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ABSTRACT 

The objective of the research work described here has been to develop a theory 

of structural vulnerability for 2-D frame structures. The purpose of the theory is 

to enable the identification of the most vulnerable parts of a structural system so 
that they may be suitably protected and monitored. 

Structural vulnerability analysis is concerned with the identification of 

various failure scenarios of structural rings at various hierarchical levels of 
definition. A method is developed to help in the identification of the most 

critical structural rings together with the critical failure scenarios. 
The concept of a deteriorating event is presented and a measure of the 

damage demand for a failure scenario is defined. 

The "robustness" of a structure is described in terms of structural 

vulnerability. 
In this thesis a graph model of a structure is developed in which various 

load paths and loops are analysed. The single most important concept 

presented is that of a structural ring. A structural ring is an over-stiff or just-stiff 

structure which can transmit forces around a closed loop. A structural system 

then can be represented at various hierarchical levels of definition in terms of 

sets of interconnected structural rings. 
The concept of a structural cluster is presented and an algorithm is 

developed to form structural clusters at various levels of definition. 

A measure to evaluate the quality of well-formedness of a structural ring 
is developed. The measure is also used to provide a quantitative estimate of the 

structural vulnerability. 
The deteriorating hierarchy of structural rings, DHSR, is presented which 

shows all possible ways in which a structural ring can deteriorate into a 

mechanism. 
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Chapter 1 

Introduction 

1.1 Objectives 

The objectives of this thesis are: 

(1). To present a theory of structural vulnerability, the purpose of which is to 
identify the most vulnerable parts of a structural system. 

(2). To define the robustness of a structure in terms of structural vulnerability. 

(3). To develop an analytical method to identify the various failure scenarios for 

a structural ring. 

(4). To present the concept of a deteriorating event and to define a measure of 

the damage demand for a failure scenario. 

(5). To examine the use of the graph theory in the development of the object 

oriented graph model of a structure and to analyse the various load paths and 
loops within it. 

(6). To develop a structural ring model. To describe a structural system at 

various hierarchical levels of definition in terms of sets of interconnected 

structural rings. 

(7). To develop a measure of the well-formedness of structural rings. 
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(8). To present the concept of a structural cluster and to develop an algorithm of 
cluster formation. 

(9). To show how a structural system may be represented in a form of hierarchy. 

(10). To develop the deterioration hierarchy of structural rings which consists of 
a set of all possible failure scenarios for a single structural ring. 

(11). To describe the potential application of the theory of structural 
vulnerability in the analysis of structural system reliability. 

1.2 General Introduction 

In this thesis a theory is presented the purpose of which is to identify the most 

vulnerable parts of a structural system so that they may be suitably protected 

and monitored. A graph model of a structure will be developed in order to 

analyse the various load paths and loops within it. The model includes some 

new concepts, the single most important of which is that of a structural ring. A 

structure will be described at various levels of definition in terms of sets of 
interconnected structural rings and this will provide a basis for structural 

vulnerability analysis. The emphasis of structural vulnerability analysis is not 

the usual one of analysing a structure under some given loading condition, 

rather it is to examine the quality of the well-formedness of the structural rings 

at various levels of definition within a structure and to identify those structural 

rings which are the most vulnerable or critical together with the actions which 

might cause failure. The concept of the "robustness" of a structure will also be 

explored. 
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The theory of structural vulnerability involves a variety of subjects such 
as: graph theory, linear algebra, clustering techniques, structural analysis, and 
systems theory. Some relevant aspects of these subjects are discussed in 
chapters 2 to 7. The relevant literature is discussed in each chapter rather than 
a separate review chapter. 

The material in this thesis is presented in eight chapters together with the 
references and a appendix. This chapter is of an introductory nature, describing 
the purposes and general outlines of this research and introducing the key 

concepts used in this thesis. 

Chapter 2 aims to present a critical review of the theory of graphs and the 
theory of matrices which form the foundation of the mathematics on which the 
further development can be placed. The object oriented graph model (000M) 

of structural systems is developed. 

In chapter 3, different types structural paths and loops within an 000M are 

examined and the structural ring model is developed. The deterioration 

hierarchy of structural rings is generated to illustrate a set of all possible failure 

scenarios for a single structural ring. An algorithm is presented to identify 

structural rings of a structure. 

The main objective of Chapter 4 is to develop a measure to evaluate the quality 

of the well-formedness of a structural ring. The study starts with exploring the 

well-formedness of joint objects contained in a structural ring. The theory of 
linear algebra is used as mathematical tools for the analysis, such as 
determinants, eigenvalues, eigenvectors, etc. The concept of well-formedness of 

structural rings is examined and the measurement of well-formedness of 

structural rings is quantitatively defined. 

13 



Chapter 5 examines some of the important clustering techniques in dealing with 
complex systems. The concept of structural cluster is presented. The tightness 
and structural tightness of clusters are defined to evaluate the connectivity and 
structural quality of clusters quantitatively. An algorithm is developed to 
implement the process of cluster formation. An example is given to illustrate 

the whole process of cluster formation step by step. 

Chapter 6 discusses the concepts of hierarchy and holon and their roles in the 

representation of structural systems. A structural system is represented in a 
form of hierarchy and described at various levels of definition in terms of sets of 
interconnected structural rings. 

Chapter 7 brings together all results from previous chapters and develop the 
basic principles of structural vulnerability analysis. An analytical method is 

presented to identify the various failure scenarios of a structural ring. The 

"robustness" of a structural system is explored. 

Chapter 8 summarises the conclusions drawn from this research. Some possible 
directions for further research are also suggested. 

1.3 Key Concepts 

The key concepts used in this thesis are presented in this section, together with 

details of the subsequent chapter in which the concept will be discussed more 

fully. 

Holon: A holon is a concept which is both a part and a whole. It is a part of a 

wider system and is itself a system(of subsystem) (see Chapter 2). 

Object: An object is a computer data structure which is a holon and has 
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characteristics. Characteristics are either external (public) or internal (hidden). 
Characteristics may include features (attributes), behaviours (transformations) 

and constraints (conditions) (see Chapter 2). 

Degree of freedom: A degree of freedom is the capacity of a structural joint to 
permit the transmission of movement in a defined co-ordinate direction 
(separate and independent of other movements) (see Chapter 2) 

Object oriented graph model (OOGM): The basic mathematical model to 

represent a structural system S= (M, J) is the object oriented graph model 
(OOGM) which consists of two sets: a finite set of structural member objects M 

and a finite set of structural joint objects J (see Chapter 2). 

Joint object: A joint object in an OOGM is a node or reference point where 

member objects connect. Its features includes at least its co-ordinate positions 

and the degrees of freedom of every member connecting into the joint. Other 

features could be velocities and accelerations. Behaviour may be modelled by 

an appropriate physics of motion (see Chapter 2). 

Member object: A member object is a relation, linking and communicating object 

which connects at least two joint objects. It is a communication channel 

between joints transmitting movements (disturbances) along the degrees of 

freedom. Its features include its geometrical and physical properties such as 

length, areas, second moment of area, elastic modulus etc. Its behaviour may be 

modelled by an appropriate physics of material behaviour (see Chapter 2). 

Structural cluster: A structural cluster S !; at a level of definition 1 is a sub-set 

S 1; _ (M 1; ,Jý; 
) of S in which a set of overlapping structural rings are more 

densely connected to each other within the cluster than to other structural rings 

outside of the cluster (see Chapter 5). 
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Primitive structural cluster: A primitive structural cluster is one which contains 
only one single member object (see Chapter 4). 

Connected clusters: Two structural clusters are said to be connected when one 
or more joint objects are contained in both clusters (see Chapter 6). 

Complex joint: A complex joint is the intersection of any two connected clusters. 
It may be either (i) a set of primitive cluster and/or (ii) a set of joints not 
directly connected but indirectly connected through the clusters which form the 
intersection. 

Structural path: A structural path is a sequence of connected clusters 
(see Chapter 3). 

Structural loop: A structural loop is a self connected structural path. It is a 

sequence of connected clusters which starts and ends with the same cluster 
(see Chapter 3). 

Structural ring: A structural ring RI at a level of definition 1 is a structural loop 

which is either (i) structurally over-stiff; or (ii) structurally just-stiff. A structural 

ring is the basic object of a structure which is capable of resisting any arbitrary 

equilibrium set of applied forces from any direction (see Chapter 3). 

Well-formedness: The well-formedness of a structural ring is a measure of its 

ability to resist damage or loading from any arbitrary direction (see Chapter 4). 

Hierarchy: 

(i) A structural system can be represented by successively subordinate structural 

rings at each level of the hierarchy. 

(ii) A structural ring RI at the level of definition 1 in the hierarchy represents a 
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substructural system. 
(iii) Given a structural ring RI in the hierarchy, any of its arcs can be regarded as 
the cluster containing a set of structural rings at lower levels of definition and 
itself can be an (or part of) arc of a structural ring at a higher level of definition. 
(iv) Structural rings at lower levels of the hierarchy are a more detailed 
description of a structure than those at higher levels of the hierarchy 
(see Chapter 6). 

Deteriorating event: A deteriorating event is the result of actions which would 
cause the loss, by a structural ring, of the capacity to transmit a degree of 
freedom (see Chapter 7). 

Failure scenario: A failure scenario is a sequence of deteriorating events which 
transforms a structural ring into a mechanism (see Chapter 7). 

Deterioration hierarchy of structural rings (DHSR): The DHSR is a set of all 

possible failure scenarios for a single structural ring (see Chapter 3). 

Damage demand: The damage demand is a measure of the effort which is 

required to make the occurrence of a deteriorating event. The damage demand 

of a failure scenario is thus equal to the sum of the damage demands of all 
deteriorating events contained in that failure scenario (see Chapter 7) 

Minimal failure scenario: The minimal failure scenario of a structural ring at 
level of definition 1 is the one in which the damage demand required to 

transform the structural ring into a mechanism is a minimum (see Chapter 7). 

Separateness: The separateness of a structural ring at a level of definition is a 
description of the consequence of a failure scenario. It is the number of 

structural clusters structurally disconnected from a reference cluster contained 
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in that ring (see Chapter 7). 

Reference cluster: A reference cluster at a level of definition may be any cluster 
chosen for its importance or because it has the highest value of structural 
tightness. On earth a reference cluster would normally be the ground cluster SG 
or a cluster which contains SG (see Chapter 7). 

Effective consequence: The effective consequence of a failure scenario at level of 
definition 1 is measured by the ratio of the separateness of a structural ring 
caused by that failure scenario to the total required damage demands 
(see Chapter 7). 

Maximal failure scenario: The maximal failure scenario of a structural ring at 
level of definition is one in which the effective consequence is maximal. The 

maximal failure scenario of whole structure is that for which the effective 
consequence over all levels of definition is maximal (see Chapter 7). 

Structural vulnerability analysis: Structural vulnerability analysis is concerned 

with the identification of: 

(i) the minimal failure scenario; 
(ii) the maximal failure scenario; 

(iii) any particular interesting failure scenarios with respect to a given reference 

cluster (see Chapter 7). 

Robustness: The robustness of a ring is measured by the size of the damage 

demand. The most robust ring is the one with maximal damage demand. For a 

ring the robustness is the same as the damage demand and for a structure it is 

the minimal damage demand over all levels of definition, i. e. there is one level 

of definition which is the weakest (see Chapter 7). 
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Chapter 2 

Object Oriented Graph Model of 
Structural Systems 

2.1 Objectives 

The objectives of this chapter are 

1. To present a critical review of the theory of graphs which form the foundation 

of the mathematics of this research. 
2. To introduce the matrix representations of graphs -- associated matrices and 

symbol matrices. 
3. To develop the object oriented graph model of structural systems. 

2.2 Introduction 

As the title suggests, one of the main objectives of this chapter is to develop the 

object oriented graph model (000M) of a structure. The term object is used as 

in objected oriented programming (OOPs) (Meyer, 1988). This graph model of 

a structure consists of a set of joint objects and a set of member objects. Joints 

(or nodes) and members (or links) are in fact basic elements of graph theory. 

This motivates us to explore the use of graph theory in the structural 

vulnerability analysis and beginning our study with an introduction in this 

chapter to some basic concepts and definitions in the theory of graphs. The 

concepts and definitions to be used will generally follow that of Berge(1962) and 

Swanmy & Thulasirman(1981). 

For a graph, which consists of large number of interacting nodes and 
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links, a mathematical representation becomes essential for the computer 
manipulation. One way is by the use of matrices. In this chapter, we introduce 

the associated matrices and the symbol matrices and some of their properties. 
These two matrices provide a simple technique for clarifying the 
interrelationships between the objects of a graph. They can be used to identify 

the paths and loops, which is very useful in the analysis of the connectivity of a 
graph. 

Finally, we develop the object oriented graph model (000M) of a 

structure. The elements of an 000M are objects -- joint objects and member 

objects, and therefore it has structural characteristic which represents the 

specific structure being studied in the sense of its own features, behaviours and 

constraints. Secondly, the objects in a structure can be represented by a graph 

model-- nodes and links. This enables us to use the theory of graphs and the 

theory of matrices to analyze the vulnerability of a structure. 

23 Some Concepts and Definitions in the Theory of Graphs 

2.3.1 Graphs, Links and Nodes 

A graph G= (N, L) (Swanmy & Thulasiraman 1981) consists of two sets: a finite 

set N of elements called nodes and a finite set L of elements called links. Each 

link is identified with a pair of nodes. If the links of a graph are identified with 

order, then G is called a directed or an oriented graph. Otherwise G is called an 

undirected or a non-oriented graph. The discussions in this chapter are mainly 

concerned with undirected graphs. 

We use the symbols n1, n2, n3, ..., to represent the nodes and the symbols 

11,12,13, ... to represent the links of a graph. The nodes n; and nj associated with 

a link lk are called the end nodes of the link Ik. The link is then denoted as 

Ik = (n;, nj). Note that while the elements of L are distinct, more than one link in 

2.2 



L may have the same pair of end nodes. All links having the same pair of end 

nodes are called parallel links. Further, the end nodes of a link need not be 

distinct. If lk = (n;, n; ), then the link lk is call a self-loop at node n;. A graph is 

called a simple graph if it has no parallel links or self-loops. All graphs studied 
in this thesis are simple graphs except where specified. 

Pictorially a graph can be represented by a diagram in which a node is 

represented by a dot or a circle and a link is represented by a line segment 

connecting the dots or the circles which represent the end nodes of the link. 

For example, if 
N= {n1, n2, n3, n4, ns} 

and 
L={ 11,12,13, l49 4 16,17} 

such that 

11= (nl, ns ), 

13=(nl, n3) 

15 = (n2, n4) 
17=(n3, n4) 

12=(nl, n2), 

14=(Hans), 
16=(n2, n3) 

then the graph G= (N, L) is represented as in Fig. 2.1. G is an undirected graph. 

In an undirected graph, a single line segment connecting two nodes n; 

and nj actually denotes two equal links in opposite directions, one is from n; to 

nj, another from n3 to n1. For the reason of simplicity, normally we only use lk to 

denote both of these two links. Fig. 2.2 has shown this case. Therefore, in an 

undirected graph, a link lk is said to be symmetric. 
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Fig. 2.1 A Graph G= (N, L) Fig. 2.2 A link 

A link is said to be incident on its end nodes. Two nodes are adjacent if 

they are the end nodes of same link. If two links have a common end node, then 

these links are said to be adjacent. 

For example, in the graph of Fig. 2.1, link 12 is incident on nodes nl and n2, ni and 

n3 are two adjacent nodes, while Il and 12 are two adjacent links. 

2.3.2 Paths and Loops 

A path in a graph G is a finite alternating sequence of nodes and links 

n1,11, n2,12,..., nk_l, lk, nk beginning and ending with nodes such that ni_1 and n; are 

the end nodes of the link l; (2< i< k). Alternatively, a path can be considered as 

a finite sequence of nodes nl, n2, ..., nk, such that (ni_1, n; ), (2< i< k), is a link in 

the graph G. This path is usually called a nl-nk path with nl and nk referred to as 

the end or terminal nodes of this path. All other nodes are internal nodes of 

this path. Note that in a path, links and nodes can only appear once. This 

definition of a path is slight different from the one made by Swanmy & 
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Thulasiraman (1981) in which links and nodes in a path can appear more than 

once. 

In the undirected graph G of Fig. 2.1, the sequence nl, n2, n3, n4, ns, is an open 

path, whereas nl, n2, n3, nl is a closed path. 

A closed path is a loop if all its nodes, except the end nodes, are distinct. Again, 

apart from the terminal node, links and nodes can only appear once in a loop. 

For example, in Fig. 2.1, the sequence n1, n2, n4, is a path, whereas the sequence 

nl, n2, n4i n3, nl is a loop. 

The number of links in a path is called the length of the path. Similarly the 

length of a loop is defined. A primitive path is one link path, i. e a single link. 

2.3.3 Subgraphs 

Consider a graph G= (N, L). G; = (Ni, L; ) is a Subgraph of G if Ni and L; are, 

respectively, subsets of N and L such that a link (n;, nj) is in L; only if n; and nn 

are in Ni. 

For example, consider the graph G shown in Fig. 2.3. The graph GI in (b) is a 

subgraph of G in (a). Another subgraph G2 is shown in (c). 

Consider two graphs G1, G2, G1= (N1, LI) and G2=(N2, L2). The union of Gl 

and G2, denoted as Gl u G2, is the graph G= (Nl u N2, L1 u L2); that is, the node 

set G is the union of NI and N2, and the link set of G is the union of L1 and L2 
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For example, the union of two graphs Gl and G2 of Fig. 2.4 (a) and (b) is the 
graph of Fig. 2.4(c). 

The intersection of Gl and G2, denoted as Gl n G2, is the graph 
G= (N1 n N2, Ll n L2), that is, the node set of G consists of only those nodes 
present in both GI and G2, and the link set of G consists only those links present 
in both G1 and G2. 

The intersection of Gj and G2 in Fig. 2.4(a) and (b) is shown in Fig. 2.4(d). 

2.3.4 Connected Graphs 

An important concept in graph theory is that of connectivity. Two nodes n; and 

nj are said to be connected in a graph G if there exists a ni-nj path in G. A node 
is connected to itself. 

A graph G is connected if there exists a path between every pair of nodes 
in G. 

Consider a graph G= (N, L) which is not connected. Then the node set N 

of G can be partitioned into subsets Ni, N2,..., Np such that the node-induced 

subgraphs <Ni>, i=1,2, ..., p, are connected and no node in subset N; is 

connected to any node in subset Nj, j*i. Therefore, a non-connected graph can 

always be divided into a number of connected subgraphs which can be analyzed 

separately. In this thesis, all graphs being studied are connected. 

2.4 Matrix Representations of Graphs 

In the previous section it was noted that pictures of graphs are an aid to the 

comprehension of graph theoretical problems. For large problems however, the 
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use of a computer becomes essential and the question arises of how best to 

represent a graph for computer manipulation. One way is by the use of 
matrices, with perhaps the simplest of these being the associated matrices and 
symbol matrices. 

2.4.1 Associated Matrices 

Let us consider a graph G= (N, L), and let nl, n2, n3,..., nk be its nodes. Let aj be 

the number of links of L going from n; to nj. The square matrix (aj) with k rows 

and k columns is called the matrix associated with the graph G -- Associated 

Matrix, denoted by A, according to standard practice, the coefficient aj is the 

element located at the intersection of the ith row and the jth column. The ith row 

vector will be denoted by a; = (a, r, ai2,..., aü) and the jth column vector by 

aj = (alj, a4,..., akj) 

For a simple graph, the associated matrix becomes 

aü=0 

A= ay =1 if there is a link from nodes i to j (i =1,..., n) 

a; ý=0 otherwise 

where n is the number of nodes in the node set N of the graph G. 

(2. i) 

Since we are only discussing the undirected graphs, the links in the undirected 

graph are symmetric. So we have the conclusion that the associated matrixA of 

an undirected g r, i 1) hG is symmetric a1 = ask 

Theorem (Berge, 1962). If G is a graph and A its associated matrix, the element 

P41 of the matrix [ -. -1 k (obtained by taking the product of A with itself k times) is 
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equal to the number of distinct paths of length k which go from n; to nj. 

This theorem enables us to identify certain problems concerning graphs and 

structural graph model later in the theory of matrices. We shall now examine 

some of these in detail. We are especially interested in A2 and A3 

According to the definition of associated matrix and Theorem 1, a term 

a13 of A represent the number of single link paths from node n; to nj. A term a1! 2) 

of the matrix A2 formed by multiplying A by itself, that is 

A2=AA (2.2) 

represent the number of 2-link paths from i to j, and similarly a term a11(3) of A3: 

ßi 3 =AA2 

denotes the number of 3-link paths from n; to nn. 

(2.3) 

More importantly, a diagonal term aü(2) of A2 represents the number of 2- 

link loops from node i back to itself. It is also a measure of the number of links 

adjacent to n;. Similarly, a diagonal term aü(3) is a measure of the number of 3- 

link loops associated with node n;. 

1'2 ri 

I*j 
ýý /5 

112 4 n4 /8 

Fig. 2.5 A graph 
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As an example consider the graph G of Fig. 2.5. We form its associated matrix A 

and compute A2 and A3 

Node 

Node nj n2 n3 n4 ns n6 

nl 0 1 1 1 0 0 
n2 1 0 0 1 1 0 

A n3 1 0 0 1 1 0 
n4 1 1 1 0 0 1 
ns 0 1 1 0 0 1 
n6 0 0 0 1 1 0 

Multiply A by itself gives 

Node 

Node nj n2 n3 n4 ns n6 

nl 3 1 1 2 2 1 
n-) 1 3 3 1 0 2 

A2 n3 1 3 3 1 0 2 
n4 2 1 1 4 3 0 
ns 2 0 0 3 3 0 
n6 1 2 2 0 0 2 

and 

Node 

Node nj n2 n3 n4 ns n6 

nl 4 7 7 6 3 4 
n-) 7 2 2 9 8 1 

A3= n3 7 2 2 9 8 1 
na 6 9 9 4 2 7 
ns 3 8 8 2 0 6 
n6 4 1 1 7 6 0 

It can be easily verified from Fig. 2.5 that, for example, 

a1? (2)=3, there are three 2-link loops associated with node nl, or there are 
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three links adjacent to node nj; 
a, 2) =2 there are two 2-link paths form nodes n3 to n6, one is n3, n4, nß, 

another is n3, ns, n6; and 

aä3) =4 there are four 3-link loops associated with node n4; 
ass(3) =0 there is no 3-link loops associated with node ns. 

2.4.2 Symbol Matrices 

For a graph G= (N, L), the symbol matrix B of G is defined as (Boffey, 1982) 

bü=0 

B= b1 =ij if there is a link from nodes i to j (i =1,..., n) 

b; ý =0 otherwise 

where n is the number of nodes in the node set N of the graph G. 

(2.4) 

We see that the definition of symbol matrix is almost same as the 
definition of associated matrix except that "if' is to be read as a character string 

rather then a number. It would be natural to look for a rule of 'multiplication' 

such that b(2), ß =iaj if there is a path icxj from node i to node j containing just two 

links, and that b(2)(j is a 'sum' of all such paths if there is more than one. This 

can be achieved as follows. 

Let e(uv) and n(vw) be two strings of symbols which end and start 

respectively with v. Then if x denotes the multiplication symbol 

E(uv) x0= n(vw) x 0= o (2.5) 

and l(uv) x i7(vw) is formed by concatenating E(uv) with the string that results 

from n(vw) by removing the first symbol 'v' (for example, ubv x vebw =ubvebw). 
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This is extended to 'sums' of string by defining 

Ei Muv) x E, llj(VW) = E; e (uv) x 17, (vw) 

The product of powers of B is then defined as 

Br+tip _ (BrXBt)iý =E,, c 
BriaxBtCri 

ýt 12 

ý1 
4 

/5 

4 n4 

Fig. 2.6 A graph 

(2.6) 

(2.7) 

As an example, find B and B2 for the graph of Fig. 2.6. Also find all distinct 

loops containing exactly three links. 

The symbol matrix B of Fig. 2.6 is given by 

Node 

Node nj n2 n3 n4 

nl 0 Il 12 13 
B= n2 11 0 0 14 

n3 12 0 0 is 
n4 13 14 15 0 
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Multiplying B by itself gives 

Node 

Node nl n2 n3 n4 

nl 1111+1212+1313 1314 1315 1114+1215 

B2 = n2 1413 1111+1515 1112+1415 1113 

n3 1513 1211 +1514 1212+1515 1213 

n4 1411+1512 14, 142 1313+1414+1515 

it is easily checked that this gives all paths containing just two links. We might 

expect that paths containing three links will be given by the element b(3) a, and, 

since only loops are asked for, only the elements on the principal diagonal are 

shown below. 

Node 

Node nl n2 n3 n4 

111413+121315 
nl +131411+131512 

n2 111.314+141311 
B3 = 

n3 121.15+151312 

n4 131114+131215 
+141113+151213 

There are two distinct loops with three links each namely 111N14 and 121315 and each 

is given three times (starting from different links). 

From the above example we might infer the following result that if B is 

the symbol matrix of a graph G, then the element b(r)11 of B(r), r>0 gives all paths 

between node i and node j containing exactly r links. The diagonal term bar);; 

tells us not only the total number of r-link loops associated with joint i but also 

gives us how the routes through the paths. That is very useful tool when we try 
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to identify valid structured loops in a system which will be discussed more fully 
in Chapter 3. 

2.5 Structural Systems 

In this thesis we are concerned with the vulnerability analysis of structural 

systems. Before attempting to develop a theory of structural vulnerability, it is 

necessary to examine the structural systems themselves, because it is through 

such systems that the methodology of vulnerability analysis has evolved. 
The word "system" has many interpretations depending on the context in 

which it is used (Wilson, 1984). It can mean, for example, a procedure, a 

process or its control, a network, or a computer-based data processing package. 

While these are all valid uses of the word, a definition is needed which will 

allow a particular interpretation to be placed in this research. 

A useful starting point in arriving at a precise definition is to take a 

general definition that includes all of the interpretation mentioned above, i. e. 

the dictionary definition: a system is a structured set of objects and/ or attributes 

with the relationships between them. 

This definition leads to the definition of structural system. A structural 

system is first of all a set of objects, i. e it contains parts, called elements, that 

have some reason for being taken together rather than with some other 

elements. But it is more than just a set of objects, it also includes the 

relationships that exist between the objects of that set. This relationship 

actually is a kind of connectivity within the structural system. The elements are 

interconnected and assembled into a whole, i. e. a system, in such manner that 

certain desired functions are obtained. 

Attention is initially focused on two-dimensional skeletal structural 

systems with the aim of firmly establishing the basic procedure of structural 

vulnerability analysis before moving on to the consideration of three- 
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dimensional or other types of structures. Here the skeletal structures are 
defined in a conventional manner. A line member will be regarded as a part of 
a structure which is clearly distinct in a physical sense from neighbouring parts, 
e. g. by being inclined at a different angle to that of its neighbour(s) in a 
structure, or by having different cross-sectional dimensions to its neighbour(s); a 
joint then also has a clear physical interpretation as the junction of two or more 
members. 

2.6 Object Oriented Graph Model of Structural Systems 

Fundamental to this section is the concept of "modelling". That is, when given a 

real structural system to analyze, it is always necessary to represent it by some 
"model" of it which characterises the features of the system in which we are 
interested in. Before we define the mathematical model of structural systems, 

we need to introduce three important concepts -- object, holon and degree of 
freedom. 

An object is a computer data structure which is a holon and has characteristics. 
Characteristics are either external (public) or internal (hidden). Characteristics 

may include features (attributes), behaviours (transformations) and constraints 
(conditions). 

A holon (Koestler, 1968) is a concept which is both a part and a whole. It is a 

part of a wider system and is itself a system(of subsystem). 

A degree of freedom is the capacity of a structural joint to permit the 

transmission of movement in a co-ordinate direction (separate and independent 

of other movements) along a given member to another joint. The total number 

of separate degrees of freedom in a structural system defines the total number 
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of separate movements necessary to define the behaviour of the system. 

The basic mathematical model to represent a structural system S=(M, J) is the 
object oriented graph model (ooGM) which consists of two sets: a finite set of 
structural member objects M and a finite set of structural joint objects J. Each 

member object is identified with at least two joint objects. 

A joint object in an 00GM is a node or reference point where member objects 
connect. Its features includes at least its co-ordinate positions and the degree of 
freedom of every member connecting into the joint. Other features could be 

velocities and accelerations. Behaviour may be modelled by an appropriate 
physics of motion. 

A member or element object is a relation, linking and communicating object 

which connects at least two joint objects. It is a communication channel 
between joints transmitting movements (disturbances) along the degrees of 
freedom. Its features include its geometrical and physical properties such as 
length I, areas A, second moment of area I, elastic modulus E and etc. Its 

behaviour may be modelled by an appropriate physics of material behaviour. 

We use the symbols il, j2, j3,..., to represent the joint objects and 

MI, m2, m3,..., to represent the member objects. The joints j; and jj associated 

with a member Mk are called the end joints of the member Mk, denoted as 

mk=(if, 1i)" 

Comparing this definition with the definition of graph in Section 2.2, we 

can see that these two definitions are very similar. The joint objects in a 

structural system corresponds to the nodes in a graph and member objects to 

links. The main difference is that a graph is a mathematical model, the links 

and nodes in a graph are not assigned any physical meanings. But the joint 

objects and member objects in a structural system have their specific physical 
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interpretation although they are denoted by nodes and links pictorially. This is 

why we have defined the object oriented graph model -- ooGM as the basic 

mathematic model for structural systems. An ooGM is a graph so that all the 
definitions and methodologies in the theory of graphs we have discussed in 

previous sections can be applied to it. Meanwhile the elements of it are objects, 
which have their features and attributes. The physical interpretation of these 
features and attributes depends on the structural system we are studying. 

The following two types of terminology may be used interchangeably for 

the study throughout this thesis: 

Structural terminology Mathematical terminology 

Structural system(System) 
Structural cluster(Subsystem) 
Joint object(Joint) 
Member object(Member) 

2.7 Summary and Conclusions 

Graph model(OOGM) 
Subgraph 

Node 
Link 

As we have mentioned in Chapter 1, one of the main objectives of this thesis is 

to provide a graph model of a structure in order to analyse the various load 

paths and loops within it. In this sense, the work in this chapter can be regarded 

as a mathematical foundation of this thesis. 

This chapter has covered some basic concepts and definitions in the 

theory of graphs. It has also presented two very useful matrices in the 

mathematical representation of graphs. These are: 

Associated matrices 
Symbol matrices 
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These matrices provide a simple technique for clarifying the interrelationships 

between objects of a graph. It can be used to identify various paths and loops 

and to reveal the hidden structure of a graph model. We will see from the 
following chapters that the identification of different load paths, loops and rings 
is the very fundamental step in the process of structural vulnerability analysis. 

This chapter has also presented the object oriented graph model (o0GM) 

of a structure. The 000M developed here is particularly beneficial in the 
development of the theory of structural vulnerability. This is due to the fact that 

(i) the elements of an 000M are joint objects and member objects; thus 

the OOGM of a structure represents its specific characteristics 
(features, behaviours and constraints) which the process of the 

structural vulnerability analysis should be based on. 

(ii) an 000M itself is a graph model; therefore, the theory of graphs and 

the theory of matrices introduced in this chapter can be used in the 

development of the theory of structural vulnerability. 
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Chapter 3 

Structural Rings 

3.1 Objectives 

The objectives of this chapter are: 

1. To introduce the concepts of structural paths and structural loops; 
2. To develop a structural ring model; 
3. To generate a deterioration hierarchy of structural rings - DHSR; 
4. To define a string pattern of structural rings; 
5. To present an algorithm to identify structural rings in a structure. 

3.2 Introduction 

The analysis and identification of various paths and loops in a graph model are 

of fundamental importance in different network and engineering problems. 
Many systematic methodologies have been developed to enumerate all paths 

and loops in a system or to identify a specific path and loop in a graph model. 
For example, shortest path problems (Boffey, 1982) have obvious relevance 

when a shortest (or quickest or least cost) path is required between two points 

of a transportantation system. Similar problems arise when it is required to 

enumerate all possible flow paths and find out a maximal flow (Williams, 

H. 1973) or least cost flow between two points. 

Some path-finding algorithms are concerned with the identification of a 
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specific type of path or loop. Elms (1983) used an algorithm to identify all 3- 
link loops of a graph model, which can be used to explore the connectivity of 
that graph. Gandhi and Agrawal (1990) suggested a qualitative estimate of the 

reliability of mechanical and hydraulic systems by identifying the most critical 

subsystems, paths and loops which could directly cause the failure of the 

systems. 
The o0GM of a structure consists of member objects and joints. Member 

objects and joint objects connect to each other to form many load paths and 
loops, and we call them structural paths and structural loops. A structural path 

or loop is a sequence of member and joint objects and therefore each structural 

path or loop has its own structural characteristic. As far as structural 

vulnerability analysis concerned, we are particularly interested in those which 

themselves are capable of resisting any arbitrary equilibrium set of applied 

forces. We call them structural rings. Thus, one of the main objectives of this 

chapter is to develop the structural ring model. 

With the concept of a structural ring, a structure can be described in 

terms of a set of interconnected structural rings. We will see in Chapter 5 and 

Chapter 6 that structural rings also exist at various levels of hierarchy. The 

essential issue of structural vulnerability analysis is therefore to identify the 

most critical structural rings together with the actions which could directly cause 

the failure of a structure. 

3.3 Structural Paths and Structural Loops 

In the OOGM of a structure, a structural path is defined as sequence of joint 

objects jl, j2, ..., fk, such that j; _I and ji are two end joints of a member object in 

the structure. Remember that in a path nodes and links can only appear once, 

this restriction is also applied to a structural path. The number of member 

objects in a structural path is called the length of that path. 

3.2 



For example, in the structure of Fig. 3.1, jl, j2, j7, jll is a structural path, where j; 

refers to joint i. 

A structural loop is a closed structural path beginning and ending with the same 
joint object. 

For example, Fig. 3.2 has shown some of the structural loops contained in the 

structure of Fig. 3.1. Obviously, there are many other structural loops in the 

Fig. 3.1 A structural system 

structure. 
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Fig. 3.2 Structural Loops and Rings 
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The joints and members in a structural loop are all objects which have 
their structural characteristics (features, behaviours and constraints). A 
structural loop thus is not only a description of the connectivity between joints 

and members ( say, member m, connects to member mj) but also indicates some 
structural characteristic. 

For instance, the structural loop of Fig. 3.2(a) consists of four members 
connected by four fixed joints. This structural loop itself is an over-stiff 
structure. The structural loop of Fig. 3.2(b) is a just-stiff triangle frame. These 

two structural loops are capable of resisting any arbitrary equilibrium set of 
applied forces and thus are structural rings. The structural loop of Fig. 3.2(c), 
however, is not a ring but a mechanism. 

3.4 Structural Rings 

Generally, in a structural system, members are connected to each other by joints 

to form many structural loops. Different structural loops have different 

structural characteristics. The structural loops of major interest are those which 

themselves are complete structural systems (just-stiff or over-stiff structures), 

that is, structural rings. 

A structural ring R is a structural loop which is either 

(1) structurally over-stiff 
(2) structurally just-stiff 

A structurally over-stiff ring is statically indeterminate and is one where if any 

one of the degrees of freedom is released, either in a member or adjacent to a 

joint contained in the ring then the ring remains stiff. 
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Therefore, the structural loop of Fig. 3.2(a) is an over-stiff structural ring. 
If one of the degrees of freedom is released in the structure, the ring remains 
stiff. 

A structurally just-stiff ring is statically determinate and is one such that if any 
one of the degrees of freedom is released either adjacent to a joint or in a 
member contained in the ring then the ring becomes a mechanism. A just-stiff 

ring is a primitive ring. 

The just-stiff structural ring of Fig. 3.2(b) thus is a primitive ring. If any one of 
the degrees of freedom is released in the structure then the ring becomes a 

mechanism. 

A structural loop is a mechanism if it is unable to sustain any arbitrary loading, 

as for example Fig3.2(c). 

A structural ring is denoted pictorially by a circle with a number of joints 

along it. For example, the structural rings of Fig. 3.2(a) and (b) can be 

represented by Fig. 3.3(a) and (b) respectively. The type of joints are designated 

in the conventional manner, shown in Fig. 3.4. A single member is denoted by a 

portion of arc in a ring. 

As 

(Rb) 

(a) (b) 

Fig. 3.3 Structural Rings 
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Roller joint 

A member 

A fixed joint allows adjacent members to restrain each others' end 
translation and rotation. Therefore, two members which are connected by a 
fixed joint can be treated as a continuous element. For the sake of simplicity 
and generality, fixed joints are normally not notified along a ring. An arc in a 
structural ring can contain a series of members connected by fixed joints. 

Each joint in a structural ring has three or less degrees of freedom which 

can transmit corresponding movements from one of its adjacent members to 

another adjacent member. 
In Chapter 6, we will see that a structural ring does not necessarily 

consist of a sequence of connected members and joints. A sequence of 

connected structural clusters and complex joints can also form a structural ring. 
Structural rings exists at each level of hierarchy. 

Assume that R and Rb are two structural rings, if there is at least one 

joint contained in both rings, then RQ and Rb are said to be connected. For 

example, in the structure of Fig. 3.1, structural rings j9,114, J13, jq and f 13, j15, j16, j13 

are two connected rings, shown in Fig. 3.5(a). 
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Fig. 3.5 Connected and overlapping rings 

Assume that RQ and Rb are two structural rings, if there is at least one member 
contained in both rings, then RQ and Rb are said to be overlapped. For instance, 
in the structure of Fig. 3.1, structural rings jl, j2, js, jl and j2, js, j6, j2 are two 

overlapping rings, shown in Fig. 3.5(b). 

A similar concept of a ring was used by Henderson and Bickley (1955) to 
deal with statical indeterminacy of a structure. Two types of rings were 
developed. One is a fully fixed ring which has completed stiffness throughout 

the ring. This implies that the structure has no points (or segments) where any 

of its stress-resultants, for any loading whatsoever, are always zero. Another is 

not completely stiff, the corresponding structure has pin jointed nodes, cable 

members, etc. They recommended that a statically determinate structure may 
be formed by making point release in a fully fixed ring. Each release provides 

additional information for the evaluation of the stress resultant in the form of an 

equilibrium equation, which later has been used in topological aspects of 
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structural linear analysis by Henderson (1960). 

The structural ring model we have developed here has a different basis. 
The structural ring is considered as a very basic structural unit (instead of 
members and joints) to resist loading and transmit movements (displacements) 

along the ring. Any complex structural system is made of different structural 
rings at various levels of definition. From the structural vulnerability analysis 
point of view, we are more interested in the structural capability (stiffness or 
well-formedness) of a ring. A release of a degree of freedom in a ring is 

considered as a deterioration to the ring. This will be discussed in the next 

section. 

3.5 Deterioration Hierarchy of Structural Rings 

Fig. 3.6(a) shows three portal frames with different configurations. There is, 

however, one thing in common and that is that these three frame structures can 
be denoted by a single over-stiff structural ring (a fully fixed ring). The 

structural ring RQ reflects this general structural attribute of the three frames. 

If one of degrees of freedom is released (e. g. a fixed joint becomes a 

pinned joint) in the three frames respectively, then they are degenerated into 

new structures of Fig. 3.6(b), the corresponding structural ring is denoted as Rb. 

Following the same procedure at each step, so that only one degree of 

freedom is released, then the three frames deteriorate into the structures of 

Fig. 3.6(d). At this point, all three frames become statically determinate and the 

corresponding structural ring Rd is a just- stiff ring. If any one of the degrees of 

freedom is released in the frames, the structures will then become mechanisms 

as shown in Fig. 3.6(e) 
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For even more generality, we develop the deterioration hierarchy of 
structural rings--DHSR, shown in Fig. 3.7. The DHSR includes all possible types of 
structural ring patterns. A simple portal frame is used to illustrate the type of 
structures which a structural ring denotes. Some of the structural rings are 
probably not practical but for the reason of completeness they are still included 
in the DHSR. The principle for generating the DHSR is that at each step one 
degree of freedom is released either adjacent to a joint or in an arc contained in 
the ring. The ring degenerates into a new ring. The procedure is carried 
through until a ring deteriorates into a mechanism. 

The structural ring at the highest level of the DHSR is a fully fixed ring. 
All joints in that ring are fixed joints which have three degrees of freedom. If 

one of the degrees of freedom is released a fixed joint becomes either a pinned 
joint or a roller joint, with two degrees of freedom. The ring is then 
degenerated into two structural rings at next lower level. These two rings can 
also degenerate into new rings at next lower level by releasing one of the 
degrees of freedom, either adjacent to a joint or in an arc. Following the same 
principle, the whole DHSR has been generated. 

A structural ring at a higher level in the DHSR is more tightly connected 
than those at lower levels. When moving from higher level to lower level 

structural rings gradually become more loosely connected. At the two extreme 

ends of the DHSR, the structural ring at the highest level is the most tightly and 
fully connected structural loop. The corresponding structure is most highly 

structurally over-stiff. Those at bottom level are all mechanisms. 
The DHSR shows all of the possible ways in which a fully fixed ring can 

deteriorate into a mechanism. A path through the DHSR is an ordered subset of 

the power set of DHSR and this is a failure scenario. A failure scenario indicates 

the particular way in which a structural ring deteriorates into a mechanism. If 

we can model a structural system as a structural ring and match it in the DHSR 

then we can find out a set of all possible failure scenarios to fail the system. The 

details how to use the DHSR will be discussed more fully in Chapter 7 
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3.6 String Pattern of Structural Rings 

In the DHSR, all structural rings are described graphically by a circle with 
different type joints along its arc. This graphical pattern of a structural ring is 

vivid and very easy for a reader to understand but not easy for a computer to 

search specified type of rings automatically and efficiently. We need to develop 

another pattern which makes it easy for a computer to do the analysis, that is a 

string pattern of structural rings. 

An alphabet is a finite set of elements called letters; the alphabet is denoted by 

X, the letters by a, b, c.... A string on X is an ordered sequence of elements of X 

and is represented by simple juxtaposition or concatenation of these elements. 

For example 

Alphabet: X= {a, b, c, } 

String on X: x= bcaab 

The set of all strings on X is written X. 

In order to develop the string pattern of the structural rings R in the DHSR, an 

alphabet X is defined as 

X={f, p, r, t, c, s} 

where the elements in X represent: 

f: fixed joint 

p: pinned joint 

r. roller joint 
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t: pin-roller joint 

C: cut 

s: section of arc 

Then the string pattern of a structural ring can be generated by forming an 
ordered sequence of elements of X. 

For example, a structural ring with two pin joints may represented by a 
string pattern R =psps, shown in Fig. 3.8 

A R= Asps 

Fig. 3.8 String pattern of a ring 

Some points should be noted when string patterns are generated 

(1). The element s with any one of other elements in X forms a very basic 

unit which is non-separated unit in generation of strings. Obviously 

there are five basic units in the language: fs, ps, rs, ts, es. 
(2). All these five basic units in a string can swop their position without 

influencing the graph pattern which the string describes. 

(3). Since an arc can contain a series of members connected by fixed 

joints, therefore we have: s= fs = fsfs = fsfsfs. 

According to what we have defined above, the strings of all structural 

rings can be generated. The set of all strings of the structural rings in DHSR of 

Fig. 3.7 is denoted by R' 
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Rs = 

s 
PS 
rs 
psrs 
PSPS 
is 
psts 
pspsps 
cs 

If the string pattern of a structural loop can not be found in R', then this 
structural loop is not a structural ring. 

3.7 Identification of Structural Rings 

Structural vulnerability analysis requires an algorithm for identifying and 

enumerating all the structural rings of a structure. Such an algorithm is 

desirable in cases where the structure is complex or where the analysis is to be 

done with the aid of a computer. 

In this section we focus our attention on a general method which leads 

directly to the explicit definition of every structural ring of a structure and gives 
the result in an easily usable form. The method is based on a symbol matrices 

approach to the problem of detecting structural rings rather than a purely 

mathematical one. The first point to clarify is that a structural ring is really just 

a special type of structural loop, the string pattern of which can be found in R', 

therefore, the general problem of finding loops can be considered. 
A structural loop is a sequence of members, connected through joints. 

More basically it is a combination of members. If all of the combinations of 

members are determined we can then determine all of the possible 

combinations of these members which can form structural rings. The symbol 

matrix B which was developed in Section 2.4.2 can be used for this purpose 

because the diagonal term bu(r) gives all loops associated with joint i containing 
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exactly r members. 
When we apply this method to identify structural rings, we will find that 

the structural rings would be lost in a multitude of information. This would be 

composed of invalid combination of members, or loops in which one or more 
joints appears more than once, or loops the string pattern of which can not be 
found in R'. The trick then, is to form a method such that no useless 
information is generated. 

First of all, the length of structural rings should be limited. A fully fixed 

ring in the DHSR could theoretically consist of an infinite number of fixed joints 
but in practice the number of joints along the ring would be finite. However we 
might compress the number of adjacent fixed joints to 4, so that the description 

of a fully fixed ring always contains a maximum of 4 links. Therefore, the length 

of any other rings degenerated from the fully fixed ring in the DHSR is less or 

equal to four. 

Secondly, from the connectivity point of view, a structural ring is more 

closely or tightly connected if it has a shorter length. Among all rings with 
different length, a 3-link ring, i. e. a triangle, is the most tightly and closely self 

connected structure. A ring with more than 5-links is considered as very loosely 

and weakly self connected. 
Having done this, the procedure of identifying structural rings is 

described below 

(1) Form the symbol matrix B of a structure S; 

(2) Calculate B3 diagonal terms b;; (3); 

(3) Remove unnecessary duplicated loops and obtain all 3-link loops in S; 

(4) Generate string patterns of these loops; 

(5) Match these string patterns to R' and identify all valid structural rings. 

(6) Compute B(4) diagonal terms b;, (4); 

(7) Similarly identify all alternative 4-link rings; 

(8) For those left, each member becomes a single-member ring. 
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The above algorithm has been implemented on a computer and works very 
quickly and efficiently. 

It would be instructive at this point to consider the structure of Fig. 3.1 to 
see how the procedure discussed above can be used to yield all structural rings 
in the system. 

Firstly, form the symbol matrix B of Fig. 3.1, the element of B is denoted as 

b# if i and j are two end joints of a member 
b1 =0 otherwise 

where i -j is a string symbol. 

According to the operation rules of string symbols (2.5) (2.6) and (2.7), B3 is 

computed. Then step (3) to step (5) is straight forward to find out all structural 
rings containing three members. The results, rings RI to R12, are shown in 
Fig. 3.9. The graphical patterns and string patterns of those structural rings are 
also listed. 

Then the next step is to compute B(4) diagonal terms bü(4) and carry out 
similar analysis and two 4-link rings are identified, R13 and R14 of Fig. 3.9. The 

remaining three members form three single-link rings, R15 to R17. 

Having looked at the structural rings in Fig. 3.9, we see that each ring is 

either an over-stiff structure such as R14 or a just-stiff structure such as R1. Some 

rings connect to each other such as Rio and R11, and some rings are overlapping 

to each other such as RI and R2. These structural rings are the basic elements of 

the structure of Fig. 3.1 which are capable of resisting any arbitrary equilibrium 

set of applied forces. The structure of Fig. 3.1 is, therefore, built up with these 

structural rings in a certain manner such that the desired function has been 

achieved. 
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Fig. 3.9 Structural Rings Table 
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3.8 Summary and Conclusions 

This chapter has examined two closely related graphical descriptions of the 
interaction of objects in a structure: structural paths and structural loops. A 

structural path or a structural loop, first of all, is a description of the 

connectivity between members and joints within a structure. Secondly, since a 

structural path or loop consists of a sequence of member objects and joint 

objects, each path or loop also implies a specific structural characteristic. 
For a structural system consisting of many structural paths and loops, the 

particular interest are those loops which are themselves either just-stiff or over- 

stiff structures, i. e. structural rings. A structural ring model which has been 

developed in this chapter is considered as a very basic structural element which 
is capable of resisting any arbitrary equilibrium set of applied forces. The 

development of the structural ring model is the very fundamental work in this 

thesis. 

We have presented the deterioration hierarchy of structural rings--DHSR. 

The DHSR includes all possible types of structural ring patterns. A path through 

the DHSR is a failure scenario. Thus, the DHSR also shows all possible failure 

scenarios for a structural ring. If we could model a structural system as a 

structural ring and match it in the DHSR then we would find out a number of 

possible failure scenarios to fail the system. 

In this chapter an algorithm has been developed to identify all structural 

rings of a structure. An example is given to illustrate the procedure of the 

algorithm. The results have shown that a complex structural system is built up 

with a set of interconnected structural rings. 
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Chapter 4 

Well-Formedness of Structural Rings 

4.1 Objectives 

The objectives of this chapter are: 

(1). To present a measure of the well-formedness of structural rings. 
(2). To present a measure of the well-formedness of joint objects. 
(3). To examine the concepts of eigenvalue and eigenvector of a structure 
stiffness matrix and the application to the analysis of structures. 
(4). To discuss the meaning of well-formedness in terms of the principal stiffness 
coefficients and principal displacement axes of structures. 

4.2 Introduction 

In Chapter 3 the basic philosophy of structural paths and loops has been 

described and a structural ring model has been developed and used to represent 

a type of structure with common structural attributes. In the structural ring 

model members are simplified into arcs and joints become connecting points 

along arcs. The example, shown in Fig. 4.1, shows this case. The three structures 
Si, S2, and S3 in Fig. 4.1 are all pin jointed triangle frames which can be denoted 

by a single structural ring. This ring reflects the common structural attributes of 

those three structures. They all consist of three members connected by three 

pinned joints. 

From the structural point of view, however, these three frames are 

different. Obviously, structure SI is very well formed but S2 and S3 are not. It 
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seems that a measure should be developed to test the quality of well-formedness 

of structural rings. The measure should tell us how well formed a ring is, in 

terms of its stiffness, configuration and connectivity. The well-formedness of a 

structural ring is a measure of its ability to resist loading from any arbitrary 
direction and to perform its desired function. It has shown in Chapter 2 that a 

structure is been built up with a set of interconnected structural rings. A robust 

structure will therefore consist of a set of well formed structural rings. 

Sý S2 Sg 

-0. 

Fig. 4.1 Structures and their corresponding ring 

0 
Structural Ring 

The early part of this chapter is concerned with the introduction of the 

concepts of eigenvalue and eigenvector and their application to the analysis of 

structures. Then it proceeds to analyze the well-formedness of joints using 

similar principle. Finally, a measure is developed to evaluate the quality of the 

well-formedness of structural rings. 

4.3 Principal Stiffness Coefficients 

For a structural system with n degrees of freedom, by applying the displacement 

boundary conditions, the completed reduced set of structural stiffness equations 

under a predefined global co-ordinate system is: 
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F=KX (4.1) 

where F is global load vector; K is global stiffness matrix; and X is global 
displacement vector. 

Since the global stiffness K of a structure in (4.1) is symmetric, referring to 

Theorems 2 and 3 of Appendix A, there is an orthogonal matrix P such that 

H= p-1 KP (4.2) 

and H=[a; ] is a diagonal matrix; and we also have 

det(K) =det(PHP-1) =det(H) = \lx X2x,..., x, \� (43) 

where a; is the eigenvalue of K (i = 1,2,..., n) 

If we substitute (4.2) to (4.1), we have 

F= KX = PHP-1X (4.4) 

or P1F= HP-1X (4.5) 

let FI = P-'F and X =P-1X (4.6) 

then (4.1) becomes 

F= HX (4.7) 

(4.7) represents a set of linear equations 
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F1= Al Xl' 

F2= a2 X2' 

, F�= a� Xn' 

(4.8) 

For an eigenvalue a; of K, when the x, ' is given a unit displacement, the value of 
force F; ' required is equal to the eigenvalue >,; 

F; = >; (4.9) 

Here a, is called the principal stiffness coefficient. The eigenvector corresponding 
to a, defines the principal displacement axis. F; ' and x; ' are the force and 
displacement along the principal displacement axis. 

From Theorem 2 of Appendix A, we also know that all principal 
displacement axes of K are linearly independent. That allows us to study the 
behaviour of a structure along specific principal displacement axis 
independently. If the principal stiffness coefficient of a structure along a 

specific axis is very small, then a small force acting on the structure along that 

direction will cause a large displacement. The principal stiffness coefficient of a 

structure therefore indicates the capability of the structure to resist loading 

along the corresponding principal displacement axis. 
For an even more general case (Dhatte & Touzot, 1984), solving a matrix 

eigenvalue problem consists in finding values A and {x; } satisfying the following 

equation: 

K {x; } =Ai 

and a normalization condition for the vectors: 

(4.10) 
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Either <x; > {xj} =1 or <x, > M{xi} =1 

The physical meaning of eigenvalue A; of this system equation varies with 
different disciplines; for example: 

Structural Vibrations 

If 

K is the stiffness matrix of a structure; 
M is the mass matrix; 

and {xj} is the displacement vector of the structure for the ith mode of vibration; 
then a, = w? is the square of the corresponding frequency. 

Buckling Load 

If 

K is the stiffness matrix of a structure; 
M is the geometric or initial stress matrix of the structure; 

and {x; } is the displacement vector of the structure for its ith mode of buckling; 

then = w; 2 defines the value of the critical load to cause the Ph mode of 
buckling. 

Summarising our results so far, some chief properties of eigenvalues and 

eigenvectors of the stiffness matrix of a structure are now given. Some of the 

characteristics have already been mentioned earlier but will be included again 
here for the sake of completeness. 

(1). An eigenvalue a; of a reduced structure stiffness matrix K is a principal 

stiffness coefficient whose value is equal to the value of the force F1' required 

when the displacement x; ' is given the value unity and all other displacements 

have the value zero. 
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(2). The eigenvector corresponding to a; defines the direction of the principal 
displacement axis. The force F; ' and displacement xi' are along the principal 
displacement axis. 
(3). All principal displacement axes of K are linearly independent. 
(4). All eigenvalues of K i. e. principal stiffness coefficients must be positive 
since a positive force cannot produce a negative corresponding displacement. 
(5). The principal stiffness coefficient of a structure indicates the capability of 
the structure to resist loading along the corresponding principal displacement 

axis. 
(6). The determinant of K is equal to the product of all eigenvalues of K. 

(7). The sum of all eigenvalues of K is a constant. 
(8). The stiffness matrix of an unrestrained structure is singular, i. e. the 

determinant of the stiffness matrix has the value of zero. The physical 

explanation of this is that until some valid boundary conditions are applied the 

structure is free to move with an arbitrary rigid-body motion in addition to 

deforming elastically. 

4.4 Well-formedness of Structural Joints 

In this section we extend the method discussed above to the analysis of the well- 

formedness of joint objects. We confine our attention initially to the 

determinant of a single joint, such as joint 2 in the structure of Fig. 4.2. 

In Fig. 4.2(a) the members of the structure are referred to by A and B and 

structural joints by numbers 1-3. The global co-ordinate system has been set up. 

The arrow shown on the members are there to indicate the direction of the local 

axis of the members, i. e. the arrows run form end joint i to end joint j of each 

member. 
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The relationship between the individual member joints and the structure 
joints is clearly as follows: 

Members ij i- member joints 

A12 
structure joint numbers 

B32 

Correspondingly the stiffness matrix for the members A, B can be conveniently 

expressed in general form as 
i1 

0 

kii ý4ý 
k= 

kJi kJJ 
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The application of the direct stiffness procedure gives the global structure 
stiffness matrix K as 

1 

k11A 

K= k21'ß 

0 

Here 0 denotes a null matrix. 

23 

k12A 0 

k22A + Ic22B 1c2,3B 

k32B k3. B 

(4.12) 

The numbers 1-3 at the tops of the columns of the structure stiffness 
matrix are there to identify joints 1-3 of the structure. We also know that K is a 
symmetric matrix. 

Having done this, the following points should be noted. 

(1). The submatrices of a global structure stiffness matrix lying on the leading 
diagonal in row j2 and column j2, say, will be the sum of the submatrices kü or k, -- 
of all members which meet at joint j2 ( Submatrix k. applies if joint i of the 

member corresponds to joint j2 of the structure, ig, applies if joint j of the 

member corresponds to joint j2 of the structure). 
(2). There will be a (non-zero) contribution in an off-diagonal location of the 

structure matrix such as jl, j2 (i. e. row jl, column j2) only if joints jj and j2 are 

connected by a member; if two such joints are not directly connected then the 

associated structure stiffness submatrix is zero. 
(3). The submatrix of the global structure stiffness matrix lying on the leading 

diagonal in row j; and column j, is called the submatrix associated with joint j;. 

An important point to realize is that the actual process of assembly of a 

global structure stiffness matrix from the member stiffness matrix depends solely 

on the manner in which the individual members are connected together. The 
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detailed characteristics of the members are taken account of in deriving the 
member stiffness matrices but once this is done, the formation of a structure 
stiffness matrix by superposition proceeds independently of any knowledge of 
the structural properties of the members. 

Referring to the global structure stiffness matrix K of (4.12), a few 

general points about these diagonal submatrices can be obtained immediately. 

(1). The dimension of the submatrix associated with a joint j;, denoted by D;;, 
depends on the structural characteristic of that joint j;, i. e. the degrees of 
freedom of that joint. If j; is a pinned joint, the D;; is 2x2 matrix. If j; is a rigid 
joint, then Dü is 3x3 matrix. 
(2). The submatrix Da is still symmetric. 
(3). The dimension of the submatrix Da is independent of the number of 

members adjacent to joint J. 

Let us take a close look at one single submatrix associated with joint 2 in 

the stiffness matrix of (4.12) and assume that kA=A1xE/11 and kB=A2xE/12 are 

structure stiffness coefficients of members A and B respectively. We take the 

submatrix D22, associated with joint j2 out of the global stiffness matrix. It is as 
follows: 

kA Cos26 + kB C062 (e+ß ) 

D22= k22A+k22B = 

-kA cosO sin8 
-kB sin(e + ß) cos(O + 6) 

-kA cost sin8 
-kB sin(B+ß) cos(B+ß) 

kA sin29 + kB sin2(O + ß) 
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The characteristic equation of D22 is: 

det( D22- A In) _ 
[ kA cos20+kB cos2(0 +ß)-A]x[kA sin2B +kB sin2(B+ß)-A]- 

[-kA cos8 sing -kB sin(B+ ß) cos(O+#)]2 

= A2 -A (kA + kB) + kA kB sin2B =0 (4.13) 

The eigenvalues of D22 must therefore satisfy (4.13) and the solution of this 

equation are 

Ai _ {(kA + kB) ± [(kA + kB)2 -4x kA x kB x sin2O]1/2 }/2 (1=1,2) (4.14) 

the eigenvalues of the submatrix associated with a joint is simply called the 

eigenvalues of that joint. 

The determinant of D22 is then equal to the product of two eigenvalues 

det (D22) = ajXA2=kA x0x sin2B (4.15) 

and from (4.14), it can be easily proved that the summation of two eigenvalues is 

a constant. 

)'I2 = kA + kB (4.16) 

And again the determinant of the submatrix associated with a joint is simply 

called the determinant of that joint. 

Having looked at (4.14) and (4.15), some conclusions can be drawn. 

(1). The eigenvalues(or determinant ) of a joint j; is independent of the global 

co-ordinate system. Variable ß does not appear in both (4.14) and (4.15). 
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(2). The eigenvalues, i. e. principal stiffness coefficients, of a joint is related to 
the stiffness of all members connecting to that joint, in other words, it is a 
function of the physical and geometric features of all members connecting to the 
joint. 

(3). The eigenvalues of a joint also depends on the angles between members 

connecting to that joint. The angles actually reflect the way in which the 

members frame in to that joint. 

Once the stiffness coefficients of all members are settled, the only factor 

which will influence the eigenvalues of a joint is the angles between the 

members adjacent to that joint. Referring to the structure of Fig. 4.2(a) and 
(4.14) and (4.15), by varying e -- the angle between two members, we can easily 

prove that 

(1) when 0 =0 or 186% A1=kA+kB, A2=0 

and det(D22) =det(D22),,, i� = 0. 

It implies that there is one principal stiffness coefficient having zero value. A 

tiny force acting on joint 2 along the corresponding principal axis will cause 

infinite displacement along that axis, and in this case the structure itself is said 

to be a mechanism, shown in Fig. 4.3(a). 

(2) When 0= 9009 a1= kA, A2 = kB 

and det(D22) = det (D22)�, = kAkB. 

Intuitively, we know that the structure reaches its best quality of well- 

formedness, shown in Fig. 4.3(b). 
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Similarly, we derive the submatrix of joint 2 in the structure of Fig. 4.2(b), 

it is as follows 

D22 = k2t + k22B+k22C = 

kA + kB cos42 
+ kc cos263 

-kB cos62 sin02 
+ kc cos83 sin93 

-kB Sif82 COS92 
+ kC sifO3 COSB3 

kA+kB sin292 
+ kc sin2B3 

and then calculate the determinate of D22, we get 

det(D22) = kA kc sin2B1 + kA kB sin262 + kB kC Sin293 

(4.17) 

(4.18) 

Referring to (4.18) and the structure of Fig. 4.2(b), the conclusions are as follows 
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(1). det(D22) =det(D22),,,;,, =0 when e1= 92 =180 and 93 =0, in this case, the 
structure of Fig. 4.2(b) is a mechanism. 
(2). if kA= kB = kc, det(D22) =det(D22). when 01=02=03=120", there are three 

symmetric axes in the structure. 
0 (3). if kA > kB = kc, det(D22) =det(D22),,,,. when 01= 02 > 120 , there is one symmetric 

axis in the structure; 
(4). if kA < kB = ke, det(D22) =det(D22). when 01= 02 < 120 , there is one symmetric 

axis in the structure. 

So far we have only considered the determinant of pinned joints but fixed 

joints can also be explored with similar approach. The stiffness submatrix of a 
fixed joint is 3x3. Thus there are three eigenvalues associated with a fixed joint. 

0 a' 

Y 
1 

3 

Fig. 4.4 A structure 

Fig. 4.4 shows a plane frame in which two member are rigidly connected 

together at joint 2 and supports at joints 1 and 3 are fully fixed. The bending, 

axial rigidities and geometric length of the members are: AE = 50x 1 0' kN, 

EI= 104 kNm2, and 1=5m. 
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The submatrix associated with joint 2 can be set up using similar method 
as above. 

D22 =104 

10 
+ 10 sin26 + 0.096 cos20 I Symmetric 

0 0.096 
+ 9.904 cos9 sing 1+0.096cos28 + 10 sin2B 

------------ i--- -- ---- -ý- -- 
0 1-0.24 

0.8 
-0.24 sin8 10.24 cosh 0.8 

(4.19) 

Having obtained the submatrix, the eigenvalues of this matrix can be 

conveniently calculated using the method described by Alexander, J. M. 

(1981, pp254-255). The three eigenvalues and the determinant of (4.24) are 

given by Fig. 4.5 in which the horizontal axis denotes the angle between two 

members -- e. 

150 

100 

50 

eig. 1 eig. 2 eig. 3 det. 

---- v 

0 
I. ' 

45 90 135 

Fig. 4.5 Determinant and Eigenvalues 

Angle 
180 
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Initially, as shown in the figure, the determinant exhibits a result from 

the combination of three eigenvalues. The determinant reaches its maximum 
value when the angle between two member is 90°. At two extreme ends of the 
horizontal axis, i. e. when B is equal to 0 or 180 , the determinant decreases to its 

minimum value. 
Having looked at three eigenvalue curves, interestingly, we have found 

that one eigenvalue (eig. 3) almost remains unchanged when e changes from 00 to 
1800. The physical interpretation of this is that the principal stiffness coefficient 

corresponding to rotation displacement for a fixed joint is only a function of the 

stiffness of members connecting to that joint. The orientation of the members 

adjacent to the joint will not influence the ability of the joint to resist the 

rotation displacement. However, the other two eigenvalues (eig. 1 and eig. 2) 

which correspond to two translation displacements are noticeably influenced by 

B--the orientation of the members framing in to the joint and the product of 

three eigenvalues--determinant, therefore, is mainly decided by two translation 

stiffness coefficients. 

Summarizing the results so far, we see that the determinant of a joint is 

dependent on the following three factors: 

(1). the structural characteristic of that joint(pinned or fixed); 

(2). the stiffness of the members adjacent to that joint; 

(3). the way in which the member objects frame in to that joint. 

These three factors characterize the well-formedness of a joint. The 

well-formedness of a joint implies locally physical or structural condition with 

reference to capability to resist loading in any arbitrary direction and to perform 

its desired function. A robust joint should have good quality of well-formedness. 

If a joint is said to be badly formed, it implies that the joint itself has bad 

structural capability to resist damage or deterioration. The well-formedness of 
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joints have significant influences on structural systems. The badly formed joints 
are the potential vulnerable components to the safety and reliability of 
structures. 

It appears logical that the value of the determinant of a joint can be a 
measure of the well-formedness of that joint. The well-formedness of a joint i 
can be defined quantitatively by the following expression: 

qi = det(Dü) 

where Dü is the stiffness submatrix associated with joint j;. 

(4.20) 

Having defined the measure of well-formedness of structural joints, some 
points should be noted. 

(1). The measure qi is totally independent of co-ordinate system. 
(2) qi is a measure of the capability of a structural joint to resist loading from 

any arbitrary direction. 

(3) The quality of well-formedness of a structural joint could be improved either 
by 

(i) changing the stiffness of that joint, i. e. from pinned joint to fixed joint; 

(ii) or increasing the stiffness of the members connecting to that joint; 

(iii) or changing the orientation of the members framing in to that joint. 

4.5 Well-formedness of Structural Rings 

A structural ring consists of a sequence arcs and joints. For a structural ring R. 

with k joints, we can use (4.20) to calculate q; for each joint contained in the 

ring. Then we postulate another measure which is a property of a structural 
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ring. This measure implies the quality of well-formedness of a structural ring Rm 

which is defined quantitatively as 

q(Rm) = Ei qi (i =1,..., %C) (4.21) 

where k is the total number of joints in the ring R. 
To illustrate concept of this measurement, we consider the application of 

(4.20) and (4.21) to the evaluation of well-formedness of structural rings, as 
shown in Fig. 4.6. All members have AE = 50x 104 kN, EI= 104 kN m2 and 1= 5m. 

The structural ring Rl is a fully fixed ring with value q(Ri) = 97.29. If we 
deteriorate RI by releasing one of the degrees of freedom in RI, then it 
degenerates into R2 which is a ring with one pinned joint along it. The value of 

q(R2) becomes 87.61. As we progress to deteriorate the ring from RI to R4, the 

value of q(Rm) is decreasing from 97.29 to 68.22. This illustrates that the 
deterioration of a structural ring will reduce the quality of well-formedness of 
that ring. 

Ring Rm Structure Graphical Pattern q (/qm ) 
(1610) 

1 
O 

97.29 

2 

- ----- ----- -- -- --- --------- ---- --------- ------- 

87.61 

----------- 

3 3 

--- --- - --------- -"--- ------------------ - 

A 
-- -- --------- -- -- ------- lQ --- -- -- - 

77.61 

4 

-------"-"-------------"---"--- - ----- --- ---- 

68.22 

Fig. 4.6 Deterioration of a structural ring 

4.17 



We will see in Chapter 7 that the quality of the well-formedness of 
structural rings plays a significant role in the sense of vulnerability and 
robustness of a structure. 

A structural ring with high value of well-formedness has the potential 
capability to resist loads in any arbitrary direction and is therefore robust. If at 
a certain level of hierarchy, a very badly formed ring is identified, the 
corresponding substructure is a potentially vulnerable part of the whole system. 

4.6 Summary and Conclusions 

In this chapter a measure of the well-formedness of structural rings has been 
developed. The well-formedness of a structural ring indicates its potential 
capability to resist loading in any arbitrary direction and to perform its desired 
function. In Chapter 3, it was shown that a structure is built up with many 
interconnected structural rings. A robust structure should therefore consist of a 
set of well formed structural rings. The well-formedness of a structural ring 
presented in this chapter provides a quantitative estimate of the vulnerability 

and the robustness of a structure. 
The quality of the well-formedness of a structural ring is closely related 

to the well-formedness of the joints contained in the ring. The concept of the 
determinant of a joint has been introduced in this chapter. It has been found 

that the determinant of a joint is dependent on the degrees of freedom of the 
joint as well as the orientation and stiffness of the members framing in to the 

joint. Thus, the determinant of a joint also implies local physical or structural 

conditions for the resistance of load from any arbitrary direction. 

In this Chapter we have examined the concepts of the eigenvalue and 

eigenvector of the stiffness matrix and the application to the analysis of 

structures. The principle stiffness coefficients and the principle displacement 
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Chapter 5 

Structural Clusters 

5.1 Objectives 

The objectives of this chapter are: 

1. To introduce the role of clustering techniques in dealing with complex 
systems; 
2. To present the concept of structural clusters; 
3. To develop a measure to evaluate the structural quality of clusters; 
4. To develop an algorithm of cluster formation, and; 
5. To present an example. 

5.2 Introduction 

In Chapter 3, a structural ring has been defined as the basic element of a 

structure which is capable of resisting any arbitrary equilibrium set of applied 
forces and perform the desired function. A structure is made up of a set of 

structural rings. A complex structure, however, consists of a large number of 

structural rings which are highly interconnected. At this stage we are still faced 

with a great number of structural rings together with the complicated 
interactions between them. We would not be able to do the structural 

vulnerability analysis efficiently unless we classify the structural rings into 

manageable groups, which in some sense can be treated as whole elements. 
Clustering techniques can be used to perform this data reduction. In this 
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chapter we explore the use of clustering techniques to classify the structural 

rings of a structure into a number of groups. Each group contains a set of 

overlapping structural rings. We call them structural clusters. 
We develop an algorithm of cluster formation, the major purpose of 

which is to group the structural rings of a structure into a number of 
interconnected structural clusters. These clusters form a new set of rings at the 

next higher level of definition. The number of structural rings as well as the 

interactions between the rings is reduced. This algorithm is then applied 

recursively to various levels of definition until the structure becomes a single 

cluster. 
The process of cluster formation produces a hierarchical model in which 

a structure can be described at various levels of definition in terms of 

interconnected sets of structural rings. This provides a basis for the structural 

vulnerability analysis. 

5.3 Clustering Analysis 

Clustering analysis is concerned with techniques for the analysis of multivariate 

data to solve the following problem ( Everitt, 1974 ): 

Given a sample of N objects or individuals, each of which is measured on each 

of p variables, a classification scheme is devised for grouping the objects into g 

classes. The number of classes and the characteristics of the classes are to be 

determined. 

Clustering techniques have been widely used in diverse fields such as 

psychology, sociology, artificial intelligence, information retrieval 

(Everitt, 1974). In many such fields the research worker is faced with a great 

bulk of observations which are quite intractable unless classified into 
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manageable groups, which in some sense can be treated as units. Clustering 
techniques can be used to perform this data reduction, reducing the information 
on the whole set of say N individuals to form about say g groups where 
necessarily g is very much smaller than N. In this way it may be possible to build 
up a hierarchy and to describe the observations at various levels of definition. 

Clustering techniques also play an important role in the world of large- 
scale systems in many engineering fields, for example, engineering networks, 
environmental analysis, information technology (Elms, 1983) (Sangiovanni- 
Vincentelli, 1977). It is often required to partition such systems into many 
subsystems (clusters) such that elements in the same subsystem are strongly 
interconnected, whereas elements in the different subsystems are weakly 
interconnected. In some cases where the system has a simple layout, a fairly 

good cluster partition can be determined by inspection. For arbitrary systems, 
however, an algorithm must be used to systematically partition the associated 

system into a set of connected clusters. 

In this thesis, we confine our attention to the clustering problem 
associated with structural systems. 

Up to now we have a model - the 000M, which represents the analysed 

problem -a structural systemS = (J, M). Very often, this 'whole' graph model is 

complex. It is likely to be composed of many interacting joint objects and 

member objects. The problem of handling structures composed of a large 

number of objects is important for practical application of safety and 

vulnerability analysis. It would be very helpful to engineers if the whole model 

could be reconstructed into a number of interrelated small models, thus 

allowing the analysis of the structure at different levels of description. We now 

shall consider what criterion to use as a basis for the formation of small models, 

or how these structural objects of a system are to be reclassified and 

reorganized. 
Intuitively, it would seem that objects in a group share some common 

features or have more features in common than with objects outside the group. 
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There are a number of clustering algorithms which can be used to classify 
objects, such as DEMpos (Owen, 1970). This algorithm was designed in such a 
way that it decomposes a graph into clusters which have the largest number of 
nodes for a given description of connectivity. Another method which was 
initially put forward by Alexander (1964) then developed by Elms (1983), simply 
divides the node set N in a graph G= (N, L) into those subsets which are 
connected by as few connections of link set L as possible, thus leaving as many 
of connections as possible within the subsets. 

It is not, however, intended here to cluster those joint objects or member 

objects of a structure rather we take structural rings as basic objects of clustering 

analysis. As discussed in Chapter 3, a structural ring is the basic object of a 

structural system which is capable of resisting an arbitrary equilibrium set of 

applied forces. A structural system can be described as a set of interconnected 

structural ring objects. Some of the rings are highly interconnected and some 

are less interconnected. Thus, the clustering procedure is to group ring objects 
into a number of subsystems in which the structural rings are as highly 

interconnected as possible within the subsystem and leave as few connections as 

possible between these subsystems. These subsystems of a structure are called 

structural clusters. 

5.4 Structural Clusters 

A structural cluster S; at a level of definition 1 is defined as a group of 

overlapping structural rings in which the rings themselves are more densely 

connected to each other within the cluster than to other rings outside the 

cluster. 

Having defined this, the following points should be noted: 
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(1). A structural cluster S, at a level of definition 1 is a sub-set S; =( M1;, J1, ) of 
S= (M, J) in which M1 is a subset of M, and J', is a subset of J. 
(2). A structural cluster itself is a complete structural subsystem since it consists 
of interconnecting structural rings. 
(3). A structural system itself is a structural cluster at the highest level of 
description. 

(4). A primitive structural cluster is one which contains only one member object. 

The fact that a structural cluster is a complete structural subsystem leads 
to the conclusion that the theories and algorithms we have developed in 

previous chapters can also apply to the analysis of structural clusters. 

5.4.1 Connectivity of structural Clusters 

One important characteristic of a structural cluster is that of connectivity. 
The connectivity of a structural cluster implies 

(i) the number of structural rings within the cluster; 
(ii) the degree of overlap between them. 

Therefore, a measure of the connectivity requires establishing a 
difference between the number of members adjacent to a joint and the number 

of structural rings associated with a joint. For example, in Fig. 5.1(a) and (b), if 

we consider joint 1 in S 11 and joint 2 in S'2 separately, it seems that there is no 
immediate difference between the connectedness of joint 1 and joint 2 because 

there are four adjacent members framing in to both of the joints. But if we look 

for the number of structural rings associated with each joint, we can recognize 

the difference of the connectedness. Thus, as a measure of the connectivity, it is 

not sufficient simply to count the members attached to joints as the concept of 
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connectivity implies that these joints must also be connected to one another to 
form interconnecting rings. 

(a) S' 
(b) S2 

Fig. 5.1 Connectedness of structural joints 

The definition of a cluster requires that there is at least one structural ring 
associated with each joint in a cluster. For a given number of joints in a cluster, 
it seems logical that the more the number of structural rings in the cluster, the 
higher degree of connectedness the cluster will have. 

To describe the degree of connectedness of a structural cluster, the concept of 
tightness is used here. 

Tightness, is the degree of connectedness of a structural cluster S Ii and equals to 

the ratio of the total number of structural rings to the total number of joints in 

the cluster. 

T(S ;)= nR /n (5.1) 
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where nR is the total number of structural rings in S '; and n is the number of 
joint objects in S It. 

The similar concept has been used by Elms(1983) to describe the 

connectivity of a graph, in which the tightness of a graph is defined as the ratio 

of the total number of 3-link loops to the total number of nodes in the graph. 
But here the tightness of a cluster has been defined in even broader sense. It 

includes not only 3-link length rings but all structural rings contained in a 

cluster. 

For example, Fig. 5.2 is shown a group of structural clusters and their 

corresponding tightness. We see that the greater the connections between joint 

objects, the 'tighter' is the cluster. 

S; 

T(S, )= 1/3=0.33 

Z 
S/ 3 

T(S)= 4/4 = 1.0 

J2 

T(S)= 2/4=0.5 

---- - ------ 

J4 

T(5914 )= 1/4=0.25 

Fig. 5.2 Structural clusters and their tightness 
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For two structural clusters S 1. and S 12, denote the tightness of S 1i and S 12 as 
T(S 11 ), T(S 12), then we say that 

(1). cluster S 1l is tighter than cluster S 12 if T(S 11) > T(S 12) ; 

(2). cluster S 11 is as tight as cluster S 12 if T(S 1l) = T(S'2) 

Fig. 5.3 (a) and (b) have shown these two cases. 

T(Sli) = 5/6=0.83 

J2 

7'(S)= 4/6=0.67 

(a) S, is tighter than 

G-- 

1 

a7 1 SI 2 

T(Sli) = 2/4=0.5 T(S2)= 2/4=0.5 

(b) S, is as tight as S2 

Fig. 5.3 Connectivity of structural clusters 
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5.4.2 Structural Tightness 

The definition of the tightness of a cluster includes only the ratio of the number 

of structural rings to a given number of joints. As a measure of the quality of a 

cluster, however, the well-formedness of the structural rings contained in the 

cluster is also very important as far as the structural vulnerability concerned. If 

we consider the quality of well-formedness of each ring in a cluster, then the 

tightness becomes structural tightness which is defined as 

Structural Tightness 

Q(S ;)=E q(R,,, ) /n (m =1,..., nR) (5.2) 

where n is the number of joints in S; and nR is the total number of rings in S 1;, 

and q(R,, ) is the quality of well-formedness of a ring R. which is given by (4.21). 

Thus, we can see that the structural tightness of a cluster is a measure of both 

the quantity and the quality of the connections within the cluster. It depends on 

(i) the number of structural rings within the cluster; 

(ii) the degree of overlap between the rings; 

(ii) the quality of the well-formedness of the rings. 

When a cluster S', contains only one structural ring, R,,, (5.2) then actually gives 

the value of the structural tightness of that ring R, , denoted as 

Q(S l) =Q(Rm) = q(Rm) In (53) 

(5.3) implies that if two structural rings Rl and R2 have the same values of q()?, ), 
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i=1,2, then the one with shorter path length, i. e. less number of joints, has the 
bigger value of structural tightness. Fig. 5.4 has shown this case. 

A 
P1 

m ---Am 

A2 

If the quality of well-formedness q(RI) =q (R2) 

Then the structural tightness O(RI) > Q(R2) 

Fig. 5.4 Structural tightness of rings 

The conclusion is that a structural ring with short path length tends to be robust. 
We will see later that the Q(Rm) measure is very useful to identify the most 
robust structural ring at a given level of definition. 

In clustering analysis, the ground or foundation of a structure is treated 

as a part of structure. We define the foundation or ground as a very special 

single cluster -- ground cluster, which is much more tightly and densely self 

connected and very well formed. A ground cluster is denoted as SG. It is 

excluded from consideration when the structural tightness is calculated. 

5.5 Principles of Cluster Formation 

In this section we discuss the basic principles of cluster formation. Some 

requirements of a clustering technique are as follows: 
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(1). The given set of objects can be a sample taken from an even larger set of 
objects or else the set can be complete in itself; 
(2). Interest may be centred on knowing the individual elements of a cluster, the 
elements in an over-all description of the cluster, or in both. 
(3). An object may be allocated to only one cluster or to more than one. It is 

required to be an element of at least one cluster. 

Generally speaking (Lance & Williams, 1966), a complete clustering 
algorithm may consist of three distinct process: 

(1). a method for initiating a cluster; 
(2). a method of allocating new objects to existing clusters; 
(3). a method of determining whether further allocating may be regarded as 

unprofitable according to the criteria of clustering, so that objects remain 

unallocated as independent clusters. 
(4). a method of reallocating some or all the objects to existing clusters when the 

main classifying process is completed; this is intended to readdress any 

misclassification produced by the first three process. 

A clustering algorithm must include (1) and (2); but in any particular 

system we study either (3) or (4), or both, may be lacking. 

The principles of cluster formation of a structure as considered in this 

thesis may be stated as follows 

Given: A large complicated system, which consists of a set of joint objects 

connected by a set of member objects. The joint objects and member objects 

interconnect to each other to form a set of structural ring objects. 

Find: A "set" of overlapping rings -- subsets of the original joint and member 

object set, such that: the rings are more densely connected to each other within 
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the cluster than to other rings outside of the cluster. The judgement is based on 
the criterion of the tightness T or the structural tightness Q of the cluster, 
depending on the interest of the user. 

The tightness T and the structural tightness Q can be used at different 

stage of analysis. The user may be only interested in the configuration or 

connectivity of a structural system by neglecting the physical and geometric 
details of the structure, in this case, the tightness T will be used in the 
judgement. When the well-formedness of the connections of a structural system 

are of interest, then the structural tightness Q will be used. Generally speaking, 

the different criterion will produce different results. The clustering algorithm in 

this chapter can be used with either of them. 

5.6 Algorithm 

In the process of cluster formation, structural clusters are built up with 

successively assigning overlapping structural rings to the forming clusters. The 

algorithm builds up a cluster, adding one structural ring object at a time. It 

keeps searching for two characteristics at each level I of description as follows: 

(1). The set of ring objects R 1c in the forming cluster at level 1; 

(2). The set of ring objects R 1D which could possibly be added to R lc to further 

increase the forming cluster, and this is decided using Q. 

The criterion for cluster formation will be that an overlapping structural ring 

will be added to the forming cluster if the value of Q (structural tightness) is 

increased. If there is no addition of a ring which can satisfy the above condition, 

the cluster is complete. 
Basing on the criterion the process of cluster formation can be described 

as follows 
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(1). Supposing S, is a forming cluster, denote the structural tightness of S 1, as 
Q(S 1i)" 

(2). Adding an overlapping ring R, n into the forming cluster S ;, and the new 
value of structural tightness Q'(S 11) is then given by (5.2). 
(3). The ring R. will not belong to S' unless 

Q`(S`i)>Q(S`1) (5.4) 

(4). If (5.4) is satisfied then the ring Rm should add into S ;. The forming cluster 
now becomes S 1+1; and its value of structural tightness is Q(S 1+1; ). 

The ability to conduct an ordered search is very important to the 
development of the algorithm. This is necessary both to reduce search time and 
to improve the probability of finding clusters. Translated into the needs of an 

algorithm, it must be a device for placing the ring objects in an order for 

consideration that will enhance the probability of finding best-formed or tightest 

structural clusters quickly. The objective of this device is to approach that order 
by placing high on the list those rings which will tend to be nuclei around which 

clusters will form. To achieve this, structural rings are ranked according to the 

structural tightness of the rings Q(R,,, ), given by (5.3). 

The process of cluster formation has been implemented in a computer 

program. A schematic representation of the mechanics involved in the program 

is presented in Fig. 5.5(a) and Fig. 5.5(b). Even though this program is basically 

concerned with the formation of structural clusters, the various subroutines 

which constitute the program can be used in other applications. The program 

was developed in subroutine form so that it would be readily adaptable to a 

wide variety of computational schemes and problem types. 

The following list contains a brief description of the computing system 

developed to implement the techniques and principles of cluster formation 
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presented in previous sections. The program is composed of four subroutines. 
These subroutines and their primary functions are summarized below. 

DATAIN: This is a standard input subroutine, which includes inputting of joints, 

string pattern of joints, end joints of each member, the physical and geometric 
details of each member, such as E, A, I, 1. 

RINGS: Identify all structural rings in a structure at a level of definition 1. The 

principle of this subroutine is based on the algorithm developed in Section 3.7. 

DET: Form the stiffness submatrix for each joint in a given ring. Compute 

determinant di, the quality of well-formedness qi of each joint, given by (4.20); 

the quality of well-formedness q(R, �), given by (4.21); and the structural 

tightness Q(Rm) of the whole ring, given by (5.3). 

These three subroutines, which are shown in Fig. 5.5(a), are prerequisites for the 

subroutine of cluster formation. Since they show the source of information used 

by the subroutine CLUSTER, the procedure of which is shown in Fig. 5.5(b). 

The first main process in the subroutine CLUSTER is to initiate a forming 

cluster. The highest ranked ring not in a cluster is chosen. 

The second main process in CLUSTER is a recursive process to form a 

complete cluster. Our strategy will be 

(1) to find out an overlapping ring which is not in a cluster 

(2) to add this ring to the forming cluster if it will increase the current value of 

Q of the forming cluster 
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Subroutine DATAIN 

10 

Subroutine DET 

Read data : 
Joints, String pattern of joint; 
Members; End joints of each member 
The physical and geometric details 

of each member 

I 

ol 

Subroutine RINGS 

Form stiffness submatr'a D� 

Compute d, q1,9(R, ), 0 Rm) 

Form symbol matrix of a given structure. 

Identify all structural rings in the system 

Fig. 5.5 (a) Subroutines 

Return 

Return 

Return 
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At level / of build-up 

Implement SUB RINGS to identify all structural rings 

Implement SUB DET to calculate 0 (Rm) for each ring 

Rank rings according to 0(f m) 

Take highest ranked ring not in a cluster 

as forming cluster S I/ and 0(S 1/) =0 (Roy) 

For all overlapping rings not in a cluster. 

Compute 0' ($) according to (5.2) 

/_ /* / 

Y 

Are there 
any rings not in 

a cluster? i 

N 

I STOP 

Is 
some 

Oý (S I)>O (S ýi) 

Y 

Add a ring with highest O` to forming cluster. If 

more than one ring has same value of 0*. 
chose one with highest ranking. 

O($, )= Opi Sl/) 

Cluster is complete. 

Fig. 5.5(b) Procedure for cluster formation 
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If there is no addition of a ring which can satisfy above condition, the 

cluster is complete, and a new cluster is started. 
The process continues until at a stage every ring identified is an element 

of one cluster and the initial structural graph model becomes a simplified 

structured graph model which consists of a set of interconnected structural 

clusters. These interconnected clusters again are there to form a set of 

structural rings at higher level of definition. We can apply the above process to 

this simplified structured graph model to form even bigger union clusters at next 

higher level of definition. This process can recursively apply to the graph model 

of the structure until the whole structure becomes a single cluster. 

5.7 Example of Cluster Formation 

The procedure of Fig. 5.5 will be illustrated by forming structural clusters for the 

structure of Fig. 5.6. In this example, the structural tightness Q is used as the 

criterion. 

0 
ly 

10 P3 14 

18 

Fig. 5.6 A Structural System 
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The structural system of Fig. 5.6 is a two dimensional pin jointed frame. 
The members are denoted by italic numbers. The diagonal members cross at 
the centre of the frame without being connected there. All members of the 
frame have the same value of elastic modulus E=2. Ox lO8kN/m2. By 
implementing the subroutine DATAIN, the detailed information about the sizes 
and properties of the structure can be obtained which are listed form Table 5.1 

to Table 5.2. 

TABLE 5.1 

Joint co-ordinate table 

Joint No. X Co-od. Y Co-od. Joint No. X Co-od. Y Co-od 
(m) (m) (m) (m) 

1 0.00 0.00 2 0.00 1.50 
3 0.00 3.00 4 0.00 4.50 
5 1.00 3.00 6 2.00 0.00 
7 2.00 1.50 8 2.00 3.00 
9 2.00 4.50 10 4.00 0.00 
11 4.00 1.50 12 4.00 3.00 
13 4.00 4.50 14 6.00 0.00 
15 6.00 1.50 16 6.00 3.00 
17 6.00 4.50 18 7.50 1.50 
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TABLE 5.2 

Member end condition and properties table 

Member No. Joint String Joint String Area 
Mk ji Pattern jj Pattern A(m2) 

1 1 p 2 p 0.0016 
2 2 p 3 p 0.0021 
3 3 p 4 p 0.0021 
4 1 p 6 p 0.0016 
5 1 p 7 p 0.0016 
6 2 p 7 p 0.0016 
7 2 p 5 p 0.0028 
8 3 p 5 p 0.0028 
9 4 p 5 p 0.0028 
10 4 p 9 p 0.0028 
11 5 p 9 p 0.0028 
12 6 p 7 p 0.0016 
13 6 p 10 p 0.0016 
14 6 p 11 p 0.0016 
15 7 p 11 p 0.0016 
16 8 p 11 p 0.0032 
17 8 p 12 p 0.0032 
18 8 p 9 p 0.0032 
19 8 p 13 p 0.0032 
20 9 p 12 p 0.0032 
21 9 p 13 p 0.0032 
22 10 p 11 p 0.0016 
23 10 p 14 p 0.0016 
24 10 p 15 p 0.0016 
25 11 p 15 p 0.0016 
26 11 p 16 p 0.0032 
27 12 p 16 p 0.0032 
28 12 p 13 p 0.0032 
29 13 p 16 p 0.0032 
30 12 p 17 p 0.0032 
31 13 p 17 p 0.0032 
32 14 p 15 p 0.0016 
33 16 p 17 p 0.0032 
34 14 p 18 p 0.0016 
35 16 p 18 p 0.0016 

5.19 



Then we start the process of cluster formation and assume that this is the 
level 1 in the hierarchy. 

Referring to Fig. 5.5(b), the first main step in the process is to implement 

the subroutine RINGS to identify all structural rings at this level in the structure 

and use the subroutine DET to calculate the quality of well-formedness q(R,,, ) 

for each ring and then rank them according to value of structural tightness 

Q(R, �). The results are shown in Table 5.3. 

It was mentioned in Section 5.4.2 that, the ground or foundation of the 

structure is considered as a single cluster very tightly and densely self-connected 

and very well formed. Thus, in the process of cluster formation, the ground 

cluster SG comes up first, as shown in Fig. 5.7(a)-(a). 

The rest of the procedure of cluster formation is straight forward. To 

initiate the first cluster, we consult Table 5.3 and we see that rings R7 and R8 

have the same rank. Choosing, arbitrarily, the first ring as the initial forming 

cluster, and its Q(S 21) = Q(R7) =10.13. 
By consulting Table 5.3, we find only ring R8 is overlapping with the 

forming cluster S 21. Adding ring R8 into S 21, and the value of structural 

tightness Q' (S 21), given by (5.2), is as 

Q'(S 21) = [q(R7) +q(R8)J/n = (30.93 + 30.93)/4 =15.46 > Q(S 21) =10.13 

according to the criterion of cluster formation ring R8 should add in to the 

forming cluster S 21. Now the forming cluster becomes S 31 and the value of 

structural tightness 

Q(S 31) = Q*(S 21) =15.46 

5.20 



Structural Rings and Their Ranks 

Ring !>, Joints Structure 
Graphical 

Pattern 
String 
Pattern 

q( Rm) 

1010 
0(igm 

1010) 
Rank 

1 1-2-7-1 
1L\0 

-7 

Cý 
p4nws 5.91 1.97 4 

2 1-6-7-1 

........................... 
1 C"-::: ýý 6 

- ----- - ----------------- -- 
4: ý --- -- --------- ----- - 

P**K 
----- ----- -- 

5.91 
--- - --------------- 

1.97 

--- --------- - 
4 

7 
- ----- ------------- ------------- ----------- - -- 

3 6-7-11-6 
6 Qý 

I\ R90.9ý 91 5 1 97 

- --------- 

4 
7: ý11 

------------------------------- -- --- ---------- - 
. 

- 
. 

4 6-10-11-6 
6 10 C -- --- -- 

5.91 

- -- 

1.97 

-------------- 

4 
11 

------------ -------------- 

5 10-11-15-10 
10 Lý 

15 11 
R9ý 5.91 1.97 4 

O 
---- ..... --- - - - 

6 10-14-15-10 
10ý 14 

lztw*w 5.91 

-- - -- 

1.97 

-- ------ - -- --- 

4 

------ -----------"-- "----- 

2-3-5-2 

15 
-------------------------- ------------- ---------- 

30.93 

------------ 

10.13 

------------ 

1 
7 

35 

8 3-4-5-3 
3175 

4 
30.93 10.13 1 

9 

-.. 

4-5-9-4 

------------ 

/\ 
L -- 

Ö 
ýa ots 

--------- 
20.25 

------"-------- 
6.75 

--------------- 

3 
p j 

10 8-9-13-8 
13 

: 
--- 23.58 7.86 2 

---..... - 

11 

-- ---------- --- - 

8-12-13-8 

------------------------------------ 
8 12 ----------------- --- -------- ---- ----. -- ............... 

P*"W 
-............. -. 

23.58 

----- 
7.86 

---- --- ---- 

2 
13 

---- --- - -- -- ---- -- --- 

12 

- -- ------------- 

8-9-12-8 

- -............................... 
8 12 

-- -----------"----------- 
40 

- 

23.58 7.86 2 
9 

---"--"-. ---- 

13 

----------"-"-"-- 

9-12-13-9 

------. ----. -------' 12 

',:: 
ýj 

13 

--- ------------- ------ 
23.58 7.86 

----------- 
2 

0 9 
---------. ---- - ..... -------------- -------- -------------- --------------- ------------ 

14 12-13-17-12 

--. -----------. - 
Qý 12 
ý 

13 17 

--- --- 
P 23.58 7.86 2 

15 12-16-17-12 
2 16 1 23.58 7.86 2 

17 

16 

- --- 

12-13-16-12 
12 16 

13ý 
23.58 7.86 2 

17 13-16-17-13 
16 

13 1 7 
Atpws 23.58 7.86 2 

. ------------- -- --- - -------------- ------------- ------- ------- 

18 8-11 o--o 
Cs 284( 105 1.42( 1(f5) 5 

8 11 
---------------- 

19 11-16 
1p-ß 16 

C# 
CS 284 ( 165) 1.42 ( 10 5) 5 

---- 20 ----------------- -- --- -- -- --------- --- 
1 ýý18 

-- ---------------------------- ----- 
a 1.51( 165) 0.75( 165) 6 

14-18 

21 
1 ý----018 

- ------ -- 
CS 

- ----- 
1.51( 1(f5) 

----- 
0.75( 165) 6 

16-18 

TABLE 5.3 

5.21 



Then, similarly, ring R9 is added into the forming cluster S 31, giving the value of 
structural tightness 

Q'(S 31) 
= [q(R7) +q(R8) + q(R9)]/n = (30.93 + 30.93 + 20.25)/5 =16.42 > Q(S 31) 

At this stage no structural ring is overlapping with the forming cluster. The first 

cluster S 41 has thus been formed, and the value of structural tightness 
Q(S 41) = Q'(S 31) =16.42. 

The whole process of forming clusters of the structure of Fig. 5.6 is 
illustrated pictorially by Fig. 5.7(a) to Fig. 5.7(c). The Q(S ') values beside each 
diagram are there to indicate the structural tightness either the forming cluster 

currently being considered or the cluster just being formed. We can see how the 

structural tightness is increased when a structural cluster is building up. 

The same procedures may be followed to form more clusters until all 
identified rings in Table 5.3 are an element in one cluster. At this stage the 

total set clusters together with their structural tightness valves are given in Table 

5.4, which also indicates the order of cluster formation. 

TABLE 5.4 

Structural Clusters Table 

Cluster Joint 
S; 

Structural Tightness 
Q(S 11. ) (1010) 

1 23549 16.42 
2 89 12 13 23.85 
3 12 13 16 17 23.85 
4 126711101514 4.43 

5 8 11 1.42x 10-5 
6 11 16 1.42x 10-5 
7 14 18 0.76x 10-5 
8 16 18 0.76x 10-5 
G Ground 00 

5.22 



Level > 

(a) 

I 

18 

6 10 14 Level 5 

15 18 

2 
16 

O(ý? ) 

= 7.86 
17 

3 

(e) 

Lew� 2 
6 10 14 

O(S2>) 5 18 
= 10.13 

38 12 
16 

(b) 

- ---------- 

Level 3 

6 10 14 

o(sjf) 
= 15.46 

(c ) 

i 
i 
i 

----- _. _. _. _. _. _. _. _. _. _ _. -- ---- 
i 
i 

16 10 14 Levtaý 6 

2 
15 18 

8 12 
- - ------ - 

94 
16 

O(ý2) 

4 17 = 11.79 

----------------- ----- ---- --------- ------------- 

16 10 14 Lekw 7 

2 15 18 

8 12 

O(S72) 

4' 17 =17.69 

S[ý (9) 

18 

ý9Yla/ I 
6 10 14 

o(sW>) 
= 16.42 

(d) 

6 in IA 

L 

18 

Fig. 5.7 (a) Cluster Formation 

5.23 



Leere/9 

O(03) 

=7.86 

(h) 

6 in IA 

`ý 

18 ý. 

O 
4n 

Love/ 10 

s 10 14 
Levis/ 13 

16 10 14 1 10 14 

2 
15 18 

2 
-------- 15 18 

=11.79 8 12 
16 

8 
9'l1 

12 

Sg S 12 
16 

O(ý* 

=2.96 

0) 4 17 4 17 

S 
G 

SG 

--------------------- 
Level if 

Le"W 15 

6 10 14 
---------- 

6 10 14 

2 5 18. 2 
----------- ------ 15 18 

17.69 8 12 
-- ----- 16 

8 12 
16 

O(' 54) 

Of 
1 

O 
SJ S12 

3.55 

(I) 4 i17 4 17 

S SO 

- 

6 10 14 

2 15 
2 

---------- ------ 
15 18 

O(ý'7) 
18 . 8 12 

16 
O(ýI ) 

=23.85 
af 

12 
16 

W 
911 

S8- T S f2 
J 

=3.94 
f S8 

? 
S 

J 4 17 
0) 4 17 (ý) 

S 
G S 

Fig. 5.7 (b) Continued 

5.24 



Levw/20 

18 

Leve/ 18 

- ----------- 

Level 1.9 

18 

aß'6) 
=1.42 

(P) 

Level 21 

18 

xs? ý) 
0.76 

(P) 

----------------------- 

Lew/ 22 

14 

7 

18 

Q(S 8) 
=0.76 

(q) 

Fig. 5.7 (c) Continued 

  

5.25 



Comparing Fig. 5.7(b) to Fig-5.6, we see that the original graph model of 
the structure has been transformed into a simpler model through the process of 
cluster formation. Having looked at Fig. 5.7(c)-(q), these interconnected clusters 
also form a set of structural rings. For example, SG, S 82, S 123, SG is a ring with 
two pinned joints j9 and j17, whilst S 82, S 123, S 206, S 19S is a ring with three pinned 
joints along it. Therefore, this graph model still consists of a set interconnected 

rings at higher level of description. The same process of cluster formation can 
be recursively applied to this model to form even bigger clusters and a set of 
structural rings at even higher level of description until a single cluster of a 
structure is obtained. This process can produce a hierarchical representation of 

a structural system which is extremely useful for the structural vulnerability. We 

will discusses this more fully in Chapter 6. 

5.8 Summary and Conclusions 

Clustering techniques are concerned with the organization and reduction of a 
large amount of data and information, which are very useful in dealing with the 

analysis of larger complex systems. In this Chapter we have applied clustering 

techniques to classify the structural rings of a structure into a number of 

structural clusters. 
A structural cluster has been defined as a set of overlapping structural 

rings in which the rings themselves are more densely connected to each other 

within the cluster than to other rings outside the cluster. 

A measure has been developed to describe a structural cluster 

quantitatively, that is structural tightness. The structural tightness of a cluster is 

a measure of both the quantity and the quality of the connections between the 

rings within the cluster. It depends on the number of the structural rings within 

the cluster, the degree of overlap between them and the quality of well- 

formedness of the rings. 
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The process of cluster formation of a structure is, thus, based on the 

concept of a structural cluster and the measure of structural tightness. The 

criterion for cluster formation has been defined in such a way that an 

overlapping structural ring would be added to the forming cluster if the value of 

structural tightness is increased. By implementing the process of cluster 
formation, we can identify all structural clusters of a structure. 

This process could apply recursively to a structure at each level of 
definition in which a number of structural clusters connect to form a set of 

structural rings until the whole structure becomes a single cluster. A structure 

then could be represented in a form of hierarchy which is very useful in the 

vulnerability analysis of the structure. 
An example has been given in this chapter to illustrate the whole process 

of cluster formation. 
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Chapter 6 

Hierarchical Representation of Structural Systems 

6.1 Objectives 

The objectives of this chapter are: 

1. To discuss how a structure can be represented in a form of hierarchy; 

2. To examine the systems concepts and their role in dealing with the analysis of 

complex systems; 
3. To examine the different types of external connections between structural 

clusters at a level of definition, and; 
4. To modify the clustering algorithm developed in Chapter 5; 

5. To present an example. 

6.2 Introduction 

At the end of Chapter 5 the concept of the hierarchical representation of a 

structure as used in the structural vulnerability analysis was briefly mentioned. 

In this chapter we introduce the systems concepts and discuss how a structure 

can be represented in a form of hierarchy. 

Hierarchy plays an important role in dealing with the analysis of complex 

systems. The organization of any complex systems is hierarchical 

(Alexander, 1964). It is argued that (Stone, 1989) it is desirable for a system to 
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be structured hierarchically, since this gives a natural representation of a 
complex system and is an important factor in the ability of a knowledge based 

system to provide an appropriate degree of detail in response to analysis. 
A structural system can also be described at various levels of definition. 

A structure is built up starting with a set of structural rings at the lowest level of 
description, grouping them into a number of small clusters at next higher level 

of description. These newly formed clusters connect to each other to form a set 

of new structural rings at that level of definition. The same process can 

recursively apply to the structural rings at various levels of definition, and such a 

process leads to the hierarchical representation of a structure in terms of a set of 
interconnected structural rings. 

This chapter brings together the ooGM from Chapter 2, the structural 

ring model from Chapter 3, the quality of well-formedness of structural rings 

from Chapter 4 and the structural cluster formation from Chapter 5, together 

with the systems concepts to be introduced in this chapter, for forming the basis 

of a hierarchical representation of a structure. The aim is to transform a 

structure into a hierarchical model with various levels of description in terms of 

interconnected rings. This hierarchical model provides a basis for structural 

vulnerability analysis. 

6.3 External Connectivity Between Structural Clusters 

6.3.1 Structured Graphs 

A graph G= (N, L) is said to be structured at a level of definition 1 if any of its 

elements can be considered as the subgraphs of G, such elements are called 

macro-elements. The ooGM of a structural system S= (J, M) may possibly be 

represented by its corresponding structured graph at a level of definition 1, and 

the elements of which are structural clusters S; of S. 
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Fig. 6.1 A structured graph at a level of definition 

Fig. 6.1 is one of the structured graphs at level 22 in the process of cluster 
formation of the structure of Fig. 5.6, and its elements are structural clusters at 

the corresponding level. It is obvious, from Fig. 5.7(a) to Fig. 5.7(b), that a 

structured graph at a higher level of description is a simpler model comparing to 

its original 000M. 

6.3.2 Connected Structural Clusters 

Assume that S !; and Sj are two structural clusters at a level of definition 1, 

S li=(M'i, J i )ý Si =(M''J. ) (6. i) 
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where 
M --- the member set in cluster S 

M --- the member set in cluster S 

J --- the joint set in cluster S 

J --- the joint set in cluster S3 

if there is at least a single joint j 1k, which satisfies: 

j lk EJ1; and j lk EJ 

then structural clusters S 1, and Sj are said to be connected. 

(6.2) 

For example, in the structured graph of Fig. 6.1, the structural clusters S1 and S2 

are connected clusters. 

6.3.3 Complex Joints 

A complex joint is the intersection of any two connected structural clusters, that 
is, 

1lß =s li n S. (6.3) 

According to the definition of connected clusters, a complex joint may be either 

(1). a single joint, shown in Fig. 6.2(a); 

(2). a set of joints not directly connected but indirectly connected through the 

clusters which form the intersection, shown in Fig. 6.2(b); 

(3). a primitive cluster, i. e. a single member, shown in Fig. 6.2(c). Note that the 
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member in this case must belong to both clusters; 
(4). mixture of any above cases, shown in Fig. 6.2(d). 

Sý o Sý 

(a) A single joint 

Sý ý Sý 

(c) A set of directly connected joints 

Fig. 6.2 Examples of complex joints 

6.3.4 Structural Rings at a Level of Definition 

(d) Mixture case 

For a given structured graph at level of definition 1, there exist many structural 

loops and structural rings. The elements of these loops and rings are clusters 

and complex joints. At each level of description, only structural rings are of 

interest as far as building higher level clusters is concerned. 

For example, in the structured graph of Fig. 6.1, Sj, j,, SG, j9, Sl is a ring, shown in 

Sýo S% 

(b) A set of non-directly connected joints 

Sý  ý Sý 

6S 



Fig. 6.3(a). Obviously, there are many other structural rings at this level. 

Sý 

4 -ý 
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13 

Fig. 6.3 Connected Clusters and Their Ring 

It should be noted that if the complex joint between two connected clusters is a 

primitive cluster, there are at least two single joints belonging to both of the 

clusters, in this case, these two clusters can be considered as a continuous 

elements, the corresponding structural ring pattern is a ring with a cut along it. 

For instance, the complex joint between clusters S2 and S3 of Fig. 6.1 is a 

primitive cluster, the structural ring of which can be denoted by a ring with a cut 

along it, shown in Fig. 6.3(b). 
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The quality of well-formedness of a structural rings at a level of 
definition can similarly computed according to (4.20) and (4.21), that is, only 
those single joints contained in the ring are to be considered. 

For example, 

(a) the well-formedness of the ring of Fig. 6.3(a) is equal to q(RI) = q4 + q9; 
(b) the well-formedness of the ring of Fig. 6.3(b) is equal to q(RI) = q12 + q13. 

The definition used here is that the well-formedness of a ring at a level of 

definition depends only on the external connections between the clusters 

forming the ring. A cluster only becomes an arc of the ring at that level 

although the cluster itself could possibly consist of a set of interconnected rings 

at lower levels of definition. 

Fig 6.4 A structural ring at a level of definition 

Take ring RI at level of definition of Fig. 6.4 as an example, assuming that three 

clusters S Il, S12 and S f3 are all tightly self connected and very well formed. 

Three clusters are connected together by three pinned joints to form structural 

6.7 



ring. From Chapter 3, we know that this ring is a just-stiff ring and only if one of 
the degrees of freedom is released adjacent to any one of the three joints the 

ring becomes a mechanism. In the design process of a structure, therefore, 

merely to increase the connectivity and stiffness of the clusters will not improve 

the quality of the well-formedness of structural rings. The structural 

vulnerability analysis is to examine not only the structural tightness of clusters 

making up a ring RI at level of definition, but also, as a whole, the quality of the 

well-formedness of the ring. That is a very important concept in the sense of 

structural vulnerability. We will see in Chapter 7 that the robustness of a 

structure is dependent on the quality of the well-formedness of structural rings 

within a structure at various levels of definition. 

6.3.5 Relative Tightness 

Assume that a structural ring at level of definition RI consists of a number of 

clusters 

RI={Sf; I i=1,..., k} 

then the relative tightness of a cluster S1 is defined as 

n(S'i) = Q(S 1) /E Q(S'') (i =1,..., k) (6.4) 

where Q(S ,) is the structural tightness of a cluster S; and k is the total number 

of clusters in R. 

For example, the relative tightness of cluster S 'i in the ring RI of Fig. 6.4 

is equal to 

i(S 11) = Q(S 1l) /E Q('S'i) (i = 19 
9-3) 
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This relative measure r? (S ;) reflects the structural quality (connectivity and well- 
formedness ) of a cluster with reference to other clusters in a ring. 

From the structural vulnerability analysis point of view, the cluster with 
minimal value of relative tightness in a ring RI is the most vulnerable part in that 
ring. 

6.4 Systems Concepts 

The systems view of the world is an holistic one where the whole is considered 
to be more than just sum of the parts(Comerford, 1989). The system has 

characteristics and exhibits behaviours which are due to its totality. This is in 

contrast to traditional scientific method which seeks to explain the structure and 
behaviour of the whole by examining the nature of its constituent and parts. 

A system can be considered as a structure consisting of many levels of 

organisation. At each level there exists attributes and types of behaviour which 
do not exist at any other levels. Specific problems and phenomena emerge at 

each level of organization which are peculiar to that level. Consequently, there 

are multiple descriptions, models of the structure with each level having its own 
features and characteristics. Hence we may be able to understand and explain 

the system and behaviour of the system in many different ways all equally valid 
but of different levels of detail or complexity. 

The organization of any complex systems is hierarchical 

(Alexander, 1964). The concept of hierarchy is one of a structure with discrete 

but interacting levels. It implies that a body or an organisation is classified in 

successively subordinate grades. Hierarchy can be used to represent the fact 

that systems can be ordered according to various criteria. The levels of 

hierarchy are subordinated to each other on defined criterion. 

Viewing a system as a hierarchy is useful in describing its nature and 

explaining its behaviour. Hierarchical structures are generally characterised by 
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repeated classification and neglect of details at successive transitions to high 
levels of the hierarchy. 

Each entity in a hierarchy can be considered as either a part or a whole. 
It is a part with respect to entities above it in the hierarchy but a whole with 

respect to entities below it. Koestler (1968) referred to any such members of a 
hierarchy as a 'holon', which has already been mentioned in Chapter 2. 

Hierarchy implies a framework that permits complex systems to be built 

from simpler ones. In turn, the existence of a hierarchy allows complex systems 

to be broken up into their component parts and subsystems. Hierarchy helps us 

to organize, to understand, to communicate, and to learn about complexity of 

systems. 

6.5 Description of a Structure at Various Levels of Definition 

In this section we apply the systems concepts discussed above to a structural 

system and the structure of Fig. 6.5 will be used as an example. 

At the lowest level of description the structure, S= (M, J), is composed of 

many connected member objects and joint objects, where the member set 

M= {m, Ii =1,..., 8} and the joint set J= {jk Ik=1,..., 7} . From Chapter 3 we know 

that these members and joints connect to each other to form a set of structural 

rings. Thus, at the next higher level of description--level 2, the structure is 

considered as a system consisting of a set of structural rings, one of which is 

R2=(S21, j22, S22, j23 S23, J 25, S24, j26) 

where S 2; (i =1,..., 4) are all primitive clusters, shown in Fig. 6.5(b). 

If the ring R2 is replaced by a single structural cluster then Fig. 6.5(b) becomes a 

new structured graph at level 3, shown in Fig. 6.5(c). 

6.10 



.ý 

01 

h 

1 
y 

6.11 

h 

V 

a 

V 

V 

N 

V 

V 

. -. d 

. -. 

... 

.1 
0 

. -. 

... 

. -. 
cv 
... 

C 
0 
46 
co 
E 
0 

a) 

U 

cö 

LL 



Having looked at this structured graph model of Fig. 6.5(c), we see that 
this newly-formed cluster, together with other primitives clusters, forms two 
structural rings. Denote one of them as 

R3=(S31, j33, S32, j34, S33, J37, S34, j36) 

and replace it by another single cluster and we get a new structured graph at 
level 4, shown in Fig. 5.6(d). At this stage the structured graph consists of only 
one structural ring, denoted as 

R4=(S41, j41,5429 429 S43, j45) 

This ring can be replaced by a single cluster at the highest level of 
description which represents the whole structure. 

The above example has illustrated that, with the concepts of structural 

cluster and structural ring, a structure can be described at various levels of 
definition in terms of interconnected structural ring. At each level there exists a 

set of connected structural rings which do not exist at any other levels. In the 

above example, for instance, at level 4 there exist one ring whereas at level 3 

there are two rings. 

The structural rings at each level have their own structural characteristics 

which are peculiar to that level. The quality of well-formedness of the ring R4 is 

obviously different from R3, and each ring at a level of definition within a 

structure is designed to perform a particular desired function. 

Generally speaking, for a complex structure, the number of structural 

rings at the a lower level of description is large and they are highly 

interconnected, and therefore it is very difficult to recognise the organisation of 

the system. At a higher level of description, the structural ring objects are 

classified into a set of structural clusters which indicates more general features 

and attributes of the objects it contains. The detail information about ring 
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objects in a cluster is hidden inside the cluster. These connected clusters form a 
set of new structural rings. But at this stage the number of rings and the 
interaction between them become much smaller and simpler compared with 
those at lower levels of description. 

With the concepts of hierarchy, a structural cluster at level of definition 
itself is a complete system which consists of a set of rings at lower levels of 
definition, meanwhile it is a part of a structural ring at higher level of definition. 

Therefore, how we define a cluster really depends on at which level we look at 
it. There is no immediate difference between a huge structural cluster and a 

single member if they are observed at different levels of description. At very 
high level of definition a complex structural cluster can still be treated as a 

single object. 
At the lowest levels of description all structural clusters are primitive 

clusters i. e. single members. At the highest level of the hierarchy there is only 

one cluster which represents the whole structure being studied. 

Summarising the discussion so far, some conclusions can be drawn: 

(1) A structural system can be represented by successively subordinate 

structural rings at each level of definition. 

(2) A structural ring RI at the level of definition 1 represents a 

substructural system. 

(3) Given a structural ring RI in the hierarchy, any of its arcs can be 

regarded as the condensation of a set of structural rings at lower 

levels of definition and itself can be an (or part of) arc of a 

structural ring at a higher level of definition. 

(4) Structural rings at lower levels of the hierarchy are a more detailed 

description of a structure than those at higher levels of definition. 
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6.6 Hierarchy Formation 

In Chapter 4, it was stated that the quality of the well-formedness of a structural 
ring is a measure of its ability to resist damage from any arbitrary direction and 
to perform its desired function. A well formed structural ring is more robust 
than a badly formed ring. From the Section 6.5 it has been shown that a 
structure can be described at various levels of definition in terms of 
interconnected structural rings. The robustness of a structural system is, thus, 
dependant on the quality of the well-formedness of rings at various levels of 
definition within a structure.. 

For a ring the robustness is the same as the quality of well-formedness 

and for a structure it is the structural ring with worst quality of well-formedness 

over all levels of definition i. e. there is one level of definition which the 

structural ring is the weakest. 
In order to find the measure of robustness for a structure, it is desirable 

that a clustering algorithm should be designed in such a way that it can identify 

the structural rings at various levels of definition. The purpose of this clustering 

algorithm is to find a ring at a given level of definition which has the best quality 

of the well-formedness. 
Basing on the cluster algorithm developed in Chapter 5, some 

modification about that algorithm will be made in this section as follows: 

At a given level of definition identify all structural rings. Calculate the 

structural tightness Q(R m) for each ring according to (5.3). Choose the ring 

with the maximal value of Q(R IM). Replace it by a single cluster S 1+1,. Go to 

next hierarchical level of definition 1 =1 + 1. Then the structural quality of this 

cluster is defined as 

Q(S 1+ i) = Q(R Im) (6S) 
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Repeat the process until the whole structure becomes a single union cluster. 

This new clustering algorithm is described as follows 

(1) At level 1 of build-up. 

(2) Implement SUB RINGS to identify all structural rings. If no structural ring 
can be found then go to step (9), otherwise 
(3) Implement SUB DET to calculate Q(R m) for each ring. 
(4) Rank rings according to Q(R m). 

(5) Replace highest ranked ring by a single cluster. 
(6) Let S 1+ _ {R ; �} and Q(S 1+ 1) = Q(R m) 

(7) Go to next hierarchical level of definition 1=1+ 1. 

(8) Go to step (1). 

(9) Stop. 

The process of cluster formation produces a hierarchical model of a 

structure which is particularly useful in the identification of failure scenarios. 

The structure to be analyzed is modelled as a hierarchical set of structural rings. 

This hierarchical model of a structure S= (M, J) can therefore be described as 

S={ R' } (6.6) 

where R', 1=1,2,..., gs is a structural ring at the level of definition 1 and there are 

qs levels in the hierarchy. 

A structural ring R1 represents a substructure of S. It consists of a 

number of joints and arcs. Each arc itself may be self contained sub-structure of 

R', i. e. structural cluster, denoted by S It. The structural ring R! thus can be 

represented by . 
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Rl ={ j11, S', I i=1,..., n} (6.7) 

where j' is a joint and n is the total number of joints in the ring R'. 

The structural cluster S; again consists of a sequence of structural rings 
at lower levels of definition. The cluster S 1; may also be described as a 
hierarchical set of structural rings 

Sl ={ R4, } (qý<1) 

and 
R qj ={j qz ,S 

4X Ix=ý,..., ni) 

(6.8) 

(6.9) 

where n; is the total number of joints in the ring R 91 and qi is the next lowest 

level of definition of S 1;. 

The structure of Fig. 6.5 can then be represented in a form of hierarchy, shown 

in Fig. 6.6 

Hierarchical Model Structural Ring I Level 

5 

A" 4 
------- ---------- 

R3 3 

------- -- --- ------ -------------- -------- ------- ----- - 

2 S-29 ii0 

----- -- --- --- --- --------------------------- ----------- 

m, in4 in, rn3 $6 in8 in, in6 1 

Fig. 6.6 Hierarchical Model of A Structure 
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6.7 Example 

In this section we present another example to illustrate the clustering algorithm 
developed in this chapter by forming structural clusters for the structure of 
Fig. 6.7. This has already been used to illustrate the process of structural ring 
identification in Section 3.7. 

The structure of Fig. 6.7 is a two dimensional framed structure with 
pinned and fixed joints as shown. The members are denoted by italic numbers. 
By implementing the subroutine DATAIN, the detailed information about the 

sizes and properties of the structure can be obtained which are listed form Table 

6.1 to Table 6.3. 
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Fig. 6.7 A Structural System 
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TABLE 6.1 

Joint co-ordinate table 

Joint No. X Co-od. Y Co-od. Joint No. X Co-od. Y Co-od 
(m) (m) (m) (m) 

1 0.00 0.00 
3 0.00 6.00 
5 4.00 0.00 
7 4.00 6.00 
9 6.00 0.00 
11 6.00 6.00 
13 8.00 0.00 
15 10.00 0.00 
17 10.00 3.00 
19 10.00 9.00 

2 0.00 3.00 
4 0.00 9.00 
6 4.00 3.00 
8 4.00 9.00 
10 6.00 3.00 
12 6.00 9.00 
14 7.00 1.50 
16 9.00 1.50 
18 10.00 6.00 

In the structure of Fig. 6.7, joints 10,11 and 17 are non-standard joints. 

The word 'non-standard' is intended here to mean that the joints are not of one 

type, such as pinned joint or fixed joint. When the stiffness submatrix of a non- 

standard joint is formed it should be noted that only those members which are 

rigidly connected to the joint will contribute the calculated 0 rotations to the 

stiffness submatrix. 

For example, referring to Chapter 4, the stiffness submatrix of joint 11 is formed 

as 

D11 =[ k1117 + k1119 + k1120 + k1126 

whereas k1119, kll20, kj, 26 are all 6x6 matrices but k1117 is a 4x4 matrix in which the 

items related to the rotation displacement 0 are zero. 
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TABLE 62 

Member end condition and joint table 

Member No. Joint A String Pattern Joint B String Pattern 

1 1 p 2 p 
2 2 p 3 p 
3 3 p 4 p 
4 1 p 5 p 
5 2 p 5 p 
6 2 p 6 p 
7 2 p 7 p 
8 3 p 6 p 
9 3 p 7 p 
10 3 p 8 p 
11 4 p 7 p 
12 5 p 6 p 
13 6 p 7 p 
14 7 p 8 p 
15 5 p 9 p 
16 6 p 10 p 
17 7 p 11 p 
18 9 p 10 p 
19 10 f 11 f 
20 11 f 12 f 
21 9 p 13 p 
22 9 p 14 p 
23 14 p 13 p 
24 10 p 14 p 
25 10 f 17 f 

26 11 f 18 f 

27 13 p 15 p 
28 13 p 16 p 
29 16 p 15 p 
30 16 p 17 p 
31 15 p 17 p 
32 17 f 18 f 

33 18 f 19 f 
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TABLE 6.3 

Member properties table 

Member No. E. Value Area(A) 
(KN/m2) (m2 

Inertia(I) 

1 
2 

2.1x108 3.23x 10-3 3.749x 10'5 
3 

2. lx 108 
8 

4.2x 10'3 4.856x 10-5 
4 

2. lx 10 4.2x 10-3 4.856x 10-5 
5 

2.1x108 3.23x 10-3 3.749x 10'5 

6 
2.1x 108 

8 
3.23x 10'3 3.749x 10-5 

7 
2. lx10 4.2x10'3 4.856x10-5 
2.1x108 4.2x 10'3 4 856x 10'5 8 2.1x 108 4.2x 10-3 . 4.856x 10-5 9 2.1x 108 4.2x 10-3 4.856x 10-5 10 2.1x 108 4.2x 10'3 4.856x 10-5 11 2.1x 108 4.2x 10-3 4.856x 10-5 12 2. lx 108 3.23x 10-3 3.749x 10-5 13 2.1x108 4.2x10-3 4.856x10'5 14 2.1x 108 4.2x 10'3 4.856x 10'5 15 2.1x 108 3.23x 10'3 3.749x 10-5 16 2.1x 108 3.23x 10-3 3.749x 10-5 17 2.1x 108 3.23x 10-3 3.749x 10-5 18 2.1x108 3.23x10-3 3.749x10-5 

19 2.1x 108 4.74x 10-3 5.544x 10-5 
20 2.1x108 4.74x10-3 5.544x10-5 
21 2.1x 108 3.23x 10'3 3.749x 10-5 
22 2.1x 108 3.23x 10-3 3.749x 10-5 
23 2.1x 108 3.23x 10-3 3.749x 10-5 
24 2.1x108 3.23x 10'3 3.749x 10-5 
25 2.1x 108 6.83x10-3 11.686x 10-5 
26 2.1x 108 6.83x 10-3 11.686x 10-5 
27 2.1x 108 3.23x 10-3 3.749x 10'5 
28 2.1x 108 3.23x 10'3 3.749x 10-5 
29 2.1x 108 3.23x 10-3 3.749x 10'5 
30 2.1x 108 3.23x 10'3 3.749x 10-5 
31 2.1x 108 3.23x 10'3 3.749x 10'5 
32 2.1 X108 4.74x 10'3 5.544x 10-5 
33 2. lx 108 4.74x 10 i 5.544x 10'5 
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Then we start the process of cluster formation and assume that this is the level 1 
in the hierarchy. 

As before the ground or foundation of the structure is considered as a 
single cluster very tightly and densely self-connected and very well formed. 
Thus, in the process of cluster formation, the ground cluster SG comes up first, 

as shown in Fig. 6.8(a)-(a). 

Implement the subroutine RINGS to identify all primitive rings in the 

system and use the subroutine DET to calculate the quality of well-formedness 

q(R, �) for each ring and then rank them according to value structural tightness 

Q(R, �) . The results are shown in Table 6.4. 

The rest of the procedure of cluster formation is straight forward. To 

initiate the first cluster, we consult Table 6.4 and choose the highest ranked ring 

R14, and its Q(R14) = 4.85x 105. Replace it by a single cluster S 21 and a new 

structured graph is generated, shown in Fig. 6.8(a)-(b). Repeat the above 

process to identify a structural ring with the best quality of the well-formedness 

at this level. Again replace it by a single cluster, and the structured graph at 

level 3 is shown in Fig. 6.8(a)-(c). 

The whole process of the cluster formation is illustrated pictorially by 

Fig. 6.8(a) to Fig. 6.8(c). The Q values beside each diagram are there to indicate 

the structural tightness of either the forming cluster currently being considered 

or the cluster just being formed. We can see how the structural tightness is 

increased as a structural cluster builds up 

Comparing to the clustering algorithm of Chapter 5, we can see that this 

modified algorithm is simpler. It can also tell us which structural ring has the 

best quality of the well-formedness at each level of hierarchy. We will see in the 

next chapter that the robustness of a structure depends on the quality of the 

well-formedness of structural rings at various hierarchical levels of the structure. 
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6.8 Summary and Conclusions 

Systems can be viewed as structures made up of many levels with associated 
concepts and language for description at each level. Hierarchies are multi-level 
structures which can be used for representing different levels of definition of 
concepts, data and structures. Hierarchical structures allow multiple levels of 
modelling, and therefore representations of concepts and data to be used which 
are appropriate to the inference and problems of concern. 

A complex structure is a system which can be represented in a form of 
hierarchy in terms of interconnected structural rings. The structural rings at 

each level have their own structural characteristics which are peculiar to that 
level. A structural ring at a given level of definition represents a substructural 

system. Any of its arcs can be regarded as the condensation of a set of rings at 
lower levels of definition and itself may be an arc of a ring at a higher level of 
definition. 

The exploration of structural rings at each level of hierarchy, together 

with the properties of these rings such as the quality of well-formedness, is one 

of main tasks in the vulnerability analysis of structures. Some modification has 

been made to the clustering algorithm developed in Chapter 5, the purpose of 

which is to identify a structural ring at a level of definition which has the best 

quality of well-formedness and then to replace it by a single cluster. Repeat the 

same process to the structured graph at the each level of definition and finally a 

hierarchical model of the structure is generated. 

An example has been given to illustrate this new clustering algorithm. 
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Chapter 7 

Vulnerability Analysis of Structural Systems 

7.1 Objectives 

The objectives of this chapter are: 

1. To develop the theory of structural vulnerability; 
2. To present an analytical method to identify the failure scenarios for a 
structural ring; 
3. To examine the concept of a deteriorating event and to define a measure of 
the damage demand for a failure scenario; 
4. To explore the concept of the 'robustness' of a structure. 

7.2 Introduction 

The vulnerability of a structure indicates the ease with which it is capable of 
being damaged or deteriorated. Alternatively the robustness of a structure is 

concerned with the strength or toughness of the constitution of the structure; or 

the physical strength to resist damage or to experience particular deterioration 

without dissatisfying functional requirements. 
It is desirable that a structural system is robust. Robustness implies 

strength and sturdiness in all possible limiting states. It is useful if a structural 

engineer can identify how a structural system is vulnerable. Vulnerability 
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implies susceptibility to damage or failure. 

We present a theory in this chapter the purpose of which is to identify the 

most vulnerable parts of a structural system so that they may be suitably 

protected and monitored. The emphasis of this method is not the usual one of 

analysing a structure under some given loading condition. Rather it is to 

examine the quality of the well-formedness of the various structural rings in a 

structure and to identify those most vulnerable or critical rings the deterioration 

of which could directly cause the failure of the structure. 
In previous chapters it has been shown that a structure can be described 

at various levels of definition in terms of interconnected sets of structural rings. 

This provides a basis for the structural vulnerability analysis 

An analytical method is developed to identify and enumerate all possible 

failure scenarios for a structural ring. This analytical process can be recursively 

applied to structural rings at various levels of definition. The results are 

concerned with the identification of potentially interesting failure scenarios 

together with the actions which may cause them, such as the minimal failure 

scenario and the maximal failure scenario. 

Finally the concept of the "robustness" of a structure is examined. 

7.3 Key Concepts Used in the Theory of Structural Vulnerability 

We start in this section with some concepts and definitions 

Deteriorating event: In structural vulnerability analysis, it is assumed that any 

damage or faults which occur in a structural ring are triggered by deteriorating 

events. A deteriorating event is the result of actions which would cause the loss, 

by a structural ring, of the capacity to transmit a degree of freedom. The action 

here is defined in very general sense. It may be natural 

(e. g. wind or earthquake) or human (e. g. sabotage). 
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Limit state boundary: The response of a structural ring to a given deteriorating 

event is either acceptable or unacceptable. The boundary between acceptable 
and unacceptable is the limit state boundary. 

Failure scenario: A failure scenario is a sequence of deteriorating events which 
transforms a structural ring into a mechanism 

Event sequence diagram (ESD): A structural ring may have a set of possible 
failure scenarios. Each failure scenario will involve a sequence of deteriorating 

events in a tree-like structure of temporally linked events. This is called the 

event sequence diagram (ESD) of a failure scenario. 

Damage demand: The damage demand is a measure of the effort which is 

required to make the occurrence of a specific deteriorating event. The damage 

demand of a failure scenario is therefore equal to the sum of the damage 

demands of all deteriorating events in that scenario. 

Minimal failure scenario: The minimal failure scenario of a structural ring at 

level of definition 1 is the one in which the damage demand required to 

transform the structural ring into a mechanism is a minimum. 

Separateness : The separateness of a structural ring at a level of definition is a 

description of the consequence of a failure scenario. It is the number of 

structural clusters structurally disconnected from a reference cluster contained 

in that ring. 

Reference cluster: A reference cluster at a level of definition may be any cluster 

chosen for its importance or because it has the highest value of structural 

tightness. On earth the reference cluster would normally be the ground cluster 

SG or a cluster which contains SG. 
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Effective consequence : The effective consequence of a failure scenario at level 
of definition is measured by the ratio of the separateness of a structural ring 
caused by that failure scenario to the total required damage demands. 

Maximal failure scenario: The maximal failure scenario of a structural ring at 
level of definition is one in which the effective consequence is maximal. The 
maximal failure scenario of whole structure is that for which the effective 
consequence over all levels of definition is maximal. 

Structural vulnerability analysis: Structural vulnerability analysis is concerned 
with the identification of 

(i) the minimal failure scenario; 
(ii) the maximal failure scenario; 
(iii) any particular interesting failure scenarios with respect to a given reference 

cluster. 

Robustness: The robustness of a ring is measured by the size of the damage 

demand. The most robust ring is the one with maximal damage demand. For a 

ring the robustness is the same as the damage demand and for a structure it is 

the minimal damage demand over all levels of definition, i. e. there is one level 

of definition which is the weakest. 

7.4 Failure Scenarios 

7.4.1 Description of a Structural Ring at Level of Definition 

Let us confine our attention initially to a structural ring RI at a level of definition 

1. It consists of a number of arcs and joints. Each joint will have 3 or less 
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degrees of freedom which can be transmitted to the arcs, which themselves may 
be self contained substructures of R1- we call them structural clusters. 

In Chapter 2, a degree of freedom was defined as the capacity of a 
structural joint j; to permit the transmission of movements in a defined 

coordinate direction (separate and independent of other movements). 
Here we characterise a ring by a string pattern representing the degrees 

of freedom (DOF) carried at each joint. 

A DOF set at a joint i for a ring RI is 

D 'i ={d lei I 1=u, v, B} 

i. e a set of d' such that j=u or v or B. 

where 

(a) d lau =1, if a translation force can be transmitted, otherwise d 0. 

(b) d, =1, if a translation force can be transmitted, otherwise d=0. 

(c) d ;; B =1 if a rotation force can be transmitted, otherwise d 'ýe = 0. 

Thus, 

(7. i) 

a fixed joint at i is D; ={1,1,1 } 

a pinned joint at i is D'1= { 1,1,0) 

a joint with rigidly connected member to u axis roller at i is D; _ {0,1,1 } 

An arc i in a ring RI at a level of definition 1 is a structural cluster S !;. It is a 

continuous element along which the degrees of freedom can be transmitted 

from one of its end joints to another. 

7s 



The capacity of a structural cluster S; for a ring RI to transmit the degrees of 
freedom is described as 

S'i = {s', Ij=U, V, e ) 

where 

(7.2) 

(a) s lau =1 if there is the capacity for a cluster to transmit a translation force 
from one end joint to another, otherwise s ;; u = 0. 

(b) s 11,, =1 if there is the capacity for a cluster to transmit a translation force 

from one end joint to another, otherwise s 0. 

(c) s 14 9 =1 there is the capacity for a cluster to transmit a rotation force from one 

end joint to another, otherwise s !, e = 0. 

In Chapter 6 it was shown that a structural ring R' at a level of definition I can 
be represented as 

R1={ j', , S1; I i=i, z.... n} (7.3) 

Substituting (7.1) and (7.2) into (7.3) we have 

R'={D;, S; 

_{d;, s ;jIj =u, v, e (7.4) 

(7.4) thus can be used to describe a structural ring RI in terms of the degrees of 

freedom being transmitted along the ring. 
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Sý> d2 

/7" s2 
D3' 

S3 

Fig. 7.1 A structural ring 

For example, a structural ring of Fig. 7.1 would be 

R'= {D11, S11, D12, S12, D13,51. E} 

where 
D II = (1,1,0), S il = (1,1,1), 

D12 = (1,1,0), S'2= (1,1,1), 

D13 = (1,1,0), S13 = (1,1,1), 

Now a fully fixed ring could theoretically consists of an infinite number of joints, 

but in practice n would generally be finite and this will be assumed in what 
follows. For a fully fixed circular ring all that will be required is that a finite 

number of joints are chosen in the model. As discussed in Chapter 3 we will 
decide that the number of adjacent fixed joints is 4, so that a ring description 

contains a minimum of 4 clusters and 4 joints. 
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Thus a fully fixed ring could be 

where 

R'= { Dl1, S11, D12, S12, D13, Slip D14, S'41 

D'1 = (1,1,1), S 11 = (1,1,1), 

D12 = (1,1,1), S'2= (1,1,1), 

D13 = (1,1,1), S13 = (1,1,1), 
D'4 

= (1,1,1), S 14 = (1,1,1), 

shown in Fig. 7.2(a). 

d2 

Sý, $ 

Ai d. 7 
S3 

S4 

(a) A fully fixed ring 

A d. 7 
S3 

S4 

d2 

Slf S2 

d> A' d3 
S3 

d4 

(b) A ring with a cut 

Fig. 7.2 

A ring with a cut would be 

R'= { D11, S11, D 12, S12, D13, S13, D 14, S'41 
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where 

D'1 = (1,1,1), S'1 = (1,1,1), 

D12 = (1,191), S'2= (1,1,1), 

D13 = (1,1,1), S13 = (1,1,1), 

D la = (0,0,0), S l4 = (1,1,1), 

shown in Fig. 7.2(b). 

Any structural loop L' with n joints may similarly be described as 
Ll = {D S 1, } which could possibly be matched with a ring RI in the DHSR. If 
L' = {D 1, , S 1, } are not identical for some R1= {D !;, S 1} in the DHSR then L' and 
RI do not match and L' is only a structural loop and not a structural ring. 

7.4.2 Deteriorating Events and Failure Scenarios 

In Chapter 3 we have developed the DHSR-the hierarchical deterioration of 
structural rings, showing all of the possible ways in which a structural ring 
deteriorates into a mechanism. 

Generally in the DHSR for any ring R', each arc of the ring is in effect a 

structural cluster joined to the next cluster by a joint which is either fixed, 

pinned, on rollers, or is a break or cut, or a pin and roller combination. The 

structural clusters may be just stiff or statically indeterminate. 

A path through the DHSR is an ordered subset of DHSR and this is a 

scenario Fh(R') of a ring RI. 

Fh(R') ={R 1k Ik=l,..., mh} (7.5) 

where each R !k is a deteriorated ring of Rf and there are m,, such rings in the 

scenario F,, (R') and we define R 11 =R'. 
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In a scenario the R 1k are ordered in the sense that R 1k+1 is more deteriorated 
than R lk. 

A failure scenario is one in which the final element is a mechanism. 

In the structural vulnerability analysis, it is assumed that any damage or faults 

which occur to a structural ring are triggered by deteriorating events. A 
deteriorating event is the result of a sequence of actions which would cause the 
loss, by a structural ring, of the capacity to transmit a degree of freedom. 
The action here is defined in very general sense. It may be natural (eg wind or 
earthquake) or human (eg sabotage). It is not intended at this stage to consider 
the details of those actions. That must be considered in further research. From 

the point of view of this research we are more interested in the consequence of 
actions which result in the loss, by a structural ring, of the capacity to transmit a 
degree of freedom. 

In a failure scenario Fn(R 9_{ R'k I k=1 .... mh), it is also assumed that 

from R 'k to R'k+l only one deteriorating event occurs and it is the kth event in a 

scenario Fh(R r). A failure scenario then could be considered as a sequence of 
deteriorating events which transforms a structural ring into a mechanism. In a 
failure scenario F,, (R') R lk I k= 1,..., m,, } there are total m,, -i deteriorating 

events. 
A deteriorating event may occur adjacent to a joint or inside a cluster 

causing it to become two separate parts connected by a joint. If a ring 

deteriorates until it becomes a just-stiff ring then one more deteriorating event 

will cause it to become a mechanism. Note that if a just-stiff structural ring is 

identified then the failure scenario will contain only one deteriorating event. 

The first deteriorating event in a failure scenario is called the starting 

event. The last deteriorating event is called the terminating event. When 

describing a failure scenario, it is usually necessary to identify the starting event 

and the terminating event. 
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Each failure scenario will involve a sequence of deteriorating events in a 
tree-like structure of temporily linked events. This is called the event sequence 
diagram (ESD) of a failure scenario. For a cluster consisting of a connected set 
of rings the failure event sequence diagram would represent the conjunction of 
the set of possible scenarios and the setting up and interpretation of such a 
diagram is the subject of the vulnerability analysis. 

A set of all possible failure scenarios for a single structural ring RI thus 

can be found in the DHSRt, denoted by 

F(R') ={ Fh(R') Ih= 

where p is the total number of failure scenarios for a ring R. 

(7.6) 

One important point should be noted that each path in the DHSR shows only an 

abstract pattern of a failure scenario. For a structural ring to be analysed, the 

actual failure scenario would depends on the locations on which the 

deteriorating events occur. 

For example, the triangle frame of Fig. 7.3(a) is a fully fixed structural ring RI. 

Matching it in to the DHSR a failure scenario pattern of R', shown in Fig7.3(b), 

may be described as 

Fh(R')={ Rlk k=ý,..., 5} 

Based on this pattern we can enumerate six possible failure scenarios in which 

the final failure modes of the structure are exact the same, shown in Fig. 7.3(a). 

A set of all possible failure scenarios for the structure can be found using the 

similar approach. 
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Therefore the identification of a set of all possible failure scenarios for a 
structural ring RI to be analysed would consists of three phases. 

(i) Match the ring RI ={D,, S; Ii =1,..., n) in the DHSR; 

(ii) For a particular failure scenario pattern in the DHSR, enumerate all possible 
failure scenarios with respect to that pattern; 

(iii) Go through all failure scenario patterns in the DHSR, and find out a set of 

all possible failure scenarios F(R') = {F,, (R') Ih =1,..., p} for a ring R. 

We will study this more fully in the following sections 

7.4.3 Description of Failure Scenarios 

It was shown in Section 7.4.2 that a failure scenario consists of a 

sequence of deteriorating events. Each deteriorating event causes the loss of 

the capacity to transmit a degree of freedom. 

failure scenario for a ring RI becomes 

F,, (R') = {R Ik Ik =1,..., m,, } 

Hence, with (7.3) and (7.6), a 

={D ;k, S 4k I k=1 .... mh; i=l,..., n} 

={d'4- S 1. k k= 1,..., ;j=u, v, e; } (7.7) 

where n is the total number of joints contained in the ring RI and m,, is the total 

number of the deteriorated rings in the failure scenario Fh(RO). 
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For example a failure scenario for the ring RI of Fig. 7.4 might be described as 

R' = {D'1, S 11, D 12, S'2, D'3, S 13I 

and the failure scenario 

Fh(R') ={ R11, R12, R13, R'4, Rls} 

={D'k, S'k k=1,..., 5; i=1,..., 3} 

_ {dl ;k s'4j, k 

= {[(1,1,1, ), (1,1,1), (1,1,1), (1,1,1), (1,1,1), (1,1,1)], 

[(1,1,0, ), (1,1,1), (1,1,1), (1,1,1), (1,1,1), (1,1,1)], 

[(1,1,0, ), (1,1,1), (1,1,0), (1,1,1), (1,1,1), (1,1,1)], 

[(1,1,0, ), (1,1,1), (1,1,0), (1,1,1), (1,1,0), (1,1,1)], 

[(1,1,0, ), (1,1,0), (1,1,0), (1,1,1), (1,1,0), (1,1,1)], } 

where m,, =5 and n=3. 

For even more generality, we define that 

(i) a deteriorating event occurring adjacent to a joint in a failure scenario Fh(R') 

for a ring RI as 

'4j, k= d'i,, k d ij k+1 (7.8) 

f ij, k implies that this is the kth deteriorating event in a failure scenario to cause 

the loss of a degree of freedom d, adjacent to a joint i. 

thus 

,f ýý, ,, k>0 when an event occurs; (799) 

f Vk =0 otherwise. 
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(ii) similarly, a deteriorating event occurring within a cluster in a failure 
scenario Fh(R') for a ring RI as 

lQ, k =S 1i, k's sj, k+l (7.10) 

g l;, j, k indicates this is the kth deteriorating event in a failure scenario to cause the 
loss of the capacity sI of a cluster S; to transmit a degree of freedom. 

thus, 

g l, k >0 when an event occurs; 

g l', k =0 otherwise. 

(7.11) 

Therefore for a failure scenario there are a series of deteriorating events 

represented by 

Fh(R') _{f ; ý, k ,g ik I k1 ; 1=1,2,..., n ;J =u, v, B} (7.12) 

With (7.8) to (7.12) the failure scenario of Fig. 7.4 could simply be expressed as 

Fh(R1) ={f ,k, g "ilk I k=1,..., m,, -i; i =1,2,..., n ;j =u, v, e} 

-if 
11,1 

, 
f'z6,2 

, 
f1-, 39 g'1,9,4 I 

in which the first deteriorating event is f'1,6,1 and the terminating event g'1,9,4 

and there are a total of four deteriorating events in this failure scenario. 

7.5 Damage Demand 

In the DHSR each structural ring can be destroyed in a number of ways. 

Each way is a failure scenario which consists of a sequence of deteriorating 
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events. A deteriorating event is the result of actions which causes the loss, by a 
structural ring, of the capacity to transmit a degree of freedom either adjacent to 
a joint or within a cluster contained in the ring. Thus for a given deteriorating 
event a certain amount effort is required in order to achieve the desired result. 
This effort is called the damage demand with respect to a given deteriorating 

event. 

The damage demand for a deteriorating event f l4, k or gl, k is defined as e(f 'V. ', k) 
and e(g, k) respectively, where 

(i) e(f l-i, k) >0 when f 4, k > 0, (7.13) 

e(f '4-j, k) =O otherwise. 

(ii) e(g l4j, k) >0 when g l4j, k> 0, (7.14) 

e(g l, k) =O otherwise. 

Thus the total damage demand for a failure scenario Fh(R') is 

E[F,, (R')]= EkEiEj e( lij, k) f EkEiEj e(g 1i j, k) 

(k =1,..., mh-1 ;i =1, %..., n ; j=u, v, O) 

(7.15) 

The question now arises that what is the measure of the damage demand e(f' ,, k) 

or e(g' , k) for a deteriorating event. 

Let us confine our attention initially in this section to a failure scenario 

for a ring RI given by (7.4), with a failure scenario given by (7.12) in which S; 

(i =1,..., n) are all primitive clusters. 

Thus the damage demand for a failure scenario, Fh(RO, is given by (7.15) 
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Firstly let us consider the calculation of e(f l, k). 

In Chapter 4, it was proved that the well-formedness of a joint in a structural 
ring is dependant on 

(i) the orientation and stiffness of the members framing into the joint ; 
(ii) the stiffness of the joint(pinned or fixed). 

The quality of the well-formedness of a joint qi can be described 

quantitatively by its principal stiffness coefficients i. e the products of the 
eigenvalues of the stiffness submatrix of the joint. We also know that (i) the 

principal displacement axes of a joint are linearly independent; (ii) the qi 
measure is independent of the co-ordinate system. 

A principle stiffness coefficient represents the capability of a joint to 

resist applied forces along the corresponding principle axis. The bigger value a 

principle stiffness coefficient has, the more damage demand is required to make 
the occurrence of the deteriorating event--that is, the loss of the corresponding 
degree of freedom. 

Any deteriorating event occurring adjacent to a joint would definitely 

cause damage to the quality of well-formedness of that joint. It seems logical 

that the effort which is required to achieve a particular deteriorating event 

should be proportional to the damage to the quality of the well-formedness of 

that joint. 

We need a measure of damage demand which will allow the 

identification of a minimal failure scenario. Thus the measure need only be 

proportional to the actural demand in a real structure. The damage demand 

with respect to a deteriorating event occurring adjacent to a joint can therefore 

be measured, for the purpose of vulnerability analysis, by the principal stiffness 

coefficients of that joint, which is defined as 
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e(f 1ýj, k) _ (W' 
j, kXX'ij, kxd' k) - 

(W 1 
, k+1XAli�j, k+1xd 'ij, k+1) (7.16) 

where w'4), k is a constant and A l4J, k is the stiffness coefficient of a joint i before 

the kth event and A lij, k+l is the stiffness coefficient of a joint i after the kth event. 

Then we consider the calculation of e(g ; j, k) when S 1, is a primitive cluster. 

S l; is a primitive cluster when it contains only one single member. It is assumed 
here that a deteriorating event occurs in the middle of a structural member 

which can be considered as two smaller parts connecting by a fixed joint in the 

middle. Thus the damage demand e(g 14j, k) cluster could be calculated similarly 
by 

eýl 
ýk) 

_ (W',, k X A(S ;. l, k) X d'4-1k) - 
(W'4*J, k+1 X A(S ri, j, k+l)X d' 

, k+l) (7.17) 

where w'j, k is a constant and A(s ;,, k) is the stiffness coefficient of the central 

joint of the cluster S 'i before the -th event and A(s ; , k+l) is the stiffness 

coefficient after the kth event. 

A structure of Fig. 7.5 will be used as an example to illustrate the procedure of 

calculating of the damage demand. It is a triangular fixed frame and all 

members have the same values of A=0.00683m2, I=1.169x10-4 and E=2.1x 108. 

The corresponding ring RI is represented as 

Rl= { D11, S1J, D12, S12, D13, S13} 

where S 11, S 12 and S 13 are all primitive clusters and the length of the three 

members are equal to 5m, 3m and 4m respectively. 
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A failure scenario of RI of Fig. 7.5 according to (7.16) can be described as 

;j =u, v, e} 

} _{ 
.f11,9,1 ' . 

f'zv2 
.f13,8, - 99 

11,0,4 

By implementing the subroutine DET developed in Chapter 5, the eigenvalues 
of all joints in the ring R 'k can be obtained and the results are shown in Table 
7.1. 

TABLE 7.1 

Stiffness coefficients table 
(10-5) 

R1k Alllk Al2, j, k A13J, k A (S llj, k) 

u v B u v 9 u v 6 u v 6 

k =l 6.26 1.56 0.48 4.82 3.70 0.56 5.81 0.76 0.38 11.47 0.59 0.09 
k=2 6.26 1.56 0.00 4.82 3.70 0.56 5.81 0.76 0.38 11.47 0.59 0.09 
k=3 6.26 1.56 0.00 4.82 3.70 0.00 5.81 0.76 0.38 11.47 0.59 0.09 
k=4 6.26 1.56 0.00 4.82 3.70 0.00 5.81 0.76 0.00 11.47 0.59 0.09 
k=5 6.26 1.56 0.00 4.82 3.70 0.00 5.81 0.76 0.00 11.47 0.59 0.00 

Now the damage demand for each individual deteriorating event can be 

obtained basing on (7.16) and (7.17). Here for the sake of simplicity, it is 

assumed that the constant W l; *, k(k =1,..., m,, -1) in (7.16) and (7.17) is equal to 1Y5. 

We have 

A'1,0,2 xd 11,9,2) 
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Similarly 

e(f'29,2) = (W 1Z 2Xa 12,9,2 x d'2O, 2)- (w 128,3 X X'ze, 3 x d'29,3) = 0.56 
eV 1 3, e, 3) = (W 13,8,3 X )1 X3,8,3 xd 13,8,3)" (W 198,4 X gO, 4 xd 13,8,4) = 0.38 

e(g 11,0,4) = (W 11,8,4 X a(S 11,9,4) xd 11,91,4)- (W 11,0,5 X X(S 11,0,5) Xd 11,0,5) = 0.09 

Thus, the total damage demand for a failure scenario Fh(R') can be obtained 
from (7.15) 

E[Fh(R')] = EkEiEJ e(f'i jk) f EkEiEJ e(g1t, ), k) 

(k =1,..., 4 ;i =1,2,3 ;j=u, v, 9) 

=e(f11,9,1) + e(f'2 2) + e(f 13,0,3) + e(g'1,0 4) 
=1.51 

Generally for a structural ring RI there exists a set of possible failure scenarios 
F(R') = {Fh(R') Ih=1,.., p}. A computer program can be developed to find out 
the damage demand of E[F,, (RI)) for all failure scenarios. We are more 
interested in the failure scenario of a ring RI in which the least damage demand 

is required to deteriorate a structural ring into a mechanism as far as the 

structural vulnerability analysis concerned. This is called the minimal failure 

scenario, defined as 

Emin[F(R')] = min { E[F,, (R')] Ih =1,2,..., p} 

where p is the total number of failure scenarios for the ring R. 

7.6 Deterioration of a Structural Ring at Level of Definition 

(7.18) 

So far we have developed a method to calculate the damage demand for a 
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So far we have developed a method to calculate the damage demand for a 
failure scenario of a ring R1= { D'1, S 1, Ii =1,2..., n} in which S 1;, i=1,2,..., n are 
all primitive clusters. In this section we consider a ring R' in which some of 
clusters are not primitive clusters. 

It was shown in Chapter 6 that the process of cluster formation produces 
a hierarchical model of a structure which is particularly useful in the 
identification of failure scenarios. The structure being analyzed is modelled as a 
hierarchical set of structural rings. This hierarchical model of a structure 
S= (MT) has been defined as 

S={RI} (7.19) 

where R', 1=1,2,..., gs is a structural ring at the level of definition I and there are 

qs levels in the hierarchy. 

A structural ring RI represents a substructure of S. It consists of a 

number of joints and arcs. Each arc itself may be a self contained sub-structure 

of RI, i. e. structural cluster, denoted by S; The structural ring RI thus can be 

represented by (7.4) in terms of the degrees of freedom being transmitted along 

the ring. 

RI = {Dl,, Sli I i=1,..., n} 

where n is the total number of joints in the ring R'. 

The structural cluster S; again consists of a sequence of structural rings 

at lower levels of definition. The cluster S 1, may also be described as a 

hierarchical set of structural rings 

Si, R9') (q< <l) (7.20) 

and Rq, _( D4. 
, 

S4x I x=1,..., n; ) (7.21) 
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level of definition of S It. 
At the lowest levels of the hierarchy all structural clusters are primitive 

clusters i. e. single members. At the highest level of the hierarchy there is only 
one cluster which represents the whole structure being studied. 

Therefore in order to deteriorate a structural ring RI at a level of 
definition 1 we could deteriorate either the joints D or the clusters S 

contained in that ring. Generally for a cluster S; it consists of a set of structural 
rings at lower levels of definition. We deteriorate each of those rings in turn by 

using the same approach so that the cluster S, is effectively damaged by the loss 

of the integrity of the rings making up that clusters, which in turn causes directly 

the failure of the ring R. 

An algorithm can be developed to deal with the deterioration of a ring 
R'. This algorithm can be applied recursively to the structural rings at the 

various levels of hierarchy of a structure. This will help us to identify different 

failure scenarios as well as the damage demands for those failure scenarios. 

This algorithm is as follows 

Step 1 For a structural ring at a level of definition 1, according to . (7.4) 

Ii =1,..., n} RI ={D', ,S It 

={ 141 ,s 
IM i =1,2,..., n ;j =u, v, B} 

Step 2 Match it in the DHSR. 

Step 3 Find out a set of all possible failure scenarios for RI 

F(R') = {F,, (R') Ih =1,..., p} 

where p is the total number of possible failure scenarios 
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and where 

Fh(Rq = {R It Ik= 

= if 4J, k 991", k Ik ; 1= u, v, B} 

where m,, is the total number of deteriorated rings in Fh(R'), and n is the total 
number of joints in R. 

Step 4 Calculate the damage demand for each failure scenario F,, (R1), basing on 
(7.15) and (7.17) as 

E[Fh, (R')] = EkE, Ej e(f'i, k) f EkE; Ej e(g ii, k) 
(k= i,..., mh-1 ;i =1, z..., n; j =u, v, o) 

where 

e(f 1,4, k) _ (W ' 
ýk 

X lSJ, k Xd 4j, k) - 
(W l4J, k+1 XA 

, k+l Xd 
, k+1) 41 Y 

where w ';, k is a constant and a ;, k is the stiffness coefficient of a joint i 

before the kth event and a ',,,, +l is the stiffness coefficient of a joint i after the 

kth event. 

and if cluster S; is a primitive cluster then 

e(g 4j, k)_ (W'4j, k X A(S 4, k) xd 
, k)- (W' j, k+l x X(S' jk+l)x d' j, k+1) 

where W ';, k is a constant and A(s ; j, k) is the stiffness coefficient of the central 

joint of the cluster S; before the kth event and A(s ;, k+l) is the stiffness 

coefficient after the kh event. 
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(z = ý,..., m, -1 ;x =1,2,.., n, ;Y=u, v, B) 

(iii) thus the damage demand for a deteriorating event e(g ;., k) is equal to 

e(g l , k) = min {E[Fr(R Qj)) r= ý,..., mrý} 

where FT(R 4) is a failure scenario which will cause the occurrence of a event 
a &J, k. 

Step 7 For each non-primitive cluster S 1; in the ring RI repeat Step 5 to Step 6 

and calculate e(g ,,, k). 

Step 8 Bring back the result of e(g ;., k) to the damage demand E[F,, (R')] which 
has not been decided in Step 4. 

Step 9 Identify the minimal failure scenario of RI 

E,,, ý� [F(RS)] = min { E[F,, (Rt ]I h =1,2,..., p} 

The procedure of this algorithm will be illustrated by deteriorating the 

structure of Fig. 7.6(a). Assuming that the bending and axial rigidities of the 

members are as follows: for members ml-m6, 

AE = 9.95x 105kN; 

AE = 6.783x 1O5kN. 

for members m7-m12, 

EI =1.164x l O4kNm and 
EI = 0.787x 104kNm and 

The process of cluster formation has been implemented 

according to the algorithm developed in Chapter 6 in which a ring with the best 

quality of the well-formedness at each level of definition is identified and 

replaced by a single cluster, shown in Fig. 7.6. 
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It is obvious that the structure is built up with structural rings at various 

levels of definition and its hierarchical model is shown in Fig. 7.7. 

(1) We start with the structural ring at the highest level of definition and 

implement the above algorithm from Step 1 to Step 4. We have 

R7={D7i , S; 1 i=1,2,3} 

={ d 41 ., s7 -I i=1,2,3 ;j =u, v, e} 

where S 73 is a primitive cluster, and referring to Fig. 7.7, it is member m7 

The principal stiffness coefficients for each joint D 7i are as 

D71 (joint j 73) :a 7j,,, =5.94; A7,,, =3.56; a'i, g=0 
D72(jointj76): A7z�=4.64; A8z, =2.03; A7ze=0 

D73(jointj7a): A73�=7.25; A73,, =4.96; A73,0=0 

and for the primitive cluster S 73 we have 

A(s 73,,, )=6.78; A(s 7k, )=0.24; )(s'3o)=0.06 

A failure scenario of R7 is, thus, 

Fh(R7) = {R 7k Ik =1,..., mh} 
= {f 7 

l. k ,g7j, k 
Ik=1,..., mh 1; I=1,2,..., 71 ;j =u, v, B} 

and a set of all possible failure scenario is 

F(R7) = {Fh(R7) Ih =1,..., p} 
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Note that the ring R7 is a just-stiff ring, any of its failure scenarios contains only 
one deteriorating event. Match R7 in the DHSR and find out a set of failure 
scenarios, given by (7.15) to (7.17). 

Failure scenarioFh(R7) e(f 7. or e(g , k) Damage demand E [F,, (Rý] 

FI(R7) =f 71,,, 1 e(f71,,,, 1) =5.94 E[FI(R7)] =5.94 
F'2(R7) =f'1, ß, 1 e(f 71,, 

, 1) = 3.56 E[F2(R')] = 3.56 
F3(R7) =f 8z 1 e(f'2ý, 1) = 4.64 E[F3(R')] = 4.64 
F4(R7) =f'ZV e(f 72,,, 1) = 2.03 E[F4(R')] = 2.03 
FS(R') =f'3, i, 1 e(f '3,,, 1) = 7.25 E[F5(R7)] = 7.25 
F6(R7) =f'3, X, 1 e(f 73,,,, 1) = 4.96 E[F6(R')] =4.96 
F7(R7) =g 71,,, 1 e(g'l,,, l) =9 E[F7(R')] =?. 
F8(R7)=g71Al e(g7iv, I) E[F8(R')]_? 
F9(R7) =g'l, e, l e(S'1, aI) E[F9(R7)] 
F1o(R') =g'2 1 "41) e(g'2 =? E[Flo(R')] 
Fll (R') =g 7ZI41 e( 7zß, 1) E[Fll(R7)] 
F12(R7) =g'ze, l e(, a '2,8,1) _? E[F 2(R7)] _? 
F13(R7) =g '3, i, 1 e(g 73,,, 1) = 6.78 E[F13(R7)] = 6.78 
F14(R7) =g 73, , 41 e(g 7.. i,,,, j) = 0.24 E[F14(R')] = 0.24 
Fi5(R') =g'. ß, 9,1 e(g 73,0,1) = 0.06 E[F]5(R')] = 0.06 

Since clusters S 71 and S 72 are not primitive clusters we cannot calculate e( g 7ix, 1) 
or e(g 7 

, 1) (j =u, v, o) at this stage. Now we go to Step 5 and look for the next 
lowest level structural rings making up clusters S 71 and S 72. 

(2) We choose the cluster S 72 since it has a smaller value of the structural 

tightness Q(S 72). Referring to Fig. 7.6 and Fig. 7.7 we see that the next lowest 

level ring of S 72 is the ring R6 
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S72 ={R6} 

R6 ={ D6 , S6 ý i=1,2,3} 

={d6 ,s6ii =1,2,3 ; 1=u, v, e} 

where S 62 and S 63 are two primitive clusters and referring to Fig. 7.7, they are 
members mlo and m12. 

The principal stiffness coefficients for each joint D 6i are as 

D61 (joint j6S) : A 61, 
u=5.80; iº61, 

v=2.34; x6�0=0 

D62 (jointj66) : \6zu=3.99; \6z, =0.98; A6z0=0 
D63 (joint j 67) :) 63, 

u = 4.64; A 63, 
v = 2.03; ) 639 =0 

and for the primitive clusters S 62 and 563 we have 

)(s 6zu)=10.85; A(s 6z, )=0.38; )(s6Z0)=0.24 
A(s 63, 

u) = 9.04; \(s63�, )=0.31; \(s63,0)=0.14 

A failure scenario of R6 is 

Fh(R6) = {R 6k Ik =1,..., m,, } 

_ {f6 6i, k '8i. kJk =1,..., mh-1 ;i =1, %..., n ;j=u, v, e} 

and a set of all possible failure scenario 

F(R6)={Fh(R6) I h=1,..., p) 

Note that the ring R6 is again a just-stiff ring, any of its failure scenarios 

contains only one deteriorating event. Similarly we have 
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Failure scenarioFh(R6) e(f 6; ß, k) or e(g6w, k) Damage demand E(f h(R^)] 

F1(R6) =f 61,141 e(f 61,,, 1) = 5.80 E[FI(R6)] = 5.80) 

F2(R6) =f 61, v 1 e(f 61,,; 1) = 2.34 E[F2(R6)] = 2.34 

F3(R6)=. f6z, 41 e(f6Z, 41)=3.99 E[F3(R6)] = 3.99 

F4(R6)=f63v, 1 e(f6zv, i)=0.98 E[F4(R6)] = 0.98 

F5(R6)=f63u, 1 e(f63, u, 1)=4.64 E[Fs(R6)]=4.64 

F6(R6)=f63X, 1 e(f63, v1)=2.03 
E[F6(R6)] = 2.03 

F17(R6) =g 61,141 e(g 61, x, 1) =? E[F7(R6)] =? 

F8(R6) =g 61, v, 1 e(g 61, 
v 1) _? E[F8(R6)] _? 

Fv(R6) =g 61, ß, l e(g61 a 1) =? E[F9(R6)] =? 

Flo(R6) =g 6zu. 1 e(g 
63u, 1) = 10.85 E[FI0(R6)] =10.85 

Fll(R6=g63u, 1 e(g62,1)=0.38 E[F»(R6)]=0.38 

F12(R6)=g6ze. 1 e(g6ze1)=0.24 E[F12(R6)] = 0.24 
F13(R6) =g 63, 

u, 1 e(g 63, 
u, 1) = 9.04 E[F]3(R6)] = 9.04 

F14(R6) =g 63, 
u, 1 e(g 63, 

V 1) = 0.31 E[Fl4(R6)] = 0.31 

F1s(R6) =g 63 0,1 e(g 63,9,1) = 0.14 E[F]5(R6)] = 0.14 

At this stage only cluster S 61 are not primitive cluster and we go to next step. 

(3) We now look for the cluster S 61 and we see that 

S61 ={ R5) 

R5 = {DS;, S5, i=1,2,3} 

_{dsQ -, S5;, j ý i=1,2,3; j=u, v, 61 

where S 51, S 5Z and S 53 are all primitive clusters and referring to Fig. 7.7, they are 

members m8i m9 and mil. 

The principal stiffness coefficients for each joint D 5j is as 
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D51 (joint j54) : ) i,. =3.99; A51,,, =0.41; AS1, B=0 
D52 (joint jss) : A5zu=3.47; A5Z,, =1.95; A5ze=0 
D53 (joint j57) : A53, u=3.99; A5Av=0.41; A5.3,9=0 

and for three primitive clusters we have 

a(s51,. )=10.85; A(s 51�, ) = 0.38; A(s51,0)=0.24 
A(s 5Zu) = 6.78; A(s SZv) = 0.24; a(s Sze) = 0.06 

a(s53, u)=10.85; A(ss3, ß) =0.38; \(s53,9)=0.24 

Repeat the above process for ring R5 and we have 

Failure scenarioFh(R5) e(f 5,,, k) or e(g 5,,, k) Damage demand E[Fh(R5)] 

Fl (Rs) =f 51,, 
41 e(fsl,,, 1) = 3.99 E[FI(R5)] = 3.99 

F2(R5) =f 514,,, 1 e(f 5i, v, l) = 0.41 E[F2(R5)] = 0.41 

F3(R5) =f5 zu, l e(f sz, 4 l) = 3.47 E[F3(R5)] = 3.47 

F4(R5) =f szVl e(f szv, l) = 1.95 E[F4(R5)] =1.95 
Fs(R5) =f 53, U1 e(f 53,4,, 1) = 3.99 E[F5(R5)] = 3.99 

F6(R5) =f 53, X, 1 e(f s3,0,1) = 0.41 E[F6(R5)] = 0.41 

F7(R5) =g 51,4,, 1 e(g 51, u, 1) = 10.85 E[F7(R5)] = 10.85 

F8(R5) =g sr,, r e(g slvl) = 0.38 E[F8(R5)] = 0.38 

F9(R5) =g 51,9,1 e(g 51,0,1) = 0.24 E[F9(Rs)] = 0.24 

Flo(R5) =g 51 e(g 55,41) = 6.78 E[Flo(R5)] = 6.78 

Fll(R5) =g 5 ,, l e(g szv, l) = 0.24 E[Fil(R5)] = 0.24 

F12(R5) =g sze, l e(g 5z0,1) = 0.06 E[F12(R5)] = 0.06 

F13(R5) =g 53 
u, 1 e(g 5A, 4i) = 10.85 E[F13(R5)] = 10.85 

F14(R5) =g 5aµ1 e(g s3, ß, 1) = 0.38 E[FI4(R5)] = 0.38 

Fl5(R5) =g S. ý B, 1 e (g 53,0,1) = 0.24 E[F15(R5) ]=0.24 
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(4) The results 

(i) The minimal failure scenario for the ring R5, from (3), is equal to 

E, [F(RS)] = min { E[Fh(R5)] Ih =1,2,..., 15} 

=E[F12(R5)] = 0.09 

where the corresponding failure scenario is F12(R5) =g 5zo, 1, that is to form a pin 
within the cluster S S2 (member m9). This is the easiest way to fail the ring R. 

(ii) Bring the results from (3) back to (2) we have 

e( 61,, 
41) =E[F13(R5)] = 10.85 

e(g614,, 1) =E[F14(R5)] = 0.38 

e(g61,6,1) =E[F15(R5)] = 0.24 

and the minimal failure scenario for ring R6 is 

thus, E[F7(R6)] =10.85 
thus, E[F8(R6)] = 0.38 

thus, E[F9(R6)] = 0.24 

Emire [F(R6)] = min { E[Fh(R6)] Ih =1,2,..., 15} 

=FIS(R6) =E[Fls(R6)] = 0.14 

where the corresponding failure scenario is F12(R6) =g 63,8,1, that is to form a pin 

within the cluster S 63 (member m12). This is the easiest way to fail the ring R6. 

(iii) Similarly bring the results from (2) back to (1) those e(glj, k) which has not 

been decided. 

e(g 7z. i) =min {E[F3(R6); E[F5(R6); E[F7(R6); } 

=min( 3.99; 4.64; 10.85 1=3.99 

e(g 7z,,, i) =min {E[F2(R6); E[F4(R6); E[F8(R6); } 
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=min{ 2.34; 0.98; 0.38} =0.38 
e(g 7zo, l) =min {E[F9(R6); E[F12(R6); E[Fjs(R6); } 

=min{ 0.24; 0.24; 0.141 =0.14 

Referring to the results in (1) we see so far the minimal value of damage 
demand is 0.09. 

Cluster S 81 can be analysed using the same procedure to decide e(g 8i, u, i ), 
e(g 81,,,, 1) and e(g 81,8,1). We have found that none of these three values exceeds 
0.09, and therefore the minimal failure scenario for the ring R7 is 

E,,, ý�[F(Rý] = min {E[F,, (R7)] I h =1,2,..., 15} 

=F15(R7) =E[Fj5(R7)] = 0.09 

where the corresponding failure scenario is Fl5(R7) =g 73,6,1, that is to form a pin 

within the cluster S! (member m9). This is the easiest way to fail the ring R7. 

Some conclusions can be drawn from the above example 

(1) For a structural ring RI at a level of definition 1 there are a number of ways 

to destroy the ring. Each way is a failure scenario. 

(2) A failure scenario for a ring RI consists of a sequence of deteriorating events 

occurring either adjacent to the joints or within the clusters making up the ring. 

(3) The damage demand for a deteriorating event is dependant on the location 

on which it occurs. 
(4) The damage demand required for a failure scenario of the ring RI is 

dependant on the quality of the well-formedness of RI. 

(5) Among all of the possible failure scenarios of a ring RI the above algorithm 

can identify the minimal failure. The minimal failure scenario indicates the 

easiest way to transform the ring into a mechanism. 
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7.7 Structural Vulnerability Analysis 

Structural systems, like other engineering systems, are subjected to 
random damage or deteriorations, such as technical deficiencies, human errors, 
unexpected excessive loads, environmental influence (earthquake, heavy storm), 
etc. The damage may occur in the members or in the joints of a structure. The 
failure of these elements or units cause other units to fail which in turn lead to 
large structural clusters failing, ultimately causing the complete breakdown of 
the whole structure. A breakdown in a structures has a severe effect and risk on 
the users' activity and life. Although the damage involved might be measured 
by its cost, it is usually agreed that such events are unacceptable in a well 
developed community. It is, thus, desirable that a structural system is robust. It 
is useful if a structural engineer can identify how a structural system is 

vulnerable. The structural vulnerability implies the susceptibility of being 
damaged or deteriorated. 

It has been mentioned in Section 1.2 that the emphasis of structural 

vulnerability analysis described in this thesis is not the usual one of analysing a 

structure under some given loading condition, rather it is to examine the quality 

of the well-formedness of the structural rings at various levels of definition 

within a structure. The algorithm described in this chapter does not relate to 

the real actions which occur in a structure to the losses of the degrees of 
freedom (DOF) in the structure. The point is that, at this stage, we are only 

considering the geometric stability of a structural system - the effects of loads 

(for example when a DOF is lost there will be a redistribution of stresses within 

the structure) are not being considered here. The mapping between actions and 

losses of DOF is for future work. 
Up to now we have demonstrated that a structure is built up with a 

hierarchical set of structural rings. Each structural ring at a level of definition 

has a certain quality of well-formedness which implies its ability to resist 

damage or loading from any arbitrary direction. The structural vulnerability, 
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therefore, may be measured by the quality of well-formedness of alternative 
structural rings which exist at different levels of hierarchy to perform a 
particular function. 

The main purpose of the structural vulnerability analysis is thus the 
identification of the most vulnerable or critical rings together with the failure 
scenarios which might cause failure. 

The algorithm developed in the previous sections then can perform this 
task. It can be applied recursively to the structural rings at various levels of the 
hierarchy and to identify all possibly failure scenarios for a structure. 

Generally, however, for a complex structural system consisting of many 
structural rings at various levels of definition, the description of all possible 
failure scenarios is clearly a complex exercise. The use of a computer is thus 

essential and a computer program can be developed to implement the analysis. 
Comerford (1989) has utilised the logic programming language 

PROLOG and developed the SIPIT system which is particularly powerful to 

perform pattern matching and symbol manipulation. A similar computing 

system can be developed using PROLOG to perform structural ring pattern 

matching and failure scenario identification. It was not intended, however, to 
develop such a computer programming in this work. That must be done in 

further development of this research project, but rather to provide the basic 

principles for structural vulnerability analysis. 

Among all of the possible failure scenarios for a structural system a 

number of failure scenarios are of particular interest as far as the structural 

vulnerability in concerned, for example 

(1) The minimal failure scenario: 

The minimal failure scenario of a structural ring at level of definition 1 is the one 

in which the least damage demand is required to transform the structural ring 

into a mechanism. From the structural vulnerability point of view, if a structural 
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ring can be destroyed by using a very little damage demand then this ring is a 
very vulnerable structure. The example in Section 7.6 has illustrated the 
minimal failures of the structural rings at various levels of definition. 

(2) The maximal failure scenario: 

The consequence of a failure scenario is to cause a structural ring to lose its 
integrity and the clusters contained in the ring to structurally disconnect from 

each other. This consequence can be described by the separateness of a 
structural ring. 

Assuming that a structural ring RI at a level of definition 1 consists of a number 

of clusters S, (i =1,..., n) and Q(S ;) is the corresponding structural tightness. A 

cluster Sr (1_v<n) is chosen as a reference cluster. A failure scenario causes 

some of the clusters in the ring RI to structurally disconnect from the reference 

cluster S 1,. Then the separateness of a structural ring R! with respect to that 

failure scenario is defined as 

EQ(S 1) / EQ(S i) (7.19) 

where EQ(S ,) is the sum of the structural tightness of all clusters which 

structurally disconnect form the reference cluster S ,, and EQ(S ý) is the sum of 

the structural tightness of all clusters which still structurally connects with the 

reference cluster S ;. 

A reference cluster may be any cluster chosen for its importance or because it 

has the highest value of structural tightness. On earth the reference cluster 

would normally be the ground cluster SG or any union cluster contained SG. A 

reference cluster is denoted as S, 
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For example, consider a ring R7 of Fig. 7.6 and cluster S 71 is chosen as a 
reference cluster. If a failure scenario Fh(R7) causes clusters S 72 and S`3 
disconnect form S 71 then the separateness of ring R7 with respect to that 
scenario is 

1[Fh(R7)] = [Q(S 72) + Q(S 73)]/ Q(S 7) 
= 

=(8.96+ 1.68x10-5)/14.26=0.62 

The effective consequence of a failure scenario at a level of definition is thus 
defined as the ratio of the separateness to the total damage demand for that 

scenario. 

E[Fh(R')] = 7[Fh(R')] / E[Fh(R1)] (7.20) 

The maximal failure scenario is therefore one in which the least damage demand 

is required to cause the maximal number of clusters to structurally disconnect 

from a reference cluster at a given level of definition. The judgement is the 

value of the effectiveness of a failure scenario f[F,, (R')]. 

In the above example the maximal failure scenario for ring R7 is 

f, º, ax[ h7h7 min eh [F(R)] =1[F(R)]/E [F(R)] 

= 0.62/0.09 = 6.98 

(3) Any particular interesting failure scenarios 

Note that in the design of an engineering structure there are many complex 

factors to take into account. Thus the designer may well need to consider other 

possible failure scenarios for particular practical reasons or through observation, 

judgement, or physical analysis of the structure. 
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The decision will be made by engineers to pick up a structural ring at a 
given level of definition together with potentially interesting failure scenarios 
which may cause them failure. 

Take the structure of Fig. 6.7 as example. We might be interested in the 
structural ring at the highest level of the hierarchy, shown in Fig. 7.8(a). From 

that we can quickly point out that the joints j 185 and j 189 are two critical joints 

with respect to that ring. We might also be interested in the structured graph at 
a particular level of the hierarchy such as one in Fig. 7.8(b). We can see from 

Fig7.8(b) that if we damage the structural ring RI5 we would cause severe 
damage to the structure. 

Summarising the results so far, the structural vulnerability analysis is the 
identification of: 

(1). the minimal failure scenario; 
(2) the maximal failure scenario; 
(3) any particular interesting failure scenarios. 

for the structural rings at various levels of definition in the structure. 

7.8 Robustness of a Structure 

The robustness of a structure is related to the structure's strength or toughness 

of constitution; or the physical strength to resist damage or to experience 

particular deterioration without dissatisfying functional requirements. The 

structural vulnerability analysis can help us to identify how a structure is robust. 

We will define a measure of the robustness of a structural ring to be the size of 
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the damage demand. 

demand. 
The most robust ring is the one with maximal damage 

The damage demand for a structural ring is dependant on the quality of the 
well-formedness of that ring. A well formed ring needs more damage demands 
to deteriorate it into a mechanism than a badly formed ring. 

For a structural ring the robustness is the same as the damage demand and for a 
structure it is the minimal damage demand over all levels of definition i. e. there 
is one level of definition which is the weakest. 

A structural ring is strong or sturdy with respect to a given deteriorating event if 
it is capable of resisting the actions that are attempting to cause that event. 

A structural ring is robust with respect to a particular failure scenario if it is 

strong with respect to all or some of the deteriorating events within that failure 

scenario. A structural ring with a good quality of the well-formedness tends to 

be robust with respect to a set of possible failure scenarios. 

A structure is therefore robust if it consists of a set of structural rings at various 
levels of definition which have good quality of well-formedness and are robust 

with respect to all conceivable failure scenarios. 

A robust structure is therefore one which is strong against a variety of 

deteriorating events rather than a limited set of deteriorating events. 

7.9 Summary and Conclusions 

The structural vulnerability analysis is mainly concerned with the 

identification of the minimal failure scenario; the maximal failure scenario; and 
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any particular interesting failure scenarios for the structural rings at various 
levels of the hierarchy of a structure. Through the structural vulnerability 
analysis we are able to identify the most vulnerable rings in a structure. 

An analytical method has been developed in this chapter . It is designed 
in such a way that it is to examine the quality of the well-formedness of a ring at 
a level of definition and to identify all possible failure scenarios for the ring. 
This process can be recursively applied to structural rings at various levels of 
definition. 

The concepts of a deteriorating event and damage have been presented 
in this chapter. The damage demand for a failure scenario provides a 

quantitative estimate of the robustness of a structural ring. 
Finally the concept of the robustness of a structure has been examined. 

7.44 



Chapter 8 

Conclusions and Recommendations 

8.1 Objectives 

The objectives of this chapter are: 

1. To summarize the conclusions which can be drawn from this research. 
2. To identify issues raised in this research which deserve further study. 
3. To suggest applications for the techniques and methodology developed in this 

research. 

8.2 Conclusions 

1. A foundation of a theory of structural vulnerability has been laid. It 

is anticipated that structural vulnerability analysis will be able to play 

an important role in structural engineering, in particular, in the areas 

of structural reliability and safety assessments. 

2. It has been shown that the purpose of structural vulnerability 

analysis, which is to enable the identification of the most vulnerable 

parts of a structural system, can be achieved. 

3. Methods to identify (i) the minimal failure scenario; (ii) the maximal 

failure scenario; (ii) any particular interesting failure scenarios; for 

the structural rings of a structure at various hierarchical levels of 
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definition have been derived. 

4. In the theory of structural vulnerability, it is assumed that any 
damage or faults which occur in a structural ring are triggered by 
deteriorating events. A deteriorating event is the result of actions 
which would cause the loss, by a structural ring, of the capacity to 
transmit a degree of freedom. A failure scenario consists of a 
sequence of deteriorating events which transforms a structural rings 
into a mechanism. 

5. A measure of the effort which is required to make the occurrence of 

a specific deteriorating event or damage demand, has been derived. 

The damage demand of a failure scenario for a structural ring at a 
level of definition is dependant on the quality of well-formedness of 
that ring. The measure is based on the idea that a well formed 

structural ring needs more damage demand in order to deteriorate it 

into a mechanism than a badly formed ring. 

6. The robustness of a structural ring is measured by the size of the 

damage demand. The most robust ring is the one with maximal 

damage demand. 

7. For a structural ring at a level of definition the robustness is the 

same as the damage demand and for a structure it is the minimal 

damage demand over all levels of definition i. e. there is one level of 

definition which is the weakest. 

8. The well-formedness of a structural ring is a measure of its ability to 

resist damage or loading from any arbitrary direction. 
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9. The quality of the well-formedness of a structural ring is dependant 
on (i) the orientation and stiffness of the members framing into the 
joints within the ring; (ii) the stiffness of the joints (whether pinned 
or fixed). 

10. The quality of the well-formedness of a structural ring provides a 
quantitative estimate of the robustness of that ring. A well formed 

structural ring is more robust than a badly formed ring. 

11. The quality of the well-formedness of a structural ring has been 

quantitatively defined as the sum of the determinants of the joints 

contained in the ring. 

12. The determinant of the stiffness submatrix associated with a joint is a 

measure of the ability of the joint to resist damage and loading from 

any arbitrary direction. The determinant of a joint is equal to the 

products of the eigenvalues of the stiffness submatrix associated with 

that joint. 

13. The deterioration hierarchy of structural rings, DHSR, is a very 
important part in the theory of structural vulnerability. The DHSR 

shows all possible ways in which a fully fixed ring can deteriorate into 

a mechanism. 

14. A path through the DHSR is a failure scenario that indicates a 

particular way in which a structural ring deteriorates into a 

mechanism. If we can model a structure as a ring and match it in the 

DHSR then we can find out a set of all possible failure scenarios to 

fail the structure. 
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15. A structural ring is an over-stiff or just-stiff structure which can 
transmit forces around a closed loop. A structural ring represents a 
substructural system of a structure which is capable of resisting an 
arbitrary equilibrium set of applied forces and performs a desired 
function. 

16. A structural system can be modelled as the objected oriented graph 
model--ooGM. The o0GM of a structure is a description of (i) the 
interactions between joint objects and members; (ii) the specific 
characteristics in terms of features, behaviours and constraints of 
that structure. 

17. Associated matrices and symbol matrices are two useful tools which 
can be used to identify various structural rings within an o0GM. 

18. Clustering techniques are useful in dealing with the analysis of a 
complex structural system. 

19. The concept of structural cluster has been developed and applied in 

this research. A structural cluster consists of a set of structural rings 

which are more tightly interconnected to each other within the 

cluster than other rings outside the cluster. 

20. The structural quality of a cluster can be quantitatively described by 

structural tightness which depends on the number of structural rings 

within it, the degree of overlap between them and the well- 
formedness of the rings. 

21. The cluster algorithm developed in this thesis can be used to form 

structural clusters at various levels of definition and to transform a 
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structure structure into a form of hierarchy. 

22. For a structure, at each level of hierarchy, there exists a set of 
connected structural rings. The elements of these rings are clusters 
and complex joints. 

23. A structure can be described at various level of definition in terms of 
sets of interconnected structural rings. That provides a basis for the 

structural vulnerability analysis. 

24. A structural ring at a level of definition represents a substructural 

system which has its particular characteristic which does not exist at 

other levels in terms of its well-formedness and connectedness. 

25. Given a structural ring at a level of hierarchical definition, any of its 

arcs can be regarded as the of a set of structural rings at lower levels 

of definition and itself can be (or be part of) an arc of a structural 

ring at a higher level of definition. 

26. Structural rings at lower levels of hierarchy are a more detailed 

description of a structure than those at higher levels of definition. 

83 Issues for Further Research 

In Chapter 7, we have defined a deteriorating event as the results of actions 

which would cause the loss of the capacity to transmit a degree of freedom. The 

action has been described in very general sense such that it is either natural (eg. 

wind or earthquake) or human (eg sabotage). It has also been assumed that any 

damage or faults which occur to a structural ring are triggered by deteriorating 
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events. 

In practice, however, faults or damage which occur to a structure are 
caused by more complex factors. The members and joints of a structure could 
be damaged due to original defect, fatigue, accidental loading, etc. The failure 

modes could be such that, forming a plastic hinge in a member, buckling of a 
whole member, local shear failure, and brittle fracture or fatigue fracture. 

The relationship between the real damage and a deteriorating event has 

not been fully studied. That deserves further study. 

It was mentioned in Chapter 7 that for a complex structure the identification of 

all possible failure scenarios is a complex exercise. The use of a computer is 

essential and it is desirable to develop a computer program for implementing 

the process of structural vulnerability analysis. But in this thesis this computer 

program has not yet been developed. 

Comerford (1989) has utilised the logic programming language 

PROLOG and developed the sirr system which is particularly powerful to 

perform pattern matching and symbol manipulation. 
So the next step is to develop a similar computing system for 

implementing the process of structural vulnerability analysis by using a 

appropriate language such as PROLOG or C. 

In this thesis we have confined ourselves to the two dimensional structures. 

From practical point of view, the analysis of the vulnerability for three 

dimensional structures are even more important. Clearly the structural paths or 

loops in three dimensional structures are different from those in two 

dimensional structures. But the principles and techniques developed in this 

thesis can extend to the vulnerability analysis of three dimensional structures. 
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8.4 Possible Applications of the Developed Techniques 

There are many possible areas for application of the ideas, techniques and 
principles developed in this research. One of them is to apply the principles of 
the structural vulnerability analysis to the analysis of structural system reliability. 

In structural system reliability theory, two fundamental types of systems, 
namely series systems and parallel systems (Ditlevsen & Bjerager, 1986) have 

attracted most attention. A structure is modelled as a series system if it is in a 
state of failure whenever any of its component fails. A structure is a parallel 
system if it will only fail when all components in that system fail. Then the 

predicating structural system reliability has been formulated as determining the 

system reliability from the component reliability (Moses, 1990). 

In practice, however, there are few cases that a complex structure can be 

modelled by the idealized series system, or parallel system. The research in this 

thesis has shown that a complex structure is actually built up with structural 

rings at various levels of definition. The structural safety assessments will 

mainly depend on the quality of the well-formedness of the rings at various 
levels of definition making up the structure. 

It is argued here that for a large-scale structures, the system reliability 

should be divided into two phases 

(1) Structural vulnerability analysis, which means the identification of the most 

vulnerable, or critical structural rings in a structure together with failure 

scenarios which cause failure. 

(2) Probabilistic calculation to assess the failure probability or safety index for 

each individual failure scenario and subsequently combining these into a single 

system reliability assessment. 
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The research in this thesis is concerned with the first phase i. e. the 
structural vulnerability analysis. The second part of the system reliability 
analysis i. e probabilistic calculation therefore can be done by using the 
probabilistic theory such as the interval probability theory developed by Cui and 
Blockley (1990). 

Another important application of the structural vulnerability analysis is 

to monitor and test a structure. Once the most critical parts of a structural 

system are identified they can be suitably protected and monitored by sensing 
the conditions on those critical elements, such as (i) loading (e. g. pressure, 
forces); (ii) atmospheric conditions (e. g. temperature, moisture, corrosive 

conditions); (iii) structure behaviour (e. g. strain and acceleration); and (iv) 

material condition (e. g. thickness losses). 
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APPENDIX A 

Eigenvalues and Eigenvectors 

In this appendix we will briefly review the concepts of eigenvalue and 
eigenvector and some of their properties (Williams, G. 1976) (Anton, 1984). 

Definition. Let C be and nxn matrix, then a non-zero vector x in R^ (Rn is 
defined to be the set of all ordered collections of n real numbers) is said to be 

an eigenvector of C if there exists a scalar A such that 

Cx=Ax (A. 1) 

a is called the eigenvalue of C corresponding to the eigenvector v. The set of all 

eigenvalues is called the spectrum of C. 

To find the eigenvalues of an nxn matrix C we rewrite (A. 1) as 

(c- J )X=o 

where I� is nxn unit matrix. 

(A. 2) 

For A to be an eigenvalue, there must be a nonzero solution of this 

equation. The (A. 2) will have a nonzero solution if and only if the determinant 

of the matrix (C- . J) is equal to zero. 

det(C-)I�)=0 (A. 3) 

This is called the characteristic equation of C; the scalars satisfying this equation 

A. 1 



are the eigenvalues of C. When expanded, the determinant det(C - xJ�) is a 
polynomial in A called the characteristic polynomial of C. 

Theorem 1. If C is an nxn matrix, then the following are equivalent. 

(a) . is an eigenvalue of C. 

(b) The system equation (C-AI�)x =0 has nontrivial solutions. 
(c) There is a nonzero vector x in Rn such that Cx = Ax. 
(d) A is a real solution of the characteristic equation det(C-x1) = 0. 

Definition. A square matrix C is called orthogonally diagonalizable if there is an 

orthogonal matrix P such that H=P-1CP(=PtCP) is diagonal; the matrix P is said 
to orthogonally diagonalize C, where H is the diagonal matrix having the 

eigenvalues A,, A2, ..., a� of C on the main diagonal. 

Theorem 2. If C is an nxn matrix, then the following are equivalent. 

(a) C is orthogonally diagonalizable. 

(b) C has an orthogornal set of n linearly independent eigenvectors. 

(c) C is symmetric. 

Theorem 3. 

(a) The characteristic equation of a symmetric matrix C has only real roots. 

(b) If an eigenvalue A of a symmetric matrix C is repeated k times as a root of 

the characteristic equation, then the eigenspace corresponding to a is k- 

dimensional. 

If C is a symmetric matrix, according to Theorems 2 and 3, the determinant of 

matrix C would be 

A. 2 



det(C) = det(PHP-1) = det(H)=a1x. X 2x,..., xAn 

and we also know that the sum of all eigenvalues is a constant 

(A. 4) 

Constant= i11+iº2+9..., +>. n (A. s) 

where Aj (i = 1,..., n) is the eigenvalue of C. 
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