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Abstract 

Abstract 

With the ever increasing exploitation of the electromagnetic spectrum in a number 
of fields, including communications, comes an increasing need to understand electro- 
magnetic phenomena. Modern electromagnetic analysis is numerical in nature and 
employs computers to solve Maxwell's equations of electromagnetism and, while nu- 
merical methods, such as the FDTD algorithm, are well established, there are always 
limitations to their application since computational resources are always finite. In 
order to reduce the computational demands of the algorithms, and hence widen their 
applicability, it is necessary to continually examine the nature of the methods and 
find ways in which they can be improved and enhanced. The aim of this thesis is 
therefore to derive and demonstrate new or enhanced time domain numerical meth- 
ods for electromagnetic analysis. Various enhancements are considered, including 
the use of the near far transform to efficiently determine the far fields of a struc- 
ture, the use of system identification to reduce the overheads associated with the 
time domain analysis of resonant structures and, most significantly, the inclusion of 
a priori knowledge of field behaviour in the algorithm. Each of these techniques is 
described and the accuracy of the results is evaluated by comparison against a suit- 
able theoretical or measured set of data. In the case of including a priori knowledge 
of the field behaviour in the algorithm, detailed consideration is given in particular 
as to how this may have a detrimental effect on the stability of the method and how 
such an effect may be avoided. By examination of the properties of a new numer- 
ical method (the SFDTD technique) a better understanding of the stability issue 
is attained and a technique for guaranteeing the stability of the established FDTD 

method is produced. Finally, consideration of the relationship between the stability 
properties of the FDTD method and the principles of finite element analysis yields 
a new, interesting and extremely valuable understanding of the well known FDTD 
technique. 
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Section 1.1 : Introduction 

1.1 Introduction 

Historically-. changes in technology have always transformed society and vice-versa. 

During the last few decades advances in telecommunications and computer technol- 

ogy (referred to collectively as information technology) have been widely seen as 

transforming developed economies around the world from industrial to so-called in- 

formation societies [1-3]. While the future effects of this transformation on society 

as a whole are difficult to foresee [4,5]. it is certain that the production. storage and 

dissemination of information is, and will continue to be. of increasing importance to 

economic competitiveness [6,7]. 

One of the key technologies in an information society is the means of information 

exchange. Various methods of exchange can be identified, however all ineans of 

modern communication rely on the modulation of electromagnetic waves whether 

these waves are radio-. micro- or even light-waves and broadcast around the world 

through the atmosphere or transmitted along a cable from one fixed point, to another. 

An electromagnetic wave is an intangible phenomenon that propagates at extremely 
high speed through space. These waves are normally described in terms of their 

frequency (measured in cycles per second, or Hz) and form a continuous spectrum 
from less than 1 Hz to greater than 104 Hz. Waves of similar frequencies have 

broadly similar properties in terms of how they propagate and how their presence is 

detected and. as a result. are usually grouped together into frequency bands. The 

most common subdivisions of the electromagnetic spectrum are identified in figure l. l. 

103 10b 109 1012 1015 1018 1021 1024 
Frequency (Hz) 

Figure 1.1: The electromagnetic spectrum 
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Section 1.2 : Electromagnetic Analysis Methods 

In general, knowledge of an electromagnetic wave is gained indirectly from its inter- 

action with an intermediary object; the most obvious example of this phenomenon 
is the interaction of waves between about 4x 1014 and 7.5x101' Hz with pigment- 

containing cells in the human retina - waves in this frequency band are known as 
`visible light'. 

With the ever-increasing demand for voice and data transmission comes a demand 

for electromagnetic bandwidth; the lower frequency bands are already heavily used 

and are limited in the amount of spectrum they can provide. Historically therefore, 

communication systems have moved upwards in frequency to less used bands with 

more available bandwidth. There are also advantages, in terms of frequency re-usage, 
to be gained by operating cellular-type systems at frequencies in the microwave and 

millimetre wave regions where a line-of-sight path predominates for wave propagation. 

So it is that while in 1912, at the Radiotelegraph Conference in London, frequencies 

above 3 MHz were considered useless [7, chapter 6], current cellular mobile telephone 

services operate in Europe at frequencies around 900 MHz and the latest generation 
. of services (the DCS1800 system) operates at 1.8 GHz. There are many proposals 
to exploit even higher operating frequencies for systems such as Wireless Local Area 

Networks which are envisaged as operating at up to 60 GHz [8]. System design at 

such high frequencies creates considerable technical challenges. 

While at low frequencies the complex theories of electromagnetics can be simplified 

to straightforward circuit theory, as operating frequencies move upwards into the 

microwave and millimetre-wave region and circuit dimensions shrink, there becomes 

a pressing need in the design of electronic devices and systems for methods of analysis 

capable of analysing rigorously the phenomena of electromagnetics. 

1.2 Electromagnetic Analysis Methods 

The behaviour of electromagnetic fields is described succinctly by Maxwell's partial 
differential equations, stated by James Clerk Maxwell in [9]. In general however, 

when considering the behaviour of electromagnetic fields around a structure consisting 

of many different surfaces and constructed of a number of different materials, it 

becomes impossible to find an analytic solution to these equations. In these cases a 

numerical algorithm of some sort is often employed; the algorithm itself is derived 
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Section 1.2 : Electromagnetic Analysis Methods 

from Maxwell's equations and provides an entirely numerical solution to the problem; 
the development of these numerical techniques is considered in the following sections. 

1.2.1 A Brief History of Numerical Methods for Differential 
Equations 

Many phenomena of engineering and science, including electromagnetics, are de- 

scribed in terms of partial differential equations. Some of these phenomena (such as 

steady state temperature distributions) are essentially equilibrium problems and are 
described by elliptic differential equations. Many others are propagation phenomena 
(such as the transient propagation of heat through a medium) and give rise to either 

parabolic or hyperbolic differential equations (Maxwell's equations being of the latter 

type) [10, chapter 1]. 

Using numerical methods, such as finite difference techniques, to solve differential 

equations is a well established idea whose origin can be traced back to Euler [11]. 

It was not until the turn of the twentieth century however that serious attempts 

were made to apply the methods to solving problems of realistic complexity. Runge 
[12] in 1908 was probably the first to compute a finite difference solution to a two- 
dimensional system, followed closely by Richardson [13] in 1910. 

An interesting example of the problems associated with the numerical solution of 
differential equations is provided by the work of the remarkable Quaker scientist Lewis 

Fry Richardson (1881-1953) [14]. One of Richardson's many and varied interests was 

meteorology and, while stationed in France during the First World War as a volunteer 

member of the Friends' Ambulance Unit, he performed the first numerical weather 
`forecast'. 

Richardson derived a finite difference method for the solution of the differential equa- 
tions of atmospheric motion and with only a slide rule he performed the reams of 

calculations required for a six hour forecast in his rest periods over an interval of six 

weeks. During the Battle of Champagne the results were sent to the rear where they 

were lost for several months before, fortunately for Richardson, being rediscovered 

under a coal heap - eventually being published in 1922 [15]. 

Richardson's valiant attempt, described by a contemporary reviewer as an `enterprise 

... of almost quixotic boldness' [16], was doomed to failure through inaccurate initial 
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Section 1.2 : Electromagnetic Analysis Methods 

data. His estimate that 64,000 human `computers' would be required to predict the 

weather, using his method, as fast as the weather itself evolved resulted in numerical 

methods in meteorlogy being shunned for the next thirty years. A second reason for 

Richardson's failure was that his algorithm was numerically unstable [17] - as will 
be demonstrated by chapters 4,5 and 6 of this thesis, instability remains a problem 

with numerical algorithms today. 

Happily however, Richardson lived long enough to correspond with researchers who, 
in 1949, employed a numerical model similar to Richardson's own on ENIAC - now 

widely considered the world's first true digital computer [18]. These experiments with 
ENIAC, which was capable of performing around 5000 additions per second, began the 

modern era of numerically based methods of weather prediction and indeed opened 

the door to the application of numerical methods in many other fields. 

Digital computers have now made numerical techniques practical methods for solving 

the partial differential equations arising in areas of science and engineering as diverse 

as meteorology [17], structural mechanics [19] and electromagnetics [20]. 

1.2.2 Numerical Modelling Methods in Electromagnetics 

During the 1950's and early 1960's, computers were expensive and not widely avail- 

able; their application in electromagnetics during this period was, as a result, some- 

what limited [21,22]. 

In the mid 1960's however Kane Yee was working at the Lawrence Livermore National 

Laboratory, studying finite difference methods for the analysis of water waves [23]. 

In the process of learning to use the computer at the laboratory he sought a simple 

example to program and, having had some previous experience of electromagnetics, 

attempted a finite difference solution of Maxwell's equations. 

After a short period of trial and error Yee arrived at an algorithm which employed a 

staggered spatial discretisation to achieve centered differencing of all the field deriva- 

tives (described in section 2.6.2). Yee published this method (initially applied only in 

two spatial dimensions due to the limited computational facilities of the time) in [24] 

and returned to the study of water waves. 

The Yee method received little attention, due to its relatively large computational 

requirements, until the mid 1970's, when the first application of the full three- 
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Section 1.3 : Applications of the Yee Algorithm 

dimensional method was presented [25]. As computers increased in capability and 
decreased in price the Yee algorithm became more popular as workers in the area 
became attracted by its generality, elegant simplicity and ease of implementation; it 

is now widely refered to as the Finite Difference Time Domain or `FDTD' method. 

1.3 Applications of the Yee Algorithm 

An indication of the rising interest in the Yee FDTD method is given by table 1.1 

which shows, for each year, the number of journal papers in the BIDS ISI1 database 

which include the phrase `Finite Difference Time Domain' (and derivatives) in their 

title. 

Year Number of Papers 
1984 1 

1985 1 
1986 4 
1987 7 
1988 10 
1989 11 
1990 21 
1991 31 
1992 51 
1993 60 
1994 116 

Total 313 

Table 1.1: Number of papers on the Yee method 

At the University of Bristol's Centre for Communications Research, a Computational 

Electromagnetics group has been lead since 1986 by Dr. Chris Railton. Since the 
beginning of that time development of the FDTD algorithm has taken a high priority 

and has encompassed many of the major areas of FDTD research: 

" Incorporation of numerical boundary conditions [26]. 

" Analysis of dispersive waveguides. [27]. 

'Bath Information and Data Services; index supplied by Institute for Scientific Information. 
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9 Analysis of antenna structures [28]. 

" Use of FDTD models for medical imaging [29]. 

" Combined thermal and electromagnetic models for microwave heating [30]. 

9 Inclusion of a priori knowledge of field behaviour in FDTD [31]. 

The author's main area of study has been into the inclusion of a priori knowledge into 

the FDTD algorithm and is described by chapters 4,5 and 6. In addition research 
has been undertaken into near field transformation methods and characterisation of 

resonant devices (see chapter 3). 

1.4 Summary and Thesis Overview 

In this chapter it has been shown that in the field of communications technology, 

electromagnetic phenomena have a fundamental role. The solution of the partial 
differential equations which describe these phenomena is therefore important in the 

design of communications systems and is anticipated to become increasingly so in the 

future as these systems move ever higher in operating frequency. 

The solution of partial differential equations is commonly achieved by a numerical 

method. Use of these techniques entails thousands (millions or even billions) of 

calculations and, while pioneers in the area produced solutions by hand, it was not 

until the advent of the digital computer that numerical methods became practical 

and useful techniques in many areas of science and engineering. 

In the next chapter some of the numerical methods commonly used in electromagnetic 

analysis are introduced with particular attention being given to those methods which 

operate in the time domain. The chapter concludes by considering in more detail the 

properties of the FDTD algorithm [24] introduced earlier in this chapter. 

The FDTD method has many attractive features which have resulted in its current 

high level of popularity; the computational demands of the method are however 

considerable, particularly when the domain to be analysed is electrically large and 

when the spatial resolution required is high. Chapters 3,4,5 and 6 discuss methods 

for avoiding or ameliorating these drawbacks. 
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Chapter 3 presents a near field transformation which may be used to characterise 

the fields at electrically large distances from a structure without utilising a corre- 

spondingly large computational volume. Additionally in this chapter a technique for 

reducing the overheads entailed in the time domain analysis of resonant devices is 

considered. 

In chapter 4 methods for reducing the required spatial resolution of the FDTD method 

are discussed; the advantages and disadvantages of one particular technique - the 
`correction factor' method - are considered in some detail. 

Chapters 5 and 6 consider a number of correction factor schemes and present new 

results pertaining to the use of these and related formulations in FDTD and other 
difference algorithms. Chapter 6 concludes by presenting a new formulation of the 

popular FDTD method and considers the implications of this for the future develop- 

ment and extension of FDTD. 

This thesis concludes with chapter 7 which reiterates some of the major findings of 

previous chapters and suggests potentially rewarding directions for future investiga- 

tion. 

Page 8 



Chapter 1, References 

References 

[1] R. Finnegan, G. Salaman, and K. Thompson, Information Technology: Social 
Issues. Hodder and Stoughton, 1987. 

[2] D. Bell, The Coming of Postindustrial Society. Penguin, 1974. 

[3] A. Toffler, The Third Wave. Pan, 1980. 

[4] D. Lyon, The Information Society - Issues and Illusions. Polity Press, 1988. 

[5] Group of Experts on Social Aspects of New Technologies, New Technologies in 
the 1990's: A Socio-Economic Strategy. OECD, 1988. 

[6] P. Jowett and M. Rothwell, The Economics of Information Technology. Macmil- 
lan Press, 1986. 

[7] M. Paetsch, Mobile Communications in the US and Europe: Regulation, Tech- 
nology and Markets. Artech House, 1993. 

[8] A. Santamaria and F. Lopez-Hernandez, Wireless LAN Systems. Artech House, 
1994. 

[9] J. C. Maxwell, A Treatise on Electricity and Magnetism. Dover Publications, 
3 ed., 1954. Work originally published in 1873. 

[10] W. F. Ames, Numerical Methods for Partial Differential Equations. Thomas 
Nelson and Sons, 1969. 

[11] L. Euler, Institutiones Calculi Integralis. St. Petersberg, 1768. 

[12] C. Runge Zeitschrift fur Mathematik und Physik, vol. 56, p. 225,1908. 

[13] L. F. Richardson, "The approximate arithmetical solution by finite differences 
of physical problems involving differential equations, with an application to the 
stresses in masonry dams, " Philosophical Transactions, vol. A210, pp. 307-357, 
1910. 

[14] O. M. Ashford, Prophet - or Professor? The Life and Work of Lewis Fry Richard- 
son. Adam Hilger Ltd, Bristol, 1985. 

[15] L. F. Richardson, Weather Prediction by Numerical Process. Cambridge Univer- 
sity Press, 1922. Re-printed in 1965 by Dover Publications. 

[16] S. Chapman, "Review: Weather Prediction by Numerical Process, " Quarterly 
Journal of the Royal Meteorological Society, vol. 40, pp. 285-286,1922. 

Page 9 



Chapter 1, References 

[17] S. L. Hess, Theoretical Meteorology. Holt Rinehart and Winston, 1959. 

[18] J. G. Charney and A. Eliasson, "A numerical method for predicting the per- 
turbations of the middle latitude westerlies, " Tellus, vol. 1, no. 2, pp. 38-54, 
1949. 

[19] I. Holand and K. Bell, Finite Element Methods in Stress Analysis. TAPIR, 1969. 

[20] M. A. Morgan, Progress in Electromagnetics Research: Finite Element and Fi- 
nite Difference Methods in Electromagnetic Scattering. Elsevier, 1990. 

[21] E. M. Kennaugh, Multipole Field Expansions and their use in Approximate So- 
lution of Electromagnetic Scattering Problems. PhD thesis, Dept. of Electrical 
Engineering, Ohio State University, 1959. 

[22] R. J. Garbacz, "Electromagnetic scattering from radially inhomogenous 
spheres, " Proceedings of the IEEE/IRE, p. 1837, Aug. 1962. 

[23] K. S. Yee, May 1995. Private Communication. 

[24] K. S. Yee, "Numerical solution of initial boundary value problems involving 
Maxwell's equations in isotropic media, " IEEE Transactions on Antennas and 
Propagation, vol. AP-14, pp. 302-307, May 1966. 

[25] A. Taflove and M. E. Brodwin, "Numerical solution of electromagnetic scattering 
problems using the time-dependent Maxwell's equations, " IEEE Transactions on 
Microwave Theory and Techniques, vol. MTT-23, pp. 623-630, Aug. 1975. 

[26] C. J. Railton, E. M. Daniel, D. L. Paul, and J. P. McGeehan, "Optimised ab- 
sorbing boundary conditions for the analysis of planar circuits using the finite 
difference time domain method, " IEEE Transactions on Microwave Theory and 
Techniques, vol. MTT-40, pp. 290-297, Feb. 1993. 

[27] D. L. Paul, N. M. Pothecary, and C. J. Railton, "Calculation of the dispersive 
characteristics of open dielectric structures by the finite difference time domain 
method, " IEEE Transactions on Microwave Theory and Techniques, vol. MTT- 
42, pp. 1207-1212, July 1994. 

[28] G. Hilton, C. Railton, G. Ball, A. Hume, and M. Dean, "FDTD analysis of a 
printed dipole antenna, " in Proc. 9th International Conference on Antennas and 
Propagation, pp. 72-75, Apr. 1995. 

[29] C. Ni, M. P. Robinson, R. H. Johnson, A. W. Preece, J. L. Green, N. M. Pothe- 
cary, and C. J. Railton, "Non-invasive in vivo measurement of tissue permittiv- 
ity, " in 2nd International Scientific Meeting on Microwaves in Medicine, (Rome), 
Oct. 1993. 

[30] L. Ma, N. M. Pothecary, and C. J. Railton, "Finite difference time domain 
modelling of domestic microwave ovens, " in Proc. Microwave and High Frequency 
(Gotenborg), 1993.1: 11. 

[31] C. J. Railton, "An algorithm for the treatment of curved metallic laminas in 
the finite difference time domain method, " IEEE Transactions on Microwave 
Theory and Techniques, vol. MTT-41, pp. 1429-1438, Aug. 1993. 

Page 10 



Chapter 2 

Numerical Techniques for 
Electromagnetic Analysis 

Page 11 



Section 2.1 : Introduction 

2.1 Introduction 

With a history of around 30 years the number of numerical electromagnetic analysis 

techniques is extremely large and ever increasing. Even textbooks, for example [1,2], 

on the subject are only able to describe a small selection of methods in any detail. It 

is then beyond the scope of this thesis to introduce a representative range of methods. 

While acknowledging the difficulty of introducing all the various analysis techniques, 
it is necessary to put the work described by later chapters of this thesis into con- 
text. To this end, this chapter sets out to describe the two main families of rigorous 

numerical electromagnetic analysis methods, namely the Integral and Differential 

techniques. Attention will be paid to the strengths and weaknesses of each family as 

a whole and how the nature of the problem to be solved makes some methods more 

attractive than others. 

Having thus summarised the wide range of available electromagnetic analysis methods 

one important set of techniques is examined in greater detail. This particular set 

are those Differential methods which operate in the time domain; after examining 

a number of time domain Differential methods the Finite Difference Time Domain 
(FDTD) algorithm (introduced in chapter 1) becomes the main focus of attention 
toward the end of the chapter and indeed throughout the remainder of this thesis. 

2.2 Differential and Integral Solutions 

Electromagnetic phenomena are described by Maxwell's equations [3]; in most practi- 

cal circumstances an analytic solution to these equations is unavailable and attention 

must be given to the numerical analysis of the situation. 

A large proportion of rigorous numerical electromagnetic analysis methods can be 

described as falling into one of two broad classes. In both classes the solution is 

obtained by a discretisation process; in the first Maxwell's differential equations are 

solved directly and in the second an integral (or integro-differential) equation is first 

derived from Maxwell's equations - and it is this integral equation which is subse- 

quently solved. The members of the first class are accordingly described as being 

Differential methods and those of the second as Integral methods. 
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Maxwell's curl equations in an isotropic medium are: 

V xE= -µatH (2.1) 
VxH=EätE+J 

where ,u and e are electrical properties of the medium, E and H are the electric and 

magnetic field intensities (in Vm-' and Am-' respectively) and J is the conduction 

current density with units Am-2. 

It is common practice to assume a sinusoidal time-dependence for the fields and thus, 

in the frequency domain, equations (2.1) become: 

VxE= -jwpH (2.2) 
VxH=jw¬E+J 

where w is the angular frequency in radians s-1. 

An alternative approach to solving Maxwell's equations directly is to derive an Inte- 

gral form which is commonly written: 

E3(r) = 
JG(r, 

r')J(r')dr' (2.3) 

Es (r) is the scattered field set up by J (r') and G is a dyadic Green's function which 
describes the influence of an infinitesimal current at r' on the field at point r. 

A incident field term Ei is usually introduced (unless a solution is sought only for 

the eigenvalues of the problem [1, p. 91]) and boundary conditions enforced to give 

an equation which is of the general form of: 

E`(r) f G(r, r')J(r')dr' (2.4) 

The precise form of equation (2.4) will depend on many features of the problem 

- whether for example the field under consideration is indeed the electric field (it 

could equally well be H [1, p. 89]) and on the type of boundary conditions imposed. 

Equation (2.4) does however serve to illustrate the general features of the Integral 

methods. 

It is worth noting that both the Differential (2.1)-(2.2) and the Integral forms (2.4) 

can be rearranged to be expressed as: 

Gx =y (2.5) 

Page 13 



Section 2.3 : Integral Methods 

where x is the unknown function, y is a known term and f- is a dyadic operator. It 

is not surprising then that, despite the very different compositions of the Differential 

and Integral methods, the solution for the unknown x usually proceeds via a similar 

process [1, chapter 2] - this consists of expressing the unknown as a weighted sum of 
known functions Exi(r)ai where the unknowns are now the coefficients a2. 

The solution process adopted here for solving the general operator equation (2.5) is 

the Weighted Residual Method (WRM) (although other approaches are possible - 
notably the variational formulation [4, chapter 4]). As noted in [5] when applied to 

integral equations in electromagnetics the method has historically been known as the 

Method of Moments (or MoM) elsewhere the method is widely known as the Finite 

Element Method (or FEM). 

2.3 Integral Methods 

2.3.1 Solution of Integral Equations 

The integral equation (2.4) may be written: 

GJ(r') = E'(r) (2.6) 

and the unknown current distribution J expanded as a series of N known diago- 

nal dyadic basis functions Ji (also known as expansion or interpolation functions) 

weighted by N unknown coefficient vectors, ai such that: 
N 

GJi(r')a, ý- Ei (r) (2.7) 
t_i 

the equality of equation (2.6) has been replaced by the approximate equality since in 

general the left and right sides of equation (2.7) can not be equal for all r except in 

trivial cases. The approximate equality may be replaced with an equality by requiring 
that the equality be enforced only in an average sense for each basis function. To do 

this a set of N testing (sometimes known as weighting) functions, wj, is introduced: 

N 

wi(r), E GJi(r')ai = (wj(r), Ei(r)) Vj (2.8) 
i=1 

where < a, b> represents a suitably defined inner product between a and b whose 

properties are given by [6, definition 5.1.3]. 
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This may be written in matrix notation: 

< wl, L J1 >""< Wl, GJN > al < wl, E'> 

< WN7 , 
CJ1 >< Wir, GJN > air < Wir, E2 > 

(2.9) 

or, for brevity: 

La=e (2.10) 

where L is the matrix of inner products (in a frequency domain analysis often called 

the impedance matrix), a is the unknown coefficient vector and e is the vector of 

inner products with the excitation field E2. 

The value of a can be found in principle by inverting L in which case a solution is 

obtained simply for any given e. The approach more normally taken (since it involves 

less computation) is to solve for one particular e by employing any suitable algorithm 
for the solution of linear equations [7]. 

2.3.2 Choice of Basis and Testing Functions 

The usual procedure when choosing both the basis and testing functions (wj and Ji 

above) is to choose simple functions that are each only non-zero over one small part of 

the problem space. This is not a necessary feature of the solution method although it 

is common practice and implied here by the use of the term `finite element' to describe 

the solution method. (It might be argued that the fact that basis functions may have 

entire domain support mitigates in favour of the `Method of Moments' appellation 

to describe the above solution procedure. The modern solution of electromagnetic 

problems in geometrically complex domains however makes the use of entire domain 

functions the exception rather than the rule). 

These functions must be linearly independent [8, p. 7] and are frequently chosen to 

be low order piecewise polynomials. Figure 2.1 illustrates two piecewise polynomials 

of unity amplitude, the first being a piecewise constant centred on x=2 the second 

a piecewise linear function centered on x=4. 

An important consideration when choosing the basis functions is to select functions 

that will naturally fit the expected distribution of J [1, p. 82]. This is particularly 

important when the current variation is expected to be predominately influenced by 

a singularity (such as that present at a corner or edge) [9]. 
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1 

N. 
1234 

Figure 2.1: Piecewise polvnoinials of low order 

The test and basis function sets need not be identical; this is however a common 

choice and usually leads to particularly well-behaved methods, often described as 

Galerkin techniques [8, p. 7], where reciprocity is guaranteed [1, p. 95]. 

A second common choice is to use Dirac delta functions [10] as the weighting functions, 

in this case the inner products in (2.9) become trivial and the result is known as a 

point-matching or collocation method where the left and right hand sides of (2.7) are 

simply set equal to each other at N points. 

2.3.3 Features of the Integral Methods 

While there are many different Integral methods, the fact that they all share the same 

basic formulation results in the fact that they have a number of common properties: 

"A Greens function G(r, r') must, be derived by analytic means. 

" The Greens function will only be applicable for a particular class of problem. 

" The Greens function will implicitly include the conditions at the boundary of 

the problem domain. 

" In many cases J will only exist on a given surface [2, chapter 6]. 

" The final matrix equation (2.9) will not be sparse [11, p. 426]. 

Many different variations are possible on the general method given above depending 

on the choice of solution domain and the choice of basis and test functions. 

" The frequency domain is usually preferred to the time domain. 
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" In some cases choosing to work in the spectral domain (that is, with the Fourier 

transform of the spatial variables) can be advantageous as the formulation of 
the problem becomes simpler [9,12]. 

2.4 Differential Methods 

The Differential methods solve Maxwell's equations directly rather than solving a 

related integral equation. Just as for the Integral methods a solution to the equation 
is usually approached via a finite element procedure. 

2.4.1 Solution of Differential Equations 

Commencing with Maxwell's equations in operator form: 

Gv(r) = p(r) (2.11) 

where G is a differential operator, v is an amalgamated vector of E and H and p is 

a known source term. 

Expanding v as a series of basis functions vi and introducing testing functions wj 

yields: 

< wl, Gvl > ... < wi, , CvN > al < wi, P> 

(2.12) 
< Wir, , 

CV1 >< WN, £VN > aN < WN7P > 

which is of exactly the same form as (2.9) and again may be written succinctly: 

La =e (2.13) 

which may be solved in principle by any suitable method. 

2.4.2 Choice of Basis and Testing Functions 

Just as in the solution of an Integral problem, low-order piecewise polynomials of 

finite support are usually chosen for the test and basis functions. This choice is 

particularly appropriate for the Differential methods because the resulting matrix 

equation will be sparse and is thus well suited for solution by algorithms such as the 

conjugate gradient method [13]. 
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Once again the choice of a point-matching procedure (as described in the Integral 

case) is a popular one. This procedure generally results in simple, low-order and often 

explicit schemes that have much in common with the well established finite difference 

methods (see for example section 2.6.2) [14]. 

Efficient techniques are again often achieved by choosing basis functions which will 
fit the expected field distribution closely. This is particularly important when the 

field at a point (such as at the tip of a cone or the edge of an acute-angled wedge) is 

known to be singular [4, p. 173]. 

A problem that arises frequently from the choice of basis functions is that of the 

generation of spurious solutions [4, p. 164]. These spurious solutions are generally 

attributed to the lack of enforcement of the divergence condition (V "E=0 and 
V"H=0 in a source free region) and are a major cause of inaccuracy. 

The problem of spurious solutions has received much attention in the literature and a 

common solution has been the inclusion of a penalty term in the problem formulation 

[15]. An alternative and increasingly popular method is the use of vector or edge 

elements [4, chapter 8] which will be discussed briefly in the context of time domain 

Differential formulations in section 2.6.3.5. 

2.4.3 Features of the Differential Methods 

Once again there are features common to this family of methods: 

" Little or no analytic work is required to achieve a solution since a Greens func- 

tion is not required. 

" These methods can be applied to a wide range of structures. 

" The discretised unknowns are the field variables which exist throughout space. 

Thus the number of unknowns is proportional to the volume of the problem [11, 

p. 6]. 

" The final matrix equation (2.12) will be sparse if reasonable choices are made 
for test and basis functions. 

" Appropriate open or closed boundary conditions need to be explicitly imposed 

on the method. 

Page 18 



Section 2.5 : Integral and Differential Methods Compared 

There is also a choice of solution domains: 

" There is no advantage to be gained by utilising the spectral domain, the spatial 
domain is therefore the usual choice. 

" Either a time or frequency domain formulation can be chosen. 

While the finite element procedure described above (section 2.4.1) is widely used to 

produce a solution in a Differential method, there are alternative ways of approaching 
this solution and some of these will be described later in this chapter. It is worth 

noting, however, that these alternative methods bear many similarities to the finite 

element formulation and in some cases can be shown to produce identical algorithms 
to a finite element procedure (see for example section 2.6.2). 

2.5 Integral and Differential Methods Compared 

As described in the preceding sections it is the use of a Greens function which funda- 

mentally separates the Integral and Differential approaches; this function is of great 

assistance as it includes the relevant boundary conditions and frequently reduces the 

problem to a surface rather than volume based one. At the same time however the 

necessity of producing the Greens function analytically is a severe limitation as these 

functions are only available in a limited number of cases. Even when a Greens func- 

tion has been derived it may not be closed form and the necessary integrations in 

(2.9) may be problematic [1, chapter 3]. 

The Differential methods are popular when the problem is inherently volumetric (ie 

does not consist entirely of perfectly conducting surfaces or infinitesimally thin wires) 

and when an analysis tool is required which is capable of treating a wide range of 

structures, regardless of whether they have a known Greens function. 

Considerable attention has been paid to combining the Differential and Integral meth- 

ods in such a way as to eliminate their respective disadvantages while retaining their 

advantageous features. These hybrid methods are commonly referred to as Finite 

Element Boundary Integral techniques and have been applied to both two and three 

dimensional problems [16,17]. 
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2.5.1 Time Domain Analysis 

In many situations a time domain solution is attractive since the structure's behaviour 

over a wide band of frequencies is available and an inspection of time domain results 

may yield information about the response of a structure that is not apparent from a 
frequency domain analysis. 

A time domain solution can be achieved by both Integral and Differential methods. 
Integral methods have been employed in the time domain with some success, for 

example [18], but have not achieved a very high level of acceptance, partly due it 

would seem, to concerns about long term stability [19,20]. The use of time domain 

Differential methods however is widespread and has a history in electromagnetics of 

some 30 years. Accordingly the rest of this chapter is concerned only only with this 

class of techniques. 

2.6 Time Domain Differential Methods 

In general a finite element solution to a four dimensional problem will require the 

use of finite elements in all four dimensions (including time) but in fact the finite 

element concept is normally avoided in the time dimension. This is because finite 

elements are normally viewed as a solution to a boundary value problem and the 

temporal behaviour of a solution is not usually bounded. Instead a `marching in time' 

procedure is adopted for the solution and a finite difference expression is commonly 

used to obtain the temporal variation of the solution. 

2.6.1 The Time Domain Finite Element Formulation 

As described above, a slightly different approach from that described in section 2.4.1 

is usually taken when considering time-dependent finite element solutions. Maxwell's 

curl equations in the time domain and a Cartesian coordinate system are: 

0x E(t, x, y, z) _ -µatH(t, x, y, z) (2.14) 

Vx H(t, x, y, z) = eätE(t, x, y, z) (2.15) 

where for simplicity the conduction current J has been neglected. 

Page 20 



Section 2.6 : Time Domain Differential Methods 

Both E and H are expanded as a set of N weighted dyadic basis functions: 

NN 
ZVx Ei (x, y, z)ei(t) = -Ft E Hi(x, y, z)athi(t) 
i=1 i=1 (2.16) 

NN 
Vx Hi(x, y, z)hi(t) =E Ei(x, y, z)ötei(t) 

i=1 i=1 

where the basis functions Ei, H2 are assumed to be functions of space only and it is 

the coefficients e2, h2 that include the temporal variation. 

An inner product with a set of N testing functions uff, wj is introduced for each 

expression: 
N 

uj (x, y, z), Vx Ei (x, y, z) ea (t) _ 
i-i 

N 

-p 
(ui(x, 

y, z), E Hi(x, y, z) athi(t) vj (2.17) 
j=1 

N 

wj (x, y, z), ZVx Hi(x, y, z) hi (t) = 
i=1 

N 

E 
ýwj 

(x, y, z), Ei (x, y, z) atei (t) Vj (2.18) 
j=1 

writing this in matrix form yields: 

<u1, VxE1> """ <ul, VxEN> ei 

< UN, Vx Ei >< UN, VX EN > eN 
(2.19) 

< ul, Hl > ... < ul, HN > hl 

= -µ öc 

< UN, HJ >< UN, HN > hN 

and: 

<w1, VxH1> ... <wl, VxHN> hl 

< WN, VX H1 >< WN, VX Hit > hN 
(2.20) 

< wl, E1 > ... < wl, EN > el 

=E et 
< WN, E1 >< Wir, EN > eN 
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these equations are usually written more briefly as: 

Kle(t) = Miath(t) (2.21) 

K2h(t) = M2ate(t) (2.22) 

M1i M2 are traditionally known as `mass' matrices and K1, K2 are called `stiffness' 

matrices [21]. 

The temporal derivative is commonly replaced by an approximation such as a centred 
finite difference where: 

ath(t) = 
h(t + 0.50t)Qth(t - 0.5At) (2.23) 

with At being a small time interval called the `time-step'. This yields: 

M1 
h(t + 0.50t) - h(t - 0.501) Kle(t) (2.24) 

M2 e(t + Qt) - e(t) 
= K2h(t + 0.501) (t) (2.25) 

giving: 

Mlh(t + 0.50t) = Mlh(t - 0.5zt) + AtKle(t) (2.26) 

and: 

M2e(t + At)-'-': M2e(t) + OtK2h(t + O. 5zt) (2.27) 

which, given that initial values are known, provides an update scheme for e and h. 

This method is widely used and often described as the `leap-frog' technique. 

It is desirable to make the mass matrices Ml, M2 diagonal, in which case h(t+0.5At) 

and e(t + At) can be found explicitly from the previous values. If the mass matrices 

are non-diagonal the algorithm is implicit and a set of simultaneous equations must 

be solved in order to update each element of h and e. A diagonal mass matrix may 

result from the use of low order basis and test functions or from a `mass lumping' 

scheme, where the mass matrices are approximately diagonalised [22,23]. 

This section has demonstrated how the finite element concept is usually applied to 

the time domain Maxwell's equations. It is clear that a number of different algorithms 

may result from employing the above procedure, depending on: 
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" The choice of basis functions. 

. The choice of test functions. 

. The method used to approximate the ät operator. 

9 \Vhether or not mass lumping is employed. 

In the following sections a number of time domain Differential methods will be con- 

sidered, most of which are examples of the time domain finite element method with 

various choices for these four points. 

2.6.2 Finite Difference Time Domain Methods 

Various methods are traditionally derived by the application of finite difference ap- 

proximations to the derivatives in Maxwell's equations - the most, popular of these 

methods being the Finite Difference Time Domain (FDTD) or Yee algorithm, first 

proposed by Yee in 1966 (see chapter 1) [24]. This method places the field unknowns 

in a spatial mesh built up of unit cells. 

The vector field components are associated with the edges of the unit cells as shown 

by figure 2.2; this meshing scheme is usually referred to as `staggered' in reference to 

the fact that no two field components occupy the same position in space. 

Hz 

Ay Ey 

E 

X 
Node (i, j, k) 

HX 

EZ 

A2 -0 

Figure 2.2: The FDTD unit cell (showing unit cell dimensions). 

While the normal approach to deriving the FDTD algorithm is to replace the partial 

derivatives in Maxwell's equation with centred difference expressions, yielding an 
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explicit finite difference algorithm, it is also possible to view the FDTD method as a 

special case of the finite element procedure described in section 2.6.1. This is a useful 
approach since it introduces an element concept for FDTD (utilised in section 4.5.2 

and in subsequent chapters) and emphasizes the commonality between a number of 

analysis methods. 

Introducing for convenience a slightly modified notation for the enumeration of the 
basis and testing functions: 

N: Ny N: 
E(x, y, z) =ZZZ E=,. i, k(x, y, z)ei,,, k(t) (2.28) 

N. Ny N, 

H(x, y, z) =ZE> Hj,,, k(X) y, z)hi, i, k(t) (2.29) 
ß_1j=1k=1 

where N, Ny and NZ are the number of unit cells in the x, y and z directions 

respectively and: 

(Ex) 
oi, ý, k (x, y, z) 00 

Ei, J, k(x, y, z) =0 (Ev) 0 
(E_) (2.30) ýi,. 

i, j 
(x, y, z) 

o( E. (x, y, z) 00 
Hi, i, k x, Y, z=0 (Ev) 

tj, k 
(Es) (2.31) 00 oi,. 7, k 

(xi yý z) 

Each function ¢ is a piecewise linear function in the two axis directions normal to the 
field component in question. The form of basis function in the direction of the field 

component need not be specified since, due to the structure of Maxwell's equations, 
the result is insensitive to this quantity. Each basis function is centred on the position 

of the relevant field component in cell i, j, k. 

The function OýEk, for example, is equal to: 

(1 
- 

Ixö°=) (1 
-z 

°s) ix - iLx i< 0x, ly-U+2 )Dy 1<2, Iz - /ýO, z) < Oz 

p otherwise (2.32) 

This basis function is depicted by figure 2.3 - only the variation in the z direction is 

indicated. 
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Node (i, j, k) 

Figure 2.3: Basis function O(Ey) and test function 6(H-) shown as a function of' only. 

For the testing functions Dirac delta functions [10] are employed, thus: 

d z, %) (x, y, z) 
Wi, j, k(x, y, z) =0 

0 

o0 
bý E, 

k) (x, y, z) o 
(2.33) 

S, Hk'(x, y, Z) 00 

U, i. k(Ey, Z) =0 bi(Hk) (x, y, z) 0 

00 box-)(x Y. 
(2.34) 

each Dirac delta is only non-zero at the position of the indicated field component 
(the test function 5(1r) is indicated by the `spike' in figure 2.3). 

To show how these basis and test functions lead to the FDTD method consider only 

the evaluation of the time derivative of one component of a given vector coefficient, 
for example äthX; - the coefficient associated with the H, component in the unit 

cell i, j. k. 

It can be shown that the only non-zero terms involved in computing 3thx, 
) k are: 

athýa (a {ýýEy'e (t) + ýýýý' ( (f)} 
ij, k a, j, k k i>7, k z i, j, k+l 

() }»ý 
y 

Oi, 
j, 

k 
e-t, 

j, k 
M+ ýz j+l, 

kez2, j+l, k 
(t) (2.35) 

The inner products evaluate straightforwardly to give: 
1 (cýi. 

J. k 
(1) 

- Cti, 
It1. A 

(t) 

+ 
Cyi, 

J, k+1 
(t) 

- f''Y"j. 
A 

(t) 

('. 36) 

where the terms in the brackets are recognisable as centred difference approximations 

to the derivatives äy and a- 
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The final step is to replace the time derivative athX; 
k 
(t) with a difference approx- 

imation. To do this the notation 7z is introduced to mean a point in time given by 

t= nAt. This yields: 

en+0.5 _ en, +0.5 en+0.5 _ e? n+0.5 
hn+l = hn + At 2i,. 7, k Zi,. 1+l, k + 

Yi, J, k+1 Yi, J, k (2.37) 

Xi, i, k Xi, 7, k Ay Az 

This expression is the standard FDTD update equation for the field component h., 

(barring some slightly non-standard notation). Similar expressions can be derived for 

the remaining magnetic and electric components. 

It has been shown that the Yee FDTD algorithm is in fact a particular case of a time 

domain finite element technique. Point matched piecewise linear basis functions are 

employed in space and a centered finite difference employed in time yielding a fully 

explicit algorithm (since the mass matrices are diagonal). 

There are a number of other time domain Differential techniques which result from 

the use of spatial finite differences and these are briefly described in the following 

sections. 

2.6.2.1 FDTD in Non-Cartesian Coordinates 

FDTD is usually derived assuming a Cartesian coordinate system, as shown above, 
however this results in poor characterisation of bodies such as the cylinder shown 
in figure 2.4 since it must be approximated in the FDTD method by a `staircase' 

of some description. This approximation is extremely undesirable [25,26] and is 

discussed further in section 4.1. 

Figure 2.4: (i) Cylindrical body and (ii) its representation by a staircase. 

For some structures the problem may be overcome by deriving FDTD in orthogonal 

curvilinear coordinates such as the circular-cylindrical [27] or spherical [28] systems. 
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The FDTD mesh will then be able to characterise the object without employing a 

staircase. 

This approach is obviously limited however as for the majority of structures it is not 

possible to choose an orthogonal coordinate system which conforms to an arbitrary 

set of boundaries. 

2.6.2.2 Non-orthogonal FDTD 

The generalisation of FDTD to a non-orthogonal coordinate system enables the treat- 

ment of arbitrarily shaped objects and was originally presented in [29] with sub- 

sequent investigations by [30,31]. This generalisation however requires double the 

amount of computer storage and three times as much computation per unit cell in 

the algorithm [31]. 

An extension to the idea was proposed in [32] where several overlapping FDTD meth- 

ods are employed. A non-orthogonal FDTD algorithm is employed where necessary 

to characterise curved bodies and the standard (more efficient) FDTD technique is 

employed elsewhere. The field data is interpolated between the algorithms at their 

interfaces. 

Restricting the use of the conformal method to a small proportion of the prob- 

lem space obviously provides considerable computational savings over employing it 

throughout the problem and simplifies the generation of the non-orthogonal mesh. 

The authors do mention however some stability problems with this technique which 

require careful selection of the interpolation procedure. 

2.6.2.3 Lax-Wendroff/Flux Corrected Transport Method 

This algorithm [33] employs the Lax-Wendroff [34] method which expands the field 

variables in a Taylor series in time and then replaces the spatial derivatives by finite 

differences. The resulting algorithm is a discretisation of Maxwell's equations on a 

non-staggered grid - one in which, in contrast to the Yee algorithm, all the field 

components are defined at the same points in each unit cell. 

The Lax-Wendroff method is shown to be more dispersive than FDTD and as a result 

the Flux Corrected Transport (FCT) technique (widely used in fluid dynamics [35]) 

is employed to reduce the dispersion of the algorithm - resulting in a method which 
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is actually less dispersive than FDTD. 

While this method involves considerably more computations per time step than the 

Yee method, the authors contend that a less dense mesh may be employed and that 

the non-staggered mesh allows better characterisation of curved surfaces than FDTD 

(c. f. chapter 5). 

2.6.2.4 Discussion of the Finite Difference Methods 

The finite difference techniques are popular in electromagnetics as they are explicit, 
direct solutions of Maxwell's equations. The Yee method (FDTD) is particularly 

popular as, due to its application on an orthogonal mesh, its computational overheads 

are relatively modest. 

As has been shown, other finite difference based methods have been proposed which 

offer advantages over FDTD (particularly in their handling of non-rectilinear geome- 
tries) however these generally impose considerable extra computational overheads 

and, for that reason, they have yet to supplant the original FDTD method. 

2.6.3 Finite Element Time Domain Methods 

Some attempts have been made to derive time domain methods from a purely finite 

element point of view. These methods' principal advantage over FDTD is that curved 
(or angled) structures may generally be modelled without the staircase approximation 

as a result of the application of more flexible basis and test functions. 

2.6.3.1 Point Matched Method of Cangellaris et al. 

In [36] a time domain finite element method in two dimensions is proposed which 

employs isoparametric (bilinear) basis functions over quadrilateral mesh elements. 
This mesh is able to conform locally to the shape of the object being modelled thus 

reducing the overhead of storing and generating a full conformal mesh. Dirac delta 

test functions are employed and the time derivative is approximated by the leap frog 

scheme as in FDTD; the resulting algorithm is therefore explicit. The extension to 

three dimensions is described in principle by [37] as being to employ hexahedral mesh 

elements. 
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2.6.3.2 Finite Element Methods of Madsen et at. 

UNIVERSITY 
OF BRISTOL 

QVGINEERINQ 1 

Similar two-dimensional methods to those of [36] were investigated in [38]. In this 

paper the Galerkin formulation is employed (the test and basis function sets are 
identical). Such a formulation would normally result in implicit algorithms but mass- 
lumping renders the algorithms explicit. 

Various choices of basis functions were considered for both E and H however the 

paper concludes that the Modified Finite Volume (MFV) method [39] also presented 
in the paper possesses superior accuracy to the finite element methods. The MFV 

and related methods are described in section 2.6.4. 

2.6.3.3 Penalty Method of Lynch et al. 

A three dimensional finite element formulation is described in [22]. The approach 
taken is to eliminate the magnetic field H from Maxwell's equations to give the 
double curl equation: 

vx 1VxE=-EattE 

p 
(2.38) 

The finite element solution of this equation is known to suffer from spurious modes [40] 

consequently a form of penalty term (as mentioned in section 2.4.2) is introduced to 

ameliorate these effects. 

The choice of basis and test functions is taken to be Galerkin's and a lumping tech- 

nique is required to render the scheme explicit; the second order time derivative is 

approximated by the standard centred difference: 

E(t + At) - 2E(t) + E(t - At) attE(t) = 02 
(2.39) 

e 

2.6.3.4 Taylor-Galerkin Method of Ambrosiano et at. 

In [41] the Taylor-Galerkin method is described which is capable of solving Maxwell's 

equations on an unstructured mesh. This method is very similar to the Lax Wen- 

droff finite difference technique (section 2.6.2.3) except that a Galerkin finite element 

approach replaces the spatial difference operator, resulting in an implicit algorithm 
that requires an iterative solution technique at each time step. 
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As discussed in the context of the finite difference method the Lax Wendroff scheme 
has the disadvantage that it is fairly dispersive. As a solution to this the FCT 

method [35] is again utilised. The results given are for two dimensions although the 

technique generalises to three. 

2.6.3.5 Edge Element Methods 

A new type of basis function for vector fields has been described in the literature [42, 

43] [4, chapter 8]; these `edge' element basis functions are associated (as their name 

suggests) with the edge quantities in a mesh rather than the vertex values. The basis 

functions impose only the tangential continuity of field across element and material 
interfaces and have been shown to be less susceptible to the problem of spurious 

solutions [44]. 

Recently these functions have begun to be used in time domain finite element for- 

mulations. In [45] edge elements are used for the basis functions; collocation and 

the leap frog method yield an explicit solution method for which good accuracy is 

reported. Instability is mentioned as a problem however and it is suggested that 

an implicit scheme may be needed to remove this drawback; such a scheme is em- 

ployed in [46] where the test and basis function sets are identical, giving an implicit, 

Galerkin, formulation. 

2.6.3.6 Discussion of Finite Element Time Domain Methods 

In this section a number of time domain methods based on the finite element technique 

have been described. Due to the use of more complex basis- (and sometimes test-) 

functions these methods are all capable of handling non-rectilinear structures in a 

more rigorous fashion than the standard Yee FDTD method. 

While an analysis of the computational overheads of all these techniques is not pre- 

sented here it is well known that both computation time and memory use will increase 

over that required by FDTD. A particularly dramatic increase in computational re- 

quirements results when the algorithms become implicit. 
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2.6.4 Finite Volume Methods 

In Computational Fluid Dynamics (CFD) so-called finite volume methods are widely 

used. These methods can in many cases be viewed as as finite element methods with 

element test functions - in other words each test function is unity over a given volume 

called the `unit cell' [47]. The resulting algorithms usually result in an integration 

over the volume of this unit cell. 

The finite volume concept of integrating around the unit cell is useful since a global 

coordinate system is not, as such, required. The finite volume techniques can thus 

be applied on very irregular grids which do not conform to any particular coordinate 

system and can therefore be used to characterise curved and angled bodies. 

2.6.4.1 Finite Volume-Like Methods 

In [39] Madsen et al. describe a three dimensional algorithm called the Modified 

Finite Volume (MFV) capable of solving Maxwell's equations on a non-orthogonal 

mesh. The algorithm conveniently specialises to the FDTD method when applied on 

an orthogonal mesh and thus, by applying non-orthogonal cells only where necessary, 

the computational overheads associated with the non-orthogonal treatment may be 

minimised. A similar technique is investigated by Holland in [48]. 

The MFV algorithm was reported to suffer from late-time instability however [39] 

and so a related algorithm, the Discrete Surface Integral (DSI) method [49], has been 

proposed. The DSI method has been successfully applied to a range of structures 

without reported stability problems [50] on a non-orthogonal mesh (see figure 2.5). 

The computational overheads associated with the DSI method are considerable, with 

about 5 times as many operations needed at each iteration and large amounts of 

storage required for the vector description of the mesh. Like the MFV technique 

though, the DSI method on an orthogonal mesh reduces to the FDTD method and 

so the computational costs may be considerably reduced by employing only a locally 

conforming mesh. 

The efficiency of the DSI method on a locally non-orthogonal mesh and the fact that, 

like the FDTD method but unlike many finite element methods, the method is charge 
(divergence) preserving, are major considerations in favour of the DSI method [49]. 
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Dual Cell Dual Cell Dual Cell 

" Electric Components 

o Magnetic Components 

Figure 2.5: Unit cells of (i) FDTD (ii) DSI/MFV (iii) Finite volume method of [51]. 

The conformal FDTD method of [32], described in section 2.6.2.2, utilises several or- 

thogonal and non-orthogonal FDTD algorithms and interpolates field values between 

them as necessary. In [51] a finite volume algorithm is used in the non-orthogonal re- 

gion in preference to the non-orthogonal FDTD technique. This finite volume method 

renders the interpolation procedure more straightforward since (unlike FDTD, MFV 

and DSI) it places the unknown fields at the vertices of the unit cells - as shown by 

figure 2.5). 

This hybrid method has been used to characterise several curved structures with far 

greater accuracy than FDTD [51-53]. Mitigating against the algorithm is the fact 

that computation time is reported as being of the order of four times greater than 

that of FDTD and the memory requirements are increased by more than a factor of 

two [52]. 

While the above techniques seem to offer the possibility of generalising FDTD to 

arbitrarily shaped bodies their disadvantages include generally increased demands on 

computation and storage, complexity of mesh generation and concerns over stability 

[39,51,52,54]. 

2.6.4.2 Upwind approach of Shankar et al. 

An approach inspired by work in CFD is to cast Maxwell's equations in a conservation 

form and to apply so-called `upwind' techniques. This `Time Domain Finite Volume' 
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method (very different from the aforementioned finite volume methods of [50] and 
[51]) may also be applied on a non-orthogonal mesh [55,56]. 

The Lax-Wendroff scheme is applied to the time updating of the algorithm. This is 

disadvantageous since it introduces dissipation into the method however the use of 
such a dissipative technique is apparently necessary to attain algorithmic stability 
[49]. 

2.6.5 The Transmission Line Matrix Technique 

The Transmission Line Matrix (TLM) technique comprises a family of related meth- 

ods, all based around networks of transmission lines and usually considered as being 

based on Huygens' principle rather than Maxwell's equations. The original TLM 

method was described in two spatial dimensions in 1971 [57] and subsequently in 

three in 1974 [58]. 

A number of TLM methods exist, with the two most popular techniques being the 

original expanded node method (ExpN) [58] and the newer symmetrical condensed 

node technique (SCN) [59,60]. The SCN method is usually considered as being of 

slightly better accuracy than the ExpN model [61] at the expense of a small increase 

in computational effort - recent contributions suggest however that the the newer 

method may suffer from larger errors in some circumstances [62]. 

An alternative technique is the so-called Bergeron Method [63] which employs a 

spatial network having many similarities with the expanded node TLM network; its 

authors have indeed described the method as a `refined TLM technique' [64]. 

While the TLM methods seem quite distinct from the other time domain Differ- 

ential methods discussed in this chapter (being not usually derived from Maxwell's 

equations) these are included here as they have many features in common with the 

other techniques; recent publications have shown for example that the various TLM 

methods can, like FDTD, be derived from a finite element approach [65,66]. The 

relationship between ExpN TLM and FDTD in particular has long been a subject 

for debate [67,68] - some authors describe the methods as `formally equivalent' [691 

with the TLM technique being the less efficient of the two. 
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2.7 Further Aspects of the Yee FDTD Method 

In section 2.6.2 it was shown that the FDTD method can be viewed as a particular 

instance of the time domain finite element solution of Maxwell's equations. The 

method is popular since the algorithm is explicit (the mass matrices are diagonal) 

and the storage and computation requirements for each unit cell are modest. The 

principle disadvantage of the standard method is its poor treatment of structures 

which do not conform to FDTD's orthogonal grid - to date no alternative algorithm 

has been proposed which can counter this drawback without incurring considerable 

computational overheads (see the discussion earlier in this chapter). 

In this section some of the practical aspects of implementing the FDTD method to 

model inhomogeneous bodies are introduced. For a more detailed introduction to the 

FDTD method the reader is referred to [70] and [71]. 

2.7.1 Spatial Discretisation 

As previously discussed, the FDTD method proceeds by dividing the modelled volume 
into a mesh of unit cells. The algorithm solves for each of the 6 field components in 

each unit cell at each time iteration. It is clear then that it is desirable to keep the 

number of unit cells and the number of time steps at a minimum if the computational 
demands of the algorithm are not to become excessive. 

The dimensions of the unit cells in the x, y and z directions are throughout this thesis 

denoted as Ox, Ay and A, z 
(and when direction is not of interest the symbol A will be 

used). In practice the maximum size of the unit cells is limited by geometrical detail 

around a structure and by the requirement for wavelength resolution otherwise. 

A heuristic criterion often applied for wavelength resolution is: 

A< Co (2.40) 
l°fhighest Er 

where highest is the the highest frequency of interest. If this limit is broken then 

numerical dispersion and anisotropy will become significant as a result of the piece- 

wise linear basis functions no longer being a sufficiently good description of the field 

variation. This is illustrated by figure 2.6. 

In practice however the problem will contain geometrical detail and in this case the 

unit cell dimension will have to be small enough to resolve the features of the object 
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N----100-+ m 5A ! 

Figure 2.6: Sine wave and its piecewise linear representation on meshes with resolu- 
tions A= )/10 and 0= A/5. 

and model the surrounding field variation. This is often a more stringent criterion 
for A than the straightforward requirement for wavelength resolution. 

In general FDTD can be applied on a uniform mesh (where Ox =y=., z 
on an axis uniform mesh (where Ax 0 Ay 54, Az) and on an axis graded mesh (where 

Ax, Ay and -A,, are functions of space). These three cases are illustrated (in two 

dimensions) by figure 2.7. 

Figure 2.7: (i) Uniform, (ii) axis uniform and (iii) axis graded meshes. 

The axis graded mesh is useful since, when a small geometrical feature must be 

described, the fine discretisation need not be employed everywhere else also. The 

graded mesh is not ideal however since some unnecessary refinement will almost 

certainly be introduced, as shown for the case of discretising a microstrip in figure 2.8 

-a more satisfactory scheme would be the completely local refinement also shown by 

figure 2.8, achieving such a refinement however is not straightforward [72,73]. 
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Xý 

metallisation 
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Z ground plane 

Figure 2.8: Microstrip cross-section with (i) Graded mesh (ii) Locally refined mesh. 

2.7.2 The Time Step 

The issue of the size of the time step At might also be thought to be one of sufficient 

sampling, thus: 

At <1 l°fhighest 
(2.41) 

in fact it is well known that the value of time step will usually have to be considerably 

smaller than this value, due to the so-called Courant limit [74]. 

The Courant limit is well known in the explicit solution of propagation problems [75, 

chapter 4] and relates the maximum time step size to the minimum space step. Instead 

of, as usual, using the Fourier method to determine the Courant limit for FDTD an 

instructive and perhaps more intuitive approach is employed. 

Figure 2.9 shows the FDTD unit cell once more. The Courant limit arises because, 

while the speed of an electromagnetic wave is fixed by Maxwell's equations, the speed 

at which a FDTD numerical solution can propagate in the mesh is limited to a speed 

where the solution travels one node in any axis direction every iteration. 

It is clear, then, that considering a wave travelling along the z axis in figure 2.9 the 

FDTD solution will travel from Ey(1) to Ey(2) in a time At. Thus the speed of the 

numerical solution in the z direction is A/At which must obviously be greater than 

c if the numerical solution is to be able to keep up with the real one. 

The worse case however is to consider a wave travelling diagonally from Ey (1) to 

Ey(4). The numerical solution will take a minimum of three time steps to travel this 

distance (passing via E, (1) and Ey(3) say). The actual distance travelled is \/-30 so 

the effective speed is / A/30t thus it can be seen that: 

0ý < 
ýc 

(2.42) 
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Figure 2.9: Illustration of Courant stability limit for FDTD 

which is the Courant limit for FDTD with a uniform mesh. 

At first sight this does not seem to impose too severe a limit on the FDTD time step; 

it is straightforward to show that with 0 -- A/10 the time step will give 10v (about 

17) samples per cycle rather than the 10 that would be expected. The real difficulty 

comes however when it is considered that 0 will be the smallest cell width in the 

problem space and will be dictated by the size of the smallest geometrical feature 

(usually much smaller than A/10) - resulting in a FDTD algorithm with perhaps 

several hundred time steps per cycle. 

The Courant condition applies equally well to any other explicit solution to a prop- 

agation problem. From chapter 1 it is recalled that Richardson's computation of a 

solution to the equations of atmospheric motion suffered from instability; the root 

cause of this phenomenon was that the atmospheric equations that Richardson set out 

to solve were so general as to include sound waves which travel at over 600 miles an 

hour. These phenomena have no significant role in the far slower process of weather 

evolution and are neglected in modern numerical weather models in order to satisfy 

the Courant criterion without introducing a very small time step. Richardson's time 

step, chosen from the point of view of sufficient sampling, was insufficiently small and 

instability was the unfortunate result. 
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2.7.3 Boundary Conditions 

As discussed in section 2.4.3 Differential methods require boundary conditions to be 

imposed on the solution (whereas the boundary conditions are implicit in the Integral 

methods). In some cases the problem to be analysed can be bounded by Perfectly 

Electrically Conducting (PEC) walls and this condition is easily implemented by 

FDTD. 

In many cases however the object being modelled exists in free space and the compu- 

tational domain of the Differential method (in this case FDTD) must be bounded in 

such a way as to allow energy to be radiated from the modelled object without being 

reflected back at it. This type of boundary condition is widely known as a Radiating 

Boundary Condition (RBC) and its implementation in FDTD has been the subject 

of considerable research [76]. 

Various approaches have been taken to implement an RBC for FDTD. The most 

obvious technique is to `line' the FDTD boundary with some sort of electrically lossy 

material in order that the radiating energy may be absorbed (this type of boundary 

is sometimes known as an ABC or `Absorbing Boundary Condition') - examples of 
the use of this technique can be found in [77] and [78] (the latter including magnetic 
loss terms in addition to the electric losses). 

Rather than introduce fictitious lossy layers into the FDTD algorithm most boundary 

conditions apply discrete approximations based on a discretisation of a one-way wave 

operator [70,79]. The most popular boundary condition for use with FDTD has 

probably been the so-called Mur first order boundary described in [80], this condition 

provides usually adequate absorption of radiated energy, particularly when the energy 

is normally incident upon the boundary. 

A recent development has been the concept of a `Perfectly Matched Layer' (PML) 

which, it has been shown, can result in extremely low levels of reflection [81]. This 

technique, like those of [77] and [78] relies upon the use of an absorbing layer but 

extends the concept considerably to yield extremely low levels of reflection (poten- 

tially of the order of -80dB [82]). This new method introduces some computational 

overhead over the Mur first order method [83]. 

In general the implementation of a RBC will be a trade-off between the tolerable level 

of reflected waves and the computational overhead in implementing the condition. 
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In some applications the results obtained are not particularly sensitive to reflected 

energy - in which case a simple first order Mur condition may be adequate, in others 

the computational effort involved in implementing a more sophisticated technique 

may well be justified. 

2.7.4 Further Modelling Considerations 

In the above discussion some of the most fundamental aspects of the Yee FDTD 

method have been introduced; namely the spatial mesh, the time step and its relation 
by means of the Courant limit to the unit cell size, and the boundary conditions. 

A host of other factors must be considered when implementing a FDTD method, 
among which the excitation (or source), the treatment of dielectric interfaces and the 
transformation of time domain results to the frequency domain could numbered. For 

a discussion of these issues see, for example, [70] and [71]. 

2.8 Summary 

It has been seen in this chapter that a wide range of numerical electromagnetic anal- 

ysis techniques can be divided into Integral methods (those which solve an integral 

or integro-differential equation involving a Greens function) and Differential methods 
(which are applied directly to Maxwell's differential equations). 

Consideration has been given in particular to the time domain Differential methods 
and how these may be implemented using the finite element or similar procedures. 
The merits of a reasonably comprehensive cross section of published finite element, 
finite difference, finite volume and transmission line matrix techniques have been 

considered and it has been shown that the properties of the Yee FDTD method [24] 

make it an attractive method for time domain analysis. 

Alternative methods to the Yee algorithm have mostly been proposed to counter 
FDTD's poor treatment of curved objects. These proposed methods are generally 

not as computationally efficient as the standard FDTD algorithm (and indeed may 

not even be explicit). 

It is the FDTD method that will be the main focus of the rest of this thesis and 

therefore the examination of numerical methods has been concluded by consideration 
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of the Yee FDTD method in more detail. The important concepts of the spatial 
discretisation, the time step and the boundary conditions have all been introduced. 
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Section 3.1 : Introduction 

3.1 Introduction 

Various practical aspects of the FDTD method were introduced in section 2.7. It was 

shown (see section 2.7.1) that, in order to minimise the computational overheads of 

the algorithm, the number of unit cells used to discretise the computational volume 

should be kept to a minimum. This implies that: 

i. The unit cell dimensions should be as large as possible (means for ensuring this 

are discussed in chapters 4,5 and 6). 

ii . The -computational volume should be as small as possible. 

The size of the computational volume must be sufficient to encompass the structure 

of interest, additionally however if the fields are required at points some distance from 

the structure then the volume must extend to these points. In the case of evaluating 

the far field of an scatterer or antenna for example, it follows from (ii) above that 

this is extremely undesirable; the structure may have dimensions of less than one 

wavelength however the computational volume is required to extend a distance of at 
least ten wavelengths in order to evaluate the far fields. Such a dramatic increase in 

the size of the computational volume would in most circumstances make the analysis 
impractical. 

This chapter describes a technique (known as a near to far transform) which can 

extrapolate the near fields into the far zone. By employing a transform of this kind 

the FDTD algorithm need only be used to calculate the near fields (those adjacent 
to the structure) and thus the determination of the far field, accomplished by the 

extrapolation of these near fields, no longer requires a large computational volume. 
An implementation of this transform is described and its accuracy when applied to a 

relatively complex structure is evaluated. The time domain near far transform given 
here is based on [1,2] and its implementation was a continuation of work described 

in [3, chapter 6]. 

A third cause of large computational overheads in FDTD (and indeed any time do- 

main method) is the treatment of highly resonant structures. In the analysis of these 

structures the transient response decays only slowly to a point where it may be con- 

sidered complete and, as a result, the number of required algorithm iterations may 

become large. Section 3.6.1 describes and applies one method which is capable of 
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Section 3.2 : The Near Far Transformation 

reducing the number of iterations needed to characterise a resonant object. 

3.2 The Near Far Transformation 

In order to develop a method for transforming the FDTD-calculated near fields to 

the far field, the equivalence principle is be employed. This principle states that the 
fields exterior to a closed surface S are unchanged if the fields inside S are set to zero 
and equivalent electric and magnetic currents Jeq and Meq flow on S with the values: 

Jeq(r', t) = n(r') x H3(r', t) 
(3.1) 

Meq(r', t) = -n(r') x E,, (r', t) 

where n is the unit vector normal to S at r' and E3 Hs are the fields on S [4]. This 

situation is illustrated by figure 3.1. 

structure 

ýý 

v 
ýý 

exterior fields E, H(r) = E, H(r) exterior fields 

Figure 3.1: Equivalence principle. 

In order to determine the far field at a point r (called an `observation point') external 

to S, the retarded vector potentials A and F: 

A(r, t) -1/ 
Jeg(r', t- T) dS 47r 

z 
Ir - r'l (3.2) 

s 
F(r, t) 

41r 
[ Murr 

, 
rt 1-l 

r) dS 

are used, where r= Ir - r'I/c. In the far field the attenuation factor Ir - r'I-' can 
be considered equal to Ir1 ' and taken outside of each integral giving: 

1 A(r, t) =4 ýrý 
Is Jeq(r', t- T) dS 

(3.3) 
F(r, t) = 4ýlrl 

Is Meq(r', t- T) dS 
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Section 3.3 : Transformation Implementation 

In order to find the actual fields E and H at r, expressions (9) and (10) of [2] may 
be employed: 

Eo(r, t) = -1atAo(r, t)+ 
1OtF'm(r, 

t) 
fc (3.4) 

EO(r, t) = -atAo(r, t) - 
1atFo(r, 

t) 

The results (3.4) and (3.3) give the spherical components of the electric far field 

at (r, t) as produced by the equivalent currents on S at (r', t- T). Given that the 

equivalent currents may be produced from the tangential fields on the surface using 

(3.1), this provides the required means of transforming FDTD results into the far 

field. 

3.3 Transformation Implementation 

The transformation described above must be implemented in terms of the discrete 

field quantities of the FDTD model and this may be achieved as follows: 

3.3.1 Equivalent Current Calculation 

If a surface S is envisaged, enclosing the elements of the FDTD problem, the equiv- 

alent currents Meq and Jeq can be evaluated from the tangential fields to the surface 

where it intersects each FDTD unit cell (equation (3.1)). Due to the staggered FDTD 

spatial discretisation however (see figure 2.2) the tangential E and H components are 

not defined on the same plane, additionally the two tangential components of each 

field are not located at the same points. As a result the electric field components must 

be interpolated in four directions and the magnetic components in two (as shown for 

Ex and HZ in figure 3.2) to yield tangential field values at the centre of each Yee cell. 

3.3.2 Integral Evaluation 

The use of equation (3.1) and the averaging procedure of section 3.3.1 above pro- 

vides one equivalent electric and magnetic current sample for each FDTD cell on the 

surface. The integrals at time t in equations (3.3) are formed by multiplying each 

equivalent current sample by the area of the FDTD cell (e. g. DA = OxOz in fig- 

ure 3.2) containing the current, applying the time delay T, and summing the results 
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Section 3.3 : Transformation Implementation 

Figure 3.2: Averaging process employed for evaluation of tangential fields on S. 

together. Since T (the delay associated with the path r' -+ r) is a function of the 

position of point r', a scheme must be devised whereby the influence of each current 

element contributes to the far field at the correct point in time [1]. 

A further complication occurs since the current calculated from the FDTD data at 

time nit is a constant between times nIt and (n + 1)At, and contributes over a 

period of time (nAt +T to (n + 1)Ot + T) to the far field integral. The far field, 

however, must be calculated at discrete points in time mLt so, unless the time delay 

T is an integer number of time steps (i. e. T= (m - n)Ot) an interpolation method is 

required. 

An illustration of the calculation routine is provided by figure 3.3. Here, only three 

currents are considered, one current (M2) being a distance Ir - r'I = cIt from the 

far field point, the two others being Ir - r'I = 1.5cLt distant. The contribution from 

each current is added into a time sequence at the appropriate' point. In the case of 

M2 its influence arrives at the beginning of time `bin' 3, for M1 and M3, though, 

the contribution arrives `across' two bins. In this case half the contribution will be 

added to time bin 3, and half to bin 4. 

Once the contributions from currents all across the surface have been added to the 

integral in the above fashion the far field values can be calculated using backward 

difference approximations of the time derivatives in equation (3.4). 
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III10--- 

discrete 
time 

M2 
M, M3 currents at time=2 

Figure 3.3: Transform calculation. 

3.3.3 The Skip Value 

The integral calculation described above need not be performed at every FDTD time 

step and in fact is usually performed once every K FDTD iterations, where K is 

an integer value called the `skip value'. For greatest accuracy it is desirable that the 

equivalent currents Meq and Jeq are calculated and transformed every FDTD iteration 

(i. e. K= 1), since this results in the full frequency spectrum available to the FDTD 

algorithm being used for the transform and minimises the error resulting from the 

time bin interpolation process described in section 3.3.2. This approach unfortunately 

also maximises the computational overhead associated with the transform. 

3.3.4 Including a Ground Plane 

The functions (3.3) assume that all the field sources are enclosed in S and that the 

equivalent currents radiate in free space. Many devices however, including antennas, 

operate in conjunction with an electrically large ground plane therefore unless the 

entire ground plane can be contained within the FDTD model (which is unlikely) S 

cannot enclose it. 
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As a solution to this problem a second surface S' may be envisaged supporting the 
images of the equivalent currents Meq and Jeq, Meq and Jeq as in figure 3.4. 

Real space 

Infinite ground plane 
NIL 

Me 
q/,, 

Image space 
ff 

ý +--r 
f% 1- -% S 

/Ii 

Figure 3.4: Image solution to the ground plane problem. 

By transforming the additional image currents to the far field point, the effect of the 
large ground plane is included without the need to enclose it in S. This obviously 
introduces a degree of approximation however as the image theory assumes that the 

ground plane is infinite in extent whereas in practice it is only electrically large (see 

the following example). 

3.4 Validation of the Transform 

While time domain near field transforms for the Yee algorithm have been known 

for about 5 years, applications have not been particularly widespread and mostly 

restricted to scattering from simple structures at one or two angles [1,2]. 

In this section the time domain transform described above is used to determine the 

radiation pattern of a printed dipole antenna. This application is quite a challenging 

one for the near far transform as the object in question is relatively complex (resulting 

in an FDTD model of 76x30x70 unit cells) and, in order to determine the pattern 

with reasonable angular resolution, a large number of observation points is required. 

Page 53 



Section 3.4 : Validation of the Transform 

The antenna is shown in figure 3.5; a narrow piece of substrate (permittivity Er = 10) 

passes through a hole in a metallic backplane. On one face of the substrate a feed 

is defined and on the reverse side the ground plane is etched away to form the two 

arms of a dipole. The dipole is a broad band element and is designed for use between 

approximately 8 and 12 GHz. 

pole 
side 

vuvou Qt 
(E, = 10) 

Figure 3.5: Printed dipole antenna. 

A rectangular extrapolation surface was defined around five sides of the printed dipole 

and the ground plane was assumed to be infinite; the image method described in 

section 3.3.4 was used to include the effect of the ground plane on the far fields. 21 

observation points were placed in the antenna's E and H-planes, giving an average 

angular resolution of approximately 15°, this being sufficient to determine the general 

features of the antenna's radiated field pattern; very narrow nulls, for example, might 

not however be detected. 

Validation of the time domain near far transform can be achieved by comparison 

with an independently implemented and well tested frequency domain transform [5- 

7] and, at 9.3 GHz, measured results obtained in the Centre for Communications 

Research's anechoic chamber by Dr. S. A. Meade. Figures 3.6 and 3.7 show the co- 

polar E- and H-plane radiation patterns at 9.3 GHz, figures 3.9 and 3.8 show the 

patterns at 10 GHz. 
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Figure 3.6: Measured and theoretical E-plane patterns at 9.3 GHz. 
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Figure 3.7: Measured and theoretical H-plane patterns at 9.3 GHz. 

Both sets of theoretical data (the frequency domain and the time domain transforms) 

are in extremely close agreement and in turn at 9.3 GHz they both agree well with 

the measured data. The only regions of difference between the theoretical and the 

measured patterns are in the endfire region (± 90°) and can be attributed to the 

assumption that the ground plane is infinite in extent (see section 3.3.4) - the effects 

of this assumption are particularly clear at 90° in the H-plane results where the 

infinite ground plane requires the theoretical co-polar field levels to be precisely zero. 

The great advantage of the time domain near far transform over the frequency domain 

version is that it provides a characterisation of the device over a very wide band from 

just one execution of the algorithm. This fact is illustrated by figure 3.10 which plots 
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Figure 3.9: Theoretical H-plane patterns at 10 GHz. 

the E-plane radiation characteristic of the dipole against frequency at four angles. 

Various observations about the behaviour of the antenna can be made by inspecting 

figure 3.10; the antenna radiates strongly between about 8 and 10 GHz and the E- 

plane null at about 75° is present over the whole of this band - lessening in depth as 

the frequency approaches 10 GHz (see figure 3.8). Away from the 8 to 10 GHz band 

the antenna develops nulls in the boresight direction. 
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3.5 Discussion of the Transform 

16 

The extra computation and memory storage required by both the frequency and 

time domain near far transforms clearly adds to the the overall demands of the 

FDTD method; it is desirable therefore that these additional overheads be relatively 

small. It is also important to understand whether in some circumstances the different 

computational overheads of either the frequency or time domain transform might lead 

to one or the other being preferred. 

A detailed analysis of the computational overheads of the two methods is not pre- 

sented here; and in fact such an analysis is difficult and to some extent machine and 

implementation dependent. Some appreciation of the merits of the two techniques 

can however be produced quite straightforwardly by considering the steps involved 

in each method. 

3.5.1 The Frequency Domain Transform 

The steps involved are; 

Equivalent current calculation from the FDTD fields at each point on S at every 

Kth iteration. 
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ii . Accumulation of one DFT at each point on S at each frequency of interest at 

every Kth iteration. 

iii . 
Transformation of the final result of each DFT to each observation point at 

each frequency of interest. 

iv . Transformation of the far field vector potentials at each observation point to 
field values. 

3.5.2 The Time Domain Transform 

The steps involved are; 

i. Equivalent current calculation from the FDTD fields at each point on S at every 
Kth iteration. 

ii . Transformation of each equivalent current to each observation point at every 
Kth iteration. 

iii . Transformation of the far field vector potentials at each observation point to 
field values at every Kth iteration. 

3.5.3 Time vs. Frequency Domain Transforms 

3.5.3.1 Amount of Computation 

The actual amount of computation required by the two transforms is relatively small, 

particularly as in each case the value of K will be substantially greater than unity. 

Disregarding step (i) (the equivalent current calculation which is common to both 

methods), for the frequency domain transform the extra computation is mostly re- 

lated to the accumulation of a DFT at each point on S (step (ii)) and for the time 

domain version it is entailed in the transformation of the currents to the far field 

(step (ii) - described in section 3.3.2). The major overheads for the frequency do- 

main transform are therefore proportional to the number of frequency points required 

and for the time domain transform proportional to the number of far field observation 

points. 

It was found that in the example of the printed dipole that a frequency domain 

transform at one spot frequency and a time domain transform increased the total 
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computation time by approximately the same proportion (around 10%). Clearly if 

more observation points had been required by the time domain method it would 
have become less attractive however the frequency domain method only provided one 
frequency of interest. The choice between the two methods on grounds of the amount 

of computation depends therefore on the application - if very high angular resolution 
is needed and there is one specific frequency of interest then the frequency domain 

method is the obvious choice, if however a moderate angular resolution is sufficient 

and a wider band characterisation is needed then the time domain method is to be 

preferred. 

3.5.3.2 Amount of Memory 

The second form of computational overhead is the amount of memory required by 

the transforms; it is clearly very desirable to keep the increase in memory useage 
to a minimum. The printed dipole example required 10 MBytes of memory for the 

FDTD analysis alone, the additional memory required for the accumulation of the 

frequency domain transform's DFT was 1.7 MBytes and, for the time domain method, 
13 MBytes. 

It is apparent then that the time domain transform's biggest drawback is its memory 

useage. This overhead arises because the algorithm must store the delay from each 

point on the extrapolation surface S to each observation point. Since the frequency 

domain transform's memory useage is simply that involved in accumulating a DFT 

(the time delay/phase information need not be stored as it is only used once, at the 

end of the FDTD computation) its memory overhead is independent of the number 

of observation points. 

The total storage needed for the efficient time domain transformation of the currents 
Jeq and Meq to the far field is one integer and two real numbers per current per 

observation point [3, chapter 61. Since there will be many thousands of currents on 
S and at least 10-20 observation points, this very easily results in large demands on 

memory resources. 

The amount of memory required by the time domain transform is therefore a signif- 
icant drawback. Various techniques suggest themselves for the amelioration of this 

effect and are discussed in chapter 7. 
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3.6 Analysis of Resonant Structures 

One of the disadvantages of any time domain analysis method is that the computa- 

tional effort is proportional to the amount of time domain data required. In general, 
FDTD computations must proceed until the fields have died away to a negligibly low 

level; failure to observe this requirement will typically lead to an inaccurate charac- 

terisation of the structure when the Fourier transform of the time domain data is 

performed. 

A particular problem occurs when the structure has a high Q factor (i. e. is highly 

resonant); in this case it may take tens or even hundreds of cycles at the frequency 

of interest before the fields decay sufficiently for the analysis to be terminated. 

Most antennas have relatively high Q factors and this results in their FDTD anal- 

ysis becoming a relatively lengthy process. This difficulty is more important when 

the additional computational overheads of the time domain near far transform are 

considered. 

In the following section the system identification method is presented and its appli- 

cation to the time domain far field characterisation of a patch antenna is considered. 

3.6.1 System Identification 

Various techniques are available to reduce the computation associated with the time 

domain analysis of highly resonant structures with the perhaps best known example 
being Prony's method [8]. Prony's method, essentially a curve-fitting procedure, is 

widely used, although its robustness is not always satisfactory [9]. 

The system identification method provides an interesting, signal processing based, 

alternative to Prony's method and has previously been applied in the analysis of 

resonant structures with FDTD [10]. Its application to the time domain near far 

transform was first demonstrated by the author in [11]. 

3.6.1.1 The RLS System Identification Method 

The techniques of system identification are well established in the fields of communi- 

cations and control [12-14], one of the simplest and most popular techniques being 
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the Recursive Least Squares (RLS) method [14, chapter 9]. 

The discrete time system identification problem is shown by figure 3.11. A discrete 

time filter is shown operating in parallel with the FDTD and near far transform. The 

signal x represents the FDTD input (the excitation) and y is the output (in this case 

the response of the structure in the far field). The identification procedure consists 

of choosing the filter coefficients ai and b3 such that the output of the filter y follows 

y with minimum error. 

FDTD and 
X Near-far y 

transform 
Desampling -º 

ti a, b, 

ti a2 b 

A Y 
Figure 3.11: Principle of system identification 

Combining the past values of x and y into a data vector u, and a and b into the 

coefficient vector w of total length M, the output y at any time n (where n is a point 

in time t= nDOt with Da desampling factor) can be written: 

y[n] = wT [n] u[n] (3.5) 

Minimising the mean-square difference between y and y with respect to w[n] yields 

a recursive expression for the optimum vector of filter coefficients: 

w[n] - w[n - 1] - 
O-1[n - 1]u[n](y[n] - uT[n]w[n - 1]) (3.6) 

1+ uT[n]o-'[n - 1]u[n] 

where q5[n] is aMxM correlation matrix whose recursive definition is: 

ý-ihn]_ý-ihn-1]-q5 
1+uT]n[n]uTnn, ý 

un-1] 
(3.7) 
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These relations, requiring only matrix/vector multiplication, constitute a simple and 

reasonably efficient iterative determination of the optimum coefficients given the ini- 

tial values w[O] _ (0 00.. )T and 0-1[0] = kI where k is a large positive constant 

and I the identity matrix. 

The oversampled nature of FDTD models (see section 2.7.2) necessitates desampling 

of the data by the factor D; in practice desampling to the Nyquist limit for the 

FDTD model yields an appropriate choice for D (this limit should take into account 

the bandwidth of the excitation and the low pass nature of the FDTD model). 

At each (desampled) iteration of the RLS algorithm the filter coefficients are updated 

according to (3.6). This process is called the `training period' for the algorithm - 
if the behaviour of y has predictable qualities (if, for example, it has a number of 

steady resonances) the coefficients will converge to a set of values. Once this is done, 

by transferring the filter's y input to its own output y, the filter will produce the rest 

of the response with no further values of y. 

The choice of model order M is dictated largely by the number of resonances of the 

structure under study. A suitable value may be determined for a particular type 

of structure either manually by a few trials, or by use of a formal order estimation 

method such as the Akaike information criterion [12]. 

3.6.1.2 Use of the RLS Method 

The printed dipole described in section 3.4 is not a particularly high Q device - it is 

in fact designed to operate over a reasonably broad band, and its analysis does not 

therefore benefit greatly from the use of the system identification method. Where 

system identification does provide large computational savings is for devices such as 

the patch antenna shown in figure 3.12. Patch antennas are well known to be high 

Q radiators and the transient far field, produced by the near far transform described 

in this chapter, exhibits the slowly decaying resonances that would be expected from 

such a device - see figure 3.13. 

The analysis of the patch by means of FDTD and the time domain near far transform 

requires many iterations (typically around 22,000) in order to accurately obtain the 

broadband response shown by figure 3.14 (the result shown is for one observation point 

at 600 of elevation in the antenna's E plane - the E plane indicated in figure 3.12 is 
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Figure 3.13: Transient far field of patch antenna. 

referred to the device's dominant mode at 1.56 GHz). 

An RLS model with 60 input and output filter coefficients (i. e. M= 60) was trained 

to the output of the near far transform, desampled by a factor of 40; convergence of 

the filter coefficients was produced by time=40,000ps (see figure 3.13) or 6000 FDTD 

iterations. From that time onwards the discrete time filter produced the remainder 

of the far field data without the FDTD model. 

The solid lines in figure 3.14 shows the frequency domain far field response produced 
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Figure 3.14: Broadband far field response of patch antenna 

using the FDTD and near far transform and the response produced when the RLS 

method was employed. Clearly the two sets of results agree very closely, typically to 

within a fraction of a decibel. Also shown on this figure, by the dashed line, are the 

results produced by simply truncating the transient response at 40,000 ps and zero 

padding to produce a comparable frequency resolution - as would be expected from 

figure 3.13, this introduces considerable error. 

By employing the RLS system identification method then, the computation time 

required by the FDTD and near far transform technique can be reduced in this ex- 

ample by a factor of almost 4. It is clear that when analysing resonant structures, 

such as the patch antenna considered here, system identification can provide a dra- 

matic reduction in the required computation time without affecting the accuracy of 

the results. 

3.7 Conclusions 

This chapter has described and applied the time domain near far transform [1-3]. This 

method has been shown to be able to characterise the far field pattern of a complex 

printed antenna without requiring a very large computational domain; the accuracy 

of this characterisation has been evaluated by comparison with both measured and 
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theoretical results. 

A frequency domain near far transform is also available [5] and this, since the trans- 

formation to the far field occurs only once, has a substantial advantage over the time 

domain version on the grounds of memory useage. The intensive memory useage of 

the time domain transform is an area which should be addressed and is considered 
in the context of future work in chapter 7. 

When used to analyse highly resonant devices the time domain near far transform 

and FDTD model require many iterations, this computational overhead may however 

be reduced considerably by the use of system identification. This method is clearly 

only able to reduce the required number of iterations when the structure is indeed 

highly resonant and is thus more applicable to devices such as the patch antenna 
(figure 3.12) than to less resonant objects such as the printed dipole (figure 3.5). 

The system identification method is also of use in the near-field characterisation of 

resonant structures and has been successfully applied by the author to the analysis 

of a slot antenna, thin wire dipoles and a high Q microstrip filter. 

Page 65 



Chapter 3, References 

References 

[1] K. S. Yee, D. Ingham, and K. Schlager, "Time domain extrapolation to the 
far field based on FDTD calculations, " IEEE Transactions on Antennas and 
Propagation, vol. AP-39, pp. 411-413, Mar. 1991. 

[2] R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, "A finite differ- 
ence time domain near zone to far zone transformation, " IEEE Transactions on 
Antennas and Propagation, vol. AP-39, pp. 429-433, Apr. 1991. 

[3] E. M. Daniel, The analysis and CAD of microwave and millimetre wave planar 
antennas. PhD thesis, Universtity of Bristol, 1992. 

[4] R. F. Harrington, Time-Harmonic Electromagnetic Fields. McGraw Hill, 1961. 

[5] G. S. Hilton, C. J. Railton, G. J. Ball, A. L. Hume, and M. Dean, "Finite 
difference time domain analysis of a printed dipole antenna, " in Proceedings of 
IEE 9th International Conference on Antennas and Propagation, (Eindhoven), 
pp. 172-175, Apr. 1995. 

[6] G. S. Hilton, C. J. Railton, and J. P. McGeehan, "Finite difference time domain 
modelling of microwave antennas, " Fifth Report on DRA Research Agreement 
2034/101, Aug. 1993. 

[7] S. A. Meade, G. S. Hilton, C. J. Railton, and J. P. McGeehan, "Finite difference 
time domain modelling of microwave antennas, " Sixth Report on DRA Research 
Agreement 2034/101, May. 1994. 

[8] W. L. Ko and R. Mittra, "A combination of FDTD and Prony's methods for ana- 
lyzing microwave integrated circuits, " IEEE Transactions on Microwave Theory 
and Techniques, vol. MTT-39, pp. 2176-2181, Nov. 1991. 

[9] M. L. van Blaricum and R. Mittra, "Problems and solutions associated with 
Prony's method for processing transient data, " IEEE Transactions on Antennas 
and Propagation, vol. AP-26, pp. 174-182, Jan. 1978. 

[10] W. Kumpel and I. Wolff, "Digital signal-processing of time-domain field sim- 
ulation results using the system-identification method, " IEEE Transactions on 
Microwave Theory and Techniques, vol. MTT-42, pp. 667-671, Apr. 1994. 

[11] I. J. Craddock, P. G. Turner, and C. J. Railton, "Reducing the computational 
overhead of the near field transform through system identification, " Electronics 
Letters, vol. 30, pp. 1609-1610, Sept. 1994. 

[12] P. Strobach, Linear Prediction Theory. Springer-Verlag, 1990. 

Page 66 



Chapter 3, References 

[13] T. Soderstrom and P. Stoica, System Identification. Prentice Hall, 1989. 

[14] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2 ed., 1991. 

Page 67 



Chapter 4 

Inclusion of a Priori Knowledge in 
FDTD 

Page 68 



Section 4.1 : Introduction 

4.1 Introduction 

In chapter 2, section 2.6.2, the widely accepted Yee FDTD algorithm [1] was intro- 

duced as a time domain Differential electromagnetic analysis method. The method 
has been applied to a wider range of electromagnetic problems than perhaps any 

other technique (with the possible exception of the related TLM method [2]), these 

applications include: 

" Scattering from complex metallic geometries [3]. 

" Analysis of planar waveguides [4]. 

" Characterisation of complex and lossy dielectric structures [5]. 

" Modelling of frequency-dependent materials [6]. 

Two principal problems however still remain with the method - these are its treatment 

of geometrical detail and its characterisation of curved structures. 

As discussed in chapter 2 the unit cell dimension (A) in the FDTD method must be 

small enough to characterise the smallest significant geometrical detail in the problem 

under consideration. A small A is disadvantageous since it implies a large number of 

unknown field components (giving overheads in terms of memory and computation 

time) and secondly, by virtue of the stability criterion given in section 2.7.2, a small 

value of the algorithm time step At (which gives rise in turn to further computational 

overheads) . 

The modelling of curved surfaces is achieved in the standard FDTD method by a 

`staircase' approximation [7]. If the unit cell size is large with respect to the surface 

curvature (as shown in figure 4.1) a variety of undesirable effects occur [8] and the 

results become very poor; if however the mesh is refined, the small unit cell size 

poses the same problem as the characterisation of geometrical detail - namely the 

requirement for many unit cells and a small value for the time step At. 

In this chapter the related problems of the treatment of geometrical detail and curved 

surfaces will be discussed. Consideration is subsequently given to a number of tech- 

niques which have been reported to improve the FDTD method in these situations. 
One such technique, the `correction factor' method, is particularly attractive and 

its application to a number of examples is considered in some detail. The method 
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Figure 4.1: (i) Cylindrical body and (ii) its representation by a staircase approxima- 
tion. 

has however been limited in its application by concerns about stability and thus this 

chapter concludes with a discussion of the stability of the corrected FDTD algorithm. 

4.2 Interpretations of the FDTD Method 

In chapter 2 (section 2.6.2) it was shown that the FDTD algorithm may be derived 

by the approximation of Maxwell's partial differential equations. The derivatives 

in these equations are approximated by centred finite differences (or, equivalently, 

piecewise linear basis functions with delta test functions). 

The improvement of the FDTD method is however frequently approached by an 

alternative interpretation of FDTD as being a discretisation of the integral form of 

Maxwell's equations (namely the Faraday and modified Ampere laws) [9]; the two 

complementary interpretations are illustrated by figures 4.2(i) and (ii) which show 

the section of the Yee cell relevant to the calculation of the Hy component. 

EZ2 

Figure 4.2: (i) Differential and (ii) Integral interpretations of FDTD. 

The derivation of the FDTD equations from the differential point of view begins with 
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Maxwell's equations, for example: 

ätHb =1 (O Ez - ä, E-, ) (4.1) 

with reference to figure 4.2 (i) this may be written in discrete form as: 

atH -_ 
1 rEz2 -E1+E1 Ex2l (4.2) 

b µ\ 0 

Alternatively the integral form of Maxwell's curl equation (Faraday's law) may be 

considered for the surface S and closed contour C in figure 4.2 (ii), thus: 

at f H"da=ät ff HHdxdz= 
1yE"d1 

ss µc 
(4.3) 

assuming that the E field components are the average value of the field along their 

respective edges and that Hy is the average of the field across the surface S, these 

integrals evaluate to: 

(0)2atHY _ ý0 (E 
2-E1+ Ex1 -E 2) 

(4.4) 

Clearly the two approaches (integral and differential) both lead to exactly the same 

equation for Hy; this equivalence extends simply to the other electric and magnetic 
field components. As will be shown in the following sections either approach may be 

used when considering the improvement of the FDTD algorithm - in some cases the 

differential form is most suitable, in others the problem is more easily described from 

the surface-contour integral point of view. 

4.3 Methods for Geometrical Detail 

A considerable amount of effort has been expended since FDTD's inception in terms 

of improving its treatment of fine detail. Proposed methods have been mostly directed 

at the treatment of small apertures in conducting screens [9-11] and the analysis of 

single and bundled thin wires and struts [9,12,13]. These techniques rely variously 

on the combination of FDTD and integral equation approaches [10,13] and on the 

modification of the FDTD update equations [9,10] based on a priori knowledge of 

the fields in the vicinity of the small object. 

Take, for example, the thin wire model of [9], illustrated by figure 4.3. 
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v 

L 

Figure 4.3: Thin wire in FDTD mesh 

The variation of Hy and EZ close to the wire is known [9] to be proportional to r-1 

where r is the radial distance from the centre of the wire (ro is the wire radius). If 

these functions are assumed when evaluating (4.3) the result (4.4) then becomes: 

äH _ 
(E22 -E,, )1n(°) -2Eý2 (4.5) ty 

µO In °) 

This is a modified difference equation which, by including the effect of the known 

field distribution around a thin wire, enables the FDTD treatment of a region of fine 

geometry without the use of a small cell size. 

At Bristol University the incorporation of known field variation has been extended 

considerably from that given in [9]. Thin metal strips [14,15], slots [16], curved 

surfaces [17] and curved laminae [18] as well as thin wires [16] have all been treated 

by means of a general technique which has become known as the `correction factor' 

method. 

4.4 Methods for Curved Surfaces 

A number of approaches have been proposed for the accurate characterisation of 

curved surfaces [19-22]. As described in section 2.6 these methods all abandon 

FDTD when characterising curved surfaces and employ instead more sophisticated 

algorithms (at least in the immediate vicinity of the curved structure). 

These new approaches have demonstrated large improvements in the characterisa- 

tion of curved and angled objects [19-22] but at the same time introduce consid- 

erable computational overheads. These overheads concern not only the additional 
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computation required at each iteration during the simulation but also the necessity 

of generating and storing a locally or globally conforming mesh. While the overheads 

may be minimised [19,23] there exists at the present time no alternative to FDTD 

which combines its relative efficiency with an accurate treatment of non-rectilinear 

geometry. 

The principal alternative to employing a more complex algorithm to model the curved 

object is to in some way locally modify the basic FDTD algorithm to take into account 

the surface curvature. This approach is utilised in the `contour path' method [24,25]. 

The contour path technique relies on the interpretation of FDTD as being a discreti- 

sation of the integral form of Maxwell's equations (as shown in section 4.2). Consider 

the geometry shown by figure 4.4, where a curved metal surface intersects the FDTD 

mesh. 

v 

L 

Figure 4.4: Curved surface and FDTD mesh. 

The integral interpretation of FDTD states that: 

at f H. da=ät ff Hydxdz= 1JE. 
d1 (4.6) 

S µc 

The contour path method assumes that H. is the average value over S and that the 

electric field components are linear along their respective edges of the contour C. 

Along the curved edge of the contour the value of E"1 is zero and thus (4.4) becomes: 

AatHy =µ (L2E, 
2 - L1Ez1 - ýEX2) (4.7) 

where A is the area of surface S, L1 and L2 are the lengths along the edges of the 

contour associated with Ez1 and Ez2 respectively. 
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The contour method has been used with some success, however in many cases the 

geometry of the problem prevents the method described above from calculating a 

number of the required field components. When this situation occurs the needed 

field is `borrowed' from its nearest neighbour [25]. 

The nearest neighbour borrowing of fields is unappealing and approximate at best. 

Recent research directed at this problem, using the results of chapter 6 of this thesis, 

confirms that it can also induce numerical instability [26] (a disadvantage of the 

contour path method also alluded to in [23]). 

The correction factor method referred to in section 4.3 for the treatment of geometric 

detail has also been applied to the characterisation of curved bodies [17]. The fact 

that the correction factor technique permits improved analysis of both sub-cellular 
details and curved surfaces, without introducing significant computational overheads, 

makes it an extremely attractive approach. The correction factor method is described 

in the following sections. 

4.5 The General Correction Factor Method 

The central idea of the correction factor method is to include a priori knowledge 

of field behaviour in the FDTD algorithm. This is done by replacing the assumed 

piecewise linear behaviour of the fields in the FDTD method by behaviour which 

more accurately matches known asymptotic field functions. 

This alteration of the assumed field functions results in the modification or correction 

of the coefficients of the FDTD update equations; the method has therefore become 

known as the `correction factor' technique. 

Two approaches have been used in the development of correction factor schemes; the 

first relies upon the integral interpretation of FDTD and is illustrated here by its 

application to the characterisation of a microstrip line, the second is derived from 

FDTD's differential interpretation and, as an example, is applied to the analysis of a 

thin slot. 
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4.5.1 Integral Approach to Metal Edge Corrections [17] 

Consider figure 4.5 showing a microstrip line intersecting a plane of the FDTD mesh. 
The transverse fields close to this object are well known to be singular - the behaviour 

of the fields being [15,27]: 

E,, (z, y) a H. (z, y) a die 
w2 _1 2= 

fl (z, y) (4.8) 

Ez(z, y) a Hy (z, y) a sm 
(w)2 _1 y+ jz)2 

= f2(z, y) (4.9) 
2 

where the (z, y) origin is assumed to be the centre of the strip and vv is its width. 

microstrip line 

Figure 4.5: Microstrip line and FDTD mesh. 

Assuming that the behaviour of the fields close to the edge is dominated by the static 

singularity, the function f2 can be assumed to describe the behaviour of the Ez and 
Hy fields over the unit cell shown. This function is substituted into: 

JfaH 
y dx dz =1 

JE dl (4.10) 
sc 

to give: 
z2 y2 

1 (L, f2 (z, y) dz) 

1zZ2 

Ex2 - DEX2 - 
(f 

f2 (z, y) dz) Ez1 
ÖtHy = x2 

zIxi 

f2(z, y) dx dz 
l 

where x1, x2, z1, z2 are the appropriate limits on the surface S (z1 is the position where 

the strip intersects the surface S). 
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The integrals may be performed analytically and, on substitution of the limits, yield 

a corrected version of (4.2): 

Bt Hy = (k1EE2 - k2Ez1 + k3E 
1- 

k4E 
2) 

(4.12) 
µ 

- the constants k are referred to as the `correction factors' and are unity in the 

uncorrected FDTD algorithm. 

A similar approach can be followed for the other field components and the resulting 

corrected FDTD method has been shown to produce an accurate characterisation of 

microstrip lines [15] even when employed with a unit cell size which would normally 
be far too large for modelling the strip. 

The correction factor method then provides a rigorous technique for characterising 

microstrip lines without requiring a small cell size and subsequently small time step. 
Apart from the small overhead in the calculation and storage of the factors (consider- 

ing that only a small proportion of cells will be affected) the computational overheads 

are not increased over those of the standard method. Given that a microstrip line, 

when used for example as a feed-line, might well have a width of a small fraction 

of a wavelength it is easy to envisage a situation where the result of employing the 

correction factors might be an order of magnitude decrease in computer run-time. 

4.5.2 Differential Approach to Thin Slot Corrections [16] 

The correction factor scheme for the microstrip line was produced by considering the 

integral interpretation of FDTD; correction methods have also been derived from the 

differential representation [16] and this approach is illustrated here by means of the 

example shown in figure 4.6. 

Figure 4.6 depicts a narrow slot in a conducting plane that is to be modelled using 
FDTD by means of the correction factor method. Rather than formulating a correc- 

tion factor scheme via the integral approach the differential form will be employed; 

specifically it is recalled from chapter 2 that FDTD can be viewed as a finite element 

method with piecewise linear basis functions Oi, j, k and Dirac delta testing functions 

The usefulness of the finite element concept for FDTD is now apparent; all that is 

needed to correct for the non-linear behaviour of the fields near the slot is a modifi- 

cation of the relevant basis functions. The functions which are modified are those for 
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ýeýaý 

'P1 x) 

v 

HY E 

EX2 

Figure 4.6: Slot and FDTD mesh. 

the Ey component in the slot and the adjacent H. fields. Considering as an example 

the illustrated Hy field: 

6(Hv) O(Hv)) atHy(t) 
1 (6(Hv), (ax {o2Eý)Eza(t) 

+ O(Ez)Ezl (t)l 
/ Ii J 

-a 
{O2Ex)EX2(t) +OiEx)Exl (t)1)ý (4.13) 

where 6(h1) and O(Hv) are the test and basis functions associated with H. OIExý 

OZEý) O(E, ) and I2E') are the basis functions belonging to the components Ems� EX2, 

E, z, and Ez2 respectively. 

If the basis functions are piecewise linear then the original FDTD equations are 

returned. In this case the known static field solution is employed for the basis function 

associated with Ex, . If z=0 is the position of the slot, the function has the form: 

fi(z) =1 (4.14) 
(2)2+z2 

which describes the field in the plane through the centre of the slot (illustrated in 

figure 4.6). For the remaining three electric field components the standard piecewise 

linear function is retained. 

Evaluation of the inner products gives: 

at Hy = µ0 (Ez2 - Ezl + k1Eýý - E,, 
2) 

(4.15) 

where: 

k1= ° a, fi (°) (4.16) 71 )2 
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since the Hy test function 5(hi) is only non-zero where z=°. 

This correction factor scheme then corresponds directly to the modification of the 

basis functions in FDTD. In [16] this technique (which in a very similar form may be 

applied to dipoles and wires of finite thickness) was shown to be able to accurately 

model slots with widths as small as 0.16 of the unit cell dimension. 

4.5.3 Discussion of the Correction Factor Method 

It has been shown that in both the modelling of metal edges and the analysis of curved 

surfaces the correction factor method allows considerable reduction in the required 

mesh density without sacrificing accuracy. If the method could be implemented reli- 

ably it would undoubtedly enable the efficient treatment of many common structures 

and greatly increase the applicability of the FDTD technique. 

The principal drawback to the correction factor method has been numerical insta- 

bility. In the majority of cases introduction of the correction factors has resulted 
in dramatic, non-physical, solution growth. When the growth is slow enough it is 

possible to complete the analysis before the instability becomes noticeable. In most 

situations however algorithmic instability is not tolerable. 

The rest of this thesis is concerned almost entirely with the stability problems that 

have beset the correction factor method; to begin the consideration of this phe- 

nomenon, techniques for determining the stability of the FDTD method are exam- 
ined. These techniques provide some insight into the stability issue and if a method 

can predict whether or not the algorithm will become unstable it is possible that the 

correction factors can be chosen to avoid the instability. 

4.6 Discussion of Algorithm Stability 

Two general methods are available for evaluating the stability of an explicit numerical 

algorithm; the first is the classical Fourier method and the second is the matrix 

technique. The following sections consider the application of both methods to the 

analysis of the correction factor stability problem. 
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4.6.1 The Fourier Method 

The standard method for analysing the stability of finite difference algorithms is the 

Fourier, or von Neumann, method [28, p. 92] [29, p. 47]. In this method the spatial 

and temporal behaviour of the solution is expressed as a sum of complex exponentials 

of the form ej"+ß=e«c and the condition is sought for which eat does not grow with 

time. 

This method is widely used and was the technique first employed to derive the 

Courant stability condition for FDTD in [7]. The method however does not extend to 

the treatment of difference algorithms where the coefficients are variable over space 
(algorithms that might be called `non-uniform') and thus cannot yield a stability 

criterion for the corrected FDTD algorithm. 

4.6.2 The Matrix Method 

The matrix method, unlike the Fourier technique, provides a stability test for a non- 

uniform algorithm. 

Consider the finite element formulation of FDTD as given by section 2.6.2: 

Mlath(t) = Kle(t) (4.17) 

M2äte(t) = K2h(t) (4.18) 

where the mass matrices M are diagonal. This may be written for convenience as: 

äte(t) = Ah(t) (4.19) 

öth(t) = Be(t) (4.20) 

For ease of manipulation the solution vector h is eliminated to give the relation: 

ötte(t) = ABe(t) (4.21) 

This equation describes the continuous time system represented by FDTD and intu- 

itively it must itself be stable if the FDTD algorithm is to be stable - in this thesis 

this type of system is called the equivalent system for the algorithm. 
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The equation may be written in the standard (phase-variable) form: 

at 
e0 AB e 

or at e 
=C 

e (4.22) 
eI0eee 

It is well known that for this system to be stable, the eigenvalues of the system 

matrix C must have non-positive real parts (this result may also be considered as 

arising from taking the Laplace transform of (4.21) and evaluating the roots of the 

characteristic equation [30, chapter 8]). 

FDTD however is a discrete time system and replaces the time derivatives of (4.21) 

with centred differences. This gives: 

en+1 - 2e" + e"-' = Ot ABe" (4.23) 

(eliminating the magnetic fields from the FDTD algorithm gives an effectively iden- 

tical update equation which uses the intermediate h values instead of the past values 

of e). 

Equation (4.23) can be written as: 

e"+1 ((21 + Di AB) -I e"` en 
.. or D 

e" 10 e"-1 e"-1 (4.24) 

this matrix equation governs the evolution of e at each iteration. 

It is apparent by repeated application of (4.24) that, given an initial condition: 

en+i D" ei 

en 
= 

eo 
(4.25) 

and taking some vector norm of both sides to be a measure of the magnitude of 

the solution, 

en+i 
Dn ei 

= 
en e° 

thus: 

(4.26) 

een' <_ IIIDnIII 
ee o <_ IIIDIIIn el 

o (4.27) 
e 

Thus the norm of the solution is bounded as n increases provided that IIIDIII" is 

bounded as n -+ oo. This implies that for stability: 

(2I +t 
I 

AB) -01<1 (4.28) 
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this matrix must therefore have a spectral radius that is less than or equal to unity [29, 

p. 56] (this result may also be arrived at by considering the z-transform of (4.23)). 

It has been shown then that a matrix representation of FDTD yields two stability 

criteria; the first specifies that the eigenvalues of the equivalent system modelled by 

FDTD must have real parts less than or equal to zero and the second specifies that 

the discrete time algorithm must have eigenvalues with a modulus less than or equal 

to unity. 

The criterion for the equivalent system is a necessary one for FDTD stability and the 

criterion for the discrete time system is sufficient. In both cases however the stability 
test involves finding the eigenvalues of a matrix. 

The size of the matrix will be the number of unknown field components in the FDTD 

model (a typical number would be around 1 million). It can be seen therefore that, 

while the matrix method can determine the stability of the FDTD algorithm both 

with and without correction factors, the computation is likely to be unfeasibly time 

consuming. No general stability test has been found for the corrected FDTD algo- 

rithm which can provide a practical evaluation of the stability of the method. 

It might be thought that reducing the time step is one route to regaining the stability 

of the algorithm regardless of the imposed correction factors. In the following section 
the validity of this hypothesis is briefly investigated by means of a simple example 

which also helps to illustrate the stability theory given above. 

4.6.3 FDTD Stability - Some Examples 

The preceding theory is entirely valid for one, two or three dimensional FDTD algo- 

rithms. In order to minimise the required size of the matrices however the problem 

chosen for consideration here is a small, one-dimensional Yee FDTD algorithm. This 

simple example is quite complex enough however to exhibit identical instability phe- 

nomena to those exhibited by much larger three-dimensional algorithms. 

The problem considered is illustrated by figure 4.7 and consists of 7 field components 
forming a one dimensional problem space. The outer electric field components are 

set equal to zero, imposing a perfectly electrically conducting (Dirichlet) boundary 

condition on the problem. 
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Figure 4.7: One dimensional FDTD problem. 

The remaining free field components can be calculated by means of the standard 

FDTD method, for example: 
En - En 

Hsi o. 5 = Hý- 0.5 + At Y2 yl (4.29) 

Hn+0.5 _ HX°n+o. 5 
Eyyi+ý = Eyi 'ý + , At X, (4.30) 

where the physical space is assumed normalised to c, p=1. 

Once again the calculation of the H fields is omitted, giving: 

Eye+i-Eye i+2(1-2 
22 

Eye+2Ey2+02Eyo (4.31) 

Assembling the nodal equations into the form of the matrix equation (4.24) gives: 

Eyi 1 2(1 - a) a0 -1 00 En 

Eyz ia 2(1 - a) a0 -1 0 Eyz 

Ey3 10a 2(1 - a) 00 -1 Ey3 

Eye 100000 Eye (4.32) 
yl E 71 010000 E1 

Ey3 001000 Ey31 

where a=(ö). 

The Courant limit for this model is easily seen to be a=1, for this value the 

eigenvalues of the system (as calculated by the analysis program Mathcadl) are shown 

in figure 4.8; the six eigenvalues lie on the perimeter of the unit circle showing that 

the system is stable and, indeed, non-dissipative. 

The effect of adding some entirely arbitrary correction factors into the algorithm is 

easily demonstrated by introducing two factors kl and k2 into the update matrix 

1©MathSoft Inc. 
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complex plane 

unit preie 

m 

Die 

X= 

Figure 4.8: Eigenvalues for FDTD algorithm (a = 1) 

of (4.32), thus: 

2(l - a) kla 0 -1 00 
k2a 2(1 - a) t0 -1 0 
0a 2(1 - a) 00 -1 (4.33) 
100000 

010000 

001000 

plane 

unit ircle 

x'x Xx 
Me 

x= eiqenvalue 

Figure 4.9: Eigenvalues for corrected FDTD algorithm (a = 1). 

With a=1 and kl = k2 = 1.75 the eigenvalues are shown by figure 4.9 - clearly the 

system is unstable as there are two (real) eigenvalues outside the unit circle. 

To test the hypothesis that stability may be regained by reducing the time step the 

eigenvalues are recalculated with a=0.5 and a=0.1, obtaining figures 4.10(i) and 
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(ii). It is seen that there remains one eigenvalue outside the unit circle even when 

the value of a=0.1 - this corresponds to a choice of time step At only 32% of the 

value required by the Courant criterion. 

compiex 

uniircle 

/ `ý 
am 

xx 
Sie f' 

_X_ 

X= 

complex plane 

uni7ircle 

am 

tHe 

X= 

Figure 4.10: Eigenvalues for corrected FDTD algorithm (i) a=0.5 (ii) a=0.1. 

As the ratio of time step to space step is reduced, the eigenvalues do not move 
inside the unit circle but instead move around it towards the point 1+ Oj. This 

observation correlates with the observed manifestations of instability in the FDTD 

method with actual correction factors (rather than the arbitrary values used here) - 
in general reducing the time step may slow the increase in solution magnitude per 

time iteration but it does not solve the problem. It is in fact possible to show that 

the eigenvalues of this problem only reach the perimeter of the unit circle and achieve 

stability when a=0. 

4.7 Summary 

This chapter has described some of the various methods that exist to improve FDTD's 

handling of fine geometrical detail and of curved structures. Of these techniques the 

correction factor technique is an attractive and general methodology by which a priori 

knowledge of the field behaviour may be included in FDTD. 

A correction factor scheme can be introduced by consideration of either the differential 

or integral nature of the FDTD method - both approaches have been illustrated by 

means of examples. 

While the correction factors are potentially a means to overcome the majority of 
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FDTD's shortcomings their use has been limited by the occurrence of numerical 
instability. Some sort of criterion is clearly required on the basis of which a stable 

set of correction factors can be chosen. This chapter however has shown that: 

" Use of the standard Fourier stability theory does not provide a criterion for the 

corrected FDTD method. 

" Matrix-based stability tests are applicable to the FDTD algorithm with correc- 
tions but involve impractical amounts of computation. 

It has also been seen that when considering the stability of the corrected algorithm 

the correction factors may cause instability phenomena that exist regardless of the 

time step At and thus in general the stability of the corrected FDTD algorithm may 

not be regained by reducing the value of At. 

Chapters 5 and 6 continue the investigation of the instability caused by the correction 
factors and draw upon many of the concepts introduced by this chapter (and by 

section 4.6 especially). One idea in particular is found to be of considerable utility, 
this being the "equivalent system" for the difference algorithm - the continuous-time 

system obtained by re-inserting the derivatives in place of the temporal difference 

approximations of the algorithm. 

Page 85 



Chapter 4, References 

References 

[1] K. S. Yee, "Numerical solution of initial boundary value problems involving 
Maxwell's equations in isotropic media, " IEEE Transactions on Antennas and 
Propagation, vol. AP-14, pp. 302-307, May 1966. 

[2] W. J. R. Hoefer, "Huygens and the computer -a powerful alliance in numerical 
electromagnetics, " Proceedings of the IEEE, vol. 79, pp. 1459-1471, Oct. 1991. 

[3] K. S. Kunz and K. M. Lee, "A three dimensional finite difference solution of the 
external response of an aircraft to a complex transient EM environment, " IEEE 
Transactions on Electromagnetic Compatibility, vol. EMC-20, pp. 328-332, Feb. 
1978. 

[4] X. Zhang, J. Fang, K. K. Mei, and Y. Lui, "Calculation of the dispersive char- 
acteristics of microstrips by the time domain finite difference method, " IEEE 
Transactions on Microwave Theory and Techniques, vol. MTT-36, pp. 263-267, 
Feb. 1988. 

[5] D. M. Sullivan, 0. P. Ghandi, and A. Taflove, "Use of the finite difference time 
domain method for calculating EM absorption in man models, " IEEE Transac- 
tions on Biomedical Engineering, vol. BME-35, pp. 179-186, Mar. 1988. 

[6] R. Luebbers, F. Hunsberger, K. S. Kunz, R. Standler, and M. Schneider, "A 
frequency dependent finite difference time domain formulation for dispersive 
materials, " IEEE Transactions on Electromagnetic Compatibility, vol. EMC-32, 
pp. 222-227, Aug. 1990. 

[7] A. Taflove and M. E. Brodwin, "Numerical solution of steady state electromag- 
netic scattering problems using the time dependent Maxwell's equations, " IEEE 
Transactions on Microwave Theory and Techniques, vol. MTT-23, pp. 623-630, 
Aug. 1975. 

[8] A. C. Cangellaris and D. B. Wright, "Analysis of the numerical error caused 
by the stair-stepped approximation of a conducting boundary in FDTD sim- 
ulations of electromagnetic phenomena, " IEEE Transactions on Antennas and 
Propagation, vol. AP-39, pp. 1518-1525, Oct. 1991. 

[9] A. Taflove, K. R. Umashankar, F. Harfoush, and K. S. Yee, "Detailed FDTD 
analysis of elecromagnetic fields penetrating narrow slots and lapped joints in 
thick conducting screens, " IEEE Transactions on Antennas and Propagation, 
vol. AP-36, pp. 247-257, Feb. 1988. 

[10] A. Taflove and K. R. Umashankar, "A hybrid moment method/finite difference 
time domain approach to electromagnetic coupling and aperture penetration 

Page 86 



Chapter 4, References 

into complex geometries, " IEEE Transactions on Antennas and Propagation, 
vol. AP-30, pp. 617-627, July 1982. 

[11] K. R. Demarest, "A finite difference time domain technique for modelling narrow 
apertures in conducting surfaces, " IEEE Transactions on Antennas and Propa- 
gation, vol. AP-35, pp. 826-831, July 1987. 

[12] R. Holland and L. Simpson, "Finite difference analysis of EMP coupling to 
thin struts and wires, " IEEE Transactions on Electromagnetic Compatibility, 
vol. EMC-23, pp. 88-97, May. 1984. 

[131 K. R. Umashankar, A. Taflove, and B. Beker, "Calculation and experimental 
validation of induced currents on coupled wires in an arbitrary shaped cavity, " 
IEEE Transactions on Antennas and Propagation, vol. AP-35, pp. 1248-1257, 
Nov. 1987. 

[14] D. B. Shorthouse and C. J. Railton, "Incorporation of static singularities into 
the finite difference time domain technique with application to microstrip struc- 
tures, " in Proceedings of the 20th European Microwave Conference, vol. 1, 
pp. 531-536, Sept. 1990. 

[15] C. J. Railton, D. B. Shorthouse, and J. P. McGeehan, "Modelling of narrow 
microstrip lines using finite difference time domain method, " Electronics Letters, 
vol. 28, pp. 1168-1170, June 1992. 

[16] C. J. Railton, "The simple rigorous and effective treatment of thin wires and 
slots in the FDTD method, " in Proceedings of the 24th European Microwave 
Conference, vol. 2, pp. 1541-1546,1994. 

[17] C. J. Railton, "Use of static field solutions in the FDTD method for the efficient 
treatment of curved metal surfaces, " Electronics Letters, vol. 29, pp. 1466-1467, 
Aug. 1993. 

[18] C. J. Railton, "An algorithm for the treatment of curved metallic laminas in 
the finite difference time domain method, " IEEE Transactions on Microwave 
Theory and Techniques, vol. MTT-41, pp. 1429-1438, Aug. 1993. 

[19] K. S. Yee, J. S. Chen, and A. H. Chang, "Conformal finite difference time do- 
main (FDTD) with overlapping grids, " IEEE Transactions on Antennas and 
Propagation, vol. AP-40, pp. 1068-1075, Sept. 1992. 

[20] R. Holland, "Finite difference solutions of Maxwells equations in generalised 
non-orthogonal coordinates, " IEEE Transactions on Nuclear Science, vol. NS- 
30, pp. 4589-4591, Dec. 1983. 

[21] N. K. Madsen, "Divergence preserving discrete surface integral methods for 
Maxwell's curl equations using non-orthogonal unstructured grids, " Journal of 
Computational Physics, pp. 34-45,1995. 

[22] J. J. Ambrosiano, S. T. Brandon, R. 

netics via the Taylor Galerkin finite 
Journal of Computational Physics, vc 

Lohner, and C. R. DeVore, "Electromag- 
element method on unstructured grids, " 
1.110, pp. 310-319,1994. 

[23] N. K. Madsen, "Divergence preserving discrete surface integral methods for 
Maxwell's curl equations using non-orthogonal unstructured grids, " Journal of 
Computational Physics, vol. 119, pp. 34-45, June 1995. 

Page 87 



Chapter 4, References 

[24] T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, "Finite difference 
time domain modelling of curved surfaces, " IEEE Transactions on Antennas and 
Propagation, vol. AP-40, pp. 357-366, Apr. 1992. 

[25] T. G. Jurgens and A. Taflove, "Three dimensional contour FDTD modelling of 
scattering from single and multiple bodies, " IEEE Transactions on Antennas 
and Propagation, vol. AP-41, pp. 1703-1708, Dec. 1993. 

[26] C. J. Railton, I. J. Craddock, and J. B. Schneider, "An improved locally dis- 
torted CPFDTD algorithm with provable stability, " Electronics Letters, vol. 31, 
pp. 1585-1586, Aug. 1995. 

[27] C. J. Railton and J. P. McGeehan, "A rigorous and computationally efficient 
analysis of microstrip for use as an electro-optic modulator, " IEEE Transactions 
on Microwave Theory and Techniques, vol. MTT-37, pp. 1099-1104, Aug. 1989. 

[28] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Dif- 
ference Methods. Oxford University Press, 2 ed., 1978. 

[29] W. F. Ames, Numerical Methods for Partial Differential Equations. Thomas 
Nelson and Sons, 1969. 

[30] O. L. R. Jacobs, Introduction to Control Theory. Oxford University Press, 3 ed., 
1993. 

Page 88 



Chapter 5 

A Novel Algorithm Incorporating 
a Priori Knowledge 

Page 89 



Section 5.1 : Introduction 

5.1 Introduction 

In chapter 4, section 4.5, the correction factor method [1-61 was introduced as an 

attractive concept for the improved characterisation of fine detail and curved surfaces 
in the FDTD method. The correction factor technique, approached by either the 

integral or differential interpretation of FDTD, is a very general method for the 

incorporation of a priori knowledge of the fields into the FDTD algorithm. 

Section 4.6 introduced the stability problems that have to date prevented widespread 

use of the correction factor method - it was shown that the problem of determining 

whether or not an arbitrary set of correction factors results in instability essentially 

requires the evaluation of the eigenvalues of the algorithm's system matrix. The 

sheer size of the matrix involved however makes examination of these eigenvalues an 
impractical test for stable correction schemes. It was also shown that the corrected 

algorithms may be unstable regardless of the choice of time step - thus stability will 

not necessarily be regained by reducing At. 

Correction factor schemes can be implemented for time domain finite difference al- 

gorithms other than FDTD and in this chapter an alternative difference algorithm 

and correction factor formulation is investigated. This new technique proves to be 

not only stable but capable of an accurate analysis of smooth perfectly conducting 

structures. Additionally however, by virtue of the very special form of its correc- 
tion factor scheme, the new method provides an entirely new understanding of the 

stability issue. 

5.2 Initial Investigations of Instability 

The cause of the aforementioned instability problem is far from clear; one hypothesis 

which suggests itself is that, since in the FDTD algorithm both the electric and 

magnetic fields (E and H) are independently corrected, an inconsistency between 

the corrections to each field results in a physically unrealisable model and hence 

instability. 

Since the magnetic fields can be eliminated from Maxwell's equations it is possible 
to formulate a difference algorithm, and thus a correction factor scheme, in which 

corrections for H are not required. 
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In order to examine this idea three different electric-field-only time domain differ- 

ence algorithms were derived and implemented by the author. For each algorithm a 

suitable correction factor scheme for the modelling of curved surfaces was formulated 

and then implemented. In general however these algorithms were found to be as 

potentially unstable as the FDTD method - thus invalidating the hypothesis. 

One algorithm, with one particular correction factor scheme, seemed however to have 

extremely favourable stability characteristics and was investigated further; this algo- 

rithm [7,81 was denoted `SFDTD' (for `Second order Finite Difference Time Domain' 

as its formulation involved only second order spatial and temporal derivatives) in 

order to distinguish it from the Yee FDTD method. 

5.3 The SFDTD Method 

Eliminating the magnetic fields from Maxwell's curl equations is straightforward in 

a lossless medium and yields the well known double-curl equation: 

Vx (V x E) = _C-2 öttE (5.1) 

where c= (p¬)-12 is the propagation speed in the medium under consideration. This 

expression can be rewritten by means of a standard identity: 

V2E - V(V " E) = C-2 attE (5.2) 

At this point one of two possible directions can be taken; one in which the divergence 

V"E is assumed to be zero - leading to a pure wave equation, and another in which 

the divergence term is retained. The choice made here directly affects the spatial 

discretisation required by the algorithm and, while algorithms based on both choices 

were investigated, the discretisation used by the successful SFDTD method required 

V"E = 0. The implications of neglecting the divergence is that the standard algorithm 

cannot model regions, such as metal edges, where the divergence is non zero. 

Neglecting the divergence gives: 

V2E = C-2 attE (5.3) 

- the effect of assuming the divergence to be zero has been to decouple the field 

components. Equation (5.3) can, for example, be written for E.: 

ä. 
-Zy + öyyEy + 9ZZEy =c 2öttEy (5.4) 
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with similar expressions available for the other field components. 

Well known centred finite difference expressions [9,10] such as: 

a�'., Ey(x = i0) = 

Ey, 
+i -E+ 

Ey; 
_, (5.5) 

may be employed for the solution of this equation on a non-staggered grid (one where 

all the field components are defined at the vertex of each unit cell rather than being 

displaced along each edge of the cell - as shown by figure 5.1). 

Ey 

Node (i, j, k) cZ 

E, 

Node (i, j, k) cz 

Figure 5.1: A comparison of FDTD (staggered) and SFDTD (non-staggered) meshes. 

Given this discretisation of the E field components and using the notation Ey= to 

represent the Ey field coefficient in unit cell (i, j, k) an explicit update equation for 

Ey can be written: 

2 

En+i = -E"-1 +2- 
6c t) Eý YJj, k Vt, i, k /, 2 2 Y,, i, k 

+ 

rE'ý +E" +E" +E" +ETh +ETý c2'e (5.6) 
L Yi+1,. 7, k Yi-l, J, k Yi, J, k+l Yi, j, k-1 Yi, J-El, k yi, J-1, k1 A2 

where the standard symbols for the space and time step have been employed; similar 

expressions are obtained for the other two electric components. The equation states 

that the value of Ey at iteration (n + 1) is calculated from the six surrounding values 

at step n and its own previous values at iterations n and (n - 1). 

This algorithm is in itself not a particularly novel technique - essentially it is an 

extension of the two-dimensional difference algorithm given under the section `Die 

Schwingungsgleichung in drei Variablen' of [11] to three spatial dimensions and three 

(uncoupled) field components. In electromagnetics similar electric-field-only algo- 

rithms have been investigated [12,13] although these methods either use FDTD's 
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staggered spatial discretisation [12] or retain the divergence term in (5.2) [13] and 

thus differ substantially from SFDTD. 

The Courant condition for SFDTD can be shown by means of the argument of sec- 

tion 2.7.2 to be the same as for FDTD, that is: 

At <A- 
c V3 

(5.7) 

It is readily seen that the number of operations needed by SFDTD at each iteration 

is approximately the same as for FDTD. the amount of memory required is the same 

and thus, given that the algorithms have the same Courant limit, SFDTD and FDTD 

have almost identical computational requirements. 

5.4 SFDTD Correction Factor Formulation 

A curved surface correction factor scheme is derived for the SFDTD algorithm as 

follows; consider figure 5.2 in which a curved metallic surface intersects a cell of the 

SFDTD mesh; this surface is approximated over the SFDTD cell by the angled facet 

illustrated by the inset in figure 5.2. 

ä 

Nn 

Ey, 
- 

y 

Eye 
i 

Zi, i. k afacet 

node i, j, k 

X 
Figure 5.2: Curved surface and SFDTD mesh. 

t 
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The behaviour of the normal and tangential fields near the angled plane is given by: 

En=k1 Et=ken (5.8) 

where n and t are the coordinates normal and tangential to the surface (see figure 5.2) 

and k1, k2 are unknown coefficients. 

Take the first order spatial derivative of EE: 

now: 

and: 

t (5.9) a, Ey = an Ey 
Ox + atEy 

aax] 

n=xsinO - ycosOý 
an 

=sing (5.10) 

t=xcosB+ysinO= 
ýt 

=cos0 (5.11) 

Ey = -E, a cos 0+ Et sin 0 

a. Ey = -a0Encos e+a,, Etsin B 
(5.12) 

atEE _ -atE, l cos 0+ atEt sin 0 

Substitution into (5.9) yields: 

OOEy = [-a,, E,, cos 9sin B+ä,, Etsin Bsin 9-atE,, cos Bcos 9+äaEtsin 9cos 8] 
(5.13) 

employing the functions given by (5.8) for E,, and Et gives: 

ä--Ey = k2 sin2 9 (5.14) 

The value of k2 can be found by considering the field at node (i, j, k) in figure 5.2: 

Et = Ey;, 
j, k sin 0+ Ex; 

Jk cos 0= keno = -kea sin 0 (5.15) 

where no = -a sin 0 is the normal distance from the node to the metal boundary (a 

is the distance along the x axis from the node to the metal). Employing this value 

of k2 gives: 

sine 9(EE; 
j, sing + E.,; 

,k cos 9) asEy --a sin 9 
(5.16) 
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The SFDTD method requires the second derivative 8a3 which at node (i, j, k) is given 
by: 

a=xEy(x = i0) = 
axEy(x = (i + 

2)0) - 
OxEy(x = (i 

- 2)0) (5.17) 

use of the standard centred differences for the two first order operators 19.,: gives the 

usual expression (5.5) however in this case the corrected approximation (5.16) is 

employed for aaEE(x = (i + 2)0). 
Writing fl for a/0 gives: 

äxxEy(x = i0) = 
EyI_l, 

,k _ 
Ex; k cos B sin B 

__k 1+ sin20) 
Q2 02ß 02 

N (5.18) 

which is the required corrected approximation for the second derivative in the SFDTD 

algorithm close to the metal boundary. If 0= 3ir/2 and ß=1 the expression reduces 

to the standard centred difference expression for By,, Ey as would be expected. 

Similar expressions to (5.18) are readily obtained for the other field components and 

the other spatial second derivatives; use of these expressions in the SFDTD algorithm 

results in a correction factor formulation which makes use of the known boundary 

conditions for the tangential and normal electric fields at a metal surface. 

5.5 Validation of SFDTD 

In order to validate the correction factor scheme and the SFDTD algorithm two test 

problems were considered, the first being the analysis of a closed cylindrical resonator 

and the second a closed square resonator angled with respect to the mesh. 

By investigating closed structures, uncertainty over the effect of two necessarily dif- 

ferent implementations of a radiating boundary condition does not arise; the simple 

geometries also allow analytic cavity resonance techniques to calculate the actual 

resonant frequencies. 

5.5.1 Cylindrical Resonator 

A metal-walled closed cylindrical resonator was modelled using the combination of 

SFDTD and the correction method described by section 5.4 and a fixed uniform 

mesh size A of 5cm. The problem was also analysed using the standard, staircased, 
FDTD technique. Both techniques were used to determine the resonant frequencies 
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of the structure and these were compared with results available in closed form. This 

comparison is given by figure 5.3. 

Figure 5.3: Cylinder resonant frequencies. 

The solid line represents the (perfect) analytic solution and the dashed line the results 

produced by SFDTD. The marker points indicate the predictions of the staircased 
FDTD method. 

Overall, given the coarseness of the mesh with respect to both frequency and surface 

curvature, the SFDTD results adhere well to the theoretical curves and are, as ex- 

pected, considerably more accurate than the staircased FDTD technique. The TM010 

mode in particular is excellently characterised, virtually independently of cylinder ra- 
dius. The results for the TMl10 mode are good for radii of greater than 18cm but 

become less accurate as the radius decreases (this is probably due to both a decrease 

in the number of field components available to describe the cylinder and to the in- 

crease in frequency of the mode). The most difficult mode to model is clearly the 

TE111 mode, the FDTD results for this are notably poor and while the SFDTD algo- 

rithm performs more consistently, the results may indicate potential for improvement 

in the technique. 

Page 96 



Section 5.5 : Validation of SFDTD 

5.5.2 Rectangular Resonator 

A metal walled rectangular box with square cross-section was analysed, again with a 

fixed mesh size of 5 cm and a height of 30cm, however the box was rotated through 

an angle 0 with respect to the mesh. This resulted in the sides of the box not being 

aligned with the nodal-planes of the difference algorithm. For convenience, values of 

0 producing integer gradients were chosen and the box side lengths were selected for 

each 0 such that the surfaces of the box passed through the corners of the unit cells 

- as illustrated for 0= arctan 4= 14.0° by figure 5.4. 

Interior Region 

Figure 5.4: Segment of rotated rectangular box cross-section for 0= 14°. 

The FDTD algorithm approximates the angled surfaces with a staircase and the 

SFDTD algorithm with the correction factors of section 5.4. 

Table 5.1 shows the resonant frequencies for the box with angle 0= 14.0° (it should 

be noted that due to the square cross-section of the structure each resonance may 

represent more than one mode). A summary of the results for four angles (arctan 5, 

Mode Theory FDTD SFDTD FDTD Error SFDTD Error 

101 633 MHz 620 MHz 622 MHz 2.1% 1.7% 

012 869 MHz 648 MHz 870 MHz 2.4% 0.1% 

011 549 MHz 575 MHz 545 MHz 4.7% 0.7% 

Table 5.1: Resonant frequencies for rotated rectangular box. 

arctan 4, arctan 3 and arctan 2) is given by table 5.2. Once again the SFDTD results 

(with curved surface corrections) agree well with the analytic results, in the majority 

of cases the resonant frequencies are correct to within one percent. The FDTD 

algorithm, as might be expected, fares less well - although some modes are well 

characterised, most exhibit significant error. 
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Angle, q5 Mode FDTD Error SFDTD Error 

11.3° 101 1.6% 0.6% 
012 0.1% 0.6% 
011 6.3% 0.9% 

14.0° 101 2.1% 1.7% 
012 2.4% 0.1% 

011 4.7% 0.7% 

18.4° 101 0.3% 1.8% 
012 0.6% 0.8% 
011 11.3% 0.5% 

26.6° 101 3.7% 2.1% 
012 4.2% 1.1% 
011 8.2% 1.0% 

Table 5.2: Resonant frequencies for a number of rotated rectangular boxes. 

The mean error across all modes and all 0 for FDTD was 3.8 % and 1.0 % for SFDTD, 

thus SFDTD's curved surface corrections reduce the modelling error in this case by 

around a factor of 4; this is a similar level of accuracy to that achieved when modelling 
the cylindrical cavity. 

The SFDTD method incorporating the curved surface correction factor scheme is 

clearly able to characterise curved and angled surfaces with better accuracy than the 
Yee FDTD algorithm and yet retains the same level of efficiency. More importantly 

however, and unlike any corrected difference algorithm previously investigated by the 

-author, all the models were stable given a suitable time step (usually slightly smaller 

than that stipulated by the Courant Criterion). 

5.6 Stability Theory 

The question arises then as to why the SFDTD correction factor scheme for curved 

and angled surfaces is stable while the FDTD schemes are almost invariably unstable. 
In this section the two dimensional SFDTD algorithm will be examined in an attempt 

to answer this question. 

The approach taken toward studying the stability of SFDTD is to consider the con- 

tinuous time system represented by SFDTD and its correction factor scheme. This 
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system is the algorithm's equivalent system -a concept introduced in section 4.6.2. 

At a node (i, j) where the correction scheme is not applied the nodal equations for 

the equivalent system are: 

C22 
Ott Ey� 

j= -4 
ý2t'j 

+ (Exi+1,7 + Eli-1,7 + Ey�, 
7+1 

+ E, 

-1) 
ý2 

(5.19) 

ättEy. 
ý ., = -4c 

2A219' 
+ (Eys 

. +i, i + Ey, 
. _i, i 

+ ET�=. i+i + Ey., i) 
c2 (5.20) 

ý1 Q2 

Close to a curved boundary the SFDTD algorithm employs the correction factor 

scheme of section 5.4; in general the two dimensional method may require two inde- 

pendent corrections. Figure 5.5 shows this situation where two angled facets intersect 

the SFDTD mesh at angles of 9,, and O. 

eY ý 
ý ý. 1E 

yi-1, j 
aY Eyi, 

j 
E1E 

a X Y 
node i, j 

Eyi, 
i-1 

pp, x 'ý, ý-1 
E 

eX 

Figure 5.5: Intersection of a curved surface with SFDTD grid. 

Using the notation of figure 5.5 the equivalent system's equations at a corrected node 

(i, j) are: 

c2Ex; j cost ox sin2 By 
attEx;,; Z2 + 13y +1+1+ 

c2 1, 
_1+ c2 Q2 c2Q2, ; cos O1 sin O cos By sin By (5.21) 

ox 
+ 

oy 
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and for Ey: 

_ 
c2E (sin2 B cost 8 attEyi.. 

i - Q2j1i 0. 
x+ 

Oy 
+ 1+ 1+ 

C2Eyi_1 c2Ey. 
ý_1 c2Ey,, j cos 0, sin B,, cos ey sin By 

A2 + ,2_ A2 +3 (5.22) 
ýý y 

where 0, = cat/A and /3y = ay/0. 

The nodal equations could be assembled into a matrix (as in chapter 4) however 

this is of little benefit as the task of finding the eigenvalues remains an impractical 

one. An alternative and more useful approach is to consider the electrical network of 
figure 5.6. 

This circuit consists of two separate 2-D networks, one ('Network X') with nodal 

voltages represented by Vom; 
j and the other ('Network Y) with voltages 1/. The 

co-ordinates i, j specify the voltage at the itt' node in the direction x in the network, 

and the jth node in direction y. The only connections coupling the two networks 

are the ideal transformers TT and Ty at the node 0,0. All capacitors are assumed 

to be identical, with value C, as are all the inductors, L, with the exception of the 

components L1 and L.. 

A 
X 

14 
ix y 

Network X 
LX 

IX1 
Vyl Vlyl LX 

Network Y 
IX2 

VX2 
Vy2 1y2 

= Ty 

Figure 5.6: Passive electrical network. 

Application of Kirchoff's current law at any node apart from those connected directly 

to a transformer gives for the capacitor voltage in each network: 
V=i, 

s attVy;, 
j _ -4 LC, 

+ (Vx; 
+,, j + Vet-1, 

j + Vx', 
j+l + Vx', 

j-') Lc 
(5.23) 
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av.. = -4 
vb:, j + (V + V_ 

., i+ Vy. + V. 
_) 

1 (5.24) vi , LC Yi+1, ys ý , +ý v, , LC 

if C= ez 2 and L=µ these are the same equations as (5.19) and (5.20). Thus 

the equivalent system for the uncorrected SFDTD algorithm obeys exactly the same 

equations as a passive electrical network. 

Now consider the behaviour at the nodes (i, j) (such as those labeled `A' and `B' in 

figure 5.6) which are connected directly to a transformer. Firstly the transformers 

are assumed to be ideal with winding ratios 1: Nx and 1: NN respectively. Thus for 

Tx: 

ßy1= 
I1= Nxlxý 

(5.25) 

since the transformer is ideal. Summing voltages around the loops containing the 

windings gives: 

Vxi, 
j - Vx, = LxatI 1 (5.26) 

Vy, a - Vyl = LxötIyl 

solving for the nodal voltages and current Iyl yields: 
V. ̀ ' + N,, Vy,, M., (5.27) 
Li (1 + Nom) 

thus: 

Vi, ' + NNVy; 
'' (5.28) atlbl = Nx 

L1(1 + N2) 

If Nx = tan 0 then: 

atlsl - 
cos' 0. V. 

i, j - sin 0x cos B,. Vy,, 
j (5.29) 

Lx 

_ 
sine 9.. Vy,, 

j - sin Bx cos 0. V, 
i, j atlyl 

L 

Similar expressions for the currents may be produced for Ty: 

atIx2 - 
sing ByVyi -sin By cos 0. Vy, 

j (5.30) 
Ly 

_ 
Cost 0 V. - sin O cos BYV. 

i, at'y2 
Ly. 

where Ny = cot By. 
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Using these currents in the evaluation of O VV and ättVy gives: 

VV,,,. cost Bx sin2 Oy 11 
öttv, i, L+L +L+L + 

Vx,, j_1 + 
Vx, 

_1,1 - 
Vy,, j sin 9x cos 6x 

+ sin Oy cos Oy (5.31) 
LC LC C L,, Ly 

V 
.. sine O cos' B11 

L., Ly L L) 

Vv; 
_,,; + 

Vy,,. 
_1 - 

Vom; j sin 0., cos 0., 
+ sin By cos 9y (5.32) 

LC LC C Lý Lý 

given values Lx = µ, ßx and Ly = µ, ßi these are identical to the equations (5.21) and 
(5.22). 

It has been shown therefore that the nodal equations for the equivalent system at 
both corrected and uncorrected SFDTD nodes are identical to the expressions for the 

nodal voltages in a passive electrical network; this electrical network is accordingly 
described as the equivalent circuit for SFDTD and its correction factor scheme. 

It is a straightforward (although lengthy) process to show that the equivalent circuit 

concept extends to the full three dimensional SFDTD algorithm. 

5.6.1 Continuous and Discrete Time Stability 

If the equivalent system for the SFDTD algorithm and its correction factors is a 

passive circuit it is clear that the equivalent system must be energy conserving as 

there is no mechanism for gain in the network. The system must therefore have 

eigenvalues with real parts < 0. 

In this section further consideration is given to the concepts introduced in sec- 

tion 4.6.2. The theory presented here will concern the SFDTD algorithm rather 

than FDTD and thus some small changes in notation will be introduced. The results 

however are valid for both methods. 

The equivalent system for SFDTD (and FDTD) may be written: 

arte(t) = Fe(t) (5.33) 

The assumptions that will be made are that the model is electrically loss-less and 

bounded by closed metal walls. The first point arises because (5.33) cannot describe 
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electrical loss as this would introduce a first order temporal derivative; with a mixture 

of first and second order temporal derivatives a true centred difference cannot be used 
to approximate the time derivatives and the following analysis becomes invalid. The 

second point arises in much the same manner since a Radiating Boundary Condition 

will normally introduce a first order time derivative. 

In chapter 4 it was stated that intuitively the equivalent system must be stable if the 
time-discretised algorithm is to be stable. A more rigorous treatment of this concept 

may be obtained as follows: 

Assuming that F is diagonalisable it has a set of linearly independent eigenvectors 
fl... fj with corresponding distinct eigenvalues al 

... 
aj. e(t) may thus be written: 

J 

e(t) _E aj (t) fj (5.34) 
j=l 

thus: 
JJ 

E ättaj (t) fj _EA aj (t) (5.35) 

. i=1 . i=1 

and since the eigenvectors are linearly independent: 

attai (t) = A3aj (t) (5.36) 

thus the poles of the continuous time system are given by the roots of s2 - A? =0 
(either by writing (5.36) in phase-variable form or by taking the Laplace transform). 

It can be seen that for any eigenvalue Aj of F there are two eigenvalues p of the 

continuous time system, where: 

µj =f 
Tj (5.37) 

if the continuous time system is passive (thus stable) its eigenvalues p are in the 

negative real complex half-plane; in other words: 
32 

> arg(µj) >2 (5.38) 

thus from (5.37): 

31r 
> arg(aj) >r and 

3i) arg(a3) 
.+ 7r > (5.39) 

222222 

the only solution to this is in the range 0< arg(A3) < 2ir is arg(A3) = ir, therefore 

the eigenvalues aj of F must lie exactly on the negative real axis if the continuous 
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time system is stable. For stability of the continuous time system then: 

m(ad) =0 

Re(\j) <0 
(5.40) 

Now consider the discrete time system produced by taking a centred difference ap- 

proximation to the continuous time operator Ott in (5.33): 

e"+1 - 2e" + es-1 = OtFen (5.41) 

where At is the time step (a positive real number). This relation represents either 

the SFDTD or FDTD algorithm depending on the form of F. 

Writing e" once more in terms of the eigenvectors of F: 

i 
e" _ aý f (5.42) 

thus for any one of the eigenvectors: 

aj'+' - 2aß + a, '-1 = OtAjaa (5.43) 

by employing a z-transform for example, the two poles of this discrete time system 

corresponding to each Aj are the roots z1, z2 of the polynomial: 

z2 - (2 +z A1)z +1=0 (5.44) 

the sum of the roots is therefore: 

zl + z2 =2+ OtAi (5.45) 

and the product of the roots is: 

z1z2 =1 (5.46) 

writing z= reje in (5.46) gives: 

rir2ei(°1+02) =1 (5.47) 

this implies that: 

rlr2 =1 and 91 = -B2 (5.48) 
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If Aj, the eigenvalue of F, is written aj =a+ jb then the sum of roots expression 
(5.45) yields: 

`'sm(A1 + A2) = Otb (5.49) 

rl sin 01 + r2 sin 02 = Otb (5.50) 

and, since Bl = -02: 

sin Bl (rl - r2) = Otb (5.51) 

thus rl r2 if b#0. This implies that either rl or r2 must be greater than unity if 

b00. 

Similarly: 

Re(Al + A2) =2+ Ata (5.52) 

rlcos91+r2cosB2 = 2-}-Ota (5.53) 

then: 

cos 91(rl + r2) =2+ Ota (5.54) 

if a>0 then this implies that rl + r2 >2 and hence that either rl or r2 must be 

greater than unity. 

If however a<0 there is always a Or such that: 

cos 01(rl + r2) = cos 61(2) =2+ Ota 

where rl =, r2 = 1. 

To summarise the results presented above: 

(5.55) 

i. If the continuous time equivalent system is unstable, at least one eigenvalue )' 

of F will not be on the negative real axis and hence the discrete time algorithm 

must have a pole outside the unit circle for any Ot > 0. 

ii . If the continuous time system is stable all the eigenvalues Aj of F must be on 

the negative real axis and hence there is always a value of time step At such 

that the discrete time algorithm is stable. 
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It has been shown therefore that if the equivalent system is passive and hence stable 
there must be a time step that results in stability of the discrete time system. If on 

the other hand the equivalent system is unstable there is no (non zero) value of time 

step that gives stability. 

As already mentioned, the above analysis does not extend to algorithms with electrical 
loss or radiating boundary conditions; addition of either of these two phenomena 

provides a mechanism for dissipation in the algorithm. It is reasonable to suppose 
however that: 

i. If a dissipation free algorithm is stable then adding dissipation is unlikely to 

result in instability. 

ii . If a dissipation free algorithm is unstable then adding dissipation is unlikely to 

result in stability. 

- these properties have been observed in practice. In extreme circumstances however, 

if for example the amount of added loss is very large, the two suppositions may become 

invalid. 

5.6.2 Discussion of Equivalent Circuit Criterion 

The equivalent system need not necessarily be passive to be stable - many com- 

mon systems, electrical and otherwise, contain active components (i. e. ones which 

introduce gain into a system) and yet remain stable. 

Since active circuits may also be stable it might then be thought that requiring that 

a corrected finite difference algorithm have a passive equivalent system is an unnec- 

essarily strict criterion for stability. While not disputing this assertion consideration 

should be given to two points: 

"A node in an algorithm like SFDTD or FDTD receives a time delayed influence 

from every other node in the problem space. There are then a multitude of 
feedback loops for each node and thus, given the presence of just one non- 

passive element, a high potential for instability. 

" If a non-passive element exists it would expected that each feedback path would 

need to be examined in order to assess the stability of the system. In effect the 
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problem reduces once more to finding the eigenvalues of the system. 

It seems clear then that the existence of the passive equivalent circuit is likely to 
be (i) A virtually necessary criterion for stability and (ii) The only means by which 

a requirement to examine all the millions of eigenvalues of the algorithm may be 

avoided. 

Some further appreciation of these two points may be gained by consideration of two 

slight modifications to the SFDTD correction factor formulation that were investi- 

gated by the author; these are briefly described in the following sections. 

5.6.2.1 Alternative Correction Factor Scheme #1 

In [7] a slightly different correction factor formulation was proposed for SFDTD. In 

this formulation the only change was that the second spatial derivative is approxi- 

mated by: 

axxE _ 
ö1Ey(x = (i + 2)0) -O Ey(x = (i - 2)O) 

(5.56) 
0.5(0 + a) 

rather than the expression (5.17) in an attempt to improve the calculation of the 
derivative. It can be shown that in the presence of more than one correction at a 

given node (the situation shown by figure 5.5) the correction factor scheme can no 
longer be represented by a passive circuit. 

Despite the fact that the use of (5.56) as opposed to (5.17) makes only a small 
difference to the update algorithm and the fact that it is only for a proportion of the 

nodes that the scheme is has no passive representation (since many nodes will only 

need correcting in one direction) it was found that instability occurred in a number 

of cases. This finding lends credence to the idea that the existence of the passive 

circuit is in practice a virtually necessary condition for stability. 

5.6.2.2 Alternative Correction Factor Scheme #2 

A second alternative correction scheme was investigated in order to determine whether 

the results for the cylindrical resonator could be improved by expanding the normal 
fields close to the metal surface as: 

En = kl + k3n2 (5.57 
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rather than the simpler constant function of section 5.4. 

The resulting correction factor scheme achieved some improvement in the character- 
isation of the cylinder's modes but, despite being based on the SFDTD algorithm, 

was found strongly unstable. 

Since it is possible to demonstrate that this alternative correction factor formulation 
does not have a passive equivalent circuit, the investigation of this correction scheme 
further supports the contention that the existence of a passive equivalent circuit is a 

virtually necessary criterion for algorithmic stability. 

5.7 Summary 

In this chapter the SFDTD algorithm has been presented along with a suitable correc- 
tion factor scheme for its treatment of curved boundaries. With the correction factor 
formulation described in section 5.4, SFDTD, unlike any previously implemented 

corrected algorithm, was found to be stable. 

Further investigation of this fact shows that the corrected algorithm has a passive 
equivalent system and as a result must be stable given a sufficiently small time step. 
The existence of this passive circuit is not strictly necessary for stability of the discrete 

time system however investigation of alternative SFDTD correction factor schemes 

which do not possess a passive representation has shown that these schemes are almost 
invariably unstable. 

The SFDTD algorithm has been shown not only to be stable but also to be partic- 

ularly suitable for the analysis of curved metallic boundaries. In its present form it 

is unable to characterise dielectric interfaces and non-smooth perfectly conducting 

objects. It may be possible to introduce a correction factor scheme for these struc- 

tures in which case, given a suitable radiating boundary condition, the scope of the 

algorithm could rival that of FDTD. 

For the present however the SFDTD method has been most useful in shedding valu- 

able light on the difficult stability issue. The question that is immediately raised is 

whether or not it is possible to employ a passive equivalent circuit for the original 
FDTD algorithm. It is with answering this question that chapter 6 is concerned. 
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Section 6.1 : Introduction 

6.1 Introduction 

Chapter 4 introduced the correction factor method as a means to overcome FDTD's 

inefficient modelling of curved surfaces and fine geometric detail. It was shown how- 

ever that the inclusion of the correction factors in FDTD (and in general any arbitrary 

modification to a standard FDTD update equation coefficient) was likely to result in 

instability. 

In chapter 5 however it was demonstrated that if an algorithm has a passive equivalent 

system then it is necessarily stable for some non-zero value of time step. The SFDTD 

algorithm and correction factor scheme described in chapter 5 satisfied this condition 

and as a result was indeed found to be stable. 

The primary aim of this chapter is to present a passive equivalent system for FDTD 

(in the form once again of an electrical network) and to examine whether or not 

correction factor schemes may be formulated in such a way as to preserve the passive 

representation. 

6.2 A Passive Equivalent Circuit for FDTD 

The FDTD algorithm is more complex than the SFDTD method of chapter 5 and it 

is to be expected that the form of its equivalent circuit will be more complex than 

the simple LC network required for SFDTD. 

In order to embody the required duality of the electric and magnetic fields it is firstly 

necessary to define the gyrator, or generalised impedance converter as it is sometimes 
known. This device is illustrated by figure 6.1 and its symbol includes an arrow which 
defines the direction of power flow through the device when the voltages at the ports 

are of the same sign (when the relationship between the circuit and the fields in 

the FDTD model emerges this can be understood in terms of the direction of the 

Poynting vector). The voltage-current relationships at ports 1 and 2 are [1, p. 40] 

V2 = GI, Vi = GI2 (6.1) 

The ideal gyrator is a passive device since it can be shown that the power flowing into 

either port is exactly matched by power flowing out of the other (it is irrelevant that 

a practical and inevitably non-ideal implementation of a gyrator is usually achieved 
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1, 

v, 

G 

Figure 6.1: A gyrator. 

with active components [2, p. 281]). 

12 

0 
V2 

G2 V2 
i G1 i, 2i= 3 

_- 

V, G3 V3 3 

G4 

V4 

Figure 6.2: Interconnection of gyrators and a capacitor. 

Now consider figure 6.2 in which four gyrators are connected to a central capacitor; 

at the junction of the gyrators application of Kirchoff's current law yields: 

CÖtVO = 71 - 23 + 22 - 24 (6.2) 

use of the gyrator relationships of (6.1) gives: 

C8 /0 = G1V1 - G3V3 + G2V2 - G4V4 (6.3) 

with the following substitutions: 

Ci = P', x0y., z 

Gi = G3 = . Ax0y (6.4) 
AzAy 
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and with the change of variables: 

Vo Hy, J, k 
Vl -> EXi,;, k 

V2 -4 Ez, 
+,, j, k 

(6.5) 

V3 -4 Ex,, 
j, k+i 

V4 -+ EZ;, 
J, k 

equation (6.3) becomes: 

atHy,, 
j, k = 

µ-A, 
(Eýýj, 

k - 
E., 

j, k+l) + 
µ'A-l 

(E_, 
+l J, k - 

EZI, 
Jk) 

(6.6) 

Equation (6.6) is clearly the nodal equation for Hy in FDTD's equivalent system (cf 

equation (4.2) for example). 

Similar configurations to that shown in figure 6.2 can be produced for the other five 

field components in the FDTD method. When these circuits are properly intercon- 

nected the resulting network is the equivalent system for all the fields in the FDTD 

method, illustrated by figure 6.3. 

E 

Noc 

Figure 6.3: Equivalent circuit for FDTD. 
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The values of the components in figure 6.3 are given by: 

Ce = EOAx'y'z Ch = PO x0y0z 
(6.7) 

i~ix=DyA, Gy=OxA, Ciz=Ax Ay 

where all the gyrators whose arrows are parallel to the x, y and z directions are 

assumed to have values Gx, Gy and G, repectively and the capacitors at the position 

of each field component have value Ch if the component is magnetic and Ce if it is 

electric. 

The equivalent circuit of figure 6.3 is entirely passive; as shown in chapter 5 therefore, 

a discrete time algorithm derived from centred difference approximations to the time 
derivatives in the circuit is necessarily stable for some value of time step. 

While the network of figure 6.3 was developed independently by the author for the 

stability analysis of the FDTD algorithm, an electrically identical (but very different) 

circuit was proposed by Kron in [3] as a model of Maxwell's equations. 

6.2.1 Implications of the Equivalent Circuit 

Any modifications to the FDTD algorithm (whether these arise from the correction 
factors or any other modification technique) should retain the passive equivalence 

if they are to be guaranteed stable given a suitable time step. The modifications 

should therefore correspond exactly to either the alteration of the component values 

in figure 6.3 or, if necessary, the modification of the circuit topology. 

One of the simplest illustrations of the value of the equivalent circuit concept arises 

from the treatment of curved metal surfaces by the distorted contour path method [4, 

5] described in section 4.4. This method resorts to field `borrowing' when a required 

field component cannot be calculated. 

Consider for example the situation shown by figure 6.4. This figure shows the inter- 

section of a curved surface with the FDTD mesh; in order to calculate H0 the value 

of EE, is needed, however E1 cannot itself be calculated. To resolve this difficulty 

the value of E, is borrowed from its nearest collinear neighbour, Ext. 

This borrowing technique is somewhat approximate, more importantly however it 

cannot be represented in terms of a passive circuit since it requires that Hy,, be a 

function of E2 and yet EZ2 is not a function of Hyo. It is found in practice that in many 

situations this loss of the passive representation may easily result in instability [6]. 
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metal 

Figure 6.4: Field borrowing required by distorted contour method. 

In [6] a modification to the borrowing procedure is presented which corresponds 

exactly to the addition of an extra gyrator to the passive equivalent circuit. This 

revised borrowing procedure is found to be entirely stable. Further discussion of the 

implications of the equivalent circuit for the distorted contour path algorithm may 
be found in [7,8]. 

6.3 Correction Scheme for Metal Strips 

As seen in chapter 4, one application for the correction factors was the characterisa- 

tion of narrow microstrip lines without the need for a very fine mesh [9,10]. The aim 

of this section is to determine whether or not a correction scheme may be formulated 

for this problem while retaining the passive equivalent circuit representation. 

To formulate a correction factor method which satisfies the existence of the equivalent 

circuit one of the existing techniques [9,10] might be employed. A set of capacitors 

and gyrators could then be selected in order to match as closely as possible the desired 

coefficients of each FDTD update equation. This is an unappealing method since each 

electrical component necessarily affects more than one field update equation and as 

a result the selection process is likely to be difficult except in simple cases. 

An alternative approach is to examine the physical significance of the capacitors 

and gyrators in the equivalent circuit. It is clear that the capacitors represent the 

mechanism of energy storage associated with each field component and the gyrators 

Page 116 



Section 6.3 : Correction Scheme for Metal Strips 

represent the means of energy transfer between electric and magnetic components. 
This suggests a means by which a correction scheme may be approached in terms of 

energy storage and transfer and yields the following method. 

Consider figure 6.5 which illustrates the intersection of a microstrip line with one 

plane of the FDTD mesh and the corresponding portion of the equivalent circuit. 
For clarity the capacitors associated with E.,, and E., 

2 are not shown and the gyrator 
between Hy, and Ez1 is omitted since the field component is in the metal. 

Figure 6.5: Microstrip line and FDTD mesh. 

In the equivalent circuit the energies stored in the two illustrated capacitors are: 
1 EH 

vi _ 2ChyH2 
(6.8) 

ýE2 =12C,, Eý2 (6.9) 

and the power flow P= VI through Gzj, Gz2 and G., is given by: 

PG21 = Gz1Eý, Hy, (6.10) 

PG22 = Gz2EE2H 
1 

(6.11) 

PG. =GE, z2 H1 (6.12) 

Now assume that the transverse behaviour of the fields close to the edge is given by 

the functions [11] [12, p. 142]: 

fi (r, B) =1, cos - r2 

(0) 

1 
(6.13) 

f2(r, 0)=r2cos 2 
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where r is the radial distance from the edge, and 0 is the angle of elevation from 

the plane of the strip. These functions, unlike those of section 4.5.1, only take into 

account the static field resulting from an isolated edge and hence are not strictly valid 
for very narrow strips; they are, however, somewhat easier to manipulate. 

Given fl and f2 and changing to a Cartesian coordinate system where the x, y origin is 

taken to be at the edge of the strip, the field components have the following behaviour 

close to the edge: 

Hy (x, y) a E-- (x, y) « . 
fi (x, y) E=(x, y) « f2 (x5 y) (6.14) 

Let these functions be normalised in order that their values at the positions of the 

defined field components are Hy� E.,,, E.,, and E, z2 respectively: 

Hy(x, y, -A <z< p) = 
fi(x, y)H (6.15) 
fi (a, 0) v' 

E., (x, y, -2 <_z< 2)-fifl (x'y) 
(a, )EXz 

(6.16) 

Ex(x, y, -32 <z<-2)=fi(a'0)Eý1 (6.17) 

EZ(x, y, -0 <z< 0) = 
f2(x'ö) 

Ezz (6.18) 
f2(a+ 2,0) 

The a priori knowledge of the field behaviour yields the power flow and storage in 

the physical fields. This knowledge can be used to modify the values of capacitors 

and gyrators in the equivalent circuit, as shown in the following sections. 

6.3.1 Capacitor Modification 

The magnetic energy stored in the 0x0x0 volume of space with Hy, at its centre 

is the volume integral of the energy density 
2 µH2 [13, p. 2331, thus: 

DO 

£Hyý =µ2 J_o J_ o J«- °-a 
Hý (x, y, z) dx dy dz (6.19) 

az 

therefore: 
02 a+ 

A 
ý f, 2(X, y) dx dy dz ° Ja- °2 

i2 (a 
1 0) Hyl (6.20) -CNI, 2 

.f 

Page 118 



Section 6.3 : Correction Scheme for Metal Strips 

It is clear then that if (6.20) and (6.8) are to be equal then the value of the capacitor 
Chy must be: 

2 

(J. 
i°. 1- J 

fi (x, y) dx dy dz 
2 Chy 
.2 

(a, 6) 
(6.21) 

12 

By consideration of the energy storage in the electric field [13, p. 77] it can be shown 
by similar arguments that: 

0rz a+O 

ý Jl 
f2 (x, y) dx dy dz J JA 

Cez =E2 (6.22) a 
fi(a+ 2,0) 

It should be noted that if the fields are assumed to vary in a linear fashion within 

the respective volumes then the values yielded for the two components are: 
Chy = µA3 Cez = E03 (6.23) 

and as expected these are the values used in the uncorrected FDTD equivalent circuit. 

6.3.2 Gyrator Modification 

The power flow in an electromagnetic field is given by the integral of the Poynting 

vector [13, p. 465]. Considering the power being transferred across an imaginary 

surface at x= xl between E, z2 and Hy,: 

° I%ä Pc= =fE, (xi, y, z)HH(x� y, z) dy dz (6.24) 

A simple approximation to this expression, which was found to give good results, is: 
oA 

J-o 
jf1(cx, 

Y)f2(Q+ 221 y) dy dz 
Pc= = E12 HYI (6.25) fl (a, 0)f2(a +o2 A, O) 

section 6.5.2 describes how an alternative expression for the gyrator might be pre- 

ferred. 

It is apparent then from (6.25) and (6.12) that G., is given by: 
%o L_ 

J-o 
f1(a, y)f2(a+ °1y) dy dz 

Gx 
fl (a, 0). f2(a + A22 

, 0) 
(6.26) 
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Repeating the above procedure for the other two gyrators yields: 

fr2 at 

fi(a, y)fi(a, y) dxdy 

Gzl _-z 
a- 2 

fi(a, 0)fi(a, 0) 
(6.27) 

z a-'- 2 

f, (a, y)fi(«, y) dx dy 
(6.28) 

fi («, 0) fi («, 0) . 28) 

If the field variations are considered linear these expressions reduce to: 

Gx = GZ1 = Gz2 = O2 (6.29) 

which, as would be expected, are the uncorrected values used by the standard FDTD. 

The insertion of modified gyrators and capacitors in the equivalent circuit gives rise 
in turn to modified update equation coefficients. The values of these coefficients are 

are obtained as follows. 

6.3.3 Coefficient Correction 

The update equation for Hy, arises from the discrete time approximation to : 

ChyOtH ,= GxEZ2 + Gz1Ex1 - Gz2E 2 
(6.30) 

Thus the corrected coefficients (from left to right in the above equation) are given 
by: 

o° 
Gx 

fi (a, 0) fo 
J_ý 

fi (a, y)f2(a +2, y) dy dz 

00 Chy 
Lfl(a, 

O)f2(a+ 2,0) r0 rýa fi (x, y) dx dy dz (6.31) 

G: i GZ2 
(6.32) C Chy 

hy µ0 

The special form of the coefficients relating Hy, to the neighbouring Ex components 

arises from the fact that the static solutions fl and f2 are not functions of z since 
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the strip is considered uniform in the longitudinal direction. As a result the integrals 

cancel out to give no alteration to the standard algorithm in the z direction. 

The preceding discussion demonstrates how a correction factor formulation can be 

constructed from the point of view of the equivalent circuit. The correction factor val- 

ues for the calculation the Hy field in the plane of the microstrip have been provided. 
Since it is the capacitor and gyrator values themselves that are being corrected, as 

opposed to the coefficients in the update equations, stability problems will not arise. 

In addition to the Hy component shown, a correction factor scheme should alter the 

update equations of the other field components adjacent to the strip. Figure 6.6 

shows the field components on and below the plane of the strip for which corrected 

capacitors and gyrators are introduced. The corrections are symmetrical with respect 

to the vertical position of the strip and hence the corresponding fields above the 

strip will also be corrected (although they are not shown in figure 6.6 for clarity). 
For each capacitor associated with the illustrated field components and for every 

gyrator between two such components, the value of C or G may be calculated by 

straightforward adaptations to the method described by sections 6.3.1 and 6.3.2. 

Figure 6.6: Corrected field components. 

6.4 Validation of Correction Scheme 

While the correction factor scheme described above is guaranteed to be stable given 

an appropriate time step it bears little resemblance to the (unstable) methods used 
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in [9,10]. Clearly it is important that the method, in addition to being stable, remains 

capable of improving the standard FDTD method's characterisation of microstrip 
lines. 

In this section the simple boxed microstrip structure illustrated by figure 6.7 was anal- 

ysed using the FDTD algorithm and the equivalent circuit based correction method. 
Results were sought for the effective permittivity of the line as this parameter is 

known to be very sensitive to modelling accuracy. For comparison the Spectral Do- 

main Method (SDM) [14], in the form described in [15], was employed to analyse the 

same structure - this method is known to be capable of highly accurate characteri- 

sations of microstrip structures. 

E 
E 
0 1 

Figure 6.7: Boxed microstrip line. 

The structure was initially modelled with four unit cells across the strip and four unit 

cells in the substrate. The effective permittivity was calculated from 

2 
me 

Ereffective - 2l fm) 
(6.33) 

where fm is the frequency of the mth resonance of the shorted line (as calculated from 

FDTD), l= 60mm is the length of the line and c is the speed of light in vacuum. 

It was found to be difficult to establish a mode on the microstrip as there seemed 

to be an unwanted interaction between the excitation and the correction factors; it 

was for this reason that the effective permittivity was calculated from the resonant 

frequencies of the line as this technique is relatively insensitive to the nature of the 

excitation. 
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Figure 6.8 shows the variation in the effective permittivity of the microstrip against 
frequency as calculated by SDM (the solid line), and the standard FDTD method 
(the dashed line). The correction factor results were only available at the resonant 
frequencies of the line and are therefore indicated by marker points. 

7.2 

7 

6.8 

CL 
6.6 

= 
6.4 

W 

6.2 
2 

i 
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. 00 
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i 

f FDTD and Correction Factors 
-- FDTD 
- SDM 

468 10 
Frequency (GHz) 

Figure 6.8: Effective permittivity of microstrip line against frequency. 

It is clear from figure 6.8 that the correction factors have a marked effect on the 

accuracy of the results and at all frequencies reduce the error to a small fraction of 

that produced with FDTD alone. The slight ripple on the results obtained using 

correction factors is likely to be the effect of the aforementioned difficulty in exciting 
the microstrip. 

As a second test the FDTD mesh was kept fixed while the width of the microstrip 

was gradually increased. The standard FDTD algorithm is not affected at all by 

changes in dimensions of less than the unit cell size and this is apparent in figure 6.9 

which shows the variation in effective permittivity at one of the frequencies for which 

correction factor results were available (7.6 GHz) as the width is changed'. 

Once again the correction factor results are in excellent agreement with those of SDM. 

The difference between the two curves is largest for small widths however at its worst 

this disagreement is less than 0.5 %. 

The results presented above show that the correction factor formulation based upon 

principles of energy storage and transfer and the equivalent circuit is capable of 

17.6 GHz is the nominal frequency. The correction factor results were obtained at the actual 
resonant frequency which varies slightly as the permittivity changes - the error this introduces in 

the results is however < 0.005 in the permittivity value. 
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Figure 6.9: Effective permittivity of microstrip line against width. 

dramatically improving the standard FDTD's analysis of microstrip lines. 

The stability of the scheme is, as has been shown, guaranteed for a non-zero value of 

time step; it might be expected that the necessary value of time step be somewhat 

smaller than that required by the uncorrected algorithm. It was found, however, 

that the microstrip line geometry described above was stable, regardless of the strip 

width used, even when the time step employed was unchanged from the Courant 

limit. This property of an equivalent circuit based correction scheme was also found 

in the modified distorted contour path algorithms described in [6-8]. 

The only problem which occurred relates to the excitation of the microstrip line. It 

is believed that this arises from the fact that the corrected algorithm is locally not 

divergence conserving; further investigation of this problem is certainly required. 

6.5 Further Investigation 

Throughout this thesis the relationship between the FDTD method and the finite ele- 

ment method has been emphasized. In chapter 2 the reasonably well known fact that 

FDTD corresponds precisely to a collocation method was presented and in chapter 4 

it was shown that the correction factor technique could be considered a modification 

of the piecewise linear basis functions. 
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Y2 
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Y1 
Si %D2 

Figure 6.10: Field components in FDTD method. 

Consider the general finite element formulation: 

i, j, k 
11 

4' li, j, k 
0Xk Ei, 

j, k(t) _ -µ 
(' 

j, k0 
Oi 

, 
k) 

atHi, 
j, k(t) 

Vi,. i, k 

(6.34) 

where V) H and OE are the dyadic test functions (for convenience labeled according to 

which field type they are associated with). 0H and 1E are the dyadic basis functions. 

It has already been assumed that basis functions associated with a given field type 

(either electric or magnetic) do not overlap another basis function associated with 

the same type. 

Furthermore the discussion is restricted to the Galerkin finite element methods in 

which the test and basis functions are identical, thus: 
i, 7, k 

OH E\ 
k 

H, 
,i7X 

Oi 
k) 

Ei,. 
7, k(t) - -µ 

(0 
kl 

ý 
i, j, k)atHi, j, k 

(t) d2,. l, k 

(6.35) 

Consider figure 6.10 in which two overlapping cubical volumes are shown; one, V1, 

has component Hy at its centre and is bounded by the closed surface S1, the other, 

%2 is centred on the position of the component Ez and has S2 as its boundary. 

Consider now the finite element formulation for the two components labeled Hy and 
ýz only: 

(jo(lly), Vx k/(EZ)) E, (t) = _µ 
(O(H) O(Hy)) atHy(t) (6.36) 

ýko(Eý),, V X jo(Hy)) Hy(t) =6 (O(Es), cb(Ez)) atE, (t) (6.37) 
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The equivalent circuit representation of the situation is; 

GE, = ChyätHy (6.38) 

and: 

-GHy = Ce,, OjEzz (6.39) 

comparison of the relevant terms in (6.38), (6.39), (6.36) and (6.37) shows that: 

Chy =µ 
('(Hr), 

(p(Hv)) (6.40) 

Cez =E (O(E`),, 
(E: )) (6.41) 

and the gyrator connecting to the two field components is: 

Ca _ 
/jlýýHv)ý VX kq(E: )) 

= 
(ko(E. ), vX jc(Hy)) (6.42) 

the final result arising from the fact that curl is a self-adjoint operator [16]. 

This analysis can be applied to all the other field components in a similar manner 

and yields the general conclusion that a Galerkin finite element formulation of this 

type is exactly equivalent to the passive circuit for FDTD (although it is interesting 

that the converse is not necessarily true). This finding is in contrast to the situation 

for the point matched finite element form of FDTD (described in section 2.6.2) which 

does not in general possess the properties of the passive circuit. It is for this reason 

that correction factor schemes based upon modification of the point matched finite 

element formulation's basis functions (see for example section 4.5.2) were usually 

unstable. 

6.5.1 Galerkin FDTD Formulation 

To recover the standard form of the FDTD algorithm the basis functions should be 

chosen to be piecewise constant functions: 

OHy (r) =A rin Vl 
(6.43) 

0 otherwise 

DEZ (r) =B rin V2 
(6.44) 

0 otherwise 
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When these functions are introduced into equations (6.36) and (6.37) they yield: 

-E., (t) ffJ ýýH, ýaxýýEsý dx dy dz = -µ03A3ötHy(t) (6.45) 
vi 

Hy(t) fff O(E )a (Hy) dx dy dz = e03B3atE, (t) (6.46) 
V2 

where the inner products on the left hand sides have reduced to integrals over V1,2 

and those on the right hand side to integrals over either Vi or V2. 

The appropriate limits (see figure 6.10) may now be introduced, however (6.45) has 

a discontinuity at xl and (6.46) has one at x2. Treatment of these discontinuities is 

facilitated by introducing the points xi = xl - 6,, xi = xl + J., x2 = x2 - bx and 

x2 = x2 + ay. as shown in figure 6.11. The behaviour of D (Ez) and äx¢(Hy) at xl 

and x2 respectively may be considered as J., -+ 0. 

X1 X, X+ X2 X2 X2 X 

Figure 6.11: Treatment of discontinuities at xl and x2. 

The expressions (6.45) and (6.46) become: 

Ez(t) j yz l, 

iz 
Lrs 

and: 
Y2 + 

Hy(t) j Z2 

O(Hy)öxý(Ez) dx dy dz = µ03A30 HH(t) 

q (Ez)a (Hv) dx dy dz = CA3B3atEZ(t) 

Splitting the required integrals into two parts yields: 

(6.47) 

(6.48) 

Ez(t) 
/va /ia /xi o(gv)axo(EZý dx -{- 

j, +2 
o(H1, )axo(E dx dy dz = fy1 JJi 

xl 

li03`439tHy (t) (6.49) 
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Hy(t) 
fyl ya f za f xý (E. ). 

xo(H") 
dx + 

fX2X2 ýýE=)axO(Hydx dy dz 
i xl 

E03B30tEz(t) 
(6.50) 

the derivative of the step discontinuity in O(E_) at xl is given, for example, by: 

a O(Ez)(x) = a(x, XI)(O(Es)(xl) - ý(Es)(xl )) (6.51) 

where 5(x, x1) is a Dirac delta function with unity weight. 

Application of this result to (6.49) and (6.50) gives: 

EZ (t) I fýz (AB) + (j: (HY)O (Es) dx dy dz = 3A'O H(t) 
y =i 1 (6.52) 

Y2 Zz 

Hy(t) O(E z)äýO(') dx + (-BA) dy dz = e03B3a EZ(t) 
y' ý1 

(17 

(6.53) 

It is straightforward to show that, given that the derivatives of the piecewise constant 
basis functions are zero over the range of the remaining integrations with respect to 

x, equations (6.52) and (6.53) yield: 

EZ(t) f y2 f Z2 AB dy dz = µ03A3ätHy(t) (6.54) 
yi zl 

Hy(t) fY2 J(-BA) dy dz = e03B3äE(t) (6.55) 
1Jl 

which, if the basis functions are assumed to have unity amplitude (ie A=B= 1), 

gives: 

EZ(t)z2 = µA38 tHy(t) (6.56) 

-Hy(t)02 = e03ötEz(t) (6.57) 

these are recognised as the appropriate parts of the standard FDTD algorithm. 

The results given above may in fact be achieved with considerably less effort given 

the simple form of the basis functions in this case, however the derivation given above 

readily extends to the case when the basis functions are more elaborate functions. 

In is interesting to note that the fact that FDTD may be derived from a Galerkin 

finite element approach with piecewise constant basis functions has recently and 

independently confirmed in [17]. 
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6.5.2 Correction Factors in the Galerkin Method 

While the correction factor scheme based on the equivalent circuit was developed 

before the existence of the Galerkin form of FDTD was perceived it is immediately 

apparent that the correction scheme used, based on the energy storage and transfer 

within the algorithm is almost exactly equivalent to the modification of the basis 

functions in the Galerkin method. 

The corrected capacitance for Hy from (6.21) was: 
LLf a} z 

fi (x, y) dx dy dz 
6TA 

22 (6.58) Ch= 
fi (a, 0) 

where fl and f2 were the assumed behaviour of the fields over the unit cell, this 
is exactly the same expression as (6.40) apart from the normalisation terms in the 
denominator. 

The expression used for the gyrator (6.26) was: 
o 

J-o . 
fi(a) y)f2(a + °, y) dy dz) 

Gx =2 (6.59) 
fl(a, 0)f2(a+ 2,0) 

this is similar to (6.42) but not in fact identical. Whether or not modifying the 

gyrator calculation to that suggested by the finite element method will produce an 
improved correction factor formulation is open to question and the matter is addressed 
in chapter 7 in the context of suggestions for future work. 

It is proposed therefore that the Galerkin FDTD formulation provides an entirely 

general method of including a priori knowledge of the field behaviour into the al- 

gorithm without any possibility of instability. Since the Galerkin formulation may 

always be viewed as an equivalent circuit the modification of the FDTD algorithm 

can be viewed from either viewpoint; depending on the problem under consideration 

one interpretation or the other may prove more attractive. 

6.6 Summary 

In this chapter an equivalent passive electrical circuit has been presented for the 

FDTD algorithm. A correction factor formulation for metal edges which retains this 
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passive representation has been derived and it has been shown that the formulation 

is both accurate and stable even with a time step equal to the Courant limit; the fact 

that it is not divergence preserving presents a slight problem which may need to be 

resolved. 

The equivalent circuit is not only useful in assuring the stability of correction factor 

schemes; an example of its application to the deformed contour path method has 

been presented in this chapter and further applications are expected. 

The equivalent circuit also points the way to a new finite element perspective on 
FDTD; this finite element method must always have a passive circuit representation 
and is therefore always stable given a suitable time step. This alternative approach 
gives a method for selecting correction factor schemes based on a priori knowledge of 
the field behaviour and also provides an important new understanding of the FDTD 

method. 

Page 130 



Chapter 6, References 

References 

[1] A. S. Sedra and K. C. Smith, Microelectronic Circuits. CBS College Publishing, 
1987. 

[2] P. Horowitz and H. Winfield, The Art of Electronics. Cambridge University 
Press, 2 ed., 1989. 

[3] G. Kron, "Equivalent circuit of field equations of Maxwell - I, " Proceedings of 
the IRE, vol. 32, pp. 289-299,1944. 

[4] T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, "Finite difference 
time domain modelling of curved surfaces, " IEEE Transactions on Antennas and 
Propagation, vol. AP-40, pp. 357-366, Apr. 1992. 

[5] T. G. Jurgens and A. Taflove, "Three dimensional contour FDTD modelling of 
scattering from single and multiple bodies, " IEEE Transactions on Antennas 
and Propagation, vol. AP-41, pp. 1703-1708, Dec. 1993. 

[6] C. J. Railton, I. J. Craddock, and J. B. Schneider, "Improved locally dis- 
torted CPFDTD algorithm with provable stability, " Electronics Letters, vol. 31, 
pp. 1585-1586, Aug. 1995. 

[7] C. J. Railton and I. J. Craddock, "Analysis of general 3D PEC structures using 
an improved CPFDTD algorithm, " Electronics Letters, vol. 31, pp. 1753-1754, 
Sept. 1995. 

[8] C. J. Railton, I. J. Craddock, and J. B. Schneider, "The analysis of general 2D 
PEC structures using a modified CPFDTD algorithm, " IEEE Transactions on 
Microwave Theory and Techniques. submitted. 

[9] D. B. Shorthouse and C. J. Railton, "Incorporation of static singularities into 
the finite difference time domain technique with application to microstrip struc- 
tures, " in Proceedings of the 20th European Microwave Conference, vol. 1, 

pp. 531-536, Sept. 1990. 

[10] C. J. Railton, D. B. Shorthouse, and J. P. McGeehan, "Modelling of narrow 
microstrip lines using finite difference time domain method, " Electronics Letters, 
vol. 28, pp. 1168-1170, June 1992. 

[11] R. E. Collin, Field Theory of Guided Waves. McGraw Hill, 1960. 

[12] D. B. Shorthouse, The CAD and analysis of passive monolithic microwave cir- 
cuits by the finite difference time domain technique. PhD thesis, University of 
Bristol, 1992. 

Page 131 



Chapter 6, References 

[13] J. D. Kraus, Electromagnetics. McGraw-Hill, 3 ed., 1984. 

[14] T. Itoh and R. Mittra, "A technique for computing dispersion characteristics of 
shielded microstrip lines, " IEEE Transactions on Microwave Theory and Tech- 
niques, vol. MTT-22, pp. 896-898, Oct. 1974. 

[15] C. J. Railton and T. Rozzi, "Complex modes in boxed microstrip, " IEEE Trans- 
actions on Microwave Theory and Techniques, vol. MTT-26, pp. 865-874, May 
1988. 

[16] Z. Yoshida, "Discrete eigenstates of plasmas described by the Chandrasekhar- 
Kendal functions, " Progress of Theoretical Physics, vol. 86, July 1991. 

[17] M. Krumpholtz, C. Huber, and P. Russer, "A field theoretical comparison of 
FDTD and TLM, " IEEE Transactions on Microwave Theory and Techniques, 
vol. MTT-43, pp. 1935-1950, Aug. 1995. 

Page 132 



Chapter 7 

Conclusions and Future Work 

Page 133 



Section 7.1 : Summary 

7.1 Summary 

The behaviour of the electromagnetic waves upon which so many human activities 
depend is described by Maxwell's equations [1]. These equations are simple in form 

however in realistic situations their solution requires the use of sophisticated numer- 
ical methods and hours or even days of computer time. 

Numerical methods are used throughout engineering and science and, while their 

evolution can be traced from the pioneering work of the early twentieth century [21, 

their range of application is such that their use and development remains to this day 

a focus of great attention. 

This thesis has been concerned entirely with the application and improvement of 

numerical methods in the field of electromagnetics. Commencing with an illustrative 

account of an early use of numerical methods -in chapter 1 and, in chapter 2, a review 

of some of the techniques currently used in electromagnetics, later chapters progressed 

to consider new enhancements and adaptations pioneered at the University of Bristol 

and by the author personally. 

In chapter 3 the time domain near far transform was presented. While being well 
known in the field of time domain electromagnetic analysis [3,4] its applications 
have not been numerous and its application here to a printed dipole represents to 

the authors' knowledge the most sophisticated example of its use to date. Some 

consideration was given to the computational costs of the method and to what extent 
the use of system identification [5] can reduce these costs. 

The correction factor method [6] is a technique which alters the update equations 
in a finite difference algorithm by the consideration of a priori knowledge of the 

field behaviour. Chapter 4 presented the general correction, factor technique and also 
described the stability problems that have prevented this invaluable method from 

gaining wider use. 

The author's main contributions to the enhancement of time domain numerical meth- 

ods were described in chapters 5 and 6. In chapter 5a new method (the SFDTD 

technique) was presented and found to have a stable correction factor formulation [7]. 

With the insight provided into stability by examination of the SFDTD method, a 

scheme was presented in chapter 6, based on energy conservation, for ensuring stabil- 

ity of the FDTD algorithm [8]. By employing this method a stable correction factor 

Page 134 



Section 7.2 : Future Work 

scheme for metal edges was derived and shown to produce considerable improvement 

in the accuracy of the FDTD characterisation of a microstrip line. The final results 

of chapter 6 examined the relationship between energy based stability theory and the 

Galerkin finite element approach. 

7.2 Future Work 

The following avenues for future work are suggested by the research described in 

chapters 3,5 and 6 of this thesis: 

7.2.1 The Time Domain Near Far Transform 

In chapter 3 the time domain near far algorithm was presented. This algorithm 

was shown to be able to accurately characterise the far field of a printed dipole 

antenna and clearly its ability to perform this characterisation over a broad band is 

of considerable importance given the wide band nature of the antenna. It was shown 

however that the memory requirements for the algorithm in some applications can 

become excessive (a greater than 100% overhead on the FDTD method) and this may 

limit its future application. 

It is frequently the case that memory usage and speed in an algorithm are to some 

extent traded off against each other and that is the case for the time domain extrapo- 
lation method. The implementation considered in chapter 3 saved computation time 

by storing extra parameters (in the manner described by [9, p. 165]) with the result 

that 4 floating point and 2 integer variables are stored per point on the extrapolation 

surface for each observation point; the minimum storage that is in fact necessary is 2 

floating point numbers but this is at the expense of considerable extra computation. 

A second approach which sacrifices very little computation time is to not store sepa- 

rate delay times for the M and J currents - the only reason this is done is to take into 

account their displacement in time of At/2; this fact may be accounted for instead 

by staggering the accumulation of the two integrals in the far zone (equations (3.3)) 

by this half time step. A small amount of extra computation will be required at each 

observation point to interpolate the vector potentials but the storage requirements 

will drop by 50%. 
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In summarising the time domain transform it may be said that, in the example given 

of the printed dipole, the memory overhead may easily be reduced from 13 MBytes to 

7.5 MBytes or even as little as approximately 2 MBytes - the latter figure achieved 

at a considerable increase in computation time. If future work can demonstrate that 

a reduction in memory requirements of this order can be made without sacrificing 
too much in terms of computation time, the applicability of the transform will be 

greatly widened. 

7.2.2 The SFDTD Technique 

The SFDTD method of chapter 5 employs, unlike FDTD, a non staggered field dis- 

cretisation (figure 5.1). This discretisation allows an easier treatment of curved sur- 
faces since the resolution of the field components into tangential and normal directions 

is straightforward. The greatest disadvantage of the SFDTD method (which funda- 

mentally arises from the adoption of a non-staggered discretisation) is its neglection 

of the field divergence term (see section 5.3). 

The consequences of neglecting the divergence in Maxwell's equations is that the 
treatment of dielectric interfaces and metal edges is not (as it is in FDTD) simple. 
In order to solve these problems correction factor methods (such as the technique for 

curved surfaces described in section 5.4) may be derived for each of these circum- 

stances or alternatively a combination of the SFDTD and FDTD methods could be 

achieved by interpolation at a common interface. Either of these possibilities would 

merit further investigation. 

7.2.3 The FDTD Equivalent Circuit 

Having seen the utility of an equivalent passive circuit for the SFDTD method, an 

equivalent circuit for FDTD was shown in chapter 6 (figure 6.3). The equivalent 

circuit provides a means by which stable modification schemes for the algorithm (for 

example correction factor and contour path schemes [10]) may be selected. 

It was shown in section 6.3 that by considering the energy stored and transferred 

in the electromagnetic fields and relating these quantities to the elements of the 

equivalent circuit, a correction factor scheme for microstrip lines may be produced. 
Application of this method yielded a stable and extremely accurate characterisation 
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of the effective permittivity of the microstrip geometry of figure 6.7. 

The correction factor formulation may easily be applied to more complex microstrip 

geometries and is likely to greatly reduce the computational overheads of includ- 

ing narrow microstrip feedlines, for example, in FDTD models. Future work on the 

method will need to address the issue of the conservation of divergence in the al- 

gorithm mentioned in section 6.4; it is. anticipated that careful consideration of the 

correction formulation should produce a solution to this difficulty. 

A second area of the correction factor formulation of chapter 6 that would benefit 

from further investigation is the fact that the method does not correspond exactly 

to the Galerkin finite element formulation of section 6.5. This correspondence is 

not a required property of the algorithm, however it would be illuminating to eval- 

uate whether recasting the gyrator evaluation in terms of the finite element method 
(section 6.5.2) yielded an even more accurate technique. 

The equivalent circuit representation and the finite element formulation (section 6.5) 

are perhaps the most significant aspects of this thesis and potentially enable an ex- 
tremely wide range of developments. It is likely that, in addition to yielding schemes 
for curved surfaces [10] and microstrip lines, the guaranteed stable inclusion of a 

priori knowledge for narrow wires, narrow slots, curved dielectric boundaries, an- 

gled microstrip lines and dielectric wedges are all possibilities. If successful these 

applications would entirely remove the most common causes of large computational 

overheads in the FDTD method. 

7.3 Concluding Remarks 

With the advent of digital electronic computers in the 1940's, numerical algorithms 
have become widespread in engineering and the sciences. In electromagnetics in 

particular their use has become increasingly popular since the 1970's and methods 

such as the Yee FDTD algorithm [11] have been applied to many situations where 

any other form of analysis is impossible. 

Fully three dimensional solutions, particularly those which operate in the time do- 

main, require very large amounts of computation and the availability and expense of 

computers has provided, and always will provide, a fundamental limit on the appli- 

cability of techniques such as the Yee method. 
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In this thesis three methods for reducing the required computation resources in a 

time domain electromagnetic analysis have been presented; the near far transform 

(chapter 3), the system identification technique (chapter 3) and the correction factor 

method (chapters 4,5 and 6). In particular the final results of a careful investigation 

of the correction factor method, presented in chapter 6, provide the means for a large 

reduction in computational overheads in many situations and hence a considerable 

widening of the applicability of the FDTD technique. With the ever increasing use 

of the electromagnetic spectrum any such increase in the usefulness of the FDTD 

method is likely to be widely beneficial. 
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Derivation and Application of a Passive Equivalent 
Circuit for the Finite Difference Time Domain Algorithm. 

I. J. Craddock, C. J. Railton and J. P. McGeehan 
Centre for Communications Research, University of Bristol, UK. 

Abstract 

The widely used Finite Difference Time Domain (FDTD) algorithm in its standard form is 
conditionally stable, the condition being the well known Courant criterion. Much research has 
focussed on modifying the standard algorithm to improve its characterisation of geometrical 
detail and curved surfaces; these modified algorithms however may easily be unconditionally 
unstable - there is no value of time step which stabilizes the algorithm. This contribution 
presents a passive electrical circuit which, by virtue of its formal equivalence with FDTD, 

provides a criterion by which unconditionally unstable algorithms may be avoided. As an 
example the passive circuit criterion is used to remove the instability from a Contour-Path 
FDTD algorithm. 
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It is emphasized that the circuit presented here is not a lumped equivalent to some discontinuity 

or other physical feature to be included in the FDTD algorithm - it is an equivalent to the 
algorithm itself. 

It is necessary to define the generalised gyrator shown in figure 1 whose symbol includes an 
arrow which serves to set a reference direction for the currents at ports 1 and 2; with the 
reference shown, the relationships at ports 1 and 2 are V2 = G11 and V, = GI2. 

Now consider the circuit given by figure 2 consisting of a network of gyrators wth capacitors 
attached to each junction of the circuit (for clarity only one capacitor is shown). Considering 

power flow in the circuit it is simple to show that the circuit is entirely passive. Summing 

currents at the node labelled To gives, for example; 

Ch8tV1 = G.,, ('4 
- V4) - 

C. 
sz(ti'3 - 1'1) (1) 

`\'ith the following change of variables; Ch --- /1o'xAyAZ, Gx -+ ., y.,., G: -; 'x, ys ti'o -4 
Hy(i + 0.5, j, k+0.5) and transforming t-i ... V4 to the four corresponding electric components 
in the algorithm, the FDTD equation for ötHy(i + 0.5, j, k+0.5) is recovered. 

The relationships for all the fields in the FDTD algorithm can be derived in this manner from 
the circuit; the only aspect of the FDTD algorithm not represented in the circuit is the discrete 
time approximation of the continuous time derivative öt. 

The main theorem is: 

§ An FDTD algorithm cannot be unconditionally unstable if it arises from the centred- 
difference discrete-time approximation to the passive circuit. 

the proof of this intuitive result is given in [7, Ch. 5] but is too lengthy to be included here. 

It can be seen therefore that, if the FDTD method is to be modified, the modification should 
be based on a modification of the passive circuit. In this way unconditionally unstable schemes 
will not arise and there will always be a value of time step which guarantees stability - this 
point is illustrated by the following example. 

3 Application of Equivalent Circuit 

As a simple example of a situation where the equivalent circuit provides an invaluable insight 
into the stability of a modified FDTD algorithm, consider using the deformed Contour method 
[1] to model the interior of a perfectly conducting cylinder (radius 19 cm) on a two-dimensional 
uniform mesh (mesh spacing ., =5 cm). A portion of this model is shown by figure 3; E. and 
E, z fields are indicated by arrows, the Hy components by crosses. 

The CP method is employed (as described in [1]) to alter the FDTD algorithm close to the 

curved surface. When calculating Hy(0.5,0.5) however the algorithm requires the value of 
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EE(1,0.5) - which itself cannot be calculated from its surrounding H components. In this case 
the technique `borrows' the nearest collinear E field - E, ß(1,1.5). 

This results in the situation where Hy(0.5,0.5) is updated from EZ(1,1.5) but not vice-versa. 
In terms of an equivalent circuit this situation cannot be achieved with passive components and 
must be avoided, instead an extra gyrator is introduced between Hy(0.5,0.5) and Eß(1,1.5) as 
shown in figure 4. The only change to the algorithm is the updating of E.. (1,1-5) which is now 
a function of Hy(0.5,0.5): 

co(, + 41). a E; (1,1.5) = (. +, 1)H�(1.5,1.5) (2) 
- AHH(0.5,1.5) - A, Hy(0.5,0.5) 

The CP method involving field borrowing exhibited instability after a few hundred iterations 
even with greatly reduced values of time step and results were unavailable. The new technique, 
derived using the equivalent circuit, exhibited no instability even with an unmodified time step 
of ., 

/c\/'2- and produced the first two TE resonant frequencies of the cylinder within 1% of 
analytic results. 

4 Conclusions 

This contribution has shown the existence of an equivalent passive circuit for the FDTD method. 
Such a passive representation ensures that the algorithm (given an appropriate limit on the 
time-step) is stable. 

The equivalent circuit concept is shown to stabilize the field `borrowing' procedure widely used 
in the Contour Path method. The usefulness of the equivalent circuit is not limited however 
to this problem; it has also been applied to stabilize other variants of the CP method and the 
SFS method [2]. Further applications of the circuit are under investigation. 
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Abstract 

The widely accepted Finite-Difference Time-Domain algorithm, based on a Cartesian mesh, 
is unable to rigorously model the curved surfaces which arise in many engineering applica- 
tions, while more rigorous solution algorithms are inevitably considerably more computation- 
ally intensive. A non-intensive, but still rigorous, alternative to this approach has been to 
incorporate a priori knowledge of the behaviour of the fields (their asymptotic static field so- 
lutions) into the FDTD algorithm. Unfortunately, until now, this method has often resulted 
in instability. 

In this contribution an algorithm (denoted 'SFDTD' for Second-Order Finite Difference Time 
Domain) is presented which uses the static field solution technique to accurately characterise 
curved and angled metallic boundaries. A hitherto unpublished stability theory for this 
algorithm, relying on principles of energy conservation, is described and it is found that 
for the first time a priori knowledge of the field distribution can be incorporated into the 
algorithm with no possibility of instability. 

The accuracy of the SFDTD algorithm is compared to that of the standard FDTD method 
by means of two test structures for which analytic results are available. 

1 Introduction 

The Finite-Difference Time-Domain (FDTD) technique is widely accepted as an efficient, 
reliable and flexible method for the electromagnetic analysis of a wide variety of structures. 
Perhaps the most fundamental limitation of FDTD is that in its usual form, first suggested by 
Yee in 1966 [1], the method represents the modelled object as a Cartesian-based mesh of field 

components. This spatial discretisation prevents the standard FDTD method from accurately 
characterising the curved structures which arise frequently in engineering applications. 

In [2] the authors first presented a finite-difference time-domain algorithm (Second-Order Fi- 

nite Difference Time Domain or `SFDTD') which facilitated the treatment of curved metallic 
structures. The algorithm utilised the static field solution technique, originally described in 
[3], to rigorously model the curved surfaces. Employing static field solutions when attempt- 
ing to analyse curved bodies with the well-known Yee algorithm (FDTD) often resulted in 
instability; SFDTD however appeared not to suffer from this problem. 

For clarity we initially review some of the background pertaining to the modelling of curved 
structures and then describe a modification of the SFDTD correction factor scheme given 
in [2]. This modification results in it being possible to show, by means of a previously 
unpublished stability theory, that the stability of the corrected algorithm is assured. Further 



validation of the SFDTD algorithm is then given for the case of angled and curved metal 
structures. 

2 Modelling Curved Structures with Finite-Methods 

The conventional approach to modelling curved surfaces with FDTD is to employ a finely 

staircased mesh [4], this approach is unattractive as it requires a large number of FDTD unit 
cells and a correspondingly small time-step. An alternative approach is to locally deform the 
integration contours of the FDTD algorithm [5] in the vicinity of the curved surface; this 
method yields improved accuracy but may require non-physical nearest neighbour `borrowing' 
of field components. For planar circuits the locally conforming method of Gwarek [6] may 
be employed. 

There are rigorous approaches to the time-domain characterisation of curved bodies - those 
recently proposed include finite-volume [7], hybrid finite-volume/finite-difference [8] and vec- 
tor finite element methods [9]. These techniques yield much improved accuracy at the expense 
of increased numbers of operations at each time-step and extra memory requirements. 

A different approach has been followed at the Centre for Communications Research, Univer- 

sity of Bristol, whereby the normal FDTD method is utilised with correction factors, based 
on the static field solutions, introduced into the standard difference equations in the vicinity 
of the curved surface. These factors are calculated by assuming the variation of the field 

close to a metal object to be dominated by its asymptotic static behaviour [10]. 

This approach can be briefly summarised as follows: A section of the standard Yee mesh, 
describing the spatial discretisation of the electric and magnetic fields, is shown in figure 1. 

If a metallic boundary intersects the surface of integration of a field component as shown, 
the standard difference equations for the affected component are modified by the inclusion 

of altered coefficients (or `correction factors') which are calculated from the field's static 
behaviour. 

If the standard FDTD method is viewed as a moment method with delta test functions and 
piecewise linear basis functions, the static field solution theory can be interpreted as the 
local modification of the linear basis functions to a form which more closely resembles the 
expected. spatial behaviour of the fields [10]. This is a standard technique in finite-element 

analysis where higher accuracy and reduced numbers of basis functions can be achieved in 
this manner. 

Static field solutions have been very successful in permitting the accurate analysis of a number 
of curved [10] and small-scale features [11]. In addition to its accuracy, the technique requires 
no increase in computational effort over the standard model, apart from a short initialisation 

procedure within which the correction factors are calculated. 

The drawback to this potentially invaluable technique is that instability may result from the 
introduction of the correction factors into the FDTD algorithm. The problem of whether 
or not an arbitrary set of correction factors will result in instability does not appear to be 

amenable to either an analytic or a practical numerical solution and the problem of how that 

set should be modified to avoid the instability is even more intractable. 
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3A New Finite-Difference Algorithm 

In an attempt to solve the instability problem a model based on the electric field vector wave 
equation was employed, as first ' described in [2]; in this algorithm the magnetic fields are 
eliminated. In addition it becomes possible to employ a co-located field discretisation (ie one 
where all the field components in a given unit cell are placed at the cell's vertices) which 
leads to a much more elegant correction factor formulation. 

Eliminating the magnetic field H from Maxwell's curl equations in a lossless medium gives: 

Vx (V x E) _ =c'2öttE or V2E - V(V E) =c 25 E (1) 

where E is the electric field, c is the velocity of propagation and t is time. In uniform media 
(V "E= 0) this simplifies to : 

V2E = C-2 attE (2) 

(In the case of metallic boundaries the field divergence is non-zero but, in effect, the correction 
factor scheme described in the next section re-introduces the electric field divergence term). 

Using an electric field discretisation scheme where all field components are co-located and 
assuming a regular spatial mesh, the second-order partial derivatives may be replaced by 
centred difference approximations. For example, the update equation for a field component 
Eb may be written: 

y+i(i, j, k) = -Ey-i(i, j, k) + (2 - 
6O aa 

E2 )Ej(i, j, k) 

+ [Ey(i+1, j, k)+Ey(i-l, j, k)+ 

EE(i, j, k+1)+EE(i, j, k- 1)+ 
i 

E(i, j+1, k)+E(i, j-1, k)] 
ý2 

(3) 

where 0 is the space-step, At is the time-step, and "(i, j, k) represents a point in space 
(iA, j0, k0) at time t= nOt. 

Update equations for the other electric field components may be derived similarly, yielding 
a Second-order Finite Difference Time Domain algorithm (or 'SFDTD' for convenience) as 
opposed to the standard FDTD algorithm which involves only first-order derivatives. This 
discretisation of the wave equation is well known, being nothing more than, for example, 
the extension to three dimensions of the one dimensional algorithm of [12]. Other, similar, 
algorithms are those of [13] and [14]. The new aspects of this contribution are the modifica- 
tions, described in section 4, which enable the rigorous treatment of curved surfaces and the 
stability theory developed in section 5. 

It can be shown that the Courant stability criterion (which relates the maximum time step At 
to the minimum space step A) is identical to that required for FDTD. The extra amount of 
memory required by SFDTD to store the past value of each electric field component (E-1 
in (3)) is balanced by that needed for the storage of the magnetic fields in FDTD. The 

computational effort associated with SFDTD in terms of the number of numerical operations 
is slightly lower than that of FDTD. 
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4 SFDTD Correction Factor Technique 

A curved metal surface may be accurately approximated on a small scale by an angled planar 
surface as shown in figure 2. The behaviour of the electric field close to a metal boundary is 
well known to converge to the static solution [15] and hence, in this case, may be described 
by two functions 

En=ki Et=kzn (4) 

where n and t are co-ordinates normal and tangential, respectively, to the surface. 

Taking as an example the first-order spatial derivative, 

.. 
Ey = 

[anEy 
ax + BtEy fix] (5) 

since 

n= x sin B- y cos B (6) 
t= -x cos B-y sin 9 

and 
Ey = -En cos 0- Et sin 0 (7) 

we produce an expression within which (4) may be substituted, yielding the following im- 
proved expression for the derivative at the metal boundary : 

axEyIimproved = -(Sin2 0) k2 ($) 

However 
Et =-Ey2sin 9-Excos 6=keno (9) 

where no is the normal distance from the position of EE2 and Ex to the metal boundary (see 
figure 2). Thus 

_ 
(sin2 B) (Ey2 sin B+ Ex cos 0) (10) azEYlimproved - 

on 0 

the approximation used to the second-order derivative is 

aTxEv(i,. 9, k) =O 
Ey(i+1/2,7, k) -B Ey(i-1/2,9, k) (11) 

equation (11) represents a modification of the expression (9) in [2], where the denominator 
used was 2 (A + a) in an attempt to centre the derivatives at the point (i, j, k). In fact doing 
this makes little difference to the accuracy of the results and prevents the use of the stability 
theory given in the following section. 

Replacing 19 Ey (i+1/2, j, k) with (10), and äaEy (i-1/2, j, k) with the usual centred difference 

approximation, the required expression for the second-order derivative is 

(Eyl 
EzcosBsinB 

_ 
Eye (sin8 2 

O Ey(zý 9ý k) =2-2a 1-+' 
) (12) 

O Oß pß 

where Q is defined as a/0 and Eyi, Eye and EE are field components neighbouring the 
boundary (see figure 2). 

Again, (12) differs slightly from that given in [2] for the reasons described above. 
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This corrected discrete approximation may be utilised instead of the standard difference 
form in the SFDTD algorithm. If ß is unity and 9= 2700 then the original difference form is 
returned and, unless sin O is'O or 1, energy will couple between orthogonal field components 
(as expected). 

The approximations which have been made are that the boundary may be approximated 
over the unit cell by a planar-surface (a considerable improvement over its approximation by 
a staircase) and that the fields will assume their static forms over a distance <A from the 
boundary (which is reasonable if A 

. 
is a small fraction of a wavelength). 

5 Stability Theory for the New Algorithm 

In [2] it was stated that the SFDTD algorithm with its curved surface correction factors was 
an inherently more stable algorithm than the corrected FDTD algorithm. At the time of 
publication, however, the reasons for this were not well understood. 

A necessary criterion for the stability of a numerical model is that it is a model of a stable 
physical process - this is intuitively clear and need not be discussed further except to say 
that this criterion is not by itself sufficient, as shown by the well known limit on the FDTD 
time-step At [16] which, when violated, results in algorithmic instability despite the energy 
conservation implicit in Maxwell's equations. We now show that the aforementioned criterion 
is met by the corrected SFDTD algorithm in two spatial dimensions - the extension to three 
dimensions being trivial. 

In finite-difference form the uncorrected 2-D SFDTD algorithm for any given field component 
can be written: 

E"+'(i, k) =-E"-'(i, k)+(2-k(1+1+1+1))E"(i, k) 

+kE"(i-1, k) +kE"(i+1, k)+kE"(i, k-1)+kE"(i, k+1) (13) 

with the stability factor k= (-L)2 (< 0.5 for stability). In equation (13) as elsewhere in 
this section, some terms have not been collected together in order to help make clear the 
correspondences between terms in the update equations and features of the physical problem. 

In general two curved surface corrections may be required as shown, for example, at node 
(0,0) in figure 3, with the angles of the two tangents to the curved boundary being 01 and 
02 and the distances from node (0,0) to the boundary being al =, 31A and a2 = X320 in the 
x and z directions respectively. The update equations for Ex and Ez at the point (0,0) then 
become: 

En+1(p, 0) = -E"-1(0,0) + 2-k sine Bl 
+ sine 02 

+1+, E"(0 0) + x Ql ß2 x 

sin Bl cos Bl Sin B2 cos 02 
En kEz(1,0)+kEz(0,1)-k 1E (0,0)-k ß(0,0)) 

(14) ßi P2 

and 

En+1(0,0) _ n-1(0,0) + 
(2_k coß2 

i 

01 
+ c0S22 02 

+1+1 E"(0,0) + 

sin 01 cos 61 sin 02 cos 02 
kEZ (1,0) + k4 (0,1) -k Rl Ez (0,0) -k ß2 

g (0,0)) (15) 
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Now consider the passive network shown by figure 4; this circuit consists of two separate 2-D 

networks, one with nodal voltages represented by V. (i, k) and the other, VZ(i, k), where the 
co-ordinates (i, k) specify the voltage at the ith node in the direction x in the network, and 
the kth node in direction z. The only connections coupling the two networks are the ideal 
transformers Tl and T2 at the node (0,0). All capacitors are assumed to be identical, with 
value C, as are all the inductors, L, with the exception of the components L1 and L2. 

At, for example, the node (1,1) (not connected to the transformer) simple analysis shows 
that: 

attV(l, 1) 
ry(2,1)cL V(1,1) 

+ 
y(1,2)cL V(1,1) 

+ 
V(O, i)cL V(1,1) 

+ 
V(1,0)cL V(1,1) 

J 
(16) 

Replacing the temporal derivative of V with the appropriate centred difference expression 
yields: 

Vn+'(1,1)-' 
(2_ AG, t (L 

+L+L+ V"(1,1) (17) 

2 

+ýt (Va(2,1)+Vn(1,2)+Vn(0,1)+Vn(1, o)) 

Thus, the nodal equations in the region not connected to the transformer are identical in 
form to the SFDTD update equations (13) in free space with the following substitutions: 

C= E02 (1$) 
L=µ 

It should be noted that the components in the network are analogs of the assumed spatial 
dependence of the fields in the SFDTD algorithm (ie: piecewise linear) and that, in the 
region not connected to the transformer, this two dimensional lumped equivalent circuit is 
the same as the planar FDTD equivalent circuit presented in [6]. 

The analysis of the nodal voltages at the node (0,0), where two of the branch connections 
are to transformers rather than adjacent nodes, is more involved. Firstly we assume the 
transformers are ideal and have winding ratios 1: Ni and 1: N2 respectively. Thus for T1: 

Vz1 =- 
Nl 

(19) 

I: i=N1I1 

since the transformer is ideal. Summing voltages around the loops containing the windings 
gives: 

Vs(O, 0) - Vxi = L18 I1 (20) 
V (0,0) -Vi=L, Otl, 1 

solving for the nodal voltages and current Ixl yields: 

äýIxl = 
Vx(O, 0) + N1Vz(O, 0) (21) 

Li (1+N1) 

thus Vx (0 0) + NiVZ (0,0) 8tIz1 = -Nl (22) 
L1(1+N1) 
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If we now let Nl = cot B1 

ýtlii = 
sine01Vx(0,0) -sin 01 cos 01Vz(0,0) 

L1 
(23) 

-cost 8jVZ(0,0) + sin 01 cos 0IVx(0,0) 
ýý Iz1 =L 1 

Identical expressions (but with 92 and L2) can be produced for the other transformer. These 

currents can be used to derive: 

D2 sin2 91 sine 02 11 
Vz +l (0,0) = _VX -1 (0,4) +2-CL, + LZ +L+L Vi (0,0) + (24) 

ýt 
Vx (1,0) + 

ýt 
Vz (0,1ý 

ýt sin 
-01 

cos Bl 
V, ý (0,0) - 

Di sin BZ cos BZ 
V" (07 0) 

CL CL CL1 CL2 

and it is now clear that substitution of 

Li = µa1 (25) 
La = µ0i 

yields the SFDTD update-equation (14) with the curved surface corrections. 

It has now been shown that the SFDTD model both with and without the curved surface 
correction factors is exactly equivalent to a representation of a passive network. Energy 

conservation is guaranteed in such a network, and so therefore is stability. It is if course 
possible to have a stable active network but in such a case stability can only be assured 
by examination of all possible feedback paths within the network, this corresponds to the 
impractical task of evaluating all the eigenvalues of the difference algorithm. 

Here it should be noted that if the denominator of (11) is that given by equation (9) in [2] 
it is not possible to produce a passive circuit equivalent to the corrected algorithm. This 
implies that the slightly different algorithm given in [2] may exhibit instability, and for a few 

structures this has proved to be the case. 

6 Validation of the New Algorithm 

6.1 Test case 1: Cylindrical resonator 

A metal-walled closed cylindrical resonator identical to that described in [10], was modelled 

using the combination of SFDTD and the correction method described above and a fixed 

uniform mesh size of 5cm. The simple geometry allows analytic cavity resonance techniques 

to predict the resonant frequencies with high accuracy for comparison. 

Figure 5 shows the variation in the cylinder's resonant frequencies as a function of radius. The 

solid line represents the (perfect) analytic solution and the dashed line the results produced 
by the new algorithm, SFDTD. The marker points indicate the predictions of the standard, 
staircased, FDTD method (employing the same mesh size). Comparison of these results with 
those given in [2] using the slightly different, and potentially unstable, scheme shows that 
the modification to the correction factors introduced in section 4 of this contribution has 
had little effect on the results. Indeed, particularly for the model with radius 16cm, some 
improvement in accuracy can be noted. 
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Overall, given the coarseness of the mesh with respect to both frequency and surface curva- 
ture, the SFDTD results adhere well to the theoretical curves and are, as expected, consid- 
erably more accurate than the staircased FDTD technique. The TM010 mode in'particular 
is excellently characterised, virtually independently of cylinder radius. The results for the 
TMllo mode are good for radii of > 18cm but become less accurate as the radius decreases 
(this is probably due to both a decrease in the number of field components available to de- 

scribe the cylinder and to the increase in frequency of the mode). The most difficult mode 
to model is clearly the TE111 mode, the FDTD results for this are notably poor and while 
the SFDTD algorithm performs more consistently, the results may indicate potential for 
improvement in the technique. 

6.2 Test case 2: Rotated rectangular box 

A metal walled rectangular box with square cross-section was analysed, again with a fixed 
mesh size of 5 cm and a height of 15cm, however the box was rotated through an angle 0 with 
respect to the mesh. This resulted in the sides of the box not being aligned with the nodal- 
planes of the difference algorithm. For convenience, values of 0 producing integer gradients 
were chosen and the box side lengths were selected for each 0 such that the surfaces of the 
box passed through the corners of the unit cells - as illustrated for = arctan 4= 14.00 by 
figure 6. 

The FDTD algorithm approximates the angled surfaces with a staircase and the SFDTD 
algorithm with the correction factors described above. 

Table 1 shows the resonant frequencies for the box with angle 0= 14.00 (it should be noted 
that due to the square cross-section of the structure each resonance may represent more 
than one mode). A summary of the results for four angles (arctan 

, arctan . 1, arctan 3 and 

Mode Theory FDTD SFDTD FDTD Error SFDTD Error 
101 633 MHz 620 MHz 622 MHz 2.1% 1.7% 
012 869 MHz 648 MHz 870 MHz 2.4% 0.1% 
011 549 MHz 575 MHz 545 MHz 4.7% 0.7% 

Table 1: Resonant frequencies for rotated rectangular box 

arctan 2) is given by table 2. Once again the SFDTD results (with curved surface corrections) 
agree well with the analytic results, in the majority of cases the resonant frequencies are 
correct to within one percent. The FDTD algorithm, as might be expected, fares less well - 
although some modes are well characterised, most exhibit significant error. 

The mean error across all modes and all 0 for FDTD was 3.8 % and 1.0 % for SFDTD, 
thus SFDTD's curved surface corrections reduce the modelling error in this case by around a 
factor of 4; this being a similar figure to that achieved when modelling the cylindrical cavity 
described in the previous section. 

As expected, neither the cylindrical nor the rotated-box geometries exhibited any form of 
numerical instability. 
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Angle, Mode FDTD Error SFDTD Error 
11.3° 101 1.6% 0.6% 

012 0.1% 0.6% 
011 6.3% 0.9% 

14.0° 101 2.1% 1.7% 
012 2.4% 0.1% 
011 4.7% 0.7% 

18.4° 101 0.3% 1.8% 
012 0.6% 0.8% 
011 11.3% 0.5% 

26.6° 101 3.7% 2.1% 
012 4.2% 1.1% 
011 8.2% 1.0% 

Table 2: Resonant frequencies for a number of rotated rectangular boxes 

7 Summary and Conclusions 

This contribution has shown how an alternative finite-difference time-domain algorithm can 
be derived. This algorithm, SFDTD, can be simply modified to rigorously model both curved 
and angled metal surfaces. The algorithm's stability is assured as the behaviour of the field 

components in the algorithm is an exact analog of the voltages in a passive electrical network. 

The SFDTD algorithm is, in the authors' opinions, far better suited to the analysis of curved 
and angled boundaries than the FDTD method. This fact arises because the co-location of 
the field components enables a simple resolution into the normal and tangential components 
in terms of which the boundary conditions are specified. 

Future development of this algorithm is expected to include its application to problems 
containing dielectric interfaces and sharp metallic boundaries (for example microstrip). For 

each of these cases a specific correction must be introduced into the algorithm by means of 
the appropriate static field solution, in order to compensate for the loss of the field divergence 
term, just as has been done here for smooth conducting boundaries. If this can be achieved 
SFDTD may prove in the future a superior alternative to the established FDTD algorithm. 
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two-layer FSS excites a passband of width 11.5%. which peaks at 
355GHz to give an edge of band separation (where the loss in 
both bands is less than 0.5dB) of 1.07: 1. The design of the four- 
layer semi-air spaced FSS permits the use of the interference 
effects between the two dichroic wafers to increase the roll-off rate 
to 1.05: 1 (Fig. 3). In addition, the partially transmitting lobe cen- 
tred at 450GHz is suppressed from -6dB to below -16dB, broad- 
ening the reflection bandwidth to 31%. Simultaneously, the 
passband width is increased to 19% by the excitation of a second- 
ary peak at 315GHz. Figs. 2 and 3 show that the shape of the fre- 
quency response curves is predicted accurately. However, the 
measured loss, which for the four-layer FSS is less than 1 dB in the 
range 300 - 355GHz but increases to 1.5dB at the specified band 
edge (362GHz), is somewhat higher than expected. The value of 
tans that was used in the initial design was found to be too low, 
and better agreement with measurements was obtained using a 
value of 157 x 10-1, as indicated by the open circles in Figs. 2 and 
3. This observation is consistent with comparisons made with 
measured results in the TE15°, TE45° and TM15° orientations. 

In the design of rapid roll-off multilayer FSS. the passband is 
excited close to the edge of or even within the inherent reflection 
band of individual layers. However, the computer model predicts 
that there is no mismatch loss at the transmission band centre and 
very little loss at the band edge. The Fabry-Perot concept points 
to the origin of this frequency dependent excess loss. The reflectiv- 
ity of the individual arrays is high in this passband region, so the 
path length through the substrate which results from the multiple 
reflections between the screens is very large. The absorption com- 
ponent of the FSS insertion loss is therefore critically dependent 
on the substrate material properties. 

Conclusions: The tans value for the fused silica wafers that were 
used to support a four-layer rapid roll-off submillimetre-wave FSS 
was found to be higher than previously reported in the literature. 
Although this may be attributed to a high `fixed water' content [61 
in the samples that were used, it highlights the importance of char- 
acterising the properties of the substrate material to achieve 
repeatability and a low loss performance. 
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Analysis of general 3-D PEC structures using improved CPFDTD algorithm 
C. J. Railton and I. J. Craddock 

Indexing terms: Finite-difference time doinuin method 

The contour path finite difference time domain (CPFDTD) 
method, employing locally distorted integration contours, has 
been shown to give accurate results for curved three-dimensional 
metal structures. The numerical stability of this scheme is not. 
however, guaranteed and significant skill is required to generate 
an appropriate grid. The authors present a modification to the 
three-dimensional CPFDTD method which ensures stability and 
which permits simple generation of the locally distorted grid. The 
accuracy of the scheme is demonstrated through the calculation of 
the resonant frequencies of circular cylindrical and spherical 
resonators. 

Introduction: The contour path finite difference time domain 
(CPFDTD) method has been shown to provide an accurate and 
efficient method for analysing smooth curved metal structures [I. 
2]. A major advantage of this approach when compared with 
other conformal techniques is that the simplicity and efficiency of 
the Cartesian mesh is retained throughout the majority of the 
problem space and only those nodes which are adjacent to the 
curved surface need he given special attention. Despite the fact 
that this type of algorithm appears to allow the efficient analysis 
of very complex structures, comparatively little use of the method 
has been reported. Some researchers have called into question the 
stability of the original CPFDTD scheme since it employs a non- 
causal and nonreciprocal 'nearest neighbour' approximation [3]. 
Despite the fact that stability cannot be guaranteed. it appears 
that, with appropriate grid selection, the instability is weak 
enough so as not to preclude its use for open-domain problems. 
For lossless resonant structures. however, for which there is no 
mechanism for dissipating spuriously generated energy, meaning- 
ful results are not usually obtainable [4]. These difficulties prevent 
the scheme being used in general purpose codes which are 
intended to be used by nonspecialists in FDTD. 

In this Letter, the technique. proven for the stabilisation of the 
two-dimensional CPFDTD [5], is extended and applied to the 
three-dimensional case. To demonstrate the performance of the 
scheme. the calculated resonant frequencies of circular cylindrical 
and spherical cavities are compared to those obtained using the 
staircased FDTD method and to analytical results. 

Modification: All the instability mechanisms which were described 
in (5] and which resulted from nearest-neighbour borrowing or 
from the overlapping of integration surfaces also exist in the three- 
dimensional case and can be remedied using similar techniques. 
The modification to the algorithm used in [5] can be applied inde- 
pendently in each of the three orthogonal planes but, in addition, 
there are a number of complications peculiar to the three-dimen- 
sional formulation which need to be addressed. First, an edge 
which is not used in one plane may be required in the other. For 
example, the edge associated with an E, node may be needed to 
calculate an adjacent H, node but not used for the adjacent H. 
node. This presents no problem in principle but more care is 
required when setting up the mesh. 

A second situation, unique to the three-dimensional case, can 
occur when an H node is outside the metal but one or more of the 
surrounding E nodes are unavailable. Whereas in the two-dimen- 
sional case this situation is resolved by 'borrowing' the value of 
the unavailable E node from the adjacent collinear cell, in the 
three-dimensional case the nearest available collinear E field node 
may be a great distance away. This situation occurs when the 
metal object makes a glancing angle with the grid. To avoid the 
undesirable situation of long distance borrowing, we set the values 
of E field nodes to zero, which would require borrowing from a 
distance greater than one unit cell. With these provisions, it is pos- 
sible, as in the two-dimensional case, to construct a mesh whose 
update equations are formally identical to those of a passive elec- 
trical circuit which is, therefore. guaranteed to be energy conserv- 
ing. In the examples which follow. no instability was seen when 
using the modified scheme, even though the time step was not 
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t reduced below that used in standard FDTD. Without the modifi- 
cation, however, they all exhibited severe instability even with very 
small time steps. 
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Fig. 1 Calculated resonant frequency of first TE mode (TE111) of cir- 
cular cylindrical cavity of height 30cm 
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cular cylindrical conic of height 30cm 
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Application to circular cylindrical resonator: To verify the accuracy 
of the scheme, the resonant frequencies of a range of circular 
cylindrical cavities, having heights of 30cm and radii varying 
between 16 and 22cm, were calculated. The results for the first TE 
mode are shown in Fig. I and the results for the first TM mode 
are shown in Fig. 2, where they are compared to results obtained 
sing the staircase approximation, the SFDTD method described 

in [6] and to analytical results. It can be seen that in both cases 
there is excellent agreement between the stabilised CPFDTD 
esults and the analytical results. The results are clearly superior to 
hose obtained using the staircase approximation and are at least 
s accurate as those obtained using the SFDTD method. 
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3 Calculated resonant frequencies of spherical cavity of radius 
against number of unit cells used 

stabilised CPFDTD 
staircase FDTD 

replication to spherical cavity resonator: As a further example, the 
1`ýAherical cavity with a radius of 20cm was investigated: The 

sphere was placed in a cubic computational domain with sides of 
50cm and unit cell sizes ranging from 1.25 to 10cm. Unlike the 
cylinder, this is a fully three-dimensional structure. The calculated 
resonant frequencies for the first four nondegenerate modes are 
shown in Fig. 3, where they are plotted against the number of unit 
cells used in each direction and compared with results obtained 
using the staircase approximation. It can be seen that accurate 
results are obtained for the modified CPFDTD method even with 
very coarse meshes, especially for the first two modes. As before, 
the results are clearly superior to those obtained using the stair- 
case approximation. 

Conclusion: It has been shown that the modification previously 
demonstrated for the two-dimensional CPFDTD scheme, which 
ensures that the spatial discretisation is energy conserving, can be 
successfully extended and applied to the general three-dimensional 
case. The accuracy of the method has been demonstrated for the 
case of circular cylindrical and spherical cavities. At no time did 
the algorithm exhibit numerical instability, even though the time 
step used was no less than that used for standard FDTD and the 
algorithm was run for many thousands of iterations. Without the 
modification, the algorithm often showed instability, sometimes 
after only a few hundred iterations, irrespective of the time step. 
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Millimetre-wave signal generation by optical 
filtering of frequency modulated laser 
spectra 

P. A. Davies, A. P. Foord and K. E. Razavi 

Indexing terms: Distributed feedback lasers. Optical control of 
microwaves 

Optical mixing on fast photodiodes is a potentially convenient 
method for generating millimetre-wave signals in fibre radio 
applications. The authors describe multiplication of the 
modulation frequency of a DFB laser using a periodic optical 
filter to enable mixing between FM sidebands, and report 
experimental generation of a 19.2GHz signal. 
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Abstract 

The Contour Path Finite Difference Time Domain (CPFDTD) method has been shown to give 

accurate results for curved metal structures. However, the numerical stability of this scheme is not 

guaranteed and significant skill is required in order to generate an appropriate grid. In this 

contribution, we present a modification to the two-dimensional CPFDTD method which ensures 

stability and which permits simple generation of the locally distorted grid. The accuracy of the scheme 

is demonstrated through the calculation of the resonant frequencies of circular cylindrical resonators. 

Introduction 

The Contour Path Finite Difference Time Domain (CPFDTD) method has been shown to provide an 

accurate and efficient way to analyse smooth curved metal structures [1], [2]. Unfortunately the 

use of the "nearest neighbour" approximation or the use of extended contours which are allowed to 

overlap is likely to produce a system which violates the law of conservation of energy, regardless of 

the size of the time step. In this contribution we present a modified form of the CPFDTD algorithm 

which overcomes this problem without sacrificing accuracy. This modification recasts the "nearest 

neighbour" approximation, employed in standard CPFDTD, such that reciprocal interaction of nodes 

is obtained. It can be demonstrated that the modified system is equivalent to a passive network 

consisting only of capacitors and gyrators which must necessarily conserve energy [3]. The modified 
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The modified scheme has been tested on a variety of resonant structures including S bends, 

waveguides of complex cross-section and rotated rectangles. In each case the modified scheme has 

been found reliable and accurate. 

The Nature of the Instability 

Consider the cross-section of a circular cylindrical resonator, a quarter of which is shown in Figure 1. 

Here, the grid for the TE problem is shown where the H= nodes are indicated by circles and are 

located at the centre of each undistorted cell. The Et and E. nodes are marked by crosses or arrows 

and are found along the edges of cells. The magnetic field is assumed to be constant over the area 

of a given cell while electric fields are assumed to be constant over the length of the edge 

corresponding to a given node. Dashed lines indicate edges which are not used in the scheme. The 

E nodes represented by arrows cannot be calculated directly using the FDTD scheme because one or 

both of the HZ nodes required in the corresponding update equation is in the metal. Following [1] 

these nodes borrow their value from the nearest available collinear E field component. The numbers 

in the centre of each square are the areas of the Faraday contours and the numbers next to the edges 

are the lengths of straight sections of the associated contour. In each case the values are normalised 

so that values of 100 correspond to an unmodified cell. Although the grid shown in Figure 1 appears 

to be the most obvious way of implementing the CPFDTD algorithm, it is not difficult to show that 

such an implementation leads to numerical instability, even using very small time steps. 

The root of the problem, in this case, can be traced to those E nodes whose values are borrowed from 

neighbouring cells. This causes an influence on an H node from the borrowed E node without any 

corresponding influence on the E node from the H node. For instance, referring to Figure 1, the 

update equation for H=(1.5,0.5) is given by 

H=. i(15,05) = HH(1.5,0.5) _ 
µä( 1 E1*'n(2,0.5) +76E; "in(1.5,0) - 

77 14112(2.5,1)) 
(1) 

76 

where E, 
ß(2.5,1) 

is the borrowed node, & is the time step and 6 is the space step. 

The update equation for E,. (2.5,1) is given by 

EsýýR(2.5,1) _ E=ý (2.5,1) +H (25,1. -Ai (25,0) (2) 
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It can be seen that no corresponding inclusion of H=(1.5, O. 5) exists. This scheme represents an 

unphysical situation which, therefore, cannot be guaranteed to behave in an energy conserving 

manner. 

In order to remedy the situation, we must modify this equation to include the missing term as follows: 

Es'1ý(25,1) =E '2(23.1) + 
at Hz (25,1.5)- 67 00N= (2.5,0.5) (3) 
eb( 167 167 

) 

Here we have taken a weighted average of the two H= nodes which have a dependence on E, (2.5,1) 

with the weights being in the same ratio as the strengths of the corresponding dependencies. As well 

as being intuitively more reasonable, the resulting scheme is directly equivalent to a passive circuit 

consisting entirely of capacitors and gyrators [3]. The system must, therefore, conserve energy. 

Numerical Results 

In order to demonstrate both the stability and accuracy of the scheme, the resonant frequencies of the 

TE modes of a circular cylinder have been calculated. (The TM case requires no modification to the 

standard CPFDTD scheme since, in this case, the scheme can be shown to be physically realisable. ) 

Calculations were carried out for cylinders of radii 15cm - 24cm and, in each case, the space step, 

S, was 5cm. Clearly this is a very coarse mesh and is a stringent test for the algorithm. The 

calculated results for the first three TE modes are shown in Figure 2 where they are compared with 

analytical results and with standard staircased FDTD. The agreement between the modified CPFDTD 

results and the analytic results is excellent for the first two modes. Furthermore, the modified 

CPFDTD results are clearly superior to the staircased results. For the third mode, some discrepancy 

between the analytic and the modified CPFDTD results are evident. This discrepancy is, however, 

only observed for frequencies corresponding to a discretisation of less than six cells per wavelength. 

For finer discretisations the excellent agreement is again obtained. In no case did the use of this 

algorithm cause numerical instability even though trials were carried out in all cases with 8000 

iterations and in some cases 16000 iterations. All tests were performed using a time step which was 

90% of the CFL limit for standard FDTD. With the unmodified algorithm most of the cylinders led 

to unstable systems. In many cases this became apparent after only a few hundred iterations even with 

time steps of 10% of the CFL limit. 
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Conclusions 

We have described a simple and effective modification to the well known locally distorted CPFDTD. 

We have shown that, with this modification, the scheme is stable and we have verified this for 

circular cylindrical resonators of arbitrary radius. In addition, the good accuracy of the modified 

scheme has been shown. Trials have also been performed using different objects including rectangles 

whose edges are at an angle to the mesh, and on S bends in parallel plate waveguide. In all cases the 

algorithm remained stable - and accurate. It is anticipated that the added robustness which the 

modification provides will facilitate more widespread use of the CPFDTD algorithm. 
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Figure Captions 

1. The CPFDTD method applied to a cylinder 

2. Calculated resonant frequencies for circular cylindrical resonators 
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A NOVEL FINITE-DIFFERENCE TIME-DOMAIN ALGORITHM INCORPORATING CORRECTION 

COEFFICIENTS FOR CURVED BOUNDARIES. 

IJ Craddock and CJ Railton 
Centre for Communications Research, Faculty of Engineering. 

University of Bristol, Bristol. BS8 1TR. England. Tel: 0272 303727 Fax: 0272 255265 

Abstract 
This contribution describes research undertaken into a new finite-difference implementation of the 
equations of electromagnetism which is designed to facilitate the inclusion of static field solutions 

for the treatment of curved conducting surfaces. The new method's derivation is shown, the 
theory behind the use of the static field solutions in the algorithm is outlined and modelled results 

for a typical curved structure are compared to those produced analytically. 

INTRODUCTION 
The Finite-Difference Time-Domain (FDTD) technique is widely accepted as an efficient, reliable 
and flexible method for the electromagnetic analysis of a wide range of structures. Possibly the 
most fundamental disadvantage of FDTD is that the method represents the modelled object as a 
cartesian-based mesh of field components, usually arranged in the configuration first suggested by 
Yee [1] in 1966 (illustrated by figure 1). 

Ey 

Of- 
Node (ij, k) 

Ez " 

Figure 1: Yee field discretisation 

This discretisation prevents the standard FDTD method from accurately characterising the curved 
structures which arise frequently in engineering applications. Simply increasing the spatial resolu- 
tion of the algorithm is not generally effective, as shown by Holland in [2] and is also computationally 
expensive, and while conforming the mesh in the manner proposed by Holland et al [3] is an option, 
this necessitates a considerable increase in computational overheads. 

A different approach has been followed at the Centre for Communications Research, University of 
Bristol, whereby the normal FDTD method is utilised with correction factors introduced into the 
standard difference equations in the vicinity of the curved surface. These factors are calculated by 

assuming the variation of field close to a metal object to be dominated by its static functions in 
the manner proposed by Railton [4]. In order to properly put this contribution into context this 
approach is briefly described in the following section. 

FDTD CORRECTION FACTOR TECHNIQUE 
A section of the standard Yee cell, describing the spatial discretisation of the electric and magnetic 
fields, is shown in figure 2. 

If a metallic boundary intersects the surface of integration of a field component as shown, the 
standard difference equations for the affected component are modified by the inclusion of coefficients 
(or 'correction factors') which have been calculated from the field's static behaviour. 
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Figure 2: FDTD correction scheme 

This method has permitted the accurate analysis of both curved structures, as in [4], and other 

objects in which the static field solution may be exploited, such as those investigated by Shorthouse 

and Railton in [5]. In addition to its accuracy, the technique requires no increase in computa- 
tional effort over the standard model, apart from a short initialisation procedure within which the 

correction factors are calculated. 

One problem which has been revealed is that the necessity of applying correction factors to field 

components whose integration surfaces intersect, such as for components Hx and Ey in figure 2, can 
cause apparent physical inconsistencies which may result in late-time numerical instability of the 

algorithm. 

Analytic stability criteria may be easily produced for many uniform finite-difference schemes, how- 

ever the authors are not aware of any practical technique which can rigorously take into account 
the effects of non-uniformities resulting from the introduction of the correction factors into an algo- 

rithm. There is then no known method of either predicting the stability characteristics of a given 

set of correction factors, or of modifying the set in such a way as to guarantee stability. 

A NEW FDTD ALGORITHM 
One solution to this difficulty is to employ a model based on the electric field vector wave equa- 
tion. The algorithm is formulated entirely in terms of electric field which removes the necessity of 

correcting the magnetic fields, reducing or hopefully eliminating the aforementioned possibility of 
instability. 

More than one implementation of such a model is possible, depending on the field discretisation 

employed, and several have been investigated by the authors. The model found most suitable, which 

also led to the simplest correction factor formulation, was based on a co-located field discretisation 
(ie one where all the field components are placed at the node (i, j, k) shown in figure 1). 

The derivation is as follows: 
Eliminating the magnetic field H from Maxwell's curl equations gives: 

VxVxE=c2 572E or V2E-0(0"E)=c202E (1) 

where E is the electric field, c is the velocity of propagation and t is time. In free space (V "E= 0) 

this simplifies to 
2 

v2E=c2ä2E (2) 

Using an electric field discretisation scheme where all field components are co-located and assuming 
a regular spatial mesh, the second-order partial derivatives may be replaced by centred difference 
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approximations. For example, the update equation for a field component Ey may be written: 
2A2 

Ey +1(i, j, k) _ -Ey (i, j, k) + (2 -6 0c 2T) 
Ey (i, j, k) 

+ [EE (i + 1, j, k) + EE (i - 1, j, k)+ 

E, (i, j, k+l)+Ey(i, j, k-1)+ 
2 AT 

Ey (z, + 1, k) + Ey (z, 7-1, k)] 
AT 

(3) 

where A is the space-step, AT is the time-step, and "(i, j, k) represents a point in space (iA, j0, k0) 
at time t= nOT. 

Update equations for the other electric field components may be derived similarly, yielding a Second- 

order Finite Difference Time Domain algorithm (or 'SFDTD' for convenience) as opposed to the 
standard FDTD algorithm which involves only first-order derivatives. 

It can be shown that the stability criterion (which relates the maximum time step AT to the 
minimum space step 0) is identical to that required for FDTD. The extra amount of memory 
required by SFDTD to store the past value of each electric field component (Er' in (3)) is balanced 
by that needed for the storage of the magnetic fields in FDTD. The computational effort associated 
with SFDTD in terms of the number of numerical operations is slightly lower than that of FDTD. 

SFDTD CORRECTION FACTOR TECHNIQUE 
A curved metal surface may be accurately approximated on a small scale by an angled planar 
surface as shown in figure 3. The behaviour of the electric field close to a metal boundary is well 
known to converge to its static form, as described by Rayleigh in [6], and hence in this case may be 

characterised by two functions 
E,, = kt Et = ken (4) 

where n and t are co-ordinates normal and tangential, respectively, to the surface. 

A 
Ey1 Eß1 

" 
Ex T 

Node (i j, k) -1a1 

va 

Figure 3: SFDTD correction scheme 

Taking as an example the first-order spatial derivative, 

a 
Ey - 

[0E. an 
+ 

aEy at 
äý an äx at äx 

(5) 

Substituting functions in x and y for n and t, and expressing Ey as a rotation of Et and En, we 
produce an expression within which (4) may be substituted. 

This yields the following improved expression for the derivative at the metal boundary : 

My 
ay (sin2 0) k2 (6) 

improved 
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However 
Et = Eye sin 0+E.,, cos 0= keno (7) 

where no is the normal distance from the position of Eye and Ex to the metal boundary (see figure 3). 
Thus 

aEyI 
_ 

(sin eB)(Ey2sinB+EEcosB) 

ý improved no 
(g) 

(91 

the centred-difference second-order derivative is 

aE (ý+i/a, ý. k) 8E (ý-il2, ý, k) 02EY (i, j, k) 
öx2 2(O + a) 

replacing the derivative closest to the boundary with (8), and the other derivative with the standard 
difference approximation, the required expression for the second-order derivative is 

ö2Ey(i, j, k) Ey1 EE. cosBsinB Eye (sinB)2l 

J 
(lo) 

a22 =1 A2(ß+ 1) 
+ 

2A2ß(ß+ 
1) 202('3 + 1) 

1+0 

where /3 is defined as a/0 and E. 1, Eye and Ex are field components neighbouring the boundary 
(see figure 3). 

This corrected discrete approximation may be utilised instead of the standard difference form in 
the SFDTD algorithm. If /3 is unity and 0= 90 then the original difference form is returned and, 
unless sin/3 is 0 or 1, energy will couple between orthogonal field components (as expected). Note 
that by removing the magnetic fields and co-locating the field components, the resulting correction 
scheme is considerably more simple than that which was obtained when using FDTD. 

The only assumptions which have been made are that the boundary may be approximated over the 
unit cell by a planar surface (an improvement over its approximation by a staircase) and that the 
fields will assume their static forms over a distance <A from the boundary (which is reasonable if 
0 is a small fraction of a wavelength). 

AN EXAMPLE PROBLEM 
A metal-walled closed cylindrical resonator identical to that analysed by Railton [4], was modelled 
using the combination of SFDTD and the correction method with a fixed uniform mesh size (A) 

of 5cm. The simple geometry allows analytic cavity resonance techniques to predict the resonant 
frequencies with high accuracy. 
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Theory -- SFDTD ODA+ Staircase 

Figure 4: Cylinder resonant frequencies 
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Figure 4 shows the variation in the cylinder's resonant frequencies as a function of radius. The solid 
line represents the (perfect) analytic solution and the dashed line the results produced by the new 
algorithm, SFDTD. The marker points indicate the predictions of the standard, staircased, FDTD 
method. 

Overall, given the coarseness of the mesh with respect to both frequency and surface curvature, 
the SFDTD results adhere well to the theoretical curves and are, as expected, considerably more 
accurate than the staircased FDTD technique. The TMO10 mode in particular is excellently char- 
acterised, virtually independently of cylinder radius. The results for the TM110 mode are good 
for radii of > 18cm but become less accurate as the radius decreases (this is probably due to both 
the number of field components available to describe the cylinder decreasing and to the increasing 
frequency of the mode). The most difficult mode to model is clearly the TE111 mode, the stair- 
stepped FDTD results for this are notably poor and while the SFDTD algorithm performs more 
consistently, the results may indicate potential for improvement in the technique. 

No evidence of any numerical instability was exhibited by the method even over runs of 20,000 
iterations, except in a very small proportion of the test cases where it was found that the curved 
metal boundary passed very close to a field node; deforming the geometry slightly at these points or 
reducing the time-step were found to be suitable solutions to this problem. This is a not unexpected 
finding as the effect of the correction scheme is to effectively introduce an image node whose spacing 
from its neighbouring nodes should not violate the standard stability criterion. 

CONCLUSION 
The new algorithm, SFDTD, presented in this report, can be simply modified to include correction 
factors which enable the rigorous treatment of metallic curved boundaries. The method has been 
shown to provide a high degree of accuracy when analysing a cylindrical resonator even when 
employing a coarse mesh, while not exhibiting the numerical instability which may result from the 
modification of other difference algorithms. 

The authors are continuing to investigate this technique and intend to both validate the method by 
further experiment and to generalise it to dielectric and open structures. 
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value, normalised to Z., and renormalised to Z,, f (= 50f). The 
error bars represent the estimated measurement uncertainty to a 
95% confidence level. 
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Fig. 2 Irk for nominal 50Q load, referenced to Z. and normalised to 
5092 

p referenced to 5012 
" referenced to Z. 

Comment: For the results of S measured in terms of Z. to be 
renormalised to Z,, the conditions at the junction between a lossy 
and an ideal lossless line must be considered (see [61). It has been 
shown by calculation [5] that at a junction between lossy and loss- 
less inner conductors of coaxial line the capacitance per unit 
length of the lossy line is independent of frequency below 
500MHz. It can also be shown [2,3] that even for p an order 
larger than those shown in Fig. 1. (GIwC)<10-6. With those 
approximations, the perturbation to the field that would exist at 
the junction of a practical standard line with an ideal line is negli- 
gible. This condition is sufficient for the renormalisation process 
to be valid (at least to the extent that the method has given similar 
results to those shown in Fig. 2 when applied to a number of 
nominal 5052 lines of different sizes and lengths). 

Conclusion: A method of calibrating a VANA in terms of the 
nominal 50A defined for a lossless standard line at frequencies for 
which conductor loss is significant has been reported. The results 
of its use have been shown to be consistent with the DC resistance 
of a nominal 5012 termination within the estimated measurement 
uncertainty. 
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Reducing the computational overhead of the 
near-field transform through system 
identification 

I. J. Craddock, P. G. Turner and C. J. Railton 

Indexing ternts: Finite-difference time domain method 

The system identification technique is applied to the output of a 
time-domain near to far-field transform employed with the FDTD 
algorithm. The technique is used to characterise the far field of a 
microstrip antenna, the accuracy of the results is evaluated. and 
the computational savings and overheads involved are discussed. 

Introduction: The current and predicted future high level of 
demand for mobile communications systems has stimulated 
research in the modelling of microwave antennas. One popular 
numerical technique is the finite difference time domain (FDTD) 
method. 

The recent development of time-domain field extrapolation 
techniques [1] (or 'near-far' transforms) has enabled the wideband 
FDTD analalysis of the radiation processes inherent in antenna 
and EMC problems [2] by calculating the field level at a number 
of observation points outside the FDTD domain. 

The computational overhead associated with the near-far trans- 
form is in general a small proportion of the overall requirement 
and in many cases may be disregarded. Unfortunately, this over- 
head rises in proportion to the number of observation points in 
the far-field and when characterising. for example. an antenna 
radiation pattern: achieving sufficient angular resolution requires 
this number to be large. 

The resulting increase in run time makes the computation of an 
antenna's far-field on a modest-sized computer with reasonable 
angular resolution an almost prohibitively long process. It is 

shown in this Letter, however. that employing system idenitifica- 
tion to exploit the resonant nature of typical antennas achieves a 
major reduction in run-time without incurring any loss of accu- 
racy. Neither this drawback of the near-far algorithm, nor the 
proposed solution have, to the authors' knowledge, been previ- 
ously examined. 

System identification theory: A detailed study of system identifica- 

tion techniques can be found in [3]: the application of one such 
technique to this particular problem may be briefly summarised as 
follows: 

FDTD and 
near- tar 
transform 

ý. desompling -º 

at F-+( = 
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FDTD method), along with new extensions to this technique, to 
the efficient analysis of a simple but realistic EMC problem for 
which measured data exist. 

Fig. Structure of 4: 2 compressor cell 
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E 3m E 
N 

E 

extension is needed with or without Booth encoding. This feature 
makes the two schemes comparable, although using 4: 2 compres- 
sors is slightly better because of the simplicity and the lower 
number of gate levels. 
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Application of the FDTD method and a full 
time-domain near-field transform to the 
problem of radiation from a PCB 

I. J. Craddock and C. J. Railton 

Indexing terms: Finite-dUjerenee time domain method. 
Electromagnetic compatibility 

The finite-difference time-domain method is combined with a full 
time-domain near-field transform to yield accurately and 
efficiently the radiated field levels measured at a distance of 3m 
from a printed circuit board. 

Introduction: With the introduction of stringent new EC electro- 
magnetic compatibility (EMC) standards the problem of quantify. 
ing and then minimising unwanted emissions from equipment 
assumes a new importance in hardware design. Solutions to this 
type of problem would be easier and cheaper to achieve if there 
existed a method of simulating the emissive characteristics of the 
proposed design. The development of simulation techniques suita- 
ble for application to realistic problems is accordingly the subject 
of much research. 

This Letter describes the application of a well known electro. 
magnetic analysis technique (the finite-difference time-domain, or 

Trial problem: The field strength produced by the structure shown 
in Fig. 1 has been measured between 50 and 600MHz at a dis- 
tance of 3m in a IOm semi-anechoic chamber (a typical EMC test 
configuration) [1]. The structure consists of a 2.8mm wide 50Q 
track on a large PCB terminated at one end by a 500 load and 
driven at the other by a CMOS IC, powered by a shielded battery. 
This eliminates the need for power cables which would themselves 
cause radiation. In [1] the radiated field levels were predicted using 
the FDTD technique with a large computational domain, the aim 
of the work described within this Letter is to show that the meas- 
ured results can be predicted far more efficiently by using a near- 
field transform in conjunction with a smaller domain. 

. large ground pane 
512 "t 

Fig. I Geometry of trial Problem 

FDTD method: This numerical technique has been applied with 
success to the analysis of a range of electromagnetic problems and 
uses the widely accepted discretisation of the Maxwell curl equa- 
tions in space and time proposed by Yee in 1966 (2]. The electro- 
magnetic behaviour of the structure of interest is modelled with 
full rigour (unlike many commercial analysis tools), the method 
imposes no restrictions on the geometry of the structure and the 
results are available over a wide frequency band. 

The computational effort associated with the FDTD algorithm 
increases linearly with the electrical size of the structure and the 
spatial resolution required to describe the structure adequately (i. e. 
the size of its smallest feature). One method used to reduce the 
computational requirement is the employment of a non-uniform 
spatial discretisation of the Maxwell equations, whereby high spa- 
tial resolution is used in regions of fine geometrical detail or rapid 
field variation but in, for example. free space, the resolution may 
be decreased. 

Near-field transformations: Although the FDTD method could be 
used to model the entire problem space (basically a 1.5 x3x 
0.5m' volume) under consideration, this is, for the reasons given 
above, a computationally expensive option. In this Letter FDTD 
is used to solve for only the fields on and enclosing the PCB. and 
a different time-domain technique is used to extend the FDTD 
results to a point 3m away. 

This second technique is commonly known as a near-field trans- 
formation and may be briefly described as follows; The equiva- 
lence principle is used to replace the fields within a closed surface 
S. which encloses all the field sources of interest, by equivalent 
electric and magnetic currents, J and M, on S. Vector potential 
theory allows the calculation of the fields induced by these cur- 
rents at any point P, in the volume outside S, from relations such 
as 

EP(t) -1µ 
aJ(t - r) 

_1Rx M(t - r` 
4rr J 

(r 
at PI 

-1A. 
aM(t r)) dS 

cr at 
where Ep(t) is the electric field at P at time t, r is the distance to 

the point P. it is the unit vector in the direction of P, s is the time- 
delay to the point, c is the speed of fight and µ is the permeability 
of the medium. 

The combination of FDTD and a time-domain near-field trans- 
form has been described elsewhere. for example [3-5], but the 
application has been to the determination of the far-field charac- 
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teristics of regular-shaped metallic scatterers or arrays of Hertzian 
dipoles, where, because the point P is in the structure's far-field, 
the second term in the integral (a 1/ri) is neglected. The problem 
considered here cannot be thus simplified because the distance to 
P is not electrically large, so for this case the full transform is 
used. 

In the case of a PCB. modelled in free space, a suitable choice of 
S would be a closed rectangular box around the PCB (dimensions 
of 30cm x 6mm x 30cm would be appropriate). In this example, 
however, the PCB is situated above a large ground plane on which 
currents will flow whose contributions would not be included in 
the model, as S does not enclose them. To include the ground 
plane effect a second closed surface, S', is also considered, centred 
IM below the ground plane, supporting the images of M and J, 
M' and X. 

Results: In [1] Railton et a!. considered the radiation from the 
above PCB, and predicted the field values by using FDTD to 
model the whole problem space out to a distance of 3m from the 
PCB. Because details as fine as the 1.6mm thickness of the PCB 
had to be included in the model, even with the benefits of a non- 
uniform spatial discretisation the problem took 24h to solve on an 
HP9000 series 730 workstation. Using an FDTD model (with a 
finer discretisation on the PCB than that used by Railton) in con- 
junction with the near-field transform, the size of the problem 
domain is reduced from 230000 to 38000 of Yee's FDTD unit cells 
and the results shown by Fig. 2 were produced in just 3h on the 
aforementioned workstation. 
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Fig. 2 Comparison of measured and calculated data for the radiated 
field from a PCB 
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Fig. 2 shows the ratio between the field levels on the PCB and 
those 3m from it following an FFT of the model's time-domain 
data, compared with the values found by measurement and those 
found using the full FDTD method of [1]. Examination of Fig. 2 
shows that the new results are extremely close to the measured 
values for much of the frequency range. and follow the form of 
the measured data more faithfully than those of [1], due to the 
finer discretisation of the PCB. Appreciable error does occur in 
both models around 400MH2 as it was found that the results in 
this region (where the track length is approximately a half wave- 
length) were highly sensitive to the representation of the source 
impedance, this, being due to an active device. was not included in 
the FDTD model. 

Conclusions: We have shown that for the problem of predicting 
the radiation levels from a simple PCB the combination of the 
FDTD method and a near-field transform provides accurate 
results over a wide band in a small fraction of the time required 
for a full FDTD analysis. 

PCB layouts far more complex than the example given here 
could be analysed by FDTD without much penalty in terms of 
computer time, particularly if a priori knowledge of field behav- 
iour at metal edges were included in the FDTD model [6). The 
reduction in computational effort resulting from use of the FDTD 

method with the near-field transform makes it reasonable to 
expect that the accurate prediction of radiation from realistically 
complex PCB layouts is now a practical proposition. 
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Higher order formulation of absorbing 
boundary conditions for finite-difference 
time-domain method r"77 

Olz 8fi ST1 P. Y. Wang, S. Kozaki, M. Ohki and T. Yabe uýl 

Indexing terms: Finite -difference time-domain method, 
Electromagnetic waves 

A simple formulation of absorbing boundary conditions with 
higher order approximation is proposed for the finite-difference 
time-domain (FD-TD) method. Although this formulation is 
based on the third order approximation of the one-way wave 
equations, the authors have succeeded in reducing it to an 
equation in a form quite similar to the second order 
approximation. 

Introduction: The FD-TD method for the solution of the Maxwell 
equations was first proposed by Yee [1]. It has been applied to 
various electromagnetic problems. Clearly. we can only simulate 
these problems in a limited computational domain. For 
unbounded problems, the absorbing boundary conditions (ABCs) 
must be applied to simulate the extension of the computational 
domain to infinity. In recent years, there have been many papers 
discussing the ABCs with several efficacious methods proposed. 
The formulation presented by Mur is the most popular method 
[2]; it uses a second order approximation of the one-way wave 
equations proposed by Engquist and Majda [3]. With increases in 
the number of applications of the FD-TD method, means of 
reducing the reflection error of the ABCs have recently received 
much attention [4-6]. Here, we introduce a formulation in which 
we use a third order approximation of one-way wave equations 
without third derivatives; it therefore possesses smaller reflection 
errors and has simpler expressions. 

Principle and formulation: We consider the 2-D solution domain as 
shown in Fig. 1. The H� H,, and Z. nodes are positioned in the 
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