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ABSTRACT

Vision is a major sensory modality in virtually all birds, and neognathus
species have among the most complex retinae of any vertebrate. The widespread
occurrence of visual mimics and of cryptically or aposematically coloured prey
indicate the importance of vision in prey detection, just as the extensive use of visual
displays confirms its role in communication. Until recently, most hypotheses
regarding the role of colour in avian behavioural ecology have relied on human
assessment of colour rather than the perceptual system of the natural receivers of the
signals. Such oversights on the part of evolutionary and behavioural biologists are
partly due to the paucity of relevant physiological data.

A microspectrophotometric study was conducted on the retinal photoreceptors
of the European starling (Sturnus vulgaris), blackbird (Turdus merula), blue tit
(Parus caeruleus), Indian blue-shouldered peacock (Pavo cristatus) and domestic
turkey (Meleagris gallopavo). In addition to a single class of medium wavelength-
sensitive rod visual pigment (wavelength of maximum absorbance, Xmax, 503 to
505 nm), the retinae of each species contained four cone visual pigments maximally
sensitive to long (LWS, k m., 557 to 566 nm), medium (MWS, A,. 503 to 505 nm),
short (SWS, Xi. 449 to 459 nm) and either violet (VS, 4a. 420 to 421 nm) or

ultraviolet (UVS, kmax 368 to 376 nm) wavelengths. The LWS, MWS, SWS and
VS / UVS visual pigments found in the single cones were associated with oil droplets
designated as R-type (cut-off wavelength, kcut, 517 to 572 nm), Y-type (Xcut 490 to
515 nm), C-type (? Cut 399 to 450 nm) and T-type (transparent) respectively. The
LWS cone visual pigment was also found in both the principal and accessory
members of the double cone, associated with P-type (X Ut 407 to 500 nm) and,

occasionally, A-type (Xc ut 479 to 490 nm) oil droplets respectively.
Absorption of short wavelengths by the P-type oil droplets found in the

starling, blackbird, blue tit and peacock gradually increased from the dorsal to the
ventral retina. The adaptive significance of this feature is discussed. The oil droplets
found in the single cones did not vary in their spectral absorption characteristics
according to retinal location. However, systematic variations in the topographical
distribution of different cone types were observed in the starling, blackbird and
peacock. In all species, double cones were less abundant in the posterior dorsal (PD)
retina than in the remaining retinal area. Whilst in the blackbird and peacock all
classes of single cone were relatively more abundant in the PD retina, the same
region in the starling eye was characterised by a relative deficiency of LWS single
cones and a relative abundance of SWS and UVS single cones. The study of the
spatial distribution of cone types in the starling is the most comprehensive so far
published. As well as spatial heterogeneity, left-right asymmetries were found, but
no sex differences. The relationship of this retinal asymmetry to behaviour and
neural asymmetries is discussed.

Estimates of the relative abundance of the different types of single cone
photoreceptor were used in conjunction with the microspectrophotometric data, and
measurements of the spectral transmission of the dioptric apparatus, to predict the
photopic spectral sensitivity functions of the starling, blackbird, blue tit and peacock.
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Chapter one: An introduction to the avian eye

1. An introduction to the avian eye

The avian eye comprises an optical system, which produces real images of the

objects and surfaces of a three-dimensional world, and a sensory system, or retina,

which functions as a two-dimensional detector array to extract visual information

from those images (Martin, 1985).

1.1 Optical system

The structure of the eye and its optical system are responsible for forming the

image on the retina which is transduced by the nervous system.

1.1.1 Eye shape and size

The large absolute size of the avian eye is suggestive of the importance of

vision to birds (Meyer, 1977). The mass of both eyes in some species (e.g. eave

swallow, Chelidon erythrogaster) is greater than the mass of their brain (Slonaker,

1918). By comparison, the human brain is approximately 51 times heavier then the

combined mass of our eyes (Vierordt, 1893 cited in Slonaker, 1918).

Generally, nocturnal predators possess the largest eyes, whereas water and

swamp birds the smallest (Martin, 1985). However, absolute eye size per se is no

particular indication of light gathering ability. Rather, it is the F-number (or relative

aperture number), which is the ratio of the focal length of the eye to its aperture

(pupil diameter). The F-number is reduced in the eyes of nocturnally adapted species

to enhance retinal illuminance (Pettigrew, 1983).

Walls (1942) classified avian eyes into three morphological types: flat,

globose and tubular. Allegedly the most common shape, the flat eye has an axial

(anterior-posterior) diameter which is smaller than its radial (equatorial) diameter

(e.g. swan, Cygnus olor; black-capped chickadee, Parus atricapillus). It is thought

that their shape is adaptive to fitting them laterally into a narrow head to maximise

the visual field (Suthers, 1978).

Globose eyes, in which axial and radial diameters are of similar magnitude,

are characteristic of many passerines (e.g. European starling, Sturnus vulgaris;

Martin, 1986) and diurnal birds of prey (e.g. eagle, Aquila chrysaetos; broad-winged

hawk, Buteo platypterus; Walls, 1942). It is proposed that this shape of eye, with its
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Chapter one: An introduction to the avian eye

increased focal length relative to the flat form, provides high resolution at great

distances, although this will also depend on properties of the dioptric apparatus and

the retina.

Tubular eyes, in which the axial diameter exceeds the radial diameter, occur

in most owls (e.g. great horned owl, Bubo virginianus) and some eagles (Walls,

1942; Martin, 1985). The increase in axial length has been implicated as an

adaptation for more precise accommodation. Furthermore, the large focal length of

these eyes, which increases the size of the retinal image, and flexible retinal neural

integration allows the eye to function over a wider range of luminance levels, with

greater visual acuity, as more photoreceptors are illuminated per visual angle (Martin,

1982). Such an eye is adaptive for species which are active both day and night rather

than strictly nocturnal (Martin, 1985). In each case, the anterior portion of the eye is

supported by a ring of bones, the scleral ossicles. In small eyes, the ossicles consist

of compact bone, but in larger eyes the plates are hollow, as is much of the avian

skeleton. By preventing the globe from changing shape, the scleral ossicles may

facilitate accommodative distortion of the lens and cornea (Sillman, 1973).

Typically the avian eye is not a symmetrical structure, and in particular

displays marked nasal-temporal asymmetry in the distance between the corneoscleral

junction and the equator (Martin, 1985; Martin, 1986). This `nasad asymmetry'

(Walls, 1942) results in the retina being arranged asymmetrically about the bulbar

axis, and is thought to maximise the width of the cyclopean (panoramic) visual field

(Martin, 1985). Generally, there is little asymmetry about the dorso-ventral axis.

Nasad-asymmetry in the European starling is thought to provide a mechanism of

static accommodation by creating a 'ramp retina' (Martin, 1986) which, as discussed

in chapter three, may also be correlated with the topographical distribution of the

different cone photoreceptor types.

1.1.2 Dioptric apparatus

The principal refractive components of the avian eye are a biconvex lens and

a convexo-concavo cornea. The combined refractive power of these two tissues

differs greatly between species, as does the relative contribution of each component

(Martin, 1985).
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Chapter one: An introduction to the avian eye

The cornea is a 'transparent' section of the sclera, the fibrous tunic which

forms the outer casing of all vertebrate eyes (Walls, 1942). The cornea generally has

a smaller radius of curvature than the sclera and, in the European starling, has a

uniform thickness of approximately 0.16 mm and a refractive index relative to air of

1.376 (Martin, 1986). In the pigeon (Columba livia) the refractive power of the

cornea is over twice that of the lens, whereas in the tawny owl (Strix aluco) the total

refractive power of the eye is divided approximately evenly between the two lenses

(Martin, 1982; Martin, 1985).

The anterior chamber between the cornea and lens contains the aqueous

humour. Because the refractive index of this 'transparent' fluid (1.337 in the

European starling; Martin, 1986) is similar to that of the cornea, the posterior surface

of the cornea has a much lower refractive power than the anterior surface.

The avian lens, which is typically very soft and pliable, consists of a central

body of concentrically graded refractive index surrounded by an annular pad (Martin,

1985). The annular pad, which is a feature unique to avian and reptilian lenses, is

thought not to have an optical role since it is always shielded by the iris. Instead, it

may function either as part of the accommodative mechanism (Walls, 1942) or as a

source of nutrients for the lens (Slonaker, 1918). The average refractive index of the

lens in the European starling is 1.523 (Martin, 1986), compared to values of 1.408 in

the pigeon, 1.470 in the tawny owl and 1.508 in the penguin, Spheniscus humboldti,

(Martin, 1982; Martin and Young, 1984; Martin, 1985). Lens size and shape varies

markedly between different avian species, presumably reflecting differences in

refractive power, accommodative range and visual fields of the eye. Avian lenses

(and corneas) are generally transparent to near-ultraviolet wavelengths (320 to

400 nm), transmitting well down to about 320 nm (Govardovskii and Zeuva, 1977;

Emmerton eta!., 1980; Goldsmith, 1990).

The large chamber behind the lens contains a fluid, the vitreous humour,

rendered gelatinous by retinal secretion of proteins during development (Mar-tin,

1985). The refractive index of the vitreous is similar to that of the aqueous humour

(1.337 in the European starling), conferring considerable refractive power to both the

anterior and posterior surfaces of the lens (Martin, 1986). The combined pressures of

the aqueous and vitreous humours distend the fibrous tunic to the point of rigidity.
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Chapter one: An introduction to the avian eye

Intraocular pressure is maintained partly by the continual secretion of aqueous

humour, and partly by external pressure exerted by the extraocular muscles (Martin,

1985).

Absorption of light by the dioptric apparatus determines the short wavelength

limit of photoreception (Rodieck, 1973). Consequently, the spectral transmission of

the pre-retinal tissues and media must be considered when predicting the spectral

sensitivity of an organism from the spectral absorptance characteristics of its

photoreceptors (chapter four).

1.1.3 Pupil and Iris

Pupil diameter is controlled by the iris, a heavily pigmented, vascularised

diaphragm immediately anterior to the lens. Its two major muscles, the pupil

sphincter and the pupil dilator, are responsible for the rapidity of the pupillary

response, which is notably high in birds (Martin, 1985).

Iris pigmentation serves no optical function except to render it opaque.

However, sexual, seasonal and age-dependent variations in iris colour, as well as

dietary influences, have been reported. Female European starlings, for example, have

a characteristic light brown ring around the outer margin of the iris which is absent in

the male (Feare, 1984). The brewer's blackbird, Euphagus cyanocephalus, also

varies in iridial colour depending on sex and age-class (Hudon and Muir, 1996). In

both cases, iridial opacity is enhanced by guanine-based reflective organelles in the

anterior pigment epithelium (Hudon and Oliphant, 1995; Hudon and Muir, 1996).

A pupil of varying aperture may perform several functions within the avian

eye (Martin, 1985). Firstly, the iris can control the brightness of the retinal image by

expanding or contracting as appropriate. The difference between minimum and

maximum pupil size in vertebrate eyes with circular pupils produces only a relatively

small change in image brightness (approximately 1.2 log i o units; Martin and Young,

1984) compared to the range of luminance levels which may be encountered in

natural environments (approximately 11.8 log i o units; Martin, 1985). Nevertheless,

variation in pupil diameter is probably sufficient to equalise retinal illuminance

within a particular habitat when natural luminance levels are changing relatively

slowly and over a more limited range.
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Chapter one: An introduction to the avian eye

Secondly, the pupil may protect the retina from photic or thermal damage by

reducing retinal image brightness. Whilst most avian pupils are spherical, ellipsoidal

and even vertical slit pupils have been observed (Martin, 1985). Slit pupils are found

in several vertebrate taxa (Walls, 1942) and are thought to protect the retina of

nocturnal or crepuscular species when exposed to bright sunlight by closing to a

smaller aperture than a circular pupil is able to (Martin, 1985).

Thirdly, the pupil may form part of the dioptric apparatus to improve retinal

image quality. By restricting the pupil aperture, rays which would otherwise pass

peripherally through the dioptric system, and would thus be susceptible to most of the

aberrations from which optical systems suffer, are removed. In addition, the pupil

may serve as a stenopaic aperture to improve the depth of focus of the eye (Walls,

1942; Martin, 1985).

Lastly, the pupil of certain species may work in conjunction with the lens to

achieve accommodation. This phenomenon is discussed in the following section.

1.1.4 Accommodation

Generally, the relaxed avian eye provides a sharply focused image on the

retina of objects at optical infinity (an `emmetropic' eye; Martin, 1985). Objects

closer than infinity will remain unfocused unless accommodation occurs to increase

the optical power of the eye (Glasser and Howland, 1996). The diversity of avian

visual ecology has led to specialisation and differentiation of the avian eye with

regard to accommodative ability, as with so many other aspects of its functional

morphology. Special mechanisms for rapid accommodation, involving both the

cornea and lens, are particularly well developed in diurnal species (Suthers, 1978).

However, good accommodative ability is by no means universal in birds. Many

nocturnal birds, the eyes of which are well adapted for low-light conditions, show

little or no accommodation (Glasser and Howland, 1996).

Usually, accommodation is achieved by two mechanisms: i) corneal curvature

is increased by contraction of Crampton's muscle, which extends from the sclera to

the edge of the cornea, and ii) contraction of Brucke's muscle increases the refractive

power of the lens by actively pressing the ciliary body against its margin. Humans,

incidentally, accommodate using only their lens (Glasser and Howland, 1996).
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Chapter one: An introduction to the avian eye

Birds which pursue their prey underwater show morphological adaptations to

compensate for the loss in refractive power of the cornea when immersed (Pumphrey,

1948). Piscivorous species, such as cormorants (Phalacrocorax carbo and P.

auritus), dippers (Cinclus mexicanus), black guillemots (Cepphus grylle), hooded

mergansers (Mergus cucullatus) and redhead duck (Aythya americana),

accommodate underwater using an ingenious iris control mechanism. A

hypertrophied ciliary body squeezes the anterior surface of the malleable lens against

the iris sphincter muscle. The central lens bulges through the pupil, changing the

refractive power of the dioptric apparatus by up to 80 dioptres (Sivak et al., 1977;

Katzir, 1993).	 Crampton's muscle is degenerate or absent in these species

(Pumphrey, 1948).

Some diving ducks are thought to combine this technique with a window in

their nictitating membrane of high refractive index (Suthers, 1978). Penguins (e.g.

Spheniscus demersus), on the other hand, have addressed the problems of amphibious

vision by evolving a relatively flat cornea. This minimises the loss of corneal

refractive power on entering the water and thus reduces the amount of

accommodation required (Sivak, 1976). Plunge divers, like the brown pelican

(Pelecanus occidentalis), which locate their prey prior to entering the water, do not

need good underwater vision and similar adaptations to compensate for the loss of

corneal refraction in water are absent (Sivak eta!., 1977).

1.2 Sensory system

The image analysing system consists of the sensory retina and the ancillary

structures which support its metabolism.

1.2.1 Retina

A great deal of our knowledge regarding avian retinal structure is derived

from the pioneering studies of S. Ramon y Cajal, which were collated in his "La

refine des vertebres", first published in 1893 (Rodieck, 1973). Cajal's observations

were a major source of information for the excellent reviews of Rodieck (1973) and

Martin (1985), which are summarised below.

The avian retina, which is relatively thick, avascular and lines the fundus, can

be divided into two principal layers, the outer pigmented layer and the inner neural
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layers. The outer pigmented layer, which separates the neural retina from the

choroid, comprises the pigmented epithelium (PE), a thin layer of polygonal cells

held together by junctional complexes. The PE has a number of important visual

functions, including the transfer of nutrients from the choroidal circulation to the

neural retina. PE cells are well adapted for this function, containing a profusion of

mitochondria and endoplasmic reticulum. Furthermore, extensive infolding of their

basal surface, adjacent to the choroid, greatly increases the surface area for metabolic

exchange, and long apical processes, extending between the photoreceptors for as

much as two-thirds of the length of the inner segments, facilitate transfer to the

neural retina. Other metabolic functions of the PE include the active, phagocytotic

breakdown of membrane disks shed continually from photoreceptor outer segments,

and the regeneration of bleached visual pigment.

The PE contains light-absorbing melanin pigment granules which, being

situated between the outer segments, are able to prevent optical coupling between

neighbouring photoreceptors, or even directly reduce the amount of light absorbed by

the outer segments. In fish, amphibians, reptiles and birds, a change from darkness to

light causes the migration of pigment granules into the apical processes, shielding the

more sensitive rods from bright light. In this state, the spindle-like granules lie end-

to-end with their long axis parallel to the outer segment.

In the European starling, pigment migration is considered to be very rapid

and, as in other species, is thought to be associated with photomechanical changes

which draw cones towards the light and extend rods away from it (Dalland, 1958;

Adler and Dalland, 1959). Studies of teleost retinomotor movements suggest that

light adaptive cone contraction is triggered by light absorption in rods (Kirsch et al.,

1989). During dark adaptation, the pigment granules migrate out of the apical

processes, exposing the rod outer segments.

The inner neural retina can be subdivided into seven layers, although it is

perhaps more instructive to describe the cells involved by their function rather than

their absolute position. The neuroepithelial layer, which lies adjacent to the PE,

contains the photoreceptors. The avian retina, as is true of most vertebrates, is

duplex in nature, containing both rods, which are responsible for dim light (scotopic)
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vision, and cones, which are responsible for bright light (photopic) vision and

mediate colour discrimination.

Photoreceptor axons synapse with bipolar cell dendrites in the outer

plexiform region of the bipolar layer. It is at this point that processing of the neural

visual signal begins. Several rods will synapse with a single bipolar cell

(summation), thus sacrificing spatial acuity for sensitivity. Each cone, on the other

hand, usually synapse with a single bipolar cell, promoting high visual acuity at the

expense of sensitivity. Accordingly, the cone-dominated retinae of diurnal birds have

a thicker inner nuclear layer (MIL), which contains the nuclei of the bipolar cells,

than nocturnal birds whose photoreceptors are mostly rods.

In the diurnal retina, three concentric strata may be distinguished in the outer

plexiform layer (OPL). Following an initial suggestion by Cajal (1893, cited in

Rodieck, 1973), Mariani and Leure-DuPree (1978) found that this stratification was

due to the distribution at three levels of the synaptic bodies of three groups of

photoreceptors: i) rods and double cones; ii) upright (straight) single cones, and iii)

oblique single cones. Stratification of the OPL is absent in nocturnal species,

presumably as rods greatly outnumber the other receptor types (e.g. Braekevelt,

1993a).

Bipolar cells synapse in the inner plexiform region of the bipolar layer with

proximally located ganglion cells, whose axons leave the globe as the optic nerve.

Ganglion cells are morphologically heterogeneous, varying in size, configuration and

the location of their dendrites in the inner plexiform layer. They are also functionally

heterogeneous, and respond to specific visual stimuli. Ganglion cells responding to

brightness contrast, verticality, horizontality, different shaped edges, movement and

colour have all been described in the pigeon. Some ganglion cells are 'displaced' to

the bipolar layer, but their function is unknown.

Also contained within the 1NL are the nuclei of horizontal, amacrine and

Muller cells. Muller cells form the scaffolding of the retina, their processes

occupying the extracellular spaces of the neural layers. Horizontal and amacrine

cells have modified axons which interconnect with other retinal neurones. These

'association' cells are involved in signal integration. Their relative abundance in

birds not only explains the thickness of the avian retina, but also suggests that many
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of the complex functions of the visual system (e.g. movement detection) that are

delegated to higher centres of the mammalian nervous system are performed at the

retinal level in birds (Sillman, 1973).

Amacrine, and possibly 'displaced' ganglion cells, also synapse with efferents

of the centrifugal system, which arise from cell bodies in the isthmo-optic nucleus

(ION) of the mid-brain. Once thought to be a unique feature of the avian visual

system, centrifugal projections to the retina have been described in all classes of

vertebrate (Reperant et al., 1989). Centrifugal fibres are thought to modulate the

output of amacrine cells (Meyer, 1977) and have been shown to enhance the temporal

response properties of ganglion cells (Uchiyama and Barlow, 1994), thus providing

localised control of retinal function. The precise role of the centrifugal system in

behaviour is unclear, but there is evidence to suggest that it may be involved in visual

attention switching between different regions of the retina (Clarke et al., 1996).

1.2.1.1 Photoreceptors

Vertebrate photoreceptors, which are distinguished from other retinal neurons

by their proliferation of specialised membranes, can be classified as either rods or

cones (Fein and Szuts, 1982). Both consist of a cell body which synapses with the

neural retina, a central 'inner' segment and an 'outer' segment which contains the

photosensitive visual pigment molecules. Outer segments are modified non-motile

cilia that are outgrowths from the inner segment. Traditionally, the terms 'rod' and

'cone' described the appearance, under the light microscope, of the geometrical shape

of the outer segment, which in rods were considered to be oblong, but in cones

tapered from their base at the inner segment towards the distal (scleral) tip.

However, there is considerable intraretinal and interspecific variation in

photoreceptor morphology, and shape alone is no indication of cell type. Instead,

rods and cones are often differentiated on the basis of functional properties, including

photosensitivity and spatial and temporal resolution.

Nevertheless, the rods and cones of avian retinae are easily distinguished by

their morphology. Rods have relatively large, cylindrical outer segments. Cones

display a much thinner, tapering outer segment and usually display a large oil droplet

in their inner segment. In general, the avian retina contains a single class of medium

wavelength-sensitive rod, four different types of single cone maximally sensitive to
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long (LWS), medium (MWS), short (SWS) and violet (VS) / ultraviolet (UVS)

wavelengths, and a single class of LWS double cone (Bowmaker et al., 1997).

The structure and spectral absorption characteristics of the photoreceptors

determine the efficiency with which a given species can acquire visual information

from the retinal image provided by the dioptric apparatus. Some of the important

considerations in photoreceptor design are discussed below.

1.2.1.1.1 Outer segment

The outer segment is the primary site of phototransduction, where light

energy is converted into a signal involving the movement of ions. Outer segments

are characterised by a stack of lamellar membranes oriented perpendicular to the

photoreceptor long axis. These pigmented membranes, or disks, are infoldings of the

plasma membrane (Rodieck, 1973; Fein and Szuts, 1982). An important distinction

between rods and cones is apparent with regard to membrane topology. In cones, the

disks remain as infoldings of the plasma membrane for the entire length of the outer

segment and, accordingly, their internal space is filled with extracellular fluid. In

rods, with the exception of a few basal disks nearest to the ciliary junction with the

inner segment, disks are pinched off from the plasma membrane, with each disk

forming a closed, intracellular vesicle. However, the disks are not free-floating and

remain attached to the enveloping plasma membrane by as yet unidentified ligatures.

To provide reasonable photosensitivity, photoreceptors must contain a large

number of visual pigment molecules. Because these molecules are integral

membrane proteins, the membranes containing them must have a large surface area.

The primary achievement of the laminated structure is to provide an extensive

membrane area whilst maintaining a relatively compact volume: a more dense array

of photoreceptors increases the spatial information which can be gleaned from the

retinal image (Rodieck, 1973).

Rod saccules, which occur as a single column within the limiting membrane,

display several shallow incisures at their periphery, giving them a 'scalloped'

appearance in horizontal section (Braekevelt, 1990; Braekevelt, 1993a; Braekevelt,

1993b; Braekevelt, 1994a; Braekevelt, 1994b; Braekevelt et al., 1996). Each incisure

branches into a network of fimbriae which may speed the diffusion of substances to

and from the saccule membrane (Rodieck, 1973). In avian cones, the lamellar
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structure usually takes the form of a single column of infoldings that originate in a

line opposite the connecting cilium. However, Cohen (1963) reported infoldings at

more than one site in pigeon cones, resulting in two or even three columns. In

horizontal section, cone disks are characterised by their lack of peripheral incisures.

Much of the ultrastructural organisation of the lamellar membranes has been

determined using X-ray diffraction. Briefly, a specimen is irradiated with an intense,

collimated beam of X-rays. Rays scattered by its atoms and molecules, usually by

Fraunhofer diffraction (Born and Wolf, 1970), are detected by a photographic plate

placed some distance behind the specimen. With regard to outer segments, X-ray

diffraction has been used to measure the distance between disks, and the size and

arrangement of visual pigment molecules within the membrane (Rodieck, 1973; Fein

and Szuts, 1982). By orienting the X-ray beam perpendicular to the photoreceptor

long axis, the observed saccule to saccule period in vertebrate rods has been

determined at approximately 30 nm. Diffraction patterns obtained with the beam

orientated perpendicular to the surface of the saccule membranes suggest that visual

pigment units 4 to 5 nm in diameter form a liquid-like (unordered) array across the

membrane.

Visual pigment molecules are oriented such that the long axis of the

chromophore is parallel to the surface of the saccule membrane (Knowles and

Dartnall, 1977). Furthermore, each visual pigment unit is free to rotate about an axis

normal to the disk surface, facilitated by the fluidity of the lamellar membranes.

Spinning results from random Brownian movements caused by intermolecular

collisions, and is known as rotational diffusion (Fein and Szuts, 1982). For any

absorbing molecule, the transition moment vector giving rise to a specific absorption

band has a fixed orientation with respect to the molecule's three-dimensional

structure. The principal (a-band) transition moment for the visual pigment

chromophore is roughly parallel to its polyene chain. Light absorption by an

individual molecule is maximal when the electric field vector (e-vector) of the

incident light, which oscillates perpendicularly to its direction of propagation, is

parallel to the transition moment, and minimal when it is perpendicular to it.

Unequal absorption of linearly polarised light about two orthogonal axes is known as

linear dichroism. Due to the orientation of visual pigment molecules, photoreceptor
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outer segments are dichroic when illuminated from the side: preferential absorption

occurs when the e-vector is parallel to the plane of the disks (perpendicular to the

long axis). The value obtained by dividing the absorption of the outer segment when

the e-vector is parallel to the plane of the disks by the absorption when it is

perpendicular is termed the dichroic ratio.

Accurate measurement of the dichroic ratio involves the use of a

microspectrophotometer (see chapter two). Furthermore, the dichroic ratio is

dependent on the spectral location of the wavelength of maximum sensitivity (Xma,c)

and the degree of collimation of the light beam used to measure it (Harosi and

Malerba, 1975). Nevertheless, the dichroic ratio determined for frog outer segments

(approximately 4 to 5, Harosi and MacNichol, 1974; Harosi, 1975) suggests that the

transition moment vector of the chromophore is directed at a small constant angle

(about 17°) relative to the lamellar surface.

Dichroic absorption by photoreceptor outer segments has led the use of

linearly polarised light in visual pigment microspectrophotometry, as it compensates

for the relatively short pathlength of measurements made transversely through the

outer segment rather than axially (Partridge, 1986). Because of rotational diffusion,

the chromophores are orientated randomly within the plane of the lamellar membrane

and as such no dichroism is observed for linearly polarised light travelling axially

along the outer segment, i.e. in the 'natural' direction of the rays impinging on the

retina. The specific absorbance of the outer segment to axial illumination will be half

of the maximum possible value regardless of whether the light is linearly polarised or

not (Harosi, 1971). When the outer segment is illuminated transversely, the specific

absorbance will also be half the maximum possible value if the light is linearly

polarised with the e-vector parallel to the plane of the disks (perpendicular to the

long axis) (Harosi, 1971). It is therefore reasonable to use specific absorbances

measured transversely to predict the specific absorbance of the outer segment to axial

illumination (chapter four).

1.2.1.1.2 Connecting cilium and calycal processes

A short, slender, eccentrically located ciliary stalk, arising from one of the

centrioles at the distal end of the inner segment, connects the inner and outer
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segments (Fein and Szuts, 1982). In cross section, the stalk consists of nine pairs of

tubules (filaments) arranged in a circle, but lacks the central pair characteristic of

motile cilia (Rodieck, 1973). Filaments of the ciliary stalk extend partially into the

outer segment, creating a narrow region free of lamellar membranes (Morris and

Shorey, 1967). It is via the connecting cilium that newly synthesised visual pigment

molecules pass into the outer segment, to replace those lost through membrane

turnover. Mammalian photoreceptors also possess a cytoplasmic bridge between the

inner and outer segments, separated by a channel of extracellular space from the

connecting cilium.

Slender, finger-like outgrowths from the apex of the inner segment, known as

calycal processes, pass alongside the outer segment for approximately one third of its

length. It is possible that these peculiar structures have a supportive role, or prevent

the outer segment from rotating about the connecting cilium (Rodieck, 1973).

1.2.1.1.3 Inner segment

The inner segment consists of two main regions, the ellipsoid and myoid

(Fein and Szuts, 1982). The ellipsoid is characterised by an agglomeration of

mitochondria, which provide the cell's metabolic energy. The ellipsoids of most

birds, and a variety of other vertebrate taxa , also contain a large oil droplet which is

often pigmented. On absorption of a photon of light, the photoreceptor undergoes a

burst of respiration, for which the ellipsoid mitochondria are largely responsible.

Production of adenosine triphosphate (ATP) by the mitochondria, which is used as an

energy source for a variety of reactions, involves the oxidation of succinate to

fumarate in the citric acid cycle. This conversion is mediated by the enzyme succinic

dehydrogenase which is located in the mitochondria. Enoch (1963; 1964)

demonstrated that if nitroblue tetrazolium chloride (NBT), a soluble yellow

compound, was present during this reaction, it was reduced to an insoluble blue

precipitate (diformazan). Furthermore, the quantity of diformazan produced was

proportional to the amount of light incident upon the photoreceptor. This not only

confirmed the involvement of ellipsoid mitochondria in phototransduction, but also

provided a technique by which different spectral classes of photoreceptor could be

localised within the retina (Marc and Sperling, 1976; 1977; Levine et al., 1979).
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This technique was adapted for use with avian retinae in the present thesis, as

described in chapter three.

Located immediately proximal to the ellipsoid in rods and the accessory

member of the double cone pair is an accumulation of granular inclusions, known as

the paraboloid (sometimes referred to as the hyperboloid in rods) (Morris and Shorey,

1967). The paraboloid contains smooth endoplasmic reticulum and glycogen

granules, which are thought to serve the metabolic activity of the myoid region

(Rodieck, 1973).

The myoid region of the inner segment, lying between the ellipsoid (or

paraboloid) and the cell body, is characterised by the organelles normally associated

with protein synthesis: free ribosomes, rough endoplasmic reticulum and Golgi

apparatus (Fein and Szuts, 1982). As its name implies, the myoid (literally 'muscle-

like') of some fish, amphibians and birds is contractile, and responsible for the light-

dependent photomechanical movements observed in these taxa. Recent electron

microscopic studies have suggested that there is considerable interspecific variation

in the range of retinomotor movement exhibited by avian photoreceptors (Braekevelt,

1990; Braekevelt, 1993a; Braekevelt, 1993b; Braekevelt, 1994a; Braekevelt, 1994b;

Braekevelt et al., 1996). Elongation of the myoid towards the PE may serve to shield

outer segments from the light, and thus have an effect equivalent to the movement of

pigment granules in the PE (Rodieck, 1973).

1.2.1.1.4 Synaptic terminations

Like fish and mammals (Rodieck, 1973), the synaptic terminations of avian

rods and cones differ in both shape and size (e.g. Braekevelt et al., 1996). Cones

have a flat conical 'foot', called a pedicle, the base of which display numerous

invaginated (ribbon associated) synaptic sites in addition to several of the more

conventional synapses. The pedicles of single cones are identical to those of the

principal and accessory members of the double cone pair. Rods, however, terminate

in a round swelling called a spherule, which has fewer of both the ribbon associated

and conventional synaptic sites. Each ribbon synapse of the cone pedicle makes

contact with three postsynaptic processes. In rod terminals, four or more processes

are observed per ribbon (Fein and Szuts, 1982). In both types of photoreceptor, the

processes lying deepest in the invaginations are horizontal cell processes, with
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bipolar cell dendrites contacting more superficially. Less prominent contacts occur at

the conventional synaptic sites.

The neural signal induced by absorption of light, in the form of an electrical

hyperpolarisation of the cell membrane caused by the movement of ions in the

photoreceptor, influences higher-order neurons by modulating the rate of

neurotransmitter (glutamate) release from the synaptic terminal of the photoreceptor

(Yau, 1994). This release is high in the dark and reduced in a graded fashion by

light. The response of the postsynaptic neurons to light can be a membrane

hyperpolarisation or depolarisation, depending on whether a particular synapse is

'sign-preserving' or `sign-inverting'. In addition to these chemical synapses,

photoreceptors interact with second-order neurons using electrical synapses, known

as gap junctions (Fein and Szuts, 1982).

1.2.1.1.5 Light funnelling and photoreceptor waveguides

Rays focused onto the retina by the dioptric apparatus are funnelled into

`waveguides' containing visual pigments, the outer segments (van Hateren, 1989).

The refractive index of photoreceptor inner and outer segments is higher than that of

the interstitial medium (Sidman, 1957), mostly due to the high lipid content of the

outer segment lamellar membranes, and the mitochondria of the inner segment

(Johnston and Hudson, 1974; Knabe et al., 1997). Consequently, rays entering the

photoreceptor at a shallow angle will be confined within the cell by total internal

reflection. Light entering the cell at a more obtuse angle will be lost through

refraction at the photoreceptor membrane, the reduction in intensity depending on

both the incident angle and the difference in refractive index between the inside of

the photoreceptor and the external medium (Snyder, 1975). Because inner segments

are usually wider, it is possible that they funnel light into the outer segment, thereby

increasing its geometric light-capture area. As cones generally have larger inner

segments than rods, they have a greater potential for funnelling light into the outer

segment (Rodieck, 1973).

Rather than entering the photoreceptors as rays, however, incident plane

waves are diffracted by the lens, and the resulting (Airy) diffraction pattern produces

'modes' in the waveguide (van Hateren, 1989). A mode is a stable pattern of

electromagnetic energy distribution, produced when rays of different phase interfere
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constructively and destructively. The number of modes which can propagate within a

waveguide depend on the wavelength, the diameter and the refractive index. Whilst

geometric (ray-optical) models can predict much of light guiding behaviour of larger

photoreceptors (outer segment diameter greater than about 1 gm), the axial

propagation of light along narrow outer segments, the diameter of which approaches

the wavelength of the incident rays, is better explained by electromagnetic (wave-

optical) models (Snyder, 1975).

A fundamental property of modes is that only a fraction of their total light

energy is transmitted within the waveguide. The remaining portion is transmitted

along, but outside, the photoreceptor. The internal component is attenuated by visual

pigment absorption as it propagates along the waveguide, whereas the external

component is not, or only weakly, attenuated. Consequently, during transmission,

light energy flows from the surrounding medium into the waveguide where it is

absorbed. This funnelling behaviour endows the outer segment with a light-capture

area that is larger than its geometric cross-section (ROhler and Fischer, 1971; Snyder

and Hamer, 1972).

Pigment migration in the apical processes of the pigmented epithelium may

alter the funnelling properties of waveguides. Movement of melanin granules

towards the waveguide in response to bright light will result in more rapid

attenuation of the external mode component, thus improving spatial acuity (Snyder,

1975; van Hateren, 1989).

Photon catch by a funnelling receptor would be no greater than that of a wider

cell in the absence of funnelling, but a broader outer segment would have a larger

volume and would thus require more visual pigment to maintain the same

absorbance. Because, the rate of spontaneous, thermally generated, false signals is

proportional to the total amount of visual pigment (Barlow et al., 1993), one possible

advantage of funnelling could be to reduce the amount of visual pigment required for

a given photon catch and therefore improve the signal-to-noise ratio of the

photoreceptors.

1.2.1.1.6 Photoreceptor membrane turnover

Photoreceptors are not static structures and continually undergo a process of

renewal known as membrane turnover (Rodieck, 1973; Fein and Szuts, 1982). This
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phenomenon was demonstrated in frog rods by injecting radioactively-labelled amino

acids into the vitreous and observing their passage through the cells of the eye using

autoradiography (Young, 1976). Labelled amino acids were sequestered by the retina

and eventually accumulated in the myoid region of the inner segment, the primary

site of protein synthesis in photoreceptors. Once converted into visual pigment, and

other cellular proteins, they were transferred through the cell, mainly via Golgi

complex where they were modified by the addition of carbohydrates. Some of the

labelled proteins (mostly visual pigment) migrated through the connecting cilium to

form a narrow band of radioactivity at the base of the outer segment. Over a period

of weeks, depending on ambient temperature, the band of labelled proteins travelled

as a discrete unit towards the distal end of the rod, where it was eventually shed and

incorporated into a phagosome of the pigment epithelium. Because the rod stayed a

constant length during this process, it was concluded that the loss and destruction of

disks from the distal end was balanced with disk synthesis at the base. The pigment

epithelium is essential in disk destruction and if it becomes incapable of

phagocytizing the shed disks, the rod cells eventually die off (Rodieck, 1973).

1.2.1.2 Avian photoreceptors

Cajal (1893, translated in Rodieck, 1973) described four morphologically

distinct types of photoreceptor in the greenfinch (Fringilla chloris) retina: rods,

upright (straight) cones, oblique cones and double (unequal twin) cones. Upright and

oblique single cones were distinguished by the fact that the inner segment of the

oblique type was displaced laterally. Upright single cones were subdivided into two

further classes depending on the location of the synaptic terminal in the outer

plexiform layer (OPL). However, Cajal gave no description of the oil droplet

contained within each of the different cone types.

In a study of the photoreceptors of the pigeon, Mariani and Leure-DuPree

(1978) described the same five morphological types and indicated the strata in the

OPL in which their synapses were located. They also described the colour of the oil

droplets observed in each of the different cone types. The two upright single cones

contained either a red or orange oil droplet, which we now know correspond to the

LWS and MWS cone types (Bowmaker, 1977; Bowmaker et al., 1997). The oblique

single cone contained a yellow-green droplet, which was most likely the SWS cone
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class. Furthermore, the stratification of oil droplets in the neuroepithelial layer

observed in radial section reflected the stratification of the synaptic terminals in the

outer plexiform layer (OPL). Yellow oil droplets (double cones) were located at the

most sclerad level, yellow-green droplets at the most vitread level (oblique singles)

and orange and red droplets (upright single cones) were located at level intermediate

between the yellow and yellow-green.

Morris and Shorey (1967) described rods, double cones and two types of

single cone on the chicken, but did not distinguish between upright and oblique

types. A third type of single cone in the chicken was later distinguished on the basis

of oil droplet electron density (Morris, 1970).

Subsequent in situ microspectrophotometric measurements (Bowmaker and

Knowles, 1977; Bowmaker, 1977; Bowmaker et al., 1997), immunocytochemical

assays (Cserhati et al., 1989) and chromatography of retinal pigment extracts (Fager

and Fager, 1981; Fager and Fager, 1982; Yen and Fager, 1984; Yoshizawa and

Fukada, 1993) have revealed the existence of four spectrally distinct cone visual

pigments in these two species, in addition to the rod pigment. From the results of the

microspectrophotometric and immunocytochemical investigations, these are known

to be localised within a specific type of cone and paired with a particular type of oil

droplet.

Microspectrophotometry has also revealed the existence of five different

visual pigments in the retina of a number of other avian species (Jane and Bowmaker,

1988; Maier and Bowmaker, 1993; Bowmaker et al., 1997; Das, 1997). The spectral

absorption characteristics of the avian visual pigments and oil droplets discovered to

date, are detailed in the next sections.

Avian rod outer segments are generally much larger then cone outer

segments, typically 1.5 to 6 gm in diameter and 10 to 20 gm in length (Morris and

Shorey, 1967; Braekevelt, 1990; Braekevelt, 1993a; Braekevelt, 1993b; Braekevelt,

1994a; Braekevelt, 1994b; Braekevelt et al., 1996). Avian rods do not contain an oil

droplet, and only one spectral class of rod photoreceptor has been discovered in the

avian retina.

Cone outer segments are generally shorter and narrower than rod outer

segments, typically 8 to 10 p.m long with a diameter tapering from 1 to 3 Jim at the
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junction with the inner segment to about 1 iim at the apex. An exception is the

chicken, in which the outer segments of the single cones and the accessory member

of the double cone are up to 19 lim long, compared to a length of approximately

1611m for the rods and the principle member of the double cones (Morris and

Shorey, 1967). The size of the oil droplets in each of the single cones varies, but all

are generally smaller than the droplet in the principal member of the double cones

(Goldsmith et al., 1984b). The accessory member of the double cone occasionally

displays a very small oil droplet in its inner segment, e.g. chicken (Meyer and May,

1973; Bowmaker and Knowles, 1977) and pigeon (Mariani and Leure-DuPree, 1978).

When no properly formed droplet is evident, carotenoid pigment, which would

normally be contained within such a droplet, is often detected at low concentrations

within the ellipsoid, e.g. duck, Anas platyrhynchos domesticus (Jane and Bowmaker,

1988), budgerigar, Melopsittacus undulatus, and zebra finch, Taeniopygia guttata,

(Bowmaker et al., 1997).

One of the most intriguing features of the avian retina is the abundance of

double cones, which occupy approximately four times the area of a single cone and

constitute roughly half of the photoreceptor population in diurnal species (Meyer,

1977). Double cones account for 82 % of the retinal area in the great tit (Parus

major) and form a square mosaic, each single cone surrounded by four doubles

(Engstrom, 1958). Double cones are composed of two disparate, but always related,

receptor cells, separated as a pair from other photoreceptors by the processes of

Milner cells. The principal member is relatively long and thin and has a large oil

droplet in the ellipsoid. The accessory member is relatively short and broad, contains

a small, essentially degenerate, oil droplet and has a large paraboloid in its inner

segment (Martin, 1985). Although the outer segments of the principal and accessory

cones are optically isolated as a pair from other cone outer segments, by pigment

granules in the apical processes of the pigment epithelium, they are not optically

isolated from each other. Thus, the possibility of optical 'cross-talk' between the two

members exists. Furthermore, gap junctions located at the level of the myoid of the

principal cone and the perikaryon of the accessory cone suggest that the two

members are also electrically coupled (Smith et al., 1985).
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The function of double cones is unclear. A recent behavioural measure of

photopic spectral sensitivity appeared to show no involvement of the double cones,

only peaks in sensitivity corresponding to the corrected spectral sensitivities i of the

four single cone types (Maier and Bowmaker, 1993). Nevertheless,

electroretinographically determined photopic spectral sensitivity functions are

dominated by a broad peak at approximately 570 nm (e.g. Blough, 1972; Chen and

Goldsmith, 1986), which corresponds to the peak effective spectral sensitivity of the

double cones. This mismatch suggests that the neural signal from the double cones is

not involved in colour discrimination, at least under the conditions used for the

behavioural test of photopic spectral sensitivity.

It has been suggested that double cones may be involved in the detection of

polarised light, which may be used by both vertebrates and invertebrates for

orientation and navigation (Brines and Gould, 1982). However, recent studies in the

pigeon (Vos Hzn et al., 1995; Coemans et al., 1994) have cast doubt on the original

investigation which inferred polarisation sensitivity in birds (Kreithen and Keeton,

1974).

The biophysical basis of polarisation sensitivity in invertebrates is an intrinsic

dichroism due to alignment of chromophores along the photoreceptor microvilli

(Cameron and Pugh, 1991). Vertebrate photoreceptors, however, have no such

dichroism to axially propagating light as chromophores are free to rotate in the plane

of the outer segment disk membranes. Nevertheless, outer segment membranes are

dichroic to transverse illumination (Harosi, 1975; Harosi, 1985).

The absence of screening pigment between the two members of the double

cone pair (Morris and Shorey, 1967; Mariani and Leure-DuPree, 1978) led Young

and Martin (1984) to suggest that light scattered by the oil droplet in the principal

cone, which would consist of two components polarised parallel and perpendicular to

the scattering plane, might enter the accessory cone outer segment transversely and

constitute a mechanism for detecting the plane of polarisation of the incident light.

Further circumstantial evidence for the involvement of double cones in polarisation

I The corrected spectral sensitivity of a photoreceptor is a function of the photosensitivity spectrum
and specific absorbance of the visual pigment, the pathlength of the outer segment, and the effects of
spectral filtering by the pre-retinal media (lens, cornea, etc.) and the oil droplet through which much of
the incident light must pass to reach the outer segment.
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detection came from the greater relative abundance of double cones in the yellow

(anterior ventral) field of the pigeon's eye (Waelchli, 1883; Bowmaker, 1977). This

region of the retina views the celestial hemisphere, from which polarisation cues of

use in navigation are assumed to originate (Brines and Gould, 1982). Such a

mechanism would require an additional intensity signal so that intensity modulation

was not confused with a change in polarisation. This could be provided by the

principal member or adjacent cones (Young and Martin, 1984). However, it is not

clear how axial and transverse stimulation of the accessory cone would be

distinguished by the nervous system, especially as the principal and accessory

members are though to be electrically coupled (Smith et al., 1985).

An alternative mechanism for polarisation sensitivity based on the waveguide

properties of double cone inner segments has been proposed, which obviates some of

the problems encountered in the oil droplet model. Cameron and Pugh (1991)

suggest that the double cone inner segments act as a birefringent, polarisation-

sensitive dielectric waveguide. Because the two members of the double cone are

contiguous, it is assumed that they act as a unitary waveguide. Furthermore, the

roughly elliptical cross-section of the double cone pair may endow the waveguide

with some degree of geometrical birefringence, i.e. capable of trapping and

propagating light of one polarisation more efficiently than others to the outer

segments. By comparing the signals from double cones whose axes of symmetry

were, for example, locally orthogonal, as in the square patterned tetradic mosaics

observed in many teleost fish (Boehlert, 1978), and also the great tit (Engstrom,

1958), a 'polarisation contrast' neural image could be generated, with a 900

periodicity in polarisation sensitivity. Cameron and Pugh provided experimental

data, from heart rate conditioning experiments, that the green sunfish (Lepomis

cyanellus) did indeed respond with a 90° periodicity in polarisation sensitivity and

possessed such a double cone mosaic. However, recent optical and

electrophysiological experiments have failed to support polarisation detection in

sunfishes (Novales Flamarique and Hawryshyn, 1997).

A third hypothesis is that the partition between the two members acts as a

dielectric 'mirror' which provides the optical anisotropy necessary for polarisation

discrimination by comparing signals from orthogonal cells in paired cone mosaics
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(Novales Flamarique and Hawryshyn, 1998). Polarisation detection mediated by

UVS cones in salmonids (e.g. Hawryshyn et al., 1990) could arise indirectly from

polarisation-dependent reflection and light scattering at the double cone partition

onto the UVS cones. It is known that UVS cones face the partition of adjacent

double cones in brown trout, Salmo trutta (Bowmaker and Kunz, 1987) and yellow

perch, Perca flavescens (Loew and Wahl, 1991). Furthermore, UVS cone inner

segments are shorter than double cones, placing their outer segments nearer to the

double cone ellipsoid where the reflective interface would be larger. The importance

of an orthogonal mosaic is emphasised by the lack of polarisation sensitivity in fish

which display a random orientation of double and UVS cones (Novales Flamarique

and Hawryshyn, 1998).

This theory is attractive as it is applicable to taxa which possess cones that

lack oil droplets. Furthermore, it could account for differences in the spectral

sensitivity of polarisation detection simply on the basis of the spectral sensitivity of

the cone types which receives the reflected light from the double cone partition.

SWS rhodopsins (km. about 450 nm) are thought to maximise detection efficiency

under high polarisation whereas UVS (km., about 350 nm) rhodopsins maximise

signal-to-noise ratios for the detection of plane polarised light under low polarisation

(Seliger et al., 1994). Interestingly, a large number of fish species have SWS single

cones arranged in orthogonal double cone mosaics in an similar fashion to the

salmonids (Levine and MacNichol, 1982).

Examination of avian cone mosaics, which to date have received surprisingly

little attention, and a rigorous empirical investigation of polarisation sensitivity is

now needed to assess the possibility of a polarisation detection mechanism in birds

and the potential involvement of double cones. On the basis of the studies in fish,

however, one would predict that the likelihood of discovering avian polarisation

sensitivity would be greater in the great tit, with its regular square double cone

mosaic (Engstrom, 1958), than in the chicken, where the receptor mosaic forms an

irregular, but non-random, hexagonal lattice (Morris, 1970). A well-developed

mosaic of single and double cones in fish has been correlated with improved

movement detection (Boehlert, 1978), and it is possible that double cones subserve

this function in birds (see chapter three).
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1.2.1.3 Oil droplets

1.2.1.3.1 Description

Retinal oil droplets are highly refractile spherical organelles located at the

distal end (ellipsoid) of the inner segments of retinal photoreceptors, and occupy the

entire diameter of the inner segment at this site (Walls, 1942; Meyer et al., 1965).

This geometric relationship implies that at least some of the light reaching the visual

pigment in the outer segment must have been transmitted by the oil droplet (see

section 1.2.1.3.6.5). Consequently, the effective spectral sensitivity of the

photoreceptor will be determined jointly by the product of the spectral transmittance

of the oil droplet (and other pre-retinal filters, e.g. cornea and lens) and the

absorptance (1-transmittance) of the visual pigment (Fujimoto et al., 1957;

Bowmaker, 1977; Varela eta!., 1993).

1.2.1.3.2 Phylogeny

Retinal oil droplets occur in all vertebrate classes and are generally found

only in cone photoreceptors. Rods containing oil droplets have only been observed

in the retinae of a few species: the African lungfish Protopterus aethiopicus, the

'primitive' reptile Sphenodon punctatum and the gecko Coleonyx variegatus (Walls,

1942). Walls (1942) speculated that oil droplet-bearing rods, especially those found

in secondarily nocturnal geckos, might be `transmutated' cones. However, as

discussed by Goldsmith (1990), this theory depends partially on the criteria used to

differentiate between photoreceptor types.

Anuran amphibians possess colourless or pale yellow oil droplets in single

cones and the principal member of their double cones (Walls, 1942). These cone oil

droplets should not be confused with the yellow droplets found in the pigment

epithelium (Hailman, 1976), which are thought to act as a store of retinol for use by

the adjacent outer segments (Rodieck, 1973).

Whilst oil droplets do not occur in eutherian (placental) mammals, an

unidentified photostable pigment absorbing maximally at around 420 nm has been

observed in the cone ellipsoid of some primates, including humans (Bowmalcer et al.,

1991). Of the metatherians, 'colourless' oil droplets have been reported in

marsupials (O'Day, 1935) and some monotremes (the duck-billed platypus,
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Ornithorhynchus paradoxus, but not the echidna, Tachyglossus aculeatus, Young

and Pettigrew, 1991).

'Colourless' oil droplets have been observed in the photoreceptors of some

'primitive' fish 2 : the sturgeon, Acipenser fulvescens (order Acipensiformes) and three

species of lungfish (infraclass Dipnoi), Protopterus aethiopicus, Lepidosiren

paradoxa and Neoceratodus forsteri, but are absent from subclass Neopterygii, which

comprises the `holosteans' and teleosts (Walls, 1942). However, the retinal cones of

several teleost fish contain dense, spherical structures called elliposomes which

superficially resemble oil droplets and are similarly located in the inner segment

(MacNichol et al., 1978; Avery and Bowmaker, 1982). Elliposomes do not stain

with oil-soluble dyes, display an organised internal structure and contain a

cytochrome-based chromophore rather than carotenoid pigments, thus differentiating

them from oil droplets, although both are thought to have arisen from mitochondria

(Pedler and Tansley, 1963; MacNichol et al., 1978). Cytochromes absorb strongly

below about 450 nm and elliposomes are assumed to share many of the spectral

functions ascribed to retinal oil droplets.

Brightly coloured (i.e. red, orange and bright yellow) retinal oil droplets are

found only in turtles and birds, particularly those that display a strongly diurnal habit

(Walls, 1942). The similarity between avian and chelonian retinae is striking. The

spectral sensitivity of the visual pigments, and the types of carotenoids responsible

for oil droplet pigmentation, appear to be remarkably conserved in these taxa

(Liebman and Granda, 1971; Liebman and Granda, 1975; Goldsmith et al., 1984b;

Lipetz, 1984b). The only notable difference is that some fresh water turtles

(Pseudemys scripta) have 3-dehydroretinal-based visual pigments (porphyropsins),

whereas sea turtles (Chelonia mydas) have retinal-based chromophores (rhodopsins)

as do birds, and indeed all truly terrestrial vertebrates studied to date with the

exception of some lizards (Provencio et al., 1992).

Unsurprisingly, nocturnality appears to obviate the need for brightly coloured

oil droplets which could significantly reduce cone sensitivity. Lizards, geckos and

the 'primitive' reptile Sphenodon, which are largely nocturnal or fossorial in habit,

possess only colourless or yellow droplets (Walls, 1942). Crocodilians and snakes

2 Classification given by Nelson (1994)
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have none. Nocturnal birds such as the tawny owl (Strix aluco), great horned owl

(Bubo virginianus), barred owl (Strix varia), Ural owl (Strix uralensis) and the

snowy owl (Nyctea scandiaca) retain spectrally distinct types of droplet, but these

lack the dense pigmentation of their diurnal relatives (Bowmaker and Martin, 1978;

Braekevelt, 1993a; Gondo and Ando, 1995; Braekevelt et al., 1996).

1.2.1.3.3 Classification and terminology

Whilst it is relatively easy to distinguish some of the oil droplets occurring in

the avian retina with the use of a light microscope, several ambiguities arise due to

the subjective nature of the human visual system. Different types of oil droplet may

appear the same either because we cannot distinguish between very similar colours,

or because we are not sensitive to wavelengths that the droplets absorb.

Microspectrophotometry (see chapter two) has provided an objective method

for determining the spectral absorption characteristics of oil droplets (Fujimoto et al.,

1957; Strother and Wolken, 1960; Strother, 1963; Liebman and Granda, 1975;

Goldsmith eta!., 1984b; Partridge, 1989) and correlating oil droplet absorptance with

the spectral sensitivity of the visual pigment with which it is associated (Bowmaker

and Knowles, 1977; Bowmaker, 1977). However, absorption spectra recorded

microspectrophotometrically must be interpreted carefully. In any

spectrophotometric measurement, the light that is scattered, or by-passes the sample,

will distort the measured absorption spectrum. With samples of low absorbance,

such as photoreceptor outer segments, this effect can be minimised by the appropriate

selection of optical components. However, due to the high concentration of coloured

pigments they often contain, retinal oil droplets generally have very high

absorbances, which may exceed 20 or even 30 in the red oil droplets of some birds

(Goldsmith et al., 1984b). In such cases, light that is not transmitted, but by-passes

the oil droplet, can be a high fraction of that measured.

When measuring small samples, microspectrophotometers can only make

reliable measurements over a limited range of low absorbances. The upper limit is

reached when the amount of light scattered around the sample becomes comparable

to that passing through it. This threshold is frequently exceeded with the

microspectrophotometry of retinal oil droplets in which high absorbances are

combined with very small size (typically 1 to 4 lim in diameter). Consequently, the
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true absorption spectra of intact oil droplets cannot be measured directly and the

optical behaviour of these organelles must be inferred from artefactual measurements

(Partridge, 1986).

Highly pigmented oil droplets act as long-pass cut-off filters, blocking

wavelengths towards the short wavelength end of the spectrum (Roaf, 1929;

Fujimoto et al., 1957; Strother and Wolken, 1960; Strother, 1963; King-Smith,

1969). Traditionally, the transmission properties of such droplets have been

classified according to the wavelength (450 %) at which measured transmission is

50 % (equivalent to an absorbance of 0.301, Bowmaker and Knowles, 1977;

Bowmaker, 1977; Bowmaker and Martin, 1978; Bowmaker and Martin, 1985).

However, measurements of intact oil droplets by microspectrophotometry do not

provide exactly correct values for 450 % because by-passing light will increase the

apparent transmission (by a significant proportion at high absorbances) and hence

shift the apparent XT50 % to a shorter wavelength than the true value. Furthermore, the

error in XT50 % will be difficult to quantify as it depends on the shape of the true

absorption spectrum and the magnitude of the by-passing light (which depends in

part on the design of the MSP used to make the measurements).

A solution to this problem was proposed by Lipetz (1984a). He defined a

parameter, termed the cut-off wavelength (X cut), which corresponded to the intercept

with the value of maximum apparent absorptance by the tangent to the absorptance

spectrum at the wavelength corresponding to half maximum measured absorptance

(Xmid). Both Xcut and Xmid were shown to be unaffected by the presence of by-passing

light in the MSP. Furthermore, Xcut was directly useful in that it described the

wavelength below which there was no significant transmission by the oil droplet and

could be related to peak absorbance. Although this method assumes that by-passing

light in the MSP is constant at all wavelengths, which may not be the case, it has

been adopted as the standard nomenclature for describing the spectral absorption

properties of avian oil droplets (Jane and Bowmaker, 1988; Partridge, 1989;

Bowmaker et al., 1993; Maier, 1994; Bowmaker eta!., 1997).

For some purposes, however, categorisations using such spectral parameters

are meaningless in the absence of knowledge regarding the nature of the visual

pigments with which the oil droplets are associated. The spectral sensitivity of a
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cone is dependent upon both the transmission of the oil droplet and the absorption of

the visual pigment. Accordingly, a descriptive terminology has arisen which

classifies oil droplets according to their Xcu t and the wavelength of maximum

absorbance (Xmax) of the visual pigment with which they are associated (Table 1.1).

Orange oil droplets are uncommon in birds (Goldsmith et al., 1984b;

Partridge, 1989). In a large study on a number of waterfowl, Partridge (1989) also

measured the oil droplets of the Japanese quail (Coturnix coturnix japonica). These

were found to have orange oil droplets (mean Xcu t 545 nm) but no red droplets. A

later study on the effect of carotenoid deprivation on the cone photoreceptors of this

species reported that the LWS single cones in normal birds contained red oil droplets

(mean Xcu t 568 nm) instead of orange (Bowmaker et al., 1993). This suggests that the

occurrence of orange oil droplets in some species may simply be a physiological

artefact arising from dietary deficiencies or the effects of captivity, and emphasises

the importance of studying fresh retinae from healthy, wild caught birds. The

occurrence of orange droplets in the gannet (Sula bassana), Caribbean flamingo

(Phoenicoparus ruber) and southern pochard (Netta erythophalma), however, is also

accompanied by a separate type of droplet which can truly be classified as a red oil

droplet (mean Xcut 558-577 nm, Partridge, 1989), suggesting that these orange

droplets (mean Xcut 528-538 nm) are highly pigmented versions of Y-type droplets

associated with the MWS visual pigment in single cones.
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Chapter one: An introduction to the avian eye

1.2.1.3.4 Composition

Retinal oil droplets are composed almost entirely of neutral lipids

(cholesterol, cholesterol ester, mono-, di-, and triacylglycerols, Johnston and Hudson,

1974; Johnston and Hudson, 1976) and carotenoids (Wald and Zussman, 1937;

Meyer et al., 1965; Goldsmith et al., 1984b). Carotenoids are a class of

hydrocarbons (carotenes) and their oxygenated derivatives (xanthophylls). Their

basic structure consists of eight isoprenoid units in aliphatic or alicyclic

configuration. A series of conjugated double bonds constitutes the characteristic

chromophore which can be modified by cleavage of the polyene tail, hydrogenation,

dehydrogenation, cyclization or oxidation (Meyer et al., 1965; Isler, 1971; Davies,

1976). The fatty acyl-containing neutral lipids are greatly enriched in

polyunsaturated fatty acids, which enhance their ability to act as solvents for the

unsaturated carotenoid structure (Johnston and Hudson, 1976). Coloured oil droplets

contain high concentrations of carotenoid pigment. Calculated absorbances for red

oil droplets may exceed 20 in birds (Goldsmith et al., 1984b) and be as high 90 in

turtles, which corresponds to a concentration of approximately 1 M (Liebman and

Granda, 1975). The accumulation of such high concentrations is facilitated by the

mixture of lipid solvents which provide much greater solubility for certain

xanthophyllic carotenoids when compared to only limited solubility observed in the

separate solvents of which the mixture is composed (Johnston and Hudson, 1976).

The spectral transmission of each oil droplet is largely determined by the

carotenoid pigment(s) that it contains. Japanese quail develop transparent oil

droplets when raised on a carotenoid-free diet (Meyer, 1971; Meyer et al., 1971;

Duecker and Schultz, 1977; Wallman, 1979; Bowmaker et al., 1993). A number of

different carotenoid pigments have been identified in retinal oil droplets (Wald and

Zussman, 1937; Strother and Wolken, 1960; Meyer et al., 1965; Liebman and

Granda, 1975; Davies, 1976; Davies, 1979; Goldsmith et al., 1984b). Orange and red

oil droplets almost certainly derive their coloration by the inclusion of the carotenoid

astaxanthin, regardless of whether the oil droplet is found in the single cone

photoreceptors of a turtle or a bird. There is some evidence to suggest that red oil

droplets in the Japanese quail may also contain a second carotenoid in addition to

astaxanthin (Bowmaker et al., 1993), as do the orange oil droplets of the mourning
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dove, Zeneida macroura (Goldsmith et al., 1984b). Examination of the absorption

spectra from which these deductions have been made suggest that the secondary

carotenoid functions to increase absorption of short wavelengths. This may be

important where the Xcu t occurs at shorter wavelengths, as in orange or developing

red oil droplets in which the lower concentration of astaxanthin might fail to absorb

sufficiently at short wavelengths.

The bright golden-yellow oil droplets observed in single cones are more

variable in their carotenoid composition and probably contain either lutein or

zeaxanthin, or a mixture of both. Interestingly, both of these chromophores are also

responsible for the yellow pigmentation of the macula lutea in primate retinae, and

are found, along with other short-wavelength absorbing pigments, in the human lens

(Bone and Landrum, 1992; Handelman et al., 1992; Yeum et al., 1995).

The P-type oil droplets found in the principal member of the double cones

contain a variable amount of short wavelength-absorbing carotenoid in addition to

galloxanthin, which accounts for the variability in A..cu t observed both within the retina

and between species (Bowmaker et al., 1997). These oil droplets can appear

colourless, green or yellow under the microscope and in some instances their Xcut

values can differ by only a few nanometres from some of the other droplet types. The

identity of the secondary carotenoid is unknown. Liebman and Granda (1975) noted

the similarity with e-carotene, which is known to occur in avian retinae (Davies,

1985), but Goldsmith et al. (1984b) were more cautious, observing that the

unidentified chromophore had a peak absorption at longer wavelengths.

Whilst the 'colourless' or C-type oil droplets appear transparent to the human

eye, they contain a carotenoid which absorbs maximally at 385 nm. Goldsmith et al.

(1984b) gave this compound the trivial name of fringillixanthin and postulated that it

was similar in structure to galloxanthin, but with the conjugated chain shorter by one

double bond. Naturally occurring transparent oil droplets, which show no detectable

absorption between 320-750 nm, presumably contain only lipid and no carotenoid

pigment. It is unclear whether the droplets described in older studies (e.g. Walls,

1942) as 'colourless' were equivalent to the C-type droplets of birds and turtles, in

containing carotenoid pigment but that which is undetectable to the human eye, or

whether they were truly transparent.
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1.2.1.3.5 Ontogeny

The majority of avian cones contain a single, spherical, membrane-bound oil

droplet (e.g. Morris and Shorey, 1967). However, multiple red `microdroplets'

(<0.5 jim diameter) occur in addition to the large single red oil droplet in the inner

segments of LWS single cone photoreceptors in the red field (posterior dorsal

quadrant) of the pigeon retina (Pedler and Boyle, 1969; Bowmaker, 1977).

Furthermore, Japanese quail are reported to display yellowish-green teardrop-shaped

inclusions in the dorsal retina, in addition to the other types of oil droplet (Budnik et

al., 1984), and multiple droplets in the accessory member of the double cone (Hazlett

et al., 1974) although this was not noted in subsequent studies (Partridge, 1989;

Bowmaker et al., 1993).

Their intimate association in the inner segment has led to the theory that oil

droplets arise from, or are generated by, mitochondria (Pedler and Tansley, 1963;

Berger, 1966; Armengol et al., 1981). The observation in the diurnal gecko,

Phelsuma inunguis, that there was no membrane separating the contents of the oil

droplet from the adjacent mitochondrion, and that the oil penetrated between the

cristae, may explain how carotenoids have been detected in the ellipsoid region of the

accessory members of avian double cones despite the absence of a formed droplet

(Bowmaker et al., 1997). It may also explain the presence of multiple microdroplets

in the inner segments of some cones if mitochondria were to accumulate carotenoid

before forming, or fusing with, a single large droplet.

Animals cannot synthesise carotenoids de novo, and instead must obtain them

through their diet (Davies, 1979). Nevertheless, some metabolic transformations are

possible. Zeaxanthin, a constituent carotenoid of many avian tissues and readily

obtained in the diet, is a likely precursor for lutein, astaxanthin, galloxanthin and

E-carotene (Davies, 1985; Schiedt et al., 1991). The development of retinal oil

droplets in the domestic chicken (Gallus gallus domesticus) embryo is reviewed by

Meyer et al. (1965) and, although there is some dispute over the exact time of origin

of each colour, it is generally agreed that the first droplets to appear in embryo are

colourless. Seventeen days after fertilisation, however, all adult colours are

discernible (Meyer et al., 1965), and these must have arisen solely from carotenoids

stored in the egg yolk, i.e. zeaxanthin and lutein (Davies, 1985).
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1.2.1.3.6 Possible functions

The effect of these optical filters on the visual system, and their adaptive

significance, has been the subject of much debate since their discovery. The

principal contending hypotheses, some of which are mentioned in historical context

only, are discussed briefly in the following sections. In view of the distribution of

retinal oil droplets throughout the other vertebrate classes, particularly turtles, caution

must be exercised in ascribing any theory regarding the function of retinal oil

droplets exclusively to the Ayes.

1.2.1.3.6.1 The monopigment hypothesis

Krause (1863, cited in Walls, 1942) suggested that colour vision in birds was

mediated by a single cone visual pigment in conjunction with different coloured oil

droplets. In transmitting only specific wavelengths of light to their respective outer

segments, he proposed that oil droplet absorption alone could differentiate cones into

several spectral types. Whilst the gamut of oil droplet colours observed in these

original investigations were largely artefacts of chromatic aberrations in microscope

objectives, the theory is still plausible. A failure to prove the existence of more than

one class of cone visual pigment in birds by either extraction techniques (Wald et al.,

1955; Bridges, 1962; Crescitelli et al., 1964; Sillman, 1969; Knowles, 1976) or

microspectrophotometry (Liebman, 1972) ensured the theory retained its adherents

for over a century. For example, Donner (1958) and King-Smith (1969) both

attempted to explain wavelength discrimination by the pigeon (Hamilton and

Coleman, 1933) on the basis of three cone types each containing the same visual

pigment but different colours of oil droplet.

However, cone visual pigments are now known to be readily denatured by

most detergents used for extraction (Yoshizawa and Fukada, 1993) and are

'bleached' at pH values and temperatures that do not affect rod pigment (Fager and

Fager, 1982). Although multiple cone visual pigments can now be separated

chromatographically from retinal extracts (Fager and Fager, 1981; Fager and Fager,

1982; Yen and Fager, 1984; Yoshizawa and Fukada, 1993), it was results from

microspectrophotometric studies which first provided the evidence invalidating

Krause's monopigment hypothesis. In 1977, multiple cone visual pigments were

measured in both the chicken and pigeon (Bowmaker and Knowles, 1977;
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Bowmaker, 1977). These findings were confirmed by electrophysiological evidence

which suggested that these species possessed four cone pigments with absorption

maxima near 413, 467, 507 and 562 nm (Govardovskii and Zeuva, 1977).

Furthermore, it was demonstrated that Japanese quail raised on a carotenoid-free diet,

and therefore possessing only colourless oil droplets, retained colour vision (Meyer,

1971; Meyer et al., 1971; Duecker and Schultz, 1977; Wallman, 1979). Liebman's

failure to identify more than one cone pigment using microspectrophotometry was

probably due to difficulties in measuring the absorption spectra of avian cone outer

segments, which are very small (typically 2 gm in diameter) and often remain

attached to the pigmented epithelium (PE) when the retina is removed from the

eyecup (Bowmaker, 1984). Despite this, he had already demonstrated the existence

of three spectrally distinct cone visual pigments in the turtle retina, another species in

which cone photoreceptors are characterised by the presence of brightly coloured oil

droplets, and thus predicted the presence of multiple cone visual pigments in birds

(Liebman and Granda, 1971). Microspectrophotometry has now demonstrated the

presence of up to four cone visual pigments in bird retinae (Jane and Bowmaker,

1988; Bowmaker eta!., 1993; Bowmaker eta!., 1997; Maier and Bowmaker, 1993).

Nevertheless, Krause's hypothesis was partially correct in that LWS single

cones and both members of the double cone pair contain a visual pigment with the

same Xmax but different types of oil droplet. These cells will undoubtedly have

different spectral sensitivities which are directly attributable to the absorption

characteristics of their respective oil droplets, although it is not known whether the

double cones are involved in colour vision.

1.2.1.3.6.2 Effect on spectral sensitivity and colour discrimination

The prediction that pigmented oil droplets act as long-pass cut-off filters

(Roaf, 1929) has been confirmed experimentally in lizards, turtles and birds by

comparing the electroretinographic (ERG) response of isolated retinae when

illuminated normally and from behind. The gross spectral sensitivity curve obtained

when the retina was illuminated normally was narrower and had its maximum

displaced towards longer wavelengths (Orlov and Maximova, 1964 cited in Muntz,

1972; Pautler, 1967; Kawamuro eta!., 1997).
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Bowmaker (1977) modelled the effect of oil droplets on the spectral

sensitivity of individual cones and concluded that:

"As a general rule, the effect of an oil droplet in a given cone is to displace the effective

maximum sensitivity of the cone to a wavelength longer than the 2n.max of the visual pigment, to reduce

the bandwidth of the spectral sensitivity of the visual pigment by cutting off the shorter wavelengths,

and to reduce the absolute sensitivity of the cone at its X.,„ a„ from that of the visual pigment

Accordingly, the maxima of the effective spectral sensitivities of the MWS and LWS

single cones in the pigeon are shifted by approximately 40 nm to longer wavelengths

than their respective visual pigment 214/lax values.

Excessive overlap between different spectral types of photoreceptor will

cause a loss of spectral discrimination between narrow-band stimuli. It has been

suggested that the narrowing of cone spectral sensitivities with oil droplets will

reduce overlap and thus increase perceived colour contrast (Govardovskii, 1983).

This is analogous to opponent interactions between the primary signals of different

cone types that occur in the neural retina (Bowmaker and Knowles, 1977). Indeed,

Barlow (1982) proposed that any advantage of tetrachromacy over trichromatic

colour vision would be dependent on such an adaptation.

More recently, the effect of oil droplets on the spectral discrimination ability

of birds has been investigated with regard to plumage coloration by modelling the

performance of tetrachromatic visual systems with and without cone oil droplets

(Vorobyev et al., submitted). It appears that discriminability is improved, as is

colour constancy under a variety of illumination conditions, by the presence of oil

droplets. These results are consistent with those of Wallman (1979) who showed that

carotenoid deprived birds with colourless oil droplets still discriminated between

spectrally broadband red and green stimuli, but that their vision was more influenced

by luminance differences than were normal birds. This is attributable to the

increased overlap of cone sensitivities which means that signals tend to be more

correlated (Osorio and Vorobyev, 1996) and hence chromatic signals are small.

Absorption of wavelengths below 300 nm by the pre-retinal tissues precludes

a visual function for the gamma ('y) absorbance band of the visual pigment (section

1.2.1.4.1), which is also thought to be capable of initiating the phototransduction
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cascade (section 1.2.1.4.3) in the same way as the alpha (a) and beta (13) bands

(Palacios eta!., 1996).

However, the ocular media of most birds studied to date have good

transmission of near-ultraviolet wavelengths (Govardovskii and Zeuva, 1977;

Emmerton et al., 1980; Jane and Bowmaker, 1988) and thus the potential for

photostimulation of the I3-band exists if some of the shorter wavelengths by-pass the

oil droplets in vivo. This increases the probability that a long wavelength sensitive

visual pigment will generate a visual signal due to absorption of short wavelengths

by the I3-band, thus confounding hue discrimination. Wolbarsht (1976) suggested

that the function of pigmented oil droplets was to prevent absorption by the 13-band of

MWS and LWS visual pigments without reducing the sensitivity of SWS (or VS /

UVS) visual pigments by use of a yellow lens or cornea. Because the spectral

location of the 13-band is proportional to the spectral location of the a-band X4irlax

(Palacios et al., 1996 and see chapter four), 13-band absorption by UVS / VS and

SWS visual pigments would prevented by the ocular media.

1.2.1.3.6.3 Protection against ultraviolet (UV) radiation

In collecting light for the purposes of vision, the eye is also vulnerable to

photochemical damage (Kirschfeld, 1982). As well as being absorbed by the visual

pigments, light will interact with other chromophores, e.g. mitochondrial porphyrins

which are abundant in the retina. Thus, photo-oxidative processes may be sensitised

and result in the generation of free radicals and excited molecules, such as singlet

oxygen, which can induce extensive cellular damage.

In mammals, retinal damage increases rapidly at wavelengths below 500 nm

and is particularly severe in the ultraviolet (UV) (Ham et al., 1976). It is thought

that, in addition to simply absorbing the most harmful actinic wavelengths, retinal

carotenoids such as the macular pigment might protect the retina by quenching

singlet oxygen and scavenging free radicals (Miki, 1991). A similar function has

been ascribed to the corneal and lenticular pigments of some species.

However, it would be undesirable to absorb all short wavelengths if they

provided useful visual information. The ocular media of most birds is relatively

transparent to near-UV wavelengths (Govardovskii and Zeuva, 1977; Emmerton et
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al., 1980; Jane and Bowmaker, 1988; Goldsmith, 1990; Das, 1997; this study, see

chapter four) and it is proposed that retinal oil droplets protect receptors individually,

allowing short wavelength vision in only specialised cones with transparent droplets.

By contrast, the incorporation of short wavelength-absorbing pigments into the

mammalian lens, and macula lutea in primates, seems to be a relatively coarse

adaptive solution to needs for short wavelength filtering (Goldsmith, 1990).

Whilst this theory does not explain the occurrence of more than one type of

oil droplet, or the lack of a protective pigment associated with avian rods, there is

some evidence for a protective role of UV-absorbing compounds. The macular

region in primates is less prone to phototoxic damage than the unprotected periphery

(Ham et al., 1978) and squirrels which had their highly pigmented lens removed

suffer considerable retinal damage following exposure to UV wavelengths (Collier et

al., 1989).

1.2.1.3.6.4 Improvement of visual acuity

Walls and Judd (1933) presented a unified view of the function of yellow

ocular filters which has been reviewed on numerous occasions (Walls, 1942; Muntz,

1972; Meyer, 1977; Kirschfeld, 1982). Retinal oil droplets were assumed to have the

same function as yellow lenses and corneas which might act to improve visual acuity

by absorbing short wavelengths.

Chromatic aberrations induced by the dioptric apparatus can be considerable,

especially in larger eyes, and result in a blurred retinal image. Furthermore, short

wavelengths are affected more by changes in refractive index as light traverses the

pre-retinal tissues. By absorbing short wavelengths, yellow and red long-pass filters

would restrict the spectral range used for vision, thus improving spatial resolution.

Such coloured filters might also improve visual acuity by absorbing scattered

light. Rayleigh scattering in the atmosphere occurs when the interfering particles are

much smaller than the wavelength of light (Born and Wolf, 1970). The wavelength

dependent nature of this optical phenomenon (proportional to 1/X4) suggests that the

use of yellow filters to block short wavelengths would improve the discrimination of

distant objects, although this is thought to be of little practical advantage for

distances less than about 1000 m (Muntz, 1972).
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Oil droplets might also be employed to block short wavelengths scattered

within the eye by the ocular media and neural retina. Measurements on the rabbit

cornea suggest that the amount of scattering is wavelength dependent and

proportional to 1/X3 (Farrel et al., 1973 cited in Lythgoe, 1979).

1.2.1.3.6.5 Oil droplets as secondary lenses

Roaf (1929) suggested that oil droplets, in their natural position at the

junction of inner and outer segments of the cones, might have a lens like action in

concentrating light in the outer segment. Due to their high refractive index relative to

the surrounding tissues, oil droplets may well induce specific optical phenomena that

are unrelated to any effect on the spectral composition of the light they transmit.

Using immersion refractive index (RI) matching techniques, the RI of

colourless, yellow, orange and red oil droplets in the turtle Pseudemys scripta

elegans were measured as 1.48, 1.51, 1.55 and 1.69 respectively (Ives et al., 1982;

Ives et al., 1983). Similar values were calculated for avian oil droplets (Young and

Martin, 1984). These figures are much higher than those determined for the cone

myoid, outer segment and extracellular space (1.34 to 1.386).

This mismatch suggests that there is likely to be significant diffraction around

droplets at all wavelengths, in addition to refractile behaviour where the droplets

have negligible absorptance. Because of their small size, refraction of light by oil

droplets cannot be accurately described using geometrical optics. For objects with

dimensions approaching the wavelength of the incident light, electromagnetic (or

wave optical) models must be applied. Rayleigh scattering occurs when the object

intercepting the incident light is much smaller than the latter's wavelength, and

scatter occurs equally in all directions. As the radius of the object increases,

however, more light is scattered forward of the object that backwards in the direction

of the light source. This is Mie scattering and the phenomenon is described by its

own theory which has been derived specifically for predicting the energy distribution

around spherical objects and incorporates the effects of refraction, reflection,

absorption and diffraction (Born and Wolf, 1970).

Mie scattering theory predicts that oil droplets act as converging lenses and

focus the incident light into the outer segment, thus increasing photon capture by the

visual pigment (Ives et al., 1982; Ives et al., 1983; Young and Martin, 1984).
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Furthermore, energy considerations suggest that oil droplets may enhance light

intensity in the outer segment by a factor of between 1 and 4, thereby improving cone

sensitivity. These calculations also suggested that a large proportion of the incident

light is diffracted around the oil droplet without being transmitted through it.

Consequently, Ives et al. (1983) predicted that the effective photosensitivity

of turtle cone photoreceptors containing yellow and red oil droplets would be much

higher at short wavelengths than would be calculated if the oil droplets act as long-

pass cut-off filters. However, electrophysiological studies on turtle photoreceptors

have suggested that pigmented oil droplets do reduce sensitivity to short wavelengths

considerably (Baylor and Hodgkin, 1973) and it appears that diffraction around

droplets in vivo is greatly reduced, perhaps due to absorption by the pigmented

epithelium (PE) which, at least in birds, extends between photoreceptors to the level

of the oil droplets (e.g. Morris and Shorey, 1967; Braekevelt, 1994).

Nevertheless, oil droplets may still act as secondary lenses by refraction of

wavelengths above the Xcut, and a similar function has been proposed for the highly

refractile `megamitochondria' found in the ellipsoid of the tree shrew, Tupaia

belangeri (Knabe et al., 1997), which may also contain a short wavelength-absorbing

pigment similar to that found in ellipsoid region of primate cones (Bowmaker et al.,

1991). This theory is appealing in that it justifies the retention of transparent oil

droplets in sauropsid retinae. Furthermore, a dioptric function could explain the

occurrence of oil droplets, or similar refractile organelles, in species in which a

colour vision system, if any, is of fewer chromatic dimensions than birds or turtles, or

which are mainly nocturnal. The incorporation of short wavelength-absorbing

pigments, and thus the development of a spectral tuning function, may have been a

secondary event.

1.2.1.3.6.6 Detection of magnetic field

The precise mechanisms underlying magnetoreception in birds is unclear,

although two main hypotheses are currently discussed (Wiltschko et al., 1993; Munro

et al., 1997). The first is based on light-dependent processes associated with the

visual system. The second involves endogenous magnetic crystals (magnetite).

The effect of illuminating wavelength on the magnetic orientation of birds,

newts and fruit flies (Phillips and Borland, 1992; Phillips and Sayeed, 1993;
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Wiltschko et al., 1993) suggests a significant role for the visual system. Initially, a

physicochemical method involving magnetic field-dependent resonance of rhodopsin

molecules was proposed by Leask (1977).

However, a simpler model applicable to avian oil droplets, which combines

both theories, has also been suggested (Edmonds, 1996). Carotenoids are long chain

molecules which only absorb light when its electric field direction is along the long

axis of the chromophore. If carotenoids were arranged in a regular, liquid crystal

formation in certain oil droplets and associated with small magnetic crystals, light of

wavelengths that are absorbed resonantly by the carotenoid would only reach the

visual pigment when the cone axis was parallel or antiparallel to the direction of the

earth's magnetic field. As yet, no oil droplet has been demonstrated to possess a

regular internal structure or magnetite crystals. However, P-type oil droplets in the

mallard were shown to be more heterogeneous than those found in the single cones

and contained granular or membranous material (Braekevelt, 1990).

1.2.1.4 Visual pigments

1.2.1.4.1 Structure and spectral absorption

The acquisition of visual information from the environment is mediated by

photosensitive molecules, known as visual pigments, packaged within the retinal

photoreceptor cells. The structure and chemistry of visual pigments have been

reviewed many times (e.g. Knowles and Dartnall, 1977; Fein and Szuts, 1982;

Applebury and Hargrave, 1986; Saibil, 1986; Stryer, 1987; Bowmaker, 1991; Yau,

1994). The most salient points are summarised in the following paragraphs.

All vertebrate visual pigments consist of a large protein moiety, opsin, bound

covalently to an aldehyde of vitamin A, the chromophore (Bownds, 1967; Nakanishi,

1991). With the exception of some lizards, Anolis carolinensis and Podarcis sicula

(Provencio et al., 1992), the chromophore of most terrestrial vertebrates is 11-cis

retinal, the aldehyde of vitamin A l . Visual pigments containing 11-cis retinal are

called rhodopsins to distinguish them from visual pigments based on 3-

dehydroretinal, the aldehyde of vitamin A2, which are known as porphyropsins.

Porphyropsins are mainly restricted to some teleost fish, amphibians and some

aquatic reptiles (Bowmaker, 1991).
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Opsin molecules are single polypeptide chains, containing approximately 350

amino acid residues, embedded in the lamellar membranes of the photoreceptor outer

segment (Bowmaker, 1991). The three-dimensional structure of opsin consists of a

palisade of seven alpha-helices traversing the lipid bilayer, each of which are

composed of 24-28 largely nonpolar amino acids, connected by short, non-helical

segments rich in polar amino acids (Applebury and Hargrave, 1986; Stryer, 1987).

The opsin molecules of all vertebrate visual pigment share a number of

important features. Where specific amino acids are referred to by numbers, these

correspond to their analogous positions in bovine rod opsin. The carboxyl or C-

terminal of the protein (protruding on the cytoplasmic side of the membrane) is

characterised by numerous hydroxy-amino acids (serine and threonine) which are the

sites of phosphorylation by rhodopsin kinase (Thompson and Findlay, 1984;

Applebury and Hargrave, 1986). It is thought that only bleached pigments become

phosphorylated, and that the phosphate is lost upon regeneration (Knowles and

Dartnall, 1977). Phosphorylation of photoisomerised rhodopsin causes it to be

recognised by a cytoplasmic protein, arrestin, which eventually replaces the

rhodopsin kinase and quenches the activated visual pigment molecule (Rodieck,

1998). Similar phosphorylation sites (serine) on the cytoplasmic loop connecting the

fifth and sixth helices are thought to act directly with cytoplasmic proteins, including

transducin, which form part of the phototransduction cascade (Applebury and

Hargrave, 1986).

The amino or N-terminal of the protein (located on the extracellular side of

the membrane, or in rods the inside of the disks) contains one to two asparagine

residues which form glycosylation sites (Applebury and Hargrave, 1986).

Opsin contains a number of proline residues, each of which is capable of

creating a 20 0 'kink' in the helix (Applebury and Hargrave, 1986). The presence of

proline in five of the seven helices of bovine rhodopsin has been suggested to

produce helices with slight bends that may be important in accommodating the bound

chromophore (Dratz and Hargrave, 1983). Other ubiquitous amino acids include two

cysteine residues, located in the extracellular loops linking the second and third (Cys-

110) and fourth and fifth (Cys-187) helices, which form a disulphide 'bridge'

essential for the formation of the correct structure of rhodopsin (Karnik et al., 1988).
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Furthermore, at least in bovine rod opsin, two adjacent cysteine residues (Cys-322

and Cys-323) are palmitoylated, anchoring the C-terminal to the membrane

(Ovchinnikov et al., 1988).

Retinal's covalent bond to opsin is formed by a condensation reaction

between the aldehyde group on the chromophore and the E-amino group of a lysine

residue (Lys-296) located approximately midway in the seventh transmembrane helix

(Bownds, 1967; Wang et al., 1980). This spontaneous reaction creates a carbon-

nitrogen double-bond linkage known as an `aldimide' or `Schiff's base' bond. With

the possible exception of UVS visual pigments (Harosi and Sandorfy, 1995), the

Schiff's base is usually protonated (Wang et al., 1980). As it is energetically costly

to bury charges which are not ion-paired in a hydrophobic environment, a

`counterion' must balance the Schiff's base. This has been identified as a glutamic

acid residue (Glu-113) towards the extracellular end of the third helix (Sakmar et al.,

1989). A tryptophan (Trp-265) residue may also be involved in binding the 13-ionone

ring of the chromophore (Nakayama and Khorana, 1990).

Opsin absorbs maximally below 300 nm whereas 11-cis retinal has a

maximum absorption at about 375 nm (Knowles and Dartnall, 1977; Nakanishi,

1991). The broad, asymmetrical, bell-shaped absorption spectrum characteristic of

visual pigments is formed when the chromophore binds with opsin (Bowmaker,

1991). This phenomenon is called the bathochromic shift and represents a decrease

in the energy required for absorption (Rodieck, 1973).

The absorption spectra of retinal-based visual pigments display four distinct

peaks as follows: a) a broad peak between about 345 and 570 nm (alpha peak, a) due

to the main absorption band (a-band) of the chromophore and dependent on the type

of opsin with which it is conjugated; b) a low broad peak (beta peak, (3), which in

bovine rod opsin occurs at about 340 nm but has a spectral location that varies and is

probably related to the position of the alpha peak Xmax (Palacios et al., 1996; Palacios

et al., 1998), due to absorption by the cis-band of the chromophore; c) a narrow peak

at about 278 nm (gamma peak, 7) which is due to certain aromatic amino acids

(tyrosine and tryptophan) in the opsin, and d) a peak at 231 nm (delta peak, 8) due to

a variety of organic bonds (Rodieck, 1973). 3-Dehydroretinal-based visual pigments

(porphyropsins) also display four similar absorption peaks. However, an extra
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double bond in the chromophore dictates that, for a given opsin, the a-band

absorbance3 spectrum will have its wavelength of maximum absorbance (?-max) at

longer (lower energy) wavelengths, and a broader full-width at half maximum

absorbance (FVVHM) bandwidth, than when conjugated with retinal (Knowles and

Dartnall, 1977).

A model retinylidene Schiff base linkage has a km, at 440 nm (Nakanishi,

1991). The hypsochromic or bathochromic shift necessary to account for the wide

range of krna, observed, from about 345 to 570 nm in rhodopsin pigments (Knowles

and Dartnall, 1977), is called the `opsin shift' (Applebury and Hargrave, 1986). The

degree of opsin shift is determined by the genetically-controlled amino acid sequence

of the opsin, and its electric effects on the embedded chromophore. In particular,

charged amino acids buried within the protein's chromophore binding cavity are

thought to affect the conformational structure of retinal (Applebury and Hargrave,

1986; Nakanishi, 1991).

By comparing the amino acid sequences of different opsins, it is possible to

identify particular residues which represent spectral tuning sites. However, only a

few opsin sequences are available for avian visual pigments, and comparisons must

be made with other taxa (e.g. Okano eta!., 1992; Yokoyama et al., 1998).

Birds typically have four retinal-based cone pigments maximally sensitive to

long (kma, 543 to 570 nm), medium (Xm. 497 to 509 nm), short (4. 430 to 463) and

violet/near ultraviolet (kmax approximately 355 to 426 nm) wavelengths, plus a single

type of MWS (kmax 501 to 509 nm) rod pigment (Table 1.3, and references therein).

Only in the chicken (Takao et al., 1988; Okano et al., 1992; Wang et al., 1992a;

Wang et al., 1992b) and the canary, Serinus canaria (Das, 1997), have the amino

acid sequences for all visual pigments been obtained.

Phylogenetic comparison of vertebrate visual pigments on the basis of amino

acid identity (sequence homology) suggests that an ancestral visual pigment evolved

first into four groups of cone pigments, each of which includes one of the chicken

3 Absorbance is a logarithmic measure of absorption, which means that absorbances are additive:
doubling the pathlength doubles the absorbance but, when normalised, the shape of the absorbance
spectrum remains unchanged. Absorbance is defined as the log 10 of the ratio of the intensity of the
light incident upon a sample to the intensity of the light transmitted by the sample, or -log i o(T) where
T is transmittance (1-absorptance).

43



Chapter one: An introduction to the avian eye

and canary cone pigments, and that rod opsins diverged from the group of MWS cone

opsins later (Okano et al., 1992). The UVS cone pigment of the budgerigar,

Melopsittacus undulatus, (Wilkie et al., 1998), and the VS cone pigment of the

pigeon (Yokoyama et al., 1998) fall into the same group which contains the VS

pigment of the chicken and the UVS pigment of the canary (Das, 1997).

Divergence of rod opsin has bought about a change in the net charge of the

pigment. Thus, rod and cone pigments in vertebrates are negatively and positively

charged, respectively, at neutral environmental pH. The difference in charge may or

may not affect their relative photoresponses. Sequences for the rod and MWS cone

pigments of both budgerigar and mallard duck (Anas platyrhynchos) confirm the

similarity of these two pigments, but reveal a consistent difference between the two

opsins at site 122 (Heath et al., 1997). Site 122 has been shown to be important in

the formation and stabilisation of metarhodopsin If forms of bovine rod opsin (Weitz

and Nathans, 1993). Furthermore, site-directed mutagenesis studies have shown that

replacement of the charged glutamic acid (Glu-122) residue at site 122 with an

uncharged asparagine (Asn-122) transforms the rate of regeneration and

metarhodopsin II decay from rod-like to cone-like (Imai et al., 1997). In both

budgerigar and duck Glu-122 is present in rod opsin but replaced by Asn-122 in the

MWS cone opsin (Heath et al., 1997). In the MWS cone pigment of the chicken

(Okano et al., 1992) and canary (Das, 1997), Glu-122 is replaced by glutamine (Gln-

122), which is an uncharged (polar) amino acid just like asparagine, and it is known

that chicken MWS cone pigment bleaches and regenerates faster than rod pigment

(Shichida et al., 1994).

However, substitution of the Glu-122 by Asn-122 in human and bovine

rhodopsin results in a 15 to 20 nm hypsochromic shift in A,max (Sakmar et al., 1989;

Nakayama and Khorana, 1990). From microspectrophotometric studies of visual

pigments in situ it is known that the ?max of avian rod and MWS cone pigments are

almost identical within a given species, and show minimal variation between species

(Table 1.3). Consequently, the loss of a charged residue from site 122 must be

compensated for by a substitution which induces a bathochromic shift in spectral

absorption (Heath et al., 1997). Hydroxyl-bearing amino acids (e.g. serine, tyrosine,

threonine) are known to cause bathochromic spectral shifts when introduced to
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bovine rod opsin (Chan et al., 1992). Only two sites (222 and 299) which face in to

the retinal binding pocket, and are therefore in a position to interact with the

chromophore, differ between the rod and MWS cone opsins of duck, chicken,

budgerigar and canary with regard to charge change or the gain/loss of a hydroxyl

group (Das, 1997; Heath et al., 1997). Both sites exhibit the gain of a hydroxyl-

bearing amino acid (serine) in the MWS cone opsin. Thus, the amino acid sequence

of an opsin affects both the biochemistry and spectral absorption characteristics of

the visual pigment.

It has been known for some time that certain LWS visual pigments are

affected by the availability of chloride ions. Chicken LWS cone visual pigment

extracted into solution displayed a hypsochromic shift in X ma„ to 520 nm in the

absence of chloride ions, but shifted back to 562 nm upon the addition of chloride

(Knowles, 1976; Shichida et al., 1990). However, chicken SWS (X max 449 nm) and

VS (?1,max 417 nm) cone pigments extracted using digitonin were shown to be chloride

insensitive (Fager and Fager, 1981). Similar experiments in the Tokay gecko, Gecko

gecko, reported a 10 to 15 nm hypsochromic shift only in the more long wavelength-

sensitive of the two pigments extracted from the retina (native Amax 467 and 521 nm)

(Crescitelli, 1977; Crescitelli, 1991). Confirming that this phenomenon was not an

artefact of the unnatural environment into which the visual pigments were extracted,

Kleinschmidt and Harosi (1992) demonstrated the chloride sensitivity of LWS cone

visual pigments in situ.

Wang et al. (1993) identified two charged amino acid residues (histidine, His-

197 and Lysine, Lys-200, which correspond to positions 181 and 184 respectively in

the bovine rod opsin numbering scheme) in the chloride binding site of human 'red'

and 'green' cone pigments. These amino acids are strictly conserved at this location

in LWS visual pigments but absent from rod and SWS cone opsins. His-181 is

located close to the highly conserved Cys-187, which forms the disulphide bond with

Cys-110 that is essential in creating the correct structure of opsin (Kamik et al.,

1988). In addition, Cys-110, and therefore His-181, is very close to Glu-113, the

counterion for the Schiff's base linkage of the chromophore and a crucial residue in

determining the spectral absorption properties of rhodopsin (Sakmar et al., 1989). It

seems likely that the spectral shifts might result from an indirect perturbation of the
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protein structure, although chloride may also have a direct effect by stabilising the

binding of the chromophore in the protein (Yoshizawa et al., 1991). Wang et al.

(1993) speculated that the evolutionary branch of the LWS pigments was established

when an ancestral pigment acquired the ability to bind chloride ions and, as a result,

shift the X	 to longer wavelengths.—max -0

Avian VS opsins are thought to be closely related evolutionarily to UVS

opsins (Yokoyama et al., 1998), even though the Xmax of the two pigments they create

can be separated by more than 40 nm. In an attempt to identify potential spectral

tuning sites responsible for the difference in Xmax, Wilkie et al. (1998) sequenced the

UVS opsin gene of the budgerigar and compared it with the sequence for chicken VS

opsin (Okano et al., 1992). Assuming that only non-conservative amino acid

changes (i.e. involving either a change in charge or the gain/loss of a hydroxyl group)

were responsible for opsin shifts, five sites where non-conservative substitution had

occurred between chicken VS and budgerigar UVS opsins sequences were identified:

81, 88, 113, 114 and 293 (corresponding to 86, 93, 118, 119 and 298 using bovine

opsin numbering). Site 114 (119) was eliminated as a potential tuning site as it was

not situated on the inner face of the chromophore-binding pocket. Sites 81, 88 and

113 (86, 93 and 118), however, were all located near to the Schiff's base counterion

(G1u108 in budgerigar). If, as has been suggested, the Schiff's base in UVS pigments

is unprotonated (Harosi and Sandorfy, 1995), the counterion effect of G1u108 would

need to be neutralised by electrostatic interactions with nearby residues.

1.2.1.4.2 Bleaching, regeneration and the visual cycle

Following photoactivation of the chromophore, the visual pigment molecule

spontaneously and rapidly progresses through a series of transient states ('bleaching

sequence') without the need of further enzymatic or metabolic energy, followed by a

series of energy-consuming regenerative reactions (Fein and Szuts, 1982). This

process has been termed the 'visual cycle' (Wald, 1935).

Opsin-bound 11-cis-retinal is isomerised to the all-trans configuration by the

absorption of a single photon, with a probability of approximately 0.67 (Knowles and

Dartnall, 1977). This conformational change, which takes only a few picoseconds

(10-12 s) to complete, results in the formation of the first intermediate of the
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bleaching sequence, bathorhodopsin (Nakanishi, 1991). The ensuing changes to the

visual pigment molecule induced by the chromophore, during which bathorhodopsin

decays through a series of intermediates (lumirhodopsin, metarhodopsin I, 11 and DI

and N-retinylidene-opsin) of lower energy state (Knowles and Dartnall, 1977), are

thermal (Bowmaker, 1991). The conformation adopted by the intermediate

metarhodopsin II triggers the phototransduction cascade (section 1.2.1.4.3) by

exposing the binding site for transducin (Nakanishi, 1991). The end-point of the

bleaching sequence is the hydrolysis of the visual pigment molecule. Whilst the

opsin protein remains embedded in the lamellar membranes, free all-trans retinal is

liberated from its binding site. This represents the end of the spontaneous reactions

and the beginning of the regeneration step of the visual cycle. Because opsin proteins

and the free chromophore absorb only weakly in the human-visible spectrum, the

pigment is referred to as having been 'bleached' (Nakanishi, 1991).

Before the visual pigment can be used again, opsin and 11-cis retinal must

recombine, and a number of different biochemical pathways are involved in

reisomerising all-trans retinal (Rodieck, 1973). Within the outer segment, all-trans

retinal can either be isomerised directly into 11-cis retinal by the enzyme retinal

isomerase, and is then free to bind spontaneously with opsin, or reduced to all-trans

retinol by retinal dehydrogenase (Rodieck, 1998). Both of these mechanisms prevent

the potentially toxic accumulation of free retinal. Furthermore, excess all-trans

retinol may be converted into retinal ester by microsomes in the inner segment

(Rodieck, 1973).

Visual pigment regeneration is substantially reduced, or even absent, if the

sensory retina is separated from the pigment epithelium (Rodieck, 1973). All-trans

retinol migrates from the outer segments to the pigment epithelium within the

hydrophobic 'pockets' of specific transport proteins known as all-trans retinol

binding proteins (Fein and Szuts, 1982; Rodieck, 1998). An enzyme, retinyl-ester

isomerase, converts all-trans retinol to 11-cis retinol. Another enzyme, 11-cis retinol

dehydrogenase, uses metabolic energy to convert 11-cis retinol back to 11-cis retinal,

which is subsequently conveyed to the outer segment via an 11-cis retinal binding

protein where it recombines with opsin (Rodieck, 1998).
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1.2.1.4.3 Phototransduction cascade

When the 11-cis-retinal chromophore of a vertebrate visual pigment absorbs a

photon of light, the energy transferred isomerises the molecule into the all-trans

configuration (Knowles and Dartnall, 1977). This in turn leads to a conformational

change in the opsin which triggers its enzymatic activity by exposing a binding site

for transducin (Applebury and Hargrave, 1986). Transducin is a guanosine 5`-

triphosphate (GTP) binding regulatory protein complex, or G-protein, with multiple

enzymatic functions. As a consequence of light-induced binding of G-protein to the

opsin, one of its protein subunits (the nucleotide-binding or N-protein) converts the

guanosine 5'-diphosphate (GDP) to which it is bound into GTP (Saibil, 1986). The

N-protein-GTP complex subsequently dissociates from the opsin binding site and

activates guanosine 3'5'-cyclic-monophosphate (cGMP) phosphodiesterase which

hydrolyses cytoplasmic cGMP. In the dark, Na +, Ca2+ and Mg2+ ions flow from the

inner to the outer segment of the photoreceptor via an extracellular route. This 'dark

current' maintains the photoreceptor resting potential at around -40 mV, a mild

depolarisation which maintains a high steady rate of neurotransmitter release (Yau,

1994). Cell membrane channel proteins which permit this current are activated by

conjugation with cGMP in the dark (Stryer, 1987). The reduction in cytoplasmic

cGMP following phototransduction restricts cation ingress and the outer segment

hyperpolarises in an intensity-dependent manner up to a maximum receptor potential

of -80 mV (Stryer, 1987). The receptor potential then spreads electrotonically

through the cell to the site of synaptic output and reduces the rate of neurotransmitter

(glutamate) release at the receptor terminal (Shepherd, 1988; Yau, 1994).

The absorption of a single photon of light by a molecule of rhodopsin results

in the liberation of approximately 500 N-proteins, each of which activates a single

cGMP phosphodiesterase (PDE). PDE can hydrolyse 4,200 molecules of cGMP per

second, thus preventing the influx of millions of cations. This cascade of enzymatic

reactions enables a single photochemical event to have a large effect on the electric

potential of the photoreceptor.

The reduction of Ca2+ influx into the outer segment results in a negative

feedback mechanism which is thought to mediate light adaptation (Yau, 1994).

Divalent calcium ions inhibit guanylate cyclase, the cGMP-synthesizing enzyme.
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When light triggers the hydrolysis of cGMP, the ensuing fall in intracellular Ca2+

concentration disinhibits the cyclase and results in increased cGMP synthesis. This

production antagonises the light-induced increase in cGMP hydrolysis and, by

allowing more cation channels to open, down-regulates the sensitivity of the

photoreceptor to light.

Cones are approximately 25 to 100 times less sensitive than rods, but their

electrical responses are several times faster. These differences in rod and cone

physiology are thought to arise from quantitative differences in the transduction

cascade, although the nature of these differences is unclear (Yau, 1994).

1.2.1.5 Avian visual pigments

A variety of techniques have been employed to determine or infer the spectral

absorption properties of avian visual pigments.

1.2.1.5.1 Extraction

Chemical extraction of visual pigments from the retina into solution, which

are then subject to conventional photometric techniques (spectroscopy), is the oldest

method used in the investigation of visual pigments. The first spectrophotometric

analysis of a visual pigment extracted from a bird retina was performed by KOttgen

and Abelsdorff in 1896 (cited in Sillman, 1973), who established that the difference

spectrum kmax of the rod pigment of the barn owl, Tyto alba, occurred at about

500 nm. A number of studies since have illustrated that the spectral location of the

avian rod pigment varies little between species (see Table 1.2).

Despite recent advances, particularly with respect to separation of the

different visual pigment types using column chromatography (Fager and Fager, 1981;

Fager and Fager, 1982; Yen and Fager, 1984; Okano et al., 1989; Yoshizawa and

Fukada, 1993), visual pigment extracts are subject to a number of problems.

Firstly, because visual pigments are water insoluble, extraction relies on the

use of solvents or detergents to separate them from the lamellar membranes. It has

been known for some time that avian LWS cone pigment is more labile than rod

opsin (Bliss, 1946), and it appears that cone pigments in general are more difficult to

extract chemically (Knowles and Dartnall, 1977; Yoshizawa and Fukada, 1993).

49



Chapter one: An introduction to the avian eye

Another problem, which applies even to suspensions of outer segments which

have not been extracted, is the ionic composition of the interstitial medium. The

effects of chloride ions on the spectral absorption characteristics of LWS pigments

have already been discussed (section 1.2.1.4.1) and are now common knowledge.

However, chloride sensitivity was unrecognised when Bridges (1962) attempted to

isolate visual pigments from the pigeon retina, and the putative LWS cone pigment

he characterised (difference spectrum ?.,max 544 nm, see Table 1.2), in addition to rod

opsin, probably represents a chloride-deficient X finax 567 nm pigment (Bowmaker,

1977; Bowmaker eta!., 1997).

Visual pigment extracts are usually analysed by 'partial bleaching' (Knowles

and Dartnall, 1977). The procedure involves partially bleaching an extract with

monochromatic (or narrow band) lights from suitably chosen regions of the spectrum,

so as to bleach one spectral type of pigment more than another. Because the

photosensitivity of all visual pigment extends further on the short wavelength side of

its kmax (due to absorption by the 13- and 7-bands) than on the long wavelength side,

partial bleaching usually begins with long wavelengths. Subsequent bleaches are

made with monochromatic light of shorter and shorter wavelength.

Legend to Table 1.2 (overleaf) Wavelengths of maximum absorbance change
(difference spectrum ?max) for visual pigments extracted from the retinae of several
avian species. The system of classification used for the listed species is that given by
Sibley and Monroe (1990) and is based on recent results from DNA-DNA
hybridisation. 1 Bridges (1962); 2 Sillman (1969); 3 Crescitelli (1958); 4 Bliss (1946);
5 Wald (1937); 6 Wald et al. (1955); 7 Fager and Fager (1982); 8 Fager and Fager
(1981); 9 Okano et al. (1989); 10 Crescitelli et al. (1964); 11 Kiittgen and Abelsdorff
(cited in Sillman, 1973); 12 Shichida et al. (1990).
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Chapter one: An introduction to the avian eye

The difference spectra thus created should indicate the presence of more than

one pigment, and reveal the wavelength at which there was the greatest change in

absorbance between the pre- and post-bleach scans (the difference spectrum Xi.).

The success of this technique is dependent upon the relative proportions and Xmax

separation of the component pigments, and on the wavelengths, intensities and

durations of the bleaching lights used (Knowles and Dartnall, 1977).

Even when only one visual pigment is present in an extract, its spectral

absorbance must be inferred from a difference spectrum, i.e. the absorbance of the

extract before and after full or partial bleaching of the pigment. This is necessary

because other light-stable impurities contained within the extract, such as melanin

from the pigment epithelium, haemoglobin and oil droplet carotenoid, would distort

the pre-bleach absorption spectrum.

However, depending on the pH of the extract, significant absorption of

'visible' wavelengths by the stable products of photobleaching will affect the

apparent X.ax of the difference spectra obtained, especially for pigments with knax at

or below 500 nm (Knowles and Dartnall, 1977). In neutral pH extracts, the principal

stable photoproduct is all-trans retinal, liberated by hydrolysis of the isomerised

visual pigment molecule. All-trans retinal has a peak absorbance at 380 nm

(Rodieck, 1973). At alkaline pH (pH > 8), the visual pigment does not dissociate and

all-trans retinal remains bonded to opsin via a Schiff s base linkage. This final

intermediate in the bleaching sequence is called N-retinylidene-opsin (NRO).

Alkaline NRO has a peak absorbance at about 365 nm (Knowles and Dartnall, 1977).

However, under acidic conditions (pH < 5.5), NRO has a k-nax at 440 nm, which will

have a large effect on the shape of the visual pigment difference spectrum. Another

stable photoproduct, metarhodopsin III, absorbs maximally at 470 nm in acidic

solutions. Whilst the Xma„ values of both of these photoproducts are shifted

hypsochromically by the use of alkaline conditions, metarhodopsin n [ will still

absorb appreciably above 500 nm (Knowles and Dartnall, 1977).

Hydroxylamine can be added to visual pigment extracts to scavenge 11-trans

retinal, thus preventing its build-up in solution and denaturing metarhodopsin III and

NRO. The 'retinal-oxime' produced in this reaction has a X. at 367 nm. Knowles

and Dartnall (1977) have calculated that the shift in apparent difference spectrum
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Xmax towards longer wavelengths induced by retinal-oxime is less than 1 nm for

visual pigments with Xmax greater than about 460 nm. However, whilst

hydroxylamine is a useful tool in the spectroscopic study of most rod visual pigment

extracts, it readily denatures cone visual pigments, and avian rhodopsins are no

exception (Wald et al., 1955; Fager and Fager, 1981; Okano et al., 1989). The

increased susceptibility of cone pigments to hydroxylamine attack probably reflects a

greater accessibility in cone than in rod pigments of the retinal binding pocket (Wang

et al., 1992b), a hypothesis which would also explain the greater speed of cone

pigment regeneration (Wald eta!., 1955)

Consequently, determination of the absorbance spectra of avian cone visual

pigments from extracts relies on the interpretation of potentially artefactual

difference spectra. Photoproduct absorption is thought to account for the discrepancy

between the Xmax estimate (425 nm) obtained for chicken VS cone pigment by Okano

et al. (1989) and that determined microspectrophotometrically (A. 418 nm,

Bowmaker eta!., 1997).

Even when absorption by photoproducts is accounted for, both the absorbance

and difference spectra of the visual pigment in the intact retina are shifted

bathochromically with respect to the visual pigment in solution. It is thought that this

represents an effect of the different physiological environment of the visual pigment

under these two conditions (Bowmaker, 1973).

1.2.1.5.2 Electrophysiology

The most common electrophysiological technique used in the investigation of

avian visual pigments is the electroretinogram (ERG). The ERG represents the gross

electrical response of the eye to illumination, and comprises a variety of extracellular

field potentials (Rodieck, 1973). Generally, the component field potentials sum

across the retina so that, although the ERG is an epiphenomenon which plays no

direct role in vision, the size of the ERG potential is related to the intensity of the

illumination and the spectral sensitivity of the retina.

ERGs can be measured in live, anaesthetised birds with a corneal electrode

(e.g. van Norren, 1975), or in opened eyecups (e.g. Chen and Goldsmith, 1986). The

technique is combined either with flicker photometry, where a flickering stimulus
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light exploits the slower regeneration of rod visual pigment to isolate cone

mechanisms, or a criterion response method, which uses bright flashes of light to

stimulate cone systems with slower temporal characteristics whilst saturating the rods

with a white background illuminant.

By far the most popular subject for studies of avian vision has been the

pigeon. In 1965, Ikeda used single flashes and flicker photometry to determine the

scotopic and photopic spectral sensitivities of this species, which had peak responses

at 502 and 547 nm respectively. These maxima in sensitivity corresponded well with

absorbance maxima of pigeon rod and LWS cone pigment extracted by Bridges

(1962), although microspectrophotometry has failed to confirm the existence of a

Xmax 544 nm (Bowmaker, 1977; Bowmaker et al., 1997). By selective adaptation

with 547 nm light, a further photopic mechanism was isolated with a peak sensitivity

at around 605 nm, which would approximate well to a LWS (Xmax 567 nm) visual

pigment filtered by a red oil droplet with a cut-off wavelength at about 570 nm.

Like Ikeda (1965), Blough et al. (1972) also measured a broad photopic

spectral sensitivity using flicker photometry ERG, but they observed a peak

sensitivity at around 560 to 580 nm, which was more consistent with a cone pigment

absorbing maximally at about 562 nm (Wald, 1937; Wald et al., 1955). Numerous

psychophysical studies have confirmed this shape for the pigeon's photopic

sensitivity function (Graf, 1969; Romeskie and Yager, 1976a; Romeskie and Yager,

1976b; Kreithen and Eisner, 1978; Martin and Muntz, 1978; Delius and Emmerton,

1979; Kreithen, 1979; Martin and Muntz, 1979; Vos Hzn eta!., 1994). In all of these

studies it is assumed that a LWS visual pigment dominates the cone population, and

double cones, which are the most common cone type in the pigeon retina (Waelchli,

1883), contain a ?max 567 nm pigment (Bowmaker, 1977; Bowmaker et al., 1997).

Unlike the LWS single cones, which also contains the Xmax 567 nm visual pigment,

absorption by the P-type and A-type oil droplets associated with the double cones is

unlikely to shift their peak sensitivity to longer wavelengths, and these measures of

photopic spectral sensitivity probably reflect the effective spectral sensitivity of the

double cones.

Further evidence for the dominance of double cones in the photopic spectral

sensitivity function comes from behavioural (Martin and Muntz, 1979) and
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electrophysiological (Wortel et al., 1984) studies in the pigeon. In both cases, the

photopic sensitivity of the red field between about 450 and 550 nm was found to be

much lower than that of the yellow field, although the peak sensitivity was almost

identical. P-type oil droplets in the double cones of the red field have a greater

absorption (X., ' at longer wavelengths) in this spectral region than those in the yellow

field (Bowmaker, 1977).

Interestingly, both ERG (Chen et al., 1984; Wortel et al., 1984; Chen and

Goldsmith, 1986; Vos Hzn et al., 1994) and behavioural measures of photopic

spectral sensitivity (Kreithen and Eisner, 1978) in the pigeon have also revealed a

second peak with maximum sensitivity at around 340 to 380 nm. The peak

absorbance of the I3-band of a visual pigment with a Xmax of 567 nm is at

approximately 364 nm, and it is known that, at least in fish, absorption by the I3-band

can lead to photoisomerisation with a high quantal efficiency (Palacios et al., 1996).

Thus, the possibility emerges that the peak in sensitivity in the near-ultraviolet is not

the result of a dedicated UVS cone pigment, but absorption by the 13-band of the

abundant LWS double cone pigment.

Microspectrophotometric measurements have revealed the presence of four

cone pigments in the pigeon, with Xmax at 409 (VS), 453, 507 and 567 nm

(Bowmaker et al., 1997). However, the existence of a further UVS pigment with a

?-max at 370 nm in the pigeon retina is controversial. Spectrophotometry of pigeon

VS pigment, regenerated by adding 11-cis retinal to the purified expression products

of vector cells transfected with the VS opsin gene, revealed a ?max at 393 nm

(Yokoyama et al., 1998). Unpublished work cited by the authors of the same study

suggests that, having screened the pigeon's genomic DNA library, there are only four

types of cone pigment gene present.

The ERG data are not helpful in resolving this discrepancy. Graf and

vanNorren (1974) employed criterion response ERG to record the photopic spectral

sensitivity of the pigeon. Selective chromatic adaptation with long wavelength light

(>530 nm) reduced the broad sensitivity peak at about 560 nm and revealed a

narrow, independent sensitivity peak at 400 nm, consistent with the VS pigment

determined microspectrophotometrically. Using a similar experimental paradigm,

vanNorren (1975) isolated two short wavelength-sensitive mechanisms in
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experiments on the chicken, pigeon and jackdaw (Corvus monedula), with peak

sensitivities at 400-420 nm and 480 nm. In all three species, sensitivity dropped

rapidly between 400 nm and the short wavelength limits of the spectral range

investigated (360 nm). The peak in sensitivity at around 400 nm might well be

attributable to a VS pigment associated with a transparent oil droplet with

insignificant absorption above 350 nm. Similarly, the 480 nm peak would perhaps be

expected by the pairing of the SWS pigment and an oil droplet which absorbed

strongly below 450 nm. A peak at about 460 nm was also observed

electroretinographically in the pigeon by Wortel and Nuboer (1986), after selective

chromatic adaptation with a combination of violet (404 nm) and long wavelength

(>610 nm) lights, and attributed to a similar pigment and oil droplet pairing.

Of the ERG studies which reported a sensitivity peak at 370 nm, only Chen et

al. (1984) and Chen and Goldsmith (1986) performed the ERGs after selective

chromatic adaptation with long wavelength (530 and 590 nm) light. Their results

suggested that UV sensitivity in a number of species, including the pigeon, did not

decline significantly in response to adaptation of the LWS pigment, which would be

expected if [3-band sensitivity was the cause of the 370 nm sensitivity peak.

However, apart from a peak at 570 nm, the same study failed to isolate in pigeon

ERGs the peaks in sensitivity at 450 and 480 or 510 nm noted in the majority of other

species, or any other peaks which might have corresponded to photoreceptor

sensitivity.

In addition to a broad peak at around 600 nm, VosHzn et al. (1994) observed

two peaks in sensitivity at about 370 nm and 404 nm. As already discussed, the peak

at 600 nm is consistent with the LWS pigment filtered by a red oil droplet, and the

peak at 404 nm a reflection of the VS pigment and transparent droplet pairing. The

photopic sensitivity function obtained also displayed a distinct dip in sensitivity

between 450 and 500 nm, but this would perhaps be expected if the sensitivity of the

SWS and MWS pigments was reduced significantly by oil droplet absorption

(Bowmaker, 1977).

In an ERG study in the chicken, Wortel et al. (1987) revealed peaks in

sensitivity at about 365 nm and 560 nm, but a distinct dip in sensitivity between 400

and 450 nm. The chicken is known to have a VS pigment with a Amax of around
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419 nm from microspectrophotometric studies (Bowmaker et al., 1997) visual

pigment extraction (Fager and Fager, 1981; Fager and Fager, 1982) and recordings of

the early receptor potential (Govardovskii and Zeuva, 1977; see below). The

presence of a peak in sensitivity at 365 nm instead, suggests that either chicken and

pigeon have both UVS and VS pigments, or that the 365 nm peak is the 13-band of the

LWS pigment.

Chen et al. (1984) used sodium aspartate to block synaptic transmission

between photoreceptors and retinal interneurons to confirm that higher order neural

interactions were not responsible for the 370 nm peak in sensitivity. Furthermore,

intracellular recordings of horizontal cells in chelonian retinae (Pseudemys scripta

elegans and Mauremys caspica), which have a similar retinal organisation to birds

(Bowmaker, 1991), have revealed that, in addition to yellow / blue chromaticity-type

horizontal cells which received excitatory input from presumptive UVS cones, red /

green chromaticity-type and luminosity-type horizontal cells displayed a UV

sensitivity derived from the 13-band of the MWS and LWS visual pigments

respectively (Ammermiiller eta!., 1998).

Behaviourally-determined wavelength discrimination functions describe the

minimum wavelength differences that an animal can usefully distinguish. Such a

function has been measured for the pigeon on a number of occasions (Hamilton and

Coleman, 1933; Blough, 1972; Wright, 1972). Two of the more recent studies

(Delius and Emmerton, 1979; Emmerton and Delius, 1980) have suggested that, in

addition to regions of heightened wavelength discrimination ability at 460, 530 and

595 nm, a fourth minimum is located at around 365 to 385. Such an observation is

suggestive of a pentachromatic visual system. Furthermore, colour mixing

experiments in the pigeon have suggested that colour vision involves five primary

mechanisms (Palacios and Varela, 1992). Nevertheless, UV sensitivity provided by

13-band absorption could just as easily be integrated into these two psychophysical

measures as the signal from a dedicated UVS photoreceptor.

The biggest anomaly to reconcile in proposing that the 370 nm peak in the

pigeon and chicken ERG is derived from 13-band photosensitivity is absorption of

short wavelengths by the oil droplets associated with LWS pigment. However, as in

microspectrophotometric measurements of oil droplet absorption spectra in vitro (see
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chapter two), 'leakage' of the incident light around the droplet may also occur in

vivo, permitting absorption by the I3-band. Short wavelength-absorbing filters do not

necessarily preclude UV sensitivity. The diurnal gecko, Gonatodes albogularis, has

a dedicated UVS visual pigment (A max 362) but a 'yellow' lens which absorbs

strongly below 450 nm (Ellingson et al., 1995). Spectral sensitivity measurements

reveal considerable UV sensitivity in this species, and the absorbance of the lens

(1.3) is presumably optimised to permit UV vision whilst protecting the retina from

excessive levels of short wavelength radiation. Alternatively, 13-band

photosensitivity could arise from the LWS visual pigment in the accessory member

of the double cone, which, although sometimes displays a small, discrete oil droplet

(Jane and Bowmaker, 1988), often contains only a very low concentration of diffuse

carotenoid in the ellipsoid (Bowmaker, 1997).

Even if oil droplets do act as cut-off filters, UV photosensitivity of the LWS

double cone visual pigment could be mediated by fluorescence of the P-type droplet

when stimulated with ultraviolet light. As described in chapter three, irradiation of

the retina with near-ultraviolet wavelengths (334 and 365 nm) resulted in appreciable

autofluorescence by the C-type droplets of the SWS single cones, and particularly the

P-type droplets of the double cones. This phenomenon has been described in a

number of other bird species (Goldsmith et al., 1984b) and even in turtles (Ohtsuka,

1984; Ohtsuka, 1985).

The purpose of this necessarily long and convoluted argument has been to

review the evidence regarding the possibility of a fifth cone pigment in the avian

retina. It is the author's opinion that, on the basis of the available information, this is

unlikely. However, this need not preclude the occurrence of pentachromatic colour

vision, and should not deter the rigorous investigation of all avian retinae to discover

additional pigments.

The ERG study by Chen et al. (1984) and Chen and Goldsmith (1986)

discovered sensitivity maxima at around 370, 450, either 480 or 510, and 570 in a

number of species from several different families, although not all peaks were

observed in every species. These four peaks approximate to UVS, SWS, MWS and

LWS pigments filtered by their respective oil droplets in the UVS, SWS and MWS

single cones and the double cone respectively (see Table 1.1 and Table 1.3).

59



Chapter one: An introduction to the avian eye

Curiously, these authors did not selectively adapt the retinae with short and medium

wavelength light to isolate a LWS single cone mechanism which, through the

combination of LWS pigment and red oil droplet, should peak at around 600 nm.

Other notable results include the determination, by flicker photometry ERG,

of a putative 555 nm A.max cone pigment dominant in the great horned owl, Bubo

virginianus (Jacobs et al., 1987). This is identical to the LWS pigment of the tawny

owl, Strix aluco as measured microspectrophotometrically by Bowmaker and Martin

(1978), and is of interest with regard to the microspectrophotometric results obtained

for the LWS pigment of the blackbird, Turdus merula, in this study.

An alternative electrophysiological technique is the measurement of the early

receptor potential (ERP). The ERP is a rapid potential change recorded across the

retina or eye in response to an intense but brief flash of light (Rodieck, 1973). This

potential, which has a positive and negative component (biphasic), results from

charge displacements in the visual pigment molecule that accompany the sequence of

bleaching intermediates (Fein and Szuts, 1982).

The ERP can be recorded extracellularly, across the retina or eye, or

intracellularly. Intracellular recordings have the opposite polarity and a signal

approximately 20 times greater in amplitude (Falk and Fatt, 1972). The advantage of

the ERP over the electroretinogram is that it represents responses of the visual

pigment molecules only and not interactions with higher order neurons. In addition,

due to structural differences in their respective outer segments, the ERP is derived

predominantly from cone photoreceptors rather than rods (Rodieck, 1973).

Visual pigment molecules are distributed symmetrically on either side of the

lamellar disks. Thus in rod outer segments, where the disks are present as saccules

isolated from the external medium, any potential produced by visual pigment

molecules in the upper membrane of the saccule will be cancelled by an equal and

opposite potential from the lower membrane. Rod ERP is therefore restricted to the

very few disks which remain as infoldings of the plasma membrane at the base of the

outer segment. However, the interior of the disks in cone outer segments, which

remain as infoldings of the plasma membrane for the length of the outer segment, are

in contact with the extracellular medium, enabling an external potential across the

outer segment plasma membrane to be measured.
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Recording ERPs before and after selective photobleaching of isolated retinae

allowed Govardovskii and Zueva (1977) to isolate four spectral classes of cone in the

pigeon and chicken. The response maxima of the pigments identified were similar

for both species, 413, 467, 507 and 562 nm, and are very close to the Xmax estimates

determined microspectrophotometrically (see Table 1.3, Bowmaker and Knowles,

1977; Bowmaker, 1977; Bowmaker et al., 1997). No difference in ERP response

was evident between the central and peripheral areas of the chicken retina, or

between the red and yellow fields of the pigeon. Because the retinae were

illuminated from the receptor side, the response maxima displayed no shift in spectral

sensitivity towards longer wavelengths due to the filtering effect of the oil droplets.

1.2.1.5.3 Psychophysical determination

The use of psychophysical and psychometric tests to investigate avian visual

capabilities was mentioned briefly in the previous section. Whilst such tests are

useful in defining the visual capabilities of particular species under a given set of test

or task conditions, they are even more subject to higher order neural processing than

ERG recordings and can be highly specific to the test conditions (Jacobs, 1981).

Consequently, it is difficult to infer the sensitivity of the cone mechanisms

underlying visual ability, although there are some notable exceptions.

In addition to investigating the ability of various species to detect just

ultraviolet wavelengths (Huth and Burkhardt, 1972; Goldsmith, 1980; Parrish et al.,

1981; Parrish et al., 1984), operant experiments have been used to create photopic

spectral sensitivity functions. Kreithen and Eisner (1978) employed a cardiac

conditioning paradigm to reveal two peaks in sensitivity at 350 and 540 nm in the

pigeon. Subjects were conditioned to expect a mild electric shock following the

presentation of a monochromatic stimulus, and the intensity of this stimulus was

varied to obtain a sensitivity function.

Graf (1969), Romeskie and Yager (1976a) and Martin and Muntz (1978),

used increment threshold operant techniques to reveal the same broad peak in

photopic spectral sensitivity at around 570 to 600 nm and a secondary rise in

sensitivity below 400 nm in the pigeon. Martin and Gordon (1974) used a similar

protocol to measure a broad 580 nm peak in the photopic spectral sensitivity of the

tawny owl, Strix aluco. Graf (1979) extended his studies in pigeon to include
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selective chromatic adaptation with background illuminants, and predicted that four

cone mechanisms, with sensitivity maxima at around 400, 480, 560 and 615 nm,

subserved photopic vision.

The most successful determination of photopic spectral sensitivity by operant

methods was that performed by Maier (1992; 1994). He determined four peaks in

sensitivity at 370, 460, 530 and 620 nm in the red-billed leothrix (pekin robin),

Leothrix lutea. These peaks were subsequently shown to correspond well to the four

single cone pigments screened by their respective oil droplets (Maier and Bowmaker,

1993).

Of relevance to this study are the results of Adler and Dalland (1959) and

Dalland (1958), who determined, by operant techniques, the spectral sensitivity of the

European starling to peak at 510 and 550 nm under scotopic and photopic conditions

respectively.

1.2.1.5.4 Microspectrophotometry

The technique and practise of microspectrophotometry is described in detail

in chapter two. It is the only method by which the absorbance spectra of visual

pigments can be measured in situ in individual outer segments, and as such has

obvious advantages over the other methods described above.

The first MSP measurements of avian visual pigments, carried out in the late

1960's, were reported by Liebman (1972). Rod outer segments of chickens, pigeons

and laughing gulls (Lams atricilla) were shown to contain a visual pigment which

absorbed maximally at around 500 nm. Cones, on the other hand, appeared to

contain a pigment maximally sensitive to longer wavelengths (k.„a„ 560 to 575 nm).

Whilst the absorption spectra of cone oil droplets were easily determined (Roaf,

1929; Fujimoto et al., 1957; Strother and Wolken, 1959; Strother and Wolken, 1960;

Strother, 1963) the optical problems encountered in the measurement of such tiny

outer segments (approximately 1 to 2 ilm in diameter), not to mention their physical

fragility, complicated the study of avian cone visual pigments.

In fact, further measurements of avian cone visual pigments were not

published until 1977 when Bowmaker finally established the multiple visual pigment

nature of the chicken and pigeon retina (Bowmaker, 1977; Bowmaker and Knowles,
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1977). To date, the visual pigments of only seventeen species of bird have been

measured microspectrophotometrically (Table 1.3). Of these, 8 species have been

shown to possess four spectrally distinct types of cone visual pigment in addition to a

single type of MWS rod visual pigment. Whilst the absence of one or more cone

pigments reported for some species may very well reflect the true condition of their

retinae, a more likely explanation is that they have been overlooked due to the

limitations of sampling, the small size of the cone outer segments, and the difficulty

in obtaining intact cones (Bowmaker, 1984).
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Chapter one: An introduction to the avian eye

As detailed in Table 1.1, avian cone visual pigments are reliably associated

with specific spectral types of oil droplet. In the case of the pigeon, chicken, mallard

duck, Japanese quail, pekin robin, zebra finch, budgerigar and canary, the

organisation of the cone photoreceptors is as follows:

. R-type oil droplets with cut-off wavelengths (X.cut) between 560 and 580 nm,

which appear red to the human eye, are paired with a LWS visual pigment of 2rnax

564 to 571 nm in one class of single cone.

. Y-type oil droplets with A,cu t between 500 and 540 nm, which appear yellow

or orange to the human eye, are paired with a MWS visual pigment of X,. 500 to

509 nm in another class of single cone. There is evidence to suggest that in the

pigeon, the Y-type droplets in the dorsal retina (red field) have a consistently

longer ?cut (by approximately 20 nm) than those found in the ventral retina (yellow

field).

. C-type oil droplets, which appear 'colourless' or pale yellow to the human

eye, are always associated with a SWS visual pigment of X inax 430 to 456 nm in a

third class of single cone. However, the nature of the C-type droplet appears to

depend on whether the retina also contains either a VS or UVS visual pigment. In

the mallard, chicken, quail and pigeon, the fourth type of single cone contains a

VS visual pigment. The C-type droplets in these species have higher measured

absorbances (0.28 to 0.5) and a range of kcu t from approximately 435 to 450 nm.

The budgerigar, zebra finch, pekin robin and canary all possess a UVS visual

pigment, and the C-type droplets in these species have lower measured

absorbances (0.1 to 0.15) and Xcu t values at shorter wavelengths (approximately

400 to 415 nm). Due to their low apparent absorbance it is unlikely that the C-

type droplets in the latter group act as true 'cut-off' filters.

. T-type oil droplets, which are truly transparent, contain no detectable

carotenoid and show no significant absorption over the range of wavelengths

scanned, are found in the fourth known class of single cone. In the mallard,
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chicken and quail, this type of droplet is associated with a VS visual pigment of

Xmax 415 to 426 nm. In the pigeon, the associated visual pigment has a shorter

Xmax at 409 nm, but is still classed as a VS visual pigment. In the budgerigar,

canary, zebra finch and pekin robin, 1-type droplets are paired with a 'true' UVS

visual pigment of Xmax approximately 355 to 380 nm. It should be noted,

however, that avian VS and UVS pigments have probably arisen from the same

evolutionary branch of UVS opsin gene (Okano et al., 1992; Yokoyama et al.,

1998).

Both members of the double cone contain the LWS visual pigment recorded

in the LWS single cones. The P-type droplet in the principal member has a

variable cut-off between 410 and 500 nm, and occasionally displays a distinct

'shoulder' in the absorbance spectrum at about 480 nm. The A-type droplet in the

accessory member, or carotenoid pigment located at the distal tip of the inner

segment when a droplet is not apparent, has a low absorbance (typically

approximately 0.1) and a characteristic triple-peaked spectrum with absorbance

maxima at about 430, 450 and 480 nm.

Microspectrophotometric examination of the emu (Dromiceius novae-

holandiae) and two species of tinamou (Nothoprocta cinerascens cinerascens and N.

perdicaria sanborni) by Sillman et al. (1981) largely revealed only one cone pigment

(LWS) in addition to the rod pigment. The LWS pigment had a Xmax at 567 nm and

was found in cones without oil droplets, and in cones with oil droplets with quoted

2450 at about 508 and 568 nm. These cells probably represent the typical accessory,

principal and LWS single cones respectively. The outer segment of one cone-like

cell in the bnishland tinamou had a peak absorbance close to 498 nm, although the

inner segment contained no oil droplet. No further oil droplet types were observed.

The same authors studied a neognathus species, the red-tailed hawk (Buteo

jamaicensis) for comparison, and observed four spectral types of oil droplet. Hawk

cone outer segments were deemed to small to measure. Because the hawk retina was

subjected to the same fixation and preparation techniques, it is tempting to believe

that the palaeognathus species genuinely contain fewer cone types. Only further
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study, perhaps using immunocytochemical or in situ hybridisation techniques, will

help to resolve this potentially interesting story.

Microspectrophotometric examination of the tawny owl (Strix aluco) revealed

three types of cone visual pigment with Xmax at 463, 503 and 555 nm and four types

of oil droplet, in addition to a 503 nm ?Lin rod pigment (Bowmaker and Martin,

1978). However, all of the oil droplets had very low absorbances, as would perhaps

be expected of nocturnal or crepuscular species which operate in photon-limited

environments, and did not resemble the characteristic droplet types described above.

Interestingly, the specimens used in the microspectrophotometric investigation had

been in captivity for 5 years, and it is possible that the concentration of carotenoid

pigment in the oil droplets was much less than would be found in a freshly caught

wild bird, as was noted in the present thesis for the domestic turkey, Meleagris

gallopavo (see chapter two). The 463 nm Xmax cone pigment (SWS) was paired with

a 'pale yellow' droplet (C-type) and accounted for approximately 5 % of the cone

population. The 503 nm Xmax cone pigment (MWS) was paired with 'darker yellow'

oil droplet (Y-type) and accounted for a about 5 to 10 % of the cone population. The

555 nm ?max cone pigment (LWS) was paired with 'pale yellow' droplets (P-type)

distinct from the C-type droplets of the SWS cones. This pairing, which represented

80 to 90 % of the cone population, was almost certainly the principal member of the

double cones. No outer segments attached to the reddish brown (R-type) droplets

were measured. Because of the relative lack of cones in the rod-dominated owl

retina, it would not be surprising if a fourth UVS or VS cone class was overlooked.

The retina of the Humboldt penguin, Spheniscus humboldti, was also found to

contain only three cone pigments (Bowmaker and Martin, 1984). A 403 nm Xma,

cone pigment (VS) was generally associated with a transparent (T-type) droplet with

no detectable absorbance above 400 nm. A 'pale' droplet absorbing maximally at

about 405 nm (C-type) was associated with a 450 nm A..max cone pigment (SWS). The

third type of cone pigment (Xmax 543 nm) was associated with 'pale' droplets

resembling the C-type droplet of the SWS single cones, and 'yellow' droplets with a

quoted 2n750 of 525 nm. Whilst these 'yellow' droplets most closely resemble the Y-

type droplets, the fact that the 543 nm A ina„ pigment is found in another class of cone
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which has a pale oil droplet and probably represents the principal member of the

double cone pair, suggests they are in fact less pigmented R-type droplets. Like the

tawny owls, the penguins used had been kept in captivity for at least a year prior to

examination and oil droplet carotenoid concentration may have been depleted.

Consequently, the 543 nm Xmax pigment is probably equivalent to the LWS pigment

in other species, and it is the MWS cone which was absent or overlooked. A shorter

cut-off wavelength in the R-type droplet would be necessary if the Xmax of the LWS

pigment was shifted hypsochromically. A Xcut at around 560 or 570 nm would reduce

the sensitivity of the LWS pigment too much.

A consistent theme in all of the species for which data are available is that the

Xmax values of the rod and MWS cone pigments are very close, often within a few

nanometres of each other. Furthermore, these two pigments show the least variation

of all the pigment types between species.

1.2.2 Pecten

A notable feature of the avian fundus is the pecten (Pecten oculi), a vascular

structure projecting from the retina into the vitreal body at the point of exit of the

optic nerve (Martin, 1985). The structure and potential functions of the pecten have

been reviewed at length elsewhere (Walls, 1942; Meyer, 1977). The most salient

points are discussed below.

The pecten exhibits marked interspecific variation in size and form. Three

morphological types have been distinguished: conical, vaned and pleated. A conical

pecten occurs only in the retinae of the flightless kiwi (Apteryx australis mantelli)

and was considered by Walls (1942) to be as degenerate as the rest of the eye in this

species. The conical pecten is heavily pigmented, without vanes or pleats and

extends from a circular optic disk almost as far as the lens. A vaned pecten is found

in the remaining species of palaeognathus birds (e.g. ostrich, Struthio camelus, and

greater rhea, Rhea americana). It consists of a central vertical lamina from which

arises a series of lateral vanes (Martin, 1985). All neognathus species studied display

a pleated pecten. Arising from a linear optic disk as a simple 'accordion-pleated'

lamina, its pleats are held in formation at the free (vitreal) end by a heavily

pigmented bridge of tissue, the pons pectinis.
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The pecten has a well developed arterial supply, separate from that of the

choroid. Each pleat contains a single arteriole which branches into an extensive

capillary network. The absence of muscular and nervous tissue in the pecten, in

addition to the pleated structure which greatly increases its surface area, has led most

workers to consider its primary function to be that of a supplementary nutritive

device for the sensory retina (Walls, 1942). Whilst choroidal circulation is assumed

to be the primary nutritive source for the avascular retina, in particular the

photoreceptor layer, it is thought that the pecten might serve to nourish the inner

neural layers when choroidal supply is limited by high levels of metabolic activity in

cone-rich retinae. In support of this theory are observations that active, diurnal

species have more pecten folds than nocturnal species (Walls, 1942; Meyer, 1977;

Pettigrew, 1983).

Several other functions for the pecten have been proposed, including its role

as an heat exchanger or a regulator of intraocular pH, and as a device to compensate

for changes in vitreal pressure when the eye accommodates. Various other

hypotheses involving the shadow cast by the pecten onto the fundus have been

suggested, including the improvement of visual acuity and enhanced movement

detection, a role as an intraocular shade against glare from the sun and a 'sextant' to

measure the angle of elevation of the sun. However, critics maintain that, under

normal viewing conditions, the pecten shadow falls mainly on its own base and

slightly to each side (Walls, 1942).

Structures resembling the avian pecten are observed in many other taxa. The

conus papillaris, which is thought to be analogous, if not homologous, to the conical

pecten, is widespread in lizards, and even some mammals (e.g. golden hamster,

Cricetus auratus). Interestingly, turtles, which display a similar retinal morphology

to birds, lack any similar structure. It is thought that, despite a cone-dominated

retina, their metabolic rates are generally lower than most birds and the choroidal

circulation may be adequate for retinal nutrition.
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1.3 Species used in this study

1.3.1 European starling Sturnus vulgaris (Linnaeus, 1758)

The European starling, Sturnus vulgaris, is a 'medium-sized' passerine

approximately 20 cm long and weighs 75-100 g (Feare, 1984). With a global

population of around 600 million (Martin, 1987) and a vast geographic distribution,

the starling is one of the most successful bird species. It has a varied, omnivorous

diet but displays particular morphological adaptations for probing the soil in search

of small invertebrate prey. When foraging on the ground, S. vulgaris pokes its head

into the grass mat and spreads its bill with considerable force to pry apart the turf.

The eyes are then turned forwards towards the sagittal mid-line to scan the feeding

area thus revealed (Beecher, 1978). Beecher (1978) noted that the skull of S.

vulgaris was narrower than non-prying (fruit-eating) starlings, e.g. Spreo superbus

and displayed an unusually deep 'groove' extending from the base of the upper

mandible to the eye, and proposed that this anatomical adaptation facilitated forward

vision. Furthermore, in an investigation of eye movements and visual fields in S.

vulgaris, Martin (1986) showed that, when the bill is open, the binocular field width

is maximal between the mandibles.

The plumage coloration of S. vulgaris is sexually dimorphic both in the

'human visible' (approximately 400 to 700 nm) and near-ultraviolet regions of the

spectrum (Cuthill et al., in press), and it is evident that near-ultraviolet wavelengths

reflected from male plumage are used by females in mate selection (Bennett et al.,

1997).

1.3.2 Blackbird Turdus merula (Linnaeus, 1758)

The blackbird, Turdus merula, is another medium-sized passerine,

approximately 25 cm in length and weighing 80-100 g (Perrins, 1987). Blackbirds

occupy a wide range of habitats with trees and bushes from deep forest to inner cities

(Ehrlich et al., 1994). They feed on insects, molluscs and earthworms which they

obtain by turning over leaf litter or probing the soil, and will also take berries and

fruit from trees (Hillstead, 1944). Blackbird plumage is sexually dimorphic, males

being almost exclusively matt black with a conspicuous yellow-orange bill whereas

females are usually deep brown (Hillstead, 1944).
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1.3.3 Blue tit Parus caeruleus (Linnaeus, 1758)

The blue tit, Parus caeruleus, is a common inhabitant of broad-leaved

temperate woodland, but is also found among scattered trees in hedgerows, orchards,

town parks and gardens. It is one of the smaller passerine species, approximately

11.5 cm long and weighing 9-12 g (Perrins, 1987), and eats a range of insects and

spiders taken from foliage and seeds in winter (Ehrlich et al., 1994). The blue tits

plumage is sexually dimorphic in the near-ultraviolet (Andersson et al., 1998; Hunt

et al., 1998) and, as with S. vulgaris, near-ultraviolet plumage reflectance probably

plays a role in the assessment of potential mates (Andersson et al., 1998; Hunt et al.,

1998).

1.3.4 Domestic turkey Meleagris gallopavo (Linnaeus, 1758)

The turkey, Meleagris gallopavo, is a North American galliform, formerly

distributed east of the Rocky mountains from Mexico to southern Canada. The

species was domesticated in Mexico and south west USA and imported to Europe

from the 16th century onwards (Snow and Perrins, 1998a). The wild turkey is

characterised by a bright blue head, red legs and a general copper bronze plumage

(Baird eta!., 1875). The domesticated British Union Turkeys (BUT strain 8) used in

this study were white. Adult turkeys weigh between 7-16 kg, are approximately

120 cm in length and, in the wild, feed on a variety of nuts, seeds, berries, fruits and

insects. Their natural habitat is mostly woodland and mountain hillsides, but also the

damp and swampy lands alongside larger streams (Bendire, 1892).

Commercially reared turkeys are often kept under very low light intensities to

reduce injurious pecking (Sherwin, 1998). However, severe light deprivation may

result in changes in ocular morphology that can cause blindness (Siopes et al., 1984).

Like the domestic chicken, Gallus gallus (Prayitno et al., 1994; Prayitno and Phillips,

1997), turkeys show preferences for both the wavelength and intensity of the ambient

illumination (Smith et al., 1989; Sherwin, 1998). In the interests of improving the

welfare of commercially farmed turkeys, by optimising the spectral composition and

intensity of the ambient illumination, the spectral absorption properties of the retinal

photoreceptors of the turkey were determined microspectrophotometrically to predict

the range of wavelengths to which this species might be sensitive.
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1.3.5 Peacock Pavo cristatus (Linnaeus, 1766)

The peacock is the male peafowl, Pavo cristatus, a relatively large galliform

weighing 4-5 kg and measuring 100-120 cm in length from the head to the base of

the tail (200-230 cm from the head to the end of the train). Characterised by its

unmistakable blue and green plumage, it is found wild from India to Sri Lanka at

altitudes of up to 1300 m. Living in thick jungle, its diet consists predominately of

vegetable matter, grain seeds and some insects, molluscs and larvae of all kinds

(Whistler, 1935).

Because of the striking sexual dimorphism in plumage coloration between the

peahen and the peacock, and the elaborate train of the male bird, the peafowl has

become a model species in the study of avian sexual selection. Peacocks with the

most elaborate trains have the highest mating success (Petrie et al., 1996) and their

offspring grow and survive better (Petrie, 1994). Receiver psychology is an

important evolutionary force on the design of animal signals (Goldsmith and

Dawkins, 1991), and the detectivity and discriminability of a given visual signal will

be largely dependent on the receiver's visual system.
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Chapter two: Microspectrophotometry of avian retinal photoreceptors

2 Microspectrophotometry of avian retinal photoreceptors

2.1 Introduction to the technique of microspectrophotometry

Developed to examine and measure nucleic acids in the cell nucleus

(Caspersson, 1940 cited in Wolken et al., 1968) microspectrophotometry has become

an invaluable tool for the vision researcher. It is the only method by which the

spectral absorption properties of visual pigments can be measured in situ in

individual photoreceptors.

The technique is an adaptation of standard spectrophotometric procedures to

microscopic samples. Single-cell microspectrophotometry involves passing a very

narrow beam of light through the cell under investigation and measuring the

transmission at each wavelength. However, whilst conceptually simple, the practice

of microspectrophotometry is complicated greatly by both the wave and quantal

behaviour of electromagnetic radiation (see sections 2.2.6 and 2.2.7).

The first measurements of visual pigments in individual photoreceptors were

made by Hanaoka and Fujimoto (1957) in carp, Cyprinus carpio. At the same time

they attempted to obtain absorption spectra of avian photoreceptors, but were

thwarted by the small size of the cone outer segments and succeeded only in

recording the spectral transmission of the cone oil droplets (Fujimoto et al., 1957).

Soon after, Brown (1961) obtained better records from frog rod outer segments using

a modified commercial spectrophotometer.

Whilst these spectra were recorded by devices employing separate sample and

reference beams, the construction of the first 'dual-beam' microspectrophotometer

(MSP) is credited to Chance et al. (1959), the fundamental difference being that both

beams were passed through the specimen preparation and were separated spatially by

only 12 pm. This design allows the reference beam to provide a more accurate

control of feedback circuits which adjust signal amplification at each wavelength.

Inevitably, this machine was soon modified for the study of photosensitive pigments

in rods (Liebman, 1962) and cones (Liebman and Entine, 1964; Liebman and Entine,

1968). Other dual-beam machines also were constructed and used for the

measurement of single photoreceptors in fish, amphibians and primates (e.g. Marks

eta!., 1964; Marks, 1965; Wolken et al., 1968).
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In the dual-beam design, light from a monochromator is split into sample and

reference beams by either a reciprocal or James chopper. Both beams are then

demagnified by an inverted objective lens and superimposed onto the specimen plane

of a conventional high magnification microscope. One beam passes through the

sample, the other is directed into a cell free area of the preparation. Whilst the

monochromator scans through the spectrum, a photomultiplier (PMT) measures the

relative intensities of the two beams, the ratio of which, in principle, gives a measure

of the transmission (and hence the absorbance) of the sample. The reference beam is

also used to control PMT high tension voltage (HT), via a negative feedback loop,

such that signal amplification was increased when photon flux is low. Because only

one PMT is used in the design, the beams are separated temporally as well as

spatially, the photocurrents induced by each beam being recorded alternately at every

wavelength.

However, the design of the dual-beam machine is such that sample and

reference beams are not identical. Originating from different points on the lamp

filament or arc, they traverse disparate regions of the optics and arrive at different

locations on the photocathode. For these reasons, a separate baseline recording must

be made, with both beams passing through cell-free areas, and deducted from the

sample scans. Attempts to reduce baseline anomalies due to differing sensitivity

functions for different points on the photocathode include the use of a supplementary

Bertrand-Amici lens to reduce beam divergence and image the back focal plane of

the collector objective onto the same region of the PMT (e.g. Liebman and Entine,

1964; MacNichol, 1978).

Further developments led to the construction of a single-beam, photon-

counting design of MSP (PMSP, Harosi and MacNichol, 1974; Harosi, 1975; Harosi

and Malerba, 1975; Harosi, 1976; MacNichol, 1978) which was used to investigate

the dichroic absorption properties of visual cells in addition to their wavelengths of

maximum sensitivity (kma,). Because there is only one beam, which can be aligned

axially through the objectives, this design has potentially fewer optical aberrations

(see section 2.2.6) and the same point on the photocathode is used for both baseline

and sample measurements. Instead of a reference beam to adjust PMT HT, the

baseline is 'flattened' initially to give a relatively constant output voltage at each
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wavelength for a given size and photon flux density of measuring beam. The

reference file calculated in this way by a microcomputer adjusts the signal

amplification, or gain, automatically during fast scanning of the sample and baseline.

Gain control can be achieved by variation in PMT HT, but this is intrinsically slow

and to increase scan speeds HT needs to be kept constant and gain variation achieved

by the control of the analogue amplifier. Assuming that fluctuations in the intensity

of the light source and the behaviour of the electronic circuitry are insignificant (or

that their effects are detectable so that all records subject to anomalous drift may be

discarded) the single beam design is capable of measuring very low absorbances in

small specimens with equal or greater accuracy than a dual beam instrument (Harosi

and MacNichol, 1974). This achievement is, however, critically dependent on high

temporal stability in all components.

All measurements in the course of this study were made with the receptor

long axis perpendicular to the direction of propagation of the measuring beam.

Despite the difficulties of the preparation, end-on measurements were attempted by

several workers (Marks et al., 1964; Liebman, 1972). In addition to being the

'natural' direction of light penetration into a photoreceptor cell, end-on

measurements maximise the pathlength of light through the outer segment, giving the

highest possible absorbance, and utilise any inherent focusing properties of the

ellipsoid region or outer segment (Snyder and Hamer, 1972). However, such

measurements suffered from severe wavelength-dependent light scattering of the

measuring beam by the adjoining neural layers of the retina (Liebman, 1972) and, in

larger photoreceptors, anomalous dispersion due to differences in refractive index of

the outer segment at different wavelengths (Snyder and Richmond, 1972; Jagger and

Liebman, 1976). With regards to microspectrophotometry of avian photoreceptors,

transverse measurement is the only way to distinguish absorption by cone visual

pigments from that of their associated oil droplets.

2.2 The Bristol microspectrophotometer

2.2.1 Description

The microspectrophotometer (MSP) used in this thesis to measure both visual

pigment and oil droplet absorption spectra is a single-beam, wavelength-scanning,
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computer-controlled instrument developed from the machine described in detail by

Partridge eta!. (1992). A diagrammatic view of the MSP is shown in Figure 2.1.

Photomultiplier tube

Far-red sensitive
vidicon camera

7.
	 /
..-- ...	 Moveable

prism
.411..

I cz)
Focusing objective

1 	
	  Specimen stage 	100W quartz-

I CD
	

Condenser objective
	 halogen bulb

Figure 2.1 Diagrammatic view of the microspectrophotometer (MSP) used in the
present study. All lenses are ultraviolet-transmitting, fused silica. Focusing of the
specimen by the focusing objective is achieved by moving the specimen stage
vertically with the microscope's conventional coarse and fine focus controls. The
focus of the condenser objective can also be adjusted manually, but is usually
controlled by a computer-driven piezo-electric translator (PlF0C P-720.00, Physik
Instrumente, Germany).
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The MSP measuring beam is derived from light produced by a 100 W quartz-

halogen bulb powered by a stabilised 12 V DC power supply (Oriel model 60,000 Q

series convective lamp housing, Oriel Corporation, USA). The filament of the bulb

is focused onto the entrance slit (1 mm width x 5 mm height) of a Jobin Yvon H-

1061 UV-VIS grating monochromator (Instruments SA Ltd., Middlesex, UK), the

output of which (8 nm full width half maximum, FWHM, bandwidth) illuminates an

adjustable aperture. This consists of two sets of opposable slits which control the

vertical and horizontal dimensions of the beam in the plane of the specimen. The

aperture housing also contains a calcite crystal which linearly polarises the light

passing through the aperture, a feature that enables the dichroic absorption properties

of rod outer segments to be exploited (Harosi and MacNichol, 1974; Harosi and

Malerba, 1975). Outer segment dichroism, which, as explained in chapter one, arises

from the orientation of visual pigment molecules embedded in the outer segment disk

membranes, ensures that pigment absorption is four to five times greater for light

linearly polarised with its electric vector perpendicular to the long axis of the outer

segment than for light polarised parallel to that axis (Jagger and Liebman, 1976).

This optical phenomenon helps to compensate for the reduced pathlength resulting

from transverse measurement.

The measuring beam is directed into the plane of the specimen on a

microscope stage and demagnified by a Zeiss Ultrafluar x 32 objective used as a

condenser lens (NA 0.4). Above the stage, an Olympus x 100 DApo 100UV

objective (set to a NA of 1.3) focuses the beam either onto a small area of the

photocathode of a Hamamatsu C1556-51 photomultiplier (Hamamatsu photonics,

UK) or, by use of a sliding prism, towards a far-red-sensitive video camera (75 series

miniature CCTV camera; Insight Vision Systems Ltd., Malvern, UK) which is

connected to a monochrome video monitor for viewing the specimen. Background

illumination is provided by an infra-red LED, the light from which is introduced to

the light path by a thin glass beam-splitter positioned below the condenser lens. The

passage of the measuring beam can be interrupted before reaching the specimen by an

electric shutter controlled either manually or automatically via the computer.

Light hitting the PMT photocathode induces a nA current in the

photomultiplier which is converted to a voltage in the headstage amplifier. This
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voltage is amplified and fed into an analogue multiplier together with the voltage

from a digital to analogue converter, which receives a variable digital signal from the

computer to control the gain of an analogue multiplier and give an approximately

constant voltage at all wavelengths. The signal is then amplified, inverted and low-

pass filtered with a variable low-pass Butterworth two-stage active filter, and fed to a

2 MHz voltage to frequency (V / F) converter. After a short delay at each wavelength

to allow the filtered signal to settle, the frequency output at each odd integer

wavelength on the downward, long wavelength to short wavelength, spectral pass,

and each even integer wavelength on the upward, short wavelength to long

wavelength, spectral pass is integrated over 10 ms using a CTM-05 counter/timer

board (MetraByte Co., Taunton, MA, USA) in the computer.

2.2.2 Measurement protocol

In use, the photoreceptor outer segment or oil droplet was first focused using

the microscope's conventional coarse and fine focus controls which moved the

specimen stage vertically. The measuring beam, typically 1-2 pm square, was then

focused (usually at 730 or 750 nm) in an area adjacent to the photoreceptor, the infra-

red LED background illumination extinguished, and the light path directed to the

photomultipl ier.

Prior to any measurements, the baseline was 'flattened'. This was necessary

due to wavelength-dependent variations in the photon flux of the measuring beam.

The microcomputer gain signal, or `gainbyte', which was converted by the digital to

analogue converter into a gain-controlling voltage, was chosen such that the baseline

signal recorded by the computer was approximately 500 kHz at each wavelength.

The gainbyte for each wavelength was stored in a computer file for reference during

baseline and sample scans. By removing the variation in photon flux density at each

wavelength, the full range of the V / F converter could be used to detect differences

between the baseline and sample scans.

A baseline scan was recorded as the computer-controlled stepper motor drove

the monochromator from 750 to 330 nm (or, in earlier work, 730 to 350 nm) and

back again. Two long wavelength to short wavelength, short wavelength to long

wavelength spectral passes were performed during each scan. A scan took
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approximately 25 seconds to complete and, like all other automated procedures, was

controlled by a Microsoft QuickBASIC version 4.5 program.

Having recorded a baseline scan, the photoreceptor outer segment or oil

droplet was moved into the measuring beam and a sample scan made in the same

way. A further scan was made with the shutter shut to record any residual dark

current (although this was also nulled by a manually adjusted offset voltage to one of

the amplifiers). This dark current scan was deducted from both the sample and

baseline scans which were recorded, along with summary file information, as

comma-delimited text files. When measuring visual pigments, another baseline scan

was made and combined with the sample scan to obtain a second record of the

photoreceptor without further bleaching of the visual pigment. Averaging together

two scans has the same purpose as making two spectral passes in that the signal to

noise (S / N) ratio of the measurements is increased by ,/f . Although in this study

only the baseline scans were repeated, and so the signal to noise ratio for the

combined sample and baseline scans was increased by less than J, , the effect, an

increase in S / N ratio of 1.225 (137-5,), was still appreciable in such noisy data.

Only one sample scan of each outer segment was made in attempt to reduce

distortions in visual pigment absorbance spectra due to progressive 'in-scan'

bleaching, and the resultant accumulation of stable photoproducts absorbing light

over the range of wavelengths scanned, which might be evident in subsequent sample

scans. Outer segments containing putative ultraviolet-sensitive pigments were an

exception, however, and up to three sample scans, which were subsequently averaged

together, were made from the same region of the outer segment. This was necessary

due to the relatively low signal to noise ratio of measurements made from this class

of cone. The low photon flux density of the measuring beam at short wavelengths

precluded excessive in-scan bleaching of this pigment type.

Outer segments containing visual pigments were bleached for 10 minutes

using monochromatic (8 nm FWHM bandwidth) light from the monochromator at a

wavelength corresponding approximately to the Xmax of the pigment measured.

Because of the reduced light flux from the monochromator light source at ultraviolet

wavelengths, putative ultraviolet-sensitive visual pigments were bleached with a 10

minute exposure to white light emitted by the monochromator at its blaze angle.
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Two post-bleach scans were then made in order to create difference spectra and

confirm photolability. Consistency in the number of scans made of each outer

segment, both before and after bleaching, is essential for ensuring that the data are

weighted equally during subsequent averaging and calculation of difference spectra.

2.2.3 Accuracy of transmission measurements

Accuracy is defined as the difference between the values recorded (averaged

to reduce the effects of noise) and their true values. To test the linearity and

transmission accuracy of the MSP used in this study, the transmissions of a range of

neutral density filters (four identical filters of each transmission value from

1.64 x 10-2 to 0.88 in 20 unequal steps) were determined using a Shimadzu UV-

2101PC UV-VIS scanning spectrophotometer (Shimadzu scientific instruments, Inc.,

Columbia, USA). From the manufacturer's specifications, the latter is known to be

linear up to an absorbance of 5 with a transmission accuracy of ± 0.3 % and a

repeatability of ± 0.1 %. Variation in transmission measurement by the Shimadzu

spectrophotometer is thus assumed to be negligible compared to the MSP.

The transmission of each filter at 550 nm as measured by the MSP was then

plotted against the transmission measured using the Shimadzu (Figure 2.2).

Polynomial regression was performed on the data to test for a departure from

linearity, but the squared term was found to be non-significant (t 76 = 0.08; p = 0.933).

The linear regression line calculated gave a gradient of 0.930, an intercept of 5.9 x

104, and accounted for 99.6 % of the observed variation. The gradient of the

regression line was significantly different from unity (t 78 = 10.53; p <0.001), but the

value of the intercept was not significantly different from zero (t 78 = 0.20; p = 0.843).

Whilst linear over the range of transmittance values investigated, the MSP

appears to systematically underestimate transmission (mean difference 8.2 % ±

standard deviation of 4.6 % of transmission as measured by the Shimadzu

spectrophotometer) and the magnitude of this underestimation is proportional to the

relative transmission value of the filter.
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Figure 2.2 Linearity of the MSP used in this study. The transmission at 550 nm of a
series of neutral density filters was measured by both the MSP and a Shimadzu UV-
2101PC UV-VIS scanning spectrophotometer. The Shimadzu was known to be
linear over the transmittance range investigated and the linear response of the MSP
was confirmed by polynomial regression (squared term non-significant: tm = 0.08;
p = 0.933). The linear regression line has a gradient of 0.930, which is significantly
different from unity (t78 = 10.53; p <0.001), and an intercept of 5.9x10 -4, which is
not significantly different from zero (t 78 = 0.20; p = 0.843).

83



Chapter two: Microspectrophotometry of avian retinal photoreceptors

This discrepancy may have arisen through differences in the optical

arrangements of the two machines used to measure the filters. Alternatively, the

error may have occurred as a result of incorrect calculation of the transmission from

the microspectrophotometric data. Transmission is calculated from MSP sample and

baseline measurements by comparing the output of the V / F converter, which

receives the filtered and amplified signal from the PMT, thus:

Light transmitted OffHz — SHzx
Tx =	 =

Light incident	 OffHz — BHzx
Equation 1

where SHz, is the sample scan frequency, BHzx is the baseline scan frequency, OffHz

is the calculated frequency when there is no signal from the PMT and X, is

wavelength. Estimates of sample transmission are therefore potentially sensitive to

errors in estimating OffHz. Such an error might have arisen through the use of an

adjustable 'gain' in the signal interface circuit which was incorporated in order to

utilise the whole dynamic range of the V / F converter with samples of different

maximum absorbance.

In an attempt to isolate likely sources of error in estimating sample

transmission, a further experiment was conducted. The MSP electronics contain a

calibration circuit which can be used to mimic the signal from the photomultiplier

tube (PMT). Thus a calibration voltage of between 0 and 1 V can be fed into the

signal processing circuitry, and onwards to the microcomputer, to identify non-

linearities or signal-dependent errors inherent in the instrument's electronics. The

signal from the PMT headstage, or the calibration circuit, passes through four

amplifiers and a V / F converter before reaching the microcomputer, and these

components are all potential sources of error.

The MSP was set up as for normal use, thus incorporating all sources of

extrinsic noise. The signal source was switched from the PMT headstage to the

calibration circuit, the input voltage set at 0.8 V, and the baseline flattened. A

baseline and sample scan were then made with the signal set at 0.8 V. Subsequent

measurements were then made with the baseline signal set at 0.8 V, but the sample

signal at regular, decreasing increments. The 'real' transmission values imitated

using this procedure were calculated by dividing the voltage of the signal by that of

the baseline. After the baseline and sample signals had been amplified, inverted,
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low-pass filtered and converted into a frequency as recorded by the microcomputer,

transmission was calculated from the MSP data files using the method described in

equation 1 (page 84).

With transmission determined by the ratio of sample and baseline signal

voltages as the independent variable, and the calculated transmission from the MSP

data file as the dependent variable, a polynomial regression was performed on the

data to test for a departure from linearity. The squared term, however, was found to

be non-significant (t 12 = 0.25; p = 0.808). The linear regression line calculated

subsequently had a gradient of 1.007, an intercept of -2.44x10 -3 and accounted for

100 % of the variation (Figure 2.3). The gradient of the regression line was

significantly different from unity (t 13 = 3.75; p <0.005), although the intercept was

not significantly different from zero (t 13 = 2.00; p = 0.07). However, the associated

error is small (mean difference in calculated transmission was 0.04 % ± standard

deviation of 0.9 %), which suggests that the signal processing electronics

downstream of the analogue multiplier, and the determination of OffHz frequency,

are not responsible for the discrepancy in measured transmission observed in the

original experiment. The PMT was always operated within the range of high tension

(HT) voltage specified by the manufacturer to result in a linear performance. The

error in transmission measurement observed in the original experiment was,

therefore, assumed to be a consequence of the test method employed. Specifically,

transmission can only be properly assessed if samples are introduced into the light

path where the light is collimated. This was not the case with the insertion of neutral

density filters into the MSP light path.
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Figure 2.3 Linearity and transmission accuracy of the signal processing electronics
employed in the MSP. Abscissa: transmission determined by the ratio of the sample
and baseline calibration signal voltages. Ordinate: transmission calculated from
baseline and sample frequencies recorded by the microcomputer as MSP data files.
A linear relationship was established by polynomial regression (squared term non-
significant: t 12 = 0.25; p = 0.808). The linear regression line has a gradient of 1.007
and an intercept of -2.44x10 -3 . The gradient of the regression line is significantly
different from unity (t 13 = 3.75; p <0.005), but the intercept is not significantly
different from zero (t 13 = 2.00; p . 0.07).
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Visual pigment specific absorbances were not calculated in this study.

Deterioration of cone outer segments, which had a tendency to become flattened and

fold over upon themselves following enucleation, prevented accurate determination

of measured pathlengths. Furthermore, this deterioration masked the orientation of

the long axis of the outer segment. Alignment of the measuring beam in the outer

segment such that the electric vector of the beam is perpendicular to its long axis is

essential in exploiting the dichroic arrangement of the visual pigment molecules and

is conditional for estimating longitudinal specific absorbance from transverse

measurements (Harosi, 1975). Instead, the absorbance at the Xi,. of the difference

spectrum for each visual pigment is given. However, whilst it is desirable to measure

transmission as accurately as possible, the shape of the normalized absorbance

spectrum will be unaffected, provided the MSP is linear over the range of

transmittance measured.

2.2.4 Precision of transmission measurements

The precision of the transmission measurements obtained with the MSP can

be regarded as the repeatability of a given measurement, and is therefore dependent

on noise in the signal. Closer inspection of Figure 2.2 reveals the heteroscedastic

nature of the data. As filter transmission increases, so does the magnitude of the

variance. To ascertain that this heteroscedascity was not due to transmission-

dependent irregularities in the filters used, a nonparametric statistical analysis was

performed as follows.

Firstly, the mean transmission of each quartet as measured using the

Shimadzu spectrophotometer was deducted from it's four component individual

transmission values to remove all between-quartet variation. The association of the

within-quartet variation and the variance observed in the MSP transmission values

was then found to be non-significant by determining Spearman's rank correlation

coefficient (rs = -0.1742; n = 80; p = 0.122). Thus, it appears that the precision of the

MSP deteriorates as sample transmission increases, although, when expressed as a

proportion of filter transmission, the magnitude of the variance (a mean standard

deviation of ± 4.15 % of measured transmission) is independent of transmission

(linear regression: t 18 = 0.41; p = 0.685).	 This phenomenon emphasises the
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importance of averaging a number of visual pigment absorbance measurements in

order to obtain a reliable estimate for the X..

2.2.5 Wavelength accuracy and precision

The accuracy of the wavelengths as recorded by the MSP is determined by the

wavelength accuracy of the monochromator used. Manufacturer's specifications for

the Jobin Yvon H-1061 VIS grating monochromator report an accuracy of ± 0.5 nm.

Such tolerance, however, is only approached if the backlash is taken up (i.e. the slack

in the toothed belt between the monochromator and the stepper motor which drives

it, and in the lead-screw within the monochromator). The modifications to ensure

this, both mechanical and in the controlling software, have been discussed elsewhere

(Kent, 1997). The wavelength precision of the MSP was controlled by the software

because each wavelength reached by the monochromator was referenced to a

wavelength calibration file, and it was the latter value which was recorded along with

the absorbance.

A didymium filter was used to test the wavelength accuracy and precision

(repeatability) of the MSP. This glass filter is a mixture of the rare earth elements

Neodymium, Praseodymium and Samarium (Wyszecki and Stiles, 1967). It's

spectral transmission shows a number of distinct minima and maxima at wavelengths

characteristic of the filter. Nevertheless, specific manufacturing conditions and

ageing can affect the exact position of these absorbance bands and the filter was

calibrated by measuring it with a Shimadzu UV-2101PC UV-VIS scanning

spectrophotometer. This machine is self-calibrating and has a wavelength accuracy

of ± 0.3 nm and a precision of ± 0.1 nm.

Because some of the absorbance bands of the didymium filter are narrow and

close together, the wavelengths of maximum absorbance will, to some degree,

depend on the spectral bandwidth of the spectrophotometer. Accordingly, scans

made by the Shimadzu with a 1 nm FWHM bandwidth were numerically converted

to represent a scan made with an 8 nm FWHM bandwidth so as to be directly

comparable to that of the MSP. This was achieved by passing a weighted (delta

function) running average through the Shimadzu data. When comparing the scans

made by the Shimadzu and the MSP (Figure 2.4) all discrepancies were found to be
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within ± 1 nm (mean + 0.7 nm; standard deviation ± 0.5 nm; n = 7). Thus the

accuracy of the MSP used in this study is approximately ± 1 nm.

2.2.6 Limitations imposed by the wave behaviour of electromagnetic radiation

Wave behaviour reduces the ability of any optical system to direct light onto a

very small area. The design of the single-beam MSP ensures that many lens

aberrations (e.g. astigmatism and lateral chromatic aberration) are irrelevant, as long

as the measuring beam is aligned axially in the optical pathway. Chromatic and

spherical aberrations of component lenses, however, are potentially problematic,

especially in the measurement of small cells.

The refractive index (RI) of glass varies according to the wavelength of light.

Thus, light originating from an axial point will not come to a common focus, a

phenomenon known as axial chromatic aberration. Instead, shorter wavelengths will

be focused at a point nearer to the lens than longer wavelengths. Axial chromatic

aberration of the measuring beam by the Zeiss Ultrafluar x 32 condenser objective

used in this study exceeded 9 lam between 440 and 800 nm Figure 2.5.

It follows that the MSP measuring beam would be brought to a focus in

different planes depending on the wavelength and, if left uncorrected, would result in

unacceptable levels of light leakage around photoreceptor outer segments or oil

droplets which are generally less than 41.tm in diameter. Whilst it is possible to

partially correct axial chromatic aberrations optically, apochromatic objectives

usually display poor transmission of ultraviolet wavelengths due to the incorporation

of extra lenses, and achromatic lenses, such as the Zeiss Ultrafluar used in this study,

are preferred. Consequently, this optical constraint was circumvented by

automatically adjusting the focus of the condenser objective during each scan. A

computer-driven piezo-electric translator (PIFOC P-720.00, Physik Instrumente,

Germany) beneath the condenser objective moved the lens rapidly, with a resolution

of approximately 10 nm, to maintain the plane of focus during a scan.
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Figure 2.4 Wavelength accuracy of the MSP used in this study. The absorbance
spectrum of a didymium filter was measured using a Shimadzu UV-2101PC UV-VIS
scanning spectrophotometer with a 1 nm FWHM bandwidth. This scan was
numerically converted to represent a scan (symbols) with an 8 nm FWHM bandwidth
(i.e. equivalent to that of the MSP). Such a scan was frequently compared to scans
made by the MSP (line) to check wavelength accuracy and precision. The
discrepancy between the two scans at high absorbance values is due to limitations of
the MSP, which is designed to measure absorbances less than one, and because the
didymium filter could only be introduced into the MSP light path at a point at which
the light was uncollimated.
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Figure 2.5 Chromatic aberration of the Zeiss Ultrafluar x 32 condenser objective
used in the present study. The line shown represents a quadratic function, of the
form:

y =a +bx +cx2

where a = 14.7523, b = -0.0651 and c = 7.4716x10-5 , fitted to data (symbols)
obtained at 10 nm intervals (330 to 800 nm inclusive) using a non-linear regression
software package (CurveExpert 1.2). The difference in focus between 440 and
800 nm is 9.9 Inn.

91



r = 
0.61X 

NA
Equation 2.

Chapter two: Microspectrophotometry of avian retinal photoreceptors

Spherical aberration arises from the curvature of lens surfaces. Rays passing

through marginal zones of a lens are refracted more than those passing through zones

closer to the optic axis. Consequently, rather than a point of sharp focus, there is a

'zone of confusion' along the optical axis (Bradbury, 1989). Spherical aberration in

the MSP used in this study was minimised by careful selection of lenses with low

spherical aberration.

Lenses that are well corrected for axial chromatic aberration may still suffer

from lateral chromatic aberration, resulting from lens combinations which cause the

focal length of peripheral rays to be different for short and long wavelengths

(Bradbury, 1989). The single beam design of microspectrophotometer, as used in

this study, facilitates axial alignment of the measuring beam and thus minimises this

form of aberration.

Even given perfect optics, diffraction effects ultimately restrict the ability of

lenses to concentrate light to a focal point. Fraunhofer diffraction causes a point

source of light to be transformed by a lens into a series of concentric rings of

decreasing brightness, known as an Airy diffraction pattern (Born and Wolf, 1970).

The resolution of a microscope objective is equal to the radius, r, of the first dark ring

of the Airy pattern, which is given by:

Whilst resolution is usually considered with respect to a magnified image, the

concept is equally applicable to demagnification of the measuring beam by an

inverted microscope, such as in the MSP. Paradoxically, this inverse relationship

between resolution and NA suggests that a condenser objective of high NA should be

used in order to maximise the precision with which the measuring beam can be

superimposed on a single photoreceptor. However, in addition to reducing spherical

aberration, restricting objective NA improves the collimation of the transilluminating

beam. This is desirable for all spectroscopy and is especially important where

measurement of receptor dichroism is required (Harosi and Malerba, 1975).

Furthermore, it is empirically evident that, whilst condenser NA should be

low, collector objective NA should be comparatively high in order to catch as much

of the light scattered off-axis by the sample. Failure to ensure this results in a
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wavelength dependent distortion of visual pigment absorption spectra, manifested as

an increase in apparent absorbance at short wavelengths (Harosi, 1971 cited in

Partridge, 1986). In this study, a Zeiss Ultrafluar x 32 objective (NA 0.4) was used

as the condenser and an Olympus x 100 DApo 100UV objective (set to an NA of 1.3)

was employed as the collector objective. Both lenses have relatively high

transmission to ultraviolet wavelengths and satisfy the above criteria regarding NA.

2.2.7 Limitations imposed by the quantal behaviour of electromagnetic

radiation

By far the greatest complication in modifying the technique of

microspectrophotometry for the measurement of visual pigments is their photolabile

nature. High light intensities bleach away the pigment before it can be measured, but

low light intensities limit the precision of the measurements due to the stochastic

nature of the photon flux.

In his treatise on the emergent technology of single cell

microspectrophotometry, Liebman (1972) expounded the theoretical basis for the

detection of photosensitive substances. The most salient points are discussed below

with reference to the device used in this study.

To detect a substance by virtue of its spectral absorption, the difference

between the mean number of photons transmitted by the sample (I t) and the mean

number of photons incident GO upon the sample (the signal, S, equation 3) must

exceed by a sufficient magnitude all random fluctuations in the combined measuring

and measured system (the noise, N).

s=I,—I,	 Equation 3.

At the low flux densities employed in microspectrophotometry of visual

pigments, the relative contribution of the signal-induced noise must be greater than

all extrinsic noise.

2.2.7.1 Intrinsic or signal-induced noise

Signal-induced noise, otherwise known as photoelectron shot noise, is the

noise present in the signal from the photomultiplier. Primarily, this is due to
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quantum behaviour of electromagnetic radiation, which sets the irreducible intrinsic

limit to any photoelectric measurement (Liebman, 1972).

The random nature of photon emission from an incandescent source also

leads to stochastic modulation of the signal. Various light sources have been utilised

in microspectrophotometry. However, their selection has undoubtedly addressed the

desire to extend the measuring range of the machine into the ultraviolet, for example

by using a Xenon arc lamp, rather than the attainment of shot noise limited

performance. Tungsten filament lamps, operated from a constant current regulated

DC power supply, provide by far the most stable quantum flux, having no unstable

arc and considerable thermal inertia in the filament.

2.2.7.2 Extrinsic noise

Noise arising from sources that are independent of the stochastic behaviour of

electromagnetic radiation must be eliminated or suppressed as much as possible.

Photomultiplier noise and drift, amplifier noise, exogenous and endogenous electrical

noise, mechanical vibration and the movement of the retinal preparation are all likely

sources of extrinsic noise.

The photomultiplier, PMT, is the heart of the MSP detection system. PMT

noise is due to current pulses generated within the PMT which are not caused by the

signal and have various origins. These have been discussed extensively elsewhere

(Partridge, 1986) and it is sufficient to stress the importance of utilising a PMT with

low noise and high quantum efficiency (Liebman, 1972). The Hamamatsu C1556-51

PMT used in the Bristol MSP satisfies these criteria. Furthermore, as in this study, a

differential amplifier which allows the MSP operator to 'zero' the PMT dark noise

(the current produced when the PMT photocathode is shielded from light), in

addition to routine subtraction of the residual measured 'dark current' from MSP

baseline and sample scans, helps to reduce the effect of PMT noise and drift.

Extrinsic noise inherent in signal amplification circuits was reduced by the

selection of low noise components. Furthermore, digital components were isolated

from analogue circuitry by the use of separate power supplies and optoelectronic

couplers. Although a potential source of extrinsic noise in itself, the electronic

reduction of noise can increase signal-to-noise ratios and thus improve

microspectrophotometric measurements. The MSP used in this study employs a
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Butterworth two-stage active low-pass filter which removes spurious high

frequencies generated by various extrinsic factors and, more importantly, ensures, by

elimination of high frequency transients, that voltages do not exceed the input

voltage of the V / F converter.

A reduction in mechanical vibrations due to people or machinery in the

vicinity of the MSP is essential. This was achieved by mounting the optical section

on a steel sheet (approximately 1.5 cm thick) which was isolated from the supporting

bench by a layer of foam-backed carpet and three small motorcycle inner tubes

inflated to a very low pressure. In addition, the stepper-motor which was used to

drive the monochromator was mounted on a bracket attached to the supporting bench

rather than the steel sheet.

Movement of cells in the preparation by convection currents, Brownian

motion or even motile bacteria or protists can be reduced by increasing the viscosity

of the mountant. Gelatine at a concentration of 8 % (Liebman and Granda, 1971),

5 or 7.5 % dextran (Partridge, 1986 and this study), 2 % methyl cellulose (Loew,

personal communication, cited in Partridge, 1986) and glycerol in various

concentrations (this study) have all been successfully employed. The selection of

tissue mountants for use in microspectrophotometric preparations is discussed further

in section 2.4.4. Cell movement due to mountant evaporation was prevented by

sealing the edge of the top coverslip with acrylic nail varnish. Silicone grease and

paraffin wax have also been used for this purpose (Das, 1997; Kent, 1997). Cell

movements induced by focusing changes can be reduced by eliminating as much

excess mountant from the preparation as possible. Compression of the preparation

for this purpose must be traded off with cellular damage, but is of particular

increased importance with the introduction of dynamic focus adjustment during

scanning (see section 2.2.6).

2.2.7.3 Intrinsic versus extrinsic noise

For the low light intensities routinely employed in the

microspectrophotometry of visual pigments, intrinsic photoelectron shot-noise

should, ideally, be larger than noise due to all extrinsic sources. According to

Liebman (1972), if an MSP is photoelectron shot-noise limited any change in signal
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level, S, should be accompanied by a square-root change in signal to noise ratio,

S / N, i.e.

S f—
— ..vS
N

or

S
log 10 (—N ) « 0.5 log 10 (S)

Equation 4

Equation 5.

To test this relationship with the MSP used in this study, the S / N ratio was

measured for different values of the signal. With the instrument set up as for normal

use, the monochromator was stepped to an output of 550 nm and disconnected from

the computer. At this wavelength, photon flux density was relatively high and,

accordingly, a relatively low amplification of the signal from the PMT was required.

Utilising the software which normally controlled and recorded the scanning process,

a file was created storing the successive output from the V / F converter at each

wavelength step which, as the monochromator was disconnected, corresponded to a

series of discrete recordings at 550 nm. Each of these discrete recordings were

converted to a value for the signal (OffHz-SHz) and averaged to give the mean signal

for the scan. The standard deviation of these signal values was used as a measure of

the noise in the signal. The signal was then reduced by introducing neutral density

filters into the MSP light path. The filters used had a range of transmission values

from 1.64x10-2 to 0.88 in 20 unequal steps. Four identical filters of each

transmission value, henceforth known as a quartet, were scanned.

With the linearity of the MSP confirmed (see section 2.2.3) the inherent noise

of the instrument was investigated by plotting the log io S / N ratios against the

log i o S (Figure 2.6). A polynomial regression was performed on the log-transformed

data, and the squared term was found to be significant (t81 = 3.47; p = 0.001).

Whilst this suggests that the relationship between logo S / N and logo S is non-

linear, a linear regression line, with an intercept of -0.695 and a gradient of 0.517,

accounted for 98.8 % of the variation. The gradient of this line is different from that

predicted by Liebman (1972; equation 5), which suggests that noise in the MSP is a

function of the signal other than that predicted by shot-noise performance. The
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components of the MSP most likely to affect the noise in a signal-dependent manner

are the PMT and the Butterworth two-stage active low-pass filter. Because the PMT

was operated well within the range of HT voltages specified by the manufacturer to

result in a linear performance, the active filter is implicated. If the gradient was less

than 0.5, the MSP would not be operating as a shot-noise limited device and extrinsic

noise, rather than intrinsic signal-induced noise, would be limiting the machine's

precision. As the gradient is greater than 0.5, however, the MSP may be operating as

a shot noise device but, because active noise filtering increases as the signal

increases, it is not possible to tell.
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Figure 2.6 The relationship between signal to noise ratio and signal for the MSP
used in this study. As the signal increases (here expressed as logio S) the signal to
noise ratio (here expressed as log i o S / N) also increases. Whilst the squared term in
a polynomial regression of the data was significant (t 81 = 3.47; p = 0.001),
suggesting that the relationship was non-linear, a linear regression accounted for
98.8 % of the variation. The gradient of the linear regression line displayed was
0.517, suggesting that, whilst the MSP may be operating as a shot noise limited
device, there is also some signal dependent filtering of the noise.
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2.3 Experimental animals

Microspectrophotometric measurements were conducted on the retinal

photoreceptors of European starlings (Sturnus vulgaris), blue tits (Parus caeruleus),

blackbirds (Turdus merula), domestic turkeys (Meleagris gallopavo) and Indian blue-

shouldered peacocks (Pavo cristatus). The starlings used were either reproductively

inactive adult birds, which had been held in captivity for approximately eighteen

months, or freshly caught adult birds, which were analysed within one month of the

capture date. Adult blue tits and blackbirds caught from the wild were kept for a

maximum of 2 months prior to use. All species taken from the wild were caught

under English Nature Licences 19970164 and 19970165. Starlings were housed in

environmentally-controlled conditions under artificial light (Phillips TLD 58W / 35

white light fluorescent tubes) and allowed water and food, in the form of 404 Gold

Start crumbs ACS (Dalgety Agriculture Ltd., Bristol, UK), ad libitum. Blue tits and

blackbirds were kept in unheated outdoor aviaries with natural skylight partially

filtered by translucent perspex roofing. Their diet consisted of mealworms (the

larvae of Tenebrio molitor) and a proprietary insect-based feed (Orlux soft bill,

Belgium).

One year old peacocks were obtained from a commercial supplier (Quinton

Spratt, Norwich, Norfolk, UK) and used immediately. Five and twenty four week old

male British Union Turkeys (strain BUT 8) were obtained from the University of

Bristol Department of Animal Health and Husbandry at Langford, Bristol, with the

kind assistance of Drs. Chris Sherwin and Peter Lewis. Prior to examination, birds

were held in darkness for a minimum of two hours, usually overnight, and killed by

approved humane methods.

2.4 Preparation of retinal tissue

2.4.1 Enucleation

Eyes were removed under infra-red light (Kodak Wratten filter No. 87C over

a standard 6 V tungsten source) with the aid of an infra-red image converter (FJW

Industries, USA) attached to one ocular of a low power stereo microscope.

Subsequent dissections of the eyes and retinae were performed under dim red light
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from a head torch (3.8 V tungsten lamp filtered by double thickness Lee No. 182

filter; wavelength at 50 % transmission, XT50c7o, 677 nm). Illumination with red light,

and associated photobleaching of the retinae, was undesirable, but some

manipulations required a depth perception not provided by monocular operation of

the stereo microscope. Wherever possible, exposure of the retinae to light was kept

to a minimum. One eye was used immediately, the other being stored, intact,

overnight on ice.

2.4.2 Osmolality of physiological media

Initial difficulties in obtaining sufficient outer segments for measurement

with the MSP raised concerns that the osmolality of the dissection and mountant

media used might be incorrect. Osmolality is the molality (concentration in mol kg-1)

of an ideal solution that exerts the same osmotic pressure as the solution being

considered. Measured osmolalities of avian plasma range from 337 to 400 mosmol

kg-1 depending on the species and degree of water deprivation (Willoughby and

Peaker, 1979).

Venous blood was taken from a non-water deprived starling and immediately

centrifuged at 0 °C for 10 minutes at 5,000 RPM. Following sacrifice, aqueous

humour was removed from the anterior chamber of both eyes, using a 25 gauge

hypodermic needle and 1 ml syringe, and centrifuged at 20 °C for 5 minutes at

5,000 RPM. The osmolalities of 100 RI aliquots of the plasma supernatant and

aqueous humour were determined to be 360 and 346 mosmol kg -1 respectively using

a freezing point micro-osmometer (Hermann-Roebling, Berlin). The osmolalities of

a dilution series of tabletised phosphate-buffered saline (PBS, Dulbecco 'A'

tabletised PBS, Oxoid Ltd., Basingstoke, UK) were also determined in an identical

fashion (see Figure 2.7). Trial and error established the optimum osmolality of PBS

in which to dissect retinae, and dissolve dextran for use as a mountant, to be

340 mosmol kg-1 . This concentration of PBS was also used to dissolve glycerol for

use as a mountant (section 2.4.4), although the addition of glycerol will dramatically

alter the osmolality of the PBS solution.
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Figure 2.7 Osmolality of various dilutions of phosphate-buffered saline (PBS,
Dulbecco 'A' tabletised PBS, Oxoid Ltd., UK) measured with a freezing point micro-
osmometer. Symbols indicate measured dilutions. The line represents a best fit
function:

y =axb

where x is the volume of distilled water in which the tablet was dissolved and y the
measured osmolality. A non-linear regression, determined with the software package
CurveExpert 1.2, yielded parameters: a = 25629.336 and b = -0.97516969. This
equation can be rearranged as:

in order to determine the required volume of distilled water (x) in which to dissolve a
single PBS tablet to give a solution of the required osmolality (y) (see section 2.4.2).
The 'standard' Dulbecco 'A' solution (pH 7.1) specified by the manufacturer has an
osmolality of 273 mosmol kg-I and is obtained by dissolving one tablet in 100 ml of
distilled water. The pH of the PBS buffer solution at different dilutions ranged from
6.93 (50 ml distilled water per tablet) to 7.21 (500 ml of distilled water per tablet).

101



Chapter two: Microspectrophotometry of avian retinal photoreceptors

2.4.3 Retinal dissection

Each eye was hemisected using a fine razor blade (Wilkinson sword double

edged replaceable) and the posterior hemisphere placed immediately in a cold (3 °C)

dissection medium (PBS made to a concentration of 340 mosmol kg -1 by dissolving

one tablet in 84 ml of distilled water; pH 7.1). Small sections of retina, typically

approximately 2 mm in diameter and often still attached to the pigmented epithelium,

were cut away using fine scissors and transferred in a wide-bored Gilson pipette tip

to a 22 x 64 mm No. 0 coverslip. Excess saline was blotted away and replaced with

mountant solution (see section 2.4.4). Occasionally, the retina was dispersed with

fine mounted needles or razor blades, although this was usually found to result in

fewer intact photoreceptors. The preparation was then covered with a circular No. 0

coverslip (19 mm diameter) and pressed gently under filter paper to express excess

mountant. The edges of the top coverslip were then sealed with clear nail varnish,

using a fine paint-brush, to prevent dehydration and movement of the top coverslip.

2.4.4 Mountants

Different tissue mountants were used in the course of this study. Starling

retinae, the first species studied, were mounted in a solution (pH 7.1) of 340 mosmol

kg-1 PBS containing 7.5 % dextran (Sigma 242,000 RMM) to reduce cellular

movement (after Mollon et al., 1984; Partridge, 1986; Partridge et al., 1988).

Subsequent improvements to the MSP, mostly by virtue of a new photomultiplier

tube, enabled the lower wavelength limit of recordings to be extended from 350 to

330 nm. However, a wavelength dependent artefact in the microspectrophotometric

measurements became more noticeable with this adjustment, and necessitated the use

of an alternative cell mountant.

Due to their high lipid content, outer segments typically have a high refractive

index (RI, 1.39 cones, 1.41 rods, Sidman, 1957) relative to the surrounding medium.

They also tend to take on a granular appearance as they deteriorate following

enucleation (Levine and MacNichol, 1985). These properties are likely to cause

Rayleigh and Mie scattering, both of which are wavelength-dependent and increase at

short wavelengths (Born and Wolf, 1970). Rayleigh scattering occurs when the

object is much smaller than the wavelength of the light it intercepts and scattering
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occurs equally in both the forward and backward directions. As the radius of the

object increases, however, more light is scattered forward of the object than

backwards in the direction of the incident light. This is Mie scattering, and the

phenomenon has been used to predict light intensification by cone oil droplets

(Baylor and Fettiplace, 1975; Ives et al., 1983; Young and Martin, 1984).

Much of the wavelength-dependent scattering of the measuring beam occurs

at the interface between the outer segment limiting membrane and the surrounding

medium. This undesirable optical behaviour can only be reduced by minimising the

difference in RI between the outer segment and the mountant.

A high RI relative to the surrounding medium and a circular cross section

causes the outer segment to act as a converging lens. Whilst potentially

advantageous in refracting off-axis light into the cell, this phenomenon can also

change the apparent absorbance by focusing the measuring beam onto the

photomultiplier tube differently between baseline and sample scans. Alternatively,

scattering and focusing effects by the outer segment may cause the transmitted beam

to pass through different regions of the collecting objective optics which may vary

significantly in their absorption of short wavelengths (Dr. Andrew Dorey, personal

communication). Either way, it is possible to record an apparent 'negative

absorbance' when the signal from the PMT is higher for the sample than the baseline.

It was the manifestation of such an artefact that prompted the use of a solution of

340 mosmol kg-1 PBS containing 75 % glycerol (GPBS) in preference to the dextran-

based mountant (DPBS).

The incorporation of additives into the external medium to increase its

refractive index or viscosity must be approached with caution. Ideally, such additives

should be osmotically insignificant (very large molecules), have insignificant

absorption of their own and should not alter the absorption characteristics of either

visual pigments or oil droplets. In practise it can prove difficult to satisfy all of these

criteria whilst obtaining a suitable increase in mountant RI. A variety of substances

used to reduce cell movements rarely increase the RI of the external medium beyond

1.35. For example, 10% dextran (72,000 RMM) has a RI of 1.3481 (Wolf et al.,

1975) and this will be further reduced by dilution with the saline remaining on the

retinal sample even if the excess has been blotted away during preparation.
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Glycerol, however, has a high refractive index which can be modified by

dilution (e.g. 75 % glycerol solution RI = 1.4340, Wolf et al., 1975), absorbs less

light than even low concentrations of dextran (Figure 2.8) and has the additional

advantage of increasing mountant viscosity. Furthermore, it is has been used

extensively in the measurement of oil droplet absorption spectra without apparent

detriment to either structure or chemistry (Goldsmith et al., 1984b; Partridge, 1989

and this study).

Nevertheless, the use of GPBS for outer segment preparations has several

potential problems. Firstly, glycerol is a small molecule (RMM 92.09) and as such it

has a very high osmolality (75 % glycerol > 8.33 x103 mosmol kg'). However,

because it infiltrates outer segments so rapidly (coming to an osmotic equilibrium in

30 seconds or less, Liebman, 1975) damage by swelling and bursting cells is

minimal. Secondly, glycerol does not act as a buffer, but dilution with PBS and

adjustment to pH 7.1 with 1M NaOH maintained a suitable pH in the mountant for

the duration of microspectrophotometric recordings. Lastly, GPBS contains a lower

concentration of chloride ions (41 mM) than isosmotic DPBS (162 mM). Chloride

depletion has been shown to cause hypsochromatic shifts in the X max of the long

wavelength-sensitive cone visual pigment (iodopsin) in extracts from chicken retinae

(Knowles, 1976; Shichida et al., 1990). At the chloride ion concentration of GPBS,

however, less than 2% of the total iodopsin in a digitonin extract would have been

chloride depleted and the effect on the X,,„ would have been insignificant (Shichida

et al., 1990).

The beneficial effects of incorporating glycerol into the external medium are

illustrated using the absorbance spectra of retinal photoreceptors from the domestic

turkey which were measured whilst mounted in both 75 % GPBS and 5 % DPBS

(below). The success of a glycerol-based mountant prompted its use in the

measurement of photoreceptors from the other species studied (blackbird, blue tit and

peacock).
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Figure 2.8 Spectral transmission of various tissue mountants investigated during the
course of this study. These were measured, using a Shimadzu UV-2101PC UV-VIS
scanning spectrophotometer, relative to distilled water and over a pathlength of
10 mm. The mountants, in order of increasing transmission at 250 nm, were: 10 %
dextran (Sigma 242,000 RMM) in phosphate-buffered saline (PBS) made to a
concentration of 340 mosmol kg-1 (10 % DPBS), 7.5 % DPBS, 5 % DPBS, 75 %
glycerol in PBS (75 % GPBS), 50 % GPBS and PBS only.
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2.4.5 Oil droplets

Microspectrophotometric measurements of oil droplets are also hampered by

their high refractive index (Liebman and Granda, 1975; Lipetz, 1984a; Lipetz,

1984b). Retinae from all the species studied were mounted in 100 % glycerol (RI

1.4735, Wolf et al., 1975) in an attempt to reduce the difference in refractive index

between the oil droplets (RI approximately 1.48 to 1.69, Ives et al., 1983) and the

surrounding medium (RI of 100 % glycerol = 1.4735, Wolf et al., 1975). Oil droplet

diameter was determined with a graduated acetate sheet overlaid on the screen of the

monochrome monitor used to view the specimen. The acetate scale was calibrated by

viewing a stage graticule with the MSP set up optically as for normal use, and

diameters were measured to the nearest 0.5 jim.

2.5 Data analysis

The primary objective in the analysis of absorption spectra is to obtain

estimates of the spectral parameters which can conclusively identify or characterise

the sample. With regards to visual pigment absorbance spectra, we are generally

interested in the wavelength of maximum absorbance (Xma.) of the alpha band. In

order to compare the X. values obtained in one individual with those in another

individual or species, it is important to estimate this parameter with as much accuracy

as possible.

2.5.1 Visual pigment absorbance spectra

Initially, MSP data files were read into the analysis program, a Microsoft

Excel 5.0c macro, and the baseline and sample frequencies recorded from the V / F

converter at 1 nm intervals were converted directly into absorbance values.

Subsequent modelling of the effect of in-scan bleaching on the estimate of X„mx (see

section 2.5.3) led to the upward and downward scans being averaged prior to

conversion, a technique similar to that employed by Bowmaker et al. (1997).

Analyses based on both analysis methods are presented here.

A variable-point 'box-car' running average was passed through the

absorbance values and the peak value noted with its corresponding wavelength (the

running average kmax). MSP sample scans are frequently offset from the baseline
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scans due to optical effects (e.g. scattering or focusing of the measuring beam by the

sample, Lipetz (1984a); Young and Martin (1984); Levine and MacNichol (1985);

Partridge (1986)), and it was therefore necessary to introduce an offset when

normalizing the recorded absorbances. This was calculated at the long wavelength

end of the spectrum where there is no detectable absorbance due to the visual

pigment. Specifically, the long wavelength offset was defined as the value of the

running average at the nearest wavelength to, or just longer than, the predicted

wavelength at which the normalized absorbance of the visual pigment being

measured was 0.005, plus the half-band width of the running average. The half-

bandwidth is the number of points in the running average minus one, divided in half.

Rhodopsin absorbance spectra with different Xmax are assumed to have an invariant

shape when transformed as Xmax/A, (Mansfield, 1985; MacNichol, 1986). If true, it

follows that for all rhodopsin spectra, there will be a consistent relationship between

X II= and any other wavelength of a given absorbance on the short and long

wavelength limbs of the a-band. For the rhodopsin template used in this study,

generated using the equation given by Stavenga et al. (1993), the wavelength

corresponding to a normalized absorbance of 0.005 is equal to 2ma,10.810373

(calculated using a Xmax/X, transformation of a 500 nm Xmax template). Because the

data must first be normalized before the Xmax can be estimated, the running average

X,„,,„ was used to calculate the long wavelength offset wavelength.

The maximum corrected absorbance was taken as the running average peak

absorbance minus the long wavelength offset absorbance, and the data were

normalized to this range for subsequent calculations and display. The bandwidths of

absorbance spectra were calculated as the difference between the wavelength

corresponding to half maximum absorbance on the long wavelength and short

wavelength limbs of the running average absorbance spectrum.

In order to determine the kmax, the analysis used the polynomial derived by

Partridge and DeGrip (1991) to fit the data with a rhodopsin template spectrum. For

display, the Xma„/Ä, transformed template of Stavenga et al. (1993) was used, but with

the 13-peak of the absorbance spectrum shifted linearly with respect to the a-peak as

suggested by Palacios et al. (1996), and utilising the relative extinction coefficients

107



Chapter two: Microspectrophotometry of avian retinal photoreceptors

of the a- and 13-peaks proposed by Stavenga et al. (1993). Each point on the long

wavelength limb with an absorbance between 80 % and 20 % of the normalized

maximum was used to estimate the X,. (Partridge and DeGrip, 1991), the average of

all these estimates being taken as the best estimate of the kmax of the visual pigment.

Only the long wavelength limb of a visual pigment absorbance spectrum was used to

estimate the X. because this region of the curve is least affected by photoproduct

build-up, short wavelength light scattering, and distortion due to high concentrations

of visual pigment (Bowmaker et al., 1975; Levine and MacNichol, 1985).

Ultraviolet-sensitive (UVS) visual pigments have absorbance spectra that are

narrower than visual pigments with X. values in the human visible spectrum, even

when transformed on a scale of kmxik (Hawryshyn and Harosi, 1994; Palacios et al.,

1996). It is evident that UVS visual pigments require their own template and

Palacios et al. (1996) have produced coefficients to be used in conjunction with the

visual pigment templates of Stavenga et al. (1993) for the analysis of UVS visual

pigment data. A sixth-degree polynomial describing the relationship of absorbance

between 80 % and 20 % long wavelength normalized absorbance and template Xinax

was calculated from this modified model and used to fit UV templates to data from

visual pigments with a-band absorbance in the near UV in preference to the

polynomial of Partridge and DeGrip (1991). The polynomial relating normalized

long wavelength absorbance (D) at a given wavelength (k) to X inax for UVS cones

(for X,,,,a„ values between 340 and 380 nm) is:

kmax = X,(0.8779 + 0.2317D — 0.5105D 2 + 0.9362D 3 —1.005D 4 + 0.5744D 5 — 0.1192D6)

Equation 6

Because the a-band of UV template is narrower than the original rhodopsin

template, the wavelength corresponding to 0.005 maximum normalized absorbance

will occur at a shorter wavelength. Thus, for finding the long wavelength offset

absorbance, the wavelength corresponding to 0.005 maximum normalized
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absorbance is equal to Xinax/0.858164 (calculated using a Xmax/X transformation of a

360 nm Xmax UVS template).

Visual pigment absorbance spectra were subjected to an acceptance

procedure, the justification of which has been explained by Levine and MacNichol

(1985). Scans were accepted if: i) the template spectrum fell within the peak-to-peak

noise of the data points between 80 % and 20 % normalized maximum absorbance on

the short wavelength and long wavelength limbs of the data respectively; ii) the

absorbance spectra were flat for 100 nm beyond the wavelength at which the long-

wave limb first falls to an absorbance of zero; iii) were free from obvious distortions

(Levine and MacNichol, 1985); and iv) were confirmed as photolabile by bleaching.

Due to their rarity, criteria were relaxed for UVS cones, and all scans from cells

which were shown to be photolabile were included. Accepted records for each

photoreceptor cell type were averaged and re-analysed.

Difference spectra were calculated by deducting the average of the two post-

bleach scans from the average of the two pre-bleach scans. These were then

analysed, selected and averaged in the same way as the pre-bleach spectra.

2.5.2 Optimising the running average

Before comparison with a visual pigment template, the absorbance data must

first be normalized, and it is easier to find the maxima and minima of data that have

been smoothed (MacNichol, 1986) or noise-filtered (Harosi, 1987). A 'box-car' or

unweighted running average, which takes the average of a range of successive data

points and assigns that value to the middle datum point, was used to smooth the data

collected in this study.

The number of data points over which the running average is calculated will

affect the normalization of the data (Kent, 1997). If too few points are used, the peak

absorbance will be overestimated as the running average incorporates additional

absorbance due to random noise. This will cause the maximum corrected absorbance

to be overestimated and the data will be 'compressed' when normalized, thus

reducing the gradient of the long wavelength limb of the a-band and shifting the

estimate of X.„ to shorter wavelengths. Conversely, if too many data points are

used, the peak absorbance will be underestimated as the running average includes
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additional points either side of the peak on the descending short and long wavelength

limbs. The maximum corrected absorbance will be underestimated and the data will

be 'stretched' when normalized. This will increase the gradient of the long

wavelength limb of the a-band and shift the estimate of A.max to longer wavelengths.

The effect on the estimation of X., and maximum corrected absorbance of

the number of data points over which the running average is calculated is displayed

in Figure 2.9 (A and B, respectively). Normally distributed (Gaussian) noise with a

S / N ratio at the Xmax of 10 was added to a rhodopsin template (generated using the

equations given by Stavenga et al., 1993) with a Xmax of 500 nm and a maximum

corrected absorbance of unity. Estimates of kn,a„ (using the polynomial given by

Partridge and DeGrip, 1991) and maximum corrected absorbance were obtained with

an increasing number of points over which the running average was calculated. This

procedure was repeated one hundred times to give a mean estimate of the X„,ax and

maximum corrected absorbance for each number of running average points.
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494 -

492 -
Number of points in running average
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Figure 2.9 The effect on (A) the estimated Xmax and (B) the estimated maximum
corrected absorbance of the number of running average points used to normalize
visual pigment absorbance data. Normally distributed (Gaussian) noise with a S / N
ratio at the X. of 10 (typical of an individual cone scan) was added to a 500 nm Xmax

rhodopsin template generated using the equation given by Stavenga et al. (1993).
Each of the datum points are the average of 100 iterations from which mean
estimates of the Xmax and maximum corrected absorbance are derived. Note that the
number of running average points can only be an odd number.
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It is evident that the estimation of both visual pigment k-na, and maximum

corrected absorbance is affected by the number of points over which the running

average is calculated. Thus, it was important to ensure that absorbance spectra were

analysed using the optimum number of points, and a mathematical model was

constructed to this end.

A 500 nm Xmax rhodopsin template was generated using the equation given by

Stavenga et al. (1993) and normally distributed (Gaussian) noise added to give a peak

signal-to-noise ratio of 1000. The peak S / N ratio is described as the maximum

corrected absorbance at the Xmax divided by the standard deviation of the deviations

from the template. Because the data are normalized to unity at the X,,,,,,„ the peak

S / N ratio is simply the reciprocal of this standard deviation. Running averages with

increasing numbers of points were then passed through the data. The optimum

number of points was chosen as that producing the least root mean-squared (RMS)

deviation between the running average spectrum and the original template, for

absorbance values between 80 % short wavelength absorbance and the long

wavelength offset absorbance. The RMS deviation describes the 'fit' of the running

average to the template. In this way, the optimum running average chosen is that

which smoothes the data best whilst retaining the underlying shape of the data'. This

process was repeated using new noise of the same level until a mean optimum

number of points was determined with a 95 % confidence limits of less than ± 1, i.e.

to the nearest integer. This in turn was repeated for decreasing signal-to-noise ratios.

The data obtained were best-fitted with a quadratic equation using CurveExpert 1.2

to facilitate the estimation of signal-to-noise ratio ranges for which analysis using a

given number of running average points was optimal. The results are displayed in

Table 2.1.

The maximum number of points used in the running average was limited to

31. Above this value, the shift in X,„ ax induced by underestimation of peak

I Arguably, the accuracy in estimating either maximum corrected absorbance or X„,, could be used to
determine the optimum number of running average points. However, both of these variables are
affected by the amount of noise in the data and, consequently, were not used for this purpose.
Furthermore, as shown in Figure 2.9, the optimum number of points giving the most accurate estimate
of the maximum corrected absorbance is not necessarily the same as that which gives the most accurate
estimate of the Xmax.
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absorbance exceeded 1 nm, which was considered to be the wavelength accuracy of

the MSP. In reality, the noise affecting visual pigment absorbance spectra recorded

microspectrophotometrically is often wavelength dependent. Furthermore,

distortions due to in-scan bleaching and photoproduct build up may increase the

apparent deviation of the long wavelength limb from the template and thus

overestimate the number of points required. However, the results of the model are

seen as a reasonable attempt to maximise the accuracy with which the raw data are

normalized.

Signal-to-Noise ratio at kmax	 Optimum number of data points in the
running average

413.22 > x � 123.00 13
122.85 > x � 70.52 15

70.47 > x � 48.47 17
48.45 > x � 36.25 19
36.23 > x � 28.43 21
28.42 >x � 22.92 23
22.92 > x � 18.76 25
18.76 > x � 15.39 27
15.39 > x � 12.36 29

12.36>x 31

Table 2.1 Optimum number of points in the running average employed to smooth
data (to allow the accurate estimation of the peak and long wavelength offset
absorbances) over the range of signal-to-noise ratios indicated. Peak signal-to-noise
ratio is defined as the maximum corrected absorbance divided by the standard
deviation of the deviations from the original template.
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2.5.3 In-scan bleaching of visual pigments

Detectivity is quantitatively proportional to the S / N ratio. However,

maximising the S / N ratio, either by enlarging the cross-sectional area of the

measuring beam, increasing the photon flux density of the illumination, or

lengthening the integration time at each wavelength, must be traded off with

increased bleaching of the visual pigment during each scan. Whilst this is not a

problem when measuring cone oil droplets, the carotenoid pigments of which are

stable under moderate levels of illumination, in-scan bleaching of visual pigments

can result in distortion of the recorded absorbance spectra. If the bleached molecules

of pigment are replaced by photoproduct molecules which absorb little or no light

over the range of wavelengths scanned, or if photoproducts are rapidly lost from the

cell or the area of the outer segment in the immediate vicinity of the measuring beam,

the effect on the recorded curve will be to shift its A,„, towards the end of the

spectrum from which the scan originated.

The MSP utilised in the present study recorded baseline and sample data at

2 nm intervals on each odd wavelength of the downward (long wavelength to short

wavelength) scan and on each of the interleaved even wavelengths during the upward

(short wavelength to long wavelength) scan. A typical MSP recording comprised

two long wavelength to short wavelength to long wavelength scans, during which the

visual pigment was bleached continuously by the measuring beam. On the

'downward' long wavelength to short wavelength spectral pass, the amount of visual

pigment remaining, and consequently the fraction of the incident light absorbed,

decreases with decreasing wavelength. This results in the apparent A,,, a„ of the visual

pigment being shifted towards longer wavelengths relative to the true 2tmax.

Similarly, on the 'upward' short wavelength to long wavelength spectral pass, the

apparent ?max of the visual pigment is shifted towards shorter wavelengths. By

scanning from both directions, and then combining the spectra obtained, it might be

assumed that the shifts in apparent X inax induced by in-scan bleaching should

effectively cancel out.

However, there are a number of important considerations in this approach to

reducing the effects of in-scan bleaching. Firstly, the shape of the absorbance

114



Chapter two: Microspectrophotometry of avian retinal photoreceptors

spectrum, and potentially the apparent Xmax of the visual pigment, may be affected if

photoproducts which absorb light over the range of wavelengths scanned accumulate

within the outer segment. Secondly, as the amount of in-scan bleaching is dependent

on the intensity of the illumination, wavelength-dependent variations in photon flux

from the MSP light source will alter the 'balance' of bleaching. The quartz halogen

bulb use in this study is relatively deficient in short wavelengths. Accordingly, the

magnitude of the shift in apparent kmax towards longer wavelengths on the downward

scan will be greater than the shift towards shorter wavelengths on the upward scan.

Thirdly, even if the apparent X. of the 'averaged' up and down scans was identical

to the true ?,max of the visual pigment, in-scan bleaching would increase the apparent

bandwidth of the absorbance spectrum.

Nevertheless, bi-directional scanning has been employed frequently in the

determination of visual pigment absorbance spectra (e.g. Bowmaker et al., 1975;

Sillman et al., 1993; Ellingson et al., 1995; Bowmaker et al., 1997). An alternative

approach is to use multiple scans with very little in-scan bleaching (MacNichol et al.,

1983; Partridge, 1986; Partridge and DeGrip, 1991). Attempts have also been made

to correct mathematically visual pigment absorption spectra distorted by significant

in-scan bleaching in measurements made with uni-directional spectral passes (Marks,

1965; Partridge, 1986).

The effects of in-scan bleaching on visual pigment absorbance spectra were

modelled for the MSP used in this study. The rhodopsin template of Stavenga et al.

(1993) was used to create an absorbance spectrum for visual pigment with a X„,ax at

500 nm, and the amount of bleaching induced by the measuring beam calculated at

each wavelength. For the purposes of the model, only the relative photon flux

emitted from the monochromator at each wavelength was required. This was

calculated from the 'gain file' produced by the microcomputer when flattening the

baseline prior to measuring an absorption spectrum (see section 2.2.2). The

hexadecimal gainbyte signal sent to the digital to analogue converter at each

wavelength was converted into its equivalent voltage input to the analogue

multiplier, which was inversely proportional to the relative photon flux. The amount

of bleaching was proportional to the irradiance and the absorbance of the visual

pigment at each wavelength. A wavelength-independent 'bleaching factor' was also
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incorporated into the model to adjust the degree of bleaching at each wavelength.

This was analogous to increasing the photon flux density of the measuring beam or

lengthening the integration time at each wavelength step. The two downward scans

were averaged together, as were the two upward scans. Because the amount of visual

pigment remaining will differ between subsequent scans of a given direction, so will

the magnitude of apparent shift in ?max. However, the distortions induced by the

scans will be in the same 'direction'.

The 'raw' data calculated were then treated in two different ways, analogous

to the two different analysis methods detailed in section 2.5.1. On the one hand, the

raw data were simply normalized to the maximum and minimum obtained by fitting

an 11-point unweighted running average. Alternatively, the up and down scans were

averaged mathematically by fitting a weighted three point running average to the

data. Specifically, the two absorbance values either side of a given datum point were

averaged together, and then averaged with the datum point. The 'up / down

averaged' data were then normalized to their own maximum and minimum. Both the

raw and up / down averaged scans thus calculated were used to estimate the kmax of

the visual pigment using the polynomial of Partridge and DeGrip (1991). The

bleaching factor was then adjusted to investigate the error in apparent kmax for

different levels of bleaching. The results of the model are displayed in Figure 2.10

(A to D).

116



0.6	 0.8	 1

1.2

0.2

o

300
	

400
	

500	 600
	

700
	

800
Wavelength (nm)

Chapter two: Microspectrophotometry of avian retinal photoreceptors

-.6-
...S

1
e

<-

508 1

606 -

604 -

502 -

	""	 ,,,,,,,,,,,,
•-...000

500

A

O0.2	 0.4
d) 498 9...,
es,

4% _

0
Lo 

494 -

492

490
Fraction of visual pigment bleached

Figure 2.10 The effect of in-scan bleaching on the estimation of visual pigment

kmax• The original visual pigment template, generated using the equations given by
Stavenga et al. (1993), had a 2 n,.., of 500 nm. (A) The relationship between the
amount of in-scan bleaching and the shift in apparent X max. The 'Fraction of visual
pigment bleached' refers to the total amount of visual pigment lost at the end of both
spectral scans (i.e. four spectral passes). Solid trace: raw data (upward and
downward scans not averaged together) normalized to the maxima and minima
obtained by fitting an unweighted 11-point running average. Dotted trace: Upward
and downward scans (raw data) averaged together before normalization (no running
average fitted). (continued over).
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Figure 2.10 (continued). (B) Separation of up and down scans resulting from a
level of in scan bleaching sufficient to cause a 1 nm shift in the apparent Xmax of the
visual pigment (76 % of visual pigment bleached after four spectral passes). Solid
trace: visual pigment prior to bleaching. Upper symbols: averaged downwards scans.
Lower symbols: averaged upward scans. Dotted trace: averaged upward and
averaged downward scans averaged together. (C) Normalized absorbance spectra of
the original visual pigment (solid trace) and the averaged upwards and downwards
scans (dotted trace). (D) Area around the 4,„ depicted in Figure 2.10 (C) enlarged
for clarity. Solid trace: original visual pigment prior to measurement. Dotted trace:
upwards and downwards scans averaged together. The vertical line in each of the last
three figures indicates a wavelength of 500 nm.
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It is evident that bi-directional scanning compensated for the effects of in-

scan bleaching on the estimate of Xmax even when the level of bleaching was

relatively high. When the up and down scans (raw data) were averaged

mathematically, the shift in apparent kma. was towards longer wavelengths, as would

be expected for an illuminant rich in long wavelength light. As noted in section

2.2.5, the wavelength accuracy of the monochromator was considered to be ±1 nm.

Before the difference between true Xmax and apparent Xma, exceeded this value, the

visual pigment could be bleached by 76 % in the course of two complete spectral

scans (four spectral passes). At this level of bleaching, the FWHM bandwidth of the

absorbance spectrum obtained was 102 nm, compared to the template bandwidth of

101 nm.

Conversely, when the raw data (normalized to the maxima and minima

obtained by fitting the raw data with an 11-point running average) were analysed

without averaging the up and down scans the shift in apparent 4., was in the

opposite direction. This shift in Xr„,„ towards shorter wavelengths is an artefact of

the analysis procedure. Because the upwards and downwards scans separated with

bleaching, and because the scans commenced at long wavelengths, more of the

absorbance values between 80 % and 20 % normalized long wavelength absorbance

used to estimate the xina„ were taken from the upwards scan, and were therefore

distorted towards shorter wavelengths. By, averaging the up and down scans both

directions were represented equally in the absorbance values between 80 % and 20 %

normalized long wavelength absorbance, and any shift in X max was due solely to the

effects of bleaching.

It is concluded that averaging the up and down scans prior to analysis results

in a more accurate estimate of the true Xmax and the spectral bandwidth, although

peak absorbance will still be underestimated. This method also circumvents certain

artefacts introduced by the use of a polynomial to estimate the X, a„ from the long

wavelength limb of normalized absorbance and permits an extensive amount of

bleaching. Furthermore, averaging the up and down scans will reduce the apparent

'noise' of the data which is exaggerated by scan separation due to bleaching. Lower

levels of noise permit the use of a fewer number of running average points in the
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analysis, which results in a more accurate estimate of )max and peak absorbance (see

section 2.5.2).

The amount of in-scan bleaching was estimated for the MSP used in this

study by making sequential scans of the same region of a rod outer segment

(blackbird). The results of this experiment are displayed in Figure 2.11. Each scan

consisted of two long wavelength to short wavelength to long wavelength spectral

passes. The mean change in maximum corrected absorbance at the 4ax between

sequential scans (over four scans) was 9.7 % (s.d. ± 1.0 %, n = 4). The maximum

corrected absorbance of the first scan was 0.06. From the results of the modelling

(above), this level of in-scan bleaching should have a negligible effect (a shift of less

than 0.1 nm) on the estimate of the Xmax. Indeed, the 4ax values of the first and last

scans (which represented a change in the maximum corrected absorbance of 34 %)

were 504.0 and 503.7 nm respectively.

However, it must also be remembered that bleaching may result in the

production of stable photoproducts which absorb over the range of wavelengths

routinely scanned by the MSP. If the photoproducts accumulate during a pre-bleach

scan, the apparent kmax of the absorbance spectrum may be shifted to shorter

wavelengths depending on the spectral location of the visual pigment X., (Knowles

and Dartnall, 1977). Absorption by photoproducts in the post-bleach scan may be

reflected in a shift in the apparent X.,max of the difference spectrum towards longer

wavelengths. Thus, although averaging the up and down scans may permit a greater

amount of bleaching per se, it is still advisable to minimise in-scan bleaching as far

as is practicably possible.
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Figure 2.11 Sequential bleaches of a blackbird rod outer segment to illustrate the
level of in-scan bleaching induced by the MSP used in this study. Traces represent
long wavelength offset-corrected absorbance data (two long wavelength to short
wavelength to long wavelength spectral passes; upwards and downwards scans
averaged) and are normalized to the maximum corrected absorbance of the first scan.
The mean change in maximum corrected absorbance between sequential scans was
9.7 %. The Amax values of the first and last scans (which represented a change in the
maximum corrected absorbance of 34 %) were 504.0 and 503.7 nm respectively.
Note the accumulation of stable photoproduct, probably all-trans retinal, with
maximum absorbance at 380 nm.
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2.5.4 Oil droplet absorption spectra

MSP data files were read into the analysis program and baseline and sample

frequencies converted into absorptance values. An eleven point running average was

passed through the data and the peak value noted with its corresponding wavelength.

Once again, a long wavelength offset was required to compensate for differences

between the baseline and sample scans due to optical effects of the cell preparation.

This was calculated as the average absorptance over the last 50 nm at the long

wavelength end of the spectrum where there was no absorption due to the carotenoid

pigment. The maximum corrected absorptance was calculated as the peak

absorptance minus the long wavelength offset absorptance, and the data were

normalized to this range for subsequent calculations and display.

Microspectrophotometric measurements of retinal oil droplets suffer from a

number of artefacts. Small size, spherical shape, high refractive index and,

frequently, high carotenoid concentration results in considerable 'leakage' of the

measuring beam around the outside of the droplets (Liebman and Granda, 1975;

Goldsmith et al., 1984b). Microspectrophotometers can only make reliable

measurements over a limited range of low absorbances, and the upper limit is reached

when the light scattered around the sample becomes comparable to that passing

through it (Lipetz, 1984a). Consequently, recorded oil droplet absorbance spectra

tend to be limited to a maximum absorbance of approximately one, and display a

'flat-topped' cut-off character (Liebman and Granda, 1975). Furthermore, all

evidence of carotenoid fine structure is lost, obscuring the identity of the compounds

responsible.

Traditionally, oil droplet absorption spectra were described by the

wavelength, 450%, at which measured transmission was 50 % (e.g. Liebman and

Granda, 1975; Bowmaker, 1977). However, XT50% is dependent on the amount of by-

passing light and is, therefore, not a reliable parameter for the characterisation of oil

droplet absorption spectra (see chapter one).

Consequently, oil droplet absorptance spectra are characterised by their cut-

off wavelength, Xcut, which is the shortest wavelength at which there is any

significant transmission on the long wavelength side of the oil droplet absorptance
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peak and is independent of a constant by-passing light in the microspectrophotometer

(Lipetz, 1984a). The Xcut is defined as the intercept with the value of maximum

apparent absorptance by the tangent to the curve at A.mid, where Xmid is the wavelength

corresponding to 50 % maximum measured absorptance. In this study, absorptance

values between 70 % and 30% of maximum measured absorptance on the long

wavelength side of the absorptance peak were used to calculate the line tangent to

?k,micl•

2.6 Microspectrophotometric results

The following figures and tables summarise the microspectrophotometric

results from the starling, blackbird, blue tit, peacock and turkey. Visual pigment

absorbance spectra were only made from outer segments that were still attached to

the inner segment. In this way, absorption spectra of the associated oil droplets could

be made in order to assist identification of the cone types, particularly with respect to

the principal member of the double cones and the long wavelength-sensitive single

cones which both contained a visual pigment with almost identical X., values. This

was also necessary to confirm the reliable pairing of certain types of oil droplet with

particular visual pigment, as reported previously (Bowmaker et al., 1997).

Visual pigment data are presented as normalized mean pre- and post-bleach

absorbance spectra, with their corresponding normalized difference spectra.

Histograms of the distribution of visual pigment X„, a„ values are also provided, both

for Arna„ estimated from pre-bleach spectra and from difference spectra. Note that

these values only represent records that were selected using the criteria specified in

section 2.5.1. A much larger number of records were rejected due to measurement

artefacts. Visual pigment specific absorbances were not calculated owing to

uncertainty regarding transverse pathlength, cone outer segments often being

distorted or folded over upon themselves. Instead, absorbances measured at the Amax

of the mean difference spectra are given.

In all tables, values are ± one standard deviation. Standard deviations for the

Xmax values of mean visual pigment absorbance spectra refer to the error in estimating

the Xmax using the polynomial of Partridge and DeGrip (1991) as described in section
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2.5.1. Standard deviations for the mean Xmax, Xcut and Xrni d values represent the

variance of the individual records used to create the mean spectra.

Abbreviations: D, dorsal; V, ventral; UVS, ultraviolet-sensitive; VS, violet-

sensitive; SWS, short wavelength-sensitive; MWS, medium wavelength-sensitive;

LWS, long wavelength-sensitive; DPBS, 5 % dextran in phosphate-buffered saline;

GPBS, 75 % glycerol in phosphate-buffered saline; k nax , wavelength of maximum

absorbance; Xcu t, cut-off wavelength, and Xmid , wavelength corresponding to 50 % of

maximum measured absorptance, as defined by Lipetz (1984a).

2.6.1 Original analysis method

2.6.1.1 European starling

Microspectrophotometric data for visual pigments and oil droplets in the

European starling, Stumus vulgaris, are displayed in Figure 2.12 to Figure 2.23 and

summarised in Table 2.2 and Table 2.3. The starling retina contained five different

types of vitamin A 1 -based visual pigments (i.e. rhodopsins) in six different types of

photoreceptor.

A single class of rod contained a medium wavelength-sensitive rhodopsin

with a mean Xmax at 504 nm (n = 7). There were four different types of single cone,

each of which was reliably associated with a different type of oil droplet. Oil

droplets are referred to using the nomenclature of Jane and Bowmaker (1988).

Single cones containing red (R-type) oil droplets, with a mean Xcu t at 573 nm

(n = 27), were paired with a long wavelength-sensitive (LWS) visual pigment which

had a mean pre-bleach Xma. of 563 nm (n = 10). Yellow (Y-type) oil droplets, having

a mean Xcut at 515 nm (n = 42), were paired with a medium wavelength-sensitive

(MWS) visual pigment with a mean pre-bleach X. at 504 nm (n = 11). There were

two short wavelength-sensitive cone classes. One had a short wavelength-sensitive

(SWS) visual pigment (mean pre-bleach X„,,„ 450 nm, n = 7) which was paired with a

'colourless' (C-type) oil droplet of mean X cut 399 nm (n = 20). The other contained

an ultraviolet-sensitive visual pigment (mean pre-bleach Xmax close to 369 nm, n = 2)

and was paired with a transparent (T-type) droplet which showed no detectable

absorbance over the range of wavelengths scanned (n = 6).
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In addition, the retina was dominated by double cones, both members of

which contained visual pigments resembling the LWS rhodopsin found in the single

cones. The visual pigment in the larger, principal member of the double cone pair

had a mean pre-bleach ?ax at 563 nm (n = 11) and was paired with a 'pale' (P-type)

oil droplet of variable kcu t between 407 and 472 nm depending on retinal location.

Towards the anterior ventral region of the retina, the kcu t occurred at longer

wavelengths. Furthermore, a shoulder in the absorption spectrum at approximately

480 nm appeared in those P-type droplets taken from the ventral retina, and the

relative absorption of this shoulder increased with increasing proximity to the

peripheral region of the anterior ventral retina. No 480 nm shoulder was evident in

the absorption spectra of P-type droplets taken from the dorsal retina. The smaller,

accessory member of the double cone displayed a properly formed, spherical oil

droplet (A-type) only in cells at the periphery of the ventral retina, and had a mean

kcut at 479 nm (n = 5). The visual pigment measured in the outer segment of the

accessory cone had a mean pre-bleach kn. of 558 nm (n = 2).

The maximum corrected absorptance of the C-type (0.31) and A-type (0.20)

droplets was relatively low and these droplets may not act as cut-off filters in the

same way as the more highly pigmented oil droplets are thought to (see chapter one).

The measured transverse absorbance at the Xmax of the mean difference

spectrum of the UVS cone pigment was higher than the other cone types, and even

the rod. This was unexpected as UVS cones generally have the narrowest outer

segments, but may have resulted from drift in the baseline, or optical effects of the

bleached cell preparation, which caused the apparent negative absorbance at short

wavelengths evident in the post-bleach scan. Such distortion might also affect the

estimated knmx of the pigment, and the UVS pigment X. Thax values quoted in Table 2.2

should be interpreted with caution.
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Figure 2.12 Microspectrophotometric results from 2 UVS single cones of the
European starling, Sturnus vulgaris. (A) Mean pre-bleach absorbance spectrum

(upper trace) with best-fitted visual pigment template (X,,„,„ 368 nm, solid line) and
mean post-bleach absorbance spectrum (lower trace) with running average (solid
line). (B) Mean difference spectrum (trace) with best-fitted visual pigment template
(kmax 362 nm, solid line).
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Figure 2.13 Microspectrophotometric results from 7 SWS single cones of the

European starling, Stumus vulgaris. (A) Mean pre-bleach absorbance spectrum

(upper trace) with best-fitted visual pigment template (kma x 450 nm, solid line) and
mean post-bleach absorbance spectrum (lower trace) with running average (solid
line). (B) Mean difference spectrum (trace) with best-fitted visual pigment template

(Amax 452 nm, solid line).
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Figure 2.14 Microspectrophotometric results from 11 MWS single cones of the
European starling, Sturrzus vulgaris. (A) Mean pre-bleach absorbance spectrum
(upper trace) with best-fitted visual pigment template (4. 505 nm, solid line) and
mean post-bleach absorbance spectrum (lower trace) with running average (solid
line). (B) Mean difference spectrum (trace) with best-fitted visual pigment template
(Xmax 508 nm, solid line).
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Figure 2.15 Microspectrophotometric results from 10 LWS single cones of the
European starling, Stumus vulgaris. (A) Mean pre-bleach absorbance spectrum
(upper trace) with best-fitted visual pigment template (kmax 563 nm, solid line) and
mean post-bleach absorbance spectrum (lower trace) with running average (solid
line). (B) Mean difference spectrum (trace) with best-fitted visual pigment template
(Xmax 563 nm, solid line).
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Figure 2.16 Microspectrophotometric results from 11 principal members of the
double cone of the European starling, Sturnus vulgaris. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(X. 564 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (A.,„,„ 563 nm, solid line).
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Figure 2.17 Microspectrophotometric results from 2 accessory members of the
double cone of the European starling, Sturnus vulgaris. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(?max 559 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (A.,„, ax 560 nm, solid line).
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Figure 2.18 Microspectrophotometric results from 7 rods of the European starling,
Sturnus vulgaris. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-
fitted visual pigment template (X,rnax 503 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (A.m., 506 nm,
solid line).
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Figure 2.19 Histogram showing the distribution of estimated X,,,„ values obtained
from pre-bleach absorbance spectra of visual pigments in the European starling,
Sturnus vulgaris. (A) Single cones. Xmax values around 369, 450, 504 and 563 nm
describe UVS, SWS, MWS and LWS visual pigments respectively. (B) Rods and
double cones. Xmax values around 504 nm describe rod visual pigment, whilst Xmax

values around 563 nm describe the LWS visual pigments found in the principal and
accessory members of the double cones.
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Figure 2.20 Histogram showing the distribution of estimated Xmax values obtained
from difference spectra of visual pigments in the European starling, Sturnus vulgaris.
(A) Single cones. kmax values around 364, 453, 506 and 565 nm describe UVS,
SWS, MWS and LWS visual pigments respectively. (B) Rods and double cones.
X. values around 506 nm describe rod visual pigment, whilst X max values around
562 nm describe the LWS visual pigments found in the principal and accessory
members of the double cones.

134



00
oo

In +1

VD /-n4

VD

in +1

(l co
cn
In +1

C.)czt
a)

ir? cn
c.j

tn +1
'flj
tn +1

CL)
C.)

715

cz$
I.)

al)

CL)

4.
•

•	 ,t4

Q.4

PZI

E E
o	 .4g

8
F,t,4

0

a)

11)

E
o P
A 48-
E

d

oo•
cr;

in +1

7-4

CI VD	 tr)	 00	 C)

h 
0

tn +1	 tr) +1	 tfl1	 ci

tr?	 ir)	 rt. C.
.71:	 (NI c,-;	 cf-) vc;

vo	 vo
tr, +I	 In +1	 tn

•

 +1

71: cv	 C) c	 h	 r	 •••n1

Cn tr;	 N cr.)	N	 v-;
VD

kr) +I	 tr) +1	 In

• 

+I	 In +1

nC> N	 1nn1	 00. CN1	 tn	 Cl 01
•71- rf-j	 cn	 N

0	 v:;
tn +I	 tr, +I	 tr) +I	 In +I

tr)

C?c	 v.? N	 oc? v-)
0 71:	 0 v.; N

tn
7t	 471- +I	 '71- +I

00 	 Qr cn	 t--
00 	 0n 	 N	 cf-;
vo	 nC	 1/4.0cn +1	 cn +1	 cn +1	 dcn +I



r

-.-..--...-

Chapter two: Microspectrophotometry of avian retinal photoreceptors

1 -

0 .9 -

0 .8 -

0 .7 -
a)
C.) 0.6 -a
2 0.5 -
E.-
o 0.4 -U).0cc 0.3 -

0 .2 -

0.1 -

0 -

-0.1 	

A

350	 400	 450	 500	 550	 600	 650	 700
Wavelength (nm)

1 -

0 .9 -

0 .8 -

0 .7 -

8 0.6-	 Pv1C

E.L
o 0.4 -co	 P V3
.0cx 0.3 -

0 .2 -

0 .1 -

0 -

	-0.1  

PV2

B

350	 400	 450	 500	 550	 600	 650	 700
Wavelength (nm)

Figure 2.21 Mean absorptance spectra of oil droplets from the European starling,
Sturnus vulgaris. (A) Oil droplets located in the single cones. T-, C-, Y- and R-type
droplets were found in the UVS, SWS, MWS and LWS cones respectively. (B) Oil
droplets located in the principal (P-type, solid lines) and accessory (A-type, dashed
line) members of the double cones. The three absorption spectra displayed for the P-
type droplets found in the principal member of the double cones in the ventral retina
(Pv) are arbitrary categorisations based on the absorptance of the 480 nm shoulder
relative to the peak absorptance. Pv 1, PV2 and Pv3 describe P-type droplets whose
spectral absorption at 480 nm relative to the peak absorptance was (i) less than or
equal to 25 %, (ii) more than 25 % but less than or equal to 50 %, and (iii) more than
50 %, respectively. PD represents the P-type droplet found in the principal member
of double cones located in the dorsal retina.
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Figure 2.22 Histograms showing the spectral distribution of Xeu t and Xmid values for
single cone oil droplets measured in the European starling, Sturnus vulgaris. (A) Xcut

values around 399, 515 and 573 nm, and (B) Xmid values around 419, 536 and
595 nm, describe C-type, Y-type and R-type oil droplets respectively.

137



A

0
350	 400	 450	 500	 550	 600	 650	 700

Xcut (nm)

Chapter two: Microspectrophotometry of avian retinal photoreceptors

350	 400	 450	 500	 550	 600	 650	 700

Xmid (nm)

Figure 2.23 Histograms showing the spectral distribution of ?cut and knid values for
the P-type oil droplets found in the principal member of the double cones in the
European starling, Sturnus vulgaris. Both Xeut value, and the relative absorptance of
the 480 nm shoulder, increases as the location of the double cone approaches the
anterior ventral retina. The apparent bimodal distribution in ? id is due to the
480 nm shoulder exceeding 50 % of maximum measured absorptance, which results
in a sudden jump in its corresponding wavelength. Frequencies of oil droplets
presented here are not directly representative of relative abundance
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Chapter two: Microspectrophotometry of avian retinal photoreceptors

2.6.1.2 Domestic turkey

Microspectrophotometric examination revealed that, like the starling, the

retina of the domestic turkey, Meleagris gallopavo, contained five different types of

rhodopsin visual pigment, in six different types of photoreceptor.

The visual pigments of the turkey were initially measured whilst mounted in

5 % dextran in phosphate-buffered saline solution (DPBS). The results are displayed

in Figure 2.24 to Figure 2.31 and summarised in Table 2.4. Due to excessive light

scattering at short wavelengths in the MSP, it was decided to mount the

photoreceptors in 75 % glycerol in phosphate-buffered saline solution (GPBS) to

reduce the difference in refractive index between the outer segment and the

surrounding medium. The results are displayed in Figure 2.32 to Figure 2.40 and

summarised in Table 2.5.

Microspectrophotometric results obtained from the cone oil droplets in the

turkey are displayed in Figure 2.41 to Figure 2.43 and summarised in Table 2.6. The

oil droplet measurements displayed were made whilst the photoreceptors were

mounted in 100 % glycerol, just as for the other species examined in this study.

Whilst it was evident from the following figures that the use of GPBS as a

mountant reduced wavelength-dependent measurement artefacts in visual pigment

absorbance spectra, the effect on Xmax was less obvious. Because there was no non-

parametric alternative, 4ax values were normalized by rank transformation prior to

the use of a two way analysis of variance to investigate the effect of cell mountant on

Xmax• As such, the interaction term between mountant type and cell type (i.e. the

spectral location of the 4.) could not be used (Seamen et al., 1994). Even though

all of the X,max values for photoreceptors measured whilst mounted in GPBS were at

slightly longer wavelengths than those measured whilst mounted in DPBS, the effect

of mountant on Xlnax was found to be non-significant (F1,69 = 2.02, p = 0.160).

Because the use of GPBS did not significantly affect the spectral location of the X.,

and because it reduced wavelength-dependent light scatter in the MSP preparations, it

was used subsequently as a mountant for the microspectrophotometric examination

of the blackbird, blue tit and peacock visual pigments.
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Glycerol was also noticed to have a mild preservative effect on MSP

preparations. This was of great value in extending the period during which

satisfactory records of outer segment absorbance could be obtained.

Although the mean absorbance spectra of visual pigments measured whilst

mounted in both DPBS and GPBS are displayed in the ensuing figures, the following

description uses the data obtained from GPBS-mounted outer segments.

A single class of rod contained a visual pigment with a mean pre-bleach Aq-nax

at 505 nm (n = 6). There were four different types of single cone, each of which was

reliably associated with a different type of oil droplet. Single cones containing R-

type oil droplets (mean kcut 514 nm, n = 26) were paired with a LWS visual pigment

which had a mean pre-bleach X max of 564 nm (n = 10).

Y-type oil droplets (mean kcu t 490 nm, n = 36) were paired with a MWS

visual pigment that had a mean pre-bleach kmax of 505 nm (n = 10). Single cones

containing a C-type droplet (mean kcut 437 nm, n = 10) were associated with a SWS

visual pigment of mean pre-bleach A., a„ 460 nm (n = 5). The fourth type of single

cone contained an violet-sensitive (VS) visual pigment, of mean pre-bleach kinax

419 nm (n = 4), and a T-type oil droplet which showed no detectable absorbance

above 330 nm.

Both members of the double cone pair contained visual pigments resembling

the LWS visual pigment measured in the single cones. The visual pigment in the

principal member had a pre-bleach Xmax of 564 nm (n = 8) and was paired with a P-

type oil droplet with a mean ?cu t at 436 nm (n = 12), which was independent of

retinal location, and a shoulder in the absorptance spectrum at approximately 480 nm.

The visual pigment in the accessory member of the double cone had a mean pre-

bleach kmax of 564 nm (n = 5). No A-type droplet was observed in the accessory

cones, nor was any carotenoid detected at the distal end of their inner segments.
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Figure 2.24 Microspectrophotometric results from 2 VS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Xi. 418 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (). 415 nm, solid line).
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Figure 2.25 Microspectrophotometric results from 4 SWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment

template (Xmax 458 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (Xmax 460 nm, solid line).
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Figure 2.26 Microspectrophotometric results from 9 MWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Xma,, 505 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (Xmax 508 nm, solid line).
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Figure 2.27 Microspectrophotometric results from 3 LWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (?ax 563 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (X. 566 nm, solid line).
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Figure 2.28 Microspectrophotometric results from 9 principal members of the
double cone of the domestic turkey, Meleagris gallopavo, measured whilst mounted
in 5% DPBS. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-
fitted visual pigment template (4,x 564 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (4., 564 nm,
solid line).
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Figure 2.29 Microspectrophotometric results from 6 rods of the domestic turkey,
Meleagris gallopavo, measured whilst mounted in 5% DPBS. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template

(kmax 504 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (km. 505 nm, solid line).
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Figure 2.30 Histogram showing the distribution of estimated Xi/lax values obtained

from pre-bleach absorbance spectra of visual pigments in the domestic turkey,
Meleagris gallopavo, measured whilst mounted in 5 % DPBS. (A) Single cones.

?max values around 418, 457, 505 and 563 nm describe VS, SWS, MWS and LWS

visual pigments respectively. (B) Rods and double cones. Amax values around

504 nm describe rod visual pigment, whilst Xmax values around 564 nm describe the
LWS visual pigment found in the principal member of the double cones.
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Figure 2.31 Histogram showing the distribution of estimated X max values obtained
from difference spectra of visual pigments in the domestic turkey, Meleagris

gallopavo, measured whilst mounted in 5 % DPBS. (A) Single cones. Ai,. values
around 415, 459, 508 and 563 nm describe VS, SWS, MWS and LWS visual
pigments respectively. (B) Rods and double cones. Xmax values around 505 nm
describe rod visual pigment, whilst 4,„ values around 564 nm describe the LWS
visual pigment found in the principal member of the double cones.
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Figure 2.32 Microspectrophotometric results from 4 VS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (A. 421 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with

best-fitted visual pigment template (kmax 418 nm, solid line).
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Figure 2.33 Microspectrophotometric results from 5 SWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (? max 460 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (4a„ 462 nm, solid line).
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Figure 2.34 Microspectrophotometric results from 10 MWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Xmax 506 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (Xmax 510 nm, solid line).
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Figure 2.35 Microspectrophotometric results from 10 LWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Xm. 564 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (X. 564 nm, solid line).
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Figure 2.36 Microspectrophotometric results from 8 principal members of the
double cone of the domestic turkey, Meleagris gallopavo, measured whilst mounted
in 75% GPBS. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-
fitted visual pigment template (X., 564 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (X„ ..„ 565 nm,
solid line).
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Figure 2.37 Microspectrophotometric results from 5 accessory members of the
double cone of the domestic turkey, Meleagris gallopavo, measured whilst mounted
in 75% GPBS. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-
fitted visual pigment template (Xmax 564 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (Xmax 564 nm,
solid line).
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Figure 2.38 Microspectrophotometric results from 6 rods of the domestic turkey,
Meleagris gallopavo, measured whilst mounted in 75% GPBS. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(? max 504 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (?max 506 nm, solid line).
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Figure 2.39 Histogram showing the distribution of estimated A... values obtained
from pre-bleach absorbance spectra of visual pigments in the domestic turkey,
Meleagris gallopavo, measured whilst mounted in 75 % GPBS. (A) Single cones.
4,a,, values around 419, 460, 505 and 564 nm describe VS, SWS, MWS and LWS
visual pigments respectively. (B) Rods and double cones. 4,„ values around
505 nm describe rod visual pigment, whilst X„,a„ values around 564 nm describe the
LWS visual pigments found in the principal accessory members of the double cones.
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Figure 2.40 Histogram showing the distribution of estimated X max values obtained
from difference spectra of visual pigments in the domestic turkey, Meleagris

gallopavo, measured whilst mounted in 75 % GPBS. (A) Single cones. 4,„ values
around 417, 462, 509 and 564 nm describe VS, SWS, MWS and LWS visual
pigments respectively. (B) Rods and double cones. Amax values around 507 nm
describe rod visual pigment, whilst X.„,a„ values around 565 nm describe the LWS
visual pigments found in the principal accessory members of the double cones.
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Figure 2.41 Mean absorptance spectra of oil droplets from the domestic turkey,
Meleagris gallopavo. (A) Oil droplets located in the single cones. T-, C-, Y- and R-
type droplets were found in the VS, SWS, MWS and LWS cones respectively. (B)
Oil droplets located in the principal member of the double cones (P-type). No A-type
droplet was measured in the accessory member.
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Figure 2.42 Histograms showing the spectral distribution of A.,ut and Xmid values for
single cone oil droplets measured in the domestic turkey, Meleagris gallopavo. (A)

kut values around 437, 490 and 514 nm, and (B) ?mid values around 453, 505 and
541 nm, describe C-type, Y-type and R-type oil droplets respectively.
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Figure 2.43 Histograms showing the spectral distribution of (A) X.,„ t and (B) Xmid

values for the P-type droplets measured in the principal member of the double cones
in the domestic turkey, Meleagris gallopavo. There were no dorsal-ventral variations
in droplet pigmentation. The mean A.cu t and krnid values were 436 and 459 nm
respectively.
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2.6.1.3 Blackbird

Microspectrophotometric data for visual pigments and oil droplets measured

in the blackbird, Turdus merula, are displayed in Figure 2.44 to Figure 2.55 and

summarised in Table 2.7 and Table 2.8. Like the starling, the blackbird retina

contained five different types of rhodopsin visual pigment, in six different types of

photoreceptor.

The single class of rod contained a visual pigment with a mean pre-bleach

kmax at 505 nm (n = 13). There were four different types of single cone, each of

which was reliably associated with a different type of oil droplet. Single cones

containing R-type oil droplets (mean kcu t 570 nm, n = 61) were paired with a LWS

visual pigment which had a mean pre-bleach Xmax of 557 nm (n = 9).

Y-type oil droplets (mean A.cu t 515 nm, n = 33) were paired with a MWS

visual pigment that had a mean pre-bleach X, of 503 nm (n = 8). Single cones

containing a C-type droplet (mean Xcu t 414 nm, n = 23) were associated with a SWS

visual pigment of mean pre-bleach Amax 453 nm (n = 12). The fourth type of single

cone contained an UVS visual pigment, of mean pre-bleach Xi„. 374 nm (n = 4), and

a T-type oil droplet which showed no detectable absorbance above 330 nm.

Both members of the double cone pair contained visual pigments resembling

the LWS visual pigment measured in the single cones. The visual pigment in the

principal member had a pre-bleach Xmax at 557 nm (n = 23). Like the starling, the P-

type oil droplet in the principal member had a variable kcu t depending on retinal

location. The Xcut occurred at progressively longer wavelengths as the location varied

from the dorsal to the ventral retina. A shoulder at approximately 480 nm was

apparent in the absorptance spectra of P-type droplets taken from the central and

ventral regions of the retina.

The visual pigment in the accessory member of the double cone had a mean

pre-bleach Xmax of 556 nm (n = 7). No A-type droplet was observed in the accessory

cones, nor was any carotenoid detected at the distal end of their inner segments.

The maximum corrected absorptance of the C-type oil droplet was relatively

low (0.29). This suggests that, like the C- and A-type droplets of the starling, the C-

type droplets in the blackbird SWS cones do not act as true cut-off filters.
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Figure 2.44 Microspectrophotometric results from 4 UVS single cones of the
blackbird, Turdus merula. (A) Mean pre-bleach absorbance spectrum (upper trace)
with best-fitted visual pigment template (Xmax 376 nm, solid line) and mean post-
bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(Amax 368 nm, solid line).

166



1.2

A
a)
c.)
C
ca

-9.. 0.4
o
cn
.0
ca

-a
a)

.N

TO

E

:5
z

-0.8 -

330	 380	 430	 480	 530	 580	 630	 680	 730

-0.4 -

0.8

0

-1.2 -

1.2 -

B

380	 430	 480	 530	 580	 630	 680	 730

-0.8 -

-1.2 -

Chapter two: Microspectrophotometry of avian retinal photoreceptors

Wavelength (nm)

Wavelength (nm)

Figure 2.45 Microspectrophotometric results from 12 SWS single cones of the
blackbird, Turdus merula. (A) Mean pre-bleach absorbance spectrum (upper trace)
with best-fitted visual pigment template (Xmax 454 nm, solid line) and mean post-
bleach absorbance spectrum (lower trace) with running average (solid line). (B)

Mean difference spectrum (trace) with best-fitted visual pigment template
(4a„ 456 nm, solid line).
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Figure 2.46 Microspectrophotometric results from 8 MWS single cones of the
blackbird, Turdus merula. (A) Mean pre-bleach absorbance spectrum (upper trace)
with best-fitted visual pigment template (Xmax 504 nm, solid line) and mean post-
bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(4ax 508 nm, solid line).

168



A

1.2

! 380	 430	 480	 530	 580	 630	 680	 730

-1.2 -

Chapter two: Microspectrophotometry of avian retinal photoreceptors

1.2

0.8

-e 0.4

.0
0

• 330	 380	 430	 480	 530	 580	 630	 680	 730

-0.8 -

-1.2 -

Wavelength (nm)

Wavelength (nm)

Figure 2.47 Microspectrophotometric results from 9 LWS single cones of the
blackbird, Turdus merula. (A) Mean pre-bleach absorbance spectrum (upper trace)
with best-fitted visual pigment template (4 a„ 557 nm, solid line) and mean post-
bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(X,. 558 nm, solid line).
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Figure 2.48 Microspectrophotometric results from 23 principal members of the
double cone of the blackbird, Turdus merula. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (kmax 557 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (X„,ax 557 nm, solid line).
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Figure 2.49 Microspectrophotometric results from 7 accessory members of the
double cone of the blackbird, Turdus merula. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (Xmax 556 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (X.max 556 nm, solid line).
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Figure 2.50 Microspectrophotometric results from 13 rods of the blackbird, Turdus

merula. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (4,a„ 504 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xmax 507 nm, solid line).
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Figure 2.51 Histogram showing the distribution of estimated 4ax values obtained
from pre-bleach absorbance spectra of visual pigments in the blackbird, Turdus
merula. (A) Single cones. A.Tha,„ values around 374, 453, 503 and 557 nm describe
UVS, SWS, MWS and LWS visual pigments respectively. (B) Rods and double
cones. A,,,,ax values around 505 nm describe rod visual pigment, whilst 71/4.,„,a„ values
around 557 nm describe the LWS visual pigments found in the principal and
accessory members of the double cones.
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Figure 2.52 Histogram showing the distribution of estimated Xinax values obtained
from difference spectra of visual pigments in the blackbird, Turdus merula. (A)

Single cones. Xmax values around 359, 456, 507 and 558 nm describe UVS, SWS,
MWS and LWS visual pigments respectively. (B) Rods and double cones.
values around 507 nm describe rod visual pigment, whilst Xmax values around 557 nm
describe the LWS visual pigments found in the principal and accessory members of
the double cones.
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Figure 2.53 Mean absorptance spectra of oil droplets from the blackbird, Turdus
merula. (A) Oil droplets located in the single cones. T-, C-, Y- and R-type droplets
were found in the UVS, SWS, MWS and LWS cones respectively. (B) Oil droplets
located in the principal member of the double cones (P-type). P-type droplets located
in the ventral retina (Pv) had their Xcu t at longer wavelengths than those located in the
central retina (Pc) which, in turn, had their Xcu t at longer wavelengths than those
found in the dorsal retina (P D). No A-type droplet was measured in the accessory
member.
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Figure 2.54 Histograms showing the spectral distribution of kcut and kmid values for
single cone oil droplets measured in the blackbird, Turdus merula. (A) kcut values
around 414, 515 and 570 nm, and (B) X.,mid values around 429, 532 and 593 nm,
describe C-type, Y-type and R-type oil droplets respectively.
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Figure 2.55 Histograms showing the spectral distribution of A.,ut and Xmid values for
P-type oil droplets measured in the principal member of the double cones of the
blackbird, Turdus merula. (A) X,„, values around 414, 439 and 470 nm, and (B) Xmid

values around 431, 456 and 493 nm, describe P-type oil droplets taken from the
dorsal, central and ventral regions of the retina respectively.
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Chapter two: Microspectrophotometry of avian retinal photoreceptors

2.6.1.4 Blue tit

Microspectrophotometric data for visual pigments and oil droplets measured

in the blue tit, Parus caeruleus, are displayed in Figure 2.56 to Figure 2.67 and

summarised in Table 2.9 and Table 2.10. Like the starling and blackbird, the blue tit

retina contained five different types of rhodopsin visual pigment, in six different

types of photoreceptor.

The single class of rod contained a visual pigment with a mean pre-bleach

Xmax at 504 nm (n = 6). There were four different types of single cone, each of which

was reliably associated with a different type of oil droplet. Single cones containing

R-type oil droplets (mean A.cat 573 nm, n = 14) were paired with a LWS visual

pigment which had a mean pre-bleach Am a„ of 563 nm (n = 7).

Y-type oil droplets (mean A,cat 508 nm, n = 13) were paired with a MWS

visual pigment that had a mean pre-bleach Amax of 502 nm (n = 10). Single cones

containing a C-type droplet (mean X.,„, 413 nm, n = 12) were associated with a SWS

visual pigment of mean pre-bleach Amax 448 nm (n = 5). The fourth type of single

cone contained an UVS visual pigment, of mean pre-bleach A. 374 nm (n = 5), and

a T-type oil droplet which showed no detectable absorbance above 330 nm.

Both members of the double cone pair contained visual pigments resembling

the LWS visual pigment measured in the single cones. The visual pigment in the

principal member had a pre-bleach Xmax at 565 nm (n = 14). The P-type oil droplets

in the principal member of the double cones had a similar Xcut regardless of retinal

location. Nevertheless, a shoulder at approximately 480 nm was just visible in the

absorptance spectra of P-type droplets taken from the ventral region of the retina,

which distinguished these droplets from those located dorsally.

The visual pigment in the accessory member of the double cone had a mean

pre-bleach Xmax of 563 nm (n = 4). No A-type droplet was observed in the accessory

cones, nor was any carotenoid detected at the distal end of their inner segments.

The maximum corrected absorptance of the C-type oil droplet was relatively

low (0.25). This suggests that, like the C- and A-type droplets of the starling and the

C-type droplets in the blackbird, the C-type droplets in the blue tit SWS cones do not

act as true cut-off filters.
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Figure 2.56 Microspectrophotometric results from 5 UVS single cones of the blue
tit, Parus caeruleus. (A) Mean pre-bleach absorbance spectrum (upper trace) with

best-fitted visual pigment template (Xmax 374 nm, solid line) and mean post-bleach

absorbance spectrum (lower trace) with running average (solid line). (B) Mean

difference spectrum (trace) with best-fitted visual pigment template (Xmax 371 nm,
solid line).
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Figure 2.57 Microspectrophotometric results from 5 SWS single cones of the blue
tit, Parus caeruleus. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (A,,,,„ 449 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (Xmax 448 nm,
solid line).
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Figure 2.58 Microspectrophotometric results from 10 MWS single cones of the blue
tit, Parus caeruleus. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (?lmax 503 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (X.,,,a„ 509 nm,
solid line).
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Figure 2.59 Microspectrophotometric results from 7 LWS single cones of the blue
tit, Parus caeruleus. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (A max 563 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (X., 564 nm,
solid line).
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Figure 2.60 Microspectrophotometric results from 14 principal members of the
double cone of the blue tit, Parus caeruleus. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (Xmax 565 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (Xmax 566 nm, solid line).
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Figure 2.61 Microspectrophotometric results from 4 accessory members of the
double cone of the blue tit, Parus caeruleus. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (A.., 563 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (?ax 562 nm, solid line).
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Figure 2.62 Microspectrophotometric results from 6 rods of the blue tit, Parus
caeruleus. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (X. 504 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (X. 507 nm, solid line).

187



-3

_2

B

Chapter two: Microspectrophotometry of avian retinal photoreceptors

A

a-a)
Li:

>.
C.)
Ca)
3a
P2

Li.

-1

0

-8

6

4

2

0

330

,

380	 430	 480 530	 580	 630	 680	 730

A,max (nm)

1	 .111

330	 380	 430	 480	 530	 580	 630	 680	 730

Xrn. (nm)

Figure 2.63 Histogram showing the distribution of estimated Xma,, values obtained
from pre-bleach absorbance spectra of visual pigments in the blue tit, Parus
caeruleus. (A) Single cones. A.Thax values around 374, 448, 502 and 563 nm describe
UVS, SWS, MWS and LWS visual pigments respectively. (B) Rods and double
cones. Xmax values around 504 nm describe rod visual pigment, whilst Xmax values
around 565 nm describe the LWS visual pigments found in the principal and
accessory members of the double cones.
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Figure 2.64 Histogram showing the distribution of estimated A.,,,, values obtained
from difference spectra of visual pigments in the blue tit, Parus caeruleus. (A)
Single cones. Xma„ values around 363, 444, 509 and 564 nm describe UVS, SWS,
MWS and LWS visual pigments respectively. (B) Rods and double cones. 4,„
values around 507 nm describe rod visual pigment, whilst k- na, values around 565 nm
describe the LWS visual pigments found in the principal and accessory members of
the double cones.
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Figure 2.65 Mean absorptance spectra of oil droplets from the blue tit, Parus

caeruleus. (A) Oil droplets located in the single cones. T-, C-, Y- and R-type
droplets were found in the UVS, SWS, MWS and LWS cones respectively. (B) Oil
droplets located in the principal member of the double cones (P-type). P-type
droplets located in the ventral retina (Pv) had their Xcu t at marginally longer
wavelengths than those located in the dorsal retina (PD). No A-type droplet was
measured in the accessory member.
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Figure 2.66 Histograms showing the spectral distribution of Xcut and knid values for
single cone oil droplets measured in the blue tit, Parus caeruleus. (A) Xcut values

around 413, 508 and 573 nm, and (B) Xm id values around 426, 528 and 596 nm,
describe C-type, Y-type and R-type oil droplets respectively.
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Figure 2.67 Histograms showing the spectral distribution of Xcut and Agnid values for
P-type droplets measured in the principal member of the double cones of the blue tit,
Parus caeruleus. There was little difference between droplets taken from the dorsal
and ventral regions of the retina in (A) their mean X.,u, values (417 and 418 nm
respectively) or (B) their mean Xm i d values (431 and 437 nm respectively).
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Chapter two: Microspectrophotometry of avian retinal photoreceptors

2.6.1.5 Peacock

Microspectrophotometric data for visual pigments and oil droplets measured

in the peacock, Pavo cristatus, are displayed in Figure 2.68 to Figure 2.79 and

summarised in Table 2.11 and Table 2.12. Like the starling, turkey, blackbird and

blue tit, the peacock retina contained five different types of rhodopsin visual pigment,

in six different types of photoreceptor.

The single class of rod contained a visual pigment with a mean pre-bleach

Xmax at 504 nm (n = 7). There were four different types of single cone, each of which

was reliably associated with a different type of oil droplet. Single cones containing

R-type oil droplets (mean Xcat 569 nm, n = 29) were paired with a LWS visual

pigment which had a mean pre-bleach A max of 566 nm (n = 4).

Y-type oil droplets (mean A.,a t 511 nm, n = 28) were paired with a MWS

visual pigment that had a mean pre-bleach Xmax of 505 nm (n = 5). Single cones

containing a C-type droplet (mean A,u t 449 nm, n = 9) were associated with a SWS

visual pigment of mean pre-bleach Xmax 458 nm (n = 14). The fourth type of single

cone contained an violet-sensitive (VS) visual pigment, of mean pre-bleach

421 nm (n = 4), and a T-type oil droplet which showed no detectable absorbance

above 330 nm.

Both members of the double cone pair contained visual pigments resembling

the LWS visual pigment measured in the single cones. The visual pigment in the

principal member had a pre-bleach A max at 567 nm (n = 9). The P-type oil droplets in

the principal member had a variable A.ca t depending on retinal location. P-type

droplets in the ventral retina and their kca t at longer wavelengths (mean Xcat 500 nm,

n = 22) compared to those found in the dorsal retina (mean A..cat 479 nm, n = 9).

The visual pigment in the accessory member of the double cone had a mean

pre-bleach kmax of 565 nm (n = 4) and was associated with an A-type droplet with a

mean A,cat of 488 nm (n = 6).

The maximum corrected absorptance of the C-type oil droplets was relatively

high (0.87), and of the same order of magnitude as the other pigmented droplet types.

In fact, because of by-passing light in the MSP, this is almost certainly an
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underestimation. This suggests that the C-type droplets in the peacock SWS cones

act as cut-off filters in the same way as the R- and Y-type droplets. A-type droplets,

however, had a much lower maximum corrected absorbance (0.40), suggesting that,

like the A-type droplets of the starling, they do not act as cut-off filters.
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Figure 2.68 Microspectrophotometric results from 4 VS single cones of the peacock,
Pavo cristatus. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-
fitted visual pigment template (Xmax 421 nm, solid line) and mean post-bleach

absorbance spectrum (lower trace) with running average (solid line). (B) Mean

difference spectrum (trace) with best-fitted visual pigment template (X,,-,a,, 421 nm,

solid line).
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Figure 2.69 Microspectrophotometric results from 14 SWS single cones of the
peacock, Pavo cristatus. (A) Mean pre-bleach absorbance spectrum (upper trace)
with best-fitted visual pigment template 457 nm, solid line) and mean post-
bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(Amax 463 nm, solid line).
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Figure 2.70 Microspectrophotometric results from 5 MWS single cones of the
peacock, Pavo cristatus. (A) Mean pre-bleach absorbance spectrum (upper trace)
with best-fitted visual pigment template (A.,„„ 505 nm, solid line) and mean post-
bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(A. 511 nm, solid line).
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Figure 2.71 Microspectrophotometric results from 4 LWS single cones of the
peacock, Pavo cristatus. (A) Mean pre-bleach absorbance spectrum (upper trace)
with best-fitted visual pigment template (Xmax 566 nm, solid line) and mean post-
bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(? max 569 nm, solid line).
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Figure 2.72 Microspectrophotometric results from 9 principal members of the
double cone of the peacock, Pavo cristatus. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (A.Thax 567 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (?ax 567 nm, solid line).
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Wavelength (nm)

Figure 2.73 Microspectrophotometric results from 4 accessory members of the
double cone of the peacock, Pavo cristatus. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (X.Thax 566 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (Xmax 566 nm, solid line).
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Figure 2.74 Microspectrophotometric results from 7 rods of the peacock, Pavo
cristatus. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (X., 504 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (k„,a x 506 nm, solid line).
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Figure 2.75 Histogram showing the distribution of estimated km ax values obtained
from pre-bleach absorbance spectra of visual pigments in the peacock, Pavo
cristatus. (A) Single cones. Xi,. values around 421, 458, 505 and 566 nm describe
VS, SWS, MWS and LWS visual pigments respectively. (B) Rods and double cones.
4,,,,, values around 504 nm describe rod visual pigment, whilst 4a,, values around
566 nm describe the LWS visual pigments found in the principal and accessory
members of the double cones.
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Figure 2.76 Histogram showing the distribution of estimated 21,/-ilax values obtained
from difference spectra of visual pigments in the peacock, Pavo cristatus. (A) Single
cones. Xmax values around 421, 464, 511 and 570 nm describe VS, SWS, MWS and
LWS visual pigments respectively. (B) Rods and double cones. A.m., values around
507 nm describe rod visual pigment, whilst Amax values around 568 nm describe the
LWS visual pigments found in the principal and accessory members of the double
cones.
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Figure 2.77 Mean absorptance spectra of oil droplets from the peacock, Pavo

cristatus. (A) Oil droplets located in the single cones. T-, C-, Y- and R-type droplets
were found in the VS, SWS, MWS and LWS cones respectively. (B) Oil droplets
located in the principal (P-type, solid lines) and accessory (A-type, dashed line)
members of the double cones . P-type droplets located in the ventral retina (Pv) had
their Xcut at longer wavelengths than those located in the dorsal retina (PO.
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Figure 2.78 Histograms showing the spectral distribution of Xcut and XIMd values for

single cone oil droplets measured in the peacock, Pavo cristatus. (A) A,cut values

around 449, 511 and 569 nm, and (B) X id values around 462, 525 and 592 nm,
describe C-type, Y-type and R-type oil droplets respectively.
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Figure 2.79 Histograms showing the spectral distribution of Xcut and Xmid values for
the A-type and P-type oil droplets measured in the double cones of the peacock, Pavo
cristatus. (A) ?kw values around 488, 479 and 500 nm, and (B) Ad values around
501, 499 and 514 nm, describe A-type, dorsally located P-type and ventrally located
P-type droplets respectively.
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2.6.2 Averaging the upward and downward scans prior to analysis

Following the results of the modelling in section 2.5.3, it was decided that

averaging the upward and downward scans of visual pigment absorbance spectra

prior to analysis resulted in a more accurate estimate of km.. Consequently, all of

the averaged spectra were reanalysed using this alternative method. The new mean

spectra for all species are displayed in Figure 2.80 to Figure 2.120 and the results

summarised in Table 2.13. Averaging the up and down scans not only increases the

accuracy of the km, estimate when there are significant distortions due to in-scan

bleaching, but also reduces the apparent noise of the data (manifested as the deviation

of the recorded spectra from the predicted template spectra). This permits the use of

fewer points in the running average used to smooth the raw data prior to analysis and

thus allows a more accurate estimate of the kmax to be made (see section 2.5.2).

Because the data obtained in this study suffered little from in-scan bleaching, the

differences in km, estimates between the two analysis methods, for both pre-bleach

and difference spectra, were small. Nevertheless, it is perhaps advisable to use the

most robust analysis techniques available. Without re-analysing each of the

individual records from which the mean spectra were calculated with the new

up / down averaging method, no suitable statistical test could be performed to

confirm whether or not there was a significant difference between the two methods.

However, as the majority of differences in mean A max estimates were less than 1 nm,

the calculated accuracy of the MSP used in this study, this was deemed unnecessary.
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Wavelength (nm)

Figure 2.80 Microspectrophotometric results from 2 UVS single cones of the
European starling, Sturrzus vulgaris. Up and down scans were averaged prior to
analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (4„ 368 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (Xn. 363 nm,
solid line).
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Figure 2.81 Microspectrophotometric results from 7 SWS single cones of the
European starling, Stumus vulgaris. Up and down scans were averaged prior to
analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (Amax 450 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (A.m., 452 nm,
solid line).
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Figure 2.82 Microspectrophotometric results from 11 MWS single cones of the
European starling, Sturrzus vulgaris. Up and down scans were averaged prior to
analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (A„. 504 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (Xi. 508 nm,
solid line).
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Figure 2.83 Microspectrophotometric results from 10 LWS single cones of the
European starling, Stumus vulgaris. Up and down scans were averaged prior to
analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (Xmax 563 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (Xma. 562 nm,
solid line).
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Figure 2.84 Microspectrophotometric results from 11 principal members of the
double cone of the European starling, Sturnus vulgaris. Up and down scans were
averaged prior to analysis and display. (A) Mean pre-bleach absorbance spectrum
(upper trace) with best-fitted visual pigment template (Xmax 563 nm, solid line) and
mean post-bleach absorbance spectrum (lower trace) with running average (solid
line). (B) Mean difference spectrum (trace) with best-fitted visual pigment template
(Xmax 563 nm, solid line).
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Figure 2.85 Microspectrophotometric results from 2 accessory members of the
double cone of the European starling, Stumus vulgaris. Up and down scans were
averaged prior to analysis and display. (A) Mean pre-bleach absorbance spectrum
(upper trace) with best-fitted visual pigment template (Xmax 560 nm, solid line) and
mean post-bleach absorbance spectrum (lower trace) with running average (solid
line). (B) Mean difference spectrum (trace) with best-fitted visual pigment template
(Xmax 560 nm, solid line).
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Figure 2.86 Microspectrophotometric results from 7 rods of the European starling,
Sturnus vulgaris. Up and down scans were averaged prior to analysis and display.
(A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual
pigment template (Xmax 503 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xwax 505 nm, solid line).
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Figure 2.87 Microspectrophotometric results from 2 VS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(Amax 418 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (Xmax 415 nm, solid line).

219



1.2

A
a) 0.8
C.)
c
03

-I-
0
Co

4
ca

"o	 0

173.—= 0.4
330 ,1

11380-
ril

a)
N

i
0	 ll

.

Z
-0.8

-1.2

1.2
a)

2 0.8

• 0.4

.o
8
co
.0

E

▪ 

-0.8 -

0

0
330

-0.4 -
380	 430	 480	 530	 580	 630	 680	 730

. n 	 . •.	 •	 A	 •
•• • • •	 tir • Ty r	 Try T v 	 r

-1.2 -

Chapter two: Microspectrophotometry of avian retinal photoreceptors

Wavelength (nm)

Wavelength (nm)

Figure 2.88 Microspectrophotometric results from 4 SWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(Xma„ 458 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (X„,a„ 460 nm, solid line).

220



1.2 -	
B

30
	

480	 530
	

580
	

630
	

680
	

730

-1.2 -

Chapter two: Microspectrophotometry of avian retinal photoreceptors

A
0.8

-9.. 0.4
o
co
.a
ca	

0
-a
a)N 330	 380	 430 480	 530 580	 630	 680	 730

.7a— V
E

-0.4 -
8z

-0.8 -

-1.2 -

Wavelength (nm)

Wavelength (nvn)

Figure 2.89 Microspectrophotometric results from 9 MWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(Xinax 504 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (A. Thax 508 nm, solid line).
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Figure 2.90 Microspectrophotometric results from 3 LWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 5% DPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template

563 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (Xmax 566 nm, solid line).
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Figure 2.91 Microspectrophotometric results from 9 principal members of the
double cone of the domestic turkey, Meleagris gallopavo, measured whilst mounted
in 5% DPBS. Up and down scans were averaged prior to analysis and display. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Xmax 564 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (?max 564 nm, solid line).
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Figure 2.92 Microspectrophotometric results from 6 rods of the domestic turkey,
Meleagris gallopavo, measured whilst mounted in 5% DPBS. Up and down scans
were averaged prior to analysis and display. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (Amax 504 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (? max 505 nm, solid line).
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Figure 2.93 Microspectrophotometric results from 4 VS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(Xmax 420 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (Xinax 417 nm, solid line).
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Figure 2.94 Microspectrophotometric results from 5 SWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(Xi,. 459 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (Xmax 462 nm, solid line).
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Figure 2.95 Microspectrophotometric results from 10 MWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(Xmax 505 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (X,nax 510 nm, solid line).
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Figure 2.96 Microspectrophotometric results from 10 LWS single cones of the
domestic turkey, Meleagris gallopavo, measured whilst mounted in 75% GPBS. Up
and down scans were averaged prior to analysis and display. (A) Mean pre-bleach
absorbance spectrum (upper trace) with best-fitted visual pigment template
(km. 564 nm, solid line) and mean post-bleach absorbance spectrum (lower trace)
with running average (solid line). (B) Mean difference spectrum (trace) with best-
fitted visual pigment template (Xma,, 564 nm, solid line).
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Figure 2.97 Microspectrophotometric results from 8 principal members of the
double cone of the domestic turkey, Meleagris gallopavo, measured whilst mounted
in 75% GPBS. Up and down scans were averaged prior to analysis and display. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Amax 564 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (Xmax 565 nm, solid line).
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Figure 2.98 Microspectrophotometric results from 5 accessory members of the
double cone of the domestic turkey, Meleagris gallopavo, measured whilst mounted
in 75% GPBS. Up and down scans were averaged prior to analysis and display. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Amax 563 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (Xmax 564 nm, solid line).
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Figure 2.99 Microspectrophotometric results from 6 rods of the domestic turkey,
Meleagris gallopavo, measured whilst mounted in 75% GPBS. Up and down scans
were averaged prior to analysis and display. (A) Mean pre-bleach absorbance
spectrum (upper trace) with best-fitted visual pigment template (4ax 504 nm, solid
line) and mean post-bleach absorbance spectrum (lower trace) with running average
(solid line). (B) Mean difference spectrum (trace) with best-fitted visual pigment
template (X. 506 nm, solid line).
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Figure 2.100 Microspectrophotometric results from 4 UVS single cones of the
blackbird, Turdus merula. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (Xmax 376 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (X„, a„ 368 nm, solid line).
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Figure 2.101 Microspectrophotometric results from 12 SWS single cones of the
blackbird, Turdus merula. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (Xmax 454 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xmax 456 nm, solid line).
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Figure 2.102 Microspectrophotometric results from 8 MWS single cones of the
blackbird, Turdus merula. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (Xmax 504 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (4ax 508 nm, solid line).
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Figure 2.103 Microspectrophotometric results from 9 LWS single cones of the
blackbird, Turdus merula. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (Xmax 557 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xm ax 558 nm, solid line).
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Figure 2.104 Microspectrophotometric results from 23 principal members of the
double cone of the blackbird, Turdus merula. Up and down scans were averaged
prior to analysis and display. (A) Mean pre-bleach absorbance spectrum (upper
trace) with best-fitted visual pigment template (X. 557 nm, solid line) and mean
post-bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(A.Thax 557 nm, solid line).
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Figure 2.105 Microspectrophotometric results from 7 accessory members of the
double cone of the blackbird, Turdus merula. Up and down scans were averaged
prior to analysis and display. (A) Mean pre-bleach absorbance spectrum (upper
trace) with best-fitted visual pigment template (X4nax 556 nm, solid line) and mean
post-bleach absorbance spectrum (lower trace) with running average (solid line). (B)
Mean difference spectrum (trace) with best-fitted visual pigment template
(4. 556 nm, solid line).
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Figure 2.106 Microspectrophotometric results from 13 rods of the blackbird, Turdus
merula. Up and down scans were averaged prior to analysis and display. (A) Mean
pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (Xmax 505 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (Xma„ 507 nm, solid line).
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Figure 2.107 Microspectrophotometric results from 5 UVS single cones of the blue
tit, Parus caeruleus. Up and down scans were averaged prior to analysis and display.
(A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual
pigment template 374 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template Ot.,„ax 372 nm, solid line).
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Figure 2.108 Microspectrophotometric results from 5 SWS single cones of the blue
tit, Parus caeruleus. Up and down scans were averaged prior to analysis and display.
(A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual
pigment template (km., 449 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (4,, 449 nm, solid line).
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Figure 2.109 Microspectrophotometric results from 10 MWS single cones of the
blue tit, Parus caeruleus. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (A,„ ax 503 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xma x 509 nm, solid line).
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Figure 2.110 Microspectrophotometric results from 7 LWS single cones of the blue
tit, Parus caeruleus. Up and down scans were averaged prior to analysis and display.
(A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual
pigment template (A,rnax 563 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xinax 564 nm, solid line).
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Figure 2.111 Microspectrophotometric results from 14 principal members of the
double cone of the blue tit, Parus caeruleus. Up and down scans were averaged prior
to analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (24nax 565 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (X. 565 nm,
solid line).
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Figure 2.112 Microspectrophotometric results from 4 accessory members of the
double cone of the blue tit, Parus caeruleus. Up and down scans were averaged prior
to analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (? ina„ 563 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (X., 562 nm,
solid line).
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Figure 2.113 Microspectrophotometric results from 6 rods of the blue tit, Parus
caeruleus. Up and down scans were averaged prior to analysis and display. (A)
Mean pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (2 max 503 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (X t. 507 nm, solid line).
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Wavelength (nm)

Figure 2.114 Microspectrophotometric results from 4 VS single cones of the
peacock, Pavo cristatus. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (X„,a,, 421 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xm ax 421 nm, solid line).
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Figure 2.115 Microspectrophotometric results from 14 SWS single cones of the
peacock, Pavo cristatus. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (kmax 457 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (kmax 463 nm, solid line).
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Figure 2.116 Microspectrophotometric results from 5 MWS single cones of the
peacock, Pavo cristatus. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (A.T. 505 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xmax 511 nm, solid line).
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Wavelength (nm)
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Figure 2.117 Microspectrophotometric results from 4 LWS single cones of the
peacock, Pavo cristatus. Up and down scans were averaged prior to analysis and
display. (A) Mean pre-bleach absorbance spectrum (upper trace) with best-fitted
visual pigment template (X.r,,a,, 566 nm, solid line) and mean post-bleach absorbance
spectrum (lower trace) with running average (solid line). (B) Mean difference
spectrum (trace) with best-fitted visual pigment template (Xmax 569 nm, solid line).
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Figure 2.118 Microspectrophotometric results from 9 principal members of the
double cone of the peacock, Pavo cristatus. Up and down scans were averaged prior
to analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (4a,, 567 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (Xmax 567 nm,
solid line).
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Figure 2.119 Microspectrophotometric results from 4 accessory members of the
double cone of the peacock, Pavo cristatus. Up and down scans were averaged prior
to analysis and display. (A) Mean pre-bleach absorbance spectrum (upper trace) with
best-fitted visual pigment template (Xmax 566 nm, solid line) and mean post-bleach
absorbance spectrum (lower trace) with running average (solid line). (B) Mean
difference spectrum (trace) with best-fitted visual pigment template (Xmax 567 nm,
solid line).
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Figure 2.120 Microspectrophotometric results from 7 rods of the peacock, Pavo
cristatus. Up and down scans were averaged prior to analysis and display. (A) Mean
pre-bleach absorbance spectrum (upper trace) with best-fitted visual pigment
template (X.m. 504 nm, solid line) and mean post-bleach absorbance spectrum (lower
trace) with running average (solid line). (B) Mean difference spectrum (trace) with
best-fitted visual pigment template (Am ax 506 nm, solid line).
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Starling Blackbird Blue tit Peacock 	 Turkey

Mountant	 DPBS GPBS GPBS GPBS DPBS GPBS

Xmax of mean pre-bleach spectrum (nm)

UVS / VS 368.2 376.0 374.0 421.3 418.3 419.7

±4.9 ±2.6 ±2.6 ±3.4 + 1.9 ±2.0

SWS 450.3 453.7 448.8 457.1 457.5 459.4

±2.6 ±1.5 ±3.3 ±1.2 ±1.6 ±1.4

MWS 504.4 504.2 502.7 504.6 504.3 505.4

±1.5 ±2.0 ±1.7 ±1.5 ±0.7 ±0.9

LWS 563.0 557.2 563.1 566.0 563.3 563.5

±2.0 ±1.2 ±2.0 ±1.5 ±3.0 ±1.0

Double 563.3 556.9 565.3 566.8 564.2 563.9

(Princ ipal) ±2.3 + 1.1 + 1.9 + 1.7 + 1.0 + 1.4

Double 559.7 555.9 563.1 566.2 563.4
(accessory) ±5.7 ±2.1 ±3.2 ±2.9 ±2.6

Rod 503.0 504.5 503.3 503.6 503.5 504.2

±0.8 ±0.6 + 1.0 ±0.5 ±0.5 ±0.7

A.,„ax of mean difference spectrum (nm)

UVS / VS 362.8 368.4 371.5 420.7 414.5 417.1

±3.1 ±4.8 ±5.0 ±6.1 ±4.1 ±3.3

SWS 451.7 456.0 448.5 463.1 460.1 462.2

±3.9 ±3.1 ±7.7 + 1.8 ±3.6 ±2.9

MWS 507.5 508.2 509.0 510.7 508.0 509.5

±3.3 ±3.4 ±4.4 ±2.4 ±1.1 ±2.0

LWS 562.4 557.9 564.1 568.6 565.5 564.1

±4.0 ±2.1 ±3.1 ±3.3 ±3.8 ±1.2

Double 563.4 557.3 565.2 567.2 564.2 565.0

(principal) ±4.4 + 1.4 ±2.0 ±2.0 ± 1.3 + 1.8

Double 560.3 556.2 562.0 566.5 - 563.5

(accessory) ±9.6 ±2.9 ±4.8 ±4.3 ±3.6

Rod 504.7 506.6 506.7 506.3 504.6 506.2

±1.0 ±1.1 ±2.0 ±1.3 ±0.7 ±1.4

Table 2.13 Summary visual pigment X. values for the five species investigated in
this study (legend continued on following page).
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Table 2.13 (continued) Summary visual pigment Xmax values for the five species
investigated in this study. All mean pre-bleach and difference spectra were re-
analysed after averaging the up and down scans to remove the effects of in-scan
photobleaching (see section 2.5.3). Values are ± standard deviations, which refer to
the error in estimating the A,m a x using the method described in the section 2.5.1.
UVS, ultraviolet-sensitive single cones; VS, violet-sensitive single cones; SWS,
short wavelength-sensitive single cones; MWS, medium wavelength-sensitive single
cones; LWS, long wavelength-sensitive single cones; DPBS and GPBS refer to the
type of cell mountant used (see section 2.4.4).
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2.7 Discussion

The retinae of the five bird species surveyed microspectrophotometrically

were shown to contain a single class of medium wavelength-sensitive rod, four types

of single cone maximally sensitive to long, medium, short and either violet (turkey

and peacock) or ultraviolet wavelengths (starling, blackbird, blue tit), and a single

class of long wavelength-sensitive double cone.

2.7.1 Visual pigments

The spectral distribution of the visual pigments for all species examined by

microspectrophotometry, including those in this study, are summarised in Figure

2.122. The cone visual pigments of avian retinae examined to date clearly fall into

five main groups. It is likely that some of the variation observed is due to

measurement artefacts and noise, particularly with respect to the visual pigments

maximally sensitive to shorter wavelengths. A discriminant analysis (Minitab 10.51)

was performed on the cone visual pigment A.„, a„ values, for each of the species which

have been shown microspectrophotometrically to possess four types of cone visual

pigment. The groups into which each A,„,a„ value was assigned were LWS (associated

with R-type oil droplet), MWS (associated with Y-type oil droplet), SWS (associated

with C-type oil droplet), VS (A,,„ax of visual pigment associated with T-type oil

droplet > 400 nm) and UVS 	 of visual pigatetit associated v4itti T-tnie,

droplet < 400 nm). The results are summarised in

Table 2.14. All of the values were predicted by the analysis to belong to the

same group as they were assigned, with the exception of the SWS cone visual

pigment of the zebra finch, which was reassigned to the VS group of cone visual

pigments. Whilst the SWS cone visual pigment of the zebra finch is associated with

a C-type oil droplet, the spectral absorption characteristics of which resemble those

of other C-type droplets associated with SWS cone visual pigments in other species

which were 'correctly' assigned, its X. 	 value is unusually low.
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Predicted cone class Assigned cone class

UVS VS SWS MWS LWS
UVS 7 0 0 0 0
VS 0 8 1* 0 0
SWS 0 0 14 0 0
MWS 0 0 0 15 0
LWS 0 0 0 0 15

Number 7 8 15 15 15
Number correct 7 8 14 15 15
Percentage correct 100 100 93.3 100 100

Table 2.14 Discriminant analysis (Minitab 10.51) of the spectral location of the 4.
of visual pigments in different cone types, for all avian species which have been
shown microspectrophotometrically to possess four spectrally distinct cone visual
pigments. All of the Xma,, values were predicted by the analysis to belong to the same
group as they were assigned, with the exception of the SWS cone visual pigment of
the zebra finch (asterisk) which was reassigned to the VS group of cone visual
pigments.

Whilst the functional significance of a short wavelength-shifted SWS cone

visual pigment in the zebra finch retina is unclear, there is an interesting relationship

between the ?max value of the cone visual pigment associated with the C-type oil

droplet (SWS visual pigment) and the Amax value of the cone visual pigment

associated with the T-type oil droplet (i.e. VS or UVS visual pigment). A reduced

major axis regression (Fowler and Cohen, 1990) was performed on the

microspectrophotometric data from all avian species in which both types of visual

pigment had been measured, with the exception of the zebra finch and the Pekin

robin for which the estimates of UVS cone visual pigment Xi-na„ were deemed

insufficiently accurate (although including the data from these species does not affect

the significance of the correlation observed). The X max value of the cone visual

pigment associated with the C-type oil droplet was classed as the dependent variable.

The results are displayed in Figure 2.121. Polynomial regression was performed on

the data to test for a departure from linearity, but the squared term was found to be

non-significant (t 14 = 1.18; p = 0.260). The linear regression line calculated had a

gradient of 0.1951 and an intercept of 373.4906. The correlation was found to be
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statistically significant by calculating (Minitab 10.51) the Pearson product-moment

correlation coefficient (r = 0.680; n = 15; p <0.01).

The spectral absorption characteristics of the visual pigments of the turkey

and peacock resemble most those measured in the chicken, duck and Japanese quail.

The visual pigments of the blackbird, blue tit and starling are most similar to the

Pekin robin, budgerigar, zebra finch and canary (see chapter one). These two

groupings tend to reflect the degree of phylogenetic relatedness between the different

species (Sibley and Ahlquist, 1990; Sibley and Monroe, 1990). Specifically, the

majority of species which possess a UVS cone visual pigment are passerines

(Passeriformes). The budgerigar, which also possesses a UVS cone visual pigment,

is a member of the Psittaciformes, which are more closely related to the

Passeriformes than the Galliformes (chicken, quail, peacock and turkey) and

Anseriformes (duck), both of which possess a VS cone visual pigment instead of the

UVS type. These data are most parsimoniously explained by a single evolutionary

split at the divergence of the Passeriform / Psittaciform lineages from the Galliform /

Anseriform lineages. To illustrate this separation, cluster analysis (Minitab 10.51)

was performed on the cone visual pigment 4ax values for all species in which four

cone visual pigment types have been measured microspectrophotometrically (see

Tables 1.3 and 2.13). The results, which are largely independent of the linkage

method or distance measure used, are displayed in Figure 2.123.

However, the Manx shearwater, Humboldt penguin (both Ciconiformes) and

pigeon (Columbiformes), which have nominal VS cone visual pigments but with Xi.na„

values at slightly shorter wavelengths than those found in the Galliform and

Anseriform species studied (402, 403 and 409 nm respectively), are more closely

related to the Passeriformes and Psittaciformes than the Galliformes and

Anseriformes. Therefore, it is possible that the lineages which gave rise to the

Passeriformes and Psittaciformes underwent a further division with regard to the

spectral location of the X. of this cone visual pigment type. Phylogenetic

relatedness, however, is often inextricably linked to ecology, and a great deal more

comparative data on the absorption properties of avian retinal photoreceptors, and the

characteristics of the visual environment which have driven the spectral tuning of the

ancestral opsin genes, are required before further conclusions can be made.
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Figure 2.121 Results of a reduced major axis regression (Fowler and Cohen, 1990)
which reveals that the ki, . value of the cone visual pigment associated with the C-
type oil droplet (SWS visual pigment) is positively correlated with the 4a„ value of
the cone visual pigment associated with the T-type oil droplet (i.e. VS or UVS visual
pigments). Polynomial regression was performed on the data to test for a departure
from linearity, but the squared term was found to be non-significant (t 14 = 1.18;
p = 0.260). The linear regression line calculated had a gradient of 0.1951 and an
intercept of 373.4906. The correlation was found to be statistically significant by
calculating (Minitab 10.51) the Pearson product-moment correlation coefficient
(r = 0.680; n = 15; p < 0.01).
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Figure 2.122 Distribution of avian cone visual pigment Xmax values for all species
measured using microspectrophotometry. Values around 565 (red lines), 505 (green
lines), 450 (blue lines), 420 (purple lines) and 370 nm (black lines) represent LWS,
MWS, SWS, VS and UVS single cone visual pigments respectively. References for
the data not obtained during this study are the same as for Table 1.3 (chapter one).
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Figure 2.123 A dendrogram generated by a cluster analysis (Minitab 10.51, average
linkage, squared Euclidean distance measure) of the cone visual pigment x max values
for all species in which four cone visual pigment types have been measured
microspectrophotometrically (see Tables 1.3 and 2.13). The species studied to date
clearly fall into two principal groups, the main difference being the spectral location
of the A,max of the visual pigment which is associated with the T-type (transparent) oil
droplet (i.e. either VS or UVS).
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Two notable improvements were made over the course of this study with

regard to the microspectrophotometric measurement of avian visual pigments. The

first was the incorporation of glycerol into the medium used to mount the

photoreceptors. This had the effect of reducing optical artefacts in the cell

preparation which increased the quality of the data obtained. Furthermore, the use of

a high concentration of glycerol in the mountant extended the time period over which

acceptable measurements could be made. Glycerol at concentrations of up to 20 %

are known to improve the thermal stability of both rod and cone pigments extracted

from chicken retinae (Okano et al., 1989) and it would seem that the preservative

effect of glycerol extends to visual pigments in situ.

The second improvement involved the analysis protocol for visual pigment

absorbance data. By averaging the up and down scans prior to fitting with a visual

pigment template, the effects of in-scan bleaching were reduced. Although the visual

pigment ?max values of the spectra obtained during this study were affected little by in

scan bleaching, mathematical modelling suggests that an appreciable degree of in-

scan bleaching can be tolerated before the absorbance spectra are significantly

distorted. This is a distinct advantage in the measurement of avian cone visual

pigments as the outer segments are extremely small and therefore prone to significant

in-scan bleaching.

A noticeable shift (2 to 3 nm) in apparent Xmax between the pre-bleach

absorbance spectrum and the difference spectrum was observed in both the MWS

cone pigment and the rod pigment. This was probably due to accumulation of a

stable photoproduct which is visible in the post-bleach spectrum as a broad peak at

around 480 to 490 nm. Because this peak was apparent in the rod, it is assumed that

it was not a result of scattering of the measuring beam by the oil droplet. The

photoproduct may have been metarhodopsin III (Xmax 470 nm), or acidic N-

retinylidene-opsin (4a„ 440 nm, Rodieck, 1973). The similarity in the type of

photoproducts accumulated by these two photoreceptor types, and the similarity of

their ?max, is perhaps indicative of their phylogenetic relatedness (Okano et al.,

1992).

Photoproduct absorption at approximately 380 to 390 nm was observed in the

post-bleach absorbance spectra of all photoreceptor types, which was most likely due
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to the accumulation of all-trans retinal (Amax 440 nm, Knowles and Dartnall, 1977).

Whilst absorption by all-trans retinal would probably not affect the difference

spectrum Amax for the MWS or LWS pigments, it would account for the shift in the

difference spectra 2-max of the UVS and VS cone pigments towards shorter

wavelengths, and the shift in the difference spectra Xma„ of the SWS cone pigment

towards longer wavelengths.

The pre-bleach absorbance spectra of SWS pigments in the starling, blackbird

and peacock showed considerably higher absorbance on the short wavelength limb

than would be predicted from the visual pigment template. This may have been due

to rapid photoproduct accumulation or scattering of the measuring beam by the C-

type oil droplet. The outer segments of SWS cones are generally smaller than those

of the MWS and LWS single cones and the double cones. Consequently, the MSP

measuring beam is positioned closer to the oil droplet when recording an absorbance

spectrum from a SWS cone outer segment than when measuring outer segments

associated with the other cone classes. This may have resulted in increased scattering

or absorption of the measuring beam by the associated oil droplet in this cone class,

particularly at shorter wavelengths.

Possibly the most interesting result of this limited survey of avian visual

pigments is the discovery of a 4ax 557 nm LWS cone visual pigment in the LWS

single cones and both members of the double cone in the blackbird retina. The X.T.,

values of the same visual pigment type in the starling, blue tit, peacock and turkey

range from 563 to 566 nm.

Similar visual pigments (both with Xmax 555 nm) were measured

microspectrophotometrically in the tawny owl (Bowmaker and Martin, 1978), and

electrophysiologically in the great horned owl (Jacobs et al., 1987), and another long

wavelength-sensitive visual pigment with a slightly different peak sensitivity (Xmax

543 nm) was measured microspectrophotometrically in the Humboldt penguin

(Bowmaker and Martin, 1985). Whilst any assumptions are made from very limited

data sets, it is interesting to note that these three groups of Xmax values for avian LWS

visual pigments (543, 555 / 557 and 563 to 570) are remarkably similar to those

produced by the three different allelic forms of the single polymorphic middle- to
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long wavelength-sensitive cone visual pigment opsin gene in marmosets, Callithrix

jacchus jacchus, (543, 556 and 563 nm, Williams et al., 1992). Four possible

spectral tuning sites have been identified, which involve non-homologous

substitutions between the different pigment types, at positions 285, 233 230 and 180

(which correspond to positions 269, 217, 214 and 164 in the bovine rhodopsin

numbering system).

The most striking conclusion in the case of the avian LWS visual pigments is

that the function of the double cones would seem to be responsible for the spectral

location of the Xmax value. LWS single cones have their effective spectral sensitivity

shifted towards longer wavelengths by approximately 40 nm due to the cut-off

characteristics of the R-type oil droplet with which they are associated (Maier and

Bowmaker, 1993). Consequently, the oil droplet determines the exact peak effective

spectral sensitivity of the cone and not the visual pigment. However in the double

cones, the LWS visual pigment is associated with an oil droplet which absorbs

strongly at short wavelengths, but will not shift the peak sensitivity of the double

cone away from the Xmax of the visual pigment. Therefore, it is conceivable that the

visual pigment is spectrally tuned to optimise the visual function of the double cones

rather than the LWS single cones, although the function of the double cones, and the

reasons for variations in their visual pigment A.,„,a,„ are unknown.

The other more obvious differences between bird species lie in the short

wavelength region of the spectrum. It appears that there are two main spectral

locations for the X.m  of the UVS / VS visual pigments in birds, at about 360 to 380

or 415 to 426. The opsin proteins responsible for both visual pigment types are

thought to be derived from the same ancestral UVS-type visual pigment gene (Okano

et al., 1992; Yokoyama et al., 1998). There may also be a third spectral location for

the UVS / VS cone visual pigment type, at around 402 to 409 nm, as measured

microspectrophotometrically in the pigeon, Manx shearwater and Humboldt penguin.

Ultraviolet sensitivity is now realised to be an important component of avian

visual ecology. Conspecific signals in Pekin robins (Maier, 1993), zebra finches

(Bennett et al., 1996; Hunt et al., 1997), starlings (Bennett et al., 1997), bluethroats

Luscinia svecica svecica (Andersson and Amundsen, 1997) and blue tits (Hunt et al.,

1998) are affected if the UV component of plumage coloration is removed. The role
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of UV in prey detection was predicted by Burkardt (1982) and has been demonstrated

in hummingbirds Archilochus alexandri, Lampornis clemenciae, and Eugenes

fulgens (Goldsmith, 1980), kestrels Falco tinnunculus (Viitala et al., 1995) and blue

tits (Church et al., 1998). Ultraviolet light may also be used by birds as a 'sun-

compass' for orientation, or as a cue to calibrate their circadian clocks (see Bennett

and Cuthill, 1994 for review). Due to the large variation in A.Tn a x of visual pigments in

the UVS / VS single cone type, it is likely that there is considerable interspecific

variation in the utility of ultraviolet wavelengths in visual ecology.

2.7.2 Oil droplets

C-type oil droplets had Xcu t at longer wavelengths and a higher measured

absorptance when the two short wavelength-sensitive visual pigments were spectrally

close, as in the peacock, but not when they were further apart, as in the starling, blue

tit and blackbird. This confirms the observations made by Bowmaker et al. (1997)

and suggests that one of the major functions of oil droplet pigmentation is to reduce

the overlap between spectral classes. Whilst some overlap is essential, excessive

overlap will lead to a reduction in hue discrimination ability. The lower density of

carotenoid in the C-type oil droplets of birds possessing UVS pigments does not shift

the Xmax significantly and may serve only to reduce absorption by the 13-band of the

visual pigment (Wolbarsht, 1976).

Intra-retinal variations in oil droplet carotenoid density were restricted to the

P-type droplets of the double cones. In the peacock, starling, blackbird and blue tit,

P-type droplets in the ventral retina had Xcu t at longer wavelengths than those in the

dorsal retina. Increased pigmentation of oil droplets in the ventral retina, which

observes the celestial visual hemifield, might be adaptive in improving visual acuity.

Rayleigh scattering, by atmospheric particles smaller than the wavelength of light, is

proportional to the reciprocal of the fourth power of the wavelength (Born and Wolf,

1970). Consequently, as short wavelengths are scattered more, longer wavelengths

are more useful in the detection of distant objects. The dorsal retina in these species

generally views the ground from close range and would have less need for acute

distance vision.
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Highly pigmented droplets would also absorb short wavelengths scattered

within the eye and reduce the effects of chromatic aberration by the dioptric

apparatus, thus 'sharpening' the retinal image (Lythgoe, 1979). Of relevance to this

theory is the observation that, in the pigeon, SWS cones in the retina are located

more vitread (closer to the lens) than the MWS and LWS cones (Mariani and Leure-

DuPree, 1978). As discussed in section 2.2.6, longitudinal chromatic aberration

results in short wavelengths coming to a point of focus closer to the back of a lens

than longer wavelengths, and the stratification of the photoreceptors in vivo may be

designed to compensate for this optical phenomenon.

An alternative hypothesis is that the oil droplets act as intraocular eye shades.

Because the ventral retina observes the celestial visual field, it receives much more

light (particularly of shorter wavelengths) than the dorsal retina. Perhaps a

progressive decrease in short wavelength sensitivity is advantageous, either by

protecting the eye from potentially damaging ultraviolet radiation (Kirschfeld, 1982),

or by reducing luminance differences between the two visual hemifields to allow

good vision of the ground whilst reducing excessive irradiance from the sky. In this

respect, it is interesting to note that the jungle nightjar (Caprimulgus indicus) has

been reported to possess a tapetum only in the dorsal half of the retina (Nicol and

Arnott, 1974; Gondo and Ando, 1995). This may be an alternative or additional

adaptation to increase photon capture by photoreceptors receiving light from the

ventral visual hemifield. Similarly, in many diurnal teleosts, yellow pigmentation is

much higher in the dorsal half of the lens and / or cornea than in the ventral region,

thus reducing the amount of light from the celestial visual hemifield that reaches the

ventral retina. By selectively filtering the light after it has passed through, and been

inverted by, the dioptric apparatus, increased pigmentation in the oil droplets can

control brightness but still permit short wavelength sensitivity in separate specialised

receptors.

However, this cannot be the only reason for intraretinal variations in droplet

pigmentation. In the retina of the pigeon, the P-type, Y-type, and possibly the R-

type, oil droplets in the red field (PD quadrant of the retina) have Xcu t at longer

wavelengths than those in the yellow field (Bowmaker, 1977; Bowmaker et al.,

1997). No such intraretinal variation in the spectral absorption characteristics of
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single cone oil droplets was observed in any of the species investigated during this

study. The functional significance of the pigeon's peculiar retinal organisation is

unclear. The pigeon is a feral strain of the rock dove (Columba livia) which nests on

cliff faces, particularly by the coast (Perrins, 1987). It is largely granivorous, feeding

on the seeds of cereals, legumes and weeds, and its food is almost exclusively taken

from the ground. With regards to its diet, the pigeon is little different from the

chicken, turkey or peacock. However, one difference may be that, in the wild, these

three Galliform species forage under forest shade and as such inhabit environments in

which the visible spectrum is dominated by 'green' wavelengths (approximately 500

to 600 nm; Endler, 1993), whereas the pigeon forages mostly under an open sky.

The oil droplets of the turkey retina appeared to be considerably deficient in

carotenoid when compared to P-, Y- and R-type oil droplets measured in the

American bronze turkey (Meleagris gallopavo gallopavo), which were shown to cut

off wavelengths below about 530, 540 and 570 nm respectively (Strother, 1963). It is

unclear whether the reduction of oil droplet pigmentation observed in the turkeys

used in this study was due to domestication of the BUT8 strain, a dietary deficiency,

or the reduced light levels under which the turkeys are kept to prevent them fighting

(Dr. Chris Sherwin, personal communication). A reduction in oil droplet carotenoid

concentration was also observed in starlings which had been kept in captivity for

more than one or two months, particularly in the P-type droplets of the ventral retina,

which rapidly lost the 480 nm shoulder from their absorption spectra. This is

possibly further evidence of a shading function for P-type droplets. These

observations emphasise the importance of using freshly caught wild individuals when

investigating avian visual physiology.
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3. Determination of cone photoreceptor abundance

3.1 Previous studies and conclusions

Birds have four different classes of single cone and a single class of double

cone (Bowmaker et al., 1997; and see chapter two), but these are not equally

represented in the retina (Muntz, 1972). It has been proposed that both the relative

abundance and spectral absorption properties of cone oil droplets are explained more

by species' visual ecology than phylogeny (Peiponen, 1964; Muntz, 1972; Partridge,

1989), and it is known that cones are distributed non-uniformly in the retinae a

variety of avian species (Goldsmith et al., 1984b; Gondo and Ando, 1995), although

some maintain a largely isotropic distribution of cone types (e.g. Japanese quail,

Budnik et al., 1984).

Investigations of relative cone abundance and intraretinal distribution have

suffered from the technical difficulties involved in discriminating between certain

types of oil droplet (see below). Consequently, in counts of cone abundance, certain

cone classes were pooled, most notably those types containing oil droplets which

appeared 'colourless' to the human eye, resulting in a loss of potentially useful

information (Peiponen, 1964; Mayr, 1972; Meyer and May, 1973; Budnik et al.,

1984; Begin and Handford, 1987). In addition, the subjective nature of many of

these observations, which were made largely by light microscopy, may have affected

their accuracy. The spectral absorption characteristics of some oil droplets vary

across the retina (Bowmaker, 1977; Goldsmith et al., 1984b, and this study) and this

may have led to some oil droplets, which in fact belong to the same cone class, being

classified differently depending on where they were located in the retina. Even in

studies employing a microspectrophotometer to characterise the different droplet

types objectively (Goldsmith et al., 1984b; Partridge, 1989), a lack of information

regarding which type of visual pigment was associated with which type of oil droplet

may have confused the results.

Nevertheless, some general trends have emerged. In nocturnal birds, the

number of coloured oil droplets is greatly reduced. Primarily, this is the result of a

rod-dominated retina. Rods comprise approximately 90 % of the photoreceptor

population in the great horned owl, Bubo virginianus (Fite, 1973; Braekevelt, 1993a),
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and the barred owl, Strix varia (Braekevelt et al., 1996), compared to less than 40 %

in the diurnal species studied (Morris, 1970; Braekevelt, 1990; Braekevelt, 1994a).

Microspectrophotometry has revealed the presence of at least four different cone

types in the retina of the tawny owl, Strix aluco (Bowmaker and Martin, 1978).

Furthermore, electrophysiological and behavioural measures of spectral sensitivity

suggest that this species possesses a functional colour vision system (Martin, 1974;

Martin and Gordon, 1974; Martin et al., 1975). Thus it seems likely that, whilst

retaining the ability to discriminate colours, the increased rod population reflects a

largely nocturnal habit.

Erhard (1924, cited in Peiponen, 1964) stated that neither the tawny owl nor

the barn owl, Tyto alba, possessed 'coloured' (i.e. red or yellow) oil droplets.

Additionally, a recent investigation by two Japanese authors suggested that the

Hondo Ural owl, Strix uralensis, and the snowy owl, Nyctea scandiaca, display only

pale green oil droplets (Gondo and Ando, 1995). These anomalous results may be

explained by the microspectrophotometric data of Bowmaker and Martin (1978),

which revealed the presence of four spectrally distinct droplet types, but also

demonstrated their low carotenoid concentration, which would render the majority of

them pale green, pale yellow or colourless in appearance. Presumably the reduction

in oil droplet pigmentation, which would otherwise reduce cone sensitivity, is

adaptive to a nocturnal, crepuscular or arrhythmic existence.

Diurnal birds with retinae containing relatively few red and yellow oil

droplets include the barn swallow, Hirundo rustica, swift, Micropus apus, sand

martin, Riparia riparia, and house martin, Delichon urbica, (Peiponen, 1964;

Goldsmith et al., 1984b; Gondo and Ando, 1995). The pale green or colourless

appearance of the majority of droplets in these retinae suggests that double cones are

of more importance.

Species that fly above water and need to see through its surface have a

relatively higher proportion of red oil droplets (Muntz, 1972). Red and yellow oil

droplets comprise over 75 % of the cone population in the retinae of lesser black-

backed gulls, Larus fuscus, common gulls, L. canus, and common terns, Sterna

hirundo, (Peiponen, 1964), and in the European kingfisher, over 60 % of the droplets

are red (Erhard, 1924, cited in Peiponen, 1964). This phenomenon has been
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attributed to the function of reducing glare as the birds peer down at the water's

surface, and it has been noted that birds which live on the water, but do not need to

look through it from a distance, lack this development of red oil droplets (Muntz,

1972; Partridge, 1989).

Intra-retinal variations in cone abundance have been observed in a number of

species. The pigeon is especially noteworthy in this respect. The retina is clearly

demarcated into two disparate regions known as the 'red' and 'yellow' fields (Muntz,

1972). The red field, which constitutes most of the posterior dorsal retina, contains a

higher proportion of red and orange oil droplets than the remaining retina, or yellow

field (Waelchli, 1883). These two droplet types correspond to the LMW and MWS

single cones respectively (Bowmaker, 1977). Such severe demarcation in the retina

is rare in the species studied to date, but a similar distribution is found in the

common tern, which again has much higher proportions of LWS and MWS cones in

the dorsal retina (Goldsmith et al., 1984b). Variations in cone abundance between

the dorsal and ventral regions may be adaptations to differences in the amount and

spectral composition of the light impinging on different areas of the retina, as is

thought to be the case in some teleosts (Levine and MacNichol, 1982). The

underwater light environment is notably asymmetrical in dorsal / ventral spectral

distribution, but this is also true of many terrestrial habitats (Lythgoe, 1979).

Whilst some of these conclusions may be valid, it is wise to exercise some

caution in their adoption. Oil droplets have rarely been characterised using objective

measures such as cut-off wavelength (A.c.), or correlated with visual pigment type.

Furthermore, most of these conclusions are not supported by rigorous statistical

analysis. Whilst the results of Pezard (1964, cited in Muntz, 1972), who suggested

that oil droplet complement was affected by sex, hormonal status, sexual activity and

even the time of year, have not been replicated (Mayr, 1972), the abundance of some

cone types may be dependent upon age. Hodos et al. (1991) found that double cones

gradually disappeared in ageing pigeons, whereas single cone densities remain

unchanged. The relative proportions of single cones would therefore be seen to

increase in older birds, thus complicating cross-species comparisons. In addition,

intraretinal variation in the spectral absorption characteristics of a given class of

droplet might lead to confusion between cone types. For example, when viewed
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under the light microscope or even when measured microspectrophotometrically, P-

type droplets of the LWS double cones can resemble very closely the C-type droplets

of the SWS cones or, at the other extreme, the Y-type droplets of the MWS cones

(Goldsmith et al., 1984; Maier and Bowmaker, 1993).

Avian photoreceptors may be organised in mosaics, as are those of many fish

(Marc and Sperling, 1976; Boehlert, 1978; Levine et al., 1979) and some primates

(Marc and Sperling, 1977; Mollon and Bowmaker, 1992). In the retina of the great

tit, Parus major, each single cone is surrounded by four double cones, and these units

are arranged in rows (Engstrom, 1958). The domestic chicken, however, has single

and double cones arranged in a hexagonal lattice, which is regarded as the outcome

of an evenly spaced distribution of the different cone types (Morris, 1970). An

electron microscopic study of the photoreceptors of the great horned owl revealed no

obvious patterning of arrangement or mosaic (Braekevelt, 1993a).

In general, the topographical distribution of the different types of

photoreceptor in the avian retina has received little attention. Inter-specific and intra-

retinal variation in total photoreceptor density, on the other hand, has been the

subject of numerous studies on avian visual ecology. Improved visual acuity in birds

is generally correlated with the presence of well-developed areae (often <me. or twe.)

which house a higher density of photoreceptors, usually cones (Meyer, 1977). The

visual cells found in the areae are characteristically longer and thinner and the

concomitant increase in ganglion and bipolar cell density results in a thickening of

the nervous layers of the retina.

Generally, a depression, or fovea, of variable depth and size is observed

within an area. The fovea contains an even higher density of photoreceptors, and the

convergence ratio (photoreceptors to ganglion cells) is usually 1:1 (Pumphrey, 1948).

The fovea is caused by radial displacement of the more internal layers of the retina,

resulting in a shallow saucer-shaped depression (concaviclivate) or deep funnel-

shaped (convexiclivate) pit.

The size, shape and position of avian areae and foveae have been reviewed a

number of times (Wood, 1917; Walls, 1942; Pumphrey, 1948; Meyer, 1977; Martin,

1985). The most common area, which is found in many birds (e.g. Stellar jay,

Cyanocitta stelleri), is a circular region in the central fundus, slightly dorsal and
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anterior to the optic nerve. It is thought that central areae, which often contain

predominantly yellow oil droplets, are involved in monocular vision. Double cones

are thought to be absent from the central foveae of blackbirds and starlings (Meyer,

1977), but have been observed in several members of the weaverbird family (Meyer,

1977).

A second type of area, often more oval than circular and located laterally

towards the temporal periphery of the retina, is sometimes found in place of (e.g.

barn owl, Tyto alba), or in addition to (e.g. bittern, Botaurus lentigenosus; kingfisher,

Alcedo ispida), a central area. Lateral areae are situated in a location consistent with

their use in binocular vision, and are reported to lack double cones (Walls, 1942;

Meyer, 1977).

A number of species display a large linear or ribbon shaped area extending

horizontally for a variable distance across the central retina. Some species display a

linear area and no additional fovea (e.g. Manx shearwater, Puffinis puffinis; fulmar

petrel, Fuhnaris glacialis); a linear area incorporating a central area and fovea (e.g.

American coot, Fulica ainericana); a linear area connecting a central and lateral

fovea (e.g. sparrow hawk, Falco sparverius) or a linear area with an enclosed central

fovea and a separate lateral fovea (e.g. tern, Sterna hirundo). Linear areae are

thought to enhance movement detection, and give high visual acuity, in the horizontal

visual field (Meyer, 1977). A large linear area in the mallard and concurrent increase

in ganglion cell density (Dubbeldam and Tellegen, 1996), combined with a 3600

cyclopean visual field (Martin, 1993), suggests that its visual attention is directed

towards the horizon. A prominent linear area, also known as the visual streak, is

often observed in the chelonian retina (Ives et al., 1983), and in some mammals and

amphibians (Walls, 1942; Rodieck, 1973).

A completely afoveate retina is known for only one species, the California

valley quail (Lophortyx californicus vallicola). Another galliform species, the

domestic chicken, exhibits only marginal thickening of the retina in the central region

(Meyer, 1977), and a slight increase in cone density in the topographical region

which corresponds to the site of the lateral fovea in some birds (Meyer and May,

1973).
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Whilst the increased photoreceptor density should enhance visual acuity in all

foveae (Martin, 1985), the function of deep foveal pits is disputed. Walls (1942)

suggested that the increased refractive index of the retina relative to the vitreous

would result in the edge of a convexiclivate fovea acting as a convex lens, thus

magnifying the retinal image. Pumphrey (1948), however, considered that any

advantage gained by magnification of the retinal image would be offset by optical

aberrations induced by the steep sides of the fovea. More recently, Snyder and Miller

(1978) suggested that the concave portion of retina at the base of the foveal pit

functions as a negative lens which, together with the positive power of the cornea and

lens, forms a telephoto optical system.

3.2 Methods of determining photoreceptor abundance

3.2.1 Light microscopy

The most straightforward method used to distinguish between different types

of retinal photoreceptor, and thence identify any variations in their topographical

distribution, is bright-field light microscopy. The identification of some cone types

in the avian retina is very simple due to the brightly coloured oil droplets they

contain. All oil droplets, apart from the T-type droplets associated with VS or UVS

visual pigments, contain carotenoids (Goldsmith et al., 1984b). It is the spectral

absorption properties of these 'coloured' compounds which are exploited in

identifying certain droplet types. However, whereas red oil droplets are readily

identified and unambiguously distinct, many of the other types of droplet vary in their

spectral absorption characteristics and, therefore, their appearance to a human

observer.

In some species, or depending on the retinal location within a given species,

the usually pale green P-type droplets of the double cones may appear almost as

yellow as the Y-type droplets of the MWS single cones. Alternatively, they may

appear as colourless as the C-type droplets associated with the SWS cones. Thus it is

sometimes impossible to distinguish between the P-, C- and T-type droplets using

white-light bright field microscopy alone, and this has led to the pooling of two or

more droplet types in most quantitative estimates of oil droplet (cone) abundance

(Waelchli, 1883; Meyer and May, 1973; Budnik et al., 1984; Begin and Handford,
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1987; Jane and Bowmaker, 1988; Partridge, 1989; Bowmaker et al., 1993; Gondo

and Ando, 1995).

Narrow band interference filters or monochromators have been employed to

control the wavelength of the illumination and exploit the cut-off nature of many

droplets, thus enhancing discriminations between spectrally similar types (Goldsmith

et al., 1984b; Jane and Bowmaker, 1988; Bowmaker et al., 1993). For example, red

oil droplets with a Xcu t at approximately 570 nm will appear black when illuminated

with 540 nm monochromatic light. However, the droplets which are most readily

distinguished using this technique are those which are most obviously different to the

human eye. The T-, C- and P-type droplets usually have lower carotenoid

concentrations, thus reducing their ability to act as long-pass cut-off filters in retinal

squashes. Furthermore, the highly refractile nature of all oil droplets means that

much of the illumination is scattered around the outside of the droplets, making

discriminations more subjective.

Microspectrophotometry can help to elucidate the nature of the different

droplet types by correlating accurate measures of spectral absorption with droplet

size and retinal location. Although microspectrophotometry is generally too slow

and insufficiently random to generate reliable counts of droplet type and distribution,

the knowledge gained from microspectrophotometric studies can help the

investigator to discern better the droplets as they appear under the light microscope

(Goldsmith eta!., 1984b; Partridge, 1989). Microspectrophotometry can also be used

to confirm the association of certain droplet types with particular visual pigments.

3.2.2 Electron microscopy

Although a number of electron microscopic investigations of avian retinae

have been conducted, the utility of the technique in discriminating between different

cone types is limited. Furthermore, the laborious and time-consuming nature of the

preparation techniques involved have hampered the use of electron microscopy to

examine topographic variation in cone abundance. Nevertheless, electron

microscopy has been used to estimate the ratios of rods : double cones : single cones

in a number of bird species (Braekevelt, 1990; Braekevelt, 1993a; Braekevelt, 1993b;

Braekevelt, 1994a; Braekevelt, 1994b; Braekevelt et al., 1996), and even distinguish

between different types of single cone in the chicken, although largely on the basis of
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the oil droplet density, which could have been performed using the light microscope

(Morris and Shorey, 1967).

3.2.3 Autofluorescence

Some of the carotenoids incorporated into retinal oil droplets autofluoresce on

stimulation with near-UV light, and this inherent property has been used to

distinguish different cone types in both turtles (Ohtsuka, 1984; Ohtsuka, 1985; Kolb

and Jones, 1987) and birds (Goldsmith et al., 1984b). It is the quickest and simplest

way in which the 'colourless' oil droplets can be separated into their respective

classes. T-type droplets contain no carotenoid and thus do not autofluoresce. P- and

C-type droplets contain different mixtures of carotenoids and vary accordingly in the

apparent 'colour' and duration of their autofluorescence.

However, as encountered in the present investigation with starlings, the oil

droplets of birds which have been kept in captivity for a prolonged period become

depleted in oil droplet carotenoids, and it is thus more difficult to distinguish the

different types on the basis of their differential autofluorescence.

3.2.4 Cytochemical staining

Both rods and cones have stores of glycogen in their inner segments which

are thought to constitute an energy source for cell metabolism (Meyer, 1977). In rods

and the accessory member of the double cones these glycogen stores form large,

discrete organelles known as the hyperboloid and paraboloid respectively.

The rod hyperboloid is smaller and situated more sclerad than the accessory

cone paraboloid and, if the glycogen in each is stained by the periodic acid-Schiff

(PAS) reaction, they are readily distinguished by their size and location in transverse

retinal sections. This technique has been used to estimate the ratio of rods to double

cones in adult chickens (Meyer and May, 1973).

3.2.5 Immunofluorescence

In order to discriminate between different types of single cones, more subtle

cytochemical techniques are required. Antibodies raised to visual pigment antigens

can be used to identify the nature and retinal location of different photoreceptor

types. Cserhati eta,!. (1989) used two monoclonal antibodies (mAb), OS-2 and COS-
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1, in conjunction with a polyclonal anti-opsin antibody (PAO) to distinguish the four

different types of single cone in the pigeon retina. mAb COS-1 bound selectively to

pigeon LWS visual pigment in both single and double cones. MWS visual pigment

bound both mAb OS-2 and PAO, whereas SWS visual pigment bound only mAb OS-

2. The fourth, putatively VS pigment class did not bind to any of the antibodies.

In their experiment, the bound antibodies were detected by secondary

antibodies conjugated with an avidin-biotinylated peroxidase complex which reacts

chromogenically with diaminobenzidine. Alternatively, antibodies may be

conjugated with fluorescent moieties which are disclosed upon examination with a

confocal or fluorescence microscope (Matsumoto and Hale, 1993). The technique

has been refined to investigate the temporal and spatial expression of different visual

pigments in mammals (Szel eta!., 1996; Bumstead eta!., 1997) and reptiles (Loew et

al., 1996).

3.2.6 NBT staining

An alternative method to distinguish between different photoreceptor types

was developed by Enoch (1963; 1964). The transduction cascade initiated by the

visual pigment on absorption of a photon causes increased oxidative metabolism in

photoreceptor mitochondria, which can be detected using a redox probe such as

Nitroblue tetrazolium chloride (NBT). NBT is a soluble yellow ditetrazole which

can be locally reduced to an insoluble blue diformazan by increased mitochondrial

succinic acid dehydrogenase activity, thus identifying which photoreceptors have

been exposed to light and which have not.

Originally, Enoch (1964) used this histochemical technique to investigate the

gross spectral sensitivity of the rod-dominated rat retina. However, the concept was

refined to identify spectrally distinct cone classes in fish (Marc and Sperling, 1976;

Levine eta!., 1979; Archer, 1988) and primate retinae (Marc and Sperling, 1977).

A protocol broadly similar to that employed by Archer (1988), but with some

modifications, was used in the present study to distinguish the UVS and SWS single

cones of the starling retina from each other, and from the double cones.
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3.2.7 In situ hybridisation

In situ hybridisation is a tool for localising cellular RNAs and DNAs at the

site of synthesis (Giaid et al., 1990; Flannery et al., 1993), and has been used

gainfully in the determination of UVS cone abundance and distribution in the retina

of the budgerigar (Wilkie et al., 1998).

Since the technique was established (Gall and Pardue, 1969), a variety of

nucleic acid probes have been used for in situ hybridisation: double-stranded DNA,

single-stranded DNA, and complementary RNA probes and oligonucleotides. The

primary criterion for a probe is the degree of complementarity with the target

sequence. The stability of the duplex formed on hybridisation, and hence the

specificity of the probe, depends on the extent of the complementarity (Southern,

1988).

The early development of in situ hybridisation relied on the use of

radioisotopes and autoradiography for the visualisation of specifically hybridised

gene probes. However, non-radioactive methods are now routinely used and fall into

two main categories. Nucleic acids, which are subsequently incorporated into the

synthetic probe, can be directly coupled with 'reporter' molecules, such as

fluorochromes that are observed using a fluorescence or confocal microscope,

colloidal gold for visualisation using electron microscopy, or enzymes which react to

form a visible product. Alternatively, nucleic acids can be conjugated with a hapren,

such as biotin or digoxygenin (DIG), which is detected by immunocytochemical

techniques (Raap et al., 1990).

Wilkie et al. (1998) employed the digoxygenin hapten method to localise the

mRNA coding for UVS visual pigment opsin in the inner segments of retinal cones

in the budgerigar. ht situ hybridisation was performed on both radial sections and

whole-mounted retinae, revealing a semi-regular distribution of presumptive UVS

cones, which accounted for approximately 9 % of the cone population.

During the course of this study, initial difficulties in finding UVS cones in the

starling retina led the author to enlist the help of Dr. Sue Wilkie and Prof. David

Hunt of the Institute of Ophthalmology in London, who kindly performed in situ

hybridisation, using the budgerigar UVS opsin probe, on starling retina prepared with
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their guidance. The methods used, and the results obtained, are described in the

following sections.

3.2.8 Other methods

Kawamuro et al. (1997) measured the gross spectral sensitivity of isolated

Japanese quail retinae electroretinographically and attempted to deduce the relative

contribution of the different photoreceptor types whose spectral sensitivity was

known from microspectrophotometric studies (Bowmaker et al., 1993). Yoshizawa

and Fukada (1993) estimated photoreceptor abundance from the size of each visual

pigment fraction separated chromatographically from visual pigment extracts of

chicken retinae.

The estimates of photoreceptor abundance obtained using these two methods

differ considerably from those derived from direct counts of individual

photoreceptors (Meyer and May, 1973; Bowmaker et al., 1993). This may be due to

differences in overall sensitivity between cone classes, opponent interactions at a

retinal level or disparities in visual pigment lability under extract conditions. Whilst

electroretinograms can be performed on small sections of retina, visual pigment

extraction usually requires the pooling of many entire retinae, thus masking subtle

topographic variations in photoreceptor abundance, which are known to exist (e.g.

Meyer and May, 1973).

3.3 Materials and methods

3.3.1 NBT

Counts were made from the retinae of male and female adult starlings to

determine the relative abundance and distribution of the different classes of cone

photoreceptor. MSP measurements confirmed the consistent associations of different

types of oil droplets with visual pigments of different ki,a„ as previously reported (see

Bowmaker et al., 1997 for review). However, although the red and yellow oil

droplets associated with the LWS and MWS visual pigments are readily

distinguished using bright-field light microscopy, the oil droplets found in

combination with the SWS and UVS visual pigments, and the long wavelength-

sensitive double cones, all appear colourless to the human eye.
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Because of difficulties in differentiating the three types of 'colourless' oil

droplet using either autofluorescence or interference filters, largely due to carotenoid

depletion of the C- and P-type droplets as a result of lengthy captivity, a state-

dependent histochemical technique was used to identify selectively stimulated SWS

and UVS cone photoreceptors. Increased oxidative metabolism in cone

photoreceptors was detected using the redox probe nitro-blue tetrazolium chloride

(NBT) (Enoch, 1963; 1964).

Subjects were dark adapted for at least 16 hours overnight before sacrifice.

Under infra-red illumination eyes were removed, hemisected, and placed in a

-dissection medium comprising 340 mOsm kg' PBS and 11 mM D-glucose to sustain

mitochondrial activity. After removing the lens and most of the vitreous, the eye

cups were immediately placed in an illumination medium consisting of Ham F10

nutrient mixture (Sigma) corrected to 340 mOsm kg -1 by the addition of 1.75 g 11

NaC1 and adjusted to pH 7.4 using 1 M NaOH. The addition of 3.4 mM NADP and

4.9 mM glucose-6-phosphate (Boehringer Mannheim) to the illumination medium,

which have been shown to enhance succinate oxidation by rat liver cells (Butcher,

1972), increased the density of diformazan in stained ellipsoids.

Retinae were then irradiated simultaneously for 10 minutes with either

386 nm or 434 nm monochromatic light, these wavelengths being close to the

maximum spectral sensitivities of either the UVS or SWS cone types. Stimulation of

only the targeted cell types was optimised by the careful selection of illumination

conditions (wavelength of monochromatic illumination and length of exposure), and

only darkly stained cone inner segments were counted. Illumination was provided by

a 150 W tungsten-halogen lamp and an appropriate interference filter (Balzer B40;

10 rim FWHM bandwidth) in combination with a heat filter (Oriel 59875).

Irradiances at the point of exposure, measured with a portable spectrometer (SPEX

1681, Glen Spectra Ltd.), were 2.1 x10 18 and 2.4 x10 18 photons s for the UVS

and SWS illumination conditions respectively.

After illumination, eye cups were transferred to an incubation medium

consisting of the Ham F 10 mixture plus 6 mM NBT (ICN) and 50 mM disodium

succinate (Sigma) for 45 minutes at room temperature, after which they were washed

briefly in cold PBS and fixed for 2 minutes in 10 % paraformaldehyde in 0.1 M
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sodium phosphate buffer. Each retina was then removed from the eye cup into PBS

and, using the pecten and optic nerve for orientation, divided into four parts

corresponding to posterior dorsal (PD), posterior ventral (PV), anterior dorsal (AD)

and anterior ventral (AV) quadrants. Any remaining attached pigment epithelium

was removed gently using a fine paint brush and the retina mounted on a glass slide,

receptor side up, in PBS. The preparation was covered with a No. 0 coverslip

(22 x 32 mm) and the edges sealed with acrylic nail varnish to prevent dehydration of

the sample.

Observations were made using an Olympus BHS microscope (Olympus,

Japan), fitted with a reflected light fluorescence attachment (mercury lines isolated at

334 and 365 nm) which, following the method of Goldsmith et al. (1984b), was used

in preliminary trials to confirm that the oil droplets associated with putative UVS

cones did not autofluoresce, and that those associated with the putative SWS cones

did. The retinal photoreceptors of five birds of each sex (confirmed by laparotomy

post mortem) were labelled separately for UVS and SWS cones. Counts were made

of the blue-stained inner segments of the labelled cone type, which were

distinguished from labelled rod inner segments by size and the presence of a

colourless oil droplet, from twenty fields of view from each of the four quadrants in

both eyes. Counts of red, yellow, and the remaining colourless oil droplets without

stained inner segments were also made from the same samples. Colourless oil

droplets which were not associated with a labelled inner segment were assumed to be

either in the non-labelled short wavelength-sensitive cone class or the principal

member of the double cones. At a magnification of x1250 each field of view

represented an area of 0.02 mm2. Thus, only an estimated 1 % of each retina was

actually surveyed (approximately 26,000 cones per bird), and probably less as the

retina spreads out on mounting, although this is minimised by prior fixation of the

tissue. Nevertheless, having counted approximately 0.5 million cones in the retinae

of 20 birds, this represented the most thorough survey of an avian retina to date.

A single male blackbird was also used to estimate the reliability of the NBT

technique for labelling UVS cones. The procedure was identical to that used for the

starling, except that retinae were illuminated with 366 nm monochromatic light

(Balzer B40 interference filter; 10 nm FWHM bandwidth) for 12 minutes. Total
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irradiance was measured as 1.8 x10 18 photons s-1 rI1-2. Retinae from both left and

right eyes were divided into the four quadrants and 10 fields of view counted from

each quadrant.

3.3.2 Autofluorescence

Determination of cone class distribution in the blackbird, blue tit and peacock

was more straightforward. Specimens available for study had been in captivity for a

shorter period of time or, as in the case of the peacock, had more distinct C-type oil

droplets, and were thus amenable to the use of autofluorescence to distinguish the

different 'colourless' oil droplet types. Prolonged captivity had reduced the

concentration of carotenoid in the oil droplets of starling retinae and, consequently,

diminished the intensity of fluorescence exhibited by the C- and P-type oil droplets

under ultraviolet illumination.

Subjects were dark adapted for at least one hour prior to sacrifice by approved

humane methods. Eyes were removed under infra-red illumination, hemisected and

Ileft to soak in 340 mOsm kg PBS for one hour to encourage detachment of the

pigment epithelium from the neural retina. Retinae were subsequently fixed for 1 to

2 minutes in 10 % paraformaldehyde in 0.1M phosphate buffer and divided into the

four quadrants. Counts from ten fields of view from each quadrant were made from

both the left and right eyes of the blackbird and blue tit. Only one (left) eye was

available from the peacock as the other was used to determine the transmission of the

pre-retinal media (see chapter four). Consequently, 25 counts were made from each

quadrant of the peacock retina. Observations were made using an Olympus BHS

microscope, fitted with a reflected light fluorescence attachment and a long-pass

filter for viewing wavelengths longer than 435 nm.

LWS and MWS single cones were readily identified by their red and yellow

oil droplets respectively. Transparent (T-type) oil droplets were the smallest

observed and did not fluoresce on stimulation with ultraviolet light (mercury lines

isolated at 334 and 365 nm). The principal oil droplets associated with the double

cones were generally largest and displayed a long-lasting, faint greenish fluorescence.

By contrast, the C-type oil droplets associated with SWS single cones were generally
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smaller in diameter than all but the 1-type droplets and displayed a brighter, more

transient bluish fluorescence.

No direct measurements of the spectral absorption characteristics of the oil

droplets displaying these different optical behaviours under UV illumination were

conducted. Instead, the relative size and estimated abundance deduced from

microspectrophotometric investigations was used to correlate fluorescence

characteristics with photoreceptor type. Furthermore, ultraviolet illumination of

some post-fix NBT-labelled starling retinae had revealed the characteristic greenish

fluorescence of the principal oil droplet of the double cones, whose inner segments

had not been labelled during the NBT procedure to isolate either UVS or SWS single

cones. Similarly, the oil droplets associated with blue-stained inner segments in

starling retinae NBT-labelled for SWS cones (434 nm monochromatic illumination)

emitted a characteristic bluish fluorescence; those associated with blue-stained inner

segments in starling retinae NBT-labelled for UVS cones (386 nm monochromatic

illumination) did not fluoresce at all.

3.3.3 In situ hybridisation

In situ hybridisation was performed on both radially sectioned and flat whole-

mounted starling retinae, which were prepared in Bristol and subsequently

transported to the Institute of Ophthalmology in London.

Radial sections were made using a cryostat and following a protocol similar

to that of Barthel and Raymond (1990). A single eye was hemisected and the lens

and vitreous removed from the posterior half. The retina was fixed in situ in the eye

cup for 1 hour, at room temperature (23 °C), in 4 % paraformaldehyde, 5 % sucrose,

0.1 M phosphate buffer (pH 7.4), after which it was rinsed three times in 0.1 M

phosphate buffer (pH 7.4) containing 5 % sucrose. Fixation of the retina, particularly

before freezing, inhibits the ubiquitous degradative RNAse enzymes. However,

whilst reducing nucleic acid loss, fixation with cross-linking reagents such as

paraformaldehyde reduces tissue permeability (Coulton, 1990). The retina was then

cryoprotected with increasing concentrations of 20 % sucrose, prepared by mixing

5 % sucrose and 20 % sucrose in 0.1 M phosphate buffer in ratios of 2:1, 1:1 and 1:2.

The retina was infiltrated for 30 minutes in each of the ascending series of sucrose
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solutions at room temperature, and finally placed in 20 % sucrose solution overnight

at 4 °C.

The following day, the retina was further infiltrated for 30 minutes at room

temperature with a 2:1 mixture of 20 % sucrose in 0.1 M phosphate buffer (pH

7.4):OCT embedding medium. OCT (BDH), a commercially available product, is a

mixture of polyethylene glycol and polyvinyl alcohol. Infiltration with OCT and

sucrose reduces the water content of the tissue. This not only protects against tissue

damage from water expansion on freezing, but improves the cutting consistency of

the tissue block, allowing thinner cryosections to be made (Barthel and Raymond,

1990).

The eyecup was then transferred to an embedding mould (approximately

2 x 1.5 x 1.5 cm) made from aluminium foil, and orientated with the cut surface

facing the bottom of the mould. The mould was filled with fresh 20 % sucrose in

0.1 M phosphate buffered saline : OCT compound (2:1) solution and frozen rapidly

by submersion in isopentane cooled with liquid nitrogen. Rapid freezing helps to

reduce the formation of ice crystals which can easily rupture cells. Radial sections of

the eyecup approximately 8 g m thick were cut on a cryostat with a motor driven

microtome. A maximum of three sections were mounted on Superfrost Plus

microscope slides (BDH), which had been chemically treated to degrade RNAse

enzymes and 'subbed' with poly-L-lysine to enhance tissue adhesion (Coulton,

1990), and allowed to air dry at room temperature. The slides were stored at -80 °C

until the following day when they were transported to the Institute of Ophthalmology

in London packed in dry ice. All subsequent operations were performed with Dr. Sue

Wilkie in the Laboratory of Prof. David Hunt.

The other eye from the same bird was used to prepare the retinal whole-

mounts. The globe was hemisected and the retina fixed in situ (overnight at 4 °C)

using a solution of 0.1 M phosphate buffer (pH 7.4) containing 10 %

paraformaldehyde and 0.1 % Triton X-100. Triton X-100 (iso-

octylphenoxypolyethoxyethanol) is a non-ionic detergent used to permeabilise tissue.

At the laboratory in London, the fixed retina was washed three times in phosphate

buffered saline containing 0.1 % Tween detergent. 	 Small sections of retina

(approximately 5 x 5 mm) which had separated spontaneously from the pigment
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epithelium, were transferred to Superfrost Plus microscope slides and allowed to dry

for 5 minutes at room temperature.

Digoxygenin-labelled RNA probes (riboprobes) were constructed for

hybridisation with photoreceptor opsin mRNA. Riboprobes are more sensitive and

show lower background reaction than double-stranded DNA because they do not

suffer from reannealing (Coulton, 1990). 350 base pair fragments from budgerigar

UV and rod opsin were amplified from single-stranded budgerigar retinal cDNA and

inserted in the sense orientation into the EcoRI and KpnI sites of pBS KS+

(Stratagene). A similar sized fragment from budgerigar SWS opsin was also

obtained, but was cloned into the BamHI and EcoRI sites of pBS KS+ instead. The

plasmids were linearised using EcoRI (BamHI in the case of the SWS riboprobe) and

Kpnl for the construction of anti-sense and sense probes respectively. Anti-sense

probes contain the complementary sequence of nucleic acids to the mRNA of

interest. Sense probes are included as a control. Using a digoxygenin (DIG) RNA

labelling kit (Boehringer Mannheim), anti-sense and sense cRNA riboprobes were

synthesised by run-off transcription from the T3 and 17 RNA polymerase promoters

respectively, with digoxygenin-labelled uridine-triphosphate (DIG-UTP) as a

substrate (Wilkie et al., 1998). All of the probes were shown to have similar activity

in an RNA dot-blot analysis, and showed no cross-hybridisation.

The hybridisation procedure was performed using probe clips, 500 [1.1 and

200 p1 in volume respectively for the whole-mounts and the cryosections, to create

incubation chambers on the slides. The whole-mounts, but not the cryosections, were

permeabilised with 10 lig m1 -1 proteinase K for 25 minutes at 37 °C.

Permeabilisation works in opposition to fixation and is necessary to allow

penetration of the riboprobe in thicker tissue samples (Coulton, 1990). Both types of

retinal preparation were then subject to an identical protocol, adapted from Stenkamp

et al. (1996).

Samples were pre-hybridised for 1 hour at 68 °C in a hybridisation buffer

containing 50 % formamide (a duplex stabiliser / stringency determinant), 5x SSC',

2 % blocking agent (dried milk powder), 0.1 % (w/v) N-lauryl sarcosine (a detergent)

I SSC, standard sodium citrate. lx SSC contains 0.15 M sodium chloride and 0.015 M sodium citrate
(pH 7.0).
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and 0.2 % (w/v) sodium dodecyl sulphate (SDS, a powerful anionic detergent and

denaturant) to decrease non-specific binding of the riboprobes.

Hybridisations were then conducted over night at 68 °C in hybridisation

buffer containing 1 ng ml 1 probe (freshly denatured at 65 °C for 5 minutes). Only

one type of probe was applied to a given slide of cryosectioned or whole-mounted

retina. Two slides of cryosections were hybridised with UVS anti-sense probes, one

with UV sense probes and one each with SWS and rod anti-sense probes. Slides

were kept in a plastic box lined with moist tissues to prevent dehydration. Sense

SWS and rod probes, and both anti-sense and sense UVS probes were used. The

following day, probe clips were floated off in a Petri dish containing 2x SSC at room

temperature. Slides were washed in a slide chamber to a high stringency: four 15

minute washes at 65 °C with 2x SSC and 50 % formamide, followed by two 30

minute washes at room temperature with lx SSC. Post-hybridisation washes are

crucial as some in situ hybridisations, especially those performed at a relatively low

stringency, often display an appreciable degree of non-specific hybridisation

(Coulton, 1990). Heterologous duplexes are less stable than homologous duplexes,

and reducing the ionic strength of the interstitial medium reduces duplex stability.

By using a series of decreasing salt (SSC) strength washes, non-specific

(heterologous) duplexes are removed.

Hybrids were revealed using a DIG Nucleic Acid detection kit (Boehringer

Mannheim). Slides were washed briefly (1 minute) in buffer 1 2 with the addition of

0.3 % (w/v) Tween and subsequently incubated for 30 minutes in buffer 2 3 (60

minutes for the whole-mounts), which contained a blocking reagent to prevent non-

specific binding of the antibody. Slides were then incubated for 30 minutes in buffer

2 containing 150 mU m1-1 anti-digoxygenin Fab-alkaline phosphatase conjugate

(anti-DIG-AP). Antibody conjugate which had not bound to the probe's digoxygenin

hapten was removed by washing twice with buffer 1 for 15 minutes, and the samples

stabilised in buffer 34 for 2 minutes. The colour-substrate solution 5 was added and

2 Buffer I contains 0.1 M maleic acid, 0.15 M NaCI, pH 7.0 (20 °C).
3 Buffer 2 contains 1 % (w/v) blocking reagent in buffer 1.
4 Buffer 3 contains 100 mM Tris-HC1, 100 mM NaC1, 50 mM MgC1 2, pH 9.5 (20 °C).
5 Colour-substrate solution consists of 200 IA Nitro Blue Tetrazolium (NBT) salt / 5-bromo-4-chloro-

3-indoly1 phosphate (BCPIP) diluted in 10 ml of buffer 3.
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the slides incubated overnight in a light-tight moist chamber. During this stage of the

procedure, the conjugated alkaline phosphatase enzyme hydrolysed the BCPIP

substrate, which reduced the NBT salt to produce an insoluble purple blue precipitate

at the site of hybridisation. The following day, colour precipitation was stopped by

washing the slides in buffer 4 6 for 5 minutes. Slides were coverslipped under 100 %

glycerol and examined using a Lietz Diaplan (Wild Leitz) microscope fitted with a

Wild MPS46 Photoautomat camera attachment. Film stock was tungsten-corrected

Kodak EPY64T.

3.3.4 Statistical analysis of NBT and autofluorescence count data

Because of potential variation in the degree to which the retina spreads out on

mounting, percentages of each cell type were calculated and used in preference to

actual cell densities. Consequently, percentages were converted to proportions and

arcsine-square root transformed to normalize the data (Sokal and Rohlf, 1995).

Significance was assessed using balanced repeated-measures multivariate analyses of

variance (MANOVA, Minitab 10.51, Minitab Inc.), with the transformed proportions

of all the measured cell types as the dependent variables.

Three separate MANOVAs were performed on the starling data: i) using

pooled data from all twenty birds to investigate the abundance and distribution of the

LWS and MWS cell types; ii) for the SWS cell types measured in half of those

twenty birds; and iii) for the UVS cell types which were measured in the other half.

In each case, the within-subject factors were 'quadrant' and 'left / right eye', with the

between-subjects factor 'sex of bird'.

The blackbird and blue tit were analysed in a similar fashion, with 'quadrant'

and 'left / right eye' as within-subject factors, but without a between-subjects factor

as the data were from a single specimen only in each case. Any statistical

significance and resultant inferences from the analysis were therefore limited to the

individual studied rather than the species in general.

Only a single eye from one male peacock was analysed. A MANOVA was

performed on the data to investigate any effect of retinal location (quadrant) on the

6 Ruffey 4 contains 10 mNI'Tris-HC1, 1 mM EDTA, pH 8.0 (20 °C).
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observed distribution. The number of peacocks studied was limited largely by the

cost of each individual.

3.4 Results

3.4.1 Starling NBT and in situ hybridisation

The analysis of the distribution of cone types in the starling was the most

rigorous of all comparisons and, because a reasonably large number of birds from

each sex were studied, the results are statistically reliable generalisations to the

condition of the species, rather than just the individual. Pooling the results for all

four quadrants from the left and right eyes of both sexes, the mean relative abundance

of each type of cone are displayed in Table 3.1.

When the data from all 20 birds were pooled to compare the distribution of

LWS and MWS single cones, results of the MANOVA revealed a significant effect

of quadrant (Wilk's F6,11:16 = 12.59, p <0.001) but this was only explained by the

distribution of the LWS cones, which were significantly rarer in the PD quadrant of

the retina (univariate F3,54 = 29.20, p <0.001). Interestingly, there was also a

significant difference in the distribution of these cone types between the left and right

eyes. Both LWS (univariate F1,113 = 8.28, p = 0.010) and MWS cones (univariate

F1 , 18 = 6.32, p = 0.022) were significantly more abundant, relative to the other cone

types, in the left eye. There was no effect of sex on the observed distributions

(Wilk's F2 , 17 = 1.40, p = 0.275).

SWS-labelled (n = 10) and UVS-labelled (n = 10) retinae were analysed

separately in an identical fashion. Again, there was no significant effect of sex

(Wilk's F4,5 = 5.07, p = 0.052), but there was a significant effect of quadrant on the

distribution of SWS cones (VVilk's F12,55 = 6.81, p <0.001; univariate F3,24 = 27.10,

p < 0.001), which were more abundant in the dorsal half of the retina.

The distribution of UVS cones also varied significantly according to quadrant

(Wilk's F12,55 = 5.96, p <0.001; univariate F3 ,24 = 20.17, p <0.001). These effects

are due to the highest proportion of UVS cones being located in the PD region of the

retina, probably replacing the LWS cones. There was no significant effect of sex on

the observed distribution (Wilk's F4,5 = 2.63, p = 0.158).
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As cone distribution was not significantly affected by sex, the data from

males and females were pooled for each retinal quadrant, in both the left and right

eyes, for display in Figure 3.4. Although no direct statistical analysis could be

performed, calculated percentages indicated that double cones tended to be more

abundant in the ventral retina, and notably deficient in the PD quadrant.

The results of the in situ hybridisation were partially successful, and were

suggestive of the presence of a dedicated UVS pigment in the starling retina.

Unfortunately, both cryosections and whole-mounts displayed a high level of

background labelling, particularly in the outer and inner nuclear layers of the retina.

In the case of the whole-mounts, the excessive labelling was sufficient to obscure any

underlying pattern of labelling in the photoreceptor inner segments.

Although the rod anti-sense probe did not hybridise with any photoreceptors

in the cryosections, both the anti-sense UVS (Figure 3.1) and anti-sense SWS probes

did. As would be expected, the 'control' UVS sense probe did not hybridise (Figure

3.1). Because the majority of cone oil droplets had become fragmented, it was not

possible to estimate reliably the proportion of UVS and SWS cones relative to any of

the other cone types. However, both cell types appeared to be distributed regularly

across the retina.

The fact that budgerigar rod anti-sense probes did not hybridise with the

starling rods does not necessarily imply that the two pigments were different or that

the technique had failed. The cryosections used were made sagitally, and it is known

that the starling retina displays an 'unusually large' rod free area around its central

fovea (Adler and Dalland, 1959; Dalland, 1958). Consequently, it is possible that

there were no, or very few, rods within the cryosections used for hybridisation.
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Figure 3.1 Radial cryosections of the retina of the European starling, Sturnus
vulgaris, following in situ hybridisation with (A) budgerigar UVS opsin anti-sense
riboprobe and (B) budgerigar UVS opsin sense (control) riboprobe. In (A), arrows
indicate the bluish purple labelled inner segments containing UVS opsin mRNA which
has hybridised with the anti-sense riboprobe. The sense riboprobe did not hybridise
with any inner segments. OD, oil droplet layer; IS, inner segment layer; PE, pigment
epithelium; ONL, outer nuclear layer; INL, inner nuclear layer. Note the high degree
of non-specific labelling in the 1NL and ONL. Scale bars: (A) 12.7 pm; (B) 17.6 pm.
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The cause of the high level of background labelling was unknown. It is

possible that endogenous phosphatases in the nuclear layers, which had not been

inactivated by the fixation step, were responsible for reduction of the NBT

chromogen. Diffusion of the blue NBT precipitate, which can be reduced by the

incorporation of 5 % polyvinyl alcohol in the overnight colour development stage,

was also a potential cause of background labelling. However, the marked

localisation of the dye in the nuclear layers, and its absence from the intermediate

outer plexiform layer, suggests that this is unlikely. A third explanation is that one of

the blocking agents used failed to prevent non-specific hybridisation or non-specific

conjugation with the anti-DIG antibody.

Nevertheless, the successful hybridisation of the UVS anti-sense probe

implied the existence of a UVS cone opsin similar to that of the budgerigar.

Microspectrophotometric results (chapter two) have subsequently confirmed that a

UVS visual pigment is present in the starling retina, and is spectrally similar to the

UVS visual pigment measured in the budgerigar (Bowmaker et al., 1997; Wilkie et

al., 1998).

3.4.2 Blackbird autofluorescence and NBT

The analysis of the distribution of cone types in the blackbird, determined

using autofluorescence, was restricted to the left and right eyes of a single male bird.

Pooling the results for all four quadrants from both the left and right eye, the mean

relative abundance of each cone type are displayed in Table 3.1. Results of the

MANOVA indicated a significant effect of quadrant (Wilk's F15 , 188 = 6.97,

p <0.001) and left or right side (Wilk's F5,68 = 4.77, p = 0.001) on cone distribution.

Furthermore, there was a significant interaction of quadrant and left / right side

(Wilk'S F15,188 = 3.40, I) <0.001) which suggests that the pattern of regional

variations is different for left and right eyes.

The univariate tests revealed that the distribution of all of the different cone

types differed depending on retinal location (LWS FI,72 = 18.50, p <0.001; MWS

F1,72 = 7.63, p < 0.001; SWS F1,72 = 3.43, p = 0.021; UVS F1 ,72= 11.72, p < 0.001;

Double cones F1 ,72 = 7.12, p <0.001). The mean relative abundances of each cone

type in each retinal quadrant of each eye are displayed in Figure 3.5. LWS single

cones were most abundant in the PD quadrant, and least abundant in the PV
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quadrant. MWS cones, like the LWS cones, were relatively more abundant in the PD

quadrant. SWS cones were most abundant in the AV quadrant, whilst UVS cones

were least abundant in this region. Double cones were most abundant in the PV

quadrant and least abundant in the PD quadrant. Furthermore, these trends were

identical for both the left and right eyes.

Although the results of the MANOVA revealed a significant difference

between left and right eyes, none of the univariate tests were significant. It is

possible that, whilst not significant on their own, some cumulative effect of the

different cone types resulted in a significant multivariate test statistic. Variations in

overall cone proportions between the two eyes are small. LWS single cones and

double cones are slightly more abundant in the left eye, whereas the remaining single

cone types are relatively more abundant in the right eye.

The significant interaction between quadrant and left / right side revealed by

the MANOVA was explained only by the differing distribution of UVS (univariate:

F1 ,72 = 7.49, p <0.001) and LWS single cones (univariate: F1 ,72 = 3.93, p = 0.012)

between the left and right eyes. The existence of such differences are difficult to

interpret. With small sample sizes, the chances of committing a type one error are

increased, and as such all results should be treated with caution.

A photomicrograph illustrating the NBT staining of UVS cones in the

blackbird retina is provided in Figure 3.2. The mean proportion of UVS cones

determined from the NBT-labelled blackbird retinae (5.2 %) was similar to that

obtained using the autofluorescence method (6.6 %). No comparative statistical

analysis was performed on the two data sets because of the small sample size - a

significant difference between analysis methods might be confused with inherent

variation between individual subjects. Nevertheless, the discrepancy between the

two estimates obtained for the UVS cones was of a similar order of magnitude to the

differences in estimates of the proportions of LWS and MWS cones (1.4 % and

3.5 % respectively). It is concluded that the NBT staining technique may be a

reliable alternative to the autofluorescence method for determining relative

photoreceptor abundances.
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Figure 3.2 Nitroblue tetrazolium chloride (NBT) stained retina of the blackbird,
Turdus merula, following illumination with 366 nm monochromatic light. UVS single
cones, associated with T-type (transparent) oil droplets, are circled. Note the
accumulation of purple stain (insoluble NBT diformazan) in the ellipsoid region of
their inner segments. Examples of the oil droplets associated with the other cone
types are also labelled: R, red or R-type oil droplets of the LWS single cones; Y,
yellow or Y-type oil droplets of the MWS single cones; C, 'colourless' or C-type oil
droplets of the SWS single cones; P, principal or P-type oil droplets found in the
principal member of the double cone pair. Scale bar = 8 i_tm.
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3.4.3 Blue tit autofluorescence

The analysis of the distribution of cone types in the blue tit was also restricted

to a single (female) individual. Pooling the results for all four quadrants from both

the left and right eye, the mean relative abundance of each cone type are summarised

in Table 3.1.

Multivariate analysis revealed a significant effect of quadrant (Wilk's

F15 , 188 = 6.74, p <0.001) and left or right side (Wilk's F5 ,68 = 12.28, p <0.001) on

cone distribution. There was also a significant interaction of quadrant and left / right

side (Wilk's F15,188 = 4.69, p <0.001) which suggests that the distribution of cones

across the retina differs between left and right eyes.

Inspection of the mean relative abundances of each cone type displayed in

Figure 3.6 reveals that there are no consistent trends in retinal distribution, despite

significant univariate test statistics for the effect of quadrant on LWS (F1 ,72 = 16.82,

p <0.001), MWS (F1 ,72 = 22.03, p <0.001), UVS (F 1,72 = 6.89, p <0.001) and double

cones (F 1 ,72 = 30.26, p <0.001). The lack of comparable retinal distributions

between the two eyes explains the significant univariate test statistics for the

quadrant*left / right eye interaction (LWS F3 ,72 = 6.62, p = 0.001; MWS

F3 ,72 = 11.52, p <0.001; UVS F3 ,72 = 5.16, p = 0.003; double cones F3 ,72 = 18.96,

p <0.001). It is conceivable that the small size of the blue tit eyes resulted in an

uneven dissection of the left and right retinae. Errors of this type are exaggerated in

smaller eyes, and will have a large influence with such a limited sample size.

In common with the starling, LWS and MWS single cones were significantly

more abundant in the left eye (univariate: LWS F1,72 = 10.30, p = 0.002; MWS

F1 ,71 = 22.09, p < 0.001), and double cones were significantly more abundant in the

right eye (univariate: F1 ,72 = 17.10, p <0.001).

3.4.4 Peacock autofluorescence

Representative photomicrographs illustrating the nature of cone oil droplet

autofluorescence in the peacock are displayed in Figure 3.3. The analysis of the

distribution of cones in the peacock was the least rigorous because, in addition to

only studying one (male) bird, only one eye (left) was available for examination.

Pooling the results for all four quadrants from the left eye, the mean relative
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abundance of each type of cone are displayed in Table 3.1. Results of the MANOVA

revealed a significant effect of quadrant on cone distribution (Wilk's F15,254 = 17.17,

p <0.001). Univariate tests showed that this result was due to all of the cone types

varying significantly according to retinal location (LWS F3,96 = 21 .30, p <0.001;

MWS F3,96 = 33.38, p <0.001; SWS F3 , 96 = 19.40, p <0.001; VS F3 ,96 = 20.97,

p <0.001; double cones F3,96 = , p <0.001).

Inspection of the data from each quadrant, as displayed in Figure 3.7, revealed

that LWS single cones were relatively more abundant in the PD quadrant and least

abundant in the PV region. MWS single cones were also relatively more abundant in

the PD quadrant, but had a relatively even distribution in the rest of the retina. The

distribution of these two cone types is very similar to that observed in the blackbird.

Both SWS and VS single cones were relatively more abundant in the PD quadrant

and least abundant in the AV region, suggesting that the variation of these cone types

across the retina takes the form of a posterior dorsal-anterior ventral gradient, rather

than simply a dorsal-ventral trend. The distributions of SWS and VS cones in the

peacock are similar to that observed for the SWS and UVS cones in the starling

retina. Double cones were least abundant in the dorsal quadrants of the retina. The

PD region was particularly deficient, although this is hardly surprising as all four

single cone types are most abundant in this area.
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Figure 3.3 Whole-mounted retina of the peacock, Pavo cristalus. (A) Appearance
under white light illumination. (B) The same field of view illuminated with ultraviolet
light (mercury lines isolated at 334 and 365 nm), revealing autofluorescence of
specific oil droplet types (only wavelengths above 435 nm were allowed to reach the
photographic emulsion). Scale bar = 8 gm.
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Species Single cones Double cones

LWS MWS SWS UVS / VS

Starling Mean (%) 17.7 17.4 6.4 4.7 53.8
± s.d. 5.5 4.3 5.6 4.4 -

n (birds) 20 20 10 10 20

Blackbird Mean (%) 12.5 14.1 11.3 6.6 55.5
+ s.d. 2.1 2.1 2.1 2.3 5.5

n (birds) 1 1 1 1 1

Blue tit Mean (%) 20.3 20.3 14.4 7.6 37.5
± s.d. 3.4 4.1 2.6 2.6 8.9

n (birds) 1 1 1 1 1

Peacock Mean (%) 15.6 16.3 13.9 7.4 46.9
+ s.d. 2.8 3.3 2.7 2.1 7.4

n (birds) 1 1 1 1 1

Table 3.1 Relative abundance of the different cone classes in the retinae of starling,
blackbird, blue tit and peacock. Data have been pooled across all regions of the
retina and, where appropriate, left and right eyes and sex. Values are percentages.
LWS long wavelength-sensitive; MWS medium wavelength-sensitive; SWS short
wavelength-sensitive; UVS ultraviolet-sensitive; VS violet-sensitive; s.d. standard
deviation. There is no standard deviation for double cones in the starling as these
were not counted directly but calculated as described in the text.
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Figure 3.4 to Figure 3.7 Distribution of the different classes of cone photoreceptor
in the retinae of starling, blackbird, blue tit and peacock. With the exception of the
peacock, both left and right eyes were investigated. Because, there was no significant
effect of sex on the distribution of cones in the starling, data from both sexes has
been pooled. Each diagram represents the fundus of an eye as observed from the
corneal aspect of the appropriate side of the birds head. The horizontal and vertical
dashed lines represent dissection cuts which separated the retina into four quadrants.
The oblique solid line indicates the position of the pecten. Values represent the mean
percentage of each particular cone type relative to the mean total number of cones in
each quadrant. AD, anterior dorsal; PD, posterior dorsal; AV, anterior ventral; PV,
posterior ventral; LWS, long wavelength-sensitive; MWS, medium wavelength-
sensitive; SWS, short wavelength-sensitive; UVS, ultraviolet-sensitive; VS, violet-
sensitive.
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Figure 3.4 Distribution of cone photoreceptors in the starling (Sturnus vulgaris).
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Figure 3.5 Distribution of cone photoreceptors in the blackbird (Turdus merula).
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Figure 3.6 Distribution of cone photoreceptors in the blue tit (Parus caeruleus).
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Figure 3.7 Distribution of cone photoreceptors in the peacock (Pavo cristatus).
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3.5 Discussion

The counts of photoreceptor distribution made in the course of this study were

hampered by the availability of fresh, wild caught specimens. This would obviously

need to be improved upon in a more rigorous investigation of intra-retinal cone

variation for the purpose of cross-species comparisons. The starling was the only

species to be studied in great detail and generalisations can only realistically be made

about this species. However, the starlings available were long-term captives which

necessitated the use of NBT staining to distinguish the cone types containing

'colourless' oil droplets. Whilst a comparison in the blackbird between the number

of UVS cones determined using NBT or autofluorescence suggested that this method

can be reliable, the NBT technique is considerably more difficult, is susceptible to

the generation of false positives, and as such has a much higher potential for

misclassification. The autofluorescence method would undoubtedly be the preferred

technique for further studies as the properties of the different oil droplets are more

stable and independent of the preparation methods used.

Left-right differences were noted in some of the species investigated. It is

possible that these differences could be artefacts of the preparation techniques used.

For example, it is possible that the eyes were dissected asymmetrically suctt that the

four quadrants from each eye were not mirror-images of each other. Furthermore,

manually removing residual pigmented epithelium from small areas of the retina,

which were subsequently counted, might have removed some of the photoreceptors

in an asymmetrical fashion and thus biased the results. With regard to the NBT-

staining technique, the time between removal of the eye from the skull and

illumination is quite critical and it is inevitable that one eye will be removed before

the other. To avoid this eventuality, the eye removed first from a starling was

alternated throughout the experiments.

Whilst the left-right differences noted in the blackbird and blue tit must be

treated with caution, those noted in the starling are likely to be more robust in view

of the larger sample size. Even if the trait was perfectly bilaterally symmetrical,

some individuals would be expected to have more of a particular cone type in the

right eye and some to have more in the left, due to fluctuating asymmetry. The only

way of testing for directional asymmetries is to have a large sample size of
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individuals. The observation that LWS and MWS single cones, the identification of

which is the least ambiguous, were relatively more abundant in the left eye is very

intriguing, although perhaps not entirely unexpected. In general, vertebrate sensory

systems are based on bilaterally symmetrical sense organs. Nevertheless, it is evident

that some birds use different eyes preferentially for certain visual tasks (Rogers,

1986; Giinttirkiin and Kesch, 1987; Dharmaretnam and Andrew, 1994; Giintiirkiin,

1997). Because of the nearly complete contralateral decussation of the optic nerve in

birds (Cowan et al., 1961), it has been assumed that this division of labour is solely

due to cerebral hemispheric specialisation (Rogers, 1981; Andrew, 1991; Rogers,

1991). However, it is possible that the retinae are also morphologically

asymmetrical.

Gross asymmetry in ocular morphology occurs in some invertebrates such as

the squid Histioteuthis spp. (Wentworth and Muntz, 1989) but asymmetry in

vertebrate eyes is usually restricted to independent eye movements (e.g. chameleons,

Chainaeleo dilepsis, Ott and Schaeffel, 1995) or pupillary responses to light (e.g.

barn owls, Tyto alba, Schaeffel and Wagner, 1992). Nevertheless, structurally

asymmetric sense organs are known to be present in birds. In the barn owl, the ear

flaps or operculi in front of the ears are positioned asymmetrically (Payne, 1971), as

are the external ear openings of various other owl species (Bunn et al., 1982). It is

therefore reasonable to expect that subtle anatomical asymmetries may also exist in

visual sense organs.

The development of structural and functional asymmetries in avian vision are

thought to be dependent on uneven photostimulation of the eyes of the developing

embryo during the last three to four days prior to hatching (Rogers and Bolden,

1991). During this period, the embryo is orientated in the egg such that the right eye

is positioned next to the air sac whereas the left eye is occluded by the body. The

right eye therefore receives much more light than the left which causes the

thalamofugal visual projections connected to the right eye, in the left hemisphere, to

develop in advance of those connected to the left eye, in the right hemisphere. This

structural asymmetry is reversed if the embryo is manipulated in vivo so that the left

eye receives more illumination than the right, and is absent in birds hatched from

eggs incubated in the dark (Rogers and Bolden, 1991). Furthermore, some aspects of
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this developmental response are thought to be wavelength-dependent (Rogers and

Krebs, 1996), suggesting a role for the tectofugal pathway which, among other

functions, mediates wavelength discrimination (Engelage and Bischof, 1993).

These structural asymmetries are thought to be reflected in the lateralization

of visually-guided behaviours at an early age (Gaston and Gaston, 1984; Rogers,

1991; Dharmaretnam and Andrew, 1994). There is also evidence that behavioural

lateralisation persists into adulthood, perhaps as a consequence of these early but

transient asymmetries which may no longer be evident on examination of the visual

projections (Rogers and Adret, 1993). Adult pigeons forced to undertake

discrimination tasks (e.g. distinguishing edible grains from similar-sized pebbles),

with one or other of their eyes occluded, perform more accurately when using their

right eye (Giintiirktin, 1985; 1987; 1992). Furthermore, adult male zebra finches tend

to observe potential mates preferentially with their right eye (Workman, 1986).

Despite the lateral position of the two eyes in many birds, both hemispheres are

involved in analysing a visual stimulus by the rapid alternation of lateral fixation

between the two eyes (Andrew and Dharmaretnam, 1993). This behaviour is obvious

in passerine birds foraging for invertebrate prey on the ground, and presumably

allows the different specialisations of both hemispheres, or any differences in retinal

organisation between the two eyes, to be exploited in the identification of a potential

prey item.

Behavioural lateralization as a result of hemispheric specialisation is

widespread in other taxa. In man, the left hemisphere is dominant at the sensory and

motor level, whilst spatial awareness is largely the domain of the right hemisphere

(Bradshaw and Nettleton, 1981). Human and non-human primates also share a

similar pattern of brain asymmetry for emotional expression and processing of

species-typical vocal signals (Hauser, 1993).

It is conceivable that a developmental asymmetry has occurred in the starling

retina. Although only the proportion of LWS and MWS cones was significantly

higher in the left eyes, the SWS and UVS cones display a similar trend (Figure 3.4).

These higher relative proportions of single cones in the left eye are balanced by a

higher relative proportion of double cones in the right. Consequently, one would

predict that, at least in the starling, the left eye should be superior in visual tasks
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involving colour discrimination. In this respect, it is interesting to learn that, when

foraging, starlings observe distant objects monocularly, first with one eye and then

the other (Beecher, 1978). Presumably, the object of interest is focused onto the

starling's large central fovea for detailed examination (Dalland, 1958). If the

left / right differences in photoreceptor abundance observed (Figure 3.4) extend to the

fovea, it is possible that the starling might compare or combine the different visual

information provided by each eye. A detailed investigation of the distribution of

photoreceptors in birds which have been shown to display visual lateralization would

be required to investigate this phenomenon further.

From the data presented in Figure 3.4 to Figure 3.7 it is evident that in the

starling, blackbird and peacock, there are often differences separating the PD region

of the retina from the remaining quadrants. In the starling, this is manifested as a

relative deficiency of LWS cones and a relative abundance of UVS cones in the PD

quadrant. This region contains relatively more LWS and MWS cones in the

blackbird retinae and more of all the single cone types in the peacock, at the expense

of double cones.

The replacement of LWS cones by UVS cones in the posterior dorsal portion

of the starling retina may be correlated with optical features of the eye and feeding

behaviour. The PD quadrant of the starling eye becomes increasingly myopic with

greater eccentricity as the scleral surface falls behind the focal plane of the image

(Martin, 1986). It is proposed that this 'ramp retina' might be used as a static

accommodatory device, enabling simultaneous focus of the posterior dorsal visual

field (corresponding to the AV retina) at infinity to scan for aerial predators, as the

anterior ventral visual field (PD retina) examines objects close to the bill while

probing the ground for food. The starling is unusual in its reduction in LWS cones in

the posterior dorsal retina. Most avian species studied show the opposite trend or a

more uniform distribution of red oil droplets (Waelchli, 1883; Muntz, 1972;

Bowmaker, 1977; Goldsmith et al., 1984a; Partridge, 1989; this study). However, if

the AV region of the starling retina is indeed designed for scanning the celestial

hemisphere, the increased proportion of red oil droplets, and the increased

pigmentation in the P-type oil droplets (see chapter two), in this region would seem

adaptive for the detection of distant objects. The visual range is greater for long
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wavelength light, which is scattered less by the atmosphere than light of shorter

wavelengths (Muntz, 1972). In addition, red oil droplets will reduce the degradation

of the visual image by filtering short wavelengths scattered within the eye by the

ocular media, thus increasing visual acuity (Lythgoe, 1979). Conversely, starlings

often forage using an open-bill probing technique (Feare, 1984), which means that

they locate prey visually at a very short range. The PD region of the retina concerned

with this task would have little need for the high acuity necessary for long distance

vision, and this may explain the relative deficiency of LWS cones in the PD retina.

The blackbird and peacock are similar to the pigeon (Columba livia) in the

distribution of cone photoreceptors across their retinae. The PD region, or 'red field',

of the pigeon retina contains a higher proportion of LWS and MWS cones and a

lower proportion of double cones than the remaining retinal area, known as the

'yellow field' (Waelchli, 1883). The disparity between these two retinal areas is

greater in the pigeon than in any other species studied, but may represent the

enhancement of a general trend. In birds with laterally placed eyes, the PD quadrant

comprises the region of binocular overlap, and sometimes a temporal area or fovea,

and would be involved in tasks such as pecking (Martin, 1985; Clarke et al., 1996).

This suggests that such variation in cone abundance may be of functional

significance, most likely with regard to differences in the importance of single and

double cones between the two areas.

The function of double cones, which occupy approximately four times the

area of a single cone and dominate the retinae of diurnal birds (Meyer, 1977), is

unclear. Behavioural measures of photopic spectral sensitivity appear to show no

involvement of the double cones, only peaks in sensitivity corresponding to the

corrected spectral sensitivities of the four single cone types (Maier and Bowmaker,

1993). Nevertheless, electroretinographically determined photopic spectral

sensitivity functions are dominated by a broad peak at around 570 nm (e.g. Blough et

al., 1972; Chen and Goldsmith, 1986), which corresponds to the peak effective

spectral sensitivity of the double cones. This mismatch suggests that the neural

signal from the double cones is not involved in colour vision, at least under the

conditions used for the behavioural test of photopic spectral sensitivity.
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Results from behavioural experiments on zebra finches (Taeniopygia guttata)

would be consistent with an enhanced role for double cones in movement detection,

provided that they too display a higher proportion of double cones in the AV retina.

The binocular field of the eye, subserved by the PD retina, has an upper threshold of

movement detection at 540 0 s I , whereas the upper threshold in the monocular or

lateral visual field of the eye, subserved by the remaining retina, is 1100 0 s-I

(Bischof, 1988). Thus, the higher proportion of double cones observed in the AV

retina of most birds, including the starling, blackbird and peacock, might be adaptive

for the detection of aerial predators through movement or achromatic contrast.

Interestingly, the thalamofugal visual pathway of the pigeon receives so few

afferents from the PD retina that it is functionally blind to the binocular visual field

(antiirktin et al., 1993). Instead, visual information received by the PD retina is

processed almost exclusively by the tectofugal pathway, which is known to be

dominant over the thalamofugal pathway in visual discriminations involving colour,

brightness, pattern or size (Engelage and Bischof, 1993). It is unlikely that this

disparity is a result of the laterally placed eyes of pigeons, as the American kestrel

(Falco sparverius), a diurnal raptor with laterally positioned eyes, has an over-

representation of the frontal binocular field within the thalamofugal pathway

(Pettigrew, 1978). It seems probable, therefore, that regional specialisation in the

retina, and the division of labour between the two visual pathways, is correlated with

visual ecology, and it would be of great interest to examine the distribution of the

retinal photoreceptors in the kestrel.

Further support of a dominant role for double cones in movement detection

comes from experiments investigating the spectral sensitivity of the neural structures

controlling the optomotor response in birds. Pigeons display a wavelength-

dependent sensitivity to moving stripe patterns which best approximates to the

effective spectral sensitivity of their double cones (Campenhausen and ICirschfeld,

1998). The wavelength of peak sensitivity (approximately 560 nm) is unaffected by

chromatic adaptation with 503 and 601 nm monochromatic illumination, which

implies the involvement of only one type of cone.

Evidence from the chicken for a centrifugally-controlled circuit which might

play a role in visual attention switching between the PD and AV regions of the avian
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retina (Clarke et al., 1996) may also be important in deducing a functional

explanation. Efferents to the retina from the isthmo-optic nucleus (ION), a region of

the midbrain which receives topographically organised retinal input via the optic

tectum (Nalbach et al., 1993), may excite amacrine and displaced ganglion cells

locally in the AV retina but inhibit those in the PD region, thus mediating switches in

attention between the PD retina, involved in feeding, and the AV retina, involved in

scanning for predators. Centrifugal inputs have also been shown to increase the

sensitivity of avian retinal ganglion cells to moving patterns (Uchiyama and Barlow,

1994). Intriguingly, ground-feeding species of bird (e.g. pigeon), which have most

need to switch their visual attention between food and predators, have the largest and

best developed IONs (Reperant et al., 1989) and often display dorsal-ventral trends in

cone distribution and oil droplet pigmentation (Goldsmith et al., 1984b; Bowmaker

et al., 1997). Swallows (Hirundo rustica) and swifts (Apus apus), which feed on the

wing and probably have less need to scan for predators whilst feeding, have few ION

efferents (Clarke et al., 1996) and display no topographic variation in photoreceptor

type or oil droplet pigmentation (Goldsmith et al., 1984b). By contrast, the blue tit,

which is the only species investigated in this thesis which does not feed extensively

on the ground, has relatively more double cones in the dorsal retina. It may be that,

for this species, scanning the ground for predators is as, or more, important than

aerial scanning.
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4. Predicting spectral sensitivity from spectrophotometric,

microspectrophotometric and cone distribution data

4.1 Spectral sensitivity

Spectral sensitivity can be defined as the spectral variation of the reciprocal of

the relative numbers of quanta in stimuli that evoke criterion responses (Muntz,

1972). Whilst most animals are sensitive over a range of luminances, their spectral

sensitivity will vary greatly due to the number and spectral sensitivity of the

photoreceptors mediating vision at the different light levels. At low light (scotopic)

levels, signals from the more sensitive rods determine the animal's spectral

sensitivity, whereas under bright light (photopic) conditions, the rods become

saturated and, where present, one or more cone types dominate (Lythgoe, 1979).

Because of the contribution of long wavelength-sensitive visual pigments, photopic

spectral sensitivity often peaks at longer wavelengths than the scotopic (rod) function

(Xmax around 500 nm in most terrestrial vertebrates). This shift in sensitivity to

shorter wavelengths at low light intensities is known as the Purkinje shift (Wyszecki

and Stiles, 1967) and is observed in both behavioural and electrophysiological

determinations of avian spectral sensitivity (e.g. Armington and Thiede, 1956).

There will of course be intermediate light levels (mesopic illumination) at

which both rods and cones would be functional and contributing to brightness

assessment (Wyszecki and Stiles, 1967). Furthermore, at least in humans, rod signals

under mesopic illumination affect the chromaticity (apparent saturation and hue) of a

monochromatic light (Stabell and Stabell, 1996).

Spectral sensitivity is determined primarily by the wavelengths of light

available for vision. For terrestrial vertebrates, including birds, the sun is the earth's

main source of radiation, and has a spectral emission distribution resembling a

perfect, or 'black body', radiator (Knowles and Dartnall, 1977). About 80 % of the

energy reaching the earth's surface lies between 300 and 1000 nm. The maximum

intensity lies a little below 500 nm. Wavelengths below 230 and 290 are absorbed by

oxygen and ozone in the atmosphere respectively. At the long wavelength end,

absorption by water vapour cuts out near infra-red radiation.
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Within the eye, ultraviolet sensitivity is limited by absorption and scattering

by the dioptric apparatus. The precise limit is largely dependent on the variable

incorporation of short wavelength-absorbing pigments (generally carotenoids) into

the lens and cornea (e.g. Walls and Judd, 1933; Walls, 1942; Wolbarsht, 1976;

Heinermann, 1984). Short wavelengths are also subject to absorption by carotenoid

pigments in the macula lutea (primates) and cone oil droplets (e.g. birds, reptiles and

some amphibians). Because the energy of electromagnetic radiation decreases with

increasing wavelength, the long wavelength limit to vision is largely determined by

the minimum energy required to isomerise the chromophore and thus initiate the

transduction cascade, although this threshold is dependent on temperature and the

type of chromophore (Rodieck, 1973).

Finally, the number and spectral type of visual pigments employed by an

animal to exploit the range of wavelengths reaching it's retina will depend on it's

visual ecology (habitat, diet, activity, communication and even age) and evolutionary

pedigree.

Whilst the presence of two or more photoreceptors containing spectrally

distinct photopigments, and evidence that the nervous system compares the outputs

of these receptors in spectrally opponent networks, is a prerequisite for colour vision,

it does not constitute proof for its existence or use in a given species (Jacobs, 1993).

Behavioural experiments must be performed to ascertain whether an organism can

distinguish between different coloured stimuli on the basis of wavelength alone. The

most important consideration in testing wavelength-specific visual ability is the

elimination of brightness cues. In addition, when behavioural tests require the

subject to perform an operant response, the results can be dependent on the visual

task involved (Jacobs, 1993).

Evidence for colour vision in birds is derived from two main experimental

paradigms: wavelength discrimination and colour mixing. Wavelength

discrimination experiments test the ability of a subject to discriminate between

spectrally similar monochromatic lights which are matched in intensity as perceived

by the subject. Consequently, a behavioural measure of spectral sensitivity must

usually be obtained prior to conducting the wavelength discrimination test. The

number of minima in the wavelength discrimination function, i.e. regions of the
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spectrum where the subject can discriminate very small differences in wavelength of

two monochromatic stimuli, can reveal the dimensionality of the colour vision

(Jacobs, 1993). Dichromats, such as the Western grey squirrel (Sciurus griseus),

display only a single minimum, whilst trichromats, which include humans (Homo

sapiens sapiens), display two.

Early determinations of wavelength discrimination ability in the pigeon

discovered two minima in the function at about 500 and 580 nm in one experiment

(Hamilton and Coleman, 1933) and 540 and 600 nm in another (Blough, 1972), both

of which suggested trichromacy. Wright (1972; 1979) extended the range of

wavelengths studied and observed three minima at about 500, 540 and 600 nm,

suggestive of tetrachromacy. Further experiments, which extended the range of

wavelengths studied into the near-ultraviolet, distinguished three definite minima at

460, 530 and 595-600 nm, and a possible minimum between 360 and 385 nm (Delius

and Emmerton, 1979; Emmerton and Delius, 1980), suggesting the potential for

pentachromatic colour vision. Two definite minima were observed in the wavelength

discrimination function of the black-chinned hummingbird (Archilochus alexandri)

at 555 and 585 nm (Goldsmith eta!., 1981). Wavelength discrimination performance

deteriorated at longer wavelengths but not at the short wavelength end of the

spectrum, suggesting that the colour dimensionality of this species might be more

than trichromatic.

Most colour mixing experiments test an animal's ability to distinguish a

mixture of two or more monochromatic lights from a monochromatic stimulus of

identical intensity as perceived by the subject. Once again, the spectral sensitivity of

the subject must be determined beforehand. To investigate the number of primary

colour channels in the pigeon retina, Palacios et al. (1992) tested their ability to

discriminate between a series of monochromatic stimuli, S + (390, 400, 450 and

520 nm) from a mixture (S -) of two monochromatic lights on either side of each S.

The relative contribution of the two components of S - was varied until the

dichromatic mixture was indistinguishable from S. In relating the observed colour

matches to the effective spectral sensitivities of the pigeon's cones predicted from

microspectrophotometric (Bowmaker, 1977) and electrophysiological data

(Govardovskii and Zeuva, 1977; van Norren, 1975), the authors concluded that five
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separate primary mechanisms, differentially active in the yellow and red fields,

participated in colour discrimination. Interestingly, double cones were also treated as

an additional chromatic channel.

In the middle wavelength range, all S- combinations of 470 and 560 nm were

distinguished from a 520 nm S +, suggesting that the pigeon was more than

dichromatic in this spectral region. As well as SWS and MWS single cones, the

LWS double cones have their peak effective spectral sensitivity in this spectral

region. Furthermore, colour mixtures in the long wavelength region (580 to 640 nm)

were compatible with the involvement of double cones (peak sensitivity 575 or

589 nm, depending on the absorption of the P-type droplet) and LWS single cones

filtered by an R-type droplet (peak cone effective sensitivity 619 nm). These results

suggest that double cones might be used in colour vision, in addition to any other

achromatic functions, raising the possibility that most birds have the potential for

pentachromacy I .

Colour mixtures in the short wavelength region of the spectrum indicated

dichromatic matching by the VS (peak effective sensitivity 415 nm) and SWS (peak

effective sensitivity 485 nm) cones. There was also evidence that colour

discrimination was possible in the near-ultraviolet region. A S .- mixture of 350 and

430 nm could be made indistinguishable from a S + of 390 nm, although the

contribution of the 350 nm S- was retative(y sma(( 00 to 30 TO. This suggtsted the

involvement of an additional short wavelength mechanism, but did not exclude the

possibility that it was due to absorption by the I3-band of the LWS pigment in the

double cones. If a dedicated UVS cone was present in addition to the VS cone, the

possibility of hexachromatic colour vision in the pigeon would exist.

A similar procedure was used to establish tetrachromacy in the goldfish,

Carassius auratus (Neumeyer and Arnold, 1989). Interestingly, goldfish were

tetrachromatic under photopic illumination, but were reduced to trichromacy under

mesopic conditions as the long wavelength-sensitive cone class was no longer used in

colour discriminations. It is possible that such effects could also exist in birds.

I If the two members of the double cone pair ever function independently of one another, then
hexachromacy is theoretically possible. However, as discussed in chapter one, there is evidence to
suggest that the principal and accessory members are coupled both optically and electrically.
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No behavioural tests of spectral sensitivity were performed on the species

investigated during this study. However, a mathematical model, which relates

receptor effective spectral sensitivity to discrimination thresholds, was used to

predict the photopic spectral sensitivity of the starling, blue tit, blackbird and

peacock. This approach has been used successfully with microspectrophotometric

data from the pigeon and the Pekin robin to accurately replicate behavioural

measures of photopic spectral sensitivity (Vorobyev and Osorio, 1998). Scotopic

spectral sensitivity in the starling was also predicted from the absorption properties of

the rod photoreceptors, and compared to a behaviourally-determined function (Adler

and Dalland, 1959; Dalland, 1958). Data for the transmission properties of the ocular

media, used in calculating receptor effective spectral sensitivity, are also presented.

4.2 Data

4.2.1 Proportions of cone photoreceptors

For the prediction of photopic spectral sensitivity using the model of

Vorobyev and Osorio (1998), the relative proportions of the different classes of

single cone photoreceptor used were those derived from topographic density

measurements as described in chapter three. For the purposes of the model, cone

abundances are expressed relative to the UVS / VS class (see Table 4.1).

Species Cone class (single)

UVS / VS SWS MWS LWS

Starling (Sturnus vulgaris) 1 1.36 3.70 3.77

Blackbird (Turdus merula) 1 1.71 2.14 1.89

Blue tit (Parus caeruleus) 1 1.90 2.67 2.67

Peacock (Pavo cristatus) 1 1.85 2.20 2.11

Table 4.1 Relative proportions (averages) of the different classes of single cone
photoreceptor in the species for which photopic spectral sensitivity is modelled. The
data are derived from topographical density measurements described in chapter three.
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4.2.2 Oil droplets

For the purposes of predicting the effective spectral sensitivity of single cones

in each of the species investigated, oil droplets were modelled as complete cut-off

filters. This was perhaps the best compromise in modelling these organelles, the in

vivo optical behaviour of which is largely unknown. The flat-topped character and

increased apparent transmission at short wavelengths evident in many of the

absorption spectra in chapter two can be attributed to 'leakage' of the measuring

beam around the oil droplet (Liebman and Granda, 1975). Generally, the optical

artefacts from which such measurements suffer arise when specimen absorbance

exceeds the instrument's capability. Whilst most microspectrophotometers are

designed to measure absorbances less than one, the absorbance of avian cone oil

droplets is generally greater than this limit and can exceed 20 for the red droplets

(Goldsmith et al., 1984b).

At such high absorbances, it seems reasonable to assume that the red and

yellow oil droplets act as complete cut off filters. The only possible exceptions are

the 'colourless' or C-type oil droplets associated with SWS single cones of the three

passeriform species studied. These droplets generally appeared to have lower

absorptances then yellow or red droplets, or the C-type droplets of peacock SWS

cones, but it is not clear whether these values represent true low concentrations of

carotenoid or are simply the result of excessive light leakage (Bowmaker et al.,

1997). Whilst C-type droplets do contain relatively lower concentrations of

carotenoid, calculated in vivo absorbances can be as high as 6 (Goldsmith et al.,

1984b). Furthermore, C-type oil droplets are generally smaller than the more densely

pigmented types (chapter two) and apparent transmission of short wavelengths during

microspectrophotometric measurement was more noticeable for smaller droplets of

all types. Thus, it seems possible that C-type oil droplets in passerines could act as

true cut-off filters, as they probably do in the peacock, especially if light leakage

around them is reduced in vivo by the pigmented epithelium which extends to the

level of the ellipsoid in the light-adapted retinae of many species (e.g. Braekevelt,

1990).

Consequently, the absorptance of oil droplets at a given wavelength shorter

than the A-rnid was assumed to be equal to the value of the tangent to the absorptance
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spectrum at Xin id (which was fitted routinely for the estimation of X, c„,) at that

wavelength, up to a maximum absorptance of 1. A similar approach was used by

Vorobyev and Osorio (1998). The transparent oil droplets associated with either

UVS or VS visual pigments were assumed to have no absorbance over the range of

wavelengths investigated.

4.2.3 Transmission of the pre-retinal media and tissues

Before reaching the retina, electromagnetic radiation incident upon the eye

must first pass through the ocular media. Spectral absorption by the cornea, aqueous

humour, lens and vitreous humour must be accounted for in predicting both scotopic

and photopic spectral sensitivity. In particular, absorption by the lens often

determines the limits of short wavelength photosensitivity (Muntz, 1972). Short

wavelength-absorbing pigments in the lens of the human eye preclude sensitivity to

wavelengths below about 400 nm, which would otherwise be conferred by the short

wavelength-sensitive cone pigment (Geeraets et al., 1960; Wolbarsht, 1976;

Griswold and Stark, 1992).

Improved sensitivity to ultraviolet wavelengths, as exhibited by birds,

requires that the ocular media absorb less at short wavelengths. This is known to be

the case for the pigeon (Emmerton et al., 1980), Pekin robin (Maier, 1994) and

domestic duck (Jane and Bowmaker, 1988). In this study, spectrophotometric

measurements of the pre-retinal tissues and humours of the starling, blackbird, blue

tit, peacock and turkey were made to determine the range of wavelengths likely to

reach the retina.

4.2.3.1 Spectrophotometry

Absorbance measurements of the cornea, aqueous humour, lens and vitreous

humour were made over the range 200 to 800 nm using a Shimadzu UV2101 PC UV-

VIS scanning spectrophotometer fitted with a Shimadzu ISR-260 integrating sphere

assembly to reduce the effects of light scattering by the tissue samples. Several

approaches were used to determine the spectral absorption of the ocular media, the

particular method primarily determined by the size of the eye. Although the ocular

media of the turkey were measured, photopic spectral sensitivity was not calculated
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for this species as its cone oil droplets were found to be appreciably depleted in

carotenoid (cf. chapter two).

Spectral transmissions of eyes removed from the blue tit and blackbird were

measured from entire eyes. A small circular 'window' was created in the posterior

pole of the eye by removing a portion of the sclera opposite to, and of approximately

the same size as, the cornea. Careful dissection ensured that a negligible amount of

vitreous remained attached to the section of retina removed along with the sclera.

The intact eye of the blue tit was placed in a rectangular aluminium insert,

designed to fit inside a standard (10 mm pathlength) quartz cuvette, in which a

6.8 mm diameter hole (the same diameter as the eye) had been drilled to coincide

with the measuring beam of the spectrophotometer and in which the eye could be

positioned in its normal orientation relative to the incident light. Thin plastic rings

were lodged inside the insert hole in front of and behind the eye to prevent

movement.

The eye of the blackbird was measured in a similar fashion, but using a

modified `cuvette'. This comprised a perspex cylinder of length 17.0 mm and

internal diameter 15.8 mm, sealed at either end by glass coverslips (19 mm diameter,

No. 0 thickness) held in place with silicone sealant. The internal diameter of the

cylinder was reduced, using concentric rings of flexible plastic, to ensure that eyes

were held perpendicular to the path of the measuring beam and did not move during

measurement. Care was taken to avoid compression of the eye which would affect its

pathlength.

Individual components of the ocular media were measured separately for the

starling, turkey and peacock. In the case of the starling, pathlengths for the different

components along the optic axis were already known (Martin, 1986). Lenses were

dissected away from the anterior segment of the eye and measured using a

rectangular aluminium insert identical to that used for measuring the intact blue tit

eye, but with a 4.3 mm diameter hole. Corneas were excised from the sclera and

measured whilst sandwiched between two stainless steel mesh inserts inside a
-1standard cuvette. Both corneas and lenses were bathed in 340 mOsm kg PBS,

which was also placed in the identical inserts and cuvettes used as reference samples.

Samples of aqueous humour were extracted from the anterior chambers of intact
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eyes, using a 10 ill Hamilton syringe, and placed in a well created by sandwiching a

sheet of aluminium (24 mm x 40 mm x 0.52 mm), in which a 5 mm diameter hole

had been drilled to coincide with the measuring beam, between two No. 0 coverslips,

using a thin ring of silicon grease as adhesive. The pathlength of this `cuvette' was

measured as 0.6 mm using precision Vernier callipers. Vitreous was removed from

the vitreal body and measured in an identical fashion.

Eyes from the turkey (five week old) and peacock (one year old) were too big

to measure entire, and pathlengths were easily determined from measurements of a

radially sectioned eye (see section 4.2.3.2). Lenticular and corneal spectral

transmissions were measured in an identical manner to the starling. The diameters of

the holes in the aluminium cuvette inserts used to hold the lenses were 6.0 mm and

7.3 mm for the turkey and peacock respectively. Vitreous humour was removed from

the vitreal body and placed in the hole (4.5 mm diameter) of an aluminium cuvette

insert identical to that used to measure lenticular spectral transmission. The vitreous,

which is a highly viscous gel, was trimmed in the insert to give a pathlength of

exactly 10 mm. Aqueous humour was removed from the anterior chamber, using a

hypodermic syringe, and measured in a 200 IA 10 mm pathlength quartz cuvette.

With the exception of the vitreous and aqueous humours from the starling eye

and the aqueous humour from the peacock and turkey eyes, which were measured

relative to distilled water, the eyes of all species, or ocular media components

-thereof, were bathed in, and measured relative to, 340 mOsm kg' PBS. In every

case, identical inserts and cuvettes were placed in the reference channel of the

spectrophotometer.

The spectrophotometer performed a single spectral pass from 800 nm to

200 nm, recording absorbance at 1 nm intervals. The spectral Full Width at Half

Maximum (FWHM) bandwidth of the monochromator used by the

spectrophotometer was set at 5 nm to maximise light transmission and signal-to-

noise ratio which are otherwise low with the integrating sphere.

4.2.3.2 Determination of pathlengths

Eyes from blue tit and blackbird were measured entire, so no adjustment of

measured pathlength was required. Absorbance measurements of both the aqueous
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and vitreous humours for the starling, turkey and peacock had to be adjusted

arithmetically to correspond to in vivo ocular pathlengths. These were already known

in the starling as 1.03 mm and 3.81 mm for the aqueous and vitreous respectively,

although the measurements were taken from a single bird only, (Martin, 1986).

For the peacock and turkey, these distances were determined from scaled

photographs of a frozen eye, hemisected sagittally, taken from the same individual

(turkey) that was used for spectrophotometry of the ocular media, or one of

comparable age (peacock), sectioned using a cryostat. Eyes were frozen at -20 °C

and attached to the chuck of a motor driven microtome using OCT embedding

compound (BDH). The eye was orientated such that sections made by the cryostat

were parallel to the optic axis, and 10 p.m sections were made at -20 °C until the edge

of the lens was visible. Photographs of the eye, and a scale ruler positioned adjacent

to the cut face of the eyeball, were then taken after every 10 sections, approximately

0.1 mm intervals (Figure 4.1). The negatives obtained were projected with a

magnification of approximately x13 using a photographic enlarger and the

pathlengths of the aqueous and vitreous calculated according to the scale ruler.

Expansion of the eye upon freezing should not have an appreciable effect on

the calculated pathlengths. If the eye of the turkey is modelled as a cylinder 17 mm

in height with a fixed diameter of 21 mm, and assuming that the thermal expansivity

of the aqueous and vitreous humours is identical to that of water, the height of the

cylinder (total pathlength along the optic axis of the eye) would increase by only

0.08 mm at a temperature of -20 °C relative to the same structure at +20 °C. This

increase in pathlength due to freezing (approximately 0.5 %) was less than the likely

error in estimating the pathlengths by measuring an enlarged photograph (±1.4 to

5.3 %). The pathlengths of the aqueous and vitreous humours were determined,

respectively, to be 2.7 mm and 10.4 mm in the turkey, and 3.2 mm and 10.6 mm in

the peacock. Measured absorbances for the aqueous and vitreous (pathlengths

0.6 mm for the starling and 10 mm for the turkey and peacock) were scaled

appropriately, summed with the absorbance data for the cornea and lens, and the

combined absorbances converted to transmission for display (see section 4.2.3.3).

319



Chapter four: Predicting spectral sensitivity

1
8	 9	 10

Figure 4.1 Photograph of an eye of a juvenile domestic turkey, Meleagris gallopavo,
hemisected sagitally and parallel to the optic axis. C, cornea; A, aqueous humour; L,
lens; V, vitreous humour. The calculated pathlengths of the aqueous and vitreous
were 2.7 mm and 10.4 mm respectively. The graduations on the scale ruler are in
MM.
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4.2.3.3 Transmission spectra

Transmission spectra of the pre-retinal ocular media for the starling,

blackbird, blue tit, peacock and turkey are displayed in Figure 4.2 to Figure 4.6. On

the assumption that apparent absorbance by the combined ocular media at 800 nm

was due only to light scattering (Geeraets et al., 1960; van den Berg and Spekreijse,

1997), transmission was assumed to be unity at this wavelength, and all

measurements were scaled relative to an absorbance of zero at 800 nm. All spectra

were fitted with an 11-point unweighted running average to smooth random noise in

the data. A number of smoothed spectra, obtained either from different individuals

(starling) or multiple scans from the same individuals (all other species), were

averaged together for display. All of the species investigated in this study have

ocular media which transmit well into the near ultraviolet. Wavelengths of 50 %

transmission were 338, 343, 317, 338 and 358 nm for the starling, blackbird, blue tit,

peacock and turkey respectively.

Some of the differences in ocular media transmission apparent between

species may be measurement artefacts. Transmission losses due to reflections at

surfaces between the different ocular media cannot be quantified when the individual

components are measured separately, but are incorporated when the transmission of

the intact eye is measured, as was the case for the blue tit and blackbird.

Furthermore, the degree of absorption and scattering by the retinal layers vitread to

the photoreceptors is unknown for the species studied and thus not incorporated into

the calculations of photoreceptor effective spectral sensitivity (Table 4.2). It is

assumed that these losses are negligible compared to those imposed by the dioptric

apparatus. Apart from the turkey and peacock, which were both one year old or less,

the age of the other species was not determined. However, whilst age is known to

affect the transmission properties of the human lens (Wolbarsht, 1976), no such

correlation has been established for avian ocular media (Hodos et al., 1991).
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Figure 4.2 Ocular media of the European starling (Sturnus vulgaris) corrected for in
vivo pathlengths as measured by Martin (1986). (A) Calculated transmission (thick
line) ± standard deviation (thin lines) of the combined ocular media. The mean
wavelength of 50 % transmission is 338 nm. (B) Mean transmission spectra (in order
of increasing transmission at 300 nm) of the lens (n = 5 individuals), aqueous
humour (n = 1), cornea (n = 4) and vitreous humour (n = 1).
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Figure 4.3 Ocular media of the blackbird (Turdus merula). (A) Mean transmission
of the intact eye (thick line) ± standard deviation (thin lines) derived from three
measurements of the same individual. The mean wavelength of 50 % transmission is
343 nm. (B) Transmission spectra (in order of increasing transmission at 300 nm) of
the lens (n = 1 individual) and cornea (n = 1).
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Figure 4.4 Ocular media of the blue tit (Parus caeruleus). (A) Mean transmission
of the intact eye (thick line) ± standard deviation (thin lines) derived from four
measurements of the same individual. The mean wavelength of 50 % transmission is
317 nm. (B) Transmission spectra (in order of increasing transmission at 300 nm) of
the lens (n = 1 individual) and cornea (n = 1).
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Figure 4.5 Ocular media of the peacock (Pavo cristatus) corrected for in vivo
pathlengths as determined in section 4.2.3.2. (A) Calculated transmission, on the
optic axis of the eye, of the combined ocular media. The wavelength of 50 %
transmission is 338 nm. (B) Transmission spectra (in order of increasing
transmission at 325 nm) of the aqueous humour (n = 1 individual), cornea (n = 1),
lens (n = 1) and vitreous humour (n = 1).
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Figure 4.6 Ocular media of the turkey (Meleagris gallopavo) corrected for in vivo
pathlengths as determined in section 4.2.3.2. (A) Calculated transmission, on the
optic axis of the eye, of the combined ocular media. The wavelength of 50 %
transmission is 358 nm. (B) Transmission spectra (in order of increasing
transmission at 400 nm) of the lens (n = 1 individual), cornea (n = 1), aqueous
humour (n = 1) and vitreous humour (n = 1).
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4.2.4 Templates for visual pigment absorbance spectra

4.2.4.1 Why use a template?

For modelling spectral sensitivity, templates describing visual pigment

absorbance spectra were used in preference to data obtained by

microspectrophotometry. Primarily, this was because template absorbance spectra

are created by mathematical functions and are free of both the intrinsic and extrinsic

noise which pervades microspectrophotometric measurements. Templates can also

provide absorbance data over a wider range of wavelengths than that routinely

measured in microspectrophotometry. Furthermore, microspectrophotometers cannot

measure accurately small absorbances by the visual pigment at long wavelengths;

templates derived from behavioural or electrophysiological spectral sensitivity

provide a better estimate of long wavelength sensitivity (e.g. Bernard, 1987; Lamb,

1995; Palacios et al., 1996).

4.2.4.2 Templates and transformations

Dartnall (1953) proposed that the normalized absorbance spectrum of vitamin

A 1 -based visual pigments, when plotted on an abscissa of frequency rather than the

customary wavelength scale, might have an invariant shape regardless of the spectral

location of the A.,,a„ of the a-band (A-max.O. The frequency, v of electromagnetic

radiation is related to its wavelength, X, measured in vacuo, by the expression:

where X is in m, v is in Hertz and c is the velocity of light in a vacuum, i.e.

2.998x108 m s-1 . Frequency was traditionally expressed in wave numbers, V cm-1,

where:

and wavelength is in cm. Dartnall transformed the wavelength abscissa to frequency

such that wave number was expressed as a frequency difference, AV, relative to the

frequency at the Amax, thus:
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He then created a visual pigment template relating the relative absorbance at a

given wavelength to the absorbance at the a-peak X. and expressed this template in

the form of a nomogram (alignment chart). However, the initial standard absorbance

spectrum for frog rhodopsin (Xmax = 502 nm) used to create this original nomogram

was later found to be contaminated by a second rod pigment (X. = 433 nm) present

in the retina at much lower concentrations (Dartnall, 1967; Knowles and Dartnall,

1977). In addition, Dartnall's nomogram was only valid for visual pigments with

A max values that were close to 500 nm and exhibited systematic deviations from

visual pigment absorbance spectra with maximum sensitivity to shorter or longer

wavelengths (Liebman and Entine, 1968; Ebrey and Honig, 1977).

Ebrey and Honig (1977) extended the concept of the template as new data

became available. Using absorbance data from frog 'green' rods (Xma x 431 nm,

Liebman and Entine, 1968), frog 'red' rods (Xi-flax 502 nm, Dartnall, 1953) and the

long wavelength-sensitive cone pigment of the chicken (A max 562 nm, Wald et al.,

1955) they formulated three different templates (and associated nomograms) for

visual pigments maximally sensitive to short, medium and long wavelengths, whilst

retaining the Dartnall frequency transform.

Dawis (1981) refined the concept of visual pigment templates by deriving

eighth-degree polynomials from published nomograms. This approach, however, did

not obviate the constraints imposed by the Dartnall frequency transform. Three

separate polynomials were recommended for visual pigments maximally sensitive to

short (410 to 470 nm), medium (470 to 530 nm) and long (530 to 610 nm)

wavelengths. An alternative method was used by Harosi (1976) who derived the

parameters for three Gaussian functions, sequentially fitted to frequency-transformed

data, the sum of which accurately described the absorbance spectra of vitamin A2-

based visual pigments.

Analysing the microspectrophotometric data of Bowmaker et al. (1980),

Barlow (1982) observed that the shapes of both short and long wavelength-sensitive

visual pigments were rendered invariant when the wavelength abscissa was
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transformed as the fourth root of wavelength, i.e. k025 • Barlow's method, which

replaced the triple nomogram of Ebrey and Honig (1977), superimposes normalized

visual pigment absorbance spectra when the transform is expressed relative to the a-

peak ?'max:

This abscissal transform was quickly superseded by a simpler solution

proposed by Mansfield (1985) and MacNichol (1985; 1986). It followed the

quantum mechanical considerations of Dartnall (1953) by expressing normalized

absorbance spectra as functions of frequency, v, relative to peak frequency, vma x, i.e.

v max
	 Equation 5.

Because frequency is proportional to the reciprocal of the wavelength (equation 1)

this corresponds to:

kmax 
	

Equation 6

and has become known as the Mansfield-MacNichol (MM) transform.

Partridge and DeGrip (1991) used the MM transform on the absorbance

spectrum of purified bovine rhodopsin to create a new template for rhodopsin

(vitamin A i -based) visual pigments. The relationship between Amax and the value of

the normalized absorbance, D, at a wavelength, A., on the long wavelength limb (0.2

D 0.8) was given by the following cubic function:

k max = k(0.84628 + 0.20749D — 0.19932D 2 + 0.12486D 3 )	 Equation 7.

The authors also calculated a Chebyshev polynomial which accurately

described the template and could be used to generate visual pigment absorbance

curves mathematically. However, the Chebyshev polynomial only described the

alpha band of the absorbance spectrum.

The rhodopsin template used in this study is that derived by Stavenga et al.

(1993) from the MM-transformed bovine rhodopsin absorbance data of Morton

(1972) and Partridge and DeGrip (1991). Their approach characterised each of the
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major absorption bands (a, 13 and y) of the visual pigment by a modified lognormal

function (Metzler and Harris, 1978):

D mao exp [—a0j x0 + a 11 x 1 +
	

Equation 8

where Dx is absorbance at a given wavelength X; the subscript i denotes the

absorption band (a, r• or y); Amax,i is the absorbance at the kmax,i; x='° log

ao,i, ai,i and a2,1 are coefficients characteristic of the ith absorption band, and

2

a 2,1 =	 . The absorbance of the visual pigment, D, is then the sum of the three
8

individual functions:

D(X)= EDx ,,(X)= Dx,a (X,)+ Dx,p(X)+Dx.y(X,)	 Equation 9.

4.2.4.3 Shifting the 13-band

The model of Stavenga et al. (1993) assumed that the spectral location, shape

and relative absorbance of the 13- and y-bands were constant, irrespective of the

position of the a-peak. This assumption would be adequate for visual pigments with

maximum sensitivity to medium or long wavelengths where the visual pigment 2,.Tha,,

and the wavelength of maximum absorbance of the a-band (X.,, ,a) coincide (see

Figure 4.7 A). However, with the spectral location of the 13-peak fixed at 340 nm

(Stavenga et al., 1993), the effect of absorption by the n-band on visual pigments

maximally sensitive to short wavelengths will be to shift the visual pigment 2t.„, a„ to a

shorter wavelength relative to the a-band kmax,a and to increase the full width half

maximum (FWHM) bandwidth and apparent absorbance of the short wavelength

limb of the a-band (see Figure 4.7 B). This phenomenon would not only affect the

fitting of templates to experimental visual pigment absorbance data using the

polynomial of Partridge and DeGrip (1991) as described in chapter two, but would

also over-estimate the sensitivity of short wavelength-sensitive visual pigments to

short wavelengths.
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Figure 4.7 Examples of the rhodopsin (vitamin A 1 -based) visual pigment template
given by Stavenga et al. (1993). The rhodopsin absorbance spectrum (solid line) is
the sum of the a-, p- and y-bands, each derived from a lognormal function (dotted,
dashed and dash-dot lines, respectively). With an alpha band 4ax of 560 nm (A)
the X,„a„ of the template and the Xma„ ,„ of the a-band coincide. At lower Aina„ ,„ values,
e.g. with an alpha band Xmax.a of 420 nm (B), and with the spectral location of the 3-

peak fixed at 340 nm, the template X. is shifted to shorter wavelengths than the a-
band Xrnax,, as overlap with the 13-band becomes increasingly significant. Note also
the resultant increase in template FWHM bandwidth relative to the a-band. The data
have been normalized to the absorbance at the template kiriax•
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Recent electrophysiological evidence suggests that the spectral location of the

13-band is dependent upon the position of the a-peak in both vitamin A 1 - and A2-

based visual pigments (Palacios et al., 1996; Palacios et al., 1998). In these studies,

spectral sensitivity over the range 277 to 697 nm was determined in the fish Danio

aequipinnatus (Cyprinidae) by recording photocurrents with suction pipette

electrodes and revealed that the 13-band of cone pigments is found at longer

wavelengths as the a-band shifts towards the long wavelength end of the spectrum.

Consequently, visual pigments with maximum sensitivity to short wavelengths will

exhibit less overlap in spectral absorption by the a- and 13-bands and the 4a„ of the

a-band will correspond to the X ina„ of the visual pigment over a wider range of

wavelengths extending towards the short wavelength end of the spectrum.

To quantify this trend, the spectral locations of the a- and 13-peaks measured

in the three longer-wave-sensitive visual pigments of Danio (Palacios et al., 1996)

were combined with the data for bovine rhodopsin (Morton, 1972; Stavenga et al.,

1993) and subjected to a reduced major axis regression (Fowler and Cohen, 1990).

This analysis provided a function which predicts the X. Thax of the 13-band (4.,d from

the X„,,, of the a-band for vitamin A i -based visual pigments:

X .,13 = 0.405269354(X ma ,,) + 134.360016	 Equation 10.

This relationship was introduced into the model of Stavenga et al. (1993) for

creating visual pigment absorbance spectra templates. Spectral sensitivity data

obtained from amphibian rod photoreceptors containing vitamin A i -based visual

pigment were not incorporated in the regression analysis because they appear to have

a narrower full width half maximum (FWHM) spectral bandwidth than other

vertebrate vitamin A l -based visual pigments when transformed as Xmax / X (Palacios

et al., 1998). The Xmax of the y-band appears to be independent of the spectral

location of the a-band ?m a (Palacios et al., 1996) and its position is fixed at 276 nm

(Stavenga et al., 1993).

Palacios et al. (1996) also suggested that the photosensitivity of the 13- and y-

bands relative to the a-band might be dependent on the spectral location of the a-

band Xma„,„. In the present thesis, their data were best-fitted with quadratic functions
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using a non-linear regression software package (CurveExpert 1.2) such that the

photosensitivity (K) of the 13- and 'y-bands relative to the a-band are related to the

position of the a-band 2 n,,,,ax,„ as follows:

Ko = —5.0268421+ 0.021121711(X. ,,, ) — 2.0970395 x 10 -5 (X rnax,c, )2

Equation 11

K y = —16.635088 + 0.070522660,,a„ ,a ) — 7.0815058 x 10-5 (X max,« )2

Equation 12

where 407 < Xmax,„ < 587 nm.

For the prediction of spectral sensitivity, photosensitivity data for the different

photoreceptor types should be used in preference to template spectra, which are

generally based on absorbance measurements (e.g. Stavenga et al., 1993). Although

limited evidence suggests that the photosensitivity of the a- and 13-bands corresponds

to their spectral absorption, photosensitivity in the y-band is considerably less

quantum efficient (Dartnall, 1972). Consequently, the relative photosensitivity

coefficients (K o and IS), adjusted for the spectral location of the a-band Xrna„ ,„ using

equations 10 and 11, were used in preference to the relative extinction coefficients

(Ania,„ .0 and A. ,y) for the prediction of spectral sensitivity. Nevertheless, Amax,o and

Amaxl, were used at the values determined for bovine rhodopsin (Stavenga et al.,

1993) in the analysis of visual pigment absorbance data as described in chapter two.

It should be noted, however, that both of these alterations to the short

wavelength region of visual pigment templates described by the model of Stavenga et

al. (1993) will affect the prediction of spectral sensitivity very little after the effect of

filtering by the ocular media and cone oil droplets is taken into consideration.

4.2.4.4 Long wavelength tails

Of more significance for the prediction of spectral sensitivity is the failure of

the modified lognormal functions of Stavenga et al. (1993) to adequately describe

long wavelength absorbance by the visual pigment. Absorbance in the far-red is very

low and difficult to determine spectrophotometrically. It is better approximated from
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sensitivity measurements and, aware of the shortcomings of their model, Stavenga et

al. (1993) provided a log-linear function which described the photosensitivity, S, of

the long wavelength limb of rods and cones based on electrophysiological

measurements of primate photoreceptors, thus:

log S = s (x„ – x 0 )	 Equation 13

where

(xa=mlog —
a,

x

max )

Equation 14

and slope s = –50.9 and xo = 0.047 (cones); s = –48.2 and xo = 0.046 (rods). This

long wavelength tail 'patch' was implemented above x a = 0.080 for cones and

x. = 0.078 for rods, and very closely resembles the long wavelength region of the

rhodopsin a-band template of Lamb (1995) which was derived from

electrophysiological and psychophysical data (see Figure 4.8 A, B and C). The long

wavelength tail patch was only used for the prediction of spectral sensitivity and not

in the analysis of MSP data where the absorbance values in this range are less than

the noise of individual recordings and, being below 20 % of maximum absorbance,

are not used in estimating the 2t.....

334



1.2

400
	

500	 600
	

700
	

800
Wavelength (nm)

0.2

0.03

a)
0
C
U)
-20.02
oU)
.0
03

-o
a)
N

71.-- 0.01
E

8z

710
Wavelength (nm)

690 730 750

Chapter four: Predicting spectral sensitivity

Figure 4.8 The rhodopsin template given by Stavenga et al. (1993) with (dashed
line) and without (solid line) the long wavelength tail patch for cone visual pigment
data (see section 4.2.4.4). Also displayed is the a-band only rhodopsin template
given by Lamb (1995, dotted line). In (A) the added tail is not discernible, but the
similarity between the a-bands described by Stavenga et al. (1993) and Lamb (1995)
is clear. Under closer inspection of the long wavelength limb (B) the template
incorporating the long wavelength tail patch is seen initially to have a lower
absorbance than the original template it replaces (here it replaces the lognormal
functions at 674 nm) but towards longer wavelengths the log-linear patch resembles
the template given by Lamb (1995). All three templates have their krna„ at 560 nm
and are normalized at this point.
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Figure 4.8 (continued) (C) The normalized absorbance values displayed in Figure
4.8 (B) were transformed as log i o to express the difference between the long
wavelength limbs on a photosensitivity basis. The rhodopsin template given by
Stavenga et al. (1993) with (dashed line) and without (solid line) the long wavelength
tail patch for cone visual pigment data (see section 4.2.4.4). Also displayed is the a-
band only rhodopsin template given by Lamb (1995, dotted line).
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4.2.4.5 Ultraviolet visual pigment templates

It is evident that the FWHM bandwidth, which displays a linear dependence

on peak wavenumber (Amax)-' for visual pigments with Xmax values greater than at

least 408 nm, is narrower than expected in the case of UVS visual pigments (?max

340-370 nm, Bowmaker et al., 1980; Harosi, 1987; Harosi, 1994; Hawryshyn and

Harosi, 1991; Palacios et al., 1996). Nevertheless, it appears that vitamin Ai-based

UVS pigments from widely separated taxa have the same FWHM bandwidth when

transformed as Xmax / X. With this in mind, Palacios et al. (1996) provided new

coefficients for the lognormal functions given by Stavenga et al. (1993) to describe

the absorbance spectra of vitamin A i -based UVS pigments.

Caution should be exercised in inferring visual pigment absorbance from

photosensitivity data, even if measured from single cells. A constant quantum

efficiency for the a-, p- and y-bands must be assumed (Dartnall, 1972) and the effects

of 'self-screening' by the visual pigment must be considered (Goldsmith, 1978).

However, the new coefficients derived by Palacios eta!. (1996) were based partly on

the MSP absorbance data from zebrafish (Brachydanio rerio) UVS cones given by

Robinson eta!. (1993).

Adoption of these new coefficients in the present study necessitated the

calculation of new parameters, for use with UVS visual pigments, for the long

wavelength tail patch proposed by Stavenga et al. (1993). Palacios et al. (1996)

provided the coefficients for an eighth degree polynomial (template) which fitted the

invariant shape of normalized log spectral sensitivity data from various UVS

photoreceptors when plotted on a frequency (Xmax / X) scale. To obtain the new

parameters, an 80 nm section (397 to 477 nm) of the linear region of the long

wavelength limb given by the polynomial of Palacios et al. (1996) was fitted

(CurveExpert 1.2) with the same linear function (equation 13, section 4.2.4.4)

specified by Stavenga et al. (1993). Parameters for the new long wavelength tail

patch were thus determined to be: slope, s = —49.1 and xo = 0.027. The patch was

implemented above x a = 0.047 (equation 14, section 4.2.4.4) and was used, in

conjunction with the function shifting the spectral location of the 13-band (equation

10, section 4.2.4.3) to predict the spectral sensitivity of UVS cones. Relative
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photosensitivities of the 13- and 7-bands were set at those determined for the SWS

visual pigment in each species (equations 11 and 12, section 4.2.4.3). The long

wavelength tail patch greatly improves the 'fit' of the template to the spectral

sensitivity data at longer wavelengths (see Figure 4.9).

4.2.4.6 Pathlengths and specific absorbance

Assuming a constant quantum efficiency, the spectral sensitivity of a

photoreceptor is a function of the absorptance of its outer segment. This can be

determined if the length of the outer segment (pathlength) and the concentration of

the visual pigment (specific absorbance) are known. For the purposes of predicting

spectral sensitivity, the lengths of avian cone and rod outer segments were assumed

to be 10 gm and 20 gm respectively (Braekevelt, 1990; 1993b; 1994a; 1994b;

Braekevelt et al., 1996). Specific absorbance, i.e. the absorbance per micrometre

length of the photoreceptor viewed end-on (Knowles and Dartnall, 1977), was taken

to be 0.015 gm-1 for cones and 0.018 gm-1 for rods (Bowmaker, 1977; Bowmaker

and Knowles, 1977).

Neither of these two parameters were calculated from the

microspectrophotometric data obtained for each species. Cone outer segments were

often folded over upon themselves or were otherwise misshapen, and thus

dimensional measurements were unreliable. Consequently it was difficult to assess

both the diameter (and hence approximate transverse pathlength) and the length of

the outer segment. Rod outer segments were usually fragmented, but their diameter

was almost invariably 3 gm. Inspection of the data in chapter two reveals that the

absorbance change at the A.,,, of the difference spectrum for rods in the four species

varied from 0.023 to 0.039 (mean 0.033). This corresponds to a specific absorbance

of 0.011 gm1 , but it is possible that this figure was low due to incomplete bleaching

of the rods. However, due to the relatively short pathlength of avian photoreceptors,

self screening will be minimal (Warrant and Nilsson, 1998) and absolute values will

affect the overall shape of the scotopic or photopic spectral sensitivity function

relatively little.
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Figure 4.9 Predicted spectral sensitivity curves for UVS visual pigments using the
rhodopsin template of Stavenga et al. (1993), modified using the a-band coefficients
for UVS pigments given by Palacios et al. (1996), with (dashed line) and without
(dotted line) the long wavelength tail patch for UVS cone pigments (see section
4.2.4.5). Also displayed is the polynomial given by Palacios et al. (1996) which
describes the spectral sensitivity of UVS pigments determined from
electrophysiological and microspectrophotometric data (solid line). Rhodopsin
template spectra are based on a cone 5 pm long (Harosi and Hashimoto, 1983)
containing a UVS pigment (Xmax 358 nm) with a specific absorbance of 0.013 gm-1
(Harosi, 1976) to resemble the UVS photoreceptors of Danio (Palacios eta!., 1996).
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4.3 Scotopic spectral sensitivity in the European starling, Sturnus vulgaris

Because avian retinae contain a single class of rod photoreceptor, scotopic

spectral sensitivity can be predicted from the absorptance of rod outer segments and

the transmission of the ocular media (Palacios and Goldsmith, 1993). Firstly, a

503 nm Xmax rhodopsin absorbance spectrum template was created using the log

normal functions given by Stavenga et al. (1993), including the long wavelength tail

patch for rods, with appropriately determined spectral locations and relative

absorbances for the p- and y-bands (equations 9, 10 and 11). The absorbance

spectrum was then corrected for a visual pigment specific absorbance of 0.018 pm-I

and a path length of 20 Jim (section 4.2.4.6), converted into absorptance and

multiplied by the transmission of the ocular media at each wavelength (section

4.2.3.3). The corrected template data (considered the dependent variable) was then

regressed linearly against the behavioural data of Dalland (1958), expressed as

relative quantal spectral sensitivity, over the range 440 to 560 nm and with the

intercept of the regression line set at zero. The log of the value for the slope of the

regression line obtained was then added to the log of the corrected template

absorption so that it best fitted the behavioural log relative quantal spectral sensitivity

data. The comparison between the scotopic spectral sensitivity of the starling

predicted in this way and the behavioural scotopic spectral sensitivity determined

using operant techniques (Dalland, 1958; Adler and Dalland, 1959) is displayed in

Figure 4.10. The discrepancy between the predicted and behavioural measures of

scotopic spectral sensitivity at longer wavelengths may be due to the inadequacy of

the long wavelength tail patch to fully describe photosensitivity at long wavelengths

(section 4.2.4.4). Alternatively, van Roessel et al. (1997) discovered that long

wavelength-sensitive cones contributed to the scotopic spectral sensitivity function

measured electroretinographically in Danio aequipinnatus. If the LWS visual

pigment of the single or double cones in the starling retina were active under scotopic

conditions, it would explain the failure of the model to adequately predict sensitivity

to longer wavelengths.

The effective spectral sensitivities of the rod photoreceptors in the starling,

blackbird, blue tit and peacock, expressed as effective absorptance, are displayed in
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Figure 4.11 to Figure 4.14 for comparison with the effective spectral sensitivities of

the cone photoreceptors and are all very similar to one another. There are no

behavioural measures of scotopic, or photopic, spectral sensitivity for the blackbird,

blue tit or peacock.
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Figure 4.10 Scotopic spectral sensitivity of the European starling (Sturnus vulgaris)
determined using an operant technique (Dalland, 1958, crosses) and predicted on the
basis of a rod photoreceptor 20 gm long containing a A. 503 nm visual pigment of
specific absorbance 0.018 gm -1 (solid line). Predicted sensitivity was shifted along
the ordinate to best fit the behavioural data as described in section 4.3.
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4.4 Photopic spectral sensitivity

Whereas the prediction of scotopic spectral sensitivity is relatively

straightforward, inferences about photopic spectral sensitivity from physiological and

anatomical data are complicated by assumptions regarding the performance and

relative contributions of the different receptor mechanisms.

With the advent of single cell microspectrophotometry, it was possible to

establish the existence of multiple cone pigments in vertebrates and correlate the

direct electrical responses of single photoreceptors with the spectral absorbance

characteristics of the photopigments contained within their outer segments (Marks,

1965; Tomita et al., 1967). In addition, the filtering effect of cone oil droplets

predicted by Shultze (1866, cited in Roaf, 1929) has been confirmed in both turtles

and birds by behavioural (Neumeyer and Jager, 1985) and electrophysiological means

(Ohtsuka, 1985; Wortel and Nuboer, 1986; Kawamuro eta!., 1997).

However, even if the effective spectral sensitivity of each photoreceptor type

can be predicted, the exact way in which the signals from each of the different types

are combined to generate the sense of colour vision is still the subject of some

debate. Whilst the presence of multiple, spectrally-distinct photoreceptors is

essential for colour vision, it is the comparison of the outputs of these receptors, in

spectrally opponent networks, that engenders the wavelength discrimination ability

observed experimentally. It is unsurprising, therefore, that models of spectral

sensitivity based on receptor properties alone predict psychophysical data less

accurately than those assuming that colour is coded by opponent chromatic

mechanisms and an achromatic mechanism (e.g. Sperling and Harwerth, 1971;

Brandt and Vorobyev, 1997).

Measures of spectral sensitivity determine discrimination thresholds. These

are set by noise which arises in the photoreceptors and at subsequent neural stages.

Furthermore, where one noise source is dominant, threshold are set by the

mechanism in which it originates. Most models have assumed that noise in the

opponency mechanisms is statistically independent and that the probability of

detection of a photon is given by the probability of its detection by the most sensitive

post-receptoral mechanism (Vorobyev and Osorio, 1998). However, if thresholds are
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dependent upon receptor noise and a single receptor type contributes to more than

one opponent mechanism, noise in opponency channels will not be independent.

4.4.1 The model

Consequently, Vorobyev and Osorio (1998) have developed a receptor noise-

limited colour opponent model for predicting the spectral sensitivity of di-, tri- and

tetrachromatic eyes from a range of animals. Their approach is conditional on three

main assumptions. Firstly, for a system with n receptor channels, colour is coded by

n-1 unspecified colour opponent mechanisms. The achromatic signal is disregarded

on the premise that under bright illumination for static targets subtending a large

visual angle, sensitivity to the achromatic component of colour is low (Thornton and

Pugh, 1983; Giurfa et al., 1997). Accordingly, the model cannot predict thresholds

where luminance mechanisms are important, as for small or moving targets, or in dim

conditions. Secondly, colour opponent mechanisms give zero signal for stimuli that

differ from the background in intensity only. Thirdly, thresholds are set by receptor

noise, and not by opponent mechanisms.

Whilst these caveats are restrictive to the models generality, in particular the

failure to account for thresholds measured under mesopic conditions (when the

contribution of an achromatic channel is not suppressed by bright illumination), their

approach has successfully predicted a variety of photopic psychophysical data

(Brandt and Vorobyev, 1997; Vorobyev and Osorio, 1998). For the purposes of this

study, the model of Vorobyev and Osorio (1998) is employed simply to compare the

relative spectral sensitivities of the starling, blackbird, blue tit and peacock, on the

assumption that photopic spectral sensitivity is determined only by the four single

cone classes with no involvement of the double cone system (Maier and Bowmaker,

1993). Photopic spectral sensitivity is not modelled for the turkey as its cone oil

droplets exhibited significant carotenoid deficiency (see chapter two). A simplified

explanation of the model as applied to tetrachromatic colour vision is given below.

A colour stimulus with a reflectance spectrum S(?L,) is defined by receptor

quantum catches:

max X

Q, =	 R,(x)s(x)i(x)a,	 Equation 15
min
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where i = 1, 2, . . . . n; Q i is the quantum catch of receptor i; X, is the wavelength;

R1 (X) is the spectral sensitivity of receptor i; I(A) is the spectrum of light entering the

eye and integration is over the whole spectrum.

Relative cone spectral sensitivity, R i (X), was obtained by multiplying the

absorptance of the outer segment (using the adapted template spectra, specific

absorbances and pathlengths described above), by the transmittance of its

corresponding oil droplet and the ocular media at each wavelength. It was assumed

that the proportion of incident photons transduced at the Xmax was independent of

spectral class. The resulting effective spectral sensitivities for each of the four single

cone types in each of the species for which photopic sensitivity was modelled are

summarised in Table 4.2. In addition, the calculated effective spectral sensitivities of

the rods and both single and double cones in each species are displayed in Figure

4.11 to Figure 4.14.

Species	 Effective cone A. ("in)

UVS / VS SWS MWS LWS

Starling (Sturnus vulgaris) 371 453 543 605

Blackbird (Turdus merula) 379 457 541 601

Blue tit (Parus caeruleus) 375 452 537 605

Peacock (Pavo cristatus) 430 477 537 605

Table 4.2 Single cone peak effective spectral sensitivities. The wavelength of
maximum sensitivity (A.max) of each single cone is determined from the pathlength
and specific absorbance of the visual pigment contained in its outer segment and the
transmission of its corresponding oil droplet and the pre-retinal media.
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Figure 4.11 Effective spectral sensitivity of the rod (A) and single cones (B) of the
European starling, Sturnus vulgaris, expressed as effective absorptance relative to the
rod. UVS, ultraviolet-sensitive; SWS, short wavelength-sensitive; MWS, medium
wavelength-sensitive; LWS, long wavelength-sensitive.
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Figure 4.11 (continued) Effective spectral sensitivity of the principal (C) and
accessory (D) members of the double cone pair of the European starling, Sturnus
vulgaris, expressed as effective absorptance relative to the rod. D, dorsal retina; V,
ventral retina. The subscripts V I , V2 and V3 refer to three arbitrary categorisations of
the P-type oil droplet in the principal member of the double cones located in the
ventral retina (see chapter two). An oil droplet was observed in the accessory
member only in double cones located in the ventral retina.
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Figure 4.12 Effective spectral sensitivity of the rod (A) and single cones (B) of the
blackbird, Turdus merula, expressed as effective absorptance relative to the rod.
UVS, ultraviolet-sensitive; SWS, short wavelength-sensitive; MWS, medium
wavelength-sensitive; LWS, long wavelength-sensitive.
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Figure 4.12 (continued) Effective spectral sensitivity of the principal (C) and
accessory ( D ) members of the double cone pair of the blackbird, Turdus merula,
expressed as effective absorptance relative to the rod. D, dorsal retina; C, central
retina; V, ventral retina. No oil droplet was observed in the accessory member.
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Figure 4.13 Effective spectral sensitivity of the rod (A) and single cones (B) of the
blue tit, Parus caeruleus, expressed as effective absorptance relative to the rod.
UVS, ultraviolet-sensitive; SWS, short wavelength-sensitive; MWS, medium
wavelength-sensitive; LWS, long wavelength-sensitive.

350



1 _

C

0
300 350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

0
300 350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

Chapter four: Predicting spectral sensitivity

Figure 4.13 (continued) Effective spectral sensitivity of the principal (C) and
accessory (D) members of the double cone pair of the blue tit, Parus caeruleus,
expressed as effective absorptance relative to the rod. D, dorsal retina; V, ventral
retina. No oil droplet was observed in the accessory member.
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Figure 4.14 Effective spectral sensitivity of the rod (A) and single cones (B) of the
peacock, Pavo cristatus, expressed as effective absorptance relative to the rod. VS,
violet-sensitive; SWS, short wavelength-sensitive; MWS, medium wavelength-
sensitive; LWS, long wavelength-sensitive.
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Figure 4.14 (continued) Effective spectral sensitivity of the principal (C) and
accessory (D) members of the double cone pair of the peacock, Pavo cristatus,
expressed as effective absorptance relative to the rod. D, dorsal retina; V, ventral
retina.
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To take account of receptor adaptation, receptor quantum catches, Q, were

normalized to the background, such that:

q i = lc,Q;	 Equation 16

where the coefficients k, describe the von Kries transformation (Vorobyev and

Osorio, 1998), and are chosen so that the quantum catches for the adapting

background are constant, i.e.

max

R, (x)s b (x)i(k)da,	 Equation 17
min A.

where S b is the reflectance spectrum of the background.

If colour is defined as a point in a perceptual space with co-ordinate axes

representing receptor quantum catches, and discriminability of any two colours is

described by the 'distance', AS, between them, then stimuli are indistinguishable if

AS is less than a 'threshold distance', AS t. Weber's law states that relative rather

than absolute values of the quantum catches are coded by a receptor channel

(Wyszecki and Stiles, 1967), thus:

= 
Aq	

Equation 18
q,

where At', is the difference of the signal, f1 , in receptor mechanism i between

threshold stimuli and Aq, denotes the difference in the quantum catch between the

stimuli. Integration of equation 18 gives the Fechner law, that is, the signal of the

receptor channel is proportional to the logarithm of the quantum catch:

= log (q 1 ).	 Equation 19.

However, because for the background q, = 1 (see equation 16), the difference

in the signals of receptor channels close to background is simply given by the

difference of receptor quantum catches, i.e.

W.; Aq, .	 Equation 20.

The following equation is then valid for tetrachromatic vision when stimuli

are close to background:
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(AS	 .= ((e 2 )2 (Aq 4 — Aq 3
)2 ± le3)2(Aq 4 Aq 2)2 ± (e le 4)2 (Aci 3 Act 2)2 .4_

(e2e3)2 (Aq4 _Ach)
2
 +(e2e4) 2 (Ac3_Aci1)

2
 +(e3e4)2(,q2_Aq1)2)÷

((ele2e3)2+(e1e2e4)2+(e1e3e4)2+(e2e3e4)2)

Equation 21

where ei is the standard deviation of the noise in receptor channel i, and the

difference in the quantum catch of the receptor mechanism between background and

stimulus is given (see equation 15) by:

Aq i = k i R i (X)I t (X)
	

Equation 22

where f(X) is threshold intensity, i.e. the minimum intensity of monochromatic light

of wavelength, X, detectable over an adapting background. Substitution of equation

22 into equation 21 gives an expression for threshold intensity as a function of

wavelength:

Equation 23.

The value of AS ` depends on the specific threshold criterion of the sensitivity

test (e.g. 75 % correct choices). However, because only relative spectral sensitivity

was of interest, AS ` was ignored and spectral sensitivity was then proportional to

100.
Noise in receptor channels, e i , is defined as:
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where vi is the standard deviation of noise in a single receptor cell of type i, and m

the number of cells of type i within a retinal integration area (e.g. a ganglion cell

receptive field). Averaging the signal over m cells improves the signal to noise ratio

as the square root of m. For simplicity, receptor noise was assumed to be

independent of the number of absorbed quanta (i.e. the Weber fraction was

independent of intensity). Furthermore, because measurements of the relative noise

in different types of avian cone were unavailable, noise characteristics of the cones

were deemed to be independent of spectral class. Thus, differences between receptor

mechanisms were attributable only to differences in their density in the retinal array,

i.e.

1
e	 r—	 Equation 25.

A/11.

Estimates of m for the four species under investigation were obtained as described in

chapter three and are listed in Table 4.1 (above).

4.4.2 Spectral irradiance

Because threshold intensity is defined relative to background reflectance,

spectral sensitivity is dependent upon illumination conditions. For instance, a

deficiency of UV wavelengths in the ambient light will result in high UV sensitivity,

and vice versa. However, the ambient spectral radiance of any natural environment is

rarely, if ever, constant at each wavelength across the spectrum. Consequently, for

the purposes of the model, the spectral composition of the illuminating light was

chosen in attempt to reflect a more realistic situation. The illuminant used was the

CIE (Commission Internationale de l'Eclairage) D65 standard daylight curve

expressed as relative quantal radiance (see Figure 4.15). For simplicity, the

background was assumed to be a perfect reflector at all wavelengths to which the

birds were sensitive, i.e. 'bird white'.

356



I

0 1

Chapter four: Predicting spectral sensitivity
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Figure 4.15 CIE standard daylight illuminant (D65). This radiance spectrum was
used for the prediction of relative photopic spectral sensitivities. The relative
spectral power distribution data of Hunt (1991) were interpolated to 1 nm intervals
using a linear spline (CurveExpert 1.2) and converted into quantal radiance relative
to 560 nm.
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4.4.3 Predictions of photopic spectral sensitivity

The results from the model of Vorobyev and Osorio (1998), as applied to the

starling, blackbird, blue tit and peacock, are displayed in Figure 4.16 to Figure 4.19.

All four species display peaks in their photopic sensitivity functions close to the

effective spectral sensitivities of their individual cone types. The relatively high

sensitivity of the UVS / VS cone channel is due to the paucity of ultraviolet

wavelengths in the illuminant.

The effect on spectral sensitivity of the difference in Xmax between the

peacock VS pigment and the UVS pigments of the starling, blue tit and blackbird is

evident in Figure 4.19. The peacock's VS colour channel has a broader sensitivity

peak, but considerably less sensitivity to ultraviolet wavelengths than the passerine

species which possess UVS pigments. The photopic sensitivity functions predicted

for the three passerine species closely resemble that predicted for the Pekin robin

(Vorobyev and Osorio, 1998), which correlated well with it's behaviourally-

determined photopic spectral sensitivity (Maier, 1992; Maier and Bowmaker, 1993;

Maier, 1994).

The photopic spectral sensitivity function determined behaviourally for the

starling is not shown for comparison (Adler and Dalland, 1959; Dalland, 1958). It

displayed a broad peak at around 550 nm, and probably represents the spectral

sensitivity of the double cone rather than the single cones. Furthermore, the

experimental conditions under which the behavioural test was conducted, particularly

the spectral composition of the light source used for light adaptation, are unknown.
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Figure 4.16 Predicted photopic spectral sensitivity of the European starling (Sturnus
vulgaris). Peaks in sensitivity at about 371, 453, 543 and 605 nm represent the
effective spectral sensitivity of the four single cone classes.
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Figure 4.17 Predicted photopic spectral sensitivity of the blackbird (Turdus merula).
Peaks in sensitivity at about 379, 457, 541 and 601 nm represent the effective
spectral sensitivity of the four single cone classes.
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Figure 4.18 Predicted photopic spectral sensitivity of the blue tit (Parus caeruleus).
Peaks in sensitivity at about 375, 452, 537 and 605 nm represent the effective
spectral sensitivity of the four single cone classes.
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Figure 4.19 Predicted photopic spectral sensitivity of the peacock (Pavo cristatus).
Peaks in sensitivity at about 430, 477, 537 and 605 nm represent the effective
spectral sensitivity of the four single cone classes.
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4.5 Discussion

Whilst the peak sensitivities of the photopic sensitivity function correspond to

the effective spectral sensitivity of the cones, as predicted by Bowmaker (1977), the

model of Vorobyev and Osorio (1998) has a number of advantages. Firstly, all

potential opponent interactions between cone classes are taken into account, such that

the sensitivity thresholds obtained represent receptor noise-limited performance of

the visual system.

Secondly, the model can easily be adapted to investigate the effects of

different illuminants, different stimulus reflectances, different adapting backgrounds

and varying photoreceptor proportions or levels of summation. It is intended that the

results of the model will be used to investigate the discriminability of bird relevant

objects under natural irradiances.

This sort of model might also be extended to investigate the effects of

intraretinal variations in cone photoreceptor abundance, which are observed in a

number of species (chapter three). However, the model of Vorobyev and Osorio

(1998) was relatively robust to changes in photoreceptor proportions at the magnitude

observed in the species investigated during this study, and may not be sensitive

enough to investigate such subtle differences. This may be because noise in the

receptor channels was proportional to the square root of the proportions. For this

reason the cone proportions used for each species in the model were an average for

all quadrants and both left and right eyes. Intra-retinal variations in cone proportions

are presumably adaptive for visual ecology (chapter three) and the effects on the

colour vision ability of different retinal regions warrants further investigation.

The most striking feature of the photopic spectral sensitivity functions of the

three passerine species is how similar they are to each other, and to the Pekin robin

(another passerine). This is due to the similarity in the spectral absorption

characteristics of the visual pigments and oil droplets of the single cones in their

retinae. In view of the differences in plumage coloration, diet and habitat, the lack of

variation in the spectral sensitivity of the single cones is surprising. The effective

spectral sensitivity of the MWS and LWS cone classes in the peacock are almost

identical to those calculated for the passerines. Perhaps the spectral sensitivity of
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these two cone types is optimal for most terrestrial diurnal species, and differences in

visual ecology are largely reflected in the nature of the SWS and VS / UVS cones.
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5. Conclusions

The retinae of the European starling, blackbird, blue tit, peacock and domestic

turkey contain five different types of vitamin A l -based visual pigment (rhodopsins)

in seven different types of photoreceptor cell. A single class of rod contained a

medium wavelength-sensitive visual pigment (Xmax 503 to 505 nm). The four

different types of single cone observed contained a visual pigment maximally

sensitive to either long (LWS, X., 557 to 566 nm), medium (MWS, X„, a„ 503 to

505 nm), short (SWS, Xmax 449 to 459 nm) and either violet (VS, Xmax 420 to

421 nm) or ultraviolet (UVS, Xrnax 368 to 376 nm) wavelengths. The LWS, MWS,

SWS and VS / UVS visual pigments found in the single cones were associated with

oil droplets designated as R-type (Xc ut 517 to 572 nm), Y-type (Xeu t 490 to 515 nm),

C-type (Xcu t 399 to 450 nm) and T-type (transparent) respectively. The LWS cone

visual pigment was also found in both the principal and accessory members of the

double cone, associated with P-type (Xcu t 407 to 500 nm) and, occasionally, A-type

Okla 479 to 490 nm) oil droplets respectively. In this respect, these hitherto

unstudied species are little different from the majority of other avian species which

have been investigated microspectrophotometrically.

Nevertheless, it is apparent that there is variation in the exact spectral location

of the Xmax of the visual pigment within certain photoreceptor types. Whereas most

species studied to date have a LWS visual pigment maximally sensitive between 563

and 570 nm, the LWS visual pigment of the blackbird has, like the tawny owl

(Bowmaker and Martin, 1978), a maximum sensitivity at shorter wavelengths (X.

557 and 555 nm respectively). Furthermore, because the A.cu t of the R-type oil droplet

in the LWS single cone determines its exact peak effective spectral sensitivity to a

greater extent than the visual pigment Xma,„ the selective pressure affecting spectral

tuning in the LWS visual pigments may act on the LWS double cones. Double cones

contain oil droplets, but these do not shift the peak effective spectral sensitivity of the

cone from that of the visual pigment. However, the function of the double cones is

unknown. The fact that such variation in LWS visual pigment Xmax is observed

within a closely related taxon (Passeriformes) might suggest that visual ecology
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rather than phylogeny has driven the differentiation of the avian LWS visual pigment,

although the environmental factors which might account for the difference between

blackbirds and blue tits or starlings are not readily apparent. This result may also

suggest that oil droplets, rather than visual pigments, are under the greatest selection

pressure with regard to colour vision performance. Because most species of bird are

diurnal, their vision is unlikely to be limited by the availability of photons, and the

loss in sensitivity predicted when the light reaching the outer segment is filtered by a

coloured oil droplet (Bowmaker, 1977) may be insignificant. Consequently, the

precise spectral location of the visual pigment Xinax may be less important than the

?cut of the oil droplet. Perhaps it is relatively easier to shift the peak effective spectral

sensitivity of a cone to longer wavelengths by increasing the concentration of the

carotenoid pigment in the oil droplet than by changing the X,„ of the visual pigment

through alterations in the amino acid composition of the opsin. If true, it might

explain why there is so little variation in the 2t.,„,ax values of avian SWS, MWS and

LWS cone visual pigments and why, in the case of the MWS and LWS visual

pigments, the Xmax values are so different from the wavelength of peak effective

sensitivity of the cone. By contrast, there is huge variation in the spectral location of

the Xmax of the fourth type of cone visual pigment (UVS / VS), which is associated

with a transparent oil droplet and may therefore be under greater selection pressure

than the other visual pigment types.

Identifying the role of the double cones is of paramount importance in

understanding the avian visual system. Double cones dominate the retinae of most

diurnal species (Meyer, 1977), but we are only able to speculate about their purpose.

The greater relative abundance of double cones in the ventral retina of ground

foraging species, including the starling, blackbird and peacock, suggests that the

visual information they are designed to transduce is more frequently derived from the

dorsal visual field. Combined with the knowledge that the spectral sensitivity of the

optomotor response in the pigeon corresponds to the spectral sensitivity of the double

cones (Campenhausen and Kirschfeld, 1998), it is possible that one of their primary

functions is motion detection. Nevertheless, despite the difficulties in separating the

actions of one type of photoreceptor from another in both electrophysiological and

behavioural measures of visual ability, further empirical investigations into the role
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of double cones are essential in deducing whether or not they are able to detect the

plane of polarised light (Young and Martin, 1984; Cameron and Pugh, 1991), or

whether they are incorporated into spectrally opponent networks for wavelength

discrimination (Palacios et al., 1992).

The spectral locations of the rod visual pigment and the MWS cone visual

pigment are not only almost identical within a given species, but show the least

variation between species. There is, however, some hint of variation in the SWS

cone visual pigment. Most species studied have an SWS visual pigment with a X,.

value between 450 and 460 nm. The budgerigar and canary, however, have SWS

visual pigments maximally sensitive to slightly shorter wavelengths (Xmax 444 nm),

as does the zebra finch (430 nm). Furthermore, as described in chapter two, there is a

significant correlation between the spectral location of the UVS / VS-type visual

pigment Amax and the Xmax of the SWS-type visual pigment. Birds that have a UVS

visual pigment have a SWS visual pigment with a X,„ ax value at shorter wavelengths

than those species which possess a VS visual pigment. Whilst

microspectrophotometric measurements of SWS and VS / UVS visual pigments are

generally noisier than measurements from the other visual pigment types, and as such

are susceptible to greater error in estimating the Xmax than other cone types, it is

interesting that these three species all inhabit open, arid environments in, or near, the

tropics (Goodwin, 1982; Blakers et al., 1984; Snow and Perrins, 1998b). The

ambient irradiance in such habitats will generally have a relatively high proportion of

short and ultraviolet wavelengths (Endler, 1993). For species which possess a VS

visual pigment, shifting the X„,a,, of the SWS visual pigment towards longer

wavelengths will help to reduce overlap between these two spectral classes, as does

the evolution of a C-type oil droplet with a longer Xcut, which is thought to increase

colour constancy and perceived colour contrast (Govardovskii, 1983; Vorobyev et

al., in press).

The largest variations in Xina„ occur with the visual pigment associated with

T-type oil droplets. As discussed in chapter two, the visual pigments measured in

this class of cone fall into two broad categories. Galliformes (chicken, Japanese

quail, peacock and turkey) and Anseriformes (duck) possess a VS visual pigment
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(Xmax 415 to 426 nm). Passeriformes (zebra finch, Pekin robin, canary, starling,

blackbird and blue tit) and the Psittaciformes (budgerigar) all possess a UVS visual

pigment (Xi-flax approximately 355 to 376 nm). There may also be a third group (4ax

402 to 409 nm) represented by the Manx shearwater, Humboldt penguin (both

Ciconiformes) and pigeon (Columbiformes). Whilst these groupings appear to

reflect phylogeny, they are undoubtedly influenced to some extent by visual ecology

and, before firm conclusions can be made, more data are needed.

However, in order to estimate the importance of ecological influences on the

spectral tuning of all classes of visual pigment, over and above the constraints

imposed by historical legacy, comparisons between species must be phylogenetically

independent (Harvey and Pagel, 1991). Broadly speaking, closely related species are

likely to be more similar to each other than more distant relatives (Felsenstein, 1985).

Accordingly, the analysis of phylogenetically independent contrasts, sometimes

called the 'comparative method' (Harvey and Pagel, 1991), requires information

about phylogenetic relatedness and time since divergence for all species investigated

(Richman and Price, 1992). These data are now available for many birds (e.g. Sibley

and Ahlquist, 1990; Sibley and Monroe, 1990) and, whilst beyond the scope of this

thesis, it is envisaged that such an approach may soon be viable, especially if visual

pigment data from more species are obtained.

With regard to future microspectrophotometric investigations, the desire to

study as wide a range of avian species as possible is hampered by the time-

consuming nature of the technique, and the difficulty in obtaining measurable outer

segments. Nevertheless, certain species may be earmarked for priority selection. For

example, other Columbiformes and Ciconiformes should be examined to determine

whether there is indeed a third major spectral location (X rna„ between about 400 and

410 nm) for the visual pigment associated with a T-type oil droplet. Furthermore, in

light of recent work by Viitala eta!. (1995), which revealed that the kestrel can detect

voles using the ultraviolet reflectance of their scent marks, diurnal birds of prey may

prove to be useful study species. Alternatively, phylogenetically closely related

species which inhabit different light environments, or have markedly different diets

or plumage coloration, may provide useful comparative information. In these
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respects, the Sturnidae, a family of passerines to which the European starling

belongs, would be a suitable candidate (cf. Beecher, 1978; Feare, 1984).

An alternative approach to the technique of microspectrophotometry is the

molecular genetic study of visual pigment opsin genes. The amino acid composition

of the opsin proteins produced by these genes determines the spectral absorption

properties of the visual pigments they become. Many spectral tuning sites in opsin

proteins have been identified, and it is conceivable that, before long, the genome of a

given species can be screened for opsin genes and the 4. values of the species'

visual pigments predicted from their nucleotide sequences. Furthermore, in situ

hybridisation with anti-opsin probes, as described in chapter three, will be able to

show that a particular opsin gene is being expressed in specific photoreceptors

(Wilkie et al., 1998). This approach may prove to be more efficient then

microspectrophotometry in surveying a large number of species and, by studying the

genetic sequence, may provide more information about the evolution of opsin genes.

In addition to interspecific variations in visual pigment A.Tha,„ there is also

considerable variation in the topographical distribution of the different cone types

within the retina, and the spectral absorption characteristics of the P-type oil droplets

found in the principal member of the double cones. Whilst the patterns observed

cannot always be correlated with particular aspects of visual ecology, they generally

describe differences between the posterior dorsal region of the eye, which is thought

to subserve binocular vision, and the remaining retinal area. However, some species,

such as the mallard duck (Jane and Bowmaker, 1988), have a more homogeneous

distribution of the different photoreceptor types across their retinae. In clarifying the

factors which influence retinal organisation, it is essential that all cone types are

distinguished. As described in chapter three, this has not been the case for many of

the species studied to date and the available data is of limited use. Nevertheless,

using the techniques described in this thesis, this is entirely possible and a more

thorough survey of the relative proportions and topographic distribution of cone

photoreceptors in a range of species, together with rigorous statistical analysis, is

overdue.

In conclusion, despite well over a century of work in bird vision, few firm

statements can be made about the relationship between visual physiology and visual
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ecology. The varied anatomical structures of the avian eye and visual nervous system

are a combination of functional adaptation and phylogenetic ancestry, which

complicates the identification of task- or environment-specific specialisations.

Nevertheless, it is hoped that this thesis contributes usefully to the growing body of

knowledge regarding avian vision such that more reliable conclusions may one day

be made.
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