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Abstract 

In order for stable emulsions of two, mutually insoluble liquids to be 

formed, an emulsifying agent and some form of energy input are usually 

required. This energy is provided in many instances by a mechanical shearing 

action (comminution mechanism). The resulting droplet dispersion often has 

a very broad size distribution. 

Stable, monodisperse emulsions of polydimethylsiloxane (PDMS) can 

be produced. No surfactant or mechanical comminution is required as 

emulsification occurs following a simple polymerisation reaction of silane 

monomers in an aqueous alkaline medium. 

The physical characteristics of the PDMS droplets can be closely 

controlled by addition of cross-linking monomer to the initial reaction 

mixture. Depending on the cross-linker concentration droplets, microgel-like 

or solid particles, of a particular size, viscosity and density can be formed. 

The stability of PDMS emulsion droplets in water, with varying 

concentrations of cross-linker, has been studied by following changes in the 

droplet size distribution. The effect of electrolyte, pH and osmotic pressure on 

the stability has been followed. The presence of cross-linker does not 

significantly alter the colloidal stability of the PDMS dispersions. 

Measurements of the electrophoretic mobility of cross-linked 

emulsions have been made to calculate the zeta-potential of the droplets. 

Using a simple DLVO calculation, with van der Waals and electrostatic forces 

only it was found that a large barrier to coalescence existed at the critical 

coagulation concentration. This deviation from theory may be attributed to 

droplet deformation and/or hydrophobic interactions. 

Cross-linked PDMS emulsions osmotically swell with good solvents 

and reach an equilibrium size depending on the polymer volume fraction. 

Only above a threshold cross-linker concentration is existence of a gel-type 

structure shown. 
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Chapter 1: Introduction 

1.1 Definition 

IUPAC (1992) define an emulsion as "a dispersion of droplets of one 
liquid in another one with which it is incompletely miscible. Emulsions of 

droplets of an organic liquid (an "oil") in an aqueous solution are indicated by 

the symbol O/W and emulsions of aqueous droplets in an organic liquid as 

W/O. With emulsions droplets can often exceed the usual limits for colloids 

in size. A microemulsion is defined as a thermodynamically stable emulsion. "' 

Water 

Water in Ofl (W/O) Oil in Water (O/W) 

Figure 1.1: Schematic representation of surfactant stabilised emulsions 

Figure 1.1 shows a generalised representation of the two major types of 
emulsion; oil in water (O/W) and water in oil (W/O) dispersions. In general 

the average droplet size in an emulsion tends to be greater than 100 nm in 

diameter. Emulsions generally will have an appearance ranging from a 

milky-white opaqueness to a grey translucence depending on the average 
droplet diameter. Microemulsions, which can be considered as a separate 

class of emulsion, typically have a diameter of 100 nm, or less and appear 

transparent. 
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1.2 Emulsion Formation 

The fundamental aspect of emulsions is that they are 

thermodynamically unstable species and will attempt to revert back to the 

most stable situation, namely the two distinct non-dispersed oil and water 

phases. As a result all emulsions need some form of stabilisation. in order to 

retain their structure. This normally involves a third component known as an 

emulsifying agent to be present. These can be classified into three types: 

(i) Surface-active materials 
(ii) Naturally occurring materials 
(iii) Finely divided solids 

The process of dispersion of a liquid into another immiscible liquid is 

referred to as emulsification. The function of the emulsifier is therefore to 

facilitate emulsification and promote emulsion stability. The emulsifying 

agent forms an ordered structure around the oil-water interface of the 

droplet, which helps prevent coagulation and coalescence. It is very unusual 

to find a stable emulsion that can be formed without the addition of any 

emulsifier to the component oil and water phases. 

All emulsions require an input of energy in order to become dispersed. 

This is normally provided either by an external source such as the mechanical 

energy in a comminution mechanism or the energy is associated with a phase 

change. The free energy of emulsion formation may be given by [11: 

AG = AAyß - 
TASdisp 

1.1 

where AA is the increase in the interfacial area, 7ý the interfacial tension 

between the two immiscible liquids a and 0 and TASdip is the entropy change 

associated with the dispersion of fine liquid droplets. In general the first term 

on the right hand side of equation 1.1 is the dominant term. AG is nearly 

always positive, so emulsification is usually a non-spontaneous process. 
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Conditions can occur when AG is negative and emulsification is spontaneous. 

In order for this to happen the value of TASdisp must exceed AA y'P. This 

occurs in the case of microemulsions [2-5], where equilibrium values of 7'0 are 

low enough for this to be the case. The important criterion with 

microemulsions is that the dynandc value of y"P decreases transiently to very 

small values. 
Most emulsions are formed using dispersion methods [6,7]. This 

usually involves mechanical agitation (comminution) to disperse the oil in the 

aqueous phase or vice versa. This can be achieved by mechanical shearing of 
large droplets by equipment such as the colloid mill, homogeniser, ultrasonic 

emulsifier or just simple agitation of two phases together with an emulsifier. 
Emulsions can also be prepared by utilising the physicochemical 

properties of surfactants as emulsifiers, i. e. the phase inversion technique (PIT 

method) [8,9] or the surfactant-phase emulsification technique [10,11], etc. 
The emulsions produced by these techniques tend to be polydisperse 

(i. e. they have a wide droplet size distribution). This is because the 

emulsification conditions cannot be precisely controlled. A 'monodisperse' 

emulsion is, by definition, strictly impossible. More realistically a 
"monodisperse' emulsion will have a narrow droplet size distribution. It is 

rare for these 'm o nod isperse' emulsions to be produced. 
The preparation of 'monodisperse' emulsions is an important, but as 

yet largely unachieved, objective for understanding the fundamental 

principles governing emulsion behaviour. Preparative techniques have been 

developed by which a 'monodisperse' emulsion can be formed. These include 

membrane emulsification, fractionated crystallisation and aerosol sprays. A 

brief outline of these techniques follows. 

One possible method to form a 'monodisperse' emulsion is via a 

nucleation and growth mechanism from an initially homogeneous phase. 
Nucleation describes the spontaneous appearance of a new phase from a 

metastable solution of the material in question. This will be discussed in 

section 1.3. 
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1.2.1 Preparation of 'monodisperse' emulsions by porous 

membrane emulsification 

There are two related mechanisms for producing 'monodisperse' W/O 

and O/W emulsions. One is known as Shirasu-porous-glass (SPG) filter 

emulsification [12,13] and the other, more recently developed technique, as 

cross-flow membrane emulsification [141. The concept of both techniques is 

simple and involves the injection of one phase through a porous substrate 
(membrane) so those droplets formed at the ends of the pores at the 

membrane surface come into contact with the continuous phase. 
SPG emulsification is carried out using a porous glass of 

CaO-AI203-B203-SiO2 via a continuous or a batch process. The bigger the 

pore sizes the larger the droplets formed. 

Cross-flow membrane emulsification is a development of the SPG 

technique. This involves passing the discontinuous phase through a porous 

medium and injecting the droplets so formed directly into a moving 

continuous phase. 
By varying the trans-membrane pressure and the cross-flow velocity 

for particular pore sizes the droplet size distribution and production rate can 
be controlled. Of critical importance is the hydrophobicity of the pore 

channels and membrane surface. For instance the surfaces have to be 

rendered hydrophobic and hydrophilic for the production of W/O [151 and 
O/W [161 emulsions respectively. 
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1.2.2 Preparation of 'monodisperse' emulsions by fractionated 

crystallisation 

Fractionated crystallisation is a technique that relies on depletion 

interactions for purifying an initially polydisperse emulsion to a 

"monodisperse' system [17]. The method is based on the liquid-solid phase 

transition induced by the attractive depletion interaction, which can be 

produced by surfactant micelles [18-201. As the depth of the depletion 

potential increases linearly with the droplet diameter (refer to equation 1.2), 

the liquid-solid transition may be used to fractionate in size spherical 
dispersions, following a fractionated crystallisation scheme. The phase 

transition occurs at higher surfactant concentrations (above the critical micelle 

concentration, CMC) as the droplet diameter decreases. 

When two droplets come too close to each other, the interdroplet 

spacing becomes an excluded volume for the micelles, formed by the excess 

surfactant. This depletion of micelles leads to a non-compensated pressure 

acting on the droplets. This attractive contact potential (U, ) is described by 

equation 1.2 [191. 

uc 3 kTý. a 
2 am 

1.2 

Here k is the Boltzmann constant, T the absolute temperature, ý. is the 

volume fraction of surfactant micelles, cr is the diameter of the emulsion 
droplets and cr. is the diameter of the surfactant micelles. The interaction 

range is found to be equal to the small object diameter. 

The addition of surfactant up to a concentration just above the CMC to 

an initially polydisperse emulsion results in a cream (or sediment) which is 

separated from the dilute phase. Additional surfactant is added to the dilute 

phase to further increase the concentration and the resultant concentrated 
layer is again separated and the same treatment repeated to the dilute phase. 
After progressive treatments a set of cream samples are obtained. These are 
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then diluted back to the original oil volume fraction and the preceding 

operations repeated with different suitable surfactant concentrations. This 

continues until a suitably narrow size distribution is achieved. 
Since the liquid-solid phase transition induced by depletion forces is 

entropic, the precise nature of surfactant, dispersed and continuous phases is 

not of great importance. This method has been successfully used in a number 

of examples [21-25] where the desirability for 'monodisperse' emulsions has 

been significant in determining the experimental data. 

1.2.3 Preparation of 'monodisPerse' emulsions by aerosol 

mechanisms 

Another method, which may in principle be used for forming 

"monodisperse'd emulsions is the 'aerosol' route which involves forming a 

stream of droplets which is then directed into the second bulk phase [26]. 

Such a stream can be formed from a jet emerging from a capillary, or induced 

mechanically by a so-called 'chopper blade' technique or induced 

electrostatically to 'atomise' the jet. 

Electrospray (ES) atornisation is the only process capable of dividing a 
liquid into uniform fragments with controllable dimensions from the 

micrometer, down to the nanometer, range. This method relies on the natural 
formation of a sharp liquid cone when the meniscus at the end of a capillary 
tube is charged to several kilovolts with respect to a neighbouring grounded 

electrode. The apex region of the cone is not static. In the "cone-jet' mode the 

conical tip deforms continuously into a thin steady jet which breaks up into a 

stream of charged drops. This spray is referred to as an electrospray [27,28]. 

Similar methods, which tend to produce droplets at a slower rate (and are not 

as commonly used), include the 'dripping' method and the 'harmonic 

spraying' method as described by Cloupeau [29,301. 
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Aerosols generated by acoustic atomisation have been used to 

manufacture 'monodisperse' droplets, particularly for polymerisation. This 

technique relies on a piezoelectric transducer [31] or a piezoceramic oscillator 
[321 that vibrates and breaks up a liquid jet into droplets. The size of the 

droplets produced can be controlled by the size of the orifice they emerge 
from, the frequency of the oscillator and the liquid flow rate. 

1.3 Emulsification by Nucleation and Growth 

The PDMS emulsion used in this work is synthesised by a mechanism 

analogous to the base-catalysed hydrolysis and polymerisation of 

tetraethoxysilane (TEOS) to form colloidal silica particles [331. The method of 
formation of the PDMS emulsions is discussed later (refer to section 3.2.2). It 

proceeds via a nucleation and growth mechanism without any added 

surfactant. This process is also found in many cases for the preparation of 

emulsifier-free or emulsifier-starved polymerisation reactions [34-36]. 

Nucleation involves the initial formation of small nuclei from a 
homogeneous phase. When the monomer has a high degree of solubility in 

water, initiation of polymerisation occurs in the aqueous phase. Intermediates 

(or radicals) generated in the aqueous phase add monomer units until they 

exceed their solubility and precipitate. The precipitated molecules form 

spherical droplets, which will absorb any emulsifier, if present, or 

surface-active oligomers formed in solution (which act as an in-sitil 

surfactant in the case of the PDMS droplets described in this thesis) and 

monomer to form primary droplets. 

These primary droplets thus formed, particularly in the situation of an 

expanding interface, are not stable in the colloidal sense. Stability is obtained 

when enough charged groups have formed at the interface to give the droplet 

an adequate electrostatic surface potential. Thus, primary droplets may either 
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persist or coagulate and coalesce with already existing droplets or other 

primary droplets. This will occur until the potential energy of electrostatic 

repulsion between the droplets is sufficient to ensure colloidal stability in the 

ionic environment in which the droplet is formed. 

Droplet nucleation continues throughout polymerisation. The 

formation of new droplets is moderated by the capture and flocculation of 

precipitating oligomeric radicals and primary droplets by already existing 

mature droplets. A steady state is reached where the rate of nucleation of 

primary droplets and the rate of primary droplet capture is equal. Generally 

the quicker the polymerisation is to reach this steady state, the narrower the 

final size distribution will be. The longer the nucleation stage proceeds, the 

more coagulation occurs which leads to a broader distribution. 

1.4 Apparent Spontaneous Emulsification 

Apparent spontaneous emulsification [37] may occur under 

non-equilibrium conditions when two liquids are brought together. There are 

three mechanisms by which this can happen; the diffusion and stranding 

mechanism [38], interfacial turbulence and transient negative interfacial 

tension [39]. It is often difficult to determine which mechanism is occurring 

and to distinguish truly spontaneous emulsification from that which occurs 

with very slight mixing. 
The diffusion and stranding mechanism involves nucleation and 

growth of droplets from localised super-saturation near an interface [37,40]. 

This happens when toluene, containing dissolved ethanol, is placed in contact 

with an aqueous phase. As the water-soluble alcohol diffuses ahead into the 

water it leaves the insoluble toluene behind. The interface becomes highly 

irregular in structure. This process is driven by the negative enthalpy of 

solution of ethanol in water. 
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The second mechanism involves break up of an interface between two 

liquids by capillary waves to form emulsion droplets. These thermal 

fluctuations, caused by diffusion of surface-active material to the interface, 

increase with temperature and change the interfacial tension. Flow of liquid 

parallel to the interface also assists emulsification and if interfacial tension 

gradients are present then droplets may become trapped between the two 

phases [41]. 

The third mechanism involves the apparent presence of 'negative' 

interfacial tensions. This occurs in oil-water systems with a third component 

in both phases. The interfacial tension is lowered where increasing amounts of 

surfactant and co-surfactant can apparently extrapolate the tension to 

negative values. What actually results (rather than a negative tension per se), 

is expansion of the interface and emulsification at the interface. Interfacial 

tensions remain low but positive due to the depletion of the monolayer 
during expansion [391. 

This phenomenon can occur when a homogenous two component 
liquid mixture is cooled below its upper consolute temperature. A small 

temperature quench into a metastable region will result in droplets of the 

minority phase forming by nucleation of monodisperse droplets. Examples 

where this occurs includes mixtures of polyisoprene and 

polyethylene-propylene [42], isobutyric acid and water [43], and 2-6 lutidine 

and water [44]. 

Adjustment of the concentration of a component, or a chemical reaction 

can also produce a new phase. This last method is commonly used to form 

solid/liquid dispersions such as Ag sols and polystyrene latices. 
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1.5 Applications of Emulsions 

Many differing classes of emulsions are used in both industrial and in 

many every day products and applications. Often it is a particular feature of 
that emulsions stability, concentration, droplet size, viscosity, emulsifier and 

rheological behaviour that determines the function [45,46]. 

Chappat [45] has listed several examples demonstrating the wide 

application of emulsions. These include the following: 

Emulsions in milk and dairy products 
Emulsions in the food indusry 

(iii) Emulsions in pharmacy 
(iv) Cosmetic emulsions 
(V) Agricultural emulsions 
(vi) Bitumen emulsions in road construction 

Emulsions can occur in other applications including paints, 

photographic films, coatings, lubrication, petroleum extraction etc. 
The stability of the emulsions in all these applications is crucial. In milk 

and dairy products the emulsions are stabilised by natural phospholipids. 
Changing the O/W ratio results in cream, cheese and butter which is an 
inverse (W/O) emulsion. In foods the emulsions have to be stable over a wide 
temperature range for a long period of time. Consumer satisfaction with the 

product is also important. 
Droplet size and toxicity are the critical requirements for 

pharmaceutical emulsions. The dispersions have to have long term stability 
(1-2 years). Multiple emulsions (i. e. W/O/W) and encapsulated emulsions 

are also employed, particularly for sustained release [471. Similarly, cosmetic 

emulsions need to be non-toxic. Consistency of feel and application to the 

skin are relevant attributes in this area. 
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Agricultural emulsions have differing needs [48]. The emulsions are 

applied as formulations designed to get an active ingredient across a material 
barrier. As such wetting and spreading characteristics are important. 

Bitumen emulsions require good stability to survive the process from 

manufacture to application as a fine film. The oil droplets need to adhere 

strongly onto the road surface and then the emulsion needs to be broken 

when put in contact with the surface. Thus a fine balance between stability 

and instability is required in this case. 
Emulsions are useful in applications because they tend to be 

environmentally friendly, O/W emulsions in particular avoid using large 

amounts of solvents. Emulsions are fluid in nature and tend to spread easily. 
This homogeneity enables good, even distribution of an active agent. Storage 

of emulsions for long periods must be tightly controlled to maintain the 

nature of the dispersion, as must be the consistency for personal products. 
Certain emulsions need to be broken in order to achieve the desired effect, for 

example as mentioned for agricultural sprays and road emulsions. Average 

droplet sizes in most commercially and industrially encountered emulsions 

tend to be of the order of a few microns. 

1.6 PDMS Emulsions 

Obey [49] first described the synthesis of "monodisperse' silicone 

oil/water emulsions. The droplet size and electrophoretic mobility of the 

emulsions were studied using dynamic light scattering and electrophoresis. 
The effect of ammonia and monomer concentration on the droplet size was 
investigated. The PDMS phase was characterised. principally by 29Si and 1H 

NMR, mass spectrometry and gel-permeation chromatography. The results 

showed that the most abundant polymeric species is the cyclic tetramer 

octamethyltetrasiloxane (D4)- It was shown that the ratio of linear to cyclic 
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polymer in the PDMS phase may be altered by changing the amount of 

ethanol and/or monomer present in the initial reaction mixture. 

Wegener [50] investigated the effect of adding cross-linking monomer 

to the initial reaction mixture together with ethanol. Results showed that at 

low cross-linker concentrations, emulsions are initially formed, whilst above 

a volume fraction of 0.4, particles were formed. Dilution with ethanol 

indicated that the particles were of a soft 'microgel type' nature. Analysis of 

the PDMS by NMR indicated the formation of cross-linked network 

structures. 
Anderson [51] investigated the effect of the addition of surfactant on 

the eventual average emulsion droplet size and the molecular weight and 

chemical composition of the PDMS phase. The surfactants, used were both 

ionic and non-ionic. The presence of surfactant indicated that the proportion 

of linear to cyclic PDMS was increased and the average droplet size 
decreased. 

It should be pointed out here that the PDMS emulsion forms 

spontaneously via a nucleation and growth mechanism. However, mechanical 

energy is required initially to ensure dissolution of the starting monomer. 

1.7 Objectives 

As a 'monodisperse', surfactant-free emulsion, the PDMS emulsions 
described in this thesis provides an ideal system for studying the physical and 

colloidal properties of liquid/liquid dispersions. Since emulsions are 

extremely important in a number of industrial applications (refer to section 
1.5), their stability is of critical importance. An understanding of the 

de-emulsification process is a subject of practical, as well as fundamental, 

interest. With the PDMS emulsion it should be possible to follow the 
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phenomena of coagulation and coalescence and to examine whether the 

emulsion behaves as predicted by theory. 

Depending on the level of added cross-linking monomer in the 

reaction mixture (refer to section 1.6) either liquid droplets or microgel-type 

particles are formed. A microgel particle is a cross-linked particle that can be 

swollen in size by a good solvent. The study of microgel particles occupies a 

growing niche in the field of colloid science [52]. Cross-linked PDMS 

droplets/gels provide an opportunity to study the osmotic swelling of an 

inorganic micogel. 

Cross-linking will also affect the nature of the PDMS phase. With the 

addition of cross-linker, it should be possible to change the characteristics of 

the silicone oil (density, viscosity, molecular weight etc. ) and hence the 

emulsion droplets. The effects of the viscosity of the internal liquid phase can 

alter the motion of a liquid droplet, provided that the oil/water interface is 

fluid in nature. As the PDMS emulsion has no added emulsifier, the droplets 

present an ideal case for studying droplet motion, for example the movement 
in an electric field (electrophoresis). 
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Chapter 2: Emulsions 

2.1 Introduction 

Most emulsions and microemulsions contain (at least) three 

components: an organic 'oil' phase, an aqueous phase and the emulsifier 
(usually a surfactant or polymer which adsorbs at the oil/water interface) [1]. 

It is unusual to find an emulsion with just oil and an aqueous phase present, 

with the emulsifier being effectively a functionalised part of the oil phase in a 

water continuous (O/W) emulsion; this is the case for the PDMS/water 

emulsions described in this thesis. 

All emulsions (excepting microemulsions) are thermodynamically 

unstable and will try to revert back to a separate two-phase system by 

de-emulsification. The paths by which de-emulsification can take place are 

well defined. However, emulsions can appear to be stable over long periods 

of time. By stating that an emulsion is 'stable' it is implied that the size 

distribution of droplets does not significantly change with time. Such 

kinetically stable emulsions are described as being 'metastable'. 

The emulsion stability needs to be controlled in order to avoid 
de-emulsification. The balance of interdroplet interactions (arising from 

attractive and repulsive forces) determines the colloidal stability of the 

emulsion. The understanding of these and other factors is essential in order to 

control the stability of emulsions. The intrinsic properties of the emulsion 

such as the polarisabifity and density of the dispersed phase determine the 

attractive forces. The properties of the interfacial region, for example the 

presence of an electric double layer or steric interactionsf determine repulsive 
forces. Other phenomena related to the solubility and density of the dispersed 

phase also play a role, alongside interdroplet forces, in determining the 

emulsion stability. 
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2.2 Emulsion Stability 

The most important property of an emulsion is its stability. An 

emulsion's stability concerns its ability to resist breakdown into two bulk 

phases. Emulsion breakdown mechanisms can be broadly categorised into the 

following processes; creaming (or sedimentation), Ostwald ripening, 

coagulation and coalescence. A further possible breakdown process is phase 

inversion, which is only relevant for surfactant-stabilised systems. This 

process is not relevant to this work and is not discussed in this thesis. 

The most obvious form of breakdown involves droplet-droplet 

collisions that result in coagulation and/or coalescence to form larger 

droplets. Eventually complete phase separation occurs. This process may take 

seconds or years, depending on the kinetic stability of the emulsion. An 

emulsion prepared by simply homogenising two immiscible liquids will have 

a very short lifetime. In order to increase the life-span of an emulsion some 
form of emulsifier needs to be present. There are several classes of emulsifiers 

that can stabilise droplets by different mechanisms. However, in all cases the 

emulsifier stabilises the droplet by forming an adsorbed film on the surface at 

the interface between the oil and water phases. 
There are several factors associated with emulsifiers that influence and 

favour emulsion stability. A lowered interfacial tension (as described in 

section 1.2, particularly in the formation of microemulsions) associated with 

surfactant adsorbed at the interface will help to facilitate the formation of the 

large interfacial area associated with emulsions. Film thinning and 

coalescence is reduced by the Gibbs-Marangoni effect caused by adsorbed 

emulsifiers (refer to section 2.4). Emulsifiers also create a tangential stress, 

which impedes or prevents internal circulation, thus giving the droplet 

rigidity. 
The rate of creaming or sedimentation of an emulsion will be reduced 

if the continuous medium has a high viscosity. Smaller droplet sizes and 
density-matching of the oil and water phases also similarly increase the 
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stability by decreasing the creaming/ sedimentation rate (refer to section 

2.2.1). 

Monodisperse emulsions are inherently more stable than polydisperse 

emulsions due to reduced effects of Ostwald ripening (refer to section 2.2.2). 

The presence of an electrostatic charge at the interface, caused by ionic 

surfactants or adsorbed polyclectrolyte will aid emulsion life-time. This is 

due to the overlap of similarly charged electric double layers (refer to section 

2.3). 

Droplets with a mechanically strong and elastic interfacial film tend to 

be more stable. To this end adsorbed polymers, protein molecules and solid 

particles at the interface are particularly effective and these will also impart a 

steric stabilisation mechanism on the droplets (refer to section 2.3.3) 

2.2.1 Emulsion creaming or sedimentation 

This breakdown process occurs where there is a difference between the 

density of the dispersed phase and the continuous medium. 

00 

00600 Ap oil/water 00 
0 
0C 

080 ko0 
Dispersed emulsion Cream Sediment 

Figure 2.1: Schematic representation of emulsion creaming or sedimentation 

Droplets acting under the force of gravity will either rise or fall 

depending on the density gradient (as in figure 2.1). The resulting cream or 
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sediment will consist of a concentrated dispersion of close-packed droplets. 

No change in the droplet size necessarily occurs as a consequence, but with 

droplets in such close proximity to each other the probability of droplet 

coalescence is increased. 

Creaming rates are determined by the difference in density and also 

the average droplet size and droplet size distribution. If the droplets are small 

enough then the diffusional kinetic energy (i. e. the Brownian motion of the 

droplets) is sufficient to oppose the gravitational force. The velocity of a 

droplet can be determined by equating the hydrodynamic drag force (Stoke's 

law) with gravitational force: 

4 
7cr'Apg = 6ml. rv 2.1 

3 

Thus, 

Apgr' 
2.2 

9110 

where v is the velocity of a droplet of radius r in a liquid of viscosity 11o, Ap is 

the difference in density between phases and g the acceleration due to gravity. 

For example, a PDMS droplet of density 0.95 g cnr3, diameter 1 ýLm, and at a 

temperature of 25 *C in pure water will have a creaming rate of 0.1 Prn hourl. 

For a droplet of diameter 2 ýtrn the rate increases to 0.4 [Lrn hour'. This is 

assuming that the droplets are undeformable, non-interacting spheres with 

smooth surfaces. For dilute, monodisperse emulsions equation 2.1 should be 

valid 
With many emulsion systems it is desirable to decrease the rate of 

creaming or sedimentation. For instance a homogeneous dispersion is 

important in many pharmaceutical and industrial applications. This can be 

achieved most effectively by either decreasing Ap or increasing i1o. 
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2.2.2 Ostwald ripening 

Two liquids forming an emulsion often have finite mutual solubilities. 

If the emulsion is initially polydisperse, larger droplets will grow at the 

expense of the smaller droplets. The system will tend to a final equilibrium 

state in which there could be one, large droplet. This ageing process in 

emulsions (and other colloidal dispersions) is known as Ostwald ripening 
[2,3]. 

In an emulsion there is a dynamic equilibrium whereby the rates of 
dissolution and absorption of the dispersed phase balance in order that the 

saturation solubility of the dispersed phase in the dispersion medium can be 

maintained. In a polydisperse emulsion the smaller droplets will have a 

greater solubility than the larger droplets and so will tend to dissolve while 
the larger ones grow. The determining factor for the rate of this repartitioning 
is the solubility of the dispersed phase in its surrounding medium. If the 
dispersed phase is highly insoluble then the process is of little or no 

consequence. If the dispersed phase is fairly soluble, Ostwald ripening occurs 
to such an extent that the expected lifetime of such dispersions is reduced. 

A pressure difference exists across any curved interface. For a spherical 
droplet the Young-Laplace equation gives this pressure difference: 

Ap = 
2y 
r 

2.3 

where y is the interfacial tension and r the droplet radius. In qualitative terms, 

the surface tension tends to compress the droplet, increasing its internal 

pressure. For an emulsion droplet this pressure difference may alter the 

chemical potential of the material inside, thus increasing the solubility of the 

dispersed phase in the continuous phase. 
If the radius of a droplet increases from r to r+ dr, the interfacial area 

will also increase from 47ir2 to 4n(r+dr)2 (i. e. by 87idr). The corresponding 

increase in surface free energy will be 8nyrdr. If dn moIes of liquid are 
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transferred from a planar surface of solubility S. to a droplet of solubility S, 

the free energy increase is equal to dnRTIn S, /S., (R being the gas constant 

and T the absolute temperature). Equation 2.4 equates these free energy 

increases: 

s 
dnRT In '= 8nyrdr 

S. 
2.4 

Since dn = 47ir2drp/M (p is the density and M is the molar mass of the liquid) 

equation 2.5, equivalent to the Kelvin equation for vapour pressure, is 

derived. This relates the chemical potential (and hence solubilty) of the 

dispersed molecules to the radius of curvature of the droplet. 

RT In Sr 
= 

2yM 
= 

2yVr,, 
2.5 

pr r 

Here ýtr is the chemical potential of the molecule inside the droplet, ýý 
is the chemical potential of the same molecule in a bulk fluid with a planar 

interface and Vm is the molar volume of the liquid in the droplet. It can be 

seen that the smaller the droplet the higher the solubility of the molecules 

contained within. 

As the dispersed phase will establish, at equilibrium, a concentration in 

the dispersed phase Sr, difference in droplet size is crucial. Any resultant 
increase in the mean droplet size of the emulsion will enhance creaming or 

sedimentation which encourages coagulation and coalescence. Ostwald 

ripening however, can be slowed by addition of a second, more insoluble 

component (refer to section 5.1.1). If the dispersed phase is of very low 

solubility then the attainment of equilibrium is often a slow process and 
Ostwald ripening is not observed. 
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2.3 Interdroplet Interactions: Droplet Coagulation 

2.3.1 Electrical double-layer interactions 

The surface charge of an oil droplet in water is acquired through 
ionisation of groups at the oil/water interface of the droplet. This surface 

charge will affect the distribution of ions near the surface in the aqueous 

phase. This arrangement of ions near the surface leads to the formation of an 

electric double layer, as first described by Gouy and Chapman [4,5]. 
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Figure 2.2. - Stnicture of the electrical double layer 
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Figure 2.2 depicts the structure of the double layer. The electric double 

layer has been extensively discussed [6,7] and only a brief description is given 

here. The double layer is made up of the surface charge (cr. ) giving rise to a 

surface potential (y. ) and a diffuse layer. There may be a layer of counter ions 

specifically adsorbed next to the surface in the aqueous phase (the Stern 

layer). The potential at this point has a value Yd. This is usually 

experimentally determined as the zeta (ý) potential [7]. This is the measured 

potential at the plane of shear as the surface moves in an electric field. The 

unequal distribution of ions in the bulk phase surrounding the surface forms 

the diffuse layer. 

It is assumed that the potential decreases exponentially away from the 
Stern layer. The potential is described by: 

w= Wd eXp(- KX) 2.6 

Here x is the distance from the surface, 1/ic is the Debye-Hilckel 

length, which depends on the permittivity of the medium and the electrolyte 

concentration. The Debye-Hilckel length is, in effect, the extension of the 

double layer and is given by the following expression: 
I 

clrcokT 
)-2 

YK 
2e 2 NACZ 2 2.7 

where c, is the dielectric constant of the medium, co the permittivity of free 

space, k the Boltzmann constant, T the absolute temperature, NA Avogadro's 

number, e the electronic charge, c the bulk concentration of electrolyte and z 
the valency of the ions. The size of the surface charge and the nature and 

extent of the electric double layer determines the electrostatic repulsion 
between the droplets and also many experimental observations (e. g. 

electrokinetic effects, refer to section 4.3). 

With increasing electrolyte concentration ic increases and the extension 

of the double layer decreases. For a 1: 1 electrolyte 1/ic is of the order of about 
1 nm for a 10-1 mol dm-3 solution and 10 nm for a 10-3 mol dM-3 solution. 
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For the calculation of the interaction energy, VE.. which results from the 

overlapping of the diffuse parts of the electric double layer of two identical 

particles of radius a, the following expression is derived for large ica [81: 

VE= 27rcaW2 In(I + exp[-KhD 2.8 0 

where h is the shortest distance between the two surfaces and c is the 

permitivity of the dispersion medium. From equation 2.8 it is apparent that VE 

at a distance h depends on the value of ic. Note that this interaction is 

repulsive for two identical overlapping double layers. 

2.3.2 London-van der Waals interactions 

Van der Waals forces arise from dipole-dipole (Keesom) interactions, 

dipole-induced dipole (Debye) interactions, and fluctuations in the electronic 
fields of atoms and molecules (dispersion or London interactions). Hamaker 

derived the interaction energy (VA) between two identical droplets of radii a, 

separated by a distance h, which can be simplified to [9]: 

VA A,, a h<<a 2.9 
12h 

A12 is the effective Harnaker constant. The Hamaker constant can be 

calculated from dielectric data of a material over a wide frequency range 
[10,111. This can be achieved by the macroscopic (Lifshitz) approach. The 

other approach of pairwise additivity makes assumptions that ignore the 

influence of neighbouring atoms on the interaction between any pair of 

atoms, which is a source of error when considering condensed media. Lifshitz 

theory derives the Hamaker constant in terms of the bulk properties. If U, the 

characteristic absorption frequency of the media is assumed to be the same 

the following expression for the non-retarded Hamaker constant for two 

identical phases (1) acting across a medium (2) [11]: 
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ei +e2 16, F2 (n 2122 )y2 2.10 

, 
+n, 

where c is the static dielectric constant and n is the refractive index for the 

respective media (n2 = c, i,, ). 

The van der Waals force for two identical phases acting across a 

medium is attractive, as A12is always positive. The first term of equation 2.10 

is the zero-frequency term. For media dispersed in water this is the dominant 

term. This is because water has a high static dielectric constant (c = 80) 

whereas the dielectric constant for PDMS is much lower (c ft 1.9 [12]). This, 

added to the non-zero (dispersion) frequency term (the second term of 

equation 2.10), gives a total value of AMMS-water of 0.35 x 10-20 J at 300 K. The 

Hamaker constant for D4., the major constituent of the silicone phase, 

estimated from refractive index data [13] was 5x 10-20 J. 

The Hamaker constant decreases with increasing distance from the 

surface of the media. This is known as the retardation effect and is due to a 
fast decay in the dispersion energy between two atoms as separation 

increases. Electrostatic screening can also affect A12 by reducing the 

zero-frequency contribution. This is due to the electrostatic fields of the 

interacting atoms being screened by polarising ionic charges in the medium. 
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2.3.3 Steric interactions 

Emulsions can also be stabilised by adsorbed polymer or surfactant at 

the oil/water interface. At equilibrium, adsorbed molecules may protrude 
into the continuous phase (all adsorbed polymer layers have a 'tails and 
loops' morphology). When two droplets approach each other a repulsive force 

is generated when these two layers interact. This stabilising effect is known as 

steric stabilisation. 

With the PDMS/water emulsions, droplet stability is provided by a 
fraction of the oil phase behaving as an iii-sitit surfactant. This resides in the 

PDMS droplet with the charged end groups residing at the interface. Thus, 

two droplets approaching each other will only be subjected to electrical and 

van der Waals type of interactions. Steric interactions, in this instance, can be 

ignored. 

2.3.4 Total potential energy of interaction 

Deryaguin-Landau-Verwey-Overbeek (DLVO) theory 

describes the total energy of interparticle interactions for colloidal particles. In 

the case of PDMS emulsions the forces to consider are the attractive van der 

Waals forces and the repulsive interaction between the two charged electric 
double layers. The theory describes the total interaction energy as a function 

of interparticle distance, h. The general form of the potential energy-distance 

curve is shown in figure 2.3 
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Ficwre 2.3: Schematic of the potential energy curvesfor a pair of emulsion droplets 
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The total potential energy of interaction (Vh) is obtained by summing 

equations 2.8 and 2.9. The electrostatic interaction decays exponentially with 

distance, with a range of the order of 1/ic, and the van der Waals interaction 

decreases as an inverse power of the interparticle distance. As can be seen in 

figure 2.3 van der Waals attraction predominates at small and at large 

interparticle distances. At intermediate distances the electrostatic term 

dominates, for low electrolyte concentrations. In figure 2.3 the total potential 

energy curve shows a primary maximum. If this is large compared with the 

thermal energy, kT, of the droplets the emulsion should be stable. This 

maximum depends on the value of y. and upon the range of the force (i. e. 
upon 1/ic). If it is not large enough (25 kT and below [15]) then the emulsion 

will coagulate and the system will enter the primary minimum (at very small 

values of h). Droplets in the primary minimum will be irreversibly 

coagulated. Note that there is also a secondary minimum at much larger 

28 



interparticle distances. If this minimum is sufficiently deep it may give rise to 

reversible coagulation. 

As electrolyte acts as a screen for surface charge, increasing the 

concentration of electrolyte will decrease the electrostatic repulsion. There 

exists a critical concentration at which coagulation will occur when the size of 

the primary maximum is insufficient to ensure droplet stability. Thus, to 

improve the colloid stability of a dispersion, one needs to increase the surface 

potential and decrease the electrolyte concentration. 

2.4 Thin Film Thinning: Droplet Coalescence 

2.4.1 Introduction 

Emulsions have an additional instability, compared to solid colloidal 

particles, namely coalescence. When two droplets come into close proximity 

with one another by Brownian collision, coagulation or 

creaming/ sedimenting, a thin liquid film of the dispersion medium forms 

between the two interfaces [16]. This film will drain to a metastable thickness 

depending on a complex process involving hydrodynamic and interfacial 

force interactions. Disruption and elimination of the film will result in the two 

droplets uniting together into a single droplet. If the film is unstable then 

coagulation will always result in coalescence. 
Figure 2.4 shows the general features of the lamella between two 

PDMS droplets. The PDMS-water-PDMS film can be considered as a type B, 

film as defined by Hunter [171. When the radius of the droplets is large 

compared to the separation distance, b, then the Derjaguin approximation [18] 

is applicable. Under such conditions, elements on each sphere interact as 
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parallel plane elements at the same separation; the total interaction is a sum 

over the infinitesimal elements. 

PDMS 

Interfacial Film Transition Bulk aqueous phase 
layers P(b) b region POO) = P(O) 

PDMS 

-Figure 
2.4: Diagrammatic representation of the thinfilm and border regions between 

t7170 PDMS droplets (from [19]) 

Here P(b) is defined as the normal pressure in a film of thickness b, and 

P(co) is the normal pressure in a film where the interaction energy across the 

film is zero. Thus, P(oo) is equivalent to the isotropic pressure in the adjacent 
bulk phase P(o). The interfacial layers are the regions of thickness 8 in the film 

where the electrical double layer (refer to figure 2.2) applies; i. e. where there is 

an amount of interfacial structure. 

30 



2.4.2 Thermodynamics of film thinning 

Emulsion coalescence is a thermodynamically favourable process (as 

opposed to emulsion formation). The variation in the free energy of the film is 

dependent on the DLVO (refer to section 2.3.4) calculation, i. e. G(b) = 

Gelectrostatic + Gvan dew. i.. As the film thins, so the surface area of the droplets 

must increase. If a surfactant is present this results in an increase in the 

interfacial tension, which is unfavourable to the process. If the approaching 

droplets have sufficient kinetic energy to surmount this free energy barrier 

(Gm,,. ) then they will coalesce. If this barrier is sufficiently high then the 

emulsion droplets will remain in the coagulated state. In addition to the 

surface forces of intermolecular origin, two colliding droplets in a liquid 

medium will also experience hydrodynamic interactions due to the viscous 

friction of the thinning film. 

2.4.3 Forces acting across a thin film: disjoining pressure 

For a coagulated pair of droplets there are two stable film thicknesses. 

These are when the film is sitting in either the primary or the secondary 

minimum. In these states the net force on the film is zero (dGi/db - 0). The 

variation of the potential energy of interaction with film thickness is 
dependent on van der Waals attractive forces and electrostatic repulsive 
forces (as for coagulation) with an additional very close range repulsive force. 

This force is only significant when a film that is in the primary minimum tries 

to thin further (i. e. b< 28). It is normally a very steep repulsive force, usually 

associated with the molecules adsorbed in the interfacial areas. In the case of 
the PDMS/water films, the rigidity without adsorbed polymers or surfactants 
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at the interface is very low. As discussed in section 2.3.3 there are no steric 

interactions as such. 

Much of the experimental work on thin liquid films is discussed in 

terms of the hydrostatic pressure in the interior of the film. This pressure, 

acting normal to the plane of the film is called the disjoining pressure [201. 

The excess normal pressure (P(b) - P(o)) in the film is balanced by the 

disjoining pressure, 7r(b). n(b) is the net force per unit area acting across the 

film (7r(b) = -dGi(b)/db). A film will tend to thin spontaneously until 7r(b) is 

zero (in the primary or secondary minima). The disjoining pressure can be 

considered to be made up from the contributions listed in section 2.4.2 such 

that: 

7r(b) = 7CA(b) +7r E (b) + 7c r, (b) 2.11 

i. e. the disjoining pressure is made up of van der Waals (7TA), electrostatic (RE) 

and steric (7rs) contributions. A stable film has a positive disjoining pressure, 

such that 7tE + 7CS ý" 7CA. Other forces, such as gravity, may also act on the film, 

but, in the consideration of a horizontal film, these can be ignored. In the 

transition zone P(b) < P(o) (n(b) is negative) due to the high interfacial 

curvature in the region. Here P(b) is lower than P(b) in the film so liquid tends 

to get sucked into the transition region from the film by a capillary force 

acting parallel to the flat interfaces. This does not affect n(b) as the disjoining 

pressure is described normal to the film. 

Another method by which the forces acting on a thin film can be 
described is the interfacial tension, which contributes to a tangential pressure 
Pt across the film. It should be noted that the interfacial tension in the film is 

not the same as in the bulk as the film is under stress. As a film thins, the area 
increases. As the interface expands so the tension must increase. With 

adsorbed surfactants the Gibbs-Marangoni effect helps to restore equilibrium. 
This is achieved by a combination of adsorption of more surfactant from the 

bulk to replenish the interface (Gibbs effect) and flow of the monolayer along 

the interface driven by the tension gradient (Marangoni effect). 

32 



It should be noted that the mere fact of the existance of 

thermodynamically metastable states does not guarantee that the film will 

actually reach this state. Therefore, the concept of kinetic stability is used to 

denote the resistance of the film against rupture, the major factor providing 

kinetic stability of emulsions is the presence of adsorbed surfactant 

monolayers, at the droplet surface. 

2.4.4 Hydrodynamics of film thinning 

How rapidly a film drains can affect the rate of coalescence. However, 

accurate analysis of the hydrodynamic flow of liquid from between two 

droplets is difficult due to the distortion of the form of the droplets. The radial 

flow of liquid exerts a shearing force, which will lead to internal circulation 

within the droplet. As a result a phenomenon known as 'dimpling' can occur. 

PDMS 

Water 

)MS 

Figure 2.5: Schematic representation of the 'dimple'between tWo emulsion droplets 

As can be seen from figure 2.5 the thinnest region of a dimple does not 

necessarily occur along the axis of approach. Instead, it may occur at the 

periphery of the contact zone. Dimpling is lessened by the presence of an 

adsorbed surfactant or polymer at the interface, which causes increased 
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rigidity. The dimple does not usually occur for small drops (< 1 pm) and a 

planar film forms [16]. 

The actual rate of thinning was first examined by Reynolds [21]. He 

solved the Navier-Stokes equation, neglecting gravitational and inertia forces. 

The hydrodynamics of film thinning is expressed as a relation between the 

droplet velocity and the driving force. A good summary of this is given by 

Hunter [171. 

2.4.5 Film rupture 

Thermal or mechanical fluctuations in the film thickness may occur in 

the region of closest approach. These waves can grow in magnitude until, at 

the point of closest approach the apexes may join, causing coalescence. 
Reduction in the film thickness results in increased van der Waals attraction, 

which causes more thinning with the ultimate disruption of the whole film. 

This will occur if the attractive contribution outweighs the electrostatic 

repulsion and the opposing increase in the interfacial tension due to 

expansion, Le: 

d71A 
,. 

d7rE 
+ 

d7r, 

db db db 
2.12 

If the condition expressed in equation 2.12 is met then the film is 

unstable, the fluctuation will grow and rupture occurs. This will tend to occur 

at a critical film thickness. 
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2.5 Surfactant Stabilised Emulsions 

As stated in section 1.2, it is usually necessary to employ an 

emulsifying agent of some sort so that a stable emulsion can be produced. The 

nature of this agent affects the stability and the form of the emulsion. The 

emulsion formed could be either O/W or W/O, as depicted in figure 1.1. 

The first attempt to draw together simple rules connecting the 

emulsion stability with the surfactant properties was the Bancroft rule [22]. 

This states that "in order to have a stable emulsion the surfactant must be 

soluble in the continuous phase". Griffen [23,24] introduced the concept of the 

Hydrophile-Lipophile balance (HLB) which is a numerical scale that 

determines the likelihood of a surfactant to form W/O or O/W emulsions. 
Shinoda and Friberg [25] showed that the HLB number was not only 

dependent on the surfactant molecules but also on the temperature, type and 

concentration of electrolytes, type of oil, etc. They proposed that the phase 

inversion temperature (PIT) be used instead of HLB for the characterisation of 

the emulsion stability. 
These emulsions, which contain a solute that can adsorb at the 

interface, are subject to a number of dynamic effects that do not occur in pure 
liquid/liquid systems. The finite rate at which such a solute responds to 

either: (i) approach of another interface; (ii) local deviations in curvature; or 
(iii) formation of new surface, influences the rate of coagulation and 

coalescence and determines the emulsion stability. These effects include the 

Gibbs-Marangoni (surface elasticity) effects and surface viscosity. Surface 

elasticity refers to the fact that adsorbed surfactants resist changes in the 

surface area in either direction. Even at low concentrations of surfactant the 

interface becomes essentially rigid so that there is little or no transfer of 

momentum from the exterior liquid to the interior of a drop [171. Emulsion 

droplets thus behave like solid particles in the presence of surfactants. 
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Chapter 3: Polydimethylsiloxane Emulsions 

3.1. Silicones 

3.1.1. Introduction 

One of the most commonly investigated of the silicone polymers is 

polydimethylsiloxane (PDMS). PDMS and other silicone polymers are widely 

used in the manufacture of cosmetics, food-processing materials and medical 

preparations. They are highly valued for their lubricity, their low surface 

energy and their ability to act as antifoam agents. 
The first silicones were manufactured by Kipping [1]. These were 

formed from the condensation of diphenylsilanediol. They were initially 

erroneously thought to bear a structural resemblance to ketones of general 

formulae R2CO. The name'silicone' denotes a polymer of the form: 
(RnS'04-n )m 

2 
3.1 

where n is between 0-3 and m is 2 or larger. PDMS exhibits the basic structure 

shown below in figure 3.1. 

CH3 CH3 CH3 
III 

CH3-Si- -Si-O Si-CH3 
III 

CH3 CH3 UH3 
n 

Fipre 3.1: 7he basic stnicture of PDMS 

The repeating unit of the polymer is referred to as a 'D' unit [2]. The 

termination unit is known as an M unit, so the above structure is referred to 
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as MD. M. Branch points where cross-linking units (i. e. 0- sites) occur are 

denoted as aT group for a trifunctional unit and Q for the quaternary unit. 

These branching units have the effect of introducing rigidity into the chain 

structure. Colloidal silica is effectively a network of Q units. This relatively 

simple chemistry leads to fluids in the case of low molecular weight PDMS. 

At higher molecular weights silicone fluids become gums which, when 

cross-linked, can form elastomeric products. 

3.1.2. Synthesis of silicones 

Silicones are generally synthesised by the hydrolysis of the highly 

reactive Si-CI bond [3] as shown in figure 3.2. The silicones made by the 

reaction in figure 3.2 can be either linear or a cyclic. 

CH3 H 
2H20 - H20 C, 3 C, 113 

(CH3)2SiC12 [(CH3)2Si(OH)21 10 O-SI-0 si-o-si- 
III 

UH3 (-H3 UH3 

Figure 3.2: General synthesis of silicones 

Alternative monomers can be used, for example 
dimethyldiethoxysilane (CH3)2Si(OC2H5)2 which is the starting monomer used 

in this work. The hydrolysis and polymerisation of this monomer was first 

described in 1945 [4]. Hydrolysis, in acidic alcohol, results in mainly cyclic 

polymers being produced. It was noted that the proportion of cyclic to linear 

(from 15%-70% cyclic) polymer could be altered by changing the reaction 

conditions. 

The cyclic polymers formed contain a minimum of 3D units linked 

together in the form shown in figure 3.3. 
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CH3 

CH3 

n 

Fi . gure 3.3: The general stnicture of cyclic silicones 

Kipping [1] and later Patnode [31 found cyclo-octamethyltetrasiloxane 

(D4, n=4 in figure 3.3) to be the predominant molecule formed in the 

hydrolysis reaction (- 47 % of the product). Due to the larger size of the 

silicon atom, and the nature of the Si-O bond, larger rings are allowed with 

silicon compared to carbon chemistry. These cyclic molecules and low 

molecular weight silanols (PDMS with -OH end groups) are used as 
intermediates in the synthesis of higher molecular weight polymers. In fact, 

D4 is the most commonly used oligomer for the production of higher 

molecular weight silicones [5,6]. It readily reacts with hexamethyldisiloxane 

(M2) in concentrated sulphuric acid at room temperature, or with 

tetraalkylammonium. hydroxides at 80 *C in what is termed 'linearisation' of 

the siloxanes. If D4 is dispersed in aqueous media by a quaternary ammonium 
hydroxide, which acts as a catalyst, then very high molecular weight silicones 

are obtained [7,8]. The resulting silicone emulsion is stable and of a small 
droplet size. Such silicone emulsions can be employed as release agents or for 

coating compositions. The silicone polymers can be extracted at the end of the 

polymerisation by breaking the emulsion. 
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3.1.3. Properties of silicones 

Silicones do not have a carbon-based backbone. Their inorganic chain 

of alternate silicon and oxygen atoms gives rise to their unique physical 

characteristics. Silicones generally have the physical properties listed below: 

Low surface energy 
Thermal and oxidative stability 
Chemically inert 

Shear stability 

High gas permitivity 
Good weather resistance 
Wide service temperature 

Non-flammability 

These are all due to the silicone polymer backbone having certain 

chemical properties. Table 3.1 below compares some key properties of PDMS 

and two carbon-based polymers, poly(ethylene) and poly(tctrafluroethylene) 
(PTFE) [9]. 

Polymer Poly(ethylene) PTFE PDMS 

Backbone bond length 

(A) 
C-C=1.54 C-C=1.54 Si-0=1.65 

Backbone bond angle 
112" 112* Si-O-Si=130" 

(degrees) 

Min. distance between 
two backbone atoms 2.53 2.53 2.99 

(A) 
Energy of rotation 

14 20 0 
a mol-1) 

Surface free energy 
34 19 22 

(Mj M71) 

Table 3.1: Comparison of PDMS with other polymers 
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The Si-O bond energy is very high (799.6 Kj mol-1), making the 

polymers chemically inert. The bond is also longer than the carbon-carbon 
bond. The silicone chain has enhanced flexibility due to the length of the Si-O 

bond, resulting in virtually no energy barrier for backbone rotation. This 

results in PDMS having one of the lowest glass transition temperatures for 

any polymer. The high 'mobility' of the PDMS chain ensures that the 

molecule is very efficient at presenting low surface energy methyl groups at 

the polymer/air interface. This results in many of the characteristics 

associated with low surface energy, such as the absorption and adhesion 
behaviour of other materials onto the polymer [9]. The low polarity of the 

molecule also means that there are very weak intermolecular forces in PDMS 

and other silicones. These give rise to the polymers having a low variation of 

viscosity with temperature and pressure and a high gas permittivity for 

oxygen and nitrogen. The surface tension of PDMS is low enough to cause the 

polymer to spread as a liquid film on many surfaces. 

3.1.4. Applications of silicones 

Silicones have many uses due to their unique nature and low toxicity. 

Silicones are easily dispersed in many solvents and their surface-active 

properties enable them to be used in many coating treatments and cooling 

applications. Cyclic silicones find use in personal deodorant sprays. The 

so-called 'dry feel' is a direct consequence of their low volatility. Higher 

molecular weight silicones are used more as lubricants, sealants and as 

conditioners in shampoos. 
Industrially, functionalised silicones are used in many applications 

such as detergents and petroleum extraction [10]. In detergents, it is their 

specific anti-foaming ability that is utilised. Again in the extraction of crude 

oil and natural gas there is a need for anti-foaming agents with mixtures of 
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oil, gas and water all present. Silicone surfactants are used to de-emulsify 

W/O crude oil emulsions. Functionalised silicone polymers, which have been 

given additional properties by substitution of methyl groups have many 

practical advantages. One example is in the textile industry where silicones 

help to impart smoothness, bounce and resiliency to fibres. 

Silicones are also important in many personal care products. Their 

chemical inertness and biological safety, together with good spreading and 

lubricative properties, give rise to use in many formulations. They are used in 

hair products such as shampoos, conditioners and hair sprays to reduce 

resistance to wet and dry combing, to reduce static build up, enhance gloss 

and provide a soft silky feel. They are important components of many 

skin-care products where again a soft smooth silky feel and case of spreading 

and application are highly desired attributes. 
Other uses are as diverse as medical implants, contact lenses, 

adhesives, cosmetics, electrical systems, diffusion pumps, damping oils, 

polishing oils and heat exchange [11]. All rely on some of the specifically 

unique properties associated with silicones. 
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3.2. PDMS (Silicone oil) in Water Emulsions: Experimental 

3.2.1. Materials 

Dimethyldiethoxysilane (DMDES) (97%) was obtained from Aldrich 

chemicals (UK) and distilled prior to use. Dimethyldimethoxysilane 

(DMDMS) was obtained from Fluorochern and methyltriethoxysilane (MTES) 

was supplied by Strem Chemicals (USA). Ammonia'880' solution (35% w/w), 

potassium chloride (AnalaR grade), and sodium azide (AnalaR grade) were 

supplied by BDH (UK). Volumetric standard solutions of hydrochloric acid 

(0.1008 N) and sodium hydroxide (0.1015 N) were used as supplied from 

Aldrich. Dextran (molecular weight 505,000 g mol-1) was obtained from Sigma 

(UK). Visking dialysis tubing (19 mm internal diameter) was obtained from 

Medicell International (UK). All water was purified using a Millipore 

'Milli-Q, and later a'Mill-Q Plus' filtration system. 

3.2.2. Preparation of PDMS emulsions 

All the PDMS emulsions studied in this investigation were made in 

essentially the same way: by the polymerisation of a silane monomer in an 

aqueous alkali solution. This process proceeds via a nucleation and growth 

mechanism from a homogeneous aqueous phase. The most common 

monomer used was DMDES, a difunctionally active molecule. Alternative 

monomers used included DMDMS (similar to DMDES, but with methoxy 

groups instead of ethoxy) and MTES, a trifunctionally active and hence, cross- 
linking monomer. The structure of these monomers is shown in figure 3.4. 

44 



Me 
I 

Etu-Si-OEt 
I 

Me 
DMDES 

Me 
I 

EtO-Si-Oht 
I 

Uht 

MTES DMDMS 

Figure 3.4: 77ze chemical stnicture of the silane monomers used 

In figure 3.4 above 'Me' denotes a methyl group (CH3) and 'Et' an ethyl 

group (CH20-b). The alkalinity of the aqueous phase was adjusted by using 

ammonia solution. The polymerisation proceeds via initial hydrolysis of the 

active ethoxy (or methoxy) groups to form ionic precursors to the oligomeric 

molecules. The reaction scheme is presented in figure 3.5. 

Me H20 Me, 
-, I I/ A 

Etu-S-OEt EtO-bi-. uEt bm 
II 

Me NH40H Me41 
O-H 

pH-10 
Nkýý 

Me 

Me 

EtOH 

Me Me Me Me 
IIII 

. Etu-bi-oý -S t htu-Si-o-Eii-OEt 
IIiII 

Me 
ý, ýýM Me Me 

+H20 + EtOH + OH 

Solubilised monomer 

Me 
I 

MCU-bi-OMC 
I 

Me 

Ionic precursor of PDMS 

Figure 3.5: Proposed reaction schemefor theforniation of the PDMS 

The concentrated anunonia "880' solution was initially diluted with 
pure water to 0.1 v/v, which in turn was diluted to 0.02 v/v. This was used as 
the "stock' solution. Most emulsions were prepared using solutions of 0.01 
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v/v monomer in 0.01 v/v ammonia solution. This was only varied when the 

amount of monomer in the starting mixture was increased to 0.075 v/v. No 

other concentration of ammonia was used, since it has a purely catalytic role 

in the polymerisation. Obey [121 investigated the effect of ammonia 

concentration on emulsion droplet size. Emulsions were made, using the 

stated concentrations, in varying quantities from 5 mL samples up to 1 dM3. 

When MTES was added to the starting monomer mixture it was mixed in the 

appropriate proportions with the DMDES before addition to the ammonia 

solution. For example, a 0.2 v/v solution of MTES in DMDES would be 

prepared, from which 0.1,0.05,0.025 and 0.01 v/v solutions, as required, 

would be made by dilution with DMDES. When the required amount of 

monomer had been added to the ammonia solution the mixture was then 

shaken manually for 30 seconds and left to stand at room temperature. In the 

case of higher volumes of monomer it was found that the mixture had to be 

repeatedly shaken vigorously until most of the droplets had dissolved. 

Eventually a clear solution with a bluish tinge would develop. Over the next 
few hours this would become increasingly turbid as the PDMS precipitates in 

the form of small droplets which begin to grow. The larger the droplets, the 

'whiter' in appearance the emulsions become. 

The polymerisation reaction producing the emulsion was lef t to 

continue for 18 hours. At this stage the emulsion was either left as it was or it 

was dialysed. Dialysis was achieved by inserting the crude emulsion into 

cleaned Visking dialysis tubing (the tubing was first boiled in distilled water 

approximately 8 times, using fresh water for each subsequent boiling cycle) 

and dialysing it against pure water. The water was changed for fresh, pure 

water approximately 12 times over a 48 hour period. This dialysis procedure 

was carried out in the case of all the experiments involving emulsion stability, 

electrolyte and pH (refer to chapter 4). 

Black and white photographs of the PDMS emulsions were taken using 
the Nikon 'Optiphot' optical microscope with a Nikon FX-35 camera and a 
long focal distance x 40 lens, two of which are shown in plate 3.1. 
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3.2.3. Isolation of the PDMS phase 

The liquid phase of the droplets needed to be isolated from the 

emulsion in order to facilitate analysis. Creaming or sedimentation under 

gravity is dependent upon whether the dispersed phase is less dense (creams) 

or more dense (sediments) then the continuous phase. Indeed, a phase density 

matched emulsion is very difficult to separate. When there is a significant 
difference in density between the dispersed and continuous phase then 

gravity is a sufficient force to separate the two phases. This process is 

accelerated by centrifugation. However, this was found not to be the most 

efficient method of separation with a creaming emulsion. The amount of time 

taken to isolate small amounts was deemed to be too long and so the method 
described below was adopted. 

Most of the PDMS isolated was obtained by making 0.8 dM3 Of 0.05 

v/v DMDES, leaving the emulsion undialyscd for a week and then 

neutralising the ammonia by adding 0.1 mol dm-3 HCI (prepared from 

concentrated HCI) until the pH dropped to a value around 3. If left to stand, 

the PDMS droplets coalesce and rapidly cream. When the aqueous phase had 

cleared a distinct layer of PDMS could then be removed via careful pipetting. 
Water and other impurities would often be present in the PDMS as a water in 

oil (W/O) emulsion. This was removed by repeatedly freeze-thawing the 

emulsion in an ethanol bath, cooled by the addition of solid carbon dioxide. It 

was found that if the PDMS was cloudy it soon cleared after 4 or 5 

freeze/thaw cycles. Typically about 15-20 mL of silicone oil was obtained, 

representing approximately 40-50 % yield from the starting monomer. This 

procedure ensured that the PDMS oil isolated from the emulsion was in as 

similar form to the oil in the droplets as possible. 
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3.2.4. Physical properties of the PDMS phase 

Measurements on the isolated PDMS were performed in order to assess 

the effect of cross-linker on the density, viscosity, surface and interfacial 

tension of the PDMS. 

Viscosity measurements were carried out using a Cannon-Fenske 

capillary viscometer in a glass-fronted water bath, thermostatted at 25 ± 0.5 

*C. This technique has been described by Matthews [13]. The volume of 

sample measured was kept constant at 12 mL. The viscometer was calibrated 

with pure water. It was cleaned with ethanol and purified water and dried in 

an oven between measurements. Efflux times were observed visually and 

recorded on a stopwatch. Errors were estimated at less than 0.5 s. 
Density measurements were carried out in a 10 mL density bottle, 

supplied by BDH. The volume of the bottle was accurately calibrated using 

pure water at 25 *C. After measuring each sample, the density bottle was 

cleaned and rinsed with water and acetone and then dried in an oven. 

Surface and interfacial tensions were measured by the DuNouy ring 

method using a KrUss 'K12' processor tensiometer. The ring was calibrated 

against pure water to check cleanliness. The ring was washed with acetone 

and water and then flamed in a blue Bunsen flame between each 

measurement to remove impurities. All glassware was rigorously cleaned by 

insertion in a 20% HN03bath overnight and thoroughly rinsed with'Milli-Q' 

purified water. The oil phase was themostatted at 25 ± 0.2 *C at all times in 

the experiments. 

Melting and freezing points were visually determined using a Linkam 

themostatted microscope hot-stage, cooled with liquid nitrogen and a Nikon 

'Optiphot' microscope with ax 20 long focal distance lens. 

The nature of the PDMS and its solvency in organic liquids was 

examined. It was found that the PDMS was miscible with all hydrocarbons 

and most common solvents available except ethylene glycol and water. 
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3.2.5. Determination of PDMS volume fraction in the emulsion 

The initial volume fraction of monomer in any preparation was known; 

typically 0.01 v/v for the majority of the experiments. However, what was not 
known was the exact final volume fraction of the PDMS formed. Being an 

emulsion the 'dry weight' cannot be determined as both liquid phases 

evaporate. Another technique had to be used therefore to determine the 

volume fraction. 

It was initially thought that it would be possible to measure the dry 

weight of solid PDMS by freeze drying the emulsion. However, it was found 

that the entire system sublimed, no matter how carefully the temperature was 

controlled. 
High temperature distillation was tried. If the emulsion was distilled 

then the water phase could be removed and the remaining PDMS phase 

content recorded. Problems arose in that the PDMS was too difficult to 

separate from the water; it appeared in the distillate as well as the residue. A 

solution would have been to carry out a very precise fractionated distillation. 

However, the tendency of PDMS to absorb on glass surfaces would lead to 

some inaccuracy. 

A possible method to use is the 'Coulter Counter' technique of particle 

counting. This works on the principle that particles (droplets) passing through 

a small orifice, across which an electrostatic potential is applied, will cause a 

change in the resistivity of the medium across that gap. If a certain volume of 
the medium containing the droplets is passed through the orifice, then the 

number of droplets in that aliquot is simply related to the number of 'spikes' 

in the measured current across the gap. Obviously, the dispersion has to be 

fairly dilute and the medium has to be of moderate conductivity. In order to 
facilitate this, an ionic strength of 0.18 mol dM-3 NaCI was used. 

There were three major problems found with this technique when 

applied to the PDMS emulsions. The first is that the reported lower particle 
diameter threshold of the apparatus is 1 prn, which is of the same order of size 
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as the droplets to be studied. The second is that at a background electrolyte 

concentration of 0.18 mol dm-3, any droplet collisions will result in 

coalescence (see section 4.2.1), giving rise to a false number concentration. 

Thirdly, the diameter of the orifice needed for the highest resolution (30 Pm) 

is so small that small dust particles can result in it being blocked. The nature 

of the apparatus is such that it was very difficult to ensure that the dispersion 

was entirely dust free, even after filtration through a5 gm filter. 

Another method for determining the volume fraction involved 

creaming and coalescing the emulsion, and then extracting the PDMS phase 

in a more volatile liquid (e. g. diethyl ether) which could then evaporate, 

leaving behind the PDMS. However, problems were encountered with this 

method. The evaporation of the diethyl ether proved difficult to control 

without simultaneous loss of PDMS. Also, the PDMS droplets were found not 

to be transferring into the diethyl ether. Creamed and coalesced droplets were 

visible at the water / ether interface and would not disappear, suggesting that 

not all the dispersed phase was present in the ether. It was not apparent why 

this should occur since it had been shown earlier that previously isolated 

PDMS was miscible with most solvents available in the laboratory (refer to 

section 3.2.4). 

Finally, it was investigated whether viscosity measurements could be 

used to determine droplet volume fractions. Emulsions at low or moderate 

concentrations behave as Newtonian fluids. It is possible to calculate the 

volume fraction (ý) (for 0<0.01) of the dispersed phase from a knowledge of 

the viscosity of the emulsion [14,15]. 

'Ir =I+2.5ý 3.2 

Einstein's equation [16] applies to hard sphere dispersions, where ý is the 

volume fraction and TI, is the relative viscosity. For deformable droplets the 

internal motion inside the droplet will effect the viscosity [17]. If the internal 

viscosity of the droplet is significantly larger than the viscosity of the external 

medium, then Einstein's equation still applies. Similarly, presence of 
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surfactant at the oil-water interface can cause hard sphere-like behaviour due 

to interfacial tension gradients and surface viscosity. 
Unfortunately, no difference in viscosity could be determined between 

a1% DMDES emulsion and the continuous medium. This is probably due to 

the thermostatted water bath only being accurate to ± 0.5 "C. Any fluctuation 

in temperature of this margin would result in an inaccurate reading especially 

as ý, the volume fraction is very low. 

From the isolation of PDMS from 800 mL of 0.05 v/v DMDES emulsion 

a final volume of 15 mL of PDMS was obtained. This represents an 

approximate volume fraction, ý, of - 0.019. Thus the oil volume fraction in a 

typical 0.01 v/v DMDES emulsion may be estimated. Given the change in 

density from DMDES (p=0.865 g cm-3) to PDMS (p=0.955 g Cm-3), this 

represents a yield of 41 % by mass. In a 0.01 v/v DMDES emulsion therefore, 

assuming identical polymerisation, a final oil volume fraction, ý, of 0.00375 

would be attained. 

3.3. Measurement of Droplet Size by PCS 

3.3.1. Introduction 

Photon Correlation Spectroscopy (PCS), or Dynamic Light Scattering, 

has been a major technique for determining the average particle size of 

monodisperse colloidal dispersions [18-20]. 

The principle of the technique is that the light scattered by a dispersion, 

at a given angle, has a net intensity resulting from interference in the light 

scattered from each illuminated particle. Dispersed colloidal particles move 
due to Brownian motion, which results in a change in the phase and 

polarisation of the scattered light. Summed over all particles, there are 
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fluctuations in the net scattered light intensity of a given polarisation. These 

fluctuations are thus related to the translational diffusion coefficient 

(movement) and hence the size and shape of the particles. PCS relies on 

detecting the scattered photons in a series of short time intervals and the 

digital autocorrelation of the intensity of the fluctuations of the scattered light. 

3.3.2. Theory 

The autocorrelation function G2 (T) of the time-dependent intensity of 

the scattered light is given by: 

G2 'T' TIA (ty (t + T)d t 3.3 
. -oco 

T signifies the time over which the correlation is performed and I(t) and I(t+, r) 

are the scattered light intensities at times t and t+r. The value of r must be 

small relative to the characteristic time of the fluctuations in I. The digital 

correlator then records the intensity at times separated by successive intervals 

of AT. 

For short time intervals the particle positions and hence scattered light 

intensities are highly correlated so that G2 (r) tends to a value of 1. As time 

progresses I(t) and I(t+-r) become increasingly less correlated and the value of 

equation G2 (r) decays as a single exponential [21] of the form: 

G2(, r)=A+Bexp(-2q 2 Dt,, ) 3.4 

Here A is an instrument constant, B is the baseline value and D is the 

diffusion coefficient. t, is the single characteristic correlation time and may be 

equated to the time taken for a scatterer to move the distance 1/q (where q is 

the scattering vector, which is constant at a given wavelength, X, of light and 

scattering angle, 8). The scattering vector is given by equation 3.5: 
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where n is the refractive index of the medium. The correlation time tc is 

inversely related to the diffusion coefficient: 

2q 2D 3.6 

The hydrodynamic radius rh of a spherical particle is related to the translation 

diffusion coefficient D by the Stokes-Einstein relationship [16]. 

D kT 
67rTlrh 3.7 

PCS thus provides a measure of the average hydrodynamic radius of 
the scattering particles. It is assumed that the particle concentration is 

sufficiently dilute to neglect multiple scattering and particle-particle 
interactions. The particles have to be spherical in shape, have a low 

polydispersity (i. e. a narrow size distribution) and possess negligible 
interactions. 

3.3.3. Analysis of droplet size 

All droplet diameters were measured using PCS. Two instruments 

were used. The first was comprised of a CL-4 Cambridge Lasers argon-ion 
laser tuned to X= 514.5 nrn with PS 100 Malvern Optics and a K7027 Malvern 

multibit correlator. Later on in the investigation, the apparatus used was a 
Brookhaven 'Zetaplus' with a Bl-9000 AT Digital Correlator. Close agreement 

was found between measurements made with both instruments. A typical 

PCS set-up is shown in figure 3.6. 
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Figure 3.6: Typical PCS set-up 

Most PCS samples needed to be diluted before measurement due to the 

problem of multiple scattering caused by a too concentrated dispersion. 

Multiple scattering is detectable by observing a broad, diffuse beam when the 

laser shines through the sample. In most cases, extensive dilution did not 

significantly effect the droplet diameter. However, difficulties did arise in 

certain cases, notably with very large swollen droplets (refer to section 5.1.1 

on swelling with hydrocarbons). The optimum concentration was determined 

visually as being the point at which the dispersion was optically clear but 

with a definite bluish tinge. It should be noted that some of the sizes of the 

large swollen droplets will be at the upper range of most PCS instruments 

(typically 3ýtrn in diameter) [22]. Measurements of droplets of sizes near to 

this limit should therefore be considered as somewhat approximate. 
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3.4. PDMS (Silicone Oil) in Water Emulsions: Results and 

Discussion 

3.4.1. Emulsion preparation 

Depending on the starting synthetic conditions, liquid PDMS emulsion 
droplets or 'gel'-like silica particles can be made with controllable properties. 

It is possible to synthesise large 'monodisperse' droplets from about 1 ýLrn in 

diameter up to 2.5 pm. in diameter. Droplets as small as 250 nrn in diameter 

can also be formed. Properties such as density, surface charge and internal 

viscosity are all controllable simply by changing the monomer mixture at the 

start of the polymerisation. 
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Figure IT Variation of droplet sizefor PDMS emulsions with initial monomer 

concentration 
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Figure 3.7 illustrates how droplet size can be varied in a purely 

DMDES-derived emulsion by varying the initial monomer concentration. As 

can be seen, the average droplet size and the droplet polydispersity increase 

with increasing monomer concentration. Over a threshold limit of 

approximately 0.07 v/v an excess phase of monomer remains undissolved. As 

the PDMS emulsion begins to form and precipitates out of solution in the 

nucleation and growth mechanism, more DMDES dissolves to replace it. Thus 

droplets appear and swell with PDMS at the same time as an appreciable 

amount of monomer is starting to react. This is thought to be the origin of the 

increased polydispersity at high initial monomer concentrations. 

Plate 3.1 displays images of PDMS emulsions at 1% v/v and 4% v/v 

DMDES. The droplets in plate 3.1 (a) are just distinguishable using ax 40 

objective. They are clearly 'monodisperse. The emulsion droplets in plate 3.1 

(b) at least are more polydisperse. Large, medium and small PDMS droplets 

are clearly visible in this image, causing a high polydispersity index. It is 

apparent that there is a solubility limit for the DMDES monomer in water, 

which causes this polydispersity. It is also possible that the polydispersity 

results from unreacted monomer solubilising inside forming PDMS droplets. 

It is not possible to synthesise a monodisperse PDMS emulsion with 

monomer concentrations greater than 0.02 v/v under these particular 

conditions (as described in section 3.2.2). 
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Figure 3.8: Effect of cross-4inking monomer on droPlet size 

Figure 3.8 shows the effect of adding MTES (the trifunctionally active, 

cross-linking monomer), to form mixtures with DMDES, on droplet size. All 

the dispersions were formed from 0.01 v/v monomer. The droplet or particle 

size was determined using PCS, typically 18 hours later. Droplets with 
DMIDES only, synthesised in 0.01 v/v ammonia, are typically of the order of 1 

ýtm in diameter. Up to 5% v/v MTES in DMIDES there is no significant 

change in the size. The polydispersity in this region is typically below 10 % 

and hence the droplets can be considered to be reasonably 'monodisperse'. At 

higher cross-finker concentrations (> 5 %) the average droplet size decreases 

to around 400 nm in diameter at 50% MTES. Concurrently, the polydispersity 

increases to around 10 to 15 %. The reason for the decrease in droplet size 

may be attributed to an enhanced rate of production of nucleation sites for 

emulsion growth due to reduced solubility of the cross-finked PDMS 

oligomers. Beyond 70 % MTES the samples become more silica like in 

appearance. Wegener [23] showed that the particles in this region are no 
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longer spherical. Hence accurate measurement of the diameter using PCS is 

unreliable. 

If the emulsions are dialysed, there is no alteration in the size or 

polydispersity over time. If they are left undialysed the droplets continue to 

grow. This is shown above in figure 3.9 for 0.01 v/v DMDES/MTES 

emulsions. This shows how the volume (V) changes for four sets of emulsions 

with different amounts of cross-linker, compared to their starting volume 
(V. ). Typically, the maximum volume is attained after approximately 11 to 14 

days growth for the lower MTES concentration emulsions. The reason for the 

continued growth may be attributed to residual polymer left in the aqueous 

phase continuing to precipitate out of solution and being incorporated into 

the droplets. The rate of this growth is obviously dependent on there being 

PDMS still available; when this source runs out the droplets cease to expand. 
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Figure 3.9: Growth in size of undialysed emulsions with effect of cross-4ink-er 
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With reference to figure 3.7, the greater the starting concentration of 

monomer, the more rapidly and larger the droplets will grow. The results for 

higher concentrations of cross-linker also support the notion that the reaction 

in this region is more rapid, due to there being more nucleation sites. No 

appreciable droplet growth is seen in either the 40 % or the 60 % MTES 

emulsions. 
Another possibility for the growth shown in figure 3.9 is Ostwald 

ripening. However, if this phenomenon were occurring there would be an 

expected breakdown in the emulsion structure. This is not the case. If Ostwald 

ripening did occur it would also be observed in the dialysed emulsions, which 

exhibited no such behaviour. 

When the emulsion was synthesised with the dimethoxy monomer 
(DMDMS), there was no appreciable difference in the size of PDMS droplet 

produced compared to the diethoxy monomer. Nor was there any significant 

effect of the temperature at which the polymerisation was carried out. PDMS 

was synthesised at 5,25 and 40 *C across the range of MTES concentrations, 

and similar sized droplets were produced at each temperature. Consequently 

all the PDMS emulsions were synthesised at room temperature with the 

diethoxy monomer. 

3.4.2. PDMS characterisation 

It is possible to control the properties of the PDMS in the emulsion 

produced by varying the amount of MTES, the cross-linking monomer, 

present in the starting mixture. As can be seen in figure 3.8, the presence of 
the MTES can have a profound effect on the droplet size. Several samples 
(typically between 12-15 mL) of PDMS at cross-linker concentrations 
between 0 and 20 % MTES were isolated. Properties of the isolated PDMS 
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determined included viscosity, density, surface tension, interfacial tension 

and freezing/ melting point measurements. 

Obey [121 and Wegener [23] have extensively studied isolated PDMS 

by 1H and 29Si NMR. Obey showed that the PDMS obtained from a 0.05 v/v 
DMDES emulsion consisted of 88.6 % cyclic D4, with 11 % being linear PDMS 

and D3 representing only 0.4 % of the total oil phase. The high dilution of the 

monomer during polymerisation minimises the chance of oligomers reacting 

with each other. Cyclisation is, therefore, favoured over the inter-oligomeric 

reaction. Gel-permeation chromatography gave a number-average and a 

weight-average molecular weight of 420 g mol-I and mass spectrometry a 

number-average molecular weight of 320 g mol-1. 

As can be seen in figure 3.10 there is a near-linear increase in the 

density of PDMS from a value very close to that of pure D4 

(octamethyltetrasiloxane). The density coincides with that of water at a MTES 

concentration of about 12-13%. The value at 100% DMDES confirms that D4 is 

the dominant molecular species present, the small difference in density is 

probably due to the linear fraction. 

Figure 3.11 shows the viscosity of the isolated PDMS as a function of 

increasing cross-linker concentration. As expected, the silicone oil becomes 

more viscous with increased amounts of MTES. 

As cross-linker is added, so more complex and larger oligomeric 

silicone molecules are formed, with a corresponding increase in the density 

and the viscosity of the oil. Janke [241 has proposed several types of cyclic 

cross-linked silicone oligomers, which may be formed at low MTES 

concentrations. As the droplets become increasingly gel-like electron 

micrographs of the particles become possible. This reflects the corresponding 
increase in molecular weight of the silicone oil. 
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Adding cross-linker to mixtures of monomer has no significant effect 

on either the surface or the silicone oil/water interfacial tensions. The results 

are presented in figure 3.12. This is unsurprising given the efficiency of PDMS 

at presenting low energy methyl groups at the air or water interface. 
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Figure 3.12: Effect of cross--4inker on the surface and interfacial tension o Me PDMS f 

phase 

One implication of the data shown in figure 3.12 is that the small 

fraction of ionically terminated PDMS oligomers present do not lower the 

interfacial tension as other, more conventional ionic surfactants would. This 

has important implications especially with hydrodynamic phenomena such as 

viscosity and electrophoresis [15,17,251, where the nature of either a hard 

sphere equivalent droplet or a soft, deformable droplet has a direct 

consequence on the interpretation of the results obtained. Anderson [26] 

reported that addition of a surfactant resulted in smaller droplet sizes. This is 

due to a lowering of the interfacial tension (hence less energy is required to 
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increase the interfacial area) thus favouring the production of smaller 
droplets. 

Figure 3.13 shows that the measurement of the freezing and melting 

point of the isolated PDMS was difficult to visually determine as the 

temperature range over which the solid-liquid transition took place was 
broad. 
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Figure 3.13: Effect of cross-4inker on thefreezing and inelting points of the PDMS 

phase 

An observable trend is the rise to a maximum, followed by a decrease, 

as cross-linker concentration is increased. This follows for increasing 

molecular weight of cyclic siloxanes [27]. There is a consistent discrepancy 

between the melting and freezing point for each concentration of MTES. 

Further work is required, especially by differential spinning calorimetry 
(DSC) to investigate the thermodynamics of this phase change. 
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Table 3.2 sununarises the data acquired for PDMS characterisation. 

Cross-linker in monomer mixture 
Characteristic 

0 1 2.5 5 10 20 

Density 0.955 0.957 0.962 0.968 0.986 1.034 

(g CM-3) ±3x1O4 ±3x1O4 ±3XJ04 ±3xlO4 ±3x1O4 ±3x104 

Viscosity 2.578 2.724 2.961 3.462 6.224 20.35 

(mPa s) ±3xlO-3 ±5XJO-3 ±5x10-3 ±6x10-3 ±6x1O-3 ±7x10-2 

Freezing Point -3 -3 -8.5 -8.5 -9 
(OC) ±0.2 ±0.2 ±1.4 ±1.4 ±1.2 

Melting Point 10 13 11 10 7 

(OC) ±4 ±4 ±5 ±3 ±3 

Surface Tension 
19.5 20.2 19.3 20.0 19.9 

(mN m-1) 
Interfacial Tension 

19.7 20.2 20.1 18.9 19.6 
(mN m-1) 

Table 3.2: Experimental data of PDMS phases 

The surface and interfacial tensions of 20% MTES in DMDES monomer 

mixture were not measured due to insufficient quantities of isolated oil. 
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Chapter 4: Physical Properties of PDMS Emulsions 

4.1 Experimental Methods 

For a complete list of all the materials used in the experiments reported 
here refer to section 3.2.1. 

4.1.1 PDMS droplet stability to coagulation 

Experiments were performed on a series of cross-linked PDMS 

emulsions to determine the threshold coagulation concentration of electrolyte 

and the effect of pH on the stability at fixed background electrolyte 

concentration. In all experiments potassium chloride (KCI) was used as 

background electrolyte and hydrochloric acid (HCl) as acid. Coagulation can 

be defined as the process in which two droplets come into close enough 

proximity to each other to form a thin liquid film. Coalescence results in the 

formation of a single, large droplet due to thinning and break-up of the thin 

liquid film separating the two initial droplets [1]. Droplet size and size 
distribution was measured and followed, with time, using PCS and UV-Vis 

turbidity (refer to section 3.3.3 for a description of the PCS technique). 

Turbidity-wavelength measurements [2] have been used to follow the 

onset of coagulation as a function of particle concentration in the dispersion. 

A plot of logio (turbidity, T or optical density) against logio (wavelength, X) 

should be linear for the appropriate wavelength range providing the 

Beer-Lambert law is obeyed. For the PDMS droplets of diameter ca 1 micron 

this range of wavelengths was found to be between 570 and 800 nm. By 
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following changes in the gradient and linearity of the logio (r)-logio (k) plot 

the onset of coagulation in the emulsion could be monitored. Hence, the 

critical electrolyte coagulation (CCC) concentration could be determined. 

All emulsions were prepared as 0.01 v/v monomer in 0.01 v/v 

ammonia '880' as stated in section 3.2.2. After 18 hours the emulsions were 

then dialysed against pure water for 48 hours. Following dialysis 9 mL of the 

sample emulsion was pipetted into a 10 mL vial. The sample was then made 

up to 10 mL by addition of 1 mL KC1 solution of the required concentration to 

produce the final desired electrolyte concentration. The turbidity of the 

samples was measured between 570 and 800 nm using a Perkin Elmer 

"'Lambda 5" UV-vis spectrophotometer. Initial turbidity readings together 

with some PCS measurements, were taken within an hour of sample 

preparation and subsequently every other day. Samples were diluted, where 

necessary, with water containing KCI at an equivalent concentration to the 

sample in order to achieve the desired photon count rate for the correlator. 
The emulsion stability at low pH was also monitored using the 

turbidimetric technique. All emulsions were prepared with a background 

electrolyte concentration of 1x10-3 mol dm-3 KCI, which was found to be 

below the CCC. HCI was then added at a concentration of Jx10-3 mol dm-3 or 

Jx10-2 mol dm-3 depending on the desired final pH. The pH value was 

measured using an Orion 420A pH meter. This was calibrated for each 

measurement between pH 4 to 7 using pH buffer solutions. 
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4.1.2 PDMS droplet stability to freeze-thawing 

Many emulsions and colloidal dispersions can be induced to coagulate 
by repeated freeze-thawing of the suspension [3]. When the water phase of an 
O/W emulsion freezes, ice crystals appear and grow, thus forcing the oil 
droplets into narrow spaces between crystals. This has the double effect of 

concentrating the emulsion and any electrolyte present in the as yet unfrozen 

water. Eventually oil droplets are forced into contact with each other and 

coalescence may occur. 
A 0.01 v/v PDMS emulsion was slowly frozen in an ethanol bath 

cooled by addition of solid carbon dioxide. After the sample had solidified the 

emulsion was subsequently thawed to room temperature. The size and 

polydispersity of the emulsion was followed using PCS af ter each 
freeze-thaw cycle. This cycle was repeated three times. Neither the average 
droplet size nor the polydispersity of the emulsions were significantly 

changed by freeze-thawing. 

4.1.3 PDMS emulsion stability to increases in osmotic pressure 

Further experiments were performed on the stability of PDMS 

emulsions with respect to change in osmotic pressure. Osmotic stress is an 

experimental technique, which may be used for the direct measurement of 
interparticle forces [4]. The experiments described below were performed 

using this osmotic stressing technique [5]. 

Dextran is a commonly used polymer in this type of experiment. The 

osmotic pressure (11) of solutions of dextran is not significantly dependent on 

the molecular weight within the range 250000-2000000 g mol-1, except at 

concentrations below a few wt. %. ri values measured directly using a 
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membrane osmometer at room temperature and at 7,30 and 37 *C show little 

significant change [6,7]. 

Using a variation of the 'secondary osmometer' [8], (refer to figure 4.1), 

4 mL of dialysed PDMS emulsion was placed in scaled dialysis tubing which 

was immersed in approximately 80 mL of a dextran solution (MW 505,000 g 

mol-1). 

100 ml scaled 
Schott bottle 

Semi-perm 
dialysis 
membrane 

Stressed em 
(4 ml) 

xtran solution 
(80 ml) 

-FiQ, Ure 4.1: The 'Secondanj Osmometer' 
0 

The samples were placed in a shaker water bath equilibrated at 25 *C 

for a week. The samples had to be shaken to ensure that equilibrium could be 

established as concentrated aqueous polymer solutions are often viscous. This 

may result in solvent that has been osmotically pulled through the membrane 

absorbing as a layer around the membrane surface. This can slow or even halt 

the attainment of equilibrium via osmosis. Thus, by agitating the samples in 

the water bath and removing any forming solvent layer next to the 

membrane, this problem is avoided. 
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The samples were analysed visually and by optical microscopy to 

determine whether the emulsion had broken or not. The final equilibrium 

dextran concentration was determined using a Hilger-Watts differential 

interferometer, thermostatted at 25"C ± 0.05*C. The method and necessary 

precautions have been discussed previously by Adams [9]. The instrument 

was calibrated with dextran samples of known concentration, the reference 

solution was pure water in all cases and a white tungsten light source was 

used. 
Plots of log rI versus weight % [4] (w, in equation 4.1) show little scatter 

and are represented by equation 4.1. This is shown in graph form in figure 4.2. 

log 
101ri dex (0»] = 2.75 + 1.03m 
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Figure 4.2: 7he osmotic pressure of dextran polymer solutions 

Thus, the osmotic pressure exerted on the emulsion can be easily 

calculated from measuring the equilibrium concentration of aqueous dextran. 
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4.1.4 Surface charge measurements 

It was thought that it would be possible to measure the surface charge 

of the droplets using a conductimetric charge titration technique. In order to 

ensure that all the bound counter ions are H+, the sample to be measured was 
first dialysed against 1x1O-3moI dm-3HCI. The sample was then re-dialysed 

against pure water until the conductivity was equivalent to that of pure 

water. A sample of emulsion was then titrated againstlX10-2mol dmý3NaOH 

in a stirred degassed vessel and the conductivity was determined using a 
Wayne-Kerr "B224"' conductivity bridge. This enables the determination of 

the end point of the titration, which occurs when sufficient NaOH has been 

added to neutralise all the surface charge groups. The concentration of the 

NaOH was calibrated by performing an equivalent experiment with 5 mL of 
5x104mol dm-3sulphamic acid instead of the emulsion sample. 

The experiments were not successful since the results were 
inconsistent, some emulsion samples appearing to have no charge at all. This 

can be attributed to the fact that exchanging the surface group ions to H'I 

caused the emulsion to coalesce, reducing the total interfacial area, leading to 

a large variation in the apparent surface charge density. 
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4.2 Results 

4.2.1 PDMS droplet stability to coalescence by electrolyte 

Stability to coagulation and consequent coalescence was observed as a 
function of potassium chloride (KCI) concentration. This was determined by 

measuring the turbidity of the samples over a range of light wavelengths 
between 570 and 800 nm (refer to section 4.1.1). Figure 4.3 shows an example 

of the linear plot obtained for a typical 'monodisperse' PDMS emulsion. 
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Figure 4.3. Example of the linear log r1log Afor a PDMS emulsion 

Over the wavelengths studied the log r/ log X graph is linear. The 

gradient is -1.88 and the linearity fit is 0.999. The gradient and linearity are 

calculated from a least squares fit of the form y= mx + c. 
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Figures 4.4 and 4.5 show the effect of KCI concentration for a 0.01 v/v 

DMDES monomer emulsion. Both figures show graphs of the same 

experimental data. Figure 4.4 shows the change in the gradient of the logio 

(turbidity)-logio (wavelength) plot whereas figure 4.5 shows the change in the 

linearity of the gradient of the logio (turbidity)-logio (wavelength) plot. 
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x2 days 
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[KCI] (X, 0-3 mol dM"3) 

Fi . gure 4.4: 77ze effect of KCI on PDMS emulsion stability, alog r)186ogA) plot 

The linearity factor (also known as the R2 Value) shown in figure 4.5 is 

defined in equation 4.2. A value of 1 indicates a straight line with no 
deviations. The lower the value, the less linear the fit. In equation 4.2 yi is the 

experimental point, Yi is the fitted value and n the number of values. 

y(yi R 2=, _ 
SSE=, 

_ 
_ 4.2 

SST y2 i 
LEY., I 

SSE stands for sum of squares for error and SST sum of squares total. 

As described in section 4.1.1, for a monodisperse emulsion the slope of 
turbidity against wavelength should be linear and constant. If the size 
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distribution of the emulsion changes then the gradient changes and the 

linearity fit ratio falls. 
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Figure 4.5: 7he effect of KO on PDMS emulsion stability linearity plot 

Coalescence occurs after 4 hours for the droplets at KCI concentrations 

greater than 7.5xlO-3 mol dm-3. For these samples the gradient of the logio 

(turbidity)-logio (wavelength) changes after 4 hours as observed in figure 4.4. 

Coalescence is the instability occurring as the gradients for some samples 

increased. Coagulation is not observable as it results in lower values of the 

gradient [2]. If the linearity coefficient of the logio (turbid i ty)-log, o 

(wavelength) is followed this change is even clearer to see. For coalescing 

emulsions the log-log plot loses its linear fit and the linearity coefficient falls 

below 1, as observed in figure 4.5. At weaker KCI concentrations (< 5x10-3 mol 

dm-3) the emulsion is clearly stable (at least in the timescale studied) as shown 

by the constant gradients and linearity of the log-log plots. 
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The data displayed in figure 4.5 show more clearly the onset of 

coalescence, compared to the data in figure 4.4. As a consequence the 

remainder of the data from the UV-vis turbidimetric experiments are shown 

in the form displayed in figure 4.5. 

In order to determine more accurately the CCC (critical coalescence 

concentration) more experiments were performed over a narrower range of 

KCI concentrations. 
Figures 4.6,4.7, and 4.8 show data from similar experiments for 

droplets containing cross-linker (MTES) at concentrations of 0,0.1 and 0.2 

v/v in DMDES monomer. 
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Figure 4.6: The CCC of a 0% MTES PDMS emulsion 

# Dayl 
o Day 2 
A Day 5 

As can be seen there is no difference in apparent CCC between the 

emulsions covering the three concentrations of cross-linker. Coalescence 

occurs at KCI concentrations of 5x10-3 mol dm-3 and above after a period of 5 

days. At 7.5x10-3 mol dm-3 coalescence occurs within a day. One difference 
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Figure 4.7. The CCC of a 10% MTES PDMS emulsion 
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Figure 4.8: 77te CCC of a 20% MTES PDMS emulsion 
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that does occur with increasing cross-linker concentration is that the kinetics 

of coalescence are much slower for the 20% MTES PDMS emulsion. It is not 

until day five that a significant change in the linearity of the logio'-loglo graph 

occurs at electrolyte concentrations above the CCC. 

4.2.2 PDMS droplet stability to coalescence by pH 

Figures 4.9,4.10 and 4.11 show the stability of PDMS emulsions of 

cross-linker concentrations of 0,0.1, and 0.2 v/v in DMIDES with low pH 

values over a5 day period. 
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Figure 4.9: 7he coalescence of a0% MTES PDMS emulsion at lorv pH 

79 



0.95 

#Day 11 
0.9 - 13 Day 2 

0--j 
0 0.85 J 

0.8 

0.75 
3 3.5 4 4.5 5 5.5 6 6.5 7 

pH 

Figure 4.10: Vie coalescence of a 10% MTES PDMS emulsion at low pH 
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Figure 4.11: Vie coalescence of a 20% MTES PDMS emulsion at low pH 
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Figure 4.9 shows the stability of a 0% MTES PDMS emulsion. It is 

apparent that at or below pH 4.6 the emulsion is unstable, probably because 

there is insufficient charge on the droplet surface to prevent the droplets from 

coagulating upon collision. In figures 4.10 and 4.11 the emulsions appear 

more resistant to coalescence, particularly the 20% MTES emulsion where the 

linearity of the logio (turbidity)-logio (wavelength) graph is still high at pH 

4.5. In all samples below a pH value of about 4 the PDMS emulsion is 

unstable and coalescence occurs within hours. 

In these experiments only coalescence is observed. No floccs of 

coagulated droplets were evident. The results of both sets of experiments 

suggest that overall the higher the concentration of cross-linker in the PDMS 

emulsion the more resistant to coalescence the droplets are. This is shown by 

the linearity factors for the 20% MTES and 10% MTES emulsions remaining 

closer to 1 (i. e. there is a less significant change in the turbidity of the 
dispersion). 

81 



4.2.3 PDMS droplet stability to osmotic pressure 

In these experiments a somewhat subjective criterion was used to 
determine whether or not the emulsion was stable or unstable under the 

experimental conditions. If droplets could be still be observed using optical 

microscopy following equilibration then the emulsion had not broken, 

irrespective of any change in the polydispersity (droplet size distribution) of 

the system. The equilibrium dextran concentration, not the initial value, was 

taken in order to derive the osmotic pressure of the medium (equation 4.1). 
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Figure 4.12: Vie coalescence of PDMS entulsions at high osmotic pressure 

From figure 4.12 the threshold concentration for the onset of droplet 

coalescence is between 9 and 10 w/w % dextran as indicated by the dashed 

line. This dashed line corresponds to an osmotic pressure of 1.73401 N M-2 or 

about 0.17 atmospheres. 
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4.3 Electrophoresis 

Electrophoresis is the movement of a charged particle or droplet in a 
liquid in an electric field. 

In electrophoresis experiments the parameter usually determined is the 

electrophoretic mobility(UE. velocity per unit electric field). A key parameter 
in calculating the zeta-potential (ý, refer to section 2.3.1) from mobility values 
is the value of ra (1/K being the Debye-H(Ickel length and a the droplet 

radius). When ica is small a charged particle can be treated as a point charge; 

when ra is large the double layer can be treated as being flat in nature. 

4.3.1 Theory 

Htickel"s equation (equation 4.3) describes the relation between the 

electrophoretic mobility, UE, and the zeta-potential, ý, for a point charge 

where c is the permitivity of the medium and -qo is the viscosity of the 

medium. 

24c 
31lo 4.3 

The Mickel situation is only valid in extreme situations (Ka << 1). This 

is unlikely to occur in most aqueous colloidal dispersions where the sizes of 
the dispersed particles or droplets are large and electrolyte is present. 
Smoluchowski's [10] (equation 4.3) relates the mobility and zeta-potential 

under conditions of ica >> 1. 

UE 4.4 

These two expressions are limits. Henry [11] derived a formula 

(equation 4.5) that took into account intermediate values of ica. 
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UE 46 fKa 
710 

4.5 

In equation 4.5 f(Ka) varies between 1 for small ica and 1.5 for large Ka. 

The reason for this variance is electrophoretic retardation. This is caused by 

the double layer ions (and hence solvent around them) moving in an opposite 
direction to the particle. This is unimportant in equation 4.3 as the main 

retarding force is the frictional resistance of the medium, but becomes 

increasingly so for larger particles. In equation 4.5 the following assumptions 

are made: (i) the Debye-Hilckel approximation is made; (ii) there is no surface 

conductance or relaxation (both are results of distorting the electric field 

around a droplet and (iii) c and il are assumed to be constant throughout the 

mobile part of the electric double layer. 

More recently the theory of electrophoresis has been developed further 

[12]. The O'Brien and White theory [131 allows the theoretical calculation of 

zeta-potentials from electrophoretic mobilities of spherical, rigid particles of 

any size. There are also theoretical considerations for the electrophoretic 
behaviour of non-rigid particles such as spherical polyclectrolytes [14] (e. g. a 

swollen microgel) and for liquid droplets. Booth [15] made several 

assumptions about the electrophoretic motion of a spherical fluid body. These 

included neglecting relaxation effects, assuming that the charge and potential 
distribution were spherically symmetrical and also that the dielectric constant, 

viscosity and conductivity of the liquids retain their macroscopic values. 
Levine and O'Brien [16] considered charged mercury drops dispersed in 

water in an electric field, a topic that has received further attention from 

Oshima. More recently Booth's theory has been extended to non-conducting 
droplets [17] where it has been shown that in some cases the effects of interior 

viscosity can be ignored. These cases include the presence of surfactant or 

some contaminant material at the liquid/liquid interface, which leaves the 
drop surface inextensible, as if the droplet were solid. 'Solidification' of the 

interface can also occur with drops with very thin double layers and very 
high zeta-potentials (above ca 150 mV) [171. The same effect happens with 
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modest zeta-potentials in drops with thick double layers. The apparent 

rigidity is caused by the influence of ion concentration gradients on the 

interfacial tension. 

For cases where 'solidificationý was not evident, it was shown [17] for a 
liquid droplet of internal viscosity ill moving in a liquid of viscosity i1o that: 

UE = 
3&Tjjý 

ilo(3ill +21lo) 
4.6 

for ica >> 0. As Ka approaches 0 the mobility becomes independent of the 

droplet viscosity. 

4.3.2 Electrophoretic mobility measurements of PDMS emulsions 

The electrophoretic mobility of the PDMS in water emulsions was 

measured using the phase analysis light scattering (PALS) technique 
developed by Miller and Schatzel [18]. Attempts were also made to measure 

mobility using a Penkem 3000 electrophoretic apparatus. This is a 

conventional style laser doppler electrophoresis (LDE) apparatus. This proved 

unsuccessful with the PDMS emulsions, as the apparatus requires relatively 

strong light scattering dispersions. PDMS emulsions do not scatter light 

strongly enough as the refractive index of PDMS is similar to that of water 
(R. I. D4= 1.3968 [19]; water = 1.333 [20]). PALS proved to be the most reliable 
technique as it does not require very strong light scattering dispersions. PALS 

is an extension of LDE, the difference being the analysis of the scattered light 

signal where PALS looks at the phase rather than the spectrum or 

autocorrelation. 
With PALS the particles move relative to a moving interference fringe 

pattern. Two laser beams intersecting in the gap between parallel electrodes 

across which a sinusoidal electric field is applied generate this fringe pattern. 
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The cell set-up with parallel electrodes and crossed laser beams is displayed 

below in figure 4.13. 

Platinised Platii 
Electrodes 

Crossed laser beams 

Figure 4.13: PALS cell and electrode design. 

In LDE the colloidal particles must move over several fringe spaces 

during a single field pulse, so for samples of low mobility, large voltages are 

required, which can result in heating of the sample. PALS removes such 

restrictions by the use of phase demodulation of the laser Doppler signal. This 

allows the determination of very low mobilities with good precision (down to 

10-12 M2 S-1 V-1) [18]. The crossed beams are set so that there is a low scattering 

angle (typically around 15") which suits poor scatterers such as the PDMS 

emulsions and also very small colloidal particles such as microemulsions. 

Experimental measurements were performed using 4 mm path-length 

quartz cuvettes. The cuvettes were thoroughly cleaned by sonication in 

acetone, toluene and ethanol. The dialysed PDMS emulsions contained KCI as 

a background electrolyte at a concentration of 1x10-3 mol dm-3. As with the 

PCS measurements (refer to section 3.3.3) some samples required diluting 
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with aqueous electrolyte in order to avoid problems with multiple scattering. 

All samples measured were equilibrated at 25 ± 0.5 "C. Platinised black 

platinum electrodes were used in order to prevent electrolysis occurring on 

the electrode surface. Typical field strengths used were of the order of 1V 

mnyl. 
Various experiments were carried out using the PALS technique. These 

included the effect of cross-linker on droplet mobility, the mobility of droplets 

swollen with hydrocarbons and the effect of pH on cross-linked emulsions to 

determine the isoelectric point of the surface charge groups. 
Typically 3 sets of 5 readings were taken and averaged to give the 

quoted result. The one major disadvantage with the PALS technique is that it 

does not provide a standard deviation for each individual reading (this is a 

question of programming involved with the PALS software). 

4.3.3 Mobility measurements 

Most emulsion systems that have been previously studied have either 
been polydisperse or have had a surfactant present as a stabiliser. A liquid 

droplet with close-packed surfactant layers at the interface would be 

expected to behave like a solid particle which conventional electrophoretic 
theory describes [21]. In the case of the PDMS emulsions studied here there is 

no added surfactant. The emulsions are stabilised by a small fraction of 
functionalised linear PDMS. Hence, there should be a truly fluid interface 

rather than the 'solid-like' interface associated with surfactant-stabilised 
droplets. This is confirmed by the measured interfacial tension of the PDMS 

and water, which is of the order of 20 mN m-1 (section 3.4.2, figure 3.12). The 

droplets are expected to be deformable, i. e. internal flow will bear an 
influence on their motion in an applied electric field. Theory suggests that the 
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electrophoretic mobility for droplets compared to particles of the same 

potential and value of ica will be affected. 

The presence of a small amount of cross-linker (MTES) within the 

PDMS phase causes a marked increase in the viscosity (refer to section 3.4.2, 

figure 3.11) of the dispersed silicone oil. The droplets made with 10% MTES 

will be about 2.5 times as viscous as those made with 0% MTES. The diameter 

of the droplets will be fairly similar (refer to section 3.4.1) with only 

approximately 5% difference at the most (typical diameter 0% MTES = 1000 

nm; 10% MTES = 950 run). Hence, there should be an observable difference in 

the mobility of these two Systems. 

Figure 4.14 shows the averaged data points measured using PALS 

taken in a series of five separate experiments using different samples. These 

were all dispersed in WO-3 mol dm-3 KCI as background electrolyte. Standard 

deviations were less than 8%. 
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Figure 4.14: Effect of cross--linker on droplet electrophoretic mobility 
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As can be seen in figure 4.14 the mobility is greatest for the lowest 

viscosity sample (0% MTES) and decreases to a minimum at around 4% 

MTES before it starts to rise again as the cross-linker concentration increases. 

Figure 4.15 shows the averaged droplet size of the PDMS emulsions at 

equivalent cross-linker concentrations to those in figure 4.14. 
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Figure 4.15: 7he averaged size of the emulsion dropletsfor electrophoresis 

In figure 4.15 the average droplet size over the range of emulsions 

studied does not vary significantly over the range 0 to 5% MTES. However, 

the 10% MTES emulsions were noticeably smaller in most instances. This will 

undoubtedly have some effect on the mobility data as mobility is inherently 

dependant upon rca. 

Figure 4.16 shows the effect of electrolyte on the electrophoretic 

mobility of a PDMS emulsion with no added cross-linker, which also 

corresponds to the data shown in figure 4.6. The droplets still have a 
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significant amount of surface charge, even when the concentration of KCI 

exceeds the CCC (determined in section 4.2.1). 
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Figure 4.16: T7w effect of KO on the electrophoretic mobility of a PDMS droplet 

Figure 4.17 shows the effect of pH on droplet electrophoretic mobility 
for PDMS emulsions with different concentrations of cross-linker and 

corresponds to the data shown in figures 4.9,4.10 and 4.11. It shows that the 

electrophoretic mobility of the emulsions only starts to significantly decrease 

below a pH of 5. Previous results on the stability of PDMS emulsions at low 

pH values showed that the higher concentrations of cross-linker in the 

emulsion caused the droplets to be more stable at low pH (refer to section 
4.2.2). 

The dashed line in figure 4.17 indicates zero mobility and where the 

fitted curves cross this line is the isoelectric point of that particular emulsion 

(pHi,,,, where the droplet has no net charge). 

24 
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Figure 4.17. The effect of cross --linker on electrophoretic mobility with pH 

The isoelectric point for various droplets increases with higher 

cross-linker concentration. Below a pH of 4 all emulsions are unstable (refer 

to section 4.2-2) so mobility data at pH values below this have to be 

considered approximate as the size distribution of the emulsion will change. 

The isoelectric points of PDMS emulsions are comparable with that of silica 

[22] (pHi,, p = 2-3). 
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4.3.4 Calculation of zeta-potentials 

Zeta-potentials (ý) have been calculated using the methods of O'Brien 

and White and Booth [13,15] from the electrophoretic mobility data. Figure 

4.18 compares how these two approaches affect the data from figure 4.14. 
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Figure 4.18: Zeta-potentials of cross-4inked PDMS droplets 

The values of the calculated zeta-potentials tend to converge 

somewhat as the droplets become increasingly viscous. At low viscosity the 

values differ the most, the theory accounting for the internal droplet viscosity 

(Booth) giving a much higher potential than the case for the solid particle 

(O'Brien). The change inKa as the drop size decreases is compensated for by 

the O'Brien treatment only. 

Similar calculations lead to values for the zeta-potential at different 

electrolyte concentrations and pH. 
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Figure 4.19: 7he effect of electrolyte on the 4ý-potential of a PDMS emulsion 
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It can be seen from figure 4.19 that the zeta-potential decreases with 

increasing electrolyte concentration. However, above 540-3 mol dm-3 (the 

CCC value) there is still an appreciable potential of about -30 mV on the 

surface of the droplet. 

Likewise, from figure 4.20, below pH 4 there is still an appreciable 

potential on the surface of the droplets, although not as high as at the CCC. It 

is apparent from figure 4.20 that the PDMS droplets with no added 

cross-linker have the highest charge but the least stability at low pH. Higher 

concentrations of cross-linker in the droplet leads to a lower surface potential 

but concurrently greater stability. This could be due to the presence of a 

cross-linked gel network in the droplet, causing greater stability against 

coalescence. 

4.4 DLVO Pair Potentials 

4.4.1 Calculations from experimental data 

DLVO pair potentials (refer to section 2.3.4) were calculated using the 

sum of the electrostatic and van der Waals interactions by the "'Interparticle 

Potential Calculation Program" [23]. Total pair potentials calculated using 

zeta-potential data and an estimated Hamaker constant (refer to section 2.3.2) 

show large primary maxima due to a dominance of the electrostatic repulsive 

term over the van der Waals attractive term. Table 4.1 gives the calculated 

maximum potentials, in units of U, for the data presented in figures 4.16 and 
4.18 for two PDMS droplets. The maxima have been calculated using the 

zeta-potentials derived by both the Booth and the O'Brien and White 

methods. The estimated Hamaker constant for D4 from optical data [24] was 

4.96 x 10-20 J. The corresponding net Hamaker constant for two droplets 
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consisting of D4PDMS approaching (A12) in water was calculated as being 

0.35 x 10-20 j (refer to section 2.3.2). 

Calculation KCI concentration (mol. dn-r3) 

Method JXJO-3 2.540-3 5XJO-3 7.540-3 JXJO-3 

O'B+White 
510 410 265 175 145 

(kT) 

Booth 
670 590 395 245 240 

(H) 
1 1 11 

Table 4.1: Pair potential repulsive maxima 

As the O'Brien and White zeta-potential is lower than the Booth 

calculated potential the repulsive maxima are less. The maxima for D4 

emulsions at KCI concentrations well above the CCC are relatively large 

compared to the thermal energy (kT) for an unstable system. At 145 U, there 

exists a very large barrier to close approach by two droplets. 

Table 4.2 gives the repulsive maxima, in units of kT, of the pair 

potential for the PDMS emulsions with pH. This has been calculated using 

4-potentials derived by the O'Brien and White theory only, which is accurate 

for droplets with high intemal viscosity. 

Max potential Cross-linker (MTES) in emulsion (%) 

at pH 0 10 20 

10.5 (kT) 935 1160 811 

59 (kT) 730 535 285 

3.8 (kT) 155 65 60 

3.1 (kT) 85 25 3 

Table 4.2: Experimental pair potentialsfor PDMS emulsions with pH 
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For a 20% MTES emulsion at pH 3.1 the barrier to coagulation is 

approximately of the order of 3 U. This would not be sufficient to keep the 

dispersion stable over a long period of time. 

4.4.2 Theoretical pair potential calculations 

Theoretical pair potentials have been calculated for a PDMS emulsion 

in order to assess the influence of the measured zeta-potential at an 

electrolyte concentration just above the critical coalescence point (at [KCII of 
7.5 x1 Ornol dm-3). Experimental data suggested that the zeta-potential at 
this concentration (of electrolyte) is -26 rnV. Pair potentials have been 

calculated for lower potentials at -20 mV, -15 rnV and -10 mV in figure 4.21. 
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Figure 4.21: Theoretical pair potential curvesfor different 4ý-potentialsfbr PDMS 
droplets 
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Figure 4.22: Theoretical pair potential curvesfor different electrolyte concentrations 
for PDMS droplets of constant zeta-polential 

From figure 4.21 it is apparent that a zeta-potential of -26 mV causes a 

massive energy barrier to coagulation of -180 kT. The required zeta-potential 
for a low energy barrier is -10 mV or less, coagulation and hence coalescence 

should follow for this systern. 
Calculations have also been made for a PDMS emulsion with a 

constant zeta-potential but increasing the electrolyte concentration. The pair 

potentials resulting from the calculation of the emulsion of a given 

zeta-potential of -20 mV at 7.5 x 10-3,1 x 10-2, and 5x 10-2mol dm-3 KCI are 

shown in figure 4.22. Again there is a large maximum at a concentration just 

above the CCC. At a concentration of one order of magnitude greater than the 

CCC there is still an appreciable maximum of the order of 50 k-T. 
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4.4.3 Possibilities for deviations from DLVO theory 

The DLVO calculations above in section 4.4.1 predict that the 

emulsions should be stable at electrolyte concentrations above the measured 
CCC. There are two areas where an error could occur. One is with the 

measured experimental data and the other is the DLVO calculation. Tile only 

possible source of error caused by experimental methods is that the 

electrophoretic mobility of the emulsion at electrolyte above the CCC may be 

erroneous due to a change in the droplet size distribution (onset of 

coagulation and coalescence by thin film thinning). 

More likely is an under-estimation of the Hamaker constant (A12) for 

the system of two PDMS droplets interacting across an aqueous continuous 

medium. The Hamaker constant has been assessed for D4, ignoring the linear 

fraction of higher molecular weight PDMS. It is also therefore, an estimation 
for emulsions containing high concentrations of cross-linker. 

Also not considered here were van der Wants force retardation and 

screening. As these tend to an over-estimation rather than tin 

under-estimation of the van der Waals force these canalso be discounted. 

More probable is that there is a considerable hydrophobic interaction 

which plays an important role in determining the stability of the PD? VIS 

emulsions. Droplet distortion, i. e. a flattening of the surace curvature, as two 

droplets approach can also be responsible for an increased van der Waals 

attraction at close interdroplet distances. 
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Chapter 5: Swelling of Silicone Microgels by Solvents 

5.1 Introduction 

Large, 'monodisperse' PDMS droplets (i. e. >1 prn in diameter) cannot 
be synthesised (refer to section 3.4.1, figure 3.7 and plate 3.1b) by the 

conventional method as described in section 3.2.2. One method to produce 

larger droplets would be to solubilise a second, water-immiscible, solvent 

with the PDMS droplets. 

The swelling of colloidal particles dispersed in water with organic 

solvents or other low molecular weight species plays an important role in 

several processes such as emulsion polymerisation, drug delivery or 

phase-transfer catalysis. 

Bulk 3 Bulk 3 

2 2+3 

r i 
F2 

1= Water 

2= PDMS (radius, r) 
3= Solvent 

Figure 5.1: Schematic picture of PDMS droplets SWelling by hydrocarbon 
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Figure 5.1 shows a generalised scheme of the swelling process. Solvent 

(phase 3) is drawn into the droplet (phase 2) from a bulk phase (phase 1) by 

an osmotic gradient and the droplet expands from an initial radius ri to a 

swollen radius r2. 

The control and stabilisation of the swelling of colloidal particles is of 

great importance in polymerisation [1]. Studies have been made of the 

preparation and stabilisation of emulsions of vinyl monomers for suspension 

polymerisation [2] by an 'activated swelling' method. 'Successive seeded' 

emulsion polymerisation involving the swelling of a primary polymer particle 
by monomer [3,4] also utilises an osmotic swelling of colloidal systems. 

The first approach to understanding the thermodynamics of tllL- 

swelling process was made by Morton, Kaizerman and Altier [5]. The 

swelling of colloidal particles by organic solvents will stop when local 

thermodynamic equilibrium is reached [3]. Swelling is normally considered to 
be an equilibrium process leading to a thermodynamically stable state. This 

refers to the local equilibrium of individual particles and does not reflect the 

unchanged situation of the overall metastable state of colloidal dispersions. 

Equilibrium will be reached when the chemical potential of the solvent 

molecules inside the droplet (p2) is equal to the chemical potential of the 

those in the bulk phase (p'). 

N2= 113 1 
5.1 

There are three contributions that apply to the chemical potential of the 

solvent inside the droplet ([02). The first is the free energy of mixing with 
PDMS (phase 2) in the droplet. The second is the elastic straining contribution 
due to a geI-like structure in droplets. Lastly there is an increase in the 

interfacial free energy as a droplet expands due to the increasing surface area. 
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5.1.1 Osmotic Swelling of O/W Emulsions 

OstwaId ripening may be observed in emulsion droplets of solvents 

that are relatively soluble in water [6]. If a small amount of a highly 

water-insoluble second oil (compound 2) is added to a droplet of tile more 

water-soluble oil (compound 1), the stability towards Ostwald ripening is 

greatly increased [2,5,7]. The transfer of partially water-solubic oil molecules 

out of the droplet containing a second highly insoluble, oil is greatly reduced, 
because any such transfer increases the osmotic pressure inside the droplet. 

Provided compound 2 does not itself transfer out of the droplet into tile 

aqueous phase to any degree, equilibrium will be maintained inside the 
droplet. 

At equilibrium, the increased interfacial area balances the osmotic 

swelling pressure of the solvent in the PDMS droplet. Morton, Kaizermanand 

Altier [51 considered a swollen particle in equilibrium with free solvent and 
described the molar free energy of the solvent (AG3) together with the osmotic 

contribution (AG. 3) and the interfacial free energy contribution (AGO). This 

result is the 'MKA' equation: 

I 
+ý2X+2V37 RT(ln(l- + (1 - 

DP 
%2 

rRT 

)= 
Ac;., 5.2 

where ý2 is the volume fraction of compound 2 in the droplet, DP is the 

number-average degree of polymerisation of compound 2 (a liquid polymer 
in the case of a PDMS droplet), y is the interfacial tension of tile swollen 
particle to water, V3 is the molar volume of the solvent and X is the Flory- 

Huggins interaction parameter. The left-hand side of equation 5.2 is the 

standard expression of the Flory-Huggins theory [71 of polymer/solvcnt 
solutions together with a term describing the interfacial free energy due to 

swelling between the colloidal particle and water. 
The increase of the interfacial energy due to swelling is expressed as 

ydA = 8irr dry with A as the swollen droplet surface area. The volume increase 
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can be expressed either as 47rr2dr or dn3XM3/P3 where n3 is the number of 

solvent molecules imbibed by the droplet, M3 is the molecular weight of the 

solvent, and P3 is the solvent density. SinceM3/ P3 is equal to the molar 

volume of solvent and 87rr dry = 2V3(y/r) it follows that AGt3-2V3(y/rRT). The 

radius of a swollen droplet is thus predicted for a given value of ý2# X, V3 and 

y. Equation 5.2 is depicted as a graph of the free energy of the solvent inside a 

swelling droplet in figure 5. Z for a PDMS droplet swelling by n-heptane (X - 
0.49 [8]). The swelling is denoted by the ratio of the volume of the swollen 
droplet to the initial droplet volume (Vo). 

................................................................. 
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Figure 5.2: 77ze partialfree molar energy of solvent in a SUICIling droplet 

25 

AG3 does not reach zero in figure 5.2. Equation 5.2 predicts swelling ad 
finitum for a pure, liquid drop swelling with solvent. Eventually the droplet 

will no longer be stable with respect to coalescence. This is because the charge 
density will drop as the area per molecule increases for any absorbed 

stabilising molecules (surfactant, polymer, in --siffi PDMS etc. ). 
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5.1.2 Osmotic swelling of cross-linked PDMS droplets 

The considerations in section 5.1.1 are for liquid droplets consisting of 

oligomeric molecules of well-defined molecular weight. The situation 

changes on addition of cross-linking monomer into the polymer. Although 

the droplets are still fluid in nature at low cross-linker concentrations, at 
higher concentrations they become increasingly gel-like (refer to section 3.4.2, 

figure 3.11). 

In these cases the major limiting factor to osmotically driven swelling is 

the effect of restraining elastic energy inside the droplets. Due to the tight gel 

network, which stores elastic energy when expanded, the maximum size 

attainable will be reduced. The swelling of cross-linked gel networks has been 

considered, among others, by Flory [71 and Stauff [9]. With cross-linked 

polymer in a PDMS droplet an additional term, ý*2, is required to describe the 

volume fraction of cross-linked PDMS (1/DP sts 0) in the droplet. In IDMS 

droplets with low cross-linker concentration there will still be an appreciable 

amount of free, oligomeric PDMS (volume fraction, ý2)- 

As a gel network is swollen by absorption of solvent the chains 
between cross-linking sites assume elongated conformations and an clastic 
straining force develops in opposition to the swelling process. As swelling 

proceeds the osmotic driving force decreases, but the elastic force increases. 

Therefore a state of swelling equilibrium between these two forces is reached. 
The elastic straining force can be interpreted as a de-swelling pressure aciiiij; 

on the swollen gel. This pressure is sufficient to increase the cliernic, 11 

potential of the solvent in the gel until it equals that of the solvent outside. 
The chemical potential is given by (for (ý2 + ý*2) 0): 

bX )(ý*1/3 
0; )+ 2VI 2 In(l + Xý2 ,y3 2+2V3 

RT V. 2 rRT 

Where V. is the initial volume of the unswollen droplet and x is tile number 
of moles of cross-links in the droplet. 
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5.2 Swelling of PDMS Emulsions By Solvent: Experimental 

PDMS emulsions, (at an initial monomer concentration of 0.01 v/v), 

containing different concentrations of cross-linking monomer (MTES), were 

mixed with various water-immiscible organic solvents. The emulsions used 

were either dialysed or undialysed. The experiments were performed 18 

hours after initiation of polymerisation. Typically 20 mL of PDMS emulsion 

was mixed with 0.2 mL of solvent. The solvents used in the swelling 

experiments included n-heptane, n-octane, n-dodecane, cyclohexnne, n- 

octanol, toluene, styrene, 1,1,1-trichloroethane, DIVIDES, PDMS (mol. wt. 550 

g mol-1) and PDMS (mol. wt. 28000 g mol-1). To ensure efficient mixing 
throughout the experiments, the sealed vials were placed on a rotary tumbler. 

At regular intervals the average droplet size and polydispersity were 

measured using PCS (refer to section 3.3). Certain samples, which required 
dilution prior to measurement, were diluted by water saturated with the 

relevant swelling solvent. Problems arose when emulsions swollen by certain 

molecules (styrene and toluene) appeared to de-swell on dilution which 

made accurate measurement of the droplet size difficult. 

Both dialysed and undialysed emulsions were swollen for up to 3 

weeks. As a control experiment the size and polydispersity of equivalent 
tumbled emulsions, without additional oil, were also monitored throughout 

the experiment. 
Black and white photographs of the swollen emulsions were taken 

using the Nikon 'Optiphot' optical microscope with a Nikon FX-35 camera 

and ax 40 long focal distance lens, two of which are shown in plate 5.1. 
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5.3 Swelling of PDMS Emulsions By Solvent: Results 

5.3.1 Swelling by n-heptane 

Figure 5.3 shows the droplet sizes of undialysed cross-linked PDMS 

emulsions swollen by n-heptane (refer also to plate 5.1a). 
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Figure 5.3: Size of PDMS emulsion droplets swollen by n4wptane as afillictiol, of 

S71yelling timefor various concentrations of cross-link-er 

Figure 5.3 shows an apparent tripling of the initial average droplet 

diameter of the 10% MTES PDMS emulsion. The increasingly gel-like 
behaviour of the higher cross-linked emulsions is demonstrated by tile 

restricted swelling apparent for the 40%, 50% and 60% v/v MTES in DMIDES 
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droplets. These do not swell as much as droplets containing lower 

concentrations of cross-linker. This observation suggests that the presence of 

an elastic gel network limits the swelling. The polydispersities of the lower % 

MTES emulsions stayed consistently below 10%. The emulsions are not 

coalescing or undergoing Ostwald ripening. 

A plot of the increase in volume (from the starting volume, V. ) shows 

how much n-heptane the swollen droplets apparently consist of. 
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Figure 5.4: Increase in volume of n-lwptane in swollen PDMS emulsion drops as a 

function Of SWelling timefor various concentrations of cross-4ink-er 

The volume of the most swollen droplet is almost 30 times greater than 

the starting volume. This suggests that the droplet is 97% by volume n- 
heptane in composition. Even the more highly cross-linked emulsions more 

than doubled their size. 

a 
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s7vellhig tiiiiefor various concentrations of cross-4ink-er 
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Using the data shown in graph 3.9 of section 3.4.1 for tile growth of tile 

undialysed emulsion droplets as a control experiment it is possible to 

calculate the volume of n-heptane imbibed by each PDMS droplet, and lience, 

the exact volume fraction of PDMS in the swollen droplets. Theassumption is 

made that the droplets continue to swell with PDMS concurrently as well as 

by n-heptane to the same extent as in the control experiment. 

Figure 5.5 shows the actual quantity of n-heptane absorbed into each 

droplet. It is clear that the lower the concentration of cross-linker in tile 

PDMS the greater the amount of solvent that can be absorbed. 

Figure 5.6 shows the volume fraction of PDMS as tile droplets swell. 

Regardless of cross-linker concentration the swelling initially results in an 

immediate decrease in ý2. The rate of decrease Of ý2 slows as swelling 

proceeds to a limiting value typically between 0.1 and 0.2 for all cross-linker 

concentrations below 40 % v/v MTES. Only at concentrations greater than 

40% v/v MTES does there appear to be an effect of the concentration of 

cross-linker on the equilibrium value Of ý2- 

Figures 5.3 to 5.6 show swelling data for PDMS emulsions 

continuously mixed with an excess of n-heptane using a rotary mixer. 
Emulsion swelling occurs by diffusion, therefore the need for agitation of flie, 

mixture should not be necessary. Figure 5.7 is a plot over a period of time for 

a 'standing' PDMS emulsion (with no cross-linker) with excess n-lieptane. In 

this system diffusion is the only possible mechanism of swellirig of the 

droplets, as there is no mechanical agitation. 

The measured polydispersity of the solvent-swollen droplets was 
below 10% for all measurements made up to about 22 hours. The 

polydispersity after 22 hours was very high, (1857 ± 522 nm), and the intensity 

of the scattered light was very low as well. This can be attributed to the fact 

that the droplets cream rapidly, or coalesce with the excess n-heptane-water 

interface. The rate of creaming is enhanced by the increase in the density 

difference with water and the increase in size of the PDMS droplets swollen 
by n-heptane (refer to section 2.2.1 on emulsion creaming). As a result the 
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number density of droplets in the sample cell was insufficient for meaningful 

light scattering data to be recorded. This creaming is eliminated when the, 

emulsions are tumbled on the rotary mixer. Hence, all swelling experiments 

were performed using the rotary tumbler to eliminate any creaming 

instability. 
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5.3.2 Swelling by other solvents 

Increasing the amount of swelling solvent added to the PDNIS 

emulsion enhances both the rate and the extent of swelling. The swelling is 

dependent on the solubility in the aqueous phase and the rate of diffusion 

into the droplets. The higher the solvent concentration, up to the saturation 

point in water, the quicker it will repartition into the droplets. Some solvents 

are more soluble in water than others, some are better solvents for PDMS than 

others. By examining the swelling rates from a range of solvents the effLvts of 

solvent type can be seen. 
Other solvents used for swelling of PDMS emulsions included 

n-octane, cyclohexane, 1,1,1-trichloroethane, toluene, styrene, n-octanol, 

n-dodecane, dimethyldiethoxysilane and PDMS. An example of a IIDMS 

emulsion swollen by toluene is shown in plate 5.1 (b). The droplets are much 
larger but remain 'monodisperse' in appearance. The toluene-swollen 

droplets are larger than the equivalent n-heptane swollen droplets in plate 5.1 

(a) suggesting that toluene is a better swelling solvent. 

Some solvents proved better at swelling the droplets than others. The 

solvents that produced data most similar to n-heptane were n-octane and 

cyclohexane. The data from these swelling experiments is shown in figures 5.8 

and 5.9. Data from swelling by DMDES (i. e. adding more starting monomer 

after initial synthesis of droplets had occurred) and styrene is shown in 

figures 5.10 and 5.11. Finally data showing the total PDMS volume fraction of 
droplets swollen by n-octanol and n-octanc is shown in figures 5.12 and 5.13. 
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The data shown in figures 5.8 and 5.9 is similar to that shown for 

n-heptane in figure 5.3. A substantial increase in droplet size is obsmed due 

to the solvent entering the droplets by osmotic diffusion. Droplets of lower 

cross-linker concentration swell to larger volumes than comparable systems 

with increased concentrations of cross-linker. 

Figure 5.10 shows the swelling data for undialysed PDMS droplets 

swollen by DMIDES. The data show that the droplets continue to grow by 

absorbing PDMS from the aqueous medium. If now droplets were forming by 

on-going nucleation and growth mechanisms an increase in polydispersity 

would be expected. As this does not occur, -any new nuclei of PDMS droplets 

forming must coagulate and absorb into the emulsion droplets before they 
have time to become stabilised (refer to section 1.3). Sequential addition of 

more monomer to an undialysed emulsion presents a useful method by which 
larger PDMS droplets could be produced. 

Figure 5.11 shows swelling by styrene into PDMS emulsion droplets. 

This was an example of the swollen droplets being difficult to measure 

accurately using PCS. The swollen emulsion is milky white inappearanceand 

the large droplets were visible under the optical microscope (refer to plate 
5.1). Hence, samples for PCS measurements needed to be very dilute in order 
to prevent multiple scattering. Even though the samples were diluted by 

water saturated by the solvent some emulsion breakdown occurred. This 

occurrence was most prevalent in PDMS emulsions swollen by toluene, 

styrene and 1,1,1-trichloroethane and least in hydrocarbon-swollen PDNIS 

emulsions. This observation may be rationalised due to tile rate of swelling of 
being extremely rapid. This rapid swelling of the PDMS emulsion may result 
in instability due to insufficient surface charge density to ensure repulsion 

caused by the over-expanded surface. 
Higher molecular weight non-polar and polar solvent molecules did 

not swell the PDMS emulsion droplets to such an extent as observed with 

small solvent molecules. The data shown in figure 5.12 is an example of this, 

in this case with n-octanol as a swelling solvent. The total volume fraction of 
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PDMS (ý2 + ý*2) appears to increase above 1.0. This is due to the emulsion 

actually decreasing in average droplet size as compared to the unswollen 

emulsion. This challenges the assumption that there would still be a 

significant volume of PDMS absorbing into the droplets as the swelling 

experiment proceeded. It appears, in this instance, that less PDMS has 

absorbed in the experiment as compared with the control. It is possible that a 

portion of the PDMS has absorbed into the n-octanol bulk phase. Thus, 

estimates of the total PDMS volume fraction (ý2 + ý*2), may be overestimates. 

5.3.3 Discussion of swelling results 

qualitative order of the best solvents for swelling of I'DMS 

emulsions can be produced from the experimental data, together with some 

solubilities in water (expressed as weight % in parentheses following the 

solvent name) [10,11]: 

1,1,1-trichloroethane (0.13) > toluene (0.049) > styrene (0.03) > cyclohexane 

(0.013) > n-heptane (0.005) > n-octane (0.002) > DMDES > n-octanol (0.059) > 

n-dodecane > n-hexadecane > n-decanol > PDMS. 

The main factor determining this order is the solubility of the solvent in 

water. The effect of the solubility of the solvent in PDMS is not as important. 

One exception is n-octanol. Here, the molecule may not have sufficient 

solvency with PDMS for swelling to occur. No data for the solubilities of the 

latter solvents could be found in the literature so it can be assumed that they 

are minimal (less than 0.001 wt. %). 

Studies of the variation of the volume fraction of PDMS with swelling 

time suggests that an equilibrium concentration is reached inside ii droplet, 

regardless of cross-linker concentration, up to 40 % v/v MTES (refer to 

figures 5.6 and 5.13). This suggests that the presence of any elastic straining 

energy in these droplets is minimal; ý*2 iSinsignificant as a contribution to the 
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overall polymer volume fraction. Accurate estimates of cross-linker density 

from these data cannot be made. At cross-linker concentrations above 40% 

v/v MTES there is much more restricted swelling. This can be attributed to 

the presence of an elastic gel network. The PDMS at these MTES 

concentrations becomes solid rather than liquid in nature. Particles are visible 

using electron microscopy [12]. The driving force for the swelling is assisted 

by the continued absorption of PDMS out of the aqueous phase, thus 

maintaining ý2 at high levels. This keeps the osmotic gradient for solvent 

repartitioning high as well. 

The assumption that PDMS continues to absorb into the droplets as 

they swell could also be erroneous. If PDMS is also absorbed into the bulk 

solvent then the chemical potential of the solvent (ý01) is not equal to the true 

pure solvent chemical potential (P30). This will also effect the final equilibrium 

position. 

5.3.4 Electrophoretic mobility of swollen PDMS emulsions 

From the data that are shown in sections 5.3.1 and 5.3.2 it may be 

concluded that the emulsions can take up large quantities of organic solvent 

from solution and remain stable when an equilibrium size is reached. The 

stability is maintained by charge stabilisation. Either the surface charge 
density of the droplets stays the same as the surface area expands, or the 

charge on the droplets decreases, but remains sufficiently large to prevent t%vo 

droplets coming into close proximity. The problem could be resolved using 

clectrophoretic mobility measurements of the swollen droplets, which may 

reveal how the droplets remain stabilised. 

Figure 5.14 shows the zeta-potentials calculated using the method 

developed by O'Brien and White [13] from experimental electrophoretic 

mobility data measured on the PALS apparatus. The PDMS emulsions 
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measured were dialysed prior to swelling. They had no added cross-linker 

and were swollen by n-heptane over a period of 2 days. Droplet sizes were 

measured as previously described using PCS. 
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Figure 5.14: Zeta-potential of PDMS enjulsions swollell 1)y 11-4, ei; laele --0 

The zeta-potentials of the swollen droplets remain fairly constant 
between -40 and -55 m. V. The surface charge density is not affected by tile 

increase in surface area. It would appear that new charged oligomers absorb 

at the droplet/water interface in order to replenish tile depletion of surface 

charge caused by the expansion. Thus the droplets are able to expand to large 

volumes and remain stable. 
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5.4 Introduction of Organic Dye Molecules into PDMS 

Emulsions 

Sudan yellow, a water insoluble azo-dye, dissolves readily in most 

organic solvents and is also soluble in the separated PDMS phase. Hence, 

when introduced into a PDMS/water emulsion it should partition into the 
PDMS phase. It has previously been shown to absorb into latex particles [141. 

OH 

N- N 

NN 
CH3 

Figure 5.15: Chemical structure of Sudan yellow (lye 

Three methods were tried in order to incorporate the dye into the 

emulsion droplet. Sudan yellow, dissolved in either diethyl ether, n-heptane 

or toluene was added very slowly drop-wise to a PDMS emulsion in a stirred, 

round-bottom flask over a 24-hour period. Colour changes in the emulsion 

were noted. After complete addition of the dye containing solvent, the solvent 

was removed by opening the flask to air and allowing it to evaporate. 
The second method involved using DMDES monomer containing 

dissolved dye. An attempt was made to synthesisc the emulsion using 

monomer dyed with Sudan yellow and also to grow the emulsion as in the 

swelling experiments using the dyed monomer. After addition of the dyed 

monomer the emulsion was then dialysed. 

These two methods were unsuccessful in achieving the desired result, 

namely a stable dyed PDMS emulsion. The emulsion appeared to be coloured 
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but following dialysis the emulsion was always broken and no dye remained 
dispersed. 

For the final method the solubility of Sudan yellow in ethanol-water 

mixtures at concentrations greater than 0.4 v/v ethanol was utilised. At hiph 

ethanol content PDMS is also soluble [12], but if the ethanol content is 

lowered, the PDMS precipitates out of solution in droplets or as separate 

particles, if there is a high concentration of cross-linker. Therefore, systems of 
50%, 20%, 10% and 0% MTES in 0.01 v/v DMDES in 80%, 60% and 40% 

ethanol in water concentrations were prepared. After 18 hours the samples 
were dialysed against pure water, thus lowering the concentration of ethanol 

in each of the samples. After 48 hours of dialysis the samples were then 

centrifuged to determine whether the sediment or the cream contained dye. 

Depending on the concentration of cross-linker in the PDMS, it was 
found that the dye was contained in either the sedimcnted or the creamed 
layer. Thus, it can be inferred that the emulsions had become successfully 
dyed. 
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Chapter 6: Conclusions and Further Work 

6.1 Conclusions 

PDMS ('silicone oil') in water emulsions, with controllable properties, 

may be synthesised by varying the starting monomeric reaction mixture. The 

size, density and viscosity of the emulsion droplets can be altered by addition 

of a trifunctionally active, cross-linking monomer, MTES, to the major 

difunctional monomer, DMDES. Analysis of the PDMS phase produced, 

following the polymerisation shows that, for cross-finker concentrations of 
less than 12 % v/v, the PDMS is less dense than the aqueous medium and the 

emulsion creams. At cross-linker concentrations above this the emulsion 

sediments. Simultaneously, the PDMS becomes increasingly more viscous. 
This is as a direct result of the cross-links increasing the molecular weight of 

the polymer. The PDMS produced from DMDES alone has density and 

viscosity values very close to those of D4 (oc tame thylcyclo te tra sil oxn nc), 

which is the major constituent of the PDMS phase. 

The surface and PDMS/water interfacial tension of the PDMS phase 

agree closely with literature values. The addition of cross-linker appears to 

have no effect on the surface energy of the PDMS. The high interfacial tension 

values suggest a pure oil/water interface without any absorbed surfactant 
being present. The PDMS droplet interface should, therefore, be non-rigid. 

Increasing the cross-linker concentration lowers the freezing and 

melting temperatures. This is due to the PDMS being increasingly 

cross-linked, thus giving the silicone molecules higher molecular weight. 

Increasing the cross-linker concentration inside the droplets results in 

smaller droplets forming. Typically a1% v/v DMDES in 1% v/v aqueous 

ammonia reaction mixture will produce 'monodisperse' droplets of average 

diameter 1 gm 24 hours after mixing the reactants. A minimum in the droplet 

124 



size occurs at cross-linker concentrations between 40 % and 60 % v/v 

monomer, at which stage the droplets become solid-like particles. At 

extremely high concentrations (greater than 90 % v/v) of cross-linker 

non-spherical crystalline silica-like particles are formed. The polydispersity 

of the droplets increases with increasing concentration of cross-linker. If tile 

droplets are left undialysed they continue to grow in diameter and they 

typically reach maximum size after 2 weeks. Increasing the total starting, 

monomer volume fraction results in larger droplets, but also tends to give 

more polydisperse size distributions. 

PDMS emulsion droplets, at cross-linker concentrations of 0 %, 10 % 

and 20 % v/v MTES in DMDES monomer, with a concentration of KCI (a 1: 1 

electrolyte) greater than 5x 10-3 mol dm-3 slowly coagulate over a4 day 

period. Coagulation is faster at 7.5 x 10-3mol dm-3, where it occurs within 4 

hours. The presence of cross-linker has no appreciable effect on the critical 

coagulation concentration (CCC). At pH values below 4 all the emulsions, 

regardless of cross-linker concentration coalesce. Droplets without 

cross-linker slowly coagulate below pH 4.5, whereas droplets containing 10 % 

and 20 % cross-linker tend to be stable at this pH. 

Osmotic compression studied on the PDMS emulsions showed that a 

minimum osmotic pressure of around 0.17 atmosphere is required to coalesce 

the droplets. No floccs of droplets were observed at any stage in the stability 

experiments. This suggests that, in the regions of close approach the thin 

PDMS/water/PDMS film is unstable and always ruptures. In the absence of 

absorbed surfactant there is no Gibbs-Marangoni type stabilisation effLvt 

against film thinning. 

From electrophoretic mobility measurements on the PDMS droplets the 

zeta-potentials were derived as a function of electrolyte concentration and 

pH. Calculations using the theory for liquid particles suggest higlier 

potentials than the more conventional theories for solid spheres. Tile 

isoelectric points of the emulsion droplets lie in the same reported pH range 

as for colloidal silica. With higher concentrations of cross-linker inside the 
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droplets there is a slight increase in the value of the isoelectric point. Above 

the CCC and below pH 4 there is still a considerable potential at the droplet 

surface. Calculation of the interparticle pair potential from van der Waals 

attractive and electrostatic repulsive interactions reveal large primary maxima 

against coagulation and coalescence. Some possibilities for this deviation from 

DLVO theory can be attributed to droplet deformation and the possible 

presence of a large, unquantifiable attractive hydrophobic interaction. 

PDMS droplets with variable concentrations of cross-linker swell 

osmotically with a range of good solvents. Restrictions due to cross-linking 

only become significant at cross-linker concentrations greater than 40 % v/v 

where the droplets are considered to be effectively gel-like solid particles. 

Below this concentration of cross-linker, if any cross-linked gel network 

exists in the droplet, there is no alteration in the equilibrium volume fraction 

of PDMS in the swollen emulsion droplet. In general, the higher the solubility 

of the swelling solvent in water, the better the swelling of the droplet. The 

PDMS droplets swollen with solvent can be up to 30 times as big as the 

original droplet's starting volume with the monodispersity and stability 

maintained. The swelling of PDMS droplets with DMDES is a method by 

which large and 'monodisperse' droplets can be formed. 

Electrophoresis, showed that the droplets increase their total surface 

charge, as their surface area expands, by absorbing more of the surface-active 

oligomers at the interface. 

More complex, higher molecular weight molecules with very limited 

solubility in water can also be solubilised into the PDMS droplets, although 

the size distribution is altered and, in particular, the polydispersity of the size 
distribution is increased. 
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6.2 Suggestions For Further Work 

6.2.1 Droplet coalescence at a planar oil/water interface 

An observation was made, for a creamed layer of a5% v/v DIODES 

emulsion, which had been left standing for a month, that the droplets 

contained within the cream were large (-2.5 ttm diameter) and 
'monodisperse'. A separate, coalesced layer of PDMS existed above the cream 
layer. This suggests that there is a threshold size stability, which may be of 
importance in producing large, 'monodisperse' concentrated emulsion 
droplets. 

I Experimental techniques exist whereby the lifetime of emulsion 
droplets at a planar oil/water interface may be examined [1,2]. In particular 
the droplet coalescence technique as used by Dickinson et al [1] is suitable for 

examining droplets in the micrometer size region. In general, the smaller the 
droplets then the longer the coalescence time. This could give credence to the 

above observation where a polydisperse cream became gradually more 
'monodisperse' through coalescence of the large droplets. 

The PDMS emulsions would be interesting systems to examine 
film-thinning and coalescence at a planar interface. A prototype glass 

coalescence apparatus was designed and built and droplet coalescence at the 

water/PDMS film was observed. Using optical microscopy incorporating the 
long working distance objective together with image analysis software 

available in this laboratory, following the droplet coalescence times at the 

interface should be possible. This would then be tied in with the stability 

results discussed in chapter 4. 
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6.2.2 Analysis of the PDMS by DSC 

Thermometric determinations can reveal many interesting properties 

of materials. Differential scanning calorimetry (DSC) yields the enthalpies of 

transition for phase changes (e. g. the heat of fusion at the melting 

temperature). This could give information on the exact nature of the PDMS 

phase when cross-linker is incorporated, i. e. whether there exists gel-type 

networks inside the liquid droplets and at what concentration the transition 

from liquid to solid particles takes place. 

6.2.3 Other possibilities for further work 

There are numerous applications that can be found for a 
'monodisperse' surfactant free emulsion. These include thin film studies of 

the PDMS/Water/PDMS interface, rheology of a concentrated emulsion and 

using the emulsions as a starting point for polymerisation to form high 

molecular weight PDMS. The PDMS emulsion is an ideal system to study 
further any hydrophobic interactions, for instance the effect of dissolved gas 

on emulsion stability [3]. 
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