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Abstract 
In this thesis the physical modelling of percussive drums was approached using 

digital waveguides. The constituent components of a drum were considered in- 

dividually before connecting them together to complete the model. 

To model the drurnskin techniques were created to incorporate smooth curved 
boundaries, calculate the impedance of a 2D waveguide mesh and include the 

effect of the bearing edge. The accuracy of the curved boundary model, which 

utilised `rimguides', was demonstrated with a good reproduction of the first 

seven resonant modes of a circular membrane. The impedance was used in a 
kettledrum model where it correctly controlled the exchange of energy between 

the drumskin and interior air. Simulations of different bearing edge sizes re- 

vealed that a blunt edge takes energy from low frequencies and redistributes 
it into higher frequencies. These decay faster and so the result is a decrease in 

sustain. 
For the interior air it was necessary to correctly model 3D wave propagation 

and incorporate diffuse reflections, which occur at rough surfaces. Unlike 3D 

meshes used in previous studies, the new dodecahedral mesh proposed here 

was found to exhibit near direction independent dispersion error. The effect 

of diffusion was adequately simulated with a technique that was shown to be 

controllable, enabling different types of surface to be modelled. 

To complete the drum model a way of connecting different waveguide meshes 

together was found and a new procedure for modelling a mallet exciter was 

proposed. The interfacing method enabled a lossless interconnection between 

two 2D meshes and also 2D and 3D meshes. The procedure used for the mal- 

let exciter incorporated non-linear stiffness and the mallet's contact area. Its 

behaviour was shown to be almost identical to that of a real mallet. 

Finally, a digital waveguide model of a kettledrum was constructed to demon- 

strate the techniques and the results were promising; the resonant modes were 

reproduced with good accuracy and their decay was sufficient to give the im- 

pression of realism, whilst not exactly matching that found through measure- 

ment. 
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Chapter 1 

Introduction 

1.1 Physical Modelling 

In order to understand the world around us and make predictions we construct 

models. From the metaphysical description of the universe perceived by our 

ancient ancestors, to the present day scientific theories of quantum mechanics 

and relativity the premise is the same: a set of rules are presented, enabling 

the construction of a model that describes the system under study. Of course, 

the system needn't be quite so grand as those aforementioned; the affect of 

climate change on insect populations or failure rate of engine parts, to name 

but two examples, can both be modelled. 

Physical modelling generally refers to a model of a mechanical system, to be 

used for design and testing before the real appliance is constructed. It can 

also be used to gain a deeper understanding of physical phenomena. Such a 

model may be an actual scaled version, or a set of governing formulae that are 

utilised on paper or a computer. The technological revolution has opened the 

door for the implementation of complex and accurate models, usually requiring 

hundreds and thousands of sophisticated calculations. 

1 



1.1. Physical Modelling 

1.1.1 The Physical Modelling of Musical Instruments 

An interesting application of physical modelling can be found in musical in- 

struments. Such models have two uses: an aid to musical instrument design 

and testing, and real-time synthesis for musical performance. A real-time mu- 

sical instrument synthesis model has to be fairly simple and therefore suffer in 

accuracy. It still has advantages over other synthesis techniques in that it can 

be controlled by meaningful variables, such as the magnitude and position of 

an applied pressure. Above all, physically modelled instruments are expressive 

and realistic. This means that they capture the behaviour and nuances of their 

real counterpart. In order to improve their fidelity a deeper understanding of 

the underlying physics is required. Bearing this in mind it is feasible that in 

time, as computer processing power increases and hardware becomes cheaper, 

real-time musical instrument models will become indistinguishable from real- 

ity. 

This has far reaching implications for musical recording, as only the control 

data for the models needs to be stored, such as note and volume. Therefore, 

high fidelity music could be reproduced from small streams of data which could 

easily be transmitted over the Internet. Alternatively many hundreds of hours 

of music could be stored on one CD. Interestingly, such a data format already 

exists in the form of MIDI (Musical Instrument Digital Interface). 

MIDI Control 

MIDI was developed in 1983 (Heckroth, 1995) to synchronise and connect key- 

boards, tone generators, rhythm machines and computers together. The MIDI 

data for the entire `Planets Suite' by Gustav Holst is available on the Internet 

and can be downloaded as a file 246 Kb in size (Trussler), compared to a CD of 

650 Mb. Of course, the fidelity of the music depends in part on the MIDI syn- 

thesiser used, and is at present far from capturing the sound of a real orchestra. 

Another aspect that determines the realism of performance is the amount of 

2 



1.1. Physical Modelling 

expression allowed by the control data. For instance, it can be imagined that 

a physical model of a violin may require data describing the manner in which 

it is held, the position, pressure and movement of fingers on the fingerboard 

and the control of the bow. In addition the instrument design and material 

properties could be sent as initial control data during model creation. 
Unfortunately MIDI is potentially limited in its use as a control format for 

complex physical models; by definition it can only support 128 different con- 

trollers and many of these are already set aside for specific purposes (Glatt). 

These controllers can be either `fine' or `coarse' in terms of the expression they 

permit. The coarse controllers use numbers in the range: 0 to 127, whereas the 

fine controllers cover the range: 0 to 16384. Naturally the larger range offered 

by the fine controllers is the most desirable for physical models. Despite this 

restriction on the amount of control data supported by MIDI, the Yamaha 

WX5 MIDI wind controller (IDnet, 2002) is a very expressive device, espe- 

cially when used in combination with the Yamaha V'L-70m Virtual Acoustic 

tone generator. This tone generator implements physical modelling techniques 

and can produce highly realistic and expressive wind-instrument sounds when 

used properly. 

Physical Modelling within this Thesis 

The objective of this thesis is to model a modern drum, which is a member of 

the percussion family. In order to do this it is necessary to separate the drum 

into all its constituent components and find a way to model them individually. 

These components include the drumskin, shell and interior air, but also the 

more subtle parts such as the roughness of the shell interior. Even the hardware 

fittings that are attached to the drum are to be considered. Once modelled all 

these parts need to be fitted back together to create a single model, capturing 

the essence of a drum in its entirety. 

3 



1.2. The Role of the Master Craftsman 

1.2 The Role of the Master Craftsman 

The design of drums, like that of many instruments, has been described as a 
`black art'. This is because the choice of size, shape and type of material is 

made by the master-craftsman based on his (usually inherited) knowledge of 

what works and what doesn't. His aim is to produce an instrument that sounds 
`good' especially under particular playing and environmental conditions. 
An instrument modelling technique would be very useful for fast prototyping 

of ideas and may help in the identification of what a good sound actually is. 

But rather than replacing the role of the master-craftsman such a modelling 

technique should work with him. Besides, it is the craftsman who bridges 

the gap between concepts and their realisations, for he knows in which ways 

certain materials can be manipulated. For example, there would be no point 
in designing an instrument with Computer Aided Design (CAD) software if it 

would actually be impossible to build. 

1.3 Thesis Overview 

The focus of this thesis has been on the development of an accurate musical in- 

strument modelling technique, rather than develop a real-time physical model 

that would quickly become obsolete, as suggested by projected increases in 

processing power. After all, it is easier to reduce the complexity of accurate 

models to yield real-time implementations, than work the other way round. 
Whilst there are already accurate techniques in existence that can be used for 

musical instrument modelling, many of these are over complicated for the 

task. The work done for this thesis has been the extension of a recently 

introduced technique known as `Digital Waveguide Modelling' (Smith(III), 

1987) (Smith(III), 1992). Only with the advent of more powerful computers 
has this become feasible for modelling anything other than simple systems. 

In order to model a percussive drum many new effects and components had to 
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be incorporated, particularly those that deal with specific acoustic problems. 

The existing digital waveguide technique is therefore extended, resulting in a 

modelling method that is useful within complex audio applications. 

Audio and visual demonstrations of the results from this thesis are included 

on the accompanying CD-Rom (see appendix A). These demonstrations are 

referenced at the relevant points within the text. Also on the CD-Rom there 

can be found a digital copy of this thesis and the C++ code that was devel- 

oped. In addition there are some programs to demonstrate wave and pressure 

flow within a drum, and a full application that creates audio samples from a 

Tom-Tom drum' model with editable parameters. 

1.3.1 Background 

The background consists of the principles of acoustics, modelling techniques 

and an overview of digital waveguide modelling. 
The first of these introduces the subject of acoustics. It presents this at a level 

that is necessary for understanding the physical phenomena to be modelled. 

It explains how sound is generated, transmitted and heard. Some modelling 

techniques that are already in use are then discussed. The principles behind 

their implementation are described and their advantages and disadvantages 

are compared. 

The overview of digital waveguide modelling elaborates further on the existing 

waveguide technique. It presents the development done on digital waveguides 

prior to the commencement of this work, bringing together research that helped 

to advance the state of the technique. 

1.3.2 The Physical Model 

This part contains the majority of the work done for the thesis. It is comprised 

of sections on drum modelling, a section on instrument excitation and finishes 

with the analysis, conclusions and future work. 
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The drum modelling sections identify the areas of the digital waveguide tech- 

nique that need attention in order to construct a drum model. The extensions 

to the exisiting methods that have been developed are discussed in detail. 

Although some work on instrument exciters had already been done, the ex- 

citation section is best suited here rather than in the background part. This 

is because the exciters are models in their own right and are essential for the 

analysis of the drum model. In addition, a new implementation of a mallet 

exciter is described. 

For the final analysis the developed digital waveguide technique is used to con- 

struct a kettledrum model. This is analysed and compared with an equivalent 

model that used a finite element technique (R. haouti, Chaigne, and Joly, 1999). 

The results from this are discussed and conclusions are formed. 

During the course of this work many ideas and possible future directions re- 

vealed themselves; the future work section briefly discusses these. The methods 
that can be extended are mentioned here and ideas are suggested as to how 

further development could progress. 

1.3.3 Appendices and Bibliography 

At the start of the appendix is a description of the accompanying CD-Rom. 

The majority of the mathematics and formulations relevant to this work are 

also to be found in the *appendices section. They were put here so that the 

bulk of the thesis wasn't broken up by pages of equations, which would have 

made it difficult to read. In this way the text only shows the mathematical 

results where necessary. 
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Part I 

Background 



Chapter 2 

Principles of Acoustics, the Ear 

and Modelling Techniques 

2.1 Sound Generation, Propagation, the Ear 

and Perception 

2.1.1 Sound Generation and Propagation to the Ear 

When objects collide kinetic energy is passed between them. This transfer of 

energy will alter their motions, such as the case of two snooker balls colliding. 

In addition, suppose the middle snooker ball of a rack were to vibrate then 

the whole rack would vibrate too, as the energy is transmitted from ball to 

ball. This transmission is not confined to one medium; the rack vibrates the 

table, the table the floor and so on. Similarly, the air surrounding the vibrat- 

ing objects also receives this energy, which then flows from air molecule to air 

molecule as they collide with each other. 

The ear, shown in figure 2.1, enables us to analyse this energy by collecting 

it with the `pinn' and guiding it towards the `eardrum', which is caused to 

vibrate. From the eardrum the vibrations are propagated along a chain of 

three small bones (the `hammer', `anvil' and `stirrup' or `malleus', `incus' and 
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Pinna 

Figure 2.1: Tlie Human Ear. 

Reproduced from Moore (1990) 

'stapes') and then through a small membrane, known as the `oval window, 

into the `cochlea'. The purpose of the three small bones, or 'ossicles', will be 

addressed later when sound pressure levels are introduced. 

It is within the cochlea that a very important function is performed resulting in 

the conversion from the kinetic energy of the vibrations into electrical energy. 

This will be discussed later in section 2.1.2, where the limits of auditory per- 

ception are considered. From the cochlea the electrical energy is transmitted 

along the 'auditory nerve' and into the brain where it is processed, resulting 

in the sensation of -hearing' sound. 

As air envelopes everything on the planet's surface it is responsible for most 

of our experience of sound, but the rack and table mentioned in the exam- 

ple above were also carrying the sound energy. In fact sound is transmitted 

through all media to some extent. However, the density and other physical 

characteristics of the medium affect the speed of sound propagation and its 

decay of inagnitude with time and distance. 

9 



2.1. Sound Generation, Propagation, the Ear and Perception 

In the snooker table vibration example, mentioned at the start of the chapter, 
it is important to note that there is no net movement. The energy-carrying 

particles of each medium oscillate about a fixed point, and they do so a certain 

number of times a second. The rate of oscillation is called the frequency and is 

measured in Hertz (Hz), named in honour of the German physicist Heinrich 

Hertz. As the energy propagates the next particle to receive it will be a step 
behind the last, or out of `phase', such that each particle is displaced by a 
different amount along a line traced to the energy's source. In this way the 

energy travels not as a single point, but as a collection of points in the form 

of a `wave'. 

Transverse and Longitudinal Waves 

There are different ways in which a sound wave will propagate and this de- 

pends on the orientation of the plane it travels along to the plane of vibration. 
A vibrating string, for example, exhibits transverse vibrations that result from 

transverse travelling waves. Here the direction of wave travel is perpendicu- 
lar to the vibration. If this energy were to travel through 3D space such as 

air it would be in the form of longitudinal travelling waves, where the wave 

transmission is in the same direction as the vibration (such as compression 

waves travelling along a `slinky' spring). Longitudinal waves are characterised 
by changes in pressure. 

Sound Pressure Levels 

The range of volume for sound is so great that a special logarithmic scale was 

conceived to measured it by. It is defined such that every additional power of 
10 in the amount of energy carried by a wave is represented by one Bel, named 

after Alexander Graham Bell. One Bel is a large step and so it is useful to use 

a unit that is one tenth of the size, in order to deal with the smaller changes 
in sound pressure level or intensity. This smaller unit is known as the decibel 

(dB). 
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The sound pressure level of a noise makes use of this scale, and is defined as 
(Hall, 1987a) 

SPL (dB) = 20loglo 
(_! 

_'L 
(2.1.1) 

\Pref 

where p represents the pressure amplitude of the wave (Pa), 

prof is the pressure reference standard for air (2 x 10'5 Pa). 

The ossicles within the middle ear act as a lever system to transfer mechanical 

vibrations from the eardrum, caused by oscillations in sound pressure level, to 

the inner ear. Without these the oscillations would be too small for the inner 

ear to detect properly and so any sound would be barely audible. 
There are two small muscles within the middle ear know as the `tensor tym- 

pani' and `stapedius', which are attached to the malleus and stapes respec- 
tively. When stimulated by high intensity sounds (greater than approximately 
75 dB SPL (Howard and Angus, 1996)) these muscles contract; the action of 

the tensor tympani results in an increase in the tension of the eardrum, and 

the stapedius pulling on the stapes stiffens the chain of bones. This increases 

the impedance of the middle ear, reducing the efficiency with which vibrations 

are transmitted from the eardrum to the inner ear and thus provides protec- 

tion from loud sounds. The mechanism, known as the `acoustic reflex', results 

in approximately 12 to 14 dB of attenuation, but only for frequencies below 

1 KHz. It takes between 60 and 120 ms (Howard and Angus, 1996) for the 

muscles to react and so there is a potential for damage to be caused by sudden 
loud noises. 

2.1.2 Perception of Sound 

The Choclea and Basilar Membrane 

The inside of the choclea has a very complex structure, but for the purposes 

of this thesis it is sufficient to say that it forms a wound up duct, like a 

snail's shell, and is partitioned into two tubes by the `basilar membrane'. The 
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basilar membrane is the actual sensor organ. One tube of the cochlea has 

the oval window at its end which is in contact with the stapes, as previously 

mentioned, and the other tube is sealed off with another elastic membrane, 

the `round window'. Both tubes are connected at the far end, or `apex', by a 

small hole in the basilar membrane called the `helicotrema' and filled with an 

incompressible fluid, the `perilymph' (Roederer, 1973a) (Jeans, 1937). 

The vibrations received at the oval window are converted into oscillations of the 

perilymph fluid that propagate through the cochlear duct and set the basilar 

membrane into motion. There are about 30000 sensitive hairs, arranged in 

`inner' and `outer' rows along the basilar membrane, that detect its motion 

and impart signals to nerve cells (neurons) which they are in contact with 
(Spoendlin, 1970). Remarkably, the basilar membrane oscillates in regions that 

correspond to the frequencies of the received sound: the lower the frequency 

the closer to the apex lies the region of activated hair cells, the higher the 

frequency the closer it is located to the oval window (Roederer, 1973a). This 

correlation between frequency and distance along the basilar membrane was 

found through physiological measurements performed on anesthetized or even 

dead animals (von Bekesy, 1960), and has been demonstrated by damaging 

selected bits of the basilar membrane and finding that the animal then becomes 

deaf to notes of certain pitches (Jeans, 1937). 

Psychoacoustics 

The study of sound perception and its limitations is known as psychoacous- 

tics and can be put to good use when modelling audible sound. For example, 

frequencies below 20 Hz and above 20 kHz may be ignored or modelled less 

accurately as they are outside the normal range of the human ear (Wood, 

1964)(Moore, 1990). The reasons for this are due to the natural construction 

of the basilar membrane, where the relationship between a change in frequency 

and the corresponding displacement of the activated region along the mem- 

brane is logarithmic. As a result, roughly two-thirds of its length is sensitive 
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to a range of frequencies between 20 Hz - 4000 Hz (Roederer, 1973a) with all 

other frequencies being squeezed into the remaining one-third. Those above 

20 kHz are situated so close to the oval window they are undetectable. It 

should also be noted that an active region actually spreads a small distance 

along the membrane, and this places limits on the ear's ability to resolve pitches 

of very similar frequency. 

For two pure tones presented one after the other there is a natural limit below 

which the difference in frequency is undetectable. This limit, or `just notice- 

able difference' (JND), varies from person to person, is a function of musical 

training, and unfortunately, depends considerably on the method of measure- 

ment employed (Roederer, 1973a). However, the JND always lies between two 

threshold values: below one of which a change in pitch is never detected, and 

above the other a change is always detected. 

When two pure tones of almost identical frequency are played simultaneously 

the active regions on the basilar membrane are merged into each other. This 

causes the sensation of `beating', where the loudness seems to rapidly oscillate. 

If the difference in frequency is increased slightly then the beating disappears, 

but it is replaced by a `rough' and unpleasant tone sensation. Separating the 

frequencies even further will result in both resonance regions on the basilar 

membrane being far enough apart to give two distinct pitch signals. However, 

at this limit the sensation of roughness still persists. When the frequency dif- 

ference has surpassed a large enough value, known as the `critical band', the 

roughness disappears and both pure tones sound `smooth'. Interestingly, for 

the human ear the critical band corresponds to an extension on the basilar 

membrane `serviced' by roughly 1300 receptor cells (Roederer, 1973a). These 

groups of cells cover an almost constant distance along the membrane, re- 

gardless of whether they are at the high frequency or low frequency end. It 

therefore follows that combinations of high frequencies are more difficult to 

resolve than lower ones, because of the logarithmic relationship between fre- 

quency and displacement of the activated region. 
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The ear is also sensitive to a large range of sound pressure levels, giving rise to 

the sensation of loudness. This sensitivity varies however, such that pure tones 

of equal sound pressure level, but of different frequency, don't necessarily seem 

to have equal loudness. Noises of very low sound pressure level may be below 

the threshold of hearing and therefore undetectable, whereas very loud noises 

can be painful (Wood, 1964) (R. oederer, 1973b). In addition to this sensitivity 

range there is an interesting effect know as `masking', where one tone can be 

undetectable due to the presence of another much louder tone. The minimum 

sound level that the masked tone must exceed in order to be heard varies with 
its frequency and depends on the frequency and sound level of the masking 

tone. " For two similar frequencies this masking level can be as close as 15 dB 

below the level of the masking tone, yet drop to over 60 dB below for larger 

frequency differences (Roederer, 1973b). 

2.2 Modelling Techniques 

There are many modelling techniques to choose from that may be used for 

sound synthesis and analysis. Each has its advantages and disadvantages, de- 

pending on the desired application. For example some are very accurate, using 

variables relevant to the physical system, but take a long time to compute and 

are complex in their construction. Others are more abstract or simple to con- 

struct but are not so accurate. When considering a technique it is obviously 

necessary to decide on certain criteria, two of which may be: `how much accu- 

racy is required? ' and `how much computing power is available? ' 

As mentioned on page 4 in chapter 1.3 an accurate modelling technique is 

desired for this research. Because of the emphasis on instrument design the 

technique should utilise physically relevant variables, but it should also be pos- 

sible to present it in a form that is easily manipulated by a craftsman, who 

may have no knowledge of physical modelling techniques. It is assumed that 

computing power is of no consequence, although the technique ought to be 
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contained within reasonable limits. 

A good introduction to sound synthesis methods and comparisons of physical 

modelling techniques has already been written (Tolonen, Välimäki, and Kar- 

jalainen, 1998). The following is a simple description of the techniques that 

were considered for investigation in this research. In addition a few of their 

advantages and disadvantages are discussed. 

2.2.1 Pure Mathematical and Real Models 

Before the advent of powerful computers all modelling was done with either 

pure mathematics or through the construction of real models to simulate be- 

haviour. An example of a real model could be a network of masses and springs 
to demonstrate the propagation of waves. Real models such as these can only 

of course be used for the simplest of simulations. 
Modelling a system with pure maths results in a formula that yields an ac- 

curate and instantaneous result. That is to say that once the system's initial 

conditions have been set, its exact state can be found at any point in time 

without an iterative process. Unfortunately, the more complicated the system 

the more difficult it is to describe mathematically. Also, a new model needs to 

be formulated for each new system that is considered. It is often the case that 

solutions to modelling problems are found intuitively, where the mathemati- 

cian has a good idea of what he is looking for in the first place. For example, 

to model a swinging pendulum a sensible trial solution would be in the form 

of a sinusoidal function. 

Mathematical formulae are useful for predicting a system's resonant frequen- 

cies, but finding the energy distribution within these frequencies is much more 

complicated. Any transient behaviour exhibited by the system before it settles 

down into its resonant frequencies is also very difficult to model in this way. 
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2.2.2 Finite Element 

A finite element model involves breaking the system up into many small ele- 

ments, each being a description of a simple mechanical system such as a mass 

and spring. The elements are considered small enough such that their be- 

haviour is well described by the underlying mathematics. The complete model 
is constructed by sticking the elements together and solving the conditions at 

their boundaries. Detailed discussions of the theory of finite elements can be 

found in the works of Petyt (Petyt, 1990) and Macey (Macey, 1987). 

Finite element models are very accurate and are often used to solve mechani- 

cal and aeronautical systems such as vibrations and stresses of machines and 

airflow over the wing of an airplane. Such accuracy is probably excessive for 

modelling musical instruments, where the vibrations are low in amplitude. In 

addition finite elements are mathematically intensive; the boundary conditions 

are difficult to solve and creating an interface between models is non-trivial. 

2.2.3 Ray-tracing/Image-source 

Ray-tracing and image-source methods are borrowed from the discipline of 

computer graphics but may be used for room acoustics problems too. They 

both avoid modelling the entire space by only considering the response at the 

listening point due to at least one excitation point. 

In the case of ray-tracing (Kinsler and Frey, 1962) (Kulowski, 1985) different 

paths are found that lead from the excitation point to the listening point. The 

lengths of these paths are used to calculate the different times taken by the 

sound to reach the ear. The response is therefore the superposition of different 

delayed versions of the original sound. 

Similarly, the image-source method (Eyring, 1930) (Allen and Berkley, 1979) 

also involves a superposition of delayed sounds. However, the lengths of the 

paths are found in a different way. Each source is reflected about the bound- 

aries of the acoustic space (as shown in figure 2.2) to form a collection of virtual 
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Figure 2.2: The Image-Source Technique. The crosses represent real and 'im- 
age' sources, the circle is a listening point. 

sources or `images'. A straight line drawn from an image to the listening point 

represents a possible path to the source as seen from this listening point. Each 

image is then reflected again and again until the length of the path is so great 

that the sound can be considered to have decayed to an inaudible level. 

These methods both suffer from the problem of the response time having to be 

explicitly set, and increasing this corresponds to an increase in complexity. For 

example, in the case of ray-tracing the response time is increased by consid- 

ering more rays in order to include a greater number of reflections before the 

sound reaches the listening point. As there are potentially an infinite number 

of rays the creation of the model can take a long time. For the image-source 

method the response time is extended by reflecting the images more times 

about the boundaries and thus it can be imagined that the number of images 

will increase very rapidly. 
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Another disadvantage is that important effects such as diffraction (the scat- 

tering of waves as they pass an obstacle), diffusion (the scattering of waves 

reflected at a boundary) and absorption at the boundaries have to be explic- 

itly modelled. These effects that involve scattering pose a particular problem 

in that the number of rays or images increases dramatically, which in turn will 
have a noticeable effect on the time taken to create and compute a model. 

Although potentially useful for modelling the resonance of a drum's air cavity 

these methods are not applicable to the modelling of vibrating objects such as 

a drumskin. 

2.2.4 Modal Synthesis 

Modal synthesis is an abstract approach to modelling that concentrates on 

the resonant modes of a vibrating system, rather than the materials and their 

shape. The frequencies and the damping coefficients of the modes of vibration 

are represented explicitly in the model (Adrien, 1991). In this way the sound 

of a musical instrument may be accurately reproduced as well as more unusual 

sounds. 

The modal frequencies are generated by a set of damped harmonic oscillators 

whose behaviour conform to the laws of mechanics. This physical basis gives 

the models a natural sound and allows a meaningful interaction between mu- 

sician and instrument. More complicated responses may be incorporated by 

linking the oscillators together with elastic connections. The basis of model 

generation and the relationship between real-life vibrating objects and their 

modal counterparts has previously been described (Djoharian, 1993). 

A very useful feature of modal synthesis is that it represents a system spec- 

trally. This means that it is possible to directly control the acoustic character- 

istics such as frequency, amplitude and damping. Its most endearing quality is 

the ability to generate models that sound natural but are materially unknown 

or impossible to construct in reality. 

18 



2.2. Modelling Techniques 

Despite these acoustically attractive features this technique does not explicitly 

model real vibrating systems without recourse to measurement or numerical 

simulation. This requirement is necessary if a model is to be used for `what-if? ' 

analysis, where a designer may want to know the affect on a drum's sound, for 

example, after changing the shape or material. 

2.2.5 Modalys 

Modalys is the successor of MOSAIC (Morrison and Adrien, 1993) (the name 

being changed to avoid conflicts with the Internet navigator `Mosaic'). Like 

Modal synthesis, it is another abstract approach to modelling virtual instru- 

ments. It too concentrates on the generation of resonant modes, their shape 

and damping factors. However, it calculates and controls these in a different 

manner. 

A Modalys synthesis model is based on four types of elements (objects, ac- 

cesses, connections and controllers) which may be assembled in a variety of 

ways (Eckel, Iovino, and Causse, 1995). Modalys objects describe vibrating 

structures that are defined by their geometrical structure and the physical pa- 

rameters of the material they are made from. The structures may be strings, 

plates or membranes, for example. From these a modal representation is calcu- 

lated to yield the frequency, damping factor and mode shape of each resonant 

mode, which can be controlled independently. 

The Modalys objects are assembled using Modalys connections, which de- 

scribe the interaction types between the objects such as a strike, pluck or bow. 

The locations of the interaction points are specified using Modalys accesses 

and these, as well as other time-varying synthesis parameters, are assigned to 

Modalys controllers. 

The use of objects and their connections within Modalys helps to produce 

sounds that feel natural, linking the sound phenomenon to a production mech- 

anism that could feasibly exist in reality. However, despite this and the expres- 
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sive and interesting acoustical properties of Modalys it suffers from the same 
disadvantages as Modal synthesis; it doesn't explicitly model a vibrating sys- 
tem such as a drum. For this the resonances would have to be independently 

calculated or measured and then imported as modal data. 

2.2.6 Tao 

Tao (Pearson and Howard, 1995) is another system that is very similar concep- 
tually to MOSAIC. Within Tao objects of various shapes and materials may 
be interconnected and excited at different points in time and space. 
The objects, their connection and excitation are described using a scripting lan- 

guage that consists of two parts: an orchestra language containing the object 
declarations and a score language describing when, where and how to excite 
them. The synthesis engine is entirely different to Modalys or MOSAIC, how- 

ever, as it takes its inspiration from celluar automata modelling techniques 

and has been developed to exhibit all the wave phenomena observed in the 

physical world (Pearson and Howard, 1995). This enables pieces of material 

of specific shape and size to be defined and have damping applied to various 

regions. 

The synthesis engine involves a collection of point masses arranged in a regular 

grid pattern and connected together with springs. Each mass, or cell, main- 
tains information about its own position, velocity, mass etc. and whether it is 

free to move or not. In addition all cells are constrained to have one degree of 
freedom along a single axis which is perpendicular to the grid on which they 

are laid out (Pearson). In this way it is a numerical implementation of the 

real models of masses and springs referred to at the start of this section, albeit 

with the scope for greater complexity. Figure 2.3 depicts an arrangement of 

masses and springs within a small section of material modelled using Tao. 

This technique has been used to produce a variety of high quality timbres and 

as it models the wave phenomena rather than the modal frequencies it is po- 
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Figure 2.3: A Small Section of Tao's Acoustic Material showing the Masses 

and Springs and the Direction in which the Cells are free to move. 
Reproduced from Pearson 

tentially useful for physically modelling drums. Of particular relevance to this 

thesis is the application of the technique to instrument design. For instance, 

`... with simple string-like instruments consisting of a single row of cells linked 

together with springs it has been found that damping small regions at either 

end of the string more highly than the rest of the cells produces a natural 

string-like decay in the spectrum [of sound] whereas a string with uniform 

damping exhibits amplitude decay only... ' (Pearson and Howard, 1995). This 

demonstrates the acoustically important absorption effects caused by the con- 

nections at the ends of a string to an instrument body. 

Unfortunately the models require a large number of calculations for each time 

step and this leads to long simulation times. Also, the technique is only capable 

of modelling transverse waves on surfaces or strings rather than longitudinal 

pressure waves travelling through 3D space. This precludes its use for mod- 

elling acoustic spaces such as the interior of a drum. 
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2.2.7 Cordis-Anima 

Cordis-Anima is a digital, real-time object modelling and simulation system 
(Cadoz, Luciani, and Florens, 1993). It is designed to reproduce the audible, 

visible and tactile aspects of an object for use in sound synthesis and animation 

applications. Although its goal is total simulation, the underlying principles 

could be applied to the sound synthesis of musical instrument physical models. 
All Cordis-Anima models are constructed from combinations of two elements: 

one represents a matter point and the other a link element. Each of these 

holds two variables that are defined as `intensive' 
, 
(force, pressure) and `exten- 

sive' (movement, speed, deformation). At each time step in a simulation these 

variables are passed between matter points via link element interconnections. 

Computed inside each matter point is an algorithm that defines its behaviour 

as either a mass, spring or friction element. A material and its shape may 

therefore be suggested by grouping masses, springs and friction elements to- 

gether and then arranging these as an interconnected network. 

This modelling technique is evidently accurate and also benefits from being 

intuitive in its manipulation, as the elements are arranged in the shape of the 

object to be modelled. It is, however, fairly well developed and computation- 

ally expensive. Furthermore, even though a model may behave in accordance 

with actual experience, it would appear to be difficult to mathematically prove 

its equivalence to a real system. 

2.2.8 Digital Waveguide 

A new addition to the acoustic modelling family is the digital waveguide. The 

digital waveguide is an accurate digital form of d'Alembert's. travelling wave 

solution to the wave equation (see section 3.2). 2D and 3D models are made 
by creating a mesh of waveguides, with each waveguide representing a path of 
finite length along which a wave may travel. In this way it can be seen that 

waveguide models are intuitive to construct; the mesh is formed such that it 
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fits within the desired boundary. In addition, the manner in which waveguides 

are calculated makes them ideal for implementation on a DSP chip, for they 

mainly require the copying of data from one location to another. As they are 

carrying digital signals, various acoustic effects can be included in the mod- 

els by incorporating techniques from the well established field of digital signal 

processing. 

Unfortunately, the digital waveguide has primarily been researched as a method 
for real-time synthesis rather than analysis, and so there has been a lack of 
development in the more complicated aspects of acoustics. 
For this investigation it was decided that digital waveguides would be consid- 

ered for modelling musical instruments. The reason for this was the potential 
for accuracy and the need for further development of the modelling technique 

to be useful as an analysis tool. 
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Chapter 3 

Digital Waveguide Modelling - 
Overview 

3.1 Underlying Mathematics 

At the core of the digital waveguide modelling technique is the one dimensional 

wave equation, the derivation of which can be found in appendix C. 1. Its 

general form is 
&2 

. ýä z, 

with 

c= 
ro, 

, 
(3.1.2) 

his equation shows that the acceleration of a point is related to the local T 

change in gradient and the wavespeed, c. 

3.1.1 D'Alembert's Solution to the Wave Equation 

In 1747 d'Alembert published the travelling wave solution to the 1D wave 

equation as follows (Lindsay, 1973) 

y(x, t) = y, - (x - ct) + yi(x + ct), (3.1.3) 

where y is the displacement at point x and time t, 

24 



3.1. Underlying Mathematics 

a E- 

b 

a+b % 

Figure 3.1: Superposition of Two Waves (Travelling in Opposite Directions) 
to make a Single Wave. 

y,. is a wave travelling to the the right, 

yi is a wave travelling to the left, 

c is the wavespeed. 

Essentially this describes an instantaneous wave variable at a single point, by 

the superposition of two independent travelling wave shapes propagating at 

speed c. The two waves progress in opposite directions, see figure 3.1, and 

carry information appropriate to the system under study. This information 

could be pressure, force or velocity waves. 

It is easy to prove that the travelling wave solution satisfies 3.1.1 because the 

two functions yr(x - ct) and yl(x + ct) are twice differentiable 

a2yr 
- 

g2yr 
(3.1.4) at2 ax2 

&Zi 
-c2ä 

2 (3.1.5) 

and therefore 

+ yt) 
öt2 ät2 ' (3.1.6) 

_2 
0' (Yr + YL) (3.1.7) 8x2 

02y 
= cä Z (3.1.8) 

2 
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3.2. Digital form of D'Alembert's Solution 

This also shows that the wave equation is obeyed regardless of the travelling 

wave shapes y, and yj. 

3.2 Digital form of D'Alembert's Solution 

The Digital Waveguide was derived from d'Alembert's solution by sampling the 

travelling wave description (Smith(III), 1987) (Smith(III), 1992). This results 
in the following formula, graphically described as a delay-line pair in figure 3.2 

y(tn, Xm) = y+(n - m) + y-(n + m), 

where + as a superscript denotes a travelling wave component 

propagating to the right, 

- as a superscript denotes a travelling wave component 

propagating to the left, 

n is a sample period number, 

m is a position along the delay-line pair. 

(3.2.1) 

The distance across each unit of delay is that which a wave will travel in one 

sample period. It can be expressed as Ox = fý, where f, is the sample rate of 
the model. 
At each discrete point the information yielded is accurate, provided the trav- 

elling wave shapes are initially bandiimited to less than half the sampling 
frequency. Information between these points can be obtained through inter- 

polation, and frequency dependent effects (see section 3.5) which occur in real 

y+(n) M samples delay 

y(tn, X n) 
y -(n) 

M samples delay 

(x = 0) 

Figure 3.2: The Digital Waveguide. 

n-M) 

y(n+M) 

(x=f) 
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3.3. Non-Integer Length Digital Waveguides 

life media may be reproduced by inserting digital filters into the waveguide 

structure. 

3.3 Non-Integer Length Digital Waveguides 

It may have occurred to the reader that the waveguide described above is con- 

strained to being a whole number of delays in length. As each delay element 

corresponds to a spatial distance then this limitation restricts models to spe- 

cific sizes. One way of alleviating the problem is to increase the model's sample 

rate, which decreases each delay's spatial distance, effectively enhancing the 

model's resolution. This enables a greater range of model sizes and allows 

a broader spectrum of frequencies to travel along the waveguide, but with a 
heavier computational burden. 

An alternative to avoid increases in sample rate is to add fractional delay filters 

(Laakso, Välimäki, Karjalainen, and Laine, 1996) to the ends of a waveguide. 
These filters are carefully constructed to give a specific phase response, in order 

to model a fractional delay. They may be non-recursive in their design, known 

as Finite Impulse Response (FIR) filters, or recursive Infinite Impulse Response 

(IIR) filters. The greater their complexity, or order, the more accurate the de- 

lay over the entire frequency range. As other filters may be employed to model 
frequency dependent effects, it is useful to eliminate any frequency dependent 

gain of a fractional delay filter. This can be done by restricting the filters 

to an IIR allpass implementation, see appendix F. 1 about allpass fractional 

delay filter design for more information on this. As these filters have a unity 

gain response over the entire frequency range they ensure that this part of the 

model is energy conserving. For modelling purposes a first-order allpass filter 

is usually sufficient to implement a fractional delay (as will become apparent 
later on, in section 4.1.3). 
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3.4. Digital Waveguides of Time-Varying Length 

3.4 Digital Waveguides of Time-Varying Length 

In some cases, such as modelling a pitch bend on a guitar string, it is necessary 

to vary a waveguide's length over time. Performing this variation in length 

was found to be very important when modelling the effect of a drum's bearing 

edge, see section 4.2. As previously stated allpass fractional delay filters may 
be used to make waveguides of non-integer length, and therefore this length 

can be varied by altering the filters' coefficients. Unfortunately, altering the 

coefficients of IIR filters such as these will introduce transients into the system, 

which produces an audible click. 

A technique has been proposed (Duyne, Jaffe, Scandalis, and Stilson, 1997) 

to implement a real-time pitchbend-able model, where the transients caused 

by coefficient changes are eliminated. The transient elimination method had 

already been described (Välimäld, Laakso, and Mackenzie, 1995). Here it 

was found that if a first-order allpass filter's coefficient, a, is kept within the 

range -5 <a<3 (which corresponds to a fractional delay, D, in the range: 

0.5 <D<1.5), then the transient caused by a coefficient change is audibly 

insignificant after six samples. Therefore, by keeping the last six input samples 

in a buffer, it is possible to eliminate any transients by replaying this buffer 

through the filter after each coefficient change. This six sample period is known 

as the filter's `warm-up' period. In this case the eliminator routine runs at six 

times the sample rate of the overall system. Alternatively, an eliminator filter 

(which is a copy of the allpass filter) is run in parallel and its state variables 

are copied to the allpass filter every sixth sample. The eliminator filter's 

coefficient is changed six samples before that of the allpass filter used in the 

system. This restricts the coefficient update to be performed, at most, once 

every six samples. 
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3.5. Incorporating the Effect of Internal Viscous Friction and Stiffness 

3.5 Incorporating the Effect of Internal Vis- 

cous Friction and Stiffness 

The physical characteristics of the medium through which the sound propa- 

gates alters the wave equations, generally adding higher order terms. Suffice 

to say that d'Alembert's travelling wave functions are no longer solutions. 
Explicitly analysing these effects is beyond the scope of this thesis; for more 

information on how these may be incorporated into complex digital waveguide 

models consult the future work section 8.1 of this thesis. Nevertheless, from 

analysis of the stiff and lossy wave equations it is possible to draw some infor- 

mation about the resulting behaviour. This may be used to give the impression 

of stiffness and internal friction. 

Stiffness causes the speed of wave travel to become frequency dependent, a 

phenomenon known as dispersion. Generally, high frequencies propagate faster 

than low frequencies. This effect may be included by incorporating allpass fil- 

ters of a non-uniform delay versus frequency. 

Another frequency dependent effect is internal friction, which is caused by vis- 

cosity within the medium. When this occurs kinetic and potential energy are 

effectively lost as they are converted into heat. The higher frequencies lose 

energy at a greater rate than the lower frequencies (Morse and Ingard, 1968). 

This effect can be modelled with lowpass filters, see section F. 2. 

3.6 Real-time Synthesis 

Real-time synthesis models have been created using the techniques described 

above. Of particular note is the Karplus-Strong Algorithm (Karplus and 
Strong, 1983) which preceeded the digital waveguide (it is, in fact, an equiva- 
lent but simplified version). Real-time implementations presently use the 1D 

waveguide to model wave propagation along a string or a tube, with the more 

complicated effects of body resonance appended to the end of the waveguide as 
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3.7. The Digital Waveguide Mesh 

a bank of filters. Such implementations are used exclusively in Yamaha's VL 

series of synthesisers. More recently waveguide models have been included in 

computer soundcards, such as Creative Labs' AWE 64 Gold (Creative, 2001). 

In order to increase efficiency many components of the waveguide model can be 

commuted together. As an example, all the filters that are used for modelling 

losses and dispersion may be lumped into a single filter that is appended to 

one end of the waveguide. In special cases this can reduce the waveguide to 

standard lattice/ladder digital filters which have been extensively developed 

in the past (Gray and Markel, 1975). 

3.7 The Digital Waveguide Mesh 

The digital waveguide only models wave propagation in one dimension. How- 

ever, it is possible to extend the technique to two dimensions or more by 

connecting unit length waveguides together to form a mesh. The 2D mesh has 

been shown to satisfy the 2D wave equation (Duyne and Smith(III), 1993), 

which makes it useful for modelling wave propagation along a membrane. 

3.7.1 Scattering Junctions 

If each waveguide is considered to be a string then their intersection at a point 

is described by a `series' junction, where there is no energy loss. Such junctions 

are known as `scattering junctions' as they take energy in and redistribute it 

amongst the waveguides. There are two conditions at each junction that must 
be satisfied: 

Condition 1 

The velocities of all the strings (1D waveguides) at the junction must be equal 

since they are all moving together at that point. This junction has a velocity, 
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3.7. The Digital Waveguide Mesh 

vj. If each string's velocity is denoted as v; then this condition may be written 

v; =VJ. 

Condition 2 

(3.7.1) 

There must be no net force at the junction, as all the forces exerted by the 

strings must balance each other 

E fi = 0. (3.7.2) 

where N is the total number of waveguides attached to the junction. 

As the digital form of d'Alembert's solution splits the wave variables into two 

opposing travelling waves, the velocities and forces from above are equivalent 
to: v; = v; +vi- and f; = fi + f; -. Each force is related to the velocity by its 

impedance (as described in the next section on waveguide impedances) with 

f= Rv. In the case of the travelling waves this relationship becomes 

. 
fi 

-- R vi , 
(3.7.3) 

fi: - = -R; v, . (3.7.4) 

Notice that there is an inversion for waves travelling to the left (those with a 

- superscript). This is because the direction of force is now opposite to the 

direction of wave travel. 

Combining these equations together results in the formulation of the lossless 

scattering junction (see section D. 1 of appendix D) 

yr =2 
ENRD`výi 

, (3.7.5) 

vi =vj - vi. (3.7.6) 

If the junction is to be clamped then vj must equal zero. Therefore, the 

reflected velocity wave is related to the incoming velocity wave by 

V7 _ -v; (3.7.7) 
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3.7. The Digital Waveguide Mesh 

Figure 3.3: The Structure of a Rectilinear Mesh. The lines represent waveg- 
uides and the interconnections represent lossless scattering junctions. 

It should be noted that the impedance of a scattering junction within the mesh 

is (see section D. 2 of appendix D) 

Ptmedn =2 
R' 

. 
(3.7.8) 

3.7.2 Dispersion Error 

A common form of the 2D digital waveguide mesh has a rectilinear construc- 

tion (see figure 3.3). Ideally all waves should travel at the same speed within 
the mesh structure. However, it can be shown that the mesh is equivalent to 

a finite difference scheme (see section E. 2 and Fontana and Rocchesso (1998)) 

and similarly it too exhibits dispersion error. This means that the speed of 

wave propagation depends on its frequency. In the case of the rectilinear mesh 
the dispersion error is noticeably direction dependent, as shown in figure 3.4. 

A method for calculating the error will be covered later in section 4.1.2. 

The plot in figure 3.4 is orientated in the same plane as the waveguide mesh. 
Every point represents the wavespeed of a wave travelling in a particular direc- 

tion with a certain frequency. The frequency and direction is measured as the 
distance and angle of a line drawn from the centre to a point. Its wavespeed is 

suggested by the colour at that point, with white representing the maximum 

wavespeed and black representing the minimum wavespeed. 
It can be seen that waves travelling in the diagonal directions of the rectilinear 
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3.7. The Digital Waveguide Mesh 
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Figure 3.4: The Dispersion Error of a Rectilinear Waveguide Mesh. The axes 
are normalised-7 frequencies. 

mesh don't suffer any dispersion error. Time worst dispersion is experienced by 

waves travelling in the horizontal and vertical directions. The effect of this is 

that the actual boundary of the mesh doesn't correspond in shape to a siin- 

ilar boundary applied to a real membrane. The shape of this boundary also 

depends on the frequency of a travelling wave. This results in the resonant 

modes of the model being slightly different to those predicted by mathematical 

analysis. 

A method has been proposed to correct this angular dependency by using in- 

terpolation techniques (Savioja and Välimäki, 1996). This introduces an extra 

mathematical burden and so a simpler way to correct the angular dependency 

is found in section 4.1.2, where a circular membrane is to be modelled. 

3.7.3 Applications of Waveguide Meshes 

\Vaveguide meshes have naturally found applications in the area of membrane 

and room acoustics modelling. The efficiency and accuracy of different mesh 
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3.8. Waveguide Impedances 

geometries and topologies have been of particular interest to researchers; rele- 

vant to this thesis was the investigation of 2D meshes for modelling membrane- 
based percussion instruments (Fontana and Rocchesso, 1998). This introduces 

some mathematical tools for analysis and describes a method for simulating 

an air load on the membrane. 
The computational cost and accuracy of different 2D geometries (waveguide 

and finite difference schemes) has been extensively analysed in terms of sam- 

pling efficiency and dispersion error (Fontana and Rocchesso, 1999), and com- 

parisons of their accuracy have also been made when applied to acoustics mod- 

elling of rooms with various boundary shapes (Murphy and Howard, 2000). 

Within this paper frequency warping techniques and high resolution meshes 

were also used for comparison. It has been found that overall a triangular 

mesh structure performs the best in terms of its accuracy and bandwidth ver- 

sus computational efficiency and memory load. 

Performance testing and model validation has also been applied to parallel 

implementations of the tetrahedral waveguide mesh with an aim to real-time 

synthesis of acoustic spaces (Campos and Howard, 2000). Preliminary listen- 

ing tests were promising and binaural room responses of a listener's head have 

confirmed that the model is able to provide appropriate sound localisation 

cues. 

3.8 Waveguide Impedances 

The impedance of a medium relates an applied force, or pressure, to the re- 

suiting velocity. It is a measure of how easily a medium can be moved or 

compressed. So far the waveguide models have been homogeneous; that is to 

say that they model only one type of media. For these cases it has been pos- 

sible to ignore the impedances of the waveguides because they are all equal. 
For example equation 3.7.5 above reduces to 

N+ 

vj= N, 
v, 
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3.8. Waveguide Impedances 

if all waveguide impedances are the same. As complex models will require 

different meshes to interact with each other, their impedances will be required. 

The equations used to calculate the impedances are shown below. 

1D Case 

The impedance of a 1D digital waveguide is equivalent to the driving point 

mechanical impedance of a string (Hall, 1987b) 

R= =µc= ý'uý (3.8.2) 

where T is the tension applied to the string (N), 

c is the wavespeed (ms-1), 

µ is the linear density (kgm-1). 

The relationship between force and velocity at a point is 

f= Rv. (3.8.3) 

2D Case 

There is very little about the mechanical impedance of a 2D membrane in the 

literature. The reason for this is because the applied force has to act on an 

area instead of an infinitesimally small point, which would cause an infinite 

acceleration. As the junctions of a waveguide mesh actually represent small 

tessellated elements, then the force at these junctions is actually acting over 

a finite area. A method for calculating the value of a 2D waveguide mesh 

impedance is proposed in section 4.1.5. 

3D Case 

In the 3D case the impedance relates pressure to velocity, instead of applied 

force, and so a different symbol, Z, is used 

p= Zv, (3.8.4) 

35 



3.9. Summary 

where v is the velocity of a planar front of the medium with applied 

pressure p. 

The impedance of a 3D medium is calculated as (Hall, 1987c) 

Z= PC, (3.8.5) 

where p is the volume density (kgm 3). 

3.9 Summary 

In this chapter an overview of the existing digital waveguide techniques has 

been given. A single digital waveguide is a solution to the 1D wave equation. 

Each unit waveguide has a finite length, restricting the range of model sizes, 

yet it is possible to append digital filters in order to create waveguides of frac- 

tional lengths. With careful control of these filters the length of a waveguide 

may be altered over time, enabling dynamic effects. The presence of internal 

friction and stiffness may also be suggested by appending filters. 

The simple models used to date are ideal for real-time synthesis of strings and 

pipes. However, more complicated models may be created by interconnecting 

waveguides to form a mesh. A 2D waveguide mesh is equivalent to a finite 

difference scheme of the 2D wave equation and is therefore useful in modelling 

a membrane, but unfortunately its structure introduces dispersion error. 2D 

and 3D meshes have been studied and used to model membranes and acoustic 

spaces. 

When interconnecting waveguides and waveguide meshes it is necessary to con- 

sider their impedances. The impedances of 1D and 3D media may be found 

through well-known calculations, but before commencing this thesis there was 

no method for calculating the impedance of a 2D waveguide mesh. 

Using digital waveguides to create a complete drum model will require im- 

provements and additions to the existing techniques. For instance, to model 
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3.9. Summary 

the circular drum kin it will be necessary to find a way of accurately mod- 

elling curved boundaries at the edge of a 2D waveguide mesh. A technique for 

attaching different waveguide meshes together will also be needed, as it may 
be envisaged that the drum model will be made up from a number of meshes. 
There are other aspects of a drum that the current waveguide techniques are 

not capable of modelling. These will be addressed in the next section. 
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Part II 

The Physical Model 
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The Physical Model - overview 

The focus of this work was to produce a model of a drum using digital waveg- 

uide techniques. The state of such techniques, as of commencing the research, 

has been described in chapter 3. In order to create a drum model new tech- 

niques were required and the existing techniques needed adapting and improv- 

ing. 

The process adopted to complete the model involved examining the main coin- 

ponents of a drum and then attempting to model them separately Once (lone 

the separate models could be combined together. The main components con- 

sidered for this research are shown in figure 4.0. 

driniskin 

bea 

finitcri. 

int 

Figure 4.0: The Main Components of a Drum. 

ttiii; 

sI'II 

do 
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Chapter 4 

Modelling the Drumskin and its 

Bearing Edge 

4.1 Modelling the Drumskin 

The drumskin is an almost perfectly flexible and circular piece of material. 

Ideally, it is tensioned evenly about its edge. For modern drums the material 

often used is mylar. Naturally this material will exhibit some stiffness, however 

for simplicity this is ignored in the following investigation. Ideas for modelling 

stiffness or its effect are discussed in section 8.1. 

4.1.1 The Modes of an Ideal Circular Membrane 

In order to test the accuracy of a membrane model it is necessary to calcu- 
late the expected modes of resonance. A mathematical analysis of a circular 

membrane produces the following equations to predict the modes (Hall, 1987d) 

Finn = imn 
c 

Zar, 4.1.1 

c= (4.1.2) 
YYY Q 

where m is the number of nodal lines that cross the membrane diametrically, 
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4.1. Modelling the Drumskin 

n is the number of concentric nodal circles (including the boundary), 

fmn is the resonant frequency of the membrane for a particular value of 

m and n (Hz), 

7mn is the nth root of the Bessel function of order m (see appendix B 

section B. 6), 

r is the membrane's radius (m), 

c is the wave speed (M. 

T is the tension (N), 
m 

c is the density Q5). 

Suitable parameters for a membrane (Fletcher and Rossing, 1991a) are listed 

in table 4.1. Putting these values into equations 4.1.1 and 4.1.2 results in the 

modes of resonance shown in table 4.2. 

material I Mylar 

b (thickness) 0.0003 m 
r (radius) 0.16 m 
p (density) 2072 k-q 

tension 3500 m 

Table 4.1: Parameters of a Typical Membrane. 

mit 1 01 11 21 02 31 12 41 

fmn (Hz) 1179.5 285.4 384.1 412.8 475.7 524.1 566.5 

Table 4.2: Resonant Modes of an Ideal Circular Membrane. r=0.16m, o 
0.6217, T= 3500 m. 

4.1.2 Modelling the Wave Propagation of the Membrane 

The 2D digital waveguide mesh is employed to model the two dimensional 

transverse wave propagation of a membrane. From looking at the dispersion 
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4.1. Modelling the Drumskin 

error plot of a rectilinear mesh (see figure 3.4 in section 3.7) it can be seen 

that this technique does not model ideal wave flow correctly. The worst part 

of the error is the angular dependent dispersion, which causes travelling waves 

to propagate at different speeds depending on their direction as well as their 

frequency. This would cause a digital waveguide membrane model to resonate 

at the wrong frequencies, as though it was a different shape to that intended. 

Work has recently been done to reduce the amount of angular dispersion error 

with interpolation techniques (Savioja and Välimäki, 1996), but more accurate 

models could also be achieved by increasing the sample rate of the model. 
Doing so increases the maximum possible frequency modelled by the mesh, 

and so the dispersion error affects frequencies closer to the high end of the 

audible range. In addition, as the higher frequency modes of 2D shapes are 

more dense in the spectrum this error may be imperceptible to the ear. 

The 2D Triangular Digital Waveguide Mesh 

Raising the sample rate requires the number of nodes in the mesh to be in- 

creased, in order to preserve the same spatial size of the modelled object. This 

is in fact causing the mesh to be more dense, but still the angular dependency 

of the dispersion error remains the same. Another way to increase the density 

but keep the sample rate the same and alter the angular dependency is to 

employ a different mesh structure. Ideally, such a mesh structure would cause 

the dispersion to be angular independent. 

A denser mesh arrangement is found by using a triangular mesh structure, see 
figure 4.1. Notice that wave propagation is now explicitly modelled in more 
directions than in a rectilinear mesh (see figure 3.3 in section 3.7). Different 

2D mesh structures and their dispersion errors have previously been investi- 

gated (Duyne and Smith(III), 1996). Here, in addition to the rectilinear and 

triangular meshes a hexagonal mesh was considered; this is made of 3-port 

scattering junctions. However, the triangular mesh can be shown to exhibit 

near direction independent dispersion error and has been found to support the 
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4.1. Modelling the Drumskin 

Figure 4.1: The Structure of a Triangular Mesh. The lines represent waveg- 
uides and the interconnections represent lossless scattering junctions. 

widest bandwidth of frequencies (Fontana and Rocchesso, 1999). For these 

reasons the 2D triangular digital waveguide mesh was chosen to model wave 

propagation across the drumskin. It is notable that the triangular mesh is the 

densest 2D arrangement of nodes interconnected by unit length waveguides. 

This is because the minimum number of equally lengthed lines that can enclose 

an area is three. The area formed is a triangle, like the triangular elements 

within the mesh that are bounded by three waveguides each. 

The Dispersion Error of a 2D Triangular Digital Waveguide Mesh 

The frequency dependent wavespeed (dispersion error) of the triangular mesh 

is found to be (see appendix E. 1 for the derivation) 

c (w) _ 
ýý 

, 
(4.1.3) 

(4.1.4) LG = arctan 
4 

-b 

b= -3 coswy + cos(2wx - 
V4 4 

Y) + cos(-2wx -4 wy) 

where w is the two-dimensional spatial frequency vector with variables (wy, wy)T , 
c (w) is the frequency and direction dependent speed of plane wave travel 

(in space samples per time sample). 
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Figure 4.2: The Dispersion Error of a Triangular Waveguide Afcsh. 

The nominal wavespeed within the mesh, where w1 = w, u =0 has previously 

beeil found (Fontana and Ro ccliesso. 1998) 

1 
Co ý 72' (. 1.1. (i) 

Figure 4.2 shows the results of plotting c (cam) for different values of w. Although 

the higher frequencies travel slower. as indiciated bY the dark regions. the 

shading is almost circular in shape. This demonstrates that the triangular 

mesh structure has near direction independent dispersion error. 

4.1.3 Modelling the Clamped Boundary 

Now that an appropriate niesh structure has been proposed, it is necessary to 

find some way of adding a circular clamped boundary in order to model the 

drumskin properly. Time following is an investigation that was done in order to 

advance the state of waveguide modelling, techniques to model smooth, curved 

boundaries. 

As previously described a clamped boundary may be modelled by forcing the 
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bo 

nesh boundary 

node 
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Figure 4.3: Rimguides Intersecting Boundaries. (a) Perpendicular Intersec- 
tion, (b) Closest Point Intersection. 

nodes' velocities at the edge to zero (see section 3.7.1). However, this will only 

approximate the boundary shape as not all nodes will lie on this boundary, 

giving the model a jagged edge. Performing the clamping in this way causes 

waves travelling up waveguides, that are connected to these edge-most nodes, 

to be reflected and sent back down again. Alternatively, this effect may be 

achieved by using special waveguides that perform the reflections at one end, 

thus disposing of the zero velocity nodes. These special waveguides are looped 

waveguides that force a sign inversion on the travelling waves. They have been 

given the name of `rimguides' (Laird, Masri, and Canagarajah, 1998). 

As these rimguides model waves that are reflected back in the direction they 

have come from, they must lie perpendicular to the gradient at the point where 

they intersect the boundary, see figure 4.3a. It should be noted that there are 

instances when a perpendicular intersection of the boundary is not possible, 

as shown in figure 4.3b. In this case the rimguide is attached to the closest 

point on the boundary. In fact, attaching to the closest point will also make 

a perpendicular intersection under normal circumstances, and so this is the 

preferred method for constructing rimguides. 

Another point to notice is that the edge-most nodes may not have as many 

connections as the nodes within the mesh. This irregularity would result in 

an impedance discontinuity at the edge, causing inaccurate reflections. To 

counter the problem the rimguides' impedances must be scaled to remove this 
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4.1. Modelling the Drumskin 

Figure 4.4: A Circular Membrane modelled by a Waveguide Mesh with 
Rimguides about its Edge. 

impedance discontinuity. For example, consider an edge-most node with n 

waveguides attached to it, each of impedance R. If the nodes within the mesh 

have N waveguides attached, then this edge node should have a rimguide of 

impedance R(N - n) appended, to preserve the total impedance of R times 

N. 

Shaping the Waveguide Mesh 

The rimguides used to model a clamped boundary are to be attached to the 

edge of the digital waveguide mesh. The mesh itself must be shaped such that 

it fits best within a circular boundary; any nodes outside this boundary are 

removed from the model. Figure 4.4 depicts a waveguide mesh with rimguides 

attached to model a circular membrane. The diameter of the boundary is 

determined by satisfying the following relation: the time it takes for a travelling 

wave to propagate from one side of the membrane model, through the centre 

to the opposite side, must equal the time taken in the ideal membrane. As 
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4.1. Modelling the Drumskin 

the rimguides will be an extension of the mesh the wavespeed through them 

is also c(ig). To compensate for the rimguides' spatial length, the boundary 

diameter has to be less than the required model diameter, resulting in 

1 db 
+ Tmin 2r 

4.1 7 X 
C6w) CGO C 

where f, is the sampling resolution of the model (Hz), 

db is the boundary diameter (spatial samples), 

T, n;,, is the minimum possible loop length of any rimguide (spatial samples). 

Rearranging equation 4.1.7 

db = 
2rfec(w) 

- Tm{n. (4.1.8) 
c 

The mesh is constructed so that it fits best within this boundary. Because it 

is made of triangular shapes its edge will be jagged, resulting in an angular 
dependent diameter d�i(Lw) < db. 

Constructing the R. imguides 

The aforementioned angular dependent diameter may be substituted in place 

of the desired boundary diameter in a rearranged form of equation 4.1.7; this 

gives an expression from which the required rimguide lengths or phase delays 

can be calculated 

T (W) = 
2rf (w) 

- (Lw)A (4.1.9) 

where r(w) is the desired phase delay or loop length of a rimguide 

situated around the mesh at angle ew from the horizontal. 

The desired phase delay of the rimguides is angular dependent and therefore 

the slight hexagonal shape apparent in figure 4.2 can be compensated for. 

Ideally the rimguides should match this desired response for all frequencies to 

make the boundary truly circular. Unfortunately this is not possible, but there 

are a number of different ways that may be considered in which to construct 
the rimguides, some yielding better results than others. The following is a 
description and comparison of four rimguide construction methods. 
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Figure 4.5: Different Rimguide Structures. 

Method 1 

The simplest rimguide consists of just one unit of delay, see figure 4.5a, to 

make Turin =1 in equation 4.1.8. The mesh is constructed using this equation 

and equation 4.1.9 with IwI = 0. 

As this delay models both the outward and inward bound paths of wave travel, 

the rimguide extends out from the mesh by half a sample. These rimguides 

retain the jagged mesh boundary shape of the membrane model, and they 

certainly don't satisfy equation 4.1.9 as r(w) = Tm; n. The modelled membrane 

is therefore not of the right size, nor truly circular, although it may suffice for 

models of high sample rate. 

Method 2 

To overcome the limitations of the previous method the rimguides require 

fractional spatial lengths. The modelled membrane boundary can then be 

extended out to the desired boundary. As mentioned in section 3.3 a fractional 

delay, or fractional spatial length, can be modelled with fractional delay filters 

(Laakso, Välim i1d, Karjalainen, and Laine, 1996). The simplest to use is the 

first order allpass filter (see appendix F. 1 for information on the construction 

and analysis of this filter), which has the transfer function 

H(z) =a+ 
z-1 

1+az-1' 
(4.1.1 0) 

This filter's phase response causes a frequency dependent fractional delay. For 

waves close to DC (0 Hz) the coefficient, a, may be approximated with (see 
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appendix F. 1.3 equation F. 29) 

1-D (4.1.11) 
1+D' 

where D is the desired delay of the filter (samples). 

The filter best approximates a fractional delay within the range: 0.5 <D< 

1.5. The new rimguide has this filter appended to at least one unit of delay, 

see figure 4.5b, making Tmin = 1.5. Due to the positioning of nodes and the 

boundary, it is possible that more than one unit of delay may be required in 

order to keep the fractional delay within the specified range. Hence, the delay 

of the filter is calculated with 

D= T(0) - n, (4.1.12) 

where n, the number of unit delays, is the largest integer 

that satisfies n: 5 T(0) - 0.5. 

The mesh is constructed using equations 4.1.8,4.1.9 and 4.1.12, with 1w1 = 0. 

This method ensures that a wave close to DC takes the same time to travel 

diametrically across the membrane model as it would in the real membrane. 

The accuracy of the model will decrease for higher frequencies. Therefore, this 

model achieves a circular boundary for low frequency waves. 

Method 3 

It is possible to tune the rimguide of method 2 so that waves of a particular 

frequency take the right amount of time to traverse the model, the aim be- 

ing to improve the rimguide accuracy. For this method the `focus' frequency 

is chosen to be the membrane's fundamental mode of resonance. Obviously 

equations F. 29 (see appendix F. 1.3) and 4.1.12 can no longer be used as the 

coefficient, a, needs to be found for r(Oc) where 9c is the normalised-pi fun- 

damental frequency, L IU. For the membrane under study the fundamental 

frequency is fol = 179.5Hz (see table 4.2). 
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The filter coefficient may be found for a particular frequency and delay using 

(see appendix F. 1.3 equation F. 28) 

Bf -n- 7 lw1 

sin lwl -B cos lwl 

B= tan(-D(Iwl) x lwl), (4.1.14) 

where D(JWI) =, r(w) -n is the delay of the filter (samples), 

n is the largest integer that satisfies n< r(w) - 0.5. 

There are two possible solutions to equation 4.1.13, however there will be only 

one coefficient that gives a stable filter, in the range: -1 <a<1. When 

r(w) and IwI are large there are no valid solutions, but as long as the focus 

frequency is a small fraction of the sample frequency there will always be a 

solution. 
The mesh is constructed using equations 4.1.8,4.1.9 and 4.1.13, with 

2M In. Once again the minimum possible loop length of the rimguide is T,,,;,, _ f" 
1.5 spatial samples. 

Method 4 

As well as tuning the rimguide to the fundamental resonant node, it can also be 

made to include the second resonant mode. This is achieved by adding another 

fractional delay filter to the rimguide structure, see figure 4.5c. The two filters 

have coefficients al and a2 with corresponding fractional delays Di(jwj) and 
D2(jwj). The delay of either filter may be calculated from its coefficient using 
(see appendix F. 1.2 equations F. 19 and F. 20) 

- 2, TCtan 
(_(a-1)sinI ) 

2 +(l+ai*)cm IwI J 
(4.1.15) 

IWI 

The minimum possible loop length of the rimguide is still r7 = 1.5 spatial 

samples, as one filter may effectively be removed by setting its coefficient to 1. 

This would leave a rimguide of one filter and one unit of delay. 

The two filters combine to give a more complicated phase delay response which 
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4.1. Modelling the Drumskin 

can be controlled to result in specific delays at two different frequencies. It is 

difficult to find a mathematical solution to predict the necessary coefficients, 

so a numerical search method may be employed instead. The search method 

involves choosing trial solutions of ai which keep D1(l l) < r(w) -n at the 

frequency of the fundamental resonant mode, fol. As before n, the number of 

unit delays, is the largest integer that satisfies n< r(jg) - 0.5. 

The required delay of the second filter can be found at this frequency 

Da(1w1) = r(w) - Dl(lwl). (4.1.16) 

Equations 4.1.13 and 4.1.14 are then used to calculate this filter's coefficient, 

a2. 

The trial solution can be verified by checking the resultant delay at the second 

resonant mode, fil 
Dl(Iwl) + D2(IWI) = T(w). (4.1.17) 

The search continues until equation 4.1.17 holds at both frequencies, depending 

on whether or not a solution exists. If there is no solution then the first resonant 

mode is modelled accurately and the second resonant mode is approximated 

as best as possible. 
The mesh is constructed in the same way as the other methods, but initially 

with the second resonant mode. The reason for this is so that the 

higher focus frequency will not need less than 1.5 samples delay; due to the 

dispersion error it travels more slowly through the mesh and therefore requires 
the least delay in the rimguide. 

Results and Comparison of the Four Rimguide Methods 

Models of the membrane under study were created using each of the four meth- 

ods with a sample rate of f, = 11025 Hz. The models were excited with an 

off-centre impulse in order to excite all the resonant modes (see section 6.2.1 

for more information on implementing an impulse excitation). Results were 

obtained by recording the wave velocities at the excitation node, and then 
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Resonant 
Mode 

Theoretical 
(Hz) 

Method 1 
(Hz) 

Method 2 
(Hz) 

Method 3 
(Hz) 

Method 4 
(Hz) 

1 179.5 185 (+3.0%) 178 (-0.8%) 178 (-0.8%) 178 (-0.8%) 
2 285.4 294 (+3.0%) 283 (-0.8%) 283 (-0.8%) 283 (-0.8%) 
3 384.1 394 (+2.6%) 379 (-1.3%) 379 (-1.3%) 379 (-1.3%) 
4 412.8 423 (+2.5%) 407 (-1.4%) 407 (-1.4%) 407 (-1.4%) 
5 475.7 488 (+2.6%) 471 (-1.0%) 471 (-1.0%) 470 (-1.2%) 
6 524.1 537 (+2.5%) 518 (-1.2%) 518 (-1.2%) 517 (-1.4%) 
7 566.5 581 (+2.6%) 559 (-1.3%) 559 (-1.3%) 559 (-1.3%) 

Table 4.3: Resonances from Membrane Models using Different Rimguide Meth- 
ods. 

analysing this output in terms of its power spectral density to find the reso- 

naht modes. These results are presented in table 4.3. 

It can be seen that the first seven resonant modes are modelled with reasonable 

accuracy for all the methods. The most noticeable difference is the response 

obtained using the first rimguide method, which consisted of a single unit delay 

to model the path to the boundary and back. Here the frequencies are higher 

than intended, due to the modelled membrane diameter being too short in 

many cases. 

The remaining three methods used fractional delays to compensate for the dis- 

persion error of the mesh and to correctly model the distance from the edge of 
the mesh to the actual boundary. These methods all produce resonances that 

are slighly lower than intended, yet they are more accurate than method 1. 

Interestingly, their resonances are identical to each other except for the fifth 

and sixth resonant modes of method 4, which are slightly lower still. 
In a previous study of the four rimguide methods (Laird, Masri, and Cana- 

garajah, 1998) a circular membrane was modelled with a lower density mesh 

and the impulse was applied at the centre to excite all the modes of frequency 

fo,,. In this case the pattern of results was similar, with the fourth method 

once again being slightly less accurate than the preceding two. Despite focus- 

ing two resonant modes in an attempt to increase accuracy, the fourth method 

also introduces a greater delay for the higher frequencies. This greater delay 
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is due to the presence of the extra allpass filter and it effectively lengthens 

the rimguide. As the rimguides are string models in essence, the longer they 

become the more the membrane model behaves like a string; lowering the fun- 

damental and altering the pattern of the modes. 

The extra filter in the fourth method results in an additional computational 

burden and also makes the filter coefficients more difficult to calculate. When 

this is considered along with its apparent reduction in accuracy it may be 

deduced that the fourth method is undesirable when compared with methods 

2 and 3. These two methods are identical in terms of their implementation 

and appear to yield the same results, yet method 2 has the simplest filter 

coefficient calculations. Rimguide method 2 therefore, which was designed to 

approximate the boundary best for waves close to DC, is the most useful of 

the four methods. It is simple to construct and is also accurate. The CD-Rom 

(see section A. 1.1 of appendix A) has a recording of the sound produced from 

a circular drumskin model that used this method. The parameters for this 

model were the same as those used in this section. As the model is lossless 

the sound produced is continuous and would last forever. This is, of course, a 

very unnatural noise for a drumskin. 

4.1.4 Adding Viscous Friction Losses to the Drumskin 

Model 

The model of the drum kin accurately reproduces the important resonant 

modes but does not include any losses. The majority of these losses would 

be due to internal viscous friction and their inclusion in the model is necessary 

to create a realistic sound. 

As mentioned in section 3.5 it is possible to model the effect rather than the 

cause; the effect being that high frequencies suffer a greater loss than low fre- 

quencies. Naturally a lowpass filter can be used for this purpose. The first 

order IIR lowpass filter (see appendix F. 2 for information on the construction 
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Figure 4.6: The Lossy Rimguide. 

and analysis of this filter) is simple yet controllable, and has the following 

transfer function 

Hl 
d(x) _ 

1+a 
(4.1.18) 

1+az ' 

Rather than trying to incorporate this filter within the waveguide mesh struc- 

ture, which would make the calculation of the dispersion error unwieldy, it is 

better to add it to the rimguides that surround the boundary. Doing so results 
in the new rimguide structure show in figure 4.6. 

Designing the Lowpass Filter 

As the effect of a frequency dependent loss is to be modelled it is useful to 

characterise this in terms of a desired loss at a certain frequency, L(w) (f ). 

This can be matched against experimental data. The filtering is only to be 

done at the mesh boundary, so the required loss at this point will be 

La(w) = L(w) 2r 
, 

(dB) (4.1.19) 

which can be converted into a gain (see equation 2.1.1 of section 2.1.2) 

G(w) = 10 2öß (4.1.20) 

The lowpasss filter coefficent, a, that results in this gain at frequency w is 
found with (see appendix F. 2.3 equation F. 47) 

1- G(w) (G(w) 
cos w± G(w)2 (cost w- 1) +2-2 cos w) 

a= G(w)2 -1 . 
(4.1.21) 

Note that there are two possible solutions to equation 4.1.21, but there will be 

only one coefficient that gives a stable filter, in the range: -1 <a<1. 
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Magnitt 
(dB) 

0 

-30 

-60 

C 

Figure 4.7: Waterfall Plot of Sound from a Circular Membrane with Viscous 

Friction Losses. 

Reconstructing the Rimguides 

The lowpass filter has an associated delay that will be addled to the rimgtiicles' 

looplength. To account for this the riniguides need to be reconstructed, which 

involves reworking their equations. The lowpass delay is found to be (see 

appendix F. 2.2 equations F. 38 and F. 39) 

ci1C'ta T1 -asiuw (l+acos 

(4.1.22) 

As w ý--> 0 this becomes 

-(I 
Dient pass =1+a4.1.23 

Assuming that method two is to be used for rimguide construction, the mini- 

nnlnl possible 100] length is now Trnin = 1.5+Dlowpass" This is used in equation 

4.1.8 as before to limit the waveguide mesh size. The calculation used to find 

the allpass filter delay of the riniguide, equation 4.1.12, is changed to incorpo- 
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Figure 4.8: The Decay of the Fundamental Resonant Frequency, 
L (fol) = 30 dBs-1. 

rate the lowpass delay 

f01, with 

D= T(0) - Djo,,, .-n, 
(4.1.24) 

where n, the number of unit delays, is the largest integer 

that satisfies n< r(O) - Dt p. s - 0.5. 

Results from the Viscous Friction Model 

The effect of adding lossy rimguides to the membrane model is shown in the 

waterfall plot of figure 4.7. Here a circular membrane model was constructed 

with the same material parameters and dimension as before. This time the 

sample rate used was f, ='22050 Hz in order to better define the resonant 

modes. The value of the loss used was -30 dBs-1 at the fundamental fre- 

quency: L (fol) = 30 dBs-1. The plot was created by performing a Fourier 

analysis (see appendix B. 5) of 2048 points with Hanning window and 50% over- 

lap, plotting the change in magnitude of the resonant frequencies over time. 

It can be seen that the lossy rimguides simulate the effect of internal viscous 

friction, where the higher frequencies decay faster than the lower frequencies. 

The rate of decay of the fundamental frequency was checked by isolating the 

first mode in the waterfall plot and normalising its magnitude such that it 

started at 0 dB . This is shown in figure 4.8. The decay of the fundamental 
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frequency can be seen to agree with the desired loss of -30 dBs-1. 

A recording of this sound can be found on the CD-Rom (see section A. 1.1 of 

appendix A). Notice that the frequency dependent damping produces a much 

more natural sound than that from the lossless drum kin model. It is similar 

to a tight plastic membrane being flicked, such as a mylar drumskin before it 

is attached to a drum. The impulse excitation injected all possible frequen- 

cies that the model could support. Whilst useful for analysing the model's 

response this method of excitation is unrealistic and causes an initially harsh 

and distorted sound. Notice also that there is a faint high frequency `ring' 

throughout the sample. This has been heard in other models (constructed 

during this investigation) that incorporate excessive damping and have been 

excited with an impulse; it is possible that this was due to a coding mistake 

in the mesh structure. 

4.1.5 Impedance of the Membrane 

Whilst the impedances of 1D and 3D media are well defined (see section 3.8) 

there is very little in the literature about the impedance of a 2D membrane, 

and a method to calculate the impedance of a 2D waveguide mesh did not exist. 

The -following presents a method that was found to calculate this impedance, 

which is required to find the velocity of the membrane that results from an 

applied force. Naturally, this force has to be exerted over a finite area or it 

would cause an infinite acceleration. The impedance is useful when connecting 
the membrane model to other media, in order to make a drum model for exam- 

ple. It has been found that the impedance can be calculated if the membrane 
is considered to be a network of interconnecting strings. Afterall, the digital 

waveguide mesh is made up from a network of single digital waveguides, each 

representing a string. 

Consider a single element of a triangular digital waveguide mesh, as shown in 

figure 4.9. This element is the fundamental building block of the mesh that 
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Figure 4.9: Single Element of a Triangular Waveguide Mesh. The solid lines 

are waveguides (of length 1 metres), the shaded part is the fundamental building 
block of the mesh. 

can be tessellated, as suggested by the arrangement of waveguides. It can be 

seen that this element is hexagonal in shape. Its mass is 

Om = pbA, (4.1.25) 

where A is the surface area of the element (m2), 
k-q 

p is its volume density ( 

b is its thickness (m). 

As the wave speed through the mesh is co =7 (spatial samples per time 

sample), the actual length of a waveguide must be 1= (m). Therefore, the 

surface area of the element can be found by summing the area of each triangle 

indicated in the diagram 

A= tan 6x2x2x6, (4.1.26) 

= 
fc 2 

tan 6x6, (4.1.27) 

= 3- 
2 

tan 6. (4.1.28) 

s 
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4.1. Modelling the Drumskin 

Combining equations 4.1.25 and 4.1.28 results in 

Om = pb 
fx 

(4.1.29) 
8 

Now, this element is modelled by three waveguides laid on top of eachother 

and connected at their middles. Each of these waveguides represents a string 

which when combined must have a total mass of Am. Therefore, the linear 

density of one string is 
Dm 1x (4.1.30) 

3 
1 

=pb 
c 

ýfe x (4.1.31) 

pbc (4.1.32) 
V6- fs 

As mentioned in section 3.8 the impedance of a string is found to be R= µc. 
This makes the impedance of each unit length waveguide in the waveguide 

mesh 
p pbý (4.1.33) + iuaveguide = rOfa 

The impedance of an element in the waveguide mesh membrane model can 

now be found (see section D. 2 of appendix D) 

Rmeshelement = 3Rwaveguide, (4.1.34) 

=2xP fý .. 
(4.1.35) 

When combined with equation 4.1.2 this reduces to 

Rrnesh 
element =2XTý, , 

(4.1.36) T 

where T is the tension applied to the membrane (Nm-'). 

Notice that this derivation of the impedance within a 2D waveguide mesh is 

related to the tension and sampling rate; the density, thickness and wavespeed 

apparently play no part. However, it is important to note that these quantities 

are incorporated into the model as they affect the spatial length of the waveg 

uides. It should be remembered that this is not a driving point impedance, it 

is the impedance of an element in the waveguide mesh. 
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4.2. Modelling the Bearing Edge 

4.2 Modelling the Bearing Edge 

The bearing edge is the part of the drum that supports the drumskin. It is 

added on to, or carved out of the edge of the drum hell and is analogous to the 

bridge of a stringed instrument, such as that found on the violin or guitar. As 

the drumskin is tensioned it is pulled tightly over the bearing edge, as shown 

in the cross-sectional diagram in figure 4.10. 

Premier Percussion Ltd. have a special drill-bit to cut the bearing edge of 

their drums. They don't, however, have any information as to how this edge 

affects the sound produced. There is no existing technique to incorporate this 

into a digital waveguide implementation, so the following work was done to 

model and study its effect. Modelling this aspect of the drum is therefore 

important so that the effect, if any, can be measured. Once modelled it would 

be possible to test different bearing edge geometries in order to ascertain how 

the effect may be controlled. The parameters: r, a and Q indicated in figure 

4.10, are those that can be changed by making adjustments to the machine 

that produces the drill-bits. The parameters ll and 12 may be controlled by 

changing the position of the lathe. 

drumskin 
bearii 

Figure 4.10: Cross-section of the Bearing Edge. 
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It is simpler to consider modelling the 1D case of a string pulled over an in- 

strument bridge. This bridge is the same as the cross-section of the bearing 

edge. As the string vibrates it can be imagined that its end wraps and unwraps 

around the edge (compare the position of the point where the string/membrane 

cross-section meets the bearing edge in figures 4.10 and 4.11); this translates 

to a shortening and lengthening of the string for vibrations of small amplitude, 

where the effect of bending can be ignored. 

Changing the length of a string model as it vibrates has been used to simulate 

the effect of tension modulation in the Kantele (Välimäid, Karjalainen, Tolo- 

nen, and Erkut, 1999), although the manner in which this was achieved is very 

different to that proposed here. In this case the lengthening and shortening of 

the string model was to simulate varying wavespeeds caused by changes in ten- 

sion rather than a physical change in length. The relationship between vibra- 

tion and model length was therefore quite different. In addition the fractional 

changes in length were modelled using FIR filters and these are inherently 

lossy. For the bearing edge a lossless model was desired such that the losses 

due to viscous friction could be added and controlled independently using the 

method described in section 4.1.4. 

4.2.1 Mathematical Description of the Bearing Edge 

Figure 4.11 indicates the data streams required for the model. A is the moving 

point where the end of the string, or cross-section of membrane, touches the 

bearing edge. The stream s(n) holds the wave data that is entering the bearing 

edge model. Point B is restricted to movement in the vertical plane, and 

its horizontal coordinate is where wave data is written into stream s(n) and 

read from stream s'(n). It is the stream s'(n) that needs to be generated in 

order to implement the bearing edge model. The stream d(n) is the vertical 

displacement of the string measured from the equilibrium to point B, x samples 

from the tip of the bearing edge. Note that all distances are measured in spatial 
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1(n) 
s'(n) 
s(n) 

(n) 

Figure 4.11: The Data Streams Used to Model the Bearing Edge. 

samples, by multiplying the actual distance by A. 

The stream 1(n) is the varying horizontal distance from point A to point B. 

For small amplitude waves, where tan 1(äd(n)/äx) «1 (as assumed in the 

formulation of the 1D wave equation, see appendix C. 1), 1(n) is roughly equal 

to the actual distance from point A to point B. It is related to d(n) in the 

following way (see appendix G. 1 equations G. 22 and G. 23) 

x- 12i X> sin ,8 
1(n) =x- rX, -sin a<X< sin, Q (4.2.1) 

x+11, X< -sina 

X= rx - (r + d(n)) x2 dd(n)2 + 2rd(n) (4.2.2) 
x2 + (r + d(n))2 

where r is the radius of the bearing edge (samples), 

x is the horizontal distance from the tip of the bearing edge 

to point B (samples) as shown in figure 4.11, 

11 + 12 = the thickness of the instrument bridge (samples), 

a and ,Q are the absolute angles of the straight lines cut from 

the bearing edge, as shown in figure 4.10. 

The substituted variable, X, is in fact sin B where 0 is the angle between the 

highest point of the bearing edge and the point where it is touched by the 
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string/membrane cross-section (see figure G. 1 in appendix G. 1 for a graphical 

description). The limits imposed by a and /3 should be outside the normal 

mode of operation. These two angles mark the range over which the bearing 

edge is curved, beyond them the edge is straight until it stops abruptly at either 

side of the instrument bridge. If the limits are exceeded then it can be imagined 

that the bearing edge is bypassed and the length of the string/membrane 

cross-section is determined by the thickness of the bridge alone. This mode of 

operation is included in equation 4.2.1. 

The data at point A, s(n - 1(n)), must leave point B as -s'(n), 1(n) samples in 

the future. One way of performing this would be to take the data s(n - 1(n)) 

and insert it into some buffer such that it will arrive 1(n) samples later. This 

would involve insertion at some fractional point along the buffer such that it 

behaves like a non-integer length delay line running backwards. This process 

has been called `deinterpolation' (Välimäki, 1995). Unfortunately, directly 

manipulating the data stream in this way would corrupt it and cause energy 

losses as deinterpolation is done with FIR filters. Instead, it would be better 

to read the appropriate data from stream s(n) using IIR allpass interpolation 

(see section 3.3 on fractional length delay lines) so that there are no losses. 

In this way s'(n) is modelled with a rimguide of time-varying length whose 

input is s(n). The minimum length for this rimguide is that which brings the 

mesh boundary out to the radius l, tri�9 -12i where l, tri�9 is the length of the 

string measured to the tip of the bearing edge. Altering the rimguide length 

in a time-varying way requires the allpass filter to be `warmed-up' between 

each sample. The reason for this is to remove transient errors that are caused 
by changes in the filter coefficient. The method for warming up a filter is 

described in section 3.4. The calculation of the read pointer's position in 

stream s(n), to yield s'(n), is non-trivial and is addressed in the following 

section on implementational issues. 
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4.2.2 Implementational Issues of the Bearing Edge Model 

Reading the Stream s(n) 

To aid the indexing of stream s(n) a buffer, b(n), is defined 

b(n + l(n + j) +j) = l(n + j). (4.2.3) 

This buffer has the interesting property that the data read at b(n) indicates, 

in samples, how long ago it was written into the buffer. In this case 1(n) 

is received at point B, after having been sent from point A, 1(n) samples in 

the past. Implementing the buffer b(n) involves deinterpolation into its data 

stream and this will be dealt with shortly. Inaccuracies in the deinterpolation 

technique will result in slightly wrong values of 1(n) being read from b(n), but 

will not cause losses in the bearing edge model. 
The data leaving point B is found with 

s'(n) = s(n - 2b(n)). (4.2.4) 

This is because data that left point A, b(n) samples in the past, must have 

entered the stream s(n), 2b(n) samples in the past. Reading the stream s(n) 
from this non-integer index is done with the aforementioned IIR alipass inter- 

polation. 

Implementing the Buffer b(n + 1(n + j) + j) = 1(n + j) 

Figure 4.12 shows example data held in buffer b(n). The value at b(n+i) needs 

to be calculated and written to the buffer for all integer values of i between 

1(n - 1) -1 and 1(n). The data is to be deinterpolated into the buffer using 

first order linear interpolation (see appendix G. 2 equation G. 28) 

b(n + i) - 
i(l(n) -1(n - 1)) + 1(n) 

(4.2.5) 
l(n) -1(n -1) +1' 

iEN, 1(n-1)-1<i<1(n). (4.2.6) 
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a(n) 

same) 

0 
n nti(n-1)-1 n+= ntqn) 

(read point) 

Figure 4.12: Example Data held in Buffer b(n). 

Writing to the buffer b(n) in this way will approximate equation 4.2.3. 

Note that the bearing edge model is only defined for values 

1I(n) - d(n - 1)1 < 1. (4.2.7) 

If this relationship were violated then the string would have changed length 

faster than the speed of wave travel, resulting in unpredictable behaviour. 

4.2.3 The Effect of the Bearing Edge 

To test the effect of the bearing edge a string model was constructed with the 

bearing edge model implemented at both ends. The string model's parameters 

that were used are listed in table 4.4. The model did not incorporate viscous 
friction. 

The first mode of vibration of the string was excited for different values of string 
displacement and bearing edge radius r. This was done so that the effect of 

the bearing edge, if any, could be seen in terms of the energy transferred from 

the fundamental mode of resonance. The string was put into its first mode of 

vibration by exciting it at its middle with a sinusoidal signal for half a cycle. 

Its output (the velocity read at the excitation point) was recorded for one 
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4.2. Modelling the Bearing Edge 

1string 70 cm 
linear density 0.006 m 

tension 240 N 

sample rate 44100 Hz 

a 60° 
ß 45° 
11 rx3 
12 rx7 

Table 4.4: Parameters used for the String and Bearing Edge Model. 

second. 
The excitation signal was defined as (see appendix G. 3) 

Asin(wt), wt :5 ir 
v= (4.2.8) 

0, wt>ir 

A= 
Dw 

' 
(4.2.9) 

where v is the velocity (ms-1), 

D is the desired initial displacement of the string (m), 

w is the string's fundamental frequency (rad/s). 

Figure 4.13 shows a range of frequency plots for the different bearing edge 

radii and initial string displacements. All the values are normalised such that 

the greatest magnitude is always O dB. The plots to the right correspond to 

models with the greatest bearing edge radii and the lower plots correspond to 

models with the largest initial displacement. 

4.2.4 Conclusions from the Bearing Edge Model 

From figure 4.13 it can be seen that the effect of the bearing edge is to ex- 

cite higher modes of resonance. The greater the bearing edge radius or string 

displacement the more prominent these frequencies become. However, for a 

radius of 0.1 cm (as used by Premier Percussion Ltd. ) there is little effect on 
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Figure 4.13: Resonances from String Models with different Initial Displace- 
ments, D (cm) and Bearing Edge Radii, r (cm). The numbers close to the 
resonant modes denote the frequencies (Hz). 

the sound under normal playing conditions; the extra frequencies caused by 

the bearing edge are close to 60 dB below the fundamental frequency. In the 

examples the higher modes of resonance caused by the bearing edge are pre- 
dominantly the odd numbered harmonics of the string. This is a consequence 

of the initial excitation being at the string's middle point. It can be seen that 

under the more extreme conditions the even numbered harmonics start to ap- 

pear. These are probably due to small inaccuracies in the interpolation and 

filter warm-up used in the bearing edge model. Notice also that the frequencies 

143 

429 
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4.2. Modelling the Bearing Edge 

(a) 

(b) 

Figure 4.14: Wave Output of a String Model with Bearing Edge Parameters: 
D=7 cm, r=0.9 cm. (a) at ;: ýi 0.1 seconds, (b) at 0.9 seconds. 

become slightly lower for these more extreme conditions. This is because the 

string is spending more time with its ends unwrapped from the bearing edge 

and so on average it is slightly greater in length. 

These results can be heard on the CD-Rom (see section A. 1.1 of appendix A). 

For the smallest initial displacement there is no audible difference between 

the different bearing edge radii. The sounds are almost a pure `hum'. As the 
displacement increases the higher frequencies that enter the sounds become 

more apparent. In general these sounds have a slight `buzz'. For the more 

extreme displacements and bearing edge radii it is possible to hear the sound 

change over time; the spreading of sound across the resonant frequencies is 

very noticeable. There is also a very slight change in pitch towards the end of 
the sample of the most extreme conditions, as indicated in the resonance plots 

of figure 4.13. 

Figure 4.14a shows the wave pattern read at about 0.1 seconds into the sam- 

ple of the most extreme conditions, where D=7 cm and r=0.9 cm. At this 
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100 
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Figure 4.15: Change in Resonant Mode Energy of a String Model with Bearing 
Edge Parameters: D=7 cm, r=0.9 cm. (a) fl (141 Hz), (b) f3 (424 Hz). 

stage the wave is still almost a pure sinusoid. At about 0.9 seconds, see figure 

4.14b, the wave has started to take the form of a `saw tooth, ' which is due to 

the presence of the odd numbered harmonics. It would appear that energy is 

being transferred from the fundamental into higher modes of resonance. The 

transfer of energy from the fundamental to the third harmonic is shown in 

figures 4.15a and 4.15b. These plots were made in -a similar fashion to that of 
figure 4.8 in section 4.1.4, but in this case rather than plotting the amplitude 
in decibels and normalising it to 0 dB the amplitude values were squared, to 

find their energy, and normalised against the initial energy of the fundamental 

frequency. The values are plotted as percentages of this initial fundamental 

energy. It can be seen that the fundamental lost more than 5% of its energy 

over the second of time, with over 3% entering the third mode of resonance. 
It would appear to be desirable for the bearing edge to have no effect, for 

stringed instruments such as the guitar have a bridge whose tip is as thin as 

possible. The reason for this, as suggested by the instrument players them- 

selves, is to increase sustain. The results from the bearing edge model support 

this hypothesis: a greater bearing edge radius would spread more of the en- 
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4.3. Summary 

ergy into the higher frequencies, and as higher frequencies suffer greater energy 
losses through visco-elastic damping (see section 3.5) the instrument would lose 

energy more quickly resulting in a decrease in sustain. 
As an aside it was noticed that the bearing edge model has another application 
in audio signal processing. If the difference 1(n) -1(n - 1) is kept at a con- 

stant value then the stream s'(n) is a resampled version of s(n). This lossless 

resampling technique could be done in real-time. 

4.3 Summary 

In this chapter a model for the drumskin was created. The basis of this model 

was a triangular 2D waveguide mesh structure, chosen for its near direction 

independent dispersion error. 
A method for modelling a circular boundary was proposed that used new 

structures given the name of `rimguides'. These structures enable waves to 

propagate from the edge-most nodes of a mesh to the desired boundary and 
back. Increasing orders of complexity were investigated that involved tun- 

ing the rimguides to various resonant modes of the membrane. However, it 

was found that good accuracy was achieved using simple rimguides that cor- 

rectly modelled the propagation of waves of very low frequency. It was also 
demonstrated how lowpass filters could be included in the rimguide structure 
to simulate the effect of viscous friction, which could be controlled in terms of 
a loss rate at a particular frequency. 

The impedance of a 2D waveguide mesh is required to connect the mesh to 

other media. Before commencing this work no formula had been documented 

to calculate this impedance and so a way in which this could be done was 
proposed. The formulation involved considering the mesh to be made up of 
tessellated elements, each consisting of a collection of strings or 1D waveg 

uides. As the impedance of an individual string is easy to calculate it was then 

possible to find their combined effect. This resulted in a formula to calculate 
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4.3. Summary 

the impedance of a single element within the waveguide mesh. 

The main vibrating part of an instrument, whether it is a membrane or string, 

has to be supported by an edge. This edge is called a bearing edge for mem- 

branes and a bridge for strings. It is usually carved to form a small curve 

where it is in contact with the vibrating medium. A technique to incorporate 

its effect was found and investigated. The results of this investigation showed 

that the edge causes energy to leak into the higher resonant modes when the 

curvature radius or excitation is large. Because this results in a reduction 

in sustain it was argued that it is desirable to have the- smallest edge radius 

possible. 
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Chapter 5 

Modelling the Interior of the 

Drum 

5.1 Modelling the Air Cavity 

The air enclosed by the drumshell and skins plays an important role in shap- 
ing the sound. Being three dimensional it has a complicated arrangement of 

resonant modes that interfere with the vibration of the drumskin. The air also 

has a frequency dependent loading effect on the skin (Fontana and Rocchesso, 

1998). 

Three dimensional wave propagation is easily modelled using a 3D digital 

waveguide mesh structure but, like the 2D mesh, the arrangement of waveg- 

uides introduces dispersion error. 

5.1.1 Tetrahedral and 6-Port Rectilinear 3D Digital 

Waveguide Meshes 

A previous examination of dispersion errors was undertaken for tetrahedral 

and 6-port rectilinear 3D waveguide meshes (Duyne and Smith(III), 1996). 

The tetrahedral mesh was created for its multiply-free architecture, to be used 
in real-time applications. 
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(a) 

Az = 30° 
, ý... _. ., ý...,. 

Vic,.. 

El = 0-_-1- = 60°, El = ýu . ýz = 0°. El = 355° 

Figure 5.1: Dispersion Error Plots for `3D Digital Wor (yu., de Meshes. 
(a) Tetrahedral Mesh. (b) 6-Port Recilinear Mesh. 

Figures 5. la and 5.11) show the dispersion error plots of the tetrahedral and 6- 

port rectilinear 3D meshes. As the dispersion errors ihre three dimensional it is 

only possible to show dispersion slices. Theke may be taken finn any aziinitt li 

and elevation and are centred about the point w,,. _ U,, = c, ý_ _ 0. 'I'lse limits 

of the slices are at the Nyquist frequency, Iwl = 7r. The aziiºiuth and elevation 

angles used in figure 5.1 were chosen to show the worst and best dispersions 

exhibited by each mesh. It can be seen that both these meshes have widely 

varying dispersion errors that are dependent on the directioli of wave travel. 

This dependency would cause the modelled shape to exhibit time wrong modes 

of resonance, invalidating these meshes for use in accurate tnodellihlg. 

5.1.2 The 3D Dodecahedral Digital Waveguide Mesh 

I(lea11V ýi inesli structure needs to be found that exhibit, near 

pendent dispersion error, as was clone previously for a 2D ineinhranc. But 

due to the extra degree of freedoiii in three diniensioiiti there is a large reuige 
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5.1. Modelling the Air Cavity 

Figure 5.2: Hexagonal- Close Packing. 

of possible mesh structures. Just as 2D wave propagation was best modelled 

using the densest arrangement of nodes it was reasoned that the densest 31) 

arrangement should be used here. 

The densest arrangement of nodes within 3D space is the solution to Kepler's 

cannon ball stacking problem (Plus Online Magazine. 1997). This was recent 1Y 

proved (Hales, 1998) to be face-centred cubic packing or hexagonal-close pack- 

ing (they have the same density). The structure of hexagonal-close packing is 

shown in figure 5.2. If each ball is considered to be a node in a mesh, then it (je- 

fines a 3D digital waveguide mesh of 12 waveguides intersecting each junction 

node. The coordinates of the nodes for a hexagona]-close packing structure 

centred about the point (0,0,0) are listed in table 5.1. 

The fundamental building block of these meshes, with each face intersected 

perpendicularly by a waveguide, is the dodecahedron. In particular. the regtt- 

lr building block for face-centred cubic packing is the rhoittl>ic dodecaltedrott. 

Diagranes of this can be found on the World Wide Web (Bulatov, 1999). An 

example of close packing with tessellated rhombic dodecahedrons can also be 

found on the World Wide Web (Seven Stones, 2000). These new wavegttide 

mesh structures have therefore both been called 'The 3D Dodecahedral Mleslh'. 

The same 3D mesh structures were discovered in 1mrallel with this investiga- 
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node no. I coordinate 

1 (-1,0,0) 
2 
3 

27ýý0) 
A 

0 
4 

(2, , ) 
(1,0,0) 

5 gyp) (21- 2 
v3- 0) 

29 2 
7 2 (0 1 *' 3 
8 112 

9 1_1 2% 
22 273' 3) 

10 1 2) (0,2, - ) 
11 _1 

1_2 (2 
273) 3) 

12 11- 2) 
2,2 73" 3 

Table 5.1: Coordinates of Nodes within the 3D Dodecahedral Mesh (using 
hexagonal-close packing centred about the point (0,0,0)). 

tion (Fontana, Rocchesso, and Apollonio, 2000). In this case their construction 

was not explained in terms of face-centred cubic packing and hexagonal-close 

packing, and the dodecahedron was not mentioned as the fundamental tessel- 

lating building block. The names given to the meshes were the `3D Triangular 

Waveguide Mesh (3DTWM)' and the `Interlaced Square Waveguide Mesh. ' 

It was concluded that both geometries yield efficient structures to model 3D 

resonators and they have very uniform dispersion characteristics. 

The Dispersion Error of a 3D Dodecahedral Digital Waveguide Mesh 

The frequency dependent wavespeed (dispersion error) of the dodecahedral 

mesh is found in a similar way to that of the triangular mesh presented earlier 
(see appendix E. 1). This 3D mesh structure results in 

(5.1.1) c (ý) =I 
WI, 

LG = arctan 
4 

-b 
(5.1.2) 

-b 
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.-_ 11-1,1 .,..., 1 rýý ý", - 

'`>ý 
s 

Az = 0°. 30° Az = 0°. El = 90 

Figure 5.3: Dispersion Error Plots for the 3D Dodecahedral Digital Wovcyruide 
Mesh. 

12 
1: 

6j 
T,, (5.1.3) 

=1 

where P are the vector coordinates of the node points, 

w is the three-dimensional spatial frequency vector with variables 
T (w, 

c (w) is the frequency and direction dependent speed of plane wave 

travel (in space samples per time sample). 

The nominal wavespeed within the mesh. where w, r = wy = w, =0 is (see 

appendix E. 2) 
I 

ca = (5.1.4) 73 

Figure 5.3 shows the dispersion error slices of the (lodecaliedrnl mesh from 

a range of viewing angles, as was clone previously in figure 5.1. Ouce again 

the viewing angles were chosen to show the worst and best clitilýºrýion errors. 

Notice that near direction independent dispersion error is achieved, «it lº the 

worst case having a slight diamond shape: this occurs when the viewing; augle 

faces directly along a waveguide. 

5.1.3 Modelling Pressure Waves in Air 

It is now possible to model, with reasonable accil1 Y, 1)reý5itre waves travelling 

through three dimensional space. If the three dimensional Space is a gas theta 
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5.1. Modelling the Air Cavity 

parameter I value 

ry (ratio of specific heat at constant pressure) 1.4 
M (average molecular weight) 29.0 

p (density at room temperature) 1.205 (kgm 3) 

Table 5.2: Properties of Air. 

these pressure waves travel with a speed of (Hall, 1987e) 

Cga3 = 
ryM °' (5.1.5) 

where ry is the ratio of specific heat at constant pressure to that at constant volume, 
R is the universal gas constant (8314 k9 ), 

To is the temperature (K), 

M is the average molecular weight (kg). 

In the case of air, whose properties are given in table 5.2, the wavespeed at 

room temperature (To = 293 K) is ca;,. - 343 1.1. Therefore, when modelling 

air with a dodecahedral mesh each waveguide is equivalent to a length of 
3m where f, is the desired sampling rate. Cot. t. ' 

The values evaluated at node junctions within the mesh represent pressure 

differences. These differences are relative to the equilibrium pressure of the 

gas. Hence, a positive value relates to an increase in pressure and a negative 

value corresponds to a drop in pressure. 

Shaping the Mesh Boundary 

The air mesh model can be shaped to fit the interior space enclosed by the 

drumshell. The drumshell boundary is modelled using rimguides, just like 

the clamped boundary of the membrane described by method 2 in section 

4.1.3. The difference here is that there is no sign inversion at the boundary as 
longitudinal waves are being modelled. Once again the rimguides are attached 
from the edge-most nodes of the mesh to the closest points on the boundary. 
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5.1. Modelling the Air Cavity 

Losses may also be implemented in a similar fashion to that described in section 
4.1.4. 

Results from a 3D Dodecahedral Mesh 

To test the accuracy of the 3D dodecahedral mesh (with hexagonal-close pack- 

a model of an IEC standard room (Wright, 1995) was constructed. The ing) 

room's dimensions were 4m by 6m by 2.5 m, which present a particularly good 

challenge because modes 9 and 10 occur at exactly the same frequency, and 

mode 11 lies in close proximity. The sample rate used for the waveguide model 

was 2000 Hz and a 50 second sample was obtained in order to provide a good 

resolution of the resonant modes. The results and their percentage errors are 

shown alongside the theoretical frequencies in table 5.3 below. 

It can be seen that despite the low sample rate the higher modes of resonance 

are quite well reproduced, although the model did not produce the same fre- 

quency for modes 9 and 10. The extra complexity of three dimensions seems 

to have had more affect on the accuracy of the lower modes. 

Mode Number I Theoretical (Hz) I Wavguide Model (Hz) I Error (%) 

1 28.70 27.42 -4.46 
2 43.06 44.30 +2.88 
3 51.75 50.56 -2.30 
4 57.41 54.44 -5.17 
5 68.89 68.58 -0.45 
6 71.76 71.64 -0.17 
7 74.63 77.68 +4.09 
8 81.24 80.58 -0.81 
9 86.11 84.58 -1.78 
10 86.11 87.54 +1.66 
11 86.16 87.62 +1.69 
12 89.67 89.58 -0.10 

Table 5.3: Theoretical and Simulated Frequencies of an IEC Standard Room 
(4m x 6m x 2.5m). 
Theoretical modes from Wright (1995). 
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5.2. Modelling the Interior Lacquer 

5.2 Modelling the Interior Lacquer 

Premier Percussion Ltd. sand down the interior of the drum shell and then 

apply a thin layer of lacquer. From observation it has been noticed that this 

lacquer lifts wood fibres up, making the interior rough to the touch. No doubt 

further layers of lacquer would begin to make a smooth surface, filling in the 

gaps between the fibres. Although it is difficult to calculate to what extent 

the surface roughness is being altered, this is undoubtedly controlling the well- 
known phenomenon of diffusion. 

5.2.1 Diffusion 

The boundary method described in section 4.1.3 modelled specular reflections. 
Specular means ̀ mirror-like', such that the angle of reflection equals the angle 

of incidence. Diffuse reflections, which occur at rough boundaries, scatter en- 

ergy in almost every direction regardless of the angle of incidence (Hall, 19870. 

These two types of reflection are shown in figures 5.4a and 5.4b respectively. 

In order to model a diffuse surface it is necessary to define a coefficient that 

describes the scattering of the energy. Two such coefficients that have been 

considered in the past are the diffusion coefficient, d (formed by AES), and the 

scattering coefficient, s (formed by ISO). The diffusion coefficient is a measure 

of the spatial uniformity of the sound globally reflected by an object, whereas 

the scattering coefficient is defined as the ratio between the sound energy 

ee 
7777777777 77 

(a) 
777 

, a, 
K\\ /ý ý. 

(c) 

Figure 5.4: Direction of Wave Fronts reflecting off a Boundary. (a) Specular 
Reflection, (b) Diffuse Reflection, (c) Varying Incident Wave Angle to model 
Diffusion. 
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5.2. Modelling the Interior Lacquer 

reflected diffusely and the total reflected energy. The scattering coefficient 

is generally a quantity very different from the diffusion coefficient, although 

work has been done to enable one to be derived from the other (Farina, 2000b). 

Unfortunately, there is no single standardised method to calculate or measure 

these coefficients and as a result there are a great variety of diffusion meth- 

ods for various acoustic models, though as yet there are no methods for use 

in digital waveguide techniques. A brief discussion and comparision of these 

models has previously been done (Lam, 1997) and two methods for measuring 

the scattering coefficient have been studied in detail (Farina, . 2000a). It is 

apparent, however, that diffuse reflections are frequency dependent and that 

the scattered energy has a particular distribution. For simplicity the frequency 

dependent aspect will be ignored, but ways in which this could be implemented 

are discussed in section 8.2. 

The model used in this investigation is designed for 2D shapes, once again for 

simplicity, but a way to extend this to 3D is also considered in section 8.2. A 

summary of the following work was presented at a conference (Laird, Masri, 

and Canagarajah, 1999). 

The Diffusion Method 

Rather than modifying the rimguides at the edge of the digital waveguide 

mesh, it was found that a diffusion effect could be implemented at the edge- 

most nodes. This involved pre-altering the angle of incidence of travelling 

waves in a random fashion over time, such that the reflected waves appeared 

to have been scattered, as shown in figure 5.4c. Varying the incident angle 

is not straightforward and care must be taken to ensure that signal strength 

and power is conserved within the waveguide mesh. In addition, waves at 

the boundary pose an extra complication due to the irregularity of the mesh 

structure at this point. Therefore, waves within a mesh are considered first. 
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5.2.2 Wavefronts within a Mesh 

A planar wavefront of amplitude A travelling in the direction 8 can be repre- 
sented by superposing vectors of magnitude aj, whose directions, P., evenly 

span a circle 
N-1 

A= E asP, (5.2.1) 
i=o 
N-('aii) 

0=L' (5.2.2) 
i-O 

where i=0,1, ..., N -1, 
N is the number of vectors used to represent the planar wave. 

The vectors and their magnitudes are calculated in the following way 

COS M; 
-) 

=, (5.2.3) 

L sin (: N 

2A T cos O 
a; =NP, . 

sinB 
(5.2.4) 

Within a waveguide mesh, A is the amplitude of the signal at a node junction 

and the vectors, Ps, represent the directions of the waveguides connected to 

this node. 

Using Circulant Matrices to Rotate Wavefronts 

As mentioned above it is important to conserve signal strength and power 

when altering the direction of wave propagation. These requirements can be 

met by convolving the incoming signals to a node with a circulant matrix .A 
circulant matrix has the form 

xo xl ... XN-i 

M_ 
XN-1 20 ::: 2N-2 

(5.2.5) 

X1 ... XN-1 Xo 
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These matrices have already been used to model diffusion in a class of artificial 

reverberators known as feedback delay networks (Rocchesso and Smith(III), 

1994). In this investigation, however, they are used in a slightly different way. 

The stability of any matrix can be ensured by distributing the eigenvalues 

of its coefficients along the unit circle. For a circulant matrix in particular, 

calculating the coefficients is easy; the discrete inverse Fourier transform (see 

appendix B. 5) of the eigenvalues computes the first row of the matrix, from 

which subsequent rows are derived. 

Rotation may be achieved by arranging the eigenvalues symmetrically. So, in 

order to rotate the planar wave through angle cc, the following eigenvalues are 

used 
ForN=3, 

X= [1 e'`° e1 '] , (5.2.6) 

For N=4, 
X= [1 e'`° -1 e7S°], (5.2.7) 

ForN=5, 

X= ý1 e' e1 'e -j2'° e3], (5.2.8) 

where N is the number of vectors used to represent the planar wave, 

X is an eigenvector composed of eigenvalues. 

Performing the inverse Fourier transform on these eigenvalues gives the coef- 

ficients, x, that are used in matrix M of equation 5.2.5. Applying this matrix 

to the vector magnitudes results in the new convolved vector magnitudes a; 

ao ao 

M. a1 
= 

ai 
(5.2.9) 

L aN-i aN L 

Replacing these new magnitudes for those in equation 5.2.2 results in a new 

angle of plane wave propagation, B' =0+ cp. 
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5.2.3 Wavefronts at a Mesh Boundary 

The circulant matrix will be used to convolve the incoming signals at the edge- 

most nodes of the waveguide mesh (excluding the signals from the rimguides). 
Unlike the case within the mesh, the waveguides that connect to an edge- 

most node are not evenly distributed about a point, as can be seen in figures 

4.3 and 4.4 of section 4.1. This causes an error in the rotation, as an even 
distribution of waveguides, or vectors, was assumed in the rotation method 
described above. 

In the case of the edge-most nodes it is necessary to consider two domains. 

The first domain is the actual `real' case of waveguides connected to an edge 

node. The second domain, to be used in the rotation calculations, is the `ideal' 

version of the first which assumes the waveguides are evenly distributed. The 

difference in vector geometry between these two cases has two effects upon 

the calculation of wavefront rotation. Firstly, there is a unique but nonlinear 

mapping between the domains, such that an angle in the ideal case can be 

translated to an angle in the real case. Secondly, as a result of this nonlinearity, 

a rotation in the real case is dependent not only upon the amount of rotation 

in the ideal case, but also the initial incident angle of a wavefront. 

Mapping of Wavefront Angles Between Domains 

At the edge-most nodes of a waveguide mesh the surrounding waveguides can 

be equated to the unit length vectors P.. Substituting these `real' vectors for 

the `ideal' vectors, in equation 5.2.2, results in the direction of an incident 

wavefront at the boundary 

('ai. 
i) =L 

i-o 

where N is the number of waveguides attached to an edge-most node. 

The vector magnitudes, a;, are calculated as before using equation 5.2.4. This 

maps an ideal wavefront travelling within a mesh to a real wavefront at the 
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No. of 
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Figure 5.5: Rotation Errors for Dzfferernt Perzrraeter Node Structures ((ill any/, es 
are in degrees). 

mesh boundary. 

Finding the Rotation Error 

After convolution with matrix JI the rotated angle of t lie real wavefront is 

found With 
B;. =Ln, P, 

-; . 
(! "i. 2.11) 

t=o 

The resulting error in rotation can this be calcuateA as 

«), '. `_ (ý 1 

Plotting this error over a range of incident aiig; les and rotations results, in an 

rr5.5c error mýtip. Figures o. oa, 5.51) and show the error tnttj>5 for N=3, N=4 

and N=5 respectively. It can he seen that the greatest errors iii rotation occur 

when the wavefront is described by the least aunouuit of vectors or wavvgi ides 

(N = 3). 
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5.2. Modelling the Interior Lacquer 

Improving the Accuracy for Small Values of Rotation 

By applying a constant ratio to the desired rotation angle it is possible to 

improve the accuracy for small values of rotation, where cc - 0. This ratio is 

calculated as g where 9, =0 and cp = 0. By substituting cp with in 

the calculation of the matrix eigenvalues (equations 5.2.6,5.2.7 and 5.2.8) a 

small change in the desired rotation can be made to correspond with a small 

change in the real rotation. 
The new responses are shown in figures 5.5d, 5.5e and 5.5f, where the resulting 

errors are now seen to be only a reduction in the achieved rotation angle. 
Whilst an improvement has been made for small values of c, the errors have 

increased for the larger values of W. 

Maximum Rotation Errors 

For every angle of an incident wavefront, 9f, a maximum absolute error is at- 

tained somewhere across the whole range of desired rotations, cp. As each plot 

in figure 5.5 spans a range of incident angles there is a corresponding range of 

maximum absolute errors. Note also that there is a certain degree of symmetry 

within the plots, due to the symmetry of the perimeter node structures, such 

that coerror(ca, er) = -ýerror(-ýPr -Br). 

The different rotation error ranges are shown in table 5.4. Although the cor- 

rected rotations have greater maximum errors it should be remembered that 

these are intended for use with small values of desired rotation, W. It can be 

seen that the rotation errors are sometimes quite large. The accuracy, however, 

is not so important when the waves are to be scattered randomly, as shall be 

seen when the rotation technique is applied to the modelling of diffusion. 

5.2.4 Modelling Diffusion 

To rotate the propagation angle of an incident wave the aforementioned cir- 

culant matrix is used to convolve the signals arriving at an edge-most node 
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5.2. Modelling the Interior Lacquer 

N=3 N=4 N=5 

uncorrected 30° --> 60° 16° --ý 31° 7° --ý 13° 
corrected 34° -º 89° 25° --º 62° 15° -º 30° 

Table 5.4: Maximum Absolute Rotation Error Ranges for Different Perimeter 
Node Structures (all angles are approximate and in degrees). 

(excluding those arriving from the rimguides). The signals leaving this node 

are left unaltered. By randomly varying the amount of rotation at each sam- 

ple step the reflected waves are scattered into different directions, as though 

they had been diffused by a rough surface. The amount of diffusion may be 

controlled by limiting the range of the rotation angles. The probability distri- 

bution used to generate the random rotation angles can be tailored to mimic 
the desired distribution of the scattered waves. 

Results from the Diffusion Model 

The same lossless drumskin model as used in section 4.1 was created and the 

diffusion model was appended to the boundary of the mesh. To help demon- 

strate the effect of the diffusion the angle range was ramped up from 00 to ±9011 

over a period of ten seconds. This is of course impossible to recreate in reality, 

but shows just how versatile a computer model can be. A uniform probability 

distribution was used to generate the random rotation angles and the angle 

correction method from section 5.2.3 was used. The model was excited with an 

off-centre impulse and the velocities over its entire area were summed to sim- 

ulate an external listening point. The results from this simulation are shown 

as a spectrogram plot in figure 5.6. 

Whilst the reflections are specular the energy in each resonant mode remains 

constant. It is interesting to see that as the diffusion starts to take effect the 

energy enters frequency modes that weren't initially excited. As diffusion in- 

creases further, significant (random) amplitude modulations are caused at each 

mode. This results in a widening in frequency of the modes and the presence 
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Figure 5.6: Spectrogram of Sound from. a Lossless Circular Membrane with, 
increasing Diffusion at its Boundary. 

of additional noise. By the end of the simulation noitie is the dominant soull(l. 

A simulation of tithe-varying diffusion c; in be heard on the accoiiilr>>iying CD- 

Rom (see section A. 1.1 of appendix A). The model utilised was the none as 

that used for the results in this section. Here the diffusion angle range is in- 

creased with time until it reaches its niaxinntin and then it is gradually reduced 

back to the specular reflection case. The final sound is similar to the initial 

sound, demonstrating that the technique is lossless and stahiee. 

5.3 Summary 

The modelling of wave propagation ill 3D (., iii he ýieIIieve<1 ii, ilig ; 3D digital 

waveguide meshes. Previous research iii this area had rntilised simple tnesli 
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5.3. Summary 

structures or those with multiply-free architectures, often for the purpose of 
" real-time simulation. These meshes exhibit poor dispersion error and are there- 

fore not sufficient for the accurate modelling of 3D wave propagation. In this 

work a new mesh structure was discovered that exhibited near direction in- 

dependent dispersion error. This mesh has the most dense arrangement of 

waveguides that is possible in three dimensions. Its fundamental tessellating 

building block is the dodecahedron, hence it is called the `dodecahedral' mesh. 

Most boundaries of space are rough which causes a phenomenon known as dif- 

fusion. Its effect is to scatter reflected waves into many directions, the range 

of which depends on the surface roughness and frequency of the waves. Whilst 

this effect has been incorporated into other modelling techniques there was no 

existing method for simulating diffusion at the boundary of a digital waveg 

uide mesh. A technique was found to achieve this in 2D meshes which involved 

altering the incident angle of waves as they propagate to the boundary. By 

varying this incident angle randomly over time, within a specified range, the 

technique was shown to simulate diffusion in a controlled manner. 

Through mathematical analysis of the rotation technique fundamental to the 

diffusion model it was found that there was a difference between the desired 

rotation and the actual rotation. This error generally increased for the larger 

values of rotation but was kept small when the boundary nodes were well 

described with a greater number of connecting waveguides. 
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Chapter 6 

Completing the Drum Model 

6.1 Interfacing the Different Media 

The air cavity and drumskin models described in the previous chapters consti- 

tute the main components required to build a drum model. However, a method 

for interfacing these different media is required. Previous waveguide investi- 

gations had only considered meshes in isolation and so there was no existing 

interfacing method before commencing this work. As both models use meshes 

of different density and structure the interfacing is not a straightforward task. 

In order to pass contributions from a low-density mesh to a higher one it 

can be imagined that some form of interpolation will be required at the low- 

density surface. When passing information the other way a deinterpolation 

method will be needed. The simplest interpolation/deinterpolation methods 

to implement are those that are zero order; in which case the wavefronts are 

non-continuous. Improvements to this interfacing method are discussed in the 

future work section 8.5. 

6.1.1 Interfacing the Edges of two 2D Waveguide Meshes 

To help explain the proposed technique consider the interface between the 

edge of two 2D waveguide meshes that are supporting transverse waves. Each 
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6.1. Interfacing the Different Media 

(b) Interface Exception 
near Boundary 

Figure 6.1: Interface Connections between two 2D Triangular Waveguide 
Meshes. The circles are node junctions and the lines represent waveguides. 

node at the interface boundary requires a least one connection to carry the 

travelling wave contributions between the different media. These connections 

are non-integer length waveguides (see section 3.3), the arrangement of which 

can be seen in figure 6.1a. The minimum length of these waveguides must be 

1.5 spatial samples, as each path is made of a unit of delay and an allpass filter. 

Notice that the interconnections are all aligned to the same direction and don't 

appear to attach directly to the node junctions of the lower density waveguide 

mesh. This is done to emphasize the required length of the interconnecting 

waveguides; they model waveflow perpendicularly across the boundary and 

hence take the shortest distance. In the model, however, these waveguides are 

connected to the nearest nodes. This assumes that the wavefront measured at 

a node is constant across the element centred over this node (bounded by the 

vertical dashed lines), in accordance with piecewise constant interpolation. 

It is important to note that if the two meshes are of very different densities then 

some interconnections could be outside of this element. An example of this 

is shown in figure 6.1b. It has not been possible to include these connections 

without causing instabilities, and so they are simply ignored in the model. 

The Interface Connection at the Low-Density Mesh 

Assuming that the low-density mesh represents a homogeneous material of 

impedance R1, then its waveguides all have an impedance of N (see equation 
D. 16 in section D. 2), where N is the number of waveguides connected to each 
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6.1. Interfacing the Different Media 

node junction within the mesh. As explained in section 4.1.3 the edge-most 

nodes will only have n waveguides attached, where n<N, so the interconnect- 

ing waveguide attached to such a node requires an impedance of N (N - n). 
This ensures that there is no impedance discontinuity at the edge. 
For the low density mesh, however, an edge-most node will actually have 

a number of interconnecting waveguides, M, arriving from many nodes in 

the high-density mesh. Each of these must be scaled such that their to- 

tal impedance equals that mentioned above. Therefore, the interconnecting 

waveguides have an impedance of 

Rco a ud; on = 
MN 

N- n), (6.1.1) 

where Ri is the impedance of the low-density mesh, 
N is the number of waveguides connecting to a node junction within 
the mesh, 

n is the number of waveguides connected to the edge-most node 
being considered, 
M is the number of interconnecting waveguides arriving at this node 
from the high-density mesh. 

The Interface Connection at the High-Density Mesh 

To complete the interface the interconnecting waveguides are attached to their 

corresponding node junctions in the high-density mesh. The impedance of 
these waveguides remains the same as that defined above. The impedance dis- 

continuity caused by doing this is, in fact, the appropriate impedance mismatch 
between the two meshes; an interconnection is an extension of the low-density 

mesh. 

An Example Simulation 

To demonstrate the interface model two 2D triangular waveguide meshes were 

created. They both had the same impedance yet one was twice the density of 
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6.1. Interfacing the Different Media 

Figure 6.2: Progression of a Wavefront across a Digital Waveguide Mesh In- 
terface. The time intervals between each frame are identical. 

the other. The mesh boundaries were rectangular in shape and three sides of 

each mesh were clamped with rimguides. The remaining sides were attached 

together using the interfacing technique. A wavefront was generated by ex- 

citing the nodes along one boundary with one cycle of a sinusoidal function. 

Figure 6.2 shows the progression of the wavefront across the interface. 

An animation of this can be found on the accompanying CD-Rom (see section 
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6.1. Interfacing the Different Media 

A. 1.3 of appendix A). Notice how the wavefront travels more slowly in the 

denser mesh. It is possible to discern a very small reflection at the interface. 

This reflection returns to the start, where it is reflected again, and then travels 

back to the interface entering the high density mesh just as the initial wave 

reaches the far end. The relatively small size of the reflection suggests that 

the interfacing method and its impedance matching is very good. 

6.1.2 Interfacing 2D and 3D Meshes 

In the case of a drum model a 3D dodecahedral mesh, modelling the air, will 
be attached to 2D triangular meshes that model the drumskins. Due to the 

relatively fast wavespeed of sound in air the 3D air mesh model will have 

the lowest density. The interfacing connections are to be created in the same 

manner as before, but special consideration needs to be given to the fact that 

longitudinal waves have to be converted to transverse waves and vice-versa. In 

addition, a conversion between pressure and velocity is required. 
The following discusses the methods employed to achieve these conversions 

and to model the 2D-3D interface. The interface is used in the simulation of 

a kettledrum, in chapter 7.1, where the interior air is connected to a circular 

membrane. 

Converting between Longitudinal and Transverse Waves 

In order to convert longitudinal waves to transverse waves and back it is first 

necessary to define the directions in which the transverse waves act. As an 

example, consider a tom-tom drum model with positive displacement relating 
to `up'. The tom-tom has two membranes, one on the top and the other on 
the bottom of a cylindrical air column. 

At the top membrane an increased (positive) value of pressure within the air 

column will cause an upwards (positive) deflection. Because a positive value 
in the air model results in a positive value in the membrane model there is no 
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6.1. Interfacing the Different Media 

need to alter the sign of the travelling wave from air to membrane. Conversely, 

a positive displacement in the top membrane will decrease the pressure below 

in the air column. In this case the returning path of the waveguide, which 

connects the membrane model to the air column model, must have a sign in- 

version attached to it. 

The interconnections between the air column and the bottom membrane be- 

have in the opposite manner. Here, a positive pressure within the air column 
forces the membrane downwards, causing a negative displacement. Therefore, 

the path of the waveguide that connects the air model to this membrane model 

has a sign inversion associated with it. The return path obviously leaves the 

sign of the travelling wave unaffected. 

Converting between Pressure and Velocity 

Before data in an air model can be passed to a membrane model a conversion 

from pressure to velocity is required. This can be done by dividing the pressure 

by the air's impedance, Z (see equation 3.8.4 in section 3.8). Conversely, the 

conversion from velocity back to pressure can be done by multiplying by Z. 

Impedance of a 2D-3D Interconnection 

The impedance at the air end of the interconnecting waveguides is calculated 

as before using equation 6.1.1 with Rl = Z. However, at the membrane end 

the 3D model is being converted to a 2D model, and so the values of impedance 

are, expected to relate velocity to force instead of pressure. 

Each connection from the air can be thought of as a small pipe with cross- 

sectional area M, where A is the area of an element centred over an air mesh 

node (m2). Multiplying the air's impedance by this cross-sectional area results 

in the impedance experienced at one end of the pipe, which is connected to an 

element of the membrane mesh. This impedance will relate velocity to force. 

The impedances of an interconnection, as seen by both meshes, are therefore 
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6.2. Instrument Excitation 

calculated in the following way 

Zair 
connection = MN 

N- n), (6.1.2) 

Rmembrane 
connection =M" (6.1.3) 

6.2 Instrument Excitation 

The exciter provides the interface between player and instrument. It is the 

manipulation of the exciter that enables the player to generate and control 

the instrument's sound. Consequently, the method of excitation is the most 
important factor in defining the tonal qualities and evolution of this sound. 
After all, it is the excitation that transfers all the energy to the instrument 

and it does this in a time-varying manner. 

As an example consider a piano, violin and guitar. All three instruments share 

the same topology; there are strings connected to a sound-box, albeit with 
different dimensions. However the methods of excitation are fundamentally 

different, which results in the characteristics we expect to hear from each 

instrument. The piano strings are struck with a felt mallet, the violin strings 

are generally bowed and the strings of a guitar may be plucked or picked. 

The interaction between player, exciter and instrument is also dynamic with 

one affecting the other. This is an important point to consider, as the current 

state of the instrument will influence the exciting mechanism and, in turn, 

this will result in slight changes in tonal quality. Including such feedback 

interactions in a model is not only physically correct but also necessary to 

capture certain aspects of realism, the absence of which produces an unnatural 

sound. An example of this may be heard in sampled drum synthesisers. These 

synthesisers replay real recorded drum samples and are therefore very realistic 

when used for isolated drum hits. But, if a drum roll is performed then the 

sound is stuttered and unnatural, because each hit triggers the same sample 

regardless of the drum's state. 
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6.2. Instrument Excitation 

6.2.1 Excitation Modelling 

Impulse Exciter 

This is the simplest form of excitation to model. Ideally, it lasts for an infinites- 

imally short period of time (at most one sample period during modelling), and 

therefore does not respond to feedback from the instrument. The impulse ex- 

citer is modelled by adding a single value, for one sample period, to a junction's 

velocity within the digital waveguide mesh. Obviously, such an excitation is 

impossible to achieve in reality and its usefulness may not be immediately ap- 

parent. 

It is the study of digital filters that highlights the importance of impulses and 
their resulting impulse responses, for these can be used to characterise the fil- 

ter's behaviour; its frequency dependent gain and phase response can be found 

in this way. Essentially, the ideal impulse is a spike of energy made up from 

a superposition of all frequencies. The impulse response shows how all these 

frequencies are affected by the filter. 

A digital waveguide model of an instrument is essentially a very large and 

complex filter, and thus its behaviour can be similarly studied through excita- 

tion with an impulse. In this case, the impulse injects energy into all possible 

frequencies up to the Nyquist frequency. Fourier analysis (see section B. 5) 

may then be performed on the model's output in order to find all its resonant 
frequencies. 

Mallet Exciter 

A mallet is the general term used to describe hammers and drumsticks. These 

exciters are used to play pianos and percussive instruments. The mallet is 

thrown against the instrument, which it interacts with for a short while and 

then bounces off. The interaction can be viewed as a non-linear mass and 

spring system (Chaigne and Askenfelt, 1994), see figure 6.3. Here the mass 

models the dynamic mass of the mallet and the spring models the compression 
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Mass 
(effective dynamic 

mass of mallet) 

Non-linear spring 
( r mallet felt) 

Figure 6.3: The Mallet Model 

of the part that touches the drumskin (in this case the mallet felt). The free 

end of the spring connects to the model of the drumskin. 

Governing Equations 

When the mallet pushes against the membrane of a drum part of it compresses 

like a spring. The relationship between force and compression is generally non- 

linear, but well described by the equation(Chaigne and Askenfelt, 1994) 

F(t) = K[(5 - u(t) + W(t))+]a, (6.2.1) 

where K is the coefficient of mallet stiffness (Nm-') 
, 

S is the initial position of the mallet's centre of gravity (m), 

u(t) is the time-varying position of the centre of gravity (m) 

(both measured perpendicularly from the membrane), 

W(t) is the mean displacement of the membrane's area in contact 

with the mallet (m), 

the symbol + means `positive part of', 

a is the stiffness nonlinear component. 

The parameters K and a can be found through measurement of force-deformation 

curves, following the same method as used for piano hammers (Chaigne and 

Askenfelt, 1994). 

It can be seen that the force, F(t), increases with an increase in compression. 

This force acts on both the membrane and the mallet, pushing them apart. 
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6.2. Instrument Excitation 

The motion of the mallet obeys Newton's Second Law (see equation C. 10 in 

appendix C. 1) 
6pu 

m- = F(t). (6.2.2) 

Because of the way in which the mallet is controlled by the percussionist, 

the effective dynamic mass, m, is not equal to the static mass. The effective 

dynamic mass (Chaigne and Askenfelt, 1994) (Hall, 1992) and its initial velocity 

can be found by measurement, using the same procedure as that used by 

Chaigne and Doutaut for xylophones (Chaigne and Doutaut, 1997). 

Modelling the Mallet 

In order to excite a digital waveguide model with a mallet, a model has to 

be created that is governed by equation 6.2.1. A travelling wave model of a 

mallet had already been created (Duyne, Pierce, and Smith(III), 1994), but it 

is difficult to incorporate the nonlinear component a of equation 6.2.1. The 

mallet's contact area was also not included in this model. 

For this investigation a simple but effective finite difference method was formed 

to implement the mallet. Initially, its velocity is set to vo and the mesh nodes 

that it will interact with are found, such that the mallet's contact area can be 

included. The number of these mesh nodes is stored in N,, The force, 

F(t), starts at 0. At each time interval the following steps are performed. 

Applying Interaction Force to Mesh Nodes 

The current value of F(t) (the force applied to each node) is included N ,dd node. 

in the velocity equations of the mesh nodes that the mallet interacts with, as 

shown below (see equation D. 18 in appendix D. 3) 

2E v4R + F(t) V 

contact 
wed/t) _- , tn, tnodes 

En (6.2.3) 

The total force applied by the mallet has now entered the digital waveguide 

model. 
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6.2. Instrument Excitation 

Calculating u 
(t + fý ) 

The mallet's acceleration, a(t) =&, is calculated using equation 6.2.2. This 

acceleration is assumed to be constant over the sample step, so the next velocity 

of the mallet will be 

v 
(t 

+ 
fa) 

= v(t) + a(t) (6.2.4) 

The new position of the mallet can then be found through first order integration 

V(t) 
ut+ 

1l 
= u(t) ++v 

(t + Ti. 
) 

(6.2.5) C .. / 2 fa 

Calculating W (t + fý 

The average velocity of the mesh nodes that the mallet interacts with is cal- 

culated as 
ý (t) Vavg. 

contact nodes 
y contact nodes (t) -J %ýlcontad 

nodes 

(6.2.6) 

so that the updated mean displacement, W (t + fý) 
, can be found 

W (t+ faJ 
= W(t) + 

Vovg. tonfadnodes(t). (6.2.7) 
\f 

Iterating the Mallet Model 

The waveguide model is now iterated for one sample period 
(*)" During 

this time the travelling waves move to their next positions and the new values 

of displacement, velocity, force and pressure are calculated within the model. 

Once this has been done equation 6.2.1 is used to find the new value of F(t) 

and the above processes are repeated. 

The accuracy of this new mallet modelling technique will be evaluated in the 

next chapter where it is used to excite a waveguide model of a kettledrum. 

Its acceleration curve is compared with that from measurement and a finite 

element simulation. 
It is evidently straightforward to change or refine this mallet physical model. 
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6.3. Summary 

All that is required is to substitute a new equation in place of equation 6.2.1 

that lies at the heart of the model, defining its behaviour. This gives it an ad- 

vantage over the travelling wave model that was previously mentioned, which 

would have to be completely revised if such a change were to be made. 

6.3 Summary 

The ability to attach digital waveguide meshes of different density and struc- 

ture together is essential when creating composite waveguide models. There 

had been no documented attempt of achieving this and so a new technique 

was proposed in this chapter. When attaching two meshes together the wave 

variable over an element of the least dense mesh was considered to be con- 

stant. This enabled a simple interpolation/deinterpolation at the interface, 

which was modelled using fractional length waveguides. Careful calculation 

of the interfacing waveguides' impedance was required to ensure stability, al- 

though this could result in mesh nodes close to an edge remaining unattached. 

The technique was demonstrated by connecting two 2D waveguide meshes to- 

gether and its extension to 2D-3D interfaces was described. Such an interface 

is used to connect the drumskin to the interior air in the next chapter, where 

a kettledrum model is constructed. 

Without a method of exciting a model there would be no way of evaluating 

its response with measurement from reality. In the case of a drum the mallet 

interaction needs to be modelled. A drum mallet model that used a travelling 

wave description had previously been researched, but this did not incorporate 

an accurate mathematical description of the interaction. A new model was 

therefore created that used a finite difference implementation with this mathe- 

matical description at its core. This mallet model is easy to attach to a digital 

waveguide mesh and it also incorporates the size of the contact area. 
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Chapter 7 

Model Analysis and Conclusions 

7.1 Analysis of a Kettledrum Model 

The new waveguide techniques described in chapters 4,5 and 6 are sufficient 

to construct a simple drum model. In order to evaluate these techniques a 

comparison is made with the results from a previous study of a kettledrum 

(Rhaouti, Chaigne, and Joly, 1999). Here, a finite element model was con- 

structed and an analysis was done on its approximation to measurements read 

from the real instrument. 

7.1.1 Model Creation 

The parameters of the kettledrum model are presented in table 7.1. All mea- 

surements are taken from the centre of the membrane with the z-coordinate 

corresponding to the vertical axis. 

A digital waveguide model of this kettledrum was created using the techniques 

described in the previous chapters. These cover all aspects of the model's con- 

struction, however there is as yet no technique to model the air surrounding 

the drum. This is necessary to record the output at the external listening point 
defined in table 7.1. Whilst this could be done by interfacing the drum to a 
large external 3D mesh, a simpler method was utilised. This involved summing 
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7.1. Analysis of a Kettledrum Model 

Mallet 
vo = 1.4 ms-1 S=0.025 m 
m=0.028 kg K=1.6x108Nm a 
a=2.54 Excitation Point: (x, y) = (0.21 m, 0 m) 

Membrane 
r=0.3175m o=0.262kgm-2 
T= 3325 Nm-1 

Kettle 
H=0.5m Boundary Shape: z = -H r2 - x2 - y2 

Sampling 
f, = 24 kHz Listening Point: (x, y, z) = (-0.31 m, 0 m, 0.1 m) 

Table 7.1: Parameters for a Kettledrum. 
Measured by Rhaouti, Chaigne, and Joly (1999). 

the contribution at the listening point from each node of the membrane mesh. 

The signals from the nodes were delayed using fractional length delay lines 

(see section 3.3), each measured according to the distance between node and 
listening point. This technique does not include the interaction between the 

external air and membrane surface. 

7.1.2 Model Analysis 

The waveguide model was excited with the mallet and its output recorded for 

9000 samples. Its resonant frequencies up to 700 Hz were obtained through 

Fourier analysis (see appendix B. 5) and compared in table 7.2 with those of 
the real kettledrum and finite element model. 

It can be seen that the higher frequencies correspond well with those recorded 
from the real instrument and actually surpass, in some cases, the accuracy of 

those predicted by the finite element model. However the lower frequencies, 

especially the first two resonant modes, do not share this level of accuracy. A 

possible reason for this may be due to the interfacing problem demonstrated 
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7.1. Analysis of a Kettledrum Model 

fmn fmn 

Mode (measured) (finite element simulation) 
(mn) (Hz) (Hz) 

01 136 139 
11 147 147 
21 221 221 
02 248 245 
31 288 288 
12 315 315 
41 357 355 
22 395 395 
03 403 408 
51 424 419 
61 480 483 
71 552 544 

fmn 

(digital waveguide simulation) 
(Hz) 

155 
168 
227 
256 
296 
315 
357 

400 
419 
480 
549 

Table 7.2: Comparison between Measured and Simulated Frequencies of a Ket- 
tledrum. 
Measured and finite element frequencies obtained by Rhaouti, Chaigne, and Joly (1999). 

in figure 6.1b of section 6.1.1. For this waveguide model of a kettledrum the 

problem occurs close to the membrane boundary, where the outer membrane 

nodes are not connected to nodes of the interior air cavity. This will affect the 

load experienced by this part of the membrane, altering the resonant frequen- 

cies. Also the exterior air wasn't included in the waveguide model and this 

would apply an air load to the top surface of the skin. It has been calculated 

and demonstrated that the loading caused by an unconfined sea of air lowers 

the modes of resonance, with the modes of lowest frequency being affected the 

most (Fletcher and Rossing, 1991b). Indeed the membrane model on its own 

with no air-loading has been demonstrated to be very accurate at these low 

frequency modes (see section 4.1), so the errors are likely to have arisen from 

the membrane-air interface. 

Figures 7.1 and 7.2 show the acceleration of the mallet during the kettledrum's 

excitation. The former compares the measured acceleration with the simulated 

acceleration from the finite element model, the latter is the mallet acceleration 
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Figure 7.1: Acceleration of the Mallet. Comparison of measured (solid line) 

and finite element simulation (dashed line). 
Reproduced from Rhaouti, Chaigne, and Joly (1999) 
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Figure 7.2: Acceleration of the Mallet. Recorded from the digital waveguide 
kettledrum model. 

read from the waveguide model. The radius of the mallet's contact area was 

estimated to be r�zlet = 0.015 m. This estimate results in an acceleration 

curve from the waveguide model that is remarkably similar in amplitude and 

shape to the real measured curve. This is a good justification of the mallet 

model and its interaction with the membrane because of the complexity of the 

dynamics involved; the acceleration of the mallet depends on the compression 

104 



7.1. Analysis of a Kettledrum Model 

of the non-linear felt, which in turn affects and is affect by the vibration of 

the membrane. If either part behaved incorrectly then this acceleration curve 

would not match the measured curve so closely. 

To complete the kettledrum model it is necessary to add losses such that the 

decay times of the resonant frequencies match those of the real drum. As 

described in section 4.1.4 losses may be simply incorporated into waveguide 

models by adding lowpass filters and gains to the mesh boundary. Unfortu- 

nately, as this technique does not make use of measured material parameters 

the loss has to be adjusted through trial-and-error. It was found that a reason- 

able approximation could be made by adding first order IIR lowpass filters to 

the boundary of the interior air. A filter coefficient was used that would cause 

an attenuation of -71 dBs'1 for a wave of fundamental frequency (fol) trav- 

elling diametrically in the air just below the membrane. This coefficient was 

used in each of the lowpass filters. In addition to this a pure gain was applied 

at the boundary of the membrane mesh. The value of this gain was chosen 

such that waves close to DC in frequency, travelling diametrically across the 

membrane, would suffer an attenuation of -40 dBs-1. Clearly this is not an 

ideal method for modelling losses, but, despite this shortcoming it should be 

noted that the finite element model incorporated a viscous friction constant 

that also had to be found through trial-and-error (Rhaouti, Chaigne, and Joly, 

1999). 

The models were run for three seconds (72000 samples) in order to let the 

sound decay to -60 dB of its original magnitude. The results are plotted in 

figure 7.3 (output from real kettledrum and finite element model) and figure 7.4 

(output from digital waveguide model). Each figure has three plots to convey 

different information about the sound. The leftmost plot was obtained through 

Fourier analysis of the entire sample, indicating the resonant modes. The 3D 

plots in the middle were created through Fourier analysis of 9000 points with 
fanning window and 50% overlap, in order to give a time-frequency response. 
The plots on the right show the signal amplitude response over time. 
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(recorded from the digital waveyuide model). 

As previously noted the frequency content of the waveguide model (0111oFIuti 

well to that of the We element model 011(1 the real instrument. as shown iii 

the leftmost plots. The extra low frequencies in the real iIist rninent 5 blot vvcw 

(lute to noise in the electronic channel clitritiy recording. 

Doubled peaks can also be seen for the real instrument which result in a differ- 

ent shape of the signal amplitude response. It was foinO that they, were (1111 to 

imperfect tuning, where the tension of the meanbrance is not 1111ifI, rm (1 liaouti. 

Chaigne, and . Ioly. 1999). A technique for incorporating nonn-tinifonii fetision 
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into a waveguide membrane model is proposed in section 8.4 of the future work 

chapter. 
An important difference of the digital waveguide model can be observed in the 

initial magnitude of the resonant modes. It would appear that the energy from 

the mallet model is not being transferred to the drum properly. This is due 

to an approximation in the mallet model; the displacement of the membrane 

beneath the mallet, required to calculate the excitation force, is simply calcu- 
lated as the average displacement of the mesh nodes within the contact area 
(see page 99 of section 6.2.1). The mallet model used in the finite element 

analysis differed-from this in'that the mean displacement was calculated in an 

alternative way. In this case a function was applied to the displacements that 

put greater emphasis on those close to the centre of the mallet. This was done 

to take the mallet's curved shape into account. 

It can be seen from the time-frequency plots that some of the frequencies' 

decay times are too short in the digital waveguide model. The loss modelling 

technique is evidently too simple to accurately copy the response of a real 

instrument, yet it is sufficient to give the impression of the instrument to the 

ear. Further information on more accurate modelling of losses can be found in 

section 8.1 of the future work chapter. 

The bearing edge and diffusion models developed earlier in this thesis were 

not included in the waveguide kettledrum model. This was because they were 

not considered for the finite element model of the previous investigation, from 

which results for comparison were taken. Their affect on the output of the 

model would have unnecessarily complicated the analysis. Nevertheless, the 

bearing edge would have been easy to incorporate as no modification would be 

required to its implementation. The diffusion model, on the other hand, would 

need to be extended to 3D before attaching it to the interior of the kettledrum. 

Considering the results from their analyses earlier in the thesis, it is possible 

that they would have caused a greater spread of energy across the resonant 
frequencies and increased the noise in the system. In addition there would be 
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7.1. Analysis of a Kettledrum Model 

a slight decrease in sustain. 
The sound of this- digital waveguide kettledrum model can be heard on the 

accompanying CD-Rom (see section A. 1.1 of appendix A). Also included is 

the same model excited at the centre and another excited with a short drum 

roll. In addition there is the sound from a kettledrum model of the same di- 

mensions but with less tension in the drumskin. In this case its fundamental 

is audibly lower. 

The quality of the sounds is very good and they do indeed give the impres- 

sion of a kettledrum being struck. In particular, the drum roll sound has a 

noticeable low frequency `punch' for each strike of the mallet which sounds 

very realistic when played loud through a good amplifier. The samples do, 

however, have a slight `metallic' feel to them and this is most likely due to the 

over-simplistic energy loss model employed. An improvement to this part of 

the model would no doubt result in extremely high fidelity sounds. Neverthe- 

less, these sounds are still musically useful as drum samples. If they could be 

produced in real-time then the level of control and expression provided by the 

physical model would be invaluable to a performer. 

The kettledrum model was created by specifying the shape and material prop- 

erties. No other information was fed to the computer to help define the sound 

and so in this way such a modelling technique could be very useful to a Master 

Craftsman. In its present form the technique would enable such a craftsman 

to hear the pitch and relationship between the resonant frequencies for a drum 

of any shape or size with a variety of drum skins attached. With accurate 

modelling of the viscous friction losses the craftsman would be able to make 

a decision on what materials work well before entering the workshop. In fact 

the entire design and testing could be done on a computer, allowing greater 

freedom for imagination and creativity. Only the fine tuning and finishing 

touches would need to be applied to the actual physical product. 
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7.2 Conclusions 

In this thesis the physical modelling of percussive drums was investigated using 
digital waveguides. The result of this research was a set techniques that could 
be used to construct a drum model, the accuracy of which was demonstrated 

with the analysis of a kettledrum. This advanced state of digital waveguide 

modelling required many extensions and additions to be made to the existing 
digital waveguide techniques. The culmination of the work was a permanent 

exhibit, named the `Virtual Drum', in the Wellcome Wing of the London 

Science Museum. Its purpose was to demonstrate the cutting edge in the 

physical modelling of musical instruments. 

7.2.1 Modelling the Drumskin 

In chapter 4a 2D digital waveguide mesh was used to construct a model of 

a drumskin. In order to achieve a circular boundary techniques were created 

that extended the mesh to the appropriate shape and size. These techniques 

involved the attachment of rimguides to the edge-most nodes, which modelled 

wave propagation to the boundary and back. The techniques that were inves- 

tigated employed increasing orders of complexity, however it was found that 

a simple fractional delay was sufficient, which corrected the propagation of 

waves close to DC in frequency. This technique was shown to reproduce the 

first seven resonant modes with good accuracy, see method 2 in table 4.3 on 

page 52. 

A method was also proposed for calculating the impedance values of a 2D 

waveguide mesh. This was done by considering a small element of a mesh 

which represented its fundamental building block. The accuracy of this calcu- 
lation is confirmed in the results from the kettledrum model, shown in table. 

7.2; the interaction between interior air and drumskin is evidently being re- 

produced correctly. 

A technique for modelling the curvature of the bearing edge was also created 
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and its effect was investigated when attached to a string, like the bridge of a 

guitar or violin. The technique involved modelling the perceived shortening 

and lengthening of the string as it wrapped and unwrapped itself around the 

edge. It was shown in figures 4.13 and 4.15 on pages 67 and 69 respectively 

that the resulting effect is to leak energy into higher modes of resonance with 

an increase in bearing edge radius or string excitation. It was argued that 

this effect reduces sustain and is therefore undesirable. This conforms with 

experience of playing the guitar, where the bridge is made as sharp as possible 

to help increase sustain. 

7.2.2 Modelling the Interior of a Drum 

The modelling of the interior air was considered in chapter 5. Here a new 

waveguide mesh structure was proposed to model the wave propagation in 3D 

correctly. This structure, the dodecahedral mesh, was shown to have near 

direction independent dispersion error in figure 5.3 on page 76. Its response 

was found to be quite accurate when compared to the theoretical resonances 

of a room (see table 5.3 on page 78). 

Previously all models were restricted to boundaries that exhibited specular 

reflection. A diffuse reflection modelling technique was created to incorporate 

into waveguide models the effect of rough boundaries. A method was found to 

alter the angle of an incident wave to the boundary, and this was performed 

randomly over time for different angle ranges in order to simulate a diffusion 

effect. Although it was only investigated for 2D it was shown, in figure 5.6 on 

page 87, that this technique is controllable and does indeed model the effect of 
diffusion. With further investigation this will become invaluable for simulating 

the acoustics of a room. 

7.2.3 Interfacing Meshes and the Excition of Models 

An area of waveguide modelling that was previously unexplored was the inter- 
facing of different meshes. Naturally, as each part of a model will use waveguide 
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meshes of different structure and density, it is neccessary to be able to attach 

them together. Chapter 6 proposed a technique to achieve such an interface, 

which utilised simple interpolation/deinterpolation to create interconnections. 

These interconnections are lossless and were demonstrated in figure 6.2 on page 

92 to accurately model wave propagation across an interface between two 2D 

meshes. The technique was advanced to model a 2D-3D interface and was put 

to good use in the model of a kettledrum, where the interior air needed to be 

attached to the drumskin. 

Finally, a method was described for modelling a mathematical description of 

a drum mallet. This model is easy to attach to a waveguide model for the 

purpose of causing an excitation. Its behaviour was found to be very accurate 

when compared to measurements taken from reality, as shown in figure 7.2. 

7.2.4 The Digital Waveguide Modelling Technique 

Overall the digital waveguide techniques proposed in this thesis are quite ac- 

curate and already useful for musical instrument design. With further de- 

velopment their accuracy could be increased to match more complicated and 

established modelling techniques such as the finite element. Digital waveg- 

uide models enjoy many advantages over such techniques giving them the edge 

when chosen as a modelling tool. Firstly their execution requires simple com- 

putations, the majority of which involve copying data from one location to 

another. The remaining operations are digital filtering and the calculation of 

the scattering junction velocities. Another advantage is that they are intuitive 

and simple to construct. Essentially, they involve filling a boundary of the de- 

sired shape with a regular mesh. This can be done with little or no knowledge 

of the underlying physics and involves hardly any recourse to mathematics. 

Therefore an instrument designer using this technique could focus more on 

choosing materials and shape, as though they were building an instrument in 

reality. 
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Chapter 8 

Future Work 

8.1 Modelling Real Materials 

All materials exhibit some stiffness and internal viscosity. These properties 

result in dispersion (frequency dependent wavespeed) and frequency dependent 

damping. However, for this investigation the waveguide model of the drumskin 

assumed that the membrane was perfectly flexible. In addition, the damping of 

the kettledrum model was tailored to fit the response from an actual recording. 

Whilst the effect of stiffness could have also been included with the addition 

of dispersive allpass filters, it would be preferable to model the properties of 

a material explicitly. By doing this the frequency dependent effects would be 

inherent within the model and there would be no need for the time consuming 

trial-and-error response matching required to tune such filters. 

8.1.1 Modelling Internal Viscous Friction 

It has been shown that the damping factors are invariant to a material's stiff- 

ness and shape (Djoharian, 1999). Therefore, this may be modelled separately 

from the other properties of a material. As a result, a material's visco-elasticity 

is characterised purely in terms of its storage and loss moduli. A model of a 

series-parallel assembly of springs and dashpots can be constructed to match 
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this property, and this has already been implemented in Cordis-Anima simu- 

lations and modal synthesis (see sections 2.2.4 and 2.2.7). Once modelled it 

should be possible to incorporate this into digital waveguide structures. 

8.1.2 Modelling Bending Stiffness 

In order to incorporate stiffness higher order mathematical terms have to be 

included within the model, whereas the digital waveguide models used in this 

work only solve the second order wave equation. It has been shown that 

stiffness in 1D media can be modelled with digital waveguide techniques by 

connecting two waveguides together in a special way. This inter-connection 

forms a Digital Waveguide Network (DWN) (Bilbao, 2001), where one waveg- 

uide carries velocity waves and the other carries curvature waves. Results from 

this new waveguide structure are promising, although extending it to 2D or 

3D is quite complicated. However, it is possible to model varying stiffness in 

different directions, such as that caused by the direction of the grain in wood. 

Recently, work was done to combine the theory of DWNs with the visco- 

elastic damping method mentioned above (Aird and Laird, 2001) (Aird, 2002), 

and work will be forthcoming to develop this further. Once done it will be 

possible to make digital waveguide models of real materials. 

8.2 Extensions to the Diffusion Technique 

The method proposed in section 5.2 for modelling diffusion was only applied 

to the boundary of a 2D digital waveguide mesh. This is quite restrictive, 

especially as diffusion is most likely to occur at the boundary of 3D spaces. 
The method did not include any frequency dependent effects either. 
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8.2.1 Extending to 3D 

Extending the method to 3D must involve a convolution of all the incoming 

signals to a boundary node, but these cannot all be done at once as at least 

two different rotations are required to pre-alter a wave's angle of incidence: 

one in the horizontal plane and one in the vertical plane. In fact, the available 

planes of rotation will depend on the 3D mesh structure that is used and the 

boundary shape. 

A good approach would be to find the minimum number of planes that intersect 

all waveguides surrounding a node at the boundary. The angle of incidence 

could then be changed by performing a combination of rotations in each and 

every plane (using the same 2D rotation method as before). It is likely that 

the resulting angle of incidence will be even less defined than that for the 2D 

method. Once again the error should be found so that the diffusion can be 

performed to a reasonable approximation. 

8.2.2 Frequency Dependent Diffusion 

In order to include frequency dependent effects in the diffusion method it will 

be necessary to alter the circulant matrices used in the rotation convolutions. 

At present the coefficients within the matrices are real numbers, acting as pure 

gains. If these were to be replaced with filters then the re-distribution of the 

signals could be done in a frequency dependent way. Great care would have 

to be taken to ensure that all the filters are complimentary (combinations of 

lowpass and highpass) in order to preserve signal strength and power. 

Another factor that has an important affect on the reverberation of acoustic 

spaces is frequency dependent absorption at the boundaries. This has already 

been modelled with good accuracy by matching digital filters to air absorption 

characteristics and appending them to the edge of a digital waveguide mesh 

(Huopaniemi, Savioja, and Karjalainen, 1997). The implementation is identi- 

cal to that proposed earlier in this thesis for simulating viscous friction losses 
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in a membrane. The absorption is also angular dependent and so it could be 

possible to extend the diffusion technique to incorporate this. 

8.3 Modelling the Extra Drum Components 

8.3.1 The Shell 

The kettledrum model constructed for this work did not include any interaction 

with the shell. The boundaries to the drumskin and the interior air were simply 

modelled with reflections, which assume the shell is very hard like steel. As 

the shell is made from a stiff material that would also have a certain degree of 

internal damping, it should first be constructed using the material modelling 

techniques discussed in section 8.1 above. Once complete it could then be 

interfaced to the interior air and drumskin using the method presented in 

section 6.1. 

It may be the case, however, that the resonance of the shell has little effect 

on the vibration of the system as a whole (this could be investigated using 

the physical model). If so, then only the shell's absorption would need to be 

modelled at the air and membrane boundaries. 

8.3.2 Air Holes 

Many drums have at least one air hole punched through the shell. The reason 

for this is probably to help the pressure inside the drum equalise with that on 

the outside more quickly. Its effect could be investigated by including it in the 

drum model. 

Adding this to the model would involve removing the reflecting rimguides of 

the air mesh boundary at the location of the air hole. In their place waveguide 

connections of the appropriate impedance should be made to the exterior air. 

This impedance would be that of air in a cylinder, where the cross-sectional 

area of the cylinder is the area occupied by each waveguide connection. 
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8.3.3 Hardware Fittings 

Hardware fittings are the extra components of a western drum that are there 

by necessity rather than design. They are required to pull the drumsldn tight 

over the shell and to attach the drum to a stand. When taking the shell's 

vibrations into consideration the number and position of hardware fittings may 

have some effect. As these are solid fittings with very little room for movement 

they will hold the shell still at the point they are attached. Therefore, their 

best position is most likely to be at the shell's anti-nodes of resonance where 

there is no vibration anyway. Including their effect would involve forcing to 

zero the junction velocities of the relevant nodes within the shell model. 

8.4 Modelling Non-Uniform Tension of the Mem- 

brane 

The membrane model used in this work assumed that the tension was uniform 

across its surface. In reality it is impossible to achieve this as there are a finite 

number of tuning-lugs distributed around the rim. Between them, therefore, 

the rim will relax a little and so each lug will be surrounded by a region of 

higher tension. In addition to this the lugs have to be adjusted separately, 

which makes it difficult to apply the same tension at every point. 

The wavespeed through the membrane is related to the tension, and so a non- 

uniform tension will cause different wavespeeds in different places. Perhaps 

one way of modelling this would be to initially draw a warped waveguide 

mesh with the correct boundary shape. The warping would involve positioning 

mesh nodes at varying distances from each other, so that the waveguides are 

of different lengths. In this way nodes that are closer together will cause 

waves to travel slower, corresponding to regions of low tension. The next step 

would be to make all these waveguides the same length, creating a regular 

mesh structure. It can be imagined that this mesh will now have a different 
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boundary shape to that intended, and it is this new shape that will model the 

non-uniform tension. 

When making observations from this membrane model, or interfacing it to 

other meshes, it is necessary to view it in its warped form. Thus there will be 

a translation that maps points in space to points on the mesh. 

8.5 Improvements to the Interfacing Method 

The waveguide mesh interfacing method, as described in section 6.1, was lim- 

ited to a zero order interpolation across the wavefront surface of the low-density 

mesh. This meant that the pressure or force was considered to be constant 

across an element centred on a mesh node. The wavefront was therefore non- 

continuous in that it jumped in value at each element boundary. This is clearly 

not the case in reality where a wavefront surface is curved and smooth. 

In order to model a continuous wavefront it is necessary to interpolate between 

the mesh nodes. These interpolated values could then be sent to the high- 

density mesh across the interface. The waves reflected from the high-density 

mesh would need to be deinterpolated back to the nodes in the low-density 

mesh. Methods for interpolation and deinterpolation within a waveguide mesh 

have been used to help reduce the dispersion error in a previous study (Savioja 

and Välimäki, 1996). This would be useful for the mesh interface proposed 

here, but it is stressed that special care would need to be taken to ensure that 

energy is conserved within the system. 

There is still the issue of the interfacing problem that occurs at the boundary, 

as demonstrated in figure 6.1b of section 6.1.1. Here it can be seen that not 

all the nodes in the high-density mesh connect to the low-density mesh. This 

was suggested as one possible reason for the mis-tuning of the lower modes in 

the kettledrum's simulation results (see page 102 of section 7.1). It is possible 

that the interpolating/deinterpolating method may also be useful in overcom- 

ing this problem and is definitely worth considering for further research. 
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8.6 Evaluating Models with Real Measurements 

As digital waveguide techniques increase in complexity it will become neces- 

sary to evaluate the models with real measurements. For instance, when the 

drumshell and its stiffness is incorporated into the model its effect will have to 

be verified. Only by changing the material and comparing the result to reality 

will it be possible to make future predictions of its effect with confidence. 

An important part to verify with measurement is the diffusion model, proposed 

in section 5.2 with suggested improvements given in this chapter. Taking mea- 
surements of the effect will involve recording how the frequency of a sound, 

and the material's surface off which it reflects, affects the angles into which 

the sound is scattered. It will also be important to relate some parameter of 

the surface's roughness to the strength and distribution of the diffusion, such 

that predictions can be made when using new materials. 

Techniques already exist for measuring material properties because many ma- 

terials have been investigated in the past with the intention of modelling their 

behaviour. Whilst this will be useful when simulating the individual compo- 

nents of a system, evaluating their combined response requires careful exper- 

imentation. Invaluable equipment when working with sound is a sound-proof 

room, high quality microphones and transducers. As the ear is the best tool for 

extracting information from sound it is necessary to have high fidelity speakers 

for audio reproduction. 
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Appendix A 

CD-ROM Guide 

The CD-Rom included with this thesis contains a multimedia application, 

PDF and EPS electronic versions of the thesis, and the C++ waveguide model 

code that was written during the course of the investigation. The electronic 

documents are in the folder `Thesis Documents' and the source code is in the 

folder `Waveguide Model Code'. The source code was written for Borland 

C++ v5.02 

A. 1 The Multimedia Application 

The multimedia application, for use on machines running Microsoft's Windows® 

operating system, is started by `double clicking' on the executable file `start. exe. ' 

On doing so a screen should appear with three options: `sounds', `applications' 

and `movies' (see figure A. 1). The multimedia application is explored by click- 

ing the titles on the screen. Most screens contain a `back' title to navigate to 

the previous screen and a `home' title to return to the start. 

A. 1.1 Sounds 

The sounds section is divided further into four of the main investigations of the 

thesis. These are the membrane model, the bearing edge, diffusion and finally 
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Figure A. 1: Initial Screen of the Multimedia Application. 

the complete kettledrum model. By clicking on each of these a new screen is 

presented that contains the relevant sounds analysed in the thesis. 

Membrane Samples 

The ineiuhrane samples screen has two solin(ls available. One is of a lo)ssless 

membrane and the other has losses to siinnlate the effect of internal viscous 

friction. The tnodeLS that created these sounds are described in section 4.1. 

Bearing-edge Effect 

This screen has nine sounds to demonstrate the effect of the bearing edge. 

Each sound was created with a different initial displacement and/or hearing 

edge radius. The sounds correspond to those that were analyse(! in section 4.2 

of this thesis. 
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Diffusion Example 

The sound presented here is from a membrane excited with an off-centre im- 

pulse with a diffusion model appended to the boundary. During the evolution 

of the sound the diffusion angle range is ramped up to a maximum value and 

then reduced back to zero. Section 5.2 describes the diffusion model used. 

Kettledrum Samples 

Section 7.1 of this thesis analysed an implementation of a kettledrum with dig- 

ital waveguides. The model created was used to generate the sounds presented 

on this screen. In addition to the sound used in the analysis there are sounds 

from the same model but excited at the centre, with a drum roll and also with 

a membrane of lower tension. 

A. 1.2 Applications 

There are three applications to choose from: an interactive membrane, a pres- 

sure flow simulation and a drum simulator. 

Interactive Membrane 

The interactive membrane application (see figure A. 2) builds a digital waveg- 

uide mesh of a circular membrane using the techniques described in this thesis. 

The membrane can be excited at any point whilst simultaneously applying a 

constant pressure elsewhere. The membrane's properties can be changed and it 

can be viewed from any direction and distance. Full instructions are included 

with the application. 

Pressure Flow 

This application graphically demonstrates the flow of pressure within a Tom- 

Tom drum and plots the waveform recorded at an external listening point. 
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Appendix A. CD-ROM Guide 

Figure A. 2: The Interactive Membrane Application. 

Once started the top membrane is automatically excited at its centre. Only 

the contrast of the screen can he controlled. 

Drum Simulator 

The drum simulator (see figure A. 3) brings together most of the elements of this 

thesis to construct a waveguide model of a Tom-Tom drum. Every parameter 

can be altered and the sound generated by the model is recorded to a WAV 

file. The parameter settings can also be saved. The application includes a 

complete help file. 

A. 1.3 Movie 

The movie clip shows an animation of a plane wave as it travels across two 

membranes of different density but equal impedance. The membranes are 

attached together using the interfacing technique described in section 6.1. 
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s Help 
Drum Paramete 

Excitation Positiv 
(metres) 

Height 
(metres) 

Diameter (metres) 1p,; 2 

Simulation Parameters 

Sample Rate (Hz) 111025 

Sample Length (s) ý- 

Output 

filename 

Location 

Browse 

Simulate 

Figure A. 3: The Drum Simulator. 
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Appendix B 

Useful Formulae and Equations 

B. 1 The Trigonometric Forms of Complex Ex- 

ponentials 

The complex exponential Aej" is very useful in signal processing as it succinctly 
describes a signal of amplitude A and phase w. The reason for this is due to 

its trigonometric forms shown below 

Ae'" = A(cos w+j sin w), (B. 1) 

Ae j" = A(cos w-j sin w). (B. 2) 

B. 2 The Formula for the Solution of a 

Quadratic 

Consider the quadratic expression 

axe+bx+c=0. (B. 1) 

Its solution can be found using the formula 

_ -b f b2 - 4ac 
y (B. 2) 

2a 
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B. 3 The General Gain Expression 

The gain (or transfer function) of any system can be found using 

Gr _ 
Ek Gktk 

ýB. 1) 
0 

where Gk is the gain of the kth forward path, 

1-(sum of all the different loop gains) 

+(sum of gain products of all combinations of two non- 

touching loops) 

-(sum of gain products of all combinations of three non- 

touching loops) 

+etc., 

Ok = the value of A for that part of the graph not touching the 

kth forward path, 

B. 4 Trigonometric Identities 

The following is a list of useful trigonometric identities. Despite being trivial 

they are important for solving many equations. 

cos2 0 +sine9= 1. (B. 1) 

tan 9A - tan BB 
t (BA - GBH =1 + tan OA tan OB (B. 2) 

B. 5 The Discrete Fourier Transforms 

The Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Trans- 

form (IDFT) are often used in signal processing. One such use is to convert 

amplitude-time data into frequency/phase-time data and back. In section 

5.2.2 the IDFT is used to compute the coefficients of a circulant matrix from 

its eigenvalues. 
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The DFT is calculated with 
N f-j2ir(k'-1)(n -1)l X (k) =E x(n) exp NI, 

(B. 1) 
n=i 

where 1<k<N. 

The IDFT is calculated with 

1N (32« - 1) 
x(n) =X (k) exp N), 

(B. 2) 

where 1<n<N. 

B. 6 Bessel Functions 

The derivations of and solutions to Bessel functions are beyond the scope of 

this thesis; information on these can be found in the literature (see Abramowitz 

and Stegen (1972)). 

Bessel functions are defined as solutions to the differential equation 

x2 
ßx2 

+ xýY + (x2 _ n2) y=0. (B. 1) 

One class of solution is called the `Bessel function of the first kind', JJ(x), and 

is used within this thesis for finding the resonances of a circular membrane. 

This solution may be expressed by the formula 

00 (_1)kl2 )2k+n 

Jn(x) = k! 
r(k +l n+ 1)' 

(B. 2) 
k=0 

where r(z) is the Gamma function 

00 
r(z) =l t=-le-tdt. (B. 3) 

in 
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Appendix C 

Derivation of the Wave 

Equations 

C. 1 The 1D Wave Equation 

Figure C. 1 depicts part of a string that is in motion, held at tension To. The 

string is assumed to be perfectly flexible such that it does not exhibit any 

resistance to bending. Consider the two arbitrary points at horizontal distance 

x and x+Ix. If the slope was constant then the tensions at these points would 

be equal in magnitude and opposite in direction. They would therefore cancel 

eachother to make zero net force and acceleration. However, if the string had 

Figure C. 1: Part of a String in Motion. 
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Appendix C. Derivation of the Wave Equations 

curvature then the tension would act in slightly different directions, marked 

as T, which combine to make a restoring force. As the tension is parallel to 

the slope of the string, it is possible to calculate the horizontal and vertical 

components of this force. 

The net horizontal force is 

Fi = T(x + Ox) cos 6(x + Ox) - T(x) cos 0(x), (C. 1) 

and the vertical force 

Fy = T(x + Ox) sin 6(x +.. Ax) - T(x) sin 9(x). (C. 2) 

For simplicity it is desirable to restrict the motion to the vertical direction. 

This can be done by making the tension constant throughout the string, im- 

posing the following condition along its length 

T cos O= To, (C. 3) 

to make F. =0. 
Inserting equation C. 3 into C. 2 

Fy = To tan 9(x + Ox) - To tan 6(x), (C. 4) 

(O() 
_ 

ay(x) 
(c. 5) - To 

ax ax 

Solutions to the above two derivatives can be approximated using the Taylor 

Series Expansion formula 

.f 
ýýý f(x0) + (x - xp)l x(x0) +x 

2x0 
fxx(x0) +x 

31x0 
fxxxý2pý i- 

... 
(C. 6) 

where the x subscript denotes a partial derivative. 

Setting f (x) = results in O. T 

f (xo + Ax) ; ze 
a äßo) + AX ýä xo) +..., (C. 7) 

f (xo) a äx°) 
(C. 8) 
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All terms of third order or higher can be discarded as Ox is intended to be 

very small. Also, if small-amplitude waves are assumed, 0«1, then cosh -1 

and T! -- To at any point along the string. So, inserting equations C. 7 and C. 8 

into C. 5 gives 

Fy = TDxäx2. (C. 9) 

The force Fy will accelerate the section of string according to Newton's Second 

Law of motion 

F= ma. (C. 10) 

As the mass of the section is Am = µ0x, where p is the linear density, the 

relationship between force and acceleration can be written as 

µ0xt2 =TOxZ 
ä. 

(C. 11) 

Rearranging and cancelling Ax 

02 y=T 02 y (C. 12) 
öt2 µ aX2 

Notice that µ has the dimensions 

[N] [m] 
_ 

[kg] [m]2 
(C. 13) [kg] [kg][s]2 , 

= 
IMI 2 

(C. 14) 

This is obviously the square of some velocity, that can be defined as 

T 
c2 = -. (C. 15) 

µ 

Inserting this into equation C. 12 results in the general formulation of the sec- 

and order one dimensional wave equation 

a2y 
2- c2 

äx2. 
(C. 16) 
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Figure C. 2: Part of a Membrane in Motion. 

C. 2 The 2D Wave Equation 

The derivation of the two dimensional wave equation follows a similar process 

to the one dimensional case, as discussed in the previous section. Figure C. 2 

depicts part of a membrane that is in motion. Because the restoring force is 

applied at the membrane boundary rather than at specific points, the mea- 

surement of tension, To, is in force per unit length (units m ). 

As in the case of the string, it is useful to restrict the motion to the vertical 

direction so that T anywhere within the boundary is the same as To. Once 

again this allows the substitution of T sin 0 with To tan 0= To (see equations 

C. 4 and C. 5 in appendix C. 1). 

The total vertical force along the boundary needs to be found, and this can be 

done by combining each side's contribution. At an arbitrary point x the com- 
bined vertical force component of the sides zo and zo + Oz, which is effectively 

that for a string held in the y-z plane, is defined as 

F(x) = Tdx 
9y(x, zo + Oz) 

_ 
ay(z, ZO) (C. 17) Oz äz 

This is an adapted version of equation C. 5 from the last section. Note the 
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term Tdx is now used to express the tension, as T has units force per unit 

length. The total force along these sides is the integral of this expression from 

xo to xo + Ax. 

As before, the two derivatives can be approximated using the Taylor Series 

Expansion. Now we have two variables, so the expansion formula is 

f (x, z) f (xo, zo) + (x - xo)f=(xo, zo) + (z - zo)f. (xo, zo)+ 
(x-so)(=-w) 

(C. 18) 

2! 
[fxx(xo, Yo) + 2faz(xo, yo) + ffU(xo, yo)) +... 

Therefore equation C. 17 becomes (ignoring the leftmost derivative for now by 

setting z= zfl) 

F(x, z0) t: -Tdx 
(Yz(Xo, z0) + (x - Zo)Yzxlxo, z0)) , 

(C. 19) 

where the subscripts z and x denote partial derivatives. Once again, the terms 

of third order or higher have been discarded. 

The integral from xo to x0 + Ax is 

[XYz(Xo 1x=xo+x 
-T )+/ ýy 

- xox) yzx(xo, zo)J (C. 20) 
\ Z=xo 

((xo+. z)2 _ -T 
(cx0 

+ &x)yz +- xp(xp + Ax)) Yzx) + 

/, 
(C. 21) 

T (xoys 
+12- x02) y,.,, )) , 

_ -T 
((xo + Ox)ys + 

Ax 
-2 

+2xpAx)Yzx)+ 
22 (C. 22) 

T (ZOY: 
- 

(4) 
Yzz) 

_ -T 
(XYz 

+ 
ý2 

yzz J" (C. 23) 

If the rightmost derivative is now ignored, by setting z= za + Az, the Taylor 

Series Expansion of equation C. 17 is very similar to C. 19, except that it is 

positive and has an extra term 

F(x, zo + Az) ,: s Tdx (yz(xo, zo) + (x - xo)y=z(xo, zo) + Ozy2z) . 
(C. 24) 
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Naturally, the similar terms of equations C. 19 and C. 24 will cancel eachother 

out, resulting in the total force contributed by the two sides zo and zo + Oz 

T [Ozxyzz1 x=xoo+OZ (C. 25) 

= T((xo + Ax)Ozy:: - xoizy:: ), (C. 26) 

= TAxOzy: Z, 
(C. 27) 

F(x) =TLxAzz 
z (C. 28) 

02 

By following the same process, the combined force of the sides xo and xo + Ox 

can also be found 
i 

F(z) = TAxLz 
02y 

. 
(C. 29) 

Adding these two results together produces the total force along the boundary 

F=T thz OKY + 82 
(C. 30) 

= ThtOzV2y. . 

The mass of the section of membrane is Om = otxhz, where a is the area 

mass density. By substituting this and the result of C. 30 into Newton's Second 

Law, the equation of motion for the membrane is found to be 

vOxOz 2= 
TOxAzp2y, (C. 31) 

N2 
= ply. (C. 32) 

Notice the similarity between this and equation C. 12 in the previous section. 

Just as with before, a velocity can be defined 

c2 = 
T, 

(C. 33) 
C. 

remembering here that T is measured in force per unit length and v is mass 

per unit area. 

Inserting this into equation C. 32 results in the general formulation of the sec- 

and order two dimensional wave equation 
02 2= 

c2 V2y. (C. 34) 
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C. 3 The 3D Wave Equation 

Wave propagation in three dimensions differs from the previous two cases in 

that the travelling component is a change in pressure, not displacement. In 

addition the pressure change disperses into all directions and does so as a 
longitudinal wave. Nevertheless, a similar process is happening as with wave 

travel in one and two dimensions. 

This is best visualised as a cube which has a force and resulting displacement 

applied to one face. This displacement will increase the pressure within the 

cube such that the other faces are forced against the neighbouring space. Just 

as the tension in a 2D membrane applies a restoring force to any displace- 

ment, the neighbouring space applies a restoring force to the displaced faces 

of the cube. It follows that the three dimensional wave equation is a natural 

progression of terms that becomes (Hall, 1987g) 

a2P 
= c2V 2P, (C. 35) ät2 

z 82 
where V2 is the combination of the 3D variables: ++ 
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Appendix D 

The Lossless, Series Scattering 

Junction 

D. 1 Formulation of the Scattering Junction Equa- 

. 
tion 

A series scattering junction (see section 3.7.1) connects waveguides together 

and is defined by the following conditions 

Vi =Vi r (D. 1) 

E fi = (D. 2) 
s 

where vs is the velocity of waveguide i, 

vj is the velocity of the junction, 

f; is the force exerted by waveguide i, 

N is the number of waveguides attached to the junction. 

This means that all the velocities are equal at the junction and that there is 

no net force. 

The waveguide variables may be split into opposing travelling waves and re- 
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lated by their impedances, R; 

411=vi +vs, (D. 3) 

. ff = f, + f: , (D. 4) 
f+= Rjv; , (D. 5) 

f= -Nývi (D. 6) 

Combining equations D. 2 and D. 4 gives 

E(f; +fs)=0. (D. 7) 
{ 

If equations D. 5 and D. 6 are inserted into the above and relationship D. 3 is 

applied then the following can be deduced 
N 

E R. (v; - v, ) = 0, (D. 8) 

E R; (2v, - vi) = 0, (D. 9) 

N 
2 Rivi => Rivi. (D. 10) 

ii 

As each velocity is equal to the junction velocity this may be rewritten in the 

standard form of the lossless scattering junction 

vi =2F NR`vt " 
(D. 11) 

EN A 

D. 2 The Impedance of the Scattering Junc- 

tion 

It is possible to write the scattering junction equation from the previous section 
in terms of vi and vi- instead. In this case it works out to be almost identical 

except for the change in superscript from + to - 
N 

VJ =2 
Etv A-vi 

(D. 12) 
17, 
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By inserting either equation D. 5 or D. 6 the scattering equations can also be 

written in terms of the total travelling forces (in this case the total outgoing 

force) 

Vj _ -2 
N 

(D. 13) 

It follows, therefore, that the total incoming force at the junction is equal in 

magnitude yet opposite in sign to the total outgoing force. The forces are 

analogous to the 'action' and 'reaction' forces of Newton's Third Law. In 

addition, they are both related to the junction velocity by multiplication with 

the constant 
2 (D. 14) 

ENpi, 

Alternatively the junction velocity may be related to either force by multipli- 

cation with the inverse of the above. The constant that relates velocity to force 

in this way is known as the impedance, so the impedance of a mesh junction 

is 

mesh =E 
R` 

" 
(D. 15) 

2 

For homogeneous waveguide meshes, where the waveguides all have the same 
impedance, this reduces to 

Rm 
sh =2 Rwaveguide" (D. 16) 

This means that the total impedance experienced at the junction is half the 

total impedance of all the waveguides it connects together. This makes sense, 
because a junction that connects two waveguides of equal impedance to form 

a straight line is in fact a point on one long waveguide. The impedance at that 

point should be the impedance of either waveguide, not twice the value. For 

an even number of waveguides it is as though the junction is comprised of half 

as many waveguides which intersect each other at their middles, rather than 

many waveguides arranged around the junction in a symmetrical pattern. 
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D. 3 Applying a Force to the Scattering Junc- 

tion 

In order to connect excitation mechanisms to a waveguide model it is necessary 

to be able to apply a force to a scattering junction. By considering Newton's 

Third Law it can be stated that the force of the junction must be opposite 

but equal to the applied force; in this way all the forces cancel each other to 

produce no net force. If all forces are defined as acting. in the same direction 

equation D. 2 can be rewritten to give 

Ef; =-F, (D. 17) 

where F is the applied force at the junction. 

After following through the formulation of the lossless scattering junction equa- 

tion its modified form, that incorporates the external force, F, is found to be 

vj =2E 
R`v` +F" (D. 18) 
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Appendix E 

Calculation of Dispersion Error 

in Digital Waveguide Meshes 

E. 1 The Triangular Digital Waveguide Mesh 

Consider the segment of a triangular mesh centered about the point A(0,0), 

see figure E. 1 below. It has surrounding junctions: B(-1,0), C(- cos 3, sin 3 ), 

D(cos 3, sin 3 
), E(1,0), F(cos 3, - sin 3 

), C(- cos 3, - sin 3 
). 

The equations relating these lossless 6-port scattering junctions are 

VA3>vÄ+, . 
(E. 1) 

Figure E. 1: Junctions in a Triangular Digital Waveguide Mesh. The lines 
represent waveguides. 
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vÄ - va - 'vÄ+, (E. 2) 

where rE {B, C, D, E, F, G}, 

vA represents the junction velocity at point A, 

vÄ and vÄ represent the input and output signals to junction A 

from junction r. 

As the junctions are connected by bi-directional units of delay (waveguides) 

the input to junction A from the direction r is equal to the output from r 

delayed by one sample 

vÄ = z-lvr- (E. 3) 

Using equations E. 3 and E. 2 

VA = Z-1 (vr 
- vT+) , 

(E. 4) 

_ z-i (Vr, 
- z-1 (VA 

- VÄ ý) 
+ 

(E. 5) 

= 
1(vr 

-z 
1VA + z'1vÄ Z ), (E. 6) 

=z 
lvr 

-z 
2VA + Z- V; t 9 

(E. 7) 

vÄ (1 
-z 

2) 
=z 

1(vr 
-z 

1vA), (E. 8) 

z-1 
VA 

1- z-2 
(yr 

-z 
lvq) (E. 9) 

Inserting equation E. 9 into E. 1 results in an expression for vA entirely in terms 

of the six surrounding junction velocities 

i 
VA -3 

('T-- 

x-2 
(Vr -z 1V4) 

, (E. 10) 
r 

=1 
z-1 

2ý 
(vr -z 1vA) 

, (E. 11) 31-z- 
r 

1 z-1 
z-2 

yr - 6z 1vA (E. 12) 
r 

z'1 ý 2Z-2 (E. 13) 
31- z-2 'r '- 1- z-2 

va s 
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2z-2 
_ VA 

(1 
+ 1- x'2 

1 z-1 ý' 
) 

31- z-z r 
ý'' (E. 14) 

r 

v 
1+ Z-2 

-1 
z-1 (E. 15) Al-z'2 31-z-iEvr' 

1 z-1 
vr. (E. 16) VA = 31 + z-2 r 

To find the dispersion error the spatial positions of the junctions are replaced 

with their corresponding linear phase terms (Duyne and Smith(III), 1996) 

yr v(w)e , (E. 17) 

where w is the two-dimensional spatial frequency vector, 

Pr is the transposed vector from point A to its surrounding points: 
pi = (-1,0) T, P= (- COS 3, sin 3 

)T, P= COS 3, sing )T, 

P =(1,0)T, P= COs 3, -sin3)T, P= (-COS 3, -sin3)T. 

Equation E. 16 is therefore rewritten 

1 Z-1 
6 

v (w) 
31 + x-2 

v (w) E e'ý+T . (E. 18) 
i=1 

This can be rearranged to give the quadratic expression in z'1 
6 

1+ x Z= 3 
z-1 eJýT ý, (E. 19) 

i 

1z 
-2 -3 z-1 

6i 
e'Eý ", +1=0, (E. 20) 

Z-2 + bz-1 +1=0, (E. 21) 

where b °_ -3 EL1 eýý. 

Because of the relationships: P= --P-41 P2 = -PSI P= -P and the 

trigonometric form of complex exponentials (see section B. 1), the summation 

may be rewritten as 

s 
e'ý; T 

=2 cos (PT w) (E. 22) 
i=1 {=4 
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If w= (wx, wy)T then b may be calculated as 

b= -3 
(cos 

wx + cos(0.5wx - 0.75wy) + cos(-0.5wx - 0.75wy)) . 
(E. 23) 

Equation E. 21 is solved using the formula for the solution of a quadratic (see 

appendix B. 2) to find the spectral amplification factor of the spatial spectrum 

after one time sample 
bj 4-b2 
2t2 (E. 24) 

The real gain is 

'Gl +44b (E. 25) 

= 1, (E. 26) 

which means that plane waves propagate with no loss. 

The spatial phase shift (taking the positive root) of a plane wave in one time 

sample is 

LG=arctan 
4-b 

-b 
(E. 27) 

The frequency and direction dependent speed of plane wave travel, in space 

samples per time sample, is therefore 

c (w) = 
G. 

(E. 28) 

E. 2 Calculation of the DC Wavespeed of The 

Dodecahedral Digital Waveguide Mesh 

The DC wavespeed of a two dimensional triangular digital waveguide mesh 
has been calculated as c=1 spatial samples per time sample (Fontana and 

Rocchesso, 1998). The DC wavespeed of the three dimensional dodecahedral 

mesh may be calculated in a similar fashion. 

As well as the orthogonal axes x, y and z one may define the dependent axes 
1, m, n, o and p for the dodecahedral mesh. The vectors of these axes are 

142 

"ýýº 



Appendix E. Calculation of Dispersion Error in Digital Waveguide Meshes 

(1 )T (21 
-ý 1/T Zý 2,0m, 2 10/ ýn 

(0,73 

3 
(_i T 

0= Z'-ßl1) 1 i%= 
(21--273* 

1)" 

The partial derivatives along these axes are therefore related to the partial 
derivatives along the orthogonal axes through the equations 

äv 1äv / 0v 
+ ' (E. 29) öl 2äx 2äy 

äv 
- 

1äv i äv 
' (E. 30) Um 2äx 2äy 

öv 
- « 

1 äv Ov 
= 7 - ä n 73 ä y %(3 

7z 

äv 1äv 

=- 
1 äv f äv 

' - + (E) 
. 32 äo 2äx äz 12äy 

= , 72- av + - 3 . 33 (E) ä7p 2äx az 2 äy 71 
A combination of these partial derivatives is required that will equate to + 

07 +e. As a trial solution, consider aI ++z++ ZF 

- 
8! +ýX+8ýiýiv+ -07 + Oýr 

I 82v 3 8zv 8v 
1+ 4V 

+2 8x8y+ 
1 82v 3 02V vl- &2, U 
4 8x7 + 

4V 2 8xOy+ 
1 82v 2 02v 22 82v 
30 

+ 
3-07 

+3 
8y8z+ 

1 82v 1 82v 2 82v 
100+ 12 V+ 38-7 

1 82v 2 8ýv 
_ ýV2 8v 

12 8x8y 3 8x äz 3 8y8z+ 

18zv+ 18 
�2 _ 14-9 128- 38s 

1 88v 2 82v -8V 
12 8x8y 

+3 
8ä8z 3 OyOx 

02v 

+2 
02v 

+ 2ä2v = axe aye 0z2 . 

Therefore 

(E. 34) 

(E. 35) 

ä2v 82v a2v 
_1 

82v a2v ä2v ä2v 82v a2v 

8x2 + äy2 + az2 2 
C9x2 

+ aaZ + amt + ant + 
aoz + al (E. 36) 

Combining this with the three dimensional wave equation (see appendix C. 3 

equation C. 35) results in the following 
02v 1 82v 022v 02v 02v 02v v 
ät2 = ý2 TX-2 + äl2 + äm. 2 + 872 + 802 +8 

02 
(E. 37) 
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Now, from equation E. 16 in the previous section, it can be seen that the signal 

at a junction A may be expressed entirely in terms of the surrounding junctions 

r. For the dodecahedral mesh the expression becomes 

(1 + z_2) VA =6ý z'1 Vr. (E. 38) 
r 

The inverse Z-transform of this, after multiplying by z, is 

VA(n + 1) + VA(n -1) =1 >2 Vr(n). (E. 39) 
r 

The left member is obviously the second order finite time difference, and the 

right member is the second order finite space difference along the axes x, 1, m, 

n, o and p. 
Comparing equation E. 37 with equation E. 39 proves the equivalence of the 

mesh algorithm with a finite difference scheme, whose nominal or DC wavespeed 
is found to be 

(E. 40) 
2 6' 

c= (spatial samples per time sample). (E. 41) 

It is interesting to note that the DC wavespeed of the three dimensional tetra- 

hedral waveguide mesh is also c= (Duyne and Smith(III), 1996). Consider- 

ing that the two dimensional triangular waveguide mesh has a DC wavespeed 

of c=' (Fontana and Rocchesso, 1998) could it not be possible that the 

wavespeed in any waveguide mesh is 

1 
c= TN' (E. 42) 

N 

where N is the number of spatial dimensions that the mesh exists within? 

The same relationship (rewritten in standard units) has been stated for multi- 
dimensional rectilinear meshes (Savioja, Karjalainen, and Takala, 1996). Here 

it is in the form 

,f=cd, 
(E. 43) 

where c is the wavespeed (ms-1), 

dx is the spatial distance of a waveguide (m). 
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Filter Design and Analysis 

Digital filters play a prominent role in digital waveguide modelling. Their 

frequency dependent effects on the gain and phase of a signal are particularly 

useful when modelling phenomena such as viscous friction and dispersion (see 

section 3.5). It is therefore important to be able to construct, analyse and 

control them. The following concentrates on two simple but effective filters: 

the first order allpass filter and the first order lowpass filter. 

F. 1 The First Order Allpass Filter 

Allpass filters have the important quality of unity gain for all frequencies; 

in other words they are totally lossless. This allows the filter designer to 

concentrate purely on tailoring the phase response. 

For digital waveguide modelling the phase may be used to cause a delay that 

is not an integer number of time samples (Laakso, Välimäki, Karjalainen, and 
Laine, 1996). This enables the construction of non-integer length waveguides 

and the modelling of dispersion. The first order implementation is the simplest. 
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Appendix F. Filter Design and Analysis 

Figure F. 1: The Structure of a First Order Allpass Filter. 

F. 1.1 Transfer Function 

Figure F. 1 depicts a first order allpass filter. It is made up from two forward 

paths, see figures F. 2a and F. 2b, and one loop path as shown in figure F. 2c. 

The general gain expression from section B. 3 finds the variables: Gl = a, 

G2 = z-1 , Al = A2 =1,0 =1+az-1 resulting in the filter's transfer function 

_ 
a+z'1 H(z) 
1+ az-1. 

(F. 1) 

F. 1.2 Response 

The effect of this filter on an input signal can be found by replacing z with 
the arbitrary signal e1ß 

H1+ 
ae-i"'' 

(F. 2) 

and using the trigonometric form of complex exponentials (see appendix B. 1) 

H e"_ a+ cos w- j sin w 
1+ a(cos w-j sin w) 

(F. 3) 

Gain 

The gain response can be found by calculating the absolute values of the com- 

plex quantities 

IH (eis, ) I= (a + COS w)2 + (- sin w)2 (F. 4) 
(1 + acosw)2 + (-asinw)2' 
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Xa 
(a) 

Z-1 
(b) 

x -a 

(c) 

Z-1 

Figure F. 2: The Paths of the First Order Allpass Filter. (a) ff (b) Forward 
Paths, (c) Loop Path. 

_ 
a2+2acosw+coszw+sin2w 

1+2acosw+a2cos2w+a2sin2w' 
(F. 5) 

_ 
a2+2acosw+1 
a2 + 2a cos w+ 1' 

(F. 6) 

= 1. (F. 7) 

Hence the filter has a unity gain for all frequencies. 

Phase 

The phase response is found by calculating the angle difference between the 

two complex quantities 

sin w -a sin w = arctan 
G -T 

cos w) - arctan 
(i 

+a cos w) 
F'$ 

Using trigonometric identity B. 2 in appendix B. 4 

tan OA 
- tan OR 

` tan -1+ tan q5A tan ¢B' 
F. 9) 

where arctan sin w ýA 
a+cos w) 

OB = arCtäri a sin m 
l+acosw)' 
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Inserting the variables OA and cbB into equation F. 9 

u-v tan O= 
1+uv' 

where u=- gin _, 
a+cosw 
-asinw v __ 1-}acosw 

(F. 10) 

As there are a lot of mathematical terms it is best to consider the denominator 

and numerator of equation F. 10 separately. Firstly, solving u-v 

- sin wa sin w (F. 11) u-v= 
a+cosw+ 1+acosw' 

-(1 +a cos w) sin w+ (a + cos w)a sin w (F. 12) (a + cos w)(1 +a cos w) 

a2 sin w+a cos w sin w- sin w-a cos w sin w (F. 13) 
a+cosw+a2cosw+acostw 

_ 
(a2 -1) sin w 

a+ (1 +a cos w+ a2) cos w* 
(F. 14) 

Next, solving 1+ uv 

1+ uv = 1+ - sin w -a sin w (F. 15) 
a+cosw 1+acosw 

a sin 2w 
(F. 16) +a+(1+acosw+a2)cosw' 

Inserting equations F. 14 and F. 16 into equation F. 10 

_ 
(a2-1)sinw a+(1+acosw+a2)cosw tan 

a+(l+acosw+a2)cosw a+(1+acosw+a2)cosw+asin2w' 
(F. 17) 

- 
(a2 -1) sin w (F. 18) 

a+cosw+a2cosw+acostw+asinew' 

arctan 
(a2 -1) sinw (F. 19) 

(2a+(1+a2)cosw)- 

Phase Delay 

The phase delay for this filter can be found with 

D(w) _ 
2, 

(F. 20) 
w 
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a=-0.2 

a= -0.1 1.4 

= -0.13 

a= -0.0909 1.2 

a= -0.0476 
Phase 0 a= Delay 1.0 

(samples) a=0.0526 

a=0.1111 
0.8 

a=0.1765 

a=0.25 
0.6 

a=0.3333 

O42 2E il 7r 
4 

Frequency (normalised ir) 
Figure F. 3: The Phase Delay Response of a First Order Allpass Filter. 

where D(w) is the phase delay (samples). 

Figure F. 3 shows the phase delay of the first order allpass filter at different 

coefficient values. Notice that a fractional delay is approximated well for low 

frequencies, but the highest frequencies all have a delay close to one sample in 

length. 

F. 1.3 Control 

In many cases it is desirable to control the filter such that it has a specific phase 

delay at a chosen frequency. This can be done by combining equation F. 20 with 

equation F. 19 and rearranging to give an expression for the filter coefficient, a, 

in terms of the phase delay, D(w), and frequency, w. The combined equations 
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give 

_ 
(a2 - 1) sin w (F) B 

2a+ (1+a2)cosw' . 21 

where B= tan(-D(w)w). 

Rearranging 

2Ba+ B cos w+ Bat cos w= a2 sin w- sin w, (F. 22) 

(Bcosw-sinw)a2+2Ba+Bcosw+sinw= 0. (F. 23) 

Using the formula for the solution of a quadratic (see appendix B. 2) and rear- 

ranging further 

a -2B ± 4B2 - 4(B cos w- sin w) (B cos w+ sin w) (F. 24) 
2(B cos w -sin w) 

_ 
2B f 4B2 - 4(B2 cost w- sin2 w) 

2(sinw -B cos w) 
(F. 25) 

_ 
2B f 4(B2(1 - cost w) + sin w) 

2(sin w-B cos w) 
(F. 26) 

_ 
2B ±2 B2 sinew + sin w 

2(sin w-B cos w) 
(F. 27) 

a_Bf 
(B2 + 1) sin w (F. 28) 

sinw - Bcosw 

Alternatively, it has been shown that a particular analytic solution for the 

coefficients of a lowpass filter (Thiran, 1971) can be applied to allpass filter 

design to give maximally flat group delay response at zero frequency (Laakso, 

Välimäki, Karjalainen, and Laine, 1992). This leads to the following approx- 
imation of the filter coefficient, a, required to cause a phase delay, D, at low 

frequencies (Välimäki, 1995) (Jaffe and Smith(III), 1983) 

1-D 
+ 

(F. 29) ý~ 1D' 
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F. 2 The First Order IIR Lowpass Filter 

Unlike an allpass filter a lowpass filter has a frequency dependent gain. This 

gain is close to unity for low frequencies and tends towards zero for the highest 

frequencies; the result is that low frequencies pass through the filter with little 

or no alteration. These filters are useful in digital waveguide modelling where 

a frequency dependent gain mimics the effect of internal viscous friction (see 

section 3.5). 

There are two possible types of implementation for a lowpass filter: finite 

impulse response (FIR) and infinite impulse response (IIR). FIR filters have 

no feedback loops and are therefore easier to construct and design. However, 

IIR filters yield a more useful response for less implementational cost. The 

filter described here is a first order IIR lowpass filter. 

Figure F. 4: The Structure of a First Order IIR Lowpass Filter. 

F. 2.1 Transfer Function 

Figure F. 4 depicts a first order Im lowpass filter. It is made up from two 

forward paths, see figures F. 5a and F. 5b, and one loop path as shown in figure 

F. 5c. 

The general gain expression from section B. 3 finds the variables: Gl = 1, 

G2 = a, Al = 02 = 1, A=1+ az-1 resulting in the filter's transfer function 

H(z) = 
1+a 

(F. 30) 
1+ az-" 
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- (a) 

xa 

(b) 

z'1 

(c) 
x 

Figure F. 5: The Paths of the First Order IIR Lowpass Filter. (a) f4 (b) Forward 
Paths, (c) Loop Path. 

F. 2.2 Response 

The effect of this filter on an input signal can be found in a similar fashion to 

that described for an allpass filter. Replacing z with the arbitrary signal el" 

yields 
1+a (F. 31) H e' 1+ ae-j"" 

and using the trigonometric form of complex exponentials (see appendix B. 1) 

w 
1+a 

H (ý =1+ a(cos w-j sin w) ' 
(F. 32) 

Gain 

Calculating the absolute values of the complex quantities results in the gain 

response 
IH (e') I_ 1+a (F. 33) 1 (1 + acosw)2 + (-asinw)2 

_ 
1+a (F. 34) 

1+ 2a cos w+ a2 cos2 w+ a2 sin w 

C= 
1+a (F. 35) 

1+2acosw+a2" 
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11 

0.8 

0.6 

Gain 

0.4 

0.2 

0 

Q=0 

a= -0.0526 

a= -0.1111 

a= -0.1765 

a=-0.25 

a= -0.3333 

a= -0.4286 

a= -0.5385 

a= -0.6667 

a= -0.8182 

Figure F. 6: The Gain Response of a First Order IIR Lourpass Filter. 

Figure F. 6 shows the gain of the first order IIR lowpass filter at different 

coefficient values. Notice that for waves close to DC the gain is unity. 

Phase 

As before the phase response is found by calculating the angle difference be- 

tween the phases of the numerator and denominator of the filter's complex 

response (equation F. 32) 

0/ -a sin w) = arctan 1+a 
0)- 

arctan (1 
+a cos w) ' F. 36 

=0- arctan -a sin w1 (F. 37) l+acoswJ' 

-a sin w 
arctan 1+a cos w) 

(F. 38) 
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Phase Delay 

The phase delay for this filter is found with 

D(w) =, (F. 39) 

where D(w) is the phase delay (samples). 

F. 2.3 Control 

It is useful to be able to control the filter such that it has a particular gain at 

a specific frequency. This can be done by rearranging equation F. 35 to give 

an expression for the filter coefficient, a, in terms of the desired gain, G, and 
frequency, w. 

G2 (1+2acosw+a2) = 1+2a+a2, (F. 40) 

a2G2 + 2aG2 cos w+ G2 - a2 - 2a -1=0, (F. 41) 

(02-1)a2+2(G2cosw-1)a+0 2-1=0. (F. 42) 

Using the formula for the solution of a quadratic (see appendix B. 2) and rear- 

ranging further 

a= 
2(1- G2 cos w) f (2G2 cos w- 2)2 - 4(G2 -1) (G2 -1) (F. 43) 

2(G2 -1) 

_ 
2(1-G2cosw)f 4G4cos2 w-8G2cosw+4-4(G4-2G2+1) 

2(G2-1) 
(F. 44) 

_ 
2(1-G2cosw)f 4(G4(cos2w-1)+G2(2-2cosw)) 

2(G2 -1) 
(F. 45) 

2(1 - G2 cos w) ±2 G2(G2(cos2 w- 1) +2-2 cos w) 
2(G2 -1) 

(F. 46) 

1-G(Gcoswf G2(cos2w-1)+2-2cosw) 
tea = G2 -1 

(F. 47) 
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Appendix G 

Formulation of Equations used 

to model the Bearing Edge 

G. 1 Formulation of the Relationship between 

d(n) and I (n) 

Figure G. 1 shows a string attached to a bearing edge at a particular point in 

time. The known points, lengths and angles are: B(0, d), r, x, 11,12, a and Q. 

s 

Figure G. 1: Useful Points and Lengths on a Cross-section of the Bearing Edge. 
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Appendix G. Formulation of Equations used to model the Bearing Edge 

The streams, d(n) and 1(n), have been converted into instantaneous values, d 

and 1, for simplicity. A solution is required that will give 1 for any value of d. 

The following points and lengths can be deduced 

l=x - rsinO, (G. 1) 

Ay=rcosO - r, (G. 2) 

x-r sine (G. 3) 
cos 0 

The value of d, which is already known, can also be found 

d=Ay - ssinB, (G. 4) 

=rcosB-r-xsinB_rsin29 (G. 5) 

-r 
cos20 -r cos 0-x sin 0+ rsin2B (G. 6) 

cos 9 

_ 
r-rcos0-xsin9 (G. 7) 

cos 0 
r- xsinO d= 

os o r. (G. 8) 

Rearranging 

r+d= 
r-xsin9 

cos 9' 
(G. 9) 

(r + d) cos 0=r-x sin 9. (G. 10) 

Squaring and then rearranging 

(r + d)2 cos2 0= r2 + x2 sin2 0- 2rx sin 0, (G. 11) 

(r + d)2(1- sine 9) = r2 + x2 sin2 0- 2rx sin B. (G. 12) 

Putting this in the form of a quadratic in sin 0 

(x2+(r+d)2)sin20-2rxsin 0+r2-(r+d)2=0. (G. 13) 

This can be solved using the formula for the solution of quadratic (see appendix 
B. 2) 

y_ -b f b2 - 4ac (G. 14) 
2a 
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where y= sin B, 

a= x2+(r+d)2, 
b= -2rx, 

c= r2 - (r + d)2 = -d2 -grd. 

. ", sin B= 
2rx ± 4r2x2 - 4(x2 + (r + d) 2) (-d2 - 2rd) 

(G. 15) 2(x2 + (r + d)2) 

2rx f 4(r2x2 - (x2 + z2) (r2 - z2)) 
2(x2 + z2) 

(G. 16) 

where z=r -{- d. 

_ 
2rx ±2 r2x2 - (r2x2 - x222 + r2x2 - z4) (G. 17) 

2(x2 + x2) 

2rx f2 x2z2 - r2z2 + z4 
= 2(x2 + z2) 

(G. 18) 

2rx ±2 x2(x2 - r2 -+Z2) 
_ _ 2(x2 + z2) 

(G. 19) 

2rx f 2z x2 - r2 + x2 
2(x2 + z2) 

(G. 20) 

rxfx x2-r2+z2 
= 

x2 + z2 
(G. 21) 

The correct formulation was found to be (by testing with real numbers for 
both signs of the square root) 

sin e= rx - (r + d) x2 + d2 + 2rd 
(G. 22) 

x2 + (r + d)2 

The length, 1, can now be found 

X -12i sin 8> sin # 
1= x-r sin 0, - sin a< sin B< sin Q (G. 23) 

x+11, sinO < -sina 

where 11 + 12 is the thiclmess of the drum hell, 

a and ß are absolute values. 
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This formula finds the horizontal distance to the contact point on the bearing 

edge, for a given displacement of the membrane measured a short distance 

away. Notice the limits imposed by the angles, a and /3, of the straight lines 

that are cut from the bearing edge. These, combined with the drurnshell's 

thickness, define the most extreme points of the edge that the membrane can 

be in contact with. 

G. 2 Finding b(n + i) through Linear Interpola- 

tion 

Figure G. 2: Intersecting the Line AB at Point C. 

Figure G. 2 shows three points on a straight line, AB. The heights of these 

points represent data within the buffer b(n + i) for different values of i. Both 

points A and B are known. The x-coordinate of point C is also known, but its 

y-coordinate needs to be calculated. This can be done using first order linear 

interpolation 

Expanding 

Cy - Ay 
Bx - Cr 

+ By 
Cz - Ax 

(G. 24) 
By - Ax Bx-Ax 

CY 
AyBx-AyC. +ByC. -ByA., (G. 25) v Bx - Ax 
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Using the values relevant to the bearing edge problem (see figure 4.12 of section 

4.2.2) results in the points: A(L' - 1, L'), B(L, L) and C(i, b(n + i)), where 

L' =1(n - 1) and L= 1(n) for simplicity. 

Inserting these into equation G. 25 

b(n + i) )= 
L'L - L'i + Li - L(L' -1) (G. 26) L-(L'-1) 

- 
Li - L'i + L'L - L'L +L (G 27) L-L'+1 'L 

b(n + i) = 
i(L 

- L' + 1L' 
(G. 28) 

G. 3 Calculating the Amplitude A 

Section 4.2.3 gives the string excitation as 

Asin(wt), 0< wt < it 1 v= (ms-) (G. 29) 
0,7r < wt 

where v is the velocity added to the excitation point (ms-1), 

w is the frequency of the string's 1't mode of 

resonance (radians/second). 

A value of A is required that will result in a given value of initial displacement, 

D(metres). 

Integrating equation G. 29 over the range: 0<t: 5 

Rearranging 

D=J Asin(wt)dt = 
f-A 

cos(wt)l 
tW, 

(G. 30) 
oLwJ t=o 

_ -w coszrI - 
(-w 

cos(0)) (G. 31) 

_A (cos(0) - cos 7r), (G. 32) 

D= 
2A 

(G. 33) 
w 

A= Dw 
. (G. 34) 

2 
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