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ABSTRACT

It is known that the mode I fracture toughness depends on the geometry and the level

of constraint in cracked bodies. The crack tip parameters T and Q can be used to

quantify the crack tip constraint in mode I. In this thesis the geometry and constraint

effects are investigated in mixed mode I/II loading for both linear elastic and elastic-

plastic materials.

The higher order terms of elastic stress are obtained for an internal crack specimen

using a binomial series expansion. The effect of these terms on the crack tip stresses

and the plastic zone size are studied.

A new method is successfully used to determine the T-stress in mode I and mixed

mode loading using finite element analysis. It is shown that the T-stress can be

significant in mode II.

The maximum tangential stress criterion is modified to include the T-stress. The effect

of T on the direction of fracture initiation and the onset of fracture is quantified for

linear elastic materials.

A new shear specimen is used to study experimentally the effect of T-stress in mode II

brittle fracture. The PMMA test specimen provides significant positive and negative

values of T-stress when subjected to positive and negative shear loads. It is shown that

T-stress influences significantly the direction of fracture initiation and the mode II

fracture toughness.

A method is described to determine Q for mixed mode loading in elastic-plastic

materials. A mode II boundary layer formulation is used to show the effect of T on the

plastic zone and the near crack tip stresses and to obtain a relation between Q and T.

The variation of Q with load is obtained for several shear specimens and is compared

with that predicted by the Q-T diagram.
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CHAPTER ONE

INTRODUCTION

1-1. THE ROLE OF GEOMETRY AND CONSTRAINT

IN FRACTURE MECHANICS

The existence of flaws is inevitable in engineering structures and components. These

flaws are created either by manufacturing or fabrication deficiencies and may grow

during the service life of the component to become cracks. The aim of fracture

mechanics is the ability to assess the likelihood of failure of a component containing

such a crack.

Linear elastic fracture mechanics (LEFM) provides a basic framework to examine the

integrity of materials in cracked bodies. LEFM is, however, restricted to specimens

which fracture with negligible plasticity around the crack tip. Most commonly used

structural materials such as those used for pressure vessels in power plants are highly

ductile and undergo a large amount of plastic deformation before fracture. For such

cases a development of LEFM is used: elastic-plastic fracture mechanics (EPFM).

A crack can be subjected to three different modes of loading known as mode I, mode

II and mode III. Mode I refers to tensile loading in which the crack flanks tend to

open. In mode lithe crack is subjected to an in-plane shear load and its flanks slide

without opening. Mode III corresponds to out-of-plane shear loading. A pure mode of

loading rarely occurs in real components and hence cracks often experience mixed

mode loading, which refers to a combination of two or three modes of loading.

Because of symmetry, crack extension in mode I is expected to initiate along the line

of the initial crack. A criterion for mixed mode I/II loading is more complicated than

1



Chapter 1: Introduction

for pure mode I because both the direction of fracture initiation and the onset of

fracture must be determined.

The criteria available in LEFM and EPFM to assess the integrity of cracked

components depend directly on the microscopic mechanism of fracture. Two major

mechanisms of cracking in materials are brittle fracture and ductile fracture. Brittle

fracture takes place without noticeable crack tip plasticity. In contrast, ductile crack

growth is associated with a significant amount of energy absorption due to large scale

plasticity.

The Resistance of a material to crack extension is called the fracture toughness,

commonly assumed to be a material property. However, experimental studies show

that the values of the fracture toughness obtained from different standard cracked

specimens can be significantly different. Therefore, it is often suggested to use test

specimens, such as the three point bend specimen or the compact tension specimen,

which give a lower bound measure of the fracture toughness. Although using the

resulting toughness ensures the safety of the cracked bodies, in practice the resistance

of engineering components and structures to fracture can be considerably higher. This

introduces conservatism in the failure assessment of structures.

The dependency of fracture toughness on geometry and loading conditions is

normally attributed to the level of constraint around the crack tip. The fracture

toughness is low for specimens having a highly constrained plastic zone around the

crack tip. In such specimens less energy is absorbed by plastic deformation and more

energy is made available for fracture. Conversely, the resistance to cracking is high

for low constraint specimens which develop a larger plastic zone around the crack tip.

The effect of geometry and constraint in brittle and ductile fracture has received much

attention in recent years, particularly in the power industry. The traditional failure

assessment methods based on high constraint fracture tests can lead to costly and

unnecessary inspections and repairs. To avoid excessive conservatism in the safety

assessment of components, the fracture toughness should be measured using

specimens having the same level of constraint as that for the defective body. However

this requires appropriate parameters to quantify the crack tip constraint.
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Mathematical solutions show that each component of the elastic stress in a cracked

body can be represented by a series expansion. The leading term in this series

expansion is singular and its magnitude is defined by a parameter called the stress

intensity factor. The singular term is very large near the crack tip and drops towards

the external boundary. The higher order terms which are significant in the far field are

traditionally neglected near the crack tip. There is also a constant term of stress

parallel to the crack called the T-stress which is independent of distance from the

crack tip. The plastic stresses in a hardening material may also be shown as series

expansions with the first terms being singular. In this case, a parameter called the J-

integral (Rice, 1968) defines the magnitude of the singular term.

The stresses inside the plastic zone can be influenced significantly by a remote T-

stress. Analytical and experimental studies by Betegon and Hancock (1991), Hancock

et al (1993) and Sumpter (1993) have shown that in mode I, T can be used as a

measure of constraint for contained yielding. Specimens having positive T are known

to have higher constraint than those having negative T. However, the elastic T-stress is

not relevant to crack problems involving large scale plasticity or fully yielded

conditions. O'Dowd and Shih (1991) proposed a dimensionless parameter Q to

describe the crack tip constraint for such conditions.

Classical theories of fracture mechanics assume that a single parameter such as the J-

integral is sufficient to describe fully the stresses and strains near the crack tip.

Larsson and Carlsson (1973) and Bilby et al. (1986) studied the crack tip stresses for

several mode I specimens. They showed that for many practical geometries and

loading conditions, a single parameter fracture mechanics is not accurate and a two-

parameter characterisation is required. The J-T and J-Q approaches are the two major

theories in the two parameter fracture mechanics.

Although substantial analytical and experimental studies have been carried out to

evaluate the effects of geometry and constraint in cracked specimens, almost all of

these studies are limited to pure mode I. There are many different real applications

where cracked components are subjected to pure shear or combined tension and shear

loading. For such components, the geometry and loading configuration may influence

significantly the onset of fracture.
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1-2. INTRODUCTION TO THE THESIS

The main objective of this thesis is to explore the effects of geometry and constraint

for mode II and mixed mode loading in both linear elastic and elastic-plastic

materials. The stresses near the crack tip are studied to evaluate appropriate

parameters for describing the crack tip constraint. Methods are suggested for

quantifying the constraint parameters in mixed mode loading. Experimental studies

are undertaken to show the effects of geometry and loading on mode II brittle fracture.

Chapter 2 presents a detailed review of the previous work in linear elastic and elastic

plastic mixed mode fracture mechanics. The two parameter characterisation and the

constraint effects in pure mode I are also reviewed.

As noted earlier the higher order terms of the crack tip stresses are traditionally

ignored. Because of difficulties in determining the constant coefficients of the higher

order terms, it is not clear how much error is introduced by ignoring these terms. In

Chapter 3 a binomial expansion is used to determine the higher order terms of stresses

for an internal crack specimen subjected to pure tension. The effects of the higher

order terms are investigated, both on the crack tip stresses and on the size of plastic

zone along the crack line.

Despite the significance of the T-stress in describing the constraint effects, there are

few methods available for determining T. Analytical methods are restricted to a

limited number of simple specimens. Therefore, a simple and accurate computational

method is more desirable. A new method is suggested in Chapter 4 for determining

the T-stress for both mode I and mixed mode loading using finite element analysis.

The variation of T is studied for a mixed mode specimen.

The effects of geometry and loading type in linear elastic mixed mode I/II fracture

mechanics is quantified in Chapter 5. This is achieved by including the T-stress in a

conventional mixed mode fracture criterion. The effect of T on the direction of

fracture initiation and the mixed mode fracture toughness is shown.

The numerical results in Chapter 5 indicate that the maximum effect of the T-stress in

brittle fracture occurs for pure mode II. The aim of Chapter 6 is to study

experimentally the effect of the T-stress in shear loading and to validate the numerical
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results presented for mode II in Chapter 5. A new shear specimen is designed to

provide significant positive and negative values of T-stress for positive and negative

shear loading. Perspex (PMMA) which is a highly brittle material at room temperature

is used. The direction of fracture initiation and the mode II fracture toughness is

determined from the positive and negative shear fracture tests. The microscopic

features observed across the fracture surface are described for each type of the shear

tests. A probability model is used to predict the distribution of the results obtained for

+T and -T mode II fracture toughness.

The effects of geometry and constraint in mixed mode I/II loading is addressed in

Chapter 7 for elastic-plastic materials. The results are shown in detail for mode II. The

variation of the near crack tip stresses by a remote T-stress is studied. Single

parameter and two parameter characterisation in shear loading is discussed. A Q-T

diagram is evaluated to determine the mode II constraint parameter QH in terms of the

T-stress for small scale yielding. The variation of QH with load is investigated for

several shear specimens and is compared with that predicted by the Q-T diagram. The

effect of geometry and constraint on mode II fracture initiation is discussed for both

brittle fracture and ductile fracture.

Chapter V presents a general discussion on the important results of the thesis and

finally Chapter gil outlines the major findings of the present research followed by

suggestions for potential future work.
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CHAPTER TWO

LITERATURE REVIEW

2-1. INTRODUCTION

In this chapter a review of previous work in linear elastic and elastic plastic mixed

mode fracture mechanics is presented. Emphasis is given to the subjects that are

referred to in the forthcoming chapters.

The stresses and strains around the crack tip and the mechanisms of crack growth are

described in sections 2-2 and 2-3. The major criteria suggested in the literature for

predicting mixed mode fracture are reviewed in section 2-4 for linear elastic materials

and in section 2-5 for elastic plastic materials. Section 2-6 reviews some methods for

determining the crack tip parameters K1, Ku and T. Finally the effect of crack tip

constraint in fracture mechanics and major methods for quantifying the constraint are

described in section 2-7.

The review is mainly confined to crack problems involving mixed mode loading.

However, mode I crack problems are also described briefly in some of the sections as

a background to mixed mode fracture.

2-2. STRESSES NEAR THE CRACK TIP

2-2-1. Elastic stresses and displacements

One of the first attempts for stress analysis of an elastic flawed body was by Inglis

(1913) who solved the problem of an elliptical hole in a plate. Westergaard (1939)
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proposed a complex variable technique to find the singular stresses around the tip of a

sharp crack. Later, Williams (1957) attempted to solve the well known biharmonic

elasticity equation
v40 = 0	 (2-1)

for a linear elastic, homogeneous and isotropic cracked body, where di is the Airy

stress function. Williams split the stress function into an odd and an even part

corresponding to symmetric and antisymmetric stress fields. He suggested a harmonic

function for each part, satisfying both eq 2-1 and the stress free boundary conditions

along the faces of the crack. The stresses resulting from each function could be written

as eigen-series expansions

Cu =(ECm r"112 gm(0))

m=0	

(2-2)

where cry is the stress tensor, r and 9are the polar co-ordinates shown in Fig 2-1, and

g,„ is a function of O.  The constant coefficients Cm depend on the geometry and

loading configurations of the cracked body.

Three types of loading, shown in Fig 2-2 can be applied to a cracked geometry:

a) Mode I (opening mode) in which crack flanks open without any sliding.

b) Mode II (sliding or in-plane shearing mode) in which crack flanks slide normal

to the line of crack front without any opening.

c) Mode III (out-of-plane shearing mode) in which crack flanks slide parallel to

the line of crack front without any opening.

Any loading condition involving a combination of these three modes is called mixed

mode loading. Only mixed modes I and II are studied in this thesis. The co-ordinates

x, y and z shown in Fig 2-2 are the conventional Cartesian co-ordinates with the crack

plane along the (x,z) plane.

Using Williams' solution, the series expansions for elastic stresses near the crack tip

are written, for mode I, as

00
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(2-3a)

(2-3b)

(2-3c)K1	 0 0 30a = 	 cos—sin—cos—+ 0(r 1/2)
xY V2a- r	 2 2	 2

and for mode II as

	

K
11	 30

a XX = ,	 sin—[2 + cos— cos—] + 0 (r 112)• 0	 0
V2zr 2	 2	 2

K11  .0	 0	 30a = 	 	 sin—cos—cos—+ 0 (r 1/2 )

	

YY V2ir r 2 2	 2

K	 0	 0 30=  , 11	 	 cos— [1 — sin— sinH + 0 (r 112 )
	V2a-r	 2	 2	 2

cxy

(2-4a)

(2-4b)

(2-4c)

where the stresses a,„ ayy and crxi, are shown in Fig 2-1. K1 and Kll are the mode I and

mode II stress intensity factors (SIF), respectively. The stress intensity factors are

functions of the applied load, the crack length and the geometry of the component.

The second term in eq 2-3a, T, is a constant stress parallel to the crack. The T-stress is

only due to the symmetric (mode I) component of loading and vanishes for

antisymmetric (mode II) loading. The contribution of higher order terms in the series

expansions are denoted by 0(r"2) which are considered to be negligible near the crack

tip.

The first term in each of eqs 2-3 and 2-4 is singular and tends toward infinity at the

crack tip. The classical theories of fracture mechanics assume that the singular terms

can be used to describe fully the elastic stresses near the crack tip. For mixed modes I

and II, the stresses shown in eqs 2-3 and 2-4 are superimposed. The normal to the

plane component of stress a determined from Hooke's law as

8



Chapter 2: Literature Review

where v is Poisson's ratio.

Displacements corresponding to the singular terms of elastic stresses are written for

mode I as

ux =—Kiii .& cosi° [-21 (ic —1) — sin2 (-9)1
2

uy ,,
Kitil \121.r sin 02 [ .il (K+1)—cos2 (-9)1

2 j

and for mode II as

ux =KII  11 r	 sin 0[1 (lc+1) +cos2 (--e)1
p 27r 2L2	 2 j

._ K	 cosOF -1 (lc - 1) _ si 2n (9u	 )
Y

	

	

1II  11 r
p 2ir	 2 L2	 2 j

(2-6a)

(2-6b)

(2-7a)

(2-7b)

where p is the shear modulus and

1C =3 — 4 v
	 Plane strain	 (2-8a)

K =(3 —v) / (1+v)
	

Plane stress	 (2-8b)

The displacement components in x and y directions, ux and uy, are considered to be

zero at the crack tip.

2-2-2. Plastic zone around the crack tip

Although a linear elastic solution predicts infinite stresses at the tip of a sharp crack,

in practice the stresses are finite. This is because some materials yield beyond a

certain level of applied stresses causing the region around the crack tip to undergo

plastic deformation. Equations presented in the previous section are based on the

assumption that the size of a plastic zone developing around the crack tip is so small

that its effect on the elastic stresses can be neglected.

Irwin (1960) suggested a simple model for predicting the size of plastic zone ahead of

the crack tip. Consider the variation of cyy along the crack line for a remotely loaded
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cracked panel in a state of plane stress. The simplest yield criterion postulates that the

plastic yielding occurs when the maximum principal stress exceeds the yield stress

obtained from a uniaxial tensile test. According to this criterion, cyy will reach the

material yield stress, co, at some distance ahead of the crack tip, ry , which can be

calculated as:

1 (Ki)2r =— —
Y 

27z- co

The radius ry can be taken as the first estimate of the extent of plastic zone. However,

it was obtained based on the elastic stresses. A more accurate prediction for the plastic

zone size can be determined if the stresses ahead of the crack tip are redistributed such

that equilibrium is maintained. This results in a second estimate for the size of plastic

zone r defined as
P

(2-9)

which is twice as large as r, the first order estimate. The redistributed stress in the

elastic region is higher than that of the purely elastic solution. In order to take into

account this increase in the stress intensity factor K1, Irwin (1960) proposed an

effective crack length, aeff , , defined as the sum of the actual crack size a and a plastic

zone correction

aeff =a + ry	 (2-11)

Using the effective crack length aeffi the validity of linear elastic stresses can be

extended to circumstances where a limited amount of plasticity occurs around the

crack tip. The radii ry and rp defined in eqs 2-9 and 2-10 are for plane stress. Irwin

(1960) showed that ahead of the crack tip the plastic zone size for plane strain is one

third of that for plane stress. This is because of the higher level of stress triaxiality in

plane strain which constrains the spread of the plastic zone.

Solutions suggested by Irwin for the plastic zone size are solely based on the singular

terms of the elastic stresses. However, more accurate estimates of plastic zone size can

be obtained when the effects of higher order terms of stresses are also considered.

10
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Dugdale (1960) suggested another approach known as the strip yield model, to obtain

the extent of the plastic zone ahead of the crack for a mode I plane stress cracked

geometry. He postulated that the crack can extend right through the plastic zone. The

crack was assumed to be closed by a force resulting from the yield stress inside the

plastic zone. The amount of yielding necessary to remove the elastic stress singularity

at the crack tip could determine the size of the plastic zone. According to the Dugdale

model the extent of plastic zone ahead of the crack tip for plane stress is

7r (K1
-=)

2
r -
P 8 co

(2-12)

When compared to eq 2-10 it will be seen that the result is very similar. Eq 2-12 is

valid as long as the remote load is small compared with the yield stress co. It is noted

that neither of the Irwin and Dugdale models takes the effect of material work

hardening into account.

2-2-3. Stresses and strains inside the plastic zone

For large scale plasticity, the elastic solution for crack tip stresses are no longer

reliable and the stresses inside the plastic zone should be found using theories of

plasticity. An important parameter for characterising the stresses inside the plastic

zone is the J-integral which is described here.

Mntegral

Consider a contour F enclosing the crack tip which starts from an arbitrary point on

the lower crack face and moves anticlockwise towards an arbitrary point on the upper

crack face. The J-integral (Rice, 1968) is defined as a line integral along this contour

J = fr (W* dy — t.-a-1 ds)	 (2-13)

where x and y are the Cartesian co-ordinates, ds is a line element along the contour F,
kr is the density of stress working, u is the displacement vector and t is the traction

vector which is the outward normal to the element ds. Rice (1968) showed that for a

cracked geometry, J is constant and is independent of the path selected for the contour

integral. The value of J is also the same for the near crack tip plastic and far field

elastic regions of the cracked body.
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Rice also showed that for a non-linear elastic solid, J is the rate of change of potential

energy with respect to crack growth. For linear elastic materials, J is identical to the

well known strain energy release rate G given by

where a is the crack length, t is the specimen thickness and U is the elastic strain

energy of the body. Irwin (1957) showed that for purely elastic solids, there is a

unique relation between the energy release rate G and the stress intensity factors. The

relation between J, G and the elastic stress intensity factors can be written as

J = G . = 
Ki2

E'

for pure mode and as

1=1, II	 (2-15a)

K12 , v 2
r-r .n.

J= G = 	
E'

for mixed mode loading, where E' is equal to the Young's modulus E for plane stress

and equal to E /(1- v 2) for plane strain.

Pure mode I (II) loading

The elastic-plastic properties of materials are often modelled by the Ramberg-Osgood

relation which is an equation for the material stress-strain curve, given by

= — a 0 (—;	 (2-16)
so ao	 co

where co is the yield stress, eo is a fitting parameter usually taken as cro /E, n is the

hardening coefficient and ao is a material constant. Very near the crack tip, inside the

plastic zone, where the elastic strains are negligible in comparison to the total strains,

eq 2-16 can be approximated by a pure power law model: e/e0=a0 (a/c,).

Hutchinson (1968) and Rice and Rosengren (1968) showed that for either mode I or

mode II, the stresses and strains inside the plastic zone around the tip of a crack can be

(2-15b)
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written as asymptotic series solutions for homogeneous, isotropic and non-linear

materials obeying the power law model.

The first terms in these series expansions are singular and are known as the HRR

(Hutchinson, Rice and Rosengren) solution

E 	 1+1 
dii(n,0) (2-17)

a0o-0 2 In r

fl

a 	 E 	 1"+'
ey(n,0)

E a 00 0 2 I n r

where r and 0 are the polar co-ordinates. The dimensionless functions 6- (n,0) and

46/*0) which vary with 0, together with In depend on the hardening coefficient, n,

the loading mode and the stress state (plane stress/plane strain). Values of &,, "e and

In have been tabulated by Shih (1983) for different values of the hardening coefficient.

Eqs 2-17 and 2-18 show that, similar to the stress intensity factors for the elastic

solution, J is the characterising parameter for elastic-plastic materials and defines the

amplitude of the singularity of the HRR solution. The HRR solution is valid as long

as strains are infinitesimal, the deformation theory of plasticity holds and the loading

is in either pure mode I or pure mode II. The higher order terms of the series

expansions for stresses and strains inside the plastic zone which are ignored in the

HRR solution can improve the accuracy of the results. This will be elaborated later in

this chapter.

Mixed mode loading

The elastic-plastic stresses for mixed mode loading cannot be determined directly by

superimposing the pure mode results. This is because of the non-linear behaviour of

the material properties. To extend the HRR solution to mixed mode problems Shih

(1974) introduced a near crack tip field mixity parameter, MP as

(2-18)
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and showed that the stresses and strains inside the plastic zone are singular and can be

written as

Crii
j n4-1

eiii(n,O,MP) (2-20)
co = ao o-0 2 In (MP ) r

cif a
in+1

en.(n 0 MP)
r

(2-21)
o E 002 1(MP)

The dimensionless functions ifu , 	 and In are very similar to those defined for the

HRR solution except that, here, they depend also on the near tip mixity parameter M.

These functions have been given by Shih et al (1988) for different values of hardening

coefficient n and mixity parameter M". It is seen from eq 2-20 that the magnitude of

singular stresses in mixed mode loading can be written as

1
EJ 

(	
)11+1

K ir,f =	 0	 n
a cr o 2 I (MP)

(2-22)

Shih (1974) showed that for small scale yielding the near field mixity parameter MP is

directly related to a far field elastic mixity parameter Me defined as

The relation between M e and M P depends on the hardening coefficient. Thus, for

small scale yielding the singular stresses and strains near the crack tip can be

described fully by two parameters: the J-integral and the far field mixity parameter

Me which is determined from the stress intensity factors. Because the values of the J-

integral in elastic and plastic regions are the same, from eqs 2-15b and 2-23 the

strength of singular stresses K IA f) can be related to the mode I and mode II stress

intensity factors by

J = K1 2 -FK112 _ao-0 2	 (mp)(KL)n+1	 (2-24)
E'	 E n

It is noted that both the mixity parameters M e and MP are equal to 1 for mode I and 0

for mode II, and vary between 0 and 1 for mixed mode loading.
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2-3. MECHANISMS OF CRACK GROWTH

In Section 2.2 the stresses and strains around the tip of a crack were described. When

a cracked body is subjected to a critical loading conditions, the crack begins to extend.

There are two important types of fracture in solids: brittle fracture and ductile fracture.

Brittle fracture is often referred to unstable crack growth or fast fracture and

frequently leads to catastrophic consequences. Brittle fracture occurs in materials

having low ductility that typically exhibit little plastic deformation around the crack

tip. In steels, brittle fracture is associated with cleavage fracture of the grains.

The micro-mechanism of brittle fracture is widely regarded as elastic extension of

atomic bonds ahead of the crack tip, up to the point of ultimate separation. In this

case, the ideal fracture strength of material can be estimated by considering the force

required to disconnect two atoms. From a continuum mechanics point of view, brittle

fracture can be considered as a stress controlled mechanism of failure. A well known

model for cleavage fracture due to Ritchie, Knott and Rice (1973) proposes that

cleavage fracture occurs when the tensile stress at a critical distance r, ahead of the

crack tip exceeds a critical cleavage fracture stress cf where r, and cf are material

properties.

Ductile fracture takes place in materials susceptible to high plastic deformation. Crack

growth in this case is often slow and materials near the crack tip undergo large plastic

deformation prior to the initiation of crack growth. Microscopic studies suggest that

there are two major mechanisms for crack growth in ductile materials: (i) void growth

and coalescence, and (ii) shear band localisation and decohesion. A brief description

of these mechanisms is presented here.

Engineering metallic alloys often contain impurities or second phase particles. When a

ductile alloy is subjected to a certain level of tensile deformation, the inclusions are

separated from the surrounding materials by either particle cracking or interface

decohesion. This gives rise to microvoids which are normally located in front of the

crack tip for a mode I crack geometry. Once nucleated, microvoids grow under the

influence of the increasing tensile stresses. The crack grows by microvoid coalescence
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when the excessive plastic strains cause localised flow or necking between the blunted

crack tip and the first void ahead of it. The crack keeps advancing as the same process

is repeated for the subsequent voids.

Several mathematical models have been suggested to describe the process of void

growth and coalescence in metallic alloys, see for example Rice and Tracey (1969),

Gurson (1977) and Rousselier et al. (1989). The main point which these models have

in common is that the initiation and extension of crack growth in the mechanism of

void growth are directly dependent on the magnitude of the tensile hydrostatic (mean)

stress crm and inversely dependent on the effective stress creff around the crack tip. The

stresses cm and creff are functions of the stress components and can be written in the

Cartesian co-ordinates as

I
c	 _e, = —11(0- 	 0- ) 2 ± ( cr.	 0. ) 2 ± („,. _ , N 2 j_ ‘,.... 2 , .... 2 , e.„

Uk0 .xy 1- V y, -r- c7 2)	 (2-26)
-u	 .,5	 LY	 -YY	 YY 

_ "

	
k.' ZZ 1-1 XX 1 '	 L/ ZX

Because both the mean stress and the effective stress are invariants of the stress

tensor, eqs 2-25 and 2-26 can also be written for the stresses in polar co-ordinates.

The second mechanism of crack growth in ductile materials is mainly controlled by

shear stresses (or strains) near the crack tip. Clayton and Knott (1976) suggest that

following the formation of a microvoid around an inclusion in front of the crack tip

shear deformation is localised in a band joining the crack tip to the void. Extension of

the crack takes place by shear decohesion along this band when the shear strain attains

a critical value.

The direction of crack growth in this mechanism is expected to be along the

maximum radius of the plastic zone. This corresponds to an angle about 70 0 from the

crack line for a mode I crack. The microstructural studies by Clayton and Knott

(1976) show that following a small number of stages of crack growth, the path of

crack advance tends towards the line of the initial crack. The successive change in the

direction of crack growth provides a zig-zag fracture surface which is a characteristic

of mode I crack growth by the mechanism of shear localisation and decohesion. The
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alteration in the path of crack growth can be attributed to features of the plastic zone

which is constrained and develops regions of tension, susceptible to cracking

(Beachem and Yoder, 1973).

Clayton and Knott (1976) suggest that in mode I, the mechanism of shear decohesion

is more likely to occur in ductile materials with low or intermediate work hardening

whereas high work hardening favours the mechanism of void growth and coalescence.

Although void growth and coalescence follow a significant amount of crack tip

blunting, shear decohesion can takes place with little or negligible crack tip blunting.

2-4. LINEAR ELASTIC FRACTURE MECHANICS (LEFM)

The main microscopic mechanisms of crack growth were briefly outlined in Section

2-3. The identification of the mechanism of fracture is an important stage in the

macroscopic analysis of crack growth. This is because the criterion which is employed

to predict the onset of fracture must be consistent with the actual mechanism of crack

growth.

Sections 2-4-1 and 2-4-2 present a short background about the mode I brittle fracture

and a more detailed review of the mixed mode brittle fracture criteria. In these two

sections the size of plastic zone is considered to be so small that fracture can be

predicted based on the linear elastic stresses near the crack tip but outside the plastic

zone.

2-4-1. LEFM - Mode I

Stress approach

According to the classical theories of fracture mechanics, the crack tip stresses for

different specimens having similar stress intensity factors are the same. Therefore, the

critical stress required for brittle fracture is attained when the stress intensity factor IC1

reaches a critical value, K1c.

K1 = Kic
	

(2-27)
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where Kic is the mode I fracture toughness for the state of plane strain. The fracture

toughness is often taken to be a material property and independent of the specimen

geometry.

Energy approach

Crack growth in a purely elastic material is associated with two major changes in the

total energy of the cracked specimen: some of the strain energy conserved around the

crack tip is released, and some energy is consumed to break the atomic bonds in front

of the crack. Griffith (1921) suggested that unstable crack growth takes place when

the elastic strain energy available to propagate the crack exceeds the energy absorbed

in creating new crack surfaces. According to this criterion, if the critical energy

required for the initiation of crack growth is G, fracture occurs when

G = Gc	 (2-28)

where G is the elastic strain energy release rate defined earlier in eq 2-14. The critical

energy G, is assumed to be a material property and for mode I it is directly related to

the fracture toughness Kic. The Griffith's criterion was originally suggested for purely

elastic materials later modified to account for a limited amount of energy dissipation

due to the plastic deformation around the crack tip.

2-4-2. LEFM - Mixed mode

The geometry and loading configurations in mode I are symmetric. Therefore, brittle

fracture is expected to initiate in the same direction as the original crack. This is not

the case for mixed mode loading where the crack tip stresses are asymmetric. A

criterion for mixed mode fracture should be able to predict both the direction of crack

growth and the onset of fracture.

Several criteria have been suggested by researchers for mixed mode fracture in linear

elastic materials. Three well known criteria are described in this section. Reference is

also given briefly to some of the others. It is common to use the angled internal crack

problem as an example for theoretical and experimental verification of the criteria. In

this specimen the angle between the crack line and the loading direction fi can change

from zero to 900 to provide different mixities of modes I and II (see Fig 2-3a). The

solution for this example is also presented using some of the fracture criteria.
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Maximum tangential stress (MTS) criterion

In an early attempt, Erdogan and Sih (1963) suggested two important criteria, known

collectively as the maximum tensile stress (MTS) criterion for a two dimensional

mixed mode crack problem. These are;

The crack propagates radially along the direction of maximum tangential

stress around the crack tip.

Crack propagation occurs when the magnitude of tangential stress coo along

this direction acquires a critical value o.

The singular term of the tangential stress can be written as

1 	 0
coo =  ,	 cos —[KI COS

2 0 3-- — IC sin 01
112.1r r	 2	 2 2

(2-29)

By differentiating eq 2-29 with respect to 0 and equating the result to zero, the

direction for fracture initiation 00 is found according to the MTS criterion as

Eq 2-30 shows that 00 is a function of the ratio between the stress intensity factors K1

and KB . For pure mode II this equation becomes 1-3cos00= 0 and the direction of

fracture initiation 00 is —70.53° for maximum co. The solution for eq 2-30 for the

internal crack problem in terms of the crack angle /3 is

( tan 00 ) . 1 tanfl _I. 1 Vtan2	fi +8	 (2-31)
2) 4	 4

Once 00 is obtained from eq 2-30, it is replaced in eq 2-29 and fracture initiation is

determined by equating o-,9,9 to ca*. If the critical stress csab is written in terms of the

mode I fracture toughness K1 , the condition for fracture initiation is

K1	 3 90 3  Kil  cos2 61' sin 6)—Q =1cos
K lc	 2	 Kic	 2	 2

(2-32)
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From eq 2-32, for pure mode II, where K1 vanishes and 00 = —70.53°, the mode II

fracture toughness is 0.87 times the mode I fracture toughness. The solutions for eqs

2-31 and 2-32 are shown in Figs 2-3b and 2-3c respectively.

The results of experiments on PMMA for the internal angled cracked panel by

Williams and Ewing (1972) showed a discrepancy between the fracture initiation

angle obtained from experiment and those predicted by eq 2-31. The discrepancy was

more considerable for small values of the crack angle A Williams and Ewing showed

that an improved correlation with test results is obtained if the effect of the T-stress is

included in eq 2-31. According to their calculation which was corrected later by

Finnie and Saith (1973), the direction of fracture initiation 0 0 is determined for the

internal angled crack problem by solving

tan2 ig [1 - 3 cos 00  I tan fi .[  16a sin 92°  1(1 tan2 fl). 0

sin 00	3 tan 00
(2-33)

\Iwhere a is a dimensionless parameter equal to —
2r, 

, a is the crack length and r, is aa

critical distance from the crack tip. Eq 2-33 predicts that for fl =0 the crack initiates

along the direction 00= —90° which is more consistent with the experimental results

compared with 00 = —70.5 0 predicted by eq 2-31.

For r, =0 the MTS criterion indicates that along the direction of maximum tangential

stress, the shear stress vanishes and hence the tangential stress is a principal stress.

Maiti and Smith (1983) showed that if the stresses are studied along a circle of radius

r, > 0, the maximum tangential stress is no longer a principal stress. They then

suggested that mixed mode fracture can be predicted in brittle materials based on a

maximum principal stress criterion. However, the results of their criterion were not

much different from those of the MTS criterion.

McClintock (1963) extended the application of the MTS criterion from a slit to an

elliptic crack. He proposed that the maximum surface tangential stress on the

boundary of the elliptic crack is used as a measure of crack extension. Chang (1981a)

modified this criterion and suggested that the maximum tangential stress is evaluated

on a circle of critical radius, r, around the elliptic crack tip.
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Later, Chang (1981b) proposed the maximum tangential strain criterion in which the

maximum tangential strain around the crack tip is employed as a measure of crack

growth for both a slit and an elliptic crack. In a similar attempt, Fischer and Goldner

(1981) suggested that the maximum principal strain in the vicinity of the crack tip is

used to determine the propagation direction and the fracture load.

Maximum energy release rate criterion (MERR)

It is proposed in this criterion that

(i) Crack extension occurs at the crack tip in a radial direction along which the

energy release rate is a maximum.

(ii) The crack extension initiates when the energy release rate reaches some

critical level.

The energy release rate in mixed mode I and mode II was described by eq 2-15b for a

crack propagating in its initial plane. However, the crack extension is often not co-

linear for a crack subjected to either antisymmetric or asymmetric loads. In this case,

it is necessary first to analyse a crack having a main branch and a propagating branch.

The propagating branch is called a kinked crack, and is set at an arbitrary angle 0 to

find the stress intensity factors for the kinked crack. By substituting these stress

intensity factors in equation 2-15b and differentiating the result with respect to 9, the

condition for crack extension can be obtained from (dG I dO) = 0.

Numerous investigators have attempted to find the stress intensity factors for kinked

cracks using closed form solutions, see for example Lo (1978), Bilby and Cardew

(1975) and Hayashi and Nemat-Nasser (1981). Nuismer (1975) assumed that in the

limit as the length of kink crack tends towards zero, the stress field at its tip must

approach the stress field at the tip of the original crack, before extension begins.

Making the above simple continuity assumption, he obtained the stress intensity

factors for a kinked crack and then, using equation 2-15b, concluded that the greatest

strain energy release rate occurs in the direction of the maximum tangential stress cro.

This implies that the energy release rate criterion for mixed mode fracture based on

Nuismer's approach yields the same results as the maximum tangential stress (MTS)

criterion.

21



Chapter 2: Literature Review

Hussain et al (1974) made use of the properties of the path independent integrals

around the crack tip and obtained the mixed mode strain energy release for a kinked

crack. They argued that the integrals involved in Irwin's approach to obtain the energy

release rate cannot be applied directly to the present problem due to the discontinuity

introduced by the deflected crack extension. It was shown that the solution at the tip

in the limit, as the length of the kinked crack shrinks to zero, is not the same as the

solution at the tip of the original crack before propagation. According to their

approach the fracture angle predicted by the maximum energy release rate criterion is

slightly higher than the result of the MTS criterion.

Minimum strain energy density criterion (SED)

Sih (1973a,b and 1974) developed another criterion for mixed mode fracture in brittle

materials. Consider a volume element dV=dxdydz in a linear elastic material. The

strain energy de stored in this element is

de =[f1E (c7 xx 2 + a yy 2 + a ,z 2 )- f(cY 0- yy + a yycrzz + crzzcs.,)+

1 (0. 2 +c 2 +c 2 Viciv
2/4 x3'	 xz	 Yz P

(2-34)

where p is the shear modulus. By substituting the singular stresses ahead of the crack

in eq 2-34, the strain energy density function de /dV can be written as

de
=
 S(0) 

=
l

[allICI
2
 + 2a121Ci K11 + a22ICH2]

dV	 r	 r
(2-35)

where S is the strain energy density factor. The coefficients in eq 2-35 are

a11=-
1

(ic—cos6)(1+cos0)
16,u	

(2-36a)

1 
an = 16,u 

(2 cost9— K +1)sint9	 (2-36b)

1 
a22 = 

1,u 
[(K + 1)(1— cost)) + (1+ cos 0)(3 cos° —1)] 	 (2-36c)

6

where K was defined earlier in eq 2-8. Sih's strain energy density (SED) criterion

suggests that:
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(i)
	

Crack propagation is postulated to initiate in the direction of minimum strain

energy density

dS _0	 d 2S
>0

d0 -	' d20
at 00	(2-37a)

(ii)	 Crack extension initiates when the strain energy density factor along this

direction attains a critical value S,

S(KI ,KH ,00 )=S,	 (2-37b)

Based on the SED criterion the fracture initiation angle 0, is obtained for the angled

crack problem as

2(1 — 2 v) sing — 2fi) —2 sin[2(00 — fl)]— sin 200 = 0	 (2-37c)

Eq 2-37c indicates that, unlike the MTS and MERR criteria which are independent of

material properties, the SED criterion depends on Poisson's ratio, v.

Later, Sih (1974) proposed that the SED criterion is valid outside a circle of radius r, ,

called the core region within which SED tends towards infinity and the material and

the nature of deformation may be significantly different from those on the outside.

However, he did not define quantitatively the values of r, for different materials. In

this regard, Theocaris and Andrianopoulos (1982a) introduced the von Mises elastic-

plastic boundary, instead of a circle of constant radius, to define the core region. They

showed that the direction of crack extension for the strain energy density criterion will

be independent of Poisson's ratio if the SED is evaluated along this boundary. They

also suggested that the minimum radius of the plastic zone can be employed as a

measure of crack extension.

Sih and MacDonald (1974) suggested that the strain energy density factor is written as

the sum of two components, one due to a change in volume Sy, the other due to

distortion or change in shape Sd. They showed that along the direction of minimum

SED the dilatational strain energy density, Si„ is greater than that of the distortional Sd.

Inversely, along the direction of maximum SED, Sd is greater than S„ and maximum

yielding occurs. This implies that based on the SED criterion the crack always

propagates into the elastic zone and away from the plastic region, in the case of small

scale yielding.
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Theocaris and Andrianopoulos (1982b) proposed their own criterion, called the T-

criterion, as: (i) The crack extension occurs along the direction of maximum

dilatational strain energy density, (Sr) max . (ii) Crack growth commences when the

dilatational strain energy, Sy, attains a critical value of (S,), at a point in the vicinity

of crack tip. (iii) The (Sr) 
max is evaluated along the von Mises elastic-plastic boundary

or, in other words, along the contour line of constant distortional strain energy

density, Sd , around the crack tip. The direction of crack extension predicted by the T-

criterion for the angled internal crack problem is considerably higher than those

obtained through the MTS and SED criteria, particularly for fi =0° loading where the

predicted angle of fracture tends towards —95°.

Yehia (1985) showed that the function Si, along the elastic plastic boundary is

independent of applied load, and concluded that the T-criterion cannot be used to

predict the critical applied load. Later he proposed an individual criterion, called the

Y-criterion (Yehia 1991), in which the minimum distortional strain energy density

along a circle of radius r, is employed to obtain the propagation direction and fracture

load.

In another attempt, Koo and Choy (1991) suggested that the maximum tangential

strain energy density can be used as a measure of crack growth. They showed that the

results of this criterion is located between the results of the MTS and the maximum

tangential strain criteria.

Remarks on mixed mode fracture criteria

A review of the mixed mode fracture criteria shows that most of these criteria

complement each other for the mode I condition and deviate from each other for

cracks under combined modes. Experimental studies on the internal angled crack

specimen also shows that the results for the direction of initiation of crack growth are

scattered in a band which is wider for small values of the crack angle A see for

example Liu (1974), Williams and Ewing (1972), Palaniswami and Knauss (1978),

and Yokobori et al (1983). Since the results of almost all of the mixed mode fracture

criteria lie in this band of experimental results, it is not possible to predict which

criterion is more reliable.

Among the criteria described in this section, the maximum tensile stress (MTS),

maximum energy release rate (MERR) and minimum strain energy density (SED)
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criteria have received more attention in the literature. However, due to simplicity and

ease of use the MTS criterion has been more popular for researchers. It was noted

earlier that the SED criterion depends on Poisson's ratio. This is a disadvantage which

can make the SED criterion less attractive compared with the material independent

criteria.

For more complicated geometries where finite element analysis is used, the MTS and

SED criteria are considered to be more appropriate. This is because the tangential

stress and the strain energy density are often readily available in the commercial finite

element codes. The maximum energy release rate criterion is suitable to the simple

geometries where the stress intensity factors are known. Nevertheless, the fracture

angle predicted by this method is also, in general, close to that predicted by the MTS

criterion.

2-4-3. Brittle fracture in PMMA

Mixed mode brittle fracture has also been studied experimentally by numerous

researchers. Most of these studies have been conducted on PMMA which is a cheap

and easily machinable polymer known for its high brittleness. Later in Chapter 6,

PMMA is used to investigate brittle fracture in shear loading. Therefore, a brief

review of the mechanisms of yielding in polymers and previous mixed mode

experiments on PMMA is presented in this section.

Mechanisms ofyielding in polymers

Industrial applications of polymers have been increasing in recent decades. It has been

found that polymers could yield by two mechanisms: shear yielding and normal

yielding (crazing). These mechanisms are described briefly here. More details may be

found in Kinloch and Young (1983), and Williams (1984).

From a continuum mechanics point of view, shear yielding is similar to plastic flow in

metals. However, because the structure of polymers consists of long molecular chains

the micro-mechanism of shear yielding in polymers is different from that in metals.

Shear yielding in polymeric materials occurs when the local shear stress attains a

critical value and molecules slide with respect to one another. If the zone of shear

yielding in polymeric cracked specimens becomes extensive the specimen can fail by
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ductile fracture. However this very much depends on parameters such as the loading

rate and the working temperature.

Crazing is the other type of local deformation in polymers. It arises from an

interpenetrating system of microvoids. Microvoiding, which takes place in regions of

high hydrostatic tension, can initiate from imperfections in the microstructure such as

surface flaws or dust particles. Crazes often form normal to the direction of maximum

principal stress. In addition to a band of concentrated microvoids, the craze zone

contains polymer fibrils which are orientated molecular chains acting as ligaments

between each two neighbouring voids. The load can be transmitted across the craze

faces through the fibrils.

Crazing is an important event in brittle fracture of polymers as it precedes crack

growth. Crack growth in polymers takes place along the craze zone when the tensile

stress sustained by fibrils exceeds a critical value. The fracture is unstable if the

subsequent fibrils are also not capable of sustaining the stresses in front of the

extending crack.

Since around the tip of a crack there are regions of high hydrostatic tension and high

shear stress there is a competition between the two failure mechanisms. A high

hydrostatic stress favours crazing, whereas shear yielding requires large deviatoric

stresses. Variables like loading rate, working temperature and specimen thickness are

also significant in determining the dominant failure mechanism.

Polymethylmethacrylate (PMMA) or perspex has been extensively used by workers

for fracture studies (e.g. Williams and Ewing, 1972, and Davenport and Smith, 1993).

That is mainly because cracked specimens made of PMMA exhibit a brittle fracture

under normal testing conditions and at room temperature. In such conditions shear

yielding is confined to a very small zone around the crack tip and crazing is the

dominant mechanism for crack growth initiation in PMMA.

Although micromechanisms of crack growth in PMMA have been studied extensively

in the literature for mode I, very few researchers have examined it for mixed mode.

Maccagno and Knott (1989) suggest that craze formation occurs along the direction of

maximum tensile strain and crack growth takes place when the tensile stress along this

direction attains a critical value. However, Mahajan and Ravi-chandar (1989) propose
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that the direction of maximum tensile stress is a favoured path for the craze formation

and the subsequent crack growth.

Bhattacharjee and Knott (1995) made use of an asymmetric four point bend specimen

and presented a description of the fracture surface features and path of crack growth in

PMMA. For mode II dominated fracture they observed three distinct areas across the

fracture surface: a mirror zone, a misty zone and a zone with hyperbolic markings.

They also noticed that the number of hyperbolic markings was increased by making

the mode II component larger.

Mixed mode experiments on PMMA

Various test configurations have been designed by researchers to investigate mixed

mode fracture in PMMA. Some of these test specimens are reviewed here.

A large square plate containing an angled internal crack and subjected to either uni-

axial or bi-axial loading was used by Erdogan and Sih (1963) , Williams and Ewing

(1972) and Ueda et al. (1983). They achieved different mode mixities by changing the

crack angle. However, the test specimen was unable to provide a pure mode II loading

when the crack is in line with the loading direction. The same difficulty is seen in

bending and tensile specimens containing an angled edge crack used by Ewing et al.

(1976). In mode II only, Erdogan and Sih (1963) substituted the far field tensile load

by two skew-symmetric point loads applied at holes located near the crack edges. A

similar point loading was used by Maiti and Smith (1983) for other crack angles as

well.

A circular tube of PMMA containing an angled crack and subjected to pure torsion

was employed by Ewing and Williams (1974a) to study mixed mode brittle fracture.

Royer (1986 and 1988) designed a Y shape mixed mode specimen containing two

edge cracks. By changing the angle of loading in two top branches of the specimen

Royer achieved different combinations of modes I and II. A disadvantage in using

specimens involving two crack tips, such as the internally cracked specimen or Y

shape specimen, is that any slight discrepancy between the properties of the two crack

tips may prevent simultaneous crack propagation at both tips of the crack. This can

introduce inaccuracy into the test conditions.
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Richard (1985), Banks-Sills and Bortman (1986), and Mahajan and Ravi-chandar

(1989) made use of rather complicated configurations in which a compact tension-

shear specimen was located inside a fixture. Mixed mode loading could be achieved

by applying the load through a number of holes drilled in the fixture at different

angles. Davenport and Smith (1993 and 1995) replaced the compact tension-shear

specimen by single edge notched and single edge cracked specimens. They showed

that mixed mode fracture toughness of PMMA in the notched specimens is

considerably higher than in the mode I cracked specimens. Maccagno and Knott

(1989) and Bhattacharjee and Knott (1995) investigated mixed mode brittle fracture in

PMMA using an asymmetric four point bend specimen. They could provide different

combinations of modes I and II by changing the positions of supports and loading

points on the specimen.

Aside from Bhattacharjee and Knott (1995), all of the workers mentioned report that a

linear elastic fracture criterion, such as the maximum tensile stress criterion, is able to

predict satisfactorily the direction and the onset of crack growth in PMMA. However,

the scatter of the experimental results obtained from different test specimens is

considerable, particularly for mode II dominated fracture. Bhattacharjee and Knott

(1995) do not present a clear reason for their results not agreeing with linear elastic

MTS criterion. However, they ruled out the possible effect of the crack tip plastic

deformation as a reason for this discrepancy. This is because even using the small

scale yielding assumption, with different plastic hardening coefficients, they were not

able to predict the experimental results. However, they suggest that the fracture

toughness in PMMA is increased if the tip of the initial crack is not accurately

uniform. This is because a non-uniform crack tip might give rise to local crack

extensions with mode mixities different from that associated with global loading.

2-4-4. Statistical modelling of brittle fracture

In engineering analysis of a brittle cracked body it is common to assume a single

value for fracture toughness. However, the results of fracture tests conducted on

accurately manufactured specimens cut in the same direction from the same batch of a

material often show a considerable scatter in fracture toughness. From a microscopic

point of view it is well understood that the onset of crack growth in a brittle material

depends largely on the distribution of inhomogenities such as voids or second phase

particles around the crack tip. The scatter in the results of fracture tests could therefore
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be attributed mainly to the random distribution of the inhomogenities in material. This

suggests that a reliable figure for fracture toughness is obtained only if a large number

of tests is carried out. Meanwhile the amount of testing can be reduced considerably

provided an appropriate probabilistic analysis is performed to predict the scatter in

fracture toughness data.

Based on a weakest link phenomenon, Weibull (1951) suggested a probability

distribution model which has been used widely to describe scatter in fracture

toughness for brittle materials. The weakest link phenomenon for brittle fracture

assumes that the probability of failure equals the probability of the crack tip stress and

strain fields sampling at least one critical fracture-triggering particle. A two parameter

Weibull model for fracture data (Wallin, 1984) is often shown as

[Pf =1– exp – 
K1
— m
Ko

(2-38)

where 131 is the cumulative probability of fracture, m is a constant describing the

magnitude of scatter, K1 is the applied stress intensity factor and Ko is a normalisation

parameter corresponding to fracture toughness at 62.3% fracture probability.

However one major problem with eq (2-38) is that K1 vanishes for 131 =0, i.e. a two

parameter Weibull function always predicts the minimum toughness in the

distribution model, to be zero. Wallin (1984) suggested a three parameter model for

the distribution of fracture data as

Pf =1— exp 	
(KKI KiCninji

(2-39)

where Kmo, is a lower fracture toughness below which brittle fracture is unlikely. He

also proposed that the theoretical value for m is constant and equal to four. Wallin

(1984) used the experimental results for different steels and showed that eq (2-39)

with m=4 can be employed as a reliable model to predict the distribution of fracture

toughness data.
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2-5. ELASTIC-PLASTIC FRACTURE MECHANICS (EPFM)

Elastic-plastic fracture mechanics (EPFM) deals with cracked specimens where a

significant volume around the crack tip undergoes plastic deformation prior to

initiation of fracture. For such cases, which very often happens for metallic alloys, the

failure mechanism can be either the brittle fracture or the ductile failure. Brittle

fracture may be preceded with or without some stages of slow crack growth. For

ductile materials, final failure often occurs following numerous stages of slow crack

growth. For materials having very high fracture toughness, failure can be due to

plastic collapse in the uncracked ligament of the specimen with negligible amount of

crack extension.

A review of the main criteria for elastic plastic crack growth is presented in Section 2-

5-1 for pure mode I and in Section 2-5-2 for mixed mode loading.

2-5-1. EPFM - Mode I

Experimental studies by Wells (1961) showed that in tough materials, the crack faces

often move apart and the crack tip is blunted considerably before crack extension. The

maximum value of crack tip blunting was directly related to the material fracture

toughness. He proposed that the failure of cracked geometries in the presence of

moderate plasticity can be described by the crack tip opening displacement (CTOD)

denoted by 8.

There is a direct relation between the CTOD and the J-integral. Either the J-integral or

the CTOD can be used as characterising parameters in elastic-plastic fracture. For

specimens failing by the mechanism of brittle fracture, the unstable fracture takes

place when J (or 8) attains a critical value J, (or 8, ) which is a material property.

Because the stress field inside the plastic zone near the crack tip is described by J, the

critical value J, corresponds to the critical stress needed for initiation of crack

extension in the stress controlled mechanism of brittle fracture.

In the case of ductile crack growth, J (or 8) first reaches a critical initiation value J,

(or 5 ) for which crack growth is initiated. Following a few steps of stable crack

growth, the final failure occurs when J reaches J, beyond which unstable fracture

takes place. Since J, is often significantly greater than the resistance of material to
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crack growth increases after initial crack growth. This represents an important safety

margin between initiation and instability of crack growth.

Incremental crack extension in ductile materials makes the analytical modelling for

predicting the entire process of failure, from initiation to rupture, much more

complicated than for unstable brittle fracture. The minimum strain energy density

(SED) criterion, initially suggested for linear elastic mixed mode fracture, was

extended to predict mode I crack growth in ductile materials. The modified SED

criterion has been described by Sih and Kiefer (1979) for small scale yielding and by

Sih and Madenci (1983a,b) for gross yielding problems.

Substantial work has been carried out to simulate the stable crack growth in ductile

materials using a so called local approach. In this method finite element analysis is

employed to simulate the extension of a damage zone in front of the crack tip

resulting from the growth and coalescence of microvoids, see for example Roos et al.

(1991) and Bilby et al. (1992).The simulation often requires user defined subroutines

in the FE code to implement a damage model such as those referred to in Section 2-3.

2-5-2. EPFM - Mixed mode

Brittle fracture

Mixed mode specimens can fail by a mechanism of brittle fracture even in the

presence of significant plasticity around the crack tip. This has been shown for

example through experiments carried out by Maccagno and Knott (1991) for several

steel alloys. The direction and the onset of crack growth for such cases can be

predicted by using the mixed mode criteria described in section 5-4-2. However, some

modifications are needed to account for the effect of crack tip plasticity.

Wang (1985) and Melin (1987) suggested modifications to the maximum energy

release rate (MERR) criterion involving a small plastic region around the crack tip for

mixed mode loading. Chow and Jilin (1985 and 1986) employed the maximum

dilatational strain energy density criterion to predict the direction and onset of fracture

in an elastic-plastic crack problem. They showed that for mode I their results are in

agreement with those predicted by Sih and Madenci (1983b) using a modified

minimum strain energy density (SED) criterion.
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The maximum tangential stress (MTS) criterion can also be used to solve the elastic-

plastic crack problem in mixed mode loading. The near field mixity parameter MP is

determined and the tangential stress is calculated using the elastic-plastic stresses

given by Shih (1974), and described in Section 2-2-3. Shih showed that the crack tip

plasticity has little effect on changing the direction of fracture initiation 00. For small

scale yielding the near field elastic-plastic stresses can be related to the far field elastic

stresses. In this case the onset of crack growth is determined from

vH-1( fmT

K1 1 2 ± I Kll = 	 doe {n,0,11	 in

Kic	 Kle	 aeo ln,O, , MP }	 I n{l}
(2-40)

where the related parameters were described following eqs 2-18 and 2-19. Maccagno

and Knott (1985 and 1991) showed for several steel alloys that the fracture load

predicted using the elastic-plastic MTS criterion are in better agreement with the

experimental results than those predicted by the linear elastic MTS criterion.

Budden (1987) made use of slip line field theory and extended the application of the

elastic-plastic MTS criterion to consider the effect of the large geometry changes near

the crack tip in mixed mode loading. He suggested that the direction of fracture

initiation Oa in mode II is about -81.8° which is almost the same as the angle Oo

predicted by Shih (1974) for n=o., without considering crack tip blunting effects.

Ductile failure

Almost all the finite element studies for modelling the mechanism of void growth and

coalescence (the local approach) are confined to pure mode I where the path of crack

extension is along the plane of the initial crack. In mixed mode loading, the damage

zone or the crack growth trajectory is often subject to continuous change as the load

increases. The simulation of stable crack growth in ductile materials for mixed mode

loading is therefore much more complicated than that for mode I.

A transition between the micromechanisms of crack growth has been noticed by

several researchers studying experimentally mixed mode failure in ductile materials.

For example, Tohgo and Ishii (1992), Hallback and Nilsson (1994) and Kamat and

Hirth (1996) have reported for several aluminium alloys that in mode I dominated

loading their specimens failed by the mechanism of void growth whereas for mode II
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dominated loading, the specimens failed by the mechanism of shear localisation. A

brittle to ductile transition has also been reported by Swankie and Smith (1998) and

Smith et al (1998a and 1998b) for mixed mode fracture in several steel alloys. The

transition between the mechanisms of failure emphasises that in analysing crack

growth for different mode mixities, different criteria need to be employed. The

identification of the failure mechanisms and the determination of the transition limit

which are essential in selecting appropriate crack growth criteria for each mode mixity

require extensive experimental studies.

Because of difficulties mentioned above, almost all of the analytical studies for mixed

mode loading in ductile materials are confined to investigation of the crack tip fields

prior to any crack extension (e.g. Aoki et al, 1987, Budden and Jones, 1991, Chow

and Wang, 1991, Ghoshal and Narasimham, 1994 and 1996, and Hallback, 1997).

In practice, an approximate method can be used to determine the load corresponding

to the ductile failure in specimens subjected to mode II dominated loading. This

method predicts the collapse load at which the effective stress in the uncracked

ligament of the specimen reaches the ultimate strength of the material without

considering any crack growth. This can be undertaken either for a work hardening

material using FE analysis (Ayatollahi, 1996) or for a perfect plastic material (Smith

et al, 1998a and 1998b) using a limit load analysis suggested by Miller (1987).

2-6. METHODS OF CALCULATING THE CRACK TIP PARAMETERS

In this section some methods for determining the stress intensity factors (SIF) and the

T-stress are presented for pure mode I and mixed mode loading. For the stress

intensity factors, only a brief description of the major methods which make use of the

finite element analysis is outlined. The review of the available methods for calculating

T-stress is presented in more detail.

2-6-1. Stress intensity factors, K1 and KH

Numerous researchers have attempted to develop methods for determining the stress

intensity factors for different cracked specimens. A collection of the analytical

solutions can be found in Tada et al (1985). Finite element analysis can also be

33



Chapter 2: Literature Review

employed to calculate SIFs, particularly for more complicated cracked geometries

where analytical solutions are not available.

Parks (1977) suggested a virtual crack extension method which was modified later by

Li et al (1985) to calculate the J-integral using finite element analysis. The method

has been implemented in most of the commercial FE codes to enable the user to

determine the J-integral for any cracked geometry. For pure mode I (or II), the stress

intensity factor K1 (or ICH) can be determined directly from eq 2-15a in terms of the J-

integral.

The preceding method is not appropriate for mixed mode loading because J is a

function of both K1 and Kip In this case the crack tip stresses and strains can be used to

find SIFs. For example, very near the crack tip where the effects of higher order terms

in eq 2-3, 2-4, 2-6 and 2-7 are negligible, K1 and KB can be determined from

= CyyAl212^	 ,	 KI1 = xyll
	

0 = 0	 (2-41)
r—)0	 r—+O

Or

7r,u2
K1 = u y 11271712 K11 =ux

11 2 
	 : 0= 71. (crack face)	 (2-42)

r	 r
r--> 0	 r—> 0

The accuracy of SIFs calculated from eqs 2-41 and 2-42 very much depends on the

accuracy of the stresses and strains obtained from the finite element analysis.

One of the methods for improving the accuracy of the near crack tip stresses is to use

appropriate elements which are able to model the singularity of the stresses and

strains. Henshel and Shaw (1975) and Barsoum (1976) independently suggested a

simple method to provide the necessary singularity in quadratic isoparametric

elements. In this method the 1/1; singularity is achieved when the rings of mid-side

nodes in the elements surrounding the crack tip are shifted to the quarter points.

However, this arrangement is appropriate only for linear elastic problems where the

1/ j. singularity prevails.

The J-integral can also be used to determine the stress intensity factors for mixed

mode loading. In this method, the ratio Rk between K1 and K11 is calculated from the

displacements along the upper and lower crack faces as

:
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where ro is a small radius from the crack tip and the signs + and — corresponds to the

upper and lower faces of the crack respectively. From eq 2-15b and 2-43, the stress

intensity factors are determined as

K1 =
\

E'.I 

1+RK2
(2-44)

2-6-2. T-stress

A number of methods for obtaining T for a variety of loading conditions and

geometries have been developed over the last 25 years. Some of the major methods

are described below.

Larsson and Carlsson (1973) suggested that in mode I, T can be determined along the

crack flanks using two elastic FE analyses, one for the actual cracked body and the

other for a boundary layer model. The stress T was the average difference between o-.,„

along the crack face in the two analyses. They did not extend their mode I method to

the general mixed mode case.

A variational technique based on the theorem of minimum potential energy was used

by Leevers and Radon (1983) to calculate the vector of coefficients {c} for the eigen-

series expansion of the mode I stresses. By minimising the potential energy with

respect to the coefficients they derived a set of equilibrium equations which could be

solved to obtain {c} for a given geometry. The stress intensity factor K1 and T were

taken from the first and the second terms in the vector {c}. A similar approach was

employed by Ewing et al. (1976) for mixed mode I and II. In their technique {c}

included the coefficients in both symmetric and antisymmetric parts of Williams'

solution to account for the two modes of loading. Knesl (1995) also attempted to

determine T by calculating these coefficients in mode I. He used special types of

element called crack-tip hybrid elements developed through a Hellinger-Reissner

principle, and could determine T by calculating the first few coefficients of {c}. All

these methods require complex numerical calculations not available in commercial

finite element codes.
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Using the properties of path independent integrals, Cardew et al. (1984), and later

Kfouri (1986) suggested a method to obtain T in mode I based on an unpublished

theorem proposed by Eshelby. In this method the path independent J integral is

determined for the given specimen from two elastic FE analyses. In the first analysis

the specimen is subjected to the actual loading conditions. These loading conditions

are added in the second analysis to an auxiliary field of stress corresponding to a

semi-infinite crack in an infinite plate subjected to a point force at the crack tip in the

direction of the crack line. Cardew et al. (1984), and Kfouri (1986) proposed a

formula to relate T to these two values of J integral and calculated T for the given

specimen. Hallback and Jonsson (1996) used a similar method but for mixed mode

conditions to obtain T for a mixed mode test specimen. Path independent integrals

were also employed by Olsen (1994) and Sladek et al. (1997) to compute K 1, KB and T

for mixed mode loading using the boundary element technique. These methods all

require multiple finite element or boundary element analyses.

To determine T for mixed modes I and II, Seed and Nowell (1994) represented a crack

as a continuous distribution of edge dislocations. They utilised the distributed

dislocation method to derive the singular equations which were solved numerically to

find stress intensity factors and T. They presented results for an inclined edge crack in

a semi-infinite plate subjected to a uniform tensile load.

Sham (1991) presented values of T for a single edge notched (SEN) specimen subject

to tension and pure bending, and also for a three point bend specimen. He used a

second order weight function, determined through FE analysis, in conjunction with a

reciprocal work integral to calculate T in mode I. Fett (1997) proposed a closed form

approximation for T for a mode I rectangular cracked specimen under tension and

bending. He suggested an appropriate Green's function and used the boundary

collocation method to calculate the second term in the Williams' expansion.

2-7. CONSTRAINT EFFECTS IN FRACTURE MECHANICS

Experimental studies show that the fracture toughness obtained from different

standard cracked specimens made of similar material are not the same. This indicates

that the fracture toughness or the critical value of J for fracture initiation, Jc.,.„ is not

merely a material property but depends also on the geometry and loading
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configurations. The geometry dependency of fracture toughness can be attributed to

the effect of the crack tip constraint.

It is well known that the fracture toughness is higher for cracked specimens which at

fracture load exhibit a larger plastic zone around the crack tip. This is because more

energy is consumed for plastic deformation and less energy remains for breaking the

atomic bonds ahead of the crack tip. In contrast, in the specimens where the plastic

zone is highly constrained, more energy is available for brittle fracture and hence the

fracture toughness is low. For example, the fracture toughness for plane strain

specimens is lower than for plane stress ones. The effect of stress triaxiality in plane

strain constrains the extent of the plastic zone. In addition to the specimen thickness,

there are other parameters such as the crack length or the type of loading which

influence the crack tip constraint.

To obtain a rather unique result for K1c, which is considered to be geometry

independent, some restrictions for length parameters are recommended by fracture

toughness testing procedures (e.g. ASTM, E399-90 or British Standard, BS-7448,

1991) in different fracture test specimens. For example, for the three-point bend or

compact tension specimens, it is required that

t (w_a)>2.5HK/12
ao

(2-45)

where t and W are the specimen thickness and width and a is the crack depth. The size

limits differ for different specimens and provide conditions necessary for J-

dominance, that is conditions where the crack tip fields are described only by J.

Section 2-7 reviews the necessary conditions for J-dominance, the parameters

influencing the crack tip constraint and the methods available for quantifying the

constraint.

2-7-1. J-dominance

Based on the classical theories of fracture mechanics, the stresses and strains around

the tip of a mode I crack can be characterised by a single parameter such as K1 or J.

This is true only when certain size restrictions are applied for each crack specimen

(Shih and German, 1981). However, the geometry dependency of the fracture
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toughness suggests that at least a second parameter is required to predict the critical

conditions for crack growth in different specimens.

It is common to use a so-called boundary layer model (Rice and Tracey, 1973) to

study the effect of the crack tip parameters on the stresses inside the plastic zone. In

the boundary layer model (BLM) a crack is considered in a circular region so that the

crack tip is placed in the centre of the region, as shown in Fig 2-4. The elastic stresses

or displacements corresponding to the first term of the Williams' series expansions are

applied to the boundary of the region. Material properties are considered to be elastic-

plastic. To ensure the conditions necessary for small scale yielding, the magnitudes of

the boundary conditions should be limited to a level at which the maximum radius of

plastic zone is very small compared with the radius of the circular region. With this

arrangement the stresses inside the plastic zone are in good agreement with the

stresses given by the HRR solution.

Larsson and Carlsson (1973) modified this model by adding the effect of T-stress to

the boundary conditions. The mode I displacements u and uy along the boundary of a
plane strain circle of radius R can be written for the modified boundary layer model
(MBLM) as

1— v 0R
cos —)(3 —4v —cos0)+ T1-112 COSR	 02) (2-46a )K1ux (R,O)=

E 27r

1 — v R
11 

27r
sin(

0
—)(3 —4v —cos9)—T 	 v)

(2-46b)uy (R,O)= K1
E

Rsino
2

Elastic-plastic finite element analysis of the modified boundary layer model by

Larsson and Carlsson (1973) showed that positive or negative values of T

significantly influence the shape and size of the plastic zone around the crack tip. Rice

(1974) showed that the effect of T on the CTOD or J is negligible compared with its

effect on the plastic zone.

Bilby et al. (1986) took into account the effect of large deformations around the crack

tip and performed elastic-plastic finite element analyses for several common mode I

cracked specimens. They compared the results of their analyses with the results of a

modified boundary layer model having similar K1 and T terms on the boundary. Bilby
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et al. (1986) showed that the crack tip fields can be described by a single parameter

such as J (or CTOD) only for specimens where the value of T-brTa I K1 is high.

Further studies by Betegon and Hancock (1991), Al-Ani and Hancock (1991) and Du

and Hancock (1991) related the single parameter characterisation of the crack tip

fields to the sign of the T-stress. They indicated that for small scale yielding J-

dominance is maintained for geometries having zero or positive T. For geometries

with negative T, two parameters, J and T, are needed to describe the crack tip fields.

The results of the analysis carried out by Hancock and co-workers showed that the

crack tip constraint is higher for bending specimens and for specimens having deep

cracks. In contrast, the constraint is less for tensile specimens and for specimens

containing short cracks.

2-7-2. Methods of quantifying the crack tip constraint

As noted earlier, the fracture toughness depends considerably on the crack tip

constraint. The effects of constraint in mode I brittle fracture can be studied by

comparing the tangential stress igeo directly ahead of the crack tip for specimens

having different geometry and loading configurations. Three major approaches for

quantifying the crack tip constraint are: J-T, J-Q, and J-A 2. These approaches are

described briefly here.

J-T approach

Betegon and Hancock (1991) made use of a modified boundary layer model and

studied the mode I stresses inside the plastic zone. Different values of T/o-0 were

considered in the boundary conditions. An elastic-plastic finite element analysis with

small deformations was performed. The tangential stress cfee along the crack line was

normalised by the yield stress co and the distance from the crack tip was normalised

by J/co . For small scale yielding with T=0, the tangential stress was close to but

lower than that of the HRR solution.

Betegon and Hancock showed that by changing the value of T/o-, on the boundary of

model, the small scale yielding (with T=0) results for coo /co are shifted up for

positive values of T and down for negative values of T. The effects of positive and

negative T on the tangential stress ahead of the crack tip are shown schematically in

Fig 2-5. These curves are almost parallel, at least for the range of 2�( ro-o /J)�5. The
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effect of negative T on reducing the tangential stress was much more than the effect of

positive T on increasing the tangential stress.

The normalised tangential stress can be written as a polynomial in terms of the

tangential stress corresponding to the small scale yielding solution with T=0 and the

shift in the tangential stress due to the effect of T. This polynomial was shown by

Betegon and Hancock (1991) for materials with a hardening coefficient n equal to 13

and ... as

CJ" 00 )	 .(Cr 69	

+0.641-L1-0.4("—T12
a°)(r,T=0)	 C).° )	 (5-° )

1
0- 00 )	 =(0- oo	

± 0.611— 0.7 5(12
cr.a° (r,T)	 a °)(r,T =0)	 \

ci - .

n= 13 ,	 � 0	 (2-47a)
o-o

n=0.,	 0	 (2-47b)0.0 <—

Similar equations may be provided for other values of hardening coefficient. The

effect of constraint in brittle fracture can be quantified using the J-T approach. The

elastic T-stress is determined for the given geometry and its effect on the tangential

stress is determined using equations similar to 2-47.

J-Q approach

O'Dowd and Shih (1991, 1992 and 1994) suggested a dimensionless parameter Q to

determine the level of constraint around the tip of a mode I crack. They performed an

elastic-plastic finite element analysis accounting for large strains to study the effect of

T on the tangential stress age along the crack line. For small to moderate scale

yielding they used a modified boundary layer model with different values of T/o-0 in

the boundary conditions and defined the constraint parameter Q as

C 00 - (0- 00) REF
Q =	 along 0 = 0, at 1< rc° < 5

a.	 J
(2-48)

where (o-gg)REF can be either the tangential stress corresponding to the HRR solution

( 0;549)HRR or the tangential stress determined from the small scale yielding solution
(catOssy with MO.
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O'Dowd and Shih used eq 2-48 for different values of hardening coefficient n and

suggested a number of curves to describe relations between Q and Tkio for mode I

loading (see Fig 2-6). They could show the results as a polynomial

	

Q
(
 n T _ a
	 +

	 T
2

+ a3	 T 1
3

ac, )	 I	 Cro )	 •f;rc, )	 (0% )

(2-49)

where al to a3 are functions of n. Ainsworth and O'Dowd (1995) simplified eq 2-49

for small scale yielding as

Q=—
T 

if —
T

<0
cs.

Q= 2c. 
if —

T
>0

Eqs 2-49 and 2-50 can be used for small to moderate scale yielding (contained

yielding). For large scale yielding the crack tip constraint should be obtained in the

actual specimen directly from eq 2-48. This has been done by O'Dowd and Shih

(1992) for a number of standard crack specimens by using the J-Q approach.

O'Dowd and Shih (1991 and 1992) also compared the stresses obtained from a finite

strain analysis and those of a small strain analysis and showed that the effect of crack

tip blunting on the stresses ahead of the crack tip is significant only for (r o-0 /I) 1.

Therefore, a small strain analysis is sufficient to determine the constraint provided the

parameter Q is calculated at a distance (ro-0 /1) larger than 1. It is noted that for the

range of 2�( rco /J)�5, the value of Q is almost independent of the distance from the

crack tip. However, Q is often determined at (ro-o/J)=2. Similar to the results of the

J—T approach, negative Q corresponds to specimens having negative T-stress, low

crack tip constraint and high fracture toughness, and vice versa for positive Q.

J-A 2 approach

Like the Williams' solution for the elastic stresses, the stresses inside the plastic zone

around the crack tip can be shown as a series expansion. The leading term in this

series solution is singular and represents the HRR solution. The third approach for

quantifying the constraint is to determine the higher order terms of the elastic-plastic
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stresses. In this approach the conditions for J-dominance is determined by comparing

the magnitude of the higher order stresses with that of the HRR solution.

Li and Wang (1986) made use of an appropriate stress function and obtained a two-

term expansion for the stresses near the tip of a mode I crack for the state of plane

strain. In a similar attempt, Sharma and Aravas (1991) formulated the problem in

terms of stresses and displacements and proposed a method to obtain the higher order

terms of the elastic-plastic series expansions for stresses, strains and displacements.

They presented the results as a two-term series for both plane stress and plane strain.

Xia et al (1993) derived the first four terms of the series expansions for the mode I

stresses and the hardening coefficient n=3, 5, 7 and 10. They showed that some of the

coefficients of the series solution depend on the others.

The series expansion for elastic-plastic stresses were also obtained by Yang et al

(1993a,b) for both mode I and mode II. They indicated that for a high hardening

behaviour (n �3) the first four terms of the series solution can be described by two

parameters J and A2 where A2 represents the amplitude of the contribution of the

higher order terms. For low hardening behaviour (n �3), J and A2 characterise the first

three terms of the series solution. The results presented by Yang et al suggest that for

low hardening materials (n�3), A2 can be considered as a constant term which depends

on the geometry and loading conditions in the specimen.

A2 can be employed as a parameter to quantify the crack tip constraint and its effect on

the brittle fracture toughness. This has been described by Chao and Ji (1995) for

different crack specimens. Chao (1993) made use of the J-A 2 approach and showed

that for the state of plane stress, A2 is negligible and a single parameter such as J can

describe the crack tip fields.

A critical review of three approaches

Among the three approaches mentioned in this section for quantifying the crack tip

constraint, the J-T approach is the most convenient one. In this approach, the elastic

T-stress is employed to predict the level of constraint. The T-stress is known for most

of the standard cracked specimens with different ratios of the crack length to the

specimen width. For more complicated geometries, T can be determined using a

single elastic finite element analysis, as described in Chapter 4. However, the J-T

approach is confined to the crack problems involving contained yielding (i.e. small to
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moderate scale yielding). This is because T as an elastic term of stress loses its

relevance under full plasticity. The limitations of the J-T approach have been studied

by Wang (1993) and Wang and Park (1995) for several common cracked specimens.

The J-Q approach can be used for both contained yielding and full plasticity. O'Dowd

and Shih (1993) and O'Dowd (1995) suggest that the relation between Q and T is

independent of geometry only for contained yielding, but in fully yielded conditions

the constraint parameter Q depends on the geometry and the type of loading. In this

case an elastic-plastic analysis is required to find out the constraint parameter Q. In

the presence of excessive crack tip blunting, the J-Q approach can also fail to

determine crack tip constraint.

The J-A2 approach provides analytical solutions to find out the effect of higher order

terms of the elastic-plastic stresses. Therefore it can be considered to be more accurate

than the other approaches. For example, the analytical results obtained from the J-A2

approach show that the J-Q approach is not appropriate for materials with high

hardening behaviour (n �3) because the second term of stress is not constant and is

highly dependent on the distance from the crack tip. However, the J-A 2 approach

requires complicated mathematical calculations to determine the necessary parameters

and functions for the three-term series solution. This makes the J-A 2 approach

inappropriate for quantifying the crack tip constraint in specimens other than the

conventional simple crack specimens.

2-7-3. Constraint effects in mixed mode fracture

Very little research has been carried out to study the effect of constraint in mode II

and mixed mode (I/II) loading. Yang et al (1993a and b) and Chao and Yang (1996)

extended the application of the J-A2 approach to the mode II crack problems. They

employed the Airy stress function and assumed antisymmetric boundary conditions to

find out the higher order terms of the mode II stresses inside the plastic zone near the

crack tip. They showed that for plane stress and plane strain, the higher order stresses

are negligible compared with the singular term (the HRR solution for mode II). This

implies that a single parameter is sufficient to describe the crack tip stresses and

strains for an antisymmetric (mode ID field of deformation.
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Du et al. (1991) used a modified boundary layer model to extend the application of the

J-T approach to mixed mode loading. The tractions or displacements on the boundary

of their model consisted of the singular terms corresponding to both mode I and mode

II, and the T-stress. They studied the effect of T on the near tip stresses for different

mode mixities and proposed that J-dominance in mixed mode loading is maintained

for specimens having zero or positive T. In contrast, the crack tip stresses in

specimens with negative T fall below the singular stresses given by Shih (1974).

However, because the finite geometry specimens they studied were mode I dominated

(M e�0.82), they could not present any results to show the effect of constraint in mode

II dominated specimens.

2-7-4. Constraint effects in mode I ductile fracture

It was noted in section 2-3 that mode I ductile crack growth in metallic alloys often

takes place by the micromechanism of void growth and coalescence. The

mathematical models describing this mechanism show that void growth depends

directly on the stress triaxiality factor that is the ratio of the mean (or hydrostatic)

stress 0-„, over the effective stress creff.

O'Dowd and Shih (1991) and O'Dowd (1995) made use of a modified boundary layer

model (MBLM) to study the effect of T-stress on different components of the crack tip

stresses inside the plastic zone. Their study was confined to mode I and plane strain

conditions. They showed that the direct stresses 0;7, creo and cszz depend significantly

on the value of T in the boundary conditions on the MBLM whereas the shear stresses

do not. For a given value of T, the change in direct stress was nearly the same.

Therefore, the constraint parameter Q can be determined using any component of the

direct stress. This also indicates that in front of a mode I crack, the effect of crack tip

constraint on the deviatoric stress is much less than its effect on the mean stress.

Using a MBLM, O'Dowd and Shih (1992) and Henry and Luxmoore (1997)

investigated the effect of T on the triaxiality factor for contained yielding and also for

fully yielded conditions in several mode I crack specimens. The results of their study

show that the triaxiality factor in mode I specimens having a positive Q is slightly

higher than the triaxiality factor obtained from the HRR solution. However, for

specimens having negative Q, the triaxiality factor is significantly lower than that of
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the HRR solution. The effect of Q on the triaxiality factor o-n, I creff , suggests that Q

can also be used as a constraint parameter for initiation toughness in ductile fracture.

Wu and Mai (1995) carried out experimental investigations on several mode I

specimens and showed that the initiation fracture toughness in ductile materials is

enhanced for specimens having negative Q. They found similar results from finite

element analysis by studying the crack tip parameters for different specimens.

Experimental studies by Hancock et al. (1993) indicated that T can be used to

characterise the resistance curve in ductile materials. They showed that the resistance

curve for specimens having negative T is significantly higher than for specimens

having zero or positive T. Burstow and Howard (1996) employed the Rousselier

damage model (Rousselier et al, 1989) and simulated the initiation and growth of

ductile tearing by finite element analysis. They showed that the effect of the crack tip

constraint on the slope of the resistance curve is significantly more than its effect on

the value of initiation fracture toughness.
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CHAPTER THREE

HIGHER ORDER TERMS OF STRESSES

IN AN INTERNAL CRACK PROBLEM

3-1. INTRODUCTION

It is often assumed that stresses near the tip of a crack in a linear elastic material can

be described based entirely on the singular term of the Williams series expansion for

the crack tip stresses. Very little research has been carried out to quantify the error

resulting from ignoring the higher order terms of the series expansion. This can be due

to difficulties in determining the coefficients of higher order terms for a given

geometry.

In this Chapter a binomial expansion is employed to determine the first few terms of

the Williams series solution for a large centrally cracked plate subjected to a uniform

tensile load. It is shown that adding the higher order terms to the singular term

improves the accuracy of the results for direct stresses near the crack tip along the

crack line. The effect of higher order terms on the extent of the plastic zone ahead of

the crack tip is also studied. Results are shown for both plane stress and plane strain

conditions. The plastic zone size is determined using both the Tresca and the von

Mises yield criteria. The effect of load biaxiality on the size of plastic zone is also

studied.

3 -2. BINOMIAL EXPANSION OF THE EXACT STRESSES

Consider an infinite plate containing an elliptical hole of major axis 2a 0 and minor

axis 2b0. The plate is subjected to a uniform far field tensile stress cryy parallel to the
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minor axis of the ellipse (see Fig 3-1a). The stresses along the major axis have been

given by Muskhelishvili (1963) as

where

, _ ayy [1+ 2(1+a)1
—Ci

and
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o, an, and axy are the direct and shear stresses in the conventional Cartesian co-

ordinates and x and y are distance from the centre of the ellipse along the major co-

ordinates. If the minor axis of ellipse shrinks to zero (b 0=0), eqs 3-1 can be used to

determine the stresses in a mode I cracked plate along the crack line as
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where a is the semi crack length and r is distance from the crack tip along the axis x.

Here the uppercase subscripts refer to remote conditions and the lower case subscripts

refer to the local field equations. If equation 3.2b is rewritten as
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and similarly for cfx,:
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The second term in eq 3-5, independent of distance r, represents the constant stress T.

According to eq 3-5, T in this problem is compressive and its magnitude is equal to

the far field stress cryy.

The coefficients of equations 3-4 and 3-5 are equivalent to those of the Williams

series expansions for direct stresses along the crack line for a remotely loaded large

plate containing an internal crack. Since the coefficients of the series expansions are

known the effects of higher order terms in the crack tip stresses can be investigated

accurately. The normalised stress o-yy /o-yy , for each of the terms in eq 3-4 is shown in

Fig 3-2 and the sum of the terms is shown in Fig 3-3. As shown in Fig 3-3 the

accuracy of Cyy is considerably improved when only a few higher order terms are

added to the singular term. Fig 3-4 indicates how non-singular terms, particularly T,

improve the value of 0;„. Results for series expansion solution have been compared in

Figs 3-3 and 3-4 with the exact solution expressed by eqs 3-2.

3-3. PLASTIC ZONE SIZE

Almost all of the mathematical models suggested in the literature for the plastic zone

size around the crack tip take into account only the singular stresses. In this section, a

more accurate prediction for the extent of the plastic zone along the crack line is

obtained by adding the non-singular terms of stresses shown in eqs 3-4 and 3-5. In

addition to the normal-to-the-crack load o-yy, a remote lateral load cr,tr =Aciyy is also

considered where A. is the lateral load parameter. The extent of the plastic zone is

determined for both plane stress and plane strain conditions using both von Mises and

Tresca yield criteria. For simplicity, no hardening effect is considered and the size of

plastic zone is determined based on the elastic stresses. Therefore, the results are more

appropriate for small scale yielding.
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Consider an internal crack in an infinite plate subjected to biaxial loading as shown in

Fig 3-1b. The lateral load parameter A is assumed to be between 0 and 1. The lateral

load axx is in line with the crack and is only added as a constant term in eqs 3-2a and

3-5. Therefore, the in-plane stresses in the plate can be written as

cr yy cr yy f (2:7)
	

(3-6)

crxx = yy [f (2a ) + (2_ 1)1
	

(3-7)

a xi, =0
	

(3-8)

where f (2r/a) is the right hand side of eq 3-3 for the exact solution or eq 3-4 for the

series expansion solution. Eq 3-7 can also be written as

CY xx = yy	 yy —
	

(3-9)

The through-thickness stress crzz is zero for plane stress and can be found from

Hooke's law for plane strain as azz = v(axx + Tv ). Therefore

zz =0
	

Plane stress	 (3-10a)

Oz =v a yy[2 f (-L)+ (), —1)]	 Plane strain	 (3-lob)

where z is normal to the plane of the plate direction and V is Poisson's ratio. It should

be noted that cr,„ , cryy and c principal stresses along the crack line. Because in

linear elastic fracture mechanics, the extent of the plastic zone is assumed to be

limited to a very small distance from the crack tip, the yielding conditions are studied

here for a plastic zone ry not greater than the arbitrarily small value of a /4.

3-3-1. Plastic zone size-Tresca yield criterion

According to the Tresca yield criterion, an element of material yields when the

difference between the maximum principal stress o the minimum principal

stress o-„,,„ is equal to the yield stress co, i.e. ( 0-max — 0,m,)=0-0 . It can be seen from eq

3-9 or Fig 3-4 that for 0 A 5 1 and (2r/a) 0.5 , o-xx is always positive and ay), is

equal to or greater than crxr. This is valid for any number of terms in the series

expansions described by eqs 3-4 and 3-5.
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o f (2ry I a)
Plane stress	 (3-11)

Chapter 3: Higher Order Terms of Stresses in An Internal Crack Problem

Therefore, for plane stress (oI, =0), cryy and o-z, are the maximum and minimum

principal stresses. Using eqs 3-6 and 3-10a, the extent of the plastic zone along the

crack line ry can be found from the Tresca yield criterion using

For plane strain the sign of crxr depends on r, 2 and v. For example in single-axial

loading (2=0), cxx is positive only for (2r/a) 0.33. In biaxial loading if 2=0.5 or 1,

crxx is positive even up to (2r/a) =1 (this is based on v=0.3). In these cases the extent

of yielding zone is determined as

cryy	 1 

c,	 (1— 2v) f (2r y I a)— v(2-1)
Plane strain	 (3-12)

3-3-2. Plastic zone size- von Mises yield criterion

According to the von Mises criterion, yielding occurs when

11(0. 1 _ 0_2)2 + (0.2 _ 0.3)2 + (0.3 _0_02	
2 0-0	 (3-13)

where ci-1 to a3 are the principal stresses. If equations 3-6, 3-7 and 3-10 are replaced in

eq 3-13, the plastic zone size can be determined from

o-yy	 2 

a°	 V(2 f (2ry I a) + (2 —1)) 2 +3(2-1)2

for plane stress and

C yy	 2 

\I(2(1— 2v)f (2ry I a) + (2 —1)(1— 2v))2 +3(2 —1)2

Plane stress (3-14)

Plane strain (3-15)

for plane strain. Because the von Mises yield criterion is independent of the sign and

magnitude of stresses, the yielding conditions can be determined for any distance

from the crack tip. However, to comply with the restrictions of LEFM the results are

shown here only for small values of plastic zone size.

50



Chapter 3: Higher Order Terms of Stresses in An Internal Crack Problem

Equations 3.11, 3-12, 3-14 and 3-15 can be used to determine the external loads

required for providing a plastic zone of radius ry. The effect of non-singular terms of

stresses on the extent of the plastic zone can be studied by adding the higher order

terms of series expansions of stresses shown by eqs 3-4 and 3-5. The exact solution

for the plastic zone size is found if the exact solution for stresses expressed in eqs 3-3

is employed.

Figs 3-5 to 3-8 show the variation of plastic zone size ry normalised with respect to

one quarter of the crack length a/2 for different external loads cyy. The results are

shown for both uniaxial and biaxial loading. For biaxial loading the lateral load

parameter 2 is 0.5 . Figs 3-5 and 3-6 indicate the results for plane stress with Tresca

and von Mises yield criteria, respectively. Similar results are shown in Figs 3-7 and 3-

8 for plane strain.

3-4. DISCUSSION

3-4-1. Higher order terms of stresses

The first six terms of the series expansion for cryy l o-yy described by eq 3-4 are shown

in Fig 3-2. It is observed that very near the crack tip, say 2r/a < 0.2, Cfyy is dominated

by the singular term and the other terms are negligible. However, further away from

the crack tip the second term represents a significant fraction of the total stress cy),.

Fig 3-3 shows that the two-term solution is in considerably better agreement with the

exact solution than the singular solution. For instance, at a distance r ="i (or k =0.5)
a

from the crack tip, the results of the singular-term, two-term and exact solutions for

ay y kiyy are 1.41, 1.68 and 1.67, respectively. Hence an error of 16% is accepted if

only the singular term is considered. This error reduces to 0.6% for a two-term

solution. Fig 3-2 and 3-3 show that apart from the second term, the other higher order

terms are negligible near the crack tip.

Williams (1957) showed that for any cracked geometry the elastic stresses around the

crack tip can be expressed as infinite eigen-series expansions. The sign and magnitude

of the coefficients in these series expansions depend on the geometry and loading

configurations of the specimen. Classical theories of linear elastic fracture mechanics
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assume that crack growth in brittle materials initiates when the singular term of the

series expansion for the opening stress ahead of the crack tip attains a critical value.

The microstructural studies of brittle fracture show that the critical stress

corresponding to the initiation of crack growth should be investigated at a critical

distance rc from the crack tip. However, the results of the present study show that

further away from the crack tip the second term in eq 3-4 can be significant compared

with the singular term. This implies that a singular term based analysis for mode I

cracked specimens is likely to lead to an inaccuracy in predicting the fracture load. In

other words, because the second term of Williams series solution for o-yy varies for

different geometries, mode I fracture toughness in linear elastic materials can be a

function of the geometry and the type of loading in specimens. It can be suggested

from eq 3-4 and Fig 3-3 that specimens having a positive second-term exhibit a lower

fracture toughness than specimens having a negative second-term.

Figs 3-2 and 3-3 show that for higher values of 2r /a , the significance of the second

term is increased in comparison with the singular term. Since the critical radius r, is

assumed to be independent of crack length, the normalised critical distance 2rc /a is

higher for shorter cracks. Therefore it is expected that the effect of the second term on

fracture toughness is more significant for small cracks.

Fig 3-4 displays the sum of the first few terms of the series expansion for cr„,

described by eq 3-5. It is seen that the difference between the singular term and the

exact solution is significant even very near the crack tip. This difference is

considerably reduced if the T-term is added to the singular term and vanishes if the

second non-singular term is also included. For example, at a distance r = 24- (or

2r =0.5) from the crack tip, a singular term solution has an error of 62% whereas this
a

error decreases to 22% when the T-term is taken into account. A solution in uding

the first three terms leads to an error of almost zero.

It should be noted that in this section the plastic zone around the crack tip is assumed

to be so small that crack growth can be described entirely based on the elastic stresses.

In this case, the effect of c on mode I fracture toughness is considered to be

negligible in a stress controlled mechanism of fracture. Therefore, ignoring the higher

order terms of series expansion for o-L, is likely to have no influence on mode I

fracture toughness. However, this is not the case for mixed mode brittle fracture. It is
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shown in Chapter 5 that for mode II dominated loading even for a purely elastic

material the higher order terms in crxx, in particular the T-term, can have a

considerable effect on fracture toughness.

For small scale yielding conditions, the opening stress Cy), inside the plastic zone

ahead of the crack tip depends on the values of both o-xx and an, in the elastic area

surrounding the plastic zone. This implies that ignoring the higher order terms of the

Williams series expansions can lead to inaccurate results for the stresses inside the

plastic zone. The significant effect of T-stress on the crack tip stresses has been shown

by researchers for small scale yielding, see for example Betegon and Hancock (1991).

The results of present study show that the terms in the series expansions for both

cx, and o-yy can be significant and hence can influence considerably the stresses inside

the plastic zone. However, the effect of the other higher order terms are negligible as

they have almost no influence on elastic stresses near the crack tip.

3-4-2. Effect of higher order terms on the plastic zone size

Figs 3-5 to 3-8 show the effect of higher order terms of the series expansion for

stresses crxx and ayy on the extent of plastic zone ahead of the crack tip. The

normalised plastic zone size 2ry /a is displayed in terms of the normalised external

load ciyy /a° for plane strain in Figs 3-5 and 3-6 and for plane stress in Figs 3-7 and 3-

8. The results are studied for each case using both Tresca and von Mises yield criteria.

It is seen from these figures that for very small scale yielding e.g. ry<aI40 (2ry /a

<0.05), a singular term solution is sufficient to estimate the extent of the plastic zone.

However the effect of the higher order terms are significant for larger amounts of

plasticity. In almost all of the cases the results of a series expansion solution are

considerably improved when T is added to the singular terms. It is observed th T has

a more significant effect on improving the singular term solution than the VT- terms.

However in all of the cases the series expansion results are in very good agreement

with those of exact solution, when both T and VT- terms are added to the singular

terms.

It can be seen by comparing Figs 3-5 and 3-6 with Figs 3-7 and 3-8 that for a given

external load, the spread of plasticity in plane stress is higher than that in plane strain.
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As described in Section 2-2-2 the lower level of plasticity in plane strain is due to the

higher level of stress triaxiality around the crack tip.

The important point observed from Figs 3-7a and b is that in the case of plane stress

when the Tresca yield criterion is employed, neither T nor the biaxiality of loading

have any effect on the plastic zone size. This is because in small scale yielding an, and

ol, are always the largest and smallest values of principal stresses respectively, if

0�o-xx � cyy and 0 �A., �1. Hence, c which includes T and the lateral load effect does

not have any contribution in the yielding of materials when the Tresca yield criterion

is employed.

It has been shown by other workers (e.g. Larsson and Carlsson, 1973) that the T-stress

has a significant effect on the extent of plastic zone. However, all of those studies are

based on the von Mises yield criterion. The results of present study show that the

effect of T on the plastic zone size depends also on the yield criteria used.

The influence of the higher order terms of the crack tip stresses on the plastic zone

size has also been studied by Edmunds and Willis (1977). They used a matched

expansion technique to obtain the near crack tip stresses inside the plastic zone in

terms of the far field series expansion of the elastic stresses. Edmunds and Willis

determined the extent the plastic zone in front of the crack tip for the internal crack

specimen using the Dugdale (1960) yielding model. They compared the results of

one-, two- and three-term expansion with those of the exact solution and showed that

the plastic zone size predicted from the Dugdale model is considerably more accurate

when the effect of the higher order stresses is taken into account.

3-5. CONCLUDING REMARKS

1) A binomial expansion can be used to determine the coefficients of Williams' series

expansion for direct stresses along the crack line in a centrally cracked large plate.

2) It was shown that the higher order terms of a series expansion of stress are not

negligible near the crack tip. For the normal-to-the-crack stress 0 y, the accuracy of

results is significantly improved if the VT term is added to the singular term. For the

parallel-to-the-crack stress crxx, the T-stress improves considerably the accuracy of the

results. The discrepancy between the exact solution and the series expansion solution
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for cs.,, almost vanishes near the crack tip when the VT- term is also added to the first

two terms.

3) It was shown that the higher order terms have also a significant effect on the

accuracy of the size of plastic zone ahead of the crack tip calculated using the series

expansion. The extent of plastic zone was determined using the Tresca and von Mises

yield criteria and for both plane stress and plane strain conditions. In all the cases the

results obtained using the exact solution were in very good agreement with those

predicted from the series expansion solution if the T-term and -,IT- terms are also

considered together with the singular terms.

4) The results of the present study showed that in plane stress if the Tresca yield

criterion is used, the T-term has no influence on the size of plastic zone ahead of the

crack tip. This implies that the effect of higher order terms on the plastic zone size can

depend on the yield criterion employed.
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CHAPTER FOUR

METHODS FOR CALCULATING T-STRESS IN

MODE I AND MIXED MODE PROBLEMS

4-1. INTRODUCTION

It was shown in Chapter 3 that in mode I, the higher order terms of William's series

solution can have a considerable effect on describing the crack tip elastic stresses and

on the size of plastic zone ahead of the crack tip. However, because of difficulties in

determining the higher order terms for various cracked geometries, it is common in

engineering analyses to ignore their effect. It is well established for small scale

yielding that among the higher order terms, the T-term has the most influence on the

plastic zone size and the stresses inside the plastic zone.

There are some analytical and numerical methods to determine T for cracked

specimens. However, a review of the literature (Chapter 2) indicates that most of the

methods are confined to simple geometries and loading configurations. As a more

general solution, finite element (FE) analysis can be used to obtain T for any geometry

and loading configurations.

This Chapter explores methods of calculating T directly from finite element a lysis.

It is shown that for mode I more reliable results with less mesh refinement can be

achieved if crack flank displacements are used rather than crack flank stresses.

Methods are also suggested for calculating T for any mixed mode I/II loading without

having to calculate stress intensity factors. It is shown that there is good agreement

between the results from the proposed methods and analytical results.
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The T-stress is determined for a test configuration designed to investigate brittle and

ductile fracture in mixed mode loading. It is shown that in shear loading of a cracked

specimen T vanishes only when a truly antisymmetric field of deformation is

provided. However this rarely happens in practice and the presence of T in shear is

often inevitable. It is shown that for some cases the magnitude of T in shear is much

more than that for tension. The effect of crack length is also investigated.

4-2. MIXED MODE CRACK TIP STRESSES

It was outlined in Section 2-2-1 that the in-plane linear elastic stresses around the tip

of a crack can be described by symmetric and antisymmetric fields, called mode I and

mode II respectively. The stresses for each of the fields can be written as an eigen

series expansion (Williams, 1957). Near the tip of the crack, where the higher order

terms of the series expansion are negligible, stresses for mixed mode are

K1	 0[	 . 0 . 30	
9

K	 0 30a . –cos 1– sin sin I+ T–  H  sin–[2 +cos–cos-1 + 0(r I/2 )
XX 11271- r	 2	 2	 2	 2	 2	 21/2rr 

K1
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0
– .
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30
—

 1 
+  
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r	 2
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cr _1
K	 0 . 0 30
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2
– sin 

2
-1 + 0 (r 1 1 2 )
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where K1 and Kil are the mode I and mode II stress intensity factors (SIF) and r, 0, x

and y are co-ordinates in conventional polar and Cartesian systems with the crack tip

at the origin. The effects of the higher order terms of series expansions are shown by

0(r1/2). The term T, a constant stress parallel to the crack, is only due to a symmetric

component of loading and vanishes for pure mode II. To normalise the ffect of T

relative to the stress intensity factor in mode I, Leevers and Radon(1983) proposed a

dimensionless parameter called the biaxiality ratio B, where

T VTra 
B =

K1

and a is the crack length. Equation (4-2) can be extended to mixed mode as

(4-2)
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B= T 
Keg

where the effective stress intensity factor Keff is defined as

Keff = K 2 ± K11 2

Despite the significance of T in describing the near crack tip stresses, few methods are

available for calculating T, particularly for mixed mode. A review of the current major

methods for determining T in two dimensional problems was presented in Section 2-

6-2.

4-3. DETERMINING T USING FINITE ELEMENT ANALYSIS

Most of the methods described in Section 2-6-2 are in practice confined to simple

geometries and loading configurations. The remaining methods either need multiple

analyses or require a specific formulation not available in many finite element codes.

Therefore, it is preferable to determine T using a single standard elastic finite element

analysis. Below, methods that can be used in finite element analysis, are developed.

These methods can be used for any geometry and loading configuration and do not

rely on special purpose numerical procedures.

4-3-1. Mode I

For pure mode I the singular term due to ICH vanishes in eqs 4-1. Therefore, near the

tip of a crack, where higher order terms can be considered to be negligible, eq 4-la

shows that olx comprises of the singular term and T. This implies that T can be

determined along any direction where the singular term of cs„ vanishes or can be set

to zero by superposing with a fraction of Cy), . This corresponds to diffe t angular

positions around the crack tip. For example;

- Along 0= 0

- Along 0= —71. or +a-

- Along 0= —a -13 or +7r/3

- Along 0= —a-/2 or +702

- Along 0= —2a-/3 or +27r/3

:T=	 o-0

:T=

: T=	 (0;3)13

:T= cxx - (cyy)I3

:T=	 cryy

(4-5.a)

(4-5.b)

(4-5.c)

(4-5.d)

(4-5.e)
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dx
(4-8.a)
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Since eq 4-5.b uses one stress component it is convenient to use this equation. In

theory eq 4-5.b should provide T within a reasonable distance from the crack tip. But

in practice it is seen that FE results are not acceptable unless a large number of

elements are used to simulate the crack tip zone, see for example Kardomateas et al.

(1993) and Sherry et al. (1995).

An improved method of obtaining the T stress without recourse to much mesh

refinement is presented here. This method uses the displacements along the crack

faces. Due to traction free boundary conditions along the crack faces, Hooke's law can

be written for small strains as

a xx = Ei E XX ...
.:: E , dux	

(4-6)

where e 	 ux are the strain and displacement respectively parallel-to-the-crack and

E' is defined as
E

E'= E

1-v2

Plane stress

Plane strain
(4-7)

where E is Young's modulus and v is Poisson's ratio.

For 0= - 71" or -1-n- the singular term of a 	 and hence near the crack tip, c

eq 4-6 can be represented by T alone

Since the left hand side of eq 4-8.a is constant, the slope dux /dx can be replaced by

ux (x)— ux (0) 
where ux (0) denotes ux at the crack tip. Therefore T can be written as

x

T = E' 
u

x
 (x) - u x (0)	

(4-8.b)
x

This indicates that using either ux or its slope along the crack faces, T can be

determined directly from FE results.
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4-3-2. Mixed mode I/II

Eq 4-la shows that for mixed mode loading, along any radial direction from the crack

tip, there is a singular term due to either mode I or mode II or both. The methods

described for mode I are not therefore suitable for mixed mode I/II loading. For

example, along the crack line in front of the crack tip the singular term of cs,„ vanishes

for mode II but not for mode I. However, T can be obtained if the appropriate singular

terms are subtracted from c. Although, this requires further calculations to

determine the stress intensity factors. Also, the consistency and accuracy of the results

in this method depend considerably on the accuracy of the stress intensity factors.

The T-stress however can be found without using stress intensity factors when the

symmetric properties of mode I and antisymmetric properties of Mode II for direct

stresses are used. The stresses in one half of the cracked specimen are added to those

of the other half. The mode II stresses vanish and mode I stresses are doubled.

Consequently any of the following equations can be used to determine T directly from

finite element results along the crack faces

T = (cr xx - a YY ) 67 =0
(4-9.a)

T= -21- { (ax,),, + (axx )0=d (4-9.b)

-fT = 1 1(a
_ C

YY
(4-9.c)a YY)—

xx	 3	 + (crxx
0=-1'

3 ]= ,1
3 3

T = 1 [(0--I aYY-	 - a YY

I
(4-9.d)

XX	 3	 + (c7
xx

)

3 )8=t9=- 7(
2

x2

T=1[(axi-o-yy)(9=_ 2, ± (Cxx - ayy )0. 2; ] (4-9.e)
3

Similar to mode I, it is convenient to use eq 4-9.b as it uses only one component of

stress.

The displacement approach described earlier can also be employed to determine T in

mixed mode loading. Using eq 4-6 for both the upper and the lower edges of the

crack, and summing the results, T can be expressed as
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T=1Ef

du	 dux) j
(—d—;:19_,_r+( (7,--Ly 61=r (4-10)

Based on the displacements alone, T can be expressed as

T= ÷,- Elux (x,-70+ ux (x,701	 (4-11)

Since the path independent integral J for mixed mode loading is usually available

from the FE analysis, and using the expression Keff =.Arlf" , the biaxiality ratio B for

mixed mode conditions is

Eq 4-12 together with any of eqs 4-9 to 4-11 can be used to determine B without

having to calculate separately K1 and K11.

4-4. FINITE ELEMENT RESULTS

In this section the stress and displacement methods for mode I and mixed mode

conditions are used to determine T from finite element analysis for a number of

cracked specimens. The results of the two methods are compared. The analytical

results for these specimens are used to verify the accuracy of the results obtained from

the displacement method.

4-4-1. Mode I

Finite element analyses using ABAQUS (1997) were employed to determine T for

mode I using the stress and displacement methods described earlier. Two standard test

specimens were examined: the single edge notched (SEN) and double edge notched

(DEN) specimens shown in Fig 4-1. For the SEN specimen the crack length a to

width W ratio was 0.4 and for the DEN specimen a/W was 0.2 . Due to symmetry,

only one half of the SEN and one quarter of the DEN specimens were considered. As

shown in Fig 4-2, in the crack tip region 12 rows of elements were used where each

row had 17 eight-noded plane strain elements in the radial direction. A square root

singularity in the stress/strain field was produced at the crack tip by using quarter
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point scaling between the circumferential rows of nodes surrounding the crack tip.

The specimens were subjected to a uniform tensile far field stress cfar.

The stress and the displacement methods, using eqs 4-5.b and 4-8.b, were used to

determine T for distances x behind the crack tip and along the crack face. Figs 4-3 and

4-4 show the results obtained for the SEN and DEN specimens respectively where T is

normalised with respect to the far field stress afar, and the distance x is normalised

with respect to the crack length a. The magnitude of T is determined from the constant

part of the results. For large negative values of x/a the higher order terms become

noticeable, while for small negative x/a the crack tip singularity affects the results.

The results from both specimens show that the stress method does not provide a

constant value for T.

Similar analyses were carried out for different crack depth ratios. Fig 4-5 shows the

results for T /cfcr calculated from the displacement method for the SEN and DEN

specimens, compared with those obtained by Kfouri (1986).

4-4-2. Mixed mode VII

To verify the methods described earlier for mixed mode conditions, T was calculated

for an inclined edge crack in a large square plate for which an analytical solution for T

exists. The plate was subjected to a uniform far field tensile stress afar as shown in Fig

4-6. The angle between o-far and the crack direction was denoted by 13, such that when

)3 equals 0° mode II conditions apply and when )8 equals 900 mode I conditions apply.

The model had 28 rows of elements in the circumferential direction each containing

20 eight-noded plane strain elements.

The T-stress was calculated using both the stress method (eq 4-911 and the

displacement method (eq 4-11) for different crack angles )3. Results for 13 =700 are

shown in Fig 4-7 and compared with the analytical results from Seed and Nowell

(1994). It is seen that both the stress and displacement methods give results that

compare well with the analytical results, but only just behind the crack tip for x/a>-

0.04. The displacement method provides better results over a larger distance. Results

for T calculated from FE results from the displacement method for different crack

angles are compared in Fig 4-8 with analytical results from Seed and Nowell (1994).

There is very good agreement between the results.
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4-5. APPLICATION TO A MIXED MODE TEST FIXTURE

Davenport and Smith (1993) designed a tension-shear specimen to study mixed mode

failure in both brittle and ductile materials. This test apparatus was later modified by

SwanIcie (1999) to allow fracture testing of larger crack specimens. In the present

section, first the details of finite element modelling of the modified test apparatus are

described. Next, the displacement method (eq 4-11) used in the previous section for

mixed mode loading is employed to calculate T in the specimen for different

combinations of tensile and shear loads. Both the effect of loading configuration and

the effect of crack length on T are investigated. Although the contribution of T in

shear loading of cracked specimens has been assumed to be zero in previous studies, it

is shown that a considerable value of T can be present in the shear loading of

specimens.

4-5-1. Finite element modelling

The modified test apparatus is shown in Fig 4-9a and consists of a single edge notched

(SEN) specimen in a two-part fixture. The SEN specimen of width 20 mm, thickness

20 mm and length 160 mm is inserted inside the fixture such that the specimen is

completely surrounded by the fixture. The distance between the corresponding

loading holes in the two parts of fixture is about 330 mm. The maximum thickness of

the fixture is 65 mm. The position of the SEN specimen inside the fixture is shown in

Fig 4-9b. The specimen is held in the fixture through four location pins. Loads are

applied to the fixture via the loading holes. The positions of loading holes on the

fixture are selected such that the SEN specimen can be subjected to different mode

mixities from pure tension (11 =90°) to pure shear (/3 =0°) as shown in Figure 4-9b.

Because of the space needed for inserting the specimen, the thickness is not uniform

in the fixture. However for simplicity, a 2D finite element analysis with uniform

thickness for both the specimen and the fixture was considered. It is considered that

the uniform thickness model provides an adequate finite element simulation of the

specimen and fixture. This is because change in the stiffness of the fixture (due to

varied thickness) has no significant effect on the load which is transferred from the

fixture to the cracked specimen. It is noted that a 2D finite element analysis is

significantly less costly than a 3D analysis.
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Three different models were used to simulate the connection between the fixture and

specimen as shown schematically in Fig 4-10. The reason for using three models was

to understand the influence of the connection on the values of T determined from FE

analysis.

For all models the basic finite element mesh was the same. Fig 4-11 shows the FE

mesh for the SEN specimen. A total of 1120 eight noded plane strain elements were

used for the specimen. The FE mesh for the fixture which consists of 152 eight noded

plane strain elements is shown in Fig 4-12. The rectangular section shown in the

middle of the fixture in Fig 4.12 represents the location of the SEN specimen relative

to the fixture. In all three FE models the meshes representing the specimen and fixture

were overlaid although different methods were used to connect the specimen and

fixture meshes together. Further details of the precise differences between the models

are described below.

1) Perfect connection model:

In this model the nodal points along the external boundary of the specimen are tied

to the corresponding nodes along the rectangular boundary in the middle of the two

parts of the fixture (the bold line in Fig 4-12). The connection is shown as broken

line in Fig 4-10a. The fixture and the specimen in the perfect connection model can

be considered as a single unit but with different material properties.

2) Pinned model:

In this model the specimen is connected to the two parts of the fixture only through

the location pins shown in Fig 4-9. The pin connection is simulated by tying the

appropriate nodes in the specimen and the fixture which are shown in Figs 4-11a

and 4-12. The external boundary of the specimen in the pinned model an freely

deform without any contact with the fixture.

3) Contact model:

In the real test apparatus, the specimen is inserted inside the rebates available in the

middle of the two parts of the fixture. Therefore, the external boundary of the

specimen is in contact with the boundaries of these rebates. The specimen is also

connected to the fixture through the location pins. For mode I dominated

conditions (i8 near 90°), the load is transferred to the specimen mainly through the
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location pins, whereas in mode II dominated conditions (finear 0 0), the specimen is

subjected predominantly to the contact forces transferring from the surfaces of the

rebates in the fixture. The connection between the specimen and the fixture in the

contact model is simulated by modifying the pinned model such that in addition to

the connection through the location pins, contact surfaces are considered between

the external boundary of the specimen and the boundary of the rebates in the two

parts of the fixture (shown by bold line in Fig 4-12). Contact elements were

interposed between the jig and the specimen with a coefficient of friction of 0.5 to

represent dry steel on dry steel in the Coulomb friction model.

While the real loading configuration is best simulated by the contact model, the

perfect connection model was used initially for simplicity. However, as described

later, only the pinned model provides a pure antisymmetric stress field for the SEN

specimen in mode II loading.

In the finite element analyses Young's modulus and Poisson's ratio for the specimen

were 210 GPa and 0.3, respectively. Young's modulus for the fixture was considered

to be three times that for the SEN specimen to account for additional thickness of the

fixture. In the perfect connection model, Young's modulus for the rectangular section

in the middle of the fixture was a small number. This allows the specimen to deform

with its real stiffness and independent of the highly stiff fixture which is perfectly

connected to the specimen. The crack depth to the specimen width ratio was 0.5 in the

first set of analyses. A load of 60 kN was applied at different loading angles: = 00 ,

22.5 0 , 45 0, 67.5°, and 90°.

4-5-2. Effect of loading configuration

The biaxiality ratio B was calculated for the three models using eqs 4-11 an 4-12. Fig

4-13 shows the results for different loading angles. Although it is expected that both

K1 and B are zero for antisymmetric loading (pure mode II), it is seen that for /3 =0

(pure shear) B is zero only for the pinned model. For both the perfect connection and

contact models there is therefore a large value of T-stres6 for pure shear loading.

For the perfect connection model with the fixture and specimen as a single unit B

always increases with decreasing loading angle A For loading the specimen only

through the location holes (pinned model) a similar result is obtained with B
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increasing with decreasing loading angle. However, in pure shear B is zero, while for

the perfect connection model, in pure shear a positive B was obtained. In contrast to

the perfect connection and pinned models, the contact model yielded decreasing B

with decreasing loading angle. In pure shear B is negative indicating a major

contribution occurring as a result of the contact forces on the edges of the specimen. It

is seen in Fig 4-13 that in the contact model the magnitude of B for mode II is much

higher than that for mode I. In mode I (i3 = 90 0), although the load in the contact

model is mainly transferred to the specimen through the location pins, B is slightly

less than that for the pinned model. This is due to the effect of contact forces which

constrain the rotation of the specimen inside the fixture.

4-5-3. Influence of crack length for mixed mode

To investigate the effect of crack depth on T for mixed mode loading, similar analyses

were carried out for a number of crack depth to specimen width ratios. Fig 4-14 shows

the variation of B versus loading angle for the pinned model for a/W= 0.1, 0.5 and 0.7.

Since the antisymmetric loading is retained when the length of the crack is changed, B

in mode II vanishes for all the cases. Table 4-1 shows that the results obtained here for

B in mode I are in good agreement with those presented by Sham (1991) for SEN

specimens with the same crack lengths subjected to a uniform tensile load. It is seen

that B is increased by increasing the crack length.

The effect of crack length on B for the contact model is shown in Fig 4-15 for a/W=

0.1, 0.3, 0.5, 0.6, 0.7 and 0.8 . In all the cases a considerable change in B is obtained

by moving from mode I to mode II. The maximum discrepancy between the values of

B for different crack lengths is observed for 13 =45° . As expected, in mode I the value

of B is increased by increasing the crack depth. A similar trend is seen for other

loading angles except for mode II where B decreases for deeper cracks. Th hange in

B with increasing crack depth in mode I and mode II is shown in Fig 4-16.

The results obtained for the biaxiality ratio B for different loading angles flare shown

in Table 4-2 for the three models with a/W =0 .1, 0.5 and 0.7.
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4-6. DISCUSSION

4-6-1. Stress method versus displacement method

Finite element results for T/af„ shown in Figs 4-3 and 4-4 for two different mode I

cracked specimens were obtained using both the stress and the displacement methods.

Near the crack tip (x/a<0.02) the results are influenced by the numerical errors

normally expected from FE results in highly stressed zones. At distances far from the

crack tip, the effect of higher order terms in Williams' series expansion are

significant. The results for T are strongly influenced by these factors very near the

crack tip and very far away from the crack tip, and will depend on the geometry,

loading and more importantly the suitability of the method used to determine T.

Therefore, T must be determined from a region where T is a constant. Figs 4-3 and 4-4

show that for identical meshes the stress method does not provide a constant value for

T/o-fa,.. Similar difficulties in using the stress method have also been observed by

Kardomateas et al. (1993) and Sherry et al. (1995). Each report that considerable mesh

refinement is required to achieve accurate results using the stress method. This

argument also applies for the stress method suggested in Section 4-3-2 for mixed

mode loading.

For the stress method, the finite element analysis calculates the stresses on the nodal

points along the crack faces from extrapolation of the stresses at the integration points

of the corresponding elements. Since the singular term vanishes only along the crack

face and not at the integration points, extrapolation introduces numerical errors. The

error is particularly noticeable close to the crack tip. However in the displacement

method this error is considerably reduced as cr (or 7) can be directly calculated from

the displacements of the nodal points along the crack face.

4-6-2. Tin the present mixed mode specimen

The displacement method suggested for mixed mode loading was used to determine T

in a mixed mode test specimen. Three models were used for simulation of the test

conditions. All three models could be subjected to different combinations of mode I

and mode II from pure tension to pure shear. Although eq 2-4a shows that T vanishes

for pure mode II, it was found that for pure shear loading of the specimen in the
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perfect connection and contact models there was a large constant term of stress

parallel to the crack.

To describe this constant term of stress, reference should be made to Williams' series

solution for stresses in cracked bodies. According to his solution, T always vanishes

for antisymmetric fields of deformation (described here as ideal mode II). For the

perfect connection and contact models of the mixed mode test fixture such a field is

not provided when the SEN specimen is subjected to shear loading, even though K1

vanishes. This implies that in shear loading for these models, only the T term from eqs

2-3 is present in conjunction with mode II stresses expressed in eqs 2-4. Ideal mode II

conditions can be achieved, for instance, in a symmetric cracked specimen with the

crack as line of symmetry when forces of the same magnitude but of opposite sign are

applied parallel to the crack and at symmetric points (see Fig 4-17).

The SEN specimen in the pinned model is an example of ideal mode II in shear

loading if the diameter of the location pins is considered to be very small.

Antisymmetry in this specimen is maintained even if the crack length is changed. This

can be seen in Fig 4-14 where B vanishes for different crack lengths when )3 reduces

to zero. However, since it is very unlikely that an ideal mode II occurs in real

applications, the presence of T for shear loading of a cracked body must be considered

inevitable. The results obtained here show that the magnitude of T in shear loading is

very much dependent on the type and position of loading.

A number of other test specimens have been designed to investigate mixed mode

fracture. A critical review of some of these specimens has been presented by Richard

(1989). The results of the present research suggest that because of the potential effect

of T on mode II and mixed mode fracture toughness, the magnitude of T in shear

loading of mixed mode specimens should also be evaluated.

4-7. CONCLUDING REMARKS

1) In mode l, T can be obtained by direct use of the displacement ux (or the slope of ux

in x direction) along the crack flanks. The displacement method gives more reliable

results with less mesh refinement for T in comparison with that of the stress method.
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2) T can also be determined in mixed mode problems using the stresses or

displacements along the two faces of the crack without having to calculate stress

intensity factors. This can be done if the contribution of mode II direct stresses (or

displacements) are eliminated first by superposition of the stresses (or displacements)

along the two faces of the crack.

3) A single edge notched specimen subjected to different loading conditions and

different combinations of modes I and II loading was investigated. It was shown that

for shear loading of the specimen a significant T-stress can be obtained except when

the loading is purely antisymmetric.

4) Finite element analysis of the mixed mode specimen showed that for the real

loading conditions, the magnitude of the biaxiality ratio B in mode II is much higher

than that for mode I loading. In this case, the biaxiality ratio in mode II decreases with

increasing crack length, while for mode I B increases with increasing crack length.
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CHAPTER FIVE

A GENERALISED MTS CRITERION

5-1. INTRODUCTION

Several criteria were described in Section 2-4-2 for predicting brittle fracture in

specimens subjected to mixed mode loading. The conventional maximum tangential

stress (MTS) criterion proposed by Erdogan and Sih (1963) assumes that stress

intensity factors K1 and Kll are sufficient to predict the direction and the onset of crack

growth in a linear elastic mixed mode specimen. This is based on the assumption that

the higher order terms in the series expansion for the tangential stress o-649 around the

crack tip are always negligible compared with the singular term.

In Chapter 4, the finite element analyses of a mixed mode specimen revealed that, the

T-term can be significant and hence modify the crack tip stresses depending on the

loading configuration. The significance of the T-stress is shown for another specimen

in this Chapter where the crack tip parameters K1 , Kil and T are studied for a large

plate containing an angled internal crack and subjected to either uniaxial or biaxial

loads. Different combinations of modes I and II are achieved in the specimen when

the crack angle is altered. It is shown that for some crack angles the stre s around

the crack tip are dominated by T. Therefore, the conventional MTS criterion which

ignores the effect of T in mixed mode fracture is not suitable for fracture studies in

such specimens.

A generalised MTS criterion is presented in this Chapter to investigate mixed mode

fracture for linear elastic and brittle materials where the size of the plastic zone around

the crack tip is negligible relative to the size of the crack. Therefore the elastic stresses
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are sufficient to study the crack propagation. The generalised criterion takes into

account the effects of both the singular term and the T term in the tangential stress

around the crack tip. Using this criterion, the direction and the onset of fracture

initiation can be predicted for mixed mode cracked specimens with any combination

of the crack tip parameters K1 , Kil and T. It is shown that positive T reduces the

fracture toughness in mixed mode loading and negative T increases it. The effect of T

on the angle of initiation of crack growth is also discussed.

5-2. MIXED MODE CRACK TIP PARAMETERS

The series expansions for the elastic stresses around the crack tip described in Section

4-2 can be rewritten in the polar co-ordinates for any homogeneous and isotropic body

as

Crrr = 112 1	 r	 COSI [Ki (1 ± sin2 g)+KII(isin0-2 tang)] + Tcos2 0+ 0(r 1/2 ) (5-1)

1

	

0-619 . 12,	 cosl[K, cos2 1— i Kll sin0]+ Tsin 2 0 + 0(r112)

	

= Li	 7. cosl[IC sin0+ Kll (3cos0-1)]— TsinOcos0+ 0(r 1/2 )cre

where arr, a6,9 and are are the polar stresses shown in Fig 2-1. The higher order terms

0 (r112) can be considered to be negligible near the crack tip. It is seen that T has a

contribution to all three stress components in polar co-ordinates, unlike in Cartesian

co-ordinates. The crack tip parameters K1, Kii, and T depend on the geometry and

loading configurations and can vary considerably for different specimens.

It is well known that crack growth in brittle materials initiates from the boundary of a

very small process zone surrounding the crack tip. This implies that fo xample,

crack growth in mode I initiates when the tangential stress cog at a critical radius r, in

front of the crack tip attains a critical value (a00) , . The parameters r, and (cre9) , are

material properties which are assumed to be independent of the geometry of specimen

and loading configuration. A similar concept can also be used for the maximum

tangential stress (MTS) criterion in mixed mode loading. Using this approach, the

direction of fracture initiation and the onset of crack growth should be investigated at

the critical radius r, from the crack tip and not at the crack tip where r =0.
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At the critical distance r, where the contributions of the higher order terms 0(r"2) in

eq 5-2 can be ignored, the singular term is finite and the T-stress can be a significant

fraction of the tangential stress (see Fig 5-1). For pure mode I, the T-term vanishes in

the expansion for the tangential stress in front of the crack tip along the crack line (0

=0). Therefore, the effect of T on the mode I fracture toughness can be neglected for

linear elastic materials. However, in mixed mode where the crack growth is not in the

same plane as the initial crack, T has a contribution to the tangential stress along the

direction of initiation of crack growth and hence influences the mixed mode fracture

toughness. However, this influence is significant only for specimens where the T-term

is not negligible compared to the singular term in eq 5-2. One appropriate parameter

which can be used to quantify this fraction is the biaxiality ratio B described in

Section 4-2:

T 15—ra
B =

	

	 Keff = V K 1 2 +K11 	 (5-4)
Keff

In the next section the crack tip parameters Kj, Kth T and B are studied for the angled

internal crack specimen. This is a specimen which has been used frequently by

researchers for mixed mode fracture experiments. It is shown that for certain

conditions in the specimen, the parameter T dominates in characterising the crack tip

stresses and hence the fracture toughness.

5-3. ANGLED INTERNAL CRACK SPECIMEN

Consider a plate containing an internal crack of length 2a which is angled to the edges

of the plate (see Fig 5-2a). The plate is subjected to uniform far field stresses, o-in the

vertical direction and Ao- in the horizontal direction, where A is the lateral load ratio.

The crack makes an angle fi with the vertical direction. By changing fi different

combinations of modes I and II can be achieved.

If the crack length is very small compared with the edges of the plate, a closed form

solution can be found for K1, K11, and T. This can be achieved by considering another

large plate inside the initial one, such that the edges of the secondary plate are parallel

or normal to the crack as shown in Fig 5-2b. Using the statical equilibrium relations

the far field stresses on the boundary of the secondary plate are

ax = a(cos2 fi + 2 sin2 fi)	 (5-5)
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o- y = a- (A, cos2 /3+ sin 2 13)	 (5-6)

o - xy = o- (1 — 2,) cos )3 sin p	 (5-7)

where o-x, cry and o-xy are shown in Fig 5-2c. The stress intensity factors are known for

the secondary plate as

K1 =cry-,17ra =o-Nira(Acos2 /3+ sin 2 )3)
	

(5-8a)

I C 11 = o- xy Nr—ra = o- -NITra (1— .1) cos fi sin fl
	

(5-8b)

As described in Section 3-2, T is

Tx =0"x — Cy = CY(1— A.,) cos2fl	 (5-9)

The stress intensity factors K1 and ICH obtained for the secondary plate are equivalent

to those of the primary plate. The subscript x emphasises that Tx is in the direction of x

axis in the local co-ordinates shown in Fig 5-2a. The biaxiality ratio B can be written

for this specimen as
(1— 2) cos2fi

B.  ,	

V 22 cos2 15' + sin2 fi
(5-10)

Eqs 5-8 to 5-10 show that for 2 # 0, either p =00 or 90° correspond to pure mode I.

Pure mode II can be achieved for example when fi =45° and 2=-1 in which case 7:„=B

=0. For equal biaxial tension (2= 1), Kll and T vanish and K1 =o- 4 ra for any angle /1

Although theoretically the biaxially loaded plate is more suitable for providing a

complete range of mixed modes I and II, there are some difficulties in using the plate

for experimental studies. For example, it is not suitable for a conventional uniaxial

tensile testing machine as a special apparatus is required to apply the biaxia ad. The

specimen may also fail due to buckling when subjected to lateral compression (A.< 0).

Therefore, the uniaxially loaded plate has been used more in mixed mode

experiments. For the uniaxially loaded specimen where 2=0 eqs 5-8 to 5-10 are

written as

K1 = o- -17Ta sin2 fi
	

(5-11)

K11 = o- VTra cosfl sin/3
	

(5-12)

7; =o-cos2fi
	

(5-13)
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Fig 5-3 shows the angular (6) variations of stress intensity factors normalised with

respect to a-%/Tra and T normalised with respect to a For fl =900, pure mode I is

obtained, but for )3=00 both the mode I and mode II stress intensity factors vanish and

T is the only non-vanishing term of the series expansions of the stresses. This implies

that for small values of p where the singular terms of stresses at the critical distance r,
diminish, the fracture event is dominated by T. Fig 5-3 and eqs 5-11 and 5-12 show

that pure mode II cannot be obtained in the angled internal crack specimen when

loaded uniaxially.

As described earlier, the magnitude of T relative to that of stress intensity factors can

be expressed using the biaxiality ratio B. Fig 5-4 displays the variation of the

biaxiality ratio B versus, the crack angle fi in the biaxially loaded specimen for

different values of the lateral load ratio 2= —1, —0.5, 0, 0.5 and 1. For the uniaxially

loaded specimen (2=0), when fi approaches zero B tends to infinity because the stress

intensity factors tend towards zero. The results of other values of the lateral load ratio

show that B can vary considerably, depending on the loading conditions.

This section studied a specimen which has a considerable value of B in mixed mode

loading. Similar conditions were also observed for the mixed mode configuration

described in Section 4-5. Ignoring the effect of Tin fracture studies of such specimens

can introduce an inaccuracy in life assessment of the cracked engineering

components. In the next section a generalised MTS criterion is described which takes

into account the effect of T in mixed mode fracture of linear elastic specimens.

5-4. K-T FORMULATION FOR THE MTS CRITERION

The maximum tangential stress criterion suggests that in a brittle material crack

propagation initiates along the direction 0° which corresponds to the maximum

tangential stress around the crack tip. The angle 00 can be found from

do-96, .0
dO

=	 (5-15)
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Retaining both the singular terms and the T-term in the series expansions for coe, and

using eqs 5-2 and 5-15, 00 is determined by solving

[K1 sin 00 + IC (3 cos 0, - 1) ]- y sin —
6).

cos 00 = 0
2

where

(5-16)

= T11271- I-,	 (5-17)

If the critical radius from the crack tip is presented in the dimensionless form of

2ra	 , the parameter y can also be written in terms of B as
a

y	 B aKeff	 (5-18)

where a is the crack length and the effective stress intensity factor Keff and the

biaxiality ratio B were described earlier by eq 5-4.

Once the direction of initiation of fracture 00 is found from eq 5-16, it is replaced in eq

5-2 to determine the conditions for the onset of crack propagation. This gives

11271- re (ci 00 ) = cos [K cos2	 Kff sin00 ]+ V27t. re Tsin2 00	 (5-19)

where (0-09) , is the critical value of the tangential stress at the critical radius rc . For

pure mode I where both K11 and 00 are equal to zero and K1 can be replaced by the

mode I fracture toughness Ky, eq 5-19 reduces to

V2a- I., coo, =IC if	 (5-20)

Introducing eq 5-20 into eq 5-19, the onset of crack extension can be found from

(9„ [ 
n
r,i COS 2 0„
	 sin00 1= –7\12z r, sin2 00 +KJfCOS 2— 	2 _

or in terms of B from

r}-	 2 9
COS-2-[A/ COS t– K11 sine% = –B aKeff sin2 00 + K

(5-21)

(5-22)
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Eqs 5-16, 5-21 and 5-22 describe a generalised MTS criterion where mixed mode

fracture is predicted for any geometry for which K1, Km and T are known. The

solution for these equations is not as straight forward as those presented by Erdogan

and Sih (1963) for the conventional MTS criterion. The closed form solution used

here to solve the equations is described in detail in Appendix A5. The results are

presented in Figs 5-5 and 5-6 where the effect of T is represented by a dimensionless

parameter Ba.

Fig 5-5 shows the effect of Ba on the angle of fracture initiation 00 for different

values of mixity parameter Me given by

Me . 2 tan-i ( K1 )	 (5-23)
71-	 ICH

Me is 1 for pure mode I and 0 for pure mode II. As shown in Fig 5-5 the angle

between the direction of fracture initiation and the crack line increases for positive

values of Ba and decreases for negative values of Ba.

The fracture loci are shown in Fig 5-6 for different values of Ba . It is observed that

fracture toughness in mixed mode is enhanced for negative values of Ba and lessens

for positive values of Ba. The results for Ba =0 in Figs 5-5 and 5-6 correspond to the

solution of the conventional MTS criterion proposed by Erdogan and Sih (1963). Fig

5-7 shows an alternative solution to eq 5-22 where fracture loci are presented for

different values of a dimensionless parameter T* given by

T ‘12R- I.,
T* =

	

	 (5-24)
K if

The effect of positive and negative Ba on the direction of fracture initiation and the

fracture toughness have been compared for different values of K1 /K11 in Fi 5-8 and

5-9.

5-5. DISCUSSION

5-5-1. Angled crack specimen

Section 5-3 investigated the crack tip parameters for the angled crack specimen. It was

shown that the values of Kb KR, T and B change considerably depending on the crack
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angle and the lateral load ratio 2. Fig 5-4 showed that the biaxiality ratio B, in

particular, can have a wide range of values. For cases with high values of B, the crack

tip stresses at the critical distance rc, are dominated by the T-term in eqs 5-1, 5-2 and

5-3. As a result, the onset of crack propagation in such cases is influenced

considerably by T.

As described earlier in Section 2-4-2, Williams and Ewing (1972) studied the

particular case of the angled internal crack specimen subjected to uniaxial loading

(2=0). They took into account the effect of T in the crack tip stresses and predicted the

direction of initiation of fracture and the onset of crack growth using the MTS

criterion for different values of the crack angle A According to their calculation which

was corrected later by Finnie and Saith (1973), the direction of initiation of fracture 00

varies from zero for fi =90° to -90 0 for )6=0 0 whereas the conventional MTS criterion

proposed by Erdogan and Sih (1963) suggests -70.5°5_ 0, �0°.

Williams and Ewing (1972) and Firmie and Saith (1973) showed that the direction of

fracture initiation obtained through experiments on the angled internal crack

specimens of PMMA are in better agreement with those predicted by eq 2-33 than

those calculated from the conventional MTS criterion, see Fig 5-10. This implies that

the conventional MTS criterion might predict inaccurate results for crack growth in

some mixed mode specimens.

5-5-2. Generalised MTS criterion

Although the results presented by Williams and Ewing (1972) shows that T can

influence the mixed mode fracture, there are two major restrictions. Firstly their

solution can be used only for the angled internal crack specimen where closed form

solutions for K1, Kii, and T are simply obtained. There are numerous mi ed mode

specimens designed by researchers to study brittle fracture in mixed mode I/II

loading. Because the crack tip parameters can vary considerably for different

specimens, only a comprehensive solution such as the one suggested in Section 5-4 is

able to explore the effect of T for any mixed mode geometry. Secondly, as shown in

Fig 5-3, pure mode II cannot be achieved in the angled crack specimen. This implies

that the solution presented by Williams and Ewing (1972) is not able to predict any

possible T-stress effect in mode II fracture. Even for the biaxially loaded angled crack

specimen in which pure mode II can be obtained when 2=-1 and ig = 45 0, a similar
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restriction is observed. This is because for this loading configuration T always

vanishes and hence has no influence on the fracture event (see Fig 5-4).

The solution method presented in Section 5-4 is a generalised MTS criterion which

takes into account the effect of T and can be used for any mixed mode geometry and

loading configuration. The results of the generalised method are shown in Figs 5-5 to

5-7. To use the fracture diagrams shown in these figures, first the crack tip parameters

K1, Km and T need to be determined for the given specimen. These parameters are

then used to calculate the biaxiality ratio B and the mixity parameter Me. The stress

intensity factors may be obtained from handbooks (e.g. Tada et al., 1985) for simple

geometries or can be determined through FE analysis by using the methods described

in Section 2-6-1 for more complicated problems. The T-stress can also be calculated

from FE analysis utilising either the stress method or the displacement method

2r
described in Section 4-3-2 for mixed mode loading. The parameter a = 11	 is

a

determined from the crack length a and the critical distance r, which is a material

property. Using the calculated values of Ba and Me , the direction of initiation of crack

growth Oc, is predicted from Fig 5-5 for the given specimen. The same data can be

used to find the onset of fracture using either Fig 5-6 or Fig 5-7. However in this case

the mode I fracture toughness Ku must also be known.

Fig 5-5 displays the effect of T on the angle of fracture initiation for a linear elastic

material. While T has no influence on the angle of crack propagation 00 in mode I, its

effect is increased by making the contribution of mode II larger. It is seen that, in

general, the angle between the initial crack line and the direction of fracture initiation

increases for positive values of T and decreases for negative values of T. For instance,

according to Fig 5-4, for the angled internal crack specimen subjected to uniaxial

loading (2=0) T is positive when OW �45° and hence the experimental resu ts for the

magnitude of t90 are expected to be higher than those predicted by the ccaventional

MTS criterion. The opposite is expected for 45°�fl � 90 0. This is corroborated by the

experimental results presented by Williams and Ewing (1972) for PMMA, although

they did not explore the change in the sign of T and its effect on 90 (see Fig 5-10).

The effect of T on the mixed mode fracture toughness was shown in Figs 5-6 and 5-7.

It can be seen that the mode I fracture toughness Ku (horizontal axis) is independent of

T but when the mode II contribution is increased, T influences the onset of crack
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growth. The maximum effect of T on fracture toughness is for pure mode II. It is seen

that except for pure mode I, negative values of T enhances and positive values of T

lessens the fracture toughness.

As discussed earlier the effect of T on 00 and the onset of crack propagation is not the

same for different combinations of modes I and II. This can also be seen in Figs 5-8

and 5-9. Fig 5-8 shows that when K1 > Kll , the increase in 00 due to a positive value

of Ba is more than the decrease in 00 due to negative Ba of the same magnitude, and

vice versa for K1 < K11. Similarly from the change in the slope of the curves in Fig 5-9

it can be concluded that when K1 > Km the effect of positive Ba on decreasing

fracture toughness ratio Keff NI , is more than the effect of negative Ba of the same

magnitude on increasing the fracture toughness. This is opposite when Kl<

5-6. CONCLUDING REMARKS

1) The results obtained through the conventional MTS criterion are not accurate for

specimens where the stresses around the crack tip are influenced significantly by T.

2) A generalised MTS criterion has been presented for linear elastic and brittle

materials in which the effects of both the singular term and the T-term in the

tangential stress are included. Using this criterion, mixed mode brittle fracture can be

predicted in any specimen for which the crack tip parameters K1  K11 and T are known.

3) It was shown that negative values of T increase the mixed mode fracture toughness

whereas positive values of T reduce the mixed mode fracture toughness.

4) The angle between the crack line and the direction of initiation of fracture increases

in specimens with positive T and decreases in specimens with negative T.

5) The effect of T on mixed mode fracture depends also on the radius of the critical

zone around the crack tip.
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CHAPTER SIX

EXPERIMENTAL STUDY OF

T-STRESS EFFECTS IN MODE II

6-1. INTRODUCTION

The computational studies in Chapter 4 showed that there are circumstances where

large amounts of positive or negative T can be present in the shear loading of cracked

specimens. The generalised maximum tangential stress criterion developed in Chapter

5 predicted that T can influence considerably mixed mode fracture in brittle materials.

The main objective of this Chapter is to investigate experimentally the effect of T on

mode II fracture toughness.

The generalised MTS criterion is formulated for pure mode II where the effects of

both the singular term and T in the crack tip stresses are included. A failure diagram is

then developed in which mode II fracture toughness can be found for different values

of T. For the experiments, PMMA shear specimens, which are able to generate

significant values of positive or negative T in mode II, are used. Finite element

analysis is carried out to obtain T for the specimen using the displacement method

given in Chapter 4 for mixed mode loading. Fracture tests are conducted using the

PMMA specimens, and the effect of T on mode II fracture toughness is d ermined

experimentally. The fracture surfaces are also studied for different loading conditions.

A brief description of different features observed on the fracture surface is presented

for each case. A probability analysis is carried out to obtain a suitable function for

predicting the distribution of the experimental results.
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6-2. THEORY

The generalised MTS criterion described in detail in Chapter 5, is briefly presented in

this Section for pure mode II. As shown in Chapter 4, there are real loading conditions

where, for pure shear, a significant T-stress is present. For such cases the tangential

stress around the crack tip, which includes T, can be written as

3KH 
= ,	 cos—e sint9+Tsin2 0 + 0(r 112 )	 (6-1)

2 11271-r	 2

The effect of the higher order terms 0(r 1 ) can be neglected near the crack tip where

crack growth initiates. According to the maximum tangential stress criterion, the

direction of maximum tangential stress 00 can be obtained when the hoop stress is

differentiated with respect to 0, so that

do'
619 = IC H (3 cos Bo — 1 — 1 B.a. sin-

0
2
0
 cost% ) = 0

dO
(6-2)

where

TNIcr 
a= 

112rc
and	 B =

a	 ICH
(6-2a)

B is the biaxiality ratio, rc. is the critical distance from the crack tip and a is the crack

length. Eq 6-2 was solved numerically to find out the direction of crack growth for

different values of Ba. The results are shown in Fig 6-1.

According to the MTS criterion, crack growth occurs when the tangential stress

attains a critical value coo c. This is a material property and is assumed to be

independent of mode mixity. At a load corresponding to mode II fracture, eq 6-1 is

replaced by
3.K1rf	 0 .

coo, = 
2-12;r, 

cos
2
 sint9. +Tsin2 0,,	 (6-3)

where Kiu is the mode II fracture toughness. As described in Section 5-4, the critical

tangential stress (roe, can be written in terms of the mode I fracture toughness Ku as

K if

Cr BO c = 1	
v2ir rc

(6-4)
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If the angle Go determined for a given B a from eq 6-2 and the critical stress croo

defined by eq 6-4 are replaced in eq 6-3, the mode II fracture toughness Kiif can be

found in terms of Ku- and Ba as

1 

K	 B.a.sin2190 — 3 sint9 cos °°2	 0	 2

Fig 6-2 shows the calculated variation of the normalised mode II fracture toughness

with Ba.

It is worth pointing out that the conventional MTS criterion, which corresponds to

Ba=0, predicts that for mode II, the direction of maximum hoop stress is -70.6° and

4=0.87 Kif (Erdogan and Sih, 1963).

6-3. EXPERIMENTS

6-3-1. Material

PMMA is known to behave in a brittle fashion both in mode I and mode II (Williams,

1984). This material was selected as the test material for this study. Specimens were

machined from a cast Perspex sheet of 20mm thickness. According to the

manufacturer, the PMMA had a molecular weight of /1/34, =106 g/mol. An earlier study

by Davenport (1993) determined the basic material properties where, Young's

modulus = 2800 MPa, Poisson's ratio = 0.38, yield stress = 45 MPa and ultimate

stress = 75 MPa. All the specimens were cut from one sheet of material and with the

same orientation for the loading axis to reduce possible orientation effects on material

properties associated with the manufacturing process.

6-3-2. Specimens

Mode II and mode I specimens, as shown in Fig 6-3, were machined from the perspex

sheet. To produce the crack in the specimens, a slit of almost 9 mm length was

introduced using a fret saw of 0.35 mm thickness. By pushing a razor blade for

another 1 mm inside the slit a sharp tip was produced to make the total crack length

around 10 mm. In this case the remaining ligament was about 10 mm (a/W=0.5). Due

to occasional kinking of the razor blade, it was difficult to produce a straight tip in

(6-5)
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some specimens. Those specimens with a kinked initial crack were discarded. For the

rest of specimens, the length and width of the initial slit and the total crack were

measured from a magnified picture of the crack using an optical microscope. The

dimensions of each crack which are described by parameters al , a2, d1 and d2 as

shown in Figs 6-3d, are given in Tables 6-1 to 6-3. The small gap between the two

faces of the crack prevents any crack closure due to possible minor inaccuracy in

manufacturing the specimens.

Care was taken for the mode II specimens to keep the centre of the loading holes

along the crack plane. This helped to make sure that the external load had no

component normal to the crack and the ligament was subjected to pure shear. A high

ratio of cross section area to length L was considered in designing the mode II

specimen to prevent possible buckling when subjected to a compressive load.

It is useful to be reminded that the conventional elastic crack tip stresses for mode II

given in eq 2-4 are related to a positive shear loading shown in Fig 6-3b. In this case

the direction of positive 9 is counter-clockwise. However the same equations for the

crack tip stresses can be used for a negative shear loading provided a clockwise

direction is considered for positive 0, as shown in Fig 6-3b. Tensile and compressive

loads on the mode II specimen shown in Fig 6-3a correspond to positive and negative

shear loads, respectively. This implies that according to the MTS criterion, and with

the definition of positive direction for 0, it is expected that crack growth would occur

in the lower part of the specimen for tensile loading and in the upper part of the

specimen in compressive loading. It should be noted that the appropriate direction for

0 is used for all the results presented in this Chapter for the mode II shear specimens.

6-3-3. Finite Element Analysis

The mode II specimen was simulated using the finite element code ABAQUS. The

specimen was considered to be linear elastic with the Young's modulus and Poisson's

ratio given in Section 6-3-1. The mesh design is shown in Fig 6-4. The crack tip zone

consisted of 30 rings of elements where each ring had 36 eight-noded plane strain

elements circumferentially. A quarter point scaling was used between the

circumferential rows of nodes surrounding the crack tip to produce a square root

singularity in the strain field at the crack tip. The boundary conditions and the loading
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point are shown in Fig 6-4. The specimen was subjected to compressive and tensile

reference loads of the same magnitude 5 IN.

The J-integral was obtained from ABAQUS, which uses the modified virtual crack

extension method proposed by Li eta!. (1985). The J-integral for both cases of tensile

and compressive loading was equal to 2027 N/m . Apart from the first contour, the J-

integral was path independent for the remaining 30 contours surrounding the crack tip.

T was determined by using the displacement method described in Section 4-4-2 for

mixed mode loading. The values of T-stress for compressive loading was -28 MPa

and for tensile loading was +28 MPa. From J and T and eq 6-2a the biaxiality ratio B

was determined to be as +2 for tensile load and -2 for compressive load. It is worth

pointing out that unlike J and T, the magnitude of the biaxiality ratio B is independent

of the magnitude of load.

If the mode II stress intensity factor K11 is written as ICH= Y.P where P is the load

applied whether compressive or tensile and Y is a geometry factor then from the

results of finite element analysis Y is determined as

y = K = -‘17.7  =
P P

499.6 III-312	 (6-6)

With reference to the sign of the T-stress, in the present analysis the mode II specimen

is called a +T shear specimen for tensile loading and a -T shear specimen for

compressive loading. Figs 6-5a and 6-5b show the angular variation of the tangential

and shear stresses for the +T and -T shear specimens, respectively at r =0.27 mm. The

stresses in these figures are normalised with respect to the product P/ta where t is the

specimen thickness. The reason for choosing this distance is discussed in Section 6-4-

3.

6-3-4. Test method

Tests were carried out at room temperature (20°C) using a Shimadzu Autograph

universal testing machine of 10 kN capacity. Tests were carried out under

displacement controlled loading at 0.5 min/min. A total of ten mode I tests, ten +T

shear tests and ten -T shear tests were conducted. The peak load at fracture and the

corresponding displacement were recorded by a data processing unit attached to the
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machine. The load-displacement results were also plotted using an xly chart recorder.

All the specimens exhibited a linear load-displacement diagram prior to fracture,

confirming the linear elastic behaviour of the material.

For mode II tests, none of the compressively loaded -T shear specimens failed due to

buckling. Visual inspection showed that the crack faces did not come into contact

with each other and remained parallel in both tensile and compressive tests. For

compressive tests some parts of the specimens shattered. Therefore it was necessary to

use a glass guard in front of the specimen for safety reasons. After testing, the fracture

initiation angles for the shear specimens were measured from the magnified picture of

each broken specimen. However, for some of the specimens the fracture initiation

angles varied slightly along the crack front. Therefore the fracture angle was measured

along the centre line of the surface at mid-thickness. For mode I specimens, fracture

took place along the direction t9c, =0 and the variation in the direction of fracture was

negligible.

Photographs of the +T and -T shear specimens after fracture are shown in Fig 6-6. It

can be seen that the plane of fracture in the +T specimen is slightly curved in front of

the crack across the ligament, whereas the curvature of the fracture plane across the

ligament in the -T specimen is considerable. The plane of fracture was flat for all of

the mode I specimens.

6-3-5. Experimental results

The measured fracture loads and the fracture angles are shown in Table 6-1 for the +T

shear specimens and in Table 6-2 for the -T shear specimens. Fracture toughness

values were calculated from Kilf = YP„ and using eq 6-6.

Table 6-3 shows the results for mode I tests. Fracture toughness values were

calculated using

P	 a
K if —  cr  f( )

t ATV W

where the geometry factor f(—
a
 is given by Tada et al. (1985) for single edge

W

notched tensile specimens,

(6-7)
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Ira
112 tan 2rf[

a
f ( 

a
w) - 	  0.752 + 2.02(w)+0.37(1– sin—ga 

)3]ga	 2Wcos
2W

where t is the specimen thickness. Fracture load, mode I fracture toughness Ku and the

corresponding mode II fracture toughness (Kw- =0.871Cff based on the conventional

MTS criterion) are shown in Table 6-3 for mode I tests. Chao and Zhang (1997) have

shown that at room temperature, the size of plastic zone in PMMA in front of the

crack tip at fracture load is much less than the critical distance rc. This implies that the

plasticity effects around the crack tip are negligible and the use of linear elastic

stresses for predicting the onset of crack growth is justified. Eq 5-2 shows that in

mode I, T has no effect on the elastic hoop stress in front of the crack tip. Therefore

the mode I fracture toughness obtained here for PMMA can be considered to be

independent of T if a fracture criterion based on the critical tensile stress is used. This

implies that the mode II fracture toughness calculated here from mode I tests can be

attributed to T=0 shear tests.

Figure 6-7 shows the mode II fracture toughness data for the +T shear tests, the -T

shear tests and the calculated mode II toughness from the mode I tests. Also shown in

this figure are the mean values of the results for each case. The fracture initiation

angle of the crack growth for mode II tests and the corresponding average values are

shown in Fig 6-8.

Fig 6-9 shows a schematic picture of the fracture surface from a +T shear specimen.

This was representative of the fracture surface of all the +T shear specimens. The

fracture surface was slightly curved and consisted of three distinct zones: a mirror

area, an area with ridge markings and an area with hyperbolic features. A m oscopic

picture of the hyperbolic features is shown in Fig 6-10a. It is described in detail later

(Section 6-4-4) that each hyperbolic marking can be related to a local secondary crack

growth initiated from the pole of the hyperbola. Fig 6-10b shows a magnified picture

of the hyperbolic markings, where the nucleation point and the radial growth of the

secondary crack can be seen clearly.

(6-8)
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The fracture surface for the -T shear specimen is shown schematically in Fig 6-11. In

this case the fracture surface was considerably curved and consisted of a strip of

minor zone in the middle of the surface and two bands of long ridge markings at the

sides of the mirrored area.

6-3-6. Statistical distribution of Kwdata

As discussed in Chapter 2, according to a general statistical model suggested by

Weibull (1951), Wallin (1984) proposed a description for the probability of brittle

fracture. In general the micromechanism of brittle fracture in PMMA for mode I was

found to be similar to that for mode II, therefore a similar model is used here to

investigate the statistical description of the fracture toughness data in the present

mode I and mode II experiments.

Wallin's probability function for mode I is

= 1— exp 
[(KKif IcKmin)41
	

(6-9a)

An extension of this function can be written for mode II as

[(IC	 Krnin  )4 1

where Pf is the probability of fracture, Kll,o, and Ko are variables which can be found

by fitting the model to the experimental data obtained for mode I or mode I fracture

toughness. The variable Ko is equal to K11 corresponding to a 63.2% fracture

probability. The experimental values of fracture toughness given in Tables 5-1 to 5-3

are arranged in ascending order. The probability of fracture 1)1 is obtained from

Pf = 	 	 1,2„ N 	 (6-10)
N+1

where N is the total number of experiments.

= 1— exp

Pf

Pf (6-9b)
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A non-linear regression technique was used to fit the non-linear model shown by eq 6-

9 to the experimental data. The technique seeks the values of the parameters Km,,, and

K0 that minimise the sum of the squared differences between the values of the

observed and predicted values of the dependent variable Pf and gives the best fit

between the model and the data.

The scientific graphing software SigmaPlot which utilises this technique, was

employed to fit the mode I and mode II fracture toughness data to eqs 6-9a and 6-9b.

Results for parameters Km,„ and K, are displayed in Table 6-4. Figs 6-12a to 6-14a

show the predicted functions together with the experimental data for three cases: +T

shear tests, -T shear tests and mode I tests.

Eqs 6-9a and 6-9b can be rewritten as

1/4

[Ln(  1	
K — Kmin

1— P 

i

f	 K0 — Kmin
(6-1 la)

and

[Ln(	 1

i1/4
K11 — Kmin

(6-11b)
1— Pf K,— Kmin

If g(Pf ) represents the function of Pf shown on the left side of eqs 6-11 and the

fracture toughness results Ku (or K111) are plotted versus g(Pf ), the distribution

function is linear. In this case K„,,„ and K, can be obtained directly from Ku (or Kllf)

corresponding to g(Pf )=0 and 1, respectively. Figs 6-12b to 6-14b show the

distribution functions determined based on eqs 6-11a and 6-11b for the three sets of

results described earlier.

6-4. DISCUSSION

6-4-1. Effect of Tin mode II fracture- Theory

Erdogan and Sih (1963) suggested a single parameter maximum tensile stress criterion

based on the singular term of the crack tip stresses. According to this criterion, mode

II fracture occurs at an angle of -70.6° relative to the crack plane and the mode II

fracture toughness is equal to 0.87 times the mode I fracture toughness.
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Earlier, a two parameter (Ku and T) MTS criterion was developed for mode II loading

where the contribution of both the mode II singular stresses and the T-stress were

considered. A dimensionless parameter Ba was used to show the effect of T on mode

II fracture. Figs 6-1 and 6-2 show that T can have a considerable effect on fracture

angle and fracture toughness in mode II. It is seen from Fig 6-1 that the angle between

the crack line and the direction of the initiation of crack growth increases by positive

values of T and decreases by negative values of T. For example, there is a difference

of 27° for the crack growth direction where Bet =-0.6 and Ba =+0.6 . The results

displayed in Figs 6-1 and 6-2 can also be shown by following polynomial functions

00= -69.84 -22.43 (B . a) +11 .32 (B . a)2 +0.5668 (B . a)3	 (6-12)

Kill- — 0.871 -0.687 (B . a) +0.388 (B . a)2 -0.091 (B . a)3	(6-13)
KJ./

The coefficients in eqs 6-12 and 6-13 were determined by fitting a third order

polynomial to the curves shown in Figs 6-1 and 6-2. Fig 6-2 shows that negative

values of Ba makes the mode II fracture toughness larger whereas positive values of

Ba lessens the mode II fracture toughness. For instance, the mode II fracture

toughness for Ba=-0.5 is more than twice that for Ba=+0.5. It is seen from Figs 6-1

and 6-2 that the effect of a negative Bcx on fracture angle and fracture toughness is

considerably more than that for a positive Ba. For example, the ratios of the fracture

initiation angles and the fracture toughness with and without the T-stress are

90(B.a =0) — 610(B.a=-0.5)
=	

9.(B.a +0.5) — eo(B.oc-=-0) =
	  0.21	 	  0.1

00(B.a =0)	 eo(B.a=0)

KII(B.a=-0.5) - KII (B.a =0)	 KII(B.a=0) - KII(B.a +0.5)
	  = 0.53	 	 = 0.29

KII(B.a =0)	 K11(B.a=0)

(6-14)

6-4-2. Effect of Tin mode H fracture- Experiments

To verify experimentally the effect of T, a mode II specimen of PMMA was designed

which could provide large values of positive and negative T for different types of

shear loading. Mode I fracture tests were also carried out to predict the mode II

fracture toughness based on the conventional (T=0) MTS criterion where Kit/ —

0.871C/f. The results for mode I fracture toughness are shown in Table 6-3. The
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average value for the mode I fracture toughness was 1.95 MPa •gm which is in good

agreement with 1.87 MPa\im given by Maccagno and Knott (1988).

The direction of the initiation of crack growth for the shear specimens are shown in

Fig 6-8. The average value for the +T specimens was —78.6° and for the -T specimen

was —55.2° with a difference of 23.4 0. The scatter in the results for the -T specimens is

slightly more than that of the +T specimens.

The mode II fracture toughness obtained from the +T shear specimens, -T shear

specimens and that calculated from mode I specimens are shown in Fig 6-7. The

average values of Kilf for these cases were 1.27, 2.43 and 1.69 (=0.87*1.95) MPaNim

respectively. Although the results of the FE analysis show that for the same

magnitude of load, the stress intensity factor for both +T and -T shear specimens are

identical, the average of Kw- for the -T specimens is almost twice the average of Kg!

for the +T specimens. This clearly indicates that an MTS criterion solely based on the

singular terms of the crack tip stresses can introduce a considerable error in predicting

mode II fracture toughness.

Williams and Ewing (1972 and 1974b) and Finnie and Saith (1973) analysed the

angled internal crack problem and showed that an improved MTS criterion, which

accounts for the effect of T, provides a better agreement with the results of

experiments conducted on PMMA. However, because the angled internal crack

problem fails to provide pure shear, their results could not reveal the possible effect of

T on mode II fracture of brittle materials. The common assumption that T always

vanishes in mode II, which results from William's (1957) solution for the crack tip

stresses, is another factor for reasons why workers have not investigated the effect of

T in mode II fracture. But it was shown in Chapter 4 that in mode II, T vanishes only

for purely antisymmetric loading and that T can be considerable in some actical

cases in the shear loading of cracked bodies.

It should be noted that Banks-Sills and Arcan (1986) and Banks-Sills and Bortman

(1986) also attempted to consider the effect of the higher order stress terms in the

mixed mode specimen they had designed. However their solution method only

accounted for the *-- and VT terms and T was omitted in their analyses.
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As shown in Tables 6-1 and 6-2 the average values for the normalised mode II

fracture toughness K111 1.1(11 for the +T and -T shear specimens were 0.65 and 1.25

respectively. Fig 6-2 shows that these two values for K111 1K11, correspond to a Ba of

0.4 and -0.43, respectively. From the FE results, B for the +T and -T specimens, is

equal to +2 and -2. This indicates that a is almost constant and equal to 0.2 for the

positive and negative T-stress conditions. Therefore the radius of process zone re can

be predicted for PMMA using eq 6-2a

The critical distance re calculated here based on the results of the mode II fracture

toughness can be used to predict the direction of fracture initiation 90 from eq 6-12.

The results can then be compared with the value of the angle 90 determined

experimentally for the positive and negative T shear specimens. For r =0.2 mm and

Ba=+0.4, the angle 00 is found as -77° for the +T shear specimen while for rc=0.2 mm

and Ba= -0.4, the angle 90 is found as -54.1° for the -T shear specimen. Fig 6-8 shows

that the predicted values of 90 are in good agreement with those measured from

experiment.

6-4-3. Mechanism of crack growth

Earlier, finite element analyses revealed the angular distribution of the tangential and

shear stresses around the crack tip. The results for normalised stresses are shown in

Figs 6-4 and 6-5 for the +T and the -T shear specimens, respectively. It can be seen

that the maximum tangential stress o-60 and the maximum magnitude of shear stress

Icire I occurs at about -75° and -10° respectively for the +T shear specimen and around

-55° and +10° respectively for the —T shear specimen. Figs 6-4 and 6-5 show that for

the same load, the maximum value of tangential stress coe in the +T sp men is

considerably higher than that for the -T specimen. It is also observed that varying T

from positive to negative values changes the direction of maximum magnitude of

shear stress I are I from the negative into positive sectors of O.

The normalised stresses shown in Figs 6-4 and 6-5 were obtained along a fixed

distance of 0.27 mm from the crack tip. This distance corresponds to the radius of the

nearest ring of nodal points in the FE model which corresponds to the estimated
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process zone radius r0.2 mm. A difference of 0.07 mm has only a negligible effect

on the angles of the maximum am and the maximum lure!.

As described earlier in Section 2-4-3, two main mechanisms of yielding in PMMA are

shear yielding and crazing. Shear yielding is favoured by deviatoric component of the

stress tensor and is expected to occur in the direction of maximum shear stress. In

contrast, crazing is anticipated to take place in the sector of high hydrostatic tension.

In a set of mixed mode tests on PMMA, Mahajan and Ravi-chandar (1989) observed

that the craze formation and the subsequent crack growth occurred along the direction

of maximum tensile stress around the crack tip. The present study shows that the

directions of the maximum coo obtained from FE analysis for both of the shear

specimens are in good agreement with the directions of initiation of crack growth

observed in the experiments. This also confirms that crack growth in this study is

preceded by crazing and not shear yielding.

6-4-4. Fractography of the fracture surfaces

Fractography of different polymers has been studied extensively in the literature. This

can be due to the large variety of features which can be observed on fracture surface

for different test conditions. However almost all of the studies are confined to mode I

fracture. A review of the studies for amorphous thermoplastics and in particular for

PMMA has been presented by Doll (1988). Bhattacharjee and Knott (1995) carried

out a number of mixed mode tests for PMMA at a low rate of loading. They explored

the fracture surface for the specimens fractured in different combinations of modes I

and II. For mode II they observed three distinct areas: a mirror region, a misty region

and a region with hyperbolic markings.

In this section different features observed across the fracture surface for ti 	 resent

+T and -T shear specimens are described and briefly discussed.

+7' shear specimens

It was shown in Fig 6-6 that the fracture plane for the +/' shear specimens is nearly

normal to the original crack. Although the plane is not precisely flat, its curvature is

negligible. As shown in Fig 6-9c the fracture surface can be divided into three areas: a

mirror area, a strip of ridges next to the crack front and a zone of hyperbolic signs

surrounding the mirror area.
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The mirror area initiates from the middle section of the original crack front (portion

aa indicated in Fig 6-9c) and extends to the central zone of the fracture surface. As

described earlier brittle crack growth in PMMA is often preceded by crazing which

results from microstructural void growth around the crack tip. Since void growth takes

place in a region of high hydrostatic tension, it is expected that crazing and crack

growth initiate from the mid-thickness of the specimen, which is known for high

stress triaxiality, and extend rapidly towards the free surfaces of the specimen

(surfaces B-C-B in Fig 6-9c). This zone of primary crack growth is observed as a

mirror area on the fracture surface. The points located outside the mirror area are

subjected to this primary crack growth after a short time lag. The position of the

mirror area also depends on the positions of initial flaws or the fracture-triggering

particles in front of the crack edge. It was observed that in some specimens the mirror

area was shifted slightly from the symmetry	 of the SN.IICZRZ

The area of ridge markings occurs next to the edge of the original crack. The ridges

are inclined such that at one end they tend towards the central part of crack tip (points

a shown in Fig 6-9) and at the other end they tend towards the two lateral surfaces

(surfaces B). The ridges closer to the surfaces B are longer than those near the points

a. However the strip of the ridge markings is limited to a small band next to the crack

front.

It is proposed that once primary crack growth commences from the mirror area, the

points locating outside this area are subjected to two waves of crack extension: one

from the primary crack growth of the mirror area and one from the edge of the initial

crack. If the planes of the approaching cracks are not exactly the same, such as that for

slightly curved surfaces, the intersecting stress fields form a local sharp edge which is

observed as a ridge on the fracture surface (see Fig 6-9d). This is corroborat y the

angles at which ridges are inclined. It is clear that the points which are closer to the

lateral surfaces B have more time before being subjected to the primary crack growth.

This allows more extension for the local crack front leading to an increase in the

length of the ridges. Nevertheless, because the overall curvature of the fracture surface

is negligible, the two extending cracks join together shortly and make an identical

plane. Therefore the strip of ridges is confined to a narrow band next to the edge of

the original crack.
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The area of hyperbolic features is observed in the zone surrounding the central mirror

area as shown in Fig 6-9c. A detailed description of the formation of these markings

has been given by Doll (1988). A similar argument can be employed for the present

mode II test specimen.

Once primary crack growth commences, secondary cracks will be initiated from local

imperfections locating along the path of the advancing crack. The secondary cracks

are initiated almost immediately after the primary crack and tend to extend uniformly

as a circular crack front. Intersection of the primary crack extension with the

secondary cracks forms the hyperbolic markings across the fracture surface. The

direction of the symmetry line for each hyperbola, which tends towards the middle

part of the initial crack front, gives support to the present argument. Microscopic

pictures of the hyperbolic features were shown in Fig 6-10a and 6-10b. The radial

extension of secondary cracks from the nucleation points can be seen clearly in Fig 6-

10b.

-T shear specimens

Fig 6-6 shows that the fracture surface for this specimens is considerably curved such

that the crack path which was initiated at an angle around -55° becomes parallel to the

loading direction. The fracture surface, shown schematically in Fig 6-11, exhibits two

main areas: A band of mirror zone at middle of the surface and two strips of long

ridges at the sides of the mirror area.

The mirror band is seen in the middle part of the specimen which extends all along the

fracture surface. As described earlier, crazing and cracking is initiated from middle

part of the initial crack front where the stress triaxiality is high. The propagating crack

extends as a mirror strip without any marking.

As described for the +T shear specimen, intersection of the primary crack growth with

the local crack extension from the local crack front generates the ridges shown in Figs

6-11b and 6-11c . The ridges extend in two strips on the sides of the central mirror

area. The height of ridges near the edge of the initial crack is higher than those

observed for the +T shear specimens. This could be due to the significant curvature on

the fracture surface which causes higher interference between the two intersecting

waves of crack growth. However, the height of the ridges decreases considerably
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when the curved fracture surface becomes almost flat, further away from the edge of

the initial crack.

No hyperbolic markings are seen on the fracture faces of the -T shear specimens. This

might suggest that formation of the secondary cracks from imperfections are more

likely to take place when the fracture surface is flat or has negligible curvature. In that

case a certain number of inclusions remain in the path of a unidirectionally

propagating crack and more chance of initiating secondary cracks occurs.

It was observed that for some of the -T specimens, besides the normal ridge markings,

a number of more elevated hill shaped features was observed next to the initial crack

edge. This can be due mainly to an unevenness of the crack edge resulting from the

inaccuracy of the specimen manufacture in the manufacturing process.

6-4-5. Statistical modelling

As described earlier in Section 2-4-4, Wallin (1984) made use of a three parameter

Weibull function and proposed a model for cleavage fracture toughness data. He

showed that the distribution of Ku for different steels can be predicted by this model

with a slope parameter m=4. The mode II fracture toughness data obtained from the

+T and -T shear tests and those predicted from the mode I tests were fitted using the

same statistical model. It was found that a total of 10 experimental results was

sufficient to fit the two-parameter model to the fracture toughness data.

Results for the parameters Ko and K„„„ for three sets of experiments are shown in

Table 6-4. Figs 6-12 to 6-14 also show that the distribution functions obtained using

this model are in good agreement with both mode I and mode II fracture toughness

data for PMMA. It can be seen from Figs 6-12 and 6-13 that although T ffects

considerably the mean value of the mode II fracture toughness, the statistical model

can still be used for the results of both +7' and -T shear tests. However the ratio Ka

/Kaiia in the distribution function for the -T shear tests is more than that for +T shear

tests, representing more scatter in the results of the -T shear tests.

The statistical models suggested in the literature for predicting the distribution of

brittle fracture data investigate mainly the micromechanism of cleavage fracture and

mode I loading. The models are often based on a weakest link argument which
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assumes that failure takes place when at least one fracture-triggering particle is

sampled. It is known that the micro-mechanism of brittle fracture in steels is different

from that in PMMA. However both mechanisms of cleavage fracture and crazing are

similar in that the crack growth occurs when the stress at a critical distance attains a

critical value. Therefore, the statistical models suggested based on the weakest link

argument and used widely for cleavage fracture is able to predict the distribution of

fracture toughness data in PMMA.

The general mechanism of initiation of crack growth in modes I and II is the same.

The major difference between mode I and mode II brittle fracture is the angle at which

the crack tip is expected to sample the critical fracture-triggering particles. Therefore,

the effect of loading mode on the statistical model for brittle fracture can be

considered to be negligible. However, the scatter in the results for the direction of

initiation of crack growth for mode II tests can be expected to be higher than that for

mode I. This is because crack growth in mode I (unlike in mode II) is self-similar and

occurs along the plane of symmetry.

Figs 6-7, 6-12 and 6-13 show that the scatter in the fracture toughness results for the

—T shear tests is slightly higher than that for the +T shear tests. This can be attributed

to the effects of constraint along the direction of initiation of crack growth. For the +T

shear specimens which exhibit higher constraint, both the singular term and the T-

term in the tangential stress along the direction of initiation of fracture are tensile.

Whereas for the -T shear specimens, the T-stress has a compressive effect along the

normal to the direction of fracture initiation. This implies that there is a competition

between an opening stress due to the singular term of the tangential stress and a

compressive stress due to the effect of T. Hence more scatter can be expected in the

fracture toughness results for the -T shear tests.

The distribution of the fracture toughness results for the +T and -T shear tests in

PMMA can be predicted using the results of the mode I fracture toughness tests. As

shown in Table 6-3, the fitting parameters in Wallin's model are IC0-= 1.99 MPaNrn

and K„„„-- 1.47 MPa-Nim for the mode I fracture toughness results. From the estimated

critical distance rc=0.2 mm and the calculated values of B, the parameter Ba is —0.4

for the +T shear specimens and -0.4 for the -T shear specimens. Using either eq 6-13

or Fig 6-2 the ratio Kw/Kit is determined for the +T and -T shear specimens as 0.653

and 1.214 respectively. This ratio can be used to predict the fitting parameters IC, and

96



Chapter 6: Experimental Study of T-stress effects in mode II

K„0„ for mode II fracture toughness results from those determined earlier for mode I

tests.

K0[K1lf ,(+7)]= 0.6531(0	MPaqm
	

(6-16a)

Kink, [Kilf ,(+7)] = 0.653Kmin [ICJ- =0.961 MPaqm
	

(6-16b)

K0 [K ,(-7)} =1.214Ko [IC if ]=2.42 MPaqm
	

(6-17a)

Kmin [K111 ,(—T)]= 12141Cin [1( if ]=1.79 MPaqm
	

(6-17b)

The values of predicted K0 and K„,07 are replaced in eq 6-9b and the probability of

mode II fracture in PMMA is predicted for each set of shear tests from the probability

of mode I fracture. The results are shown in Fig 6-15. It is seen from Fig 6-15 that the

distribution functions for mode II fracture toughness predicted from that determined

for mode I test results are in good agreement with the experimental results for both the

+T and -T shear tests. However, the predicted function for the -T shear tests is slightly

conservative.

The results of the present study show that if Ba is known for a shear specimen, not

only can the mode II fracture toughness be determined from mode I fracture toughness

Kif , but also a reliable probability function for mode II test results can be predicted by

using the probability function for mode I fracture results.

6-5. CONCLUDING REMARKS

1) A failure diagram in terms of Kll and T was obtained for mode II using the MTS

criterion. The diagram suggests that the effect of T can be significant in linear elastic

mode II fracture.

2) A shear specimen was designed to study brittle fracture in mode II for different

shear loading conditions. The finite element analysis showed that, depending on the

loading conditions, the specimen could provide a considerable positive or negative T

in conjunction with the singular terms of stresses.
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3) Shear tests were carried out on PMMA using the proposed specimen. The results of

experiments showed that the mode II fracture toughness in the -T shear specimen is

significantly higher than that in the +T shear specimen. The direction of crack growth

initiation is also considerably changed for the two loading conditions.

4) It was shown that the mode II fracture toughness and the direction of crack growth

initiation predicted using the failure diagram are in good agreement with the

experimental results obtained from the +T and -T shear tests.

5) The fractography of the specimens showed that the features observed across the

fracture surface in the +T shear specimens are considerably different from those

observed in the -T shear specimens.

6) A statistical function based on the Weibull probability model was used to predict

the distribution of fracture toughness results. It was shown that the function which has

already been used widely for cleavage fracture in steels can also be employed to

predict the results of brittle fracture in PMMA for both +T and -T shear tests.
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CHAPTER SEVEN

EFFECTS OF GEOMETRY AND CONSTRAINT

IN MIXED MODE LOADING

7-1. INTRODUCTION

It was shown in previous chapters that the magnitude of the T-stress can be significant

in cracked specimens subjected to mixed mode loading. By taking the T-stress into

account, a generalised maximum tangential stress (MTS) criterion in terms of the

parameters K and T was suggested for linear elastic mixed mode fracture. The

significant effect of the T-stress on the mode II fracture toughness was also shown

experimentally for a typical brittle material. However, all of these previous studies

have been based on linear elastic fracture mechanics.

For metallic components, an often significant volume of material around the crack tip

undergoes plastic deformation prior to crack growth. Therefore, elastic-plastic stress

and strain fields should be employed to study fracture conditions. Metals with lower

ductility fail in a brittle manner by cleavage fracture of the grains. Conversely, for

highly ductile materials failure is often associated with slow crack growth and a

significant amount of plastic deformation. Two major mechanisms of duc le crack

growth in metallic alloys are the mechanism of void growth and coalescem, and the

mechanism of shear localisation and decohesion.

As described in Section 2-7-2, the effects of geometry and loading conditions in mode

I fracture can be quantified by a dimensionless constraint parameter Q. The parameter

Q describes the difference between the actual near crack tip stresses and the stresses

obtained from the HRR solution. For small scale yielding where the maximum radius

of the plastic zone is small compared to the relevant lengths in the cracked specimen,

99



Chapter 7: Effects of Geometry and Constraint in Mixed Mode Loading

the constraint parameter Q can be obtained in terms of the remote elastic T-stress.

O'Dowd and Shih (1992) have used a so-called boundary layer formulation to obtain

the relation between Q and T for several hardening coefficients in mode I. They have

also shown that Q can be used as a constraint parameter for both brittle fracture and

ductile fracture where this is a result of the mechanism of void growth.

Although substantial work has been carried out to show that the far-field elastic T-

stress has a significant influence on the near crack tip stresses, almost all of these

investigations have been confined to pure mode I. In this chapter, a boundary layer

formulation is described and a method for determining the constraint parameter Q is

presented for mixed mode loading. The effect of the T-stress on different crack tip

parameters is studied and a Q-T diagram is obtained for mode II. Finite element

analysis is also carried out to calculate the constraint parameter Q for several shear

specimens and the results are compared with those predicted by the Q-T diagram. The

influence of the T-stress on both mode II brittle fracture and mode II ductile fracture is

also discussed. For ductile fracture the T-stress effect is studied for both the

mechanism of void growth and coalescence, and the mechanism of shear localisation.

7-2. QUANTIFYING Q FOR MIXED MODE PROBLEMS

In this section, the modified boundary layer formulation and a method for quantifying

the constraint parameter Q are described for mixed mode loading.

7.2.1. Boundary layer formulation

The boundary layer formulation described in section 2-7-1 for pure mode I can be

used to simulate the small scale yielding conditions for a mixed mode crack. A

circular region containing an edge crack is considered such that the crack tip placed

on the centre of the circle. Elastic-plastic material properties are used. The traction or

displacements corresponding to the elastic mixed mode fields are applied along the

circular boundary. To comply with the requirements for small scale yielding an

appropriate magnitude for the boundary conditions is chosen such that the maximum

radius for the plastic zone around the crack tip remains very small compared with the

radius of the circle.
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If singular terms alone define the boundary conditions, the stresses inside the plastic

zone are expected to be consistent with the singular stresses presented by Shih (1974)

and described in Section 2-2-3, for mixed mode loading. The boundary layer

formulation can also be modified to include the T-stress in the boundary conditions.

For the state of plane strain, these boundary conditions are

	

1—v	 cos-0 [0_ 2v) — sin 2ux(0)=Ki 	
E 2ir	 2

Reps°
E

, 1—V I R	 s.n[
K11	 2 2(1+ V) + cos2 (-0-2 1- T 1— v2

11 2 71- 1

—v TR sin _0 [2(1+ 0 _
cosuy(0)	

1 K.	 21--,-011
E 2ir	 2L	 \ LI

—K11 
1—v \IR 	 0
E 2ir	 2

cos—[(1— 2v) —sin2 (	 T'' + v)
2	 R sin0

(7-1a)

(7-1b)

where ux and uy are the displacement components in x and y directions, and R is the

radius of the circle.

Unlike the pure mode I case, where due to symmetry only one half of the model can

be simulated, a mixed mode boundary layer formulation should be modelled using the

full circular region.

7-2-2. Determination of the constraint parameter Q

In Section 2-7-2 the dimensionless parameter Q was introduced to quantify the crack

tip constraint in pure mode I. This was achieved by evaluation of the stresses ahead of

the crack tip along the crack line where fracture initiation is expected to o ur. The

mode I constraint parameter Qi corresponding to brittle fracture is determined as

c69 
—(c ee) REF along 0 = 0 for 1 

rao <5

00	 J

where cro is the yield stress, cree is the actual tangential stress and (0-69 )REF is either the

HRR solution for mode I or the boundary layer solution for small scale yielding with

T=0. A similar formulation can be used to determine Qui for mixed mode loading.

(7-2)
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However, in this case, brittle fracture no longer takes place along the crack line. If the

maximum tangential stress (MTS) criterion is adopted for predicting the direction of

fracture initiation, the crack tip constraint should be studied along the direction of

maximum tangential stress 00 around the crack tip. Therefore, the constraint parameter

in brittle fracture for mixed mode loading Q1111 can be determined from

C•% — (C 618 ) REF 
Q I I II =	 at 0=00 for , 1 < rc° <5

C0	 J

where here ()F is either the singular solution for cae given by Shih (1974) or the

mixed mode boundary layer solution for small scale yielding (T=0) with the

appropriate combination of the mode I and mode II components of the displacements

along the circular boundary of the model.

Shih (1974) has shown that the direction of maximum tangential stress 00 depends on

both the mode mixity and the material properties. Therefore, the method of

determining Q in mixed mode (or even in pure mode II) is more complicated than that

for pure mode I. This is described in more detail later in Section 7-3-2. Because of the

large amount of computational effort required to evaluate Q for mixed mode loading,

the remaining parts of this chapter are confined to pure mode II. However, the same

methodology can be employed for mixed mode.

7-3. CONSTRAINT EFFECTS IN MODE II BRITTLE FRACTURE

In this section the constraint near the tip of a mode II crack is studied. A relation

between T and Q is obtained using a modified boundary layer formulation. The

variation in Q is also determined for several pure shear specimens and is compared

with those predicted by the Q-T diagram.

7-3-1. Finite element modelling for boundary layer formulation

An appropriate boundary layer formulation was used in the finite element code

ABAQUS (1997) to study the near crack tip stresses in mode II loading. The finite

element mesh for the boundary layer model of radius 200mm is shown in Fig 7-1.

Thirty rings of elements were considered where each ring consisted of 35 eight-noded

plane strain elements in the circumferential direction. The density of nodal points was

(7-3)
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biased towards the crack tip such that the length of the elements in the first ring next

to the crack tip was 5.5*10-7 times the radius of the boundary layer model. The

Ramberg-Osgood equation with n=8 and a = 1 .4 was used for the plastic material

properties. Young's modulus, Poisson's ratio and the yield stress were 214 GPa, 0.3

and 400 MPa respectively. These material properties which are related to A508 steel

were determined from a standard tensile test carried out by Davenport (1993).

The mode I stress intensity factor K1 was set to zero in eqs 7-la and 7-lb and the

resulting displacement components were applied along the circular boundary. Three

sets of finite element analyses with T>0, T=0 and T<0 were carried out to study the

effect of the T-stress on the shape and size of the plastic zone near the tip of a mode II

crack. The plastic zone represents the region where the effective stress co, exceeds the

yield stress co and hence undergoes plastic deformation. It is noted that the normal-to-

the-crack component of displacement uy is much less than the parallel-to-the-crack

component of displacement u„ in pure mode II. This is shown in Fig 7-1 for T=0.

The size of plastic zones obtained from the three analyses and normalised with respect

to (K11 I co )2 are seen in Figs 7-2a to 7-2e for T/ o-, =+0.4, +0.2, 0, -0.2 and -0.4,

respectively. As expected, Fig 7-2c shows that the plastic zone in mode II for the case

of T=0 is symmetric with respect to the crack line. It is seen from Figs 7-2a, 7-2b, 7-

2d and 7-2e that the plastic zone is no longer symmetric when T takes a non-zero

value. The significant effect of T-stress on the shape of the plastic zone suggests that

the elastic-plastic fields near the tip of a mode II crack can change considerably for

different values of T.

7-3-2. T-stress effect on mode H crack tip stresses

The finite element model described in the previous section was employed to study the

effect of T on the near crack tip stresses in a mode II boundary layer formulation with

small scale yielding conditions. The mode II stress intensity factor Kll and three

values of T/c„ =-1, T/o-, =0 and T/o-„= +1 were considered by applying the associated

elastic displacements along the circular boundary of the model. The parameters Kll

and T were applied incrementally with a fixed ratio of T/KH throughout each analysis.

To keep the size of the plastic zone very small compared with the radius of the

circular boundary R , the stress intensity factor Kil was considered to be 53 MPaqm.

In this case the maximum radius for the plastic zone was less than 0.06 of R.
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To study the T-stress effects relevant to brittle fracture, the maximum tangential stress

criterion was adopted and the stresses evaluated along the direction of maximum

tangential stress 00. The material properties were the same as those described in the

previous section.

For the analysis with T/o-o =0, the angle 00 was equal to -76° and was independent of

the magnitude of load. Because 00 was not necessarily in line with one of the radial

sets of nodes in the finite element mesh, the stresses along this direction had to be

determined by a cubic interpolation between adjacent nodes. For the other two

analyses where T/o-0 �0, the maximum tangential stress angle 00 changed with the

magnitude of T/o-o on the boundary. Therefore, the numerical interpolation had to be

redone separately for each increment. The extremes for 00 were -84.6° for T/o-0=-1

and -64.9° for T/o-o =+1. The stages described above show that the computational

work needed to calculate the crack tip constraint for mode II (and similarly for mixed

mode) is much more than that for pure mode I.

The stresses calculated along 0, were normalised with respect to the yield stress co

and were plotted versus the normalised distance I-co /1 from the crack tip. With this

normalisation it was observed that the results for T/o-o =0 obtained for each component

of stress were the same irrespective of the load.

Fig 7-3 and 7-4 show normalised coo and Cr„. obtained along the direction 00 for

different values of T/o-o. It is seen that T can influence significantly the stresses near

the crack tip. Both coo and arr are increased by positive values of T/o-0 and decreased

by negative values of T/o-o. All of the curves for each component of stress are almost

parallel between 1 �(r o- /J )�5. This implies that the stress corresponding t given

value of T/0-0 can be predicted if the small scale yielding solution with T=0 is shifted

up or down by an appropriate amount.

7-3-3. Relation between T and Q in mode II

It is known in mode I that Q can be predicted from the elastic T-stress at least for

small scale yielding. In this section Q is first found in terms of T using a mode I

boundary layer formulation and the results are compared with those presented by
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other workers so as to validate the computational method used here. Next, a mode II

boundary layer formulation is used to find Q in terms of T/0-0 for pure shear.

Mode I - validation

To validate the finite element procedure used here for computing Q in mode II, the

boundary layer model was first subjected to the pure mode I boundary conditions.

Three analyses were carried out with T/c7o = -1, 0 and +1. Linear elastic-power law

hardening material properties with n=10, V =0.3 and 4=1/300 (where en = crn /E) were

used. The constraint parameter Q1 was calculated from eq 7-2 at r =2J/ a0 for different

values of TM,, on the circular boundary. The tangential stress croo obtained from the

boundary layer formulation with T=0 was considered for (0- 00 )REF . Fig 7-5 shows that

the results of the present analysis for Q1 versus TAT° are in good agreement with those

given by O'Dowd and Shih (1994).

Mode II

Just as for eq 7-2, the constraint parameter in a mode II crack problem QH is

calculated from

Qll 
a	 (Cr 649)REF along 9 = 00 , at 1 ' 0 ° < 5 	(7-4)

0-0

where ((see ) REF can be obtained either from the HRR solution for mode II or from a

mode II boundary layer formulation with T=0. The HRR solution for croo in mode II is

rewritten as

coo (  

a 0

1 (rc
a---,j(n,t9))

co	 6.0(I n ) H	 J	
(

where the subscript II for In and (3=0,9 indicates that the mode II values of these

functions should be used. The analytical results presented by Shih (1974) show that

for n=8, the direction of maximum tangential stress in mode II is about -77°. If the
tables of Symington et al. (1988) are employed to determine (In )11 and (deo (0,n))11

for 80= -77° and n=8, the results of eq 7-5 is simplified to

(7-5)
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Cr 90 
=

1"

(2.01)(-2-
J

-1/9
(7-6)

0-0

Fig 7-6 shows the results of eq 7-6 together with those obtained from the mode II

boundary layer formulation with T=0, described earlier. It is seen that the difference

between the two curves is negligible and hence either of them can be used for

calculating Qjj. In this study (cres)BLm,T=0 is employed as the reference stress.

Small strain finite element analysis was performed for three hardening coefficients

n=3, 8 and 13. The other material properties were the same as those given in Section

7-3-1. The tangential stress (5-99 was calculated at the end of each load increment along

the direction of maximum tangential stress 00, which varied with increasing load. The

variation of the angle 00 with T/o-0 is shown in Table 7-1. The mode II constraint

parameter Q11 was calculated using eq 7-4 at the distance r=2J/co from the crack tip.

Fig 7-7 and Table 7-2 show the relation between Qll and T/cro for mode II loading

with small scale yielding conditions for n=3, 8 and 13. It is seen that Q11 is positive for

positive values of T/cro and negative for negative values of T/o-o. The absolute value

of Q11 is also higher for materials having a lower plastic hardening coefficient n.

To study the effect of T-stress in mode I, previous work has shown that either the

radial stress or the mean stress may be used, either calculation providing similar

results. Therefore, two equations similar to eq 7-4 will be used to evaThate the

corresponding Qy parameters.

_ errr — (a rr)BLM,T=0 
(QII)rr along 0 = 00 , at 1 

ra
° <5

1" CT

along 0 = 00 , at 1	 < 5

(7-7)

(7-8)

where (QH), and (Q11)„, are the difference field for the radial and mean stresses.

Because the crack tip stresses are used to study for the effect on mode II brittle

fracture, MX, and (QH)„, are also calculated along the direction of maximum

tangential stress 00.
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Eq 7-7 and 7-8 were calculated at the distance r=2J/cr0 from the crack tip for n=8 and

for different values of T/ cc, . Fig 7-8 shows the results obtained for (0 ) and (Q11),,

together with those obtained earlier for the tangential stress (QH )99 . It is seen that the

results have a similar trend and the maximum difference between (Q11)6+60and (QH)n,

which occurs at T/o-c, =-1, is less than 0.1 .

Figs 7-9a, 7-10a and 7-11a show the effect of T/a„ on the angular distributions of the

stresses o, cr;., and Cm normalised with respect to the yield stress co and calculated

at the distance r=2.1/0-0 from the crack tip. Figs 7-9b, 7-10b and 7-11b show the

difference between these components of stress for different values of T/ co and those

obtained for TAgo =0.

7-3-4. Variation of Q in mode II crack geometries

In real specimens, the variation of the constraint parameter Q with load can be

determined directly from the near crack tip stresses using finite element results.

Alternatively, the Q parameter can be predicted from a Q-T diagram using the value of

the T-stress corresponding to the load. In this section the variation of Q with applied

load is obtained for several mode I and mode II specimens. The results of the mode I

analysis are used to validate the calculation method. The finite element results for Q

are used to study the extent of validity of the results obtained from the Q-T diagram.

Mode I - validation

The variation of the constraint parameter Q is first calculated for a mode I crack

specimen and the results are compared with those presented by other researchers. This

can be used for validation of the procedure employed here to determine the variations

of Q with load in mode II crack geometries.

A crack of length 20 mm was considered in a 200 mm by 200 mm square plate. A

linear elastic-power law hardening material model with n=10 and 6'0=1/300 was used

as before. The yield stress, Young's modulus and Poisson s ratio were 400 MPa, 120

GPa and 0.3, respectively. The specimen was plane strain and was subjected to a

remote uniform load normal to the crack line. The load was increased until a large

plastic zone extended from the crack tip towards the boundary of the specimen. Finite

element analysis was employed to calculate the constraint parameter Q from eq 7-2 at

the end of several load increments throughout the analysis. Fig 7-12 shows the
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variation of Q versus log(J/ao-o) where a is half the crack length. It is seen that the

results obtained here are in good agreement with those presented by O'Dowd and

Shih (1992) for a similar crack problem.

Mode II - Shear loading of the mixed mode specimen

A mixed mode test specimen (Fig 4-9) consisting of a single edge notched (SEN)

specimen and a fixture was described in detail in Section 4-5. Different mode mixity

from pure mode I to pure mode II could be achieved in the SEN specimen by

changing the angular position of the tensile load applied to the fixture. Three models

were suggested to simulate the connection between the SEN specimen and the fixture:

(i) contact model, (ii) pinned model and (iii) perfect connection model.

In this section the three models are subjected only to pure shear and with a crack

length to specimen width ratio a/W in the SEN specimen of 0.5. The finite element

simulation, which was described in detail in Section 4-5, is not repeated here.

Two finite element analyses are carried out for each model. In the first analysis, where

Qn is determined from a full field solution, the fixture has linear elastic material

properties with E=500 GPa and v=0.3 . The SEN specimen is considered to be elastic-

plastic with material properties given in Section 7-3-1 for A508 steel. The shear load

is increased beyond the load at which full plasticity takes place in front of the crack

tip in the SEN specimen. The constraint parameter Qn is calculated at r=2J/0-0 along

the direction of maximum tangential stress at different load increments throughout the

analysis.

In the second finite element analysis, both the fixture and the SEN specimen are linear

elastic. An arbitrary shear load P, is applied to the specimen and the relation b ween

the T-stress and Ps is obtained as

T =Ys .P,	 (7-9)

where Y, is a constant factor depending on the type of connection between the fixture

and the SEN specimen. The T-stress is then determined at the same loads used to

calculate Qii in the first FE analysis. These values of T are employed to determine Qii

from Fig 7-7 according to the Q-T diagram for n=8.
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The constant factor Y found as 0.53, 4.3 and 0 MPa/IN for the perfect connection

model, the contact model and the pinned model, respectively. Fig 7-13 shows the

results for Q11 obtained from the full field solution compared with those determined

from the Q-T diagram for the perfect connection model. Similar results are shown in

Figs 7-14 and 7-15 for the contact and pinned models. It is seen in these figures that

the results of the two approaches are in good agreement only for small scale yielding

(log(J/acro) <-3.5). As the load is increased, the difference between the results

becomes significant. For loads higher than those to cause full plasticity, the value of

Qll drops significantly for increasing load.

Figs 7-16 to 7-18 display the variation of the tangential stress o- 09 normalised with

respect to the yield stress ao obtained from the first FE analysis with the elastic-plastic

SEN specimen. Figs 7-16 and 7-17 show the variations of cool co along the direction

of maximum tangential stress 90 for the perfect connection and the contact models,

respectively. The change in the angular distribution of o-9,9 I co at r=2J/a0 from the

crack tip is shown in Fig 7-18 for the pinned model. These results will be discussed

later in Section 7-5-3.

7-4. CONSTRAINT EFFECTS IN INITIATION OF MODE II DUCTILE

FRACTURE

Two major microscopic mechanisms of ductile tearing in metallic alloys were

described earlier in Section 2-3. In this section, the crack tip fields are evaluated from

a mode II boundary layer formulation to study the possible effects of the T-stress on

the initiation of ductile fracture in the shear loading of cracked specimens.

7-4-1. Mechanism of void growth and coalescence

The void growth in ductile metallic alloys takes place when the inclusions and

impurities near the crack tip are separated from the surrounding materials due to local

tensile deformation. The initiation of ductile tearing is associated with excessive void

growth and coalescence between the crack tip and the void nearest to the crack tip.

Mathematical models such as those suggested by Rice and Tracey (1969) and

Rousselier (1989) show that the mechanism of void growth and coalescence is mainly

dependent on the ratio of mean stress am to the effective stress creff given by
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= 	 (o-xx+o-yy+o-,413
	 	 (7-10)

Cie
 li

1 [(crxx _ cryy ) 2 + (cryy _ cizz ) 2 ± (0.zz _ 0.x0 2 ± 60.13, 2 + 0.yz 2 ± az,y 2 )1
2

It is expected that the crack growth in specimens failing by the void growth

mechanism initiates along the direction of maximum C„, I 0-efp For pure mode I, this

direction corresponds to 0=0 i.e. ahead of the crack tip along the crack line.

The mode II boundary layer formulation described in Section 7-31 is employed here

to determine the direction of maximum o-,,, I o-eff in shear loading. The T-stress on the

remote boundary is also changed and its effect on 0",„ IC is studied along this

direction. Results are shown in Fig 7-19a and 7-19b. It can be seen from Fig 7-19a

that the angle 0 for the maximum o-,,, I o-eff is about -110 0 for T/o-o=0. This angle

increases and decreases slightly for positive and negative values of T/co, respectively.

Fig 7-19b shows the angular distribution of o-,,, /C obtained for different values of

T/o-0 subtracted by 0", I o-eff corresponding to the boundary layer formulation with

TIo-„=0. It is seen that the T-stress has a significant influence on o-,,, /C,, particularly

for -120°�00�120°. This will be discussed in more detail later.

7-4-2. Mechanism of shear decohesion

In this mechanism shear bands are formed between the tip of the crack and microvoids

near the crack tip. Ductile tearing initiates when the shear deformation is localised and

decohesion takes place along the shear band. The shear decohesion mechanism is

expected to occur in a region of high shear deformation around the crack tip.

To determine the possible directions of crack growth by this mechanism for a mode II

crack problem; two parameters, the shear stress are and the effective stress o-eff , are

studied around the crack tip. The mode II boundary layer formulation is used to

investigate the effects of the T-stress on these parameters.

Fig 7-20a and 7-21a show the angular functions of the shear stress and the effective

stress normalised with respect to the yield stress for different values of 77o-0. The

results are for r=2J/o-0. Both functions are a maximum at about 0=0 ahead of the

crack tip along the crack line. The effect of T/o.„ on the directions of maximum shear

stress and maximum effective stress is negligible.
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Figs 7-20b and 7-21b display the difference fields for these parameters, obtained by

subtracting the results of small scale yielding with T=0 from those for the boundary

layer formulation with different values of T/cro . It is seen from these figures that ahead

of the crack tip, where shear decohesion is expected to take place, the T-stress has

little effect on the shear stress and the effective stress.

7-5. DISCUSSION

7-5-1. Boundary layer formulation

Shih (1974) has shown for an elastic-plastic mixed mode crack problem, the singular

stresses near the crack tip can be described fully by two parameters: the J-integral and

the near crack tip mixity parameter M" given by

MP = —2 tan-1
g

a 90 (r ,0 = 0) 
lirn c (r 0 = 0)r-40 re ,

(7-11)

For small scale yielding the far field elastic stresses are also characterised by two

parameters: K1 and KB or alternatively J and the far field mixity parameter M e given

by

MM e
	 2 ,	 -1=— Lan

7r

a 00 (r ,0 = 0) 2	 _1
=—tan

Jr

K1
(7-12)lim ,

r-4.0 1- 'refr, 61= 0) ICH

According to Shih (1974), there is a unique relation between Me and MP in terms of

the hardening coefficient n. For hardening materials (n>1), M P is always larger than

M e. Although the mixity parameters are not the same near and far from the crack tip,

the singular stresses inside the plastic zone are always identical for different

geometries having similar elastic stress intensity factors K1 and Kll in the elastic far

field. These singular stresses can be determined by a boundary layer formulation (with

T=0) having the same material properties and stress intensity factors as those of the

actual geometry.

It is important to note that the results obtained from the actual geometry and those of

the boundary layer formulation are not consistent once small scale yielding conditions

are exceeded. This restriction is more significant for mixed mode than for pure mode
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I. In pure mode I excessive plastic deformation influences mainly the higher order

terms and not the singular terms of the near crack tip stresses, whereas in mixed mode

loading it also affects the near field mode mixity parameter M P and hence the singular

stresses. This implies that for moderate or large scale yielding in mixed mode

problems, the method described for determining alli using eq 7-3 is not accurate as

the difference between the tangential stresses in this equation contains a contribution

from the singular term.

7-5-2. Plastic zone in mode II

The effect of the T-stress on the shape of the plastic zone was first studied by Larsson

and Carlsson (1993) for mode I. According to their results, the maximum radius of the

plastic zone (rp )„,„, is enlarged by a compressive T-stress. Also the symmetric lobes

of the plastic zone rotate forward. The opposite occurs for a positive T-stress: the

plastic zone is contracted and rotates backwards.

Fig 7-2 shows the T-stress effect on the mode II plastic zone. For T=0, the plastic zone

is symmetric with respect to the crack line and the maximum radius (r p )m along 0

=0 (see Fig 7-2c). The plastic zone also contains two parts: a larger front part and a

smaller rear part. The T-stress which makes the shape of the mode II plastic zone

shape asymmetric, influences both the front and the rear parts of the plastic zone. A

positive T causes the direction of (rp ),,,,,,, in the front part to rotate downwards. This

rotation increases for larger values of T/o-o. The rear part of the plastic zone is also

influenced by the T-stress. The lower section in the rear part is enlarged by a positive

T whereas the upper section is contracted.

The effect of negative T on the shape of the plastic zone is opposite to the effect of

positive T. A comparison between Figs 7-2a and 7-2e (or Figs 7-2b and 7-2d)

indicates that the mode II plastic zone for a positive value of T is a mirror image of

that for a negative value of T.

7-5-3. Effect of constraint for brittle fracture

The influence of the T-stress on the mode II brittle fracture was described in Section

7-3. To compare the results obtained in this study for mode II with those obtained by
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other workers for mode I a short review of the previous findings for constraint effects

on mode I brittle fracture is presented here.

Larsson and Carlsson (1973) carried out a number of finite element analyses for

different mode I specimens and showed that for similar values of stress singularity,

the near crack tip stresses inside the plastic zone can be significantly different.

Betegon and Hancock (1991) attributed this discrepancy to the crack tip constraint.

They used a mode I boundary layer formulation and showed that the near field

stresses can be predicted by the HRR solution only for specimens having a highly

constrained plastic zone. Betegon and Hancock also showed that the crack tip

constraint is high for specimens having a positive T and is low for specimens having a

negative T. They suggested a two parameter (J-T) characterisation for mode I crack

tip fields.

O'Dowd and Shih (1991) argued that a J-T formulation is confined to small scale

yielding because the elastic term T has no relevance to the fully plastic conditions.

They suggested a J-Q approach to describe fully the crack tip fields in mode I loading

and showed for several cracked specimens that the J-Q approach can be used even

beyond small scale yielding.

.1-dominance in mode II

Maccagno and Knott (1991) studied experimentally brittle fracture in several steel

specimens subjected to mixed mode loading. They suggested that the maximum

tangential stress (MTS) criterion can be used for predicting the direction and the onset

of brittle crack growth in mixed mode specimens, even in the presence of plastic

deformation around the crack tip. However, this conclusion assumes the pure

antisymmetric loading for mode II used in their work, and may not be valid for more

general cases of mixed mode loading.

Fig 7-3 shows that for a given hardening coefficient n, the effect of a remote T on the

tangential stress coo along the direction of maximum tangential stress 00 is

independent of ro-0 /J for 1 � ro-0 /J �5. The tangential stress is increased by positive

T/o-„ and decreased by negative T/o-0. It is seen that for mode II, unlike for pure mode

I, positive T/o-o can increase significantly the tangential stress.
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According to Betegon and Hancock (1991), J-dominance in pure mode I can be

attributed to geometries having zero or positive T. A similar phenomenon has been

suggested for mixed mode loading by Du et al (1991) who have studied the effect of

the T-stress on the near crack tip stresses for a limited number of mode I and mode II

mixities. However, the results of the present study show that at least for pure mode II

both positive T and negative T can provide a significant discrepancy between the

crack tip stresses and the mode II HRR stresses. This implies that along the direction

of maximum tangential stress in mode II, J-dominance is attributed only to geometries

having zero (or negligible) T.

Mode II constraint parameter

To determine the mode II constraint parameter Qll, the crack tip stresses were

subtracted by the singular stresses obtained from a mode II boundary layer

formulation with T=0. Fig 7-6 shows that the singular stress obtained from this

method are in very good agreement with those of the mode II HRR solution. This

agreement is better for mode II than for mode I. The numerical results by Betegon and

Hancock (1991) show that the mode I HRR stresses are noticeably higher than those

of the boundary layer formulation.

Fig 7-3 shows that the tangential stresses for different values of T/o-c, are parallel

between ro-o /J =1 and ro-o /J =5. Therefore, Q11 can be calculated at any point between

these two limits. The mode I studies by O'Dowd and Shih (1991) show that the finite

element results obtained from a large strain analysis are consistent with those of a

small strain analysis except for ro-0 /.1 � 1. Hence, it is more convenient to use a small

strain analysis and take the results further away from the crack tip (say r /J =2)

where the effect of the large strains are negligible. Unfortunately no similar data was

found in the literature for large strain effects in mode II and so the same effect was

assumed here, the stresses being always evaluated at rao /J =2.

Fig 7-7 shows that for positive values of T/cro, Q11 is increased by reducing the

hardening coefficient n, which is similar to mode I results (O'Dowd and Shih, 1994)

shown earlier in Fig 2-6. For negative values of T/cro, Q11 is increased for larger values

of n which is in contrast with mode I results. It is well known that for n=1, that is for

the linear elastic material properties, the T-stress in mode I has no effect on the

tangential stress in front of the crack tip (0 = 0). Therefore, the mode I constraint

parameter Q1 should vanish for n=1. The results presented by O'Dowd and Shih
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(1994) for T/o-, <0 disagree with this argument. Hence, it is suggested that the mode I

Q-T diagram can be inaccurate for low values of the hardening coefficients n. For

mode II, the direction of fracture initiation 00 for brittle materials is about -70° (±20°

depending on T and n) and the T-stress always influences the tangential stress along

this direction, even for a linear elastic material.

Fig 7-8 shows that the constraint parameter calculated for the tangential stress (Q11)00

is in good agreement with that computed for the mean (hydrostatic) stress (Q11)m. This

implies that along the direction of maximum tangential stress, Qll can be considered

as a hydrostatic state of stress influencing mainly the direct stresses. The maximum

discrepancy between (QH) 09 and (QH),, is 0.1 which is related to T/o-0 =-1. A similar

figure has been given by O'Dowd and Shih (1994) for the maximum difference

between the same parameters in mode I. The effect of T on the crack tip stresses is not

confined to the direction of maximum tangential stress 00. This is shown for example

in Figs 7-9 and 7-11 where the significant effect of the T-stress can be seen for the

whole range of-100°_� 0 �+100°.

Finite geometry shear specimens

The boundary layer formulation assumes that the geometry of the specimen is so large

that the crack tip stresses are insensitive to the finite geometry effects. This

assumption is no longer applicable for real specimens when the extent of the plastic

zone around the crack tip becomes considerable. The accuracy of the constraint

parameter Q calculated from the Q-T diagram using the boundary layer formulation

can be studied individually for each cracked specimen. The evolution of Q due to

increasing external load is determined from the full field solution using finite element

analysis and are compared with variations of Q computed from the Q-T diagram.

This has been carried out here for a mixed mode specimen subjected to pure shear

with three different connection models. The results are shown in Figs 7-13 to 7-15. It

was shown in Chapter 4 that in mode lithe T-stress is positive for the perfect

connection model, negative for the contact model and zero for the pinned model. A

similar trend can be seen in Figs 7-13 to 7-15 for QH calculated based on the Q-T

diagram when the shear load is not high (for instance when log(J/a0-0)<-3.5). The

results of the full field solution are in good agreement with those of the Q-T diagram

but only up to log(J/aa0)=-3.25 for the perfect connection model, log(J/ao-0)=-3.5 for
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the contact model and log(J/ao-0)=-2.2 for the pinned model. Beyond these limits the

discrepancy between the results of two methods becomes significant.

The results of the full field solution indicate that Coll decreases rapidly at higher loads

for all three models. This is mainly due to the excessive plastic deformation leading to

the relief of constraint around the crack tip. It is observed from Figs 7-13 to 7-15 that

the extent of agreement between the results of the full field solution and those of the

Q-T diagram and also the onset of the drop in the results of the full field solution vary

significantly for different mode II specimens. A similar finding has been reported by

O'Dowd and Shih (1992) from the finite element analysis of several mode I

specimens.

7-5-4. The effect of constraint for ductile fracture

Figs 7-19 to 7-21 show the effect of the T-stress on some of the characterising

parameters in the mode II ductile fracture. For the mechanism of void growth and

coalescence, which depends mainly on the ratio of the mean stress to the effective

stress cro, /o-eff, the direction of the maximum c7,,, /cseff varies with T/o-„ within

—120 0�0�+1200 (see Fig 7-19a). Between these two limits um Age- is influenced

significantly by T/o-0. In contrast, Figs 7-20a and 7-21a show that T/cro has very little

effect on the directions of the maximum shear stress and the maximum effective stress

which are two important parameter in the mechanism of shear localisation and

decohesion. Also the magnitudes of the shear stress and the effective stress are almost

insensitive to T/cro along these directions.

It should be noted that the magnitudes of the difference fields corresponding to o-re/o-0

and creff/cro depend on the normalised distance rcro /J from the crack tip. However, the

angular functions of these parameters and the related difference fields (shown in Figs

7-20b and 7-21b) are not changed significantly by distance. The results shown in Figs

7-20 and 7-21 are calculated at r=2J/(70 from the crack tip to show only the typical

distributions of the stresses and the corresponding T-stress effects.

Fig 7-22 compares the effect of T/cro on the difference fields related to the shear stress

along 0 = 00 and Cm /ere along 0 =-100°. It is observed that in mode II, T can

significantly influence croi /o-eff and hence fracture initiation by the mechanism of void
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growth. Conversely, cre/co as a characterising parameter for fracture initiation by the

mechanism of shear decohesion is almost insensitive to T.

It is worth noting that the results shown in Fig 7-22 can be used to understand the T-

stress effects only for the initiation stage of ductile fracture. To study the effects of

geometry and constraint on the resistance curve associated with the ductile crack

growth in shear, an appropriate model should be used to simulate the incremental

crack growth beyond the initiation stage.

7-6. CONCLUDING REMARKS

1)A mode II boundary layer formulation was used to study the effect of the remote T-

stress on the near crack tip stresses for small scale yielding.

2) It was shown that T has a considerable influence on the shape of the plastic zone

around the crack tip in mode II. The shape of the plastic zone for positive T is a mirror

image about the crack line of that for negative T of the same magnitude.

3) Along the direction of maximum tangential stress the radial and tangential stresses

are increased for positive values of T and decreased for negative values of T.

Therefore, a single parameter is not sufficient to describe fully the near crack tip

stresses in mode II.

4) The mode II constraint parameter Q11 was determined in terms of T/cro for small

scale yielding. It can be expected that the mode II fracture toughness in brittle

materials increases for shear specimens having a negative T-stress and decreases for

those having a positive T-stress. The comparison of the results of Q11 calculated for

both the tangential stress and the mean stress show that Qll can be lsidered as a

hydrostatic state of stress in the shear loading of cracked specimens.

5) Qii was calculated for three shear specimens using both the full field solution and

the Q-T diagram. The results of the Q-T diagram were in agreement with those of the

full field solution for small scale yielding but not for moderate or large scale yielding.
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6) It was shown that in mode II, the effect of the T-stress on the initiation of the

ductile crack growth can be significant for the mechanism of void growth and

coalescence and negligible for the mechanism of shear localisation and decohesion.
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CHAPTER EIGHT

GENERAL DISCUSSION

8-1. INTRODUCTION

The results of the theoretical and experimental studies carried out in this research have

already been discussed separately in the preceding chapters. The aim of this chapter is

to present a general discussion to integrate the major findings of the thesis and to

describe in more detail some of the results not discussed before.

The significance of the higher order terms of stresses, in particular the T-stress, for

describing the crack tip stresses are discussed. The difference between antisymmetric

loading and general shear loading is elaborated. The maximum tangential stress

(MTS) criterion is compared with the generalised MTS criterion. It is shown that the

results of the MTS criterion are not always a conservative prediction for mixed mode

fracture.

The results of the previous mode II fracture tests on brittle materials are compared

with the results obtained in this research. It is shown that the previous results can be

used only for limited practical loading conditions. The effect of the T-stress on the

crack tip stresses inside the plastic zone is discussed. It is shown that the T-stress

effect in mode II can be very different for the three mechanisms of fracture: brittle

fracture, ductile fracture by the mechanism of void growth and ductile fracture by the

mechanism of shear decohesion.
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8-2. HIGHER ORDER TERMS OF STRESS

In Chapter 3 a series expansion was derived for the elastic stresses near the crack tip

in an internally cracked plate. It was shown that the higher order terms of stress are

considerable ahead of the crack tip for both a. crff. Figs 3-3 and 3-4 show that

among these terms the most significant ones are the second term (r 112 term) for o,
and the second and third terms (T and r 112 terms) for a:cc.

Chao and Zhang (1997) proposed a two-term criterion for mode I brittle fracture and

in linear elastic materials. They took into account both the singular term and the r 112

term in cfyy and predicted the onset of crack propagation for a stress-controlled

mechanism of fracture. Chao and Zhang showed that the mode I fracture toughness

can vary for brittle materials depending on the geometry and the type of loading.

It can be suggested from the results shown in Fig 3-3 that a two-term fracture criterion

is considerably more accurate than a single term, at least for the internal crack

specimen. The influence of the second term of the series expansion for cry), in a stress

controlled fracture criterion depends on the crack length and the critical radius rc from

the crack tip. A three-term fracture criterion is not expected to be more accurate as Fig

3-3 shows that the third term is negligible near the crack tip. It is noted that the T-term

and the r /2 term of the series expansion for c no influence on fracture toughness

in the stress controlled criterion suggested by Chao and Zhang. However, these terms

can affect the fracture toughness in a strain-controlled two-term (or three-term)

fracture criterion where the opening strain Eyy depends on a because of Hooke's law

effects.

The higher order terms of stress can influence considerably the size of the plastic zone

in front of the crack tip rp . It is seen from Figs 3-5 to 3-8 that the plastic zone size

predicted from a two term solution (singular term and T term) is generally more

accurate than that of the singular term alone. However, Fig 3-7 shows that the effect

of the T-term on the plastic zone size depends also on the yield criterion used. For

plane stress T has no influence on rp if the Tresca yield criterion is used. Figs 3-5 to

3-8 show that a three-term approximation for the plastic zone size (r "2, T, 1'112 terms)

gives a very good agreement with the exact solution.
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A mixed mode fracture criterion by Theocaris and Andrianopoulos (1982a) suggests

that fracture in brittle materials occurs when the minimum radius of the plastic zone

(rp),,, around the crack tip attains a critical value. For a mode I crack the minimum

radius of plastic zone (rp)m is along the crack line in front of the crack tip. Therefore,

the higher order terms of stress can influence significantly the fracture toughness in

the internal crack specimen, if the criterion suggested by Theocaris and

Andrianopoulos (1982a) is used.

It is concluded that a two parameter approach to the characterisation of fracture is

more accurate than a single parameter approach, such as the use of the stress intensity

factor alone. Indeed, there are circumstances where a single parameter approach will

give unacceptably inaccurate results.

8-3. T-STRESS IN MIXED MODE LOADING

Despite the significance of the higher order terms of stress, in particular the T-stress,

they are often ignored in the fracture studies of components. This is mainly due to the

computational difficulties for determining the constant coefficients of the series

solution which can vary noticeably for different specimens. For example, in

comparison with the number of methods to evaluate the stress intensity factor, few

methods are known for determining the T-stress, particularly in mixed mode loading.

Among the methods available for calculating T, analytical methods can be used only

for simple geometries. Most of the computational methods either require a specific

formulation not available in the standard finite element codes or require more than

one finite element analysis.

The displacement method described in Section 4-3 is a simple method which can be

used to determine T for any geometry. Fig 4-8 shows that the finite element results

obtained from this method are in good agreement with the analytical results even for

the more complicated case of mixed mode loading. The displacement method was

used to study the variations of T in the mixed mode test specimen shown in Fig 4-9.

Fig 4-13 shows that the biaxiality ratio B, the dimensionless equivalent to T, can

change significantly from mode I to mode II. However, its variation depends largely

on the loading configuration, represented here by the three connection models

between the fixture and the SEN specimen. The maximum variation is seen for the

contact model.
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An important result which is observed from Fig 4-13 is the presence of the T-stress in

mode II loading. It is commonly assumed that T vanishes for mode II. This

assumption is mainly due to the series solution presented by Williams (1957) for the

crack tip stresses. Let us recall the definitions of mode I and mode II loading. In pure

mode I, the crack flanks open without any sliding whereas in pure mode II crack

flanks slide without any opening. To provide the conditions necessary for mode II,

Williams (1957) assumed an antisymmetric stress field and derived series expansions

for stresses and displacements near the crack tip. The Williams' solution for o

mode II shows that T always vanishes for antisymmetric loading. This is in agreement

with the results of the pinned model as shown in Fig 4-13. However, it has been

shown in this research that there are practical loading conditions where the crack

flanks slide without opening (pure mode II) but where an antisymmetric loading does

not exist. For these loading conditions, such as the shear loading of the perfect

connection and the contact models, there can be a significant T-stress in mode II as

shown in Fig 4-13. It is interesting to note that for these two models the magnitude of

the biaxiality ratio B in mode II is much more than in mode I. For example, for the

contact model the biaxiality ratio in mode II is 7 times that of mode I. The variation of

B in mixed mode depends directly on the type of loading, represented here by the

connection models.

It can therefore be concluded that the antisymmetric loading is a specific state of

general shear loading in which T=O. In the Williams solution for mode II (eq 2-4),

both o cryy near the crack tip are antisymmetric relative to the crack line, that is

the sum of stress at any two symmetric points (x o , +y,) and (xo , -y0) is zero. But in

the general shear loading only ayy is antisymmetric and the sum of o-  at any two

symmetric points is a constant which is independent of distance from the crack tip and

quantitatively is equal to 2T. However, the other terms of the series solutions for the

crack tip stresses in the general shear loading are similar to those presented by

Williams for the antisymmetric loading.

8-4. K-T FORMULATION FOR LINEAR ELASTIC MIXED MODE

FRACTURE

As discussed earlier, the effect of T on the mode I fracture toughness is negligible for

a linear elastic material failing by a fracture mechanism controlled by tensile stress.
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This is because the T-stress has no influence on the opening stress ahead of the crack

tip. However, for mixed mode loading where the direction of fracture initiation 00

makes an angle with the initial crack, T can affect the tangential stress along 90. The

generalised maximum tangential stress criterion suggested in Chapter 5 shows that the

effect of T on both the direction of fracture initiation and the fracture toughness can be

significant (Figs 5-5 to 5-7).

It is important to note that the mixed mode fracture toughness obtained from the

conventional MTS criterion (T=0) is not always a conservative prediction because a

positive T reduces the fracture toughness as shown in Fig 5-6. In contrast, the results

of the conventional MTS criterion can be too conservative when T is highly negative.

Figs 5-5 to 5-7 show that the magnitude of the T-stress effect in mixed mode fracture

depends on two parameters B and a. The dimensionless biaxiality ratio B represents

the ratio of T relative to the stress intensity factor and depends only on the geometry

and loading conditions. The parameter a is a dimensionless measure of the radius of

the process zone r,.

Even for very brittle metallic materials, there is a so-called process zone around the

crack tip in which materials undergo plastic deformation, large strains and damage.

Because of material damage, the stresses inside the process zone are finite and hence

the maximum stress often takes place along the boundary of the process zone along

the direction of fracture initiation. Therefore, the critical tangential stress for fracture

is normally studied at a critical distance r, from the crack tip which represents the

radius of the process zone. The critical distance r, is often assumed to be a material

property and to depend on parameters such as the working temperature, the

composition of the material and the environmental factors. Determination of r,

normally requires a mixed experimental and computational technique and a large

number of tests. An example of such techniques was described in Chapter 6 for

determining r, for PMMA.

It is seen from Figs 5-5 to 5-7 that the effect of T in mixed mode fracture depends on

the size of process zone: the T-stress effect increases for materials having a larger

process zone. The direction of fracture initiation Oo in the conventional MTS criterion

(T=0) is independent of material properties and depends only on the mode mixity.

This is not the case for the generalised MTS criterion where 0, is also a function of r,

and can vary for different materials.
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In the formulation used in Chapter 5 to quantify the effect of T in mixed mode

fracture, the radius of the process zone along the direction of crack growth r, was

assumed to be constant and independent of the mode mixity and the loading

conditions. This is firstly because using a mode mixity dependent r, makes the

solution method much more complicated and secondly because there is very little

information in the literature about the real size of the process zone for different

materials.

8-5. BRITTLE FRACTURE IN MODE II

Figs 5-6 and 5-7 show that the effect of T on the mixed mode fracture toughness is a

maximum for pure mode II loading. Therefore, two sets of shear fracture tests were

carried out to investigate experimentally the significance of the T-stress effects in

mode II for real specimens.

The specimen shown in Fig 6-3a has the following advantages. First, the specimen

can provide a significant magnitude of T for both positive and negative shear loading.

Secondly, the magnitudes of T, K1 and B are similar for the same magnitudes of

positive and negative shear loads. Hence, the same design can be used for both +T

and -T shear tests and the relative effect of T on the mode II fracture toughness can be

observed directly from the fracture load. Figs 6-7 and 6-8 display the difference

between the results of fracture tests for the positive T and the negative T shear tests.

The difference can be seen distinctly in the direction of fracture initiation (Figs 6-6

and 6-8) and in the mode II fracture toughness (Fig 6-7).

Mixed mode brittle fracture has been studied by many researchers for different

materials. They have often attempted to design test specimens capable of producing

symmetric loading for mode I and antisymmetric loading for mode II (e.g. Richard,

1981 and Banks-Sills and Bortman, 1986). For pure mode II, Banks-Sills et al. (1983),

and Banks-Sills and Arcan (1983, 1986) have carried out substantial photoelasticity

studies to show that their specimen provides an antisymmetric field of deformation

near the crack tip. Similarly, Jones and Chisholm (1975) and Chisholm and Jones

(1977) designed a shear specimen to give antisymmetric loading for pure mode II.

However, as described earlier in Section 8-3, antisymmetric loading is a specific type

of shear loading where in addition to K1, the T-stress also vanishes. Furthermore, ideal
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antisymmetric loading rarely occurs for real engineering components and in practice a

considerable value of T-stress can be present for mode II loading, see also Ayatollahi

et al. (1996 and 1998a). This suggests most of the experimental results presented in

the literature for mode II brittle fracture can be used only for a limited set of real

applications where the crack tip is subjected to conditions very close to antisymmetric

loading.

8-6. CONSTRAINT EFFECTS IN MODE II

8-6-1. Brittle fracture

In materials having some ductility, the crack tip process zone is normally surrounded

completely by the plastic zone. In this case, the conditions for brittle fracture should

be determined from the elastic-plastic stresses along the boundary of the process zone.

However, brittle fracture in these materials often takes place when the plastic zone is

still contained by a large elastic volume. Therefore, the remote elastic stresses

including the T-stress influence the size and shape of the plastic zone around the crack

tip and the stresses inside the plastic zone.

Fig 7-2 shows that a remote T-stress changes appreciably the crack tip plastic zone in

mode II. The change in the size of the plastic zone is the same for positive and

negative values of T with similar magnitudes. This is not the case in mode I where a

positive T decreases the maximum radius of the plastic zone and a negative T

increases it. Fig 7-2 also shows that the effect of a positive T on the shape of the

plastic zone is exactly opposite to the effect of a negative T.

The conditions necessary for J-dominance, where the crack tip stresses can be

described fully by J using the HRR solution, have been studied by different

researchers for mode I. Bilby et al. (1986) show that stresses inside the plastic zone

can be considerably lower than those of the HRR solution for some standard fracture

test specimens. They used a boundary layer formulation and showed that the

tangential stress ahead of the crack tip decreases significantly for negative T and

increases slightly for positive T. Betegon and Hancock (1991) complemented these

studies and proposed that J-dominance or a single parameter characterisation in mode

I crack problems corresponds to specimens having positive or zero T whereas a two-

parameter characterisation is required for specimens having negative T.
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The results of the present research indicate that the conditions for J-dominance in

mode II are not the same as in mode I, in particular when T is positive. Fig 7-3 shows

that the tangential stress o-0,9 along the direction of maximum tangential stress 00 in

mode II increases considerably with positive T whereas in mode I the effect of

positive T on the tangential stress ahead of the crack tip is negligible. However, for

both mode I and mode lithe tangential stress decreases significantly by negative T. It

can therefore be concluded that J-dominance in mode II is confined to specimens in

which T is zero. For specimens having a non-zero T-stress, two-parameter

characterisations must be used.

As described in Section 2-7, Yang et al (1993a and 1993b) and Chao and Ji (1995)

proposed a two parameter approach based on J and A2 to characterise fully the crack

tip stresses in mode I. In this approach the higher order terms of stress within the

plastic zone are determined analytically and the effect of the important terms is

represented by A2 . Yang et al (1993a and 1993b) and Chao and Yang (1996) also

studied the application of the J-A2 approach for mode II loading. They showed that the

effect of the higher order terms in mode II is always negligible and a single parameter

approach is sufficient for describing the crack tip stresses. However, it should be

noted the J-A 2 approach proposed by Yang et al and Chao and Yang for mode II is

based on the assumption that the deformation field near the crack tip is always

antisymmetric. Therefore, the results of their approach are correct only for specific

shear specimens, subjected to antisymmetric loading.

Both the J-T and J-Q approaches described in Section 2-7-2 for mode I were used in

Section 7-3-4 to determine the crack tip constraint for three different shear specimens.

The mode II constraint parameter Qii was calculated for each specimen using the

stresses obtained from finite element analysis and was compared with that predicted

from the Q-T diagram. The normalised tangential stresses cee along the direction of

maximum tangential stress Bo are shown in Fig 7-16 for the perfect connection model

and in Fig 7-17 for the contact model. The tangential stresses are calculated at

different load increments.

For the perfect connection model (Fig 7-16) the tangential stress initially increases

until a load corresponding to log(J/ao-0)=-3.67 and then decreases significantly below

the small scale yielding solution with T=0 (or the HRR solution). The stresses are
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almost parallel for 1 �ro-o/./�5, although at higher levels of load (log(J/ao-0)>-2.75) the

stress curves diverge slightly. The change in the stress curves can also be predicted by

the results shown in Fig 7-13. Since the T-stress is positive in the perfect connection

model, the constraint parameter QH calculated using the Q-T diagram increases as

shown by the solid line in Fig 7-13. However, the Q-T diagram, obtained for small

scale yielding, does not give accurate results for moderate to large scale yielding.

Therefore, the J-T approach cannot be used beyond log(J/ao-0) =-3.67 where the

tangential stress begins to reduce due to excessive plastic deformation and loss of

constraint. The stresses are still parallel up to full plasticity, that is log(J/ao-0)=-2.75,

implying that the J-Q approach is valid for larger extents of plastic deformation.

However, for loads higher than that corresponding to full plasticity, the stress curves

diverge gradually and the J-Q approach is not suitable to describe the crack tip

stresses.

Fig 7-17 shows that for the contact model the tangential stress is always below the

HRR solution. The stresses are parallel between 1 �ro-IJ�5 up to log(J/ao-0)=-3.49 and

diverge considerably beyond it. It is seen from Fig 7-14 that again the J-T approach is

valid for small scale yielding, the J-Q approach can be used up to full plasticity and

that a two-parameter characterisation is no longer applicable beyond the full plasticity.

Fig 7-18 shows that for the pinned model the change in the tangential stresses is

negligible up to log(J/ao-0)=-2.5. This is in agreement with the results predicted by the

J-T approach (Fig 7-15) because in this model the T-stress is zero due to

antisymmetric loading. However, the constraint parameter QH decreases due to

excessive plastic deformation and a loss of constraint for loads higher than that to

cause full plasticity, that is log(J/ao-0)=-1.97.

Figs 7-13 to 7-15 show that the extent of validity of the J-T approach and the J-Q

approach depends significantly on the geometry and loading conditions, represented

here by different connection models between the SEN specimen and the fixture. For

example, the J-T approach can be used for the pinned model up to log(J/ao-0)=-2.5

whereas for the perfect connection and contact models, the J-T approach is confined

to log(J/ac0)<-3.5. A comparison between Figs 7-16 and 7-17 shows that the

applicability of the J-Q approach is more limited for the contact model is than for the

perfect connection model.
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The J-T approach was also used by Du et al (1991) to study the effect of T on the

crack tip stresses in mixed mode loading. They suggested that J-dominance in mixed

mode loading is related to specimens having a positive or zero T-stress. However, this

cannot be seen directly from their results, at least for pure mode II, because they did

not show the complete results for the effect of positive T on the tangential stress near

the crack tip. Furthermore, all of the mixed mode specimens studied by Du et al are

mode I dominated (M e.�0.82) and they do not show any practical specimens where

there is a significant T-stress in mode II dominated loading conditions.

As described in Section 7-3-2, the calculation of the constraint parameter Q for mixed

mode or pure mode II is much more laborious than for pure mode I. This is mainly

because the direction of initiation of brittle fracture in mixed mode is not the same as

the initial crack line and changes with increasing load. Therefore, the Q-T diagram

was calculated in this research only for pure mode II.

For mixed mode loading, the Q-T diagram may be derived using the same approach as

for pure mode II loading, provided the extent of plastic deformation is confined to

small scale yielding (see section 7-2-2). This is because, for large scale yielding, the

near field mode mixity MP is not uniquely related to the far field mode mixity Me (see

Shih, 1974). However, it is likely that the results of the Q-T diagram for mixed mode

lies between the two extremes related to the Q-T diagrams for mode I and mode II.

The Q-T diagram is shown for both mode I and mode II in Fig 8-1 for n=3 and in Fig

8-2 for n=13. Fig 8-1 shows that for materials with high work hardening (small n)

mode mixity has little effect on Q in specimens having negative T. In contrast, Fig 8-2

shows that for materials with low work hardening (large n) the effect of mode mixity

on Q is not significant for specimens having positive T. These arguments cannot be

extended to moderate or large scale yielding situations.

8-6-2. Ductile fracture

The two major mechanisms of ductile crack growth in metallic alloys were described

earlier in section 2-3. Theoretical models such as those suggested by Rice and Tracey

(1969) and Rousselier et al (1989) show that the ratio of the mean stress over the

effective stress cs„,/aeff is the main characterising parameter for the mechanism of void

growth and coalescence. The shear stress are or the effective stress cseff can be
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considered to be the main parameters in the mechanism of shear band localisation and

decohesion.

Fig 7-19 shows that for mode II, fracture initiation by the mechanism of void growth

is more likely to occur at an angle 0 of about -100 0 where o-„,/creff is maximum. Along

this direction the effect of a remote T on cr„,/creff near the crack tip is significant for

both positive and negative T. The angular functions of cre/co and creff/o-o around the

tip of a mode II crack are shown in Figs 7-20 and 7-21. Both the shear stress and the

effective stress are a maximum directly ahead of the crack tip. Along this direction

these stresses are almost independent of the remote T-stress.

The effects of the T-stress on are /co along 660° and am /o-eff along 66-100° are

compared in Fig 7-22. As described earlier, in addition to J, a second parameter such

as T or Q is needed to characterise fully the crack tip stresses for shear loading. It was

shown in this research that T and Q, known also as constraint parameters, can vary

significantly for different specimens depending on the geometry and loading

conditions. The significant effect of T on cr„,/aeff displayed in Fig 7-22 shows that the

initiation of crack growth can vary considerably for different shear specimens failing

by the mechanism of void growth and coalescence. In contrast, the initiation fracture

toughness in shear specimens failing by the mechanism of shear decohesion is

expected to be independent of geometry and loading conditions.

A few researchers have attempted to study experimentally mixed mode crack growth

in ductile materials. Almost all of them have reported that the microscopic mechanism

of fracture is not the same for mode I and mode II. For example, Tohgo and Ishii

(1992), Hallback and Nilsson (1994) and Kamat and Hirth (1996) carried out many

experiments on several aluminium alloys and showed that mixed mode specimens

failed by the mechanism of void growth and coalescence in mode I and by the

mechanism of shear decohesion in mode II. A similar observation has been reported

by Swankie (1999) for A508 pressure vessel steel. Experimental and analytical

investigations by Wu and Mai (1995) and Hancock et al (1993) for various mode I

specimens show that ductile crack growth depends significantly on the geometry and

loading conditions of the cracked specimen. These researchers have suggested that the

effect of geometry in mode I ductile failure by the mechanism of void growth can be

quantified by the constraint parameters T or Q.
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Swankie (1999) has recently undertaken numerous mixed mode fracture tests on A508

steel for specimens of different crack length, width and thickness. He shows that in

mode II all of the specimens fail by the mechanism of shear decohesion. The results of

his pure shear tests show that the effect of geometry on the resistance curve in mode II

is negligible. This is in agreement with theoretical findings in the present research

which suggest that the mechanism of shear decohesion is almost independent of the

geometry and loading conditions in shear specimens.

Mixed mode experiments on ductile metallic alloys often involve a transition from the

mechanism of void growth in mode I dominated loading to the mechanism of shear

decohesion in mode II dominated loading. The mode mixity corresponding to the

transition point varies for different specimens and depends on the material properties.

For example, Clayton and Knott (1976) suggest that ductile materials with low or

intermediate work hardening are more susceptible to failure by the mechanism of

shear decohesion. Therefore, the effects of geometry and constraint in mixed mode

ductile fracture which depend on the failure mechanism can vary significantly for

different materials as long as there is a competition between the two mechanisms of

void growth and shear decohesion.

It can therefore be concluded that the effect of the T-stress in mode II fracture depends

on whether the specimen fails by brittle or ductile fracture. For brittle fracture, both

positive and negative values of T influence the onset of crack extension. For ductile

fracture, the significance of the T-stress depends on the mechanism of crack growth.

The T-stress has a negligible effect on fracture initiation where crack growth occurs

by the mechanism of shear band localisation and decohesion. Conversely, the effect of

the T-stress on the initiation fracture toughness is significant in ductile materials

failing by the mechanism of void growth and coalescence.
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CHAPTER NINE

CONCLUSIONS AND

RECOMMENDATIONS FOR FUTURE WORK

9-1. GENERAL CONCLUSIONS

Concluding remarks have already been outlined at the end of each of the preceding

chapters. In this section the major findings of the present thesis are reiterated.

1. A binomial expansion has been used to determine the series solution for the

stresses ahead of the crack tip in a mode I internal crack specimen. It was shown

that the second term ( V7- term) in o-yy and the second and third terms ( T-term and

VT- term) in cr are not negligible near the crack tip. These terms have a significant

effect on the accuracy of the size of the plastic zone in front of the crack tip. It was

shown that the magnitude of the effect of the T-stress on the size of the plastic zone

can depend largely on the yield criterion used.

2. Simple methods were suggested to determine the T-stress using finite element

analysis for any mode I, mode II or mixed mode situation. It was shown that more

accurate results with less mesh refinement can be achieved if the crack flank

displacements are used to calculate T, instead of the crack flank stresses.

3. It was revealed that, the T-stress is zero in mode II only for purely antisymmetric

loading. There are real loading conditions where a significant T-stress is obtained

in pure mode II loading.

4. The conventional maximum tangential stress (MTS) criterion has been modified to

account for the effect of the T-stress in mixed mode fracture in linear elastic
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materials. It was shown that the angle between the crack line and the direction of

fracture initiation increases for positive values of T and decreases for negative

values of T.

5. The mixed mode fracture toughness predicted by the conventional MTS criterion is

not always conservative because the fracture toughness is reduced in mixed mode

specimens having a positive T. Conversely, The results of the conventional MTS

criterion can be too conservative for specimens having a highly negative T.

6. According to the generalised MTS criterion (K-T formulation), the T-stress effect

in mixed mode fracture of linear elastic materials is a maximum for pure mode II

and can be considered to be zero for pure mode I.

7. A shear fracture test specimen was designed to investigate experimentally the

effects of positive and negative T in mode II fracture of PMMA. The experimental

results showed that T has a significant effect on both the direction of fracture

initiation and the fracture toughness. The results of the shear tests were in good

agreement with those predicted by the generalised MTS criterion. The results of the

shear fracture tests showed that the path of crack growth and the features observed

across the fracture surface are considerably different for positive T and negative T

shear specimens.

8. The effect of a remote T-stress on the plastic zone near the crack tip has been

studied in mode II for small scale yielding by using a mode II boundary layer

formulation. The shape of plastic zone was influenced significantly by T. The

shape of the plastic zone for positive and negative T of the same magnitude were

mirror images about the crack line.

9. The results of the boundary layer formulation showed that the tangential stress

along the direction of maximum tangential stress was increased by positive T and

decreased by negative T. The effect of T on the tangential stress was significant for

both positive and negative T. Therefore, J-dominance in mode II is confined to

antisymmetric loading for which T=O. For shear specimens having a non-zero T-

stress, at least two parameters are needed to characterise fully the crack tip stresses.

132



Chapter 9: Conclusions and Recommendations for Future Work

10. A Q-T diagram was obtained to determine the mode II constraint parameter Q11 in

terms of T/cro for shear specimens failing by brittle fracture in small scale yielding.

The Q-T diagram showed that the magnitude of QH decreases for materials having

a higher work hardening coefficient.

11. Elastic-plastic finite element analysis of three shear specimens showed that the

near crack tip tangential stresses can be predicted for contained yielding using a

two-parameter characterisation approach. The J-T approach can be used for small

scale yielding and the J-Q approach can be used up to full plasticity.

12. The initiation of the ductile crack growth in mode II is influenced significantly by

T for the mechanism of void growth and coalescence and is insensitive to T for the

mechanism of shear localisation and decohesion.

9-2. POTENTIAL FUTURE WORK

To extend the results obtained from the theoretical and experimental studies carried

out in this research, it is suggested that:

1 Using finite element analysis, the variation of the T-stress should be studied further

for other mixed mode specimens. The effect of the crack length on the T-stress

should be investigated to find out the relationship between T and the crack length

for mixed mode loading.

2. The shear fracture experiments on PMMA need to be carried out for similar

specimens with different crack lengths to investigate experimentally the effect of

the crack length on the mode II fracture toughness in linear elastic materials.

3. The Q-T diagram which was presented in Section 7-3-3 for pure mode II, need to

be obtained for mixed mode loading with several different mode mixities using the

method outlined in Section 7-2-2.

4. The constraint parameters T and Q studied in this thesis for mode II can be

implemented into a failure assessment diagram such as R6 (Milne et al., 1988) to

account for the effect of geometry and loading conditions in pure shear failure of

engineering components.
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5. Shear fracture tests similar to those carried out on PMMA should be undertaken for

a metallic alloy which fails by cleavage fracture in mode II with limited plastic

deformation around the crack tip . The results of these tests can be used to validate

the theoretical results obtained in Chapter 7 for the geometry and constraint effects

in the mode II brittle fracture described by Tor Qll.

6. Similar shear tests are necessary to investigate experimentally if the initiation

fracture toughness is insensitive to geometry and loading conditions for ductile

materials failing by the mechanism of shear decohesion in mode II.
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a= 
3cost90 —1

sin t90

b . 8 Ba cost%
3	 61„

cos
2

1

Nil +z2

or

Appendix

Appendix A5

Generalised MTS Criterion - Solution Method

A5-1. Direction of fracture initiation

Eq 5-16 can be written as
K1 	 aKH
	 +  1	 —b	 (A5-1)

4/ 2 +K//2 V Ki2 ±Kli
2

where the coefficients a and b are

If z = KII then eq A5-1 can be written as
K1

a
+ 	 =b	 (A5-2)

V
t+z2

z 2

(a2 _ b2) z2

which gives

+ 2az+ (1-b 2 )= 0

±b-Ja 2 —b 2 +1IC —a z=	 —
K1	a2—b2

(A5-3)

Numerical results suggest that only the negative sign in the numerator of eq A5-3 is

acceptable, because the direction of fracture initiation 0° must be between —90° and

0°. Therefore the mode mixity parameter Me = 2 tan s 	 can be written as
x	 Kii

Me = ,2,„
a"

I 	
a2 _b2

- [	 (A5-4)Ii- L 	
—a —b-Nla 2 —b 2 +1

Recalling that a and b are functions of 00, eq A5-4 provides a closed form solution for

the direction of fracture initiation in mixed mode fracture. Eq A5-4 gives the ratio of

K1 /K11 required for a given fracture initiation angle 00. The results were shown in Fig

5-5.
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8C = —3 tan
2

Ku-
d= 	

80
COS3

2

e . 8
e=-4Batansin

2	 2

zK11 =

Ktf cos3 1 (1+ cz— eVl+z 2 )
(A5-8)

Appendix

A5-2. Onset of fracture, K-B formulation

Eq 5-22 can be written as

K1 	 cKil	 d 
	 + 	 + 	 =e	 (A5-5)\i/(1 2 + K11 2 v

1
ic2

+ K112 AIM + KI12

where the coefficients c, d and e are

Eq A5-5 can be shown in terms of z as
d

1	 C K1 
	 =e	 (A5-6)

1+z 2 
+

Vi+ 12
	+

1/1+z2z

K if
Recalling that e± = 	  eq A5-6 gives

K1	 K	 3 9°1 COS 2

Ki 	 1 
. 	 	(A5-7)

Ktf coS3 19° (1 ± cz–eV1+ z2)
2

and from Kii = zKI

Once z is found from eq A5-3 for a given 80, the values of —Ki and —KH can be
K11	 Kif

determined using eqs A5-7 and A5-8 for the corresponding z and O. The results then
iciare plotted in the diagrams of — versus —Kii for different values of Ba (see Fig
K11	 K if

5-6).
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, 3cose, —1 8 /	 COS°.
K1 =—Aii 	 + 3 T v2z r, 	

sine%	 610
COS

2

(A5-9)

KJ	 gi 3cose, —1 8 COO. TV2irr,	 1 3cose0 —1
=	 	 +

Ky-	 g2 sine.	 3 
cos 
	

K1 	 g2 sine.
2

(A5-12)

K II

Kif
for

Appendix

A5-3. Onset of fracture, K-T formulation

Eq 5-16 may be rewritten as

If eq A5-9 is replaced in eq 5-21 gives

g2 K 11 = g1 TV2n-r, — K tf	 (A5-10)

where
3cost9. —1	 3 t9g1 = -cos0c, COS 2 15-1-	

and
sin2 0 	 g2 = 	 cos —2 + COS-2 sine.

sine,

Eq A5-10 can also be shown as

K11 = g 1 7' Al271- r,	 1

IC if g2 I C if	 g2

and from eq A5-9

(A5-11)

. K1
Eqs A5-11 and A5-12 are used to determine the fracture loci 1-T--if versus

7 V2ir r,
different values of 	  where the results were shown in Fig 5-7.

K if
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Tables

a/W =0.1 a/W =0.5 a/W =0.7

B, FE analysis -0.44 -0.15 0.213

B, Sham (1991) -0.464 -0.153 0.21

Table 4-1. Mode I results for the biaxiality ratio B, for the single

edge notched specimen.

Loading angle, fi

(degrees)

Connection B

(a/W=0.1)

B

(a/W=0.5)

B

(a/W=0.7)

0 (mode II) Pinned 0 0 0

22.5 Pinned -0.35 -0.098 0.177

45 Pinned -0.422 -0.135 0.205

67.5 Pinned -0.433 -0.146 0.211

90 (mode I) Pinned -0.44 -0.15 0.213

0 (mode II) Contact -1.32 -1.54 -1.89

22.5 Contact -1.7 -1.39 -0.913

45 Contact -1.85 -0.837 -0.325

67.5 Contact -1.42 -0.471 -0.054

90 (mode I) Contact -0.434 -0.22 -0.004

0 (mode II) Perfect 0.93 0.59 0.78

22.5 Perfect -0.045 0.104 0.015

45 Perfect -0.051 0.006 -0.031

67.5 Perfect -0.12 -0.038 -0.048

, 90 (mode I) Perfect -0.14 -0.053 -0.053

Table 4-2. The biaxiality ratio B, for the three connection models with different

crack length ratios.
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Tables

+T shear tests -T shear tests Mode I tests

IC Kmin Ko Kmin IC Kmin

Fitted values (MPaqm) 1.32 0.787 2.54 1.43 1.99 1.47

Table 6-4. Results for fitting parameters in the Wallin's model used for probability

analysis of the mode I and mode II fracture toughness results.

Tki, 0, (n=3)

degrees

00 (n=8)

degrees

Oo (n=13)

degrees

1 -65.6 -65 -68.6

0.8 -67.1 -68.4 -71.2

0.6 -68.7 -71.3 -73.5

0.4 -70.5 -73.4 -75.2

0.2 -72 -74.9 -76.4

0 -72.4 -76 -78

-0.2 -70.75 -76.9 -79.4

-0.4 -73.3 -78.4 -81.3

-0.6 -75.7 -80.4 -82.6

-0.8 -77.9 -82.6 -84.1

-1
,

-79.9 -84.6 -86.1

Table 7-1. The variation of the direction of maximum tangential stress 90 in mode II

versus T/0-0 for n=3, 8 and 13.
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Tables

T/o-o en (n=3) Q11 (n=8) Q11(n=13)	 .

1 0.643 0.439 0.399

0.8 0.541 0.354 0.319

0.6 0.422 0.256 0.232

0.4 0.287 0.161 0.153

0.2 0.133 0.079 0.076

0 0 0 0

-0.2 -0.141 -0.084 -0.084

-0.4 -0.33 -0.177 -0.169

-0.6 -0.522 -0.293 -0.269

-0.8 -0.7 -0.419 -0.384

-1 -0.868 -0.545 -0.502

Table 7-2. The mode II constraint parameter Q11, calculated along the direction of

maximum tangential stress, versus T/o-0 for n=3, 8 and 13.

155







kr)

31
X / 

11
X

.--;
„

C.)c.)
czs	 g
c.) 4-0

(1.)
-c3(1)	 bp

1-1) 0

ct 77)

cd
V

Vuu uogu!T!u! ampuj

ks.

00



1	 2	 3
	

4
	

5

rao /J

HRR solution6

b

Displacements or tractions on the
boundary (Singular term)

Figure 2-4. Boundary layer model to simulate small scale yielding
in a finite element model.

Figure 2-5. Effect of positive and negative T on the tangential stress
ahead of the crack tip in a modified boundary layer model (Mode I).
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Figure 2-6. The constraint parameter Q versus T/ cro for different values

of hardening coefficient n. (O'Dowd and Shih, 1995)



Figure 3-1a. An elliptical hole
in a large plate.
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Figure 3-1b. A sharp crack
in a large plate.
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Figure 3-2. First 6 terms in series expansion for Gyy

(Internal crack in a large plate)
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Figure 3-3. Effects of the higher order terms on improving the results

for normalised a- y . (Internal crack in a large plate)Y
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Figure 3-4. Effects of the higher order terms on improving the results

for normalised o. (Internal crack in a large plate)
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Figure 3-5. Plastic zone size along the crack line versus external load.

Plane strain, Tresca yield criterion
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Figure 4-1. Single edge notched (SEN) and double edge notched (DEN) specimens.

Figure 4-2. Mesh pattern for one half of the SEN specimen
and one quarter of the DEN specimen.
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Figure 4-3. Normalised T in a single edge notched specimen of a/W=0.4 .
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Figure 4-4. Normalised T in a double edge notched specimen of a/W=0.2 .



o	  SEN (FE, Displacement method)
—0— SEN (Kfouri, 1986)
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Figure 4-5. T-stress determined using the displacement method,

compared with results calculated by Kfouri(1986)

for SEN and DEN specimens of different crack length.
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Figure 4-8. Normalised T for different loading angles, FE results
compared with those presented by Seed and Nowell (1994).
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a) Perfect connection model:
Specimen and Fixture as a
single unit.
Link: Perfect connection.

b) Pinned model:
Specimen and Fixture are two
individual units.
Link: Only through location pins.

c) Contact model: 	 contact
Specimen and Fixture are two	 surfaces

individual units.
Link: Location pins plus contact
elements between the two units.

Figure 4-10. Three models used to simulate the link
between the specimen and the fixture.
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Figure 4-13. Biaxiality ratio in the mixed-mode test rig for

crack depth to specimen width ratio (a/W) of 0.5.
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Figure 4-14. Biaxiality ratio for the mixed-mode test rig in

the case of pin loading alone (pinned model) for crack depth

to specimen width ratios (a/W) of: 0.1, 0.5 and 0.7 .
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pin loading plus contact elements (contact model) for different

crack depth to specimen width ratios (a/W).
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Figure 5-1. Elastic tangential stress along the direction of fracture initiation O.
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Figure 5-2. An angled internal crack in a biaxially loaded panel.
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Figure 5-3. Variation of normalised K1 , IC and T with

loading angle fi in a centrally cracked plate under uniaxial load.
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Figure 5-4. Variation of the biaxiality ratio with loading angle

in a centrally cracked plate under biaxial uniform load

for different values of the lateral load parameter A...
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Figure 5-5. Effect of T on the direction of crack growth initiation

in mixed mode fracture based on the generalised maximum

tangential stress criterion.
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Figure 5-6. Mixed mode fracture loci based on

the generalised maximum tangential stress criterion.

B=T.Or a )1/Keff and a = (2 rc /a)1/2.
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Figure 5-9. Effect of T on fracture toughness for different

combinations of modes I and II, B is the	
•

biaxiality ratio, a= (2c/a)112
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B= Biaxiality ratio, a= (2r/a)1/2
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a. Mode II shear specimen, thickness = 20 mm.

b. Definition for positive and negative shear in mode II loading.
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d. Parameters used to describe the length and width of cracks.

Figure 6-3. Mode II and mode I test specimens.
(all dimensions in mm)
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Primary crack
growth

Initial crack edge

(d). Formation of the ridge markings

Approximate location
of Fig 6-10a

Hyperbolic
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Figure 6-9. Fracture surface for the positive T shear specimen.
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Figure 6-10. Microscopic picture of the hyperbolic markings.
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Figure 6-11 . Fracture surface for the negative T shear specimen.
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Figure 6-12. Statistical model for mode II fracture toughness in PMMA
for the + T shear tests. Fitting parameters, K0=1.32, Kono=0.787
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Figure 6-13. Statistical model for mode II fracture toughness in PMMA
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Figure 7-1. Finite element simulation of the mode II boundary
layer model showing the displacement boundary conditions
along the circular boundary (T=0).



a. TAT° = +0.4 b. T/cso = +0.2

d. 77 0 = -0.2 e. T/cso = -0.4

c. T/c3. 0 = 0

Figure 7-2. Effect of T-stress on the shape of plastic zone near the tip of a mode II
crack in small scale yielding. ( For all of the circles the dimensionless radius

r(cT„ /K„) is equal to 0.68)
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