increment to the next increment. 
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4.3 Nonisothermal Numerical Implementation 

The thermornechanical constitutive model developed in this work is based on 

modifying the isothermal constitutive model. Consequently the implementation 

procedure described in the previous sections can be directly used for the 

thermomechanical model. 

For a given time increment, At, the total strain increment includes elastic, inelastic 

strain and thermal strain increments 
Ih AcT, = As + As i" + As i (i =1,2,... 6) (4.31) 

However, the thermal strain increment can be directly calculated by the temperature 
increment corresponding to the time increment as: 

dai t(T - To) + ajt (4.32) 
dT 

So that 

th (4.33) 8j cci(t. At) (Tt. 6t - TO) - aw) (TI - TO) i(t+At)AT + A(Xi (Tt - TO) 

Since the constitutive equations for the elastic and inelastic strain and strain rates in 

the thermornechanical. model have the same formulation as those in the isothermal 

model, the implementation procedure described in the previous sections can be 

directly used for the thermornechanical model. 

In the single crystal material principal axes system Hooke's law is: 

ijcý = Cij(CT _, 
in 

_ rth) ai =C (4.34a) 
iiii 

Differentiating this equation with respect to time leads to the following: 

dC ii T th " Cij(ijT - ýjý" - ýJth) + dT- 
(cj - cj'" - cj )T (4.34b) 

The equations (4.3 1) to (4.34) are the same for both the phenomenological model 

and crystallographic model for the nonisothermal numerical implementation 

procedure. Only the calculations of inelastic strain and strain rate involve the 
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constitutive equation of the material models. To demonstrate the parts of 

viscoplastic deformation integral for nonisothermal. condition, the integration 

process of phenomenological model is given in the following. 

Applying the trapezoidal rule to the equations of stress rate, inelastic strain rate, 

back stress rate and isotropic stress rate 

Acri = Atp - 0)&i(t) + 06ri(t+at) I (4.35a) 

(4.35b) 

AXi = AtW - 
OCKII + OýCi(t+At) I (4.35c) 

AR = At[(l - O)ft, + OA,.,. &, ] (4.35d) 

The increment of stress is obtained as: 

dC;; .T th AcTi = [Cij+oAt 
dT 

, T]t+At(Aej - Acj - Aej 
(4.36) 

AC T_c in 
_ eth At(I _ 0)(j in 

_ ý! h 
ij [(Gjt jt jt jt jt jt 

Using the first order Taylor expansion to approximate the variables at time t+ At: 

and R, 
+,,, 

leads to the following: 

in In =in -)A in 
in - in + 

&LItAaj 
+ 

&' 1, AXj+"' 1, AR+"' J, AT (4.37a) i(t+At) C;, i(t) aaj oxi IOR 6r 

OXj I 
t, 
&ýI. n + 

aXi 
I AXj + 

LXj 
+ 

OXi 
AT (4.37b) : ki(t+At) Xi(l) + -&in i 

LIX 05r 

k+At + 
aR J, Aý+ 

aRl, 
AR+ýR ItAT (4.37c) 

OW) aR aT 

"ý It&in AO ý-- 01+At - Ot ý0 in (4.37d) 
i 
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n. nn 
in 
i(t +At) i(l) Acy j+ AX j+ AR + AT (4.37e) 

OcTi axi aR 03T 

The partial differential expressions in each term of Equations (4.37a) to (4.37e) are 

the same as in the isothermal implementation procedure with the exception of the 

temperature differential terms, which are expressed as: 

0 ýin[dn In( 
f 

)_. a dk n dK* (4.38a) iT- ' _dT -1 Z -* f _dT - -K* - dT 

clýC 3 dNij 
ýj., 

dQij 
X i- fi (4.38b) 

H2 dT dT 

aR 
= 

db 
(W - R)p +b 

dW 
p (4.38c) 

aT dT dT 

Replacing AP and Mi" with equations (4.37d) and (4.37e) into equations (4.37b) 

and (4.37c), then cornýining equations (4.35b), (4.35c), (4.35d), (4.37a), (4-37b) and 

(4.37c) leads to the following equation set: 

F, (Aa, AX, AR, AT) (4.39a) 

AX i= F2(Acy, AX, AR, AT) (4.39b) 

AR = F3 (Aa, AX, AR, AT) (4.39c) 

Equation (4.36) can be expressed as: 

Aui = F4 (A, T, A. in 
'As 

th ) (4.39d) 

Aj is a known value provided by ABAQUS, and Aeth and AT can be calculated at 

the start of the time increment. Tberefore the four unknown increments of the 

variables can be solved from the four equations (4.39a) to (4.39d) which are linear 

equations. The rest of the procedure is similar as the one for the isothermal 

implementation procedure. 

It can be seen from above equations that it is necessary to calculate 
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a& ak dCij 
and 

dai 

O'T ' aT ' ZIT ' dT dT 

To determine these differentials the thermal expansion ratio, elastic constants and 

viscoplastic constants as functions of temperature must be established based on test 
data for nonisothermal conditions. 

4.4. UMAT Programs and Interfacing ABAQUS 

4.4.1 UMA T Coding 

Two, 3D UMAT subroutine programs to implement the above numerical procedures 

for the phenomenological and the crystallographic model have been written in 

FORTRAN particularly for the finite element code ABAQUS. The subroutine will 

be called at each material calculation point to define the anisotropic mechanical 

constitutive behaviour of single crystal material. 

The interface card between the subroutine UMAT and ABAQUS is *USER 

SUBROUTINE. This is then followed by the common subroutine header defined in 

ABAQUS. The stresses, strains and solution dependent state variables are solved 

incrementally by ABAQUS. When the subroutine UMAT is called, it is provided 

with the state at the start of the increment (stress and solution dependent state 

variables, temperature) and with the strain increments, temperature increment and 

the time increment. The subroutine UMAT performs two functions: it updates the 

stresses and the solution dependent state variables to their values at the end of the 

increment, and it provides the material Jacobian matrix, Mala&, for the 

constitutive model as required for an iteiative Newton-Rhapson solution in 

ABAQUS. 
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All the material parameters for subroutine UMAT follow the card *USER 

MATERIAL in the *. INP file of ABAQUS. All data in ABAQUS data cards must 
be real variables. 

The only way to output values of any variables from UMAT is by using the solution 
dependent state variables, STATEV. The number of solution dependent state 

variables can be defined by the user using the card *DEPVAR in the INP file of 
ABAQUS. The format of the output for the solution dependent state variables in 

ABAQUS followed the card *EL PRINT is 

SDV for all solution dependent state variables 

or 
SDVn for the nth solution dependent state variable 

Ile detailed FORTRAN programs for the UMAT subroutine are given iný Appendix 

IX, where comments have been provided in the subroutine to explain, step by step, 

the programming procedure. 

For coding UMAT for nonisothermal mechanical conditions, the formulations of the 

functions for elastic material constants presented in section 4.3 and the appropriate 

temperature derivatives of the constants in the constitutive model have been coded in 

an ABAQUS subroutine UMAT. So for a nonisothermal mechanical simulation by 

ABAQUS, in the input file under the input card "USER MATERIAL, 

CONSTANTA=number of constants" the data given are the coefficients of material 

constants functions with respect to temperature rather than material constants as for 

isothermal conditions. For nonisoýhermal simulations all material constants are 

variables of time or temperature and have to be determined at each time increment. 
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4.4.2 Thermal and Mechanical Loading Input Coding 

The thermornechanical loading is generally very complicated. There are many 

different types of thermal and mechanical combinations. For thermal fatigue loading 

the phasing of strain and temperature can be arbitrarily varied. Most investigations 

have been using two basic mechanical strain versus temperature cycles: 1, the "in- 

phase" cycle, where the mechanical strain is maximum at maximum temperature; 

and 2, the "out-of-phase" cycle, where the mechanical strain is maximum at the 

minimum temperature. 

To be able to simulate the thermornechanical loading and carry out the structural FE 

analysis, it is very important that the FE program can cope with the complex thermal 

mechanical loading combination. In this aspect, ABAQUS provides some facilities 

to allow the user to code the loading condition in the program for both thermal and 

mechanical conditions. These aspects of the facilities are described in the following 

sections. 

(i). Temperature Input 

There are three possible ways for a user to define temperature at the nodes of 

elements in the model. ABAQUS then interpolates between the material points. 

Method (1): the temperature may be defined using the data which is put on the input 

card directly; method (2) the temperature may be read from a ABAQUS results file 

generated during a previous heat transfer analysis; method (3) the temperature may 

be specified using user subroutine UTEMP. More detailed descriptions of the above 

three methods are given in Appendix V. 

For the calculations in this thesis, it was determined that method I is the most 

appropriate method for defining the temperature loading in the ABAQUS program. 

Consequently this method has been used to code a linear increase of temperature 

with time in the ABAQUS input cards. 
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(H). Mechanical Loading Input 

In ABAQUS there are some facilities for loading input and these facilities can 

describe various loading conditions, such as displacement control and stress control. 

Both displacement control and stress control can be input by using input cards 

*BOUNDARY with *AMPLITUDE or *USER SUBROUTINE. The detailed 

description of the syntax for using these cards is given in Appendix IX The syntax 

I is used in current research program for linear variation of displacement input. 

4.5. Veriflcation 

4.5.1 Rothermal Verification 

A comprehensive procedure was carried out to verify the numerical implementation 

procedures, using the UMAT subroutines and their interface with the ABAQUS 

programs. The material parameters used in the both models were those identified in 

chapter 3. The verification included two main stages: 

(i) Simulation of the elastic mechanical response 

These studies were carried out to verify that the stress and strain transformation 

formulations in the UMAT subroutines were correct in describing the anisotroPic 

mechanical response of single crystal alloys. 

(ii) Simulation of the elastic-viscoplastic mechanical response 

These studies were carried out to verify the incremental formulation and time 

integration schemes in the UMAT subroutines were correct in describing the time 

dependent behaviour of single crystal alloys. 

Single element and cylindrical bar specimens were used in the verification 

calculations. The material constants identified in Chapter 3 were used in the FE 

calculations. Only the results obtained from the single element will be summarised 
in this section. The results obtained from cylindrical bar specimen will be presented 
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in Chapter 5. The single cubic element used in the verification calculations is the 

ABAQUS C3D20 type, i. e. 20-node quadratic brick element. The implicit operator 

0 was set to 0.5 for the implicit integration procedures coded in UMAT. 

The boundary condition of the specimen is one end fixed and loading at the other 

end. The loading condition is displacement control at a constant strain rate to 

simulate the strain controlled laboratory tests. 

The verification for both models is achieved mainly by comparing the results from 

the finite element results with results from theoretical simulations obtained using a 

FORTRAN program. The FORTRAN programs provide a purely mathematical 

simulation of the stress and strain response predicted by the constitutive models. The 

accuracy of the theoretical simulation results are verified and compared with 

experimental results in Chapter 6. Therefore, the simulation results can be used then 

to verify the finite element calculation results. The comparisons indicated that there 

is generally good agreement between the two sets of results. Some examples are 

given in the following sections. 

Figure 4.1 shows the stress and total strain curves predicted by the finite element 

calculations using the phenomenological model. Four different orientations [001], 

[III], [0 11 ] and [ 123] were studied to examine the influence of crystal orientation 

on deformation behaviour of the single crystal alloy. Strain rate of 0.004/s was used 

in the simulation. It can be seen that crystal orientation has a strong influence on the 

mechanical behaviour of single crystal alloy. The [I I I] orientation has the highest 

elastic modulus, whilst [001] the lowest. Consequently, the [111] orientation 

exhibits higher stress compared other orientations at elastic region, and the inelastic 

strain component is higher compared than other orientations for a given total strain 

level. This can be seen more clearly in Fig. 4.2a and Fig. 4.2b, where comparison 

between FE calculations and theoretical simulations has been given in terms of stress 

and inelastic strain response. It is observed that with the same total strain As T= 

0.5%, the inelastic strain for the [I 11] orientation is about 10 times higher compared 

to the [00 11 orientation. It is also noticed that the axial stress and strain responses for 
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the [0 11] and [ 123] orientations were found to be same in tenns of both total strain 

and inelastic strain. 

The comparison indicated that the strong orientation dependent stress and strain 

response, calculated by FE, agrees well with the theoretical results which were found 

to be in good agreement with experimental results (Li, [ 19931, Li and Smith [ 19951). 

Further comparisons of the theoretical results and experimental results are given in 

Chapter 6. 

The material anisotropy of single crystal induces significant anisotropic mechanical 

response. Even under simple uniaxial loading condition, the single crystal material, 

for most orientations, exhibits three dimensional deformation, i. e. the six strain 

components will be all non-zero. As an example, Fig. 4.3a and 4.3b show the 

transverse and shear strain response as a function of axial strain for the [123] and 

[0 11] orientations. Although the axial stress and strain response for the [0 11 ] and 

[123] orientations are exactly same, as shown in Fig. 4.1, the two transverse strains 

cII and C22 for the [011] and [123] orientations are not sarne, and change with axial 

strain 633 in different ways. Also for simple uniaxial loading, there are no shear 

strains induced for the [0 11] orientation in the given global coordinate system, but 

three shear strain components, C12 9 C13, and C23 are all non-zero for the [123] 

orientation. 

Another important feature of the constitutive equations that describe the high 

temperature mechanical behaviour of single crystal alloys, is the strain rate 

dependent response. The ability of the UMAT subroutine to calculate the strain rate 

effect has also been examined. Figures 4.4a, and 4.4b plot the stress as a function of 

total strain and inelastic strain respectively for the [123] orientation at three different 

total strain rates, 0.4,0.04 and 0.004 s-1. It can be seen that both the FE 

calculations and the theoretical simulations indicate the same results, with a higher 

strain rate producing higher stress. 
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The comparison of the FE calculation results using the crystallographic. model with 

the theoretical simulation results are presented in Figs. 4.5 and 4.6, in which the 

material parameters were those identified in chapter 3 for the crystallographic 

model. Strain rate of 0.004/s was used in the finite element calculations. Again there 

is excellent agreement between the theoretical and FE results. Further detailed 

simulations using the FE code and UMAT routines using the crystallographic model 

are given in the following chapter. 

4.5.2 Nonisothernial Verification 

The verifications carried out at this stage are mainly to demonstrate that the 

numerical integration procedure developed in this work is an appropriate approach. 

The UMAT program developed for the implementation of the numerical integration 

and its interface with ABAQUS program was also verified. This is achieved by 

comparing the ABAQUS results with those obtained from a FORTRAN program. 

The FORTRAN program is a numerical simulation of the thermal mechanical 

constitutive equations. This is a purely mathematical simulation of the stress and 

strain response without the deformation compatibility and overall load equilibrium. 

On the other hand, deformation compatibility, overall load equilibrium and 

boundary constrain are all required in the stress-strain calculations using ABAQUS. 

Therefore the results from the FORTRAN calculation can be used as benchmark for 

the stress-strain response from the ABAQUS calculation. 

Two typical cases were studied. 

Case 1: 

Single element (a brick) loaded in [001], subjected to total strain rate of 0.004/s, 

with a fixed-time increment of 0.001, with a temperature range from SOT to 

762.5"C. Total time of the simulation was 1.125s. This corresponds to an in-phase 

thermomechanical loading condition is in-phase. 

Case 2: 

99 



Chapter 

Single element (a brick) loaded in [I I I], with conditions which were the same as 

case 1. 

The temperature dependent elastic properties, such as Young's modulus, E(T), and 

shear modulus G(T), exhibit nonlinear variation with temperature. These parameters 

were fitted using cubic curve functions with temperature in Chapter I 

Consequently, the thermal elastic deformation is nonlinear. The time stepping in 

finite element calculation is important for this case. Even for elastic deformation 

steps the loading speed has to be kept the same as for a viscoplastic deformation 

step, which is different compared to the isothermal simulation. For isothermal 

simulation the amplitude of displacement for elastic response step can be different 

with the one for viscoplastic response step, since the elastic response in the 

isothermal case is linear. 

The results from the ABAQUS and FORTRAN calculations are compared in Figures 

4.7 and 4.8. The good agreement of the results demonstrates that the uMAT coding 

for thermal-mechanical simulation and thermal mechanical loading input in the 

program were successful. It is recognised that there are only vary limited results for 

the thermal mechanical simulations, due to lack of experimental data for thermal 

mechanical loading. Further experiments, in particular of multiaxial and thermal 

mechanical tests, are vital for further development of the models and numerical 

methods for single crystal alloys. The studies conduced in this work will provide 

fundamental information the next stage development. 

4.6 Improvement of Computing Efficiency of FE Implementation 

The efficiency of a FE program computation depends on the UMAT coding. In this 

study many efforts were made to achieve maximum computational efficiency. The 

following describes the steps taken to improve efficiency. 
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4.6.1. Integration Scheme Application 

The quality of the UMAT coding depends on the stability of the integration scheme 

coded and the convergence rate. In most cases the accuracy of the definition of the 

Jacobian matrix, 
ýA-cr, is the most important factor governing the convergence rate. 

aACT 
The definition of Jacobian matrix, -, depends on the integration scheme used if 

, OAS 

the constitutive model is in rate form. For any nontrivial constitutive model these 

are challenging tasks. So the Jacobian matrix must be determined properly using an 

appropriate integration procedure. 

The integration scheme used in this study is an implicit integration method. It 

enables the integration scheme to be stable. This is because the Jacobian matrix 

determined by the implicit integration scheme is more accurate than by an explicit 

integration scheme. In a preliminary study for implementing the numerical models 

into UMAT, both implicit and explicit integration schemes were used in the same 

procedure, in which the implicit scheme was applied to the inelastic strain rate, 

whilst explicit integration was applied to other variables, i. e. 
in in + i(t 

Axi Atj-ýj(,, ) 

AR = Atftt 

In the preliminary procedure of implementing models into UMAT, all the rate 

equations were transformed to incremental equations and the implicit integration 

scheme was applied to stress, elastic strain and inelastic strain rates. However, an 

explicit integration scheme, i. e. forward Euler, was applied to back stress rate ý( and 

isotropic stress rate k. This simplified the analysis but resulted in very time 

consuming solutions and very small time increments. The time increments had to be 

fixed to 0.001 second in the integration procedure and the facility of automatic time 

increment determination provided by ABAQUS could not be used, otherwise the 

integration procedure would crash. These are caused by the explicit integration 

scheme application involved because the explicit integration method has a stability 
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limit. To improve the computational efficiency of the integration procedure, the 

implicit integration scheme was then applied to all variables. This increased time 

increment to a wide range between 0.01 and 0.1 second for different strain rate 

controlled simulation and allowed the facility of automatic time increment 

determination to be used. The speed of computation was greatly increased by more 

than 5 times. The equations and analysis for this fully implicit scheme are described 

in section 4.2.2. 

4.6. Z Further Improvements in Accuracy 

To further improve the accuracy of the calculation, a non-linear iteration routine was 

coded in the UMAT. Even though the approximate closed form solution was 

achieved, using the Taylor expansion with limited terms still reduced the accuracy of 

the solutions. The solutions obtained from the procedure described in sections 4.2 

an d 4.3 are taken as the initial estimated values for the nonlinear iterative procedure 

described here. The solutions from the nonlinear iterative procedure are more 

precise than the approximate closed form solutions. 

The non-linear iteration procedure coded into the UMAT is the Newton-Rhapson 

solution procedure. To demonstrate the iteration procedure, a procedure for uniaxial 

loading alone is described in the following: 

In the phenomenological model subjected to uniaxial. loading, the rate variables are: 

&= f(a, X, R) (4.40a) 

:k= g(ý in, X) (4.40b) 

ft = h(ý "', R) (4.40c) 

and the incremental equations are: 

Ar in = At[(l _ 0) ý in 4.0ý in (4.41 
t t+At I 

AX =At[(I-O), kt+0c(+Atl (4.4 1 b) 
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AR = At [(I - O)kt + Okt., At 1 (4.4 1 

Substituting 

. 11 ýt+al ".,: f(at+At 
9 
Xt+At 

9 
RI+At (4.42) 

into equation (4.4 1 a), and noting that = at + Acr, etc, then 

0)& +of((Yt +AG, Xt +AX, Rt +AR)] (4.43) t 

So the iteration equation is: 

Ac in =At[(, _O)ýin+()f(crt+ACT(i), X, +AX(j), R, +AR(i))I (4.44) 0+1) t 

with 

[, &ST &s In ACT(i) -, ý cl (i) - 0) (4.45) 

For i =0, the values of the all increments are the solutions carried out by the 

approximate closed form solution procedure. Combining with equations (4.41 a) to 

(4.41c) and the constitutive equations (4.40a) to (4.40c), the iterative procedure will 

continue until the specific precision is satisfied. A larger time increment is therefore 

allowed for the nonlinear solution procedure since the incremental relations are more 

stable. This nonlinear iterative procedure was coded in the subroutine called 

ITERATION. 

Also the Jacobian matrix for the nonlinear solution was determined from the 

theoretical analysis procedure to correspond to the nonlinear procedure. The 

Jacobian matrik and the procedure are briefly presented in the following: 

C!. [, &e T in 
-Aci I (4.46a) 

0)ýin + 0ý in As"' = At[(l i i(t+at) (4.46b) 

AXj = At[(l 0)ýC i(t) + OC 
i(t+at) (4.46c) 

AR = At[(l - OAt + OAt+At (4.46d) 

ý111 In j(t+AI) j(t+At) (cri(t) + Aaj, Xj(t) + AXj, RI+ AR) (4.46c) 
Wn ý(j(t+Al) ýCj(t+&) 

j(t+At) I 
XXO + AXJ (4.46f) 
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kj. 
ýAj : -- 

k, 
At Rt + AR)] (4.46g) 

where, Equations (4.46e) to (4.46g) indicate that tj`( x and R are the i(t+At) 5 i(t+At) t+At 

functions of values of aj, Xj, R and ý'Jý at time t+ At . 

Substituting Equations (4.46e) to (4.46g) in Equations (4.46b) to (4.46d) 

respectively then combining with (4.46a) lead to the solution of the Jacobian 

matrix: 

01 9AU -II Dii =i= (CQMAI)i-kCkj (i, j, k = 1,2 .... 6) (4.47) 

where (Cf2MAI)j-,! is the inverse matrix of (COMAI)ik and 

(COMAI)ik '+ a'Cij (ýý)jk -': 15ik I 

OAt 

8ik is unit matrix and C, 'j 'and (! QMA)jk are given in Appendix IV. The non-linear 

iteration procedure was based on the Newton Raphson scheme. The details of 

Newton Raphson method can be referred to most of numerical analysis books 

[Burden and Faires [ 1997], Constantinide and Mostoufi [ 1999]). 

The calculation procedure of Jacobian matrix for the nonlinear solution was coded in 

the subroutine called NONLINJ. In the new version of UMAT, the approximate 

closed form solution procedure is first run to determine the solutions of all variables 

and the corresponding Jacobian matrix, then an option is provided to decide if 

switching on the nonlinear solution procedure or not by the value of a control 

parameter. If the nonlinear solution procedure is needed, the - ITERATION 

subroutine will be called and the all values of variables from the approximate closed 
form solution procedure will be initial iteration values for nonlinear solution 

procedure. Consequently, the subroutine, NONLINJ, will be called to provide the 

Jacobian matrix corresponding to nonlinear solution. The new version of UMAT 

prograrn is presented in Appendix IX It is not clear that solution procedure is the 

best option although the non-linear solution is theoretically better. Further work is 

required to assess the best option. 
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CHAPTER 5 

RESULTS OF FINITE ELEMENT STRUCTURAL ANALYSIS 

5.1. Introduction 

The constitutive models and the numerical implementation procedure, as well as the 

UMAT and ABAQUS interfacing codes, have been developed for general multiaxial 
3-D stress analyses. The results from structural FE analyses can provide the 

characteristics of the material deformation for complex loading which may not be 

obtained easily from tests. These analyses can guide further experimental 
investigations and provide ftuther improvements in predicting the integrity of a 

component. A number of specimens with different shapes have been used to assess 

the performance of the codes. 

This chapter presents the results from finite element structural calculations obtained 
from both the phenomenological and the crystallographic models. Since a large 

number of calculations have been performed, only some important cases are 

presented in the following sections. The finite element calculation results will be 

compared with the theoretical simulations and some experimental results obtained 
from other sources (Li [1993], Li and Smith [1995a, 1995b]). Also the various 

results obtained from the phenomenological and the crystallographic models will be 

compared to examine further the intrinsic characteristics of different models. 

In section 5.2, a detailed description of each geometry and element type, as well as 

the loading condition used in the FE analysis is presented. The FE results using both 

the phenomenological and crystallographic models for uniaxial loading are given in 

section 5.3. For multiaxial loading, the results from the two models are compared in 

section 5.4. Finally a comparison between the FE results for different loading 

conditions is given in section 5-5. 
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5.2. Specimen Geometry and Loading Conditions 

5. ZI. Specimen Geometry 

The specimens and various element types used in the structural stress analysis are as 

follows: 

(i) Cylindrical Bar 

A cylindrical bar was divided into 540 e lements. It had 3 layers distributed along 

the radius. The central layer, which was a thinner cylinder, consisted of the C3D 15 

type element, i. e. 15-node quadratic triangular prism. Other layers consisted of the 

CM271ype element, i. e. 27-node brick elements. All layers had 18 rows, with 

every row having 10 elements. 

The cylindrical mesh requires a special ABAQUS functional option *MPC which 

allows constraints to be imposed to deal with the generation of the node numbers. 

The nodes which are at both the start and the end of the layers and located along the 

longitudinal direction have two numbers because the nodal distribution is around a 

circle. For the nodes in the longitudinal axial there are 18 numbers for a single node 

because 18 elements share a single node in the centre of a circle on cross section. 

The initial mesh of the cylindrical bar is plotted in Fig. 5. I a. 

(H) Column with a Square Section 

A bar with a square section was modelled with 8 layers of elements along its 

longitudinal axis and each layer had 16 elements. There were a total of 128 elements 

in the column bar. A simple 8-node linear brick element, i. e. type C3D8, was used 

for the bar. The initial mesh is plotted in Fig. 5. I b. 

(M) Plate 

The plate specimen had a rectangular shape which was divided into 40 elements. 

The element type was also a 20-node quadratic brick, element type C3D20. The 

initial mesh of the plate is plotted in Fig. 5. I c. 
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(iv) Uniform Tube Specimen 

The tube specimen had an inner radius of 4mm, outer radius of 8mm. and with a 
length of 100mm. The tube was modelled using 100 solid elements of type C3D27 

with 4 layers of elements parallel to its longitudinal axis. The initial or undeformed 

mesh of the tube specimen is plotted in Fig. 5.2a. 

(y) Nonuniform Tube Specimen 

The nonuniforrn tube specimen had larger sections at both ends to model the 

practical test specimen more realistically. The inner radius along the length. of the 

specimen was 6 mm. The outer radius of the middle section was 8mm and the other 

radius of end section was l4mm. The specimen was modelled using 832 elements 

of type C3D20R. The geometry and the initial mesh of the DERA specimen is 

plotted in Fig-5.2 b. This specimen was used for simulating the deformations of 

single crystal surperalloys under different loading condition carried out in real tests. 

5.2.2. Loading Condition Applied 

The loading conditions applied in the analyses included the following different 

cases: 

(i) Uniaxial loading 

Monotonic tension with either strain control or stress control. Different strain rates 
have been applied in strain control simulations to study the orientation dependence 

of the deformation of the single crystal superalloys. 

(ii) Cyclic loading 

Uniaxial cyclic loading with strain control was used in the simulations. 
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(iii) Torsion loading 

Both force and displacement control methods were used in torsion simulations. 
Torque was applied in the force control method whilst a twist angle was imposed 

increasing linearly with time in the displacement control method. 

(iv) Combined tension-torsion loading 

Force control method was used. The ratio of axial stress to shear stress was varied 

to simulate different working loads. 

5.3. Results of Uniaxial Loading 

Uniaxial loading has been applied to specimens with different shapes using both the 

phenomenological and crystallographic models. The results for the single element 

under uniaxial loading were presented in Chapter 4 and verified the coded UMAT 

subroutines. Since a large number of calculations for various specimens have been 

carried out, only the important examples will be presented to illustrate the 

deformation characteristics of engineering components made of single crystal 

materials. The FE results from the column and cylindrical bar under uniaxial 

loading were found to be. similar so here only the FE results of cylindrical bar and 

the plate using the two models, as well as single element under cyclic loading are 

presented and discussed in what follows. 

5.3.1 Cylindrical Bar 

The FE calculations for the cylindrical bar specimen have been carried out under 

displacement control. The bottom end of the cylindrical bar was fixed, and the top 

end was free, but with same displacement in the Z* direction which is the same as 

axis 3, shown in Fig. 5.1. Therefore, except for the elements near the fixed end, the 

strain distribution along the Z* direction of the cylindrical bar were the same for all 

the other elements. A number of cases for various crystal orientations have been 

calculated. The results for the cases in which loading direction Z* was along [0011, 
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[III] and [ 1231 orientation, which represents the most complex case, are given as 

the examples in the following sections. 

(i) Global Stress and Strain Response 

As mentioned above, for the given constraint and loading conditions, the global 

stress and strain response of the cylindrical bar is uniform along the Z* direction. 

Therefore, the stress and strain response can be compared with the single element 

and the theoretical results. Results in terms of total strain and inelastic strain for the 

different calculation results obtained from the phenomenological model are 

compared in Fig. 5.3 and Fig. 5.4 respectively. It can be seen that the FE results for 

single element and cylindrical bar were both in good agreement with the theoretical 

simulation results, which are also found to be in agreement with experimental data 

(Li [1993]). 

Similar comparisons are also made for the transverse and shear strain response in 

Fig. 5.5 and 5.6 respectively. The good agreements demonstrate that the numerical 

implementation procedure and the UMAT program had been appropriately 

interfaced with ABAQUS. The anisotropic deformation induced interaction among 

the elements has also been well described in the procedure and the UMAT program. 
Consequently, the results were found to be independent to the number of elements. 

If the UMAT program and the interface with ABAQUS were not appropriate, the 

calculation results will show dependence with element number. 

(H) Local Stress and Strain Behaviour 

To demonstrate more clearly the anisotropic deformation characteristics, an 

additional subroutine, LOCTRANS, was included in UMAT subroutine. This 

subroutine was used to transfonn the global strain response into the local coordinate 

system, i. e. the cylindrical coordinate system R-T-Z*, as shown in Fig. 5-7, where R 

represents the local radial direction and T the tangential direction, (see Appendix VI) 
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Figures 5.8 and 5.9 show the axial, transverse and shear strain contours for the [ 1231 

orientation in the local coordinate system. Similar plots have also been made for the 

local inelastic strain distribution in the cylindrical bar in Figures 5.10 and 5.11. The 

specimen was fixed at the bottom end and consequently will show local constraint 

effect. It can be seen that, except at the bottom end, where constraint effects 

dominate the deformation response, all the strain components did not vary along Z*- 

The longitudinal strain (czz = czz. ) has a uniform distribution. The two transverse 

strain components, radial strain, cxR, and tangential strain, eTT, showed sinusoidal 

variations around the longitudinal axis, with two maximum strain and two minimum 

strain peaks 180 degrees apart. However, there was a 90 degree phase shift between 

radial strain, ERR, and tangential strain, cTr. The transverse shear strain, cRT, also 

showed a sinusoidal variation around the longitudinal axis, but the two longitudinal 

shear strain, cRz and %, showed different variation patterns with only one 

maximum and one minimum strain peak around the circumference of the cylindrical 

bar. 

Figure 5.12 plots the output from ABAQUS of the axial strain, transverse strain and 

shear strain distributions around the circumference of the cylindrical bar. It is 

apparent that all the strain components, except of the strain in the loading direction, 

showed sinusoidal variation around the longitudinal axis. Consequently, the initial 

circular section of the cylindrical bar will become an ellipse section due to the 

anisotropic deformation. The results obtained from the cylindrical bar and the single 

element specimen are compared in Fig. 5.13. It can be seen that the strain variations 

obtained from the cylindrical bar and those from single element are essentiallY 

identical. 

The longitudinal, transverse and shear strain distribution contours of the cylindrical 
bar with a [123] orientation obtained from the crystallographic model are plotted in 

Figs. 5.14 and 5.15. The variation of the strains around the circumference of the 

cylindrical bar is plotted in Fig. 5.16a. It can be seen that the main anisotropic 

deformation characteristics of single crystal nickel base superalloys predicted by the 
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crystallographic model are similar to those predicted by the phenomenological 

model. 

However direct comparison of the strain responses predicted by the two models, 

Fig. 5.16b, indicated the differences between the two models. For a given axial 

strain, the tangential and the shear strains predicted by the crystallographic model 

are generally higher than those predicted by the phenomenological model. This 

observation is in agreement to that obtained from the comparison of the two models 

in Chapter I The two models predicted similar deformation features, but 

quantitatively direct comparison showed the difference between the two models. 

The results for'single element given in Chapter 4 have demonstrated deformation 

features of the [011) and [123] orientations. It was indicated that the axial stress and 

strain responses for the two orientations are exactly the same, as shown in Fig. 4.1. 

The transverse deformation, in terms of transverse and shear strains, are significantly 

different for the two orientations. These deformation characteristics have been 

further examined through the results obtained from the cylindrical bar. The axial, 

transverse and shear strain distribution contours of the cylindrical bar with the [0 11] 

orientation are plotted in Fig. 5.17. Compared with the strain distributions for the 

[123] orientation, shown in Figs. 5.14 and 5.15, it can be seen that deformation 

contours for al I the transverse and shear strain components obtained from the [0 11] 

and [ 123 ] orientations are totally different. 

5.3.2 Plate 

The plate specimen was used to represent a simplified gas turbine blade component. 

The deformation response of the plate specimen is expected to illustrate the main 

deformation characteristics of a turbine blade with different orientations. 

The general stress and strain responses of the Plate specimen were found to be 

similar to those obtained from the cylindrical bar and the single element specimen. 
However, a striking feature was observed in terms of the geometrical shape change 
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caused by the anisotropic deformation of the single crystal alloy. The original mesh 

and the deformed mesh for the plate specimen with the [123] orientation are 

compared in Fig. 5.18. It is apparent that significant out-of-plane deformation was 
induced even under the uniaxial loading. The three displacements along the 

longitudinal direction of the plate are shown in Fig. S. 19. It can be seen that not only 
the displacements, U3, in the loading direction, but also the two transverse 
displacements, Ul and U2, change along the longitudinal axis. This result showed 
that the anisotropic deformation of single crystal material induces geometrical 
distortion of single crystal component. Therefore, not only the stress and strain, but 

also the geometrical change should be assessed for single crystal components.. 

In industrial applications of single crystal material for gas turbine blades, the 

orientation along the main direction of blade is normally expected to be within 10 

degrees of the [00 1] orientation. However, it is not clear whether misorientation of 

about 10 degrees from [001] produces significant influence on the deformation 

behaviour of a turbine blade. Further calculations for two plate specimens, one with 

the loading direction in the [0 11 ] and another within 10 degrees from [00 1 ], have 

been carried out to examine the effect of misorientation, Both specimens were 

subjected to uniaxial loading under displacement control with a total strain of 
0.12%. 

The original and the deformed mesh of the plate with the [001] orientation are 

compared in Fig. 5.20. It can be seen that there is no out-of-plane deformation, i. e. 

the plate remains plane after deformed. The only deformation in the two transverse 

directions is the uniform deformation induced by Poisson's effect. The original 

mesh defonned with uniform deformation in the three directions and deformed mesh 

are parallel to the original mesh. For loading of the plate with an orientation 
[0.125,0.125,1 ], which is 10 degrees away from [00 1], the original and the deformed 

mesh of the plate are compared in Fig. 5.2 1. This is just one of the orientations on 

the 10 degree cone to demonstrate the misorientation effect. It can be seen that 

considerable out-of-plane deformation was induced even for misorientation of 10 

degrees from the [00 1]. The deformed plate was observed with a twisted shape, and 
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the deformed mesh was no longer parallel to the original mesh. The maximum ratio 

of the out-of-plane deformation to the in-plane deformation, i. e. UI/q, , was found to 

be about 0.22. 

5.3.3 Cyclic Loading 

The FE calculations for cyclic loading were carried out to demonstrate the abilities 

of the numerical implementation procedure, the UMAT and the finite element 

programmes to deal with the transition from elastic domain to the non-elastic 

domain. The analysis was carried out for single element to reduce the calculation 

time, since it was demonstrated in previous sections that the deformation behaviour 

obtained from the simulations are independent to the element numbers. In ABAQUS 

input file, the card *AMPLITUDE was used to define load by giving tabular data 

and the load curve will be named via optional input, NAMT= "name of loading 

curve", then under *STEP card, the card *BOUNDARY, AMPLITUDE= "name of 

loading curve" is used for loading control. Both the phenomenological and the 

crystallographic models have been used in the calculations. 

The cyclic strain-stress responses obtained from the two models for the [001] and 

the [111] orientations are presented in Fig. 5.22. The specimens were subjected to 

total strain control with a strain rate of 0.004/s at temperature of 950*C. The results 

indicated that the constitutive equations for the both models have been integrated 

well despite the repeated changes in straining direction. The results also illustrated 

that two models' capabilities to describe the cyclic deformation features such as the 

Bauschinger effect. 

The differences of stress and strain responses for the other orientations under cyclic 

loading predicted by the two models were found to be similar to those described in 

Chapter 3 for the monotonic loading. For a given total strain range, the relative 

errors of the stress ranges predicted by the two models showed the similar 

orientation dependent feature as given in Fig. 3.9. This is because for a given 

orientation, the deformation mechanisms in the monotonic and cyclic loading are the 
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same. The only difference in the calculations for cyclic loading is to modelling the 

loading and unloading conditions. The simulation results given in Fig. 5-22 have 

demonstrated the ability of the modelling and the FE programme developed in this 

work to simulate the cyclic loading conditions. 

5.4. Restifts for Multiaxial Cyclic Loading 

SAI Torsion 

The tube specimens, either with a uniform cross section or with a with non-uniform. 

cross section were analysed to study the deformation characteristics of single crystal 

alloy under pure torsion loading. The FE simulation results of tube specimens under 

pure torsion loading have been carried out using both the phenomenological and the 

crystallographic models. The tube with one end fixed was subjected to torsion by 

imposing a twisting angle or a torque around the longitudinal direction that 

coincides with the [001] orientation. The initial shear strain rates used in both the 

stress (torque) control and strain (twisting angle) control are 0.001 s-'. For the 

geometry of the specimen used in the calculation, the rates applied in terms of torque 

and twisting angle were 5.55NM/s and 0.0296 radian/s respectively. 

The deformation responses in terms of twist angle and torque are plotted in 

Fig. 5.23a and Fig. 5.23b for stress and strain control respectively. It was observed 

that the global deformation responses predicted by the two models are not the same 

for both the cases. Though the initial global responses (torque and twisting angle 

relationship), that were dominated by elastic deformation, were observed to be the 

same for the two models under both the stress and strain control loading conditions, 

considerable differences were observed in the final stage of the curves, where 
inelastic deformation became important. For a given torque in stress control, the 

crystallographic model predicted higher twist angle than that predicted by the 

phenomenological model under stress control case. Whilst for a given twist angle in 

the strain control, the crystallographic model predicted lower torque than that 

predicted by phenomcno logical model. The simulation results in terms of global 
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responses for stress and strain control showed the similar features for the two 

models. In both cases, the simulation results indicted that the global hardening 

predicted by the crystallographic model is lower than that predicted by the 

phenomenological model. This may be attributed to the higher inelastic strain zones 

predicted by the crystallographic model as discussed below. 

The equivalent inelastic strain, i. e. c" Oc! ý distributions obtained from the eq j 
FU I 

. n. In J31 

ii ii 

specimen with a non-uniform cross section are plotted in Fig. 5.24a and 5.24b for 

the phenomenological and crystallographic models respectively. Similar results were 

also observed from the uniform cross-section specimen, Fig. 5.25a and Fig-5.25b, 

where non-uniform inelastic strain distributions across the thickness of the tube have 

been shown. In both specimens significant differences were observed between the 

inelastic strain distribution predicted by the two models. The phenomenological 

model predicted a uniform equivalent inelastic strain around the circumference of 

the specimen, whilst a non-uniform inelastic strain distribution was predicted by the 

crystallographic model. 

n. an Figure 5.26 plots the variation of the equivalent inelastic strains, c'" 10e! ý 
eq NF3 C ii C 10 

around the circumference of the tube. It clearly shows that the phenomenological 

model predicted a constant equivalent inelastic strain around the circumference of 

the tube. The distribution of the equivalent inelastic strain predicted by the 

crystallographic model exhibits periodical variations around the circumference of the 

tube. Four higher and four lower inelastic strain zones were observed around the 

circumference of the tube. The main direction of the tube specimen was in the [001] 

orientation. The secondary orientation of the specimen varies with the position 

around the circumference of the tube. The high inelastic strain zones were found to 

correspond to the vicinity of the [0111 secondary orientations. 

115 



Chapter 5 

SAZ Coinhined Tension and Torsion 

Combined tension and tprsion loading was achieved using total strain control with 

ýT =j=0.0011S. Then equal amounts of total normal and shear strain rates, i. e. zz Oz 

the overall imposed displacement rate in the Z direction and the twist angle rate 

around the Z direction were calculated from the specimen dimensions, i. e. imposing 

displacement of 0.5mm'and angle of 0.1radian in 5 seconds for the tube specimen 

with a length of 100mm and outer radius of 5mm. Both the phenomenological and 

the crystallographic models were used in the FE calculations. The results were then 

compared. 

The tensile force and displacement response and the torque and twist angle response 

obtained from the calculations using the two models are compared in Fig-5-27a and 

5.27b. It can be seen that the global deformation responses predicted by the two 

models are not significantly different. However significant differences were 

observed in terms of the local inelastic strain distributions around the circumference 

around the specimen, Fig. 5.28 and Fig. 5.29. Similar to the pure torsion case, a 

uniform equivalent inelastic strain distribution was predicted by the 

phenomenological model, whilst a non-uniform inelastic strain distribution was 

obtained using the crystallographic model. However, due to the interaction between 

the tension and torsion, the global deformation responses predicted by the two 

models were found to be different for pure torsion and combined tension torsion 

cases. For the pure torsion the phenomenological model exhibited greater hardening 

in terms of global loads and displacement compared with crystallographic model. 

This - is because crystallographic model predicted four weak zones where larger 

deforýnation was generated. 

5.5. Comparisons for Different Loading Conditions 

To demonstrate the deformation characteristics under different loading conditions, 

the equivalent inelastic strain versus the von-Mises equivalent stress curves obtained 
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from the FE calculations were compared for tension, torsion and combined tension- 

torsion loading cases. The simulations were conducted under stress control, with a 

same equivalent strain rate of 0.00 1 s" at the beginning of the simulations. 

Fig. 5.30 plots the comparison of the results obtained using the phenomenological 

model. These curves are taken for the point on the surface of the middle part of the 

tube. Similar results were also observed using the crystallographic model. 
Significant differences have. been observed from Fig. 30. For a given von-Mises 

equivalent stress, the equivalent inelastic strain produced in the tension loading is 

much less than that produced by the torsion loading. The equivalent inelastic strain 

produced by the combined tension-torsion loading is between those generated by the 

simple tension and pure torsion loading cases. This indicated that inelastic strain 

hardening was higher for the tension loading compared with the torsion loading. 

The main direction of the specimen is along the [001] orientation. In the simple 

tension loading case, the equivalent stress and equivalent strain were found to be a 

function of the stress and strain in the loading direction respectively. Therefore, the 

material constants included in the calculation are M, l-M2,, N,, -N22 and Q11-Q22 only. 

In the pure torsion loading case, the equivalent stress and equivalent strain were 

found to be a function of the shear stress and shear strain respectively. Therefore, the 

material constants included in the calculation are M44, N44 and Q44 only. As 

indicated in Chapter 3, the materials constants Ml, 'M, 2, Nl, -N22 and Q11'Q22 are 

associated with the octahedral slip systems, whilst material constants M44, N44 and 

Q44 are associated with the cubic slip system. Therefore, the simple tension is 

dominated by octahedral slip mechanism and the pure torsion is dominated by cubic 

slip mechanism. 

Comparison of the deformation mechanisms in Chapter 3 (section 3.6.3) has 

revealed the differences between the octahedral and cubic slip deformation 

mechanisms. These differences were reflected in the material constants in the 

phenomenological model. Materials constants M,, -M22, NII-N22 and QII'Q22 

associated with the octahedral slip systems were different to material constantsM44, 
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N44 and Q44 associated with the cubic slip system. This was attributed to the 

significant difference of the inelastic strain hardening behaviour between the 

octahedral and the cubic slip systems. The octahedral slip systems (dominating 

[001] deformation, Fig. 3.8) have the highest strain hardening and the cubic slip 

systems (dominating [111] deformation, Fig. 3.8) the lowest. Tberefore inelastic 

deformation is more easily caused by cubic slip than by octahedral slip. The results 

given in Fig. 5.30 are in agreement with the deformation mechanism analysis results. 

The simple tension loading is dominated by octahedral slip systems that have higher 

strain hardening, and showed higher stress response. The pure torsion loading is 

dominated by cubic slip systems that have lower strain hardening, and showed lower 

stress response. The combined tension-torsion loading includes both octahedral and 

cubic slip systems, and exhibited stress response between the simple tension and 

pure torsion loading cases. 
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CHAPTER 6 

GENERAL DISCUSSION 

In this chapter, a general discussion is presented for the various issues raised from 

the previous chapters. The discussion is divided into 6 sections. In section 6.1 the 

influence of internal material structure of single crystal on mechanical properties is 

examined. The features of the analytical and numerical procedures developed in this 

work to determine the material constants in the constitutive models are discussed in 

section 6.2. The similarities and differences between the phenomenological and the 

crystallographic models are further examined in section 6.3 to explore the inherent 

characteristics of the two types of models. Consequently the possible modifications 

and further development of the constitutive models for single crystal materials are 

discussed in section 6.4. Section 6.5 is concerned with the numerical implementation 

of constitutive models and interfacing with finite element structural analysis. The 

effect of misorientation on the stress and strain response of single crystal materials, 

and on overall geometrical changes of the structure of single crystals is examined in 

section 6.6. Finally, the convergence and accuracy of the numerical calculations are 

analysed in section 6.7 

6.1 Influence Of Internal Material Structure on Mechanical 

Proper ies 

The constitutive models presented in previous Chapters are based on the initial 

material features and the main deformation characteristic, i. e. cubic symmetry. The 

influence of the change in the internal structure reviewed in Chapter 2 has not been 

included in the'models in this stage. In order to highlight the possible influence of 

the internal material structure on the mechanical behaviour, a simple analysis is 

performed on the effect of 'rafting' on the elastic properties of a single crystal alloy. 

In this analysis, a simple material mechanics method is adopted. The material is 

assumed to be completely 'rafting' with no misfit between y and y'. The two phases 

material is treated as a composite material. It is assumed that the overall Young's 
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modulus of the two phases material is E, and the Young's moduli of y and y' phase 

are E, and E,. respectively. Then under uniaxial loading: 

cr = Er, =. Ef(cy, cy. ) = Ef(E, cr,, E,, cr,, ) (6.1) 

cr = g(cry 9 Gy. ) (6.2) 

where function f and g are defined in Appendix VII. 

Thus 

h(Ey 
9 Ey. ) (6.3) 

f(E. cr, , Ey. cry, ) 

The details of the analysis are given in Appendix VII. The results indicate that there 

is no significant influence of 'rafting' on the principal elastic properties of single 

crystal alloy since the basic elastic properties of y and y' are very similar. However, 

this is only a very simple analysis, Ruther investigation on 'rafting' phenomenon 

and its influence on mechanical behaviour of single crystal nickel base superalloys is 

required. For inelastic deformation the rafting effect will have more significant and 

complex influence. There have only been very limited studies (Schneider et al 

[ 1992], Pollock and Argon [ 1994]) on the mechanisms of rafting and its influence on 

inelastic deformation behaviour of single crystal alloys. Consequently, there is no 

enough information for modelling of the rafting effect on inelastic deformation. This 

important issue will be subject to further extensive investigations and is beyond the 

scope of this work. 

6.2 Determination of Material Constants 

It is well known that appropriate procedures to determine the material constants are 

essential. There have been studies on the development of procedures for 

determining material constants for isotropic constitutive models (James et al [19871, 

Agatonovic and Clorman [ 1987], Sherwood and Fay [ 1992], Schwertel et al [ 1992]). 

The procedure to determine the material constants for the constitutive models for 

single crystal materials are more complex compared with those for isotropic models. 
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However, there has been no specific work that is dedicated to developing procedures 

for single crystal materials. Furthermore, in order to be able to compare 

phenomenological and crystallographic models, the material constants in both 

models must be determined using a consistent procedure using the same 

experimental data. If this is not done the approximations and errors introduced in 

the procedure for determining the material constants may override the characteristics 

of the models. Consequently, it will not be possible to explore the intrinsic features 

of different models. One of the main objectives of this work is to develop a 

consistent method to determine the material constants for both the phenomenological 

and the crystallographic models based on the same experimental data. Since the 

elastic equations for the both models are identical and the elastic constants are the 

same for the two models, the discussion concentrates on the features of the 

procedure for the inelastic material constants. 

6. ZI General Procedure 

-The procedure to determine the material constants for both phenomenological and 

crystallographic models has been developed in terms of a group of generic equations 

for uniaxial loading in the [001] and [1111 orientations. This made it possible to 

determine the material constants in the two models from same experimental data 

with same analytical and numerical procedure. The general methodology used in the 

procedure is different to the methods for determination of the material constants in 

many plasticity and viscoplasticity models (James et al [1987], Agatonovic and 

Clormann [1987], Sherwood and Fay [1992], Schwertel et al [1992]). Most of the 

methods have been developed based on a numerical iteration scheme. Assumptions 

are often made in the iteration scheme to produce initial estimates of the material 

parameters. These initial material constants are used to integrate the plasticity or 

viscoplasticity equations of a given model to predict stress and strain response and 

compared with the experimental data. An iteration scheme is then used to change 

one or several material parameters to improve the predicted deformation response. 

For each change of a parameter the resulting predicted curves must be compared 

with the corresponding experimental data. These 'trial and error' procedures have 
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the disadvantage that the number of experimental curves that can be used for the 

fitting procedure is limited. 

Another problem associated with the procedure is the determinations of the initial 

values of the material parameters, which have often not been presented (Dunne et al. 

[19921). One of the main features of the procedure is using a global optimisation 

routine to determine the material parameter simultaneously from a number of 

different tests, such as creep, constant strain rate, strain-controlled cyclic and 

relaxation tests without identifying the deformation characteristics associated with 

each of the material parameters. It is well known that the influence of a particular 

material parameter on the deformation response of one type of experimental test, or 

one stage of a given test, may be important. However, its influence can be neglected 

for another experimental test, or another stage of a given test. For example, the 

material constants included in the isotropic hardening equation only have significant 

influence for a cyclic test. Consequently, difficulties arise in providing the correct 

weighting for each type of experimental test with respect to each of the material 

parameters (Schwertel et al. [1992]). Otherwise, the overall optimisation may 

produce a better fit for a given group of experiment tests using a combination of 

both over and under weighted material parameters (Schwertel et al. [19921). Since 

the real material parameters associated with the deformation characteristics have not 

been optimised, large errors may be induced in the prediction of other experimental 

tests. 

The procedure developed in this work is based on the identification of the 

deformation characteristics associated with the material constants. Consequently 

characteristic experimental data have been extracted and used for determining a 

group of material constants, which have significant influence of the corresponding 

deformation characteristics. The local optimisation routine overcomes the above 

disadvantages of the global optimisation procedures, and provides physically 

reasonable material constants that are associated with the various deformation 

characteristics. The application of the procedure to pseudo-experimental data 

illustrated that there were no methodological and numerical errors induced by the 
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procedure. The square of the errors obtained from then non-linear regression 

analysis for various material parameters was close to zero. 

To minimise the overall errors, global optimisation can be introduced using the 

common iteration scheme. In this case, the local optimisation routines will provide 

the initial values of the material constants for further iteration to improve the 

predicted deformation response. 

6.2.2. Simplified Procedure 

In terms of the observation of the slip traces on specimen surfaces, a number of 
investigations have indicated that the inelastic deformation of [111] orientation 

under uniaxial loading may be dominated by the cubic slip systems (Hanriot et al 
(1991], Meric et al [1991]). Consequently it has been assumed by some 
investigators (Walker and Jordan [1989], Nouailhas et al [1995]) that only the cubic 

slip systems are active for uniaxial loading in the [I III orientation and the material 

constants determined on this basis. Using this assumption, the constitutive 

equations for uniaxial loading in the [1111 orientation can be simplified and 

expressed in terms of macroscopic stress and strain as: 

3 ,c- kc - rc 
J2 3 

sign( .4 (6.4a) 3 Kc 3 CY3 - Xc) 

_., itn; ýin = ýin = ýin =0 ýin i6 
=I* F-2 3456 (6.4b) 

1 
2E2 ýill 

r, -c 
Jýinj 

; kc = Cc 3- 'V2 d, x 3 (6.4c) 
22 

(qc -b 
ýin 

c2T. 3 (6.4d) 
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If this assumption is applicable, the complex procedure presented in Chapter 4 to 

extract the inelastic deformation contributed by the cubic slip systems from the total 

inelastic deformation, is no longer required. A simplified procedure can be 

developed from the direct comparison of the uniaxial equations obtained from the 

crystallographic and the phenomenological models. The material constants of the 

two models are linked using the following. 

no =n nc =n 
4 

co =3 (Nil -N12) 
4 

cc =3 N44 

do =8 Al -QI2) 
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However this assumption has been proposed based on limited experimental 

observations. There has been no direct verification for this assumption in terms of 

mechanical deformation analysis and constitutive modelling. 

The material constants - 'for crystallographic model obtained from the above 

simplified determination procedure are presented in Table 6.1. 

Numerical simulations have been carried out for the crystallographic model using 

the material constants obtained from the full and the simplified procedures, i. e. using 

the material constants given in Tables 3.4 and 6.1 respectively. The results are 

shown in Fig. 6.1. It can see that the difference between the results is not significant. 
Simulations have also been performed for other orientations. The results obtained 
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were found to be similar to Fig. 6.1, and no significant differences were found to 

using material constants given in Table 3.3 and 6.1. This indicated that the 

contribution of the octahedral slip systems, though 8 of them may be active, to the 

inelastic deformation of [I 11] orientation under uniaxial loading is very small. 

Simulations were also carried out for other orientations using the crystallographic 

model with the material constants given in Tables 3.4 and 6.2 respectively. The 

simulation results were found to be very close using material constants either in 

Table 3.4 or in Table 6.1. Therefore it is possible to neglect the octahedral slip 

systems for the case of uniaxial loading in the [I I I] orientation to simplify the 

procedure of determination of the material constants for the cubic slip systems. 

6.3 Characteristics of the Constitutive Models 

The two categories of model have been developed separately based on totally 
different principles. The crystallographic models have been developed-based on 

crystalline slip theory. On the other hand, modifying the isotropic constitutive 

models initially proposed for polycrystalline materials has developed the 

phenomenological models. The comparison of the simulation results given in 

Chapter 3 has revealed the similarities and the differences between the two models. 

The analysis in Chapter. 3 indicated that the two types of constitutive models were 

essentially identical to each other for uniaxial loading in the two specific 

orientations, i. e. [001] and [111]. Isotropic deformation response have been 

predicted by both the phenomenological and crystallographic models, and the basic 

constitutive equations for uniaxial loading in the [00 1] and UIII orientation can be 

expressed as a group of generic equations. Therefore, the material constants 

introduced into the two models are connected directly. The material constants, M, I- 
M129 QII-QI2 and Nil-NI2, are associated to the deformation mechanisms of 

octahedral slip, whilst material constants, M44, Q44 and N44 are mainly associated 

with cubic slip deformation mechanisms. 
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The results presented in Chapter 3 indicated that the differences between the two 

models in terms of stress and strain responses, initial yield stresses, as well as the 

contribution of the two slip systems to the inelastic strain, are all strongly dependent 

on crystal orientation. Further comparison is carried out to examine the orientation 

dependent characteristics of these deformation properties. 

The results presented in Fig. 3.9, Fig. 3.1 I and Fig. 3.12 are plotted together in Fig. 6-2 

to illustrate the significant features of the different results. By comparing Fig. 6.2a, 

I and 6.2b, it can be seen that the orientations where the two models give the closest 

simulation results coincide with the orientations where the inelastic deformation is 

dominated by either octahedral or cubic slip. The closer the contributions of the two 

slip systems to the inelastic deformation, the larger the difference between the 

phenomenological and crystallographic models. The orientations where the relative 

error in stress, shown in Fig. 6.2a, between the two models are less than 5% 

corresponds approximately to the regions where 90% of the inelastic strain is 

produced by either octahedral or cubic slip (Fig. 6.2b). The difference between the 

yield 'stresses obtained from the two models also shows the similar orientation 

dependence feature, Fig. 6.2c. The yield stresses are the same for the 

phenomenological and the crystallographic models for the [001] and [1111 

orientations. The differences between the simulation results increase as the 

orientations move away from the two comers. Significant differences are observed 

for the middle orientations, with the largest discrepancy being observed for the [0 111 

orientation. These observations, in terms of yield stresses, are similar to those 

shown in Fig. 6.2a and Fig-6.2b for the difference in peak stresses and the 

contribution of the two slip systems respectively. 

Numerical simulations were carried in Chapter 3 for the orientations along the three 

sides of the stereographic triangle. More simulations have been carried out for 

orientations inside the stereographic triangle. Consequently, the stereographic 

triangle can be divided into different regions, Fig. 6.3. The regions in the 

stereographic triangle where the two models agree, and also where the deformation 

is 90% dominated either by octahedral or cubic slip, are identified in Fig. 6.3. This 
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indicated that the anisotropic fi-ameworks used in the two models at their present 
formulations are essentially the same. In the intermediate region the differences 

between the two models are larger, but as shown in Fig. 6.2a the largest error in 

stress is only about 18%, and coincides approximately with [0 11 ]. 

The above results indicated that the large differences occur at the region when both 

octahedral and cubic slip systems are important for the deformation response. The 

results also demonstrate that the major difference between the phenomenological 

and the crystallographic models is how they deal with the combination of the two 
deformation mechanisms. The phenomenological model follows the continuum 

mechanics theory of stress and strain tensor transformation, whilst the 

crystallographic model is based on the classical slip theory of material science. 

6.4 Further Development of onstitutive Models 

Although extensive studies have developed constitutive models, both 

phenomenological and crystallographic types, for these single crystal alloys further 

improvement of the models is required. 

6.4.1 Modification of Yield Function 

From the finite element calculation results for the pure torsion and combined tension 

and torsion cases presented in Chapter 5, an important feature has been observed, 

particularly when the deformation predicted by the phenomenological and 

crystallographic models. The phenomenological model predicted a uniform yield 

and deformation around the circumference of the tube, whilst crystallographic model 

predicted non-uniform yielding and deformation. Similar features were also 

observed by Nouailhas et al [1995] for the case of a tube with [001] orientation 
loaded in pure torsion. 

Non-uniform deformation has been observed in the experiments at room temperature 

(Nouailhas et al [1995]). To minimise the differences in the yield stresses predicted 
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by the phenomenological and crystallographic models for this particular case, the 

yield function of the phenomenological model has been modified by Nouailhas et al 

[1995] to include higher order stress invariants. This modification was based on the 

comparison of the phenomenological model and the crystallographic model 

predictions for pure torsion cases. It is necessary to provide a closer prediction 

between the two models to describe the deformation behaviour in the pure torsion. 

The modified yield function in terms of initial yielding is expressed as: 

f= 
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where crij are the dcviatoric components of the stress tcnsor cru , and the k is the 

initial yield stress, and a4, a6 and a, are material constants with the values of 4.456, 

195 and 153 respectively (Nouailhas [1995]). The material constants were obtained 

from! qMSX2 single crystal alloy that is very similar to SRR99 single crystal alloy 

(Li [1994b]). This modified yield function reduces to the yield function used in this 

work when the additional material constants a4, a6and a8are set to zero. 

It was demonstrated by Nouailhas et al [1995] that the modified phenomenological 

model gave a closer prediction of the yield stresses with those predicted by 

crystallographic model in the particular case of pure torsion. However, a general 

comparison between the two models had not been carried out by Nouailhas et al 

[1995]. 
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Therefore, further calculations of the yield stresses for different orientations under 

uniaxial and bi-axial loading conditions have been carried out to examine the 

feasibility of modifying the yield function. The results of yield stresses under 

uniaxial loading predicted by different models are compared in Fig. 6.4. The results 

based on the yield surface given by equation (6.6) are called the modified 

phenomenological model results. It can be seen that there is no significant 

improvement of the yield behaviour predicted by the modified yield function (81h 

order) compared with the simple yield function (2"' order). 

The yield loci for tension-torsion loading and tension-tension loading are plotted in 

Fig. 6.5 and Fig-6.6 respectively. For the bi-axial loading cases, the yield loci 

predicted by the modified yield function (8" order) remain an ellipse similar to the 

simple yield function (2 nd order). The yield stresses predicted by the modified yield 

function for some stress states are closer to those predicted by the crystallographic 

model, but exhibit even larger discrepancies for other stress states. The comers in 

the hexagon yield loci predicted by the crystallographic model imply the change of 

yield mechanism from one slip system to anothýr. For the phenomenological model, 

the continuous mathematical yield function will always generate smooth yield loci. 

This indicates that the differences between the phenomenological and 

crystallographic models can be attributed to the intrinsic characteristics of the two 

types of models. In this sense, there will always be differences in terms of yield 

behaviour predicted by the phenomenological and the crystallographic models. 

II These differences will return unless the crystallographic model modified to eliminate 

discontinuities from one slip system to another. This may be achieved by include the 

interaction of different slip systems. 

6.4.2. Interaction of Slip System 

II The orientation dependent features for the various deformation properties presented 

in Fig. 6.3 show that large differences occur at the region when both octahedral and 

cubic slip systems are important for the deformation response. This indicates that 

some kind of interaction between the two slip systems may occur when both slip 
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systems are active. In fact the interactions of different slip systems, such as cross 

slip, have been studied (Pope and Ezz [1984]) for single crystal nickel base 

superalloys. The influence of cross slip on mechanical behaviour has been reported 

in the literature (Takeuchi and Kuramoto [1973], Lall et al [1979], Paidayr et a, 

[1984]). Walker and Jordan [1989] included the non-Schmid shear stresses, i. e. the 

resolved shear stresses normal to the slip planes of octahedral or cubic slip systems, 

in a crystallographic model to describe the tension-compression asymmetry caused 

by cross slip. However the general influence of interactions of octahedral and cubic 

slip systems on the deformation behaviour of single crystal superalloys has not been 

investigated. Meric et al [ 199 1] introduced an 'interaction matrix' in the isotropic 

hardening equations of a crystallographic model to describe the cross hardening 

effect caused by interactions of different slip systems. However due to the lack of 
information on the mechanism of slip system interactions on mechanical 
deformation behaviour, the coefficients in the 'interaction matrix' were selected to 

obtain a best fit to the uniaxial experimental data. Both Walker and Jordan [19891 

and Meric et al [1991] introduced the interaction of slip systems in the isotropic 

hardening equations. There have been no studies that examine the influence of 

interaction, of slip systems for kinematic hardening and further work is required. 
Nevertheless, the numerical implementation scheme developed in Chapter 3 for the 

crystallographic model has been presented in using a generalised formulation, i. e. 

Equations (4.260 to (4.26i), which have the ability to include interaction of slip 

systems. Further work is required to investigate the mechanisms of interactions 

between slip systems and their influence on mechanical behaviour of single crystal 

alloys. 

6.4.3 Modelling OfAnisotropy and Further Improvements 

One of the important deformation characteristics of single crystal alloys is their 

orientation dependence. For elastic deformation, anisotropic elasticity theory was 

used for both the phenomenological and the crystallographic model, and the 

anisotropic elastic responses predicted by both models are identical. In terms of 
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inelastic deformation, two fundamental different approaches were used in the 

phenomenological and crystallographic models. 

The approach used in the phenomenological model was based on a continuum 

mechanics framework. Anisotropic tensors, such as Mij, Qjj and Nij discussed in 

chapter -3), were introduced to modify the isotropic constitutive models to describe 

the anisotropic deformation behaviour of single crystal alloys. On the other hand, 

the approach used in the crystallographic model was based on the classical slip 

theory. Different slip systems, such octahedral and cubic slip systems, were 

included in the models based on experimental observations. The global anisotropic 

inelastic deformation is the sum of the shear deformation on each of the active slip 

systems. Due to the directional feature of the slip systems, the global anisotropic 

inelastic material response is generated as a result of the shear strains on each of the 

slip systems. The fundamental different approaches used in the phenomenological 

and the crystallographic models determine the intrinsic characteristics of the two 

types of models. 

For the phenomenological model, the choice of the functions used in the model will 

determine the anisotropic features described by the model. These functions must 

satisfy the principles of continuum mechanics. In this context, the potential (yield) 

functions are expressed as a function of the invariants(',, 122 .... Ij. For a f. c. c. 

crystal, and for the second-order stress tensor, crij, one way to express the invarants 

are (Smith and Kiral [1978]): 
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where crij are the deviatoric components of the stress tensor crij 

How many and what stress invariants are to be included in the potential (yield) 

function is a compromise among accuracy, complexity and practicability. This 

choice must be guided by material deformation characteristics and verified by the 

experimental results. 

The quadratic potential function had been used widely for polycrystalline materials 

and has been successful in describing the general deformation behaviour of a large 

range of isotropic materials (Chan and et al [1989], Chaboche et al [1983,19891, 

Mroz and Niemunis [1990]). The phenomenological model for single crystal alloys 

was developed based on the modification of the isotropic model for polycrystalline 

materials. Naturally, the quadratic function was used and modified using the tensor 
Mij to describe the anisotropic deformation behaviour of single crystal alloys. It has 

been demonstrated by a number of studies (Nouailhas [1990], Nouailhas and Freed 

[1992], Li [19931, Li and Smith [1995,1998j) that the quadratic function can 
describe the fundameýital anisotropic deformation behaviour observed from 

mechanical experiments, mostly under uniaxial loading, for single crystal nickel 
base superalloys. 

However, the quadratic function is the very basic function and further modification 
may be required based on more complex (multiaxial) experimental results. be 

torsion and tension-torsion test of a tube specimen showed non-uniform deformation 

which can not be predicted by the phenomenological model using the quadratic 
function [Nouailhas et al [1995]). Consequently, the function was modified by 

Nouailhas et al [1995] to include higher order stress invariants. It was demonstrated 

by Nouailhas et al [1995] that the modified phenomenological model gave a better 

prediction for the particular case of pure torsion. However, a general comparison 
between the two models in this work indicated that there was no overall 
improvement in the yield behaviour predicted by the modified phenomenological 
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model when compared to the crystallographic model. Due to lack of experimental 
data, it is not easy to judge how to further modify the model to include or exclude 

different stress variants. Experiments have always provided the impetus for seeking 

more sophisticated constitutive models. These models are quite difficult to develop 

owing to highly nonlinear features. Consequently, countless purely theoretical 

conjectures have not withstood the scrutiny of experimentation. Further 

modification only can be made based on new experimental findings. 

For a crystallographic model, the anisotropic features of the model depend on the 

choice of the type and number of slip systems to be included in the model. For 

nickel base single crystal alloys, experimental observations, as described in chapter 2 

indicated that octahedral and cubic slip systems are the most basic slip systems and 

should be included in the crystallographic model. However, there are not enough 

experimental results to determine clearly how many slip systems will be active for 

various loading conditions under different temperature. Some experiments also 

showed the possibility of interaction between the two slip systems (Pope and Ezz 

[1984], Takeuchi and Kuramoto [1973], Lall et al [1979], Paider et al [1984]). 

However, the mechanisms of interaction between octahedral and cubic slip systems 

have not been clearly identified from experiments by material scientists. 

Consequently, the general influence of interactions between slip systems on 

mechanical deformation behaviour of single crystal superalloys has not been fully 

understood and 
. 
included in the crystallographic models. Further work is required to 

investigate the mechanisms of interactions between slip systems and their influence 

mechanical behaviour of single crystal alloys. 

Similar to isotropic materials, the subject of modelling anisotropic viscoplastic 

deformation of single crystals cannot be tackled by application of a single discipline 

in isolation to others. The interdisciplinary character of the subject has been well 

demonstrated by the past studies involving experimental, analytical and modelling 

work undertaken by scientists from material science, engineering and solid 

mechanics areas. Each discipline makes its own contributions, but further 

improvement of the model requires the collective contributions from a wide range of 
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disciplines. In general, a model development will always be through the following 

routines: 

Basic experimental observation - Primary model development - Model simulation 

and predictions - Feature experiments guided by simulations - Model modification - 
Further experimental verification - Further model modification. 

It is clear that both phenomenological and crystallographic models for single crystal 

alloys are still in the early development stage. Fundamental experiments, most 

under uniaxial loading and isothermal conditions had been carried out. Primary 

models had been developed and compared with the funda mental experimental 

results. Model simulations, such as the extensive work carried out in this thesis, 

revealed further deformation features for tests under more complex loading 

conditions although currently without experimental results. The simulations provide 

information about defining further feature experiments. Only after comparison of 

the experimental -results with the simulations can it be possible to modify the 

models. Therefore, more experimental work is vital for further development of 

models for single crystal superalloys. 

6.5. Numerical Implementation and Finite Element Analysis 

It is well known that numerical implementation for the modem unified constitutive 

models is always a challenge since the unified formulations generally lead to highly 

non-linear systems of equations with the property of mathematical 'stiffness'. The 

constitutive models, both phenomenological and crystallographic models, developed 

in this work for describing the anisotropic elasto-viscoplatic deformation behaviour 

of single crystal materials are much more complicated compared with the 

constitutive models for the isotropic polycrystalline materials. Consequently, 

numerical implementation of these constitutive models for structural analysis with 

finite element method is considerably more difficult. Various numerical methods 
have been developed and combined with the finite element code ABAQUS in the 
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previous chapters. A general discussion will be presented here to illustrate the main 

characteristics of the different numerical methods. 

The principle concept for finite element analysis is discretisation. The structure is 

divided into small finite elements whose stress-strain behaviour response is 

described by a constitutive law. The local information of the stress-strain behaviour 

is assembled at a global level so that equilibrium equations are satisfied throughout 

the elements of the whole structure. This procedure results in a large system of 

linear and nonlinear equations at both the local and global levels. Mathematically 

speaking, the prime objective of the numerical implementation is the development of 

incremental solution methods for the system of equations at both levels to achieve 

stability and convergence, as well as economical computation for structural analysis. 

In this work, ABAQUS finite element code is used for the global level analysis. 

Consequently, the discussion will be concentrated on the numerical solution 

methods for th(ý local level, i. e. the implementation of the anisotropic elastic time- 

dependent viscoplastic constitutive models for single crystal materials, and the 

interface with finite element analysis code, e. g. ABAQUS. 

6.5.1 Local Constitutive Model Implementation 

There are two distinguishing features of the numerical methods developed in this 

work. 

(i) The numerical incremental algorithms for the numerical solution of the 

constitutive models used in this work have the general feature of an implicit 

integration algorithm. 

Approximate closed form solutions for stress and strain, as well as the 

internal variables in the incremental equations have been achieved using a 

complex mathematical derivation. In addition, an approximate closcd form 

solution for the Jacobian matrix that is required in the ABAQUS global level 
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numerical calculation is also obtained from the numerical integration 

schemes for the constitutive equations. 

The progressive development of the numerical methods has been driven to achieve 

the accuracy and efficiency of numerical computing. A preliminary numerical 
incremental integration scheme was firstly developed to demonstrate the feasibility 

of application of the implicit numerical algorithm for the anisotropic elasto- 

viscoplastic constitutive models, and to achieve an approximate close form solution. 
Consequently, simplifications were introduced in the numerical method to reduce 

the level of difficulty in the mathematical derivation. In this preliminary numerical 

method, a full implicit scheme was applied to the inelastic strain rate which is the 

primary variable in the constitutive model, whilst a semi-implicit scheme was used 

to the back stress and isotropic hardening variables. Consequently, although 

approximate closed form solutions for the increments of stress and strain and the 

internal variables, as well as the Jacobian matrix have been obtained from the 

preliminary numerical method, the computing accuracy and efficiency were very 
low. The finite element calculation can only be carried out with very small time 

increment. When time step is increased, the numerical error caused by the additional 

approximation in the implicit scheme of the constitutive level generated a large 

accumulated error in the global level, the ABAQUS program was terminated since 

the calculation error was greater than the pre-specified tolerance in the ABAQUS 

code. 

To improve the computational efficiency of the numerical method, the full implicit 

incremental integration scheme was applied to all the variables in the constitutive 

equations. Consequently, the mathematical derivation of the numerical 

implementation procedure is much more complicated, and great effort was required 

to obtain the closed form solutions for the two constitutive models with the full 

implicit schemes. However, when the numerical scheme was fully implemented and 

coded into the UMAT, the computation speed was greatly increased due to the 

relative large time increment step that can be used in the ABAQUS program. 
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A further improvement of the numerical method was to introduce iteration at the 

constitutive level. This is because utilisation of Taylor expansion in the implicit 

numerical integration scheme will always introduce some degree of error. The 

iteration routine is called when the local constitutive level error for each of the 

element is greater that a pre-specified tolerance. A combination of the non-linear 

iteration routine and the approximate closed form solutions obtained from the 

implicit numerical scheme has a significant advantage compared to the direct 

iteration method, since the approximate closed form solutions provide much more 

accurate estimation of the initial values for the iteration routine. 

6.5.2 Interface with Global Finite Element Code 

In the ABAQUS program, numerical implementation of the constitutive models is 

coded in the UMAT subroutine. When UMAT is called, it is provided with the state 

at the start of the increment (stress, solution dependent state (internal) variables) and 

with the strain increments and the time increment. The subroutine UMAT performs 

two functions: it updates the stresses and the solution dependent state (internal) 

variables to their values at the end of the increment, and it provides the material 

Jacobian matrix, aAcr1aAc, obtained from the local constitutive level. The Jacobian 

matrix is then used in the global level to form the global stiffness matrix in the 

global equilibrium equations. 

Since the material non-linearity appears directly in the Jacobian matrix, the global 

stiffness matrix will be a variable stiffness matrix, and must be uPdated from one 

increment to the next increment. The global ABAQUS system requires the Jacobian 

matrix at the current increment to determine the strain increments and provides the 

strain increments to the UMAT subroutine. On the other hand, the Jacobian matrix at 

the current increment can only be determined from the local constitutive level via 

UMAT when the strain increments were known. Therefore the strain increments in 

the ABAQUS global level could be only estimated on a previous strain history, e. g. 

based on the Jacobian matrix of the previous increment. Consequently, the global 
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iteration process in ABAQUS is carried out to keep the global error within a certain 

pre-specified tolerance. 

From the interface process between global level and local level, e. g. ABAQUS and 
UMAT, it is apparent that the accuracy and efficiency of the numerical 
implementation schemes for the local constitutive equations is vitally important for 

the stable, convergence and economical computation of the overall finite element 

structural analysis. This is because the local errors introduced to the Jacobian matrix 

will be directly fed back to the global system. The errors not only effect the global 

numerical solution errors for the current time increment and also influence the 

estimation of the next step strain increments. The global errors introduced in the 

strain increment estimation will then further effect the local errors for the next 

, 
increment solutions including the Jacobian matrix. Therefore, the global errors of 
the finite element analysis are the accumulated errors from the local constitutive 
level, and the possible errors induced in the global numerical procedure to solve the 

global equilibrium equations. 

The progressive improvement of the local numerical implementation methods 

carried out in this work clearly demonstrated the above interface features between 

local and global levels in the finite element analysis. In the preliminary numerical 

method, relative large local errors were caused by the simplification of implicit 

numerical scheme. Consequently, the computing speed of the ABAQUS program 

was slow and only a small time increment'was allowed in the ABAQUS program. 
When the time increment was increased, the ABAQUS program was terminated and 

terminating message indicated that the global error was over the error tolerance in 

the ABAQUS program. The improved full implicit numerical scheme for the 

incremental integration of local constitutive equations reduced the local errors and 

consequently increased the computing speed of the ABAQUS program. The time 

increment was increased and the global iteration was reduced. It was observed that 

overall computing efficiency was further improved by introducing local iteration 

routine in the constitutive level. 
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Finally, it can be seen that there is a strong interface between the local and global 

systems in the finite element method. To improve the overall stability, convergence 

and efficiency of the finite element computation, the global system and the local 

system must, in essence, be solved simultaneously. This requires the formulation 

(mathematical formulation rather than numerical formulation) of the Jacobian matrix 

for the complete system of equilibrium equations and the corresponding set of 

equations that govern the non-linear state of each element. This can not be achieved 

by using ABAQUS with UMAT since the local and global systems are separated. 

However, the methods developed in this work to obtain approximate closed form 

solutions (expressed in the mathematical formulation) at the local constitutive level 

provide the possibility to develop an alternative approach that solves the complete 

system of equations for all elements simultaneously. This alternative method (with 

the new FE code) may therefore further improve the efficiency of the finite element 

analysis. 

6.6 Misorientation Effect 

The manufacturing process for single crystal material is extremely complicated. It is 

very difficult to control the process to obtain the exact orientation of the turbine 

blade. In industrial applications, the orientation along the main direction of the 

turbine blade is normally controlled to be within 10 degrees of the required 

orientation, i. e. the [001] orientation. The [001] orientation, as demonstrated in 

Chapter 3, has an isotropic stress and strain response similar to the polycrystalline 

materials. Consequently the structural analysis for the single crystal turbine blade is 

usually carried out in industry using the isotropic stress and strain equations for the 

[001] orientation with the program developed for isotropic materials. However, 

there has been no detailed investigation on the effects of misorientation on the stress 

and strain response of single crystal materials, and more importantly, on the 

deformation behaviour of a single crystal structure, such as a turbine blade. 
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Further numerical simulations and finite element analysis have been carried out in 

this work to examine the overall effect of misorientation on the material and 

structure deformation characteristics. 

The numerical simulations were conducted for the single element specimens with 

main direction 10 degree away from the [001] orientation and with various, 

secondary orientations. Table 6.2 gives the details of the specimen orientations 

studied. The simulation was carried out at strain rate of 0.4% with a total strain 

range of ± 2.5%. The cyclic stress and strain responses in the main direction for the 

different specimens are shown in Fig. 6.7, and the stresses and the strains at the 

maximum strain of 2.5% are presented in Table 6.3. It can be seen that there is only 

a small difference in terms of the peak stress in tension and compression in the main 

direction for various specimens compared to the [001] orientation. This is because 0 

is only 10 degrees and variation in p only had a small influence on the stress in the 

loading direction. However, there was a considerable difference in terms of the 

transverse strain and shear strain response. -The [001] orientation has an isotropic 

strain response with two equal 'transverse strains and no shear strains. For all the 

specimens with misorientation, the two transverse strains were not equal and 

different shear strains were induced due to the anisotropic deformation. Since the 

shear strains will cause distortion deformation, there are fundamental differences in 

terms of the deformation feature of the misorientation specimens compared with the 

[001] specimen. 

The finite element analysis was conducted with a plate specimen, which was used to 

represent the simplified turbine blade structure. The details of the finite element 

analysis have been given in Chapter 5. The results indicated that the magnitude of 

the anisotropic transverse strains and the shear strains in each element was found to 

be small. This is in agreement with the numerical simulation results. However, the 

accumulated anisotropic effect on the overall deformation of the plate was found to 

be significant. The contour of the displacements of the plate, in Fig-5.21, showed a 

significant out-of-plane deformation. A distortion was induced in the plate due to 

the anisotropic stress and strain response caused by the misorientation. 
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It is well know the efficiency of a gas turbine engine is strongly dependent on the 

profile of the turbine blades. . The distortion and profile changes of turbine blade 

during operation will significantly reduce the gas turbine efficiency. Since the shape 

and the profile of turbine blades are optimised during design to achieve the 

maximum efficiency. The simple method using the isotropic stress and strain 

relationship for the [001] orientation to predict the deformation behaviour of turbine 

blades with misorientation will generate considerable error in terms of the overall 

profile of the blades. Therefore, the anisotropic constitutive models and the finite 

element program developed in this work could be used in the design and assessment 

of single crystal turbine blades to improve the efficiency gas turbine engines. 

6.7. Convergence and Accuracy Analysis 

For numerical calculations of the nonlinear problems, such as the one studied in this 

work, the main concern is always to obtain a convergent and accurate solution at a 

minimum cost. In terms of numerical calculation of the stress and strain response, 

there are two important topics concerning convergence and accuracy. One is 

between the numerical results and analytical solution of the model, another is 

between the model predictions and the real material behaviour, i. e. experimental 

results. The first one is dependent on how good the numerical method was 

developed and implemented in the numerical codes whilst the second one is 

attributed to how good the model was developed based on the material deformation 

characteristics. 

The first topic on numerical accuracy is discussed in section 6.7.1. The second topic, 

an accuracy of modelling is discussed in section 6.7.2. 
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6.7.1. Numerical Accuracy 

A number of numerical calculation programs, such as SIMNON, in-house 

FORTRAN programs, and the FE programs (ABAQUS and UMAT) have been used 

in this work. The convergence and accuracy assessments will be carried out for the 

numerical simulation and the finite element (FE) calculation respectively. 

(i) Numerical Simulations 

SIMNON. - 
SIMNON is, a commercial software developed by SSPA, Sweden, and a registered 

trademark of Department of Automatic control, Lund Institute of Technology, 

Sweden. SIMNON was developed for numerical simulation of nonlinear differential 

equations. The numerical integration methods used in SIMNON include the 

following: 

Runge-Kutta-Fehlberg 4.1'and 5" (4"' with variabIe and fixed step size) 

Rung-Kutta-Fehlberg 2 nd /3d 

Euler Dormand - Prince 4"75" 

The first method was used in this research to achieve the appropriate accuracy. 

I 
SIMNON has been used by thousands of people all over the world as an efficient 

tool for numerical simulations. Universities and research centres in more than 40 

countries have found SIMNON to be a useful program for interactive simulation. 

However, SIMNON program is only useful for simple one-dimensional problems. 

For a commercial software, the stability, convergence and accuracy of SIMNON has 

been well studied and verified by numerous applications. As an example, Fig-6.8 

and Fig. 6.9 present comparisons between the SIMNON simulation results and the 

analytical results for the [001] and [111] orientations under uniaxial loading. The 

details about the analytical solution are given in the following section. It can be seen 
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that the numerical simulation results almost exactly agree with the analytical 

solutions. 

Therefore, SIMNON was used in this work as benchmark to verify the in-house 

written FORTRAN simulation program, and then the FE calculation results. 

FORTRAN Program: 

The in-house FORTRAN program was developed to carry out the numerical 

integration of the nonlinear differential equations that describe the anisotropic 

viscoplastic deformation behaviour of single crystal alloys. Since it is only a simple 

numerical simulation, the running cost of the in-house FORTRAN program is very 

cheap. Consequently, it is possible to use very small time increments in the program 

to achieve stable, convergence, and highly accurate results. Therefore, the main 

concern when writing the program was to chose a simple convergence numerical 

integration scheme with small time increment in the simulations. 

The numerical scheme used for the numerical integration is a classical predictor. 

corrector implicit (midpoint) method (Burden and Faires [ 1997], Constantinidal. and 
Mostoufi [1999]). The main features of the numerical procedure are outlined as 

follows: 

From ith step the output from the analysis is: 

n, Xe cri, Eje, &I, i; 
ai, ý1, ýi 

, 
xi 

I step: 

Input: jA 
1+1 ti+l 

Tj (ACi+l)input : -- i+l Ati+l 

Predictor: (&i+, )p,, =E(j, _&) 1+ i 

(Cri+l )Pre. ý- (Ti + 
(&i+l )pre. 

At 41 

, +,, 
ýin 

, Calculation corrector: 41 
ýc 

i+P 6419 
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Midpoint scheme for increments: 

As fi " jl 
(ýf 

+ tie+ 14-1 21 i+I)Ati+i 

in I (tin 
+ýin, Aci+l i i+ 

)Ati+l 

AX (ýc 
i +: k 

i+l 2 i+l 
) 

At i+1 

Acri+l -L(6i +6i+I)Ati+l 2 

A&T, =-L T+tT 
1+ 2 

(tl 
1+1 

) 
At i+l 

Up date the variables: 

step output: 

SF 1+1 + 

Xi+i ýxi + Axi+l; 

e in 
cri+l, ei+l, Ci+lp Xi+l 

in in 
=,! n + AS, 

+, 

(Ti+i : --cri Alli+1 

xi+l 

The above is repeated for next step. 

,e At,, and Note: for the first step, the explicit Euler method was used, e. g. AI 

then followed the implicit method was followed. 

It is well known that the implicit midpoint method is a stable, convergence 

numerical scheme within the time increment limits (Burden and Faires [19971, 

Constantinidal and Mostoufi [1999]). When the time increment approaches the zero, 

the numerical integration results will be close to the theoretical solution. Here 

theoretical solution is used to refer to the 'accurate' solution of the differential 

equations. 

To demonstrate the numerical characteristics of the in-house FORTRAN program, 

the simulation results with different time increments are shown in Fig. 6.10. The 

simulation was carried out for the [1111 orientation under uniaxial loading with 

constant total strain rate of 0.0004/s. It can be seen that using a large time 
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increment, dt=0.5s, simulation results exhibited an oscillatory feature. Decreasing 

the time increments (e. g. dt=0.05,0.005,0.0005), the simulation results reached to a 

stable and convergent solution. 

The accuracy of the numerical simulations can be further verified by comparing the 

simulation results with the results from a closed form analytical solution for a time 

independent case. This is achieved by changing the material constants in the model 

to reduce the time dependent form to a time independent form. The details of the 

study are outlined as follow. 

From Chapter 3, the generic constitutive equations for uniaxial loading are expressed 

as 

cr = X'+k'+R'+K'*(iin)lln' (6.7a) 

XI in)) E (1 - exp(-Q', (6.7b) 
Ql 

R'=W'(1 - exp(-b'e")) (6.7c) 

It can be seen that the last tenn in equation (6.7a), K'*(t")"", changes with 

inelastic strain rate, and therefore represent the time dependent stress contribution. 

When this tenn is equal to zero, the stress will not depend on strain rate, and the 

deformation response becomes time independent. 

Since X' and R' can be expressed analytically as a function of inelastic (plastic) 

strain, an analytical solution for the stress can be obtained for the time independent 

case. 

- X+k'+R'=k'+ 
N' 

'aanalysis QI 
(I - exp(-Q'c'")) + W'(1 - exp(-b'c")) (6.8) 

where k', N', Q', W' and b are materials constants (defined in Chapter3). These 

constants depend on the crystal orientation. 
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Loading in [00 1]: 

12 
K'*= K 

)(n+l)/2n ; n'=n (Mll-M12 
(6.9a) 

I- 
N12) ; 

w 1= 
w 

NFMII-MI2 

Loading in [I I I]: 

Ql- (QII-QI2) 
Ix -m 12 

-b- VRIý ýMI2 

kl- _k; K'* =K nl=n FM44 /2 (M44 /2)("1)/2n 

N'=2 N44 Ql= 
Q44 

ýM44 /2 

W= wVb 
JMF44 2m /2 

= 744 

(6.9b) 

(6.9c) 

(6.1 Oa) 

(6.1 Ob) 

(6.1 Oc) 

The material constants k, K*, n, W, b, MII-MI2. M44, N, I-Nib N441 QII-QI2 and Q44 

are given in Table 3.3. 

In the numerical simulation, the time independent case can be approximately 

calculated using the FORTRAN program written for time dependent case with 

material constant K* chosen to be close to zero. 

The results for simulations corresponding to the [00 1] and [IIII orientations with 
different material constants K* are shown in Figures 6.11 and 6.12. The simulations 

were carried out under total strain control with a very slow strain rate of 0.00004/s. 

It can be seen that stress response decreases with decreasing values of K*, i. e. the 

time dependent stress contribution decreases by reducing K*. There is no significant 

stress difference between the simulation results with K* =16.968 and K*=1.6968, in 

Figs. 6.1 1. and 6.12. 'Mis indicates that with K*=1.6968 the stress and strain 
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response is approximately time independent. Furthermore, the time dependent 

stresses with K* =1.6968 can be estimated from a simple calculation. 

For strain rate of 0.00004/s, the maximum inelastic strain rate will be less than 

0.00004/s. Therefore assuming that: 

Then for the [00 1] orientation: 

ýin =j=0.00004/s 

K'*(t")""= 0.102MPa 

and for the [I I I] orientation: K'*(ým)i/n'= 0.09 MPa 

it can be seen that there is only a minor influence on the stress response from the 

time (rate) dependent term. 'Merefore the simulation results can be compared with 

the analytical solution for the time independent cases. 

The results from the simulations and the analytical solution are compared in Fig. 6.8 

and Fig. 6.9 for the [001] and [I 11] orientations respectively. It can be seen that the 

numerical simulations almost exactly agree with the analytical solutions. The 

relative error in ternis of stress is defined as 

CTerror ý-- 
CFanalysis - crsimulation 

(yanalysis 

it was found that the maximum Gerror during all the calculations for both the [001] 

ý and [I 11] orientations was less than 0.2%. 

Further simulations were carried out for different strain rates to assess the numerical 

accuracy for time dependent deformation response. Figures 6.13 and 6.14 show 
results for the [00 1] and [III] orientations. Different K* values were used in the 

simulations to represent the time independent (K*=1.6968) and time dependent 
(K*=1696.8) cases. It can be seen that for the time independent cases, there is hardly 

any strain rate effect on the stress and strain response, Fig. 6.13b and Fig. 6.14b, 
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whilst a strong strain rate effect was observed for the time-dependent case, Fig. 6.13a. 

and Fig. 6.14a. 

The calculations indicated that the stress reaches to a saturated level at large strain 

level for a given strain rate. Then at large strain level, the inelastic strain rate is very 

close to the total strain rate, i. e. ýin ,, J. At the same time, the back stress, X', will 

also reaches to its saturated value. Therefore, the stress at the maximum strain can 

be calculated as: 

a =k'+X'+R'+K*(&)l/n'=(y p +CFV 

ap = k'+ X' + R' -- cons tan t (6.13) 

crv =K'*(ýin)l/n'; z,: K'*(j)I/n' (6.14) 

For a given strain rate, the stress difference between the time dependent form (': Fa) 

and the approximate time independent form (ab) can be analytically calculated as 

A(: 7ana. : -- CFa - (: rb ýý (K'*ý T) I/n, )a - {K'*ý T) I/n' )b (6.15) 

The stress difference between the numerical simulation results, Acycal., can be 

directly obtained from the simulation output files. Comparison between A(Yana. and 

can further verify the accuracy of the numerical simulations. 

Analytical and numerical calculations have been carried out for the [00 1] and [I II 

orientations under total strain control loading with strain rates of 0.004/s, 0.0004/s 

and 0.00004/s respectively. 

The results were summarised and compared in the following tables. 
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[0011 Analytical 

Results 

Numerical Results Relative Error 

T A(Tana. (MPa) Accal. (MPa) A(Tana. -Acrcal. % 
I 

AiYana. 

0.004 366.30 366.38 0.02% 

0.0004 193.31 193.47 0.08% 

0.00004 102.09 102.18 0.09% 

Analytical 

Results 

Numerical Results Relative Error 

T AcFana. (MPa) Acycal. (MPa) AcFana. -Acrcaj. % 

0.004 327.17 326.84 0.02% 

0.0004 172.73 172.56 0.01% 

0.00004 91.18 91.19 0.11% 

it can be seen that the relative stress errors are less that 0.2% for all the assessment 

cases. 

The above assessment has demonstrated that the in-house FORTRAN program is a 

reliable program that produces stable convergence and accurate numerical results. 

These simulation results can then be used as benchmark to verify the finite element 

calculation results. The comparisons given in Chapters 4 and 5 showed very good 

agreement between simulation and FE calculation results. 

j -ý Finite Element Calculations 

The principle concept for finite element analysis is discretisation. The structure is 

divided into small finite elements whose stress-strain ýehaviour response is 

described by a constitutive law. The local information of the stress-strain behaviour 
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is assembled at a global level so that equilibrium equations are satisfied throughout 

the elements of the whole structure. The finite element program used in this work is 

a combination of the commercial software (ABAQUS) with in-house developed 

program (UMAT). The global numerical calculation of the nonlinear equilibrium 

equations is performed by ABAQUS, whilst the local numerical calculation of the 

nonlinear stress and strain is carried out by the UMAT subroutine. 

For problems involving history dependent response, the solution in ABAQUS is 

usually obtained as a series of increments, with iteration within each increment to 

obtain the global equilibrium (ABAQUS User Manual [1995]). Therefore, the 

objective is to obtain a convergent solution at a minimum cost. The nonlinear 

procedures in ABAQUS offer two approaches to this. Direct user control of 

increment size is one choice, whereby the user specifies the incrementation scheme. 

This is sometimes useful in repetitive analysis, where the user has a good "feel" for 

the problem. Automatic control is the alternative approach, whereby ABAQUS 

automatically selects the increments as it develops the response in the step. This 

approach is usually more efficient, because the user cannot predict the response 

ahead of time. Ultimately, automatic control allows nonlinear problems to be run 

with confidence without extensive experience with the problem (ABAQUS User 

Manual [1995]). 

Since automatic control was used in this work for the finite element calculations, the 

overall convergence and accuracy of the calculation results were controlled by 

ABAQUS procedures. The local numerical calculation (using UMAT) only 

influences the speed of the convergence and the efficiency of the finite element 

calculation. 

ABAQUS incorporates an empirical algorithm designed to provide accurate, and at 

the same time economical, solution of the equilibrium equations of nonlinear 

systems. The algorithm controlling the criteria used to establish convergence of 

nonlinear increments, as well as the automatic adjustment of increment size based on 

the rate of convergence. There are numerous parameters associated with these 
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algorithms. These parameters are assigned default values, chosen to optimise the 

accuracy and efliciency of the solution for a wide spectrum of nonlinear problems. 

These default values need not be adjusted for most cases (ABAQUS User Manual 

[1995]). 

These default control parameters are designed to provide reasonable optimal solution 

of complex problems involving combinations of nonlinearities, and efficient solution 

of simpler nonlinear cases. However, the most important consideration in the choice 

of the controls and of the default values assigned to the control parameters is that 

any solution that is accepted as "convergence" is a close approximation to the exact 

solution of the nonlinear equations (ABAQUS User Manual [ 1995]). 

I Since the automatic time incrementation scheme provided in ABAQUS will ensure 

convergence and accuracy solution for global numerical calculation, the main 

objective of this work is to develop a local numerical implementation scheme to 

improve the overall efficiency of the finite element calculations. This was achieved 

by selecting a stable implicit numerical integration scheme and obtaining 

approximate closed forin solutions for the stress and strain, as well as the internal 

variables in the incremental equations. An approximate solution for the Jacobian 

matrix required in the ABAQUS global level equilibrium equations was also 

obtained from complex mathematical analysis. 

The progressive development of the local level numerical schemes and their 

interaction with the global level ABAQUS calculations has been discussed in section 

6.5 of Chapter, 6. Two numerical integration algorithms have been progressively 

developed. One is a partial implicit integration scheme and one is a full implicit 

integration scheme. The partial implicit integration scheme was developed firstly to 

demonstrate the feasibility of application of the implicit numerical algorithm for the 

anisotropic elasto-viscoplastic constitutive models, and to achieve an approximate 

closed form solution. Consequently, simplifications were introduced in the 

numerical method to reduce the level of difficulty in the mathematical derivation. 

In this algorithm, a full implicit scheme was applied to the inelastic strain rate which 
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is the primary variable in the constitutive model. A semi-implicit scheme was used 

to the back stress and isotropic hardening variables. The full implicit algorithm was 

developed to improve the computational efficiency. In this algorithm, the full 

implicit incremental integration scheme was applied to all the variables in the 

constitutive equations. Consequently, the mathematical derivation of the numerical 

implementation procedure is much more complicated, and great effort was devoted 

to obtaining the closed form solutions. 

The full implicit algorithm provided more accurate stresses, strains, and the Jacobian 

matrix, at each integration point to the global equilibrium equation. Consequently, 

the rate of convergence in global level calculation is improved and less iterations 

required. The improvement of the calculation efficiency can be demonstrated by the 

comparison of the computing time used in the calculations with partial implicit and 

full implicit algorithms. An example is given in the following table using the 

UMAT routine for the phenomenological model. The comparison includes results 

using a simple single element and the more complex cylindrical specimen. 

Calculation Case Computing time (minutes) Improvement 

Partial implicit Full implicit 

Single element 10 2 5 times 

Cylindrical specimen 

(540 elements) 

450 80 5 times 

It can be seen that the local numerical integration method had a significant influence 

on the computational efficiency of the overall finite element calculations. 

6.7.2. Modelling Consideration 

The nickel based material used in this thesis is SRR99 single crystal superalloy 

developed for gas turbine blade applications. Extensive experimental studies (Li 

[1993], Li and Smith [1995a, b]) have been carried out to for this material at Bristol 
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University. However the main objective of the experimental work was to determine 

the fatigue life of single crystal SRR99 under combined fatigue and creep loading 

conditions. Consequently, the experimental results obtained from the earlier studies 

(Li [1993], Li and Smith [1995a, b]) can not be used directly to determine the 

material constants with a consistent procedure such as the procedure proposed in this 

work. 

A trial and error method had been used by Li [1993] to fit the material constants for 

the phenomenological model. This method involved manual adjustment of the 

material constants to obtain the best fit of the experimental data. It was found that 

the trial and error method was very time consuming and non-repeatable. It is not 

possible to use the trail and error method to fit the material constants in two different 

models and then compare the models, since the errors induced by the method will 

override the characteristics of the models and the intrinsic features can not be 

explored. However, the extensive work carried out in the earlier work using the trial 

and error method did provide a reasonable good fit for the phenomenological model 

with the experimental results (Li [1993], Li and Smith [1995a, b]). Therefore, the 

simulation results generated by the phenomenological model with the material 

constants ftom earlier work will provide reasonable data similar to the real 

experimental data. These results can then be used to determine the material 

constants in both the phenomenological and crystallographic models with the 

proposed consistent procedure. This will provide the basis for direct comparison of 

the two models. 

The method proposed in this work has identified suitable tests to determine the 

material constants for both models. A consistent procedure was established to 

determine the material constants for the two models using the same experimental 

data. The calculations demonstrated that this method can produce the exact material 

constants determined in the earlier work for the phenomenological model. Therefore, 

the accuracy of the consequent numerical simulation and finite element calculation 

results will be the same as in the earlier work (Li [1993], Li and Smith [I 995a, b]). 
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As an example, Figs. 6.15 and 6.16 compare experimental and simulation results 

generated by the phenomenological model (Li [1993]). The comparison includes 

continuous cyclic fatigue tests (Fig. 6.15) and cyclic fatigue tests with time dwell at 

maximum and/or minimum strains, i. e. combined fatigue and creep tests (Fig. 6.16). - 
It can be seen that the simulations are in good agreement with the experimental 

results. This demonstrated that constitutive model was well developed based on the 

material deformation characteristics, and the accuracy of the model is reasonable 

good, at least based on the limited experimental evidence. 

The finite element (FE) calculations for cylindrical bar specimen which represent the 

test specimens have been carried out using both the phenomenological and 

crystallographic models. The' specimen orientations are given in Fig. 6-17- The 

loading conditions used in the finite element simulation were exactly the same as 

those used in the experimental testing. The stress ranges calculated from the finite 

element simulations are compared with the experimental results (Li [1993], Li and 

Smith [I 995ab]) in the following table. 

Specimen 

No 

Experimental 

Results 

FE Results 

Phenomenological Model 

FE Results 

Crystallographic Model 

(161CF) T 9, 
Wa (ACF) FE Wa Relative 

Error, % 

(AU) FE 

Wa 

Relative 

Error, % 

A 539 544 0.93 545 1.11 

B 533 506 -5.07 534 0.19 

C 368 393 6.79 406 10.33 

D 338 330 -Z37 334 -1.18 

E 212 226 6.60 226 6.60 

- --- F 429 414 -3.50 415 26 73. 

Note: Relative Error = 
(Acy) p- 

(Aa) FE X 100% 
(ACT)FE 
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The results are also plotted in Fig. 6.18. It can be seen that both the 

phenomenological and the crystallographic models provide good results when 

compared with the experimental results. Based on the limited available 

experimental data, it is difficult to draw definite conclusions to indicate which model 

is better. Further experiments, in particular multiaxial loading experiments, are 

required to verify the models. These experiments also are needed to provide 

information for further modification and improvement of the models. 
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CHAPTER 7 
CONCLUDING REMARKS 

7.1. Conclusions 

1. Two constitutive models, one phenomenological and the other crystallographic, 
have been presented to describe the anisotropic viscoplastic deformation 
behaviour of single crystal nickel base superalloys under isothermal loading. 
These models have also been developed further for thermomechanical 
applications. 

2. Theý two models are then applied to the simple uniaxial loading cases to identify 

the suitable tests for determining the material constants. A group Of generic 

equations have been identified for both models for uniaxial loading in the [001] 

and (I I I] orientations. Consequently a consistent procedure to determine the 

material constants in the two models using same experimental results is proposed. 
This allows a direct comparison of the intrinsic characteristics of the 

phenomenological and crystallographic models. 

3. A common numerical procedure to determine the material constants in the two 

models has been developed. The procedure includes a number of local 

optimisation routines to determine several group of matefial constants from 

experimental data associated with the deformation characteristics described by a 

given group of material constants. The procedure has been utilised successfully 

to determine the material constants in the two models for single crystal SRR99 at, 

950'C. 

4. Using the material constants determined from same experimental results and 

using a consistent procedure, the intrinsic characteristics of the two models are 

compared. The simulation results indicate that both models can describe the 

fundamental deformation features of single crystal alloys. However, differences 

are observed when the stress and strain curves predicted by the two models are 

compared. Further investigations indicated that the difference between the two 
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models is dependent on crystal orientation. The orientations where the two 

models predict similar deformation behaviour are consistent with the orientations 

where either octahedral or cubic slip dominates the inelastic deformation. 

5. A numerical implementation procedure, based on the implicit time integration 

scheme, has been developed to transform the differential anisotropic viscoplastic 

constitutive equations of both the phenomenological and the crystallographic 

models. Closed form approximate analytical solutions for nonlinear incremental 

equations have been achieved for the two models for both isothermal and 

thermornechanical applications. The closed form solutions improve both the 

numerical calculation accuracy and FE analysis efficiency, and reduce computer 

running costs. 

6. The numerical implementation procedure has been successfully coded into 

UMAT subroutines in the ABAQUS FE code. A comprehensive program has 

been carried out to verify the numerical implementation procedure, the UMAT 

subroutines and their interface with ABAQUS. The results obtained from the 

finite element analysis were found to be in good agreement with theoretical 

predictions. 

7. The UMAT and ABAQUS codes have been used successfully for structural stress 

analysis. Different shaped specimens, including cylindrical bar, plate and tube, 

have been analysed under uniaxial tension, cyclic tension/compression, pure 

torsion and combined tension-torsion loading conditions. The structural stress 

analysis further explored the anisotropic deformation characteristics of the single 

crystal superalloys, and examined the similarities and differences between the 

phenomenological and crystallographic models. 

8. From the FE results using the two models for complex loading, the structural 
deformation response has been examined in detail. As an example it was found 

that under torsion loading, the two models gave very similar predictions for the 
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global response, i. e. torque versus twist angle. However, predicted local 

deformations using the two models were found to be very different. 

7.2. Recommendations for Future Work 

The results from the research have revealed that the two models provide 

significantly different results particularly in terms of the transverse response of 

single crystal structural components. Direct verification using a complex geometry, 

such as a notched bar to explore the transverse behaviour is required. However, the 

measured strains would be very low and difficult to measure. 

Models have been developed and implemented here without cross-slip. It is evident 

from Chapter 4 that the formulation for the crystallographic model allows cross slip 

to be introduced. 

The models explored in'this work are for cyclic loading with limited creep effects. 

The material behaviour for longer duration is dominated by creep. Nevertheless, we 

would expect interactions between creep and plasticity. This is demonstrated in the 

current models. Further work is required in integrate the short term creep and 

plasticity effects with longer term creep behaviour. 

Finally, further work is required to be able to simulate non-linear material response 

for a range of temperatures. Preliminary work has revealed that a single model for a 

range of temperature is difficult to implement. 
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Appendix I 

APPENDIX I 
SCHMID'S LAW AND SCHMID'S FACTORS 

Consider a cylindrical single crystal with cross-section A and a crystal orientation 

[1,, m,, n, ] loaded by a uniaxial load P. The direction of the normal to the slip plane 

is [l2, M2, n2] and the slip direction is [13, M3,1131- The angle between the tensile axis and 

the normal to the slip plane is T, and the angle which the slip direction makes with 

the tensile axis is 0. Hence, the area of the slip plane inclined at the angle (P will be 

A/cosT, and the component of the axial load acting in the slip plane in the slip 

direction is PcosO. Therefore, the resolved shear stress, r, is given by 

Pcoso p 
, Cos(, ) 

T =. ý= -Cosýp COSO 
ICOS9 A 

Schmid's Law states that yielding occurs when the resolved shear stress reaches the 

value of the Critical Resolved Shear Stress (CRSS), r 

COSO py 
Ts =. 

py 
= -COST COSO = cry COST COSO (A 1.2) 

A /COST A 

or 
cry= Ts /COSTCOSO= 

where Cy is the uniaxial yield stress, Cos (OCOS 0 is called 

Schinid's Factor. For a given slip system and loading direction, Schmid's Factor 

can be calculated using the following equations. 

coso 
1113 + mm3 + n, n3 (AIA) 112 

+ M2 
2222 

11+n, 
ý13 

+ M3 + n3 

Cos (p 
1,12 + mlm2+ njn2 (ALS) 

I 
172 + M2 

i2+ 
n4 + II+n, NF12 

where Ii. mi and ni are direction cosines (i= 1,2,3). 
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Appendix 11 

Global Loading to Crystallographic Coordinate System 
Transformation 

The global and crystallographic coordinate systems are illustrated in Fig. 3. I. The 

loading direction Z is set to be along orientation (l, m, n) in the crystallographic 
coordinate system, X*-Y*-Z*. Direction Z can then be written in a vector form as: 

mn ++k 112 
+ M2 

2 jj-ý 
+- M-- 

-2- 2j 112 -+M 22 
+n +n +n 

The direction X, which is at 90" to Z, can be assigned arbitrarily by 

X =ai+bj+dk, and the third direction Ywhich is at 90* to both Z and X can be 

described as 'ýI =di+ e-j +f k-. The values of a, b, c, d, e and f can be determined by 

the scalar products and vectorial products between the vectors 5ýjf' and 2: 

X-Y=O 
ý(-2 o 
2-5ý o 
5ýx'ý =2 

These lead to: 

ad+be+cf =O 
ld+me+nf =O 
al+bm+cn 0 

1 bf -ce- FA =0 
(A2.2) 

m 
cd-af - FA =0 

ae-bd- 
n=0 

V-Al 

With A, =11 +M2 +n2. 

The solution of equation (Al. 2) gives the direction cosines between the 

crystallographic directions, X*-Y*-Z* ( [100]-[Olo]-[001]) and the loading 

directions, X-Y-Z, and one solution based on rn'+ný #0 is presented in the 

following table: 
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X*: [100] Y*: [010] Z*: [001] 

x In 
2 

+n 
2 ml In 

1A2 NF'ä 1A2 

0 
n 

ý-'ä2 
' 

m 
VA2 

1 m n 
V-AI v-lä, v -A, 

with AI= 12 +M2 +n2, A2=M 2+n2 

The stress and strain transformation matrices Aij and Bij are defined to transform the 
global stress and strain in the loading system to the crystallographic Coordinate 

system as 

[CY i ]crystal --"ý A ij 1(7j loading 

[6 *i ]crystal =B ij [ej Ilodig 

Consequently, matrices Aij and Bij have the following formulation. 

Aý2 0 12 A2 0 21A2ýA2 0 

212 2AJ 
mn M2 A2 2mnVAIA2 M214A2 -2 2 - 21mnVAI 

12 2 M2A nI 
2 

n A2 
- 2mn4A-lA2 2- 

- 21n. 4A2 21mnV-Ai 
Aij 

AIA2 12Mn 
- mnAl nUlA2 (n2 M2 

- )ýAIA2 I(M2 2)V-A 
I - 21mn4A2 nI 

-InA2 0 InA2 'MNFAIA2 12 (A2 )nVA2 MA2VAl 

--'MA2 
0 IMI&2 In. ýIA2 * 

. 12 - (A2 ) mFA2 
FA nA2 .Ij 

Y2 0 12A 2 0 'A2ýA T2 0 

212 2, &l mn M2 A2 mnVAIA2 M21, 
]-A 

2 2 - ImnVA, 

22 2A 1nmI 2 
n A2 - mnýAA 2, ý-A 

2 -in 2 ImnVA, 
B 'i -' AIA2 12 2 mn - 2mnAl 2MnA2 2_M2) (n NFA VA 2 1(m2 2)V-A 21mnýA-2 

-n 

-2 In A2 0 21M2 'MVAIA2 ZIA2 12 (A )nVA2 2 
Z2 

"MA24AI 

-21MA2 0 21MA2 InFAlA2 12 )M ýA- 
2 (A2 2 nA2VAl 
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For loading in [001], i. e. I=m=O and n=1, the stress and strain trasformation matrices 
A andB are unit matrices; for loading in [111], i. e. l=m=n=l, A, =3andA2 =2 
the stress and strain transformation matrices A,, and B,, are: 

2 
0 1 

0 
2.5 

0 
3 3 3 
1 1 1 -, 

f6- r2- 
-13- 

6 2 3 3 3 3 
1 1 1 -, 

r6- 
\/2- \f3- 

Aij 6 
1 

2 
1 

3 
1 

3 3 
f2- 

3 

6 2 3 
0 

3 
0 

1 0 1 \16- [2- NF3 
3 3 6 6 3 
1 1 V-6- 

-F2 \F3 
L 3 

0 
3 6 6 3 

2 
0 1 0 0 

3 3 3 
1 1 1 NF6 r2- Nf3- 
6 2 3 6 6 6 
1 1 1 V-6 F2 -[3- 

Bij 6 
1 

2 3 
2 

6 6 
[2- 

6 

3 
1 

3 
0 

3 
0 

2 
0 2 J6 

ý12- 
43- 

3 3 6 6 3 

-2 0 2 Nf6- vF2 
43- 

L. 3 3 6 6 3 
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Appendix III 

Slip Systems and Stress Localisation to Slip Systems 

The basic inelastic deformation mechanism in a single crystal alloy will be slip. 
Inelastic flow occurs by slip on certain planes in particular slip directions. For single 
crystal nickel base alloy, with a fcc crystal structure, two types of primary slip 
systems have been identified from exper 

' 
imCntal observation and included in the 

crystallographic models. The two types of slip systems are octahedral and cubic slip 
systems as shown in Fig. 3.2. There are total of 18 possible slip systems, with 12 
octahedral and 6 cubic slip systems. The unit vector of the slip plane normal 
direction and slip direction in each of the slip systems are summarised in Table 
A3. L 

Table A3. I. Slip Plane Normal Directions and Slip Directions 

Octahedral 
Slip System 

111,12,131 (n,, n2, n3) Cubic Slip 
System 

Vis 129 131 (nj, n., n, ) 

1 -1 ] ý2 
'0'72 

ý) 
3 3'ý 

13 '72 
1 

ý2 
9 

01 J- 10,0,1 

2 [ -1, - Po ý2 2 - 
ý3 

' 
ý3 

' 
ý3 ) 14 ý'%12 

'o 
0,0,1 

3 0't 
%2 '42 3' 3 

1ý 15 
T 

' ý2 
'o' 

ý2 (O'l, o) 

4 -2 II lot ý2 
( tL'-*' ý3 16 L 

%ý2 2L'o' 
ý2 ( 0,1,0 ý 

'01 -T2' 72 ý3 3) 
17 0'-ý271 

42 
lo, o) 

6 ý2 
'o' 

ý2 LT "L) tL _J3 3 
is L 0' ý2L '-ý2 

] Il'o, o) 

L T : ý2 I l' 
--I- 3 

(t 
N3 3 -ý3 'V 

8 -, 
L ý2 

*t 'o 
3 1 ýt 

'- 
ý31 

' 43 
) LL-, L 

9 j- 0L 
'ý2 '42 -1 1 T'' -j- ý31 

' 43 

10 I 0' ý2 L L -, L 
-43 't ' . 43 

II E ý2 
' 

ý2 
'01 -w-L-, 

L ( ý3 
' ý31 ' 13 

) 

- 
12 L-3 ý2 'o' 

ý2 
't 

*1 *3 
3LL 3 V 

r, i 

For a general loading case, the global stress, aij, is first transformed into the 

crystallographic coordinate system, cr'ij, using procedure given in Appendix II. 

Then the stress, cr-ij, is resolved into each of the slip systems using the localisation 

equation based on Schmid's law as 

(T m 
with 

(A3.1) 

sIssss m, j = -I(nilj + njl, ) (ii =1,2,3; s=1,2,3 ..... 
18) (A3.2) 
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APPENDIXIV 

NOTATION OF THE CONSTITUTIVE EQUATIONS 

In the following, the original 3D constitutive equations are rewritten by introducing 

a short hand notation for the various transformations, i. e. coordinate transformation 

and incremental transformations of variables. 

(IVA) The Phenomenological Model 

(1) Notation of Basic Equations 

Total stress rate given by: 

äi = A-C-. 'A ýe =CI ý'1 IT ** ) (A4.1) ij jk ki 1 ii i= 
Cii (Ei 

- 
ýin 

with 
Ci'j = 

A-ik'C Ali (A4.2) 

i, j, k, 1 =1,2 .... 6 
The yield function f is 

ki 
-X *)'A'M A. (a*. - X'j) fi 

ij jk -R-k (A4.3a) 
(a; - X) -R-k 

where 
M: = A'iMkA (A4.3b) 

ii k 

The inelastic strain is given as 

3 B; 'Mji A- Xk) 
ii lk 

(crk 
ýI 

=-x; 
) 2(P" V-I(a'i-Xi)'A'MjkAkl(a', 

(A4.4a) 
2 
ij(cri 3( ff Mij -Xi) 

2g 

where 
M'= B-Mk, A (A4.4b) 

ii ik 

The intemal variable X is 

where 

ýCj= )-A-lN 
I) - 

(A-' (2 
ii jkBkl ýin ij QjkAkJ XI 

(A4.5a) 
(N!. (Q!. Xj P) 
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N ilj = -31 A -ikl N k, B IJ 2 

Q,! j = A-iklQkA 
(A4.5b) 

i li 

and the total accumulated strain rate is 

(ij)'B'WB. (ý') 
V-31 - 

in 
ij jk 

n 

VIT (' 
ii 
n)IMI! 

j 

("5ý, 

j. 
-) 

(A4.6a) 

where 
M'ij = Bi', MklBij (A4.6b) 

(2) Notation of Incremental Equations 

FjO = (PG4)i-j(PGI)i 
Vij' =, AtO(PG4), -k(PG3)kj ik 

(PF6)k = (5u - (PF2)kl - (PE2)kl (At ' 3ý,, + cl - (PE3)1) 
(PF7)ij = (PF4)i-kl (PF5)kj 

dl = cl + c2-2L 
0 j. 

(PA2) ij (PF6) j 
n Wn 

, +oAt. -i (PF6)k n+ OAt - dl ' and i, j, k, I=1,2,.. where (PGI)j = Attjt 
OXk aR . 6. 

The definitions of matrices PG4, PF2, PE2, PE3, PA2, PF4, PF5, d2 , etc. are in the 
following: 

EELAS(6): s*j, i=1,2 .... 6 
EPLAS(6): c,! "or cil, i=1,2,... 6 
ALPHA(6): Xj, i=1,2 .... 6 
OLDS(6): ajo, i=1,2,... 6; initial stresses of the time increment 
OLDEL(6): cio, i=1,2,... 6; initial strains of the time increment 
OLDPL(6): ei'Oor ej%, i=1,2 .... 6; initial inelastic strains of the time increment io 
ORN(3): El m, n]; orientation vector 
CO(6,6): elastic modular matrix Cij at crystalline coordinate system 
ZMO(6,6): anisotropy matrix Mij at crystalline coordinate system 
ZNO(6,6): back stress parameter matrix Nij at crystalline coordinate system 
QO(6,6): back stress parameter matrix Qjj at crystalline coordinate system 
CI(696): Ci'j AikICkj Bli 

ZM1(6,6): M,! j A iMkI A ii k Ii 

ZN1(6,6): W= 3 A-'N ik k, Bj 
1 2 
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Ql(6,6): Qj'j A-iklQk, Ali 

ZM2(6,6): M j'j 
B-, 

kMk, 
Ali 

ZM3(6,6): M' B-M B- ii ik. kI Ij 

XXXO(6): Xjý initial back stresses of the time increment 
DDSTRE SS(6): stress deviator ai 
DDOLDS(6): u, O initial stress deviator of the time increment 
DSX(6): Cri - Xi 
DSXOLD(6): initial vector (Tio - Xio of the time increment 

DDSDS(6,6): 
ODG 

WW1(6): mjlj (, ujo - xjo) + mjj (ajo - xjj 

WW2(6): mii (crio - xjo) 

DEINDR(6): 
aR 

WW(6,6): M2(CY'o _X'o) [Mý(Cy'o _X'o) + Mli (cr, 
0- 

X' 
0) 

1 
ii ii li iiiii 

FFG: 
3n n-1 

_( 

fn11 
IAI 1) "K*. 

) 

A 2 X' V-i(dio-gio)'AtijMjk 
kl(G'10 10) 

GO: )'Atm A '10 
2 io ij jk kl(C; - X; 

0) 

3 FFG fn m21 VJWW(6,6): 
4G0 

[ 
GO 

WW(I, J) + 2.0 ii 

DEINDS(6,6): ýý' 
aaj 

in 
DEINDX(6,6): 

&i 
axi 

EINO(6): jin 
, initial inelastic strain rate of time increment 

io 
DELTA(6,6): unit matrix 
EIN(6): final inelastic strain rate of time increment 

in a. 

-Ato&i Q1 X DEEINI(6): AtO+[b(Q-RO)AtOýý' io aR ax i 
jk kO 

]AP 

DEEIN(6): Ac,! " 
DEEE(6): Ac!, 
DSTRESS(6 ): Aai 
DXXX(6): AXi 
CIII(6,6)-. (Cljj)-' 

PB1(6,6)-. aýci i & n 
i 

182 

k6. 



Appendix IV 

PB2(6): aýc i 

PB3(6,6): 
clXj 

PD(6,6): axi axi + &n 

J PE1(6,6): OAt PD(ij) 
aCrk 

PE2(6,6): OAt (PD(i, j ) PB3(i, k)) 
aXk 

oqý! n 
J 

PE3(6): OAt PD(ij) 

PD1(6): i n & 
i 

in III 
PF1(6,6): CC2*PE3(i)PDIG') 

2Lj- 
O)a k 
-ýjn 

PF2(6,6): CC2*PE3(i)PDIO) 0 
aXk 

PF3(6): At -. 3(it + CCI - PE3(i) 
PF4(6,6): DELTA(ij)-PF2(ij)-PE2(ij) 
PF41(6,6): inverse of PF4(ij) 
PF5(6,6): PEI(ij)+PFI(ij) 
PF6(6): PF41(ij)PF30) 
DD2(6,6): DEINDX(ij)(PF41(ij)PF50, i)) 
D2(6): CC2*PDIO)*(DEINDSO, i)+DD2a, i) 

PGI(6): 
-nA in in 

Atý in VO 
it +OAt- i PF6(j) + OAt - dl 

OXJ 

PG2(6M: 
!n in in 
i+ 

ýLill 
PF5@ + 

ýLi- 
D2@ 

Dai axi aR 

PG3(6,6): PG2(ij)Clo, k) 
PG4(6,6): DELTA(ij)+ OAt PG2(ij) 
PG5(6): PG41(ij)PGIO) 
PG41(6,6): inverse of PG4(ij) 

(3) Notation of matrices for nonlinear procedure Jacobian matrix 

nMAjk = Q3-1 WWM A*pk ml lp 
C23,. l = 8.1 + f1l., + Q2.1 

with nl., = a. WWM. 
kANQkl 

C22m, ý(a. b. c*(Q-R)/(I+a-b-ý(, )))W. Mmm, 
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3b* 2 wwmlp 
= 4g 

W, WMP +d* MIP 

= 
M12 ' 

-X' W, k 
((Tk 

k 

9 

wmp = MPI, (a; - X; ) 

a(CF, - XP) 
Apk -p 

09a k 

a= OAt; b is material constant; 

b* =31n(f1(f 2 K* K* g K* 
where, 

c* 
3 n' (f 
2K* K* 
31-f d* 
2-g( K* 

(Ill. ii) The Crystallographic Modcl 

(1) Notation of the Basic Equations 

Using the Voigt vectorial notation for stress and strain tensors 

The stress localisation and strain hornogenisation between the crystallographic and 
the macroscopic levels can be obtained 

Stress localisation: 

I(TY = R71 :- (3112 (: 72 :- (T22 2 (: 73 = (: 73P (74 = (723) (: 75 = C713 I (: F6 = (712 

ICY = lei = 811962 = 622963 = e3P64= 2Y2PCS = 2yI3266 = 2yI21 

TS Cr ms+ 2M23CF23 + 2MS131ý713 + 2ms, 2CF, 2 = ii ii = MSIFII + MS22(: 722 + MS33CF33 s 

or 
[TI = M%icri (A4.7a) 

with 
MISI = Msl II Mls2 = M322 9 

Mls3 =M 
S33 

ý 

Mls4= 2M231 Ml, S = 2MSI31, Mls6 = 2MIS2 

(ni + n! l! ) 2jI 

Strain homogenisation: 

(A4.7b) 

(s=1,2 .... 18, i=1,2,3) 
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ýin Ei Wij 

s 

or ýT Wjs[flý, (A4.8a) 

m2,, =msll, m2 =ms m2 s 2s 229 3s = m3' 
0=1,2,... 6; s=1,2 .... 18)(A4.8b) 

m24, = 
2Ms239m25s = ms3, m26, = M112 

Under general loading conditions, stress and strain transformations are performed by 

matrix A and B: 

[cr i ]crystal A ijl(yj 
I 

loading 

[r- 
i 
]crystal B 

ij 
EC 

j 
loading 

The total stress rate is given as: 

6ri A-'C-1 Am Clij V= Clij (A4.9a) ij jk 

Clij A-iklCkB (A4.9b) 
then 

and 

[rL = MM'siai (A4.10a) 

MM I. j =MI. i Aij (A4.10b) 

M3 islA (A4.1 I 

M3j., = Bi-jlM2js (A4.1 I b) 

(2) Some notations used in incremental equations 

with 

C2 AsjT - M4sn(A7)n (A4.12a) si i 

C2sj = MMI, iClij ij=1,2 .... 
6; s, n=1,2,... 18 (A4.12b) 

M4sn = C2., i M3i,, 

CCIs + aCC3 AcTj - aCC4 si i SM(AY)M (A4.13a) 

n, = E4 + E5 As T 
läy rn mk k (A4.13b) 

CCIs = DBAj'At: k, t , Msi = CC2,. (MAC)�j 

CC2sn = DBAi'BAI 11, , CC4s, = CC2sn (ABM)nm 

E4rn = E3-1 Els 9 E5mk = E3-1 E2 
ms ms sk 
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where a= AtO, and the definitions of matrices, DBA, MAC, BAI I ABM, El, E2, 
E3 are given below. 

DBAs, -,: - 8s, -a- BA12,1 -a- BB2,1 
BA12sl 
MACsk 

ýMWsjA C' ii jk 
BAI I BBI,,,, AAl. 

n 
ABMsln 'VfACsk BMk. 

BMkin = B-'MMI 
kj jin 

Ell,, = DD%l +a- DD4, 
n 

DD111 = t'rn(t) 

DD4,,, = AA2., CCI, 

E2 
... k =a - DD2mk +a 2 DD5mk 

DD2 
iilk = AAI 

ms 
MACsk 

DD5,,, 
k = AA2., CC3sk 

E3n, 
s = 5ins +a- DD3lns +a2 DD6ms 

DD3 
ins = AAlml ABMjs 

DD6,,, 
s = AA2 

sCC4,1 
Where, k, j=1,2,... 6; s, 1, m=1,2,.... 18, and matrices AA2, BB I and BB2 and a are 
defined in Chapter 4. 
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APPENDIX V 

THERMOMECHANICAL LOADING INPUT FOR FE ANAYSIS 

1. Temperature Input 

1) Method 1: This method is suitable for the case where the temperature distribution 

is only a function of time, i. e. the whole structure has the same temperature. The 

syntax for this method is as follows: 

*INITIAL CONDITIONS, TYPE=TEMPERATURE 

node set, initial temperature value at the node, additional temperature values 
*AMPLITUDE, NAME=TEMP 

t, (time), a, (amplitude at time t, ), t2, a2 

*STEP 

*TEMPERATURE, AMPLITUDE=TEMP 

node set name, a(reference temperature values) 

*END STEP 

2)Method 2 

ABAQUS provides a simple interface which uses the temperatures at the nodes 

stored on the ABAQUS results file from the heat transfer analysis to define the 

temperature field at different times in the stress analysis. This interface assumes that 

the node numbers are the same for corresponding nodes in the stress analysis mesh 

and the heat transfer analysis mesh. So a typical sequentially coupled thermal-stress 

analysis consists of two ABAQUS runs: a heat transfer analysis, and a subsequent 

stress analysis. The procedure of the method is as the follow: 

First run: Heat transfer analysis (program: HEAT. INP) 

*14EADING 

*ELEMENT, TYPE=DC3D20 

187 



Appendix V 

choose the heat transfer element type 

*STEP 

*HEAT TRANSFER, STEADY STATE 

time step, time period, minimum time increment allowed 

apply thermal loads and boundary conditions 

*NODE FILE, NSET=NALL (create a results file for late use) 
NT (give the identifying keys for the variables to be written to the results file for this 

node set. NT: all temperature values at a node) 

write all nodal temperattires to the results file, HEAT. FIL 

*END STEP 

Second run: The subsequent thermal-stress structural analysis 

(program: STRESS. INP) 

*HEADING 

*ELEMENT, TYPE=C3D20 

choose the continuum element type compatible with the heat transfer element type 

used ' 
** 

*STEP 

*STATIC 

apply structural loads and boundary conditions 

*TEMPERATURE, FILE=HEAT 

read in all nodal temperatures from the results file, HEAT. FIL 

*END STEP 
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It is often convenient to set the period of the stress analysis step equal to the time 

period of the files being read in. 

3. Method 3 

This method provides temperatures at each time increment using the subroutine 

UTEMP which allows the user to prescribe the temperature at the nodes of a model. 

It will be called whenever a current value of temperature is needed for a node listed 

under a *TEMPERATURE option which includes the parameter USER. The syntax 

is as the follow: 

*TEMPERATURE, USER (indicate that user subroutine UTEMP will be used to 

define temperature values) 

*USER SUBROUTINES 

SUBROUTINES UTEMP (TEMP, 

NSECPT, KST8P, KINC, TIME, NODE, COORDS) 

END 

2. Mechanical Loading Input 

Both displacement control and stress control can be input by using input cards 

*BOUNDARY with *AMPLITUDE OR *USER SUBROUTINE, the syntax for 

using these cards is as the following: 

I)Syntax 1: for boundary condition defined by data lines to describe the variation of 

the loading amplitude 

*HEADING 

*AMPLITUDE, NAME=PULLI, (DEFINiTioN=TABULAR(default), EQUALLY 

SPACED, PERIODIC, MODULATED, DECAY .... which can describe sinusoidal, 

exponent type amplitude fimctions of time) 

t,, a,, t2,47-1 t-,, a, 3-- . '(tabular data) 
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*STEP 

*BOUNDARY, AMPLITUDE=PULLI 

node number of node set label, first degree of freedom constrained, last degree of 

freedom constrained, actual magnitude of the variable 

*END STEP 

2)Syntax. 2: for using prescribed loading condition defined by user subroutine to 

describe complex loading condition, such as sinusoidal surge motion, cyclic loading 

etc. 

*HEADING 

*STEP 

*BOUNDARY, USER 

node number of node set label, first degree of freedom constrained, last degree of 

freedom constrained, actual magnitude of the variable(displacement, velocity, or 

acceleration) which may be redefined in user subroutine DISP or left blank and 

defined by user subroutine. 

*END STEP 

*USER SUBROUTINE 

SUBROUTINE DISP(U, KSTEP, KfNC, TIME, NODE, JDOF) 

c 

INCLUDE'ABA-PARAM. INC' 

C 

DIMENSION U(3), TIME(2) 

C 
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user coding to define U 

RETURN 

END 

Variables to be defined: 

U(I): total value of the prescribed variable(displacement, rotation, pore pressure, 
temperature, etc. depending on the degree of freedom constrained) at this point. 
U(I) will be passed into the routine as the value defined by any magnitude and /or 

amplitude specification on the data lines. 

U(2): du/dt 

U(3): d'u/d2t 

3)Syntax 3: for distributed loads input 

*HEADING 

*AMPLITUDE, NAME=PULL2, 

giving all data needed by related option of DEFINITION) 

*STEP 

*DLOAD, AMPLITUDE=PULL2 

element number or element set label, distributed load type label, actual magnitude of 
the load which can be modified by the use of the *AMPLITUDE option. For 

nonuniform loads, the magnitude must be defined in user subroutine DLOAD. 

*END STEP 

4)Syntax 4: for nonuniform distributed loads input 

*HEADING 

*STEP 
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*DLOAD 

element number or element set label, distributed load type label 

*END STEP 

*USER SUBROUTINE 

SUBROUTINE DLOAD (F, KSTEP, KINC, TIME, NOEL, NPT, LAYEIý, 

KSPT, COORDS, JLTYP) 

RETURN 

END 

Variable to be defined: ' 

F: magnitude of the distributed load. Units are FL' for surface loads, FL" for body 

forces. 

Syntax I has been used in current research program for linear variation of 
displacement input. 
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APPENDIX VI 
STRAIN TRANSFORMATION IN THE CYLINDRICAL BAR 

CALCULATIONS 

(i) Strain Transformation 

In ABAQUS and UMAT subroutine, the stress and strain are all expressed in the global 
system, which can be referred as X* - Y* - Z* . 

'To investigate the anisotropic transverse 
and shear strain response in the cylindrical bar specimen, a local co-ordinate system, R-T-Z 
is introduced for each element, as shown in Fig. 5.7. This system represents a local 
cylindrical co-ordinate system, with Z direction parallel with Z* in the global system, and 
R is the radial direction and T is the tangential direction. 

The strain tensors in the global system X* 
tensors in the local cylindrical system by 
local strain can be expressed as 

6 =QTC ij ik klQlj 

- Y* - Z* are denoted by 8 ii, and the strain 
cip The transformation of the global strain to 

(A6.1) 

The transformation tensor Qj is determined using the current coordinates, X' and Y- in 
the form 

. X* y* . 0 TX-*+y* ý, (x-*+y* 

Qij = - 
y* X* 

TX * ý+V (x-- * _TY (A6.2) 

In the FE calculations, when UMAT is called, ABAQUS provides the current coordinates 
for each integration point. These information is used in the UMAT as input to a sub. 
subroutine, TRANS 1, to transforms the global strain into local strain. 

ain 

The calculated local strain components in the UMAT subroutine were then stored as 
solution dependent variables and can be printed out or used in post processing using 
R. ESTART file. 

Tile local elastic and inelastic strain component stored in the array STATEV are in the 
order: 

STATEV(3*NTENS+2) STATEV(4*NTENS+I) elastic strain ci' (i= 1,6) 

sTATEV(4*NTENS+2) STATEV(5*NTENS+I) inelastic strain c. ', " (i=1,6) 

193 



Appendix VII 

APPENDIX VII 

RAFTING EFFECT ON THE ELASTIC PROPERTIES OF 
SINGLE CRYSTAL SUPERALLOYS 

Assuming 7'=60% (volume fraction of y' phase) 

1. The Young's Modulus of Original Structure 

The original structure of a cubic single crystal is presented in Fig. A7. I a. 

The volume fraction of 7' phase leads to the following, where a, is length of the y' 
cube, and a is the length of the y cube. 

a', = 0.6a' 

a, -'rO. 6 a %: e 0.8434a 

a, 0.71138a' 

Then the change in length Aa of a associated with external load P is : 

Aa=2s, a -a' +s,, al = 0.1566a. S'L+0.8434asjj 
2 El 

a= Ejj =y=T 
2-- and 

a Ey Ey, 

aa2+ cy, (a 2_a 2) 
yII 

and 

a= 
PEf 

a'(0.71138E,, + 0.28862EY) 

ell == Ey a'(0.71138E,,. + 0.28862EY) 

Aa = 0.1566a- 
p+0.8434a p 

a2 Ey a2 (0.7113 8Ey'+0.28862EY) 

Since 
Aa a F-=-= 
a Ei, 

then Ell - 
E, (0.71138EY, + 0.28862E, ) 

0.11 14ET. + 0.8886EY 
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2. The Young's Modulus of a Rafting Structure 

Two cases of rafting structure have been studied here. 

(i) a case 

The 'rafting" structure is shown as Fig. A7.1b, and the two phases are all parallel to 
loading direction. 

The volume of y' phase: a2a, = 0.6a. 3 

therefore 
a, = 0.6a 

Aa = ca = c, a = e,,. a 

a,, aa +, a, a(a -a, ) =P 

0.6cr + 0.4cr a=P 7a2 
(A7.1) 

Due to: ccy9-! -y -' = a., = 
E-" E (A7.2) 

E., - Er Ey. 

Substituting equation (A7.2) into (AT 1) leads to the following. result: 

CT .=- 
PE*ft 

'Y a2 (0.6E1. + 0.4E-f) 

Aa (u-f . 

a E�t a (0.6E�, + OAE, ) 

and Ea = 0.6EY, + OAET 

fli) fl case 

The structure is shown as Fig. A7.1c, the two phases are transverse to the loading 
direction. 

Aa = 2E I 0.2a + ell 0.6a 

c =. SIL =p 
all p 

El a'F-, Ell a2E., 
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Aa = 0.4a 
2p+0.6a 2PP0.4 

0.6 

a E. a E., =a (E, + 
Eyt) 

Aa P 0.4 06 

aa2( Ey EY. 

E 
EYEY, 

0 4E*I. + 0.6E*f 

3. Examples of Young's Modulus 

The calculation results for the two different temperature range are presented in 
following table: 

T (C)' Z (GPa) E, - (GPa) Eii (GPa) F. -(GPa) Ep (GPa) 
105011c 68.26 77.882 73.944 74.0332 73.7251 
25'C 136.43 104.188 116.56 117.0848 115.0652 
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APPENDIX VIII 

NON-LINEAR REGRESSION PROGRAMS 

FOR DETERMINING MATERIAL CONSTANTS 

Non-Linear Regression Programs 

(1) SLH01 

This program is for the determination of K*, n and Mij in the constitutive model for 

single crystal superalloys. 

Data Input Ffles ZSIO. in data set for [00 1] orientation 
ZS I Lin data set for [I I I] orientation 

These Mes input the experimental data of strain rate and saturated stress 
W(I)=ý, T, S(I)=cyi , (1=1,2,3 ....... F), with data format: (F 10.5, F 10.5) 
The data number F will be inputted directly from the keyboard 

Data output Files: ZS I O. Out data output for [001] orientation 
ZS I Lout data output for [I 11] orientation 

These files output the regression results, including K*(i), n(i) and 

corresponding square error R2(i), at each regression steps, and also the final 

results of the material constants optimised from the regression process. 

Screen OutPut: The final results of K*, n andM44 are also shown on 
the screen 

(2) SLH02 

This program is for the determination of Qjj, Nij and k in the constitutive model for 

single crystal superalloys. 

Data Input Files: WZIO. in data set for [00 1] orientation 
WZ1 Lin data set for [I I I] orientation 

These files input the data W(I)=e'", Z(I) K .0 (b in ) Iln 

(i=1,2,3 ....... G), with data format: (F 10.7, F 10.5) 
The data number G will be inputted directly from the keyboard 

Data output Files: WZIO. out data output for [001] orientation 
WZ I Lout data output for [111 ] orientation 

These files output the regression results, including Q(i), N(i), k(i) and 

corresponding square error R2 (i), at each regression steps, and also the final 

results of the material constants optimised from the regression process. 

Screen Output: The final results of Qjj, Nij and k are also shown on 
the screen. 
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PROGRAM SLHOI 

Program Developed in: 
Engineering Materials and Structural Integrity Group 

University of Bristol 
May, 1996 

C The Calculation OF K*, n and Mij for 
c SINGLE CRYSTAL MODEL 

REAL X(I 00), Y(I 00), K(50), RN(40), KU, KD, RR(40), RRI 
REAL RRRK1, RNI, W(SO), S(SO), NRNI, KK 
INTEGER N, 1, J, NN, NNNN, M, IIII 
REAL OK(3), ON(3), M44 

OPEN(UNIT=I, FILE='ZSIO. IN') 
OPEN(UNIT=I 1, FILE='ZSI LIN) 
OPEN(UNIT= 10, FILE='ZS I O. OUr) 
OPEN(LJNIT=22, FILE='ZS I LOUT') 
OPEN(UNIT=33, FILE='FINAL. OUT) 

DO 10000 1111=1,2 

IF (IIII. EQ. 1) THEN 
PRINT *, "'data number for [00 1] NNNN="* 
READ*, NNNN 

ELSE 
PRINT *, "'data number for [I I I] NNNN=... 
READ*, NNNN 

END IF 

DO 50 1=1, NNNN 
IF (IIII. EQ. 1) THEN 

READ(l, 70) W(l), S(l) 
WRITE (10,70) W(f), S(l) 

ELSE 
READ(I 1,70) W(l), SM 
WRITE (22,70) W(I), S(l) 

END IF 
50 CONTINUE 

DO 100 I=I, NNNN 
DO I 10 J=I+ 1, NNNN 
IF (I. EQ. I AND. J. EQ. 2 THEN 

M=I 
ELSE 

M=M+l 
END IF 

Y(M)=S(I)-S(J) 
C WRITE (2,70) Y(M) 
110 CONTINUE 
100 CONTINUE 

DO 10 N=1,35 
RN(N)=0.2+(N-I)*0.005 
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KU=0.0 
KD=0.0 
RNN=RN(N) 

C 
CALL REGRES (RNN, KU, KD, KKWY, X, NNNN) 

K(N)=KK 
RRI=0.0 
DO 30 J=I, M 
RRI=RRI+(Y(J)-K(N)*X(J))**2.0 

30 CONTINUE 
RR(N)--RRI 
NRNI=I. O/RN(N) 
IF (IIII. EQ. 1) THEN 

WRITE (10,60) RN(N), NRNI, K(N), RRI, KU, KD 
ELSE 

WRITE (22,60) RN(N), NRNI, K(N), RRI, KU, KD 
END IF 

10 CONTINUE 

DO 40 NN=1,20 
IF (NN. EQ. 1) THEN 
RRR=RR(NN) 
RNI=RN(NN) 
KI=K(NN) 
ELSE IF (RR(NN). LE. RRR) THEN 
RRR=RR(NN) 
RNI=RN(NN) 
KI=K(NN) 
END IF 

40 CONTINUE 

NRNI=I. O/RNI 
IF (IIII. EQ. 1) THEN 
OK(I)=Kl 
ON(I)=NRNI 

ELSE 
OK(2)=Kl 
ON(2)=NRNI 

END IF 

IF (IIII. EQ. 1) THEN 
WRITE (10,600) 
WRITE (10,60) RM RNI, NRNI, KI 

ELSE 
WRITE (22,600) 
WRITE (22,60) RRR, RNI, NRNI, Kl 

END IF 
60 FORMAT(8E]5.6) 
600 FORMAT (15X, l RRR=', 15X, 'n=', ISVK*=: ý) 
70 FORMAT(3FI0.5) 
10000 CONTINUE 

CLOSE (UNIT=I, STATUS=IKEEPI) 
CLOSE (UNIT= 11, STATUS=KEEP') 

ON(3)=(ON(I)+ON(2))/2.0 
RNN=I. O/ON(3) 
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CALL FINAL (RNN, OK, ON, M44) 
M44=2.0*(OK(])/OK(2))**(ON(3)*2.0/(ON(3)+I. O)) 

WRITE (*, 700) 
WRITE (*, 60) OK(l), ON(l) 

700 FORMAT (8X, 'K*=', 8X, 'n=', IOX, 'Orintation[001]') 
WRITE (*, 800) 

WRITE (*, 60) OK(2), ON(2) 
800 FORMAT (8X, 'K*=', 8X, 'n=% IOX, 'Orintation [111]') 

WRITE (*, 900) 
WRITE (*, 60) OK(3), ON(3), M44 

900 FORMAT (8X, 'K*=, 8X, 'n=', IOX, 'M44=e, IOX, 'FINAL RESULTS') 
WRITE (33,700) 
WRITE (33,60) OK(I), ON(I) 
WRITE (33,800) 
WRITE (33,60) OK(2), ON(2) 
WRITE (33,900) 
WRITE (33,60) OK(3), ON(3), M44 

END 

SUBROUTINE REGRES (RNN, KU, KD, KK, WY, XNNNN) 
REAL RNN, KU, KD, KK, W(100), X(100), Y(100) 
INTEGERNNNN 
KU=0.0 
KD=0.0 
DO 200 I=I, NNNN 
DO 210 J=I+1, NNNN 
IF (I. EQ. I AND. J. EQ. 2 ) THEN 

M=I 
ELSE 

M=M+I 
END IF 

X(M)=W(I)**RNN-W(J)**RNN 
210 CONTINUE 
200 CONTINUE 

OPEN (UNIT=213, FILE='TRY. OU'r) 

DO 20 I=I, M 
KU=KU+Y(I)*X(l) 
KD=KD+X(I)*X(I) 

20 CONTINUE 
500 FORMAT (2X, 6EI5.6) 

KK=KU/KD 
WRITE (213,500) KU, KD, KK 

END 

SUBROUTINE FINAL (RNN, OK, ON, M44) 
REAL X(l 00), Y(I 00), KU, KD, RNN 
REAL W(50), S(50), KK 
INTEGER NNNN, M, Illl 
REAL OK(3), ON(3), M44, OOK(3) 

OPEN(UNIT=I, FILE='ZS10. IN') 
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OPEN(UNIT= 11, FILE=ZS I LIN) 
OPEN (UNIT=50, FILE='OUT. OUT) 

DO 1000 1111=1,2 
IF (IIII. EQ. 1) THEN 
PRINT "'data number for [00 1] NNNN=111 
READ NNNN 

ELSE 
PRINT "'data number for [I I I] NNNN=11, 
READ NNNN 

END IF 

DO 50 H, NNNN 
IF(IIII. EQ. 1) THEN 

READ(l, 70) W(I), S(I) 
ELSE 

READ(I 1,70) W(I), S(l) 
END IF 

50 CONTINUE 
70 FORMAT(3FI0.5) 

DO 100 1=1, NNNN 
DO I 10 J=I+ 1, NNNN 
IF (I. EQ. I. AND. J. EQ. 2) THEN 

M=I 
ELSE 

M=M+l 
END IF 

Y(M)=S(I)-S(J) 
WRITE (50,500) Y(M) 

I 10 CONTINUE 
100 CONTINUE 

c 
CALL REGRES (RNN, KU, KD, MWY, X, NNNN) 
OOK(IIII)=KK 

DO 560 I= I, M 
WRITE (50,500) Y(l), X(l), KUKD, KK 

560 CONTINUE 
1000 CONTINUE 

ON(3)=I. O/RNN 
OK(3)=OOK(l) 
M44=2.0*(OOK(I)/OOK(2))**(ON(3)*2.0/(ON(3)+I. O)) 

WRITE (50,500) RNN, OK(3), ON(3), M44 
500 FORMAT (2X, 8EI5.6) 

END 
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PROGRAM SLH02 

Program Developed in: 
Engineering Materials and Structural Integrity Group 

University of Bristol 
May, 1996 

C ******* Determination of Qij, Nij and k in the SINGLE CRYSTAL Model 
c Based on [001] and [111] Orienation Deformation ******** 

REAL WWW(200), Z(200), X(200), Y(200), Q(200), AA(2), QI, R(200), RR 
REAL QQ, AAA(200,2), QMIN, RMIN, M44, ZC(200), FNN(200), KK(200) 
REAL KIO, KI I, NIO, NI I, QIO, QI I 

INTEGER NN, IMIN, IIII 
c EXTERNAL REGS 

OPEN (UN IT= 1, FILE=VZ I 0-IN') 
OPEN (UNIT= 11, FILE='WZ I LIN) 
OPEN (UNIT=2, FILE='WZIO. OU'r) 
OPEN (UNIT=22, FILE='WZ I I. OU'r) 
OPEN (UNIT=10, FILE='QRIO. OUT) 
OPEN (UNIT=10 1, FILE='QRI LOUT) 

DO 10000 1111=1,2 
IF (IIII. EQ. 1) THEN 

PRINT "'data number for [00 1], NN=? (Nmax=200) 
PRINT ff'NN= It' 
READ NN 

ELSE 
PRINT "'data pumber for [I I I], NN=? (Nmax=200) ... 
PRINT "'NN`=` 

READ *, NN 
PRINT *, "'for [1111, M44=?... 
PRINT *, "'M44=.. 

READ *, M44 
END IF 

c ........... (input data) ...................... 
DO 10 1= 1, NN 
IF (IIII. EQ. 1) THEN 
READ (1,20) WWW(l), Z(I) 
WRITE (2,20) WWW(I), Z(I) 
ELSE 
READ (11,20) WWW(I), Z(I) 
WRITE (22,20) WWW(I), Z(I) 
END IF 

10 CONTINUE 
20 FORMAT (F 10.7, F 10.5) 

C* cycle for adjust Q variabi 
Q1 =400.0 
QQ=QI-10.0 

C cycle calculation of different Q 

DO 1000 11=1,50 
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WRITE (*, 25) 11 
25 FORMAT (I 10) 

Q(11)=QQ+10.0 
D030 I=I, NN 

X(I)=(I. O-EXP(-Q(11)*W'WW(I))) 
Y(I)=I. O 

30 CONTINUE 

C ......... call subroutine for regression ............ CALL REGS (NN, X, Y, Z, ZC, DS, AA, RR) 
c ...................................................... 

R(11)=RR 
QQ=Q(il) 

DO 40 J= 1,2 
AAA(II, J)=AA(J) 

c ....... AAA(11,1)=N/Q, AAA(11,2)=k . .................... 
40 CONTINUE 

IF (IIII. EQ. 1) THEN 
FNN(11)=AAA(11,1)*Q(11) 
KK(11)=AAA(11,2) 

WRITE (10,50) R(II), Q(11), FNN(II), KK(II) 
ELSE 
Q(11)=Q(11)*SQRT(M44/2.0) 
KK(11)=AAA(11,2)*SQRT(M44/2.0) 
FNN(11)=AAA(11,1)*Q(Il)*(1.0/2.0)/SQRT(M44/2.0) 
WRITE (10 1,50) R(II), Q(II), FNN(II), KK(II) 

END IF 
50 FORMAT (2X, 5EI5.6) 
1000 CONTINUE 

QMIN=Q(I) 
RMIN=R(l) 
IMIN=I 

DO 2000 11=1,50 
IF (R(II). LT. RMIN) THEN 
RMIN=R(II) 
QMIN=Q(11) 
IMIN=II 

END IF 
2000 CONTINUE 
2001 FORMAT(110) 

IF (IIII. EQ-1) THEN 
WRITE (10,60) RMIN, KK(IMfN), FNN(IMIN), Q(IMIN), IMIN 

KIO=KK(IMIN) 
NI O=FNN(IMIN) 
QIO=Q(IMIN) 

ELSE 
WRITE (101,60) RMIN, KK(IMIN), FNN(IMfN), Q(IMIN), IMIN 

KII=KK(IMIN) 
NII =FNN(IMIN) 
QII=Q(IMIN) 
END IF 

60 FORMAT (2X, 4EI 5.6,2X, I 10) 

ioooo CONTINUE 
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WRITE (*, 65) 
65 FORMAT (15 X, 'k=', I OX, 'Q II -Q 12=', 5X, 'N II -N 1 2=') 

WRITE (*, 60) KIO, Q I 0, N 10 
WRITE (*, 70) 

70 FORMAT (I 5X, 'k=', I OX, 'Q44=', I OX, N44=') 
WRITE (*, 60) KII, Q I 1, N II 

END 

cccc This is a REGRESSION programe for calculating 
cc A and B in the linear Eq. A*Xi+B*Yi=Zi 

SUBROUTINE REGS(NN, X, YY, Z, ZC, DS, XX, R) 
REAL AB(2,3), B(2), XX(2), A(2,2), X(200), Z(200), YY(200) 
REAL WWZC(200), DS(200), R 
INTEGER NN 

3301 FORMAT (I 10,1 0X, I 10, IOX, Il 0) 

OPEN (UNIT=20, FILE='Z. OUr) 
D0303 1=1,2 

B(I)=O. O 
DO 304 J=1,2 

A(I, J)=O. O 
304 CONTINUE 
303 CONTINUE 

D0305 I=I, NN 
A(1,1)=A(1,1)+X(I)*X(l) 
A(1,2)=A(1,2)+X(I)*YY(l) 
A(2,2)=A(2,2)+YY(I)*YY(l) 
B(I)=B(I)+X(I)*Z(I) 
B(2)=B(2)+YY(I)*Z(I) 

305 CONTINUE 
A(2,1)=A(1,2) 

C ------ form AB =(A B) 
DO 911 11=1,2 

DO 912 J=1,2 
AB(11, J)=A([I, J) 

912 CONTINUE 
911 CONTINUE 

DO 913 11=1,2 
AB(II, 3)=B(II) 

913 CONTINUE 
M=2 
N=3 

c ----- write out AB(6,7) 
DO 210 1=1, M 
WRITE (20,1120) (AB(I, J), J= 1, N) 

1120 FORMAT (2X, 7FI0.2) 
210 CONTINUE 

DO 30, K 1, M 
DO 40 Q K, N 

IF (AB(K, Q). GT. O. 00 1) GO TO 110 
40 CONTINUE 

WRITE(*, 45) 
45 FORMAT('NO SOLUTION') 
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GOTO 290 
110 DO 50 P=1, N 

S= AB(K, P) 
AB(K, P) = AB(Q, P) 
AB(Q, P) =S 

50 CONTINUE 
T=I/ AB(K, K) 
DO 60 R=1, N 
AB(K, R) =T* AB(K, R) 

60 CONTINUE 
DO 70 1=l, M 
WW = -AB(f, K) 
IF (I. EQ. K) GO TO 70 
D080J= I, N 

AB(l, J) = AB(I, J) + WW AB(K, J) 
80 CONTINUE 
70 CONTINUE 
30 CONTINUE 
C-----seperate solution XX(i) from AB(i, n) 

DO 901 1=1,2 
XX(I)=AB(I, N) 

901 CONTINUE 

D02510 1=1,2 
WRITE (20,1520) (AB(I, J), J=I, N) 

1520 FOPMAT(2X, 7EI5.6) 
25 10 CONTINUE 

WRITE (20,1000) XX(l), XX(2) 
1000 FORMAT- (2X, 6E 15.5) 

c calculation results of Zi (SS12(II)) and the relative errors 
R=0.0 
DO 1000 1 II= 1, NN 

ZC(II)=0.0 
ZC(I I)=XX(I) *X(11)+XX(2)*YY(II) 

DS(11)=ZC(Il)-Z(11) 
R=R+DS(11)*DS(II) 

10002 FORMAT (2X, 41315.6) 
1000 1 CONTINUE 
290 END 
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APPENDIXIX 
UMAT SUBROUTINES AND 

ABAQUS INTERFACE PROGRAMS 

1. UMAT Subroutine for the Phenomenological Model 

Program: GUMAT 

2. UMAT Subroutine for the Crystallographic Model 

Program: CUMAT 

3. An Example of Interfacing ABAQUS Input File 

Program: NUMAT. INP 
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PROGRAM GUMAT. INP********** 

This UMAT is a modified version for the phenomenological model 
*Program Developed by Songlin Han 

Engineering Materials and Structural Integrity Group 
University of Bristol, April, 1998 

SUBROUTINE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD, 
I RPL, DDSDDTDRPLDE, DRPLDT, 
2 STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME, 
3 NDI, NSHPNTENS, NSTATV, PROPS, NPROPS, COORDS, DROTPNEWDT, 
4 CELENTDFGRDO, DFGRDINOEL, NPTLAYERKSPTKSTEP, KINC) 

INCLUDE'ABA_PARAM. INC' 
IMPLICIT REAL*8 (A-H, O-Z) 

CHARACTER*8 CMNAME 

IMPLICIT REAL*8 (A-H, L-Z) 

EXTERNAL MATCA, INVERS 
DIMENSION STRESS(NTENS), STATEV(NSTATV), 

I DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS), 
2 STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(i), DPRED(l), 
3 PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRDO(3,3), DFGRDI(3,3) 

C 
DIMENSION EELAS(6), EPLAS(6), ALPHA(6), OLDS(6), OLDEL(6), OLDPL(6) 

(dimension adding) 
DIMENSION ORN(3), CO(6,6), ZMO(6,6), ZNO(6,6), QO(6,6), C 1 (6,6), 

I ZMI(6,6), ZNI(6,6), QI(6,6), ZM2(6,6), ZM3(6,6), XXXO(6), 
2 DSX(6), DSXOLD(6), DDSDS(6,6), XXXR(6), XXXRO(6), 
3 WWI (6), WW2(6), DEINDR(6), WW(6,6), WWW(6,6), DEINDS(6,6), 
4 DEINDX(6,6), EINO(6), DELTA(6,6), E[N(6), 
5 DEEIN(6), DEEE(6), DSTRESS(6), DXXX(6), C 111(6,6), 
6 PB 1 (6,6), PB2(6), PB3(6,6), PD(6,6), PE I (6,6), PE2(6,6), 
7 PE3(6), PD 1(6), PF I (6,6), PF2(6,6), PF3(6), PF4(6,6), PF5(6,6), 
8 PF6(6), DD2(6,6), D2(6), PGI(6), PG2(6,6), PG3(6,6), 
9 PG4(6,6), PG5(6), PG41(6,6), PF41(6,6), PF7(6,6), PG6(6,6) 

PA RAM ETER(ZERO=O. DO, ONE= I. DO, TWO=2. DO, THREE=3. DO, SIX=6. DO, 
I ENUMAX=. 4999DO, NEWTON=10, TOLER=I. OD-6) 

c NTENS=6 
c NDI=3 

THETA=0.6 

207 



Appendix IX 

C ------- - ---- - --- -------- - ------------- ---------- --- - ---- C PROPS(l) - YOUNG'S MODULUS 
C PROPS(2) - POISSON'S RATIO 
C PROPS(3) - SHEAR MODULUS 
C PROPS(4) -ORIENTATION L 
C PROPS(5) - ORIENTATION M 
C PROPS(6) - ORIENTATION N 
C PROPS(7) - K* 
C PROPS(8) -n 
C PROPS(9) -MII -M 12 
C PROPS(I 0) - M44 
C PROPS(I 1) -NII -N 12 
C PROPS(12) - N44 
C PROPS(I 3) -QII -Q 12 
C PROPS(14) - Q44 
C PROPS(I 5) -b 
C PROPS(l 6) -Q 
C PROPS(I 7) -k 
C ------------------------ ------------ - -------- ------ 
C STATEV(I, NTENS) = elastic strain EELAS 
C STATEV(NTENS, NTENS*2) = plastic strain EPLAS 
C STATEV(NTENS*2, NTENS*3) = back stress ALPHA (i. e. XXX) 
C STATEV(NTENS*3+1) = insotropic hardening RRR 
C STATEV(NTENS*3+2) = accumulated plastic strain PPP 
c-- --------------- - -- -- --------------------------- -- ------ 
C ----------------------- --------- - ----------- - --- 
C0iigiiAa0iiM+i11iiiiiiiiiijiiiiiiiiiiiiiiiiiiiiiiil11............ 
C---- input material constants PROPS from file DPROPS. in 
c 
C PROPS(3)=PROPS(I)/(2.0*(I. O+PROPS(2))) 
C OPEN(UNIT=I, FILE='CONS. IN') 
C READ (1,2) (PROPS(l), I=I, 17) 
C READ (1,2) (DSTRAN(l), 1=1,6) 
C READ (1,2) (STRAN(l), 1=1,6) 
C2 FORMAT(6FI0.6) 

SSS I I= I. O/PROPS(l) 
SSS 12ý1.0*PROPS(2)/PROPS(l) 
SSS44=1.0/PROPS(3) 
CCCI 1=((I. O/(SSSI 1+2.0*SSS12))+(2.0/(SSSI I-SSS12)))/3.0 
CCC 12=CCC II -(l. 0/(SS SII -SSS 12)) 
CCC44=1.0/SSS44 
ORN(I)=PROPS(4) 
ORN(2)=PROPS(5) 
ORN(3)=PROPS(6) 

C ELASTIC STIFFINESS IN THE [001]-[010]-[001] SYSTEM 
C set initial stiffness to zero 

DO KI=1,6 
DO K2=1,6 
CO(KI, K2)=O. O 
ZMO(KI, K2)=O. O 
ZNO(KI, K2)=O. O 
QO(KI, K2)=O. O 
END DO 
END DO 
DO KI=1,3 

DO K2=1,3 
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CO(KI, K2)=CCC12 
END DO 

CO(KI, Kl)=CCCII 
ZMO(KI, Kl)=PROPS(9) 
ZNO(KI, Kl)=PROPS(II) 
QO(KI, Kl)=PROPS(13) 

END DO 
DO KI =4,6 
CO(KI, Kl)=CCC44 

ZMO(KI, Kl)=PROPS(IO) 
ZNO(KI, Kl)=PROPS(12) 
QO(KI, Kl)=PROPS(14) 

END DO 

C Elastic stiffness and other basic transformation 
CALL MATCA(ORN, CO, ZMO, ZNO, QO, CI, ZMI, ZNI, QI, ZM2, ZM3) 
CALL INVERS(CI, Clll) 

C Recover elastic strain, plastic strain and shift tensor and rotate 
C Use code I for (tensor) stress, code 2 for(engineering) strain 
C DROT is the identity tensor if *ORIENTATION is used 

C CALL ROTSIG(STATEV( 1), DROTEELAS, 2, NDI, NSHR) 
C CALL ROTSIG(STATEV(NTENS+I), DROTEPLAS, 2, NDI, NSHR) 
C CALL ROTSIG(STATEV(2*NTENS+I), DROTALPHA, INDINSHR) 

C .............. 11"61+H61 ................ ......... 
ccc cyclic calculation of stress and strain response 
C DOKI=I, NTENS 
C DO K2=], NTENS 
C DDSDDE(KI, K2)=CI(KI, K2) 
C END DO 
C END DO 

c #############################################4###44#4#44#4# 
C Save stress and plastic strains and STATVE 

RRRO=STATEV(NTENS*5+1) 
PPPO=STATEV(NTENS*5+2) 
RRATEO=STATEV(NTENS*5+3) 
PPPRO=STATEV(NTENS*5+4) 

Do K I= I, NTENS 
C OLDS(Kl)=STRESS(KI) 
C OLDEL(Kl)=EELAS(KI) 
C OLDPL(Kl)=EPLAS(KI) 
C XXXO(Kl)=ALPHA(KI) 
C EINO(Kl)=EIN(KI) 
C XXXRO(Kl)=XXXR(KI) 

OLDS(Kl)=STRESS(KI) 
OLDEL(Kl)=STATEV(KI) 
OLDPL(Kl)=STATEV(NTENS+Kl) 
XXXO(Kl)=STATEV(NTENS*2+Kl) 
EINO(Kl)=STATEV(NTENS*3+Kl) 
XXXRO(Kl)=STATEV(NTENS*4+Kl) 
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END DO 
C RRRO=RRR 
C PPPRO=PPPR 
C RRATEO=RRATE 
C PPPO=PPP 
C calculate predictor stress increment and "stress" 
c++! 1111............................ ! III++!!!! .......... 

DO K I= I, NTENS 
DSTRESS(K 1)=O. O 
DO K2=I, NTENS 

DSTRESS(K])=DSTRESS(Kl)+CI(KI, K2)*DSTRAN(K2) 
END DO 
END DO 

DOKI=I, NTENS 
STRESS(K])=OLDS(Kl)+DSTRESS(KI) 

END DO 
CALL SONGLIN(OLDS, XXXO, RRRONDINTENS, DSXOLD, ZM 1, 

I GO, FFFO, PROPS) 
CALL SONGLIN(STRESS, XXXO, RRRO, NDI, NTENS, DSX, ZM I, 

GI, FFFI, PROPS) 
H+j iiii........... ........ 

C ***************************************************** 

c determine if actively yielding 
IF (FFF I. GT. TOLER. AND. FFFO. GT. TOLER) THEN 

c actively yielding 
c calculate dDSTRESS/dSTRESS 

DO KI=I, NDI 
DO K2=1, NDI 

DDSDS(K], K2)=-(1.0/3.0) 
END DO 

DDSDS(K l, K 1)=(2.0/3.0) 
END DO 

DOKI=NDI+I, NTENS 
DO K2=NDI+ I, NTENS 

DDSDS(KI, K2)=O. O 
END DO 

DDSDS(KI, Kl)=I. O 
END DO 

c calculate derivation of ineldstic starin rate with stress 
FKN=(FFFO/PROPS(7))**PROPS(8) 
FFGO=(PROPS(8)/PROPS(7))*(FFFO/PROPS(7))**(PROPS(8)-l. 0) 
FFG=(3.0/2.0)*(FFGO-FKN/GO) 

DO K I= I, NTENS 
WWI(Kl)=O. O 
WW2(Kl)=O. O 
DEINDR(Kl)=O. O 
DO K2=1, NTENS 
WW(KI, K2)=O. O 
WWW(KI, K2)=O. O 

DEINDS(KI, K2)=O. O 
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DEINDX(KI, K2)=O. O 
END DO 

END DO 
DO K I= I, NTENS 
DO K2=1, NTENS 

WWI (Kl)=WWI (Kl)+ZMI (KI, K2)*DSXOLD(K2)+ZM I (K2, Kl)*DSXOLD(K2) 
WW2(Kl)=WW2(Kl)+ZM2(KI, K2)*DSXOLD(K2) 
END DO 

END DO 

DO K I= 1, NTENS 
DO K2=1, NTENS 
WW(KI, K2)=WWI(Kl)*WW2(K2) 

END DO 
END DO 

DO K I= 1, NTENS 
DO K2=1, NTENS 
WWW(KI, K2)--(FFG/GO)*WW(KI, K2)+2.0*FKN*ZM2(KI, K2) 

WWW(KI, K2)--(3.01(4.0*GO))*WWW(KI, K2) 
END DO 

END DO 
Do K I= 1, NTENS 
DO K2=1, NTENS 
DEINDS(KI, K2)=O. O 
DO K3= 

, 
1, NTENS 

DEINDS(KI, K2)=DEINDS(KI, K2)+WWW(KI, K3)*DDSDS(K3, K2) 
END DO 

DEINDX(KI, K2)--I. O*WWW(KI, K2) 
END DO 

DEINDR(Kl)=(-3.0/(2.0*GO))*FFGO*WW2(KI) 
END DO 

DO KI=I, NTENS 
DO K2=1, NTENS 
DELTA(KI, K2)=O. O 
END DO 
DELTA(KI, Kl)=I. 
EINO(Kl)=FKN* 1.5/GO*WW2(KI) 

CCC XXXRO(Kl)--O. O 
CCC XXXO(Kl)--O. O 

END DO 
CCC XXXRO(3)=0.000001 
CCC XXXRO(I)=-0.0000005 
CCC XXXRO(2)ý0.0000005 
CCC XXXO(3)=0.000001 
CCC XXXO(I)=-0.0000005 
CCC XXXO(2)=-0.0000005 

PPPR0=FKN 
RRATEO--ý-PROPS(15)*(PROPS(16)-RRRO)*PPPRO 

ccc RRATEO=RRATEOtO. 0000001 
ccc RRRO=RRRO+0.0000001 

DO KI=I, NTENS 
PB2(Kl)=O. O 
DO K2=I, NTENS 
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C 

C 

C 

C 

C 

C 

C 

PBI(KI, K2)=ZNI(KI, K2) 
PB3(K 1, K2)=-PPPRO*Q I (KI, K2) 
PB2(K 1)=PB2(Kl)-Q I (K 1, K2)*XXXO(K2) 
END DO 
END DO 

PI =PROPS(I 5)*(PROPS(I 6)-RRRO) 
P2=-PROPS(15)*PPPRO 
AI=THETA*DTIME 

DO KI=I, NTENS 
PDI(Kl)=O. O 
DO K2=I, NTENS 
PDI(Kl)=PDI(Kl)+(I. /(3. *PPPRO))*(ZM3(KI, K2)*EINO(K2) 

+EINO(K2)*ZM3(K2, Kl)) 
END DO 
END DO 

DO KI=I, NTENS 
DO K2=I, NTENS 
PD(KI, K2)=PBI(KI, K2)+PB2(Kl)*PDI(K2) 
END DO 
END DO 

DO KI=I, NTENS 
DO K2=1, NTENS 
PEI(KI, K2)=O. O 
PE2(KI, K2)=O. O 
DO K3=1, NTENS 
PEI (KI, K2)=PEI (KI, K2)+Al *PD(KI, K3)*DEINDS(K3, K2) 
PE2(KI, K2)=PE2(KI, K2)+AI*PD(KI, K3)*DEINDX(K3, K2) 
END DO 
PE2(KI, K2)=PE2(KI, K2)+AI*PB3(KI, K2) 
END DO 
END DO 

DO KI=I, NTENS 
PE3(Kl)=O. O 
DO K2=I, NTENS 
PE3(Kl)=PE3(Kl)+AI*PD(KI, K2)*DEINDR(K2) 
END DO 
END DO 

BB=I. -AI*P2 
BI=DTIME*RRATEO/BB 
B2=AI*PI/BB 
CC=0.0 
DO KI=I, NTENS 
CC=CC+PDI(Kl)*DEINDR(KI) 
END DO 
CCC=I. -B2*CC 
CCI=BI/CCC 
C2=B2/CCC 

DO KI=I, NTENS 
DO K2=1, NTENS 
PFI(KI, K2)=O. O 
PF2(K 1, K2)=O. O 
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C 

C 

DO K3=I, NTENS 
PF I (K 1, K2)=PFI (K 1, K2)+C2*PE3(Kl)*PDI(K3)*DEINDS(K3, K2) 
PF2(K], K2)=PF2(KI, K2)+C2*PE3(Kl)*PDI(K3)*DEINDX(K3, K2) 
END DO 
END DO 
END DO 

DO K I= I, NTENS 
PF3(Kl)=DTIME*XXXRO(Kl)+CCI*PE3(KI) 
END DO 
DO K I= I, NTENS 
DO K2=1, NTENS 
PF4(KI, K2)=DELTA(KI, K2)-PF2(KI, K2)-PE2(KI, K2) 
PF5(KI, K2)=PEI(KI, K2)+PFI(KI, K2) 
END DO 
END DO 
CALL INVERS(PF4, PF41) 

DO KI =], NTENS 
PF6(K 1)=O. O 
DO K2=I, NTENS 
PF6(Kl)=PF6(Kl)+PF41(KI, K2)*PF3(K2) 
END DO 
END DO 

CCC PF7=0.0 
DO K I= I, NTENS 
DO K2=], NTENS 
PF7(KI, K2)=O. O 
DO K3=I, NTENS 
PF7(KI, K2)=PF7(KI, K2)+PF41(KI, K3)*PF5(K3, K2) 
END DO 

ccc PF7=PF7+PF41(KI, K2)*PF5(K2, Kl) 
END DO 
END DO 
DI=0.0 
DO K I= I, NTENS 
DO K2=1, NTENS 
DI=DI+C2*PDI(Kl)*DEINDX(KI, K2)*PF6(K2) 

CCC DI=DI+PDI(Kl)*DEINDX(KI, K2)*PF6(K2) 
END DO. 

CCCCCC DI=DI+C2*PDI(KI) 
END DO 
DI=DI+CCI 

c 
DO K I= INTENS 
DO K2=1, NTENS 
DD2(KI, K2)=O. O 
DO K3=1, NTENS 
DD2(KI, K2)=DD2(KI, K2)+DEINDX(KI, K3)*PF7(K3, K2) 
END DO 

CCC DD2(KI, K2)=DEINDX(KI, K2)*PF7 
END DO 
END DO 
DO K I= INTENS 
D2(Kl)=O. O 
DO K2=I, NTENS 
D2(Kl)=D2(Kl)+C2*PDI(K2)*DEINDS(K2, Kl)+ 
C2*PDI(K2)*DD2(K2, Kl) 
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C 

C 

END DO 
END DO 

DO KI=I, NTENS 
PGI(Kl)=O. O 
DO K2=1, NTENS 
PGI(Kl)=PGI(Kl)+AI*DEINDX(KI, K2)*PF6(K2) 
END DO 
PGI(Kl)=PGI (Kl)+DTIME*EINO(Kl)+DI*AI*DEINDR(KI) 
END DO 

DO KI=I, NTENS 
DO K2=I, NTENS 
PG2(KI, K2)=O. O 
DO K3=I, NTENS 
PG2(KI, K2)=PG2(KI, K2)+DEINDX(KI, K3)*PF7(K3, K2) 
END DO 

CCC PG2(KI, K2)=PG2(KI, K2)+DEINDX(KI, K2)*PF7 
PG2(KI, K2)=PG2(KI, K2)+DEINDS(KI, K2)+ 

I DEINDR(Kl)*D2(K2) 
END DO 
END DO 

c 
DO KI=I, NTENS 
DO K2=I, NTENS 
PG3(KI, K2)=O. O 
DO K3=I, NTENS 
PG3(KI, K2)=PG3(KI, K2)+PG2(KI, K3)*CI(K3, K2) 
END DO 
END DO 
END DO 

C 
DO KI=I, NTENS 
DO K2=1, NTENS 
PG4(KI, K2)=DELTA(KI, K2)+AI*PG3(KI, K2) 
END DO 
END DO 
CALL INVERS(PG4, PG41) 

C 
CCC PG6=0.0 

DO K I= I, NTENS 
PG5(Kl)=O. O 
DO K2=I, NTENS 
PG6(KI, K2)=O. O 
DO K3=I, NTENS 
PG6(KI, K2)=PG6(KI, K2)+PG41(KI, K3)*PG3(K3, K2) 
END DO 
PG5(Kl)=PG5(Kl)+PG41(KI, K2)*PGI(K2) 
END DO 
END DO 

C 
DO KI=I, NTENS 

CCC DEEIN(Kl)=PG5(Kl)+AI*PG6*DSTRAN(KI) 
DEEIN(Kl)=O. O 
DO K2=I, NTENS 
DEEIN(Kl)=DEEIN(Kl)+AI*PG6(KI, K2)*DSTRAN(K2) 
END DO 
DEEIN(Kl)=DEEIN(Kl)+PG5(KI) 
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END DO 
DO K I= I, NTENS 
DSTRESS(Kl)=O. O 
DO K2=I, NTENS 
DSTRESS(Kl)=DSTRESS(Kl)-f-CI(KI, K2)*(DSTRAN(K2)-DEEIN(K2)) 
END DO 
END DO. 
DRRR=0.0 
DO K 1= INTENS 
DRRR=DRRR+D2(Kl)*DSTRESS(KI) 
END DO 
DRRR=DRRR+Dl 
DO KI=I, NTENS 
DXXX(Kl)=O. O 
DEEE(Kl)=O. O 
DO K2=I, NTENS 
DXXX(Kl)=DXXX(Kl)+PF7(KI, K2)*DSTRESS(K2) 
DEEE(Kl)=DEEE(Kl)+CIII(KI, K2)*DSTRESS(K2) 
END DO 

CCC DXXX(Kl)--PF7*DSTRESS(Kl)+PF6(KI) 
DXXX(Kl)=DXXX(Kl)+PF6(KI) 
END DO 
DO K I= I, NTENS 
STRESS(Kl)=OLDS(Kl)+DSTRESS(KI) 
ALPHA(Kl)=XXXO(Kl)+DXXX(KI) 
EPLAS(Kl)=OLDPL(Kl)+DEEIN(KI) 
EELAS(Kl)=OLDEL(Kl)+DEEE(KI) 
END DO 
PPP=PPPO+DPPP 
RRR=RRkO+DRRR 

CCC DO K I= I, NTENS 
CCC EIN(Kl)=DEEIN(Kl)/Al-(I. -THETA)*DTIME/THETA*EINO(KI) 
CCC XXXR(Kl)=DXXX(Kl)/Al-(I. -THETA)*DTIME/THETA*XXXRO(KI) 
CCC END DO 
CCC RRATE=DRRR/Al-(I. -THETA)*DTIME/THETA*RRATEO 
CCC PPPR=DPPP/Al-(I. -THETA)*DTIME/THETA*PPPRO 

IF(PROPS(l 8). EQ. O. O)THEN 
CALL SONGLIN (STRESS, ALPHA, RMNDI, NTENS, DSXZM1, G, FFF, 

PROPS) 
C CALL SONGLIN(STRESS, ALPHA, KNDI, KNTENS, DSX, ZMI, G) 

DO K I= I, NTENS 
WW2(Kl)=O. O 
END DO 
DO K I= I, NTENS 
DO K2=1, NTENS 

WW2(Kl)=WW2(Kl)+ZM2(KI, K2)*DSX(K2) 
END DO 

END DO 
c FFF=G-RRR-PROPS(17) 
c FFF=G-PROPS(17) 

FKN=(FFF/PROPS(7))**PROPS(8) 
DO K I= I, NTENS 
EIN(Kl)=(1.5/G)*FKN*WW2(KI) 
END DO 
PPPR=FKN 

ccc PPPR=0.0 
DO K I= I, NTENS 
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ccc 

ccc 
c 
ccccc 
ccccc 
ccccc 
ccccc 
ccccc 
ccccc 
ccccc 

C 

C 

XXXR(Kl)=O. O 
DO K2=I, NTENS 
PPPR=PPPR+EIN(Kl)*ZM3(KI, K2)*EIN(K2) 

XXXR(Kl)=XXXR(Kl)+ZNI(KI, K2)*EIN(K2)- 
QI (K 1, K2)*ALPHA(K2)*PPPR 

END DO 
END DO 
PPPR=SQRT((2. /3. )*PPPR) 

DO K I= I, NTENS 
XXXR(Kl)=O. O 
DO K2=], NTENS 
XXXR(Kl)=XXXR(Kl)+ZNI(KI, K2)*EIN(K2)- 

IQI (K 1, K2)*ALPHA(K2)*PPPR 
END DO 
END DO 

RRATE=PROPS(15)*(PROPS(16)-RRR)*PPPR 
DO K I= I, NTENS 
DO K2=I, NTENS 
DDSDDE(KI, K2)=O. O 
DO K3=1, NTENS 
DDSDDE(KI, K2)=DDSDDE(KI, K2)-AI*CI(KI, K3)*PG6(K3, K2) 
END DO 
DDSDDE(KI, K2)=DDSDDE(KI, K2)+CI(KI, K2) 
END DO 
END DO 

ELSE 
CALL ITERATION(STRESS, ALPHA, RRPPPP, EPLAS, 

I PROPS, EINO, RRRO, XXXO, OLDS, PPPO, OLDPL, ZMI, ZM2, ZM3, ZNI, 
2 QI, E[N, NTENS, NDI, THETA, DTIME, C1, DSTRAN, PPPRDSX, G, FFF, 
3 XXXFRRATE, PPPRO, XXXRO, RRATEO) 
CALL TENSORW(FFF, PROPS, G, ZMI, ZM2, DSX, WWI, WW2, FKN1, FFGO I, 

I FFG I, NTENS) 

DO K I= I, NTENS 
DSTRESS(K I)=STRESS(KI)-OLDS(KI) 

C DEEE(Kl)=DSTRAN(Kl)-(EPLAS(Kl)-OLDPL(Kl)) 
DEEE(KI)=0.0 
END DO 
DO KI=I, NTENS 
DO K2=1, NTENS 
DEEE(Kl)=DEEE(Kl)+CIII(KI, K2)*DSTRESS(K2) 
END DO 

C EELAS(Kl)=OLDEL(Kl)+DEEE(KI) 
END DO 
DO KI=I, NTENS 
EELAS(Kl)=OLDEL(Kl)+DEEE(KI) 
END DO 
CALL NONLINJ (PPPR, G, FKN1, FFGOI, FFG1, THETA, PROPS, 

I EIN, ALPHA, RRR, WWI, WW2, QI, ZM2, ZM3, ZNI, CI, DTIME, NTENS, 
2 DDSDDE, DDSDS) 

C 
END IF 

c 

c if not yielding, JACOBIN matrix same as elastic stiffness CI 
ELSE 
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DO K I= 1, NTENS 
DO K2= 1, NTENS 

DDSDDE(KI, K2)=CI(KI, K2) 
END DO 
END DO 

CCC RRR=RRRO 
CCC PPP=PPPO 

RRR=0.0 
PPP=0.0 

DO K I= 1, NTENS 
DXXX(Kl)=O. O 
DEEIN(KI)=0.0 

EIN(Kl)=O. O 
XXXR(Kl)--O. O 

END DO 
RRATE=0.0 
PPPR=0.0 

c update shift tensor, elastic, inelastic strain, stress and STATEVs 
C CALL INVERS(CI, C III) 

DO KI --*I, NTENS 
DEEE(Kl)=O. O 
DO K2= 1, NTENS 
DEEE(Kl)=DEEE(Kl)+CIII(KI, K2)*DSTRESS(K2) 

END DO 
END DO 

DO Kl=l, NTENS 
EELAS(Kl)=OLDEL(Kl)+DEEE(KI) 
EPLAS(Kl)--OLDPL(Kl)+DEEIN(KI) 
STRESS(Kl)--OLDS(Kl)+DSTR. F-SS(KI) 
ALPHA(KI)--XXX0(KI)+DXXX(KI) 

END DO 

C 
END IF 

C 

C Store elastic strains, plastic strains and shift tensor 
C in state variable array 

EQE=0.0 
DO K I= INTENS 
DO K2=1, NTENS 
EQE=EQE+EPLAS(Kl)*DELTA(KI, K2)*EPLAS(K2) 
END DO 
END DO 
EQE=(2. /3. )*EQE 
EQE=SQRT(EQE) 

DO K I= I, NTENS 
STATEV(Kl)=EELAS(KI) 
STATEV(KI+NTENS)=EPLAS(KI) 
STATEV(KI+2*NTENS)--ALPHA(KI) 

C DSTRAN(K1)=DEEE(KI)+DEE1N(KI) 
STATEV(KI+3*NTENS)=EIN(KI) 
STATEV(NTENS*4+Kl)=XXXR(KI) 

END DO 
STATEV(NTENS*5+1)=RRR 
STATEV(NTENS*5+2)=PPP 
STATEV(NTENS*5+3)=RRATE 
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STATEV(NTENS*5+4)=PPPR 
STATEV(NTENS*5+5)=EQE 

RETURN 
END 

c 

SUBROUTINE SONGLIN(SS, X0, RRIZKNDI, KNTENS, DDSX, A, G, F, 
PROPS) 

C 
IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION SS(6), XO(6), DDSX(6), A(6,6), 

I DDSTRESS(6), PROPS(18) 
C 
C 
C calculate deviatoric stress 
C VVSTRESS=0.0 
C VXXX=0.0 

VVSTRESS=(SS(I)+SS(2)+SS(3))/3.0 
VXXX=(XO(I)+XO(2)+XO(3))/3.0 

DO Kl=l, KNDI 
DDSTRESS(Kl)=SS(Kl)-VVSTRESS 
DDSX(Kl)=DDSTRESS(Kl)-(XO(Kl)-VXXX) 
END DO 
DO KI=KNDI+I, KNTENS 

DDSTRESS(Kl)=SS(KI) 
DDSX(Kl)=DDSTRESS(Kl)-XO(KI) 
END DO 

c calculate yielding function f 
GII=0.0 

DO KI=I, KNTENS 
DO K2= 1, KNTENS 
GI l=GI I+DDSX(Kl)*A(KI, K2)*DDSX(K2) 

END DO 
END DO 

G=SQRT((3.0/2.0)*G 11) 
F=G-RRR-PROPS(17) 

C G=120. 
C 

RETURN 
END 

SUBROUTINE MATCA(ORN, CO, ZMO, ZNO, QO, CI, ZMI, ZNI, QI, ZM2, ZM3) 
C transformation of elastic and other basic matrix 

IMPLICIT REAL* 8 (A-H, L-Z) 
DIMENSION ORN(3), CO(6,6), ZMO(6,6), ZNO(6,6), QO(6,6), CI(6,6), 

I ZMI(6,6), ZNI(6,6), QI(6,6), ZM2(6,6), ZM3(6,6), ZMOI(6,6) 
DIMENSION A(6,6), B(6,6), BT(6,6), AT(6,6), AI(6,6), BI(6,6) 

c EXTERNAL INVERS, MATAB, MATRA, MULMAT 
ALI=ORN(l) 
AMI=ORN(2) 
ANI=ORN(3) 

c MMMMI=ZMO(1,1) 
c MMMM4=ZMO(4,4) 
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C 
C IF(ALI. LE. I E-6) THEN 
c WRITE (*, 1145) 
C ELSE IF(AMI. LE. I E-6) THEN 
C WRITE (*, 1245) 
c ELSE IF (ANI. LE. IE-6) THEN 
c WRITE(*, 1345) 
c1145 FOPMAT('L=O') 
c1245 FORMAT ('M=O') 
c 1345 FORMAT ('N=O') 
C END IF 
C IF(MMMMI. LE. IE-6) THEN 
C WRITE (*, 1445) 
c ELSE I F(MMMM4. LE. I E-6) THEN 
C WRITE (*, 1545) 
c1445 FORMAT('MI=0') 
c1545 FORMAT('M4=0') 
c END IF 
C----calculats matrix A and B 

CALL MATAB (ALl, AMI, AN1, A, B) 
C-----computes transpose matrix AT, BT, 

CALL MATRA (AAT) 
CALL MATRA (B, BT) 

C---- computes inverse matrix Al, BI 
CALL INVERS (A, Al) 
CALL INVERS (13, BI) 
CALL INVERS (ZMO, ZMOI) 

C ------- computes material matrix 
CALL MULMAT (AI, CO, B, C 1) 
CALL MULMAT (ATZMO, A, ZMI) 
CALL MULMAT (BI, ZMO, A, ZM2) 
CALL MULMAT (BTZMOI, B, ZM3) 
CALL MULMAT (AIZNO, B, ZN 1) 
CALL MULMAT (AI, QO, A, Q 1) 

DO 1=1,6 
DO J=1,6 

ZN I(I, J)=(2.0/3.0)*ZNI(I, J) 
END DO 
END DO 

RETURN 
END 

C .............................................................................. SUBROUTINE MATAB (ALI, AMI, ANI, A, 13) 
C ------ This subroutine calculates MATRIX Aij and Bij 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION A(6,6), B(6,6) 

DD I =(ALI *ALI+AMI* AMI+ANI*ANI) 
DD2=(AMI*AMI+ANI*ANI) 
DDID=(DDI)**0.5 
DD2D=(DD2)**0.5 
A(1,1)=DD2*DD2 
A(1,2)=O. O 
A(1,3)=ALI*ALI*DD2 
A(1,4)=O. O 
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A(1,5)=2.0*ALI*DD2*DD2D 
A(1,6)=O. O 
A(2,1)=ALI*ALI*AMI*AMI 
A(2,2)=ANI*ANI*DDI 
A(2,3)=AMI*AMI*DD2 
A(2,4)=-2.0*ALI*AMI*ANI*DDID 
A(2,5)=-2.0*ALI*AMI*AMI*DD2D 
A(2,6)=2.0*AMI*ANI*DDID*DD2D 
A(3,1)=ALI*ALI*ANI*ANI 
A(3,2)=AMI*AMI*DDI 
A(3,3)=ANI*ANI*DD2 
A(3,4)=2.0*ALI*AMI*ANI*DDID 
A(3,5)=-2.0*ALI*ANI*ANI*DD2D 
A(3,6)=-2.0*AMI*ANI*DDID*DD2D 
A(4, I)=- I. O*ALI*AMI*DD2 
A(4,2)=O. O 
A(4,3)=ALI*AMI*DD2 
A(4,4)=ANI*DD2*DDID 
A(4,5)=(DD2-ALI*ALI)*AMI*DD2D 
A(4,6)=ALI*ANI*DDID*DD2D 
A(5, I)ýl. O*ALI*ANI*DD2 
A(5,2)=O. O 
A(5,3)=ALI*ANI*DD2 
A(5,4)ýl. O*AMI*DD2*DDID 
A(5,5)=(DD2-ALI*ALI)*ANI*DD2D 
A(5,6)ýl. O*ALI*AMI*DDID*DD2D 
A(6,1)=ALI*ALI*AMI*ANI 
A(6,2)=-AMI*ANI*DDI 
A(6,3)=AMI*ANI*DD2 
A(6,4)=(AMI*AMI-ANI*ANI)*ALI*DDID 
A(6,5)=-2.0*ALI*AMI*ANI*DD2D 
A(6,6)=(ANI*ANI-AMI*AMI)*DDID*DD2D 
B(1,1)=DD2*DD2 
B(1,2)=O. O 
B(1,3)=ALI*ALI*DD2 
B(1,4)=O. O 
B(1,5)=ALI*DD2*DD2D 
B(1,6)=O. O- 
B(2,1)=ALI*ALI*AMI*AMI 
B(2,2)=ANI*ANI*DDI 
B(2,3)=AMI*AMI*DD2 
B(2,4)=-I. O*ALI*AMI*ANI*DDID 
B(2,5)=-I. O*ALI*AMI*AMI*DD2D 
B(2,6)=AMI*ANI*DDID*DD2D 
B(3,1)=ALI*ALI*ANI*ANI 
B(3,2)=AMI*AMI*DDI 
B(3,3)=ANI*ANI*DD2 
B(3,4)=ALI*AMI*ANI*DDID 
B(3,5)=-I. O*ALI*ANI*ANI*DD2D 
B(3,6)=-I. O*AMI*ANI*DDID*DD2D 
B(4, I)ý2.0*ALI*AMI*DD2 
B(4,2)---O. O 
B(4,3)=2.0*ALI*AMI*DD2 
B(4,4)=ANI*DD2*DDID 
B(4,5)=(DD2-ALI*ALI)*AMI*DD2D 
B(4,6)=ALI*ANI*DD I D* DD2D 
B(5,1)=-2.0*ALI*ANI*DD2 
B(5,2)=O. O 
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B(5,3)=2.0 *ALI *ANI*DD2 
B(5,4)=- I. O*AMI*DD2*DDI D 
B(5,5)=(DD2-ALI*ALI)*ANI*DD2D 
B(5,6)ýl. O*ALI*AMI*DDID*DD2D 
B(6, ])=2.0*ALI*ALI*AMI*ANI 
B(6,2)=-2.0*AMI*ANI*DDI 
B(6,3)=2.0*AMI*ANI*DD2 
B(6,4)=(AMI*AMI-ANI*ANI)*ALI*DDID 
B(6,5)=-2.0*ALI*AMI*ANI*DD2D 
B(6,6)=(ANI*ANI-AMI*AMI)*DDID*DD2D 

DO 1=1,6 
DO J=1,6 

A(I, J)=A(I, J)/(DD I *DD2) 
B(I, J)=B(I, J)/(DDI*DD2) 

END DO 
END DO 

RETURN 
END 

c .................................................................. SUBROUTINE MATRA (AA, AAT) 
C----- this is for matrix transpose Le AATij=AAji 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION AA(6,6), AAT(6,6) 
DO 1=1,6 
DO J=1,6 

AAT(I, J)=AA(J, I) 
END DO 
END DO 
RETURN 
END 

C ..................................................................... SUBROUTINE MULMAT (A, B, C, D) 
C-----this subroutine is for three matrix multplication A. B. C=D 

IMPLICIT REAL* 8 (A-H, L-Z) 
DIMENSION A(6,6), B(6,6), C(6,6), D(6,6), AB(6,6) 
DO 1=1,6 
DO J=1,6 

AB(I, J)=O. O 
DO K=1,6 

AB(I, J)=AB(I, J)+A(I, K)*B(K, J) 
END DO 
END DO 
END DO 

DO 1=1,6 
DO J= 1,6 

D(I, J)=O. O 
DO K= 1,6 

D(I, J)=D(I, J)+AB(I, K)*C(K, J) 
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END DO 
END DO 

END DO 
RETURN 
END 

C ............................................................... SUBROUTINE INVERS, (A, Al) 
C ==ý- this subroutine computes the INVERSE of a Matrix -AI=A- I 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION A(6,6), AI(6,6), AB(6,12) 

C ------ fonn AB =(A 11) 
DO 1=1,6 
DO J= 1,12 
IF-((1+6ý. EQ-J) THEN 

AB(I, J)=I. O 
ELSE 

AB(I, J)=O. O 
END IF 

END DO 
END DO 

DO 1= 1,6 
DO J= 1,6 

AB(I, J)=A(I, J) 
END DO 
END DO 
KM=6 
KN = 12 

DO 30, K=1, KM 
DO 40, KQ = K, KM 
IF (ABS(AB(KQ, K)). GT. IE-18) GO TO 110 

40 CONTINUE 
WRITE(*, 45) 

45 FORMATC NO SOLUTION) 
GOTO 290 

110 D050, KP=I, KN 
S= AB(K, KP) 
AB(K, KP) = AB(KQ, KP) 
AB(KQ, KP) =S 

50 CONTINUE 
T= I /AB(K, K) 

DO 60, KR = 1, KN 
AB(K, KR) =T* AB(K, KR) 

60 CONTINUE 
DO 70,1 = 1, KM 

Y= -AB(l, K) 
IF (I. EQ. K) GO TO 70 

D080, J=I, KN 
. AB(I, J) = AB(I, J) +Y* AB(Y, J) 

80 CONTINUE 
70 CONTINUE 
30 CONTINUE 

C ----- seperate solution Al from AB 
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DO 901,1=1,6 
DO 902, J=7,12 

JJ=J-6 
AI(I, JJ)=AB(I, J) 

902 CONTINUE 
901 CONTINUE 
290 RETURN 

END 

SUBROUTINE ITERATION(STRESS, ALPHA, RRFPPP, EPLAS, 
I PROPS, EINO, RRRO, XXXO, OLDS, PPPO, OLDPL, ZM I, ZM2, ZM3, ZN 1, 
2 QI, EIN, KNTENS, KNDI, THETA, DTIME, C1, DSTRAN, PPPRDSX, G, FFF, 
3 XXXR, RRATFPPPRO, XXXRO, RRATEO) 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION STRESS(6), ALPHA(6), EPLAS(6), EINO(6), XXXO(6), 

I OLDS(6), OLDPL(6), ZMI(6,6), ZM2(6,6), ZM3(6,6), ZNI(6,6), 
2 QI(6,6), WW2(6), DSX(6), EIN(6), XXXRO(6), XXXR(6), DEEIN(6), 
3 DXXX(6), DSTRESS(6), PROPS(17), CI(6,6), DSTRAN(6) 

C 
C calculate accumulated inelastic strain rate at start of time 
c increment 
C calculate isotropic stress rate at start of time increment and 
C back stress rate at start of time increment 
C 
" do iteration loop 
" DO 121 K=1,3 

DO K=1,3 
C calculate inelastic strain rate 

CALL SONGLIN (STRESSALPHA, RRRKNDI, KNTENS, DSX, ZM1, G, FFF, 
I PROPS) 

1C CALL SONGLIN(STRESS, ALPHA, KNDI, KNTENS, DSX, ZMI, G) 
DO KI=I, KNTENS 
WW2(Id)=0-0 
END DO 
DO Kl=l, KNTENS 
DO K2= 1. KNTENS 

WW2(Kl)=WW2(Kl)+ZM2(KI, K2)*DSX(K2) 
END DO 

END DO 
C FFF=G-RRR-PROPS(17) 
C FFF=G-PROPS(17) 

FKN=(FFF/PROPS(7))**PROPS(8) 
DO KI=I, KNTENS 
EIN(Kl)=(1.5/G)*FKN*WW2(KI) 
XXXR(Kl)=O. O 
END DO 

C calculate acumulated inelastic strain rate dp/dt at t+dt 
PPPR=FKN 

C calculate back stress rate dx/dt 
DO Kl=f, KNTENS 
DO K2=1, KNTENS 
XXXR(Kl)=XXXR(Kl)+ZNI(KI, K2)*EIN(K2)- 

QI(KI, K2)*ALPHA(K2)*PPPR 
END DO 
END DO 

C isotropic stress rate 
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RRATE=PROPS(I 5)*(PROPS(I 6)-RRR)*PPPR 
C calculate the increments of inelastic strain by using implicite method, 
C back stress, and update the values of variables 

DO K I= I, KNTENS 
DEEIN(Kl)=DTIME*((I. -THETA)*EINO(Kl)+THETA*EIN(Kl)) 
DXXX(K])=DTIME*((I. -THETA)*XXXRO(Kl)+THETA*XXXR(Ki)) 

EPLAS(Kl)=OLDPL(Kl)+DEEIN(KI) 
ALPHA(Kl)=XXXO(Kl)+DXXX(KI) 
DSTRESS(K 1)=O. O 
END DO 

C calculate stress increment and the increments of scalor stress 
C and accumulated inelastic strain, then update the variables 

DO KI=I, KNTENS 
DO K2=1, KNTENS 
DSTRESS(Kl)=DSTRESS(Kl)+CI(KI, K2)*(DSTRAN(K2)-DEEIN(K2)) 
END DO 
END DO 
DRRR=DTIME*((I. -THETA)*RRATEO+THETA*RRATE) 
DPPP=DTIME*((I. -THETA)*PPPRO+THETA*PPPR) 

C DRRR=DTIME*(THETA*RRATEO+(I. -THETA)*RRATE) 
C DPPP=DTIME*(THETA*PPPRO+(I. -THETA)*RRATE) 

RRR=RRRO+DRRR 
PPP=PPPO+DPPP 
DO KI=I, KNTENS 

STRESS(Kl)=OLDS(Kl)+DSTRESS(KI) 
END DO 

C121 CONTINUE 
END DO 
RETURN 
END 

C+ 11111 ++++-F+ 111111 fi 1o1d1aao1 

SUBROUTINE TENSORW (FFF, PROPS, G, ZM I, ZM2, DSX, WW 1, VvIW2, 
I FKN, FFGO, FFG, KNTENS) 

c 
IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION PROPS(18), ZM I (6,6), ZM2(6,6), DSX(6), 

I WWI(6), WW2(6) 
C 
c calculate derivation of inelastic starin rate with stress 

FKN=(FFF/PROPS(7))**PROPS(8) 
FFGO=(PROPS(8)/ýROPS(7))*(FFF/PROPS(7))**(PROPS(8)- 1.0) 
FFG=(3.0/2.0)*(FFGO-FKN/G) 

C 
DO Kl=l, KNTENS 

WWI(Kl)=O. O 
WW2(Kl)=O. O 

END DO 
DO K I= I, KNTENS 
DO K2=1, KNTENS 

WWI (K 1)=WWI(Kl)+ZMI(KI, K2)*DSX(K2)+ZMI(K2, Kl)*DSX(K2) 
WW2(Kl)=WW2(Kl)+ZM2(KI, K2)*DSX(K2) 
END DO 

END DO 
RETURN 
END 

C......... 4................................. 

SUBROUTINE NONLINI (PPPR, G, FKN, FFGO, FFG, THETA, PROPS, 
I EIN, ALPHA, RRR, WWI, WW2, QI, ZM2, ZM3, ZNI, CI, DTIME, KNTENS, 
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C 
2 DDSDDE, DDSDS) 

IMPLICIT REAL*8 (A-H, L-Z) 

DIMENSION EIN(6), ALPHA(6), PROPS(17), WWI(6), WW2(6), QI(6,6), 
I ZM2(6,6), ZM3(6,6), CI(6,6), ZNI(6,6), DDSDDE(6,6), 
2 M(6), WI(6,6), W(6,6), Y(6,6), DELTA(6,6), AQ(6,6), AQI(6,6), 
3 QX(6), QXM(6,6), NQ(6,6), ANQ(6,6), YY(6,6), YYY(6,6), YYYI(6,6), 
4 YMAI(6,6), YMA(6,6), CYMA(6,6), CYMAI(6,6), DDSDS(6,6) 

C 

C 

C 

C 

C 

C 

DO KI=I, KNTENS 
M(Kl)=O. O 
DO K2=I, KNTENS 
M(Kl)=M(Kl)+ZM3(KI, K2)*EIN(K2)+EIN(K2)*ZM3(K2, Kl) 
END DO 
END DO 

DO K I= I, KNTENS 
M(Kl)=M(Kl)/(3.0*PPPR) 
END DO 

A=DTIME*THETA 
AA=(3.0/2.0)*FKN/G 
BB=(3.0/2.0)*FFGO 
C=(3.0/4.0)*FFG/G 
CC=I. O+A*PROPS(15)*PPPR 
DD=A*PROPS(15)*BB*(PROPS(16)-RRR)/CC 
DO K I= I, KNTENS 
DO K2= I, KNTENS 
WI(KI, K2)=WWI(Kl)*WW2(K2)/G 
END DO 
END DO 
DO KI=I, KNTENS 
DO K2=I, KNTENS 
W(KI, K2)=C*WI(KI, K2)+AA*ZM2(KI, K2) 
END DO 
END DO 

DO KI=I, KNTENS 
DO K2=I, KNTENS 
Y(KI, K2)=DD*WW2(Kl)*M(K2)/G 
END DO 
END DO 

DO KI=I, KNTENS 
DO K2=1*, KNTENS 
DELTA(KI, K2)=O. O 
END DO 
END DO 
DO K I= 1, KNTENS 
DELTA(KI, Kl)=I. O 
END DO 

DO K I= I, KNTENS 
DO K2=I, KNTENS 
AQ(KI, K2)=DELTA(KI, K2)+A*PPPR*QI(KI, K2) 
END DO 
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C 

C 

C 

C 

C 

C 

END DO 
CALL INVERS(AQ, AQI) 

DO KI=I, KNTENS 
QX(Kl)=O. O 
DO K2=I, KNTENS 
DO K3=1, KNTENS 
QX(Kl)=QX(Kl)+QI(KI, K3)*ALPHA(K3) 
END DO 
QXM(KI, K2)=QX(Kl)*M(K2) 
END DO 
END DO 

DO K I= I, KNTENS 
DO K2=I, KNTENS 
NQ(KI, K2)=ZNI(KI, K2)-QXM(KI, K2) 
ANQ(KI, K2)=O. O 
YY(KI, K2)=O. O 
END DO 
END DO 

DO K I= I, KNTENS 
DO K2=I, KNTENS 
DO K3=1, KNTENS 
ANQ(KI, K2)=ANQ(KI, K2)+AQI(KI, K3)*NQ(K3, K2) 
END DO 
END DO 
END DO 

DO K I= I, KNTENS 
DO K2=I, KNTENS- 
DO K3=1, KNTENS 
YY(KI, K2)=YY(KI, K2)+A*W(KI, K3)*ANQ(K3, K2) 
END DO 
END DO 
END DO 

DO KI=I, KNTENS 
DO K2=I, KNTENS 
YMAI(KI, K2)=O. O 
YMA(KI, K2)=O. O 
CYMA(KI, K2)=O. O 
DDSDDE(KI, K2)=O. O 
YYY(KI, K2)=DELTA(KI, K2)+YY(KI, K2)+Y(KI, K2) 
END DO 
END DO 
CALL INVERS(YYY, YYYI) 
DO KI=I, KNTENS 
DO K2=I, KNTENS 
DO K3=I, KNTENS 
YMAI(KI, K2)=YMAI(KI, K2)-i-YYYI(KI, K3)*W(K3, K2) 
END DO 
END DO 
END DO 

DO K I= I, KNTENS 
DO K2= 1, KNTENS 
DO K3=1, KNTENS 
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C 

YMA(K], K2)=YMA(KI, K2)+YMAI(KI, K3)*DDSDS(K3, K2) 
END DO 
END DO 
END DO 
DO K I= I, KNTENS 
DO K2=I, KNTENS 
DO K3=1, KNTENS 
CYMA(KI, K2)=CYMA(KI, K2)+A*CI(KI, K3)*YMA(K3, K2) 
END DO 
CYMA(KI, K2)=CYMA(KI, K2)+DELTA(KI, K2) 
END DO 
END DO 
CALL INVERS(CYMA, CYMAI) 

DO K I= I, KNTENS 
DO K2=I, KNTENS 
DO K3=I, KNTENS 
DDSDDE(KI, K2)=DDSDDE(KI, K2)+CYMAI(KI, K3)*CI(K3, K2) 
END DO 
END DO 
END DO 
RETURN 
END 
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PROGRAM CUMAT. INP 

This UMAT is a modified version for crystallographic model 
Program Developed in: 
Engineering Materials and Structural Integrity Group 

University of Bristol, June, 1998 

SUBROUTINE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD, 
I RPL, DDSDDTDRPLDE, DRPLDT, 
2 STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME, 
3 NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS, COORDS, DROTPNEWDT, 
4 CELENT, DFGRDO, DFGRD1, NOEL, NPTLAYEPKSPTKSTEP, KINC) 

INCLUDE'ABA_PARAM. INC' 
ccc 

CHARACTER* 8 CMNAME 

IMPLICIT REAL*8 (A-H, L-Z) - 

C EXTERNAL MATCA, INVERS 
DIMENSION STRESS(NTENS), STATEV(NSTATV), 
I DDSDDE(NTENS, NTENS), DDSDDT(NTENS), DRPLDE(NTENS), 
2 STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(l), DPRED(l), 
3 PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRDO(3,3), DFGRDI(3,3) 

c 
C DIMENSION STRESS(6), STATEV(90), 
CI DDSDDE(6,6), 
C2 DSTRAN(6), STMN(6), 
C3 PROPS(I 7) 

DIMENSION EELAS(6), EPLAS(6), OLDS(6), OLDEL(6), OLDPL(6) 
C (dimension adding ) 

DIMENSION ORN(3), CO(6,6), CI(6,6), CII(6,6), WN(18,3), WL(18,3), 
I DEIN(6), DEE(6), DSTRESS(6), DX(18), DR(18), TSO(IS), 
2 TTRO(I 8), XO(l 8), WM 1(6,18), WM2(18,6), BIM(6,18), TS(I 8), X(I 8), 
3 AAI(18,18), WMAC(18,6), WMA(18,6), ABM(18,18), 
4 BB I(I 8,18), BA I I(I 8,18), DBA(I 8,18), A(6,6), 
5 CCI(18), CC2(18,18), CC3(18,6), CC4(18,18), 
6 DDI(18), DD2(18,6), DD3(18,18), DD4(18), DD5(18,6), DD6(18,18), 
7 EI(18), E2(18,6), E3(18,18), E4(18), E5(18,6), E3I(18,18), 
8 FI(6,18), F3(6,6), DBAI(18,18), BI(6,6), B(6,6) 
DIMENSION F(I 8), PK(I 8), PN(I 8), XRO(I 8), XR(I 8), 

1 PC(18), PD(18), PR(18), TTR(18), DXI(18), 
2 TEELAS(6), TEPLAS(6), TTEEE(6), DELTA(6,6), STRESS 1 (6) 

COMMON TTRO, XRO, TSO, TTR, XltWMAC, ABM, PK, PN, PC, 
I PD, PR, X, TS, X0, DR, DX, C1, CII, WM2, BIM, WMA 

SSS I I= I. O/PROPS(l) 
SSS 12=- 1.0* PRO PS(2)/PROPS(l) 
SSS44= I. O/PROPS(3) 
CCC II =((I. O/(SSS I 1+2.0*SSS 12))+(2.0/(SSS II -SSS 12)))/3.0 
CCC I 2=CCC II -(I. O/(SSS II -SSS 12)) 
CCC44=1.0/SSS44 
ORN(I)=PROPS(4) 
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ORN(2)=PROPS(5) 
ORN(3)=PROPS(6) 
ALI=ORN(l) 
AMI=ORN(2) 
ANI=ORN(3) 
THETA=0.6 

C NTENS=6 
C DO KI=1,6 
C DSTRAN(Kl)=O. O 
C END DO 
C DSTRAN(3)=0.004*0.001 
C DTIME=0.001 
C OPEN(UNIT=I, FILE=ýALL. OUr) 
C 
C 
C ELASTIC STIFFINESS IN THE [00 1 ]-[0 10]-[00 1 SYSTEM 
C set initial stiffness to zero 
C OPEN (UNIT= 10 10, FILE='C00. OUT`) 

DO KI=1,6 
DO K2=1,6 
CO(KI, K2)=O. O 
END DO 
END DO 
DOKI=1,3 
DO K2= 1,3 
CO(KI, K2)=CCC12 

END DO 
CO(K1, Kl)=CCC II 

END DO 
DO K1 =4,6 
CO(KI, Kl)=CCC44 

END DO 

C Elastic stiffness and other basic transformation 

CALL MATCA(ORN, C0, C I) 
CALL MATAB(ALI, AMIANI, A, B) 
CALL INVERS(B, BI) 
CALL INVERS(CI, C I I) 

C Recover elastic strain, plastic strain and shift tensor and rotate 
C Use code I for (tensor) stress, code 2 for(engineering) strain 
C DROT is the identity tensor if *ORIENTATION is used 

C CALL ROTSIG(STATEV( 1), DROTEELAS, 2, NDI, NSHR) 
C CALL ROTSIG(STATEV(NTENS+I), DROT, EPLAS, 2, NDI, NSHR) 
C CALL ROTSIG(STATEV(2*NTENS+I), DROTALPHA, I, NDI, NSHR) 

C............................................ 
C 
C OPEN (UNIT=892, FILE='MN. OUT) 
C calculating nj matrix 

WN I=I. O/SQRT(3.0) 
WLI=I. O/SQRT(2.0) 
DO 1=1,12 
DO J=1,3 
WN(I, J)=WNI 
END DO 
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END DO 
DO 1=4,9 
WN(l, 1)ýWN I 
WN(1+3,2)ýWN I 
END DO 
DO 1=13,18 
DO J=1,3 
WN(I, J)=O. O 
END DO 
END DO 
DO 1=1,2 
WN(1+12,3)=I. O 
WN(1+14,2)=I. O 
WN(1+16,1)=I. O 
END DO 

C 
DO 1=1,18 
DO J=1,3 
WL(I, J)=WLI 
END DO 
END DO 
WL(1,2)=O. O 
WL(1,3)=-WLI 
WL(2,1)=-WLI 
WL(2,3)=O. O 
WL(3,1)--O. O 
WL(3,2)ýWLI 
WL(4,1)=O. O 
WL(4,3)=-WLI 
WL(5,1)=-WLI 
WL(5,2)ýWLI 
WL(5,3)=O. O 
WL(6,2)=O. O 
WL(7,1)=-WLI 
WL(7,2)=O. O 
WL(7,3)=-WLI 
WL(8,2)=-WLI 
WL(8,3)--O. O 
WL(9,1)--O. O 
WL(10,1)=O. O 
WL(10,2)=-WLI 
WL(10,3)=-WLI 
WL(I 1,3)=O. O 
WL(12,1)=-WLI 
WL(12,2)=O. O 
WL(13,3)=O. O 
WL(14,1)ýWLI 
WL(14,3)=O. O 
WL(15,2)=O. O 
WL(16,1)ýWLI 
WL(16,2)=O. O 
WL(17,1)=O. O 
WL(I 8, l)=0.0 
WL(18,2)=-WLI 

c******** 
c calculating m* and m-* 

DO 11=1,18 
DO 1=1,3 
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WM2(ll, l)=WN(l1, l)*WL(lj, j) 
END DO 

WM2(11,6)=NkN(11,2)*WL(11,3)+WN(11,3)*WL(11,2) 
WM2(11,5)=WN(11,1)*WL(11,3)+WN(11,3)*WL(Il, l) 
WM2(11,4)=WN(Il, l)*WL(11,2)+Vv'N(11,2)*WL(Il, l) 
END DO 

DO 1=1,6 
DOJ=1,18 
WMI(I, J)=WM2(J, I) 

END DO 
END DO 

c #4#4####################################################### 
C Save stress and plastic strains and STATVE 
C RRRO=STATEV(NTENS*3+1) 
C PPPO=STATEV(NTENS*3+2) 
CC DO K I= INTENS 
CC STRESS(Kl)=O. O 
CC STATEV(Kl)=O. O 
cc STATEV(NTENS+Kl)--O. O 
CC STRAN(Kl)=O. O 
CC END DO 
CC DO KI=1,18 
cc STATEV(NTENS*2+Kl)=O. O 
cc STATEV(NTENS*2+18+Kl)--O. O 
cc STATEV(NTENS*2+36+Kl)=O. O 
CC STATEV(NTENS*2+54+Kl)=O. O 
cc STATEV(NTENS*2+72+Kl)=O. O 
cc END DO 
C WRITE(*, 45) 
CC45 FORMAT('OK-ONE) 
C-CALCULATION OF MATRICES: BIM(I, J) 

DO KI=1,6 
DO K2=1,18 
BIM(KI, K2)=O. O 
DO K3=1,6 
BIM(KI, K2)=BIM(KI, K2)+BI(KI, K3)*WMI(K3, K2) 
END DO 
END DO 
END DO 
DO KI=1,18 
DO K2= 1,6 
WMA(KI, K2)=O. O 
DO K3=1,6 
WMA(KI, K2)--WMA(KI, K2)+WM2(KI, K3)*A(K3, K2) 
END DO 
END DO 
END DO 
DO KI=1,18 
DO K2=1,6 
WMAC(KI, K2)=O. O 
DO K3=1,6 
WMAC(KI, K2)=WMAC(KI, K2)+WMA(KI, K3)*CI(K3, K2) 
END DO 
END DO 
END DO 

C 
CC DO 111=1,1000 
CC DSTRAN(3)=0.004*0.00 I 

231 



Appendix IX 

C STRAN(3)=STRAN(3)+DSTRAN(3) 
DO K I= I, NTENS 
OLDS(Kl)=STRESS(KI) 
OLDEL(Kl)=STATEV(KI) 
OLDPL(Kl)=STATEV(NTENS+Kl) 
END DO 

DO KI=1,18 
TTRO(Kl)=STATEV(NTENS*2+Kl) 
TSO(Kl)=STATEV(NTENS*2+18+Kl) 
XO(Kl)=STATEV(NTENS*2+36+Kl) 
XRO(Kl)=STATEV(NTENS*2+54+Kl) 

C TRO(Kl)=STATEV(NTENS*2+72+Kl) 
END DO 

c ------------------------------ 
DO Kl=], NTENS 
DSTRESS(Kl)=O. O 
END DO 
DO K2=I, NTENS 
DSTRESS(Kl)=DSTRESS(Kl)+CI(KI, K2)*DSTRAN(K2) 
END DO 

C END DO 
DO Kl=], NTENS 
STRESS(Kl)=OLDS(Kl)+DSTRESS(KI) 
END DO 

CC STRESS(3)=OLDS(3)+DSTRESS(3) 
CC WRITE(*, 55)STRESS(3) 
C--CARRY OUT (TAU-X) AND GRADIENTS IN TAYLOR EXPENSON OF SHERE STRAIN 
RATE, 
C-BACK STRESS RATE: AA I (1, J), AA2(I, J), BB I (1, J), BB2(1, J) 

DO K1=1,18 
DO K2=1,18 
AAI(KI, K2)=O. O 

C AA2(KI, K2)=O. O 
BBI(KI, K2)=O. O 

C BB2(KI, K2)=O. O 
END DO 
END DO 

C --- - ----------- -- -- - --- - ------------ 
CC WRITE(*, 46) 
CC46 FORMAT('OK-TWO') 
C ------ -- ----- - ------ -- 
C CALCULATE SHERE STRESS 

DOKI=1,18 
TS(Kl)=O. O 
DO K2=1,6 
DO K3=1,6 
TS(Kl)=TS(Kl)+WM2(KI, K2)*A(K2, K3)*STRESS(K3) 
END DO 
END DO 

cc WRITE(*, 55)TS(KI) 
END DO 

c 
c ------------------------------ -- 
c DO KI=1,18 
C FF(I)=ABS(TSX(f)- 
c ------------- 

DO KI=1,18 
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c TSXO=TSO(K])-XO(KI) 
IF(KI. LE. 12)THEN 
PK(K ])=PROPS(7) 
PN(K 1)=PROPS(9) 
PR(K 1)=PROPS(I 1) 
PD(Kl)=PROPS(13) 
PC(Kl)=PROPS(15) 
ELSE 
PK(K 1)=PROPS(8) 
PN(K 1)=PROPS(I 0) 
PR(Kl)=PROPS(12) 
PD(Kl)=PROPS(14) 
PC(Kl)=PROPS(16) 
END IF 
END DO 

c ----- 
DO I= 1,18 
TSXO=TSO(I)-XO(I) 
FO=ABS(TSXO)-PR(l) 
IF (FO. LE. O. O)THEN 
FKNO=0.0 
AAI(1,1)=O. O 
BB I (1,1)=O. O 
ELSE 
FKNO=(PN(I)/PK(l))*(FO/PK(I))**(PN(l)-i. ) 

C AA I (1,1)=FKNO*TSXO(I)/ABS(TSXO(I)) 
AAI(1,1)=FKNO 

C AA2(I, I)ýAAl(I, I) 
BB 1(1,1)=PC(l)-PD(I)*XO(I)*TSXO/ABS(TSXO) 

c 
END IF 

CCC AAI(1,1)=FKNO*TSXO(I)/ABS(TSXO(I)) 
C AA2(1,1)=-AAI(1,1) 
CCC BBI(1,1)=PC(l)-PD(I)*XO(I)*TTRO(I)/ABS(TTRO(j)) 
C BB2(1,1)=-PD(I)*ABS(TTRO(l)) 
c 

END DO 
CC WRITE(*, 47) 
47 FORMAT('OK-THREE') 
c ----- 

DOKI=1,18 
DO K2= 1,18 
BAII(KI, K2)--O. O 

C BA12(KI, K2)--O. O 
DO K3=1,18 
BA II (K 1, K2)=BA II (K 1, K2)+BB I (K 1, K3)*AA I (K3, K2) 

c BA 12(K 1, K2)=BA 12(K 1, K2)-BB I (K 1, K2)*AA I (K3, K2) 
END DO 
END DO 
END DO 

c -------------- 
DOKI=1,18 
DOK2=1,18 

C DELTA(KI, K2)=O. O 
END DO 

c DELTA(K], Kl)=I. O 
END DO 
AI =DTIME*THETA 
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DO KI=1,18 
DO K2=1,18 
DBA(KI, K2)=O. O 
END DO 
DBA(KI, Kl)=I. O-Al *(-BAI l(KI, Kl)-PD(Kl)*ABS(TrRO(Kl))) 
END DO 
CALL INVERS I (DBA, DBAI) 

CC WRITE(*, 50) 
50 FORMAT('OK-4') 
c ------------------------- 
C ---- - --------------------------- 

DO KI=1,18 
DO K2= 1,18 
ABM(KI, K2)=O. O 
DO K3=1,6 
ABM(KI, K2)=ABM(KI, K2)+WMAC(KI, K3)*BIM(K3, K2) 
END DO 
END DO 
END DO 

- ---------- 

DO KI=1,18 
CCI(Kl)=O. O 
DOK2=1,18 
CCI(Kl)=CCI(K])+DTIME*DBAI(KI, K2)*XRO(K2) 
END DO 
END DO 
DO KI=1,18 
DO K2=1,18 
CC2(KI, K2)=O. O 
DO K3=1,18 
CC2(K 1, K2)=CC2(K 1, K2)+DBAI(K 1, K3)*BA II (K3, K2) 
END DO 
END DO 
END DO 

-- ------------------------ 
DO KI=1,18 
DO K2=1,6 
CC3(KI, K2)=O. O 
DO K3=1,18 
CC3(KI, K2)=CC3(KI, K2)+CC2(KI, K3)*WMAC(K3, K2) 
END DO 
END DO 
END DO 
DO KI=1,18 
DO K2=1,18 
CC4(KI, K2)=O. O 
DO K3=1,18 
CC4(KI, K2)=CC4(KI, K2)+CC2(KI, K3)*ABM(K3, K2) 
END DO 
END DO 
END DO 

--------- - ------------------ 
DO KI=1,18 
DDI(Kl)=DTIME*TTRO(KI) 
DO K2= 1,6 
DD2(K 1, K2)=O. O 
DD5(K 1, K2)=O. O 
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DO K3= 1,18 
DD2(KI, K2)=DD2(KI, K2)+AAI(KI, K3)*WMAC(K3, K2) 
DD5(K 1, K2)=DD5(KIK2)-AA I (KI, K3)*CC3(K3, K2) 
END DO 
END DO 
END DO 
DOKI=1,18 
DD4(K 1)=O. O 
DO K2= 1,18 
DD3(KI, K2)=O. O 
DD6(K 1, K2)--O. O 
DO K3=1,18 
DD3(K], K2)=DD3(KI, K2)+AAI(KI, K3)*ABM(K3, K2) 
DD6(KI, K2)=DD6(KI, K2)-AAI(KI, K3)*CC4(K3, K2) 
END DO 
DD4(K 1)=DD4(Kl)-AAI(KI, K2)*CCI(K2) 
END DO 
END DO - 

C ----- 
DO KI=1,18 
EI(Kl)=DDI(Kl)+AI*DD4(KI) 
DO K2=1,6 
E2(KI, K2)=AI*DD2(KI, K2)+AI*AI*DD5(KI, K2) 

END DO 
DO K3= 1,18 

C E3(KI, K3)=DELTA(KI, K3)+AI*DD3(KI, K3)+AI*AI*DD6(KI, K3) 
E3(KI, K3)=AI*DD3(KI, K3)+AI*AI*DD6(KI, K3) 

END DO 
E3(KI, Kl)=I. +AI*DD3(KI, Kl)+AI*AI*DD6(KI, Kl) 

END DO 
CALL INVERSI(E3, E31) 

cc WRITE(*, 5 1) 
51 FORMAT('OK-5') 

DOKI=1,18 
E4(Kl)=O. O 
DO K2=1,18 
E4(Kl)=E4(Kl)+E3I(KI, K2)*EI(K2) 

END DO 
DO K2=1,6 
E5(KI, K2)=O. O 
DO K3=1,18 
E5(KI, K2)=E5(KI, K2)+E31(KI, K3)*E2(K3, K2) 

END DO 
END DO 
END DO 

c ------- ---- 
DO KI=1,6 

c F2(K 1)--0.0 
DO K2= 1,18 
FI(K], K2)=O. O 
DO K3= 1,6 
FI(KI, K2)=FI(KI, K2)+CI(KI, K3)*BIM(K3, K2) 
END DO 

c F2(Kl)=F2(Kl)+FI(KI, K2)*E4(K2) 
END DO 
END DO 
DO KI=1,6 
DO K2=1,6 
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F3(KI, K2)=O. O 
DO K3=1,18 
F3(KI, K2)=F3(KI, K2)+F](KI, K3)*E5(K3, K2) 
END DO 

END DO 
END DO 

c --------------- --- -- -------------- 
DO KI=1,18 
TSX=TS(Kl)-XO(KI) 

cc WRITE(*, 55)TSX 
55 FORMAT(F20.10) 
c 

F(Kl)=ABS(TSX)-PR(KI) 
IF(F(KI). LE. O. O)THEN 
TTR(Kl)=O. O 
XR(Kl)=O. O 
DR(Kl)=O. O 

ELSE 

C CARRY OUT ALL VARIABLES INCREMENT 
C DOKI=1,18 

T'TR(Kl)=(F(Kl)/PK(Kl))**PN(Kl)*(TSX/ABS(TSX)) 
DR(Kl)=O. O 
DO K2= 1,6 
DR(Kl)=DR(Kl)+E5(KI, K2)*DSTRAN(K2) 
END DO 
DR(Kl)=DR(Kl)+E4(KI) 

END IF 
END DO' 

------------------- --------------- 
DO KI=1,18 
DX(Kl)=O. O 
DXI(Kl)=O. O 
DO K2=1,6 

DX(Kl)=DX(Kl)+AI*CC3(KI, K2)*DSTRAN(K2) 
END DO 
DO K2=1,18 

DXI(Kl)=DXI(Kl)+AI*CC4(KI, K2)*DR(K2) 
END DO 

DX(Kl)=DX(Kl)+CCI(Ki)-DXI(KI) 
X(Kl)=XO(Kl)+DX(KI) 
XR(Kl)=PC(Kl)*TTR(Kl)-PD(Kl)*X(Kl)*ABS(TTR(Kl)) 
END DO 
DO KI=1,18 

C X(Kl)=XO(Kl)+DX(KI) 
C XR(Kl)=PC(Kl)*TTR(Kl)-PD(Kl)*X(Kl)*ABS(TrR(Kl)) 
C TR(Kl)=TRO(Kl)+DR(KI) 

TS(Kl)=O. O 
DO K2=1,6 
DO K3=1,6 

C TS(Kl)=TS(K])+WMAC(KI, K2)*STRESS(K2) 
TS(Kl)=TS(Kl)+WM2(KI, K2)*A(K2, K3)*STRESS(K2) 
END DO 
END DO 
END DO 

c ------- -- ----- - ----------- 
FIT=PROPS(17) 
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CC WRITE(*, 57)FIT 
CC57 FORMAT(FI2.5) 
C FITER=ITER+0.0 

IF(FIT. GT. O. )THEN 
C KIT=PROPS(I 7) 

ITER=INT(PROPS(17)) 
C 
CC WRITE(*, 56)111, ITER 
C CALL NONLIN(TTRO, XRO, DSTRAN, TSO, TTRXR, DTIME, THETA, 
CI XO, WMACABMPKPNPCPDPFITER), 

CALL NONLIN(DTIME, THETA, ITEI?, DSTRAN, DDSDDE) 
CC WRITE(*, 56)111 
CC56 FORMAT(215) 

C END IF 
ELSE 
DO KI=1,6 
DO K2=1,6 
DDSDDE(KI, K2)=CI(KI, K2)-F3(KI, K2) 
END DO 
END DO 
END IF 

c 
DO KI=1,6 
DEIN(Kl)=O. O 
DSTRESS(Kl)=O. O 
DO K2=1,18 
DEIN(Kl)=DEIN(Kl)+BIM(KI, K2)*DR(K2) 
END DO 
END DO 
DO KI=1,6 
DO K2=1,6 
DSTRESS(Kl)=DSTRESS(Kl)+CI(KI, K2)*(DSTRAN(K2)-DEIN(K2)) 
END DO 

C DSTRESS(3)=DSTRESS(3)+CI(3, Kl)*(DSTRAN(Kl)-DEIN(Ki)) 
END DO 
DO KI=1,6 
DEE(K 1)=O. O 
DO K2=1,6 
DEE(Kl)=DEE(Kl)+CII(KI, K2)*DSTRESS(K2) 
END DO 
DSTRAN(Kl)=DEE(Kl)+DEIN(KI) 
END DO 

c ---- - ----- - --------- - 
DO K I= 1, NTENS 
EELAS(Kl)=OLDEL(Kl)+DEE(KI) 
EPLAS(Kl)=OLDPL(Kl)+DEIN(KI) 
STRESS(KI)=0LDS(KI)+DSTRESS(KI) 
STRAN(KI)=STRAN(KI)+DSTRAN(KI) 
END DO 

c ---------------- ------- 
c--- ----- 
C STORE ALL VARIABLES 

DO K I= 1, NTENS 
STATEV(Kl)=EELAS(KI) 
STATEV(K I +NTENS)=EPLAS(K 1) 
END DO 
DO KI=1,18 
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STATEV(NTENS*2+Kl)=TTR(KI) 
STATEV(NTENS*2+18+Kl)=TS(KI) 
STATEV(NTENS*2+36+Kl)=X(KI) 
STATEV(NTENS*2+54+Kl)=XR(KI) 

c STATEV(NTENS*2+72+Kl)=TR(KI) 
END DO 

DO KI=I, NTENS 
DO K2=I, NTENS 
DELTA(KI, K2)=O. O 
END DO 
DELTA(KI, Kl)=I. 
END DO 

C 
EQE=0.0 
DO K I= I, NTENS 
DO K2=I, NTENS 
EQE=EQE+EPLAS(Kl)*DELTA(KI, K2)*EPLAS(K2) 
END DO 
END DO 
EQE=(2. /3. )*EQE 
EQE=SQRT(EQE) 
STATEV(109)=EQE 

C 

C Strain transformation to local cylindrical system. ONLY used for cylindrical specimen 
CCC DO Kl=l, NTENS 
CCC TEEE(Kl)=EELAS(Kl)+EPLAS(KI) 
CCC END DO 

ROU=SQRT(COORDS(I)**2+COORDS(2)**2) 
IF(ROU. GT. I E- 15) THEN 
ALII=COORDS(IYROU 
AMII=COORDS(2)/ROU 
ANII=0.0 

CALL TRANS I (ALI 1, AMI 1, ANI 1, EELAS, TEELAS) 
CALL TRANS I (ALI 1, AMI 1, ANI 1, EPLAS, TEPLAS) 
CALL TRANS I (ALI 1, AMI 1, ANI 1, STRAN, TTEEE) 

CALL TRANS I (ALI 1, AMI I, ANI I, STRESS, STRESS 1) 
DO KI=I, NTENS 

STATEV(KI+2*NTENS+72)=TEELAS(KI) 
STATEV(KI+3*NTENS+72)=TEPLAS(KI) 

STATEV(KI+4*NTENS+72)=TTEEE(KI) 
STATEV(KI+5*NTENS+72)=STRESSI(KI) 

END DO 
ELSE 
DO K I= I, NTENS 
STATEV(KI+2*NTENS+72)=EELAS(KI) 

STATEV(KI+3*NTENS+72)=EPLAS(KI) 
STATEV(KI+4*NTENS+72)=STRAN(KI) 

STATEV(KI+5*NTENS+72)=STRESS(KI) 
END DO 
END IF 

RETURN 
CC IKK=INT(III/50) 
CC WKK=((Ili+0.0)/(50+0.0)) 
cc WMM=IKK-WKK 
cc OPEN(UNIT=I, FILE='ALL. OUT) 
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cc IF(WMM. EQ. O. O)THEN 
CC WRITE(l, I 000)STRESS(3), STRAN(3), STRAN(l) 
CC1000 FORMAT(FIO. 5,2FI0.7) 
cc END IF 
CC END DO 

END 

SUBROUTINE MATCA(ORN, C0, Cl) 
C transfon-nation of elastic and other basic matrix 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION ORN(3), CO(6,6), CI(6,6) 
DIMENSION A(6,6), B(6,6), BT(6,6), AT(6,6), AI(6,6), BI(6,6) 

EXTERNAL INVERS, MATAB, MATRA, MULMAT 
ALI=ORN(l) 
AMI=ORN(2) 
ANI=ORN(3) 

C ----- calculats matrix A and B 
CALL MATAB (ALI, AMI, ANIA, B) 

C ------ computes transpose matrix AT, BT, 
CALL MATRA (A, AT) 
CALL MATRA (13,13T) 

C ----- computes inverse matrix Al, BI 
CALL INVERS (A, Al) 
CALL INVERS (13, BI) 

C CALL INVERS (ZMO, ZMOI) 
C----- computes material matrix 

CALL MULMAT (AI, CO, B, C 1) 
RETURN 
END. 

C .............................................................................. SUBROUTINE MATAB (ALI, AMI, ANI, A, B) 
C ------- This subroutine calculates MATRIX Aij and Bij 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION A(6,6), B(6,6) 

DDI=(ALI*ALI+AMI*AMI+ANI*ANI) 
DD2=(AMI*AMI+ANI*ANI) 
DDID=(DDI)**0.5 
DD2D=(DD2)**0.5 
A(1,1)=PD2*DD2 
A(1,2)=O. O 
A(1,3)=ALI*ALI*DD2 
A(1,4)=O. O 
A(1,5)=2.0*ALI*DD2*DD2D 
A(1,6)=O. O 
A(2,1)=ALI*ALI*AMI*AMI 
A(2,2)=ANI*ANI*DDI 
A(2,3)=AMI*AMI*DD2 
A(2,4)=-2.0*ALI*AMI*ANI*DDID 
A(2,5)=-2.0*ALI*AMI*AMI*DD2D 
A(2,6)=2.0*AMI*ANI*DDID*DD2D 
A(3,1)=ALI*ALI*ANI*ANI 
A(3,2)=AMI*AMI*DDI 
A(3,3)=ANI*ANI*DD2 
A(3,4)=2.0*ALI*AMI*ANI*DDID 
A(3,5)=-2.0*ALI*ANI*ANI*DD2D 
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A(3,6)=-2.0*AMI*ANI*DDID*DD2D 
A(4, I)=- I. O*ALI*AMI*DD2 
A(4,2)=O. O 
A(4,3)=ALI*AMI*DD2 
A(4,4)=ANI*DD2*DDID 
A(4,5)=(DD2-ALI*ALI)*AMI*DD2D 
A(4,6)=ALI*ANI*DDID*DD2D 
A(5, I)=- I. O*ALI*ANI*DD2 
A(5,2)=O. O 
A(5,3)=ALI*ANI*DD2 
A(5,4)=-I. O*AMI*DD2*DDID 
A(5,5)=(DD2-ALI*ALI)*ANI*DD2D 
A(5,6)=-I. O*ALI*AMI*DDID*DD2D 
A(6,1)=ALI*ALI*AMI*ANI 
A(6,2)=-AMI*ANI*DDI 
A(6,3)=AMI*ANI*DD2 
A(6,4)=(AMI*AMI-ANI*ANI)*ALI*DDID 
A(6,5)=-2.0 *ALI *AMI*ANI* DD2D 
A(6,6)=(ANI*ANI-AMI*AMI)*DDID*DD2D 
B(1,1)=DD2*DD2 
B(1,2)=O. O 
B(1,3)=ALI*ALI*DD2 
B(1,4)=O. O 
B(1,5)=ALI*DD2*DD2D 
B(1,6)=O. O 
B(2,1)=ALI*ALI*AMI*AMI 
B(2,2)=ANI*ANI*DDI 
B(2,3)=AMI*AMI*DD2 
B(2,4)=- I. O*ALI*AMI*ANI*DD ID 
B(2,5)=-I. O*ALI*AMI*AMI*DD2D 
B(2,6)=AMI*ANI*DDID*DD2D 
B(3,1)=ALI*ALI*ANI*ANI 
B(3,2)=AMI*AMI*DDI 
B(3,3)=ANI*ANI*DD2 
B(3,4)=ALI*AMI*ANI*DDID 
B(3,5)=-I. O*ALI*ANI*ANI*DD2D 
B(3,6)=-I. O*AMI*ANI*DDID*DD2D 
B(4,1)=-2.0*ALI*AMI*DD2 
B(4,2)=O. O 
B(4,3)=2.0*ALI*AMI*DD2 
B(4,4)=ANI*DD2*DDID 
B(4,5)=(DD2-ALI*ALI)*AMI*DD2D 
B(4,6)=ALI*ANI*DDID*DD2D 
B(5,1)=-2.0*ALI*ANI*DD2 
B(5,2)=O. O 
B(5,3)=2.0*ALI*ANI*DD2 
B(5,4)ýI. O*AMI*DD2*DDID 
B(5,5)=(DD2-ALI*ALI)*ANI*DD2D 
B(5,6)=-I. O*ALI*4MI*DDID*DD2D 
B(6,1)=2.0*ALI*ALI*AMI*ANI 
B(6,2)=-2.0*AMI*ANI*DDI 
B(6,3)=2.0*AMI*ANI*DD2 
B(6,4)=(AMI*AMI-ANI*ANI)*ALI*DDID 
B(6,5)=-2.0* ALI *AMI*ANI*DD2D 
B(6,6)=(ANI*ANI-AMI*AMI)*DDID*DD2D 

DO 1=1,6 
DO J= 1,6 
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A(1,1)=A(I, J)/(DD I *DD2) 
B(I, J)=B(I, J)/(DD I* DD2) 

END DO 
END DO 

RETURN 
END 

c .................................................................. SUBROUTINE MATRA (AA, AAT) 
C ------ this is for matrix transpose Le AATij=AAj i 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION AA(6,6), AAT(6,6) 
DO I= 1,6 
DO J=1,6 

AAT(I, J)=AA(J, I) 
END DO 
END DO 
RETURN 
END 

C ..................................................................... SUBROUTINE MULMAT (A, B, CD) 
c ------ this subroutine is for three matrix multplication A. B. *C=D 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION A(6,6), B(6,6), C(6,6), D(6,6), AB(6,6) 
DO 1=1,6 
DO J= 1,6 

AB(I, J)=O. O 
DO K= 1,6 

AB(I, J)=AB(I, J)+A(I, K)*B(K, J) 
END DO 
END DO 
END DO 

DO 1=1.6 
DO J= 1,6 

D(I, J)=O. O 
DO K= 1,6 

D(I, J)=D(I, J)+AB(I, K)*C(K, J) 
END DO 
END DO 

END DO 
RETURN 
END 

C ............................................................... SUBROUTINE INVERS (A, Al) 
C ==- this subroutine computes the INVERSE of a Matrix AI=A- I 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION A(6,6), AI(6,6), AB(6,12) 

------ form AB=(All) 
DO 1=1.6 
DO J=1,12 

IF ((1+6). EQ. J) THEN 
AB(I, J)=I. O 

ELSE 
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AB(I, J)=O. O 
END IF 

END DO 
END DO 

DO I= 1,6 
DO J=1,6 

AB(I, J)=A(I, J) 
END DO 
END DO 
KM=6 
KN = 12 

DO 30, K=1, KM 
DO 40, KQ = K, KM 
IF(ABS(AB(KQ, K)). GT. IE-18) GOTO 110 

40 CONTINUE 
C WRITE(*, 45) 
45 FORMAT('NO SOLUTION') 

GOTO 290 
110 DO 50, KP = 1, KN 

S= AB(K, KP) 
AB(K, KP) = AB(KQ, KP) 
AB(KQ, KP) =S 

50 CONTINUE 
T=I/ AB(K, K) 

DO 60, KR = 1, KN 
AB(K, KR) =T* AB(K, KR) 

60 CONTINUE 
DO 70,1 = I, KM 

Y= -AB(l, K) 
IF (I. EQ. K) GO TO 70 

DO 80, J=1, KN 
AB(I, J) = AB(I, J) +Y* AB(K, J) 

80 CONTINUE 
70 CONTINUE 
30 CONTINUE 

C ----- seperate solution Al from AB 
DO 90 1,1= 1,6 
DO 902, J=7,12 

JJ=J-6 
AT(I, JJ)=AB(I, J) 

902 CONTINUE 
901 CONTINUE 
290 RETURN 

END 

SUBROUTINE INVERS I (A, Al) 
C- this subroutine computes the INVERSE of a Matrix AI=A- I 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION A(18,18), AI(18,18), AB(18,36) 

C 
C--- form AB = (A 11 ) 

DO I= 1,18 
DO J=1,36 
IF (([+I 8). EQ. J) THEN 

AB(I, J)=I. O 
ELSE 

AB(I, J)=O. O 
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END IF 
END DO 
END DO 

DO 1=1,18 
DO J=1,18 

AB(I, J)=A(I, J) 
END DO 
END DO 
M= 18 
N=36 

DO 30, K= I, M 
D040, Q=K, M 
IF (A BS(AB(Q, K)). GT. I E- 18) Go To IIo 

40 CONTINUE 
C WRITE(*, 45) 
45 FORMAT('NO SOLUTION') 

GOTO 290 
110 D050, P=I, N 

S= AB(K, P) 
AB(Y, P) = AB(Q, P) 
AB(Q, P) =S 

50 CONTINUE. 
T=I AB(K, K) 

DO 60, R 1, N 
AB(K, R) =T* AB(K, R) 

60 CONTINUE 
DO 70,1 = IN 

Y= -AB(l, K) 
IF (I. EQ. K) GO TO 70 

DO 80, J=1, N 
AB(l, J) = AB(l, J) +Y* AB(K, J) 

80 CONTINUE 
70 CONTINUE 
30 CONTINUE 

C ----- seperate solution Al from AB 
DO 901,1=1,18 
DO 902, J=19,36 

JJ=J- 18 
AI(I, JJ)=AB(I, J) 

902 CONTINUE 
901 CONTINUE 
290 RETURN 

END 

SUBROUTINE NONLIN(DTIMETHETA, KTERDSTRAN, DDSDDE) 
C SUBROUTINE NONLIN(TTRO, XRO, DSTRAN, TSO, TrFXP,, DTIME, TIJETA, 
CI XO, WMACABM, PKPN, PC, PD, Plý, ITER) 
C 

IMPLICIT REAL*8 (A-H, L-Z) 
DIMENSION TTRO(18), XRO(18), DSTRAN(6), TSO(18), TTR(18), 

I XR(I 8), WMAC(I 8,6), ABM(I 8,18), PK(I 8), PN(l 8), PC(I 8), PD(I 8), 
2 PR(I 8), F(I 8), DXX(6,18), DRR(6,18), ERO I(I 8), ER02(18), 
3 DTS(I 8), DR(I 8), DX(I 8), X(l 8), TS(I 8), XO(l 8), DDSDDE(6,6), 
4 WMA(I 8,6), CBIM(6,18), CBIM I (6,6), CBIM I 1(6,6), C 1(6,6), 
5CI 1(6,6), A2(18), A3(18), A4(18), A5(18), A6(18), 
6 WM2(18,6), BIM(6,18) 

COMMON TTRO, XRO, TSO, TTItXRWMAC, ABM, PK, PN, PC, 
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I PD, PPX, TS, X0, DR, DX, C I, C I 1, WM2, BIM, WMA 
c 
C OPEN(UNIT=22, FILE='FITER. OUT) 
CC WRITE(*, 552)999, KTER 
552 FORMAT(215) 
c KITER=INT(ITER) 
c KIT=INT(FITER) 
C KIT=FITER 

DO K I= I, KTER 
cc OPEN(UNIT=22, FILE='FITER. OUT) 
CC WRITE(*, 553)KI 
CC553 FORMAT(13) 

DOK2=1,18 
DR(K2)=DTIME*((I. -THETA)*TTRO(K2)+THETA*TTR(K2)) 
DX(K2)=DTIME*((I. -THETA)*XRO(K2)+THETA*XR(K2)) 
END DO 
DO K2=1,18 
DTS(K2)=O. O 
DO K3=1,6 
DTS(K2)=DTS(K2)+WMAC(K2, K3)*DSTRAN(K3) 
END DO 

DO K3=1,18 
DTS(K2)=DTS(K2)-ABM(K2, K3)*DR(K3) 
END DO 

END DO 
DO K2=1,18 
X(K2)=XO(K2)+DX(K2) 
TS(K2)=TSO(K2)+DTý(K2) 
END DO 

c --------------- - 
DO K2=1,18 
TSX=TS(K2)-X(K2) 
F(K2)=ABS(TSX)-PR(K2) 
IF(F(K2). LT. O. O)THEN 
TTR(K2)=O. O 
XR(K2)=O. O 
ELSE 

CC WRITE(*, 554)K2, TSX 
TTR(K2)=(F(K2)/PK(K2))**PN(K2)*TSXIABS(TSX) 
XR(K2)=PC(K2)*TTR(K2)-PD(K2)*X(K2)*ABS(TTR(K2)) 
END IF 
END DO 

CC WRITE(*, 553)KI 
c --------- - ------ -- -- ------- 

DO K2=1,18 
DXX(KI, K2)=DX(K2) 
DRR(KI, K2)=DR(K2) 
END DO 
FKI=P, EAL(KI) 
IF(FKI. GT. I. )THEN 
KKI=Kl-l 
EROI(Kl)=O. O 
ER02(Kl)=O. O 
DO K2= 1,18 
DDR12=DRR(KI, K2)-DRR(KKI, K2) 
DDX12=DXX(KI, K2)-DXX(KKI, K2) 
EROI(Kl)=ERO I (K 1)+ABS(DDR12) 
ER02(Kl)=ER02(K 1)+ABS(DDX 12) 

244 



A nr%, - " dix IX 

END DO 
CC WRITE(*, 554)KI, EROI(KI), ER02(KI) 

IF(EROI (KI). LT. I. E-IO. AND. ER02(KI). LT. I. E-8)THEN 
GO TO 555 
END IF 
END IF 

c ----- - ------------------------ -- 
CC WRITE(22,554)KI, EROI(KI), ER02(KI) 
554 FORMAT(12,2F20.12) 

END DO 
c --------------------- 
555 AI=DTIME*THETA 

DOKI=1,18 
F(Kl)=ABS(TS(Kl)-X(Ki))-PR(KI) 
IF(F(K 1). LE. O. )THEN 
A2(Kl)=O. O 
A3(Kl)=I. 
A4(Kl)=PC(KI) 
ELSE 
A2(K 1)=A I* PN(K I)/PK(K 1)*(F(KI)IPK(K 1))* *(PN(Kl)- 1. ) 

C WRITE(*, 554)KI 
A3(K 1)= 1. +A I *PD(K 1)*ABS(TM(K 1)) 
A4(Kl)=PC(Kl)-PD(Kl)*X(Kl)*(TS(Kl)-X(Kl))/ABS(TS(Kl)-X(Kl)) 
END IF 

CC WRITE(*, 554)88 
A5(Kl)=A2(Kl)*A4(KIYA3(KI) 
A6(Kl)=A2(Kl)/(I. +A5(Ki)) 
END DO 

c DO KI=1,18 
c DO K2= 1,6 
c WMA(KI, K2)=O. O 
C DO K3=1,6 
c WMA(KIK2)=WMA(KI, K2)+WM2(KI, K3)*A(K3, K2) 
C END DO 
c END DO 
c END DO 
c 

DO KI=1,6 
DO K2=1,18 
CBIM(KI, K2)=O. O 
DO K3=1,6 
CBIM(KI, K2)=CBIM(KI, K2)+CI(KI, K3)*BIM(K3, K2) 
END DO 
CBIM(KI, K2)=CBIM(KI, K2)*A6(K2) 
END DO 
END DO 

C 
DO KI=1,6 
DO K2= 1,6 
CBIMI(KI, K2)=O. O 
DO K3=1,18 
CBIMI(KI, K2)=CBIMI(KI, K2)+CBIM(KI, K3)*WMA(K3, K2) 
END DO 
END DO 
CBIMI(KI, Kl)=I. +CBIMI(KI, Kl) 
END DO 

. CALL INVERS(CBIMI, CBIMII) 

C 
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DO KI=1,6 
DO K2=1,6 
DDSDDE(KI, K2)=O. O 
DO K3=1,6 
DDSDDE(KI, K2)=DDSDDE(KI, K2)+CBIMII(KI, K3)*CI(K3, K2) 
END DO 
END DO 
END DO 
RETURN 
END 

SUBROUTINE TRANS I (ALI 1, AMII, ANI 1, STRAN, TTSTRAN) 

IMPLICIT REAL*8 (A-H, O-Z) 

DIMENSION Q(6,6), QT(6,6), E(6,6), ET(6,6), ETr(6,6) 
DIMENSION STRAN(6), T-rSTRAN(6) 

Q(1,1)=ALII 
Q(1,2)=AMII 
Q(2,1)=-AMII 
Q(2,2)=ALI I 
Q(3,3)=I. O 
Q(1,3)=O. O 
Q(2,3)=O. O 
Q(3,1)=O. O 
Q(3,2)=O. O 

DO KI=1,3 
DO K2= 1,3 

QT(KI, K2)=Q(K2, Kl) 
END DO 
END DO 

E(l, 1)=STRAN(l) 
E(1,2)=0.5*STRAN(4) 
E(2,1)=E(1,2) 
E(2,2)=STRAN(2) 
E(3,3)=STRAN(3) 
E(1,3)=0.5*STRAN(5) 
E(2,3)=0.5*STRAN(6) 
E(3,1)=E(1,3) 
E(3,2)=E(2,3) 

DO 1200 11=1,3 
DO 1300 JJ=1,3 

ET(11, JJ)=O. O 
DO 1400 KK=1,3 

C transformation of stress to crystallographic axes system 
ET(II, JJ)=ET([I, JJ)+E(11, KK)*QT(KK, JJ) 

1400 CONTINUE 
1300 CONTINUE 
1200 CONTINUE 

DO 1600 11=1,3 
DO 1700 JJ= 1,3 

ETT(II, JJ)=O. O 
DO 1800 KK= 1.3 
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ETT(11, JJ)=ETT(11, JJ)+Q(11, KK)*ET(KK, jj) 
1800 CONTINUE 
1700 CONTINUE 
1600 CONTINUE 

TTSTRAN(I)=ETT(l, l) 
TTSTRAN(2)=ET-r(2,2) 
TTSTRAN(3)=ETT(3,3) 
TTSTRAN(4)=2.0*ETT(1,2) 
TTSTRAN(5)=2.0*ETr(1,3) 
TTSTRAN(6)=2.0*ETT(2,3) 

RETURN 
END 
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**@Program developed in: @ 
**@Engineering Materials and Structural Integrity Group 
**@March, 1998 By Songlin Ilan @ 

one element test: for cubic SX using Chaboche model 
(viaUMAT' procedure) 

HEADING 
I -EL ELASTICITY OF CUBIC SX UNDER MAXIAL LOAD 
*NODE, NSET=NODEALL 
1,0., 0., 0. 
2,0., 10., 0. 
3,0., 10., 10. 
4,0., 0., 10. 
5,10., 0., 0. 
6,10., 10., 0. 
7,10., 10., 10. 
8,10., 0., 10. 
9,0., 5., 0. 
10,0., 10., 5. 
11,0., 5., 10. 
12,0., 0., 5. 
13,10., 5., 0. 
14,10., 10., 5. 
15,10., 5., 10. 
16,10., 0., 5. 
17,5., 0., 0. 
18,5., 10., 0. 
19,5., 10., 10. 
20,5., 0., 10. 

*ELEMENT, TYPE=C3D20 
1,1,5,6,2,4,8,7,3,17,13,18,9,20,15,19,11,12,16,14,10 
*ELSET, ELSET=ONE 
I 
*BOUNDARY 
1, PINNED 
2,3 
2,1 
5,3 
6,3 
9,3 
17,3 
13,3 
18,3 

*SOLID SECTION, ELSET=ONE, MATERIAL=CRYSTAL 
*MATERIAL, NAME=CRYSTAL 
***USER MATERIAL, CONSTANTS=17 
*USER MATERIAL, UNSYMM, CONSTANTS=18 
0.8606E5,0.3 883,0.8811 E5,1.0,1.0,1.0,1700.0,3.6, 
** 1.0,2.39,3.1 E5,5.05E4,600.0,700.0,50.0,60.0, 
1.0,2.39,3.1 E5,5.05 E4,600.0,700., 0., 0., 
110.0,0.0 
** ELASTIC MODULUS, POISSON RATIO, SHEAR MODEULS 
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** ORIENTAION [L, M, L] 
*DEPVAR 
34 
*NSET, NSET=Ll 1 
8,19,7,3,11,4,20.15 
*AMPLITUDE, NAME=PULLI 
0.0,0.0,0.4,0.16 
*AMPLITUDE, NAME=PULL2 
0.0,0.16,0.4,0.32 
*AMPLITUDE, NAME=PULL3 
0.0,0.32,0.6,0.56 
*RESTART, WRITE, FREQUENCY=10 
*STEP, INC=400 
PULL 
*STATIC 
0.02,0.4,0.0001,0.02 
*BOUNDARY, AMPLITUDE=PULLI 
LII, 3,, 0.1 
*NODE PRINT, SUMMARY=NO, FREQUENCY=l 
UI, U2, U3, RFI, RF2, RF3 
*EL PRINT, POSITION=CENTROIDAL, SUMMARY=NO, FREQUENCY=I 
S 
E 
*EL PRINTPOSITION=CENTROIDAL, SUMMARY=NO, FREQUENCY=I 
SDV 
***EL FILE, POSITION=CENTROIDAL, FREQUENCY=l 
**S 
**E 
*MONITOR, NODE=14, DOF=3 
*END STEP 

*STEP, INC=700 
PULL 
*STATIC 

. 00 1,0.4,0.00000 1,0.01 
*BOUNDARY, AMPLFFUDE=PULL2 
LII, 3,, O. l 
*NODE PRINT, SUMMARY=NO, FREQUENCY=50 
UI, U2, U3, RFI, RF2, RF3 
*EL PRINT, POSITION=CENTROIDALSUMMARY=NO, FREQUENCY=50 
S 
E 
*EL PRINT, POSITION--CENTROIDAL, SUMMARY=NO, FREQUENCY=50 
SDV 
**S 
**E 
*MONITOR, NODE= 14, DOF=3 
*END STEP 
*STEP, INC=1000 
PULL 
*STATIC 
0.00 1,0.6,0.0000 1,0.01 
*BOUNDARY, AMPLITUDE=PULL3 
L 11,3,, 0.1 
*NODE PRINT, SUMMARY=NO, FREQUENCY=Ioo 
UI, U2, U3, RFI, RF2, RF3 
*EL PRINT, SUMMARY=NO, FREQUENCY=100 
S 
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*EL PRINT, POSITION=CENTROIDAL, SUMMARY=NO, FREQUENCY= 100 
SDV 
**S 
**E 
*MONITOR, NODE= 14, DOF=3 
*END STEP 
*USER SUBROUTINE 

- Wý 
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Tables 

Table 3.1 Temperature Dependent Elastic Constants 
for SRR99 Single Crystal Alloy 

Temperature 'C 25 450 750 850 950 

E (Mpa) 140750 123160- 103030 95571 86000 

G (Mpa) 137660 129670 119210 105030 88100 

v 0.3569 1 0.3612 1 0.3712 1 0.3805 0.388 

Table 3.2. Saturated Stresses at Various Strain Rates 

(11S) a (MPa) [001] a (MPa) [111] 

0.00004 726.67 350.52 

0.0004 825.33 432.99 

0.001 880.0 483.51 

0.004 993.33 588.66 

0.01 1100.0 687.63 

0.04 1317.33 890.72 

Table 3.3 Material Constants for the Phenomenological Model 

Parameters K* 
MPa. s' 

n MI I- 
M12 

M44 NII-NI2 

MPa 

N44 

MPa 

1696.8 3.604 1.0 2.385 309936.0 50384.3 

Parameters QII-QI2 Q44 k 
MPa 

w 
MPa 

b 

600.0 699.62 110.20 61.3 50.9 
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Tables 

Table 3.4 Material Constants for the Crystallographic Model 

Parameters Ko 
(Mpa) 

k. 
(MPa) 

co 
(MPa) 

do bo qo 
(MPa) 

Octahedral slip 964.17 3.60 44.91 413333.3 1959.59 163.30 24000.1 

Parameters Kc 
(MPa) 

N k, 
(Mpa) 

CC 
(MPa) 

de bc qc 
(MPa) 

Cubic slip 
1 

--- 
I 

787.45 
I 

3.60 
I 

47.44 
I 

67333.0 
I 

905.59 
I 

42.52 
I 

1143.21 

-i 

Table 3.5 Coefficients for Temperature Dependent Elastic 

Constants 

a, -7.039xlO-" a2 5.4628xlO--" a3 -2.1886xlO-4 a4 3.934xlO-" 

b, -0.025 
b2 

-2.9043xlO-g 
b3 0.2407 b4 

-5.6964xlO-7 

-- C, -28.155 C2 1.1731xlO-' C3 -85.7957 C4 6.3035xlO: r 

d, 141480 d2 0.3567 d3 1 139640 d4 
- 0934 1 
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Table 6.1 Material Constants for the Crystallographic Model 
Using Simplified Procedure 

Parameters K,, 
(MPa) 

n. k. 
(MPa) 

co 
(MPa) 

d,, bo qo 
(MPa) 

Octahedral slip 964.17 

1 

3.60 44.91 413333.3 1959.59 163.30 

1 

24000.1 

Parameters Kr 
(MPa) 

nc kc 
(MPa) 

cc 
(MPa) 

dc bc qc 
(MPa) 

Cubic slip 
1 

792.72 

1 

3.60 

1 

53.08 

1 

67456.3 

1 

1020.58 

1 

45.73 

-I 

1182.95 

I 

Table 6.2. 
Effect 

Crystal Orientations Close to [0011 - Misorientation 

(with 0 =10 degree from [0011 orientation ) 

Crystal 
Orientation 

0 (degree) p (degree) I In n 

001 0 0 0.0 0.0 1.0 

b 10 0 0.176 0.0 1.0 

c 10 15 0.174 0.031 1.0 

d 10 30 0.153 0.088 1.0 

e 
I 

10 
I 

45 
I 

0.125 
I 

0.125 1.0 
I 

-i 
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Tables 

Table. 6.3 Orientation Dependent Stress and Strain Response 
for Specimens around (10 degree away'from) [0011 Orientation 

Orientation 
Normalised Transverse and Shear 

Strain(633= 2.5 %) 
Stress 

Eli 
633 

622 

C33 

rý 13 

r5,33 

823 

833 

812 

633 CY33 (Mpa) 

[0011 -0.445 -0.445 0.0 0.0 0.0 1046.31 

b (0=10, p=O) -0.454 -0.444 0.0 0.0 0.056 978.63 

c (0=10, P=15) -0.454 -0.444 -0.002 0.010 0.056 978.08 

d (0=10, p=30) -0.452 -0.446 -0. '004 0.029 0.050 977.89 

(0=10, p=45) -0.449 -0.449 1 -0.005 1 
0.041 0.041 977.54 
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Fig. 2.4 Slip Bands Observed for 100 11 Specimen Tested at 650'C 
(After Hannot et al [ 19911) 

,A,, -- -120C , 
ý, g 1 -1 

Figure 2: Developed ima. vv of thc 

Fig. 2.5 Slip Bands Observed for I 10 1] Specimen Tested at 650'C 
(After I-lannot et al 119911) 



Fig. 2.6 Slip Bands Observed for [0011 Specimen Tested at 950'C 
(After Hanriot et al [19911) 

Fig. 2.7 Slip Bands Observed for 11011 Specimen Tested at 9-1SOC 
(After Hanriot et a] [ 1991 ]) 



Fig-2.8 Slip Traces Observed on Specimen after Torsion Test at 950'C 
(After Nouailhas et al [19931) 



Fig. 2.9 Traces Cubic Slip Observed after Torsion Test at 950'C 
(A fter Policel la et al [ 199o j) 
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(b) spectillen 
axis 

Fig. 2.10 Shear Bands in Pure Torsion in the I 1101 areas 

(a) SFM View ol'the Surface; (b) Image Obtained by Interferometry (k=549nm) 

(After Nouailhas et al [1993]) 
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Fig. 6.17 Specimen Orientations Used in Experiments and FE Calculations 
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